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Abstract. Two important tasks in probabilistic reasoning are the com-
putation of the maximum posterior probability of a given subset of the
variables in a Bayesian network (MAP), and the computation of the max-
imum expected utility of a strategy in an influence diagram (MEU). De-
spite their similarities, research on both problems have largely been con-
ducted independently, with algorithmic solutions and insights designed
for one problem not (trivially) transferable to the other one. In this work,
we show constructively that these two problems are equivalent in the
sense that any algorithm designed for one problem can be used to solve
the other with small overhead. These equivalences extend the toolbox of
either problem, and shall foster new insights into their solution.
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1 Introduction

Maximum a posteriori inference (MAP) consists in finding a configuration of a
certain subset of the variables that maximizes the posterior probability distri-
bution induced by a Bayesian network [30]. MAP has applications, for example,
in diagnostic systems and classification of relational and sequential data [15].
Solving MAP is computationally difficult, and the literature contains a plethora
of approximate solutions, a few examples being the works in [4,29,17,18,13,21,26]

Influence diagrams extend Bayesian networks with preferences and actions
to cope with decision making situations [10,12]. The maximum expected utility
problem (MEU) is to select a mapping from observations to actions that maxi-
mizes the expected utility as defined by an influence diagram. MEU appears, for
example, in troubleshooting and active sensing [12]. Although MEU is computa-
tionally difficult to solve, it counts with a large number of approximate solutions,
for example, the works in [32,14,20,5,24,19,16,9,7,6].
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The MAP and MEU problems are closed for the complexity class NPPP [30,5],
which implies that any algorithm designed to solve one problem can in principle
be used to solve the other.1 Moreover, both problems are NP-complete when the
treewidth of the underlying diagram is assumed bounded [3,22,23].2 In practice,
however, these two problems have been investigated independently, with a few
similarities arising in the design of algorithms such as the use of clique-tree
structures and message-passing for fast probabilistic inference [20,21].

In this work we provide constructive proofs of the equivalences between these
two problems. We start by presenting background knowledge on graphs (Sec. 2),
Bayesian networks (Sec. 3) and influence diagrams (Sec. 4), and formalizing the
MAP and MEU problems. Then, we design a polynomial-time reduction that
maps MAP problems into MEU problems (Sec. 5). We show that the reduction
increases the treewidth by at most four, which makes the reduction closed in NP.
We proceed to build a polynomial-time reduction of MEU into MAP problems
(Sec. 6). The reduction increases treewidth by at most five, being also closed
in NP. These reductions enlarge the algorithmic toolbox of either problem, and
shall bring new insights into the design of new algorithms. We conclude with
an overview of the results and a brief discussion on some shortcomings of the
reductions developed here (Sec. 7).

2 Some Useful Concepts from Graph Theory

Consider a directed graph with nodes X and Y . A node X is a parent of a Y if
there is an arc going from X to Y , in which case we say that Y is a child of X .
The in-degree of a node is the number of its parents. We denote the parents of a
node X by pa(X) and its children by ch(X). The family of a node comprises the
node itself and its parents. A polytree is a directed acyclic graph (DAG) which
contains no undirected cycles. A DAG is loopy if it is not a polytree. Polytrees are
important, as they are among the simplest structures, and probabilistic inference
can be performed efficiently in some polytree-shaped Bayesian networks.

The moral graph of a DAG is the undirected graph obtained by connecting
nodes with a common child and dropping arc directions. The moral graph of a
DAG might contain (undirected) cycles even when the DAG itself does not (e.g.,
any polytree with maximum in-degree greater than one).

A tree decomposition of an undirected graph G is a tree T such that

1. each node i associated to a subset Xi of nodes in G;
2. for every edge X-Y of G there is a node i of T whose associated node set Xi

contains both X and Y ;
3. for any node X in G the subgraph of T obtained by considering only nodes

whose associate set contain X is a tree.

1 We assume here that the number of incoming arcs into any decision node in an
influence diagram is logarithmically bounded by the number of variables, which
limits the size of strategies to a polynomial in the input size.

2 The treewidth of a graph is a measure of its similarity to a tree.
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The third property is known as the running intersection property. A clique is a
set of pairwise connected nodes of an undirected graph. Any tree decomposition
of a graph contains every clique of it included in some of the associated node
sets [2]. The treewidth of a tree decomposition is the maximum cardinality of a
node set Xi associated to a node of it minus one. The treewidth of a graph G
is the minimum treewidth over all tree decompositions of it. The treewidth of a
directed graph is the treewidth of its corresponding moral graph. Polytrees have
treewidth given by the maximum in-degree of a node.

The elimination of a node X from a graph G produces a graph G′ by removing
X (and its incident arcs) and pairwise connecting all its neighbors. A node is
simplicial if all its neighbors are pairwise connected. Eliminating a simplicial
node is the same as simply removing it (and its incident arcs) from the graph.
Let G be a graph of treewidth κ, and G′ be the graph of treewidth κ′ obtained
from G by eliminating a node X of degree d. Then κ is at most max{κ′, d}, being
exactly that when X is simplicial [2]. By removing arcs or nodes we generate
graphs whose treewidth are not larger than the original graph.

3 Bayesian Networks and the MAP Problem

A Bayesian network consists of a DAG G over a set of variables X and a set
of conditional probability assessments P (X =x|pa(X)= π), one assessment for
every variable X in X and configurations x and π of X and pa(X), respectively.
The DAG encodes a set of Markov conditions: every variable is independent
of its non-descendant non-parents given its parents. These conditions induce
a joint probability distribution over the variables that factorizes as P (X) =∏

X∈X P (X |pa(X)).
The treewidth of a Bayesian network is defined as the treewidth of its un-

derlying DAG. When using tree decompositions of Bayesian networks we refer
to the sets associated to nodes of the tree as variable sets, since every node is
identified with a variable. Probabilistic inference can be performed in time at
most exponential in the treewidth of the network, hence in polynomial-time if
treewidth is bounded [15].

Let (M,E,H) denote a partition of X and ê be an assignment to E. The
set M contains MAP variables, whose values we would like to infer; the set E
contains evidence variables, whose values are known to be (i.e., they are fixed
at) ê; at last, the set H contains hidden variables, whose values we ignore (i.e.,
they are marginalized out). The MAP problem consists in computing the value

max
m

P (M=m,E= ê) = max
m

∑

H

P (M=m,E= ê,H) . (1)

A configurationm∗ which maximizes the equation above is known as a maximum
a posteriori configuration or posterior mode, as it also maximizes the posterior
probability distribution P (M|E= ê). We can compute m∗ by recursively solving
MAP problems as follows. First, solve the MAP problem (call this problem un-
constrained). Label all MAP variables free and repeat the following procedure
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until no free variables remain: Select a free variable Mi and clamp it at a value
m∗

i such that the MAP problem with Mi =m∗
i returns the same value as the

unconstrained problem; label this variable fixed. Note however that most algo-
rithms for the MAP problem are able to provide a configuration m∗ without
resorting to the procedure described (and with much less overhead).

MAP was shown to be NP-hard to approximate even in polytree-shaped
networks [30]. Specifically, it was shown that the decision version of MAP is
NPPP-complete on loopy networks, and NP-complete on networks of bounded
treewidth. More recently, de Campos [3] showed that the problem is NP-hard to
solve even in polytree-shaped networks with ternary variables, but admits a fully
polynomial-time approximation scheme in networks of bounded treewidth with
variables taking on a bounded number of values. A large number of approximate
algorithms have been designed to cope with such a computational difficulty, in-
cluding search-based methods [29], branch-and-bound techniques[17], dynamic
programming [12,21], message passing [18,13], function approximation [8,4,26],
and knowledge compilation [11].

4 Influence Diagrams and the MEU Problem

An influence diagram extends a Bayesian network with preferences and actions
in order to represent decision making situations. Formally, a influence diagram
consists of a DAG over a set of chance variables C, decision variables D, and
value variables V. The sets C, D and V are disjoint. A chance variable C repre-
sents quantities over which the decision maker has no control, and is associated
with conditional probability assessments P (C|pa(C)) as in a Bayesian network.
The restriction of an influence diagram to its chance variables characterizes a
Bayesian network. A decision variable D represents possible actions available to
the decision maker conditional on the observation of the values of pa(D). Deci-
sion variables are not (initially) associated to any function. A value variable V
represents costs or rewards of taking actions pa(V )∩D given an instantiation of
pa(V )∩C. Every value variable V is associated with utility functions U(pa(V ))),
which encode additive terms of the overall utility. The treewidth of an influence
diagram is the treewidth of the corresponding moral graph after deleting value
nodes.

A decision rule (a.k.a policy) for a decision variable D is a conditional distri-
bution P (D|pa(D)) specifying the probability of executing action D = d upon
observing pa(D) = π. A decision rule prescribes an agent behavior, which is not
necessarily deterministic (i.e., the agent might take different actions d when in
scenario π according to P (D|π)). When P (D|pa(D)) is degenerate for every π,
we can identify a policy with a function mapping configurations π into actions
d. Moreover, if D has no parents, then we can associated a decision rule for D
with an assignment of a value of D. We will often refer to degenerate policies as
functions or assignments (of root decision variables). A strategy is a set contain-
ing exactly one decision rule for each decision variable. The expected utility of
a strategy S = {P (D|pa(D)) : D ∈ D} is given by
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E(S) =
∑

V ∈V

∑

pa(V )

U(pa(V ))P (pa(V )|S) (2)

=
∑

V ∈V

∑

C,D

U(pa(V ))
∏

X∈C∪D

P (X |pa(X)) . (3)

The MEU problem is to compute the value of the maximum expected utility of
a strategy, that is, to compute maxS E(S). A strategy S∗ whose expected utility
equals that value is called an optimal strategy. We can obtain an optimal strategy
by recursively solving MEU problems, in a similar fashion to the computation
of a maximum a posteriori configuration of the MAP problem. Although in this
work we state the results of the reductions in terms of the MAP and MEU
problems (hence, problems whose output are numbers), the same results could
be stated with respect to maximum a posteriori configurations of MAP and
optimal strategies of MEU. It is well-known that the maximum expected utility
can be attained by a strategy containing only degenerate policies. Hence, in
what concerns the MEU problem there is no loss in allowing only deterministic
policies.

The perfect recall condition characterizes a non-forgetting agent, and trans-
lates graphically to the property that the parents of any decision variable are
also parents of any of its children. Perfect recall is a consequence of rationality
when the decision problem involves a single agent with unlimited resources, as
it equates with every known information being considered when making a deci-
sion. This is not the case when multiple agents are involved or resources such as
memory and computing power are limited. A related concept is that of regular-
ity, which requires a temporal order over the decision variables. Together, perfect
recall and regularity enable the solution of MEU by dynamic programming due
to Bellman’s principle of optimality. In our definition, we do not require or as-
sume perfect recall or regularity, although we do allow them to be present by
explicit specification in the graph. Influence diagrams that do not enforce perfect
recall and regularity are often called limited memory influence diagrams [16] or
decision networks [33], although there is some ambiguity about the use of the
latter.

De Campos and Ji [5] showed that the decision version of MEU is NPPP-
complete in loopy diagrams, and NP-complete in diagrams of bounded treewidth.
Mauá et al. strengthened those results by showing the problem to be NP-hard
even in polytree-shaped diagrams with ternary variables and a single value
variable [25], and even in polytree-shaped diagrams with binary variables and
arbitrarily many value variables [23]. They also showed that it is NP-hard to ap-
proximately solve the problem, even in polytree-shaped diagrams when variables
can take on arbitrarily many values [25], but that there is a fully polynomial-
time approximation scheme when both the diagram’s treewidth and the maxi-
mum variable cardinality are bounded [22]. The problem was also shown to be
polynomial-time computable in polytree-shaped diagrams with binary variables
[23], and in diagrams that satisfy perfect recall and whose minimal diagram has
bounded treewidth [16]. As with MAP, the computational hardness of the prob-
lem motivated the development of a large number of approximate algorithms.
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Some of the approaches include branch-and-bound [28,27,32,14], dynamic pro-
gramming [20,12,24], integer programming [5], message passing [19], combinato-
rial search [16,9], and function approximation [7,6].

5 Reducing MAP To MEU

Consider a MAP problem with Bayesian network N = (G,X, {P (X |pa(X)}),
MAP variables M ⊆ X and evidence E = ê. Assume w.l.o.g. that the variables
in E have no children [1]. Consider also an ordering M1, . . . ,Mn of the variables
in M consistent with the partial ordering defined by G (i.e., if there is a directed
path fromMi toMj in G then j > i), and an ordering E1, . . . , Em of the variables
in E also consistent with G. Let êi denote the assignment in e corresponding to
Ej , j = 1, . . . ,m. Obtain an influence diagram I by augmenting the Bayesian
network N in the following way.

1. Label every variable in X as chance variable;
2. Add root chance variables S0 and T0 with values t and f , and specify P (S0) =

P (T0) = 1/2;
3. For i = 1, . . . , n add a decision variable Di taking the same values as Mi;
4. For i = 1, . . . , n add a chance variable Si with values t and f , and parents

Si−1,Mi and Di, and specify

P (Si=1|Si−1,Mi, Di) =

{
1, if Si−1 = t and Mi = Di ;

0, otherwise.

5. For j = 1, . . . ,m add a variable Tj with values t and f , parents Tj−1 and
Ej , and specify

P (Tj=1|Tj−1, Ej) =

{
1, if Tj−1 = t and Ej = êj ;

0, otherwise.

6. Add a value variable V with parents Sn and Tm and utility function

U(Sn, Tm) =

{
1, if Sn = Tm = t ;

0, otherwise.

Figure 1 illustrates the influence diagram obtained in reduction above.

Remark 1. The above reduction takes time polynomial in the size of the input
Bayesian network.

Remark 2. The reduction might introduce (undirected) loops, that is, the re-
duction (potentially) maps a polytree-shaped Bayesian network into a loopy
influence diagram.
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M1 M2 · · · Mn Em · · · E2 E1

(a)

M1 M2 · · · Mn

S0 S1 S2 · · · Sn V

Em · · · E2 E1

Tm · · · T2 T1 T0

D1 D2 · · · Dn

(b)

Fig. 1. Fragments of (a) of a Bayesian network and (b) its equivalent influence diagram
produced by the procedure described

Lemma 1. Let P be the probability measure induced by I. Then,

P (Sn= t, S0, . . . , Sn−1|M,D) =

{
1/2, if Si = t and Mi = Di, i = 1, . . . , n ;

0, otherwise.

Proof. By induction in n. The base case for n = 1 follows from simple application
of the Chain Rule in Bayesian networks:

P (S1= t, S0|M1, D1) = P (S0)P (S1= t|M1, D1) =

{
1/2, if M1 = D1;

0, otherwise.

Assume the result holds for some n. Applying the Chain Rule and using the
conditional independences represented by the graph we obtain

P (Sn+1= t, S0, . . . , Sn|M1, . . . ,Mn+1, D1, . . . , Dn+1) =

P (Sn+1= t|Sn,Mn+1, Dn+1)P (S0, . . . , Sn|M1, . . . ,Mn, D1, . . . , Dn) .

By design P (Sn+1= t|Sn,Mn+1, Dn+1) vanishes unless Sn= t and Mn+1=Dn+1,
in which case the above equality equals

P (Sn = t, S0, . . . , Sn−1|M1, . . . ,Mn, D1, . . . , Dn) .

Hence, the induction hypothesis holds also for n+ 1, and the result follows. ��

Lemma 2. Let P be the probability measure induced by I. Then,

P (Tm= t, T1, . . . , Tm−1|E) =

{
1, if Tj = t and Ej = êj , j = 1, . . . ,m ;

0, otherwise.
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Proof. The proof is similar to the proof of Lemma 1. ��

Theorem 1. The MEU problem obtains the same value as the MAP problem.

Proof. Consider an arbitrary strategy S = {d1, . . . , dn}, and let S = {S0, . . . ,
Sn−1} and T = {T0, . . . , Tm−1}. By using the independences stated in I and the
Total and Chain Rules we derive

E(S) =
∑

Sn,Tm

U(Sn, Tm)P (Sn, Tm|S) = P (Sn= t, Tm= t|S)

=
∑

X,S,T

P (Sn= t, Tm= t,X,S,T|D=S)

=
∑

X,S,T

P (Sn= t,S|M,D=S)P (Tm= t,T|E)P (X) .

According to Lemmas 1 and 2, the product in the sum above vanishes whenever
Si �= t, for some i = 1, . . . , n − 1, Mi �= di, for some i = 1, . . . , n, Ti �= t, for
j = 1, . . . , n− 1, or Ej �= êj, for j = 1, . . . ,m. Whence,

E(S) =
∑

H,S0,T0

P (Sn= t|M=S)P (Tm= t|E= ê)P (M=S,E= ê,H)P (S0)P (T0)

= P (M=S,E= ê,H) .

It follows from the above that maxS E(S) = maxh P (M= h,E= ê,H), which
proves the result. ��

The next result shows that the reduction devised maintains at least part of
the structure of the reduced problem.

Theorem 2. Let κ denote the treewidth of the Bayesian network N . Then the
diagram I has treewidth at most κ+ 4.

Proof. Let T be an optimal tree decomposition (i.e., one with minimum
treewidth) for the DAG of N after deleting the arcs leaving variables in E
(removing arcs leaving evidence nodes does not alter the result of MAP infer-
ence [1]). We obtain a tree decomposition for I whose treewidth is at most the
treewidth of T plus three as follows. For i = 1, . . . , n find a node whose asso-
ciated variable set includes {Mi} ∪ pa(Mi), add a leaf node �i as its neighbor
and associate �i with {Mi} ∪ pa(Mi). Similarly, for j = 1, . . . ,m find a node
associated with a superset of {Ej} ∪ pa(Ej), add a leaf node �n+j as its neigh-
bor, and associate �n+j with {Ej} ∪ pa(Ej). Transform the resulting structure
such that it becomes binary, and denote the result by T1.3 Root T1 at a node
r (by orienting arcs away from r) such that �1, . . . , �n+m are visited in-order,
that is, in a depth-first tree traversal of T1 rooted at r, �i is visited before �j if

3 Any tree decomposition can be turned into a binary tree decomposition (i.e., one in
which each node has at most three neighbors) of same treewidth [31].
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and only if i < j. Obtain a structure T2 from T1 as follows. For every node �i,
i = 1, . . . , n, add a node �′i as a child of �i and associate it to {Si, Si−1, Di,Mi}.
Similarly, for every node �i, i = n+ 1, . . . ,m, add a child node �′i associated to
{Ti, Ti−1, Ei}. The structure T3 is a not a valid tree-decomposition, as it vio-
lates the running intersection property: e.g. the variable set associated to a node
�′i, with i = 1, . . . , n, contains the variable Si, which is also in the variable set
associated to �′i+1 but not in the variable set associated to any other node in
the path between them (as Si does not appear in T ). We obtain a valid tree-
decomposition T3 from T2 by walking around T2 in a Euler tour tree traversal
where each edge is visited exactly twice and enforcing the running intersection
property: for each node that appears after �′i−1 and before �′i during the walk,
we include Si−1 if i < n and Ti−1 if i > n in its associated variable set. Since
the Euler tour tree traversal visits each leaf once and each internal node at most
three times, the procedure inserts at most three new variables in any sets asso-
ciated to a node of T3. The treewidth of T3 thus exceeds the treewidth of T2 by
at most 3. The last step is to obtain T ′ from T3 by covering pa(V ) = {Sn, Em}
while respecting the running intersection property. To this end, we include Em

in the variable set associate with every node in the path from �′n to �′m. This
increases the treewidth by at most one, and guarantees that the treewidth of T ′

is in the worst case the treewidth of T plus four. ��

The above result implies that applying the reduction on the class of bounded
treewidth Bayesian networks produces a class of bounded treewidth influence
diagrams. Thus, (the decision version of) MAP problems that are NP-complete
are mapped into (the decision version of) MEU problems which are also NP-
complete.

6 Reducing MEU To MAP

Consider a MEU problem with influence diagram I. In order to obtain a Bayesian
network N we first need to apply a sequence of transformations that obtains
an MEU-equivalent influence diagram where decision variables have no parents
and there is a single value variable. The following transformation substitutes a
decision variable with multiple parents by multiple parentless decision variables
and preserves the value of the MEU.

Transformation 1 Select a decision variable D with at least one parent, and
let π1, . . . , πr be the configurations of pa(D).

1. Remove D;
2. Add parentless decision variables D1, . . . , Dr taking the same values as D;
3. Add variables X1, . . . , Xr taking the same values as D; set pa(X1) = pa(D)∪

{D1} and pa(Xi) = pa(D) ∪ {Mi, Xi−1} for i = 2, . . . , r; specify

Pr(X1|D1, pa(D)) =

⎧
⎪⎨

⎪⎩

1, if pa(D) = π1 and X1 = D1 ,

0, if pa(D) = π1 and X1 �= D1 ,

1/m if pa(D) �= π1 ;
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for i = 2, . . . , r, specify

Pr(Xi|Xi−1, Di, pa(D)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if pa(D) �= πi and Xi = Xi−1 ,

0, if pa(D) �= πi and Xi �= Xi−1 ,

1, if pa(D) = πi and Xi = Di ,

0, if pa(D) = πk and Xi �= Di ;

4. SubstituteD by Xr in pa(C) for every C in ch(D), and modify the conditional
probability functions Pr(C|pa(C)) accordingly.

Figure 2 depicts the result of applying Transformation 1 on a decision node.
The bottleneck of the computational performance of the transformation is the
specification of the O(r2v3) probability values Pr(Xi = xi|Xi−1 = xi−1, Di =
di, pa(D)=πk), where v is the cardinality of D.

pa(D)

D

ch(D)

(a)

D1

X1

D2

X2 · · ·

Dr

Xr

pa(D)

ch(D)

(b)

Fig. 2. A piece of a diagram before (a) and after (b) Transformation 1

Remark 3. Let c be the maximum cardinality of a variable in the family of D
and w = |pa(D)|. Then the transformation takes time O(c2w+3). If we assume
that the in-degree of decision variables are bounded, then w is a constant and
the transformation takes time polynomial in the input size.

If the in-degree of decision variables is not bounded then the specification of
an optimal strategy might take space exponential in the input. Thus, assuming
that w is bounded is reasonable.

Remark 4. The transformation might create loops in polytree-shaped diagrams.

The following two results were proved in [25, Proposition 7].

Lemma 3. Let I ′ be the result of applying Transformation 1 on a decision vari-
able D in a diagram I. There is a polynomial-time computable bijection between
strategies of I and I ′ that preserves expected utility.



328 D.D. Mauá

Corollary 1. Let I ′ be the result of applying Transformation 1 on a decision
variable D in a diagram I. The MEU of I ′ and I are equal.

Transformation 1 might increase the treewidth of the graph. To see this, con-
sider an influence diagram I containing one chance variable C, one decision
variable D and one value variable V , with graph structure C → D → V . The
treewidth of the transformed diagram is three while the treewidth of original
graph is one. The following result shows that the increase in treewidth is small.

Lemma 4. Transformation 1 increases the treewidth by at most two.

Proof. Let I ′ be the result of applying the transformation in a diagram I of
treewidth κ. Also, let M and M ′ be the moral graphs of I and I ′, respectively.
We can obtain M from M ′ by sequentially eliminating nodes D1, . . . , Dr and
X1, . . . , Xr−1, in this order, and replacing Xr with D. Let M1, . . . ,M2r be the
graphs obtained by applying each of these operations. Thus, M1 is the graph
obtained by removing D1 from M ′, and M2r equals M . Let κ1, . . . , κ2r be the
treewidth of the graphsM1, . . . ,M2r, respectively, and κ′ be the treewidth ofM ′.
The node D1 is simplicial and has degree |pa(D)|+ 1 in M ′. Since M1 contains
the clique {Xr, Xr−1, Dr} ∪ pa(D) (where pa(D) is taken with respect to M),
it follows that κ1 ≥ |pa(Xr)| = |pa(D)| + 2, which implies κ = max{|pa(D)| +
1, κ1} = κ1. Assume that κ� = κ0, for some 1 ≤ � < r − 1. The variable
D�+1 is simplicial and has degree |pa(D)| + 2 in M�. The treewidth κ�+1 ≥
|pa(D)| + 2 because M�+1 contains the clique {Xr, Xr−1, Dr} ∪ pa(D). Hence,
κ� = max{|pa(D)|+ 2, κ�+1} = κ�+1, and by induction we have that κ′ = κr−1 .
The node Dr is simplicial and has degree |pa(D)|+2 in Mr−1. Since Mr contains
the clique {Xr, Xr−1}∪pa(D), it follows that κr ≥ |pa(D)|+1, and thus κr−1 =
max{|pa(D)|+2, κr} ≤ κr+1. Hence, κr−1 ≤ κr+1 . A similar reasoning applies
for κ� with r < � < 2r. Mr+1 (i.e., the graph obtained by removing X1) contains
a clique of size |{Xr, Xr−1}∪pa(D)| = |pa(D)|+2, and the node X1 is simplicial
and has degree |pa(D)|+ 1 in Mr. Hence, κr = max{|pa(D)|+ 1, κr+1} = κr+1.
Assume κ� = κm for r < � < 2r − 2. Then X�−m+1 is simplicial and has degree
|pa(D)|+1 in M�. Since M�+1 contains the clique {Xr, Xr−1}∪pa(D), it follows
that κ� = max{|pa(D)| + 1, κ�+1} = κ�+1. Thus, by induction, κr = κ2r−2 .
Finally, the graph M2r−1 (obtained by removing Xr−1 from M2r−2) contains
the clique {Xr} ∪ pa(D) (so that κ2r−1 ≥ |pa(D)|), and Xr−1 is simplicial and
has degree |pa(D)|+1 in M2r−2. Therefore, κ2r−2 = max{|pa(D)|+1, k2r−1} ≤
k2r−1 + 1. Since the replacement of Xr with D used to generate M2r = M from
M2r−1 does not change the treewidth (i.e., κ = κ2r = κ2r−1), we have that

κ′ = κr−1 ≤ κr + 1 = κ2r−2 + 1 ≤ κ2r−1 + 2 = κ+ 2 ,

and the result follows. ��
The previous result can be generalized to recurrent applications of Transfor-

mation 1:

Corollary 2. Let I ′ be the result of applying Transformation 1 in a diagram
I of treewidth κ repeatedly until all decision variables are parentless. Then the
treewidth of I ′ is at most κ+ 2.
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Proof. Applying the transformation on two different decision variables affect
different parts of the graph of the original diagram. Hence, the new variables
introduced by the repeated applications can be eliminated in parallel, which
shows that the increase in treewidth remains bounded by two. ��

A final issue to circumvent in order to devise a mapping from MEU to MAP
problems is the treatment of multiple value variables. The following transforma-
tion maps diagrams with multiple value variables into MEU-equivalent diagrams
with a single value variable.

Transformation 2 Take an influence diagram I with value variables V1, . . . , Vn,
and let U = mini,πi U(pa(Vi) = πi) and U = maxi,πi U(pa(Vi) = πi) denote,
respectively, the minimum and maximum utility value associated to any value
variable.

1. Substitute each value variables Vi by a binary chance variable Wi taking
values t and f and with probability distribution given by

P (Wi= t|pa(Vi)) =
U(pa(Vi))− U

U − U
.

2. Add variables O1, . . . , On, each taking values t and f , with pa(O1) = {W1},
and pa(Oi) = {Oi−1,Wi}, i = 2, . . . , n; specify P (O1 = t|W1 = t) = 1,
P (O1= t|W1=f) = 0 and

P (Oi= t|Oi−1,Wi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if Oi−1 = Wi = t

(i− 1)/i, if Oi−1 = t and Wi = f

1/i, if Oi−1 = f and Wi = t

0, if Oi−1 = Wi = f

;

3. Add a value variable V with pa(V ) = {On}, U(pa(V ) = t) = nU and
U(pa(V )=f) = nU .

Figure 3 illustrates the application of Transformation 2.

Remark 5. The transformation takes time polynomial in the size of the input
influence diagram.

Remark 6. The transformation might introduce loops.

The following three results were proved in [22, Theorem 1].

Lemma 5. Let I ′ be the result of applying Transformation 2 on an influence
diagram I. There is a polynomial-time computable bijection between strategies
of I and I ′ that preserves expected utility.

Corollary 3. Let I ′ be the result of applying Transformation 2 on an influence
diagram I. The MEU of I ′ and I are equal.
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V1 V2 · · · Vn

C,D

(a)

W1 W2 Wn

O1 O2 · · · On V

C,D

(b)

Fig. 3. (a) Influence diagram with multiple value variables. (b) Its equivalent influence
diagram obtained by Transformation 2.

Lemma 6. Transformation 2 increases the treewidth by at most three.

We are now ready to describe the reduction from MEU to MAP problems.

1. While there is a decision variable with at least one parent, apply Transfor-
mation 1;

2. If there is more than a value variable, apply Transformation 2;
3. Transform each (parentless) decision variable D into a chance variable M

taking on the same values, and with P (M) = 1/v, where v is the cardinality
of D;

4. Replace the (single) value variable V by a chance variable E taking values t
and f , and with

P (E = t|pa(V )) =
U(pa(V ))− U

U − U
,

where U = minπ U(pa(V )=π) and U = maxπ U(pa(V )=π).

Let N be the Bayesian network obtained by the reduction above, and denote
by M the set of variables introduced in step 3.

Theorem 3. Let MAP be the value of the MAP problem with Bayesian network
N , MAP variables M and evidence E = t, and MEU be the value of the MEU
problem with input I. For any configuration m of M we have that

MAP =
P (M=m)

U − U
MEU− U ,

where P (M) =
∏

M∈M P (M), and U and U are, respectively, the minimum and
the maximum of the utility function defined by I.

Proof. Let X denote the variables in N , and Y = X \ (M∪ {E}). Since the set
M contains only root variables associated to uniform probability distributions,
P (M=m) equals some constant C for any configuration m. Hence,
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MAP = max
m

∑

Y

P (E= t|pa(E))P (Y|M=m)P (M=m)

= Cmax
m

∑

Y

P (E= t|pa(E))P (Y|M=m)

= Cmax
m

∑

Y

U(pa(V ))− U

U − U
P (Y|M=m) =

C

U − U
MEU− U ,

which proves the result. ��

The following result shows that the reduction maps NP-complete instances of
MEU into NP-complete instances of MAP.

Corollary 4. Let κ denote the treewidth of an influence diagram. Then the
Bayesian network generated by the reduction has treewidth at most κ+ 5.

Proof. It follows from Lemmas 4 and 6. ��

7 Conclusions

Computing the maximum posterior probability of a subset of variables in a
Bayesian network and calculating the maximum expected utility of strategies in
an influence diagrams are common tasks in probabilistic reasoning. Despite their
similarities, these two problems have hitherto been investigated independently. In
this work, we showed constructively that these two problems are computationally
equivalent in that one problem can be reduced to the other in polynomial time.
Hence, any algorithm designed for one problem can be immediately used for
the other with a small overhead. Future work should evaluate the benefits and
drawbacks of applying algorithms designed for one problem to solve the other,
by means of the reductions presented here.

A common limitation of the correspondences devised here is that they map
problems with polytree-shaped graph structure into problems with loopy graph
structure. This reduces some tractable instances of one problem into apparently
intractable instances of the other problem. For instance, MEU is tractable in
polytree-shaped diagrams with binary variables and a single value node, but
the reduction shown here creates a MAP problem in a loopy Bayesian network,
for which no efficient algorithm exists. A similar problem appears if we try
to use the reductions developed here to prove the hardness of instances with
simple structure. For instance, the complexity of MAP in tree-shaped Bayesian
networks with binary variables is not known, and it cannot be characterized by
the reduction from MAP to MEU presented here because tree-shaped Bayesian
networks are mapped into loopy influence diagrams. It would be interesting to
devise reductions that preserve the topology of the graph structure.
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