
Supervised Classification Using Hybrid

Probabilistic Decision Graphs

Antonio Fernández1, Rafael Rumı́1, José del Sagrado2, and Antonio Salmerón1

1 Dept. of Mathematics, University of Almeŕıa,
Ctra. Sacramento s/n, 04120 Almeŕıa, Spain

2 Dept. of Computer Science, University of Almeŕıa,
Ctra. Sacramento s/n, 04120 Almeŕıa, Spain

{afalvarez,rrumi,jsagrado,antonio.salmeron}@ual.es
http://elvira.ual.es/programo

Abstract. In this paper we analyse the use of probabilistic decision
graphs in supervised classification problems. We enhance existing mod-
els with the ability of operating in hybrid domains, where discrete and
continuous variables coexist. Our proposal is based in the use of mixtures
of truncated basis functions. We first introduce a new type of probabilis-
tic graphical model, namely probabilistic decision graphs with mixture of
truncated basis functions distribution, and then present an initial exper-
imental evaluation where our proposal is compared with state-of-the-art
Bayesian classifiers, showing a promising behaviour.

Keywords: Supervised classification, Probabilistic decision graphs, Mix-
tures of truncated basis functions, Mixtures of polynomials, Mixtures of
truncated exponentials.

1 Introduction

The Probabilistic Decision Graph (PDG) model was introduced in [2] as an effi-
cient representation of probabilistic transition systems. In this study, we consider
the more general version of PDGs proposed in [8].

PDGs are probabilistic graphical models that can represent some context spe-
cific independencies that are not efficiently captured by conventional graphical
models as Bayesian Networks (BNs). In addition, probabilistic inference can be
carried out directly over the PDG structure in a time linear in the size of the
PDG model.

PDGs have mainly been studied as representations of joint distributions over
discrete random variables, showing a competitive performance when compared
to BNs and Latent class Naive BNs [15]. The discrete PDG model has also been
successfully applied to supervised classification problems [16] and unsupervised
clustering [4].

The need to handle discrete and continuous variables simultaneously has mo-
tivated the development of new probabilistic graphical models incorporating that
feature, mainly hybrid Bayesian networks [3, 14, 9, 10, 17, 18]. Also, PDGs have

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 206–221, 2014.
c© Springer International Publishing Switzerland 2014

http://elvira.ual.es/programo

Supervised Classification Using Hybrid Probabilistic Decision Graphs 207

been recently extended in order to allow the inclusion of continuous variables
when the joint distribution of the model is a conditional Gaussian (CG) [6].

In this paper we extend the PDG classifiers introduced in [16] in order to incor-
porate continuous variables. We rely on the Mixture of truncated basis functions
(MoTBFs) model [10]. Unlike CG models, MoTBFs do not rely on the normality
assumption, and do not impose any restriction on the structure of the conditional
distributions involved in the PDG, so that discrete variables can be conditioned
on continuous ones and vice versa.

2 Notation and Preliminaries

We will use uppercase letters to denote random variables, and boldfaced upper-
case letters to denote random vectors, e.g. X = {X0, X1, . . . , XN}. By R(X) we
denote the set of possible states of variable X , and similarly for random vectors,
R(X) = ×Xi∈XR(Xi). By lowercase letters x (or x) we denote some element
of R(X) (or R(X)). When x ∈ R(X) and Y ⊆ X, we denote by x[Y] the pro-
jection of x onto coordinates Y. Throughout this document we will consider a
set W of discrete variables and a set Z of continuous variables, and we will use
X = W ∪ Z.

In what concerns the structure of the PDG model, we will make use of the
following notation. Let G be a directed graph over nodes V. Let ν ∈ V, we
then denote by paG(ν) the set of parents of node ν in G, by chG(ν) the set of
children of ν in G, by deG(ν) the set of descendants of ν in G, that is recursively
defined as deG(ν) = {ν′ : ν′ ∈ chG(ν) ∨ [ν′ ∈ chG(ν

′′) ∧ ν′′ ∈ deG(ν)]}, and
we use as shorthand notation de∗G(ν) = deG(ν) ∪ ν. By anG(ν) we understand
the set of ancestors (or predecessors) of ν in G, that is recursively defined as
anG(ν) = {ν′ : ν′ ∈ paG(ν) ∨ [ν′ ∈ paG(ν

′′) ∧ ν′′ ∈ anG(ν)]}.

2.1 Discrete PDGs

The discrete PDG model was introduced in [8] as representation of joint dis-
tributions over discrete random variables. The structure is formally defined as
follows:

Definition 1 (PDG Structure [8]). Let F be a forest of directed tree struc-
tures over a set of discrete random variables W. A PDG structure G = 〈V,E〉
for W w.r.t. F is a set of rooted DAGs, such that:

1. Each node ν ∈ V is labelled with exactly one W ∈ W. By VW , we will refer
to the set of all nodes in a PDG structure labelled with the same variable
W . For every variable W , VW 	= ∅, we will say that ν represents W when
ν ∈ VW .

2. For each node ν ∈ VW , each possible state w ∈ R(W) and each successor
Y ∈ chF (W) there exists exactly one edge labelled with w from ν to some
node ν′ representing Y . Let Y ∈ chF (W), ν ∈ VW and w ∈ R(W). By
succ(ν, Y, w) we will then refer to the unique node ν′ ∈ VY that is reached
from ν by an edge with label w.

208 A. Fernández et al.

An example, taken from [6], of a PDG structure and its corresponding variable
forest are depicted in Figs. 1(b) and (a) respectively. A PDG structure consists of
two layers, one for variable and one for nodes. The variable layer conforms a di-
rected forest over the variables F and the node layer is a one-root directed acyclic
graph structure. Children, parents, descendants or ancestors of a variable in a
PDG structure G, are located according to structure F . So, using Fig. 1(b) as an
example, on the variable layer we have: paG(W1) = {W0}, chG(W0) = {W1,W2},
deG(W0) = {W1,W2,W3} and anG(W3) = {W1,W0}. On the node layer, we
have: succ(ν0,W1, 0) = ν1, succ(ν0,W2, 1) = ν4 and succ(ν1,W3, 0) = ν6.

W0

W1 W2

W3

(a)

ν0W0

ν1 ν2W1 ν3 ν4W2

ν5 ν6 ν7W3

0
1 0

1

01
0 1

(b)

Fig. 1. (a) A forest structure F formed by a single tree over binary variables W =
{W0,W1,W2,W3}. (b) A PDG structure over W with underlying forest F .

A PDG structure G is instantiated by assigning a real function fν : R(Wi) →
R

+
0 , with ν ∈ VWi to every node ν in the structure. It represents the global real

function fG : R(W) → R
+
0 , recursively defined as follows:

fν
G(w) := fν(w[W])

∏

Y ∈chF (W)

f
succ(ν,Y,w[W])
G (w), (1)

for all w ∈ R(W). fG is then defined on R(W) as:

fG(w) :=
∏

ν:ν is a root

fν
G(w). (2)

Equation (1) defines a factorisation with one factor fν for each W ∈ W. The
set of nodes in a PDG structure associated with a given element w ∈ R(W) is
characterised by function reach.

Definition 2 (Reach). A node ν representing variable Wi in G is reached by
w ∈ R(W) if

1. ν is a root in G, or
2. Wj = paF (Wi), node ν

′ representing variable Wj is reached by w and ν =
succ(ν′,Wi,w[Wj]).

Supervised Classification Using Hybrid Probabilistic Decision Graphs 209

By reachG(Wi,w) we denote the unique node representing Wi reached by w in
PDG structure G.

As an example [6], consider again the PDG structure of Fig. 1(b) and let w =
{W0 = 0,W1 = 1,W2 = 1,W3 = 1}. Then reachG(W0,w) = ν0, reachG(W1,w) =
ν1, reachG(W2,w) = ν3 and reachG(W3,w) = ν5. Function fG in (2) can be re-
formulated as

fG(w) :=
∏

Wi∈W

f reachG(Wi,w)(w[Wi]) . (3)

When all the local functions fν in an instantiated PDG structure G over W
are probability distributions, fG defines a joint multinomial probability distri-
bution over W [8]. In fact, fν

G in (1) defines a multinomial distribution over
variables W ∪ chF (W). We will refer to such instantiated PDG structures as
PDG models.

Definition 3 (PDG model [8]). A PDG model G is a pair G = 〈G, θ〉, where
G = 〈V,E〉 is a valid PDG structure (Definition 1) over some set W of discrete
random variables and θ = {fν : ν ∈ V} is a set of real functions, each of which
defines a discrete probability distribution.

Example 1 (taken from [6]). Consider the PDG structure in Fig. 1. It encodes
a factorisation of the joint distribution of W = {W0,W1,W2,W3}, with fν0 =
P (W0), f

ν1 = P (W1|W0 = 0), fν2 = P (W1|W0 = 1), fν3 = P (W2|W0 = 0),
fν4 = P (W2|W0 = 1), fν5 = P (W3|W0 = 0,W1 = 1), fν6 = P (W3|W1 =
0, {W0 = 0 ∨W0 = 1}), fν7 = P (W3|W0 = 1,W1 = 1).

The PDG structure plus the set of conditional distributions given above con-
stitute a PDG model over the set of variables W = {W0,W1,W2,W3}. Assume
that we want to evaluate the PDG model for a given configuration of W, for
instance, (0, 1, 1, 1). According to (1), the returned value is

fG(0, 1, 1, 1) = fν0(0)fν1(1)fν3(1)fν5(1)

= P (W0 = 0)P (W1 = 1|W0 = 0)P (W2 = 1|W0 = 0)

P (W3 = 1|W0 = 0,W1 = 1).

2.2 Conditional Gaussian PDGs

The first attempt to include continuous variables in PDGs came along with the
so-called conditional Gaussian PDGs [6]. These models represent joint distribu-
tions of discrete and continuous variables simultaneously, conforming a condi-
tional Gaussian (CG) distribution [12]. It means that the joint over the contin-
uous variables is assumed to be a mixture of multivariate Gaussians, and the
joint over the discrete variables is a multinomial.

Formally, a CG-PDG is a PDG with forest F where variables can be discrete
and continuous. Discrete variables are treated as in PDGs, and the continuous
ones follow the next requirements:

210 A. Fernández et al.

– Every continuous variable Z ∈ Z is only allowed to have continuous children
in F .

– A node ν representing a continuous variable Z ∈ Z has exactly one outgoing
edge for each child of Z in F .

– A node ν representing Z ∈ Z with predecessors in F {Z1, . . . , Zn} defines
the conditional density fν = N (z;αν +

∑n
i=1 β

ν
i zi, σ

2ν).

ν0W0

ν1 ν2W1 ν3 ν4Z0

ν5 ν6 ν7W2 ν8 ν9Z1

0 1
0

1

1 0 10

Fig. 2. An example of a structure of a CG-PDG, with discrete variables W0,W1,W2

and continuous variables Z0 and Z1

Example 2. The structure depicted in Fig. 2 is compatible with a CG-PDG
with discrete variables W0,W1,W2 and continuous variables Z0 and Z1. The
structure is instantiated as described in Table 1. Note that nodes corresponding
to discrete variables contain probability tables, while nodes corresponding to
continuous variables have densities instead. For instance, fν3 = ρ(Z0|W0 = 0) is
a Gaussian density with fixed mean and variance. If a continuous variable has
at least one continuous predecessor, then the density in each of its nodes is also
Gaussian with fixed variance, but the mean is not constant, but rather a linear
function of the continuous predecessors. That is the case of nodes ν8 and ν9.

Table 1. Instantiation of the structure in Fig. 2

fν0 = P (W0) fν5 = P (W2|W0 = 0,W1 = 1)
fν1 = P (W1|W0 = 0) fν6 = P (W2|W1 = 0)
fν2 = P (W1|W0 = 1) fν7 = P (W2|W0 = 1,W1 = 1)
fν3 = ρ(Z0|W0 = 0) fν8 = ρ(Z1|Z0,W0 = 0)
fν4 = ρ(Z0|W0 = 1) fν9 = ρ(Z1|Z0,W0 = 1)

2.3 Mixtures of Truncated Basis Functions

The MoTBF framework is based on the abstract notion of real-valued basis
functions ψ(·), which includes both polynomial and exponential functions as
special cases. Let X be a continuous variable with domain R(X) ⊆ R and let
ψi : R → R, for i = 0, . . . , k, define a collection of real basis functions. We

Supervised Classification Using Hybrid Probabilistic Decision Graphs 211

say that a function gk : R(X) �→ R
+
0 is an MoTBF potential of level k wrt.

Ψ = {ψ0, ψ1, . . . , ψk} if gk can be written as [10]

gk(x) =

k∑

i=0

ai ψi (x) , (4)

where ai are real numbers. The potential is a density if
∫
R(X) gk(x) dx = 1.

Example 3. By letting the basis functions correspond to polynomial functions,
ψi(x) = xi for i = 0, 1, . . ., the MoTBF model reduces to an MOP model [18]
for univariate distributions. Similarly, if we define the basis functions as ψi(x) =
{1, exp(−x), exp(x), exp(−2x), exp(2x), . . .}, the MoTBF model corresponds to
an MTE model [14] with the exception that the parameters in the exponential
functions are fixed.

In a conditional MoTBF density, the influence a set of continuous parent vari-
ables Z has on their child variable X is encoded only through the partitioning
of the domain of Z, denoted as R(Z), into hyper-cubes, and not directly in the
functional form of gk(x|z) inside each hyper-cube. More precisely, for a parti-
tioning P = {R(Z)1, . . . , R(Z)m} of R(Z), the conditional MoTBF is defined
for z ∈ R(Z)j , 1 ≤ j ≤ m, as

g
(j)
k (x|z ∈ R(Z)j) =

k∑

i=0

a
(j)
i ψ

(j)
i (x). (5)

Similarily, MoTBFs can be defined for discrete variables, in which case each
potential value g(x) represents the value P (X = x) with

∑
x g(x) = 1. Condi-

tional distributions of discrete variables given continuous and/or discrete vari-
ables can be defined analogously to (5). See [10, 11] for more details.

3 Hybrid PDGs Based on MoTBFs

CG-PDGs have two limitations. One is the normality assumption, that may not
hold in applications with real data. The other one is the structural restriction
that forbids discrete variables to have continuous parents in the structure. For
instance, the structure in Fig. 3 is not valid for a CG-PDG since discrete variable
W1 has a continuous predecessor, Z0.

Our proposal to sidestep the above-mentioned restrictions is to adopt the
MoTBF framework (see Sect. 2.3) within the PDG model. The formal definition
is as follows.

Definition 4 (MoTBF-PDG). We define an MoTBF-PDG as a PDG with
forest F where variables can be discrete and continuous. Discrete variables are
treated as in PDGs, and the continuous ones follow the next requirements:

– Continuous variables are allowed to have discrete and continuous successors
and predecessors.

212 A. Fernández et al.

ν0W0

ν1 ν2Z0 ν3 ν4Z1

ν5 ν6 ν7W1 ν8 ν9 ν10Z2

0 1
0 1

I5 I6
I7I1 I2 I4

I3

Fig. 3. An example of a PDG structure that is not compatible with a CG-PDG, since
discrete variable W1 has a continuous predecessor, Z0. Labels I1, . . . , I7 indicate inter-
vals of the domain of the corresponding continuous variable.

– A node ν representing Z ∈ Z can have one or more outgoing edges for each
Zi child of Z in F . Each edge represents a interval the domain of Z, and all
of them constitute a partition of it.

– A node ν representing Z ∈ Z with continuous predecessors {Z1, . . . , Zn}
defines an MoTBF density fν(z) conditional on the branch that leads from
the root to ν.

Example 4. Consider the PDG structure in Fig. 3. Assume W0 and W1 are
binary variables and Z0, Z1 and Z2 are continuous variables with domain [0, 1].
An instantiation of the PDG structure is given in Table 2, where the labels
I1, . . . , I7 are, respectively, intervals [0, 0.5), [0.5, 1], [0.5, 1], [0, 0.5), [0, 1], [0, 0.3),
[0.3, 1].

Table 2. An instantiation of the PDG structure in Fig. 3. Potentials denoted as ρ
correspond to conditional MoTBF densities as in (5).

fν0 = P (W0) fν5 = P (W1|W0 = 0, Z0 ∈ [0, 0.5))
fν1 = ρ(Z0|W0 = 0) fν6 = P (W1|Z0 ∈ [0.5, 1])
fν2 = ρ(Z0|W0 = 1) fν7 = P (W1|W0 = 1, Z0 ∈ [0, 0.5))
fν3 = ρ(Z1|W0 = 0) fν8 = ρ(Z2|W0 = 0)
fν4 = ρ(Z1|W0 = 1) fν9 = ρ(Z2|W0 = 1, Z1 ∈ [0, 0.3))

fν10 = ρ(Z2|W0 = 1, Z1 ∈ [0.3, 1])

The next proposition shows that an MoTBF-PDG actually represents a joint
distribution of class MoTBF over the variables it contains.

Proposition 1. Let G be a MoTBF-PDG over variables X = W∪Z. Function

fG(x) =
∏

X∈X

f reachG(X,x)(x[X])

represents an MoTBF distribution over X.

Supervised Classification Using Hybrid Probabilistic Decision Graphs 213

Proof. According to (3), f reachG(X,x) is the function stored in the unique pa-
rameter node ν of variable X that is reached by the path in G determined by
configuration X = x. Let us index the variables in X as X1, . . . , Xn and denote
by νx[Xi] the unique parameter node of variable Xi that is reached by the path
in G determined by configuration X = x. Then,

fG(x) =

n∏

i=1

f reachG(Xi,x)(x[Xi]) =

n∏

i=1

fνx[Xi](x[Xi])

=

n∏

i=1

fνx[Xi](x[Xi]|x[X1, . . . , Xi−1]) (6)

where, according to Definition 4, fνx[Xi] is a conditional probability function of
Xi given the configuration in the branch upwards the root. Furthermore, also
according to Definition 4, fνx[Xi] is of class MoTBF. As the product of MoTBF
functions is known to be an MoTBF as well (see [10]) we can conclude, by ap-
plying the chain rule, that the factorisation in (6) is a joint MoTBF distribution
over X1, . . . , Xn, i.e. over X. ��

In the next section we will study the problem of supervised classification and
how MoTBF-PDGs can be used in that context.

4 PDG Classifiers

A classification problem can be described in terms of a set of feature variables
X = {X1, . . . , Xn}, that describes an individual, and a class variable, C, that
indicates the class to which that individual belongs. A classifier is a model
oriented to predict the value of variable C given that the values of the features
X are known. If the joint probability distribution of C and X is known, it can
be used to solve the classification problem by assigning to any individual with
observed features x1, . . . , xn the class c∗ such that

c∗ = argmax
c∈R(C)

P (C = c|X = x1, . . . , xn). (7)

By supervised classification we understand the problem of learning a classifier
from a set of labeled examples, i.e., from a database with variablesX1, . . . , Xn, C
where the value of C is known in all the records in the database.

Probabilistic graphical models, and more precisely Bayesian networks, have
been used as classifiers, as they provide compact representations of joint proba-
bility distributions. Usually, the structure of the network is restricted in such a
way that the class variable is set as root and the feature variables are connected
to the class [5]. Similarly, PDGs have been used as classifiers by imposing certain
structural restriction, ensuring that all the features are connected to the class.
The formal definition is as follows.

Definition 5 (PDG Classifier [16]). A PDG classifier C is a PDG model that,
in addition to the structural constraints of Definition 1, satisfies the following
two structural constraints:

214 A. Fernández et al.

1. G defines a forest containing a single tree over the variables C = {C} ∪X,
2. C is the root of this tree.

In a PDG classifier, the forest is restricted to contain a single tree in order to
guarantee that all the feature variables are connected to C by a path in G. By
forcing C to be placed at the root, typical Bayesian network classifiers structures
can be easily replicated, as for instance, the Näıve Bayes (NB) model.

Definition 6 (MoTBF-PDG Classifier). An MoTBF-PDG classifier C is an
MoTBF-PDG that satisfies the structural constraints in Definition 5.

In a classification problem with class variable C and features X1, . . . , Xn (dis-
crete or continuous), if we denote byC the set {C,X1, . . . , Xn}, an MoTBF-PDG
classifier G would be used to represent the joint distribution

fG(c) = fG(c, x1, . . . , xn).

According to (7), we need to determine the value

c∗ = argmax
c∈R(C)

fG(c|x1, . . . , xn) = argmax
c∈R(C)

fG(c, x1, . . . , xn)∑
c∈R(C) fG(c, x1, . . . , xn)

.

As
∑

c∈R(C) fG(c, x1, . . . , xn) does not depend on c, solving the classification
problem is equivalent to finding the value

c∗ = argmax
c∈R(C)

fG(c, x1, . . . , xn).

Hence, in order to classify an item with observed features x = (x1, . . . , xn),
we just have to compute, for each c ∈ R(C), the value fG(c, x1, . . . , xn), which
amounts to evaluate the conditional MoTBF functions in the parameter nodes
reached by (c, x1, . . . , xn) as described in (6).

4.1 Learning MoTBF-PDG Classifiers from Data

Learning an MoTBF-PDG classifier from data consists of determining the struc-
ture of the PDG and estimating the conditional MoTBF distributions in the pa-
rameter nodes. Assuming a fixed PDG structure (see Definition 1) the MoTBF
probability function corresponding to each parameter node ν is estimated by
first determining the elements in the data sample that reach ν, and then learn-
ing a univariate MoTBF using those data points following the method described
in [11]. We refer the reader to that reference for further details on the estimation
procedure for univariate MoTBF densities.

For determining the structure, we have considered three basic approaches:

1. Fix a Näıve Bayes-like structure, so that all the features are directly con-
nected to the class variable. We denote this approach as NB. An example of
a PDG with NB structure is depicted in Fig. 4.

Supervised Classification Using Hybrid Probabilistic Decision Graphs 215

2. Rank the feature variables according to their mutual information with the
class variable and connect the variables conforming a chain rooted by the
class variable followed by the features in a sequence according to their rank.
The mutual information is estimated from data, discretising the continuous
variables. We will refer to this approach by the term ranked. An example of
a structure obtained in this way is found in the left panel of Fig. 5.

3. Rank the feature variables according to their mutual information with the
class variable, and include the feature variables in the PDG one by one
according to the rank (the class variable is always included on top of the
structure). Unlike in the ranked approach, here each variable is inserted
below any previously inserted variable. Among all possible insertion points,
the one resulting in a better classification rate (CR) is chosen. The CR is
computed in a validation set randomly drawn form the training database. In
this paper, we have used an 80% of the training database for learning and
a 20% for validation. We denote this approach by rankedCR. An example of
an structure compatible with this approach is displayed in Fig. 5 (right).

ν0C

X1 ν1 ν2 X2 ν3 ν4 X3 ν5 ν6

Fig. 4. A PDG structure compatible with the NB approach

During the process of inserting new variables in a PDG structure, it is neces-
sary to decide the number of nodes to store at each variable, and the connections
among them. In general, the maximum number of nodes at each variable depends
on the number of nodes at its parent variable, and of the number of outgoing
edge of each node at the parent.

Example 5. Consider the PDG at the right of Fig. 5. The maximum number of
nodes at X3 is 4, as its parent, X2 has 2 nodes and each one has 2 outgoing
arcs. However, in the PDG at the left of Fig. 5, the maximum number of nodes
for X3 is 8, as in this case X2 has 4 nodes with 2 outgoing arcs each one. Note
that, even though the maximum allowed is 8, in this example X3 actually has 6
nodes, which indicates the presence of context specific independencies.

The number of outgoing arcs of a node corresponding to a discrete variable is
equal to the number of possible values of the variable, which means that there are
at least 2 outgoing arcs in such case. For a node corresponding to a continuous
variable, the number of outgoing arcs may vary from 1 to any positive integer.
In practice, it is necessary to establish a maximum number of arcs when learning

216 A. Fernández et al.

ν0C

X1 ν1 ν2

X2 ν3 ν4 ν5 ν6

X3 ν7 ν8 ν9 ν10 ν11 ν12

ν0C

X1 ν1 ν2 X2 ν3 ν4

X3 ν5 ν6 ν7 ν8

Fig. 5. Examples of PDG structures corresponding to the ranked (left) and rankedCR

(right) approaches. It is assumed that the ranking of variables with respect to their
mutual information with the class variable is X1, X2, X3.

the PDG from data. Each outgoing arc corresponds to a subset of the domain
of the continuous variable, so that the collection of the subsets associated with
all the edges conforms a partition of its domain.

Example 6. Consider the PDG in Fig. 3 and its instantiation in Table 2. Node
ν1, corresponding to continuous variable Z0 has 2 outgoing arcs. One of them
corresponds to interval [0, 0.5) and the other to interval [0.5, 1].

The arcs emerging from a node not necessarily lead to different nodes, i.e.,
more than one arc may converge to the same node. Furthermore, arcs emerging
from different nodes may converge to the same one. In this paper, we have
considered a fixed number of intervals for every continuous variable, which is
given as an argument to the classifier learning algorithm. The borders of the
intervals are obtained following an equal frequency binning process.

Note that each node in a PDG represents a portion of the training data,
namely those items that correspond to configurations that reach the parameter
node. Therefore, as the PDG is expanded during its construction, the amount
of data available for estimating the MoTBFs distributions in each node goes
down. In order to avoid estimating the MoTBF functions from tiny samples,
whenever a new variable is inserted during the process of constructing the PDG,
we generate all the nodes for that variable and carry out a collapse operation
[16], so that nodes that are not reached by a given minimum number of training
items are collapsed. More precisely, the collapse operation involves the following
steps:

1. Establish a collapse threshold rc > 0.
2. Let ν1, . . . , νk be the nodes for the current variable.
3. Let size(νi), i = 1, . . . , n denote the number of parameters estimated from

data for node νi. This is the number of possible values of the variable minus
1, if the variable is discrete, and the parameters of the MoTBF density plus
the number of intervals minus 1 if it is continuous.

Supervised Classification Using Hybrid Probabilistic Decision Graphs 217

4. Pairs of nodes (νi, νj) that are reached by a number of training items lower
than rc × size(νi) and rc × size(νj) respectively, are chosen in increasing
order of the previously mentioned thresholds and collapsed into a single new
node, for which the corresponding probability function is re-estimated using
the union of both training samples. When collapsing two nodes, the incoming
and outgoing arcs are re-arranged appropriately.

The process is repeated until no nodes below the threshold remain, or until
there is only one, in which case it is coupled with the smallest (in terms of rc ×
size(ν)) parameter node for the same variable, and collapsed into a single one.

Once the MoTBF-PDG classifier has been constructed by any of the three
approaches mentioned above, we carry out an operation aimed at reducing the
chances of overfitting for the learnt model. The operation is called merge. It
traverses the PDG structure bottom-up. For each variable, we explore a fraction
of its parameter nodes, determined by a rate rm ∈ [0, 1] that we call merge rate.
Then, the sampled parameter nodes are collapsed into a single one, similarly to
the case of the collapse operation, but in this case only if the classification rate,
computed from the validation set, is increased respect to the current model.

5 Experimental Evaluation

We have carried out an initial experimental evaluation aimed at evaluating the
performance of MoTBF classifiers over a set of benchmark databases taken from
the UCI (http://archive.ics.uci.edu/ml) and KEEL [1] repositories. A description
of the datasets used in the experiments is given in Table 3.

In the experiments, we have induced MoTBF-PDG classifiers for each dataset
using the three approaches explained in Sect. 4.1, i.e. NB, ranked and rankedCR,
and several combinations of the parameters described there. More precisely, we
have tested 2 and 3 intervals for the domain of the continuous parent variables,
collapse thresholds of rc = 3, 5 and 7, merge rates of rm = 0.25 and 0.5. For the
densities in the parameter nodes, we have used mixtures of polynomials (MOPs),
which are one of the possible types of MoTBFs together with MTEs [10]. The
polynomials have been learnt using the procedure described in [11] with limits
on the degree of the polynomials equal to 4, 6, 8 and 10. We also tested discrete
PDG classifiers as well as four Bayesian classifiers available in software Weka,
namely Gaussian Näıve Bayes (called NB Simple in Weka), kernel NB, discrete
NB and discrete TAN. We tested each algorithm measuring the classification
rate (CR) using 5-fold cross validation. Our implementation of PDGs has been
done using the R statistical package.

We found that the best combination of parameter values for the MoTBF-PDG
classifiers was 3 intervals for the domain of the continuous parent variables,
collapse threshold rc = 3, merge rate rm = 0.25, and maximum degree for
polynomials equal to 6. We chose this combination of parameters by trying each
possible combination of them an counting how many times each one was the
winner in terms of classification rate of the constructed model. The results of

218 A. Fernández et al.

Table 3. Description of the datasets used in the experiments

instances #features #continuous #categorical #classStates

appendicitis 106 7 7 0 2
banknote 1372 4 4 0 2
fourclass 862 2 2 0 2
haberman 306 3 3 0 2
iris 150 4 4 0 3
liver 345 6 6 0 2
newthyroid 215 5 5 0 3
phoneme 5404 5 5 0 2
pima 768 8 8 0 2
seeds 209 7 7 0 3
teaching 151 5 3 2 3
vertebral 309 6 6 0 2
wine 178 13 13 0 3

the experiments in terms of CR attained by each classifier are shown in Table 4.
The sizes of the obtained models, measured as the number of parameters they
contain, are displayed in Table 5. The values shown for MoTBF-PDG classifiers
correspond to the configuration of parameters described above.

Table 4. Classification rates attained by the tested classifiers

MoTBF-PDG Discrete-PDG Weka

Database NB ranked rankedCR NB ranked rankedCR Discrete-NB Kernel-NB Gaussian-NB Discrete-TAN

appendicitis 0.8403 0.8307 0.8597 0.7935 0.8121 0.8117 0.8022 0.8771 0.868 0.8489
banknote 0.8586 0.9752 0.9738 0.8571 0.9425 0.9388 0.6348 0.9227 0.8397 0.9344
fourclass 0.7553 0.8365 0.8202 0.725 0.7982 0.7982 0.6439 0.8677 0.7506 0.8411
haberman 0.7482 0.7384 0.7287 0.706 0.7125 0.7222 0.7353 0.7418 0.7483 0.7255
iris 0.94 0.94 0.92 0.9333 0.92 0.9333 0.7867 0.9667 0.96 0.9267
liver 0.5768 0.5739 0.6232 0.658 0.5884 0.6 0.5797 0.658 0.5623 0.5768
newthyroid 0.907 0.893 0.8791 0.9023 0.8698 0.8884 0.707 0.9581 0.9674 0.9442
phoneme 0.779 0.7613 0.7846 0.7435 0.8116 0.795 0.7065 0.7841 0.7606 0.805
pima 0.7474 0.7045 0.7383 0.7318 0.7358 0.7267 0.651 0.7422 0.7591 0.7448
seeds 0.8949 0.8854 0.8854 0.8854 0.8707 0.8806 0.8801 0.8994 0.9138 0.8994
teaching 0.411 0.4239 0.4566 0.5101 0.5034 0.5166 0.4297 0.5428 0.5295 0.4503
vertebral 0.7411 0.738 0.8412 0.7572 0.7604 0.7605 0.6764 0.7668 0.7766 0.8057
wine 0.9611 0.8873 0.9611 0.9552 0.8817 0.9497 0.944 0.9775 0.966 0.9662

5.1 Discussion

In order to determine the significance of the results in Table 4, we run Fried-
man’s test with maxT statistic [7], reporting significant differences among the
tested classifiers (p-value below 0.05) in terms of accuracy (classification rate).
Then we carried out a post hoc analysis following Wilcoxon-Nemenyi-McDonald-
Thompson’s procedure for pairwise comparisons. The result of the post hoc anal-
ysis is shown in Fig. 6, where a box plot for the differences in classification rate
between every pair of algorithms is displayed. Green boxes are used to highlight
the cases where statistically significant differences were found, which are, from
left to right, discrete TAN vs. discrete NB, Gaussian NB vs. discrete NB, kernel
NB vs. discrete NB, MoTBF-PDG (rankedCR) vs. discrete NB, kernel NB vs.
discrete PDG (NB) and kernel NB vs. discrete PDG (ranked).

Supervised Classification Using Hybrid Probabilistic Decision Graphs 219

Table 5. Sizes of the learnt classifiers computed as the number of parameters they
contain

MoTBF-PDG Discrete-PDG Weka

Database NB ranked rankedCR NB ranked rankedCR Discrete-NB Kernel-NB Gaussian-NB Discrete-TAN

appendicitis 38.6 120 35 29 77.4 35.4 127 743 27 139
banknote 36 307.8 216.6 17 83.4 40.2 73 5489 19 79
fourclass 9 22 17.4 9 15.8 15.4 37 1725 9 39
haberman 19.6 37.4 21 13 42.6 14.6 55 919 13 59
iris 45.6 85.8 51.6 26 32.8 26 110 602 26 119
liver 56.2 275 117.6 25 165.8 63.4 109 2071 25 119
newthyroid 59.4 169.6 71.8 32 82 36.4 137 1077 32 149
phoneme 53.2 988.6 105.8 21 309.8 49 91 27021 21 99
pima 66.8 686.6 165.2 33 460.2 114.6 145 6145 29 159
seeds 80.6 192.4 100.6 44 90.8 47.6 191 1465 44 209
teaching 19.6 90.8 42.4 26 58.2 28.2 87 459 16 151
vertebral 50.6 242.2 151.6 25 128.6 56.6 109 1855 25 119
wine 146 381.4 189.2 80 238.4 95.2 353 2316 80 389

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Fig. 6. Results of the pairwise comparison between the tested methods. Boxes in green
indicate statistically significant differences

MoTBF-PDG classifiers are in general heavier in terms of parameters, as
shown in Table 5, except kernel NB which always returns the largest model.
However, it must be pointed out that we have not considered variable selection
during the construction of any of the tested classifiers.

Even though defining a variable selection strategy for learning MoTBF-PDG
classifiers is a matter of future research, we carried out a simple experiment in
order to have a glimpse on the impact of variable selection both on size and ac-
curacy of the learnt PDGs. The experiment consisted of inducing a classification
tree and then learning the PDG but using only the variables actually included
in the tree. Table 6 shows a comparison of the results with and without variable
selection. The results suggest that variable selection can have a remarkable im-
pact on the obtained models. Note that the model sizes dramatically decrease
while the CR is not seriously deteriorated and even improved in some cases.

220 A. Fernández et al.

Table 6. Results of the preliminary experiment with variable selection. Columns Old
CR, Old size, New CR and New size contain the results of MoTBF-PDG classifier with
rankedCR strategy and the same configuration of parameters as in the main experiment,
where ’old’ indicates including all the variables and ’new’ only with the same variables
as in the induced classification tree. #Vars indicates the ratio of included variables.

Database Old CR New CR Old size New size #Vars

appendicitis 0.8597 0.8403 35 13 2/7
haberman 0.7287 0.7318 21 18.6 2/3
iris 0.92 0.94 51.6 28.4 2/4
pima 0.7383 0.7435 165.2 107.4 6/8
seeds 0.8854 0.9139 100.6 53.6 4/7
wine 0.9611 0.9216 189.2 40.8 3/13

6 Concluding Remarks

In this paper we have introduced a new hybrid probabilistic graphical model,
called MoTBF-PDG, resulting from the combination of PDGs with the MoTBF
framework. We have done that within the context of supervised classification,
motivated by the fact that PDGs had already been successfully employed as
classifiers. The initial experimental evaluation suggests that the new classifiers
are potentially competitive with existing ones. The analysis also suggests that
variable selection is necessary in order to obtain compact models less prone
to overfitting. A more extensive experimentation, including larger datasets and
more algorithms as the one presented in [13] is necessary for determining the
impact of the different parameters involved in the learning process.

Finally, MoTBF-PDGs are not necessarily models restricted to the frame-
work of supervised classification. They could, for instance, be used for regression
problems, where the variable to predict is continuous. As a general model for rep-
resenting a joint probability distribution, the necessary operations for carrying
out probabilistic inference still remain to be developed for MoTBF-PDGs.

Acknowledgments. This work has been supported by the Spanish Ministry
of Economy and Competitiveness, grant TIN2010-20900-C04-02, by Junta de
Andalućıa grants P11-TIC-7821, P12-TIC-2541, and by ERDF (FEDER) funds.

References

[1] Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S., Sánchez, L.,
Herrera, F.: KEEL data-mining software tool: Data set repository, integration
of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft
Comput. 17, 255–287 (2011)

[2] Bozga, M., Maler, O.: On the Representation of Probabilities over Structured
Domains. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
261–273. Springer, Heidelberg (1999)

[3] Cobb, B.R., Shenoy, P.P.: Inference in Hybrid Bayesian Networks with Mixtures
of Truncated Exponentials. Int. J. Approximate Reasoning 41, 257–286 (2006)

Supervised Classification Using Hybrid Probabilistic Decision Graphs 221

[4] Flores, M.J., Gámez, J.A., Nielsen, J.D.: The PDG-mixture Model for Clustering.
In: 11th Int. Conf. on Data Warehousing & Knowledge Discovery, pp. 378–389
(2009)

[5] Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine
Learning 29, 131–163 (1997)

[6] Gámez, J.A., Nielsen, J.D., Salmerón, A.: Modelling and Inference with Condi-
tional Gaussian Probabilistic Decision Graphs. Int. J. Approximate Reasoning 53,
929–945 (2012)

[7] Horthorn, T., Hornik, K., van de Wiel, M.A., Zeileis, A.: Implementing a Class of
Permutation Tests: The coin Package. J. Stat. Soft. 28, 1–23 (2008)

[8] Jaeger, M.: Probabilistic Decision Graphs - Combining Verification and AI Tech-
niques for Probabilistic Inference. Int. J. Uncertainty Fuzziness Knowledge Based
Syst. 12, 19–42 (2004)

[9] Langseth, H., Nielsen, T.D., Rumı́, R., Salmerón, A.: Parameter Estimation and
Model Selection for Mixtures of Truncated Exponentials. Int. J. Approximate
Reasoning 51, 485–498 (2010)

[10] Langseth, H., Nielsen, T.D., Rumı́, R., Salmerón, A.: Mixtures of Truncated Basis
Functions. Int. J. Approximate Reasoning 53, 212–227 (2012)

[11] Langseth, H., Nielsen, T.D., Pérez-Bernabé, I., Salmerón, A.: Learning mixtures
of truncated basis functions from data. Int. J. Approximate Reasoning 55, 940–956
(2014)

[12] Lauritzen, S.L., Wermuth, N.: Graphical Models For Associations Between Vari-
ables, Some of Which Are Qualitative and Some Quantitative. The Annals of
Statistics 17, 31–57 (1989)

[13] López-Cruz, P.L., Bielza, C., Larrañaga, P.: Learning mixtures of polynomials of
multidimensional probability densities from data using B-spline interpolation. Int.
J. Approximate Reasoning 55, 989–1010 (2014)

[14] Moral, S., Rumı́, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid
Bayesian Networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS
(LNAI), vol. 2143, pp. 135–143. Springer, Heidelberg (2001)

[15] Nielsen, J.D., Jaeger, M.: An Empirical Study of Efficiency and Accuracy of Prob-
abilistic Graphical Models. In: Third European Workshop on Probabilistic Graph-
ical Models, pp. 215–222 (2006)

[16] Nielsen, J.D., Rumı́, R., Salmerón, A.: Supervised Classification Using Probabilis-
tic Decision Graphs. Comput. Stat. Data Anal. 53, 1299–1311 (2009)

[17] Romero, V., Rumı́, R., Salmerón, A.: Learning Hybrid Bayesian Networks Using
Mixtures of Truncated Exponentials. Int. J. Approximate Reasoning 42, 54–68
(2006)

[18] Shenoy, P., West, J.: Inference in Hybrid Bayesian Networks Using Mixtures of
Polynomials. Int. J. Approximate Reasoning 52, 641–657 (2011)

	Supervised Classification Using Hybrid Probabilistic Decision Graphs
	1 Introduction
	2 Notation and Preliminaries
	2.1 Discrete PDGs
	2.2 Conditional Gaussian PDGs
	2.3 Mixtures of Truncated Basis Functions

	3 Hybrid PDGs Based on MoTBFs
	4 PDG Classifiers
	4.1 Learning MoTBF-PDG Classifiers from Data

	5 Experimental Evaluation
	5.1 Discussion

	6 Concluding Remarks

