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Preface

The biennial European Workshop on Probabilistic Graphical Models (PGM)
brings together researchers interested in all aspects of graphical models for
probabilistic reasoning, decision making, and learning. It provides a forum for
discussion of research developments, both theoretical and applied, in these fields.

Previous PGM meetings were held in Cuenca (2002), Leiden (2004), Prague
(2006), Hirtshals (2008), Helsinki (2010), and Granada (2012). The 7th Euro-
pean Workshop on Probabilistic Graphical Models was held in Utrecht, The
Netherlands, on September 17–19, 2014. This PGM meeting was the first to
celebrate the publication of accepted papers in the Lecture Notes in Artificial
Intelligence series by Springer. The 38 papers presented at the workshop were
selected from 44 submitted manuscripts; these manuscripts involved a total of 92
authors working in 22 different countries. Each submission underwent rigorous
reviewing by three members of the PGM Program Committee, with each PC
member reviewing at most four papers. All papers were presented in a plenary
session.

In addition to the presentations of the accepted papers, we were honored to
have for our invited speaker

Robert Cowell (City University London, UK):
Analysis of DNA Mixtures Using Bayesian Networks

We are most grateful for his highly inspiring presentation.
To conclude, we would like to thank the 42 members of the Program Com-

mittee and the additional reviewer for their efforts, and for their punctual and
high-quality reviews specifically; these reviews were most instrumental in select-
ing the best submissions for presentation during the workshop. And, last but
not least, we are most indebted to our sponsors for their financial support.

August 2014 Linda C. van der Gaag
Ad J. Feelders
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Manuel Gómez-Olmedo (Spain) Teemu Roos (Finland)
Christophe Gonzales (France) Antonio Salmerón (Spain)
Arjen Hommersom (The Netherlands) Marco Scutari (UK)
Juan F. Huete (Spain) L. Enrique Sucar (Mexico)
Manfred Jaeger (Denmark) Jirka Vomlel (Czech Republic)
Kristian Kersting (Germany) Pierre-Henri Wuillemin (France)
Johan Kwisthout (The Netherlands) Yang Xiang (Canada)

Additional Reviewer

Brandon Malone (Finland)

Organizational Support

Rita Jansen

Sponsors

– Benelux Association for Artificial Intelligence (BNVKI);
– Department of Information and Computing Sciences, Faculty of Science,

Utrecht University;
– Dezide;
– HUGIN Expert;
– Netherlands Organization for Scientific Research (NWO);
– Utrecht City Council.



Table of Contents

Structural Sensitivity for the Knowledge Engineering of Bayesian
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

David Albrecht, Ann E. Nicholson, and Chris Whittle

A Pairwise Class Interaction Framework for Multilabel Classification . . . 17
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José M. Puerta

From Information to Evidence in a Bayesian Network . . . . . . . . . . . . . . . . . 33
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Structural Sensitivity for the Knowledge

Engineering of Bayesian Networks

David Albrecht, Ann E. Nicholson, and Chris Whittle

Monash University, Australia
{david.albrecht,ann.nicholson,chris.whittle}@monash.edu

Abstract. Whether a Bayesian Network (BN) is constructed through
expert elicitation, from data, or a combination of both, evaluation of the
resultant BN is a crucial part of the knowledge engineering process. One
kind of evaluation is to analyze how sensitive the network is to changes
in inputs, a form of sensitivity analysis commonly called “sensitivity
to findings”. The properties of d-separation can be used to determine
whether or not evidence (or findings) about one variable may influence
belief in a target variable, given the BN structure only. Once the network
is parameterised, it is also possible to measure this influence, for example
with mutual information or variance. Given such a metric of change,
when evaluating a BN, it is common to rank nodes for either a maximum
such effect or the average such effect. However this ranking tends to
reflect the structural properties in the network: the longer the path from
a node to the target node, the lower the influence, while the influence
increases with the number of such paths. This raises the question: how
useful is the ranking computed with the parameterised network, over and
above what could be discerned from the structure alone? We propose a
metric, Distance Weighted Influence, that ranks the influence of nodes
based on the structure of the network alone. We show that not only does
this ranking provide useful feedback on the structure in the early stages
of the knowledge engineering process, after parameterisation the interest
from an evaluation perspective is how much the ranking has changed.
We illustrate the practical use of this on real-world networks from the
literature.

Keywords: Bayesian Networks, Structure Sensitivity, Knowledge
Engineering.

1 Introduction

Bayesian networks (BNs) [18,13] are being increasingly used for reasoning and de-
cision making under uncertainty in many application domains, such as medicine,
education, the military, environmental management and engineering. The prolif-
eration of BN applications is due in part to the availability of both commercial
and free BN software packages that combine the powerful inference algorithms
developed in the AI research community with relatively easy-to-use graphical
user interfaces (GUIs). But the uptake of the technology is occurring despite

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014



2 D. Albrecht, A.E. Nicholson, and C. Whittle

the fact that a lot of Bayesian network construction is done by hand, requir-
ing painstaking involvement of domain experts, often combined with automated
learning with small or noisy datasets, and a lot of time both building and vali-
dating models, creating a “knowledge-engineering bottleneck”[10].

There is a small, but growing literature on knowledge engineering (KE)
Bayesian networks (reviewed in Section 2.2). Whether a BN is constructed
through expert elicitation, from data, or a combination of both, evaluation of the
resultant BN is a crucial part of the knowledge engineering process. One kind of
evaluation is to analyze how sensitive the network is to changes in inputs, a form
of sensitivity analysis commonly called “sensitivity to findings”.1 The properties
of d-separation can be used to determine whether or not evidence (or findings)
about one variable may influence belief in a target variable, given the BN struc-
ture only. Once the network is parameterised, it is also possible to measure this
influence. Mutual information is the common measure of how much uncertainty
is represented in a probability mass, hence it is one possible metric of change. A
second measure of uncertainty sometimes used is the variance.

Given such a metric of change, when evaluating a BN, it is common to rank
nodes for either a maximum such effect or the average such effect. There are many
examples in the literature describing the use of rankings based on influence in the
KE process including: ecological risk assessment [20,22], the spread of resistant
bacteria [21], healthcare management [1]. It is also advocated as part of the
evaluation process [9,2,19]. However this ranking tends to reflect the structural
properties in the network: the longer the path from a node to the target node, the
lower the influence of that node, while the influence increases with the number
of such paths. This raises the question of how useful is the ranking computed
with the parameterised network, over and above what could be discerned from
the structure alone? Moreover, the sensitivity-to-findings ranking requires that
the network be parameterised, which is expensive and time-consuming if done
by expert elicitation.

In this paper we propose a new metric, so-called Distance Weighted Influence,
that ranks the influence of query nodes based on the structure of the network
alone. This ranking provides useful feedback on the structure to the knowledge
engineer at an earlier stage in the knowledge-engineering process, before param-
eterisation, which can reduce wasted effort eliciting the wrong parameters.

In large complex networks, a list of nodes in ranked order of influence (what-
ever the measure) may not be very informative. Here we show how the influence
measure can be used to generate a color intensity “heat-map” that provides a
useful visualisation. When presenting the knowledge engineer with two rank-
ings of relative influence – one provided by DWI and based on structure alone,
and the second available after parameterisation – comparing heatmaps helps the
knowledge engineer see where in the BN the parameterisation has changed the
ranking. We also present a quantitative measure of the difference between two
node orderings that represents the size of that change.

1 The term used in the Netica BN software.



Structural Sensitivity for Bayesian Networks 3

After presenting our approach in Section 3, we illustrate its practical use on
three real-world networks from the literature in Section 4, before concluding and
suggesting further work in Section 5.

2 Background

2.1 Bayesian Networks

Bayesian networks (BNs) [18,13] are an increasingly popular paradigm for rea-
soning under uncertainty. A Bayesian network is a directed, acyclic graph whose
nodes represent the random variables in the problem. A set of directed arcs
connect pairs of nodes, representing the direct dependencies (which are often
causal connections) between variables. The set of nodes which have arcs point-
ing to X are called its parents, and is denoted pa(X). The relationship between
variables is quantified by conditional probability tables (CPTs) associated with
each node, namely P (X |pa(X)). The CPTs together compactly represent the full
joint distribution. Users can set the values of any combination of nodes in the
network that they have observed. This evidence, e, propagates through the net-
work, producing a new posterior probability distribution P (X |e) for each node
in the network. There are a number of efficient exact and approximate infer-
ence algorithms for performing this probabilistic updating, providing a powerful
combination of predictive, diagnostic and explanatory reasoning.

2.2 Knowledge Engineering Bayesian Networks

Most approaches to knowledge engineering Bayesian networks (KEBN) are based
on the inherent sequential stages reflecting the components of a BN: build the
structure (the nodes, their states, and the arcs between nodes), then do the
parameterisation, followed by evaluation (e.g. [16,8]). The notions of prototyping
and spiral development from the software engineering literature (e.g. [7,3]) were
first advocated for KEBN by Laskey & Mahoney [14], and later formalised as
iterative, incremental development in [5]. A key aspect is the importance of
evaluating at each stage and at each iteration. This is in order to identify and
correct errors as early as possible in the development lifecycle.

When evaluating the structure, some key questions are [13, §10.3.10]: are the
nodes in the BN the right ones? are the state space for each nodes correct? are
the arcs right? And if the answer to any of these is ‘no’, the structure will change.
If this changes is made after parameterisation, many of the parameters in the
CPTs will have to be thrown away and the time spent learning or eliciting them
will have been wasted.

Despite the importance of evaluating the structure, the methods available for
this prior to parameterisation are relatively limited: elictation review and model
walk-throughs [14], and exploring d-separation and other dependence relation-
ships (e.g., in Matilda [6]).
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2.3 Sensitivity Measures

Mutual Information is a commonly used measure of sensitivity when analysing
Bayesian networks [18].2

Definition 1. The mutual information, I(X,Y ), between two discrete variables,
X and Y is defined as:

I(X,Y ) =
∑
x,y

p(x, y) ln(
p(x, y)

p(x)p(y)
)

and has the following properties:

– 0 ≤ I(X,Y ) ≤ H(X), where H(X) = −
∑

x p(x) ln(p(x)).
– I(X,Y ) = 0 iff X and Y independent
– In a Bayesian network which is a polytree, for any variables, X and Y , on a

path, I(X,Y ) is non-increasing as the distance (number of edges) between
X and Y increases.

The standard approach in sensitivity analysis of BNs is to take the variable
you are interested in, say Y . Then compute I(X,Y ), for all the other variables,
X , in the network. These measures then determine the influence on Y , namely
the higher the measure the more influence the corresponding variable has on
Y . This can be extended to the case where findings are available for a set of
evidence nodes E, with a straightforward extension to I(X,Y |E). However in
this paper we will restrict our attention to the case where no evidence has been
given.

3 Structual Sensitivity

3.1 Distance Weighted Influence

In general I(X,Y ) depends on all the ways that the variable X can influence
variable Y , and vice-versa. In Bayesian networks, a node, X , can only influence
another node, Y , if there exists an unblocked path [13] joining X and Y . In the
case of a network without any given evidence, this means there is no node Z on
the path where both path arcs lead into Z. So, to determine the influence of X
on Y , we see that we only need to consider the set, S(X,Y ), of simple paths (no
nodes are visited twice) in the Bayesian network which are not blocked and join
the nodes X and Y .

The above observations lead us to the following simple measure for influence,
which we call Distance Weighted Influence. This measure depends upon the
number of paths and for any path decreases as the length of the path increases.

2 We note that mutual information has also been used as a measure of BN arc strength
in other ways, e.g., for visualisation of arc strength based on the thickness of the arc
[4], and for approximate inference [11].
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(a) DWI(Z,D;w) Polynomials (b) Heat map of DWI(Z,D; 0.2)

Fig. 1. Asia Network (with target node D)

Definition 2. The Distance Weighted Influence of X on Y , DWI(X,Y ;w), is
defined as:

DWI(X,Y ;w) =
∑

s∈S(X,Y )

w|s|,

where |s| is the length of the simple path s and 0 ≤ w ≤ 1.

DWI(X,Y ;w) is a polynomial related to the reliability polynomial [17] and
the weight, w, is related to the concept of arc weight defined in [11]. Although
arc weights will in general depend on the arc, before parameterization we do
not have any idea of their values. So, we treat all the arc weights as the same
throughout the network.

The polynomial contains a wealth of information about the relationship be-
tween X and Y , e.g., the sum of the coefficients (also the value of the polynomial
when w = 1) is the number of unblocked paths joiningX and Y ; and the smallest
power is the smallest length of an unblocked path between X and Y . We have
also extended this definition to handle the case where evidence has been given,
however in this paper we will only consider examples where there is no evidence.

Consider the network in Figure 1(a), based on the Lauritzen and Spiegelhal-
ter’s Asia network [15], with D the designated target node.3 Next to every node,
Z, is the corresponding value DWI(Z,D;w). In this case, for 0 ≤ w ≤ 1, we
have:

w + w4 ≥ w2 + w3 ≥ w2 + w5 ≥ w2 ≥ w3

B,O S,C X T A

3 Note that while it would be more realistic in a medical diagnostic BN such as Asia
to make the target variable one of the disease nodes, e.g. T(uberculosis) or C(ancer),
we chose the symptom D(yspnea) because this provides the multiple paths to the
target, and illustrates more fully how DWI works.
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In general the order of the DWI(X,Y ;w) polynomials will depend on the value
w. So, we consider a range of values for w. Table 1 ranks the Asia network’s nodes
by I(Z,D) (column 2), the values computed for DWI(Z,D;w) for 4 values of w
(0.1, 0,2, 0.5 and 1), and with the ranking of the measures in brackets. Note that
in this simple network, there is no difference in the DWI rankings with different
w, and there are “ties” (O and B, C and S) due to symmetries in their position
(relative to the target node D) in the undirected network. After the network
has been parameterised, the difference in the I ranking highlights the relative
influences on D within these pairs: B higher than O, and S higher than C.4 Note
that we will explore in more detail the effect of w across its full range for three
real applications, in Section 4.4 below.

For the Asia network, any path that contains the subpath T → O → C will be
blocked. Hence there is only one unblocked path between D and the nodes T and
A. More generally, the values DWI(Z,D; 1) are the number of unblocked paths
between the nodes Y and the node D, and the smallest power in the polynomials
DWI(Z,D;w) are the lengths of the smallest unblocked paths between the nodes
Z and D.

Table 1. Structural sensitivity performed on the Asia network, with node D as the
target node

DWI(Z,D;w) (rank)
I(Z,D) w = 0.1 w = 0.2 w = 0.5 w = 1

D 0.98814 – – – –
B 0.36156 (1) 0.10010 (1) 0.2016 (1) 0.5625 (1) 2 (1)
S 0.04045 (2) 0.01100 (3) 0.0480 (3) 0.3750 (3) 2 (1)
O 0.02955 (3) 0.10010 (1) 0.2016 (1) 0.5625 (1) 2 (1)
C 0.02538 (4) 0.01100 (3) 0.0480 (3) 0.3750 (3) 2 (1)
X 0.01517 (5) 0.01001 (5) 0.0403 (5) 0.2813 (5) 2 (1)
T 0.00397 (6) 0.01000 (6) 0.0400 (6) 0.2500 (6) 1 (6)
A 0.00001 (7) 0.00100 (7) 0.0003 (7) 0.0313 (7) 1 (6)

IC - 2 2 2 0

3.2 Representing Difference in Influence Order

We now have two different influence rankings, one obtained by computing the
mutual information on the parameterised network, the other generated by Dis-
tance Weighted Influence (for a particular influence weight, w) on the BN struc-
ture only. How can these rankings be presented to the knowledge engineer in a
way that is useful?

First, we provide a visualisation of the influence using a so-called heatmap of
the network, where the value computed using the influence metric (whether DWI
or I) is mapped into a colour intensity (using a logarithmic scale to better depict

4 In this case, S may have more influence through B.
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for the human eye the relative sensitivity values due to the spread over several
orders of magnitude). Figure 1(b) shows a heatmap based on the DWI(Z,D; 0.2)
measure, with blue denoting the target node and the intensity of the red on the
remaining nodes being logarithmically proportional to the sensitivity, i.e., paler
means less influence.

Next, we show how we can quantify the difference between two rank orderings
by performing an inversion count [12] on the two ordered lists. In this algorithm,
the nodes are firstly sorted by their I metric and are then replaced by their re-
spective DWI value. A divide-and-conquer inversion counting algorithm is then
applied to this list, whereby the list is recursively partitioned into two. Then
the total number of inversions in the first partition, second partition, and occur-
ring across the partitions are recursively calculated. In cases where nodes have
equal influence values, the list order is chosen such that the inversion count is a
minimum, making the inversion count a measure of the agreement between the
orders. To achieve this minimum, when performing the initial sort of the nodes
by I, nodes of equal I values are forced to adopt an order based on their relative
DWI values. That is, they are already in order and thus no inversions occur
amongst that group of nodes. Equal DWI values are accounted for by defining
an inversion as being a strict inequality in the algorithm.

The inversion count (IC) provides a quantification of the agreement/difference
between influence rankings generated by I for different parameter values, w, of
DWI. The IC for the different w in our simple Asia experiment, are shown in
the bottom row of Table 1. We developed IC while investigating the significance
of the chosen weighting value w, for example the interesting regions, such as
the values of w for which the agreement is at a maximum or is unchanging. In
Section 4.4 below, we investigate the effect of changing w on the difference in
the DWI and I rankings for our three application domains.

4 Case Studies

In order to assess the usefulness of the DWI method as a measure of structural
sensitivity, it was calculated for a number of previously engineered networks re-
ported in the literature and then used to rank node influences. In these examples,
the knowledge engineers all made use of the network mutual information as a
way of analysing node sensitivity and assessing its correctness.

4.1 The Goulburn Fish BN

Pollino et al. [20] developed a Bayesian network to investigate the decline of the
native fish population in the Goulburn Catchment in the Murray-Darling Basin
in Victoria, Australia. As part of the knowledge engineering process, the mutual
information between the node describing the future abundance of fish (node FA)
and other nodes was calculated. The resulting ranking of node influence was
then compared with the expectations of domain experts as a form of validation.
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We performed a structural sensitivity analysis on the Goulburn Fish BN using
values of w ranging from 0 to 1 with steps of 0.05; results for w = 0.1,0.2,0.5 and
1 are given in Table 2, along with the rank order (in brackets), and the I(Z, FA)
values for each node Z.5 We can see that there are many similarities in the
DWI and I rankings, confirming that a lot of the sensitivity information can be
ascertained from the structure alone (without parameterisation). For example
Biological Potential (BP), Water Quality (WQ) and Overall Flow (OF) – all
parents of FA – rank highly with all values of w. We note also that another
parent, Time Scale (TS), has its influence reduced for w=0.5, which is in fact
closer to the ranking based on I (after parameterisation), as does that of Future
Diversity (FD), FA’s child.

Table 2. Structural sensitivity performed on the Goulburn Catchment network with
the future abundance (FA) as the target node

DWI(Z,FA; w) (rank)
I(Z,FA) w = 0.1 w = 0.2 w = 0.5 w = 1

FA 0.7599 – – – –
FD 0.0879 (1) 0.1110 (2) 0.2511 (2) 1.9502 (13) 131 (4)
WQ 0.0563 (2) 0.1015 (4) 0.2275 (4) 3.1484 (4) 122 (6)
OF 0.0308 (3) 0.1007 (5) 0.2223 (5) 3.5312 (2) 187 (2)
BP 0.0304 (4) 0.1115 (1) 0.2649 (1) 3.6992 (1) 216 (1)
Si 0.0284 (5) 0.0151 (8) 0.1303 (7) 2.6094 (5) 32 (15)
Ba 0.0221 (6) 0.0067 (26) 0.0678 (13) 1.8906 (14) 32 (15)
Ty 0.0221 (6) 0.0015 (31) 0.0261 (31) 1.3047 (30) 32 (15)
Te 0.0218 (8) 0.0107 (24) 0.0535 (25) 1.1797 (32) 32 (15)
AS 0.0193 (9) 0.0120 (11) 0.0758 (11) 2.3125 (8) 61 (9)

. . .MS, AW, LFS, MW, Ty, St, PS, Sa, Co . . .
Ri 0.0021 (19) 0.0114 (19) 0.0645 (19) 1.4922 (20) 32 (15)
SH 0.0019 (20) 0.1004 (6) 0.2128 (6) 2.1758 (10) 88 (7)
HS 0.0013 (21) 0.0114 (19) 0.0645 (21) 1.4922 (20) 32 (15)
Fi 0.0011 (22) 0.0025 (28) 0.0337 (28) 1.3984 (26) 32 (15)
TS 0.0010 (23) 0.1100 (3) 0.2400 (3) 0.7500 (34) 2 (34)
Al 0.0008 (24) 0.0025 (28) 0.0337 (28) 1.3984 (26) 32 (15)

. . . NM, Fo, CD, Sn, pH, CC, Mi . . .
Fl 0.0001 (31) 0.0112 (23) 0.0550 (24) 1.3594 (29) 58 (12)
DO 0.0000 (33) 0.0115 (16) 0.0660 (14) 1.5391 (15) 32 (15)
To 0.0000 (33) 0.0115 (13) 0.0660 (14) 1.5391 (15) 32 (15)

IC – 176 173 175 135

The data were graphically represented on a heatmap of the network, allowing
qualitative visual comparisons between the I(Z, FA) and DWI(Z,FA;w) values.
Figure 2 shows the heatmaps for (a) DWI(Z, FA; 0.2) and (b) I(Z, FA) for each
node Z in the network.

5 For reasons of space, some of the rows are omitted. The names of the removed nodes
still appear in the table.
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(a) DWI(Z,FA; 0.2)

(b) I(Z,FA).

Fig. 2. Heatmaps of the Goulburn Catchment network
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In addition to obtaining useful information about relative node influence with-
out using the parameterisation, we can use the I and DWI rankings to make
observations about the parameterisation. Type (Ty), Temperature (Te), Barrier
(Ba) and Connectivity (Co) are all ranked highly by I compared to their DWI
values. This implies that their influence is significant and has contributions from
beyond just their structural context. As expected, the conditional probability
tables of all these nodes are largely deterministic (Ty is exactly deterministic).
In contrast, Toxicants (To) and Dissolved Oxygen (DO) rank much more highly
using DWI, indicating that the parameterisation results in some form of inde-
pendence with the target node. Indeed, inspection shows that the conditional
probability table has very little variation between rows.

Time Scale (TS) DWI values rank very high for small w, due to the node’s
close proximity to the target, whereas its I influence is much lower, indicating
that it has little influence upon FA. This means there is little difference in the
impact on the future abundance of the fish, whether a 1 year or a 5 year time
frame is considered; the other factors are much stronger drivers.

4.2 Alpine Peatland Ecological Risk Assessment

In another ecological risk assessment application, White [22] engineered a
Bayesian network to model the interplay between climate change and various
systems in the Bogong High Plains in The Victorian Alps, as well as the resul-
tant effect on the distribution of peatlands in the area.

Figure 3 shows the heatmaps of this Peatland BN for target node peatland
condition (PC) for (a) DWI(Z, PC; 0.2) and (b) I(Z, PC). While Table 3 shows
the set of results for this network – the nodes ranked according to the I values,6

the DWI values for the same range of w, along with the associated ranking.
Again, the bottom row shows the IC values.

These rankings again show many consistencies between the I and DWI rank-
ings. The nodes describing Fire Frequency (FF), Hydrological characteristics
(HC), Physical Disturbance (PD), and Entrenchment and Drainage (ED) are
shown to be highly influential by both measures. Conversely, nodes Resort Pres-
sures (RP), Subcatchment Size (Su), Ignitions (Ig), and Aqueducts Diverted
(AD) are all consistently ranked as being less influential.

The Fire Probability (FP) and Increase in Very High to Extreme Weather
Days (VI) are two noteworthy nodes, ranking significantly higher with I than
with DWI. Again, this suggests a degree of determinism in the node CPTs, which
was then confirmed by checking the CPTs presented in [22] (i.e. rows were made
of up single high-valued cells and other low-probability results). Also, noteworthy
is the low mutual information value for Slope Gradient (SG) which has a high
DWI rank for low values of w. The low mutual information is due to the low
mutual information between the Physical Suitability (PS) and SG and between
Entrenchment Drainage (ED) and SG, and suggests that these arcs could be

6 Here we use the I values reported in [22], as not all the CPTs are publically available.
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(a) DWI(Z,PC; 0.2)

(b) I(Z,PC)

Fig. 3. Heatmaps of the Peatland network
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Table 3. Structural sensitivity performed on the BHP Peatland network with the
Peatland Condition (PC) as the target node

DWI(Z,PC;w) (rank)
I(Z,PC) w = 0.1 w = 0.2 w = 0.5 w = 1

PC 1.2731 – – – –
FF 0.2205 (1) 0.1142 (1) 0.2758 (1) 1.5154 (1) 27 (6)
HC 0.0923 (2) 0.1123 (2) 0.2620 (2) 1.3716 (3) 25 (7)
PD 0.0529 (3) 0.0224 (6) 0.1027 (6) 1.2346 (4) 38 (4)
FP 0.0520 (4) 0.0102 (12) 0.0447 (12) 0.5752 (12) 16 (12)
ED 0.0493 (5) 0.1034 (3) 0.2321 (3) 1.4259 (2) 46 (3)
PR 0.0426 (6) 0.0312 (5) 0.1322 (5) 1.1094 (7) 10 (17)
We 0.0381 (7) 0.1014 (4) 0.2148 (4) 1.2084 (5) 56 (1)
VI 0.0343 (8) 0.0012 (16) 0.0128 (16) 0.4707 (16) 16 (12)
CC 0.0299 (9) 0.0023 (13) 0.0219 (13) 0.6016 (10) 16 (12)

. . .Wi, OW, RR, WS, PS, CVC, HVOF . . .
TP 0.0019 (19) 0.0011 (21) 0.0097 (21) 0.2266 (21) 5 (23)
SG 0.0012 (20) 0.0111 (10) 0.0497 (10) 0.4766 (15) 6 (20)
RC 0.0011 (21) 0.0002 (25) 0.0039 (25) 0.2227 (24) 8 (18)

. . .WC, AD, SS, Ig, Su . . .
RP 0.0000 (27) 0.0001 (26) 0.0020 (26) 0.1094 (27) 3 (26)

IC – 54 53 46 79

omitted. While for w = 1 the rank of DWI(SG,PC; 1) is low, as the number of
unblocked paths between PC and SG is small.

4.3 VRE Colonisation Risk Assessment

Rajmokan designed a Bayesian network to investigate the colonisation of Van-
comycin Resistant Enterococcus in hospitals, including risk and mitigating fac-
tors [21].

We generated the same type of results for this network by taking the node
VRE isolates (VI) as the target node, shown in Table 4.7 Figure 4 shows the
visualisation for DWI (w=0.2).

Noteworthy is the low value of mutual information for isolation ward overflow
(IWO) node. As the mutual informations I(V T, V I) and I(V P, V I) are high,
this suggests that the structure could be simplified by removing either the arc
between VP and IWO, or the arc between IWO and VT.

4.4 Variation of IC for Different Values of Influence

We observed that modifying w can change the order of the DWI ranking and
we therefore produced a graph of IC against w to further investigate these vari-
ations. Figure 5 shows the IC for each of the studied networks as a function

7 Here we use the I values reported in [21], as the parameterised BN is not publically
available.
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Table 4. Structural sensitivity performed on the VRE network with the VRE isolates
(VI) as the target

DWI(Z,V I ;w) (rank)
I(Z, V I) w = 0.1 w = 0.2 w = 0.5 w = 1

VI 0.15497 – – – –
VT 0.02487 (1) 0.1010 (1) 0.2080 (1) 0.6250 (1) 2 (1)
VP 0.00860 (2) 0.1010 (1) 0.2080 (1) 0.6250 (1) 2 (1)
VU 0.00064 (3) 0.0101 (6) 0.0416 (6) 0.3125 (6) 2 (1)
Sc 0.00042 (4) 0.0100 (9) 0.0400 (9) 0.2500 (9) 1 (12)
Ha 0.00035 (5) 0.0100 (9) 0.0400 (9) 0.2500 (9) 1 (12)
CA 0.00032 (6) 0.0100 (9) 0.0400 (9) 0.2500 (9) 1 (12)
CU 0.00022 (7) 0.0101 (6) 0.0416 (6) 0.3125 (6) 2 (1)
VC 0.00020 (8) 0.0101 (6) 0.0416 (6) 0.3125 (6) (1)
WO 0.00015 (9) 0.0110 (4) 0.0480 (4) 0.3750 (4) 2 (1)
Ov 0.00007 (10) 0.0110 (4) 0.0480 (4) 0.3750 (4) 2 (1)
St 0.00004 (11) 0.0100 (9) 0.0400 (9) 0.2500 (9) 1 (12)

IWO 0.00003 (12) 0.0200 (3) 0.0800 (3) 0.5000 (3) 2 (1)
KV 0.00001 (13) 0.0010 (13) 0.0083 (13) 0.1562 (13) 2 (1)

. . . RP, SO, TP, MI, MP, PC, OTC, ED . . .
PBO 0.00000 (16) 0.0010 (16) 0.0080 (16) 0.1250 (16) 1 (12)

IC – 28 28 28 29

Fig. 4. A heatmap of the VRE network for I(Z, V I)
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of w. We can see that the value of the inversion count, a quantification of the
difference in ranking between the DWI and I rankings, not unexpectedly reflects
the complexity of the BN, being highest for the Goulburn Fish BN (most nodes
and highest connectivity), and lowest for the VRE (smallest and a simple tree
structure). For the Goulburn Fish BN, the minimum inversion count was 161 at
0.25, whereas the minimum IC for the BHP Peatland BN was 45 at 0.55. The IC
for the VRE BN is essentially unchanged, due to the tree-like structure of the
BN, with very few multiple paths. In all cases IC is observed to dip for w = 1,
due to an increased number of ties caused by nodes having the same number of
unblocked paths.

Fig. 5. A graph of inversion count against weighting value w for the three real-world
BNs (target nodes indicated in parentheses in the legend for each)

5 Conclusions and Future Work

It is a standard part of the evaluation of a parameterised BN to consider the
relative influence on a given target node, X , of a set of nodes Q. Here, we have a
presented a new metric, the so-called Distance Weighted Influence, to represent
the structural component of influence in a Bayesian network. This parameterised
polynomial has the required properties: the longer the path from a node to the
target node, the lower the influence, with the total influence combining the influ-
ences of all the paths between the nodes. We have demonstrated how the DWI
can be used to evaluate the BN structure before parameterisation, which will
avoid wasted effort in eliciting parameters that will be discarded if the structure
changes later. Furthermore, we have shown the influence measure can be used to
generate a heatmap of influence, which provides a useful visualisation of those
influences. In addition, by explicitly separating out the structural component
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of the relative influence, the knowledge engineer can compare it to the relative
influence after parameterisation, and focus on the areas of most change.

We have also shown how a heatmap provides a useful visual qualitative com-
parison, while our so-called inversion count provides a quantitative measure of
the difference in the orderings. The IC also allows us to explore the effect of
varying DWI’s parameter w on the resultant ordering.

In the case studies explored in this paper, all the BNs were used in a predictive
mode, with the designated target node a leaf, or near leaf node. In future work
we intend to consider target nodes across the BN, for example root nodes in BNs
being used for diagnostic purposes.

As mentioned above, we have extended our definition of DWI to include the
incorporation of evidence, that is, DWI(X,Y |E;w), as this changes the influences
in the network, as well as changing the set of paths which are blocked. The next
step is to evaluate the use of DWI with evidence on real case studies.

We have demonstrated the usefulness of structural sensitivity on real-world
BNs described in the literature, i.e. retrospectively. The next step is to apply it
in the knowledge engineering of a BN in a new domain.
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Abstract. We present a general framework for multidimensional classi-
fication that captures the pairwise interactions between class variables.
The pairwise class interactions are encoded using a collection of base
classifiers (Phase 1), for which the class predictions are combined in
a Markov random field that is subsequently used for multi-label infer-
ence (Phase 2); thus, the framework can be positioned between ensemble
methods and label transformation-based approaches. Our proposal leads
to a general framework supporting a wide range of base classifiers in the
first phase as well as different inference methods in the second phase. We
describe the basic framework and its main properties, including detailed
experimental results based on a range of publicly available databases.
By comparing the performance with other multilabel classifiers we see
that the proposed classifier either outperforms or is competitive with
the tested straw-men methods. We also analyse the scalability of our ap-
proach and discuss potential drawbacks and directions for future work.

Keywords: Multidimensional classification, probabilistic classifiers,
Markov random fields.

1 Introduction

Supervised classification is the problem of assigning a value to a distinguished
variable, the class C, for a given instance defined over a set of predictive at-
tributes. In multi-label classification, several class variables are simultaneously
considered and the task consists of assigning a configuration of values to all the
class variables. In the multi-label setting, classes (or labels) are binary. Multi-
dimensional classification is a generalization of multi-label classification that
allows class variables to have more than two values. Recent literature, how-
ever, also uses the term multi-label when dealing with n-ary class variables, so
we will use both names in an interchangeable way. A wide range of applica-
tions for multi-dimensional classification can be observed [21]: bio-informatics,
document/music/movie categorization, semantic scene classification, multi-fault
diagnosis, etc.

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 17–32, 2014.
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One approach to solve a multi-dimensional problem is to first transform the
problem into a set of single-class classification problems, and then combine
the outputs into a joint configuration of class values. Managing the interac-
tion among class variables is a key point when dealing with multi-dimensional
problems. Transformation-based methods range from binary relevance, where
no interaction is modeled, to brute-force label power set methods, where all the
class variables are aggregated into a single compound class. In-between these two
extremes, new and/or adapted algorithms have been developed to deal with the
multi-dimensional problem, managing in a natural way the interactions between
the variables. From this second family, probabilistic methods and, in particular,
those based on Bayesian networks (BNs) [16] have demonstrated a convincing
performance [2]. In this paper we focus on the probabilistic approach to multi-
dimensional classification.

We propose a two-stage framework for multi-dimensional classification. The
framework can be positioned between the transformation-based classifiers and
the family of multi-dimensional PGM-based classifiers1. In the first stage we learn
a single-class classifier for each pair of class variables in the domain, hence this
stage of the framework follows a transformation-based approach. The framework
does not prescribe a particular type of classifier, but only requires that the
outcome of the classifier should be a weighted distribution over the (compound)
class values. Standard probabilistic classifiers meet this criteria. In the second
stage a Markov random field (MRF) is constructed based on the results from the
first stage. The MRF thus models the dependencies between the class variables,
and thereby connects the framework to the class of multi-dimensional PGM-
based classifiers. Subsequent classification is achieved by performing inference in
the induced MRF.

The proposed framework is flexible: (1) different types of classifiers can be
applied in the first stage; (2) preprocessing can be done separately for each single-
class classifier, thus allowing one to take advantage of state-of-the-art algorithms
for supervised discretization and feature selection; and (3) different types of
MRF-based inference algorithms can be used for the subsequent classification,
the choice of which can therefore depend on the complexity of the model (exact
or approximate inference) and the score to be maximized (calculation of marginal
probabilities or a most probable configuration). Furthermore, since the first stage
can be carried out in parallel, the method scales with the computational resources
available. Nevertheless, naively dealing with all pairs of class variables imposes a
strong limitation on the number of class variables the algorithm can handle. We
therefore also outline strategies for scaling up the algorithm to datasets having
a large number of class variables. Experiments carried out over a collection of
benchmark datasets confirm the feasibility of the approach and show that the
proposed method significantly outperforms or is comparable to the straw-men
methods included in the comparison.

1 We refer to probabilistic graphical models (PGMs) based classifiers in order to ac-
commodate a wider range of graphical models [12] in addition to the more common
approaches based on Bayesian networks.
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We would like to remark that the proposal does not fit into the so-called
pair-wise multi-label approach, which interprets the labels of the instances as
preferences and whose goal is to obtain a ranking among the labels [15] and
not a joint configuration of class values. Furthermore, although our approach
trains several classifiers in the first phase, it does not strictly fall into the class
of ensemble methods either, as each base-classifier only provides a partial answer
to the multi-dimensional problem.

The rest of the paper is structured as follows: In Section 2 we introduce the
notation and the required background in the field of multidimensional classifi-
cation; in Section 3 we describe our framework and discuss its main properties;
in Section 4 we evaluate our approach by carrying out several experiments with
real world data, and finally, in Section 5, we summarize the obtained results and
introduce ideas for future work.

2 Background

2.1 Notation and Problem Definition

We assume that the available dataset consists of a collection of instances D =
{(a(1), c(1)), . . . , (a(t), c(t))}, where the first part of an instance, a(i) = (a

(i)
1 , . . . ,

a
(i)
n ), is a configuration of values defined over a set A = {A1, . . . , An} of predic-

tive attributes, while the second part, c(i) = (c
(i)
1 , . . . , c

(i)
m ), is a configuration of

values defined over a set C = {C1, . . . , Cm} of classes.2 For ease of exposition,
we will in this paper assume that all the variables are discrete (nominal), i.e.,
the state spaces dom(Ai) and dom(Cj) are finite sets of mutually exclusive and
exhaustive states, ∀i, 1 ≤ i ≤ n and ∀j, 1 ≤ j ≤ m.

Our goal is to induce a multidimensional classifier f that maps configurations
of the predictive variables to configurations of the class variables:

f :
⊗n

i=1 dom(Ai) −→
⊗m

j=1 dom(Cj),

(x1, x2, . . . , xn) → (c1, c2, . . . , cm),

where
⊗

denotes the Cartesian product.

2.2 Evaluation

Although different evaluation metrics can be used to evaluate a multidimen-
sional classifier (see e.g. [2, Sec. 5]), we resort in this paper to two of the more
widely used once, both relating to accuracy. Given a dataset D consisting of t
multidimensional instances ((a1, . . . , an), (c1, . . . , cm)) together with the predic-
tions obtained by a multidimensional classifier H f(a1, . . . , an) = (c′1, . . . , c

′
m),

we compute the:

2 We will omit the superscript when no confusion is possible, just writing (a, c) and

((a1, . . . , an), (c1, . . . , cm)) instead of (a(i), c(i)) and ((a
(i)
1 , . . . , a

(i)
n ), (c

(i)
1 , . . . , c

(i)
m )),

respectively.
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– Exact match (or global accuracy).

acc(D,H) =
1

t

t∑
i=1

δ(c(i), c′(i)), (1)

where δ is a Kronecker’s delta function.
– Hamming (or mean) accuracy.

Hacc(D,H) =
1

t

t∑
i=1

1

m

m∑
j=1

δ(c
(i)
j , c

′(i)
j ). (2)

In both cases, the higher the value the better. Obviously, acc is a harder
scoring criterion than Hacc.

From a probabilistic perspective, different inference tasks [16] can be used
in order to maximize each of the two scores. Thus, computing the most prob-
able configuration (MPE) for the class variables will maximize global accuracy,
while maximizing the Hamming accuracy requires the computation of the most
probable marginal assignment for each of the individual class variables.

2.3 Approaches to Multi-dimensional Classification

In the literature we can find several approaches to deal with multi-dimensional
classification problems. Below, we briefly review some of them, detailing a bit
more those approaches used for comparison in this paper and those that are
more related to our proposal.

– Transformation methods. According to [21] this is a family of methods that
transform the multi-dimensional classification problem into one or several
single-class classification problems. Perhaps the two most well-known ap-
proaches coming from the multi-label domain are the classifiers based on
label power-sets (LP) and binary relevance (BR). In their simplest form, LP-
based classifiers construct a new (compound) single-class variable having as
possible values all the different configurations of the class values (labels) in-
cluded in the training set. This method implicitly considers the dependences
between classes, but its obvious main drawback is that it is computationally
tractable only for a relatively few number of class variables.

On the other hand, Binary Relevance (BR) methods learn a single-class
classifier (or base classifier) for each class variable, fi :

⊗n
j=1 dom(Aj) →

dom(Ci). A solution to the multi-dimensional problem is then found by com-
bining the single-class outputs from the base classifiers. This method does
not consider any dependencies between class variables, but can be a good
predictor according to Hamming accuracy.

In-between BR and brute-force LP-based methods other approaches have
been developed. One example is RAkEL [23], which is based on training
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several single-class classifiers each using as class a compound variable con-
structed as the Cartesian product of k class variables. The number of single-
class variable models is usually linear in the number of class variables, and
random selection is used to choose the k variables that will form the com-
pound variable. Later, from the k−tuples predicted, voting is used to obtain
a joint configuration of values for all the class variables.

Chain classifiers (CC) [18] are an alternative to BR that incorporate depen-
dences between class variables, while still maintaining the computational
efficiency of BR. In CC an ordering σ is defined over the class variables. Let
Cσ(i) be the i-th class variable according to ordering σ. As in BR, m single-
class classifiers are induced in a CC, but when learning the single-class classi-
fier having Cσ(i) as class, the variables Cσ(1), . . . , Cσ(i−1) are also included as

predictive attributes: fi :
⊗n

j=1 dom(Aj)×
⊗i−1

k=1 dom(Cσ(k)) → dom(Cσ(i)).
Therefore, the class variable in position i of σ, depends on the class vari-
ables appearing earlier in the ordering. As a consequence, inference over the
single-class classifiers must be done sequentially by following the ordering
imposed by σ.

– Adaptation methods. These are methods that directly modify/adapts existing
single-class classification algorithms to accommodate multiple classes, e.g.
based on decision trees, nearest neighbours, support vector machines, etc.
See [21] for an overview.

– Multi-dimensional Bayesian Networks classifiers (MBCs) [10,24,2]. These
are multi-dimensional classifiers that use the formalism of BNs to model
the problem. However, as for single-class domains, instead of learning an
unconstrained BN, the learning process is constrained by biasing the result-
ing graph. Thus, in MBCs three subgraphs are usually considered: (a) the
class subgraph, which codifies dependence relations between classes; (b) the
feature subgraph, which codifies dependence relations between features (pre-
dictive attributes); and (c) the bridge subgraph which codifies dependence
relations from classes to features.
Depending on the complexity of the types of graphs allowed in the class and
feature subgraphs, several models/algorithms can arise: trees and/or poly-
trees [10,24,19], k-dependence limited models [19], general BN structures [2],
etc. With respect to the search strategy used to guide the learning process,
filter and wrapper approaches have been analyzed in [2], while skeleton-based
ones are proposed in [3,4] based on Markov blankets and in [26] using mutual
information.

– Ensembles. As in single-class classification, ensembles of multi-dimensional
classifiers have shown potential to improve performance compared to single
classifiers. This is, for example, the case of the ensemble of CC, where each
member of the ensemble uses a different (usually random) ordering [18]. In
the particular case of using MBCs as base classifier for the ensemble, recent
studies [27,20,1] explore the idea of using as many members in the ensem-
ble as there are class variables. In [27,20] an undirected tree structure is
first learnt for the class variables, and then each class variable is set as root
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and the resulting topological ordering is used as a CC in the ensemble. The
resulting configuration of class values is obtained by voting. In [1] no struc-
tural learning is done over the classes, and instead a naive Bayes structure
among the class variables is used, with a different root for each member of
the ensemble. In contrast to previous approaches, the resulting configuration
is obtained by probabilistic inference.

3 A General Framework for Multi-label Classification

In this section we describe the proposed framework for multi-label classification
as well as strategies for scaling up the framework and exploiting MapReduce
architectures.

3.1 The Proposed Framework

The proposed framework for doing multi-label classification positions itself
between ensemble classifiers [1] and transformation-based classifiers [21], by
combining the results from a collection of classifiers learned for each possible
pairwise interaction between the class variables. The legal types of classifiers are
restricted to those classifiers that for a given instance a can provide a factor
φij | a : dom(Ci, Cj) → R+ for each class pair Ci and Cj such that the greater
the value the higher the compatibility between the class states. We shall refer to
these classifiers as base classifiers. Given the class-pair factors produced by the
base classifiers for an instance a, we pose the problem of doing multi-label clas-
sification as an inference problem in the pairwise Markov random field (MRF)
induced by the factors. Specifically, for m class variables, the pairwise Markov
random field specified by the factors φij | a defines a joint distribution

Pa(C1, . . . , Cm) =
1

Z

∏
i�=j

φij | a(Ci, Cj),

where
Z =

∑
C1,...,Cm

∏
i�=j

φij | a(Ci, Cj)

is the partition function.3 Based on this specification, we perform classification
by doing inference in the MRF model. Thus, for global accuracy we look for the
most probable explanation (MPE) in the MRF

c∗ = arg max
c=(c1,...,cm)

1

Z

∏
i�=j

φij | a(Ci, Cj)

= arg max
c=(c1,...,cm)

∏
i�=j

φij | a(Ci, Cj),

3 We abuse notation slightly and use variable summation to denote summation over
states of a variable.
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and for Hamming accuracy we consider the most probable class variable config-
urations separately:

c∗k = argmax
ck

∑
Cl:l �=k

∏
i�=j

φij | a(Ci, Cj).

In summary, given a collection of base classifiers, multi-label classification of
an instance a consists of two steps:

1. For each pair of class variables, Ci and Cj , employ the corresponding base
classifier to find a factor φij | a that for each configuration (ci, cj) encodes
the affinity between ci and cj for instance a.

2. Establish the class-labels of a by performing inference in the pairwise Markov
random field defined by the factors φij | a found in step 1.

The overall framework is flexible in the sense that it can accommodate several
different types of base classifiers (e.g., probabilistic classifiers, neural networks,
etc.). Hence, we say that a particular choice of base classifier instantiates the
framework, and in what follows we shall refer to the instantiated framework
as a factor-based multi-labeled classifier (FMC). In the present paper, we focus
on probabilistic base classifiers, and for ease of exposition we will in this section
only consider naive Bayes classifiers: for each pair of class variables Ci and Cj we
have a naive Bayes classifier (NBC), where the state space of the class variable
consists of all combinations of class labels for Ci and Cj . With this type of base
classifier, the factors φij | a in the FMC correspond to the posterior probabilities
P (Ci, Cj | a). The relationship between the NB base classifiers and the induced
MRF is illustrated in Figure 1 for a domain with three attributes {A1, A2, A3}
and three class variables {C1, C2, C3}.

Comparing the proposed framework to multi-dimensional Bayesian network
classifiers (MBCs) [24,2,3] we see that the induced MRF plays the role of the
class-subgraph in the MBC. Similarly, the feature subgraph and the bridge sub-
graph are captured by the base classifiers that, in addition, also allow each class
pair to employ different types of discretization and encode different dependency
structures.

3.2 Scalable Learning and Inference

The complexity of learning and inference in an FMC is determined by

– the complexity of learning and doing inference in the base classifiers; con-
sidering all class variable pairs, we have m(m− 1)/2 base classifiers.

– the complexity of performing inference in the generated MRF.

For learning the base classifiers, we first observe that for most types of base
classifiers the computational complexity can be reduced by exploiting that the
overall learning setting is trivially parallelizable and can easily be adapted to a
MapReduce architecture [6]; although one could envision complex classifiers that
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A1

A1A1

A2

A2A2

A3

A3A3 C1

C2 C3

C1, C2 C1, C3

C2, C3

φ12 = P (C1, C2 |a) φ13 = P (C1, C3 |a)

φ23 = P (C2, C3 |a)

φ12 φ13

φ23

Fig. 1. An FMC is established for a domain consisting of three attributes and three
class variables. The joint probabilities calculated using the NB base classifiers serve as
factors in the MRF, which is in turn used for finding the class labels.

share substructures across class variable pairs, the more standard base classifiers
can be learned independently.

However, even with a MapReduce architecture, the computational complexity
of learning the base classifiers may still be demanding, since the number of
classifiers is quadratic in the number of class variables. One immediate approach
to overcome this difficulty is to only consider a restricted candidate subset of
class variable pairs for which base classifiers should be learned. A simple strategy
for selecting this candidate set is to greedily include the best k pairs of class
variables according to a heuristic function that captures the dependence/affinity
between these variables. In this paper we have used as heuristic, the empirical
mutual information between class variable pairs

MI (Ci, Cj) =
∑
Ci

∑
Cj

P̂ (Ci, Cj) log

(
P̂ (Ci, Cj)

P̂ (Ci)P̂ (Cj)

)
.

Given this strategy, we not only reduce the number of base classifiers to be
learned, but we also reduce the complexity of the subsequently induced MRF,
thereby also obtaining a reduction in the computational complexity when per-
forming inference in the MRF. Note that with the described approach we may
end up with a disconnected class structure with some components containing a
single class variable only, our model can deal with this by learning a single class
classifier for each one of these singleton variables and then set up the obtained
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distribution after the inference performed in the first phase as the node potential
of the disconnected variables in the MRF. As a special case we can alternatively
construct a Chow-Liu tree [5] over the variables, selecting in this case a subset k
of m− 1 pairs and afterwards perform inference in this reduced model structure
in which are variables are connected.

Alternatively, we could use a threshold function to select the subset of class
variables pairs instead of using greedy selection. We propose a second scalable
approach that selects pairs of variables by using a χ2 statistical test to mea-
sure the dependency between the class variables. This new approach can be
parametrized to allow the classifier to select a larger number of pairs by control-
ling the significance level of the test.

4 Experimental Evaluation

In the first part of this section we report on the results from the experimental
evaluation performed for the proposed approach in its basic configuration. In
the second part we evaluate the different scalability strategies described in the
previous section.

4.1 Experiments

We evaluate our approach using two well-known base classifiers: Naive Bayes
(NB), being a simple classifier with light computational and memory require-
ments; and A1DE [25], which is a more expressive classifier but requires larger
amounts of resources. For comparison, we also include three state-of-the art
multilabel classifiers in our experiments, which all have available public imple-
mentations: Binary-Relevance (BR), Ensembles of Classifier Chains (ECC), and
RAkEL [23]; the three classifiers also require a base classifier and for the com-
parison we have used the same base classifiers as for our proposal. ECC has
been configured to learn 10 different models for the ensemble, and in the case
of RAkEL, we have considered two different configurations: One is the recom-
mended configuration from the original paper [23], using 2m models with triplets
of label combinations k = 3 (RAkELk=3). For the second one, we use pairwise
label combinations, k = 2, considering all possible models (RAkELk=2), thus
replicating the first stage of our approach in which all pairwise classifiers are
built. For the subsequent predictions we use the voting scheme that RakEL
implements.

Our implementation is still a prototype and is based on different platforms:
The first step of the classifier has been implemented using the Mulan [22] library
for multilabel dataset management and Weka [13] for the base classifiers. The
second step performs inference over the Markov random field using the UGM4

Matlab package. Due to the size of the MRF models, we perform approximate
inference as exact inference is not feasible for all the data sets. Specifically,

4 http://www.di.ens.fr/~mschmidt/Software/UGM.html

http://www.di.ens.fr/~mschmidt/Software/UGM.html
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Table 1. Datasets used in the evaluation

Database Birds CAL500 Emotions Enron Genbase Medical Scene Yeast

Classes 19 174 6 53 27 45 6 14
Features 260 68 72 1001 1186 1449 294 103
Instances 645 502 593 593 662 978 2407 2417

we have chosen the Loopy Belief Propagation algorithm [17] from the above
mentioned Matlab package. Preliminary experiments over small datasets show
that the approximate inference scheme obtains almost the same results as exact
inference in terms of predictions, although this result should be checked for larger
and more complex domains. For the experiments involving the BR, ECC and
RAkEL classifiers we have used their open implementations in Mulan.

We have carried out several experiments using a collection of publicly available
datasets taken from the Mulan repository5. Because of the high computational
requirements of the basic version of our proposal, we have run the experiments
using only those datasets with a moderate number of labels and attributes. The
characteristics of the datasets used in the experiments can be found in Table 1.

We have discretized the numerical features using two different discretization
methods. Due to the lack of standardized supervised multidimensional discretiza-
tion algorithms, a simple unsupervised discretization has been performed using
three equal width bins for each attribute, as it has proved to be the best config-
uration tested in preliminary experiments. However, the properties of the first
step of our approach, and also that of the BR, ECC and RAkEL algorithms,
allow us to use supervised discretization for each individual base classifier, as the
feature variables are not used in the aggregation process. Thus, for each base
classifier we have performed an MDL-based discretization [8] guided by the gen-
erated compound class label. We report on the results for both methods, showing
the advantages of considering label information in the discretization process.

The experiments were conducted on a dedicated server with a Pentium Xeon
3.0 Ghz and 16GB of RAM running Linux, and for each dataset and classifier we
have performed a 10 fold cross validation. We report both global accuracy (acc)
and Hamming accuracy (Hacc) as performance indicators. Tables 2 and 3 show
the results obtained for the unsupervised and supervised discretized datasets,
respectively; the best results for the different datasets and measures are shown
in boldface.

Empty cells correspond to unfinished executions, where the majority is due
to memory limitations (≤16GB RAM) as the A1DE algorithm is very inefficient
when the number of features is high. We can observe a higher number of finished
experiments when using supervised discretization, as this method removes some
feature attributes which are left with only one state after the discretization
process, and, in general, it obtains a dataset with attributes of lower cardinality,
resulting in a considerable reduction of the number of parameters to be learned
by the classifiers.

5 http://mulan.sourceforge.net/datasets.html

http://mulan.sourceforge.net/datasets.html
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We have not included results regarding execution time as it would be an
unfair comparison as our prototype implementation is far from being optimized;
tentative results show that the BR approach is the most efficient approach,
followed by RAkEL, ECC and our proposed classifier being the least efficient one.
Regarding base classifiers NB is more efficient than A1DE, whose complexity
increases exponentially also in the number and the cardinality of the feature
attributes.

We can observe that both supervised and unsupervised discretization methods
obtains similar results and are superior to each other in some domains6. In any
case, we have decided to continue the rest of the analysis by using the results
obtained with supervised discretization, as it is a parameter free solution and,
in addition, all algorithms obtain a good improvement from the aforementioned
feature selection that it allows.

When comparing the different algorithms among themselves the results show
that the proposed classifier has a clear advantage over the other approaches
regarding both measures. To extend our evaluation, we have performed statistical
tests for both global accuracy and Hamming accuracy [7,11]. In both cases, the
tests have been performed based on the data underlying Table 3 obtained using
the supervised discretization scheme. Regarding global accuracy, the Friedman
[9] test, with a 5% significance level, rejects the hypothesis that all classifiers are
equivalent with p-value = 1.4484 ·10−6. We also performed a post-hoc test using
Holm’s procedure [14], where the results can be found on Table 4 together with
the ranking computed for the Friedman test; the tests compare all classifiers with
the approach having the highest accuracy (MRF-A1DE) as control, and it rejects
all the hypotheses, showing that our approach significantly outperforms the other
ones. We have performed the same tests for Hamming accuracy, obtaining the
p-value = 9.9369 ·10−11 for the Friedman test, and thus rejecting the hypothesis
that all classifiers obtain equivalent results. Holm’s procedure again rejects all
the comparative hypotheses. The results can be found on Table 4.

This statistical analysis confirms that our approach has the overall better
performance, even by using NB as base classifier.

4.2 Results on Scalability

We have replicated the previous experimental set-up to analyze the scalability
approaches discussed in section 3. All the new experiments have been conducted
using A1DE as base classifier and supervised discretization. We have run the
pruned classifier by selecting the best subsets with size k = 2m and k = 4m of
pair variables according to the empirical mutual information as well as the de-
scribed approach of building a Chow-Liu tree between the variables. In addition,
we have also tested the described method of selecting the class pairs by using a
χ2 tests, with confidence levels of 0.05 and 0.01.

6 Note that for the enron, genbase and medical datasets the results obtained from
using each discretization method are identical as there are not numerical attributes
to discretize.
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Table 2. Global accuracy and Hamming accuracy for each classifier and dataset using
unsupervised discretization. Highlighted results show the best result for the correspond-
ing dataset and empty cells refer to unfinished executions due to memory limitations.

Algorithm Birds CAL500 Emotions Enron

acc Hacc acc Hacc acc Hacc acc Hacc

BR-A1DE 0.4720 0.9491 0.0000 0.8350 0.3237 0.7979 - -
BR-NB 0.3760 0.8944 0.0000 0.7895 0.2360 0.7686 0.0012 0.7832
ECC-A1DE - - - - 0.3338 0.8038 - -
ECC-NB 0.3791 0.8959 0.0000 0.7261 0.2748 0.7714 0.0018 0.7991

RAkELk=3-A1DE 0.4689 0.9495 0.0000 0.8378 0.3337 0.7981 - -
RAkELk=3-NB 0.3793 0.9206 0.0000 0.8046 0.2765 0.7821 0.0018 0.8262

RAkELk=2-A1DE - - - - 0.3370 0.8023 - -

RAkELk=2-NB 0.3760 0.9091 0.0000 0.7933 0.2950 0.7841 0.0012 0.7835
FMC-A1DE 0.4689 0.9495 - - 0.3430 0.7988 - -
FMC-NB 0.3869 0.9196 0.0000 0.8130 0.2942 0.7744 0.0037 0.9141

Genbase Medical Scene Yeast

acc Hacc acc Hacc acc Hacc acc Hacc

BR-A1DE - - - - 0.4292 0.8653 0.1692 0.7732
BR-NB 0.2749 0.9661 0.2586 0.9745 0.2069 0.8042 0.1088 0.7243
ECC-A1DE - - - - 0.4865 0.8781 0.2003 0.7779
ECC-NB 0.2416 0.9626 0.2249 0.9761 0.2127 0.8085 0.1245 0.7206

RAkELk=3-A1DE - - - - 0.5733 0.8990 0.1825 0.7782

RAkELk=3-NB 0.2780 0.9662 0.2607 0.9751 0.3444 0.8529 0.1221 0.7478

RAkELk=2-A1DE - - - - 0.4890 0.8826 0.1804 0.7796
RAkELk=2-NB 0.2749 0.9661 0.2597 0.9746 0.2638 0.8308 0.1167 0.7364
FMC-A1DE - - - - 0.6277 0.9005 0.2106 0.7882
FMC-NB 0.2779 0.9660 0.2822 0.9784 0.4865 0.8713 0.1423 0.7547

The results for all approaches regarding Global and Hamming accuracy can be
found in Table 5. In order to check the effectiveness of the pruning approaches,
we have included the number of variables selected for each dataset in Table 6,
and a comparison of the execution time for each approach and each dataset
in Table 7.

As we can observe, the pruned models clearly improve the efficiency of both
stages of the algorithm. This improvement comes with a minimum loss of qual-
ity in the obtained predictions, which remain competitive when compared with
the results obtained in the previous experiments, even being superior for some
databases. This new approach reduces the model’s computational complexity
from O(m2) to O(m) scaling-up the original classifier, so that it is capable of
targeting more complex databases than the original brute force approach was
unable to handle such as CAL500, enron, genbase and medical.

When comparing the different approaches between them we can observe that,
although building a Chow-Liu tree is the most efficient method, selecting a larger
number of class pairs by using a greedy strategy leads to better results in the ma-
jority of domains. Regarding the approach using the χ2 test we can observe that
a large amount of class pairs are selected, excessively decreasing the efficiency
of the classifier without obtaining a significant improvement.
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Table 3. Global accuracy and Hamming accuracy for each classifier and dataset using
supervised discretization. Highlighted results show the best result for the corresponding
dataset and empty cells refer to unfinished executions due to memory limitations.

Algorithm Birds CAL500 Emotions Enron

acc Hacc acc Hacc acc Hacc acc Hacc

BR-A1DE 0.4751 0.9233 0.0000 0.8520 0.1517 0.7745 - -
BR-NB 0.2980 0.7758 0.0000 0.7671 0.2275 0.7542 0.0012 0.7832
ECC-A1DE 0.4751 0.9341 0.0000 0.8504 0.1736 0.7833 - -
ECC-NB 0.3197 0.7869 0.0000 0.7143 0.2952 0.7570 0.0018 0.7991
RAkELk=3-A1DE 0.2797 0.8946 0.0000 0.7570 0.2361 0.7851 - -

RAkELk=3-NB 0.3168 0.8448 0.0000 0.7888 0.2627 0.7679 0.0018 0.8262

RAkELk=2-A1DE 0.3045 0.8776 0.0000 0.5304 0.1923 0.7711 - -
RAkELk=2-NB 0.3044 0.7947 0.0000 0.7761 0.2849 0.7718 0.0012 0.7835
FMC-A1DE 0.4473 0.9408 0.0200 0.8534 0.3051 0.8007 - -
FMC-NB 0.3075 0.8772 0.0000 0.8611 0.2932 0.7841 0.0037 0.9141

Genbase Medical Scene Yeast

acc Hacc acc Hacc acc Hacc acc Hacc

BR-A1DE - - - - 0.4761 0.8695 0.0364 0.7392
BR-NB 0.2749 0.9661 0.2586 0.9745 0.2863 0.7966 0.1026 0.7227
ECC-A1DE - - - - 0.5426 0.8821 0.0352 0.7440
ECC-NB 0.2416 0.9626 0.2249 0.9761 0.3008 0.8002 0.1374 0.6965

RAkELk=3-A1DE - - - - 0.5874 0.9093 0.0534 0.6817
RAkELk=3-NB 0.2780 0.9662 0.2607 0.9751 0.4400 0.8587 0.1188 0.7435

RAkELk=2-A1DE - - - - 0.4645 0.8896 0.0451 0.6794

RAkELk=2-NB 0.2749 0.9661 0.2597 0.9746 0.3523 0.8291 0.1262 0.7342
FMC-A1DE - - - - 0.6465 0.9126 0.1858 0.7894
FMC-NB 0.2779 0.9660 0.2822 0.9784 0.4487 0.8808 0.1432 0.7626

Table 4. Results from the statistical tests for both global accuracy and Hamming ac-
curacy for the results obtained by using supervised discretization, showing the ranking
computed for the Friedman test and the adjusted p-value using Holm’s procedure. All
hypotheses are rejected.

Global Accuracy (acc)

i Algorithm Rank p-value

0 FMC-A1DE 1.9000 -
1 FMC-NB 4.8750 0.0500
2 ECC-NB 4.9249 0.0250
3 RAkELk=3-NB 5.8250 0.0166
4 ECC-A1DE 5.6250 0.0125
5 RAkEk=2-NB 5.3000 0.0100

6 RAkELk=3-A1DE 6.0249 0.0083
7 BR-A1DE 6.1999 0.0071
8 BR-NB 7.1250 0.0062

9 RAkELk=2-A1DE 7.2000 0.0055

Hamming Accuracy (Hacc)

i Algorithm Rank p-value

0 FMC-A1DE 1.3600 -
1 FMC-NB 3.3200 0.05
2 ECC-A1DE 3.4000 0.025
3 BR-A1DE 4.6000 0.0166

4 RAkELk=3-A1DE 5.7200 0.0125
5 RAkELk=3-NB 6.0000 0.01

6 RAkELk=2-NB 6.5400 0.0083

7 RAkELk=2-A1DE 7.0400 0.0071
8 ECC-NB 8.4600 0.0062
9 BR-NB 8.5600 0.0055
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Table 5. Global accuracy and Hamming accuracy for each pruning method and dataset
using A1DE as base classifier and supervised discretization. Highlighted results show
the best result for the corresponding dataset and empty cells refer to unfinished exe-
cutions due to memory limitations.

Algorithm Birds CAL500 Emotions Enron

acc Hacc acc Hacc acc Hacc acc Hacc

FMC-A1DE 0.4689 0.9495 0.0200 0.8534 0.3430 0.7988 - -
best-mi-2 0.4382 0.9348 0.0000 0.8598 0.3051 0.7990 - -
best-mi-4 0.4441 0.9382 0.0000 0.8580 0.3051 0.8001 - -
test-chisq-0.01 0.4535 0.9418 0.0199 0.8534 0.2747 0.7878 - -
test-chisq-0.05 0.4565 0.9415 0.0199 0.8534 0.2781 0.7898 - -
tree-mi-0 0.4318 0.9297 0.0199 0.8534 0.2850 0.7904 0.0488 0.9381

Genbase Medical Scene Yeast

acc Hacc acc Hacc acc Hacc acc Hacc

FMC-A1DE - - - - 0.6277 0.9005 0.2106 0.7882
best-mi-2 0.9320 0.9973 - - 0.6365 0.9076 0.1854 0.7852
best-mi-4 0.9351 0.9975 - - 0.6465 0.9129 0.1891 0.7894
test-chisq-0.01 0.9305 0.9973 - - 0.4315 0.8696 0.1378 0.7794
test-chisq-0.05 0.9305 0.9973 - - 0.4561 0.8695 0.1341 0.7786
tree-mi-0 0.9350 0.9974 0.3957 0.9814 0.6111 0.9032 0.1659 0.7787

Table 6. Number selected pairs and singleton variables respectively for each pruning
approach expressed as the mean value among the 10 folds of the cross validation. Empty
cells refer to unfinished executions due to memory limitations.

birds CAL500 emotions enron genbase medical scene yeast

FMC-A1DE 171/0.0 15051/0 15/0.0 1378/0.0 351/0.0 990/0.0 15/0.0 91/0.0
best-mi-2 38/0.1 348/74.6 12/0.0 106/2.5 54/3.5 - 12/0.0 28/0.0
best-mi-4 76/0.0 696/43.3 15/0.0 - 108/1.2 - 15/0.0 56/0.0
test-chisq-0.01 162/0.0 12280/0.0 1/3.9 - 274/0.3 - 1/4.6 29/1.0
test-chisq-0.05 154/0.0 10766/0.0 1/4.0 - 245/0.3 - 0/6.0 23/1.0
tree-mi-0 18/0.0 173/0.0 5/0.0 52/0.0 26/0.0 44/0.0 5/0.0 13/0.0

Table 7. Execution time for each pruning approach and dataset expressed as the
mean value among the 10 folds of the cross validation. Highlighted results show the
best result for the corresponding dataset and empty cells refer to unfinished executions
due to memory limitations.

birds CAL500 emotions enron genbase medical scene yeast

FMC-A1DE 8.24 578.09 1.74 - - - 25.33 22.07
best-mi-2 2.72 11.20 1.87 1203.47 6.97 - 20.40 8.00
best-mi-4 3.93 19.41 1.65 - 12.70 - 25.74 14.14
test-chisq-0.01 7.63 374.01 0.88 - 23.09 - 7.54 6.72
test-chisq-0.05 7.60 336.46 0.91 - 29.81 - 7.17 5.32
tree-mi-0 1.63 5.09 0.93 555.55 3.38 484.39 4.41 3.56
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5 Conclusions

We have introduced a new framework for multidimensional classification based
on the construction of a collection of pairwise classifiers that in combination
induce a Markov random field in which multi-label inference can be performed.
In our experiments we have compared our proposal with a range of available
state-of-the art classifiers and obtained favourable results. A potential concern
about the framework is its scalability. We have outlined strategies to address
this problem based on pruning class variable pairs or the induced MRF model.
Preliminary experiments show that the complexity of our approach can be dras-
tically reduced while maintaining competitive results.

In future work, we will conduct a more extensive experimentation. We plan to
extend the comparisonby including other related approaches tomulti-dimensional
classification and to extend the study by considering other evaluation metrics.
Furthermore, we will study in greater detail the described procedures for pruning
the models and will possibly refine them by exploring other metric and heuristics.

Acknowledgments. This work has been partially funded by FEDER funds
and the Spanish Government (MINECO) through projects TIN2010-20900-C04-
03 and TIN2013-46638-C3-3-P.
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Abstract. Evidence in a Bayesian network comes from information
based on the observation of one or more variables. A review of the termi-
nology leads to the assessment that two main types of non-deterministic
evidence have been defined, namely likelihood evidence and probabilis-
tic evidence but the distinction between fixed probabilistic evidence and
not fixed probabilistic evidence is not clear, and neither terminology nor
concepts have been clearly defined. In particular, the term soft evidence
is confusing. The article presents definitions and concepts related to the
use of non-deterministic evidence in Bayesian networks, in terms of spec-
ification and propagation. Several examples help to understand how an
initial piece of information can be specified as a finding in a Bayesian
network.

Keywords: Non deterministic evidence, uncertain evidence, fixed prob-
abilistic finding, likelihood finding, soft evidence, virtual evidence.

1 Introduction

Bayesian networks are probabilistic graphical models that provide a powerful
way to embed knowledge and to update one’s beliefs about target variables given
new information about other variables. In a Bayesian network, prior knowledge
is represented by a probability distribution P on the set of variables which define
the system, whereas updated beliefs are represented by the posterior probability
distribution P (. | obs) where obs represents new information. Evidence is the
starting point of inference methods and refers to new information in a Bayesian
network, also called observations or findings. A finding on a variable commonly
refers to an instantiation of the variable. This can be represented by a vector
with one element equal to 1, corresponding to the state the variable is in, and all
remaining elements equal to zero. This type of evidence is usually referred to as
hard evidence or deterministic evidence [40] though other terms are sometimes
used. This paper focuses on other types of evidence that cannot be represented
by such vectors: non-deterministic evidence (or uncertain evidence). The ob-
jective of this paper is to clarify the terms of non deterministic evidence and
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their underlying concepts. Three types of non deterministic evidence are distin-
guished, namely likelihood evidence, fixed probabilistic evidence and not-fixed
probabilistic evidence. A review of the terminology makes clear two main points:
(1) the inconsistent use of terms for non-deterministic evidence is problematic,
in particular the term soft evidence, the misuse of which causes real confusion.
(2) two of the three types of non-deterministic evidence are not clearly distin-
guished. In order to counter this, we propose the use of the three following terms
for non-deterministic evidence in a Bayesian network:

Likelihood evidence: defined by Pearl [43] also called virtual evidence;
Not-fixed probabilistic evidence: concept referred to in Jeffrey’s rule [12];
Fixed-probabilistic evidence: concept of soft evidence [48].

The terms “likelihood” and “probabilistic” capture the way in which evidence
is specified. Likelihood evidence is represented as a likelihood ratio whereas proba-
bilistic evidence is specified by a probability distribution of one or more variables.
The adjectives “fixed” and “not fixed” describe the posterior probability distribu-
tion after further evidence is obtained. The term “probabilistic evidence” is also
inspired from two contributions: (1) in the context of Bayesian network revision,
the input is named a probabilistic constraint [45]. The difference between such in-
put and probabilistic evidence concerns only the life span of the input, leading
to either inference (evidence propagation) or Bayesian network revision1. (2) in
the Bayesian network engine BayesiaLab [26], the user may input several kinds
of non-deterministic evidence that are referred to by the way they are specified :
probability distribution (fixed or not), and likelihood ratio. The rest of the paper is
organized as follows. Section 2 is devoted to the notation and basics of Bayesian
networks. Section 3 presents definitions and concepts related to likelihood
evidence in Bayesian networks. Section 4 deals with both not-fixed probabilis-
tic evidence and fixed probabilistic evidence. In this section, we present shared
and specific properties of these two types of probabilistic evidence, together with
several illustrative examples. Section 5 proposes a review of terminology about
evidence in a Bayesian network that explains the proposed vocabulary.

2 Notations and Basics of Bayesian Network

Bayesian networks [5], [15], [24], [29], [43] are a class of probabilistic graphical
models. A Bayesian network (BN) is a couple (G,P ), where G = (X,E) is a di-
rected acyclic graph (DAG) with nodes X = {X1, ..., Xn} and directed edges E
which represent conditional dependencies between nodes. The joint probability
distribution for X = {X1, ..., Xn} is given by the chain rule: P (X1, ..., Xn) =∏n

i=1 P (Xi | pa(Xi)) where pa(Xi) represents the parents of Xi as defined by
the presence of directed edge from a parent node to Xi. In the following, capital
letters are used to represent random variables, and lower-case letters represent
their values. Bold capital letters correspond to sets of variables. In this paper

1 This paper deals with evidence propagation and not with model revision.
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we consider only discrete random variables. Here are some more notations used
in the rest of the paper: X ∈ X denotes a BN node having its states (or values)
in DX = {x1, ..., xm}, P (X) denotes P (X1, . . . , Xn), P (x) denotes P (X = x),
P (X) is the probability distribution (P (X = x1), . . . , P (X = xm)). Once the
BN is defined, algorithms of inference are used to propagate through the net-
work some information based on the observation of one or more variables. The
definitions of this paper concern different types of findings and naturally extend
to evidence, which is a set of findings on variables of a Bayesian network.

Definition 1 (Deterministic finding or hard finding). A deterministic
finding e on a variable X in a Bayesian network with values in DX is defined
by an observation vector of size m = |DX | containing a single 1, at the position
corresponding to a state x ∈ DX and 0 in the positions of the other states. This
finding represents the instantiation of X to the value x and it is characterized
by P (X = x | e) = 1.

Fig. 1. Hard finding on X. The observation of the variable X is clear and direct.

In the literature, a deterministic finding on a variable is also called a hard
finding, an observation, or a specific, regular or positive finding. Despite the
variety of terminology in the literature, the definition of hard evidence is clear
and presents no practical problems. We use terms deterministic finding (evi-
dence) and hard finding (evidence) as synonyms since there is no ambiguity in
the definition (instantiation of the variable, see definition1).

3 Likelihood Evidence: Definition and Characteristics

Likelihood evidence can be characterized as follows : “the uncertainty bears on
the meaning of the input; the existence of the input itself is uncertain, due to,
for instance, the unreliability of the source that supplies inputs” [19].

3.1 Definition, Properties and Examples

The definition of a likelihood finding in a Bayesian network is followed by two
properties describing how likelihood evidence interacts with beliefs before and
after its propagation.
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Definition 2 (Likelihood finding or virtual finding). A likelihood finding
on a variable X of a Bayesian network is specified by a likelihood ratio L(X) =
(L(X = x1) : . . . : L(X = xm), where the L(X = xi) are quantities relative to
each other representing the relative strength of confidence toward the observed
event Obs given X is in one state or another. The likelihood ratio L(X) is defined
by

L(X) = (P (Obs | x1) : . . . : P (Obs | xn))

where P (Obs | xi) is interpreted as the probability of the observed event given X
is in the state xi.

A likelihood finding specified by a vector of zeros and ones is sometimes re-
ferred to as a negative finding, meaning that the states of X corresponding to
the zeros are impossible.

Property 1. Likelihood evidence is specified “without a prior”, as a consequence,
propagating likelihood evidence takes into account the beliefs on the variable
before the evidence.

Property 2. Belief on a variable X after propagating a likelihood finding on X
can be modified by further evidence on other variables.

Fig. 2. Likelihood finding on X. The variable X is observed with uncertainty (e.g. via
an imperfect sensor). The evidence is specified by the likelihood of the observed value
Obs (which is not a variable of the model) with respect to each value of X.

Example 1 (Likelihood finding on a manuscript character). A Bayesian network
includes a variable X representing a letter of the alphabet. The set of values of
X is the set of letters of the alphabet. A piece of uncertain information on X is
received from a character recognition technology. The input of this system is an
image of a manuscript character and the output is a vector of similarity between
the image of the manuscript character and each letter of the alphabet. Let o
represents the observed image. Consider a case where, due to lack of clarity, o can
be recognized as either the letter ’v’ or ’u’. The character recognition technology
provides the indices such that P (o | X = ’v’) = 0.8, P (o | X = ’u’) = 0.4,
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which means that there is twice as much chance of observing o if the writer had
wanted to write the letter ’v’ than if she had wanted to write the letter ’u’. Such
a finding on X is a likelihood finding on X .

3.2 Propagation of Likelihood Evidence with Pearl’s Method of
Virtual Evidence

Virtual evidence refers to Pearl’s (1988) idea of interpreting likelihood evidence
on a set of events as hard evidence on some virtual events that only depend on
this set of events. Pearl’s method to propagate likelihood finding on X extends
the given BN by adding a virtual node which is a child of X . The uncertain
information on X is replaced by deterministic finding on the added node which
is propagated using a classical inference algorithm in the augmented BN. The
uncertainty of the information is specified in the conditional probability table of
the added virtual node.

4 Fixed Probabilistic Evidence and Not-fixed
Probabilistic Evidence

Probabilistic evidence can be characterized as follows : “the input is a partial
description of a probability measure; the uncertainty is part of the input and is
taken as a constraint on the final cognitive state. The input is then a correction
to the prior cognitive state” [19]. This type of evidence has been studied in [1–3],
[16].

4.1 Definition and Shared Properties

Definition 3 (Probabilistic finding). A probabilistic finding on a variable
X ∈ X is specified by a local probability distribution R(X) that defines a con-
straint on the belief on X after this information has been propagated; it describes
the state of beliefs on the variable X “all things considered”. A probabilistic find-
ing is fixed (or not) when the distribution R(X) can not be (or can be) modified
by the propagation of other findings.

The next two properties describe how probabilistic evidence interacts with
beliefs before and after its propagation. They concern both fixed and not-fixed
probabilistic evidence.

Property 3. A probabilistic finding R(X) on a variable X of a Bayesian network
replaces any prior belief or knowledge on X . As a consequence, the prior P (X)
is not used in the propagation of R(X), and any previous finding on X is lost.

Property 4. A probabilistic finding R(X) on a variable X is preserved when
updating belief. The beliefs after considering the probabilistic finding on X is
represented by a probability distribution Q on X such that Q(X) = R(X).
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Probabilistic evidence behaves as hard evidence in that the specified evidence
remains unchanged after its propagation. There are two main differences between
probabilistic evidence and likelihood evidence. Firstly the specification: for prob-
abilistic evidence the distribution is specified “all things considered” whereas for
likelihood evidence the likelihood ratio is “without a prior”. Secondly the propa-
gation: while probabilistic evidence remains unchanged by updating the observed
variables, likelihood evidence has to be combined with a previous belief in order
to update the belief on the observed variable(s). The difference between fixed and
not-fixed probabilistic evidence is only visible when several pieces of evidence are
received and propagated (see Properties 5 and 6).

4.2 Not-fixed Probabilistic Evidence: Specific Properties and
Examples

Not-fixed probabilistic evidence is the type of input considered in Jeffrey’s rule
[23] (see section 4.3).

Property 5. A not-fixed probabilistic finding on X can be modified by further
evidence on any variable in the model, including likelihood evidence on X . As a
consequence, the propagation of several not-fixed probabilistic finding does not
commute.

Fig. 3. Not-fixed probabilistic finding on X. The new information may include the
observation of a variable outside of the BN model. The evidence on X is specified by
a probability distribution R(X) that includes the influence of all observations.

Example 2 (not-fixed probabilistic finding: example 1 continued). Consider for
the variable X in example 1 that the language of the word from which the
character comes, and the frequency of letters in that language are known. If the
BN does not contain the variable “language of the text”, this information can
be applied as probabilistic evidence for the variable “manuscripts character”:
R(X) = (R(X = ’a’), R(X = ’b’), . . . , R(X = ’z’)). For example, given that
the word containing the letter comes from English, where the frequency of the
letter ’v’ is 1%, provides the probabilistic evidence R(X) with R(X = ’v’) =
0.01. This has to replace the prior belief on the event X = ’v’. However, since
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that information about X could be improved by further evidence such as the
likelihood finding on X described in Example 1, it is a not-fixed probabilistic
finding on X .

4.3 Propagating Not-fixed Probabilistic Evidence: Jeffrey Rule and
Conversion in Likelihood Evidence

Propagating a probabilistic finding on X ∈ X requires a revision of the proba-
bility distribution P on X by a local probability distribution R(X). The diffi-
culty arises since Bayes’ rule cannot be applied because R(X) is not an event
[44]. A probabilistic finding R(X) requires a reconsideration of the joint prob-
ability distribution P because it replaces the existing prior on the variable X .
The propagation of probabilistic evidence requires the replacement of the initial
probability distribution P by another probability distribution Q that reflects the
beliefs on the variables of the model after accepting the probabilistic evidence.
In a Bayesian network, this replacement is not definitive: it lasts as long as the
specific observed case holds, whereas the Bayesian network applies to a larger
population. Jeffrey’s rule [23] specifies evidence using posterior probabilities.
This approach is known as “probability kinematics”; it is based on the require-
ments that (1) the posterior distribution Q(X) is unchanged: Q(X) = R(X),
(2) the conditional probability distribution of other variables given X remains
invariant under the observation: Q(X \ {X} | X) = P (X \ {X} | X). In other
words, even if P and Q disagree on X , they agree on the consequences of X on
other variables. However, Jeffrey’s rule cannot be directly applied to BNs, be-
cause their operations are defined on full joint probability distributions. Another
way to propagate a not-fixed probabilistic finding is to convert it to a likelihood
finding: R(X) can be converted to a likelihood ratio

L(X) =
R(x1)

P (x1)
: . . . :

R(xn)

P (xn)
. (1)

Propagating the likelihood finding L(X) with Pearl’s method provides the
same results as propagating R(X) by Jeffrey’s rule [12]. Thus, the posterior
probability of X after propagating L(X) by Pearl’s method, is equal to R(X).
In case of several probabilistic findings, the method of converting probabilistic
findings into likelihood findings does not preserve probabilistic findings. A simple
example can be found in [12], [44]. It therefore holds that the inclusion of several
pieces of probabilistic evidence with Jeffrey rule does not commute, meaning
that those methods are relevant only for not-fixed probabilistic evidence. In case
the commutation is required after propagating several pieces of probabilistic evi-
dence, it means that the user has to consider fixed probabilistic evidence instead
of not-fixed probabilistic evidence. This second type of probabilistic evidence is
presented in the next section.
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4.4 Fixed Probabilistic Evidence: Specific Properties and Examples

Fixed probabilistic evidence corresponds to the concept described as soft evi-
dence in [4], [33], [42], [44], [48].

Property 6. A fixed probabilistic finding on X is not modified by further evi-
dence on any other variables of the model, and a further finding on X is not
possible, unless it overwrites the current evidence. Any kind of evidence received
after fixed probabilistic evidence makes it necessary to re-propagate previous
fixed probabilistic evidence together with the new evidence, in order to keep the
former probabilistic evidence fixed. As a consequence, the propagation of several
fixed probabilistic findings commutes: the result of propagation is independent
of the order in which fixed probabilistic findings are received.

We present below three types of examples of the use of probabilistic evidence.
The first example concerns the propagation of an observation on a continuous
variable in a discrete Bayesian network (Figure 4 and Example 3). The sec-
ond example is linked to the observation of a specific subset of cases (Figure 5
and Example 4). The third example is about using probabilistic evidence for
distributed Bayesian networks (Figure 6).

Fig. 4. Fixed probabilistic finding on X coming from the fuzzy discretization of a
continuous variable. The model includes a discretized variable X; The information
comes from the observation of the continuous variable. The evidence onX is specified by
a probability distribution R(X) obtained from a fuzzy discretization of the continuous
variable.

Example 3 (Fixed probabilistic finding coming from the fuzzy discretization of a
continuous variable). Let A be a variable representing the age of a person with
value in DA = {child, adult, senior}. The information “she is 15 years old” can
be specified by a fixed probabilistic finding on A, by adding the knowledge of the
fuzzy membership function linking the real age to the values of DA. The result
is for example: R(A) = (0.7, 0.3, 0). This is a fixed probabilistic finding since it
cannot be modified by other information.

A second type of example of fixed probabilistic evidence is given by the precise
observation of a variable on a sub-population (Figure 5 and Example 4).

The use of probabilistic findings to propagate observations on a sub-population
allow not to re-learning the parameters of the BN.
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Fig. 5. Fixed probabilistic finding on X coming from the observation of a sub-
population. The information is given by the observation of a variable X in a sub-
population. The evidence on X is specified by a probability distribution R(X) repre-
senting the frequency of each event on X in the observed sub-population.

Example 4 (Fixed probabilistic evidence coming from the observation of a sub-
population). Consider the BN Asia [36] which contains eight binary nodes, among
which there is a (root) node Smoking and a (leaf) node Dyspnea. Instead of hav-
ing findings about a single person, consider findings coming from the data of
a particular sub-population, such as the workers in a given factory. Observing
that half of them have dyspnea and a tenth of them smoke constitutes fixed
probabilistic findings on these variables such that: R(Dyspnea) = (0.5, 0.5) and
R(Smoking) = (0.1, 0.9). When no more details are available, these findings can-
not be considered as a single piece of probabilistic evidence on the two variables
R(Dyspnea, Smoking) as proposed in [48].

The third type of example of fixed probabilistic finding comes from the concept
of Agent Encapsulated Bayesian Networks (AEBN) [8]. The information on a
variable X is supplied by an expert on X , and her judgement on X cannot be
improved by other evidence on any other variables of the model (see Figure 6). In
an agent organization based on AEBN, fixed probabilistic evidence is considered
by a receiver agent in order to take into account the information sent by a
publisher agent, which is considered as an expert of its output variables.

4.5 Propagating Fixed Probabilistic Evidence

Propagating a single probabilistic finding can be done by its transformation into
a likelihood finding as in Equation 1. This section concerns the propagation of
several fixed probabilistic findings. Several algorithms were recently proposed to
propagate fixed probabilistic evidence in a BN. Most of them are based on the
Iterative Proportional Fitting Procedure (IPFP) algorithm [17], [25], [32] which is
an iterative method of revising a probability distribution to respect a set of given
probability constraints in the form of posterior marginal probability distributions
over a subset of variables. However, the IPFP works on full joint distributions,
and thus is not directly applicable to belief update in Bayesian networks. It
could be applied only for very small Bayesian networks. Here is a list of several
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Fig. 6. Fixed probabilistic finding on X (AEBN) The variable X is shared by two
Bayesian network. The model BN1 is an expert of the variable X and evaluates its
value thanks to a set of observations ObsBN1 on its local variables. The model BN2
updates its local model with the received information specified as a fixed probabilistic
finding.

algorithms for the propagating of fixed probabilistic evidence. These algorithms
solutions are suitable for Bayesian networks.This synthesis is inspired by [44, 45].
The definition of probabilistic evidence (Definition 3) has been extended in [48]

Big-Clique [8], [48] recoding of the junction tree algorithm based on IPFP
Soft updating [47] proposed in the context of hybrid Bayesian network
Lazy big clique [33] modifies the updating algorithm [37]
BN-IPFP (1 and 2) combine IPFP and the conversion to likelihood evidence;

and thus are independent of the inference algorithm
BN-IPFP-1 [44] converts separately each probabilistic evidence
BN-IPFP-2 [44] uses IPFP to calculate R(X1, . . . , Xp)

from the set R(X1), . . . , R(Xp)
then propagates by transforming to uncertain evidence

SMOOTH [44], [50] propagation of inconsistent probabilistic evidence
(proof of convergence for two pieces of evidence.)

in order to consider information about one or several variables of the model,
specified by different forms of probabilistic description: (a) a joint probability
distribution, (b) a conditional probability distribution, (c) probability assign-
ments on arbitrary events, (d) probability assignments on arbitrary logic formu-
lae. This extended notion of probabilistic evidence can be handled for evidence
updating by the introduction of an observation node [48]. This technique allows
the reformulation of extended probabilistic evidence into probabilistic evidence
on a single new observation node. In case of evidence on a set of observation vari-
ables E1, . . . , Ep that are independent in the BN, the propagation can be done
by considering a single piece of evidence R(E1, . . . , Ep) = R(E1)× . . .×R(Ep).
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Table 1. Properties of the different types of evidence in a Bayesian network

Hard Likelihood not fixed fixed
evidence evidence probabilistic probabilistic

evidence evidence

The evidence defines a constraint on
the posterior probability distribution.
It is specified “all things considered”.

Yes No Yes Yes

Several observations can be combined
on the same variable

No Yes Yes No

Posterior probability distribution is
modified by latter observations on
other variables

No Yes Yes No

The propagation requires the prior
probability distribution

No Yes No No

The propagation of several findings
commutes

Yes Yes No Yes

Table 2. Features of Bayesian network software about evidence updating

Hard Likelihood not fixed fixed
evidence evidence probabilistic probabilistic

evidence evidence

Elvira [20], Analytica[21], Samlam[14] X

AgenaRisk 6.1 [7], Bayes Server 5.5 [46]
BNT 1.0.7 [39], Genie 2.0 [18], Hugin
8.0 [35], Infer.NET 2.5 [38], gRain 1.2-3
[22]

X X

Netica 5.12 [41] X X X

BayesiaLab 5.3 [26] X X X X

4.6 Synthesis

Table 1 summarizes the properties of the different types of evidence described
above. Table 2 shows the features about the updating of non deterministic evi-
dence among some available Bayesian network engine. The updating of fixed prob-
abilistic evidence is available in BayesiaLab which is the only available BN engine
to provide that feature2. This is done by using a specific, unpublished likelihood
matching algorithm, that exhibits no dependency on the order in which the prob-
abilistic evidence is entered. The user defines a probability distribution on the tar-
get node, and BayesiaLab calculates the likelihood distribution which permits this
distribution. When the distribution is fixed, the likelihood distribution is updated

2 In may 2014.
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dynamically according to other observations. BayesiaLab allows a user-defined av-
erage to be specified for a target node.

5 Review of Terminology in Related Works

This section presents a review of terminology about evidence in Bayesian net-
work, both in the literature and in Bayesian network software.

5.1 About the Definition of Findings

A generalization of the definition of findings is proposed in [24] in which a finding
on a variableX is anm-dimensional table of zeros and ones. In the case where the
observation vector has several ones, it has to be understood as a negative finding,
which means that some states of the variable are impossible. For example, the
vector (1, 0, 0, . . . , 0, 1) represents the statement thatX can only be in state x1 or
in state xm, and cannot be in any other state. We do not follow this proposition
since a negative finding is indeed a likelihood finding.

5.2 About the Use of the Terms Soft Evidence

A review of the literature over the past ten years shows that the term soft
evidence is sometimes used to refer to likelihood evidence [6], [10], [11], [13], [28],
[31]. However, the use of the term soft evidence is abandoned in [12]. In another
paper [9], soft evidence means that a variable X does not take a specific value x,
that is to say X �= x, which is usually called a negative finding. Most available
software for non-deterministic evidence propagation in BN engines implement
Pearl’s method of virtual evidence. Table 3 illustrates the different terms used
in Bayesian network software for non-deterministic evidence. It shows that the
term “soft evidence” is misused in several Bayesian network engines since the
term is used to refer to likelihood evidence. Moreover, the term “soft evidence” is
not used by the only two Bayesian network engines that permit the propagation
of probabilistic evidence. This review of terminology in literature and Bayesian
network software leads to the assessment that the term soft evidence is confusing
since it is used inconsistently. Fixed probabilistic evidence is named soft evidence
by Valtorta and his co-authors [27], [33, 34], [42], [44, 45] [48] and also [47], [30].

5.3 About the Distinction between Fixed and Not-fixed
Probabilistic Evidence, and the Question of Commutation

Apart from two exceptions [4], [26] the concepts of fixed and not-fixed probabilis-
tic evidence are never distinguished. Specifically, several published articles clearly
distinguish between likelihood evidence and probabilistic evidence —regrouped
under the term uncertain evidence— without identifying the distinction between
fixed and not-fixed probabilistic evidence [12], [15], [42], [44], [49]. In [12], the
authors provide an interesting discussion about the specification of likelihood



From Information to Evidence in a Bayesian Network 45

Table 3. Terms used in Bayesian network software for non deterministic evidence (may
2014)

Likelihood evidence Probabilistic evidence

BayesiaLab 5.3 [26] likelihoods probability distribution (fixed or not-fixed)

Netica 5.12 [41] likelihood finding calibration

Hugin 8.0 [35] likelihood evidence
gRain 1.2-3 [22]

Genie 2.0 [18] virtual evidence
Infer.NET 2.5 [38]

BNT 1.0.7 [39]
Bayes Server 5.5 [46] “soft evidence”
AgenaRisk 6.1 [7]

evidence and not-fixed probabilistic evidence, but no terminology is proposed
for this latter concept. In [44], which focuses on fixed probabilistic evidence, the
analysis of [12] is referred to, but it doesn’t lead to a clear distinction of both
concepts of probabilistic evidence. This lack of distinction between fixed and
not fixed probabilistic evidence gave rise to debates between authors, about the
question of commutation: The question ”Should, and do, iterated belief revisions
commute?” [12] concerns the case of propagation in a Bayesian network with sev-
eral pieces of evidence, of which some are not deterministic. Iterated revisions
commute with Pearl’s method, but not with Jeffrey’s rule. Some authors claim
that several pieces of evidence carrying the “All things considered” interpreta-
tion must not be commutative [12]. Others argue that probabilistic evidence is
a true observation of the distributions of some events, and as such, they should
all be preserved in the updated “posterior” distribution [44]. In the first case,
the arriving information is susceptible to improvement by further evidence: it
is not-fixed probabilistic evidence whereas in the second case the arriving infor-
mation has to behaves as hard evidence and can not be influenced by any other
information: it is fixed probabilistic evidence.

6 Conclusion

This paper contributes to the clarification and standardization of the definitions
and properties of different types of evidence in a Bayesian network. We have set
out the definitions and properties of deterministic and non-deterministic find-
ings in a BN. Three kinds of non-deterministic evidence are distinguished. (1)
Likelihood evidence is unreliable, imprecise, or vague evidence: it is evidence
with uncertainty; it is specified by a likelihood ratio and propagated by Pearl’s
method of virtual evidence. (2) Probabilistic evidence expresses a constraint on
the state of some variables after this information has been propagated in the
BN. A probabilistic finding on X is specified by a probability distribution R(X)
that is given “all things considered”, meaning that is replaces any former belief
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and knowledge on X . (2a) A not-fixed probabilistic finding can be propagated by
converting it to likelihood evidence. It can be later modified by further evidence
on any node of the BN, including X itself. (2b) Fixed probabilistic evidence is
also known as soft evidence. It cannot be altered by any further information on
variables in the model. Thus the propagation of several pieces of fixed probabilis-
tic evidence is commutative. Fixed probabilistic evidence has to be propagated
by specific algorithms such as BN-IPFP. We provide several examples where the
application and propagation of probabilistic evidence in a BN is of interest. The
problem addressed in this paper is one of belief updating and not the problem
of model revision, which leads to a change of the probability distribution (or
even the graph) of the BN. In the case of probabilistic evidence, information is
probabilistic in nature and leads to the replacement (temporarily) of the prior
distribution extant in the defined model. Currently, many BN engines allow the
propagation of likelihood evidence, even though the terminology is not yet stan-
dardized. However, very few of them possess the ability to propagate fixed or
not-fixed probabilistic evidence. This would be of a great interest to the BN
application user community. At least three new features are required in most
BN engines. The first is a requirement to enter an observation on a subgroup
of instances as a single finding, as a fixed probabilistic finding. Second, software
should facilitate the implementation of an agent organization based on AEBN.
This requires a subscriber agent to integrate the information from a correspond-
ing publisher agent by propagating probabilistic evidence in its local BN. The
third feature of interest would allow the propagation of observations of continu-
ous variable using a fuzzy discretization with degrees of membership of two or
more course intervals. Another feature of interest is to allow to combination of
several not deterministic findings on the same variable.
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Abstract. Gated Bayesian networks (GBNs) are a recently introduced
extension of Bayesian networks that aims to model dynamical systems
consisting of several distinct phases. In this paper, we present an algo-
rithm for semi-automatic learning of GBNs. We use the algorithm to
learn GBNs that output buy and sell decisions for use in algorithmic
trading systems. We show how using the learnt GBNs can substantially
lower risks towards invested capital, while at the same time generating
similar or better rewards, compared to the benchmark investment strat-
egy buy-and-hold.

Keywords: Probabilistic graphical models, Bayesian networks, algo-
rithmic trading, decision support.

1 Introduction

Algorithmic trading can be viewed as a process of actively deciding when to
own assets and when to not own assets, so as to get better risk and reward on
invested capital compared to holding on to the assets over a long period of time.
At the other end of the spectrum is the buy-and-hold strategy, where one owns
assets continuously over a period of time without making any decisions of selling
or buying during the period. This paper introduces a novel algorithm that can
be used to learn gated Bayesian networks (GBNs, described in Sect. 2) for use as
part of an algorithmic trading system. We also present a real-world application
of this learning algorithm that shows that, compared to the benchmark buy-and-
hold strategy, the expected risks and rewards are improved upon.

1.1 Algorithmic Trading

An algorithmic trading system contains several components, some which may be
automated by a computer, and others that may be manually executed [1,2]. A
schematic overview of the components of a general algorithmic trading system
is shown in Fig. 1.

The type of data used at the research stage varies greatly, e.g. net profit,
potential prospects, sentiment analysis, analysis of previous trades, or techni-
cal analysis, which will be the focus in the enclosed application (described in
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Fig. 2. Buy and sell signals

Sect. 5.1). The analysis of the data is split up into alpha, risk and transaction
cost models. The alpha models are responsible for outputting decisions for buying
and selling assets based on the data they are given. These decisions are known as
buy and sell signals, examples of which are depicted in Fig. 2 (an arrow pointing
upwards is a buy signal and a downwards facing arrow is a sell signal, the signals
are drawn on top of the historical asset price). If followed, these buy and sell
signals give rise to certain risk and reward on the initial investment (which will
be described further in Sect. 3). The contribution of this paper is concerned with
the use of GBNs as alpha models.

The risk and transaction cost models should be seen as strategies for man-
aging risk and transaction costs in a system that has many alpha models. The
output from these three types of models (alpha, risk and transaction) are in their
turn the input to the portfolio construction model in the trading signal genera-
tion stage. Here the output of the previous components are combined to decide
which signals to actually execute in order to create a portfolio that is based on
a combination of alpha models. The final stage is the actual execution of the
trading signals, which must be done in a manner that does not affect the price
of the asset that is being bought. Although all components are important, we
will not be addressing all of them in this paper, our focus will be on the alpha
models.

The rest of the paper is organised as follows. We begin by giving a brief
introduction to Bayesian networks (BN) and GBNs in Sect. 2, this is important
to understand how GBNs can be used as alpha models. We continue by explaining
how we can evaluate the performance of an alpha model in Sect. 3. We use this
method of evaluation in Sect. 4, where we introduce a novel algorithm that can
be used to learn GBNs. In Sect. 5 we make use of the learning algorithm in a
real-world application, where we show how learnt GBNs can be used as alpha
models. Finally we end the paper in Sect. 6 with a few words regarding our
conclusions and future work.

2 Gated Bayesian Networks

BNs can be interpreted as models of causality at the macroscopic level, where
unmodeled causes add uncertainty. Cause and effect are modelled using random
variables that are placed in a directed acyclic graph (DAG). The causal model
implies some probabilistic independencies among the variables, that can easily
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be read off the DAG. Therefore, a BN does not only represent a causal model
but also an independence model. The qualitative model can be quantified by
specifying certain marginal and conditional probability distributions so as to
specify a joint probability distribution, which can later be used to answer queries
regarding posterior probabilities. The independencies represented in the DAG
make it possible to compute these posteriors efficiently. See [3,4] for more details.

Although BNs have successfully been used in many domains, our interest is to
model the process of buying and selling assets, and in this particular situation
the BN model is not enough. This is the main motivation for us introducing
GBNs [5], and the current paper builds upon this previous contribution. When
trying to model the process of buying and selling assets, we want to model the
continuous flow between looking for opportunities to buy and opportunities to
sell. The model can be seen as being in one of two distinct phases: either looking
for an opportunity to buy into the market, or an opportunity to sell and exit
the market. These two phases can be very different and the random variables
included in the BNs modelling them are not necessarily the same.

Switching between phases is done using so called gates. These gates are en-
coded with predefined logical expressions regarding posterior probabilities of
random variables in the BNs. This allows activation and deactivation of BNs
based on posterior probabilities. A GBN that uses two different BNs (BN1 and
BN2) is shown in Fig. 3, follows does a brief explanation of this GBN and how
it is used (for the full details we refer the reader to our previous publication [5]).

– A GBN consists of BNs and gates. BNs can be active or inactive. The label
of BN1 is underlined, indicating that it is active at the initial state of the
GBN. The BNs supply posterior probabilities to the gates via so called trigger
nodes. The node S is a trigger node for gate G1 and W is a trigger node for
G2. A gate can utilise more than one trigger node.

– Each gate is encoded with a predefined logical expression regarding its trigger
nodes’ posterior probability of a certain state, e.g. G1 may be encoded with
p(S = s1|e) > 0.7. This expression is known as the trigger logic for gate G1.

– When evidence is supplied to the GBN an evidence handling algorithm up-
dates posterior probabilities and checks if any of the logical statements in
the gates are satisfied. If the trigger logic is satisfied for a gate it is said
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to trigger. A BN that is inactive never supplies any posterior probabilities,
hence G2 will never trigger as long as BN2 is inactive.

– When a gate triggers it deactivates all of its parent BNs and activates its
child BNs (as defined by the direction of the edges between gates and BNs).
In our example, if G1 was to trigger it would deactivate BN1 and activate
BN2, this implies that the model has switched phase.

For the user of the GBN, the knowledge that one or more of the gates have
triggered (i.e. the state of the GBN has changed), may be useful in a decision
making process. As an example, if the GBN was used as an alpha model, knowing
that the GBN has found a buying opportunity and has started modelling selling
opportunities would suggest that a buy signal has been generated. Looking again
at Fig. 2, each buy and sell signal is generated by the fact that the GBN switched
back and forth between its states.

GBNs can consist of many phases, and the phases themselves can have sub-
phases that are made up of several BNs. An example of a GBN with multiple
phases is shown in Fig. 4.

3 Evaluating Alpha Models

Regression models can be evaluated by how well they minimise some error func-
tion or by their log predictive scores. For classification, the accuracy and precision
of a model may be of greatest interest. Alpha models may rely on regression and
classification, but can not be evaluated as either. An alpha model’s performance
needs to be based on its generated signals over a period of time, and the perfor-
mance must be measured by the risk and reward of the model. This is known as
backtesting.

3.1 Backtesting

The process of evaluating an alpha model on historic data is known as backtest-
ing, and its penultimate goal is to produce metrics that describe the behaviour of
a specific alpha model. These metrics can then be used for comparison between
alpha models [6,7]. A time range, price data for assets traded and a set of signals
are used as input. The backtester steps through the time range and executes
signals that are associated with the current time (using the supplied price data)
and computes an equity curve (which will be explained in Sect. 3.2). From the
equity curve it is possible to compute metrics of risk and reward. To simulate po-
tential transaction costs, often referred to as commission, every trade executed
is usually charged a small percentage of the total value (0.06% is a common
commission charge used in the enclosed application).

Alpha models are backtested separately from the other components of the
algorithmic trading system, as the backtesting results are input to the other
components. Therefore, we execute every signal from an alpha model during
backtesting, whereas in a full algorithmic trading system we would have a port-
folio construction model that would combine several alpha models and decide
how to build a portfolio from their signals.
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3.2 Alpha Model Metrics

What constitutes risk and reward is not necessarily the same for every investor,
and investors may have their own personal preferences. However, there are a few
that are common and often taken into consideration [7]. Here we will introduce
a few metrics that we will use to evaluate the performance of our alpha models.

Equity Curve. Although not a metric on its own, the equity curve needs to
be defined in order to define the following metrics. The equity curve represents
the total value of a trading account at a given point in time. If a daily timescale
is used, then it is created by plotting the value of the trading account day by
day. If no assets are bought, then the equity curve will be flat at the same level
as the initial investment. If assets are bought that increase in value, then the
equity curve will rise. If the assets are sold at this higher value then the equity
curve will again go flat at this new level. The equity curve summarises the value
of the trading account including cash holdings and the value of all assets. We
will use Et to reference the value of the equity curve at point t.

Metric 1 (Return). The return of an investment is defined as the percentage
difference between two points on the equity curve. If the timescale of the equity
curve is daily, then rt = (Et − Et−1)/|Et−1| would be the daily return between
day t and t−1. We will use r̄ and σr to denote the mean and standard deviation
of a set of returns.

Metric 2 (Sharpe Ratio). One of the most well known metrics used is the so
called Sharpe ratio. Named after its inventor Nobel laureate William F. Sharpe,
this ratio is defined as: (r̄− risk free rate)/σr. The risk free rate is usually set to
be a "safe" investment such as government bonds or the current interest rate,
but is also sometimes removed from the equation [7]. The intuition behind the
Sharpe ratio is that one would prefer a model that gives consistent returns (re-
turns around the mean), rather than one that fluctuates. This is important since
investors tend to trade on margin (borrowing money to take larger positions),
and it is then more important to get consistent returns than returns that some-
times are large and sometimes small. This is why the Sharpe ratio is used as a
reward metric rather than the return.

Drawdown Risks. Using the Sharpe ratio as a metric will ensure that the
alpha models are evaluated on their risk adjusted return, however, there are
other important alpha model behaviours that need to be measured. A family of
these, that we will call drawdown risks, are presented here (please see Fig. 5 for
examples of an equity curve and these metrics).

Metric 3 (Maximum Drawdown (MDD)). The percentage between the
highest peak and the lowest trough of the equity curve during backtesting. The
peak must come before the trough in time. The MDD is important from both
a technical and psychological regard. It can be seen as a measure of the maxi-
mum risk that the investment will live through. Investors that use their existing
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investments that have gained in value as safety for new investments may be put
in a situation where they are forced to sell everything. Other risk management
models may automatically sell investments that are loosing value sharply. For
the individual who is not actively trading but rather placing money in a fund,
the MDD is psychologically frustrating to the point where the individual may
withdraw their investment at a loss in fear of loosing more money.

Metric 4 (Maximum Drawdown Duration (MDDD)). The longest it has
taken from one peak of the equity curve to recover to the same value as that
peak. Despite its unfortunate name it is not the duration of the MDD, but rather
then longest drawdown period. There is an old adage amongst investors to "cut
your losses early". In essence it means that it is better to take a loss straight
away than to sit on an investments for months or years, hoping that it will come
back to positive returns. During this time one could have re-invested the money
elsewhere, rather then breaking-even much later (or taking a larger loss much
later). Models that have long periods of drawdown lock resources when they
could have been used better elsewhere.

Metric 5 (Lowest Value From Investment (LVFI)). The percentage be-
tween the initial investment and the lowest value of the equity curve. This is one
of the most important metrics, and has a significant impact on technical and
psychological factors. For investors trading on margin, a high LVFI will cause
the lender to ask the investor for more safety capital (known as a margin call).
This can be potentially devastating, as the investor may not have the capital
required, and is then forced to sell the investment. The investor will then never
enjoy the return the model could have produced. Individuals who are not invest-
ing actively, but instead are choosing between funds that invest in their place,
should be aware of the LVFI as it is the worst case scenario if they need to
retract their equity prematurely.

Metric 6 (Time In Market Ratio (TIMR)). The percentage of time of the
investment period where the alpha model owned assets. This metric may seem
odd to place within the same family as the other drawdown risks, however it fits
naturally in this space. We can assume that the days the alpha model does not
own any assets the drawdown risk is zero. If we are not invested, then there is no
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risk of loss. In fact, we can further assume that our equity is growing according
to the risk free rate, as it is not bound in assets.

3.3 Buy and Hold Benchmark

At first the buy-and-hold strategy may seem naïve, however it has been shown
that deciding when to own and not own assets requires consistent high accuracy
of predictions in order to gain higher returns than the buy-and-hold strategy [8].
The buy-and-hold strategy has become a standard benchmark, not only because
of the required accuracy, but also because it requires very little effort to execute
(no complex computations and/or experts needed).

Now consider the family of metrics that we called drawdown risks. The buy-
and-hold strategy holds assets over the entire backtesting period and so will
be subject to the full force of these metrics. For instance, as an asset will be
held throughout the period, the lowest point of the assets value will coincide
with LVFI. Furthermore, the initial investment will always be locked in assets,
not being able to make money from risk free rates during periods of decreasing
value. These are serious risks of using buy-and-hold that algorithmic trading
could improve upon, which we will explore in the enclosed application in Sect. 5.

4 Learning Algorithm

The algorithm proposed in this paper for semi-automatically learning the struc-
ture of a GBN consists of two parts: a GBN template and a novel combina-
tion of k-fold cross-validation and time series cross-validation (time series cross-
validation is sometimes known as rolling origin [9] or walk forward analysis [6]).

4.1 Gated Bayesian Network Templates

A GBN template is a representation of the modelled phases, including the pos-
sible transitions between them. The template defines where BNs and gates can
be placed. For each slot where a BN can be placed, there is a library of BNs
to choose from, similarly so for gates (gates differ in their trigger logic, e.g. the
thresholds may vary between them). A template with four slots and correspond-
ing libraries is depicted in Fig. 6.

The only restrictions on the BNs and gates are the ones they place on each
other, e.g. if the gates placed in G2 expect a particular node as trigger node, then
the BNs placed in BN2 must contain that node. Except for these restrictions,
the BNs and gates can be configured freely.

Selecting a BN and a gate from the libraries for each slot in the template
creates a GBN (e.g. Fig. 3), we call this a candidate of the template. We use Ci
to denote GBN candidate i of a GBN template.
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Fig. 6. GBN template Fig. 7. Combined k-fold cross-validation
and time series cross-validation using n =
10 blocks and k = 3 folds

4.2 K-Fold and Time Series Cross-Validation

In this section we will discuss how a GBN candidate, from a GBN template, is
evaluated. In the domain of algorithmic trading it is natural for the test data
to always come after the training data in temporal order. This is to ensure that
we are not training on data that may carry information not available during the
time the testing data was produced.

Splitting the Data. A data set D of consecutive evidence sets, e.g. observations
over all or some of the random variables in the GBN, is divided into n equally
sized blocks (D1, ...,Dn) such that they are mutually exclusive and exhaustive.
Each block contains consecutive evidence sets and all evidence sets in block Di

come before all evidence sets in Dj for all i < j.
Depending on the amount of available data, k is chosen as the number of

blocks used for training. These blocks will be used for k-fold cross-validation.
Starting from index 1, blocks 1, .., k are used for training and k + 1 for testing,
thus ensuring that the evidence sets in the testing data occurs after the training
data (as in time series cross-validation). The procedure is then repeated starting
from index 2 (i.e. blocks 2, .., k + 1 are used for training and k + 2 for testing).
By doing this we create repeated simulations, moving the testing data one block
forward each time. An illustration of this procedure when n = 10 and k = 3 is
show in Fig. 7.

4.3 Algorithm

Let J (Ci,Dj , {D}ml ) be the score, e.g. Sharpe ratio, LVFI, etc., for GBN can-
didate i when block j has been used for testing and the blocks Dl, ...,Dm have
been used for training. The algorithm then works in three steps (with an optional
fourth):

1. For each simulation t, where (as discussed previously) Dt+k is the testing
data and Dt...Dt+k−1 is the training data, find Ct that satisfies (1). This
corresponds to finding the GBN candidate with the maximum mean score of
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the k evaluations performed during k-fold cross-validation over the training
data. This is done by taking into consideration every possible candidate,
thus exhausting the search space.

Ct = argmax
Ci

1

k
Σt+k−1

j=t J (Ci,Dj , {D}t+k−1
t \Dj) . (1)

2. For each Ct calculate its score ρtJ on the testing set with respect to the scoring
function J according to (2). This corresponds to training the found GBN
candidate from (1) using all training data and evaluating the performance
on the data withheld for testing.

ρtJ = J (Ct,Dt+k, {D}t+k−1
t ) . (2)

3. The expected performance ρ̄J of the algorithm, with respect to the score
function J , is then given by the average of the scores ρtJ (3).

ρ̄J =
1

n− k
Σn−k

t=1 ρtJ . (3)

4. (Optional) If the objective is to find the candidate to be used on future
unseen data (i.e. block Dn+1) then (1) is used once more to find Cn−k+1.
This candidate can then be used on Dn+1 with an expected performance
ρ̄J .

It may seem unorthodox to use k-fold cross-validation with unordered data
in step 1, i.e. the testing block may come before some training blocks. However,
this step is only used to select a model to evaluate in step 2. The data used in
step 2 is always ordered, i.e. the test block is always the immediate successor of
the training blocks. This does give a fair evaluated performance on the testing
data. Step 1 attempts to use the training data to its maximum, allowing for each
candidate to be assessed on several data sets before selecting the one to move
forward with.

In the description of the algorithm, one scoring function J has been used both
for choosing a candidate in (1) and for evaluating the expected performance of
the algorithm in (2). In Sect. 3.2 we have defined several metrics used to evaluate
alpha models. The scoring function J used in (1) could internally use many of
these metrics to come up with one score to compare the different candidates
with. However, it is natural in the current setting to expose the actual values of
these metrics during step 2, and so several scoring functions J can be used to
get a vector of scores [ρtJ1

, ..., ρtJm
] and use a vector of means as the performance

of the algorithm [ρ̄J1 , ..., ρ̄Jm ].

5 Application

In this section we show a real-world application where our proposed algorithm
has been used to learn GBNs for use as alpha models, using backtesting to
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evaluate their performance. Following the discussion in Sect. 3.3, the aim is to
generate buy and sell signals such that the drawdown risks defined in Sect. 3.2
are mitigated as compared to the buy-and-hold strategy, while at the same time
maintaining similar or better rewards.

5.1 Methodology

The variables used in the BNs of our GBNs are all based on so called technical
analysis. One of the major tenets in technical analysis is that the movement
of the price of an asset repeats itself in recognisable patterns. Indicators are
computations of price and volume that support the identification and confirma-
tion of patterns used for forecasting. Many classical indicators exists, such as
the moving average (MA), which is the average price over time, and the rela-
tive strength index (RSI) which compares the size of recent gains to the size of
recent losses. Technical analysis is a topic that is being actively developed and
researched [10]. In this application we will be using three indicators: the MA,
the RSI and the relative difference between two MAs (MADIFF). Please see [11]
for the full definition and calculations of these indicators.

GBN Template. A template with one BN per phase was created (see Fig. 6),
along with eight BNs per BN slot (see Fig. 8) and four gates per gate slot,
giving a total of 1024 candidates. The eight BNs used for BN1 are identical to
those used in BN2, however the gates’ trigger logic are different. The trigger
logic for G1 asks for the posterior probability of a good buying opportunity
(i.e. a predicted positive future climate) while the trigger logic for G2 asks for
the posterior probability of a good selling opportunity (i.e. a predicted negative
future climate).

The random variables in the BNs are discretizations of technical analysis indi-
cators (RSI, MA and MADIFF) and their corresponding first and second order
1 and 5 day backward finite differences (∇1

1,∇1
5,∇2

1 and ∇2
5) which approximate

the first and second order derivatives. The parameters used in the indicators are
standard 14 day period for RSI [11] (written as RSI(14)), 20 day period for MA,
representing 20 trading days in a month (written as MA(20)), and 5 and 20 day
period for MADIFF, where 5 days represent the 5 trading days in a week (writ-
ten as MADIFF(5,20) and calculated as MA(5)−MA(20)

MA(20) ). We also consider the
previous indicators but with an offset of 5 days in the past and 5 days into the
future. The random variables that are offset into the future represent the future
economical climate, one of which was involved in the trigger logic of the gates.
The true values for these future random variables were naturally not part of the
testing data sets. The BNs used for the BN slots are presented in Fig. 8. The
node named S was used as the trigger node for all gates. The GBN generated
trading signals as it transitioned between its two phases (as described in Sect. 2).

Data Sets. A set of actively traded stock shares where chosen for the evalua-
tion of our learning algorithm: Apple Inc. (AAPL), Amazon.com Inc. (AMZN),
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Fig. 8. BNs in GBN template libraries

International Business Machines Corporation (IBM), Microsoft Corporation
(MSFT), NVIDIA Corporation (NVDA), General Electric Company (GE), Red
Hat Inc. (RHT). The daily adjusted closing prices for these stocks between 2003-
01-01 and 2012-12-31 were downloaded from Yahoo! FinanceTM. This gave a
total of 10 years of price data for each stock, where each year was allocated to
a block, and thus n = 10. For the learning algorithm, k was chosen to be 3,
giving 7 simulations from which to calculate [ρ̄J1 , ..., ρ̄Jm ]. The split of the data
is visualised in Fig. 7.

Scoring Functions. The signals generated were backtested (see Sect. 3) in
order to calculate the relevant metrics. For step 1 in the learning algorithm we
used the Sharpe ratio. This choice was made as it combines both risk and reward
into one score, which can then easily be compared between candidates. For step
2 we used the return and drawdown risks as described in Sect. 3.2 to create a
score vector. For the buy-and-hold strategy the same metrics as in step 2 were
calculated for the 7 simulations.

5.2 Results and Discussion

To visualise the backtesting that was done for each simulation, Fig. 9 gives
two examples of stock price, generated signals (an upward arrow indicates a
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Fig. 9. Price, signals and GBN equity curve for IBM 2008 (left) and NVDA 2010 (right)

buy signal and a downward arrow indicates a sell signal) and resulting equity
curve (with an initial investment of $20,000 USD) for the evaluated GBN. The
equity curve is the one achieved by executing the signals from the GBN, the
corresponding equity curve for the buy-and-hold strategy would follow the stock
price exactly, as it holds shares over the entire period. The GBN equity curve
grows in a more monotonic fashion, which is desirable because this decreases the
drawdown risks, while at the same time generating positive returns. The buy-
and-hold strategy would have made a loss in both these examples, because the
final price is lower than the initial one, furthermore it would have displayed bad
intermediate behaviour, reflected by the high drawdown risk values that would
have been incurred. These are declining years for the shares, however the GBN
does its best to get as much value as possible from the price movements.

Table 1 presents the score vectors from the learning algorithm versus the score
vector of the buy-and-hold strategy over the 7 simulations. Rows named min,
max, mean and sd (standard deviation) are based on (2) where mean corresponds
to (3). As each block used by the learning algorithm had an approximate length
of one year, the Sharpe ratio that is given by dividing the mean with the sd
of the return column is a yearly Sharpe ratio based on seven years (where the
risk-free rate has not been included). All values are ratios except for MDDD
which is measured in number of days.

Analysis of Results. The Sharpe ratio is our measure of reward, premiered
above the raw return for reasons discussed in Sect. 3.2. Our first concern is to
ensure that the learnt GBNs are producing similar or better Sharpe ratios than
the buy-and-hold strategy over the testing period. As can be seen in Table 1,
this is the case except for NVDA and RHT. As we have previously discussed,
it requires a very high accuracy of predictions to consistently beat the Sharpe
ratio of buy-and-hold.
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Table 1. Metric values comparing GBN with buy-and-hold

GBN Buy-and-hold
Return MDD MDDD LVFI TIMR Return MDD MDDD LVFI TIMR

AAPL min -0.000 0.122 35.0 0.001 0.520 -0.559 0.129 28.0 0.001 1.000
max 0.851 0.331 164.0 0.184 0.944 1.419 0.589 250.0 0.590 1.000
mean 0.347 0.206 95.0 0.055 0.723 0.489 0.274 116.0 0.162 1.000
sd 0.334 0.076 50.3 0.061 0.155 0.707 0.168 82.7 0.218 0.000

Sharpe 1.041 0.691
AMZN min -0.204 0.134 56.0 0.042 0.510 -0.466 0.157 45.0 0.001 1.000

max 0.784 0.306 142.0 0.245 0.768 1.740 0.634 249.0 0.620 1.000
mean 0.271 0.218 101.7 0.109 0.630 0.463 0.317 118.6 0.215 1.000
sd 0.374 0.060 32.8 0.088 0.091 0.829 0.171 89.9 0.234 0.000

Sharpe 0.725 0.559
IBM min -0.022 0.062 53.0 0.013 0.494 -0.210 0.088 28.0 0.001 1.000

max 0.238 0.176 176.0 0.121 0.944 0.596 0.442 190.0 0.302 1.000
mean 0.125 0.117 112.3 0.044 0.712 0.170 0.174 106.4 0.086 1.000
sd 0.094 0.042 45.4 0.042 0.173 0.245 0.120 59.7 0.101 0.000

Sharpe 1.332 0.694
MSFT min -0.256 0.099 88.0 0.001 0.365 -0.457 0.141 74.0 0.001 1.000

max 0.381 0.305 197.0 0.279 0.741 0.659 0.498 250.0 0.498 1.000
mean 0.056 0.168 143.3 0.114 0.557 0.069 0.249 168.6 0.200 1.000
sd 0.202 0.068 41.9 0.091 0.156 0.338 0.119 67.8 0.155 0.000

Sharpe 0.278 0.204
NVDA min -0.420 0.182 64.0 0.032 0.241 -0.765 0.253 67.0 0.077 1.000

max 0.342 0.541 227.0 0.467 0.700 1.230 0.820 249.0 0.821 1.000
mean 0.016 0.284 148.1 0.209 0.516 0.202 0.458 172.3 0.311 1.000
sd 0.284 0.120 62.1 0.140 0.171 0.701 0.195 76.6 0.268 0.000

Sharpe 0.057 0.288
GE min -0.302 0.049 60.0 0.015 0.404 -0.555 0.089 69.0 0.001 1.000

max 0.461 0.465 217.0 0.438 0.570 0.222 0.657 217.00 0.642 1.000
mean 0.040 0.169 144.3 0.119 0.488 -0.001 0.314 157.0 0.236 1.000
sd 0.235 0.142 69.7 0.150 0.062 0.257 0.228 53.7 0.257 0.000

Sharpe 0.169 -0.005
RHT min -0.222 0.096 87.0 0.001 0.433 -0.370 0.143 40.0 0.001 1.000

max 0.436 0.428 221.0 0.348 0.784 1.341 0.676 221.0 0.617 1.000
mean 0.038 0.254 156.9 0.136 0.613 0.201 0.338 133.0 0.243 1.000
sd 0.259 0.103 45.6 0.123 0.136 0.579 0.197 61.6 0.234 0.000

Sharpe 0.145 0.346

From this we can conclude that the GBNs do not get beaten consistently
by the buy-and-hold strategy when considering the annual Sharpe ratio, even
though it is considered a nearly optimal strategy. Furthermore, we should take
into consideration TIMR. The GBNs are spending less time in the market, reduc-
ing risk to equity and possibly increasing equity value from risk free investments.
Potential gain in equity from risk free rates have not been added to the Sharpe
ratios presented in the table. Considering that the learnt GBNs consistently
spend considerably less time in the market (shown by the low TIMR values),
this could give a significant boost to the Sharpe ratios. An example of this can be
seen for NVDA where the Sharpe ratio for GBN is lower than for buy-and-hold,
but the GBN only spent on average 51.6% of the time in the market, risk free
investments could potentially drive the Sharpe ratio for the GBN above that of
the buy-and-hold strategy.

Turning our attention to the drawdown risks (as defined in Sec. 3.2) we first
consider the MDD and MDDD. The difference of the MDD values are substantial,
the MDD mean and sd are consistently smaller for the GBNs than they are for the
buy-and-hold strategy. This signals that the equity we gain from our investments
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are at less risk when using the GBNs compared to the buy-and-hold strategy.
For MDDD the means differ in favour of either approach, we would not prefer
one in front of the other given only this metric.

The LVFI is a major threat to equity (see Sect. 3.2), and it is the one metric
where buy-and-hold severely under-performs. Considering the max values we
note that for NVDA the buy-and-hold strategy wiped out 82.1% of the equity
at worst, while the GBNs did 46.7% at worst for NVDA. Considering the LVFI
mean and sd for all stocks we note that they are consistently almost half for the
GBNs compared to the buy-and-hold strategy. LVFI is important because it is
the risk of the initial investment, loosing much of the initial investment may lead
to premature withdrawal of funds and/or force liquidation by margin-calls.

All in all, the results above clearly indicate that GBNs are competitive with
buy-and-hold in terms of Sharpe ratio, whereas they induce a more desirable
behaviour in terms of MDD, LVFI and TIMR.

Post-Analysis. One of the benefits of using BNs is that we can get transparency
as to why a particular signal was generated. Our aim here was to look at the
non-discretized values of the variables at the time a signal was generated. We
combined the signals from all simulations (regardless of which stock was traded)
and then grouped the signals by which BN generated them and if they were buy
or sell signals. We then did pair-wise combinations of the variables in each BN to
create scatter plots with values of the variables along the axes and also added an
approximated density using the frequency of signals. These scatter plots show
when GBNs are generating signals. Examples of these plots for the BNs that
generated the most signals are given in Fig. 10 (using 7 from Fig. 8) and Fig. 11
(using 5 from Fig. 8).

In Fig. 10 the BN is used to look for buying opportunities. In the first plot
we see that most signals are generated when both ∇1

1MADIFF (5, 20) and
∇2

1MADIFF (5, 20) are positive, indicating that the difference between the two
MAs is growing and increasing in speed, but not so positive so as to mak-
ing it impossible to benefit from the trend. The second two plots in Fig. 10
plot ∇2

1MADIFF (5, 20) against MADIFF (5, 20) and the ∇1
1MADIFF (5, 20)

against MADIFF (5, 20). Both these confirm what we knew about the first
and second order difference, but also indicate that MADIFF (5, 20) should be
positive (so the short period MA should be above the long period MA). From a
technical analysis perspective this kind of pattern is common, it indicates a trend
change, as the shorter MA is moving above and away from the longer MA. It is
noteworthy to mention that we have not set any priors on the BNs that would
indicate that these are the kind of patterns we are interested in, so our learning
algorithm is able to re-discover these human-like commonly used patterns. An
example of selling signals is presented in Fig. 11, here we are using RSI which is
bounded between 0 and 100. When RSI moves up towards 100 it indicates that
the buying pressure is increasing, and should drive prices higher, the opposite
is true when RSI moves towards 0. The first plot indicates that most selling
signals are generated when ∇1

1RSI(14) is close to zero or negative (i.e. RSI has
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Fig. 10. Buy decisions using 7 from Fig. 8
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Fig. 11. Sell decisions using 5 from Fig. 8

started to decrease) and ∇2
1RSI(14) is bounded around ±10. The two other

plots in Fig. 11 represent ∇2
1RSI(14) against RSI(14) and ∇1

1RSI(14) against
RSI(14). These last two figures confirm our findings in the first figure, but also
indicates that the RSI(14) should be below 50 (but not too much below 50 so as
to miss the selling opportunity). This seems reasonable from a technical analysis
perspective, as RSI goes below 50 and decreases, the selling pressure increases,
indicating that the price will go lower, and so a selling signal is generated. We
reemphasise that we did not set any prior in the BNs that would suggest that
these are the type of signals we should be looking for.

Modelling Different Phases. The GBNs used herein do not attempt to switch
between BNs to adapt to changes in non-stationary data, but instead they change
when the decision being made has changed (i.e. first we are looking to buy, then
to sell). GBNs in general model different phases in a process, albeit that data
may be non-stationary in some or all phases. This makes GBNs different from
formalisms that switch between models to adjust for shifts in non-stationary
data, where it is common to take into consideration the performance of the
models as part of the weighting or switching probability [12].

6 Conclusions and Future Work

We have introduced a novel algorithm for semi-automatic learning of GBNs,
and shown how this algorithm can be used to learn GBNs for use as alpha
models in algorithmic trading systems. We have applied the algorithm to evaluate
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the expected performance of the learnt GBNs as alpha models compared to
using the benchmark buy-and-hold strategy. The results show that learnt GBNs
consistently reduce risk with similar or better rewards and do so while at the
same time staying out of the market for considerable amounts of time, during
these non-invested days the equity is at zero risk and can gain value from risk
free assets.

Our future work will include developing the learning algorithm to become
more automatic, avoiding having to create a GBN template and rather allow the
algorithm to place the phases, BNs and gates in such a way that it optimises
some score. We are also interested in combining GBNs with utility and decisions
nodes, as are used in influence diagrams. This would allow us to trigger gates
depending on the utility of some decision, and this utility could be subject to
risk adjustment by using concave utility functions. Furthermore, we have very
preliminary ideas on using GBNs to give explanations to models induced by
chain graphs and vice versa [13].
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Information Technology (CENIIT) and a so-called career contract at Linköping
University, and by the Swedish Research Council (ref. 2010-4808).
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Local Sensitivity of Bayesian Networks

to Multiple Simultaneous Parameter Shifts

Janneke H. Bolt and Silja Renooij
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Utrecht University, Utrecht, The Netherlands

Abstract. The robustness of the performance of a Bayesian network to
shifts in its parameters can be studied with a sensitivity analysis. For
reasons of computational efficiency such an analysis is often limited to
studying shifts in only one or two parameters at a time. The concept
of sensitivity value, an important notion in sensitivity analysis, captures
the effect of local changes in a single parameter. In this paper we gener-
alise this concept to an n-way sensitivity value in order to capture the
local effect of multiple simultaneous parameters changes. Moreover, we
demonstrate that an n-way sensitivity value can be computed efficiently,
even for large n. An n-way sensitivity value is direction dependent and
its maximum, minimum, and direction of maximal change can be eas-
ily determined. The direction of maximal change can, for example, be
exploited in network tuning. To this end, we introduce the concept of
sliced sensitivity function for an n-way sensitivity function restricted to
parameter shifts in a fixed direction. We moreover argue that such a
function can be computed efficiently.

1 Introduction

The robustness of Bayesian networks to changes in their parameter probabil-
ities can be studied with a sensitivity analysis. To this end, a function which
describes the effect of varying one or more parameters on an output probability
of interest can be established. From such a sensitivity function, various sensitiv-
ity properties can be derived that give insight into the effects of the parameter
changes [6].

Most research has focused on one-way sensitivity analyses in which only a
single parameter is varied at a time. These one-way analyses, however, do not
provide full insight into the effects of multiple simultaneous parameter shifts;
to study such effects, an n-way sensitivity analysis is required. To this end, we
can establish an n-way sensitivity function. Unfortunately, the computation of
multi-dimensional functions is generally expensive. Existing algorithms for n-way
sensitivity analysis are only computationally feasible for larger n under certain
conditions. For example, the efficient method for computing n-way sensitivity
functions by Kjærulff and van der Gaag [8] assumes that the n parameters all
belong to the same clique in the network’s junction tree representation. Another
example is the method introduced by Chan and Darwiche [2] for assessing which

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 65–80, 2014.
c© Springer International Publishing Switzerland 2014
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parameter shifts will enforce a given constraint with respect to some outcome
probability: this method is feasible if all parameters concern the same CPT, and
quickly becomes infeasible otherwise.

In this paper we are interested in studying the local effects of multiple simul-
taneous parameters changes in a Bayesian network. To this end we generalise
the concept of sensitivity value [9] — well-known in the context of one-way sen-
sitivity analysis — to an n-way sensitivity value. The sensitivity value captures
the effect of local parameter changes by means of the derivative of the sensitivity
function in the point corresponding with the original parameter assessment spec-
ified in the Bayesian network. We generalise this concept to multiple dimensions
by using a directional derivative of the n-way sensitivity function. Moreover, we
prove that computing this directional derivative can be done efficiently, due to
the fact that we do not need the n-way sensitivity function: availability of the
one-way sensitivity values of the parameters under consideration suffices. The
n-way sensitivity value is direction dependent, but its maximum and minimum
can be easily determined, together with the corresponding direction of maximal
change. The latter information is not only useful for studying the robustness of
a Bayesian network, but is also useful in the context of parameter tuning. In
parameter tuning, network parameters are changed in order to fulfill constraints
with respect to outcome probabilities. Assuming that small perturbations are
preferred, we argue that tuning parameters by shifting them in the direction
of maximal change will yield a good approximation of the optimal parameter
change necessary to meet a given constraint. Moreover, since a fixed vector di-
rection ties together all parameters linearly, we can efficiently establish the effect
of such a combined parameter shift. To this end, we introduce the concept of
sliced sensitivity function.

The remainder of the paper is organised as follows. In Section 2 we introduce
our notational conventions, briefly review sensitivity analysis in Bayesian net-
works and review the mathematical notion of directional derivatives. In Section
3 we define the n-way sensitivity value and its bounds, and in Section 4 we ad-
dress the question of how to compute an n-way sensitivity value efficiently. In
Section 5 we discuss the use of our concepts in the context of parameter tuning
and we conclude our paper with a discussion in Section 6.

2 Preliminaries

2.1 Bayesian Networks and Sensitivity Analysis

A Bayesian network compactly represents a joint probability distribution Pr over
a set of stochastic variables A [7]. It combines an acyclic directed graph G, that
captures the variables and their dependencies as nodes and arcs respectively,
with conditional probability distributions for each variable Ai and its parents
π(Ai) in the graph, such that

Pr(A) =
∏
i

Pr(Ai | π(Ai))
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Variables are denoted by capital letters, which are boldfaced in case of sets; spe-
cific values or instantiations are written in lower case. In examples we restrict
ourselves to binary variables, writing a and ā to denote the two possible instan-
tiations of a variable A. We assume the conditional distributions are specified as
tables (CPTs) and use the term parameter to refer to a CPT entry. The super-
script ’o’ is used to indicate that a probability is an original parameter value, or
is computed from the network with parameter values as originally specified.

To investigate the effects of inaccuracies in its parameters, a Bayesian network
can be subjected to a sensitivity analysis. In a sensitivity analysis, parameters
of a network are varied and a probability of interest as a function of the varied
parameters is computed.

General n-Way Analysis. In an n-way sensitivity analysis, simultaneous per-
turbations of multiple parameters are considered. The effect of varying the pa-
rameters x1, . . . , xn on a probability of interest Pr(y | e) is captured by a function
of the form

fPr(y|e)(x1, . . . , xn) =
fPr(y e)(x1, . . . , xn)

fPr(e)(x1, . . . , xn)
=

∑
Xk∈P({x1,...,xn}) ck ·

∏
xi∈Xk

xi∑
Xk∈P({x1,...,xn}) dk ·

∏
xi∈Xk

xi

where P denotes the powerset, and ck and dk, k = 0, . . . , 2n − 1, are constants
constructed from the non-varied network parameter [1]. A two-way function, for
example, takes the following form:

fPr(y|e)(x1, . . . , x2) =
c0 + c1 · x1 + c2 · x2 + c3 · x1 · x2

d0 + d1 · x1 + d2 · x2 + d3 · x1 · x2

The n parameters of an n-way sensitivity function are typically assumed to
be independent, that is, parameters from the same CPT must come from dif-
ferent conditional distributions. Upon varying a parameter x = Pr(ai | π), all
probabilities Pr(aj | π), j �= i, pertaining to the same conditional distribution
are assumed to co-vary proportionally.

An n-way sensitivity function in general requires the computation of 2n con-
stants and is thus computationally expensive; an algorithm to this end can be
found in [8].

Single CPT Analysis. In the special case where all n parameters are indepen-
dent parameters from the same CPT, the interaction terms in the n-way sensi-
tivity function become zero and the function reduces to the following form [2]:

fPr(y|e)(x1, . . . , xn) =
c0 +

∑
i ci · xi

d0 +
∑

i di · xi

One-Way Analysis. Most research has focused on one-way sensitivity analysis,
in which just a single parameter x is varied. In this case the sensitivity function
becomes [4]:

fPr(y|e)(x) =
c0 + c1 · x
d0 + d1 · x
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The constants of the one-way functions fPr(y|e)(xi) for output probability Pr(y |
e) can be established efficiently for all network parameters xi simultaneously
from just one inward and two outward propagations in the junction tree repre-
sentation of the Bayesian network [8].

From the one-way sensitivity function, several sensitivity properties can be es-
tablished [6]. The most well-known sensitivity property is the sensitivity value [9].
This value captures the sensitivity of an outcome probability of interest to small
perturbations of the parameter under consideration. The sensitivity value of the
one-way sensitivity function f(x) for parameter x with original assessment xo is
defined as the absolute value of the first derivative of the function at x = xo:∣∣∣ df

dx
(xo)

∣∣∣
High sensitivity values indicate that the output probability of interest may
change considerably as a result of small parameter changes. The one-way sen-
sitivity function takes the form of a rectangular hyperbola, with its vertex (in
which the derivative is +1 or −1) marking the transition from low to possibly
high sensitivity.

2.2 Directional Derivatives

The sensitivity value is defined in terms of the first derivative of the one-way
sensitivity function. For a one-dimensional function f(x) we can refer to the
derivative at x = a, since df

dx (a) is a single value. The multi-dimensional analogue
of the derivative is the directional derivative. The directional derivative of an n-
dimensional function depends on the direction v and the specific point x of the
function that is considered. To compute the directional derivative of a function
f(x) for x = (x1, . . . , xn), we can use its gradient ∇f , that is, the vector of
partial derivatives ( ∂f

∂x1
, . . . , ∂f

∂xn
) of f . The directional derivative at x = a in the

direction v now equals the following dot product

Duf(a) = ∇f(a) • u

where unit vector u is the normalised vector of v, that is, u is the vector in the
direction of v that has length 1.

Although the directional derivative varies depending on the chosen direction,
we can establish bounds on its value. The maximum directional derivative of
f at x = a is found in the direction of the gradient vector at a, ∇f(a), and
equals the length of the gradient vector at a, |∇f(a)|. Similarly, the minimum
directional derivative occurs in the opposite direction.

Example 1. Suppose we are interested in the directional derivative of f(x, y) =
x2+4 ·x ·y at (1, 2), in the direction (−2, 1). We have that ∇f = (2 ·x+4 ·y, 4 ·x)
which yields ∇f(1, 2) = (10, 4). Vector (−2, 1) has length

√
5 and is normalised

to u = (−2√
5
, 1√

5
). The requested directional derivative thus equals Duf(1, 2) =

(10, 4) • (−2√
5
, 1√

5
) = −16√

5
. The maximum directional derivative at (1, 2) occurs

in the direction (10, 4) and equals
√
102 + 42 ≈ 10.77; the minimum directional

derivative at this point equals −10.77 and occurs in the direction (−10,−4).
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3 Defining an n-Way Sensitivity Value

The sensitivity value as defined in [9] reflects the local sensitivity of some out-
come of interest to a single parameter shift. In this section we generalise the
definition of sensitivity value in order to capture the local sensitivity given mul-
tiple simultaneous parameter shifts.

A (one-way) sensitivity value is defined in terms of the first derivative of a
one-way sensitivity function. In mathematics, the notion of first derivative of a
function with a single variable generalises to the notion of directional derivative
for a function with multiple variables. We therefore define an n-way sensitivity
value in terms of a directional derivative. In contrast to the definition of the one-
way sensitivity value, we will not consider the n-way sensitivity value to be an
absolute value. In our opinion, using the absolute value results in loss of useful
information concerning the direction of change in the output of interest upon
local perturbation of the parameters. For this reason, we also introduce a signed
version of the one-way sensitivity value, which equals the sensitivity value prior
to taking the absolute value.

Definition 1 (signed sensitivity value). Let f(x) be a one-way sensitivity
function and xo the original value for parameter x. The signed sensitivity value
for f(x), denoted svx, equals the first derivative of f at xo:

svx =
df

dx
(xo)

We now generalise the concept of (signed) sensitivity value to multiple dimen-
sions.

Definition 2 (n-way sensitivity value). Let f(x) be an n-way sensitivity
function and let xo be the vector of original parameter settings. Consider a shift
of the parameters in the direction v. The n-way sensitivity value for f(x), de-
noted svxv, equals the directional derivative of f at the original parameter assess-
ments xo in the direction v:

svxv = Du f(x
o)

where unit vector u is the normalised vector of v.

Note that svx is a special case of svxv for n = 1 and u = (1).
Whereas a single parameter can only be changed to lower or higher values,

multiple simultaneous parameters shifts can occur in an infinite number of di-
rections. Hence the dependence on v in our definition of n-way sensitivity value.
Fortunately, the n-way sensitivity values have an upper- and lowerbound.

Definition 3 (svxmax). Let f(x) be an n-way sensitivity function and xo the
vector of original parameter settings. The maximum n-way sensitivity value,
denoted svxmax, equals

svxmax = max
v

svxv = max
u

Du f(xo)

where unit vector u is the normalised vector of v.
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Since the n-way sensitivity value is defined as a directional derivative, its
maximum value in fact equals the length of the gradient vector of f at xo, that
is, svxmax = |∇f(xo)|; moreover, svxmax is obtained in the direction ∇f(xo). We
can similarly define svxmin = −svxmax as the minimum n-way sensitivity value,
which occurs in the opposite direction −1 • ∇f(xo).

Pr(mc) = 0.2 

Pr(ct|b) = 0.95
Pr(ct|b) = 0.1

Pr(b|mc) = 0.2
Pr(b|mc) = 0.05

Pr(isc|mc) = 0.8
Pr(isc|mc) = 0.2

Pr(sh|b) = 0.8
Pr(sh|b) = 0.6

Pr(c|b isc) = 0.8
Pr(c|b isc) = 0.8
Pr(c|b isc) = 0.8
Pr(c|b isc) = 0.05

Fig. 1. An example Bayesian network

Example 2. Consider the example network from Fig. 1, representing some (fic-
titious) medical information. For a patient, the variables MC, B and SH rep-
resent the presence or absence of metastatic cancer, a brain tumour, and severe
headaches, respectively. Variable ISC captures the presence or absence of an
increased serum calcium level, variable C represents whether or not a patient is
comatose, and CT whether or not the outcome of a CT scan is positive. Sup-
pose that we are interested in the output probability of a brain tumour in a
patient with a positive CT-scan, severe headaches, but who is not in a coma,
that is, Pr(b | ct sh c). In addition, suppose that the assessments of the param-
eters x = Pr(mc) and y = Pr(sh | b̄) might be inaccurate. We now find the
following sensitivity function, depicted in Fig. 2:

fPr(b|ct sh c)(x, y) =
0.76 + 2.28 · x

0.76 + 2.28 · x+ 7.6 · y − 4.8 · x · y

with gradient ∇f = (∂f∂x ,
∂f
∂y ), where

∂f

∂x
=

20.976 · y
(0.76 + x · (2.28− 4.8 · y) + 7.6 · y)2

and
∂f

∂y
=

−5.776− 13.68 · x+ 10.944 · x2

(0.76 + x · (2.28− 4.8 · y) + 7.6 · y)2
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The gradient at (xo, yo) = (0.2, 0.6) then equals ∇f(0.2, 0.6) ≈ (0.465,−0.299).
Now consider a parameter shift from (xo, yo) = (0.2, 0.6) to (0.1, 0.7), that

is, a shift in the direction (−0.1, 0.1). The directional derivative at (0.2, 0.6)
in this direction is (0.465,−0.299) • ( −0.1√

0.02
, 0.1√

0.02
) ≈ −0.540 and equals the

sensitivity value svx,yv for this direction. The maximum sensitivity value svx,ymax

= |(0.465,−0.299)| ≈ 0.553 and is found in the direction (0.465,−0.299).
We can also compute the directional derivative at some other point (x, y)

than the original parameter assessments. For example, the gradient at (x, y) =
(0.1, 0.1) equals ∇f(0.1, 0.1) ≈ (0.581,−0.414). For a shift from this point, in
the direction (0.4, 0.2), we have a directional derivative of (0.581,−0.414) •

( 0.4√
0.2

, 0.2√
0.2

) ≈ −0.414.

Fig. 2. Pr(b | ct sh c) as function of Pr(mc) and Pr(sh | b̄) given the network from
Figure 1

4 Computing an n-Way Sensitivity Value

For the computation of an n-way sensitivity value, the partial derivatives ∂f
∂xi

of
the n-way sensitivity function at xo are required. These partial derivatives can
be established in various ways. In Section 4.1 we will identify the possibilities
and drawbacks of using various existing algorithms. In Section 4.2 we will sub-
sequently point out a relation between the n-way sensitivity value and one-way
sensitivity values that allows for efficiently computing the former.

4.1 Computing Partial Derivatives for Sensitivity Functions

There are basically two approaches that we can employ for computing our partial
derivatives ∂f

∂xi
for sensitivity function f(x): a direct and an indirect approach.
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Indirect Approach. One approach is to establish the complete sensitivity
function f(x), using one of the available algorithms for computing its constants
from the Bayesian network (see Section 2). Subsequently, the partial derivative
with respect to xi can be computed from the resulting function. This approach
allows for computing partial derivatives at any value of xi and not only at xo

i . The
major drawback of this approach, however, is that the currently most efficient
algorithm to compute an n-way sensitivity function requires in the order of 2n/n
full junction tree propagations to establish 2n equations from which the required
constants can be solved; this can only be done more efficiently if all n parameters
are in the same clique [8]. We note that in the special case where all n parameters
are independent parameters from the same CPT, the n-way sensitivity function
requires a linear rather than exponential number of constants. In that case, it is
doable to compute the n-way sensitivity function.

For the special case where all parameters are from the same CPT, we can
express svxmax in terms of the constants of the n-way sensitivity function, the
original probability of interest and the original probability of the evidence, as
stated in the following proposition.

Proposition 1 (svxmax; x in single CPT). Consider an n-way sensitivity func-
tion fPr(y|e)(x) = fPr(y e)(x)/fPr(e)(x) for output probability Pr(y | e) and n in-
dependent parameters x = (x1, . . . , xn) from a single CPT with original values
xo = (xo

1, . . . , x
o
n). Let fPr(y e)(x) = c0+

∑
i ci ·xi and fPr(e)(x) = d0+

∑
i di ·xi

for constants ci, di, i = 1, . . . , n. Then the maximum n-way sensitivity value
equals

svxmax =
1

Pro(e)
·

√√√√ n∑
i=1

(
ci − di · Pro(y | e)

)2
Proof. The value svxmax is the length of the gradient vector in xo. To compute the
gradient vector we compute the partial derivatives of f for each xk, k = 1, . . . , n:

∂f

∂xk
=

ck · (d0 +
∑

i,i�=k di · xi)− dk · (c0 +
∑

i,i�=k ci · xi)

(d0 +
∑n

i=1 di · xi)2

At xo this partial derivative equals:

∂f

∂xk
(xo) =

ck · (d0 +
∑

i,i�=k di · xo
i )− dk · (c0 +

∑
i,i�=k ci · xo

i )

(d0 +
∑n

i=1 di · xo
i )

2

=
ck · (Pro(e)− dk · xo

k)− dk · (Pro(y e)− ck · xo
k)

Pro(e)2

=
ck · Pro(e)− dk · Pro(y e)

Pro(e)2
=

ck − dk · Pro(y | e)
Pro(e)

The result now follows directly. �

Direct Approach. The second approach is far more elegant for our purposes.
A differential approach can be used to compute partial derivatives from the so-
called canonical network polynomial F . For ∂f

∂xi
a closed form in terms of first and
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second order partial derivatives of polynomial F exists; details are beyond the
scope of this paper and can be found in [5]. As an alternative, for any parameter
xi = Pr(a | π) with xo

i �= 0, we can use the following probabilistic closed form,
which is equivalent to the above-mentioned one based on partial derivatives [5]:

∂fPr(y|e)
∂xi

(xo) =
Pro(y aπ | e)− Pro(y | e) · Pro(aπ | e)

xo
i

Since the closed forms allow for direct computation of partial derivatives, albeit
at xi = xo

i only, they are more efficient to compute than the approach using the
n-way sensitivity function: rather than computing a number of constants that
is exponential in n, we compute n partial derivatives. A drawback of using the
partial-derivative-based closed form is that it cannot be computed using classical
inference algorithms and requires the computation of both first and second order
partial derivatives. A minor drawback of the probabilistic closed form is that the
expression requires the computation of several probabilities per parameter for
which it is not immediately clear what their relation to sensitivity analysis or
sensitivity properties is.

4.2 n-Way Partial Derivatives From One-Way Functions

In the previous section we argued that the direct computation of partial deriva-
tives is much more efficient than establishing them from an n-way sensitivity
function. In this section we demonstrate that there is a simple correspondence
between partial derivatives of n-way sensitivity functions and derivatives for
one-way functions1. This provides us with an alternative way of efficiently es-
tablishing n-way sensitivity values during a sensitivity analysis.

Proposition 2. Let x1, . . . , xn be n > 1 network parameters with original as-
sessments xo

i , i = 1, . . . , n, and let P be an output probability of interest. Con-
sider the n-way sensitivity function fP (x1, . . . , xn) and the one-way sensitivity
function f∗

P (xk), k ∈ {1, . . . , n}. Then

∂fP
∂xk

(xo
1, . . . , x

o
n) =

d f∗
P

dxk
(xo

k)

Proof. Consider an output probability P = Pr(y | e) = Pr(y e)
Pr(e) . As a result of

the factorisation defined by a Bayesian network, both numerator and denomina-
tor can be written as an expression of all network parameters consistent with y
and/or e [1]. Suppose these expressions contain m independent parameters (the
remaining ones will co-vary). A sensitivity function for n < m of these indepen-
dent parameters then basically is the m-dimensional sensitivity function with
m− n independent parameters fixed at their original value. This also holds for

1 We note that this correspondence, formally stated in Proposition 2, has been im-
plicitly exploited in, for example, [5]; to the best of our knowledge, however, it has
not been formalised explicitly before.
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n = 1. The partial derivative w.r.t xk of an n-way function fP (x1, . . . , xk, . . . , xn)
with parameters xi �= xk kept at xo

i , is therefore the same as the derivative of
the one-way sensitivity function f∗

P (xk). This proves the proposition. �

To assess the partial derivatives of an n-way sensitivity function given the
original parameter assessments, we thus just need the appropriate one-way sen-
sitivity functions. The above proposition thus gives a computationally feasible
way of computing the n-way sensitivity value, since the constants of the one-way
functions can be established efficiently. Note that if we are not interested in an
n-way sensitivity value, but in the directional derivative at some other point
than the original parameters assessments, then the one-way sensitivity functions
will not suffice.

Example 3. Consider again the outcome of interest Pr(b | ct sh c) and the param-
eters x = Pr(mc) and y = Pr(sh | b̄) from Example 2 and Fig. 1. The one-way
sensitivity functions are given by

f∗
Pr(b|ct sh c)(x) =

0.76 + 2.28 · x
5.32− 0.6 · x and f♦

Pr(b|ct sh c)(y) =
1.216

1.216 + 6.64 · y

Their derivatives equal

df∗

dx
(xo) =

12.586

(5.32− 0.6 · xo)2
= 0.465,

df♦

dy
(yo) =

−8.074

(1.216 + 6.64 · yo)2 = −0.299

at xo and yo, respectively. We observe that indeed(∂f
∂x

(xo, yo),
∂f

∂y
(xo, yo)

)
=
(df∗

dx
(xo),

df♦

dy
(yo)

)

Using Proposition 2, we can express svxmax in terms of the constants of the
one-way sensitivity functions and the original probability of the evidence.

Proposition 3 (svxmax in general). Consider n > 1 network parameters x
= (x1, . . . , xn) with original values xo = (xo

1, . . . , x
o
n), and let Pr(y | e) be an

output probability of interest. In addition, consider the n one-way sensitivity

functions f
(i)
Pr(y|e)(xi) = f

(i)
Pr(y e)(xi) / f

(i)
Pr(e)(xi), i = 1, . . . , n, where f

(i)
Pr(y e)(xi) =

ci0+ci1·xi, with constants ci0, c
i
1, and f

(i)
Pr(e)(xi) = di0+di1 ·xi, with constants di0, d

i
1.

Then the maximum n-way sensitivity value for the n-way function fPr(y|e)(x)
equals

svxmax =
1

Pro(e)2
·

√√√√ n∑
i=1

(ci1 · di0 − ci0 · di1)2

Proof. The derivative of the one-way sensitivity function f
(i)
Pr(y|e)(xi) at the

original parameter assessment xo
i equals
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df
(i)
Pr(y|e)
dxi

(xo
i ) =

ci1 · di0 − ci0 · di1
(di0 + di1 · xo

i )
2
=

ci1 · di0 − ci0 · di1
Pro(e)2

Since this derivative is equal to the partial derivative
∂fPr(y|e)

∂xi
at xo (Proposi-

tion 2), and svxmax is the length of the gradient vector in xo, the proposition
follows. �

The following corollary states two convenient properties for svxmax. In addition,
it states properties that can be used in case we are interested in the n-way
sensitivity value in an arbitrary direction, rather than just in the maximum
value.

Corollary 1. Consider n > 1 network parameters x = (x1, . . . , xn) with orig-
inal values xo = (xo

1, . . . , x
o
n), and let P be an output probability of interest.

Consider the n-way sensitivity function fP (x) with n-way sensitivity value svxv
in direction v of at most svxmax. In addition, consider the n one-way sensitivity

functions f
(i)
P (xi), i = 1, . . . , n, and let s = (svx1 , . . . , svxn) be a vector of their

one-way signed sensitivity values svxi =
d f

(i)
P

dxi
(xo

i ). Then

1. svxmax = |s| =
√∑

i(sv
xi)2

2. s = ∇fP (x
o)

3. svxv = s • u, where unit vector u is the normalised vector of v

4. if |svxi | < 1√
n
∀i, then svxmax < 1 and svxmin > −1

Proof. Equalities 1. and 2. follow directly from the definition of the signed one-
way sensitivity value and Proposition 2. Equality 3. then follows directly from
the definition of svxv . Inequality 4. follows directly from Equality 1. �

Note that the above corollary can be exploited both in the context of an indi-
rect and a direct approach to computing partial derivatives. Moreover, inequality
4. enables us to analyse what combinations of parameters may not be interesting
enough to investigate further during a sensitivity analysis, allowing us to focus
on more important parameters.

Example 4. We illustrate, using Fig. 3, the fact that some combinations of pa-
rameters may not be interesting enough for further investigation. This figure
gives svx1,x2

max as a function of svx1 and svx2 for sensitivity values |svxi | < 1. The
figure in addition shows the plane svx1,x2

max = 1. The fraction of combinations of
svx1 and svx2 that result in svx1,x2

max < 1 is found below the plane svx1,x2
max = 1

and equals π
4 ≈ 0.785. From inequality 4. of Corollary 1 it follows that, in or-

der to result in a two-way sensitivity value ≥ 1, the absolute value of at least
one of the individual values has to be ≥ 1√

2
. Thus whenever both |svx1 | and

|svx2 | are < 0.71, we can be sure that svx1,x2
max < 1 and that svx1,x2

min > −1, that is,
|svx1,x2

v | < 1 for any v. If one of the two parameters, however, has a one-way sen-
sitivity value ≥ 0.71, it depends on the sensitivity value of the other parameter
whether svx1,x2

max ≥ 1 or not.
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Fig. 3. svx1,x2
max , as a function of svx1 , svx2 ∈ 〈−1, 1〉 and the plane svx1,x2

max = 1

4.3 Joint vs. Synergistic Effect in n-Way Analyses

We observe that the absolute value |svxv | may be higher (or lower) than each of
the individual absolute values |svxi | of which it is composed. For example, in
the network from Fig. 1 (see Examples 2 and 3 ), we had that |svx| = 0.465,
|svy| = 0.299 and that a shift in the direction of v = (−0.1, 0.1) resulted in
|svx,yv | = 0.540. A simultaneous shift thus may have a larger (or smaller) local
effect on the outcome probability than each parameter shift separately.

We would like to note that this joint effect of multiple parameter changes
is not the same as the synergistic effect of multiple parameter changes, as first
described in [3]. A synergistic effect is caused by the fact that the exact form
of the one-way sensitivity function of xi, depends on the original values of the
other parameters of the network, and thus may be different for different values
of some other parameter xj . Such a synergistic effect can only be present if
the n-way sensitivity function of those parameters includes product terms of xi

and xj . For a joint effect of multiple simultaneous changes, the presence of such
product terms is not necessary. As mentioned in Section 2, given just parameters
from a single CPT, a sensitivity function will not include product terms of its
parameters. Given parameters from a single CPT, therefore, no synergistic effect
will be observed; a joint effect, however, may be present.

5 Parameter Tuning

The theory we discussed in Sections 3 and 4 can be used to study the robustness
of a network to small simultaneous parameter changes. Another area of appli-
cation lies in parameter tuning. In building a network, we may want to adjust
parameters in order to meet certain constraints. An example of such a constraint
is Pr(y | e) > t for some probability Pr(y | e) and a desired value t.

In [2], a method for parameter tuning is described in which the parameter
adjustment is guided by the log-odd change of the varied parameters in order
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to keep the distance between the old and the new distribution as small as pos-
sible. The paper moreover describes a method to compute the solution space of
all possible parameter changes that would fulfill the constraint. This method,
although not mentioned as such by the authors, in essence provides for com-
puting the constants of the sensitivity function of the varied parameters, and
is exponential in the number of CPTs from which the parameters are chosen.
The method thus is feasible only if the adjusted parameters come from a limited
number of different CPTs.

We now propose another tuning approach, based on the theory introduced
in Sections 3 and 4. In this approach, our goal is to satisfy some constraint by
adjusting a given set of n parameters as little as possible, that is, by keeping
the sum of the absolute values of the parameter changes as low as possible. In
our method the direction of the maximal change is used to guide the parameter
changes. Since the gradient s = (svx1 , . . . , svxn) of an n-way sensitivity function
at xo gives the direction of local maximal increase of the outcome probability,
we will simultaneously adjust the n parameters in or against the direction of
s to achieve the desired value. As long as the changes needed are small, this
adjustment will be a good approximation of the adjustments required to satisfy
the desired constraint with a minimal change of the parameters.

The adjustments needed can be assessed using a sensitivity function in which
the parameters are constrained to variation only in or against the direction of s.
Below we first define an n-way sensitivity function given parameter changes in
or against a fixed direction v to be a sliced sensitivity function in the direction
of v.

Definition 4 (sliced sensitivity function). Let fPr(y|e)(x) be an n-way sen-
sitivity function. A sliced sensitivity function of f in the direction of v, denoted
fv
Pr(y|e), expresses Pr(y | e) as a function of the change of the parameters x in
or against direction v only.

The following proposition shows that a sliced sensitivity function can be ex-
pressed in a single parameter and takes the form of a fraction of two polynomial
functions of degree at most the number of CPTs from which the parameters are
chosen.

Proposition 4. Consider an n-way sensitivity function fPr(y|e)(x) for an out-
put probability Pr(y | e), and a change of its parameters x = (x1, . . . , xn) in a
fixed direction v = (v1, . . . , vn). Then for any xi, i = 1, . . . , n, with vi �= 0 there
exists a sliced sensitivity function fv

Pr(y|e)(xi) of the form:

fv
Pr(y|e)(xi) =

c0 + c1 · x1
i + . . .+ cm · xm

i

d0 + d1 · x1
i + . . .+ dm · xm

i

where each xk
i , k = 1, . . . ,m, is a polynomial term of degree k and m is the

number of different CPTs from which x1, . . . , xn are chosen.
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Proof. Given a change in or against a fixed direction (v1, . . . , vn), we can express
all parameters xj in parameter xi, since (xj − xo

j) =
vj
vi

· (xi − xo
i ) ⇔ xj =

vj
vi

· (xi − xo
i ) + xo

j , which is linear in xi. Product terms of parameters in the
n-way function fPr(y|e)(x) will now result in polynomial terms in fv

Pr(y|e)(xi),
of which the degree is determined by the number of interacting parameters in
fPr(y|e)(x). This number equals at most the number of CPTs from which the
parameters x1, . . . , xn are chosen. �

The n-way sensitivity function in any fixed vector direction v thus is a polyno-
mial with as maximum degree the number of CPTsm from which the parameters
are chosen and is determined by just 2 · (m+1) constants. This observation also
holds for the direction s of maximal increase. A constraint on Pr(y | e) now can
be expressed in terms of a sliced sensitivity function in the direction of s, and
a feasible solution with minimal parameter change in or against the direction of
s can be derived, if any. The solutions of a polynomial equation can be estab-
lished analytically for polynomials up to degree 4; solutions for higher degree
polynomials can be approximated.

In the above we assumed a given set of parameters {x1, . . . , xn}. Note that
a reasonable heuristic for choosing a set of parameters to adjust can be based
on the one-way sensitivity values since svxmax =

√∑
i(sv

xi)2; i.e. selecting the
n parameters with highest one-way sensitivity value will allow for the largest
possible local shift in the output upon their simultaneous perturbation.

Example 5. Consider again the example network from Fig. 1. Suppose we know
that the outcome probability Pr(b | ct sh c) should be at least 0.80. In the network
as it is we find that Pr(b | ct sh c) = 0.76 so some parameter adjustment is
required. First the signed one-way sensitivity values svx for all independent
parameters x of the network are assessed2; these are given in Table 1. We observe
that the parameters which will affect the outcome probability the most are x =
Pr(b | mc) and y = Pr(ct | b̄). Suppose that we want to satisfy our constraint
by adjusting those two parameters. The direction of maximal increase is v =
(1.87,−1.81) ∼ (1,−0.97). Tying y to x, the sliced sensitivity function in the
direction of the maximal change now is

fv
Pr(b|ct sh c)(x) =

0.02432 + 0.4864 · x
0.0478424+ 0.318496 · x+ 0.09312 · x2

Solutions to fv
Pr(b|ct sh c)(x) = 0.80 are x ≈ 0.061 and x = 3.047, where only the

former is feasible. Parameter values that will satisfy Pr(b | ct sh c) ≥ 0.80 thus
are x = Pr(b | mc) = 0.061 and y = Pr(ct | b̄) = yo − 0.97 · (0.061 − xo) =
0.10− 0.97 · (0.061− 0.05) = 0.089.

2 Recall that dependent parameters are included in the analysis by covariation.
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Table 1. Sensitivity values svx for independent parameters of the example network
from Fig. 1

x xo svx

Pr(mc) 0.20 0.12
Pr(b | mc) 0.20 0.56
Pr(b | mc) 0.05 1.87
Pr(isc | mc) 0.80 −0.09
Pr(isc | mc) 0.20 −0.41
Pr(ct | b) 0.95 0.19
Pr(ct | b̄) 0.10 −1.81
Pr(c | b isc) 0.80 0.11
Pr(c | b isc) 0.80 0.11
Pr(c | b̄ isc) 0.80 −0.20
Pr(c | b̄ isc) 0.05 −0.46
Pr(sh | b) 0.80 0.23
Pr(sh | b̄) 0.60 −0.30

6 Discussion

The robustness of Bayesian networks to changes in their parameter probabilities
can be studied with a sensitivity analysis. Since the study of multiple simulta-
neous parameter shifts is computationally expensive, most research has focused
on one-way sensitivity analyses in which only a single parameter is varied at
a time. An important notion in sensitivity analysis is the notion of sensitivity
value, which captures the sensitivity of some outcome of the network to a small
change in a single parameter under consideration. In this paper we generalised
this concept to multiple dimensions and proved that the computation of such
an n-way sensitivity value can be done efficiently from the one-way sensitivity
values of the parameters under consideration.

In contrast to a one-way sensitivity value, an n-way sensitivity value varies de-
pending on the direction of shift under consideration. We expressed the direction
of maximal change in terms of one-way sensitivity values and provided bounds
on the n-way sensitivity value. We argued that the maximal (minimal) sensitiv-
ity value and the corresponding direction of maximal change is not only useful for
studying the robustness of a Bayesian network, but can also be used in the con-
text of network tuning. For small parameter changes, a shift of the parameters
in or against the direction of the maximal increase until some tuning constraint
is met will yield a good approximation of the minimal parameter change neces-
sary to meet this constraint. We also proved that, since a fixed vector direction of
change ties all parameters linearly, the effect of a parameter shift in the direction
of the maximal change on some outcome probability can be efficiently established.
To this end we introduced the concept of sliced sensitivity function for a sensitivity
function that captures such a linearly tied parameter shift.

In a sliced sensitivity function variables are tied linearly. Variables, however,
can also be tied by some other meaningful relationship. In [2], for example,
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parameters are tied by their log-odds ratio changes. In future research, we would
like to expand the notion of sliced sensitivity function to more general forms of
constrained sensitivity functions and explore the use of these functions both
within and outside the field of parameter tuning.

Acknowledgements. This research was supported by the Netherlands Organ-
isation for Scientific Research.
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Abstract. Variable Elimination (VE) answers a query posed to a
Bayesian network (BN) by manipulating the conditional probability ta-
bles of the BN. Each successive query is answered in the same manner. In
this paper, we present an inference algorithm that is aimed at maximiz-
ing the reuse of past computation but does not involve precomputation.
Compared to VE and a variant of VE incorporating precomputation, our
approach fairs favourably in preliminary experimental results.

Keywords: Bayesian network, inference, marginal trees.

1 Introduction

Koller and Friedman [1] introduce readers to inference in Bayesian networks
(BNs) [2] using the Variable Elimination (VE) [3] algorithm. The main step of
VE is to iteratively eliminate all variables in the BN that are not mentioned in
the query. Subsequent queries are also answered against the BN meaning that
past computation is not reused. The consequence is that some computation may
be repeated when answering a subsequent query.

Cozman [4] proposed a novel method attempting to reuse VE’s past computa-
tion when answering subsequent queries. Besides the computation performed by
VE to answer a given query, Cozman’s method also performs precomputation
that may be useful to answer subsequent queries. While Cozman’s approach
is meritorious in that it reduces VE’s duplicate computation, one undesirable
feature is that precomputation can build tables that are never used.
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In this paper, we introduce marginal tree inference (MTI) as a new exact
inference algorithm in discrete BNs. MTI answers the first query the same way
as VE does. MTI answers each subsequent query in a two-step procedure that can
readily be performed in a new secondary structure, called a marginal tree. First,
determine whether any computation can be reused. Second, only compute what is
missing to answer the query. One salient feature of MTI is that it does not involve
precomputation, meaning that every probability table built is necessarily used
in answering a query. In preliminary experimental results, MTI fairs favourably
when compared to VE and Cozman [4].

The remainder is organized as follows. Section 2 contains definitions. Marginal
trees are introduced in Section 3. Section 4 presents MTI. Related work is dis-
cussed in Section 5. Section 6 describes advantages and give preliminary exper-
imentals results. Conclusions are given in Section 7.

2 Definitions

2.1 Bayesian Network

Let U be a finite set of variables. Each variable vi ∈ U has a finite domain,
denoted dom(vi). A Bayesian network (BN) [2] on U is a pair (B,C). B is
a directed acyclic graph (DAG) with vertex set U and C is a set of conditional
probability tables (CPTs) {p(vi|P (vi)) | vi ∈ U}, where P (vi) denotes the parents
(immediate predecessors) of vi ∈ B. For example, Fig. 1 shows the extended
student Bayesian network (ESBN) [1], where CPTs are not shown. The product
of the CPTs in C is a joint probability distribution p(U). For X ⊆ U , the
marginal distribution p(X) is

∑
U−X p(U). Each element x ∈ dom(X) is called

a row (configuration) of X . Moreover, X ∪ Y may be written as XY . We call B
a BN, if no confusion arises.

Fig. 1. The DAG of the ESBN [1]

2.2 Variable Elimination

Variable elimination (VE) [3] computes p(X |E = e), where X and E are disjoint
subsets of U , and E is observed taking value e. In VE (Algorithm 1), Φ is the
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set of CPTs for B, X is a list of query variables, E is a list of observed variables,
e is the corresponding list of observed values, and σ is an elimination ordering
for variables U − (X ∪E). Evidence may not be denoted for simplified notation.

Algorithm 1. VE(Φ, X , E, e, σ)
Delete rows disagreeing with E = e from φ ∈ Φ
While σ is not empty:

Remove the first variable v from σ
Φ = sum-out(v, Φ)

p(X,E = e) =
∏

φ∈Φ φ
return p(X,E = e)/

∑
X p(X,E = e)

The sum-out algorithm eliminates v from a set Φ of potentials [1] by multi-
plying together all potentials involving v, then summing v out of the product.

Example 1. [1] Suppose p(j|h = 0, i = 1) is the query issued to the ESBN in
Fig. 1. One possible elimination order is σ = (c, d, l, s, g). The evidence h = 0
and i = 1 are incorporated into p(h|g, j), p(i), p(g|d, i), and p(s|i). VE then
computes:

p(d) =
∑
c

p(c) · p(d|c), (1)

p(g|i) =
∑
d

p(d) · p(g|d, i), (2)

p(j|g, s) =
∑
l

p(l|g) · p(j|l, s), (3)

p(j|g, i) =
∑
s

p(s|i) · p(j|g, s), (4)

p(h, j|i) =
∑
g

p(g|i) · p(h|g, j) · p(j|g, i). (5)

Next, the product of the remaining potentials is taken, p(h, i, j) = p(h, j|i) ·p(i).
VE answers the query by normalizing on the evidence variables, p(j|h, i) =
p(h, i, j)/

∑
j p(h, i, j).

3 Marginal Trees

We begin by motivating the introduction of marginal trees.

Example 2. Suppose p(s|h = 0, i = 1) is the second query issued to VE. One
possible elimination order is σ = (c, d, l, j, g). VE performs:

p(d) =
∑
c

p(c) · p(d|c), (6)

p(g|i) =
∑
d

p(d) · p(g|d, i), (7)
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p(j|g, s) =
∑
l

p(l|g) · p(j|l, s), (8)

p(h|g, s) =
∑
j

p(j|g, s) · p(h|g, j),

p(h|i, s) =
∑
g

p(h|g, s) · p(g|i),

p(s, h, i) = p(s|i) · p(i) · p(h|i, s),
p(s|h, i) = p(s, h, i)/

∑
s

p(s, h, i).

Note that VE’s computation in (1)-(3) for the first query is repeated in (6)-(8)
for the second query. We seek to avoid recomputation.

The second query p(s|h = 0, i = 1) can be answered from the following fac-
torization of the marginal p(h, i, s):

p(h, i, s) = p(s|i) · p(i) ·
∑
g

p(g|i) ·
∑
j

p(j|g, s) · p(h|g, j),

where the past calculation of p(g|i) in (2) and p(j|g, s) in (3) are reused.
We introduce marginal trees as a representation of past computation. This

secondary structure not only facilitates the identification of that computation
which can be reused, but also enables the determination of what missing infor-
mation needs to be constructed. It is based on the fact that VE can be seen as
one-way propagation in a join tree [5]. A join tree [5] is a tree having sets of
variables as nodes with the property that any variable in two nodes is also in
any node on the path between the two.

Definition 1. Given a Bayesian network B defining a joint probability distribu-
tion p(U). A marginal tree M is a join tree on X ⊆ U with CPTs of B assigned
to nodes of M and showing constructed messages in one-way propagation to a
chosen root node R of M yielding p(R).

The initial marginal tree has one node N , which has all variables from U . All
the CPTs from the BN are assigned to N . For example, the initial marginal tree
for the ESBN is depicted in Fig. 2 (i).

Each time a variable v is eliminated, a new marginal tree is uniquely formed
by replacing one node with two nodes and the CPT (containing only those rows
agreeing with the evidence) built during elimination is passed from one new
node to the other. We say that a CPT from N1 to N2 is outgoing from N1 and
incoming to N2.

Whenever v is eliminated, there exists a unique node N containing v without
outgoing messages. Let Γ be the set of all assigned CPTs and incoming messages
to N , Ψ is the set of all CPTs containing v, and τ the CPT produced by summing
out v. Replace N by nodes N1 andN2.N1 has Ψ assigned CPTs andN2 has Γ−Ψ
assigned CPTs. The variables in nodes N1 and N2 are defined by the variables
appearing in the CPTs assigned to N1 and N2, respectively. For each incoming
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Fig. 2. In Example 3, the initial marginal tree is in (i). The respective marginal trees
(ii)-(vi) formed by eliminating c,d,l,s and g are in (1)-(5), respectively.

message m from node Ni to N , if m ∈ Ψ , set m as incoming message from Ni to
N1; otherwise, set m as incoming message from Ni to N2. The outgoing message
from N1 to N2 is τ .

Example 3. In Example 1, the initial marginal tree is shown in Fig. 2 (i). Here,
Γ = {p(c), p(d|c), p(g|d, i), p(i), p(l|g), p(h|g, j), p(j|s, l), p(s|i)}. The CPTs
needed to eliminate variable c are Ψ = {p(c), p(d|c)}. A new marginal tree is
uniquely formed as shown in Fig. 2 (ii). Node N = {c, d, g, h, i, j, l, s} is replaced
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by N1 with assigned CPTs Ψ and N2 with Γ − Ψ . Thus, N1 = {c, d} and
N2 = {d, i, g, s, l, h, j}. As seen in (1), τ = p(d) is the outgoing message from N1

to N2. The new marginal tree with N1 and N2 can be seen in Fig. (2) (ii).
The subsequent elimination of variable d yields the marginal tree in Fig. (2)

(iii). The unique node containing d and having no outgoing messages is N =
{d, g, h, i, j, l, s}. All assigned CPTs and incoming messages to N are Γ = {p(d),
p(g|d, i), p(i), p(l|g), p(h|g, j), p(j|s, l), p(s|i)}. The CPTs used to eliminate
variable d are Ψ = {p(d), p(g|d, i)}. N is replaced by N1 with assigned CPTs Ψ
and N2 with Γ − Ψ . Then, N1 = {d, g, i} and N2 = {g, h, i, j, l, s}. There is one
incoming message p(d) from Ni = {c, d} to N . Since p(d) ∈ Ψ , N1 has p(d) as
an incoming message. When summing out d, τ = p(g|i) is the outgoing message
from N1 to N2. The new marginal tree with N1 and N2 is Fig. (2) (iii).

It can be verified that the elimination of variables l, s and g yield the marginal
trees shown in Fig. 2 (iv), (v) and (vi), respectively.

Observe in Example 3 that past computation is saved in marginal trees. For
example, the computation to answer query p(j|h = 0, i = 1) is saved in the
marginal tree of Fig. 2 (vi). Instead of processing a new query against the given
BN, we present in the next section a method for reusing computation saved in
a marginal tree.

4 Marginal Tree Inference

There are two general steps needed when answering a subsequent query. First,
determine which of the past computation can be reused. Second, compute what
is missing (in addition to the reused computation) to answer the query. In our
marginal tree representation, the former step requires modification of a marginal
tree, while the latter boils down to computing missing messages in the modified
marginal tree.

4.1 Determine Reusable Computation

Let the new query be p(X |E = e). We select nodes with reusable computation in
the marginal tree M with respect to the new query using the selective reduction
algorithm (SRA) [6], described as follows. Mark variables XE in a copy M

′
of

M . Repeatedly apply the following two operations until neither can be applied:
(i) delete an unmarked variable that occurs in only one node; (ii) delete a node
contained by another one.

Example 4. Let M be the marginal tree in Fig. 2 (vi) and M
′
be the copy in

Fig. 3 (i). Let N1 = {c, d}, N2 = {d, g, i}, N3 = {g, j, l, s}, N4 = {g, i, j, s},
N5 = {g, h, i, j} and N6 = {h, i, j}. Let the new query be p(s|h = 0, i = 1).
Variables s, h and i are first marked. Variable c can be deleted as it occurs only
in N1. Therefore, N1 = {d}. Now N1 can be deleted, since N1 ⊆ N2. It can
be verified that after applying steps (i) and (ii) repeatedly, all that remains is
N4 = {g, i, j, s} and N5 = {g, h, i, j}, as highlighted in Fig. 3 (ii).
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The SRA output is the portion of VE’s past computation that can be reused.
For instance, Example 4 indicates that the computation (1)-(3) for answering
query p(j|h = 0, i = 1) can be reused when subsequently answering the new
query p(s|h = 0, i = 1).

Now, we need to construct a marginal tree M
′
to be used to answer the new

query p(X |E = e) while at the same time reusing past computation saved in M .

Algorithm 3. Rebuild(M , XE)
Let M

′
be a copy of M

M
′′
= SRA(M

′
, XE)

N = ∪Ni∈M ′′Ni

Delete all messages between Ni ∈ M
′′
from M

′

Delete all nodes Ni ∈ M
′′
from M

′

Adjust messages as incoming to N accordingly
return M

′

Example 5. Supposing that the new query is p(s|h = 0, i = 1), then we call
Rebuild(M ,{s, h, i}), where M is the marginal tree in Fig. 2 (vi). Let M

′
be the

copy in Fig. 3 (i) and M
′′
= {N4 = {g, i, j, s}, N5 = {g, h, i, j}}. In Rebuild, the

next step sets N = N4 ∪N5 = {g, h, i, j, s}.
The message p(j|g, i) from N4 to N5 in Fig. 3 (i) is ignored in Fig. 3 (iii).

Moreover, all incoming messages to N4 and N5 remain as incoming messages to
the new node N . The output from Rebuild is the modified marginal tree depicted
in Fig. 3 (iv).

The key point is that the modified marginal tree has a node N containing
all variables in the new query. Thus, the query could be answered by one-way
probability propagation towards N in the modified marginal tree. For example,
query p(s|h = 0, i = 1) can be answered in the modified marginal tree in Fig. 4
(i) by propagating towards node N = {g, h, i, j, s}. However, some computation
can be reused when answering a new query. For example, it can be seen in Fig.
4 (ii) that messages p(d), p(g|i) and p(j|g, s) have already been built in (1)-(3)
and do not have to be recomputed.

4.2 Determine Missing Computation

Given a marginal tree M constructed for a query and a new query p(X |E = e)
such that XE is contained within at least one node N ∈ M , the partial-one-way-
propagation (POWP) algorithm determines which messages of M can be reused
when answering p(X |E = e), namely, it determines what missing computation
is needed to answer p(X |E = e). POWP works by determining the messages
needed for one-way propagation to root node N in M [7,8], and then ignoring
those messages that can be reused.

Example 6. Fig. 5 illustrates how POWP determines missing information to an-
swer a new query p(s|l = 0) from the marginal tree M in (i) previously built
when answering query p(j|h = 0, i = 1). In (ii), we consider node {g, j, l, s} as
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Fig. 3. (i) the marginal tree for Example 4. (ii) RSA outputs N4 = {g, i, j, s} and
N5 = {g, h, i, j}. (iii) N = {g, i, j, s} ∪ {g, h, i, j}. (iv) the modified marginal tree built
by RSA.

the new root node N , since the query variables s and l are contained in N .
One-way propagation towards N is shown in Fig. 5 (ii). POWP determines that
messages p(d) and p(g|i) can be reused from (1)-(2), and are hence ignored as
shown in Fig. 5 (iii).

The important point is that the new query can be answered at the root node
when POWP finishes.
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Fig. 4. (i) new messages needed to build a marginal factorization on new root N =
{g, h, i, j, s}. (ii) messages p(d), p(g|i) and p(j|g, s) built when answering a previous
query in (1)-(3) can be reused.

Example 7. In Fig. 5 (iii), once POWP to the root node N = {g, j, l, s} com-
pletes, p(s|l = 0) can be answered from the marginal factorization of p(N):
p(g, j, l, s) = p(l|g) · p(j|l, s) · p(g, s).

As another example, given the initial query p(j|h = 0, i = 1) and marginal tree
M in Fig. 3 (i), the following takes place to answer a new query p(s|h = 0, i = 1).
The modified marginal tree M

′
is depicted in Fig. 4 (i). The POWP algorithm

determines the messages to propagate to the root node N = {g, h, i, j, s}, chosen
as root since it contains the variables in the new query p(s|h = 0, i = 1). POWP
determines that messages p(d), p(g|i), and p(j|g, s) in Fig. 3 (i) can be reused in
Fig. 4 (i). Thus, only message p(i) needs to be computed in Fig. 4 (ii). And, lastly,
the query p(s|h = 0, i = 1) can be answered from the marginal factorization of
p(N):

p(g, h, i, j, s) = p(g|i) · p(j|g, s) · p(i) · p(s|i) · p(h|g, j).

The culmination of the ideas put forth thus far is formalized as the marginal
tree inference (MTI) algorithm.
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Fig. 5. (i) messages built answering the initial query p(j|h = 0, i = 1) in node {h, i, j}.
(ii) new root N = {g, j, l, s}. (iii) messages p(d) and p(g|i) can be reused while messages
p(g, s), p(g, i) and p(i) need to be built.

Algorithm 4. MTI(M , p(X |E = e))
M

′
= SRA(M , XE)

Rebuild(M
′
, XE)

POWP(M
′
, XE)

Compute p(X |E = e) at the root node of M
′

Return p(X |E = e)

MTI takes as input a marginal tree M built from a previous query and a new
query p(X |E = e).

For instance, answering p(j|h = 0, i = 1) in Example 1 builds the marginal
tree M in Fig. 2 (vi), as described in Example 3. Let p(s|l = 0) be the new query.
SRA outputs two nodes highlighted in Fig. 3 (ii), as illustrated in Example 4.
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In Example 5, Rebuild constructs M
′
, as depicted in Fig. 3 (iv). Next, POWP

determines reusable messages in Example 6, as illustrated in Fig. 4. Finally,
p(s|l = 0) can be calculated at the new root N = {g, j, l, s}, as discussed in
Example 7.

5 VE with Precomputation

Cozman [4] gives a novel algorithm in an attempt to reuse VE’s past compu-
tation. The crux of his algorithm can be understood as follows. As previously
mentioned, Shafer [5] has shown that VE’s computation to answer a query can
be seen as one-way propagation to a root node in a join tree. It is also known [5]
that conducting a subsequent outward pass from the root node to the leaves of
the join tree, called two-way propagation, builds marginals p(N) for every node
N in the join tree. Cozman’s method is to perform the outward second pass after
VE has conducted the inward pass for a given query. The marginals built during
the outward pass may be useful when answering a subsequent query.

As shown in [4], the VE algorithm can be described as follows. Given a query
p(X |E):

1. Compute the set of non-observed and non-query variables N = U −XE.
2. For each vi ∈ N

(a) Create a data structure Bi, called a bucket, containing:

– the variable vi, called the bucket variable;
– all potentials that contain the bucket variable, called bucket poten-

tials ;

(b) Multiply the potentials in Bi. Store the resulting potential in Bi; the
constructed potential is called Bi’s cluster.

(c) Sum out vi from Bi’s cluster. Store the resulting potential in Bi; this
potential is called Bi’s separator.

3. Collect the potentials that contain the query variables in a bucket Bq. Mul-
tiply the potentials in Bq together and normalize the result.

Denote the bucket variable for Bi as vi, the variables in Bi’s separator by Si,
and the evidence contained in the sub-tree above and including bucket Bi by
Ei. The outward pass is given by computing the marginal probability for every
variable in a BN. In order to update buckets immediately above the root, denoted
Ba, with the normalized potential containing va and some of the variables in X ,
compute:

p(va|E) =
∑
X

p(va|X,Ea) · p(X |E). (9)

Similarly, to update the buckets away from the root, say Bb, compute:

p(vb|E) =
∑
Sb

p(vb|Sb, Eb) · p(Sb|E). (10)
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Example 8. Given query p(j|h = 0, i = 1), Cozman’s method runs VE to answer
it. This inward pass generates a tree of buckets as shown in Fig. 6 (i). Next,
Cozman performs an outward pass with the following computation. In order to
use (9), first we need to compute p(va|X,Ea):

p(g|h, i, j) = p(g, h, j|i)/
∑
g

p(g, h, j|i). (11)

Now apply (9) to determine:

p(g|h, i) =
∑
j

p(g|j, h, i) · p(j|h, i). (12)

Similarly, in order to use (10) we first compute p(vb|Sb, Eb):

p(d|g, i) = p(d, g|i)/
∑
d

p(d, g|i). (13)

Now apply (10) to compute:

p(d|h, i) =
∑
g

p(d, g|i) · p(g|h, i). (14)

The remainder of the example is as follows:

p(c|d) = p(c, d)/
∑
c

p(c, d), (15)

p(c|h, i) =
∑
d

p(c|d) · p(d|h, i), (16)

p(s|g, i, j) = p(j, s|g, i)/
∑
s

p(j, s|g, i), (17)

p(s|h, i) =
∑
g,j

p(s|g, i, j) · (p(g|h, i) · p(j|h, i)), (18)

p(l|g, j, s) = p(l, j|g, s)/
∑
l

p(l, j|g, s), (19)

p(l|h, i) =
∑
g,j,s

p(l|g, j, s) · (p(g|h, i) · p(j|h, i) · p(s|h, i)). (20)

The outward pass can be illustrated in Fig. 6 (ii), where all buckets from (i)
were updated.

Whereas VE’s inward pass in Fig. 2 (vi) constructed p(j|h = 0, i = 1) at the
root node, Cozman’s outward pass constructed posteriors for all nodes in Fig. 2
(vi), namely, p(g|h = 0, i = 1) in (12), p(d|h = 0, i = 1) in (14), p(c|h = 0, i = 1)
in (16), p(s|h = 0, i = 1) in (18), and p(l|h = 0, i = 1) in (20).

The precomputation performed during the outward pass in [4] can be exploited
when answering subsequente queries as demonstrated in Example 9.

Example 9. Given a new query p(s|h = 0, i = 1), Cozman’s method can readily
answer it using (18).
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Fig. 6. In Example 8, (i) shows a tree of buckets for the inward pass and (ii) for the
outward pass as described in [4]

6 Experimental Results

In the section, we compare and contrast VE, Cozman’s approach, and marginal
tree inference.

While VE is a simple approach to BN inference, repeatedly applying VE on the
original BN can result in computation being duplicated, as previously discussed
in Section 3.

Cozman [4] can alleviate some repeated computation. For example, as shown
in Example 9, the computation in (17)-(18) for answering an initial query can
be reused to answer a subsequent query in Example 9.

On the other hand, the price to pay is that precomputation can build tables
that are never used. For instance, a second look at Example 9 reveals that the
tables p(l|g, j, s) in (19) and p(l|h, i) in (20) are not reused. This means that the
computation performed in (19)-(20) was wasteful.

We attempt here to stake out middle ground. One aim is to exploit VE as
it is such a simple and clear approach to inference. Like Cozman, we seek to
avoid repeated computation in VE. Unlike Cozman, however, our philosophy is
to never build a probability table that goes unused.

MTI saves VE’s past computation in marginal trees. Each time a new query
is issued, MTI checks to see whether VE’s past computation can be reused. If
yes, MTI determines both that computation which can be reused and that com-
putation which is missing. MTI proceeds to build only the missing computation.
In this way, the query is answered and all tables built by MTI are used.
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A preliminary empirical analysis is conducted as follows. We assume binary
variables. We consider the following six queries:

Q1 = p(j|h = 0, i = 1),

Q2 = p(s|h = 0, i = 1),

Q3 = p(d|h = 0, i = 1),

Q4 = p(j|h = 0, i = 1, l = 0),

Q5 = p(d|h = 0, i = 1, l = 0),

Q6 = p(s|l = 0).

Observe that the queries involve the same evidence, additional evidence, and
retracted evidence in this order. Table 1 shows the number of multiplications,
divisions, and additions for each approach to answer the six queries.

Table 1. Number of ( · , / , + ) to answer six queries in VE, MTI and Cozman’s
algorithm

Algorithm
Query

VE MTI Cozman

Q1 (76,8,34) (76,8,34) (220,68,80)

Q2 (72,8,34) (44,8,20) (0,0,24)

Q3 (84,8,38) (48,8,20) (0,0,8)

Q4 (84,16,38) (80,16,32) (212,68,100)

Q5 (132,16,50) (128,16,48) (0,0,16)

Q6 (56,4,24) (44,4,22) (136,48,74)

Total (504,60,218) (420,60,210) (568, 184, 302)

Table 1 shows several interesting points. First, the number of multiplications,
divisions, and additions for MTI will never exceed those for VE, respectively.
MTI seems to show a small but noticeable improvement over VE. The useful-
ness of Cozman’s approach is clearly evident from queries Q2, Q3 and Q5, but
is overshadowed by the wasteful precomputation for the other queries. Based on
these encouraging results, future work includes a rigorous comparison on numer-
ous real world and benchmark BNs, as well as establishing theoretical properties
of marginal tree inference.
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7 Conclusions

Applying VE against a given Bayesian network for each query can result in
repeated computation. Cozman [4] alleviates some of this repeated computation,
but at the expense of possibly building tables that remain unused. Our approach
in this paper is to stake out middle ground.

Marginal tree inference seeks to maximize the reuse of VE’s past computation,
while at the same time ensuring that every table built is used to answer a query.
This is consistent with [3], where it is emphasized that VE does not support
precomputation.

Future work will investigate relationships and provide empirical comparisons
betweenMTI and join tree propagation [5], including Lazy propagation [9,10,11,12]
and various extensions such as using prioritized messages [13], message construc-
tion using multiple methods [14,15,16], and exploiting semantics [7,8].
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Abstract. Influence Diagrams are an effective modelling framework for
analysis of Bayesian decision making under uncertainty. Improving the
performance of the evaluation is an element of crucial importance as real-
world decision problems are more and more complex. Lazy Evaluation
is an algorithm used to evaluate Influence Diagrams based on message
passing in a strong junction tree. This paper proposes the use of Sym-
bolic Probabilistic Inference as an alternative to Variable Elimination for
computing the clique-to-clique messages in Lazy Evaluation of Influence
Diagrams.
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1 Introduction

Influence Diagrams (IDs) [1] are a tool to represent and evaluate decision prob-
lems under uncertainty. A technique used to evaluate IDs is Lazy Evaluation
(LE) [2,3]. Its basic idea is to maintain a decomposition of the potentials and
postpone computations for as long as possible. Thus it is possible to exploit
barren variables and independence induced by evidence.

LE is based on message passing in a strong junction tree, which is a repre-
sentation of a decision problem represented as an ID. Computing the messages
involves the removal of variables. In the original proposal, the method used is
Variable Elimination (VE) [3]. An alternative method for removing a set of vari-
ables from a set of potentials is Symbolic Probabilistic Inference algorithm (SPI)
[4,5,6], which considers the removal as a combinatorial factorization problem.
That is, SPI tries to find the optimal order for the combinations and marginal-
izations (i.e. max-marginalization and sum-marginalization). In a previous paper
[7], the basic version of the SPI algorithm was described for the direct evaluation
of IDs. This algorithm was also proposed as an alternative for computing clique-
to-clique messages in LE of Bayesian Networks (BNs) [8]. Our contribution is
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c© Springer International Publishing Switzerland 2014



98 R. Cabañas et al.

to describe how the SPI algorithm can be used for computing the messages in
LE of IDs. This new method for evaluating IDs is called SPI-Lazy Evaluation
(SPI-LE). The differences between BNs and IDs must be considered: two kinds
of potentials, the temporal order between decisions, etc. The experimental work
shows how SPI can improve the efficiency of LE. In the experimental work we
use a set of IDs present in the literature.

The paper is organized as follows: Section 2 introduces basic concepts about
IDs, LE and the motivation of this work; Section 3 describes how SPI can be used
for computing the messages in LE of IDs; Section 4 includes the experimental
work and results; finally Section 5 details our conclusions and lines for future
work.

2 Preliminaries

2.1 Influence Diagrams

An ID [1] is a Probabilistic Graphical Model for decision analysis under un-
certainty which contains three kinds of nodes: decision nodes (squares) that
correspond with the actions which the decision maker can control; chance nodes
(circles) representing random variables; and utility nodes (diamonds) represent-
ing the decision maker preferences. Fig. 1 shows an example of an ID.

B

C

E

F

A GD1 D2

U1

U2

Fig. 1. An example of an ID with the partial order is {A} ≺ D1 ≺ {G} ≺ D2 ≺
{B,C,E, F}

We denote by UC the set of chance nodes, by UD the set of decision nodes,
and by UV the set of utility nodes. The decision nodes have a temporal order,
D1, . . . , Dn, and the chance nodes are partitioned into a collection of disjoint
sets according to when they are observed: I0 is the set of chance nodes observed
before D1, and Ii is the set of chance nodes observed after decision Di is taken
and before decision Di+1 is taken. Finally, In is the set of chance nodes observed
after Dn. That is, there is a partial order: I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In.
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In the description of an ID, it is more convenient to think in terms of prede-
cessors: the parents of a chance node Xi, denoted pa(Xi), are also called con-
ditional predecessors. The parents of a utility node Vi, denoted pa(Vi), are also
called conditional predecessors. Similarly, the parents of a decision Di are called
informational predecessors and are denoted pa(Di). Informational predecessors
of each decision Di, must include previous decisions and their informational
predecessors (no-forgetting assumption).

The universe of the ID is U = UC ∪ UD = {X1, . . . , Xm}. Let us suppose
that each variable Xi is discrete and it takes values on a finite set ΩXi =
{x1, . . . , x|ΩXi

|}. Each chance node Xi has a conditional probability distribu-
tion P (Xi|pa(Xi)) associated. In the same way, each utility node Vi has a utility
function U(pa(Vi)) associated. In general, we will talk about potentials (not nec-
essarily normalized). The set of all variables involved in a potential φ is denoted
dom(φ), defined on Ωdom(φ) = ×{ΩXi |Xi ∈ dom(φ)}. The elements of Ωdom(φ)

are called configurations of φ. Therefore, a probability potential denoted by φ is
a mapping φ : Ωdom(φ) → [0, 1]. A utility potential denoted by ψ is a mapping
ψ : Ωdom(ψ) → R. The set of probability potentials is denoted by Φ while the set
of utility potentials is denoted by Ψ .

An arc between an informational predecessor and a decision is redundant if it
is d-separated from the utility nodes given the rest of informational predecessors.
Any redundant arc can be removed [9]. If no-forgetting arcs have been added
and redundant arcs have been removed, the parents of a decision compose its
relevant past. A chance or decision node is a barren node if it is a sink, in other
words, it has no children or only barren descendants. Any barren node can be
directly removed from the ID.

The goal of evaluating an ID is to obtain an optimal policy δi for each decision
Di, that is a function of a subset of its informational predecessors. The optimal
policy maximizes the expected utility for the decision. A strategy is an ordered
set of policies Δ = {δ1, . . . , δn}, including a policy for each decision variable. An

optimal strategy Δ̂ returns the optimal choice the decision maker should take
for each decision.

Optimal policy: Let ID be an influence diagram over the universe U = UC∪UD

and let UV be the set of utility nodes. Let the temporal order of the variables be
described as I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In. Then, an optimal policy for Di is

δDi(I0, D1, . . . , Ii−1) =

= argmax
Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

∏
X∈UC

P (X |pa(X))

( ∑
V ∈UV

U(pa(V ))

)
(1)

2.2 Lazy Evaluation

Lazy Evaluation (LE) was already used for making inference in BNs [10], so it can
be adapted for evaluating IDs [2,3]. The basic idea of this method is to maintain
the decomposition of the potentials for as long as possible and to postpone
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computations for as long as possible, as well as to exploit barren variables. LE
is based on message passing in a strong junction tree, which is a representation
of an ID built by moralization and by triangulating the graph using a strong
elimination order [11].

Nodes in the strong junction trees correspond to cliques (maximal complete
subgraphs) of the triangulated graph. Each clique is denoted by Ci where i is the
index of the clique. The root of the strong junction tree is denoted by C1. Two
neighbour cliques are connected by a separator which contains the intersection
of the variables in both cliques. The size of a clique Ci, denoted |Ci|, is the
number of variables. The weight of a clique Ci, denoted w(Ci), can be defined
as
∏

X∈Ci
|ΩX |. An example of a strong junction tree is shown in Fig. 2.

C1

A,D1, G

C4

A,G,D2, B, C

C7

A,D2, B, C,E, F

A,G

A,B,C,D2

Root

S4

S7

ΦC1 = {φ(G,D1)}

ΦC4 = {φ(B), φ(C)}
ΨC4 = {ψ(G,D2, C,B)}

ΦC7 = {φ(E), φ(F ), φ(A,B,C,E, F )}
ΨC7 = {ψ(D2, E, F )}

Φ∗
S4 = {φ(A)}

Ψ∗
S4

= {ψ(A,G)}

Φ∗
S7 = {φ(A,B,C)}

Ψ∗
S7{ψ(A,B,C,D2)}

−→
−→

Fig. 2. Strong junction tree for the ID shown in Fig. 1 with the potentials associated
to each clique (right) and messages stored at each separator (left)

Propagation is performed by message-passing. Initially, each potential is asso-
ciated to the closest clique to the root containing all its variables. These poten-
tials are not combined, so during propagation each clique and separator keeps
two sets of potentials (one for probabilities and another for utilities). Sets of
potentials stored in a clique Cj are denoted ΦCj and ΨCj . Similarly, sets of
potentials (or messages) stored in a separator Sj are denoted Φ∗

Sj
and Ψ∗

Sj
. Mes-

sage propagation starts by invoking the Collect Message algorithm in the root
(Algorithm 1).

Algorithm 1 (Collect Message) Let Cj be a clique where Collect Message is
invoked, then:

1. Cj invokes Collect Message in all its children.
2. The message to the clique parent of Cj is built and sent by absorption (Al-

gorithm 2).

A clique can send the message to its parent (Absorption) if it has received all
the messages from its children. Consider a clique Cj and its parent separator Sj .
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Absorption in Cj amounts to eliminating the variables of Cj\Sj from the list of
probability and utility potentials associated with Cj and the separators of ch(Cj)
and then associating the obtained potentials with Sj . The original proposal [3]
uses VE for removing the variables. Thus we will refer to this method as VE-Lazy
Evaluation (VE-LE)

Algorithm 2 (Absorption) Let Cj be a clique, Sj be the parent separator and
S′ ∈ ch(Cj) be the child separators. If Absorption is invoked on Cj, then:

1. Let RSj = ΦCj ∪ ΨCj ∪
⋃

S′∈ch(Cj)
(Φ∗

S′ ∪ Ψ∗
S′) .

2. Let X = {X |X ∈ Cj , X �∈ Sj} the variables to be removed.
3. Choose an order to remove the variables in X.
4. Marginalize out all variables in X from RSj . Let Φ

∗
Sj

and Ψ∗
Sj

be the set of
probability and utility potentials obtained.

5. Associate Φ∗
Sj

and Ψ∗
Sj

to the parent separator Sj.

The propagation finishes when the root clique has received all the messages.
The utility potential from which each variable Di is eliminated during the eval-
uation should be recorded as the expected utility for the decision Di. The values
of the decision that maximizes the expected utility is the policy for Di. In case
of decisions that are attached to the root node, the expected utility and policy
is calculated by marginalizing out all variables in the root clique that do not
belong to the relevant past of the decision.

2.3 Motivation

When Absorption is invoked on a clique, all variables in the clique not present
in the parent separator are marginalized out from the set of relevant potentials.
The original definition of LE proposes using Variable Elimination (VE) [3]. This
algorithm chooses at each step a variable to remove based on any criteria or
heuristic. This removal involves combining all potentials containing the chosen
variable. Let us consider the strong junction tree shown in Fig. 2. If Absorption
is invoked on C7, variables E and F are marginalized out in order to compute
the messages to S7, denoted Φ∗

S7
and Ψ∗

S7
. The computations performed using

VE are:

Φ∗
S7

=

{∑
E

P (E)
∑
F

P (F )P (A|B,C,E, F )

}
(2)

Ψ∗
S7

=

{∑
E P (E)P (A|B,C,E)

∑
F P (F )P (A|B,C,E,F )U(D2,E,F )

P(A|B,C,E)

P (A|B,C)

}
(3)

Assuming that all the variables are binary, the computation of Φ∗
S7

and Ψ∗
S7

requires 144 multiplications and 72 additions and 48 divisions. Independently
of the elimination ordering used to remove E and F , VE will always have to
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combine the marginal potentials with a large potential such as P (A|B,C,E, F ).
However, with a re-order of the operations this situation can be avoided:

Φ∗
S7

=

{∑
E

∑
F

(P (A|B,C,E, F ) (P (E)P (F )))

}
(4)

Ψ∗
S7

=

{∑
E

∑
F (P (A|B,C,E, F ) (P (E)P (F ))U(D2, E, F ))

P (A|B,C)

}
(5)

Using Eq. (4) and (5) the computation of the messages requires 100 multi-
plications, 72 additions and 16 divisions. In some cases it could be better to
combine small potentials even if they do not share any variable (e.g., P (E) and
P (F )). This combination will never be performed using VE since it is guided
by the elimination ordering. Thus the efficiency of the message computation
can be improved if an optimal ordering for the operations of marginalization
and combination is found [5]. To overcome this, we propose for computing the
clique-to-clique messages the SPI algorithm , which is more flexible than VE.

3 SPI Lazy Evaluation

3.1 Overview

SPI Lazy Evaluation (SPI-LE) uses SPI instead of VE in order to compute
the messages. Thus the process for building the strong junction tree and Collect
Message algorithm are the same. The general scheme of the Absorption algorithm
is slightly different (see Algorithm 3). The main difference is that the set of
variables to remove is partitioned into disjoint subsets of chance variables or
single sets of decisions. Then, the removal of these subsets of variables is invoked
in an order that respects the the temporal constraints. Notice that the removal
of a subset of variables Xk is invoked only on the set of potentials containing
any variable in Xk.

Algorithm 3 (Absorption SPI) Let Cj be a clique, Sj be the parent separator
and S′ ∈ ch(Cj) be the child separators. If Absorption is invoked on Cj, then:

1. Set the relevant potential sets:
Φ∗
Sj

:= ΦCj ∪
⋃

S′∈ch(Cj)
Φ∗
S′ Ψ∗

Sj
:= ΨCj ∪

⋃
S′∈ch(Cj)

Ψ∗
S′

2. Let X := {X |X ∈ Cj , X �∈ Sj} the variables to remove.
3. Partition X into disjoint subsets of chance variables or single sets of de-

cisions. Determine a partial order of the subsets that respects the temporal
constraints: {X1 ≺ X2 ≺ · · · ≺ Xn}

4. For k := n to 1 do:

(a) Set ΦXk
:= {φ ∈ Φ∗

S |Xk ∩ dom(φ) �= ∅} and ΨXk
:= {ψ ∈ Ψ∗

S |Xk ∩
dom(ψ) �= ∅}.
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(b) Remove Xk from ΦXk
and ΨXk

. If Xk is a subset of chance variables use
Algorithm 4, otherwise use Algorithm 6. The inputs to these algorithms
are Xk, ΦXk

and ΨXk
while Φ∗

Xk
and Ψ∗

Xk
are the sets of potentials

obtained.
(c) Update the relevant potential sets:

Φ∗
Sj

:= (Φ∗
Sj
\ΦXk

) ∪ Φ∗
Xk

Ψ∗
Sj

:= (Ψ∗
Sj
\ΨXk

) ∪ Ψ∗
Xk

5. Associate Φ∗
Sj

and Ψ∗
Sj

to the parent separator Sj.

3.2 Removal of Chance Variables

In order to remove a subset of chance variables X from ΦX and ΨX, SPI consid-
ers probability and utility potentials separately: first, SPI tries to find the best
order for combining all potentials in ΦX. For that purpose, all possible pairwise
combinations between the probability potentials are stored in the set combina-
tion candidate set B. Besides, B also contains those probability potentials that
contain any variable of X which is not present in any other potential of ΦX,
that is a variable that can be directly removed (without performing any com-
bination). At each iteration, an element of B is selected. If this element is a
pair, both potentials are combined. The procedure stops when all variables have
been removed. A variable can be removed in the moment it only appears in a
single probability potential. Notice that this algorithm produces a factorization
of potentials. This procedure is shown in Algorithm 4.

Algorithm 4 (Removal of a subset of chance variables) Let X be a set
of chance variables, ΦX and ΨX be sets of probability and utility potentials rele-
vant for removing X. If the removal of X is invoked on ΦX and ΨX, then:

1. Initialize the combination candidate set B := ∅.
2. Repeat:

(a) Add all pairwise combinations of elements of ΦX to B which are not
already in B.

(b) Add to B all potentials in ΦX which are not already in B and that contain
any variable of X which is not present in any other potential of ΦX, that
is a variable that can be removed.

(c) Select a pair p := {φi, φj} or a singleton p := {φi} from B according to
some heuristic.

(d) If p is a pair, then φij := φi ⊗ φj . Otherwise, φij := φi

(e) Determine the set W of variables that can be sum-marginalized:

W := {W ∈ dom(φij) ∩X|∀φ ∈ ΦX\p : W �∈ dom(φ)}

(f) Select the utility potentials relevant for removing W:

ΨW := {ψ ∈ ΨX|W ∩ dom(ψ) �= ∅}
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(g) If W �= ∅, sum-marginalize variables in W from φij and ΨW. A proba-

bility potential φ↓W
ij and a set of utility potentials Ψ↓W are obtained as

a result (Algorithm 5).
(h) Update:

– X := X\W
– If p is a pair, ΦX := ΦX\{φi, φj} and remove any element in B

containing φi or φj . Otherwise, ΦX := ΦX\{φi} and remove any
element in B containing φi.

– ΦX := ΦX ∪ {φ↓W
ij } ΨX := (ΨX\ΨW) ∪ Ψ↓W

Until X = ∅:
3. Return ΦX and ΨX.

In Algorithm 4 only probability potentials are combined while utility poten-
tials are not. The utility potentials must be combined with φij which is the
resulting potential of combining all potentials containing X . For that reason,
the utilities can only be combined when a variable can be removed. That is the
moment when φij has been calculated. The procedure for sum-marginalizing a
set of variables (Algorithm 5) involves finding good order for summing the utility
potentials. The procedure for that is quite similar to the procedure for combin-
ing probabilities, the main difference is that in the moment a variable can be
removed, the probability and utility potentials resulting of the marginalization
are computed. Notice that this procedure is invoked on ΨW ⊆ ΨX.

Algorithm 5 (Sum-marginalization) Let φ be a probability potential and
ΨW a set of utility potentials relevant for removing the chance variables in W.
Then, the procedure for sum-marginalizating W from φ and ΨW is:

1. Initialize the combination candidate set B′ := ∅.
2. if ΨW = ∅, then return

∑
W φ

3. Repeat:
(a) Add all pairwise combinations of elements of ΨW to B′ which are not

already in B′.
(b) Add to B′ all potentials in ΨW which are not already in B′ that contains

any variable of W which is not present in any other potential of ΨW,
that is a variable that can be removed.

(c) Select a pair q := {ψi, ψj} or a singleton q := {ψi} from B′ according to
some heuristic.

(d) If q is a pair, then ψij := ψi + ψj. Otherwise, ψij := ψi

(e) Determine the set V of variables that can be sum-marginalized:

V := {V ∈ dom(ψij) ∩W|∀ψ ∈ ΨW\q : V �∈ dom(ψ)}

(f) If, V �= ∅, sum-marginalize V, giving as a result:

φ↓V :=
∑
V

φ ψ↓V :=
∑
V

(φ⊗ ψij)/φ
↓V
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(g) Update:
– W := W\V
– If q is a pair, ΨW := ΨW\{ψi, ψj} and remove any element in B′

containing ψi or ψj. Otherwise, ΨW := ΨW\{ψi} and remove any
element in B′ containing ψi.

– φ := φ↓V and ΨW := ΨW ∪ {ψ↓V}
Until W = ∅

4. Return φ and ΨW.

3.3 Removal of Decision Variables

The removal of a decision variable does not imply the combination of any prob-
ability potential since any decision is d-separated from its predecessors [12] and
any successor has already been removed (the removal order of the disjoint sub-
sets of variables must respect the temporal constraints). Thus, any probability
potential φ(Dk,X) must be directly transform into φ(X) if Dk is a decision and
X is a set of chance variables that belong to Ii with i < k. This property is used
at step 2 of Algorithm 6.

Algorithm 6 (Removal of a decision) Let D be a decision variable, ΦD and
ΨD be sets of probability and utility potentials relevant for removing D. If the
removal of D is invoked on ΦD and ΨD, then:

1. For each φ ∈ ΦD, remove D by restricting φ to any of the values of D. The
set of potentials Φ↓D is given as a result.

2. Max-marginalize variable D from ΨD. A new potential ψ↓D is obtained as a
result (Algorithm 7).

3. Return Φ↓D and ψ↓D

Algorithm 7 shows the procedure for finding the best order for summing all
utility potentials containing a decision D. Notice that the pairwise candidate set
does not contain singletons and the sum-marginalization is performed once all
utility potentials have been summed.

Algorithm 7 (Max-marginalization) Let D be a decision variable and ΨD

be a set of utility potentials containing D. Then, the procedure for max-
marginalizating D from ΨD is:

1. Initialize the combination candidate set B′ := ∅.
2. While |ΨD| > 1:

(a) Add all pairwise combinations of elements of ΨD to B′ which are not
already in B′.

(b) Select a pair q := {ψi, ψj} according to some heuristic and sum both
potentials giving as a result ψij.

(c) Update:
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– Delete all pairs p of B′ where ψi ∈ p or ψj ∈ p.
– ΨD := ΨD\{ψi, ψj} ∪ {ψij}.

3. Let ψD be the single potential in Ψ .
4. Max-marginalize D, giving as a result ψ↓D := maxD ψD and record the policy

for D.
5. Return ψ↓D .

3.4 Heuristics

During the removal of the chance variables, at each iteration a pair of probabil-
ity potentials is selected to be combined (Definition 4, step 2.c). For that, any
heuristic used with VE can be adapted for selecting a pair. Let p := {φi, φj} be
a candidate pair to be combined, let φij = φi ⊗ φj be the resulting potential of
the combination. Then the heuristic minimum size [13] will select a pair mini-
mizing Eq. (6). Thus minimum size heuristic chooses a pair that minimizes the
number of variables in the resulting potential. This heuristic can also be used
for selecting a pair of utility potentials at steps 3.c and 2.b of Definitions 5 and
7 respectively.

min size(p) = |dom(φi) ∪ dom(φj)| = |dom(φij)| (6)

Let W be the set of variables that can be removed after combining potentials
in p. Then the algorithm should check if any variable in W is a probabilistic
barren, that is a barren node if only the set of probability potentials are con-
sidered. The removal of a probabilistic barren from a probability potential leads
to an unity-potential. During the calculation of messages unity-potentials are
not calculated and if the denominator of a division is a unity-potential, then the
division is no not performed.

3.5 Example

To illustrate the computations of the messages using SPI-LE, let us consider the
strong junction tree shown in Fig. 2 representing the ID in Fig. 1 with binary
variables. To simplify the notation, φ(X1, . . . , Xn) will be denoted φX1,...,Xn .

Initially, Collect Message (Algorithm 1) is invoked on the root clique C1 and
recursively invoked on its children. Once Collect Message is invoked on the leaf
clique C7, the messages for the parent separator S7 are computed (Algorithm
3). The relevant potentials are:

Φ∗
S := {φE , φF , φABCEF } Ψ∗

S := {ψD2EF }

Variables {E,F} must be removed for computing the messages. Both of them
belong to I2, so they can be removed in any order. Then, the removal of {E,F} is
invoked on {φE , φF , φABCEF }∪{ψD2EF } (Algorithm 4). The initial combination
candidate set B is:

B := {{φE, φF }, {φE, φABCEF }, {φF , φABCEF }}
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φ
(4)
ABC

φ
(2)
ABCEF

φ
(1)
EF

φE φF

φABCEF

↓ {E,F}

ψ
(5)
ABCD2

ψ
(3)
ABCEFD2

φABCEF ψD2EF

↓ {E,F}

φ
(10)
A

φ
(7)
ABC

φ
(6)
BC

φB φC

φABC

↓ {B,C}

ψ
(11)
AGD2

ψ
(9)
ABCGD2

φABC ψ
(8)
ABCGD2

ψGD2CB ψABCD2

↓ {B,C}

(a) (b) (c) (d)

Fig. 3. Combination order of the probability and utility potentials obtained using SPI
for removing chance variables when computing the messages sent from C7 (a and b)
and from C4 (c and d) to their respective parent separators in the strong junction tree
shown in Fig.2.

Notice that the set B does not contain any singleton because none of the
variables appear only in one potential. If minimum size is the heuristic used, the
element of B chosen is the pair {φE , φF }. Both potentials are combined giving
as a result a new potential φEF . None of the variables can be marginalized as
they are also contained in φABCEF . In the second iteration, the combination
candidate set is updated as follows:

B := {{φEF , φABCEF }}

Now, the single pair of B is chosen and both potentials are combined giv-
ing as a result a new potential φABCEF from which variables E and F can
be sum-marginalized out. Using Algorithm 5 these variables are removed from
the resulting probability potential and also from the utility potential ψD2EF .
For that, a combination candidate set B′ with the relevant utility potentials is
generated:

B′ := {{ψD2EF }}

Since B′ contains only one element which is a singleton, the algorithm per-
forms directly removal of variables E and F from φABCEF and ψD2EF (Algo-
rithm 5 step 3.f). The resulting potentials are φABC and ψABCD2 which are, in
this case, the messages for the parent separator.

The whole process for computing the messages from C7 is shown in Fig.
3.a and 3.b in two factor graphs [14]. Nodes without any parent correspond
to initial potentials while child nodes correspond to the resulting potentials of
a combination. The numbers above each potentials indicate the combination
ordering and arcs labels indicate the variables that are sum-marginalized.

When absorption is invoked on C4, a similar procedure is followed for removing
variables B,C and D2. Now, these variables are partitioned into the disjoint
subsets {{D2} ≺ {B,C}}. First, variables B and C are removed using Algorithm
4 giving as a result the potentials φA and ψAGD2 . The process for this removal is



108 R. Cabañas et al.

shown in Fig. 3.c and 3.d. The removal of D2 is now performed using Algorithm
6 and it is almost directly since it only involves the utility potential ψAGD2 .
Messages computed to the parent separator are φA and ψAG.

4 Experimental Work

4.1 Procedure

For testing purposes, a set of 10 IDs from the literature are used: NHL is a real
world IDs used for medical purposes [15]; an ID used to evaluate the population
population viability of wildlife species [16]; the oil wildcatter’s problem[17]; the
Chest Clinic ID [18] obtained from the Asia BN; an ID representing the decision
problem in the poker game [12]; an ID used at agriculture for treating mildew
[12]; an ID to model a simplified version of the dice game called Think-box 1;
finally, three synthetic IDs are used: the motivation example shown in Fig. 1
with binary variables and the ID used by Jensen et al. in [2]. The details of these
IDs are shown in Table 1, which contains the number of nodes of each kind.

Table 1. Features of the IDs used for the experimental work

Number of nodes
ID Chance Decisions Utility

NHL 17 3 1

Wildlife 9 1 1

Oil Wildcatter 2 2 2

ChestClinic 8 2 2

Poker 7 1 1

Mildew 7 2 2

Motivation ID 6 2 2

Jensen et al. 12 4 4

Thinkbox 5 2 4

Car buyer 3 3 1

From each ID a strong junction tree is built using the minimum size heuris-
tic [13] for triangulating the graph. Table 2 shows, for each tree, the number
of cliques, the minimum and maximum clique size |C| and the minimum and
maximum clique weight w(C).

The message passing is performed using SPI-LE and VE-LE. In the first case,
the heuristic used for selecting the next pair to combine is minimum size as
described in Section 3.4. For the VE-LE the order used for removing the variables
is the same than the one used during the triangulation. It must be noticed that
in both cases a similar heuristic is used in order to obtained comparable results.
For each evaluation, the number of operations involved is measured. The ratio

1 http://www.hugin.com/technology/samples/think-box

http://www.hugin.com/technology/samples/think-box
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Table 2. Features of the strong junction trees used for the experimental work obtained
with minimum size heuristic

|C| w(C)
Cliques min max min max

NHL 8 5 12 32 5.530·105

Wildlife 7 3 4 8 16

Oil Wildcatter 1 4 4 36 36

ChestClinic 5 3 6 8 64

Poker 5 3 3 32 324

Mildew 4 4 6 256 9408

Motivation ID 3 3 6 8 64

Jensen et al. 9 3 5 8 32

Thinkbox 2 4 6 8 384

Car buyer 1 6 6 384 384

between the number of operations using both methods can be computed using
Eq. (7). A value lower than 1 means a better performance of SPI-LE.

ratio =
SPI-LE operations

V E-LE operations
(7)

In order to check that SPI-LE does not have a large overhead, the CPU time
needed for the evaluation of each ID is also measured. All the algorithms are
implemented in Java with the Elvira Software2. The tests are run on a Intel Core
i7-2600 (8 cores, 3.4 GHz). Each evaluation is repeated 10 times to avoid the
effects of outliers. To analyze the reduction in the evaluation time, the speed-up
can be computed using Eq. (8). In this case, a value higher than 1 means a better
performance of SPI-LE.

speed-up =
V E-LE CPU time

SPI-LE CPU time
(8)

4.2 Results

Table 3 shows the total number of operations needed for each evaluation and
the ratio of the number of operations using SPI-LE to the number of operations
using VE-LE. It can be observed that in most of the cases the number of oper-
ations required using SPI-LE is lower than using VE-LE. The ID representing
the wildcatter’s problem requires the same number of operations with both al-
gorithms. The reason for that is that this ID is too simple to obtain any gain.
By contrast the higher reduction (lower ratio) is obtained when evaluating the
NHL ID, which is the largest ID used in the experimentation.

Table 4 shows the number of operations of each kind used for the evaluation
using each method. That is the number of multiplications, divisions, additions

2 http://leo.ugr.es/~elvira

http://leo.ugr.es/~elvira
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Table 3. Total number of operations used for evaluating each ID using SPI-LE and
VE-LE

ID SPI-LE VE-LE ratio

NHL 2.848·106 4.660·106 0.611

Wildlife 163 172 0.948

Oil Wildcatter 121 121 1

ChestClinic 534 576 0.927

Poker 1781 1916 0.93

Mildew 3.133·104 3.218·104 0.974

Motivation ID 320 428 0.748

Jensen et al. 270 280 0.964

Thinkbox 1872 2308 0.811

Car buyer 1518 1535 0.989

and max-comparisons. It can be observed that the gain is mainly obtained due
to the reduction in the number of multiplications. The number of multiplications
required using SPI-LE is always lower or equal than using VE-LE. By contrast,
in some cases, the rest of operations is higher if SPI-LE is used.

Table 4. Number of each kind operation used for evaluating each ID using SPI-LE
and VE-LE

Multiplications Divisions Additions Max comparisons
ID SPI-LE VE-LE SPI-LE VE-LE SPI-LE VE-LE SPI-LE VE-LE

NHL 1.566·106 2.674·106 1.248·104 5.794·105 1.258·106 1.386·106 1.104·104 2.120·104

Wildlife 104 110 8 8 50 52 1 2

Oil Wildcatter 60 60 12 12 42 42 7 7

ChestClinic 268 280 80 96 168 180 18 20

Poker 970 1186 18 0 792 729 1 1

Mildew 1.552·104 1.626·104 1408 1472 1.346·104 1.346·104 944 992

Motivation ID 152 212 24 72 138 138 6 6

Jensen et al. 152 156 16 16 92 96 10 12

Thinkbox 592 624 224 256 936 1296 120 132

Car buyer 736 864 224 192 440 364 118 115

The reduction in the number of operations needed for evaluating an ID should
lead more efficient algorithms. Table 5 shows the CPU time needed for evalu-
ating each ID and the speed-up obtained using SPI-LE with respect to VE-LE.
For all the IDs, the CPU time is lower if SPI-LE is used instead for VE-LE. The
speed-up obtained when evaluating NHL ID is not really high though there is a
great difference in the number of operations. The reason for that is that SPI-LE
is likely to have a larger overhead than VE-LE, specially with large ID where
the algorithm considers a large number of pairwise combinations. However, the



On SPI-Lazy Evaluation of Influence Diagrams 111

Table 5. CPU time in milliseconds and speed-up needed for evaluating each ID using
SPI-LE and VE-LE

ID SPI-LE VE-LE speed-up

NHL 7944.2 1.461·104 1.839

Wildlife 167.7 188 1.121

Oil Wildcatter 78.6 89.1 1.134

ChestClinic 42.7 204.3 4.785

Poker 16.1 187.6 11.652

Mildew 81.2 204.7 2.521

Motivation ID 63.5 159.2 2.507

Jensen et al. 54.3 311.2 5.731

Thinkbox 50.3 131.8 2.62

Car buyer 63.6 159.8 2.513

gain obtained with the reduction in the number of operations compensates this
large overhead.

5 Conclusions and Future Work

In the present paper we have described how the SPI algorithm can be used for
computing clique-to-clique messages in LE of IDs. This algorithm considers the
removal of a set of variables as a combinatorial factorization problem. Thus SPI
is more fine-grained than VE as it considers the order in which potentials are
combined. Detailed methods for computing the messages using SPI-LE are given.

The experimentation have shown that using SPI for computing the messages
is more efficient than using VE. The number of operations, particularly the
number of multiplications, is reduced for most of the IDs. Even though SPI-
LE usually have a larger overhead than VE-LE, experiments have shown that
the CPU time needed for the evaluation is reduced as well: the reduction in the
number of operations compensates this larger overhead. The experimentation has
been performed using one of the heuristics minimum size. It could be interesting
looking for alternative heuristics since the efficiency of the evaluation depends
on this heuristic.

The SPI algorithm used only considers next pair of potentials to combine.
Thus another line of future research could be studying the behaviour of the
algorithm using a higher neighbourhood degree.

Acknowledgments. This research was supported by the Spanish Ministry of
Economy and Competitiveness under project TIN2010-20900-C04-01, the Eu-
ropean Regional Development Fund (FEDER), the FPI scholarship programme
(BES-2011-050604). The authors have also been partially supported by “Junta
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Abstract. This paper proposes a flexible framework to work with prob-
abilistic potentials in Probabilistic Graphical Models. The so-called Ex-
tended Probability Trees allow the representation of multiplicative and
additive factorisations within the structure, along with context-specific
independencies, with the aim of providing a way of representing and man-
aging complex distributions. This work gives the details of the structure
and develops the basic operations on potentials necessary to perform in-
ference. The three basic operations, namely restriction, combination and
marginalisation, are defined so they can take advantage of the defined
factorisations within the structure, following a lazy methodology.

Keywords: Probability trees, recursive probability trees, lazy
propagation.

1 Introduction

Probabilistic Graphical Models (PGMs) enable efficient representation of joint
distributions exploiting independencies among the variables. The independencies
are encoded by means of the d-separation criterion [1]. Therefore only explicit
dependencies will be represented and quantified. The values measuring the de-
pendencies can be stored using several data structures, being Conditional Proba-
bility Tables (CPTs) the most common and straightforward. A CPT encoding a
potential defined over a set of variables can be seen as a grid with a cell for each
combination of values of these variables. This implies an exponential growth of
memory space requirements depending on the number of variables. Probability
Trees (PTs) [2,3,4] try to improve CPTs allowing context-specific independen-
cies and usually obtaining memory space savings as a consequence. Recursive
Probability Trees (RPTs) [5] suppose another step in this direction and can be
considered as a generalisation of PTs. With this data structure it is possible
to cover the modelling capabilities of PTs and to represent proportionalities,
multinets and mixtures of conditional probability distributions (CPDs) as well.
Moreover, RPTs try to keep the information as factorised as possible. These
features are used during inference. This paper proposes a refinement of RPTs,
Extended Probability Trees (ePTs), that extends their modelling capabilities by
managing additive factorisations in addition to all the features of RPTs, along
the same lines as structures like NAND trees [6] and chain event graphs [7].
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The necessary operations for making inference in BNs are restriction, combi-
nation (product) and marginalisation and must be properly defined on ePTs.
Therefore there are three main objectives in this paper: the description of the
ePT data structure; the explanation about its modelling capability; and the ex-
planation of how these basic operations operate on them. This paper focuses on
operating with discrete distributions, however a similar idea has been applied to
hybrid domains before [8].

The rest of this paper is structured as follows: Sec. 2 offers the basic notions
on PTs and presents the notation to be used in the whole paper; Sec. 3 gives a
review on the proposed data structure, specifying all its details; Sec. 4 explains
how to perform inference on ePTs; Sec. 5 gives an example of a model that can
be managed with ePTs but not with the usual data structures; Sec. 6 presents
the application of ePTs to real-world Bayesian networks and Sec. 7 closes the
paper with the main conclusions of this work and future lines of research.

2 Potentials, Probability Trees and Inference in Bayesian
Networks

LetXI = {X1, X2, . . . , Xn} be a set of variables. Let us assume that each variable
Xi takes values on a finite set of states ΩXi (the domain of Xi). We shall use
xi to denote the value of Xi, xi ∈ ΩXi . The Cartesian product ×Xi∈XIΩXi will
be denoted by ΩXI . The elements of ΩXI are called configurations of XI and
will be represented as xI. The projection of a configuration xI onto the set of
variables XJ, J ⊆ I, is denoted by x↓XJ .

A potential φ for XI is a mapping from ΩXI into R+
0 . Given φ, s(φ) de-

notes the set of variables for which φ is defined and sum(φ) the addition of its
values. Therefore probability distributions and utility functions can be seen as
potentials.

A BN is a DAG where each node represents a random variable Xi. The topol-
ogy of the graph shows the independence relations between variables according
to the d-separation criteria [1]. Each node Xi has a CPD encoded by a potential
φi(Xi|π(Xi)), where π(Xi) refers to the parents of Xi. Therefore a BN with
nodes XI = {X1, X2, . . .Xn} determines a joint probability distribution:

φ(X) =
∏

Xi∈X

φi(Xi|π(Xi)) (1)

Let XE ⊂ XI be a set of observed variables and xE ∈ ΩXE their observed
values. An algorithm focused on computing the posterior distribution φ(XJ ⊆
XI|XE = xE) is called propagation or inference algorithm. Regardless of the data
structure employed for potentials (CPTs, PTs, etc), the process of inference in
PGMs requires the definition of three operations:

– Restriction: If φ is a potential about variables XI , and xJ is a configuration
for the set of variables XJ , K = I ∩ J and L = I −K, then the restriction
of φ to the configuration xJ is a potential φR(xJ ) defined for variables XL
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and given by φR(xJ )(xL) = φ(xL,xJ ). The restriction of a potential to
a configuration xJ consists of returning the part of the potential which is
consistent with the configuration.

– Combination: If φ1 and φ2 are potentials with s(φ1) = XI and s(φ1) = XJ

then its combination is the potential φ1 ⊗ φ2 defined on X = XI ∪XJ and
given by φ1 ⊗ φ2(x) = φ1(x

↓XI).φ2(x
↓XJ ).

– Marginalisation: If φ is a potential with s(φ) = XI and XJ ⊆ XI then
the marginalisation of φ to XJ is the potential φ↓XJ , given by φ↓XJ(xJ) =∑

x
↓XJ
I =xJ

φ(xI).

PTs are a flexible data structure providing exact and approximate represen-
tations of probability potentials and utility functions. A PT (denoted as T )
is a list of variables s(T ) and a directed labelled tree with two kind of nodes:
internal nodes represent variables and leaf nodes represent real numbers. All
the variables of the internal nodes must belong to the list s(T ). Internal nodes
have outgoing arcs (one per state of the corresponding variable). The size of T ,
denoted as size(T ), is defined as its leaf count.

The chance to capture context-specific independencies usually makes PTs
a more compact representation of potentials than CPTs. Moreover, context-
specific independencies can be exploited during computation avoiding unneces-
sary operations.

To be able to compute with PTs in PGMs, we need to define the three basic
operations on potentials (restriction, combination, and marginalisation) in this
data structure. The notation of the operations in a particular data structure
will be completely analogous to the notation for general potentials. So, if T is a
probability tree such that s(T ) = XI and XJ ⊆ XI we use T R(xJ ) to denote a
probability tree representing the restriction of the potential associated to T .

We say that a potential is decomposed into a set of factors if their product is
equal to the original potential. For example, a BN specifies a joint probability
distribution by means of a set of factors: the CPDs of its variables. In general,
a factorised potential needs less space than the original one. There are several
inference algorithms for Bayesian networks based on using lists of potentials (fac-
torisation of potentials) with the objective of reducing inference computational
complexity: lazy propagation [9], lazy-penniless [10], variable elimination [11] and
mini-bucket [12]. Some inference algorithms assume that the factorisation of the
potentials is given as input, but others obtain the decomposition as a previous
step. In [13,14,15,16] PTs are used to represent each factor, and algorithms are
given to decompose PTs into two or more factors in exact or approximate ways,
using these favourable factorisations in inference algorithms for BNs.

3 Extended Probability Trees

Extended Probability Trees (ePTs), as a refinement of Recursive Probability Trees
[5], are a generalisation of PTs. RPTs were developed with the aim of enhancing
PTs’ flexibility and so they are able to represent different kinds of patterns that
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so far were out of the scope of PTs, such as multiplicative factorisations. With
ePTs we refine RPTs in order to capture other patterns that were left out, such
as additive factorisations. An ePT is a directed tree, to be traversed from root
to leaves, where the nodes (both inner nodes and leaves) play different roles
depending on their nature. In the simplest case, an ePT is equivalent to a PT,
where the inner nodes represent variables, and the leaf nodes are labelled by
numbers. In the context of ePTs, we will call this type of inner nodes as Split
nodes and this kind of leaves as Value nodes.

As RPTs do, ePTs include factorisations within the data structure by incor-
porating a type of inner node that lists together all the factors. Therefore, a
Multiply node represents a multiplicative factorisation by listing all the factors
making up the factorisation. If a Multiply node stores a factorisation of k factors
of a potential φ defined on XJ, and every factor i (an ePT as well) encodes φi

for a subset of variables XJi
⊆ XJ, then φ corresponds to

∏k
i=1 φi(XJi

).
Moreover, ePTs propose to include additive factorisations within the repre-

sentation. This is done by incorporating a type of inner node that again lists
together all the factors. Therefore, a Sum node represents an additive factori-
sation by listing all the factors making up the sum. If a Sum node stores a
factorisation of k factors of a potential φ defined on XJ, and every factor i (an
ePT as well) encodes a potential φi for a subset of variables XJi

⊆ XJ, then φ

corresponds to
∑k

i=1 φi(XJi
).

When necessary, ePTs will include a fourth type of node denominated Poten-
tial node. This is a leaf node and its purpose is to encapsulate a full potential
within the leaf in an internal structure. This internal structure usually will not be
an ePT, but a PT or a CPT instead. In fact, as long as the internal structure of a
Potential node supports the basic operations on potentials (namely marginalisa-
tion, restriction and combination), it is accepted within the ePT representation.
The size of a Potential node is defined as the number of probability values the
internal structure uses to represent the potential. We define the size of an ePT
as the total number of probability values stored within it, which is the addition
of all the Value nodes plus the sizes of all the Potential nodes in the ePT.

In summary, an ePT can have five kind of nodes in total: Split, Multiply or
Sum as inner nodes, and Value or Potential nodes as leaves. We can combine
them in different ways in order to find the structure that best fits the potential
to be represented, making ePTs an extremely flexible framework to work with.

Therefore, an ePT (ePT ) defined on a set of variables XI represents the
potential φePT (XI) : ΩXI → R+

0 if for each xI ∈ ΩXI the value φePT (xI)
is the number obtained with the recursive procedure explained in Alg. 1. The
procedure consists of checking the ePT from root to leaves, applying a different
action depending on the kind of node. If root is a Value node, the algorithm
returns the corresponding value; If root is a Potential node, the algorithm gets
the value for the selected configuration xI; If root is a Split node: the procedure
is recursively applied to the child consistent with the given configuration; If
root is a Multiply node: the algorithm multiplies the results obtained from new
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recursive calls for every child; If root is a Sum node: the algorithm adds the
results obtained from new recursive calls for every child.

Algorithm 1. getValue(ePT ,xI)

Input: ePT : a ePT defined on XI

xI: a configuration
Output: φePT (xI): a value

1 // Procedure to obtain a probability

2 // value from an ePT (ePT ) and a certain configuration xI.

3 begin
4 root ← root node of ePT
5 type ← type of root (Value, Potential, Split, Multiply or Sum)

6 switch type do
7 case Value
8 return root
9 case Potential

10 φ(XJ ⊆ XI) ← potential defined on XJ represented by root

11 return φR(xI)(xJ)

12 case Split
13 Xi, variable of the node
14 xi, value of Xi in the configuration xI

15 chi(ePT ) ← child of root for xi value
16 return getValue(chi(ePT ),xI)

17 case Multiply
18 ch1(ePT ), ch2(ePT ) . . . chn(ePT ) children of root
19 return Πn

i=1getValue(chi(ePT ),xI)

20 case Sum
21 ch1(ePT ), ch2(ePT ) . . . chn(ePT ) children of root
22 return

∑n
i=1 getValue(chi(ePT ),xI)

For example, consider a variable X1 that has three parents: X2, X3 and X4.
Let’s assume that the CPD for X1 is given by a convex combination of two
terms, on the one hand a CPD of X1 given X2 and X3, and on the other, a CPD
of X1 given X3 and X4. That is, the considered mixture of CPD is defined as:

φ(X1|X2, X3, X4) = αφ(X1|X2, X3) + (1− α)φ(X1|X3, X4). (2)

The representation of Eq. 2 as an ePT can be seen in Fig. 1: the root of the
tree is a Sum node, that fathers the two terms of the mixture. Each factor is
represented through a Multiply node having as children a Value node encapsu-
lating the weight of the convex combination, and a Potential node enclosing each
reduced CPD. Once a model is represented as an ePT, we can perform inference
over it as described in the next section.
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∑

∏

α φ(X1|X2, X3)

∏

1− α φ(X1|X3, X4)

Fig. 1. A mixture of CPDs represented as an ePT

4 Inference with ePTs

The basic operations on potentials required to perform inference algorithms can
be adapted to be supported by RPTs [5] and by ePTs, as explained in this Sec-
tion. The operations are designed to deal with the multiplicative factorisations
introduced within the ePTs by the Multiply nodes, and to manage the additive
factorisations defined by means of the Sum nodes. The definition of the oper-
ations aims at postponing the actual computation of products or additions of
numbers. In this sense, ePTs are compatible with inference schemes based on
lazy propagation [9,17].

4.1 Restriction

Let ePT be an ePT and xJ a configuration for the variables in XJ . The restric-
tion operation of ePT R(xJ ) (ePT restricted to xJ ) will be performed recursively
from root to leaf nodes acting on nodes according to their type: Value nodes will
remain unaltered; Multiply and Sum nodes will transmit the operation to their
children; potential nodes will produce the restriction of their potentials if needed
(their domains include any of the variables in XJ ); on Split nodes the operation
will be transmitted to children if the associated variable is not in XJ , otherwise
the leaf representing the value contained in xJ will be kept (and promoted to
the place of its parent node) and the rest will be removed.

Observe that this operation is performed recursively from root to leaves, so
the time consumed by the algorithm will be linear on the number of nodes of
the ePT. The pseudocode for this procedure is shown in Alg. 2.

4.2 Combination

The combination (product) of two potentials can also be performed with ePTs
in an easy way. The combination of two ePTs, ePT 1 and ePT 2, denoted by
ePT 1 ⊗ ePT 2, will be a new ePT representing the product of the potentials
represented by ePT 1 and ePT 2. It is obtained with aMultiply nodeNL including
two children: ePT 1 and ePT 2. This idea is described in Alg. 3.



Extended Probability Trees for Probabilistic Graphical Models 119

Algorithm 2. restrict(ePT ,xJ)

Input: An ePT ePT , a configuration of variables XJ = xJ

Output: An ePT ePT R(xJ )

1 begin
2 Let root be the root of ePT ;
3 if root is a Value node labelled with r then
4 return r;

5 if root is a Potential node labelled with P then

6 return PR(xJ );

7 if root is a Split node labelled with Xi then
8 if Xi ∈ XJ then
9 Let chi(ePT ) be the child of root consistent with Xi in xJ ;

10 return restrict(chi(ePT ),xJ);

11 else
12 Make a new ePT ePT ′ with Xi as root;
13 foreach child of the root of ePT , chi(ePT ) do
14 ePT ′

i ← restrict(chi(ePT ),xJ);
15 Set ePT ′

i as i-th child of ePT ′ root;

16 return ePT ′;

17 if root is a Multiply or a Sum node then
18 Make a new ePT ePT ′ with a Multiply node as root;
19 foreach child of the root of ePT , chi(ePT ) do
20 ePT ′

i ← restrict(chi(ePT ),xJ);
21 Set ePT ′

i as i-th child of ePT ′ root;

22 return ePT ′;

Algorithm 3. combine(ePT , f)

Input: A ePT ePT , a factor f (another ePT , a potential or a value).
Output: The result of combining ePT and f .

1 begin
2 Make a new ePT ePT ′ with a Multiply node as root;
3 Put ePT as child of ePT ′;
4 if f is a numeric value then
5 Make a new Value node labelled with f ;
6 Put the Value node as child of ePT ′;

7 if f is a potential then
8 Make a new Potential node labelled with f ;
9 Put the Potential node as child of ePT ′;

10 if f is a ePT then
11 Put ePT as child of ePT ′ ;

12 return ePT ′;
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Note that Alg. 3 is formulated in a general way, so that it is designed for com-
bining two ePTs but also for combining an ePT with another kind of potential,
or an ePT with a value. In these last two cases, when the second factor is a
constant, it is stored in a Value node (line 5, Alg. 3), whilst when the factor is a
potential, it is enclosed within a Potential node (line 8, Alg. 3). These transfor-
mations are done prior to storing the factors as children of the Multiply node.
An important feature of the combination process as described in Alg. 3 is that
it does not really require the actual computation of any product of numbers.

4.3 Marginalisation

The marginalisation of a potential φ to a set of variables XJ can be performed
directly over ePTs. Given an ePT ePT representing a potential φ defined for a
set of variables XI , and J ⊆ I, the marginalisation of ePT over XJ , denoted as
ePT ↓XJ , is a new ePT that represents the potential φ marginalised to XJ , that
is, φ↓XJ (xJ ) =

∑
xI−J

φ(xJ ,xI−J). The marginalisation is obtained by deleting

from ePT all the variables {Xι} where ι ∈ I − J .

The deletion of variable {Xι} is denoted by ePT ↓XI\{Xι} and represents the
potential φ↓XI\{Xι}. The procedure to sum out a variable Xι, which is explained
in Alg. 4, is a recursive process that covers the ePT from root to leaves as follows:

– If the root is a Value node or a Potential node that does not contain Xι in
its domain, the result of the operation would be the node multiplied by the
number of possible states of Xι, denoted as |ΩXι | (lines 3 and 10, Alg. 4).
If the Potential node has Xι in its domain, then the marginalisation opera-
tion is performed according to the data structure of the potential enclosed
in the node (line 8, Alg. 4).

– If the root is a Split node, then if Xι labels it, the result of the operation will
be a Sum node having as children all the children of the Split node (line 13,
Alg. 4). Otherwise, the marginalisation operation is recursively applied to
every child of the root (lines 15 to 19, Alg. 4).

– If the root is aMultiply node, then all its children are sorted into two sets, one
containing the factors related to Xι, and the other containing the remaining
(line 21, Alg. 4). This first set must be combined pairwise (line 22, Alg. 4),
and afterwards a recursive call to the algorithm is applied to the result of the
multiplication (line 23, Alg. 4). The final ePT contains all the factors that
were not related to Xι plus the result of the recursive call (line 25, Alg. 4).

– If the root is a Sum node, then the marginalisation operation is propagated
to every child of the root (lines 28 to 30, Alg. 4).

When dealing with Multiply nodes within the marginalisation of ePTs, we
define a new operation that multiplies ePTs (line 22, Alg. 4). This operation
is explained in Alg. 5, and differs from the combination or ePTs as defined in
Alg. 3 in the sense that we now remove the Multiply node from the root of the
result. The multiplication of ePTs starts considering the root of both ePTs to be
multiplied (line 2, Alg. 5) and according to the type of node they are, performs
in a different way:
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Algorithm 4. sumOut(Xι, ePT )

Input: An ePT ePT defined for XI and a variable Xι ∈ XI (the variable to be
summed out)

Output: An ePT for ePT ↓XI\{Xι}

1 Let root be the root of ePT ;
2 if root is a Value node labelled with a real number r then
3 Make a new ePT ePT ′ with a Value node as root;
4 Put r · |ΩXι | as the label of the root of ePT ′ ;

5 else if root is a Potential node labelled with a potential φ then
6 Make a new ePT ePT ′ with a Potential node as root;
7 if Xι is a variable in the domain of φ then

8 Put φ↓XI\{Xι} as the label of the root of ePT ′ (this is an external
operation that depends on the data structure that holds the potential) ;

9 else
10 Put φ · |ΩXι | as the label of the root of ePT ′;

11 else if root is a Split node labelled with Xi then
12 if Xi = Xι then
13 Let ePT ′ be a new Sum node containing all the children of root;

14 else
15 Make a new ePT ePT ′ with a Split node as root;
16 Put Xi as the label of the root of ePT ′;
17 foreach child of root, chi(ePT ) do
18 ePT ′

i ← sumOut(Xι, chi(ePT ));
19 Set ePT ′

i as the ith child of the root of ePT ′;

20 else if root is a Multiply node then
21 Let with and without be the list of children of root containing and not

containing Xι respectively ;
22 Let ePT 1 be the multiplication of all the factors in the with list (using

Alg. 5);
23 ePT 2 ← sumOut(Xι, ePT 1);
24 Make a new ePT ePT ′ with a Multiply node as root;
25 Put ePT 2 and all the factors in without list as children of the root of ePT ′;

26 else if root is a Sum node then
27 Make a new ePT ePT ′ with a Sum node as root;
28 foreach child of root, chi(ePT ) do
29 ePT ′

i ← sumOut(Xι, chi(ePT ));
30 Set ePT ′

i as the ith child of the root of ePT ′;

31 return ePT ′ ;

– Multiply a Multiply node by any kind of node but a Sum node: the Multiply
node will father the second factor, as shown in Alg. 3 (lines 7 to 14, Alg. 5).

– Multiply a Sum node by any kind of node but a Multiply node: the resulting
structure will have a Sum node as root, and its children will be all the
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Algorithm 5. multiply(ePT 1, ePT 2)

Input: Two ePTs ePT 1 and ePT 2

Output: The multiplication of ePT 1 and ePT 2

1 begin
2 Let root1 be the root of ePT 1 and root2 be the root of ePT 2;
3 if root1 is a Multiply node then
4 if root2 is a Sum node then
5 return multiply(ePT 2, ePT 1);

6 else
7 Make a new ePT ePT with a Multiply node as root;
8 Append all the children of root1 as children of the root of ePT ;
9 if root2 is a Multiply node then

10 Put all the children of root2 as children of the root of ePT ;

11 else
12 Append the factor rooted by root2 as a child of the root of ePT ;
13 // If root2 is a Multiply node, we append its children

instead.

14 return ePT ;

15 else if root1 is a Sum node then
16 if root2 is a Multiply node then
17 According to Eq. 3, either multiply or sum first;

18 else
19 Make a new ePT ePT with a Sum node as root;
20 foreach child of root1, chi(ePT 1) do
21 Append multiply(chi(ePT 1), ePT 2) as child of ePT ;

22 return ePT ;

23 else if root1 is a Split node then
24 if root2 is a Sum or Multiply node then
25 return multiply(ePT 2, ePT 1);

26 else
27 Let Xi be the label of root1;
28 Make a new ePT ePT with Xi labelling the root;
29 foreach child of root2, chi(ePT 2) do
30 Make a new ePT ePT i with a Multiply node as root;

31 Append chi(ePT 2) and ePT 1
R(Xi=xi) as children of ePT i;

32 Put ePT i as children of ePT ;

33 return ePT ;

34 Let f1 and f2 be the factors (Value or Potential nodes) in ePT 1 and ePT 2;
35 return f1 · f2 (in this case f1 and f2 can be multiplied directly);

children of the Split node, every one of them multiplied by the other factor
with Alg. 4 (lines 19 to 22, Alg. 5).
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– Multiply a Split node by a Value, Potential or Split node: we change every
child of the Split node by a Multiply node that fathers the original children
and the other factor restricted to the context given by the branch (lines 27
to 33, Alg. 5).

– Multiply a Potential node by a Value node: the structures are directly mul-
tiplied (lines 34 and 35, Alg. 5).

Multiplying a Sum node NS by a Multiply node NM (line 17, Alg. 5) can be
done in two ways, as illustrated in Fig. 2:

∑

ePT 1 ePT 2

·
∏

ePT 3 ePT 4 ePT 5

∏

∑

ePT 1 ePT 2

ePT 3 ePT 4 ePT 5

∑

∏

ePT 3 ePT 4 ePT 5

∏

ePT 3 ePT 4 ePT 5

ePT 1· ePT 2·

Fig. 2. Multiplying a Sum node by a Multiply node using Alg. 5

– Multiply first (bottom left part of Fig. 2). This implies creating a Multiply
node that will father NS and the children of NM , as described in Alg. 3.

– Sum first (bottom right part of Fig. 2). In this case, the resulting structure
will have a Sum node as root, and its children will be all the children of NS ,
every one of them multiplied by NM with Alg. 5.

To decide on how to perform the operation, we attend to the theoretical
maximum size of the resulting structure for each possibility. We will multiply
first if it holds that:

ΩXNS
∪XNM

>= ΩXNS
+ size(NM ) (3)

where chNS corresponds to the number of NS ’ children, size(N) corresponds
to the number of probability values at N ’s leaves and XNS corresponds to
the variables in the domain of NS . This heuristic favours to postpone the the
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computation (by rooting the tree with a Multiply node) unless we are facing
exceptional cases where the size gain is significant.

5 Example of Use

Consider a Bayesian network as defined in Fig. 3, where a variable X has a num-
ber n of parents. For high values of n, this structure can become unmanageable
to most common data structures. One way of expressing the CPD for X could
be decomposing it such as:

φ(X |X1, · · · , Xn) =

n∑
i=1

(φ(X |Xi)φ(Xi)). (4)

We can build an ePT that encodes the factorisations shown in Eq. 4, as
shown in Fig. 4. This data structure remains small in size, and inference can be
performed quickly over it, applying the operations described in Sec. 4. Moreover,
it can support a large n still being small and fast. In Fig. 5 we can see the time
spent for obtaining the posterior distribution for X in the ePT in Fig. 4, by
removing all the parent variables. We started with 2 parents and stopped at
9900 (all the variables are binary), and the ePT is still able to work with it
within reasonable time.

φ(X1) X1 · · ·

φ(X|X1, · · · , Xn)X

φ(Xn)Xn

Fig. 3. A Bayesian network where a variable X has n parents

∑

∏

φ(X|X1) φ(X1)

∏

φ(X|Xn) φ(Xn)

· · ·

Fig. 4. An ePT encoding the factorisation given in Eq. 4.
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Fig. 5. Time spent for obtaining the posterior distribution for X, removing all the
variables from the ePT in Fig. 4

6 Applying ePTs to Real Data

Applying ePTs to any problem is possible, as long as we can build the structure,
as the basic operations on potentials are defined on ePTs. In this Section we
present a way of approximating any CPD to a suitable ePT, afterwards we
explain a heuristic to simplify an ePT in case it becomes too big, and finally we
apply both methods to perform inference on two well known Bayesian networks.

6.1 Transforming CPDs into ePTs

To build an ePT from a CPD, we consider two possibilities. If the set of variables
of the CPD contains 1 or 2 variables, we enclose it within a Potential node. To
transform a bigger CPD into an ePT we follow an iterative algorithm that looks
for the ePT that best fits, in terms of Kullback-Leibler divergence, the CPD. As
the search space of different ePTs is huge, we limit the search as follows: we begin
considering all the parents independently, so if we want to represent φ(X |π(X)),
n is the number of parents of X , and X1, · · · , Xn ∈ π(X), we obtain:

φ(X |π(X)) =
1

n

n∑
i=1

φ(X |Xi). (5)

This structure is the starting point of the search, and the equivalent ePT
can be seen in Fig. 6. We now try to compact further the representation by
grouping the parents into two disjoint sets, where if π1(X)∪ π2(X) = π(X) and
π1(X) ∩ π2(X) = ∅, we obtain:

φ(X |π(X)) =
1

2
(φ(X |π1(X)) + φ(X |π2(X))) (6)
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We compute the structure for every combination of parents into the two sets,
and finally return the structure with smaller KL divergence (including the initial
structure) with respect to the original CPD.

∏

1
n

∑

φ(X|X1) · · · φ(X|Xn)

Fig. 6. The CPD φ(X|Xi, · · · , Xn) encoded as an ePT

6.2 Simplifying ePTs

It may happen when working with large ePTs that after a number of operations,
some branches become too factorised, that is, they contain small potentials of the
same variables. When this happens we can simplify the tree. We have considered
different heuristics to do so, and for the scope of this paper we present a recursive
algorithm that traverses the ePT to the leaves, and then goes upwards simplifying
the tree. The algorithm counts the number of variables of the potential defined
by Multiply or Sum nodes, and exchanges them for equivalent Potential nodes
in case the number of variables results bigger than a given threshold.

6.3 Inference Results

For this experiment we used two well-known medium-sized databases: Alarm[18]
(37 nodes) and Water[19] (32 nodes). All the CPDs of both networks were ap-
proximated into ePTs using the algorithm described in Sec. 6.1. We applied the
Variable Elimination algorithm to both networks, in order to remove all the vari-
ables, without evidence. We applied the simplification of ePTs, as described in
Sec. 6.2 during the inference, after combining all the potentials related to the
variable to be removed. For Alarm network, we used a simplification threshold
of three variables, and for Water, as its relations are more complex, we increased
the threshold to six variables. We computed the time needed to perform infer-
ence, the size of the maximum structure managed during the process and the
average size of all the ePTs managed during the inference. We measured the size
in terms of number of stored probability values. We compared the performance
of ePTs with CPTs and slightly pruned [16] PTs (prune factor: 0.001).

The results are shown in Table 1, where we can see that while for Alarm
ePTs work in a similar way as PTs, for Water ePTs do not obtain such good
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Table 1. Inference results for two real-world databases

Alarm network Water network

CPT PT ePT CPT PT ePT

time (ms) 195 174 121 16731 578 5635
max. size (values) 454 211 249 20492 1239 20498
avg. size (values) 137.1 64.3 83.2 2345.8 117.7 1450.8

results, but still perform better than CPTs in terms of time. The averages of the
KL divergence of the posterior probabilities obtained with ePTs with respect to
those obtained with PTs were 0.11 (s.d. 0.02) and 0.23 (s.d. 0.06), respectively.

7 Conclusions

This ongoing research presents a data structure to represent the probabilistic
information in PGMs, along with the definition of the basic operations to perform
inference on them, and some heuristics to build an ePT from a CPD, along with
a way of compacting the structure in case it becomes too big.

We have seen that some models that are difficult or impossible to model
with other structures are manageable using ePTs, and we have also tested the
performance of ePTs against CPTs and PTs using real-world Bayesian networks.
We conclude that for models that do not contain certain patterns, or are not
factorised, the use of ePTs does not imply a benefit, as the operations are more
complex on our data structure. On the other hand, ePTs increase the number
of models that can be represented and efficiently managed. Learning ePTs is
a key aspect to be developed further, along with an in-depth study to provide
simplification heuristics that do not depend on thresholds. Moreover, a possible
future use of ePTs is symbolic propagation.
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Abstract. This paper describes techniques for developing a mixture of
polynomials (MOP) probability distribution from a frequency distribu-
tion (also termed grouped data) summarized from a large dataset. To
accomplish this task, a temporary dataset is produced from the grouped
data and the parameters for the MOP function are estimated using a
Bspline interpolation technique. Guidance is provided regarding the com-
position of the temporary dataset, and the selection of split points and
order of the MOP approximation. Good results are obtained when using
grouped data as compared to the underlying dataset, and this can be a
major advantage when using a decision support system to obtain infor-
mation for estimating probability density functions for random variables
of interest.

Keywords: Bayesian information criterion, B-spline interpolation,
frequency distribution, grouped data, mixture of polynomials.

1 Introduction

This paper describes the construction of a mixture of polynomials (MOP) prob-
ability density function (PDF) from a frequency distribution developed from
sample data, also termed here grouped data. In general, the MOP function can
provide a method for approximating a PDF from data in a flexible form that
can be readily manipulated for mathematical calculations.

Kernel density estimation is a well-known method for assigning a PDF to
empirical data [1]. However, the functional form of many kernel density estima-
tors is not amenable to use in probabilistic graphical models, and the sample
data must be retained to reproduce the density function. To construct a hybrid
Bayesian network or influence diagram with continuous variables that are not
exclusively Gaussian, or to build models that cannot be represented in the con-
ditional linear Gaussian framework, a functional form that permits closed-form
addition, multiplication, and integration, and a form that maintains results in
the same class of functions is desirable.

Mixtures of truncated exponentials [2], mixtures of polynomials [3], and mix-
tures of truncated basis functions [4] are methods suggested for overcoming the
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integration problem in hybrid Bayesian network models. To estimate PDFs accu-
rately for such models, several methods have been developed to find parameters
for PDFs of continuous random variables from data [5,6,7,8].

In many applications in practice, including a supply chain management prob-
lem discussed in a related working paper [9], raw data to estimate a PDF for
a continuous random variable of interest is not readily available. Managing and
transferring a dataset that includes all of the empirical data can become difficult
because of its size. Furthermore, the data may have to be extracted directly from
a database, which may be a more difficult task than simply accessing a report
from a decision support system that includes frequency distributions calculated
for grouped data as part of its standard output.

This paper examines whether an adequate mixture of polynomials PDF can
be estimated from a frequency distribution of grouped data without resorting
to accessing the entire dataset. The approach is to create a temporary dataset
and use the B-spline interpolation approach suggested by López-Cruz et al. [10].
The issues that arise when using this approach are the number of values to in-
clude in the temporary dataset, the split points to use for the MOP functions,
and the order of the polynomials in the approximation. We examine each of
these issues in examples where we estimate MOP density functions from known
distributions using a full dataset of sample data and grouped data summarized
from the full dataset. The issue of using uniform split points versus equal prob-
ability split points with the B-spline technique is examined, and this discussion
is relevant regardless of whether the full dataset or summary grouped data is
used to create an MOP approximation. In general, we find that acceptable MOP
approximations can be created from grouped data.

The remainder of the paper is structured as follows. The next section intro-
duces notation and definitions used throughout the paper. Section 3 reviews a
B-spline technique for estimating MOP functions from data developed by López-
Cruz et al. [10]. Section 4 describes the process of estimating an MOP from
grouped data using the B-spline method. Section 5 applies the technique to two
examples where both grouped data and the simulated underlying dataset are
available to allow comparison of results. Section 6 concludes the paper.

2 Notation and Definitions

This section reviews definitions and notation used throughout the paper.

2.1 Grouped Data

We suppose that an unobserved dataset D = {x1, . . . , xN } is summarized into
K groups. A series of K + 1 split points, s = {S0,S1, . . . ,SK−1,∞}, defines
the groups. The split points are defined without an upper bound because we
often encounter cases in practice where the last group is not explicitly bounded,
although if there is a finite upper bound this can be assigned as SK.

A specific data point xi is classified into group j if Sj−1 ≤ xi < Sj . The
frequency of observations in each group are denoted by f = {F1, . . . ,FK} and
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the “mid-points” of the intervals are denoted by m = {m1, . . . ,mK}. For all
examples in this paper, the mid-points are defined as m1 = S0+(2/3) ·(S1−S0),
mK = SK−1+0.5 · (SK−1−SK−2), and mj = (Sj −Sj−1)/2 for j = 2, . . . ,K− 1.
The assignment for m1 (at 2/3 of the interval distance) assumes knowledge that
a point in the first group is more likely to fall closer to the right end-point than
the left end-point of the interval, as is the case for the motivating supply chain
management problem (see [9]). If this knowledge is not available, we can simply
define m1 in the same way that m2 is defined. Similarly, if SK is finite, mK can
be calculated in the same way as mK−1.

The mean and variance of the grouped data are calculated as

XG =
1

N

K∑
j=1

Fj ·mj and s2G =
1

N − 1

K∑
j=1

Fj · (mj −XG)
2 . (1)

Example 1. Consider the grouped data shown in Table 1. The frequency distri-
bution summarizes a dataset with 1000 observations into K = 6 groups. The last
group is unbounded on the right-hand side, but the mid-point mK is calculated
as if the width of the last interval is the same as the group defined on [40, 50).

Table 1. Grouped dataset for Example 1

Interval [Sj−1,Sj) Fj Probability mj Fj ·mj Fj ·
(
mj −XG

)2
0-10 88 0.088 6.67 586.67 23611
10-20 388 0.388 15 5820 25123
20-30 298 0.298 25 7450 1137
30-40 138 0.138 35 4830 19718
40-50 48 0.048 45 2160 23134
50+ 40 0.040 55 2200 40841

TOTAL N = 1000 1.000 23046.67 133562

XG=23.05 s2G = 133.7

2.2 Mixtures of Polynomials

One method of modeling continuous PDFs in hybird Bayesian networks is to
approximate PDFs with MOP functions [3]. The MOP model provides a closed-
form approximation that can be easily utilized in calculations involving addition,
multiplication, and integration.

The definition of mixture of polynomials given here is used by Shenoy [11].
A one-dimensional function f : R → R is said to be a mixture of polynomials
function if it is a piecewise function of the form:

f(x) =

{
a0i + a1ix+ · · ·+ anix

n for x ∈ Ai, i = 1, . . . , k,

0 otherwise
(2)
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where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and
a0i, . . . , ani are constants for all i. We will say that f is a k-piece (ignoring
the 0 piece), and n-degree (assuming ani �= 0 for some i) MOP function. We will
refer to the order of the MOP function as n+ 1. Hereafter, MOP functions are
assumed to be zero in undefined regions. MOP functions were first utilized in
Bayesian network models by Shenoy and West [3].

Example 2. A sample of N = 71 observations is taken from the N(280, 210)
distribution. A 2-piece, 2-degree (or third order) MOP density function that
approximates this normal PDF is

f̂(x) =

{
−3.3726 + 0.0241x− 0.000043x2 236 ≤ x < 271
0.7102− 0.0061x+ 0.000013x2 271 ≤ x ≤ 306 .

(3)

The function above was constructed using B-spline functions [12] using the
method suggested by López-Cruz et al. [10]. This will be discussed later in
the paper. The MOP distribution is shown in Fig. 1 overlaid on the actual
N(280, 210) PDF (see the left panel). The right panel of Fig. 1 will be referred
to in Section 3. Note that the MOP function was created from a small sample
without knowledge of the actual underlying distribution.

240 260 280 300 320 340

0.005

0.010

0.015

0.020

0.025

250 260 270 280 290 300

0.2

0.4

0.6

0.8

1.0

Fig. 1. MOP density function overlaid on the N(280, 210) distribution (left) and B-
spline functions used to construct the distribution (right)

2.3 Quality and Size of MOP Approximations

This section discusses four measures of the accuracy of a MOP approximation
with respect to a PDF defined on the same domain: the Kullback-Leibler (KL)
divergence, maximum absolute deviation (for the PDF and cumulative distri-
bution function (CDF)), and maximum “right-tail” absolute deviation for the
CDF. A measure of the “size” of the MOP function is also introduced.

If f is a PDF on the interval (a, b), and f̂ is a PDF that is an approximation

of f such that f̂(x) > 0 for x ∈ (a, b), then the KL divergence between f and f̂ ,

denoted by KL(f, f̂), is defined as follows [13]:

KL(f, f̂) =

∫ b

a

ln

(
f(x)

f̂(x)

)
f(x) dx. (4)
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KL(f, f̂) ≥ 0, and KL(f, f̂) = 0 if and only if f̂(x) = f(x) for all x ∈ (a, b). A
closer approximation will produce a smaller KL divergence value.

The maximum absolute deviation between f and f̂ , denoted by MAD(f, f̂),
is given by:

MAD(f, f̂) = sup{|f(x)− f̂(x)| : a < x < b}
The maximum absolute deviation can also to applied to CDFs. Thus, if F (·)

and F̂ (·) are the CDFs corresponding to f(·), and f̂(·), respectively, then the
maximum absolute deviation between F and F̂ , denoted by MAD(F, F̂ ), is

MAD(F, F̂ ) = sup{|F (x)− F̂ (x)| : a < x < b}

The value MAD(F, F̂ ) is in units of probability, whereas the value MAD(f, f̂)
is in units of probability density, and the two values cannot be compared to each
other.

For examples in this paper, we are particularly interested in values in the
upper tail of the distribution. Thus, we will calculate a variation MADrt(F, F̂ )
of mean absolute deviation that measures the maximum distance between the
approximation and the target CDF in the region above the expected value. This
is done as

MADrt(F, F̂ ) = sup{|F (x)− F̂ (x)| : E(X) < x < b}

where E(X) =
∫ b

a
x · f̂(x) dx.

To illustrate these definitions, let f(·) denote the N(280, 210) PDF truncated

to [236, 306]. Consider f̂(·), the 2-piece, 2-degree MOP approximation of f(·)
as described in Eq. (1). Also, let F (·) and F̂ (·) denote the CDFs correspond-

ing to f and f̂ , respectively. The goodness of fit statistics for f̂ are as fol-
lows: KL(f, f̂) ≈ 0.0181, MAD(f, f̂) ≈ 0.0034, MAD(F, F̂ ) ≈ 0.0371, and
MADrt(F, F̂ ) ≈ 0.0031. For clarification, recall that the comparison of the ap-
proximate distribution is made to the actual distribution truncated and normal-
ized over the same interval.

The MOP models in this paper are developed using Mathematica 9.0 software.
This package provides a function called LeafCount that gives the total “size”
of an expression defined using the Piecewise representation, based on applying
the FullForm function [14]. LeafCount (denoted by L) will be used to measure
the complexity of the resulting function. For additional information, please see
the related working paper [9].

3 B-Spline Estimation of MOPs

Lopez-Cruz et al.[10] suggest using a linear combination of B-spline functions
to construct MOP approximations from datasets where the parametric form
of the underlying probability distribution is unknown. B-spline functions are
piecewise polynomial functions defined by the number of control points, n + 1,
and the degree of the polynomial, d. The control points define a knot vector t
= {t0, t1, t2, . . . , tn}.
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B-spline functions [12] have two definitions, one when d = 1 and another when
d > 1. When d = 1, the functions are defined as

Bj,1(x) =

{
1 tj ≤ x < tj+1

0 otherwise .

For d > 1, the functions are calculated as

Bj,k(x) =

(
x− tj

tj+k−1 − tj

)
·Bj,k−1(x) +

(
tj+k − x

tj+k − tj+1

)
· Bj+1,k−1(x) .

The control points are indexed by j = 0, . . . , n and the degree of the functions
are indexed by k = 1, . . . , d.

The B-spline functions are used to form a n-piece MOP density function

f̂(x) =

m∑
i=1

αi · Bi,d(x) (5)

by selecting mixing coefficients αi, i = 1, . . . ,m, where m = n+ d− 1. Thus, the
PDF for f̂ will be a mixture of the m B-splines of order d.

Given a dataset D = {x1, · · · , xN }, Zong [12] suggests using the follow-
ing iterative formula for determining the maximum likelihood estimators, α̂ =
{α̂1, . . . , α̂m}, for the mixing coefficients in (5):

α̂
(q)
i =

d

N · (ti − ti−d)

∑
x∈D

α̂q−1
i Bi,d(x)

f̂
(
x; α̂(q−1)

) . (6)

Beginning with equivalent values for each αi, the expression in (6) is used it-

eratively for i = 1, . . . ,m until

∣∣∣∣ like(q) − like(q−1)

like(q)

∣∣∣∣ < ε, where like(q) is the

log-likelihood of D given f̂
(
x; α̂(q)

)
at iteration q in the optimization process.

Using ε = 10−6 appears to be adequate for most applications [10]. To avoid
placing constraints on the calculated values for the α̂ parameters, the function
f̂X

(
x; α̂(q)

)
can simply be normalized to integrate to 1 at each iteration.

The goal is to develop a PDF f̂ that is reasonably accurate; however, we would
like the number of pieces and the degree of the polynomial functions comprising
the MOP density to be as small as possible to avoid overfitting and speed up
computation in subsequent applications. Thus, we will consider several possible
values for d and n for each PDF and select the approximation that maximizes
the Bayesian information criterion (BIC) calculated as

BIC
(
f̂ (x) ,D

)
= L

(
D|f̂ (x)

)
− ((m− 1) logN )/2 . (7)

The second term in the BIC expression is a penalty for adding parameters to
the model. Since the mixing coefficients must add to 1, m− 1 is the number of
“free” mixing coefficients. In practice, once we settle on good values for d and
n, this step could be avoided.
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Example 3. Consider again the MOP density function f̂ in Eq. 3 that approxi-
mates the N(280, 210) PDF. Recall that the MOP is not fit to the normal PDF,
but rather a small sample of data generated from the normal PDF. The four
B-splines used to construct the MOP function are shown in the right panel of
Figure 1. The mixing coefficients determined via 37 iterations of equation (6)
are α1 = 0.04, α2 = 0.07, α3 = 0.83, and α4 = 0.06.

4 Grouped Data Estimation

Two issues arise in the process of fitting an MOP density function to grouped
data: 1) creating a temporary dataset to approximate the unknown dataset used
to compile the frequency distribution, and 2) determining the control points used
to construct the B-splines and the MOP approximation. These two issues are
further explored in this section.

4.1 Creating an Approximate Dataset

To fit a MOP density function to grouped data, such as shown in Table 1, we
will produce a temporary dataset D̂ that approximates the unknown dataset D
used to tabulate the frequency distribution for the grouped data. The number
of observations in D is N , and we will assign a multiple η that determines the
approximate number of observations N̂ = η · N in D̂.

To construct D̂, we assign 2K− 2 different values to the N̂ observations in D̂.
The mid-point m1 is assigned approximately η · F1 sample observations and the
mid-pointmK is assigned approximately η·FK sample observations. The intervals
j = 2, . . . ,K− 1 are each assigned two different sample values determined as

x̂j,k = Sj−1 + k · Sj − Sj−1

3
for k = 1, 2.

The approximate number of sample observations included in the dataset D̂ for
x̂j,1 and x̂j,2, respectively, are

N̂j,1 = η · Fj ·
Fj−1

Fj−1 + Fj+1
and N̂j,2 = η · Fj ·

Fj+1

Fj−1 + Fj+1
.

The idea is to weight the number of sample observations included in the dataset
for the two points in each interval by the relative number of points in the adjacent
intervals. If the formulas above produce a decimal number, this is simply rounded
to the nearest integer.

Example 4. Consider the grouped data in Table 1. With η = 0.5, the values
shown in Table 2 are determined in order to create a dataset of N̂ = 502
observations for use in the B-spline approximation algorithm. Points such as
x̂2,1 = 13.33 and x̂2,2 = 16.67 simply divide the interval [10, 20) into three equal

sections. The point x̂2,1 = 13.33 is assigned N̂2,1 = 0.5 · 388 · 88/(298+ 88) ≈ 44

sample observations in D̂.
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Table 2. Values required to reconstruct dataset D̂ for grouped data Table 1

[Sj−1,Sj) Fj N̂j,k mj x̂j,k

[0, 10) 88 44 6.67 6.67
[10, 20) 388 44 15 13.33
[10, 20) 388 150 15 16.67
[20, 30) 298 110 25 23.33
[20, 30) 298 39 25 26.67
[30, 40) 138 60 35 33.33
[30, 40) 138 10 35 36.67
[40, 50) 48 19 45 43.33
[40, 50) 48 6 45 46.67
[50,∞) 40 20 55 55

TOTAL 1000 502

Creating the approximate dataset is a matter of assigning the data points in
each interval defined for the grouped data, then assigning an adequate number
of sample observations for each point. The two-point approximation described
above has proven adequate in all of the example problems studied while conduct-
ing this research. Increasing the number of points beyond two has yielded results
that are not significantly different than the two-point approximation when em-
ployed with the control points established in the next section.

4.2 Control Points

The B-spline functions are determined by the control points (in addition to the
degree of the resulting polynomial) and define a knot vector t= {t0, t1, t2, . . . , tn}.
We will consider three possibilities: uniform control points, equal probability con-
trol points, and control points determined by the intervals in the grouped data.
The first two heuristics (uniform and equal probability) will be used when fitting
MOP functions to sample data that is not grouped. The first and third (uniform
and grouped data interval points) will be used to fit MOP functions to grouped
data.

Since we consider the case where the last interval is unbounded, implementing
the B-spline algorithm requires us to assign a maximum value as tn. This is
an important consideration, because the tails of probability distributions are
important for understanding when an unusual event has occurred. In fact, for
the supply chain management application in the related working paper [9], we are
interested in knowing whether an observation that is outside the boundaries of all
previous observations is likely to be observed from a process that is functioning
correctly.

Chebyshev’s inequality [15] states for a random variable X with mean μ and
standard deviation σ that

P (|X − μ| ≥ z · σ) ≤ 1

z2
.
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We will target a probability that the maximum density not captured by the MOP
approximation be 1% based on the grouped mean and variance as calculated in
Eq. 1. This entails considering an upper bound on the domain of the MOP of
tn = XG+10 ·σG. We also assume that t0 = S0. Thus, the points in t remaining
to be assigned are t1, . . . , tn−1.

Uniform Control Points. With t0 and tn assigned above, the remaining values
in a set of uniform control points, denoted by UC, are determined as

ti = t0 + i · tn − t0
n

for i = 1, . . . , n− 1.

These points are used to create uniform B-splines.

Equal Probability Control Points. While the primary topic of this paper
is fitting MOP functions to grouped data, another interesting research question
is whether or not using equal probability points (or percentiles) in a sample
dataset produces a superior MOP approximation than using uniform control
points. Here, since we will compare sample data and grouped data approxima-
tions, we will maintain the assignment of t0 = S0 and tn = XG + 10 · σG. In
a situation where grouped data was not provided and access to the complete
dataset is available, these could be assigned differently. The remainder of the
equal probability control points, denoted by EP , are

ti = P100i/n for i = 1, . . . , n− 1 .

Pk denotes the values in the sample dataset that have a greater value than at
least k percent of all the elements in the set. The equal probability control points
are not used to estimate PDFs from grouped data because it would be difficult
to make an adequate assumption about the location of the percentiles in the
pre-defined intervals.

Grouped Data Control Points. Another option for assigning the control
points when developing a probability distribution for grouped sample data is
to simply use the split points employed to tabulate the data. Due to the fact
that the right tail of the MOP approximation is extended to 10 sample group
standard deviations above the mean, we also fit one additional piece in the region
corresponding with the last interval of the grouped data. Thus, with t0 = S0 and
tn = XG+10·σG, the entire set of grouped data plus one control points, denoted
by GD1, is defined as

t = {S0,S1, . . . ,SK−1, (SK−1 + tn)/2, tn}.

When the GD1 control points are used, the number of pieces in the MOP ap-
proximation is n = K + 1.

We will also consider adding an additional point in the left-tail of the distribu-
tion because the shape of the PDF may change quickly in this region. This will be
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termed the grouped data plus two model (or GD2 for short) and is characterized
by a n = K + 2 piece MOP function defined by the control points

t = {S0, (S0 + S1)/2,S1, . . . ,SK−1, (SK−1 + tn)/2, tn}.

Example 5. For the grouped data shown in Table 1 with XG = 23.05 and s2G =
133.7, we define t0 = 0 and tn = 23.05+10 ·

√
133.7 = 138.7. The UC points for

an n = 7 piece MOP approximation to the distribution for the grouped data are

t = {0, 19.8, 39.6, 59.4, 79.2, 99.1, 118.9, 138.7}.

The GD1 control points for a 7-piece MOP approximation are

t = {0, 10, 20, 30, 40, 50, 94.35, 138.7}.

The GD2 control points for an 8-piece MOP approximation are

t = {0, 5, 10, 20, 30, 40, 50, 94.35, 138.7}.

Grouped data control points are not used to estimate MOP functions directly
from the sample data, because the points would simply be arbitrary. When
grouped data is available, we suppose that the intervals are intentionally selected
for the frequency distribution because they are relevant for the application under
consideration.

Note that the sample points in the dataset D̂ and the control points in t need
not necessarily correspond. The control points define the B-splines that will be
mixed to construct the MOP approximation and the sample points in D̂ are used
to create the maximum likelihood estimators α̂ for the mixing coefficients.

Again, there are many potential heuristics that could be used to define the
control points. We could potentially sub-divide the grouped data intervals fur-
ther, or combine adjacent intervals. Several such variations were considered in
the course of this research, but the methods described here were ultimately used
because they produce good results, as demonstrated later in the paper.

5 Examples

This section presents two examples using the B-spline approach to construct an
MOP approximation to the probability distribution that generated the grouped
data. The approach will be to sample from a known density function. In practice,
we would not assume any knowledge of the underlying probability distribution
or require the raw data used to develop the frequency distribution; however, for
the two examples in this section, using data simulated from a known probability
distribution will help evaluate the resulting MOP distribution.

We will fit MOP approximations to the full (ungrouped) sample, then subse-
quently to the grouped data. These two approximations can be compared to to
the true PDF using the measures of fit defined in Section 2.3. In terms of calcu-
lating the measures of fit, the MOP approximation f̂S fit to the sample data and
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the MOP approximation f̂G fit to the grouped data are both approximations of
the true density f .

To facilitate calculation of the measures of fit, all MOP approximations will
be defined over the same interval [S0, XG+10 ·

√
s2G]. The underlying PDF will

be truncated and normalized to integrate to 1 on this same interval. Obviously, if
the full sample dataset was available in practice and we chose to use this dataset
to construct the MOP approximation, we might choose endpoints for the first
and last pieces of the MOP function differently.

Some issues we will consider are as follows:

1. The performance of uniform versus equal probability control points for esti-
mating MOP functions from the full sample dataset.

2. The performance of uniform versus grouped control points for estimating
MOP functions from grouped data.

3. The effect of varying the parameter η to adjust the size N̂ of the dataset D̂.

5.1 Example 1

In this section, we consider the grouped data shown in Table 1. The grouped
data was summarized from 1000 random variates simulated from the LN(3, 0.52)
distribution. For the grouping represented in Table 1, the GD2 heuristic requires
an 8-piece MOP function, so this is the largest number of pieces we will consider
when using any heuristic. We will consider MOP functions with as few as 4
pieces for the UC and EP points. When selecting the best MOP function for a
given control point heuristic, and for selecting the best MOP density function
developed from the same dataset, we will use the BIC criterion defined earlier.

Results of several models estimated from the full sample dataset and the
grouped sample dataset are shown in Table 3. For purposes of comparing com-
putational time, the MOP estimated from the full dataset with UC points is con-
sidered the baseline model. The percentage change from this baseline is reported
for the other models, with a negative percentage representing an improvement in
required CPU time. Where relevant, the model selected for inclusion in Table 3
is the one that produced the highest BIC score. For example, the model devel-
oped from the full dataset with UC points is a fifth order MOP with 7 pieces.
A similar function with 8 pieces had a BIC score of −3806.81.

The MOP functions in Table 3 can be compared as follows:

UC versus EP. For the full dataset, the UC points provided the MOP ap-
proximation with the highest BIC score, and this function is of smaller size and
required far less CPU time to calculate. The UC function also had the lowest
MAD measurements for the CDF. For this problem, using uniform control points
seems to be preferable to EP points.

UC versus GD1/GD2. When comparing the three columns related to η = 1 in
Table 3, we can see that the GD1 heuristic produced the MOP with the highest
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Table 3. Results of MOP estimation for Example 1. The best measure of fit for each
dataset type is shown in bold.

Dataset Full Full Grouped Grouped Grouped Grouped Grouped

Control Points UC EP UC GD1 GD2 GD1 GD1
Pieces 7 6 7 7 8 7 7
Order 5 9 5 4 4 4 4
η N/A N/A 1 1 1 0.5 0.1

KL 0.0257 0.0059 0.0758 0.0469 0.0793 0.0465 0.0461
MAD PDF 0.0075 0.0026 0.0081 0.0103 0.0147 0.0104 0.0105
MAD CDF 0.0303 0.0317 0.0343 0.0566 0.0743 0.0574 0.0592
MADrt CDF 0.0256 0.0317 0.0334 0.0286 0.0358 0.0293 0.0326
BIC −3803.95 −3807.64 −3766.54 −3753.45 −3754.6 −1895.27 −403.241
CPU 0% 359% 15% −44% 2% −69% −89%
Leaf Count (L) 207 298 194 172 195 172 172

BIC score, and this approximation required the least amount of CPU time to
estimate. Its size (measured using the LeafCount function in Mathematica) is
also the smallest among the competing models. Its KL statistic is the lowest
among these three MOPs, and the MAD measurement for the right tail of the
CDF is also the smallest among any of the models developed with grouped data.
The grouped data points were preferable in this case to the UC points. Obviously,
the grouped data points are established by an analyst or manager when creating
the frequency distribution, so the relevance of these points to the application
under consideration could affect these results.

Varying η Parameter. The BIC values shown in the last two columns of
Table 3 are not comparable to those in any other column because they are based
on different datasets. However, if we examine the goodness-of-fit statistics for the
MOPs produce with datasets constructed from η < 1, we see very comparable
to results to the case where η = 1; the CPU time required to produce these
functions is much lower. In this example, it seems perfectly acceptable to reduce
the size of the temporary dataset.

The PDF and CDF for the MOP estimated from GD1 points with η = 0.1
are shown in Fig. 2 overlaid on the corresponding functions for the LN(3, 0.52)
PDF. The CDF developed from the MOP PDF is also a MOP function. Recall
that these MOP functions are constructed from a frequency distribution based
on 1000 sample points from the LN(3, 0.52) without knowledge of the underlying
distribution.

How much can we reduce the η parameter to gain additional computational
efficiency? This seems to depend partially on the size of the original dataset. For
instance, if we reduce η to 0.05 in this example and use a dataset of 51 observa-
tions (and fit a 7-piece, 4th order MOP), all of the goodness-of-fit statistics are
worse than for the η = 0.1 distribution. There is a critical mass of points needed
in the dataset D̂.
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Fig. 2. MOP PDF estimated from grouped data with GD1 points and η = 0.1 (left)
and CDF associated with the MOP function (right). Both functions are overlaid on
the corresponding functions for the LN(3, 0.52) PDF.

5.2 Example 2

The second example is based on a sample of 1000 points from a mixture distri-
bution for a random variable X that is determined as X = 0.6 ·X1 + 0.4 ·X2,
where X1 ∼ LN(3, 0.52) and X2 ∼ LN(4.5, 0.252). The grouped data for this
example is shown in Table 4. The mean and variance of the grouped data are
XG = 52.56 and s2G = 1394, so the MOP functions for this example will be
defined on [0, 426]. Use of the GD2 heuristic will require a 10-piece MOP ap-
proximation, so we will consider MOP approximations from 5-10 pieces, where
applicable. The pieces in the GD1 and GD2 MOP functions are determined by
the number of grouped data intervals.

The results for MOP models estimated from the full dataset for Example 2
and the grouped data shown in Table 4 are shown in Table 5. Some observations
regarding these results are as follows:

Table 4. Grouped dataset for Example 2

Interval [Sj−1,Sj) Fj Probability mj Fj ·mj Fj ·
(
mj −XG

)2
0-20 277 0.277 13.33 3693.33 426301
20-40 248 0.248 30 7440 126258
40-60 71 0.071 50 3550 467
60-80 112 0.112 70 7840 34052
80-100 154 0.154 90 13860 215832
100-120 88 0.088 110 9680 290309
120+ 50 0.050 130 6500 299822

TOTAL N = 1000 1.000 52563.33 1393040

XG=52.56 s2G = 1394

UC versus EP. When evaluating the UC and EP control point heuristics for
use with the full dataset, the BIC score is highest for the model estimated using
the EP points. Three of the measures of fit favor the EP model, although it does
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Table 5. Results of MOP estimation for Example 2. The best measure of fit for each
dataset type is shown in bold.

Dataset Full Full Grouped Grouped Grouped Grouped Grouped

Control Points UC EP UC GD1 GD2 GD2 GD2
Pieces 9 9 9 8 9 9 9
Order 5 6 4 6 6 3 3
η N/A N/A 1 1 1 0.5 0.1

KL 0.0918 0.0561 0.0969 0.0280 0.0137 0.0382 0.0383
MAD PDF 0.0106 0.0034 0.0106 0.0058 0.0037 0.0029 0.0034
MAD CDF 0.0816 0.0431 0.0824 0.0351 0.0298 0.0241 0.0323
MADrt CDF 0.0362 0.0431 0.0484 0.0309 0.0298 0.0241 0.0321
BIC −4806.92 −4791.28 −4780.75 −4720.84 −4703.18 −2370.66 −507.47
CPU 0% 143% −15% 1% −36% −89% −97%
Leaf Count (L) 226 400 194 276 309 174 174
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Fig. 3. MOP PDF estimated from grouped data with GD2 points and η = 0.5 (left)
and CDF associated with the MOP function (right). Both functions are overlaid on
the corresponding functions for the underlying mixture distribution.

require more CPU time and storage space. In the case of a bi-modal distribution,
the EP heuristic deserves consideration when selecting the best MOP model.

UC versus GD1/GD2. For the three models estimated with η = 1 from the
grouped data, the GD2 temporary dataset provided the result with the highest
BIC score. The KL divergence of this model is the lowest of all the models, and
the MAD statistics associated with the CDF are very competitive with other
possible models. Again, using grouped data control points seems to work well. It
may be possible to use a similar idea with the full dataset, i.e. we could divide
points evenly over a portion of the domain, then define a wider distance between
control points in the right-tail. This deserves some further investigation.

Varying η parameter. Although the grouped data is bi-model, reducing the
number of elements in the temporary dataset used to construct MOP distribu-
tions still provides good results at a lower computational expense. For instance,
the model estimated with η = 0.5 provides good results for the MAD measure-
ments for the CDF at an 89% reduction in computational expense. The PDF and
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CDF for this approximation are shown in Figure 3 overlaid on the actual PDF
and CDF for the mixture distribution, respectively. As with the last example,
we see that there may be a critical mass of points required in D̂, and this may
be greater if the frequency distribution is multi-modal. Table 5 shows that all
goodness-of-fit statistics for the η = 0.1 model are worse than those recorded for
the η = 0.5 model.

6 Conclusions

This paper has described a method for estimating a mixture of polynomials
PDF from a frequency distribution of grouped data. The approach described is
an extension of the B-spline approximation technique implemented by López-
Cruz et al. [10]. The motivation for adapting this method for use with grouped
data is the construction of a cycle time distribution by using a standard report
from a decision support system used by a manufacturer that utilizes refillable
containers. A description of this application is available in a related working
paper [9]. The approach described here is used to develop a PDF for the cycle
time of refillable containers, which is then used to draw conclusions about the
size of the container population (or fleet).

Some issues that arise when fitting MOP functions to grouped data are the
size of the temporary dataset and the split points assigned for the MOP function.
We find that using a fraction of the points contained in the original dataset was
sufficient in both applications examined in this paper, although in the second
example using too few observations produced results that were not as good as a
trial with half the number of the original datasets points. The PDF in this exam-
ple was bi-modal. When fitting an MOP to grouped data, utilizing the dividing
points for the bins of the frequency distribution produced better results than the
uniform control point heuristic. Some reasonable guidelines would be to reduce
the number of points in the original dataset to 10% of the original dataset for
uni-modal distributions and 50% of the original dataset for multimodal distri-
butions. Use of the grouped data plus one control points may be adequate for
uni-modal PDFs, whereas adding an additional control point at both ends of the
domain may be necessary for multi-modal distributions.

Acknowledgments. Thank you to the reviewers for comments and suggestions
which improved the paper.
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Abstract. In previous work, we devised an approach for multilabel
classification based on an ensemble of Bayesian networks. It was charac-
terized by an efficient structural learning and by high accuracy. Its short-
coming was the high computational complexity of the MAP inference,
necessary to identify the most probable joint configuration of all classes.
In this work, we switch from the ensemble approach to the single model
approach. This allows important computational savings. The reduction
of inference times is exponential in the difference between the treewidth
of the single model and the number of classes. We adopt moreover a more
sophisticated approach for the structural learning of the class subgraph.
The proposed single models outperforms alternative approaches for mul-
tilabel classification such as binary relevance and ensemble of classifier
chains.

1 Introduction

In traditional classification each instance is assigned to a single class. Multilabel
classification generalizes this idea by allowing each instance to be assigned to
multiple relevant classes. Multilabel classification allows to deal with complex
problems such as tagging news articles or videos.

A simple approach to deal with multilabel classification is binary relevance
(BR), which decomposes the problem into a set of traditional (i.e., single label)
classification problems. Given a problem with n classes, binary relevance trains
n independent single-label classifiers. Each classifier predicts whether a specific
class is relevant or not for the given instance. Binary relevance is attractive
because of its simplicity. Yet, it ignores dependencies among the different class
variables. This might result in sub-optimal accuracy, since the class variables are
often correlated [8]. According to the global accuracy metric, a classification is
accurate only if the relevance of every class is correctly predicted. A sound model
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of the joint probability of classes given the observed features is thus necessary
(see [13] and the references therein). This requires identifying the maximum a
posteriori (MAP) configuration of the class relevances.

The classifier chain [12] is a state-of-the-art approach to model dependen-
cies among classes. It achieves good accuracy; however, it has no probabilistic
interpretation.

Bayesian networks (BNs) are an appealing tool for probabilistic multilabel
classification, as they compactly represent the joint distribution of class and fea-
ture variables. When dealing with multilabel classification they pose two main
challenges: structural learning and predictive inference. As for structural learn-
ing, the graph is typically partitioned into three pieces [14, 3]: the class subgraph,
namely the structure over the class variables; the feature subgraph, namely the
structure over the features variables; the bridge subgraph, namely the structure
linking the feature to the class variables [14, 3, 4].

In a previous work [1] we introduced the multilabel naive assumption, which
provides an interesting trade-off between computational speed of structural learn-
ing and effectiveness of the learned dependencies. The assumption is that the
features are independent given the classes, thus generalizing naive Bayes to the
multilabel case. As a consequence, the feature subgraph is empty. The bridge
subgraph is optimally learned by independently looking for the optimal parents
set of each feature. It does not require iterative adjustments. This allows for ef-
ficient structural learning. We accompany the multilabel naive assumption with
a simple but effective algorithm for feature selection.

Our previous approach [1] was based on an ensemble of different Bayesian
networks. Under the multilabel assumption the different BNs had an empty fea-
ture subgraph and shared the same optimal bridge subgraph. Each model had
a different naive Bayes class subgraph. The ensemble approach achieved good
performance. Its main shortcoming was the high complexity of the MAP infer-
ence regarding the most probable joint configuration of all classes. The high cost
of MAP inference in multilabel Bayesian network classifiers has been discussed
previously in the literature. In [5], the authors limit the MAP inferential com-
plexity by constraining the underlying graph to be a collection of small disjoint
graphs. However, this severely limits the expressivity of the models.

In this work, we aim at largely decreasing the computational times of our
previous approach while keeping accuracy as high as possible. To this end, we
move from the ensemble to a single model. Single models are known to be less
accurate than ensembles. To compensate this effect, we introduce a more sophis-
ticated structural learning procedure for the class sub-graph. We allow the class
subgraph to be either a naive Bayes or a forest-augmented naive Bayes (FAN).
This yields two different multilabel classifiers, called in the following mNB and
mFAN. Both models optimize in two steps the class subgraph. In the first step
each class is considered as a possible root of mNB (or mFAN). For each pos-
sible root, we identify the optimal naive (or FAN) structure. We thus identify
n different naive (or FAN) structures. In the second step we select the highest
scoring naive (or FAN) structure.
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Both mNB and mFAN are less accurate than the original ensemble. Yet, the
accuracy gap is not huge. Moreover, mNB and mFAN outperform both binary
relevance and the ensemble of classifier chains (implemented using naive Bayes
as base classifier). The single model approach allows large computational savings
compared to the ensemble. The saving is exponential in the difference between
the number of classes and the treewidth of the single model which has been
learned.

We then analyze the learned class sub-graphs. Define the relevance of a class
as the percentage of instances for which it is relevant. We found a positive cor-
relation between the relevance of the root class, the score of the class sub-graph
and the number of non-root classes being to the root class. The explanation is as
follows. Most classes have low relevance. A class which is labeled more often as
relevant allows for better estimating the correlations with the remaining classes.
This yields more non-root classes being connected to the root and also a higher
score of the resulting graph. This might explain why our previous ensemble is
only slightly more accurate than the single model. Many models of the ensemble
had as a root of the class subgraph a class with low relevance. Such models were
unlikely to convey helpful information when classifying the instances.

As a final contribution we discuss the need for preventing the empty predic-
tion. A prediction is empty if all classes are predicted to be not relevant.

2 Probabilistic Multilabel Classification

We denote the array of class relevances as C := (C1, . . . , Cn); this is an array
of Boolean variables, with variable Ci, i = 1, . . . , n, expressing the relevance of
the i-th class for the given instance. Thus, C takes its values in {0, 1}n. We
denote the set of features as F := (F1, . . . , Fm). We assume the availability
of a set of complete training instances D = {(c, f)}, where c = (c1, . . . , cn)
and f = (f1, . . . , fm) represent an instantiation of class relevances and features,
respectively.

A probabilistic multilabel classifier estimates a joint probability distribution
over the class relevances conditional on the features, P (C|F). Such model can
predict the class relevances on new instances. We denote as c and ĉ respectively
the set of actual and predicted class relevances. The actual and the predicted
relevance of class Ci are denoted respectively by ci and ĉi.

A common metric to evaluate multilabel classifiers on a given instance is global
accuracy (also called exact match):

acc := I(c = ĉ) , (1)

where I is the indicator function.
Another measure of performance is Hamming accuracy (also called mean label

accuracy):

Hacc :=
1

n

n∑
i=1

I(ĉi = ci) . (2)
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Commonly Hamming loss (1-Hacc) rather than Hamming accuracy is reported.
We report Hamming accuracy to simplify results readability: both acc and Hacc

are better when they are higher. Global accuracy is often zero on data sets with
many classes. On such data sets Hamming accuracy is thus more meaningful
than global accuracy.

When classifying an instance with features f , two different inferences are per-
formed depending on whether the objective is to maximize global accuracy or
Hamming accuracy.

To maximize global accuracy we search for the most probable joint configu-
ration of the class relevances (joint query):

ĉ = arg max
c∈{0,1}n

P (c|f) = arg max
c∈{0,1}n

P (c, f) . (3)

In the context of Bayesian networks, the above problem is known as Maximum
A Posteriori (MAP) or Most Probable Explanation (MPE) inference. Unlike
in standard MAP inference problems, the prediction of all classes being non-
relevant (empty prediction) is considered invalid. Each instance should be as-
signed to at least one class. If the most probable joint configuration is the empty
prediction, we ignore it and return the second most probable configuration, which
is necessarily non-empty. To our knowledge this issue has not yet been pointed
out. For instance the algorithms implemented by MEKA1 do not prevent the
empty prediction. We show empirically in Section 5 that preventing the empty
prediction can increase accuracy in some domains.

To maximize Hamming accuracy we select the most probable configuration
(relevant or non-relevant) of each class Ci (marginal query):

ĉi = arg max
ci∈{0,1}

P (ci|f) = arg max
ci∈{0,1}

P (ci, f) , (4)

where P (ci|f) =
∑

C\{Ci} P (c|f). If all classes are predicted to be non-relevant,
the empty prediction is avoided by predicting as relevant only the class Ci with
the highest posterior probability of being relevant.

We model the joint distribution P (C,F) as a Bayesian network, and ob-
tain classifications by running standard algorithms for either MAP inference or
marginal inference in the network, according to the chosen performance measure.
Once a structure (i.e., a directed acyclic graph over C,F) for the corresponding
Bayesian network has been defined, the model parameters are efficiently com-
puted using Bayesian estimation. Learning a good structure is a challenging
problem, which we tackle by making a number of assumptions on the struc-
ture that enable fast and exact learning. We detail the assumptions in the next
section.

3 Structural Learning

We address structural learning assuming the data set to be complete. The prob-
lem of how to efficiently learn the structure of a probabilistic multilabel classifier

1 http://meka.sourceforge.net

http://meka.sourceforge.net
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has been studied in the past [14, 3]. The graph is typically partitioned into three
pieces: the class subgraph, namely the structure over the class variables modeling
class-to-class (in)dependences; the feature subgraph, namely the structure over
the features variables modeling feature-to-feature (in)dependences; the bridge
subgraph, namely the structure linking the feature to the class variables and
modeling the (in)dependences between features and classes.

The approach of [14] constrains both the class subgraph and feature subgraph
to be a tree-augmented naive Bayes (TAN). A bridge subgraph is proposed, and
the TANs of the two subgraphs are correspondingly learned. The bridge subgraph
is iteratively updated following a wrapper approach [11]. Every time the bridge
subgraph is updated, the two TANs are re-learned. Also [3] adopts a similar
approach, considering a wider variety of topologies for the class and the feature
subgraphs. Such approaches can result in high computational times because
the bridge subgraph is incrementally improved at each iteration, requiring to
correspondingly update also the other subgraphs. Conversely, [4] keeps empty
both the class subgraph and the feature subgraph. This approach is fast but
cannot properly model correlated class variables.

Instead, we assume the features to be independent given the classes as in
a previous work of ours [1]. Since the feature nodes cannot have children, the
feature subgraph is empty. This allows us to optimally learn the bridge subgraph
by independently looking for the optimal parents set of each feature.

Our procedure is based on maximizing the BDeu score, which decomposes, in
the case of complete data, as the sum of the BDeu scores of each node:

BDeu(G) :=
∑

Xi∈{C,F}
BDeu(Xi,Pa(Xi)) ,

where G denotes the entire graph (i.e., the union of class, feature and bridge
subgraphs), Xi a generic node and Pa(Xi) its parents set in G. The number of
joint configurations of the parents of Xi is denoted by qi. The score function for
a single node is:

BDeu(Xi,Pa(Xi)) :=

qi∑
j=1

⎡⎣log Γ (αij)

Γ (αij + nij)
+

|Xi|∑
k=1

log
Γ (αijk + nijk)

Γ (αijk)

⎤⎦ , (5)

where nijk is the number of records such that Xi is in its k-th state and its
parents in their j-th configuration, while nij =

∑
k nijk. Finally, αijk is equal to

the equivalent sample size α divided by the number of states of Xi and by the
number of (joint) states of the parents, while αij =

∑
k αijk.

Class and feature nodes have only class nodes as parents (i.e., Pa(Xi) ⊆ C for
every node/variable Xi). Hence, the BDeu decomposes in two terms, referring
respectively to the class and the bridge subgraphs:

BDeu(G) =
n∑

i=1

BDeu(Ci,Pa(Ci)) +
m∑
j=1

BDeu(Fj ,Pa(Fj)) .
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Moreover, the two terms can be optimized separately, as the combined directed
graph is necessarily acyclic. The optimizations of each term require different
approaches:

Bridge Subgraph. We optimize the BDeu score of the bridge subgraph by inde-
pendently searching for the optimal parents set of each feature. This strategy is
optimal since: (i) the feature subgraph is empty, thus preventing the introduc-
tion of directed cycles; (ii) the BDeu scores decompose over the different feature
variables.

Any subset of C is a candidate for the parents set of a feature, this reducing
the problem to m independent local optimizations. The optimal parents set of
Fj is found as follows:

CFj := arg max
Pa(Fj)⊆C

BDeu(Fj ,Pa(Fj)) , (6)

for each j = 1, . . . ,m. The optimization in Equation (6) becomes more efficient
by considering the pruning techniques proposed in [6].

Feature Selection. Naive Bayes is surprisingly effective in traditional classifica-
tion despite its simplicity. Moreover, careful feature selection allowed naive Bayes
even to win data mining competitions [9].

We thus perform feature selection before learning the bridge graph. We rely
on the correlation-based feature selection (CFS) [15, Chap. 7.1], which has been
developed for traditional classification. We perform CFS n times, once for each
different class variable. Eventually, we retain the union of the features selected
in the different runs. This is a useful pre-processing step which reduces the
number of features, removing the non-relevant ones (Table 2). It also helps from
the computational viewpoint. Feature selection for multilabel classification is
however an open problem, and more sophisticated approaches can be designed
to this end.

Class Subgraph. Unlike the feature subgraph, the optimizations of the class
variables cannot be carried out independently, as this might introduce directed
cycles. Instead, we enable efficient structure learning by restricting the class
of allowed structures. We allow the class subgraph to be either a naive Bayes
or a forest-augmented naive Bayes (FAN). This yields two different multilabel
classifiers, called in the following mNB and mFAN. The leading ’m’ shows that
such classifiers are designed for multilabel classification.

Let us assume that the class which serves as root node (Croot) of naive Bayes or
FAN is given. We then search for the class subgraph which maximizes the BDeu
score. As for mNB, the highest scoring naive Bayes is obtained by computing for
each non-root class Ci the two scores BDeu(Ci, ∅) and BDeu(Ci, C

root). Class
Ci is linked to the root class if

BDeu(Ci, C
root) > BDeu(Ci, ∅) (7)
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and unlinked otherwise. The above procedure is repeated n times. Every time
a different class C1, . . . , Cn is taken as root of the naive Bayes. This yields
n different naive Bayes structures. The structure with maximum score among
them is taken as class subgraph for the multilabel classifier. Summing up, we
perform a two-steps optimization: first we compute the optimal naive structure
for each possible root. Then we select the highest scoring structure among those
identified in the first step.

C1

C2 C3 C4 C5 C6

F1 F2 F3 F4 F5

Fig. 1. Example of a mNB model. The class subgraph is a naive Bayes, with C5 and
C6 unlinked from the root class. The arcs of the class subgraph are thicker and shown
in blue.

An analogous two-step optimization is adopted when a FAN structure is
looked for. The difference between FAN and TAN is that the former augments
naive Bayes by a forest, while the latter augments naive Bayes by a tree (i.e.,
the underlying graph of a TAN is necessary connected). TAN is thus a special
case of FAN, and therefore the latter can achieve a higher BDeu score than the
former, as its structure has more degrees of freedom. To identify the optimal
FAN we do not independently optimize the parents set of each non-root node, as
this approach could introduce cycles. We instead solve an optimization problem
characterized by the following constraints: cycles are not allowed; the root node
has no parents; each non-root node Ci has three feasible configuration for its
parents set: the empty set; the root class; the root class and another non-root
class. Strategies for efficiently learning the optimal FAN structure are discussed
for instance in [6, 7].

Figure 1 depicts an example of mNB, with the multilabel naive assumption
for the bridge subgraph and a naive Bayes as class subgraph.

An Ensemble of Bayesian Networks. The previously described procedure yields
a single Bayesian network model. Its bridge graph is optimally learned under
the multilabel naive assumption. Its class graph is either an optimal FAN or an
optimal naive Bayes.

In a previous work [1], we considered instead an ensemble approach. The
ensemble was constituted by n different Bayesian networks (BNs). Each BN
was based on naive multilabel assumption. We recall that, under the multilabel
naive assumption, the optimal bridge subgraph is independent from the class
subgraph. Thus, the BNs shared the same bridge subgraph.
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The class subgraph was constituted by a different naive Bayes for each member
of the ensemble. Each member of the ensemble used a different root for naive
Bayes. The structure of naive Bayes was not optimized. The inferences produced
by the different member of the ensemble were combined through logarithmic
opinion pooling. The ensemble approach showed good performance, but also
high computational times, especially for MAP inference (see the discussion at
the end of Section 4).

In this paper we move from the ensemble to a single model. In this way, we
largely reduce the complexity of the inferences. To compensate for the loss of
accuracy due to switching to a single model, we introduce the two-layer opti-
mization for the class subgraph described in the previous section.

4 Computational Complexity

We distinguish between learning and classification complexity, where the latter
refers to the classification of a single instantiation of the features. Both space
and time required for computations are analyzed. The orders of magnitude of
these descriptors are reported as a function of the (training) dataset size d, the
number of classes n, the number of features m, the average number of states
for the features f = m−1

∑m
j=1 |Fj |, and the maximum in-degree of the features

g = maxj=1,...,m ‖CFj‖ (where CFj is the optimal parents set of Fj computed
as in Equation (6), | · | returns the cardinality of a variable, and ‖ · ‖ the number
elements in a joint variable). As the class variables cannot have more than two
parents in the mFAN and no more than one in the mNB, g is also the maximum
in-degree of the network ( provided that g > 1).

Regarding space, the conditional probability table (CPT) of the j-th feature,

i.e., P (Fj |CFj ), needs space O(|Fj | ·2‖CFj
‖), while the n CPTs associated to the

classes have size bounded by a small constant (8 numbers for the mFAN and 4
for the mNB). Overall, this means a space complexity O(n+ f2g). These tables
should be available during both learning and classification.

Regarding the time required by the learning, let us first note that, according
to Equation (5), the computation of the BDeu score associated to a variable
takes a time of the same order of the space required to store the corresponding
CPT. The number of scores to be evaluated in order to determine the parents
of Fj as in Equation (6) is of the same order of the binomial coefficient ( n

g ),
that means O(n2g). Then, we sum over the features and obtain O(mn2g) time.
Regarding the class graph, for mNB we only have to evaluate the inequality
in Equation (7), which only takes constant time, on the non-root classes. This
means O(n) time. Learning a FAN can be instead achieved in O(n2) [7]. Finally,
the quantification of the network parameters requires the scan of the dataset,
i.e., for the whole ensemble, O((n+m)d). Such a learning procedure should be
iterated over the n models of the ensemble, in order to select the one with the
highest likelihood. This only affects the class subgraph, and the relative term
should be therefore additionaly multiplied by n.

Concerning the classification time, both the MAP inference in Equation (3)
and the computation of marginals in Equation (4) can be solved exactly by
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junction tree algorithms in time exponential in the treewidth of the network’s
moral graph.2 The treewidth measures the connectivity of the network, which
according to our learning procedure depends on unconditional class correlations,
and the capability of the features to induce additional (conditional) correlations
among classes. In the mFAN, the treewidth is at least 3, while in mNB it is at
least 2. The experiments reported in the next section show that the treewidth of
our models is usually much smaller than the number of classes, and often small
enough to enable exact inference (by junction tree algorithms).

The situation of our previous ensemble was radically different [1]. For each pair
of class variables, say Ci and Cj , there was at least a network in the ensemble
such that Ci was parent of Cj (and vice-versa). Thus, when merging all the
networks of the ensemble in a single Markov random field, there was a clique
including all the classes, which made the treewidth equal to n, the number of
classes. Such a treewidth made exact inference intractable for large n, and we
were forced to resort to approximate methods such as max-product.

The ratio of the inference time of the ensemble to the inference time of the
single model increases exponentially with the difference between the number of
classes and the actual treewidth of the single model. Yet, there are no theoretical
guarantees for the treewidth of the single model being small (i.e., bounded by a
constant) [10]. In fact, as the inference problem is NP-hard even in structures as
simple as the bridge graph alone, we expect the treewidth of the single models to
be at least super logarithmic (i.e., greater than log(n)) in the worst case. When
this is the case, (i.e., when the treewidth is too high), approximate algorithms
are used instead. In these cases the time complexity is O(n2g).

Summarizing, the maximum in-degree represents the bottleneck for space,
learning time, and the classification time with approximate methods. Since, as
proved by [6], g = O(log d), the overall complexity is polynomial. Regarding the
classification time with exact inference, this is exponential in the treewidth.

5 Experiments

We compare mNB and mFAN against different alternative models: the ensemble
of BNs we proposed in [1]; the binary relevance algorithm; the ensemble of chain
classifiers (ECC). For both binary relevance and ECC we use naive Bayes as
base classifier. Binary relevance thus runs n independent naive Bayes classifiers,
where n is the number of classes.

ECC stands for ’ensemble of chain classifiers’. Each chain is characterized by a
different order of the labels in the chain. We set to 20 the number of chains in the
ensemble. Therefore, ECC runs 20·n naive Bayes, We use the implementation of
these methods provided by MEKA.3

2 The moral graph of a Bayesian network is the undirected graph obtained by link-
ing nodes with a common child and dropping arc directions; its treewidth is the
maximum size of a clique after being triangulated.

3 http://meka.sourceforge.net

http://meka.sourceforge.net
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It has not been possible to include in our experiments other multi-label clas-
sifiers based on BNs [14, 3] because of the lack of public domain software.

Regarding the parameters of our model, we set the equivalent sample size for
the structural learning to α = 5. No other parameter needs to be specified.

We have implemented the high-level part of the algorithm in Python. For
structural learning, we adopted the GOBNILP package.4 We performed the in-
ferences using the junction tree and belief propagation algorithms implemented
in libDAI, a library for inference in probabilistic graphical models.5

We compare the classifiers on 8 different data sets, whose characteristics are
given in Table 1. The density is the average number of relevant labels per
instance.

Table 1. Datasets used for experiments

Data set Classes Features Instances Density

Emotions 6 72 593 .31
Scene 6 294 2407 .18
Yeast 14 103 2417 .30
Slashdot 22 1079 3782 .05
Genbase 27 1186 662 .04
Enron 53 1001 1702 .06
Cal500 174 68 502 .15
Medical 45 1449 978 .03

We validate the classifiers by a 5-folds cross-validation. We stratify training
and test sets according to the least relevant label (i.e., the label which is less
often annotated as relevant, and whose distribution among folds risks to be very
uneven if not stratified).

Before training any classifier, we perform two pre-processing steps. First, we
discretize numerical features into four bins. The bins are given by the 25-th, the
50-th and 75-th percentile of the value of the feature. Then we perform feature
selection as described in Section 3. The effectiveness of feature selection can be
appreciated from the third column of Table 2.

The results regarding global accuracy and Hamming accuracy are provided in
Table 3 and 4 respectively. The Friedman test rejects the null hypothesis of all
classifiers having the same median rank. This happens both for global accuracy
(p<0.01) and for Hamming accuracy (p<0.01). The following rank is consistently
found under both accuracies: the first ranked classifier is the ensemble, followed
by mNB, mFAN, binary relevance and ECC.

We exclude from the subsequent analysis the mFAN model. It has lower rank
than mNB on both Hamming accuracy and global accuracy, despite higher com-
plexity. The reason of this phenomenon is not yet clear and it is worth further

4 http://www.cs.york.ac.uk/aig/sw/gobnilp
5 http://www.libdai.org

http://www.cs.york.ac.uk/aig/sw/gobnilp
http://www.libdai.org
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Table 2. Treewidth and feature selection on the benchmark data sets

Data set Treewidth Features
(mNB/ensemble) (selected/original)

Emotions 5/6 22/72
Scene 6/6 184/294
Yeast 8/14 28/103
Slashdot 22/22 465/1079
Genbase 23/27 82/1186
Enron 32/53 220/1001
Cal500 10/174 66/68
Medical 35/45 436/1449

Table 3. Global accuracy. Classifiers are sorted according to their average rank. Lower
rank is better.

Data set ensemble mNB mFAN ECC binary rel.

Cal500 0.00 0.00 0.00 0.00 0.00
Emotions 0.28 0.22 0.22 0.25 0.25
Enron 0.12 0.06 0.11 0.02 0.02
Genbase 0.95 0.94 0.93 0.76 0.77
Medical 0.69 0.65 0.62 0.20 0.18
Scene 0.64 0.61 0.59 0.30 0.29
Slashdot 0.49 0.42 0.42 0.44 0.41
Yeast 0.14 0.07 0.09 0.13 0.11

Average rank 1.2 3.1 3.2 3.4 4.0

Table 4. Hamming accuracy. Classifiers are sorted according to their average rank.
Lower rank is better.

Data set ensemble mNB mFAN ECC binary rel.

Cal500 0.86 0.86 0.86 0.59 0.63
Emotions 0.79 0.77 0.77 0.76 0.75
Enron 0.95 0.94 0.94 0.77 0.87
Genbase 1.00 1.00 1.00 0.99 0.98
Medical 0.99 0.99 0.98 0.98 0.69
Scene 0.91 0.90 0.89 0.83 0.82
Slashdot 0.96 0.95 0.95 0.95 0.86
Yeast 0.78 0.77 0.76 0.76 0.75

Average rank 1.3 2.2 2.8 4.0 4.8

investigation. However, according to Occam razor, mNB should be preferred
over mFAN.

We then perform the statistical multiple comparisons among ensemble, mNB,
binary relevance and ECC. We adopt the Wilcoxon signed-rank test to perform
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the pairwise comparisons. Before declaring significance, we adjust the p-values
according to the false discovery rate (FDR) correction [2]. FDR adjusts the p-
values of multiple comparisons in a more powerful (i.e., less conservative) way
than traditional methods such as Bonferroni. We report a significant difference
when the adjusted p-value is smaller than 0.05.

The ensemble is significantly more accurate than binary relevance, ECC and
mNB. This is verified both on global accuracy and Hamming accuracy. No signif-
icant difference can be detected between ECC and mNB. Moreover, both ECC
and mNB have significantly higher Hamming accuracy than binary relevance. As
for global accuracy, the ECC and mNB have higher rank than binary relevance,
but the difference is not significant. A possible reason is that on the Cal500 data
sets the global accuracy of all classifiers is zero because of the high number of
classes. Thus, global accuracy provides less evidence than Hamming accuracy
when analyzed by a hypothesis test.

Summing up, the ensemble is significantly more accurate than mNB, which
however compares favorably to both binary relevance and ECC. However, mNB
provides huge computational savings compared to the ensemble. The saving is
linear in the number in classes when performing the marginal inference (Equa-
tion 4). The ensemble performs the marginal query n2 times (n members of
the ensemble multiplied by n classes). The mNB classifier performs this query
n times (once for each class). As already discussed in Section 4, even larger
computational savings are obtained on the query about the most probable joint
configuration of the classes (Equation 3). Consider the ratio of the inference
time of the ensemble to the inference time of mNB. This ratio varies between
3 and 280 depending on the data set. Figure 2 shows the relation between the
logarithm of the ratio and the difference between the treewidth of the ensemble
(equal to the number of classes, see Section 4) and the treewidth of mNB (see
the values in Table 2). The relation is roughly linear as expected.
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Fig. 2. Logarithm of the ratio of inference times (ensemble/mNB, in log scale) against
difference between the number of classes and the treewidth of the mNB. A log ratio of
2.5 implies a 12-folds speed up. A log ratio of 5 implies a 150-folds speed up.
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5.1 Insights on the mNB Structure

In this section we derive some insights analyzing the structure of the class sub-
graphs learned for the mNB model. Learning the class subgraph according to
the two steps procedure of Section 3 boils down to identify a) which non-root
classes should be connected to each possible root class and b) which is the best
structure, among the n characterized by different roots. Let us call optimal root
the root of the graph which is eventually chosen.

The optimal root is usually among the most relevant classes (i.e., those which
are more frequently tagged as relevant) available in the data set. This point
is illustrated by the following analysis. Each class has its own relevance (% of
instances in which it is relevant). Consider the relevance of the class selected
as optimal root. Sort the classes according to their relevance and compute the
percentile of the root class. This percentile is generally well above 0.8. Often the
root class is the most relevant one (Figure 3, left).

Fig. 3. Percentile of relevance of the optimal root (left) and connectivity of the optimal
naive Bayes (right)

We then analyze the connectivity of the optimal naive Bayes. If n is the num-
ber of classes, naive Bayes contains at most n − 1 arcs between the root and
the non-root classes. The connectivity of a naive Bayes is how many arcs are
instantiated out of the n − 1 possible ones. Consider the connectivity of the
naive Bayes selected as optimal. Sort the n different naive Bayes (each charac-
terized by a different root) according to their connectivity. Take the percentile
of the optimal naive Bayes. Such percentile is usually well above 0.6 (Figure 3,
right). An exception is found on the Yeast and Scene data sets. On Scene, the
optimal naive Bayes has connectivity of 4/5 while the alternative naive Bayes
have connectivity 5/5. The optimal model has thus high connectivity, but this is
hidden when computing the percentile. Only on yeast the optimal naive Bayes
has limited connectivity (6/13).

Our explanation is as follows. Consider that most classes have low relevance:
the average relevance of a class is around 10%, with huge differences among
data sets. A class which is more often relevant allows to reliably estimate the
correlations with the relevance of the remaining classes. Using a class of this type
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as root of the class subgraph results both in higher score and in higher number
of arcs going from the root to the non-root classes.

5.2 Avoiding Empty Predictions

The least dense data sets are Slashdot, Genbase, Enron and Medical (see Table
1). On such data sets, global accuracy increases when empty predictions are
prevented (Table 5). The effect is noteworthy on Slashdot. We did not find
empty predictions on the other data sets.

Preventing empty prediction sometimes improves also Hamming accuracy,
but the impact on this indicator is narrow. Preventing empty predictions should
become common practice in multilabel classification because of the following
reasons: it sometimes improves accuracy; it never worsens it. It is trivial to
implement. Most important, it avoids returning a non-sensible prediction.

Table 5. Change in global accuracy when preventing the empty prediction

ensemble mNB

Data set
empty

prevented
empty
allowed

empty
prevented

empty
allowed

Slashdot .49 .40 .42 .34
Genbase .95 .94 .94 .94
Enron .12 .07 .06 .05
Medical .69 .64 .65 .60

6 Conclusions

A new approach to multilabel classification based on Bayesian networks has been
proposed. Some of the ideas of our previous work [1] are kept: the naive multiclass
assumption (i.e., features are conditionally independent given the joint class), a
singly connected subgraph over the classes, and no feature-to-class arcs. Yet, we
consider a more sophisticated learning of the structure. We show empirically that
the approximation largely decreases the computational burden while incurring
only a small worsening of accuracy. We also provide an original analysis of the
identified structures. We plan to make our code available in the near future.
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Abstract. We present an efficient algorithm for estimating hidden state
sequences in imprecise hidden Markov models (iHMMs), based on ob-
served output sequences. The main difference with classical HMMs is
that the local models of an iHMM are not represented by a single mass
function, but rather by a set of mass functions. We consider as esti-
mates for the hidden state sequence those sequences that are maximal.
In this way, we generalise the problem of finding a state sequence with
highest posterior probability, as is commonly considered in HMMs, and
solved efficiently by the Viterbi algorithm. An important feature of our
approach is that there may be multiple maximal state sequences, typi-
cally for iHMMs that are highly imprecise. We show experimentally that
the time complexity of our algorithm tends to be linear in this number
of maximal sequences, and investigate how this number depends on the
local models.

Keywords: Imprecise hidden Markov model, Viterbi algorithm, maxi-
mality, hidden state sequence, robustness.

1 Introduction

The popularity of Bayesian networks has increased rapidly over the last decades,
and their power has been illustrated in numerous applications. Nevertheless,
some of the assumptions they are based on are rather severe and, in some cases,
even unreasonable. For example, in order to specify a Bayesian network, one has
to quantify its local probability mass functions exactly. If limited data and/or
expert knowledge is available, this is clearly an unrealistic requirement. By en-
forcing precision nevertheless, the resulting model and the inferences it produces
are, although precise, not guaranteed to be supported by the evidence, thereby
creating a false sense of correctness.

In order to avoid this problem, one can allow for local models that are rep-
resented by a set of mass functions instead of a single one, thereby obtaining a
so-called credal network [1]. In this paper, we will consider the special case of an
imprecise hidden Markov model (iHMM), which is the credal network version of
an HMM. We explain how the problem of finding a state sequence with maximal
posterior probability can be generalised to this framework, and present an algo-
rithm that is capable of solving this new version of the problem in an efficient
manner. In this way, we obtain a robust alternative to the Viterbi algorithm [5].

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 160–175, 2014.
© Springer International Publishing Switzerland 2014
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A similar study has been conducted in Ref. [2] as well. However, the iHMM
that was considered in that paper was of a completely different kind: instead of
regarding an iHMM as a collection of HMMs—as we will do, and as is technically
referred to as assuming ‘strong independence’—the authors of Ref. [2] considered
a so-called iHMM under epistemic irrelevance; see Ref. [1] for more information.
In the conclusions of Ref. [2], the authors wondered whether or not it was possible
to obtain similar results for our version of an iHMM. The present paper illustrates
that this is indeed the case.

We start in Section 2 by introducing HMMs, also discussing the problem
that is solved by the Viterbi algorithm. In Section 3, we generalise this problem
towards imprecise hidden Markov models, which we introduce, and explain how
it leads us to consider a set of maximal sequences as estimates for the hidden
state sequence. We derive a manageable expression for this set in Section 4, and
use it in Section 5 to derive an algorithm that is able to calculate the set of
all maximal sequences in a recursive manner. In Section 6, we explain how for
some common imprecise models, the parameters that are required to run our
algorithm can be calculated easily. We end the paper in Section 7 by presenting
a number of experiments, showing that the time complexity of our algorithm
tends to be linear in the number of maximal sequences, and illustrating how this
number depends on the local models of the iHMM.

2 Hidden Markov Models

A hidden Markov model (HMM) is a probabilistic graphical model that has a
graphical structure of the form depicted in Figure 1.

X1 X2
. . . Xk

. . . Xn

O1 O2 Ok On

Fig. 1. Graphical structure of a hidden Markov model

It consists of 2n random variables that can be categorised into n hidden state
variablesX1, X2, . . . , Xn and n observable output variables O1, O2, . . . , On. For
any given k in {1, . . . , n}, the variables Xk and Ok take values in their respective
possibility space Xk and Ok. We assume that every possibility space is finite.

2.1 Local Uncertainty Models

For the first state variableX1, we have an initial model that, since X1 is assumed
to be finite, can be characterised by a probability mass function p1 on X1. For any
x1 in X1, p1(x1) is the probability that X1 takes the value x1. For the subsequent
state variables Xk, with k in {2, . . . , n}, we have a transition model pk. For any
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xk in Xk and xk−1 in Xk−1, pk(xk|xk−1) is the probability that Xk assumes the
value xk, conditional on Xk−1 being equal to xk−1. For notational convenience,
we introduce a trivial state variable X0 that assumes only a single value ��;
hence, X0 := {��} and, whenever we write x0, this is taken to be equal to ��.
This trick allows us to regard p1 as a conditional model as well, by defining
p1(x1|��) := p1(x1). Finally, for every output variable Ok, with k in {1, . . . , n},
we have an emission model qk. For every ok in Ok and xk in Xk, it provides us
with the conditional probability qk(ok|xk) that Ok assumes the value ok, given
that Xk is equal to xk.

2.2 Constructing a Joint Model

By imposing the usual Markov condition for Bayesian networks, the global model
of an HMM—a global mass function p—is completely determined by its local
models; it suffices to multiply them. For all x1:n in X1:n :=×n

k=1
Xk and o1:n in

O1:n :=×n

k=1
Ok, we find that

p(x1:n, o1:n) =

n∏
k=1

pk(xk|xk−1)qk(ok|xk),

where we use the shorthand notations x1:n := (x1, . . . , xn) and o1:n := (o1, . . . , on)
to refer to the state and output sequence, respectively.

2.3 The Viterbi Algorithm

One of the most important problems in an HMM is to try and estimate the
unknown hidden state sequence, based on an observed output sequence o1:n in
O1:n. This is commonly done by choosing a state sequence x1:n that maximises
the posterior probability p(x1:n|o1:n), as obtained through Bayes’ rule. We will
call such a state sequence optimal. Assuming that p(o1:n) is positive, we find
that the set of all optimal sequences is equal to

argmax
x1:n∈X1:n

p(x1:n, o1:n) = argmax
x1:n∈X1:n

n∏
k=1

pk(xk|xk−1)qk(ok|xk). (1)

A well-known method for finding an arbitrary element of this set—and hence an
estimate for x1:n—is to apply the Viterbi algorithm [5]; see Ref. [3] for a good
introduction. By proceeding in a recursive fashion, this algorithm manages to
be very efficient: its time complexity is only O

(
nm2

)
, where m is the size of the

biggest possibility space for the states: m := max{|Xk| : k ∈ {1, . . . , n}}.

3 Imprecise Hidden Markov Models

In classical HMMs—the ones considered in the previous section—the local un-
certainty models are mass functions, which have to be quantified exactly, say,
with arbitrary precision. However, in many instances (e.g., if little data and/or
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expert knowledge is available), this requirement is clearly unreasonable. For ex-
ample, what if there is some probability for which an expert is only able to
provide an interval, rather than an exact value? In order to model such situa-
tions in a more flexible manner, one can use a so-called imprecise hidden Markov
model (iHMM) which, basically, is just a set of HMMs. They all share the same
graphical structure, but their local probability mass functions may differ.

3.1 Local Imprecise Uncertainty Models

The crucial difference between iHMMs and HMMs is that their local models are
not required to consist of a single mass function. Instead, a set of mass functions
may be used. The only restrictions we impose is that this set should be compact,
and that it should assign positive probability to every event; for ease of reference,
we call this last requirement the positivity assumption.

In order to make this more formal, we denote by ΣX the set of all mass
functions on some generic possibility space X and let intΣX be its interior, as
defined by intΣX := {p ∈ ΣX : (∀x ∈ X ) p(x) > 0}. We allow our local models
to be any compact subset M of intΣX . Compactness is imposed to ensure that
minima and maxima are well-defined, thereby allowing us to consider, for all x
in X , its so-called lower and upper probability, as defined by

p(x) := min{p(x) : p ∈ M} and p(x) := max{p(x) : p ∈ M}.
The positivity assumption is imposed for didactical reasons only, as it allows us
to avoid a number of cumbersome technicalities. In its most general form—which,
due to page limit constraints, we are unable to discuss here—the algorithm we
are about to introduce works for compact subsets of ΣX as well.

We introduce the following notation for the different local uncertainty models
of an iHMM. For X1, the initial model is denoted by M1 and can be any com-
pact subset of intΣX1 . Similarly, the transition model at position k, conditional
on Xk−1 = xk−1, is a compact subset MXk|xk−1

of intΣXk
. This set may be

different for every xk−1 in Xk−1. It will be convenient to refer to them collec-
tively by means of the shorthand notation MXk|Xk−1

:=×xk−1∈Xk−1
MXk|xk−1

.

An element pk(·|Xk−1) of MXk|Xk−1
is then a tuple, consisting of probability

mass functions pk(·|xk−1) in MXk|xk−1
, one for every xk−1 in Xk−1. For k = 1,

we have that MX1|X0
= MXk|�� := M1. Finally, the emission model at posi-

tion k, conditional on Xk = xk, is a compact subset MOk|xk
of intΣOk

. We write
MOk|Xk

:=×xk∈Xk
MOk|xk

to refer to all the different conditional models for
Ok at once.

3.2 Constructing an Imprecise Joint Model

By specifying these imprecise, set-valued local models, we also specify, in a very
natural way, a corresponding family of joint probability mass functions

M :=
{ n∏

k=1

pk(Xk|Xk−1)qk(Ok|Xk) : (2)

(∀k ∈ {1, . . . , n}) pk(·|Xk−1) ∈ MXk|Xk−1
, qk(·|Xk) ∈ MOk|Xk

}
.



164 C. De Boom et al.

Every probability mass function p in M corresponds to a different HMM, whose
local probability mass functions are selected from the imprecise, set-valued local
models that were discussed in the previous section. Together, these HMMs—and
their joint mass functions—constitute an iHMM. Note that, since multiplication
is a continuous operation, the compactness of the local imprecise models guar-
antees that M is compact as well. Furthermore, since the local models satisfy
the positivity assumption, M satisfies it too.

3.3 Generalising the Notion of Optimality

Since we are now working with a set M of joint mass functions rather than a
single mass function p, the concept of ‘maximising posterior probability’ is no
longer well-defined. Hence, we need to come up with some other way of estimating
the hidden sequence x1:n based on an observed output sequence o1:n; we need a
new notion of optimality. Different imprecise-probabilistic decision criteria can
be used for this purpose; see Ref. [4] for an overview. In the precise case—if
M is a singleton—all these approaches coincide with the one that is adopted in
Section 2.3.

The approach that we will use here is to adopt the decision criterion of max-
imality [6]. The idea is to introduce a strict preference relation � between state
sequences. For any two state sequences x1:n and x̂1:n in X1:n, we say that x1:n

is better than x̂1:n, and write x1:n � x̂1:n, if

(∀p ∈ M) p(x1:n|o1:n) > p(x̂1:n|o1:n), (3)

This preference relation induces a strict partial order on the set of all state
sequences X1:n, and we call a sequence x̂1:n maximal if it is undominated in this
partial order or, equivalently, if no other sequence is better. This leads us to
consider as optimal sequences the elements of

optmax(X1:n|o1:n) :=
{
x̂1:n ∈ X1:n : (∀x1:n ∈ X1:n) x1:n � x̂1:n

}
. (4)

4 A More Convenient Characterisation of Maximality

In its current form, our characterisation of maximality is—although intuitive—
rather impractical. Therefore, as a first step in developing an efficient algorithm
for calculating the maximal sequences, we set out to derive a more convenient
expression for optmax(X1:n|o1:n).

4.1 Defining the Local Parameters

We start by introducing a number of important local parameters. As we will see,
they are crucial to the developments in the remainder of this paper. For all k in
{1, . . . , n}, ok in Ok, xk and x̂k in Xk, and xk−1 and x̂k−1 in Xk−1, we define

ωk(xk, x̂k, ok) := min
qk(·|Xk)∈MOk|Xk

qk(ok|xk)

qk(ok|x̂k)
and
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χk(xk, xk−1, x̂k, x̂k−1) := min
pk(·|Xk−1)∈MXk|Xk−1

pk(xk|xk−1)

pk(x̂k|x̂k−1)
. (5)

The following result establishes that, for most values of xk, x̂k, xk−1 and x̂k−1,
these parameters can be calculated easily.

Proposition 1. The parameters ωk(xk, x̂k, ok) and χk(xk, xk−1, x̂k, x̂k−1) can
be calculated easily in most instances:

ωk(xk, x̂k, ok) =

{
1 if xk = x̂k,
q
k
(ok|xk)

qk(ok|x̂k)
if xk �= x̂k,

χk(xk, xk−1, x̂k, x̂k−1) =

{
1 if xk = x̂k and xk−1 = x̂k−1,
p
k
(xk|xk−1)

pk(xk|x̂k−1)
if xk−1 �= x̂k−1.

The only exception—which is the case that is not covered by Proposition 1—is
χk(xk, xk−1, x̂k, x̂k−1), with xk �= x̂k and xk−1 = x̂k−1. In general, this parame-
ter will have to be calculated by performing the actual minimisation in Eq. (5),
for example, by fractional linear programming techniques. However, for many
commonly used local models, closed-form expressions are available even in this
case; we will come back to this in Section 6.

4.2 Rewriting the Solution Set

As we are about to show, the local parameters that were just introduced allow
us to greatly simplify Eq. (4). As a first step, we rewrite Eq. (3) in the following
manner:

x1:n � x̂1:n ⇔ (∀p ∈ M) p(x1:n, o1:n) > p(x̂1:n, o1:n)

⇔ (∀p ∈ M)
p(x1:n, o1:n)

p(x̂1:n, o1:n)
> 1 ⇔ min

p∈M

p(x1:n, o1:n)

p(x̂1:n, o1:n)
> 1, (6)

where the equivalences are a consequence of Bayes’ rule, our positivity assump-
tion, and the compactness of M.

The nice thing about Eq. (6) is that the minimum at the right hand side
can be easily calculated. Indeed, by exploiting the factorised form of the mass
functions p in M, splitting up the global minimum, and pushing the resulting
individual minima inside, we find that

min
p∈M

p(x1:n, o1:n)

p(x̂1:n, o1:n)
= min

p∈M

n∏
k=1

pk(xk|xk−1)

pk(x̂k|x̂k−1)

qk(ok|xk)

qk(ok|x̂k)

=

n∏
k=1

min
pk(·|Xk−1)∈MXk|Xk−1

pk(xk|xk−1)

pk(x̂k|x̂k−1)
min

qk(·|Xk)∈MOk|Xk

qk(ok|xk)

qk(ok|x̂k)

=
n∏

k=1

χk(xk, xk−1, x̂k, x̂k−1)ωk(xk, x̂k, ok). (7)
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It is now but a small step to reformulate Eq. (4). By combining Eqs. (6) and (7),
we easily find that

x̂1:n ∈ optmax(X1:n|o1:n) ⇔ max
x1:n∈X1:n

n∏
k=1

χk(xk, xk−1, x̂k, x̂k−1)ωk(xk, x̂k, ok) ≤ 1,

(8)
where the maximum is trivially attained because X1:n is a finite set.

For a given, fixed state sequence x̂1:n in X1:n, calculating the maximum in
Eq. (8) is a problem that is—formally—very closely related the one that is
tackled by the Viterbi algorithm; compare Eqs. (1) and (8). Hence, it should not
come as a surprise that, by Eq. (8), checking whether x̂1:n is maximal can be
done in an equally efficient way: O

(
nm2

)
. It suffices to calculate the maximum

in Eq. (8) in a recursive fashion.

5 A Recursive Algorithm

Although Eq. (8) already simplifies the problem of finding optmax(X1:n|o1:n),
applying it directly is clearly not efficient enough. The main bottleneck is that it
requires us to check the maximality of each individual state sequence separately.
Since there are exponentially many such state sequences, this quickly becomes
intractable. In order to avoid this exponential blow-up, we will now develop an
algorithm that is able to rule out the maximality of many state sequences at once,
without having to explicitly check the maximality of each of them individually.

5.1 Ruling out Multiple Sequences at Once

The central idea of our algorithm is to regard the set of all state sequences X1:n

as a search tree in which we can navigate while deciding whether a branch is
useful or not to explore further. If we are able to infer that there is no maximal
state sequence that starts with a given initial segment, then we can completely
ignore all branches that start with this segment.

�
0✓

0✗

X4

X3

X2

X1

1✓

0✓

0✓ 1✗

1✓

0✗ 1✓

1✓

0✓

0✓

0✓ 1✗

1✗

1✓

0✓

0✗ 1✗

1✓

0✗ 1✗

Fig. 2. Example of a search tree for binary sequences of length four.
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Example 1. Consider the tree in Figure 2, which corresponds to X1:4, with binary
local state spaces Xk := {0, 1}. In the leftmost part of the tree, the initial segment
‘00’ is investigated. If we are able to infer that there is no maximal sequence that
starts with ‘00’—for the sake of this example, we assume this is the case—then
we can stop exploring the tree further in this direction and cut off the tree
at the corresponding node. For the initial segment ‘101’, a similar situation
occurs. �

In order to get this idea to work, it is crucial to have a simple check that
allows us to conclude that none of the maximal state sequences in opt(X1:n|o1:n)
starts with some given initial segment. In other words, for any k in {1, . . . , n}
and x̂∗

1:k in X1:k, we need to be able to check if

(∀ x̂1:n ∈ opt(X1:n|o1:n)) x̂1:k �= x̂∗
1:k. (C1)

By Eq. (8), this is equivalent to checking whether

(∀ x̂k+1:n ∈ Xk+1:n) max
x1:n

∈X1:n

k∏
i=1

χi(xi, xi−1, x̂
∗
i , x̂

∗
i−1)ωi(xi, x̂

∗
i , oi)

χk+1(xk+1, xk, x̂k+1, x̂
∗
k)ωk+1(xk+1, x̂k+1, ok+1)

n∏
j=k+2

χj(xj , xj−1, x̂j , x̂j−1)ωj(xj , x̂j , oj) > 1.

⇔ min
x̂k+1:n

∈Xk+1:n

max
x1:n

∈X1:n

k∏
i=1

χi(xi, xi−1, x̂
∗
i , x̂

∗
i−1)ωi(xi, x̂

∗
i , oi)

χk+1(xk+1, xk, x̂k+1, x̂
∗
k)ωk+1(xk+1, x̂k+1, ok+1)

n∏
j=k+2

χj(xj , xj−1, x̂j , x̂j−1)ωj(xj , x̂j , oj) > 1. (C1’)

The problem with criterion (C1’) is that it is very difficult to calculate the
maximum and minimum because they run over exponentially large spaces. In
order to circumvent this issue, one can split the global maximum into local
maxima that run over the individual states xi in Xi, and push these maxima
inside. This leads to the equivalent condition

min
x̂k+1:n

∈Xk+1:n

max
x1∈X1

χ1(x1,��, x̂∗
1,��)ω1(x1, x̂

∗
1, o1) · · ·

max
xk∈Xk

χk(xk, xk−1, x̂
∗
k, x̂

∗
k−1)ωk(xk, x̂

∗
k, ok)

max
xk+1∈Xk+1

χk+1(xk+1, xk, x̂k+1, x̂
∗
k)ωk+1(xk+1, x̂k+1, ok+1)

max
xk+2∈Xk+2

χk+2(xk+2, xk+1, x̂k+2, x̂k+1)ωk+2(xk+2, x̂k+2, ok+2)

· · · max
xn∈Xn

χn(xn, xn−1, x̂n, x̂n−1)ωn(xn, x̂n, on) > 1. (C1”)
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By applying a similar procedure to the global minimum, we finally obtain the
following inequality:

max
x1∈X1

χ1(x1,��, x̂∗
1,��)ω1(x1, x̂

∗
1, o1) · · ·

max
xk∈Xk

χk(xk, xk−1, x̂
∗
k, x̂

∗
k−1)ωk(xk, x̂

∗
k, ok)

min
x̂k+1∈Xk+1

max
xk+1∈Xk+1

χk+1(xk+1, xk, x̂k+1, x̂
∗
k)ωk+1(xk+1, x̂k+1, ok+1)

min
x̂k+2∈Xk+2

max
xk+2∈Xk+2

χk+2(xk+2, xk+1, x̂k+2, x̂k+1)ωk+2(xk+2, x̂k+2, ok+2)

· · · min
x̂n∈Xn

max
xn∈Xn

χn(xn, xn−1, x̂n, x̂n−1)ωn(xn, x̂n, on) > 1. (C2)

However, this criterion is not equivalent to the previous ones. By pushing the
local minima inside and beyond the maxima, we obtain a number that, although
it is guaranteed never to be bigger, might be lower than the number we started
out from. Hence, criterion (C2) is only a sufficient condition for (C1) to hold.

Nevertheless, we prefer criterion (C2) over (C1) because it is easier to check.
Indeed, if for all k in {1, . . . , n}, xk in Xk and x̂1:k in X1:k, we consider the
parameters γk(xk, x̂k) and δk(xk, x̂1:k), as defined recursively by

γk(xk, x̂k) := min
x̂k+1∈Xk+1

max
xk+1∈Xk+1

χk+1(xk+1, xk, x̂k+1, x̂k)

ωk+1(xk+1, x̂k+1, ok+1)γk+1(xk+1, x̂k+1)

and

δk(xk, x̂1:k) := max
xk−1∈Xk−1

χk(xk, xk−1, x̂k, x̂k−1)ωk(xk, x̂k, ok)δk−1(xk−1, x̂1:k−1),

starting from γn(xn, x̂n) := 1 and δ1(x1, x̂1) := χ1(x1,��, x̂1,��)ω1(x1, x̂1, o1),
then it is relatively easy to see that criterion (C2) reduces to the following
simple inequality:

max
xk∈Xk

δk(xk, x̂
∗
1:k)γk(xk, x̂

∗
k) > 1. (C2’)

Whenever (C2’) holds, we are guaranteed that (C1) holds as well and therefore,
that there are no maximal state sequences that start with x̂∗

1:k. As we will see,
it is now but a small step to turn this into a working algorithm.

For k = n, criterion (C2’) is even more powerful. In that case, the minima
in expressions (C1’), (C1”) and (C2) disappear, thereby making these condi-
tions equivalent. Hence, we find that for k = n, (C1) and (C2’) are equivalent.
Furthermore, criterion (C2’) now reduces to

max
xn∈Xn

δn(xn, x̂
∗
1:n) > 1 (C2∗)

and (C1) and therefore also (C2∗) serves as a necessary as well as sufficient
condition for x̂∗

1:n not to be maximal: x̂∗
1:n is a maximal state sequence if and

only if criterion (C2∗) fails.
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5.2 Turning it into an Algorithm

It is relatively easy to turn the ideas and formulas of the previous section into
a working algorithm that is able to construct the set optmax(X1:n|o1:n) in an
efficient manner. Algorithm 1 provides a pseudo-code version. As input data,
it requires an output sequence o1:n, the local parameters χk and ωk and the
global parameters γk. All these parameters can—and should—be calculated be-
forehand. Note that this is not the case for the parameters δk; it is not feasible
to calculate these beforehand, as there are simply too many.

Algorithm 1. MaxiHMM

Data: the local parameters χk and ωk, an output sequence o1:n, and
the corresponding global parameters γk

Result: the set opt(X1:n|o1:n) of all maximal state sequences

1 opt(X1:n|o1:n) ← ∅
2 for x̂1 ∈ X1 do
3 for x1 ∈ X1 do
4 δ1(x1, x̂1) ← χ1(x1, x̂1)ω1(x1, x̂1, o1)

5 if max
x1∈X1

δ1(x1, x̂1)γ1(x1, x̂1) ≤ 1 then Recur(1, x̂1, δ1( · , x̂1))

6 return opt(X1:n|o1:n)

Procedure Recur(k, x̂1:k, δk( · , x̂1:k))

1 if k = n then
2 add x̂1:n to opt(X1:n|o1:n) � We found a solution!

3 else
4 for x̂k+1 ∈ Xk+n do
5 x̂1:k+1 ← (x̂1:k, x̂k+1) � Append x̂k+1 to the end of x̂1:k

6 for xk+1 ∈ Xk+1 do
7 δk+1(xk+1, x̂1:k+1) ← max

xk∈Xk

χk+1(xk+1, xk, x̂k+1, x̂k)
8 ωk+1(xk+1, x̂k+1, ok+1)

9 δk(xk, x̂1:k)

10 if max
xk+1∈Xk+1

δk+1(xk+1, x̂1:k+1)γk+1(xk+1, x̂k+1) ≤ 1 then

11 Recur(k+ 1, x̂1:k+1, δ1( · , x̂1:k+1))

The Procedure Recur implements the recursive nature of our algorithm. In it,
we traverse the search tree that corresponds toX1:n in depth-first order. That is, if
the algorithm is unable to infer that there are no maximal sequences starting with
x̂1:k—if criterion (C2’) fails—it presumes there are and immediately descends to
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depth k+1 to check criterion (C2’) again. In order to be able to perform this check
for k+1, we need the parameters δk+1(xk+1, x̂1:k+1), which—as said before—have
not been calculated beforehand. However, luckily, these parameters can easily be
calculated while running the algorithm, based on the parameters δk(xk, x̂1:k) that
were used in the previous step; see Lines 7–9 of the Procedure Recur.

When we arrive at depth n, we check criterion (C2’)—which is now equiv-
alent to (C2∗)—and, if it fails, we add the current sequence x̂1:n to the solu-
tion set. After all, if criterion (C2∗) fails, we are guaranteed to have found a
maximal solution. Since, while running the algorithm, we have only “ignored”
sequences that were definitely not maximal—because criterion (C2’) was true—
this means that the MaxiHMM algorithm does indeed succeed in constructing
the set optmax(X1:n|o1:n) correctly.

Example 2. In Figure 2, the MaxiHMM algorithm starts by checking criterion
(C2’) for x̂1 = 0. The criterion fails, and therefore, the algorithm descends to
depth 2, now checking criterion (C2’) for x̂1:2 = 00. This time, the criterion is
true, allowing us to “ignore” all the sequences that start with ‘00’. Next, the
algorithm checks criterion (C2’) for x̂1:2 = 01, which turns out to be false. By
proceeding in this way, we eventually find that in this case, optmax(X1:4|o1:4)
consists of three maximal sequences: ‘0100’, ‘0111’ and ‘1000’. �

5.3 Complexity Analysis

The time complexity of the MaxiHMM algorithm depends on a number of factors.
First of all, we have to take into account the size S of the set optmax(X1:n|o1:n) we
are looking for. After all, if all state sequences in X1:n are maximal, then no single
branch can be pruned from the search tree. In that case, the complete tree has to
be traversed, which clearly has a time complexity that is exponential in n. Note
that this is far from surprising: in this case, even simply printing all the maximal
sequences has such a complexity.

In general, our algorithm is linear in the number of times criterion (C2’)
fails or, equivalently, the number of times we execute Line 5 of the MaxiHMM
algorithm or Line 11 of the Procedure Recur. For ease of reference, let us denote
this number by C. For example, in Figure 2, C is the number of ✓-signs. By
taking a closer look at the pseudo-code of our algorithm, we find that it has a
time complexity of the order O

(
Cm2

)
.

Let us now assume that criterion (C2’) is equivalent to (C1). Then every time
criterion (C2’)—and hence (C1)—fails, the current node in the search tree is
guaranteed to be part of a maximal state sequence. Since there are S maximal
state sequences, each of which consists of n nodes, we find that C is bounded
above by Sn. Hence, under the assumption that (C2’) is equivalent to (C1), the
time complexity of our algorithm is O

(
Snm2

)
. Interestingly, this is linear in the

number of maximal sequences S. It is also comparable to the complexity of the
Viterbi algorithm, since in that particular case, S = 1.

Of course, as explained in Section 5.1, the criteria (C1) and (C2’) are not
equivalent and therefore, from a theoretical point of view, the aforementioned
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complexity cannot be guaranteed. For example, it might occur that C > Sn;
in Figure 2, we see that 13 = C > Sn = 12. Nevertheless, it turns out that in
practice—we illustrate this in Section 7.1—the time complexity of our algorithm
tends to increase linearly in S. This suggests that—despite the fact that criteria
(C2’) and (C1) are not guaranteed to be identical—the aforementioned time
complexity of O

(
Snm2

)
might be a good approximation of reality.

6 Common Local Models and Their Parameters

In order to apply the above algorithm, all that is needed are the local parameters
ωk and χk. For general compact local models, these can be obtained by applying
the formulas in Section 4.1. However, for some specific classes of local models,
closed-form expressions for these parameters are available as well. In the fol-
lowing, we discuss two such instances: local models that are obtained by means
of ε-contamination and local models that are derived from data using Walley’s
Imprecise Dirichlet Model (IDM) [7].

6.1 Frequently Used Imprecise-Probabilistic Models

The perhaps simplest way to obtain an imprecise local model is to ε-contaminate
a mass function p in ΣX . For any ε in [0, 1], the corresponding ε-contaminated
model is defined as

Mε
p := {(1− ε)p+ εq : q ∈ ΣX } .

It is a closed, bounded and therefore also compact subset of ΣX . For ε = 0,
we find that M0

p = {p}, thereby recovering the precise-probabilistic case. As
ε increases, additional mass functions are added. For ε = 1, M1

p is equal to
ΣX , thereby representing complete model uncertainty. In order to satisfy our
positivity assumption, we require that p is an element of intΣX and that ε < 1.

The corresponding lower and upper probabilities are easily calculated. For
example, if |X | ≥ 2, then for any singleton x ∈ X , we find that

pε(x) := max
{
p̃(x) : p̃ ∈ Mε

p

}
= (1− ε)p (x) + ε, (9)

p
ε
(x) := min

{
p̃(x) : p̃ ∈ Mε

p

}
= (1− ε)p (x) . (10)

Example 3. Consider a ternary sample space X = {a, b, c}. Then any probability
mass function p on X can be identified with a point in an equilateral triangle with
height one, which represents the simplex ΣX ; see Figure 3. The ε-contaminated
model Mε

p is represented by an equilateral triangle with height ε, which ‘grows’
around p as ε increases. �

The following lemma establishes a technical property of ε-contaminated mod-
els that will enable us to obtain closed-form expressions for the local parameters
ωk and χk.
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a

b

c

ΣX Mε
p

p

1
ε

p
ε
(b)

pε(b)
p (b)

Fig. 3. Constructing an ε-contaminated model

Proposition 2. Consider any p ∈ int(ΣX ), with |X | ≥ 2, and any ε ∈ [0, 1).
Then Mε

p ⊆ intΣX and, for all x, x̂ ∈ X such that x �= x̂:

min
p′∈Mε

p

p′(x)

p′(x̂)
=

p
ε
(x)

pε(x̂)
.

Besides ε-contamination, another popular method for constructing imprecise
local models is to derive them from data by means of Walley’s IDM; see Ref. [7]
for a thorough discussion. For our presents purposes, it suffices to mention that
the resulting predictive model on X coincides with an ε-contaminated model
Mε

p, with p and ε constructed as follows. For a data set of n experiments, nx of
which are equal to x, we let p(x) := nx/n. Furthermore, ε := s/n+s, where s > 0
is a parameter of the IDM that can be interpreted as a degree of cautiousness.
In order for our positivity assumption to be satisfied, we require that, for all
x ∈ X , nx > 0. Using this connection between the IDM and ε-contamination,
we find that, with |X | ≥ 2, for any x ∈ X :

p
IDM

(x) :=
nx

n+ s
and pIDM(x) :=

nx + s

n+ s
.

6.2 Local Parameters for an ε-Contaminated Model

An important advantage of working with ε-contaminated local models (and
therefore also the IDM) is that the corresponding local parameters ωε

k and χε
k

are extremely easy to calculate.
For ωε

k(xk, x̂k, ok), it suffices to plug the local lower and upper probabilities,
as obtained by Eqs. (9) and (10), into the expression that is provided by Proposi-
tion 1. We can proceed in much the same way to calculate χε

k(xk, xk−1, x̂k, x̂k−1),
except if xk �= x̂k and xk−1 = x̂k−1. However, luckily, in this case, Proposition 2
is applicable, which allows us to optimise the numerator and denominator in
Eq. (5) separately anyway, as in the case xk−1 �= x̂k−1. Hence, we find that

χε
k(xk, xk−1, x̂k, x̂k−1) =

{
1 if xk = x̂k and xk−1 = x̂k−1,
pε

k
(xk|xk−1)

pε
k(xk|x̂k−1)

if xk �= x̂k or xk−1 �= x̂k−1.
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7 Experiments

We conclude this paper with a number of experiments. In order to allow us to
visualise them easily, we focus on binary (i)HMMs. Hence, for all k in {1, . . . , n}:
Xk = Ok := {0, 1}. We start from a precise stationary HMM. By stationarity,
and since binary mass functions can be specified by means of a single number,
the local models of this HMM are completely characterised by five numbers:
q(0|0) = 0.9, q(0|1) = 0.1, p1(0) = 0.5, l := p(0|0) and m := p(0|1). We turn this
precise HMM into an imprecise one by ε-contaminating all of its local models
with the same ε. In this way, we obtain a stationary iHMM, meaning that the
imprecise local models do not depend on k. Note however that, by Eq. (2),
the corresponding family of precise HMMs contains stationary as well as non-
stationary ones.
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Fig. 4. Scatterplot of 760 + 10 complexity experiments

7.1 Computational Complexity Experiments

We begin by corroborating the statement that was made in Section 5.3: that in
practice, the time complexity of our algorithm tends to increase linearly in the
number of maximal state sequences. Figure 4 illustrates the correlation between
the execution time of the algorithm and the number of maximal sequences it
produces. For these experiments, we chose l = 0.9 and m = 0.1. The grey dots
correspond to 760 randomly generated output sequences of length n = 100, with
values of ε ranging from 0.01 to 0.1. We clearly recognise some kind of cone,
which already suggests that the execution time increases linearly in the number
of maximal sequences. In black, we plot the results for three additional random
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but fixed sequences, for different values of ε; experiments that correspond to the
same output sequence have been connected. This time, the observed linearity is
rather striking.
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(b) ε = 0.05
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(c) ε = 0.1
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0

1

(d) ε = 0.15

Fig. 5. Number of maximal state sequences, for different local models

7.2 A Closer Look at the Number of Maximal State Sequences

Since the complexity of our algorithm depends so crucially on the number of
maximal sequences it returns, we will now take a closer look at this number and
investigate the extent to which it depends on the local models of our iHMM.
We do this by visualising the number of maximal sequences as a function of the
transition probabilities l and m in four heat plots, each of which corresponds
to a different value for ε. The output sequence is ‘1100110011’, with n = 10.
The results are depicted in Figure 5. White corresponds to a single maximal
sequences, whereas pitch black corresponds to 200 sequences being maximal.

As expected, the number of maximal state sequences increases with ε. That
is, the regions that correspond to a higher number of maximal sequences become
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wider as ε increases. The maximum number of maximal sequences that can be
observed in these plots is about 160—for ε = 0.15, the tiny black dot near the
upper left corner of the heat plot (l = 0.1 and m = 0.9). Note that this is only
16% of the maximum number possible, which is 210 = 1024. The large, (dark)
gray regions correspond to 77 maximal sequences. Finally, and this is rather
remarkable, we observe that there are fairly large regions in which—even for
ε = 0.15—there is only one maximal state sequence.

8 Conclusions and Future Work

The main contribution of this paper is an algorithm that can construct the
set of all maximal state sequences of an iHMM in an efficient manner, thereby
providing a robust version of the Viterbi algorithm. Our experiments show that
the time complexity of this algorithm tends to increase linearly in the number of
maximal state sequences. Finally, we have illustrated how this number depends
upon the parameters of the iHMM.

We see a number of interesting avenues for future research, the most impor-
tant of which is perhaps to apply our algorithm to a real-life problem, and to
compare the results with those of the Viterbi algorithm. Another, more theoret-
ically oriented line of research is to develop the algorithm without the positivity
assumption. Finally, we would like to see whether the ideas in this paper can be
used to develop similarly efficient algorithms for credal networks whose graphical
structure is more complicated than that of an HMM.
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2 Università della Svizzera italiana (USI), Switzerland

{cassio,giorgio,zaffalon}@idsia.ch, marco.cuccu@usi.ch

Abstract. This work proposes an extended version of the well-known
tree-augmented naive Bayes (TAN) classifier where the structure learning
step is performed without requiring features to be connected to the class.
Based on a modification of Edmonds’ algorithm, our structure learning
procedure explores a superset of the structures that are considered by
TAN, yet achieves global optimality of the learning score function in a
very efficient way (quadratic in the number of features, the same com-
plexity as learning TANs). A range of experiments show that we obtain
models with better accuracy than TAN and comparable to the accuracy
of the state-of-the-art classifier averaged one-dependence estimator.

1 Introduction

Classification is the problem of predicting the class of a given object on the ba-
sis of some attributes (features) of it. A classical example is the iris problem by
Fisher: the goal is to correctly predict the class, that is, the species of iris on the
basis of four features (sepal and petal length and width). In the Bayesian frame-
work, classification is accomplished by updating a prior density (representing
the beliefs before analyzing the data) with the likelihood (modeling the evidence
coming from the data), in order to compute a posterior density, which is then
used to select the most probable class.

The naive Bayes classifier [1] is based on the assumption of stochastic indepen-
dence of the features given the class; since the real data generation mechanism
usually does not satisfy such a condition, this introduces a bias in the esti-
mated probabilities. Yet, at least under the zero-one accuracy, the naive Bayes
classifier performs surprisingly well [1, 2]. Reasons for this phenomenon have
been provided, among others, by Friedman [3], who proposed an approach to
decompose the misclassification error into bias error and variance error; the bias
error represents how closely the classifier approximates the target function, while
the variance error reflects the sensitivity of the parameters of the classifier to
the training sample. Low bias and low variance are two conflicting objectives;
for instance, the naive Bayes classifier has high bias (because of the unrealistic
independence assumption) but low variance, since it requires to estimate only
a few parameters. A way to reduce the naive Bayes bias is to relax the inde-
pendence assumption using a more complex graph, like a tree-augmented naive
Bayes (TAN) [4]. In particular, TAN can be seen as a Bayesian network where
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each feature has the class as parent, and possibly also a feature as second par-
ent. In fact, TAN is a compromise between general Bayesian networks, whose
structure is learned without constraints, and the naive Bayes, whose structure is
determined in advance to be naive (that is, each feature has the class as the only
parent). TAN has been shown to outperform both general Bayesian networks
and naive Bayes in a range of experiments [5, 4, 6].

In this paper we develop an extension of TAN that allows it to have (i)
features without the class as parent, (ii) multiple features with only the class as
parent (that is, building a forest), (iii) features completely disconnected (that is,
automatic feature selection). The most common usage of this model is traditional
classification. However it can also be used as a component of a graphical model
suitable for multi-label classification [7].

Extended TAN (or simply ETAN) can be learned in quadratic time in the
number of features, which is essentially the same computational complexity as
that of TAN. The goodness of each (E)TAN structure is assessed through the
Bayesian Dirichlet likelihood equivalent uniform (BDeu) score [8, 9, 10]. Because
ETAN’s search space of structures includes that of TAN, the BDeu score of the
best ETAN is equal or superior to that of the best TAN. ETAN than provides a
better fit: a higher score means that the model better fits the joint probability
distribution of the variables. However, it is well known that this fit does not
necessarily imply higher classification accuracy [11]. To inspect that, we perform
extensive experiments with these classifiers. We empirically show that ETAN
yields in general better zero-one accuracy and log loss than TAN and naive
Bayes (where log loss is computed from the posterior distribution of the class
given features). Log loss is relevant in cases of cost-sensitive classification [12, 13].
We also study the possibility of optimizing the equivalent sample size of TAN,
which makes its accuracy become closer to that of ETAN (although still slightly
inferior).

This paper is divided as follows. Section 2 introduces notation and defines the
problem of learning Bayesian networks and the classification problem. Section
3 presents our new classifier and an efficient algorithm to learn it from data.
Section 4 describes our experimental setting and discusses on empirical results.
Finally, Section 5 concludes the paper and suggests possible future work.

2 Classification and Learning TANs

The classifiers that we discuss in this paper are all subcases of a Bayesian net-
work. A Bayesian network represents a joint probability distribution over a col-
lection of categorical random variables. It can be defined as a triple (G,X ,P),
where G = (VG , EG) is a directed acyclic graph (DAG) with VG a collection of
nodes associated to random variables X (a node per variable), and EG a collec-
tion of arcs; P is a collection of conditional mass functions p(Xi|Πi) (one for
each instantiation of Πi), where Πi denotes the parents of Xi in the graph
(Πi may be empty), respecting the relations of EG . In a Bayesian network
every variable is conditionally independent of its non-descendant non-parents
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given its parents (Markov condition). Because of the Markov condition, the
Bayesian network represents a joint probability distribution by the expression
p(x) = p(x0, . . . , xn) =

∏
i p(xi|πi), for every x ∈ ΩX (space of joint configura-

tions of variables), where every xi and πi are consistent with x.
In the particular case of classification, the class variable X0 has a special

importance, as we are interested in its posterior probability which is used to
predict unseen values; there are then several feature variables Y = X \ {X0}.
The supervised classification problem using probabilistic models is based on the
computation of the posterior density, which can then be used to take decisions.
The goal is to compute p(X0|y), that is, the posterior probability of the classes
given the values y of the features in a test instance. In this computation, p is
defined by the model that has been learned from labeled data, that is, past data
where class and features are all observed have been used to infer p. In order to
do that, we are given a complete data set D = {D1, . . . , DN} with N instances,
where Du = xu ∈ ΩX is an instantiation of all the variables, the first learning
task is to find a DAG G that maximizes a given score function, that is, we look
for G∗ = argmaxG∈G sD(G), with G the set of all DAGs with nodes X , for a given
score function sD (the dependency on data is indicated by the subscript D).1

In this work we only need to assume that the employed score is decomposable
and respects likelihood equivalence. Decomposable means it can be written in
terms of the local nodes of the graph, that is, sD(G) =

∑n
i=0 sD(Xi, Πi). Like-

lihood equivalence means that if G1 �= G2 are two arbitrary graphs over X such
that both encode the very same conditional independences among variables, then
sD is likelihood equivalent if and only if sD(G1) = sD(G2).

The naive Bayes structure is defined as the network where the class variable
X0 has no parents and every feature (the other variables) has X0 as sole parent.
Figure 1(b) illustrates the situation. In this case, there is nothing to be learned,
as the structure is fully defined by the restrictions of naive Bayes. Nevertheless,
we can define G∗

naive as being its (fixed) optimal graph.
The class X0 has also no parents in a TAN structure, and every feature must

have the class as parent (as in the naive Bayes). However, they are allowed to
have at most one other feature as parent too. Figure 1(c) illustrates a TAN
structure, where X1 has only X0 as parent, while both X2 and X3 have X0 and
X1 as parents. By ignoring X0 and its connections, we have a tree structure,
and that is the reason for the name TAN. Based on the BDeu score function, an
efficient algorithm for TAN can be devised. Because of the likelihood equivalence
of BDeu and the fact that every feature has X0 as parent, the same score is
obtained whether a feature Xi has X0 and Xj as parent (with i �= j), or Xj has
X0 and Xi, that is,

sD(Xi, {X0, Xj}) + sD(Xj , {X0}) = sD(Xj , {X0, Xi}) + sD(Xi, {X0}) . (1)

This symmetry allows for a very simple and efficient algorithm [14] that is proven
to find the TAN structure which maximizes any score that respects likelihood

1 In case of many optimal DAGs, then we assume to have no preference and argmax
returns one of them.
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equivalence, that is, to find

G∗
TAN = argmax

G∈GTAN

sD(G) , (2)

where GTAN is the set of all TAN structures with nodes X . The idea is to find
the minimum spanning tree in an undirected graph defined over Y such that the
weight of each edge (Xi, Xj) is defined by w(Xi, Xj) = −(sD(Xi, {X0, Xj}) −
sD(Xi, {X0})). Note that w(Xi, Xj) = w(Xj , Xi). Without loss of generality, let
X1 be the only node without a feature as parent (one could rename the nodes
and apply the same reasoning). Now,

max
G∈GTAN

sD(G) = max
Π′

i:∀i>1

(
n∑

i=2

sD(Xi, {X0, XΠ′
i
}) + sD(X1, {X0})

)

= sD(X1, {X0})− min
Π′

i:∀i>1

(
−

n∑
i=2

sD(Xi, {X0, XΠ′
i
})
)

=

n∑
i=1

sD(Xi, {X0})− min
Π′

i:∀i>1

n∑
i=2

w(Xi, XΠ′
i
) . (3)

This last minimization is exactly the minimum spanning tree problem, and the
argument that minimizes it is the same as the argument that maximizes (2).
Because this algorithm has to initialize the Θ(n2) edges between every pair
of features and then to solve the minimum spanning tree (e.g. using Prim’s
algorithm), its overall complexity time is O(n2), if one assumes that the score
function is given as an oracle whose queries take time O(1). In fact, because we
only consider at most one or two parents for each node (two only if we include the
class), the computation of the whole score function can be done in time O(Nn2)
and stored for later use. As a comparison, naive Bayes can be implemented in
time O(Nn), while the averaged one-dependence estimator (AODE) [15] needs
Θ(Nn2), just as TAN does.

2.1 Improving Learning of TANs

A simple extension of this algorithm can already learn a forest of tree-augmented
naive Bayes structures. One can simply define the edges of the graph over Y
as in the algorithm for TAN, and then remove those edges (Xi, Xj) such that
sD(Xi, {X0, Xj}) ≤ sD(Xi, {X0}), that is, when w(Xi, Xj) ≥ 0, and then run
the minimum spanning tree algorithm over this reduced graph. The optimality
of such an idea can be easily proven by the following lemma, which guarantees
that we should use only X0 as parent of Xi every time such choice is better than
using {X0, Xj}. It is a straightforward generalization of Lemma 1 in [16].

Lemma 1. Let Xi be a node of G, a candidate DAG where the parent set of Xi

is Π ′
i. Suppose Πi ⊂ Π ′

i is such that sD(Xi, Πi) ≥ sD(Xi, Π
′
i), where sD is a

decomposable score function. If Π ′
i is the parent set of Xi in an optimal DAG,

then the same DAG but having Πi as parent of Xi is also optimal.
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Using a forest as structure of the classifier is not new, but to the best of our
knowledge previous attempts to learn a forest (in this context) did not globally
optimize the structure, they instead selected a priori the number of arcs to
include in the forest [17].

We want to go even further and allow situations as in Figs. 1(a) and 1(d). The
former would automatically disconnect a feature if such feature is not important
to predict X0, that is, if sD(Xi, ∅) ≥ sD(Xi, Πi) for every Πi. The latter case
allows some features to have another feature as parent without the need of having
also the class. For this purpose, we define the set of structures named Extended
TAN (or ETAN for short), as DAGs such that X0 has no parents and Xi (i �= 0)
is allowed to have the class and at most one feature as parent (but it is not
obliged to having any of them), that is, the parent set Πi is such that |Πi| ≤ 1,
or |Πi| = 2 and Πi ⊇ {X0}.

G∗
ETAN = argmax

G∈GETAN

sD(G) . (4)

This is clearly a generalization of TAN, of the forest of TANs, and of naive
Bayes in the sense that they are all subcases of ETAN. Note that TAN is not a
generalization of naive Bayes in this sense, as TAN forces arcs among features
even if these arcs were not useful. Because of that, we have the following result.
The next section discusses how to efficiently learn ETANs.

Lemma 2. The following relations among subsets of DAGs hold.

sD(G∗
ETAN) ≥ sD(G∗

TAN) and sD(G∗
ETAN) ≥ sD(G∗

naive) .

3 Learning Extended TANs

The goal of this section is to present an efficient algorithm to find the DAG
defined in (4). Unfortunately the undirected version of the minimum spanning
tree problem is not enough, because (1) does not hold anymore. To see that, take
the example in Fig. 1(d). The arc from X1 to X2 cannot be reversed without
changing the overall score (unless we connect X0 to X2). In other words, every
node in a TAN has the class as parent, which makes possible to use the minimum
spanning tree algorithm for undirected graphs by realizing that any orientation
of the arcs between features will produce the same overall score (as long as the
weights of the edges are defined as in the previous section).

Edmonds’ algorithm [18] (also attributed to Chu and Liu [19]) for finding
minimum spanning arborescence in directed graphs comes to our rescue. Its
application is however not immediate, and its implementation is not as simple as
the minimum spanning tree algorithm for TAN. Our algorithm to learn ETANs is
presented in Algorithm 1. It is composed of a preprocessing of the data to create
the arcs of the graph that will be given to Edmonds’ algorithm for directed
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X0

X1

X2

X3

(a) Possible with ETAN.

X0

X1

X2

X3

(b) Possible with naive or ETAN.

X0

X1

X2

X3

(c) Possible with TAN or ETAN.

X0

X1

X2

X3

(d) Possible only with ETAN.

Fig. 1. Some examples of structures allowed by the different classifiers. The labels
indicate which classifier allows them as part of their whole structure.

minimum spanning tree (in fact, we assume that Edmonds’ algorithm computes
the directed maximum spanning tree, which can be done trivially by negating all
weights). EdmondsContract and EdmondsExpand are the two main steps of that
algorithm, and we refer the reader to the description in Zwick’s lecture notes
[20] or to the work of Tarjan [21] and Camerini et al. [22] or Gabow et al. [23]
for further details on the implementation of Edmonds’ idea. In fact, we have not
been able to find a stable and reliable implementation of such algorithm, so our
own implementation of Edmonds’ algorithm has been developed based on the
description in [20], even though some fixes had to be applied. Because Edmonds’
algorithm finds the best spanning tree for a given “root” node (that is, a node
that is constrained not to have features as parents), Algorithm 1 loops over the
possible roots and extract from Edmonds’ the best parent for each node given
that fixed root node (line 6), and then stores the best solution over all such
possible root nodes. At each loop, Algorithm 3 is called and builds a graph using
the information from the result of Edmonds’. Algorithm 1 also loops over a set of
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score functions that are given to it. This is used later on to optimize the value of
the equivalent sample size in each of the learning steps by giving a list of scores
with different prior strengths to the algorithm.

Algorithm 1. ETAN(X , S): X are variables and S is a set of score functions

1: s∗ ← −∞
2: for all sD ∈ S do
3: (arcs, classAsParent) ← ArcsCreation(X , sD)
4: EdmondsContract(arcs)
5: for all root ∈ X \ {X0} do
6: in ← EdmondsExpand(root)
7: G ← buildGraph(X , root, in, classAsParent)
8: if sD(G) > s∗ then
9: G∗ ← G
10: s∗ ← sD(G)
11: return G∗

The particular differences with respect to a standard call of Edmonds’ algo-
rithm are defined by the methods ArcsCreation and buildGraph. The method
ArcsCreation is the algorithm that creates the directed graph that is given as
input to Edmonds’. The overall idea is that we must decide whether the class
should be a parent of a node or not, and whether it is worth having a feature
as a parent. The core argument is again given by Lemma 1. If sD(Xi, {X0}) ≤
sD(Xi, ∅), then we know that no parent is preferable to having the class as a par-
ent for Xi. We store this information in a matrix called classAsParent (line 2
of Algorithm 2). Because this information is kept for later reference, we can use
from that point onwards the value max(sD(Xi, ∅), sD(Xi, {X0})) as the weight
of having Xi with only the class as parent (having or not the class as parent can-
not create a cycle in the graph, so we can safely use this max value). After that,
we loop over every possible arc Xj → Xi between features, and define its weight
as the maximum between having X0 also as parent of Xi or not, minus the value
that we would achieve for Xi if we did not include Xj as its parent (line 8). This
is essentially the same idea as done in the algorithm of TAN, but here we must
consider both Xj → Xi and Xi → Xj, as they are not necessarily equivalent
(this happens for instance if for one of the two features the class is included in its
parent set and for the other it is not, depending on the maximization, so scores
defining the weight of each arc direction might be different). After that, we also
keep track of whether the class was included in the definition of the weight of
the arc or not, storing the information in classAsParent for later recall. In case
the weight is not positive (line 9), we do not even include this arc in the graph
that will be given to Edmonds’ (recall we are using the maximization version of
Edmonds’), because at this early stage we already know that either no parents
for Xi or only the class as parent of Xi (which one of the two is the best can
be recalled in classAsParent) are better than the score obtained by including
Xj as parent, and using once more the arguments of Lemma 1 and the fact that
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the class as parent never creates a cycle, we can safely disregard Xj as parent
of Xi. All these cases can be seen in Fig. 1 by considering that the variable X2

shown in the figure is our Xi. There are four options for Xi: no parents (a), only
X0 as parent (b), only Xj as parent (d), and both Xj and X0 (c). The trick is
that Lemma 1 allows us to reduce these four options to two: best between (a)
and (b), and best between (c) and (d). After the arcs with positive weight are
inserted in a list of arcs that will be given to Edmonds’ and classAsParent is
built, the algorithm ends returning both of them.

Algorithm 2. ArcsCreation(X , sD)

1: for all Xi ∈ X \ {X0} do
2: classAsParent[Xi] ← sD(Xi, {X0}) > sD(Xi, ∅)
3: arcs ← ∅
4: for all Xi ∈ Y do
5: for all Xj ∈ Y do
6: twoParents ← sD(Xi, {X0, Xj})
7: onlyFeature ← sD(Xi, {Xj})
8: w ← max(twoParents, onlyFeature)−max(sD(Xi, ∅), sD(Xi, {X0}))
9: if w > 0 then
10: Add Xj → Xi with weight w into arcs
11: classAsParent[Xj → Xi] ← twoParents > onlyFeature
12: else
13: classAsParent[Xj → Xi] ← classAsParent[Xi]

14: return (arcs, classAsParent)

Finally, Algorithm 3 is responsible for building back the best graph from
the result obtained by Edmonds’. Inside in is stored the best parent for each
node, and root indicates a node that shall have no other feature as parent. The
goal is to recover whether the class shall be included as parent of each node,
and for that we use the information in classAsParent. The algorithm is quite
straightforward: for each node that is not the root and has a parent chosen by
Edmonds’, include it as parent each check if that arc was associated to having
or not the class (if it had, include also the class); for each node that has no
parent as given by Edmonds’ (including the root node), simply check whether it
is better to have the class as parent.

Somewhat surprisingly, learning ETANs can be accomplish in time O(n2)
(assuming that the score function is given as an oracle, as discussed before), the
same complexity for learning TANs. Algorithm 2 takes O(n2), because it loops
over every pair of nodes and only performs constant time operations inside the
loop. EdmondsContract can be implemented in time O(n2) and EdmondsExpand

in time O(n) [21, 22]. Finally, buildGraph takes time O(n) because of its loop
over nodes, and the comparison between scores of two ETANs as well as the copy
of the structure of an ETANs takes time O(n). So the overall time of the loop
in Algorithm 1 takes time O(n2). Our current implementation can be found at
http://ipg.idsia.ch/software.
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Algorithm 3. buildGraph(X , root, in, classAsParent)

1: G ← (X , ∅)
2: for all node ∈ X \ {X0} do
3: Πnode ← ∅
4: if node = root and in[node] = null then
5: Πnode ← Πnode ∪ {in[node]}
6: if classAsParent[in[node] → node] then
7: Πnode ← Πnode ∪ {X0}
8: else if classAsParent[node] then
9: Πnode ← Πnode ∪ {X0}
10: return G

4 Experiments

This section presents results with naive Bayes, TAN and ETAN using 49 data
sets from the UCI machine learning repository [24]. Data sets with many dif-
ferent characteristics have been used. Data sets containing continuous variables
have been discretized in two bins, using the median as cut-off. Our empirical
results are obtained out of 20 runs of 5-fold cross-validation (each run splits the
data into folds randomly and in a stratified way), so the learning procedure of
each classifier is called 100 times per data set. For learning the classifiers we use
the Bayesian Dirichlet equivalent uniform (BDeu) and assume parameter inde-
pendence and modularity [10]. The BDeu score computes a function based on
the posterior probability of the structure p(G|D). For that purpose, the following
function is used:

sD(G) = log

(
p(G) ·

∫
p(D|G, θ) · p(θ|G)dθ

)
,

where the logarithm is used to simplify computations, p(θ|G) is the prior of θ
(vector of parameters of the Bayesian network) for a given graph G, assumed to
be a symmetric Dirichlet. BDeu respects likelihood equivalence and its function is
decomposable. The only free parameter is the prior strength α (assuming p(G) is
uniform), also known as the equivalent sample size (ESS). We make comparisons
using different values of α. We implemented ETAN such that α ∈ {1, 2, 10, 20, 50}
is chosen according to the value that achieves the highest BDeu for each learning
call, that is, we give to ETAN five BDeu score functions with different values of
α. Whenever omitted, the default value for α is two.

As previously demonstrated, ETAN always obtains better BDeu score than its
competitors. TAN is usually better than naive Bayes, but there is no theoretical
guarantee it will always be the case. Table 1 shows the comparisons of BDeu
scores achieved by different classifiers. It presents the median value of the dif-
ference between averaged BDeu of the classifiers on the 49 datasets, followed by
the number of wins, ties and losses of ETAN against the competitors, and finally
the p-value from the Wilcoxon signed rank test (one-sided in the direction of the
median value). We note that naive Bayes and TAN might win against ETAN
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Table 1. Median value of the BDeu difference between ETAN and competitor (positive
means ETAN is better), followed by number of wins, ties and losses of ETAN over
competitors, and p-values using the Wilcoxon signed rank test on 49 data sets (one-
sided in the direction of the median difference). Names of competitors indicate their
equivalent sample size (ESS), and All means that ESS has been optimized at each
learning call.

Competitor BDeu
vs. ETAN Median W/T/L p-value

Naive(1) 454 49/0/0 2e-15
Naive(2) 340 48/0/1 3e-15
Naive(10) 276 48/0/1 4e-15
TAN(1) 182 49/0/0 1e-15
TAN(2) 129 46/0/3 8e-13
TAN(10) 23.6 40/1/8 3e-9
TAN(All) 128 46/0/3 2e-8

(as it does happen in Tab. 1) because the values of α used by the classifiers in
different learning problems are not necessarily the same (the learning method is
called 100 for each dataset over different data folds). Nevertheless, the statisti-
cal test indicates that the score achieved by ETAN is significantly superior than
scores of the other methods.
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Fig. 2. Computational time to learn the classifier as a ratio ETAN time divided by
TAN time, so higher values mean ETAN is slower.

Figure 2 shows the computational time cost to run the learning in the 100 exe-
cutions per data set for ETAN and TAN (both optimizing α as described before),
that is, each of the 20 times 5-fold cross-validation executions. We can see in the
graph that learning ETAN has been less than five times slower than learning
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TAN in all situations (usually less than three times) and has performed better
than TAN in a reasonable amount of instances. We recall that both classifiers
can be run in quadratic time in the number of features and linear in the sample
size, which is asymptotically as efficient as other state-of-the-art classifiers, such
as the averaged one-dependence estimator (AODE) [15].

We measure the accuracy of classifiers using zero-one accuracy and log loss.
Zero-one accuracy is the number of correctly classified instances divided by the
total number of instances, while log loss equals minus the sum (over the testing
instances) of the log-probability of the class given the instance’s features.

Table 2. Median value of the difference between ETAN and competitor (positive
means ETAN is better), followed by number of wins, ties and losses of ETAN over
competitors, and p-values using the Wilcoxon signed rank test on 49 data sets (one
sided in the direction of the median difference). Names of competitors indicate their
equivalent sample size.

Competitor Zero-one accuracy Log loss
vs. ETAN Median W/T/L p-value Median W/T/L p-value

Naive(1) 0.74% 35/3/21 1e-5 0.17 45/0/4 3e-12
Naive(2) 0.64% 36/1/12 4e-5 0.13 46/0/3 5e-12
Naive(10) 1.35% 38/1/10 8e-6 0.12 38/0/11 8e-8
TAN(1) 0.13% 29/1/19 0.022 0.05 43/0/6 2e-8
TAN(2) 0.01% 27/2/20 0.087 0.03 38/1/10 3e-6
TAN(10) 0.01% 28/3/18 0.261 0.01 29/1/19 0.047
TAN(All) 0.06% 29/1/19 0.096 0.0004 26/0/23 0.418
AODE -0.07% 21/1/27 0.192 -0.005 24/0/25 0.437

Table 2 presents the results of ETAN versus other classifiers. Number of wins,
ties and losses of ETAN, as well as p-values from the Wilcoxon signed rank
test are displayed, computed over the point results obtained for each of the 49
datasets using cross-validation. We note that ETAN is superior to the other
classifiers, except for AODE, in which case the medians are slightly against
ETAN and the difference is not significant (pvalues of 0.192 for zero-one accuracy
and 0.437 for log loss, in both cases testing whether AODE is superior to ETAN).
Median zero-one accuracy of ETAN is superior to TAN(All), although the signed
rank test does not show that results are significant at 5% confidence level. The
same is true for log loss. In fact, we must emphasize that TAN with optimized
choice of α could also be considered as a novel classifier (even if it is only a minor
variation of TAN, we are not aware of implementations of TAN that optimize
the equivalent sample size).

Figures 3 and 4 show the performance of ETAN versus AODE in terms of
zero-one accuracy and log loss, respectively. Each boxplot regards one data set
and considers 100 points defined by the runs of cross-validation. In Fig. 3, the
values are the zero-one accuracy of ETAN divided by the zero-one accuracy of its
competitor in each of the 100 executions. In Fig. 4, it is presented the difference
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in log loss between AODE and ETAN. In both figures we can see cases where
ETAN performed better, as well as cases where AODE did.
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Fig. 3. Comparison of zero-one loss with AODE. Values are ratios of the accuracy of
ETAN divided by the competitor, so higher values mean ETAN is better.
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Fig. 4. Comparison of log loss with AODE. Values are differences in the log loss of the
competitor minus ETAN, so higher values mean ETAN is better.
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5 Conclusions

We presented an extended version of the well-known tree-augmented naive Bayes
(TAN) classifier, namely the extended TAN (or ETAN). ETAN does not demand
features to be connected to the class, so it has properties of feature selection
(when a feature ends up disconnected) and allows features that are important to
other features but are not directly depending on the class. We also extend TAN
and ETAN to optimize their equivalent sample size at each learning of the struc-
ture. We describe a globally optimal algorithm to learn ETANs that is quadratic
in the number of variables, that is, it is asymptotically as efficient as the algo-
rithm for TANs, as well as other state-of-the-art classifiers, such as the averaged
one-dependence estimator. The class of ETANs can be seen as the (currently)
most sophisticated Bayesian networks for which there is a polynomial-time al-
gorithm for learning its structure, as it has been proven that learning with two
parents per node (besides the class) is an NP-hard task [25].

Experiments demonstrate that the time complexity of our implementation
of ETAN is asymptotically equal to that of TAN, and show that ETAN pro-
vides equal or better fit than TAN and naive Bayes. In our experiments, ETAN
achieves better performance in terms of zero-one accuracy and log loss than TAN
and naive Bayes under fixed values of the equivalent sample size. If one optimizes
the equivalent sample size of TAN, then ETAN has performed in general slightly
better than TAN (even though not significant in a statistical test). Future work
will investigate further the relation between BDeu and classification accuracy,
as well as scenarios where ETAN might be preferable, and will study additional
structures beyond ETAN that could be useful in building classifiers.

Acknowledgments. Work partially supported by the Swiss NSF grants Nos.
200021 146606 / 1 and 200020 137680 / 1, and by the Swiss CTI project with
Hoosh Technology.
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Abstract. A fundamental step in the PC causal discovery algorithm
consists of testing for (conditional) independence. When the number of
data records is very small, a classical statistical independence test is typ-
ically unable to reject the (null) independence hypothesis. In this paper,
we are comparing two conflicting pieces of advice in the literature that
in case of too few data records recommend (1) assuming dependence and
(2) assuming independence. Our results show that assuming indepen-
dence is a safer strategy in minimizing the structural distance between
the causal structure that has generated the data and the discovered struc-
ture. We also propose a simple improvement on the PC algorithm that
we call blacklisting. We demonstrate that blacklisting can lead to orders
of magnitude savings in computation by avoiding unnecessary indepen-
dence tests.

Keywords: Causal discovery, PC algorithm, independence testing,
limited data.

1 Introduction

Even a superficial examination of the constraint-based search algorithms for
causal discovery, such as the PC algorithm [13], shows that the first phase of the
algorithm, consisting of a series of tests of independence, is both computation-
ally intensive and crucial in terms of accuracy of the results. The results of a
combinatorial number of conditional independence tests determine the skeleton
of the causal graph. In case of discrete variables, for each edge (X,Y ) under
consideration and for each conditioning set S, we construct a contingency table.
Using this table, we calculate a test statistic, typically the G2 statistic, and,
using a χ2 distribution,1 we determine the p-value for the independence hypoth-
esis, which we subsequently compare against our preset significance level α. If
the p-value for any of the tests is larger than α, the algorithm removes the edge

1 In our evaluation we apply Fienberg’s method [8] of calculating degrees of freedom,
which corrects for empty rows, columns, and cells.
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and stores the conditioning set S, which may influence the result of the edge
orientation phase.

The quality of a Bayesian network produced by the PC algorithm depends
mostly on this phase, as it will determine the skeleton of the network. In turn,
the quality of this phase hinges on the quality of the independence tests. One of
the factors impacting the quality of an instance of the independence test is the
number of data records that the test is based on. When there are insufficient data
available, contingency tables will contain many zeros, which means in practice
that co-occurrences of the variable states were not recorded in the data. This
reduces the value of the G2 statistic and the number of degrees of freedom used
for the χ2 test. A smaller value for G2 can make it seem that the two variables
of the edge are independent of each other. Consequently, an independence test
for which we have insufficient data available will typically result in the test’s
inability to reject the (null) independence hypothesis and a Type II error.

In their influential book, Spirtes et al. [13] suggest a minimum ratio of ten to
one of the number of records (samples) to the number of cells in the contingency
table, which ensures a minimum level of reliability for the statistical tests. The
advice that they put forward is that when this ratio is not satisfied, the test
should not be performed and the variables should be considered dependent:

“In testing the conditional independence of two variables given a set of other
variables, if the sample size is less than ten times the number of cells to be
fitted we assume the variables are conditionally dependent.” [13, page 95]

Interestingly, we have come across a statement by Tsamardinos et al. [15], in
which the authors state that they follow the advice of Spirtes et al. in assuming
independence (!) if there are too few samples:

“Following the practice used in [13] in our experiments we do not perform
an independence test (i.e., we assume independence) unless there are at least
five training instances on average per parameter (count) to be estimated.” [15,
page 43]

At this point, we are uncertain whether this conflicting advice is due to misread-
ing, a typographical error, or any other reason. It is not obvious which of the
two mutually exclusive rules is superior. Because assuming direct dependence
between two variables amounts to keeping an arc between them in the discov-
ered causal graph and assuming independence amounts to removing the arc, in
the remainder of this paper we will call the two approaches the keep rule and
the remove rule respectively.

The focus of this paper is an empirical evaluation of the impact of choosing
between the keep and remove rules. In other words, we examine the question:
Should we assume conditional independence (absence of an edge) or dependence
in case there are too few data records to perform a reliable independence test?
We found that from the point of view of distance metrics (i.e., the distance
between the gold standard and the discovered graph) it is typically beneficial to
follow the interpretation of [15]. Removing edges makes discovered causal graphs
more sparse (and, hence, more efficient for the purpose of later inference) and
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typically closer to the original causal graphs. For those researchers, who prefer
to assume dependence, we propose an improvement on the PC algorithm that
we call blacklisting. Blacklisting avoids performing independence tests that are
provably unable to reject the H0 hypothesis of independence and, by this, may
lead to orders of magnitude savings in computation.

The remainder of this paper is structured as follows. We first introduce black-
listing in Section 2. We follow this up by two experiments: (1) comparing the
effectiveness of the retrieval of gold standard causal graphs using the keep and
remove rules (Section 4), and (2) comparing the classification accuracy of models
based on the two rules (Section 5). We finish with a brief discussion of the two
approaches (Section 6).

2 The Blacklisting Rule

Once they make a decision that two nodes X and Y are independent given a
set of nodes Z, constraint search-based causal discovery algorithms stop testing
for independence of X and Y using different sets of conditioning nodes. When
dealing with small data sets, the remove rule leads to a significant reduction of
computation: The moment the algorithm realizes that there are not enough data
to test for independence, it will assume independence and, effectively, remove
the edge and stop further tests. It turns out that it is possible to avoid useless
testing when using the keep rule as well.

We will first define the concept of data to cells ratio, i.e., the ratio of samples
in the data set to the number of cells in the contingency table.

Definition 1 (data to cells ratio). The data to cells ratio, R(D, X, Y,Z),
in an independence test I(X,Y |Z) is the ratio between the number of records
| D | in the data set D and the number of cells in the contingency table for the
variables X, Y , and the variables in the conditioning set Z.

An independence test I(X,Y | Z) requires a contingency table with N elements,
where N is the product of the variable cardinalities:

N = Card(X)Card(Y )

n∏
i=1

Card(Zi) .

The data to cells ratio can be computed in the following way:

R(D, X, Y,Z) =
| D |
N

=
| D |

Card(X)Card(Y )
∏n

i=1 Card(Zi)
. (1)

Now we will prove a theorem that binds the data to cells ratio to increasing the
size of the conditioning set.

Theorem 1. Let r be a predefined minimum data to cells ratio. If in a given data
set D an independence test I(X,Y |Z) fails to satisfy r, then an independence
test I(X,Y |Z ∪W ) fails to satisfy r as well.
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Proof. Let the size of the conditioning set be | Z |= n. By (1), we have

R(D, X, Y,Z) =
| D |
N

=
| D |

Card(X)Card(Y )
∏n

i=1 Card(Zi)
.

If W ∈ Z, we have R(D, X, Y,Z) = R(D, X, Y,Z ∪W ) and the theorem is true
by assumption. Otherwise, we have

R(D, X, Y,Z ∪W ) =
| D |

Card(X)Card(Y )Card(W )
∏n

i=1 Card(Zi)

=
R(D, X, Y,Z)

Card(W )
.

Because Card(W ) ≥ 1, we have

R(D, X, Y,Z ∪W ) ≤ R(D, X, Y,Z) < r ,

which proves the theorem. �
Once we find out that an independence test of any pair of variables X and Y
conditional on a set of variables Z does not satisfy the minimum ratio, Theorem 1
allows us to skip all tests of independence ofX and Y conditional on any superset
of Z. We call the application of this rule in a constraint search-based causal
discovery algorithm the Blacklisting rule.

Definition 2 (Blacklisting Rule). If for any edge none of the conditional
tests can be performed due to an insufficient sample to cell ratio, this edge is
blacklisted and no longer checked in the subsequent iterations of the algorithm.

Blacklisting can lead to substantial savings in computation.
In practice, we can enhance blacklisting by putting an upper bound on the

number of variables in the conditioning set Z. This allows us to skip calculation
of the data to cells ratio for a given data set when the size of the conditioning
set gets large enough. The upper bound on the number of conditioning variables
depends on the minimum variable cardinality and the number of records of the
data set:

n ≤
⌊

log
(
S
5

)
log (miniCard (i))

⌋
− 2 .

S is the sample size and Card(Xi) is the cardinality of a node Xi. We found
at least one case where this upper bound optimization was applied [14] and we
expect that others may have done so as well.

We did not apply this upper bound heuristic in the experiments described
in this paper because we wanted to ensure that our keep and remove rules get
applied whenever appropriate. Once we reach the upper bound, independence
testing stops, leaving edges behind that otherwise would be subjected to one of
the rules. Although it should not matter when applying the keep rule, combining
this heuristic with the remove rule could possibly give results different from
applying only the remove rule. We consider it beyond the scope of this paper
to quantify the additional effect of the upper bound heuristic on the quality of
patterns (also known as CPDAGS) produced by the PC algorithm.
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3 Measure of Data Set Size for the Experiments

Constraint search-based causal discovery algorithms perform independence tests
with an increasing number of conditioning variables, starting with unconditional
independence tests, then one, two, three, etc., conditioning variables, all in an
attempt to detect whether a pair of variables (nodes in a causal graph) are
directly connected. Rather than the number of records, it is of more importance
how many conditioning variables are feasible given a data set.

In our experiments, we chose to express the results as a function of an index
C, which denotes the size of the conditioning set in the independence tests in
the constraint search-based algorithm, such that rules are guaranteed to kick
in. The following equation expresses the minimum data set size to guarantee at
least 5 records in every cell of the contingency table when we test independence
with C conditioning variables:

S = 5 · 2C+2 . (2)

Base 2 in the equation assumes binary variables, so when the data set size
is smaller than S, the rules are guaranteed to kick in, even in the best case,
when all variables are binary. The data set size derived this way guarantees the
activation of either the keep or remove rule for all cases involving C or more
conditioning variables. We present all our plots with results with the index C on
the x axis. Our index is fairly easy to translate into the number of records. For
example, C = 5 means that the experiment was based on a data set consisting
of 5 · 25+2 = 640 records.

Rather than generating for each model data sets of different sizes from scratch
each time, we generated a single data set of size 10K records (please note that
this data set is sufficiently large for C = 9, which corresponds to 10,240 records.
Subsequently, we limited the size during the experiments to obtain the number
of records required by the index C.

4 Experiment 1: Keep vs. Remove Rules in Structure
Retrieval

Our first experiment focused on a comparison of the keep and remove rules in
their ability to retrieve the gold standard structure that has generated the data.

4.1 Methodology

We selected nine different Bayesian networks, listed in Table 1, for our gold
standard networks.

The experiment consisted of 100 repetitions of the following steps:

1. Generate a data set (see Section 3).
2. For each of the conditioning size limits C = 0, 1, 2, . . . , 9:
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Table 1. Gold Standard Evaluation Networks

Network Nodes Edges Reference

Asia 8 8 [9]
Nursery2 9 10 [12]
Adult2 15 18 [12]
Bank2 17 28 [12]
Chess2 37 100 [12]
Alarm 37 46 [4]

Hailfinder 56 66 [1]
Hepar 70 123 [10]

CPCS179 179 239 [11]

(a) Reduce the sample size of the data to S that corresponds to C (see
Section 3, Equation 2).

(b) Learn a structure (a pattern) from the data using the PC algorithm
using (a) the keep rule and (b) the remove rule.

(c) Calculate distance statistics:
i. Hamming distance from the learned structures to the gold standard2

ii. Hamming distance between the two learned structures.
iii. Skeletal distance from the learned structures to the gold standard.
iv. Skeletal distance between the learned structures.

(d) Count the number of edge orientation mistakes between the learned
structures and the gold standard.

(e) Count the number of edge orientation mistakes between the learned
structures.

(f) Store the the running time of the algorithm and the number of times the
rules were applied.

The Hamming distance [2,15] between (CP)DAG structures A and B counts
the number of changes that need to made to transform A into B (and vice versa,
because Hamming distance is a symmetric measure). It consists of the sum of
three components: (1) the number of edges that are present in A but missing
in B, (2) the number of edges that are present in B but missing in A, and (3)
the number of edges in A that are present in B but oriented differently. The
skeletal distance, also measured in our experiments, consists of just the first two
components of the Hamming distance.

4.2 Results

Figure 1 shows the gold standard recovery performance of the two rules, i.e.,
Hamming distance between the recovered patterns and the patterns embedded

2 We convert the original DAG structure of the gold standard into a pattern by ap-
plying Chickering’s algorithm [5]

2 These networks were created by Ratnapinda and Druzdzel in an unrelated experi-
ment [12] using data from the UCI Machine Learning Repository [3]



196 M. de Jongh and M.J. Druzdzel

Fig. 1. Hamming distance between the keep and remove rules and the gold standard
networks as a function of data set size. Numbers indicate difference between keep and
remove rules.

in the gold standard networks, and Hamming distance between the recovered
patterns. The difference between the two rules is most apparent for data sets
with small number of data records. In the extreme case, the keep rule results
in a completely connected graph, and the remove rule results in an completely
disconnected graph. The worst case scenario is for the remove rule much closer
to the gold standard than the worst case scenario of the keep rule. The reason
for this is that causal graphs seem to be naturally sparse. When more data are
available, the algorithm has enough data to perform independence tests and the
difference between the two rules disappears. The remove rule performs in that
case at least as well as the keep rule and sometimes better.
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Fig. 2. Skeletal differences between patterns for keep and remove rules and the gold
standard as a function of data set size. Numbers indicate differences between keep and
remove rules.

Figure 2 shows skeletal differences between the recovered patterns and the
patterns derived from the gold standard networks. In most cases, the skeletons
of the retrieved graphs tend to converge when there are enough data. We can
see that the discrepancies between the keep and remove rules in Figure 1 most
likely result from errors in edge orientation.

Figure 3 illustrates the edge orientation errors made by both algorithm vari-
ants and shows how many edges differed between the patterns. Overall, the
remove rule makes fewer mistakes, but it is important to note that this measure
counts only cases where in both patterns (result and gold standard, or both re-
sults) an edge exists, which is why in the first few conditioning limits the number
is low, starting with 0 in the first step. In that case, the remove rule results in no
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Fig. 3. Incorrectly oriented edges between the retrieved patterns and the gold standard
networks as a function of data set size

edges and, hence, no incorrectly oriented edges. However, when there are more
data available, the algorithm still tends to make fewer orientation errors when
the remove rule is applied.

Figure 4 shows the running time of the two variants of the algorithm. We
can see that with the blacklisting employed in the keep rule, there are virtually
no differences between applying either of the two rules. Originally, we tried to
assess the performance of the keep rule without blacklisting edges. We found
that when setting the conditioning set size threshold to 0, the algorithm ran
continuously for a week without finishing. This observation inspired us to develop
the blacklisting rule.

Figure 5 shows the number of times the keep and remove rules were applied
(please note the logarithmic scale on the y-axis). The keep rule clearly required
a much larger number of independence tests and applications of the keep rule
due to insufficient data. This has to do with the size of the conditioning sets,
which are composed of nodes that are still possibly connected to the tested pairs
of nodes. Removing edges decreases the number of edges that need to be tested
in subsequent iterations of the algorithm, limits the number of possible future
conditioning sets, and reduces the possibility of not having sufficient data to run
an independence test.

To summarize, the remove rule performs at least as well as the keep rule,
when recovering the structure of a gold standard network, and better when
fewer records data are available. However, with blacklisting implemented in the
keep rule, the remove rule does not necessarily improve the running time of the
algorithm.
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Fig. 4. Average running times for the keep and remove rules

Fig. 5. The average number of rule applications

5 Experiment 2: Keep Rule vs. Remove Rule in
Classification Accuracy

Keeping vs. removing edges in a graph has an effect on the ability of the network
to represent the joint distribution over the modeled variables and should have an
effect on the overall precision of the networks when they are used in practice. In
Experiment 2, we compared classification accuracy of networks retrieved using
the keep and remove rules. Classification is a typical machine learning task that
requires modeling accuracy.
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5.1 Methodology

For the classification task, we chose 12 example data sets (listed in Table 2) from
the UCI Machine Learning Repository [3].

Table 2. Classification Datasets

Datasets Variables Records Classes

Hayes-Roth 4 132 3
Car 6 1,728 4

Nursery 9 12,960 5
Tic-Tac-Toe 10 958 2

Zoo 17 101 7
Bank 17 45,211 2

Breast-Cancer 22 80 2
SPECT 23 80 2
Soybean 36 266 15

Chess 37 3,196 2
Connect-4 43 67,557 3
Semeion 257 1,593 10

We performed the following steps for each of the data sets:

1. Randomize the order of the records in the data set.
2. Run a 10-fold cross validation for each of the conditioning size limits C =

1, 2, 3,3 with the following steps:
(a) Reduce the sample size of the data to S that corresponds to C (see

Section 3, Equation 2).
(b) Divide the data set into a training and a test set.
(c) Learn patterns from the training data set using the PC algorithm using

(a) the keep rule and (b) the remove rule.
(d) Transform patterns into DAGs using a simple conversion method imple-

mented in SMILE
�(based on the algorithm by [7]).

(e) Learn the parameters of the networks from the training data set.4

(f) Determine the classification accuracy of each network by predicting the
class variable using samples from the test data set, and verify the pre-
dictions by means of the actual class values.

(g) Record:
i. The number of times the rules were applied in both cases.
ii. The running time of the algorithm in both cases.

3 We used C = 1, 2, 3 rather than 1 through 9 in this experiment, because this is
the range of data set sizes for which, as discovered in Experiment 1, there were
differences between the keep and remove rules.

4 We used SMILE
�’s implementation of the EM algorithm to learn the parameters,

even though our data was complete. In this case it is reduced to plain maximum
likelihood estimation.
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iii. The time required to run inference on the Bayesian network in both
cases.

iv. The total clique size of the junction tree used for inference.

5.2 Results

Three of the data sets (Bank, Soybean and Semeion) failed to produce tractable
Bayesian networks when applying the keep rule. Although the PC algorithm
produced a pattern applying either rule, and the patterns were successfully con-
verted into DAGs, a common problem were very large parent sets in some of
the nodes. This, in combination with nodes having a considerable number of
variable states, resulted in the conditional probability tables (CPTs) becoming
too large, causing the experiment to stall in the conversion process.

For nine of the twelve data sets, the experiment completed successfully. Fig-
ures 6 through 9 show the results for these datasets.

Fig. 6. Average classification accuracy as a function of the data set size for both keep
and remove rules

Following the procedure described by [6], we performed Wilcoxon signed rank
tests [16] after ranking the performance of the algorithms to determine if either
of the rules significantly outperformed the other. Additionally, we tested if the
rules outperformed the baseline accuracy model, which simply bets on the most
likely class a-priori. For the Wilcoxon test, we considered 27 paired data points (9
datasets, 3 constrained versions). These points were the ranks of the algorithms
after comparing their classification accuracy, averaged over the ten folds. We
found that there were no significant differences between the two rules from the
point of view of classification accuracy. Both rules did better than the baseline
performance, although the result was barely significant (see Table 3).
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Table 3. p-values for the Wilcoxon signed rank test comparing the classification accu-
racy of models recovered using the two rules

Remove Baseline

Keep 0.8563 0.03345
Remove 0.03694

Figure 7 shows the running time needed by the algorithms to learn the models.
For the data sets tested (specifically, their three restricted versions), neither of
the rules drastically influenced the running time. No significant difference was
found between the algorithms (Wilcoxon test, V = 139, p = 0.2386).

Fig. 7. Average time taken to learn a classification model

Figure 8 shows the inference time, defined as the average time that it takes for
the network to perform inference on a sample (with SMILE

�’s implementation
of the clustering algorithm). Remove rule outperformed the keep rule (one-sided
Wilcoxon test, V = 349.5, p = 5.247e-06). From the practical point of view, the
performance differences are only noticeable when the models are learned from
very small data sets (resulting in dense graphs learned with the keep rule).

The networks learned from very small data sets were much denser. Denser
networks result in larger cliques. The total clique size, i.e, the sum of all elements
of all the clique potentials, gives an indication of how much time inference will
take. Figure 9 shows the total clique sizes for the retrieved networks. Here also we
see that the remove rule outperforms the keep rule in terms of learning smaller
networks.
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Fig. 8. Average classification inference times

Fig. 9. Average Total Size of All Cliques in the Network

6 Discussion

We tested two approaches suggested in the literature for dealing with insufficient
number of samples when performing independence test in the context of con-
strain search-based causal discovery algorithms: (1) assuming dependence (keep
rule) and (2) assuming independence (remove rule). We performed two exper-
iments: (1) recovery of gold standard networks from data sets of varying size,
and (2) comparison of computational and spatial complexity and classification
accuracy of models learned using the two approaches.

To reduce the run time of the keep rule, we introduced blacklisting, which
amounts to reducing independence tests that will predictably fail because of
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insufficient number of samples. With blacklisting edges, the running time for the
two rules did not differ much. The remove rule turned out to be a clear winner
in all our experiments. It performs at least as well as the keep rule when the
number of samples is sufficiently large, while leading to more precise recovery of
causal graphs in terms of Hamming distance. The results from the classification
accuracy experiment indicated that neither of the rules outperforms the other
with regards to running time and classification accuracy. We found significant
differences between the rules when comparing the learning algorithm running
time and total clique size of the resulting models (when converting the network
into a junction tree): The remove rule leads to faster learning, smaller clique
trees, and faster inference. The keep rule can result in DAGs with too many
parents and, effectively, huge CPTs and junction trees.

Our recommendation is to use the remove rule as a safer alternative, espe-
cially when dealing with small data sets. One reason is that causal graphs tend
to be rather sparse. The keep rule leads to denser networks and these will typi-
cally differ more from the pursued causal graphs. Remove rule leads to networks
that are not only closer to the pursued causal graphs. They are more practical
in terms of faster learning and inference and tractable. There seems to be no
significant price paid for this choice, as the resulting models are as accurate in
classification as the dense models originating from the keep rule. Graphs learned
when relying on the remove rule tend to be sparser, require fewer parameters,
perform inference faster, while showing similar classification accuracy. However,
one valid reason to apply the keep rule is to learn I-maps of a distribution P .
Here, for a graph G to be an I-map of P , all independences encoded in G must
be present in P . In this case, a more conservative approach to edge removal will
be beneficial.
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Abstract. In this paper we analyse the use of probabilistic decision
graphs in supervised classification problems. We enhance existing mod-
els with the ability of operating in hybrid domains, where discrete and
continuous variables coexist. Our proposal is based in the use of mixtures
of truncated basis functions. We first introduce a new type of probabilis-
tic graphical model, namely probabilistic decision graphs with mixture of
truncated basis functions distribution, and then present an initial exper-
imental evaluation where our proposal is compared with state-of-the-art
Bayesian classifiers, showing a promising behaviour.

Keywords: Supervised classification, Probabilistic decision graphs, Mix-
tures of truncated basis functions, Mixtures of polynomials, Mixtures of
truncated exponentials.

1 Introduction

The Probabilistic Decision Graph (PDG) model was introduced in [2] as an effi-
cient representation of probabilistic transition systems. In this study, we consider
the more general version of PDGs proposed in [8].

PDGs are probabilistic graphical models that can represent some context spe-
cific independencies that are not efficiently captured by conventional graphical
models as Bayesian Networks (BNs). In addition, probabilistic inference can be
carried out directly over the PDG structure in a time linear in the size of the
PDG model.

PDGs have mainly been studied as representations of joint distributions over
discrete random variables, showing a competitive performance when compared
to BNs and Latent class Naive BNs [15]. The discrete PDG model has also been
successfully applied to supervised classification problems [16] and unsupervised
clustering [4].

The need to handle discrete and continuous variables simultaneously has mo-
tivated the development of new probabilistic graphical models incorporating that
feature, mainly hybrid Bayesian networks [3, 14, 9, 10, 17, 18]. Also, PDGs have
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been recently extended in order to allow the inclusion of continuous variables
when the joint distribution of the model is a conditional Gaussian (CG) [6].

In this paper we extend the PDG classifiers introduced in [16] in order to incor-
porate continuous variables. We rely on the Mixture of truncated basis functions
(MoTBFs) model [10]. Unlike CG models, MoTBFs do not rely on the normality
assumption, and do not impose any restriction on the structure of the conditional
distributions involved in the PDG, so that discrete variables can be conditioned
on continuous ones and vice versa.

2 Notation and Preliminaries

We will use uppercase letters to denote random variables, and boldfaced upper-
case letters to denote random vectors, e.g. X = {X0, X1, . . . , XN}. By R(X) we
denote the set of possible states of variable X , and similarly for random vectors,
R(X) = ×Xi∈XR(Xi). By lowercase letters x (or x) we denote some element
of R(X) (or R(X)). When x ∈ R(X) and Y ⊆ X, we denote by x[Y] the pro-
jection of x onto coordinates Y. Throughout this document we will consider a
set W of discrete variables and a set Z of continuous variables, and we will use
X = W ∪ Z.

In what concerns the structure of the PDG model, we will make use of the
following notation. Let G be a directed graph over nodes V. Let ν ∈ V, we
then denote by paG(ν) the set of parents of node ν in G, by chG(ν) the set of
children of ν in G, by deG(ν) the set of descendants of ν in G, that is recursively
defined as deG(ν) = {ν′ : ν′ ∈ chG(ν) ∨ [ν′ ∈ chG(ν

′′) ∧ ν′′ ∈ deG(ν)]}, and
we use as shorthand notation de∗G(ν) = deG(ν) ∪ ν. By anG(ν) we understand
the set of ancestors (or predecessors) of ν in G, that is recursively defined as
anG(ν) = {ν′ : ν′ ∈ paG(ν) ∨ [ν′ ∈ paG(ν

′′) ∧ ν′′ ∈ anG(ν)]}.

2.1 Discrete PDGs

The discrete PDG model was introduced in [8] as representation of joint dis-
tributions over discrete random variables. The structure is formally defined as
follows:

Definition 1 (PDG Structure [8]). Let F be a forest of directed tree struc-
tures over a set of discrete random variables W. A PDG structure G = 〈V,E〉
for W w.r.t. F is a set of rooted DAGs, such that:

1. Each node ν ∈ V is labelled with exactly one W ∈ W. By VW , we will refer
to the set of all nodes in a PDG structure labelled with the same variable
W . For every variable W , VW �= ∅, we will say that ν represents W when
ν ∈ VW .

2. For each node ν ∈ VW , each possible state w ∈ R(W ) and each successor
Y ∈ chF (W ) there exists exactly one edge labelled with w from ν to some
node ν′ representing Y . Let Y ∈ chF (W ), ν ∈ VW and w ∈ R(W ). By
succ(ν, Y, w) we will then refer to the unique node ν′ ∈ VY that is reached
from ν by an edge with label w.
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An example, taken from [6], of a PDG structure and its corresponding variable
forest are depicted in Figs. 1(b) and (a) respectively. A PDG structure consists of
two layers, one for variable and one for nodes. The variable layer conforms a di-
rected forest over the variables F and the node layer is a one-root directed acyclic
graph structure. Children, parents, descendants or ancestors of a variable in a
PDG structure G, are located according to structure F . So, using Fig. 1(b) as an
example, on the variable layer we have: paG(W1) = {W0}, chG(W0) = {W1,W2},
deG(W0) = {W1,W2,W3} and anG(W3) = {W1,W0}. On the node layer, we
have: succ(ν0,W1, 0) = ν1, succ(ν0,W2, 1) = ν4 and succ(ν1,W3, 0) = ν6.

W0

W1 W2

W3

(a)

ν0W0

ν1 ν2W1 ν3 ν4W2

ν5 ν6 ν7W3

0
1 0

1

01
0 1

(b)

Fig. 1. (a) A forest structure F formed by a single tree over binary variables W =
{W0,W1,W2,W3}. (b) A PDG structure over W with underlying forest F .

A PDG structure G is instantiated by assigning a real function fν : R(Wi) →
R+

0 , with ν ∈ VWi to every node ν in the structure. It represents the global real
function fG : R(W) → R+

0 , recursively defined as follows:

fν
G(w) := fν(w[W ])

∏
Y ∈chF (W )

f
succ(ν,Y,w[W ])
G (w), (1)

for all w ∈ R(W). fG is then defined on R(W) as:

fG(w) :=
∏

ν:ν is a root

fν
G(w). (2)

Equation (1) defines a factorisation with one factor fν for each W ∈ W. The
set of nodes in a PDG structure associated with a given element w ∈ R(W) is
characterised by function reach.

Definition 2 (Reach). A node ν representing variable Wi in G is reached by
w ∈ R(W) if

1. ν is a root in G, or
2. Wj = paF (Wi), node ν′ representing variable Wj is reached by w and ν =

succ(ν′,Wi,w[Wj ]).
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By reachG(Wi,w) we denote the unique node representing Wi reached by w in
PDG structure G.

As an example [6], consider again the PDG structure of Fig. 1(b) and let w =
{W0 = 0,W1 = 1,W2 = 1,W3 = 1}. Then reachG(W0,w) = ν0, reachG(W1,w) =
ν1, reachG(W2,w) = ν3 and reachG(W3,w) = ν5. Function fG in (2) can be re-
formulated as

fG(w) :=
∏

Wi∈W

f reachG(Wi,w)(w[Wi]) . (3)

When all the local functions fν in an instantiated PDG structure G over W
are probability distributions, fG defines a joint multinomial probability distri-
bution over W [8]. In fact, fν

G in (1) defines a multinomial distribution over
variables W ∪ chF (W ). We will refer to such instantiated PDG structures as
PDG models.

Definition 3 (PDG model [8]). A PDG model G is a pair G = 〈G, θ〉, where
G = 〈V,E〉 is a valid PDG structure (Definition 1) over some set W of discrete
random variables and θ = {fν : ν ∈ V} is a set of real functions, each of which
defines a discrete probability distribution.

Example 1 (taken from [6]). Consider the PDG structure in Fig. 1. It encodes
a factorisation of the joint distribution of W = {W0,W1,W2,W3}, with fν0 =
P (W0), f

ν1 = P (W1|W0 = 0), fν2 = P (W1|W0 = 1), fν3 = P (W2|W0 = 0),
fν4 = P (W2|W0 = 1), fν5 = P (W3|W0 = 0,W1 = 1), fν6 = P (W3|W1 =
0, {W0 = 0 ∨W0 = 1}), fν7 = P (W3|W0 = 1,W1 = 1).

The PDG structure plus the set of conditional distributions given above con-
stitute a PDG model over the set of variables W = {W0,W1,W2,W3}. Assume
that we want to evaluate the PDG model for a given configuration of W, for
instance, (0, 1, 1, 1). According to (1), the returned value is

fG(0, 1, 1, 1) = fν0(0)fν1(1)fν3(1)fν5(1)

= P (W0 = 0)P (W1 = 1|W0 = 0)P (W2 = 1|W0 = 0)

P (W3 = 1|W0 = 0,W1 = 1).

2.2 Conditional Gaussian PDGs

The first attempt to include continuous variables in PDGs came along with the
so-called conditional Gaussian PDGs [6]. These models represent joint distribu-
tions of discrete and continuous variables simultaneously, conforming a condi-
tional Gaussian (CG) distribution [12]. It means that the joint over the contin-
uous variables is assumed to be a mixture of multivariate Gaussians, and the
joint over the discrete variables is a multinomial.

Formally, a CG-PDG is a PDG with forest F where variables can be discrete
and continuous. Discrete variables are treated as in PDGs, and the continuous
ones follow the next requirements:
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– Every continuous variable Z ∈ Z is only allowed to have continuous children
in F .

– A node ν representing a continuous variable Z ∈ Z has exactly one outgoing
edge for each child of Z in F .

– A node ν representing Z ∈ Z with predecessors in F {Z1, . . . , Zn} defines
the conditional density fν = N (z;αν +

∑n
i=1 β

ν
i zi, σ

2ν).

ν0W0

ν1 ν2W1 ν3 ν4Z0

ν5 ν6 ν7W2 ν8 ν9Z1

0 1
0

1

1 0 10

Fig. 2. An example of a structure of a CG-PDG, with discrete variables W0,W1,W2

and continuous variables Z0 and Z1

Example 2. The structure depicted in Fig. 2 is compatible with a CG-PDG
with discrete variables W0,W1,W2 and continuous variables Z0 and Z1. The
structure is instantiated as described in Table 1. Note that nodes corresponding
to discrete variables contain probability tables, while nodes corresponding to
continuous variables have densities instead. For instance, fν3 = ρ(Z0|W0 = 0) is
a Gaussian density with fixed mean and variance. If a continuous variable has
at least one continuous predecessor, then the density in each of its nodes is also
Gaussian with fixed variance, but the mean is not constant, but rather a linear
function of the continuous predecessors. That is the case of nodes ν8 and ν9.

Table 1. Instantiation of the structure in Fig. 2

fν0 = P (W0) fν5 = P (W2|W0 = 0,W1 = 1)
fν1 = P (W1|W0 = 0) fν6 = P (W2|W1 = 0)
fν2 = P (W1|W0 = 1) fν7 = P (W2|W0 = 1,W1 = 1)
fν3 = ρ(Z0|W0 = 0) fν8 = ρ(Z1|Z0,W0 = 0)
fν4 = ρ(Z0|W0 = 1) fν9 = ρ(Z1|Z0,W0 = 1)

2.3 Mixtures of Truncated Basis Functions

The MoTBF framework is based on the abstract notion of real-valued basis
functions ψ(·), which includes both polynomial and exponential functions as
special cases. Let X be a continuous variable with domain R(X) ⊆ R and let
ψi : R → R, for i = 0, . . . , k, define a collection of real basis functions. We
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say that a function gk : R(X)  → R+
0 is an MoTBF potential of level k wrt.

Ψ = {ψ0, ψ1, . . . , ψk} if gk can be written as [10]

gk(x) =

k∑
i=0

ai ψi (x) , (4)

where ai are real numbers. The potential is a density if
∫
R(X) gk(x) dx = 1.

Example 3. By letting the basis functions correspond to polynomial functions,
ψi(x) = xi for i = 0, 1, . . ., the MoTBF model reduces to an MOP model [18]
for univariate distributions. Similarly, if we define the basis functions as ψi(x) =
{1, exp(−x), exp(x), exp(−2x), exp(2x), . . .}, the MoTBF model corresponds to
an MTE model [14] with the exception that the parameters in the exponential
functions are fixed.

In a conditional MoTBF density, the influence a set of continuous parent vari-
ables Z has on their child variable X is encoded only through the partitioning
of the domain of Z, denoted as R(Z), into hyper-cubes, and not directly in the
functional form of gk(x|z) inside each hyper-cube. More precisely, for a parti-
tioning P = {R(Z)1, . . . , R(Z)m} of R(Z), the conditional MoTBF is defined
for z ∈ R(Z)j , 1 ≤ j ≤ m, as

g
(j)
k (x|z ∈ R(Z)j) =

k∑
i=0

a
(j)
i ψ

(j)
i (x). (5)

Similarily, MoTBFs can be defined for discrete variables, in which case each
potential value g(x) represents the value P (X = x) with

∑
x g(x) = 1. Condi-

tional distributions of discrete variables given continuous and/or discrete vari-
ables can be defined analogously to (5). See [10, 11] for more details.

3 Hybrid PDGs Based on MoTBFs

CG-PDGs have two limitations. One is the normality assumption, that may not
hold in applications with real data. The other one is the structural restriction
that forbids discrete variables to have continuous parents in the structure. For
instance, the structure in Fig. 3 is not valid for a CG-PDG since discrete variable
W1 has a continuous predecessor, Z0.

Our proposal to sidestep the above-mentioned restrictions is to adopt the
MoTBF framework (see Sect. 2.3) within the PDG model. The formal definition
is as follows.

Definition 4 (MoTBF-PDG). We define an MoTBF-PDG as a PDG with
forest F where variables can be discrete and continuous. Discrete variables are
treated as in PDGs, and the continuous ones follow the next requirements:

– Continuous variables are allowed to have discrete and continuous successors
and predecessors.
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ν0W0

ν1 ν2Z0 ν3 ν4Z1

ν5 ν6 ν7W1 ν8 ν9 ν10Z2

0 1
0 1

I5 I6
I7I1 I2 I4

I3

Fig. 3. An example of a PDG structure that is not compatible with a CG-PDG, since
discrete variable W1 has a continuous predecessor, Z0. Labels I1, . . . , I7 indicate inter-
vals of the domain of the corresponding continuous variable.

– A node ν representing Z ∈ Z can have one or more outgoing edges for each
Zi child of Z in F . Each edge represents a interval the domain of Z, and all
of them constitute a partition of it.

– A node ν representing Z ∈ Z with continuous predecessors {Z1, . . . , Zn}
defines an MoTBF density fν(z) conditional on the branch that leads from
the root to ν.

Example 4. Consider the PDG structure in Fig. 3. Assume W0 and W1 are
binary variables and Z0, Z1 and Z2 are continuous variables with domain [0, 1].
An instantiation of the PDG structure is given in Table 2, where the labels
I1, . . . , I7 are, respectively, intervals [0, 0.5), [0.5, 1], [0.5, 1], [0, 0.5), [0, 1], [0, 0.3),
[0.3, 1].

Table 2. An instantiation of the PDG structure in Fig. 3. Potentials denoted as ρ
correspond to conditional MoTBF densities as in (5).

fν0 = P (W0) fν5 = P (W1|W0 = 0, Z0 ∈ [0, 0.5))
fν1 = ρ(Z0|W0 = 0) fν6 = P (W1|Z0 ∈ [0.5, 1])
fν2 = ρ(Z0|W0 = 1) fν7 = P (W1|W0 = 1, Z0 ∈ [0, 0.5))
fν3 = ρ(Z1|W0 = 0) fν8 = ρ(Z2|W0 = 0)
fν4 = ρ(Z1|W0 = 1) fν9 = ρ(Z2|W0 = 1, Z1 ∈ [0, 0.3))

fν10 = ρ(Z2|W0 = 1, Z1 ∈ [0.3, 1])

The next proposition shows that an MoTBF-PDG actually represents a joint
distribution of class MoTBF over the variables it contains.

Proposition 1. Let G be a MoTBF-PDG over variables X = W∪Z. Function

fG(x) =
∏
X∈X

f reachG(X,x)(x[X ])

represents an MoTBF distribution over X.
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Proof. According to (3), f reachG(X,x) is the function stored in the unique pa-
rameter node ν of variable X that is reached by the path in G determined by
configuration X = x. Let us index the variables in X as X1, . . . , Xn and denote
by νx[Xi] the unique parameter node of variable Xi that is reached by the path
in G determined by configuration X = x. Then,

fG(x) =

n∏
i=1

f reachG(Xi,x)(x[Xi]) =

n∏
i=1

fνx[Xi](x[Xi])

=

n∏
i=1

fνx[Xi](x[Xi]|x[X1, . . . , Xi−1]) (6)

where, according to Definition 4, fνx[Xi] is a conditional probability function of
Xi given the configuration in the branch upwards the root. Furthermore, also
according to Definition 4, fνx[Xi] is of class MoTBF. As the product of MoTBF
functions is known to be an MoTBF as well (see [10]) we can conclude, by ap-
plying the chain rule, that the factorisation in (6) is a joint MoTBF distribution
over X1, . . . , Xn, i.e. over X. ��

In the next section we will study the problem of supervised classification and
how MoTBF-PDGs can be used in that context.

4 PDG Classifiers

A classification problem can be described in terms of a set of feature variables
X = {X1, . . . , Xn}, that describes an individual, and a class variable, C, that
indicates the class to which that individual belongs. A classifier is a model
oriented to predict the value of variable C given that the values of the features
X are known. If the joint probability distribution of C and X is known, it can
be used to solve the classification problem by assigning to any individual with
observed features x1, . . . , xn the class c∗ such that

c∗ = argmax
c∈R(C)

P (C = c|X = x1, . . . , xn). (7)

By supervised classification we understand the problem of learning a classifier
from a set of labeled examples, i.e., from a database with variablesX1, . . . , Xn, C
where the value of C is known in all the records in the database.

Probabilistic graphical models, and more precisely Bayesian networks, have
been used as classifiers, as they provide compact representations of joint proba-
bility distributions. Usually, the structure of the network is restricted in such a
way that the class variable is set as root and the feature variables are connected
to the class [5]. Similarly, PDGs have been used as classifiers by imposing certain
structural restriction, ensuring that all the features are connected to the class.
The formal definition is as follows.

Definition 5 (PDG Classifier [16]). A PDG classifier C is a PDG model that,
in addition to the structural constraints of Definition 1, satisfies the following
two structural constraints:
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1. G defines a forest containing a single tree over the variables C = {C} ∪X,
2. C is the root of this tree.

In a PDG classifier, the forest is restricted to contain a single tree in order to
guarantee that all the feature variables are connected to C by a path in G. By
forcing C to be placed at the root, typical Bayesian network classifiers structures
can be easily replicated, as for instance, the Näıve Bayes (NB) model.

Definition 6 (MoTBF-PDG Classifier). An MoTBF-PDG classifier C is an
MoTBF-PDG that satisfies the structural constraints in Definition 5.

In a classification problem with class variable C and features X1, . . . , Xn (dis-
crete or continuous), if we denote byC the set {C,X1, . . . , Xn}, an MoTBF-PDG
classifier G would be used to represent the joint distribution

fG(c) = fG(c, x1, . . . , xn).

According to (7), we need to determine the value

c∗ = argmax
c∈R(C)

fG(c|x1, . . . , xn) = argmax
c∈R(C)

fG(c, x1, . . . , xn)∑
c∈R(C) fG(c, x1, . . . , xn)

.

As
∑

c∈R(C) fG(c, x1, . . . , xn) does not depend on c, solving the classification
problem is equivalent to finding the value

c∗ = argmax
c∈R(C)

fG(c, x1, . . . , xn).

Hence, in order to classify an item with observed features x = (x1, . . . , xn),
we just have to compute, for each c ∈ R(C), the value fG(c, x1, . . . , xn), which
amounts to evaluate the conditional MoTBF functions in the parameter nodes
reached by (c, x1, . . . , xn) as described in (6).

4.1 Learning MoTBF-PDG Classifiers from Data

Learning an MoTBF-PDG classifier from data consists of determining the struc-
ture of the PDG and estimating the conditional MoTBF distributions in the pa-
rameter nodes. Assuming a fixed PDG structure (see Definition 1) the MoTBF
probability function corresponding to each parameter node ν is estimated by
first determining the elements in the data sample that reach ν, and then learn-
ing a univariate MoTBF using those data points following the method described
in [11]. We refer the reader to that reference for further details on the estimation
procedure for univariate MoTBF densities.

For determining the structure, we have considered three basic approaches:

1. Fix a Näıve Bayes-like structure, so that all the features are directly con-
nected to the class variable. We denote this approach as NB. An example of
a PDG with NB structure is depicted in Fig. 4.
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2. Rank the feature variables according to their mutual information with the
class variable and connect the variables conforming a chain rooted by the
class variable followed by the features in a sequence according to their rank.
The mutual information is estimated from data, discretising the continuous
variables. We will refer to this approach by the term ranked. An example of
a structure obtained in this way is found in the left panel of Fig. 5.

3. Rank the feature variables according to their mutual information with the
class variable, and include the feature variables in the PDG one by one
according to the rank (the class variable is always included on top of the
structure). Unlike in the ranked approach, here each variable is inserted
below any previously inserted variable. Among all possible insertion points,
the one resulting in a better classification rate (CR) is chosen. The CR is
computed in a validation set randomly drawn form the training database. In
this paper, we have used an 80% of the training database for learning and
a 20% for validation. We denote this approach by rankedCR. An example of
an structure compatible with this approach is displayed in Fig. 5 (right).

ν0C

X1 ν1 ν2 X2 ν3 ν4 X3 ν5 ν6

Fig. 4. A PDG structure compatible with the NB approach

During the process of inserting new variables in a PDG structure, it is neces-
sary to decide the number of nodes to store at each variable, and the connections
among them. In general, the maximum number of nodes at each variable depends
on the number of nodes at its parent variable, and of the number of outgoing
edge of each node at the parent.

Example 5. Consider the PDG at the right of Fig. 5. The maximum number of
nodes at X3 is 4, as its parent, X2 has 2 nodes and each one has 2 outgoing
arcs. However, in the PDG at the left of Fig. 5, the maximum number of nodes
for X3 is 8, as in this case X2 has 4 nodes with 2 outgoing arcs each one. Note
that, even though the maximum allowed is 8, in this example X3 actually has 6
nodes, which indicates the presence of context specific independencies.

The number of outgoing arcs of a node corresponding to a discrete variable is
equal to the number of possible values of the variable, which means that there are
at least 2 outgoing arcs in such case. For a node corresponding to a continuous
variable, the number of outgoing arcs may vary from 1 to any positive integer.
In practice, it is necessary to establish a maximum number of arcs when learning
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ν0C

X1 ν1 ν2

X2 ν3 ν4 ν5 ν6

X3 ν7 ν8 ν9 ν10 ν11 ν12

ν0C

X1 ν1 ν2 X2 ν3 ν4

X3 ν5 ν6 ν7 ν8

Fig. 5. Examples of PDG structures corresponding to the ranked (left) and rankedCR

(right) approaches. It is assumed that the ranking of variables with respect to their
mutual information with the class variable is X1, X2, X3.

the PDG from data. Each outgoing arc corresponds to a subset of the domain
of the continuous variable, so that the collection of the subsets associated with
all the edges conforms a partition of its domain.

Example 6. Consider the PDG in Fig. 3 and its instantiation in Table 2. Node
ν1, corresponding to continuous variable Z0 has 2 outgoing arcs. One of them
corresponds to interval [0, 0.5) and the other to interval [0.5, 1].

The arcs emerging from a node not necessarily lead to different nodes, i.e.,
more than one arc may converge to the same node. Furthermore, arcs emerging
from different nodes may converge to the same one. In this paper, we have
considered a fixed number of intervals for every continuous variable, which is
given as an argument to the classifier learning algorithm. The borders of the
intervals are obtained following an equal frequency binning process.

Note that each node in a PDG represents a portion of the training data,
namely those items that correspond to configurations that reach the parameter
node. Therefore, as the PDG is expanded during its construction, the amount
of data available for estimating the MoTBFs distributions in each node goes
down. In order to avoid estimating the MoTBF functions from tiny samples,
whenever a new variable is inserted during the process of constructing the PDG,
we generate all the nodes for that variable and carry out a collapse operation
[16], so that nodes that are not reached by a given minimum number of training
items are collapsed. More precisely, the collapse operation involves the following
steps:

1. Establish a collapse threshold rc > 0.
2. Let ν1, . . . , νk be the nodes for the current variable.
3. Let size(νi), i = 1, . . . , n denote the number of parameters estimated from

data for node νi. This is the number of possible values of the variable minus
1, if the variable is discrete, and the parameters of the MoTBF density plus
the number of intervals minus 1 if it is continuous.
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4. Pairs of nodes (νi, νj) that are reached by a number of training items lower
than rc × size(νi) and rc × size(νj) respectively, are chosen in increasing
order of the previously mentioned thresholds and collapsed into a single new
node, for which the corresponding probability function is re-estimated using
the union of both training samples. When collapsing two nodes, the incoming
and outgoing arcs are re-arranged appropriately.

The process is repeated until no nodes below the threshold remain, or until
there is only one, in which case it is coupled with the smallest (in terms of rc ×
size(ν)) parameter node for the same variable, and collapsed into a single one.

Once the MoTBF-PDG classifier has been constructed by any of the three
approaches mentioned above, we carry out an operation aimed at reducing the
chances of overfitting for the learnt model. The operation is called merge. It
traverses the PDG structure bottom-up. For each variable, we explore a fraction
of its parameter nodes, determined by a rate rm ∈ [0, 1] that we call merge rate.
Then, the sampled parameter nodes are collapsed into a single one, similarly to
the case of the collapse operation, but in this case only if the classification rate,
computed from the validation set, is increased respect to the current model.

5 Experimental Evaluation

We have carried out an initial experimental evaluation aimed at evaluating the
performance of MoTBF classifiers over a set of benchmark databases taken from
the UCI (http://archive.ics.uci.edu/ml) and KEEL [1] repositories. A description
of the datasets used in the experiments is given in Table 3.

In the experiments, we have induced MoTBF-PDG classifiers for each dataset
using the three approaches explained in Sect. 4.1, i.e. NB, ranked and rankedCR,
and several combinations of the parameters described there. More precisely, we
have tested 2 and 3 intervals for the domain of the continuous parent variables,
collapse thresholds of rc = 3, 5 and 7, merge rates of rm = 0.25 and 0.5. For the
densities in the parameter nodes, we have used mixtures of polynomials (MOPs),
which are one of the possible types of MoTBFs together with MTEs [10]. The
polynomials have been learnt using the procedure described in [11] with limits
on the degree of the polynomials equal to 4, 6, 8 and 10. We also tested discrete
PDG classifiers as well as four Bayesian classifiers available in software Weka,
namely Gaussian Näıve Bayes (called NB Simple in Weka), kernel NB, discrete
NB and discrete TAN. We tested each algorithm measuring the classification
rate (CR) using 5-fold cross validation. Our implementation of PDGs has been
done using the R statistical package.

We found that the best combination of parameter values for the MoTBF-PDG
classifiers was 3 intervals for the domain of the continuous parent variables,
collapse threshold rc = 3, merge rate rm = 0.25, and maximum degree for
polynomials equal to 6. We chose this combination of parameters by trying each
possible combination of them an counting how many times each one was the
winner in terms of classification rate of the constructed model. The results of
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Table 3. Description of the datasets used in the experiments

instances #features #continuous #categorical #classStates

appendicitis 106 7 7 0 2
banknote 1372 4 4 0 2
fourclass 862 2 2 0 2
haberman 306 3 3 0 2
iris 150 4 4 0 3
liver 345 6 6 0 2
newthyroid 215 5 5 0 3
phoneme 5404 5 5 0 2
pima 768 8 8 0 2
seeds 209 7 7 0 3
teaching 151 5 3 2 3
vertebral 309 6 6 0 2
wine 178 13 13 0 3

the experiments in terms of CR attained by each classifier are shown in Table 4.
The sizes of the obtained models, measured as the number of parameters they
contain, are displayed in Table 5. The values shown for MoTBF-PDG classifiers
correspond to the configuration of parameters described above.

Table 4. Classification rates attained by the tested classifiers

MoTBF-PDG Discrete-PDG Weka

Database NB ranked rankedCR NB ranked rankedCR Discrete-NB Kernel-NB Gaussian-NB Discrete-TAN

appendicitis 0.8403 0.8307 0.8597 0.7935 0.8121 0.8117 0.8022 0.8771 0.868 0.8489
banknote 0.8586 0.9752 0.9738 0.8571 0.9425 0.9388 0.6348 0.9227 0.8397 0.9344
fourclass 0.7553 0.8365 0.8202 0.725 0.7982 0.7982 0.6439 0.8677 0.7506 0.8411
haberman 0.7482 0.7384 0.7287 0.706 0.7125 0.7222 0.7353 0.7418 0.7483 0.7255
iris 0.94 0.94 0.92 0.9333 0.92 0.9333 0.7867 0.9667 0.96 0.9267
liver 0.5768 0.5739 0.6232 0.658 0.5884 0.6 0.5797 0.658 0.5623 0.5768
newthyroid 0.907 0.893 0.8791 0.9023 0.8698 0.8884 0.707 0.9581 0.9674 0.9442
phoneme 0.779 0.7613 0.7846 0.7435 0.8116 0.795 0.7065 0.7841 0.7606 0.805
pima 0.7474 0.7045 0.7383 0.7318 0.7358 0.7267 0.651 0.7422 0.7591 0.7448
seeds 0.8949 0.8854 0.8854 0.8854 0.8707 0.8806 0.8801 0.8994 0.9138 0.8994
teaching 0.411 0.4239 0.4566 0.5101 0.5034 0.5166 0.4297 0.5428 0.5295 0.4503
vertebral 0.7411 0.738 0.8412 0.7572 0.7604 0.7605 0.6764 0.7668 0.7766 0.8057
wine 0.9611 0.8873 0.9611 0.9552 0.8817 0.9497 0.944 0.9775 0.966 0.9662

5.1 Discussion

In order to determine the significance of the results in Table 4, we run Fried-
man’s test with maxT statistic [7], reporting significant differences among the
tested classifiers (p-value below 0.05) in terms of accuracy (classification rate).
Then we carried out a post hoc analysis following Wilcoxon-Nemenyi-McDonald-
Thompson’s procedure for pairwise comparisons. The result of the post hoc anal-
ysis is shown in Fig. 6, where a box plot for the differences in classification rate
between every pair of algorithms is displayed. Green boxes are used to highlight
the cases where statistically significant differences were found, which are, from
left to right, discrete TAN vs. discrete NB, Gaussian NB vs. discrete NB, kernel
NB vs. discrete NB, MoTBF-PDG (rankedCR) vs. discrete NB, kernel NB vs.
discrete PDG (NB) and kernel NB vs. discrete PDG (ranked).
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Table 5. Sizes of the learnt classifiers computed as the number of parameters they
contain

MoTBF-PDG Discrete-PDG Weka

Database NB ranked rankedCR NB ranked rankedCR Discrete-NB Kernel-NB Gaussian-NB Discrete-TAN

appendicitis 38.6 120 35 29 77.4 35.4 127 743 27 139
banknote 36 307.8 216.6 17 83.4 40.2 73 5489 19 79
fourclass 9 22 17.4 9 15.8 15.4 37 1725 9 39
haberman 19.6 37.4 21 13 42.6 14.6 55 919 13 59
iris 45.6 85.8 51.6 26 32.8 26 110 602 26 119
liver 56.2 275 117.6 25 165.8 63.4 109 2071 25 119
newthyroid 59.4 169.6 71.8 32 82 36.4 137 1077 32 149
phoneme 53.2 988.6 105.8 21 309.8 49 91 27021 21 99
pima 66.8 686.6 165.2 33 460.2 114.6 145 6145 29 159
seeds 80.6 192.4 100.6 44 90.8 47.6 191 1465 44 209
teaching 19.6 90.8 42.4 26 58.2 28.2 87 459 16 151
vertebral 50.6 242.2 151.6 25 128.6 56.6 109 1855 25 119
wine 146 381.4 189.2 80 238.4 95.2 353 2316 80 389

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
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Fig. 6. Results of the pairwise comparison between the tested methods. Boxes in green
indicate statistically significant differences

MoTBF-PDG classifiers are in general heavier in terms of parameters, as
shown in Table 5, except kernel NB which always returns the largest model.
However, it must be pointed out that we have not considered variable selection
during the construction of any of the tested classifiers.

Even though defining a variable selection strategy for learning MoTBF-PDG
classifiers is a matter of future research, we carried out a simple experiment in
order to have a glimpse on the impact of variable selection both on size and ac-
curacy of the learnt PDGs. The experiment consisted of inducing a classification
tree and then learning the PDG but using only the variables actually included
in the tree. Table 6 shows a comparison of the results with and without variable
selection. The results suggest that variable selection can have a remarkable im-
pact on the obtained models. Note that the model sizes dramatically decrease
while the CR is not seriously deteriorated and even improved in some cases.
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Table 6. Results of the preliminary experiment with variable selection. Columns Old
CR, Old size, New CR and New size contain the results of MoTBF-PDG classifier with
rankedCR strategy and the same configuration of parameters as in the main experiment,
where ’old’ indicates including all the variables and ’new’ only with the same variables
as in the induced classification tree. #Vars indicates the ratio of included variables.

Database Old CR New CR Old size New size #Vars

appendicitis 0.8597 0.8403 35 13 2/7
haberman 0.7287 0.7318 21 18.6 2/3
iris 0.92 0.94 51.6 28.4 2/4
pima 0.7383 0.7435 165.2 107.4 6/8
seeds 0.8854 0.9139 100.6 53.6 4/7
wine 0.9611 0.9216 189.2 40.8 3/13

6 Concluding Remarks

In this paper we have introduced a new hybrid probabilistic graphical model,
called MoTBF-PDG, resulting from the combination of PDGs with the MoTBF
framework. We have done that within the context of supervised classification,
motivated by the fact that PDGs had already been successfully employed as
classifiers. The initial experimental evaluation suggests that the new classifiers
are potentially competitive with existing ones. The analysis also suggests that
variable selection is necessary in order to obtain compact models less prone
to overfitting. A more extensive experimentation, including larger datasets and
more algorithms as the one presented in [13] is necessary for determining the
impact of the different parameters involved in the learning process.

Finally, MoTBF-PDGs are not necessarily models restricted to the frame-
work of supervised classification. They could, for instance, be used for regression
problems, where the variable to predict is continuous. As a general model for rep-
resenting a joint probability distribution, the necessary operations for carrying
out probabilistic inference still remain to be developed for MoTBF-PDGs.
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[6] Gámez, J.A., Nielsen, J.D., Salmerón, A.: Modelling and Inference with Condi-
tional Gaussian Probabilistic Decision Graphs. Int. J. Approximate Reasoning 53,
929–945 (2012)

[7] Horthorn, T., Hornik, K., van de Wiel, M.A., Zeileis, A.: Implementing a Class of
Permutation Tests: The coin Package. J. Stat. Soft. 28, 1–23 (2008)

[8] Jaeger, M.: Probabilistic Decision Graphs - Combining Verification and AI Tech-
niques for Probabilistic Inference. Int. J. Uncertainty Fuzziness Knowledge Based
Syst. 12, 19–42 (2004)

[9] Langseth, H., Nielsen, T.D., Rumı́, R., Salmerón, A.: Parameter Estimation and
Model Selection for Mixtures of Truncated Exponentials. Int. J. Approximate
Reasoning 51, 485–498 (2010)

[10] Langseth, H., Nielsen, T.D., Rumı́, R., Salmerón, A.: Mixtures of Truncated Basis
Functions. Int. J. Approximate Reasoning 53, 212–227 (2012)

[11] Langseth, H., Nielsen, T.D., Pérez-Bernabé, I., Salmerón, A.: Learning mixtures
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[13] López-Cruz, P.L., Bielza, C., Larrañaga, P.: Learning mixtures of polynomials of
multidimensional probability densities from data using B-spline interpolation. Int.
J. Approximate Reasoning 55, 989–1010 (2014)

[14] Moral, S., Rumı́, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid
Bayesian Networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS
(LNAI), vol. 2143, pp. 135–143. Springer, Heidelberg (2001)

[15] Nielsen, J.D., Jaeger, M.: An Empirical Study of Efficiency and Accuracy of Prob-
abilistic Graphical Models. In: Third European Workshop on Probabilistic Graph-
ical Models, pp. 215–222 (2006)

[16] Nielsen, J.D., Rumı́, R., Salmerón, A.: Supervised Classification Using Probabilis-
tic Decision Graphs. Comput. Stat. Data Anal. 53, 1299–1311 (2009)

[17] Romero, V., Rumı́, R., Salmerón, A.: Learning Hybrid Bayesian Networks Using
Mixtures of Truncated Exponentials. Int. J. Approximate Reasoning 42, 54–68
(2006)

[18] Shenoy, P., West, J.: Inference in Hybrid Bayesian Networks Using Mixtures of
Polynomials. Int. J. Approximate Reasoning 52, 641–657 (2011)



Towards a Bayesian Decision Theoretic Analysis
of Contextual Effect Modifiers

Gabor Hullam1,2 and Peter Antal1

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics,

Magyar tudosok krt. 2, 1117 Budapest, Hungary
2 MTA-SE Neuropsychopharmacology and Neurochemistry

Research Group, Hungarian Academy of Sciences,
Nagyvarad ter 4, 1089 Budapest, Hungary

{gabor.hullam,peter.antal}@mit.bme.hu

Abstract. Relevance measures based on parametric and structural properties of
Bayesian networks can be utilized to characterize predictors and their interac-
tions. The advantage of the Bayesian framework is that it allows a detailed view
of parametric and structural aspects of relevance for domain experts. We discuss
two particularly challenging scenarios from psycho-genetic studies, (1) the anal-
ysis of weak effects, and (2) the analysis of contextual relevance, where a factor
has a negligible main effect and it modifies an effect of another factor only in a
given subpopulation. To cope with this challenge, we investigate the formaliza-
tion of expert intuitions and preferences from the exploratory data analysis phase.
We propose formal losses for these two scenarios. We introduce and evaluate a
Bayesian effect size measure using an artificial data set related to a genetic asso-
ciation study, and real data from a psycho-genetic study.

Keywords: Bayesian association measures, effect size, contextual relevance,
decision theoretic discovery.

1 Introduction

Probabilistic graphical models, especially Bayesian networks, are intensively used in
the field of genomics and biomedicine as they allow the modeling of complex depen-
dency structures between various clinical, genetic and environmental factors [20]. The
capability of modeling complex dependency relationships is vital for understanding the
mechanisms of multifactorial diseases (e.g. depression, asthma). In recent years, ge-
netic factors related to such illnesses were investigated by genome-wide association
studies (GWAS) and candidate gene association studies (CGAS) [19]. It became ap-
parent, that standard statistical analyses relying on the hypothesis testing framework
posed considerable limitations that hindered the interpretation and communication of
results. These phenomenon induced an extensive research for applicable univariate
Bayesian methods [25]. Furthermore, Bayesian network based multivariate methods
also attracted much attention, as they perform normative correction for multiple hy-
pothesis testing [21],[24],[28].
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Bayesian network based methods not only allow the detection of possibly complex
dependency relationships, but also provide a rich tool set for the detailed characteriza-
tion of associations [3]. Various association measures can be derived based on paramet-
ric and structural properties of Bayesian networks. Several methods focus on the learn-
ing of structural properties (or the whole structure) from data, which provides valuable
information on the relationships between factors [8]. The main goal of such structure
based learning methods is to enable the selection of relevant factors with respect to a
specified target. However parametric properties, such as effect size, are typically ne-
glected in those contexts. On the other hand, there are other methods which investigate
the parametric aspect of dependency relationships. For example, effect size measures
can be used to characterize the nature of associations, i.e. whether a factor increases the
risk of a disease or it has a protective effect [4]. Both the structural and the paramet-
ric aspects appear to be relevant, and provide a distinct view on dependency relation-
ships [13].

In domains with complex dependency patterns the analysis of factors involving effect
modifiers poses a further challenge. Let us consider an example from a psycho-genetic
study, in which the effect of genetic factors was assessed with respect to depression [15].
Figure 1.A shows the distribution of a Bayesian association measure (odds ratio, see
section 3) between a single nucleotide polymorphism (SNP) and depression based on
the whole data set. As the distribution is centered around the neutral effect size of 1
(i.e. no effect) one might conclude that the factor is non-relevant. However, Figure 1.B
shows that in case we consider an environmental factor related to recent negative life
events (RLE), and investigate the subpopulations defined by its subtypes (RLE-0: 0 or
1 RLE, RLE-1: 2 RLEs, RLE-2: 3 or more RLEs), then in one subpopulation (RLE-2)
a relevant effect (odds ratio above 2) can be observed.

Fig. 1. Posterior distribution of Bayesian parametric odds ratio for a selected SNP based on the
whole (ALL) data set (left) and on subpopulations (right) defined by recent negative life events
(RLE) subtypes.

Figure 2 shows a more complex example from the same study concerning the ef-
fect of a SNP on depression involving multiple environmental factors. In case of certain
configurations of environmental factors relevant odds ratios can be observed for patients
with age lower than 30 (Figure 2.A), whereas in case of patients above 30 most odds
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ratios are negligible (Figure 2.B). Without preferences provided by an expert, the inves-
tigation of such scenarios can be overlooked and not reported. Such cases motivate the
application of a decision theoretic framework based on formalized loss functions (see
section 4).

Fig. 2. Odds ratios for an effect modifier genetic factor with respect to depression based on sub-
populations according to the subtypes of environmental factors with strong main effects. RLE
denotes recent negative life events and CHA denotes childhood adversity. Odds ratios are dis-
played separately for patients below age 30 (left) and above (right).

Even though Bayesian network based structural relevance measures such as strong
relevance (see section 3) quantify the relevance of factors, they do not provide insight on
effect size, which is generally required by experts. Furthermore, whether an effect size
is considered relevant may depend on a priori domain knowledge conveyed by experts
or previously established references. For example a threshold can be defined based on
the effect size of an experimentally validated, widely accepted factor, thereby defining
weaker forms of relevance.

These examples illustrate that such complex patterns of interpretational preferences
have an important role in assessing the relevance of factors with seemingly weak effects.
In this paper we describe a possible approach towards these challenges.

The paper is organized as follows: First, we discuss the main concepts of association
measures. Then, we describe Bayesian relevance measures such as strong relevance and
Bayesian effect size. Subsequently, we present a novel effect size conditional existential
relevance measure (ECER). We also provide interpretation, reporting and publication
preferences using loss functions and outline a corresponding decision theoretic frame-
work. In summary, the paper demonstrates the application of Bayesian relevance mea-
sures on an artificial data set related to a genetic association study, and on real data from
a psycho-genetic study.

2 Association Measures

Association measures are the basic building blocks of scientific investigation aiming to
reveal dependency relationships between measured factors. Some provide an existential
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statement, that a dependency relationship exists between two (or more) factors, while
others quantitatively describe the nature and the strength of the effect of one factor
on another. We can distinguish at least three main approaches: parametric, existential
(structural), and causal approaches.

2.1 Effect Size

The most frequently used parametric approach utilizes effect size measures that do not
take structural aspects of dependency relationships into account. Thus multivariate re-
lationships are also neglected. In several fields, such as biomedicine and genetics, the
most frequently used effect size measure is the odds ratio (OR) [4]. In the frequentist
framework an odds is defined as the ratio of conditional probabilities, which can be
used to compute the odds ratio.

Definition 1 (Odds). Let X1,X2, ...,Xn denote discrete variables that have r1,r2, . . . ,rn
states respectively, and let Y denote the target variable with y1, ...,yq possible states.
Then Xi = xi1 denotes variable Xi in state xi1 , and an odds is defined as

Odds(X ( j)
i ,Y (m,n)) =

p(Y = ym|Xi = xi j)

p(Y = yn|Xi = xi j )
. (1)

Definition 2 (Odds ratio). An odds-ratio for variable Xi between states xi j and xik is
given as

OR(X (k, j)
i ,Y (m,n)) =

Odds(X (k)
i ,Y (m,n))

Odds(X ( j)
i ,Y (m,n))

(2)

If the target variable Y is binary then it typically serves as a disease indicator such
that Y = 0: non-affected (control), Y = 1: affected (case). Assuming that variables
X1,X2, ...,Xn represent single nucleotide polymorphisms (SNP), then r1,r2, . . . ,rn en-
code states {0,1,2} that refer to common(wild) homozygote, heterozygote, rare (mu-

tant) homozygote genotypes respectively. In that case OR(X (1,0)
i ) denotes an odds ratio

of heterozygous (1) versus common homozygous (0) genotypes of SNP Xi.

2.2 Strong Relevance

The basic concept of the existential approach is structural uncertainty, that is whether a
dependency relationship exists between two factors. Bayesian networks are used exten-
sively in this approach, which allow a detailed analysis of relationships, such as whether
a relationship is direct or it is mediated by other factors. Structural uncertainty is de-
scribed by a probability measure based on the data. As in most cases the aim of these
methods is to identify relevant factors with respect to a target, the probability measure
is related to (or conditioned on) the selected target.

The underlying concept of structural relevance can be defined formally in multiple
ways. On one hand, it can be stated using conditional probability distributions without
being specific to the applied model class used as a predictor, the optimization algorithm,
the data set, and the loss function [16].



226 G. Hullam and P. Antal

Definition 3 (Strong and weak relevance). A feature Xi is strongly relevant to Y , if
there exist some Xi = xi,Y = y and si = x1, . . . ,xi−1,xi+1, . . . ,xn for which p(xi,si) >
0 such that p(y|xi,si) �= p(y|si). A feature Xi is weakly relevant, if it is not strongly
relevant, and there exists a subset of features S′i of Si for which there exist some xi,y
and s′i for which p(xi,s′i)> 0 such that p(y|xi,s′i) �= p(y|s′i). A feature is relevant, if it is
either weakly or strongly relevant; otherwise it is irrelevant.

Assuming a Bayesian framework, a high posterior probability for strong relevance
indicates a close structural connection between Xi and Y [8].

Note that strong relevance does not imply a large effect size, i.e. parametric rele-
vance, and vice versa. A high posterior for the strong relevance of Xi with respect to Y
is not necessarily accompanied by a high odds ratio, as it is possible that Xi is only an
interaction term and only has a joint effect with another factor Xj on Y . In such a case
the individual odds ratio of Xi can be close to 1 [7]. Similarly, a high odds ratio does not
entail strong relevance, as this effect size measure does not impose strong criteria on an
underlying (Bayesian network) structure; in fact the exact structural relation between
Xi and Y is unknown. For example, a strong effect can be transitive, i.e. the effect of Xi

on Y is mediated by several other factors, which means that Xi then cannot be strongly
relevant (but it can be weakly relevant).

In summary, the structural and the parametric aspects are separate dimensions of
relevance [13].

3 Bayesian Network Based Association Measures

Bayesian networks provide a graph based language for encoding relevance and repre-
senting dependency relationships. The advantage of a Bayesian network based frame-
work is that both parametric and structural association measures can be investigated.
The structural aspect is closely related to the learning of structural properties of Bayesian
networks, whereas the parametric aspect is connected to the parameter prior and the pa-
rameterization learned from the data.

In case of structure learning of a Bayesian network from data, the identification of
model properties is essential, since in realistic cases the identification of the whole
network is typically not possible from a statistical point of view [9]. Instead, learning
smaller substructures or structural properties is a possible solution [5],[6],[17],[18],[23].

Previously, we investigated various structural properties of Bayesian networks re-
lated to relevance, and we demonstrated the Bayesian application (i.e. in a Bayesian
statistical framework) of Bayesian networks in relevance analysis [1]. Subsequently,
we proposed a Bayesian network based Bayesian multilevel analysis of relevance (BN-
BMLA) [2], and carried out a comparative study of BN-BMLA against other methods
in [14]. Then we applied the BN-BMLA method in a candidate gene association study
of asthma [27].

3.1 Strong Relevance in Bayesian Networks

The Bayesian interpretation of strong relevance involves Markov blanket sets, which
are special structural properties of Bayesian networks. A model-based, probabilistic
definition of Markov blankets can be stated as [22]:
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Definition 4 (Markov blanket). A set of variables X′ ⊆ V is called a Markov blanket
set of Xi with respect to the distribution p(V ), if (Xi ⊥⊥ V \X′|X′)p, where ⊥⊥ denotes
conditional independence.

In [26] the conditions for the unambiguous Bayesian network representation of the
relevant structural properties were derived. Based on these results, given a distribu-
tion p defined by a Bayesian network(G,θ) we refer to the Markov blanket set of Y as
MBS(Y,G) by the implicit assumption that p is Markov compatible with G (i.e. each
variable in p is conditionally independent of the set of all its non-descendants given the
set of all its parents).

This means, that for a given G all the strongly relevant variables Xj with respect to
Y are in MBS(Y,G). In other words, MBS(Y,G) is a strongly relevant set of variables
upon which a pairwise relation can be defined.

Definition 5 (Markov blanket membership). The pairwise relation MBM(Xj,Y ) in-
dicating whether Xj is a member of MBS(Y,G) is called Markov blanket membership.

The posterior probability for any structural property p( f |D), e.g. the MBM posterior
p(MBM(Xi,Y )), can be computed by evaluating the corresponding expression f (G) for
all possible structures G given data set D as

p( f |D) = ∑
G

p(G|D) f (G). (3)

However, since averaging over all possible structures is generally intractable, an
alternative estimation method is required. For this purpose we used a Markov chain
Monte Carlo (MCMC) method in order to facilitate a random walk in the space of
directed acyclic graph structures by applying operators for inserting, deleting, and in-
verting edges [2]. The probability of applying these operators in the proposal distribu-
tion was uniform [11]. In each MCMC step, the Markov blanket set (with respect to a
selected target) corresponding to the directed acyclic graph in the current step is deter-
mined and the relative frequency of this Markov blanket set is updated. In the final step,
a normalized posterior is produced for each Markov blanket set. An MBM posterior
p(MBM(Xi,Y )) is computed for each Xi by summing the posteriors of those Markov
blanket sets that contained Xi.

3.2 Bayesian Effect Size

A possible Bayesian approach to effect size estimation is to utilize the underlying
BN(G,θ) that is a graph structure G and its parametrization θ for odds ratio computation
OR(Xi,Y |θ,G). This OR can be treated as a random variable induced by the distribution
p(Θ|G,D), where D denotes the data set, and Θ is a random variable of possible param-
eterizations. However, properties such as mean and credible interval for the posterior of
odds ratios cannot be analytically derived, thus they have to be estimated.

In previous works, we utilized the strong relevance property of Markov blankets to
guide the estimation process, and created a structure conditional Bayesian effect size
measure [12,13]. This hybrid effect size measure encompasses both the structural and
the parametric aspects of relevance.
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Following the Bayesian univariate association analysis framework, here we investi-
gate a purely parametric Bayesian effect size measure in which the parametrization θk

is sampled from a Dirichlet distribution Dir(Un,α′
n), defined by the applied Bayesian

Dirichlet prior

Dir(U1, ...,Un−1,α1, ...,αn) =
1

β(α)
·

n

∏
i=1

Uαi−1
i , (4)

where U1, ...,Un denote discrete variables defined by data D, and α1, ...,αn denote
corresponding hyperparameters. The sampling is performed based on the posterior
Dir(Un,α′

n) using updated hyperparameters α′
i = αi +N, where N is the sample size.

Note that the Bayesian Dirichlet prior is also used for structure learning to estimate the
posterior probability p(G|D). Based on θk odds ratios are then estimated as

ÔR(Xi,Y |D) =
1
q

q

∑
k=1

OR(Xi,Y |θk) (5)

where q is the number of samples taken from Dir(Un,α′
n). Apart from computing

the effect size estimate, the distribution p(OR(Xi,Y |Θ)) can be used to define a credible
interval (CR0.9), which satisfies p(OR(Xi,Y |Θ) ∈ CR) = 0.9 [10]. The credible interval
is essentially the Bayesian equivalent of a confidence interval in standard (frequentist)
statistics. Later on we assume that the credible interval is the smallest such interval, i.e.
a high probability density region.

Figure 3 shows the posterior distribution of Bayesian odds ratios for a selected vari-
able from the investigated artificial data set (for details see Section 5) in case of various
sample sizes. Each curve corresponds to the histogram of a posterior distribution, and
its endpoints mark the borders of the related credible interval. The effect of growing
sample size, i.e. more evidence, can be clearly seen on the Bayesian odds ratio, as the
credible interval becomes smaller and the distribution becomes more peaked.

3.3 Effect Size Conditional Existential Relevance

The distribution p(OR(Xi,Y |Θ)) can also be used to devise an existential relevance
measure which is based on effect size parameters and reflects experts’ preferences.
Note that this is an opposite approach compared to our previous hybrid association
measure [12].

This measure can be formalized by defining an interval of negligible effect size Cε
around the neutral odds ratio of 1, e.g. in a symmetric case ε = 0.2 means that OR ∈Cε
if 0.9 < OR < 1.1. Note that this corresponds to an ε-insensitive 0− 1 loss-function. If
the credible interval for OR(Xi,Y |Θ) intersects with interval Cε then we can state that
based on the effect size distribution p(OR(Xi,Y |Θ)) the variable Xi is partially non-
relevant in terms of parametric relevance. More specifically the distribution mass in Cε
quantifies the parametric irrelevance of variable Xi. Straightforwardly, the greater the
mass of p(OR(Xi,Y |Θ) ∈Cε) the less parametrically relevant Xi is.

If the credible interval of p(OR(Xi,Y |Θ)) does not intersect with Cε that means that
the effect size distribution of Xi only contains non-negligible values, that is Xi is para-
metrically relevant. Another interpretation is that there is no parametrically encoded
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Fig. 3. Posterior distribution of Bayesian parametric odds ratio for a selected variable in case of
various sample sizes. The horizontal axis displays Bayesian parametric odds ratio, whereas the
vertical axis displays posterior probabilities.

independence between Xi and Y . This means that Xi and Y are dependent not only on
the parametric level, but also on the structural level. In other words, based on a state-
ment of parametric relevance we can form a statement for structural relevance.

Definition 6 (Effect size conditional existential relevance - ECER). Given an in-
terval of negligible effect size Cε with size ε ≥ 0, and a distribution of effect size
p(OR(Xi,Y |Θ) for variable Xi with respect to a selected Y , let I{ECERε(Xi,Y )} denote
that OR(Xi,Y |Θ) /∈Cε that is the effect size of variable Xi is relevant as it is outside the
Cε interval. In the Bayesian framework the posterior of effect size conditional existential
relevance ECERε(Xi,Y ) can be defined as p(I{ECERε(Xi,Y )}).

Note that the optimal selection of ε is problem specific, and depends on multiple
parameters such as sample size and effect strength. We evaluated the performance of
ECER on an artificial data set detailed in section 5. This measure also ensures compa-
rability with earlier structural posteriors, such as the MBM posterior p(MBM(Xi,Y )).

4 Contextual Relevance and Effect Modifiers

The hypothesis driven approach of traditional frequentist statistical methods has sev-
eral weaknesses, from which the multiple hypothesis testing problem is the most se-
vere. However when sufficient a priori knowledge is present that can be formed into
consistent hypotheses, then having such a focus can remarkably enhance data analysis
efforts. In biomedical domains a viable hypothesis can not be neglected as it may have
a considerable impact on the success of the data analysis. For example in case of gene-
environment interactions, the knowledge of relevant environmental factors, and more
precisely the relevant environmental state that is known to modify the effect of genetic
factors may allow the detection of otherwise negligible associations.
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On the other hand, the data driven approach, applied by most Bayesian and non-
Bayesian feature selection and analysis methods, lacks such a guideline. However, it is
non-replaceable in cases where no a priori knowledge is available or the focus is on the
exploration of dependency relationships. One might correctly argue that Bayesian meth-
ods allow the incorporation of prior knowledge (i.e. the use of priors) without defining
exact hypotheses. In other words, while being data driven it also allows a guideline. In
practice however, the definition of priors to achieve a desired focus on a context specific
phenomenon can be problematic.

Another possible approach is to use context sensitive association measures in such
scenarios where contextuality plays a definitive role. General association measures eval-
uate dependencies based on all data, therefore dependencies present only in a subset of
the data (i.e. a subpopulation) may be neglected if the size of the subset is relatively
small compared to the whole data.

The concept of having a context C = c in which a variable Xi is independent from
the target Y can be described formally by contextual irrelevance [2].

Definition 7 (Contextual Irrelevance). Assume that X ′ = Xi ∪C is relevant for Y , that
is (Y �⊥⊥ (Xi ∪C)), and Xi ∩C) = /0). We say that Xi is contextually irrelevant if there
exists some C = c for which (Y ⊥⊥ Xi|c).

Note that this definition is given from a conditional independence perspective. How-
ever, in genetic association studies we are typically interested in the complementary
case, that is whether there exists such a context C′ = c′ in which variable Xi is not
independent from target Y . More specifically, given r possible value configurations
c′1,c

′
2, . . . ,c

′
r of context C′ if there is at least one c′∗ in which Xi is not independent

from target Y then Xi can be considered as contextually relevant. The biomedical moti-
vation for such an approach is that even if Xi is not relevant with respect to Y given the
whole data D, if there is a subset D′ ⊂ D for which it is relevant then it can be further
investigated in a more focused study.

Related research preferences can be formalized in the Bayesian decision theoretic
framework.

4.1 Bayesian Decision Theoretic Approach for Research Preferences

The practical scenarios described in section 1 can be summarized as a clear need for
concepts and tools to explore and report weak dependencies, particularly effect modify-
ing contextual dependencies. Bayesian decision theory provides an appropriate frame-
work to formalize these intuitive expectations using informative losses. The main reason
to apply such a framework is that some aspects of background knowledge cannot be ex-
pressed (or are difficult to express) as priors because they belong to a different phase
of scientific discovery (e.g. reporting instead of exploratory analysis). For example the
effect size of an experimentally validated genetic factor cannot be directly translated
into a parameter prior, but it can be utilized as an overall expectation regarding relevant
effect sizes. Loss functions allow an alternate way beyond priors to incorporate such a
priori knowledge.
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In case of parameter estimation, L(θ̂|θ) denotes the loss function for selecting (e.g.
reporting) θ̂ instead of θ. Let D denote observations, and p(θ) the prior, then the optimal
estimate θ̂ minimizes the posterior expected loss

ρ(p(θ), θ̂|D) =

∫
L(θ̂|θ)p(θ|D)dθ. (6)

This framework allows a detailed, expert-driven analysis of weak relevances using
informative losses, which are demonstrated in the following four examples. For ease
of explanation, let us assume that the parameters θi correspond to some effect size
measure for predictors Xi, e.g. odds ratios for a binary outcome. In case of a well-
known threshold τ corresponding to a validated factor with a weak effect, a threshold
loss function can exactly quantify whether θi is less than this reference:

L(aτ|θi) =

{
0 if θi < τ
else 1.

where aτ denotes the action of reporting that the parameter is below the threshold τ.
If this reference Xr with parameter θr can be included in the analysis, and interactions
between this reference and other factors are neglected in a multivariate model, then a
comparative loss can also quantify that a candidate is weaker than the reference:

L(aXr≺Xi |θi,θr) =

{
0 if θi < θr

else 1.

The effect size conditional existential relevance can also be seen as an expected loss
for reporting independence (i.e. for an action that θ̂ = 1):

Lε(aθ̂=1|θi) =

{
0 if |θ̂−θi|< ε
else 1.

Note that this loss function can also be interpreted as an expected utility (confirma-
tion) for reporting dependence.

Furthermore, loss functions can be also used to represent the preference to highlight
special weak dependencies, e.g. contextual effect modifiers described in the second
data exploratory scenario in section 1. Losses for contextual effect modifiers on the
one hand should allow the specification of domain specific relevance from experts and
on the other hand it should be neutral for independence in certain stratas. Let as as-
sume that Y denotes the outcome, X denotes a predictor with strong main effect (i.e.
(Y �⊥⊥ X)), e.g. X is a well-known environmental variable , and Z denotes a contextual
effect modifier, e.g. a weak genetic factor. For simplicity, we also assume the existence
of a weak main effect for Z, i.e. (Y �⊥⊥ Z), but it is not necessary [7]. Furthermore, we
assume the contextual independence of Z, i.e. that there exist(s) some value(s) xi that
(Y ⊥⊥ Z|X = xi). In this case the loss of reporting dependence between Y and Z could
express the dominance of the losses in those strata with dependence. This scenario is
even more realistic, if X is an exogenous variable with a varying distribution under dif-
ferent circumstances or if its distribution depends from study design. In this case, for
example, a contextual loss function can be defined as follows:
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L(aτ|θZ) = min
i

L(aτ|θZ ,xi),

where L(aτ|θZ ,xi) denotes the threshold loss under the condition Xi = xi.
From a practical point of view, the presented informative loss functions can be used

to define the Cε interval of negligible effect size. This allows the ECER measure to
express experts’ knowledge in the form of τ thresholds that could not be applied directly
otherwise. In case there is no a priori knowledge, the selection of Cε is more challenging,
although in most cases there is at least an expected effect size related to the investigated
domain. A possible solution is to use the effect size of relevant variables identified by
auxiliary measures e.g. strong relevance.

Concerning the decision that a factor is existentially relevant based on its effect size
the selection of the Cε interval is the primary task. Defining the decision threshold (i.e.
the required proportion of posterior probability distribution outside the Cε interval) is
only secondary. The reason behind this is that selecting a Cε interval defines the relevant
effect sizes (i.e. those that are outside Cε). That is if related a priori knowledge is avail-
able then it can be directly applied in interval selection, thus rendering the selection of
a decision threshold (other than e.g. 0.9) an additional option.

Note, that it is possible to use multiple references Xr within the same analysis. For
example it is plausible to use two distinct Xr for protective and risk increasing factors.
In such cases a combination of loss functions can be applied (e.g. using various weights
or logic functions).

5 Results

We compared the discussed relevance measures on an artificial data set containing 115
variables and 5,000 samples. The data set was generated based on a model learned
from real-world data of a candidate gene association study of asthma [14]. Data sets
of various sizes (300, 500, 1000, 5000) were created by truncating the original data
set of 5,000 samples. Strong relevance posteriors MBM(Xi,Y ) were estimated with the
BN-BMLA method [2].

We investigated the performance of ECER with respect to the a priori known ref-
erence set of relevant variables. Standard performance measures of accuracy, sensitiv-
ity and specificity are shown in Table 1. The posterior of ECER was investigated for
three different intervals of negligible effect size Cε1 : (0.9−0.1), Cε2 : (0.66−1.5), and
Cε3 : (0.5− 2.0) in case of data sets of various sample sizes (300, 500, 1000, 5000). A
variable Xi is only considered ECER relevant if it is true that p(ECERε(Xi,Y ))> 0.95,
which means that the mass of its effect size distribution within Cε is negligible.

Results indicate a high specificity (> 0.9) of ECER in case of Cε2 and Cε3 for all
sample sizes, whereas the sensitivity is low for Cε2 and even lower for Cε3 . In contrast,
the sensitivity related to Cε1 is relatively higher for all sample sizes, though it comes at
the price of a relatively lower specificity.

The reason of low sensitivity scores is that in the reference set a large portion of rel-
evant variables are interaction terms, i.e. they do not have an individual effect, instead
they have a joint effect on the target together with additional variables. Although inter-
action terms are strongly relevant (by definition), they are theoretically not detectable
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Table 1. The performance of ECER for various sample sizes (Size) and for multiple negligible
effect size intervals (Cε). Cε1 , Cε2 , Cε3 denote negligible effect size intervals (0.9-0.1), (0.66-1.5),
and (0.5-2.0) respectively. For each case the sensitivity (SENS), specificity(SPEC) and accu-
racy(ACC) measures are displayed. Partial measures (SENS*, SPEC*, ACC*) are also displayed
in which interaction terms are not considered as relevant.

Size Cε SENS SPEC ACC SENS* SPEC* ACC*
300 Cε1 0.38 0.56 0.53 0.71 0.68 0.59

Cε2 0.31 0.91 0.83 0.71 0.92 0.90
Cε3 0.25 1 0.90 0.57 1 0.97

500 Cε1 0.56 0.51 0.51 0.86 0.52 0.54
Cε2 0.31 0.96 0.87 0.71 0.97 0.95
Cε3 0.25 1 0.90 0.57 1 0.97

1000 Cε1 0.44 0.65 0.62 0.86 0.67 0.68
Cε2 0.31 0.97 0.88 0.71 0.97 0.96
Cε3 0.25 0.99 0.89 0.57 0.99 0.97

5000 Cε1 0.50 0.92 0.86 0.86 0.91 0.90
Cε2 0.44 1 0.92 0.71 0.98 0.97
Cε3 0.31 1 0.90 0.57 0.99 0.97

by univariate measures, such as ECER. In contrast, MBM(Xi,Y ) is a univariate aggre-
gate of a multivariate relevance measure MBS(Y,G), and as such it correctly detects
interaction terms. Therefore, a set of partial measures are also shown in table 1, where
interaction terms are ignored.

The partial sensitivity measures show that ECER correctly detects the majority of rel-
evant variables in case of Cε1 and Cε2 . In case of Cε3 the sensitivity is still considerably
lower, which indicates that interval Cε3 : (0.5− 2.0) is possibly too large, and prohibits
the detection of relevant variables. However, due to the high specificity related to Cε3 ,
in terms of overall accuracy it remains a possible choice for some data sets. Based on
the results Cε2 : (0.66− 1.5) has the best trade-off between sensitivity and specificity.

We also compared the ECER posteriors with MBM posteriors to investigate the re-
lationship between Bayesian network based ’pure’ structural relevance and the effect
size based structural relevance. The former relies on structural properties, whereas the
latter is based on parametric relevance upon which a statement on structural relevance is
formed. Figures 4 and 5 provide an overview on these relevance measures for negligible
effect size intervals Cε2 : (0.66−1.5) and Cε3 : (0.5−2.0) in case of data sets with 500
and 5000 samples. Strongly relevant variables that are in a direct relationship with the
target and strongly relevant variables that are interaction terms are marked separately
on the figure. Non strongly relevant variables are either irrelevant or only transitively
relevant, i.e. their effect is mediated by other factors.

The case of 500 samples shows that several non strongly relevant variables, i.e. vari-
ables with low MBM posterior, have a reasonably high ECER posterior. This is par-
tially due to the transitively relevant elements, and because the insufficiency of the data
at this sample size to discriminate between relevant and non-relevant variables based
on their effect size. The insufficiency of the data is confirmed by the fact, that for some
strongly relevant variables (based on reference) even the MBM posterior is low, as these
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Fig. 4. The relation of MBM posteriors p(MBM(Xi,Y )) and ECER posteriors p(ECER(Xi,ε)) in
case of 500 samples. Results are displayed for two different intervals of negligible effect size,
Cε : 0.66 − 1.5 and Cε : 0.5− 2.0. The horizontal axis displays MBM posteriors, whereas the
vertical axis displays ECER posteriors. Variables were divided into three groups according to their
strong relevance with respect to Y . ’Non-SR’ denotes variables that are non strongly relevant, that
is they are either irrelevant or only transitively relevant. ’SR - Direct’ denotes strongly relevant
variables that have a direct relationship with the target Y , and ’SR - Interaction’ denotes variables
that are strongly relevant as interaction terms.

variables are only detectable as relevant at a higher sample size. The majority of the
strongly relevant variables that are in direct relationship with the target are correctly
identified by both measures (upper right corner), as both p(MBM(Xi,Y )) and
p(ECERε(Xi,Y )) posteriors are high. Interaction terms typically have a low or mod-
erate individual effect size, and consequently a low ECER posterior, whereas they have
a relatively high MBM posterior (lower right corner). The effect of the larger interval
of Cε3 is that fewer non strongly relevant variables have high ECER posteriors.

In case of 5000 samples the separation between strongly relevant and non strongly
relevant variables based on their MBM and ECER posteriors can be clearly seen on
Figure 5. The majority of non strongly relevant variables correctly have low ECER
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Fig. 5. The relation of MBM posteriors p(MBM(Xi,Y )) and ECER posteriors p(ECER(Xi,ε)) in
case of 5000 samples. Results are displayed for two different intervals of negligible effect size,
Cε : 0.66 − 1.5 and Cε : 0.5− 2.0. The horizontal axis displays MBM posteriors, whereas the
vertical axis displays ECER posteriors.

posteriors, although some strongly relevant variables that have a moderate effect size
also have low ECER posteriors especially in case of Cε3 : (0.5− 2.0).

6 Conclusions

There are several machine learning approaches for the incorporation of prior knowledge
and for the fusion of heterogeneous data and knowledge, but to our knowledge there
is no previous study which investigated the problem of research preferences that are
relevant for evaluating and reporting the results. We outlined two paradigmatic biomed-
ical scenarios illustrating such post-analysis, evaluation and communication oriented
research preferences, we introduced related concepts, and investigated a correspond-
ing Bayesian decision theoretic framework. Furthermore, we introduced the effect size
conditional existential relevance measure, which allows the formal incorporation of ex-
perts’ preferences for the evaluation of results.
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This work extends the repertoire of Bayesian relevance analysis towards the decision
theoretic formalization of the evaluation and scientific communication of the results of
data analysis. The formalization of experts’ preferences could clarify this last, currently
rather informal, subjective phase of scientific research. It could also lead to the de-
velopment of objective approaches, which could support both the repeatability of the
results and the automated extraction and combination of the published results, which
are critical issues in biomarker discovery and translational research.
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Abstract. Cox’s Proportional Hazards (CPH) model is quite likely the
most popular modeling technique in survival analysis. While the CPH
model is able to represent relationships between a collection of risks and
their common effect, Bayesian networks have become an attractive alter-
native with far broader applications. Our paper focuses on a Bayesian
network interpretation of the CPH model. We provide a method of en-
coding knowledge from existing CPH models in the process of knowledge
engineering for Bayesian networks. We compare the accuracy of the re-
sulting Bayesian network to the CPH model, Kaplan-Meier estimate, and
Bayesian network learned from data using the EM algorithm. Bayesian
networks constructed from CPH model lead to much higher accuracy
than other approaches, especially when the number of data records is
very small.

Keywords: Bayesian network, Cox’s proportional hazard model, sur-
vival analysis.

1 Introduction

Survival analysis is a set of statistical methods that aim at modeling the rela-
tionship between a set of predictor variables and an outcome variable and, in
particular, prediction of the time when an event occurs [1]. In medical sciences,
survival analysis is primarily used to predict events such as death, relapse, or
development of a new disease. Several methods have been used in survival anal-
ysis. The simplest of these is the Kaplan-Meier (K-M) estimator [2]. The plot of
the K-M estimator depicts the probability of survival at a given point in time
for a group of subjects with particular characteristics.

An alternative and most popular method used in survival analysis is called
the Cox’s Proportional Hazards (CPH) model [3]. The CPH model is similar
to a multiple linear regression technique that explores the relationship between
a hazard and related independent explanatory variables over a period of time.
It describes the impact of a risk factor or the effect of a treatment on patients
through a parameter called hazard ratio [4]. The hazard ratio of two groups, e.g.,

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 238–253, 2014.
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treatment and control group in a clinical trial, represents the relative likelihood
of survival at any time in the study. Usually, the hazard ratio is assumed to be
constant over time.

The CPH model has been widely used for predicting patient survival rate. For
example, the Seattle Heart Failure Model [5] uses the CPH model to predict 1-,
2-, and 3-year survival of heart failure patients. The Registry to Evaluate Early
and Long-Term Pulmonary Arterial Hypertension (PAH) Disease Management
(REVEAL) [6] also uses the CPH model to derive the Risk Score Calculator to
determine probability of a PAH patient survival within an enrolled year.

While the CPH model has been popular in survival analysis, several re-
searchers tried to find alternative models with comparable predictive ability.
Compared to the CPH model and various other Artificial Intelligence and ma-
chine learning techniques, a Bayesian network can model explicitly the struc-
ture of the relationships among explanatory variables with their probability [7].
Researchers can intuitively design and build a Bayesian network from expert
knowledge or available data. The networks can depict a complex structure of a
problem and provide a way to infer probability distributions which are suitable
for prognosis and diagnosis, particularly in medical decision support systems [8].
However, building Bayesian networks by obtaining their numerical parameters
can be a time-consuming and costly task. We are motivated to build Bayesian
networks for survival analysis by utilizing existing classical survival models. Our
paper focuses on a Bayesian network interpretation of the CPH model. The ap-
plication of our work is using the CPH models as data sources in the process of
parameter estimation for Bayesian networks.

The remainder of our paper is structured as follows. First, we provide nec-
essary background knowledge on survival analysis, the CPH model, the K-M
estimators, and Bayesian networks. We follow this up by a Bayesian network in-
terpretation of the CPH model along with an example. Finally, we report the re-
sult of a study comparing our Bayesian network interpretation of the CPH model
to the original CPH models, K-M estimates, and Bayesian networks learned
from data.

2 Background Knowledge

Survival analysis basically focuses on modeling time-to-event occurrences. For
example, we may focus on time-to-death of patients with a specific disease, failure
time of machines, or time to rearrest of prisoners who have been released. Sur-
vival analysis can be conducted to estimate time-to-event for a group, compare
time-to-event between several groups, or just to study the relationship between
variables and the predicted events.

The probability of an individual surviving beyond a given time t, i.e., the
survivor function, is defined as

S (t) = Pr (T > t) . (1)
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T is a variable denoting the time of occurrence of an event of interest. The
survival probability at the beginning, i.e., t0, may be equal to 1 or to some base-
line survival probability, which will drop down to zero over time. While survivor
function represents the probability of survival, the hazard function represents
the risk of event occurrence at time t. The hazard function is given by

λ (t) = lim
t→0

Pr (t ≤ T < t+%t | T ≥ t)

%t
, (2)

where T is also a time variable. The hazard is a measure of risk at a small time
interval %t which can be considered as a rate [1]. The hazard function can be
an exponential distribution, where the rate is constant over time, or by Weibull
distribution, where the rate can be increasing or decreasing over time.

The relationship between the hazard function and the survivor function (see
more details in Allison’s textbook [1]) is described as

λ (t) = − d

dt
logS(t) (3)

or as

S (t) = exp

∫ t

0

λ (u)du . (4)

Hence, we can estimate the survival probability from the hazard function.
There are several techniques used to model the hazard function or the survivor
function, e.g., parametric regression techniques, non-parametric estimates, or
semi-parametric models. In this paper, we focus only on the semi-parametric
model, which is the CPH model, described in the next section.

2.1 Cox’s Proportional Hazard Model

The Cox proportional hazard model [3] is a set of regression methods used in the
assessment of survival based on its risk factors or explanatory variables. The risk
factors can be time-independent (e.g., race or sex) or time-dependent, which can
change throughout the study (e.g., blood pressure at different points of study
time). In this paper, we focus only on the CPH model with time-independent
risk factors. This model allows researchers to evaluate and control factors that
affects the time to event [9].

As defined originally by Cox [3], the hazard regression model is expressed as,

λ (t) = λ0 (t) exp
β′·X . (5)

This hazard model is composed of two main parts: the baseline hazard func-
tion, λ0 (t), and the set of effect parameters, β′ ·X = β1X1+β2X2+ ...+βnXn .
The baseline hazard function determines the risks at an underlying level of ex-
planatory variables, i.e., when all explanatory variables are absent. According to
Cox [3], this λ0 (t) can be unspecified or follow any distribution, which makes the
CPH model a semi-parametric model. The βs are the coefficients corresponding
to the risk factors, X.
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CPH models can handle both continuous and discrete variables [1]. The CPH
model treats these risk factors as numerical variables, so that the model can
estimate the parameter coefficients, β. Researchers can treat risk factors as they
are defined in the data set or do some data preprocessing. For example, in case
of categorical variables with n categories, researchers need to create a set of
dummy binary variables capturing n− 1 categories, e.g., we can code a variable
color having values as red, green, blue, as two binary variables (e.g., color-red
and color-green). Some continuous variables, e.g., number of days in a hospital,
can also be discretized. Once all risk factors have been established, β parameters
are estimated by means of the Maximum Partial Likelihood technique.

The application of the CPH model relies on the assumption that the hazard
ratio of two observations, e.g., treatment and control group in a clinical trial,
is constant over time [3]. Given the hazard at time t1 and the hazard at time
t2, the hazard at these two points in time are λ (t1) and λ (t2) respectively. The
ratio of two hazards is a constant, defined as γ:

γ =
λ (t2)

λ (t1)
=

exp (β′X2)

exp (β′X1)
. (6)

This hazard ratio is an estimate of the relative risk of the two groups. For
example, given the hazard ratio of 2, the treatment group may have twice the
risk of death from the treatment relative to the control group. Hence, the CPH
model estimates relative rather than absolute risks.

If the explanatory variables are propositional, their value at time ti could be
expressed as presence (X = 1) or as absence (X = 0) of the risk factor. We assess
the hazard ratio at time t1 and t2. The risk of the event at t2 when the factor
Xi is present can be compared to the risk of the event at t1 where the factor Xi

is absent [10]. Since the hazard ratio γ is assumed to be constant, we can use it
to estimate the survival probability [11]. The relationship is expressed as

S (t) = S0 (t)
γ
, (7)

where S0 (t) is the baseline survival probability. Hence, in case of dichotomous
variables, we can assess the survival probability given a set of hazards from
presence or absence of each individual hazard variable.

Example 1. A classical example application of the CPH model is an experimen-
tal study of recidivism of prisoners [12]. The data set has been made available
to researchers and was used as an illustration in survival analysis examples by
Allison using SAS [1] and Fox using R [13]. The data in the Recidivism data
set describe 432 male prisoners who were under one year observation after be-
ing released from prison. The event of interest in this analysis is re-arrest, i.e.,
whether the prisoner is re-arrested during the period of study or not.

For the purpose of simplicity, we selected only four variables (or risk factors)
from the 10 variables in the original Recidivism data set.

– fin : Financial aid status when arrested (No-FinancialAid = 0, Has-
FinancialAid = 1)
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– race : Prisoner’s race (Other = 0, Black = 1).

– wexp : Status of having prior full-time working experience (No-Exp = 0,
Has-Exp = 1).

– prio : Number of prior convictions, i.e., 0, 1, 2, 3, etc. We discretized this
variable into two classes ( Five-and-Below = 0, Above-Five = 1).

The time variable in this data set is week, which is the week when a pris-
oner was rearrested during the observation period of one year after having been
released from prison. Its domain is 1 to 52 weeks. The event of interest (the sur-
vival variable) is arrest indicating the rearrest status of a prisoner (Rearrested
= 1, Never Rearreasted = 0).

We used R as our tool to create the CPH model based on the Recidivism data
set. We used the package survival, which provides a set of functions to create
CPH models and other survival analysis methods. We used the coxph method to
model the survival variable arrest with race and wexp variables based on each
week. Table 1 shows the parameters of the constructed CPH model.

Table 1. Selected variables in the Recidivism data set example

Variables β exp(β) lower .95 upper .95

fin -0.3899 0.6771 0.4664 0.9829
race 0.2591 1.2958 0.7110 2.3617
wexp -0.5249 0.5916 0.4038 0.8667
prio 0.3330 1.3951 0.8462 2.3001

The β of each variable represents the coefficient in the model while the exp(β)
is the multiplicative effect of the hazard [13]. The lower and upper bounds of
the 95% confidence interval are in the third and fourth columns respectively. We
show the survival curve along with the curves for the 95% confidence interval
estimated from the generated CPH model in Figure 1.

The baseline survival probability in Figure 1 is estimated from the beginning
of the observation period until the end of the 52nd week. The baseline survival
probability, S0(t), is the probability measured when all risk factors are absent
(fin = 0, race = 0, wexp = 0, andprio = 0) at time t. When other cases than
the baseline are analyzed, we can estimate the survival probability based on
this baseline and respective hazard ratios. For example, all things being equal,
the hazard ratio of black prisoners (race = 1) compared to other races (race
= 0) is 1.29. Therefore, the hazard (rearrest) at every time will be 1.29 times
of its baseline. The survival probability of black prisoner group relative to the
other-race prisoner group at any time t can be calculated from

S (t) = S0(t)
(1.29) . (8)
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Fig. 1. The non-rearrest (survival) probability estimation based on the CPH model.
The thick black line shows the baseline survival probability when all risk factors are
absent, while the two grey lines show the upper and lower 95% confidence interval.

The baseline survival probability at the first week, S0(1), is 0.9973. If we want
to assess the survival probability of the black prisoner group in the first week,
we get S (t1) = 0.9973(1.29) = 0.9965. We can obtain survival probabilities for
each week relative to the baseline by repeating the same steps. �

The CPH model provides a way of calculating the survival probabilities con-
ditional on every combination of risk present. Although, in practice, not every
combination of risk factors is present in the data set, the CPH model is still able
to derive the entire probability distribution and provide reasonable predicted
survival probabilities. This survival probability resulting from the calculation
equals simply to the conditional probability distribution of survival given these
risk factors. The survival probability reported in the CPH model can thus be
mapped directly to the conditional probability in Bayesian networks.

2.2 Kaplan-Meier Estimator

The Kaplan-Meier (K-M) estimator [2] is an alternative method of modeling the
survival curve. It amounts simply to calculating the survival probability for each
time interval t based on the event occurrences at that time. From the data, the
survival probabilities are estimated as follows,

S (t) =
∏
ti≤t

(1− di
ni

) , (9)

where ni is the number of subjects at risk at the beginning of the time interval
ti and di is the number of subjects who have not survived during the time
interval ti.
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Example 2. We implemented the K-M model from the same Recidivism data
set [12]. We discretized the data in the same way as in Example 1. Similarly, we
used the R-survival package to create the K-M model. The result of the model
is a set of 16 survival curves estimated from the data, each for one combination
of risk factors, e.g., fin = 0, race = 1, wexp = 1, prio =0 shown in Figure 2. �

Fig. 2. The survival curve along with its 95% confidence interval from the K-M model
produced by R shows the survival probability of a group of prisoners when fin =
0, race = 1, wexp = 1, prio = 0.

Unlike the CPH model, the K-M is learned directly from a data set. When
there are enough data records to learn from, the K-M estimates provide good
predicted survival probabilities. However, there could be few data records for
each combination of risk factors. When there are not enough data records to
learn from, the K-M estimates provide poor quality of survival prediction. In
those cases, the CPH model is preferable.

3 Bayesian Networks

Bayesian networks [14] are probabilistic graphical models capable of modeling
the joint probability distribution over a finite set of random variables. The model
is static, i.e., it shows a snapshot of the system at a given time. The structure
of a Bayesian network is an acyclic directed graph in which nodes are variables
and directed arcs denote dependencies among them. A conditional probability
table (CPT) of a variable X contains probability distributions over the states of
X conditional on all combinations of states of X’s parents. The joint probability
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distribution over all variables of the network can be calculated by taking the
product of all prior and conditional probability distributions:

Pr(X) = Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi|Pa(Xi)) . (10)

The structure of a Bayesian network and all numerical probabilities can be
obtained from experts or learned from data. Although Bayesian networks may
take significant effort to construct, they are widely used in many areas, such as
medical and engineering diagnosis or prognosis.

Bayesian network has become an alternative approach for survival analysis. It
is well-structured, intuitive, and while also being theoretically sound [8]. Also, it
has the ability to capture expert knowledge, handle model complexity, and offers
more flexibility in model interpretation [7]. Bayesian networks are used in the
prognostic models, e.g., prediction of metastasis in breast cancer [15], prognosis
of patients with a carcinoid tumor [16] etc.

4 Bayesian Network Interpretation of the Cox
Proportional Hazard Model

In this section, we provide an interpretation of the CPH model in the Bayesian
network framework. We assume the CPH model’s assumptions are not violated
when making the estimation. The risk factors or random variables Xi are bi-
nary variables and time-independent. The Recidivism data set meets the CPH
assumptions, thus we use the data set in our interpretation.

We first create the structure of a Bayesian network. From a given CPH model,
we convert each of the risk factors and the survival variable into a random
variable in a Bayesian network (in our example, fin, race, wexp, prio, and arrest).
We make random variables representing risk factors parents of the survival node,
arrest.

Fig. 3. A Bayesian network representing the interaction among variables in the Re-
cidivism example

Note that, unlike the CPH model, Bayesian networks capture a snapshot
in time of a system. We need, thus, to represent time explicitly; we achieve
this by adding an indexing variable (in our example, week). For the purpose of
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simplicity, we reduce the number of states for the variable week from 52 to 13,
which amounts to analyzing the system at 4-week steps. Other random variables
(risk factors) have the same states as in the CPH model. We show the resulting
structure of the Bayesian network in Figure 3.

In the next step, we create the conditional probability table for the survival
node (arrest). Recall that we can obtain the survival probabilities from Equa-
tion 7. For each time snapshot captured in the variable week, we assess a set of
survival probabilities, S(t) from the CPH model. A set of survival probabilities
here means that we configure the hazard ratio γ according to the combination
of the parent states. γ is equal to the ratio of hazard of the conditioning case Xi

to the baseline case Xb, i.e., case in which all risk variables are absent, i.e.,

γ =
exp(β′Xi)

exp(β′Xb)
= −0.3899fin+ 0.2591race− 0.5249wexp+ 0.3330prio . (11)

Equation 11 allows us to assess the survival probabilities directly from the
parameters of the CPH model. First, we configure all risk factor cases in Equa-
tion 11 to find all hazard ratio values. Then, we obtain the baseline survival
probability at the 1st week from the CPH model (S0(t = 1) = 0.9973) and use
Equation 7 to find the survival probability. The survival probability calculated
for each combination of risk factors corresponds to the conditional probability
of survival. We show examples of conditional probabilities of survival for all
combinations of states of the risk variables in Table 2.

In summary, we construct the CPT by deriving the survival probabilities using
hazard ratios for each time step. Xi, the set of risk factors in the CPH model, are

Table 2. Conditional probabilities of survival for all cases at each snapshot of time.
γ is calculated from Equation 11 and S(1), S(2), S(3), ..., S(13) are calculated from
Equation 7. s is the survival variable arrest.

Pr(s | Xi) γ S(1) S(2) S(3) S(4) ... S(12) S(13)

Pr(s | f = 0, r = 0, w = 0, p = 0) 0.0000 0.997 0.987 0.962 0.946 ... 0.729 0.692
Pr(s | f = 0, r = 0, w = 0, p = 1) 0.3330 0.996 0.981 0.948 0.926 ... 0.644 0.598
Pr(s | f = 0, r = 0, w = 1, p = 0) -0.5249 0.998 0.992 0.977 0.968 ... 0.829 0.804
Pr(s | f = 0, r = 0, w = 1, p = 1) -0.1919 0.998 0.989 0.969 0.955 ... 0.771 0.738
Pr(s | f = 0, r = 1, w = 0, p = 0) 0.2591 0.997 0.983 0.951 0.931 ... 0.664 0.621
Pr(s | f = 0, r = 1, w = 0, p = 1) 0.5921 0.995 0.976 0.933 0.904 ... 0.565 0.514
Pr(s | f = 0, r = 1, w = 1, p = 0) -0.2658 0.998 0.989 0.971 0.958 ... 0.785 0.754
Pr(s | f = 0, r = 1, w = 1, p = 1) 0.0672 0.997 0.986 0.959 0.942 ... 0.714 0.675
Pr(s | f = 1, r = 0, w = 0, p = 0) -0.3899 0.998 0.991 0.974 0.963 ... 0.808 0.779
Pr(s | f = 1, r = 0, w = 0, p = 1) -0.0569 0.997 0.987 0.964 0.949 ... 0.742 0.706
Pr(s | f = 1, r = 0, w = 1, p = 0) -0.9148 0.999 0.996 0.985 0.978 ... 0.881 0.863
Pr(s | f = 1, r = 0, w = 1, p = 1) -0.5818 0.999 0.992 0.979 0.969 ... 0.838 0.814
Pr(s | f = 1, r = 1, w = 0, p = 0) -0.1308 0.998 0.988 0.967 0.952 ... 0.758 0.724
Pr(s | f = 1, r = 1, w = 0, p = 1) 0.2022 0.997 0.984 0.954 0.934 ... 0.679 0.637
Pr(s | f = 1, r = 1, w = 1, p = 0) -0.6557 0.997 0.993 0.980 0.972 ... 0.849 0.826
Pr(s | f = 1, r = 1, w = 1, p = 1) -0.3227 0.998 0.990 0.972 0.961 ... 0.796 0.766
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random variables in the Bayesian network. S0(t) is the baseline survival proba-
bility estimated from CPH at time t, while β is a set of regression coefficients
corresponding to each risk factor. T is the time of interest or the time variable
in the Bayesian network. The conditional probability to be encoded in the CPT
can be estimated by

Pr(s | Xi, T = t) = S0 (t)
e(β

′Xi)
. (12)

5 Empirical Evaluation

Although, the Recidivism data is admittedly small, it is quite likely the most
widely used example data for survival analysis, especially for the CPH model. It
is not atypical for survival data to be satisfied by the CPH assumptions. Hence,
we use the Recidivism data set to compare the precision of our Bayesian-Cox
network (BNCox), the CPH model, the K-M model, and the Bayesian network
learning directly from data (BNLearn). We used the R programming environ-
ment with the survival library [13] to implement the CPH model and the K-M
model. For BNCox, we obtained all survival probabilities from the CPH model
and used GeNIe 1 to implement its structure. We built the BNLearn model in
GeNIe using the same structure as in the BNCox model. The BNLearn model
learned the numerical parameters from data using the EM algorithm. We created
all models with 4 risk factors: fin, race, wexp, and prio. These four risk factors
are binary variables resulting in 24 = 16 combinations of risk factors. In addition
to the simplified, four-risk-factor model, we also created a complete Recidivism
model with all eight risk factors (see Rossi’s work [12]), seven of which are bi-
nary and one is categorical. We will provide the results of each evaluation in the
following two sections.

5.1 Recidivism Prediction with Four Risk Factors

As mentioned previously, the Recidivism model with four risk factors produces
16 combinations of risk factors. We plotted the distribution of the number of
records corresponding to these 16 cases in Figure 4. We compared the prediction
of models for all 16 cases. However, in this paper, due to space limitations, we
selected only four cases as samples, including one with the highest number of
records (102 records), one medium-to-high number of records (61 records), one
medium-to-small number of records (9 records), and one small number of records
(2 records). We marked the selected cases as dark grey in Figure 4.

Figure 5 shows the survival probabilities predicted by all four models: the
CPH model, the BNCox model, the K-M model, and the BNLearn model. We
observe an almost perfect match between the CPH model and the BNCox model
in all 16 cases. Both K-M model and BNLearn are close, although departing from
the CPH model significantly as the number of records gets smaller. We provide

1 http://genie.sis.pitt.edu/

http://genie.sis.pitt.edu/
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Fig. 4. Distribution of the number of records in the Recidivism data set with four risk
factors for each of the 16 combination of risk factors (sorted in descending order). We
selected four of the combination of risk factors (marked as dark grey) as examples for
our comparison.

four examples of combinations of risk factors in Figure 5. The dark grey square-
dotted line represents the CPH model prediction while the black diamond point
represents the 13-snapshot survival probability produced by the BNCox model.

Both BNCox and BNLearn model produced 13 survival probabilities for each
case while the K-M model produced more data according to the event occur-
rence in the Recidivism data set. Figure 5 shows the predicted survival curve
for all four models: black-diamond/BNCox, hollow-triangle/BNLearn, dark grey
square-dotted line/CPH model, and light grey round-dotted line/K-M model.
We found that when we have enough data to learn, e.g., more than a hundred
records, there is a remarkable agreement among all four models. However, when
we lack data, we found that the predicted curve produced by the K-M estimate
and the Bayesian network learned from data (BNLearn) are in some agreement
with one another, while the BNCox model and the CPH model, which agree
perfectly, are smoothing the curve.

5.2 Recidivism Prediction with All Risk Factors

The total number of combinations of states of all risk factors in the full version
of Recidivism models is 512. We constructed all four models for this case as well.
We found that the distribution of the cases in terms of the number of records is
extremely skewed. As shown in Figure 6, the case best represented in the data
has only 32 records, while more than 70 percent of cases (392 cases of the total
of 512 cases) have zero records. We selected four cases, with 32, 27, 5, and 0
records respectively, for the purpose of the comparison.

Similarly to the simplified model presented in the previous section, we com-
pared the predicted survival probability of the CPH model, the BNCox model,
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Fig. 5. The predicted survival curves generated by each model: CPH model (Cox),
K-M model (K-M), BNCox model (BN-Cox) and BNLearn (BN-Learn) for four cases
with different number of records.

Fig. 6. Distribution of the number of records in the Recidivism data set for each
combination of the risk factors (sorted in descending order). There are 392 cases with
zero records in the data set.The marked bar indicates the selected combination of risk
factors for further comparison.
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the BNLearn model, and the K-M model. The results were similar to those of
the simplified model. The survival probability predicted by the BNCox model is
identical to that of the CPH model. The BNLearn and the K-M model produce
similar trends, but the BNLearn has an overall lower predicted survival proba-
bility. We can see larger differences in the predicted probability when there are
few data records to learn from. The K-M model and BNLearn produce different
results only when the number of data records is small. In this case, the CPH
model and the BNCox model are typically in-between them.

Fig. 7. Examples of predicted survival curves generated by each model: CPH model
(Cox), K-M model (K-M), BNCox model (BN-Cox), and BNLearn (BN-Learn) for a
complete Recidivism model with different numbers of records.

6 Discussion

Since the BNCox model is derived from the CPH model, all predicted probabil-
ities given the state of risk factors at a given time of two models are the same.
However, in our experiment, the BNCox model captured part of the CPH model,
not the whole model. The complexity and predictive capability of the BNCox
model are a tradeoff.

The CPH model, the Bayesian network learning from data, and the K-M
estimates have a similar predictive ability when there are enough data to learn.
In those cases, the K-M estimate and the Bayesian network learning from data
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are in agreement. The predicted curves from both models depart from the CPH
survival curve when there are few data records. In practice, data can include
many combinations of risk factors with very small number of records per case.
In this case, the additional assumption of the CPH model are able to smoothen
out the survival curve.

When there are few data records available, Bayesian network predictive qual-
ity tends to drop [17]. In those cases, the CPH model serves better in terms of
smoothing out the distribution. The CPH model behaves similar to Bayesian
networks with ICI gates, which smoothen out the distribution when there are
not enough records to learn. Hence, the Bayesian network interpreted from the
CPH model may more useful in practice.

We could consider using other special types of Bayesian networks as possi-
ble extensions of our BNCox model. One aspect could be using the Continuous
Time Bayesian networks(CTBNs) [18] to handle survival time as continuous
variable. Also, the CTBNs could be used for handling the CPH model with
time-dependent risk factors, which have not been included in the current BN-
Cox model. Another interesting model is to Bayesian networks with generalized
Noisy-OR [19]. This could be an alternative model to capture survival probability
from the CPH model.

7 Conclusion

Bayesian networks are a viable alternative to the CPH model and the K-M model
for survival analysis. However, the process of building Bayesian networks can take
a significant effort. The focus of this paper was a Bayesian network interpretation
of the CPH model. The main application of our work is in knowledge engineering
for Bayesian networks. The CPH model can be used as a data source in the
process of parameter estimation for Bayesian networks.

We mapped survival probabilities from the CPH model to the conditional
probability distributions for each combination of risk factors and built survival
probabilities in the Bayesian network. The resulting Bayesian network produces
survival probabilities which are almost identical to those of the CPH model.

We evaluated the proposed Bayesian-Cox model by comparing its predictive
precision to the CPHmodel, the Bayesian network learning from data, and the K-
M estimate on the same data set (Recidivism data from Rossi). We found that the
Bayesian network interpreted from the CPH model produces exactly the same
probabilities as the CPH model. All modeling methods make similar predictions
when there are sufficient number of data records to learn from. However, when
the number of records is very low, Bayesian network and the K-M estimate
are unable to learn reliable models and produce inferior model, while the CPH
model and the Bayesian network interpreted from the CPH model remain close
to each other and presumably more accurate. In summary, we found that the
interpreted Bayesian-Cox model assembles the advantages of Bayesian network
and the CPH model: an intuitive structure and more reliable predictive quality.
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Abstract. The recent Hierarchical Predictive Coding theory is a very
influential theory in neuroscience that postulates that the brain continu-
ously makes (Bayesian) predictions about sensory inputs using a gener-
ative model. The Bayesian inferences (making predictions about sensory
states, estimating errors between prediction and observation, and low-
ering the prediction error by revising hypotheses) are assumed to allow
for efficient approximate inferences in the brain. We investigate this as-
sumption by making the conceptual ideas of how the brain may minimize
prediction error computationally precise and by studying the computa-
tional complexity of these computational problems. We show that each
problem is intractable in general and discuss the parameterized complex-
ity of the problems.

1 Introduction

The assumption that the brain in essence is a Bayesian inferential machine,
integrating prior knowledge with sensory information such as to infer the most
probable explanation for the phenomena we observe, is quite wide spread in neu-
roscience [19]. Recently, this ‘Bayesian brain’ hypothesis has merged with the
hypothesis that the brain is a prediction machine that continuously makes pre-
dictions about future sensory inputs, based on a generative model of the causes
of these inputs [17] and with the free energy principle as a driving force of pre-
diction error minimization [13]; the resulting theory has been called Hierarchical
Predictive Coding or Predictive Processing [7]. It is assumed to explain and unify
all cortical processes, spanning all of cognition [6]. Apart from being one of the
most influential current unifying theories of the modus operandi of the brain, it
has inspired researchers in domains such as developmental neurorobotics [23],
human-robot interaction [25], and conscious presence in virtual reality [26].

At the very heart of Hierarchical Predictive Coding (hereafter HPC) are the
Bayesian predictions, error estimations, and hypothesis revisions that are as-
sumed to allow for efficient approximate Bayesian inferences in the brain [7]. As
Bayesian inferences are intractable in general, even to approximate [1,9], this
invites the question to what extent the HPC mechanism indeed renders these
inferences tractable [3,22]. In essence, minimizing prediction errors boils down
to minimizing the relative entropy or Kullback-Leibler divergence between the

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 254–270, 2014.
© Springer International Publishing Switzerland 2014
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predicted and observed distributions [14]. Lowering the relative entropy between
prediction and observation can be done in many ways: we can revise the hypoth-
esized causes that generated the prediction; alternatively, we may adjust the
probabilistic dependences that modulate how predictions are generated from
hypotheses, or we might want to seek and include additional observations into
the model in order to adjust the posterior distribution over the predictions. In
contrast, we might also bring prediction and observation closer to each other by
intervention in the world, thus hopefully manipulating the observation to better
match what we predicted or expected. This is referred to as active inference in
the HPC literature [15].

The contribution of this paper is to make these informal notions explicit and to
study the computational complexity of minimizing relative entropy using these
notions. We show that each conceptualization of prediction error minimization
yields an intractable (i.e., NP-hard) computational problem. However, we can
clearly identify where the border between tractable and intractable lies by giving
fixed-parameter tractability results for all discussed problems. The remainder of
this paper is structured as follows. In Section 2 we formally define HPC in the
context of discrete Bayesian networks. We recall some needed preliminaries from
computational complexity and discuss related work. In Section 3 we discuss the
complexity of computing entropy and relative entropy in Bayesian networks. In
Sections 4 and 5 we discuss belief revision andmodel revision, respectively, and in
Section 6 we investigate the complexity of deciding which observation to make
in order to decrease prediction error. In Section 7 we turn to the complexity
of active inference, i.e., deciding which possible action to perform to decrease
prediction error. We switch to the parameterized complexity of these problems
in Section 8. In Section 9 we conclude this paper and sketch possible future work.

2 Preliminaries

A Bayesian network B = (GB,PrB) is a graphical structure that models a set of
stochastic variables, the conditional independences among these variables, and a
joint probability distribution over these variables. B includes a directed acyclic
graph GB = (V,A), modeling the variables and conditional independences in
the network, and a set of conditional probability tables (CPTs) PrB capturing
the stochastic dependences between the variables. The network models a joint
probability distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables, where

π(Vi) denotes the parents of Vi in GB. By convention, we use upper case letters
to denote individual nodes in the network, upper case bold letters to denote
sets of nodes, lower case letters to denote value assignments to nodes, and lower
case bold letters to denote joint value assignments to sets of nodes. We use the
notation Ω(Vi) to denote the set of values that Vi can take. Likewise, Ω(V)
denotes the set of joint value assignments to V.

HPC can be understood as a cascading hierarchy of increasingly abstract hy-
potheses about the world, where the predictions on one level of the hierarchy are
identified with the hypotheses at the subordinate level. At any particular level,
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Fig. 1. An example level L of the HPC hierarchy, with hypothesis variables Hyp =
{H1, H2}, prediction variables Pred = {P1, P2, P3}, and intermediate variables Int =
{I1, . . . , I6}.

making a prediction based on the current hypothesis in any of the assumed levels
corresponds to computing a posterior probability distribution Pr(PrPred | PrHyp)
over the space of candidate predictions, given the current estimated probability
distribution over the space of hypotheses, modulated by contextual dependences.
We can thus describe each level L of the HPC hierarchy as a Bayesian network
BL, where the variables are partitioned into a set of hypothesis variables Hyp, a
set of prediction variables Pred, and a set of intermediate variables Int, describ-
ing contextual dependences and (possibly complicated) structural dependences
between hypotheses and predictions. We assume that all variables in Hyp are
source variables, all variables in Pred are sink variables, and that the Pred vari-
ables in BL are identified with the Hyp variables in BL+1 for all levels of the
hierarchy save the lowest one (See Figure 1). As HPC is claimed to be a unifying
mechanism describing all cortical processes [6], we do not impose additional a
priori constraints on the structure of the network describing the stochastic re-
lationships [16]. Motivated by the assumption that global prediction errors are
minimized by local minimization [18], we will focus on the computations in a
single level of the network.

Computing the prediction error at any level of the hierarchy corresponds to
computing the relative entropy or Kullback-Leibler divergence

DKL(Pr(Pred)‖Pr(Obs)) =
∑

p∈Ω(Pred)

PrPred(p) log

(
PrPred(p)

PrObs(p)

)
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between the probability distributions over the prediction Pred and the (possibly
inferred) observation Obs1. In the remainder of this paper, to improve readabil-
ity we abbreviate DKL(Pr(Pred)‖Pr(Obs)) to simply DKL when the divergence is
computed between Pr(Pred) and Pr(Obs); we sometimes include brackets DKL[ψ]

to refer to the divergence under some particular value assignment, parameter
setting, or observation ψ.

The computed prediction error is used to bring prediction and observation
closer to each other; either by belief revision, model revision, or by passive or
active intervention. In belief revision, we lower prediction error by revising the
probability distribution over the space of hypotheses PrHyp; by model revision by
revising some parameters in PrB; by passive intervention by observing the values
of some of the intermediate variables; by active intervention by setting the values
of some of the intermediate variables. These notions will be developed further
in the remainder of the paper when we discuss the computational complexity of
these mechanisms of lowering prediction error.

2.1 Computational Complexity

In the remainder, we assume that the reader is familiar with basic concepts of
computational complexity theory, in particular Turing Machines, the complex-
ity classes P and NP, and NP-completeness proofs. In addition to these basic
concepts, to describe the complexity of various problems we will use the proba-
bilistic class PP, oracle machines, and some basic principles from parameterized
complexity theory. The interested reader is referred to [10] for more background
on complexity issues in Bayesian networks, and to [12] for an introduction in
parameterized complexity theory.

The class PP contains languages L that are accepted in polynomial time by
a Probabilistic Turing Machine. This is a Turing Machine that augments the
more traditional non-deterministic Turing Machine with a probability distribu-
tion associated with each state transition. Acceptance of an input x is defined
as follows: the probability of arriving in an accept state is strictly larger than
1/2 if and only if x ∈ L. This probability of acceptance, however, is not fixed
and may (exponentially) depend on the input, e.g., a problem in PP may ac-
cept ‘yes’-instances with size |x| with probability 1/2+1/2|x|. This means that the
probability of acceptance cannot in general be amplified by repeating the compu-
tation a polynomial number of times and making a decision based on a majority
count, ruling out efficient randomized algorithms. Therefore, PP-complete prob-
lems are considered to be intractable. The canonical PP-complete problem is
Majsat: given a Boolean formula φ, does the majority of the truth assignments
satisfy φ? In Bayesian networks, the canonical problem of determining whether
Pr(h | e) > q for a given rational q and joint variable assignments h and e
(known as the Inference problem) is PP-complete.

1 Conform the definition of the Kullback-Leibler divergence, we will interpret the term
0 log 0 as 0 when appearing in this formula, as limx→0 x log x = 0. The KL divergence
is undefined if for any p, PrObs(p) = 0 while PrPred(p) = 0.
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A Turing Machine M has oracle access to languages in the class C, denoted as
MC, if it can decide membership queries in C (“consult the oracle”) in a single
state transition. For example, NPPP is defined as the class of languages which
are decidable in polynomial time on a non-deterministic Turing Machine with
access to an oracle deciding problems in PP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameters of the problem can be assumed to be small. Infor-
mally, a problem is called fixed-parameter tractable for a parameter k (or a set
{k1, . . . , kn} of parameters) if it can be solved in time, exponential only in k and
polynomial in the input size |x|, i.e., in time O(f(k) · |x|c) for a constant c and
an arbitrary function f . In practice, this means that problem instances can be
solved efficiently, even when the problem is NP-hard in general, if k is known to
be small.

Finally, a word on the representation of numerical values. In the complexity
proofs we assume that all parameter probabilities are rational numbers (rather
than reals), and we assume that logarithmic functions are approximated when
needed with sufficient precision, yet polynomial in the length of the problem
instance. All logarithms in this paper have base 2.

2.2 Previous Work

The computational complexity of various problems in Bayesian networks is well
studied. Interestingly, such problems tend to be complete for complexity classes
with few other “real-life” complete problems. For example, deciding upon the
MAP distribution is NPPP-complete [24], as well as deciding whether the param-
eters in a network can be tuned to satisfy particular constraints [21]. Deciding
whether a network is monotone is co− NPPP-complete [27], and computing the
same-decision probability of a network has a PPPP-complete decision variant
[11]. Some results are known on the complexity of entropy computations: In [8]
it was established #P-hardness of computing the (total) entropy of a Bayesian
network; computing the relative entropy between two arbitrary probability dis-
tributions is PP-hard [20]. In [2] it was proved that no approximation algorithm
can compute a bounded approximation on the entropy of arbitrary distributions
using a polynomial amount of samples.

While concerns with respect to the computational complexity of inferences in
(unconstrained) HPC models have been raised in [3] and [22], and acknowledged
in [6], this paper is (to the best of our knowledge) the first to explicitly address
the complexity of minimizing relative entropy in the context of HPC.

3 The Complexity of Computing Relative Entropy in
HPC

The first computational problem we will discuss is the computation of the en-
tropy of a prediction, and the relative entropy between a prediction and an
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observation. While complexity results are known for the computation of the en-
tropy of an entire network [8], respectively the relative entropy between two
arbitrary distributions [20], we will here show that decision variants of both
problems remain PP-complete even for singleton and binary hypothesis, predic-
tion, and observation variables. The proof construct we introduce in this proof
will be reused, with slight modifications, in subsequent proofs.

We start with defining a decision variant of Entropy.

Entropy

Instance: A Bayesian network B with designated variable subsets Pred and
Hyp; rational number q.
Question: Is the entropy E(Pred) = −

∑
p∈Ω(Pred)

Pr(p) log Pr(p) < q?

We will reduce Entropy from Minsat, defined as follows:

Minsat

Instance: A Boolean formula φ with n variables.
Question: Does the minority of truth assignments to φ satisfy φ?

Note that Minsat is the complement problem of the PP-completeMajsat prob-
lem; as PP is closed under complement, Minsat is PP-complete by a trivial re-
duction. In order to change as little as possible to the construct in subsequent
proofs, we will sometimes reduce from Minsat and sometimes from Majsat.

We will illustrate the reduction form Minsat to Entropy using the exam-
ple Boolean formula φex = ¬x1 ∧ (x2 ∨ ¬x3); note that this is a ‘yes’-instance
to Minsat as three out of eight truth assignments satisfy φex. We construct a
Bayesian network Bφ from φ as follows. For every variable xi in φ, we construct
a binary variable Xi in Bφ, with values t and f and uniform probability distri-
bution. The set of all variables X1, . . . , Xn is denoted with X. For each logical
operator in φ, we create an additional variable in the network Bφ. The parents
of this variable are the variables that correspond with the sub-formulas joined
by the operator; its conditional probability table mimics the truth table of the
operator. The variable associated with the top-level operator of φ will be denoted
by Vφ. In addition, we include a binary hypothesis variable H , with uniformly
distributed values t and f , and a binary prediction variable P , with values t and
f . The parents of this variable are Vφ and H , and the conditional probability
table of this variable mimics an and-operator, i.e., Pr(P = t | Vφ, H) = 1 if and
only if both Vφ and H are set to t. In Figure 2 we illustrate how Bφex is thus
constructed from φex. We set Pred = P , Hyp = H , and q = 1/2 − 3/4 log 3/4.

Theorem 1. Entropy is PP-complete, even for singleton binary variables Pred
and Hyp.

Proof. Membership proof in PP follows from a trivial modification of the proof
that computing the Kullback-Leibler divergence between two distributions is in
PP, such as presented in [20].

To prove PP-hardness, we will reduce Minsat to Entropy. Let φ be an
instance of Minsat and let Bφ be the Bayesian network constructed from φ as
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X1 X2 X3

H

¬
¬

P

X

∨

Vφ∧

Fig. 2. The Bayesian network Bφex that is constructed from the Minsat example φex.
Note that we here have a single hypothesis node H (a source node) and a single
prediction node P (a sink node).

described above. Observe that in Bφ, the posterior probability Pr(Vφ = t | X =
x) = 1 if and only if the truth assignment corresponding with the joint value
assignment x satisfies φ, and 0 otherwise. In particular, if exactly half of the
truth assignments satisfy φ, then Pr(Vφ = t) = 1/2 and consequently Pr(P =
t) = 1/4. The entropy then equals E(P ) = −(Pr(P = t) log Pr(P = t) + Pr(P =
f) log Pr(P = f)) = −(1/4 log 1/4 + 3/4 log 3/4) = 1/2 − 3/4 log 3/4. The entropy
ranges from E(P ) = 0 in case φ is not satisfiable (and hence Pr(P = t) =
0) and E(P ) = 1 in case φ is a tautology (and hence Pr(P = t) = 1/2). In
particular, if and only if the minority of truth assignments to φ satisfies φ, then
E(P ) < 1/2− 3/4 log 3/4 = q. Note that the reduction can be done in polynomial
time, given our assumptions on the tractable approximation of the logarithms
involved; hence, Entropy is PP-complete. ��

Computing the relative entropy between a prediction and an observation is de-
fined as a decision problem as follows.

RelativeEntropy

Instance: A Bayesian network B with designated variable subset Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
Pr(Obs) over Pred; a rational number q.
Question: Is the relative entropy DKL < q?

To prove PP-completeness, we use the same construction as above, but now we
set q = 3/4 log 3/2 − 1/4. In addition, we set Pr(Obs) to Pr(P = t) = 1/2.

Theorem 2. RelativeEntropy is PP-complete, even for singleton binary
variables Pred and Hyp.
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Proof. Membership in PP of the more general problem of computing the
Kullback-Leibler divergence between two arbitrary probability distributions was
established in [20]. To prove PP-hardness, we reduce Majsat to RelativeEn-

tropy. Let φ be an instance of Majsat and let Bφ be the Bayesian
network constructed from φ as described above. Observe that in Bφ DKL de-
creases when Pr(Vφ = t) increases; in particular, when Pr(Vφ = t) = p (and

hence Pr(P = t) = p/2), DKL = p/2 log(
p/2
1/2 ) +

(2 − p)/2 log(
(2 − p)/2

1/2 ). Note that

Pr(Vφ = t) = 1/2 if exactly half of the truth assignments to φ satisfy φ. Hence,
if and only if a majority of truth assignments to φ satisfies φ, then DKL <
1/4 log(

1/4
1/2 ) +

3/4 log(
3/4
1/2 ) =

3/4 log 3/2 − 1/4 = q. As the reduction can be done in

polynomial time, this proves that RelativeEntropy is PP-complete. ��

In subsequent sections we will discuss the complexity of lowering the relative
entropy DKL by means of belief revision, model revision, or by passive or active
intervention.

4 Revision of Beliefs

In this section we discuss belief revision, i.e., changing the probability distribu-
tion over the hypothesis variables, as a means to reduce relative entropy. We
formulate two decision problems that capture this concept; the first one focuses
on lowering the relative entropy to some threshold, the second one on lowering
the relative entropy by some amount.

BeliefRevision1

Instance: A Bayesian network B with designated variable subsets Hyp and Pred,
where Pr(Hyp) denotes the prior distribution over Hyp, and Pr(Pred) denotes the
posterior distribution over Pred; an observed distribution Pr(Obs) over Pred; a
rational number q.
Question: Is there a (revised) prior probability distribution Pr(Hyp)′ over Hyp
such that DKL[Hyp′] < q?

BeliefRevision2

Instance: As in BeliefRevision1.
Question: Is there a (revised) prior probability distribution Pr(Hyp)′ over Hyp
such that DKL[Hyp] −DKL[Hyp′] > q?

We prove that both problems are PP-hard via a reduction from Majsat, again
using the construct that we used in the proof of Theorem 1, but we redefine
the conditional probability distribution Pr(P | Vφ, H) and we redefine Pr(Hyp),
Pr(Obs), and q. Let Pr(P | Vφ, H) be defined as follows:

Pr(P = t | Vφ, H) =

⎧⎪⎪⎨⎪⎪⎩
3/8 if Vφ = t,H = t
0 if Vφ = t,H = f
1/8 if Vφ = f,H = t
0 if Vφ = f,H = f
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We set Pr(Hyp) to Pr(H = t) = 0 and Pr(Obs) to Pr(P = t) = 15/16. For Be-

liefRevision1, we redefine q = q1 = 1/4 log(
1/4

15/16 )+
3/4 log(

3/4
1/16 ). For BeliefRe-

vision2, we redefine q = q2 = 4− 1/4 log(
1/4

15/16 )− 3/4 log(
3/4
1/16 ). We now claim the

following.

Theorem 3. BeliefRevision1 and BeliefRevision2 are PP-hard, even for
singleton binary variables Pred and Hyp.

Proof. To prove PP-hardness, we reduce BeliefRevision from Majsat. Let φ
be an instance of Majsat and let Bφ be the Bayesian network constructed from
φ as described above. Observe that in Bφ DKL[Hyp] is independent of Pr(Vφ) as
Pr(P = t | Vφ, H) = 0 (as Pr(H = t) = 0) and thus DKL[Hyp] = 0+log( 1

1/16 ) = 4.

We now investigate the effect of revising the hypothesis distribution Pr(Hyp) to
Pr(Hyp)′ . For every probability distribution Pr(Vφ), DKL increases when Pr(H =
t) goes to 0, and decreases when Pr(H = t) goes to 1. That is, DKL[Hyp′] is min-
imal for Pr(Hyp)′ = Pr(H = t) = 1. In general, for Pr(H = t) = 1 and Pr(Vφ) =

p, Pr(P = t | Vφ, H) = (2p + 1)/8 and DKL[Hyp′] = (2p + 1)/8 log(
(2p + 1)/8

15/16 ) +

(7 − 2p)/8 log(
(7 − 2p)/8

1/16 ). For Pr(Vφ) = 1/2 and Pr(Hyp)′ = Pr(H = t) = 1, Pr(P =

t | Vφ, H) = 1/4 and DKL[Hyp′] = 1/4 log(
1/4

15/16 ) +
3/4 log(

3/4
1/16 ). We have in that

case that DKL[Hyp] −DKL[Hyp′] = 4− 1/4 log(
1/4

15/16 )− 3/4 log(
3/4
1/16 ).

In particular if and only if Pr(Vφ) > 1/2 there exists a revised hypothesis
distribution Pr(Hyp)′ (i.e., Pr(H = t) = 1) such that DKL[Hyp′] < q1 and that
DKL[Hyp] −DKL[Hyp′] > q2. Now, Pr(Vφ) > 1/2 if and only if there is a majority
of truth assignments to φ that satisfies φ. Given that the reduction can be
done in polynomial time, this proves PP-hardness of both BeliefRevision1

and BeliefRevision2. ��

Note that these problems are not known or believed to be in PP, as we need
to determine a revised probability distribution Pr(Hyp)′ as well as computing
the relative entropy. In case Hyp is a singleton binary variable (as in our con-
strained proofs), the probability Pr(Pred) depends linearly on this distribution
[4], but the complexity of this dependency grows when the distribution spans
multiple variables. This makes a polynomial sub-computation of Pr(Hyp)′ , and
thus membership in PP, unlikely. However, we can non-deterministically guess
the value of Pr(Hyp)′ and then decide the problem using an oracle for Rela-

tiveEntropy; for this reason, the problems are certainly in the complexity
class NPPP.

5 Revision of Models

In the previous section we defined belief revision as the revision of the prior
distribution over Hyp. We can also revise the stochastic dependences in the
model, i.e., how Pred depends on Hyp (and Int). However, a naive formulation
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of model revision will give us a trivial algorithm for solving it, yet unwanted side
effects.

NaiveModelRevision

Instance: A Bayesian network B with designated variable subsets Hyp and
Pred, where Pr(Pred) denotes the posterior distribution over Pred; an observed
distribution Pr(Obs) over Pred; a rational number q.
Question: Is there a probability distribution Prnew over the variables in B such
that DKL[new] < q?

Note that this problem can be solved rather trivially by reconfiguring the
CPTs such that Pr(Pred) = Pr(Obs) and thus DKL[new] = 0. This has of course
consequences for previous experiences—we are likely to induce unexplained past
prediction errors. However, we cannot assume that we have access to (all) previ-
ous predictions and observations, making it close to impossible to minimize joint
prediction error over all previous predictions and observations. As we do want to
constrain the revisions in some way or another, we propose to revise the current
model by allowing modification only of a designated subset of parameters in the
model. So, we reformulate model revision to decide whether we can decrease
DKL by a change in a subset p of parameter probabilities in the network.2 As
in belief revision, we define two variants of the decision problem.

ModelRevision1

Instance: A Bayesian network B with designated variables Hyp and Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
Pr(Obs) over Pred; a subset P of the parameter probabilities represented by PrB;
a rational number q.
Question: Is there a combination of values p to P such that DKL[p] < q?

ModelRevision2

Instance: As in ModelRevision1.
Question: Is there a combination of values p to P such that DKL −DKL[p] > q?

We will show that these problems are NPPP-complete, that is, as least as hard
as Partial MAP [24] and Parameter Tuning [21]. To prove NPPP-hardness,
we reduce from the following NPPP-complete problem:

E-Majsat

Instance: A Boolean formula φ with n variables, partitioned into sets XE =
x1, . . . , xk and XM = xk+1, . . . , xn for 1 ≤ k ≤ n.
Question: Is there a truth assignment xE to XE such that the majority of truth
assignments to XM together with xE satisfy φ?

2 One of the anonymous made the interesting observation that changing the network
structure (i.e., removing or adding arcs) can also be seen as model revision. We do
not address that aspect here.
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Fig. 3. The Bayesian network Bφex that is constructed from the E-Majsat example
φex

We will use the following E-Majsat instance (φex,XE,XM) as a running exam-
ple in the construction: φex = (¬(x1∨x2))∧(¬(x3∨¬x4)),XE = {x1, x2},XM =
{x3, x4}; note that this is a ‘yes’-instance to E-Majsat: for x1 = x2 = f , three
out of four truth assignments to XM satisfy φex.

We construct Bφex from φex in a similar way as in the proof of Theorem 3,
but we add another binary variable X0 as an additional parent of P , with prior
probability distribution Pr(X0 = t) = 0 (Figure 3). We define Pr(P | Vφ, H,X0)
as follows:

Pr(P = t | Vφ, H,X0) =

⎧⎨⎩
3/8 if Vφ= t,H=X0= t
1/8 if Vφ=f,H=X0= t
0 otherwise

We redefine Pr(Hyp) to Pr(H = t) = 1/2 and Pr(Obs) to Pr(P = t) = 31/32.
In addition, we designate the sets of variables XE and XM in the network,

and we set P = XE ∪ {X0}. We set q = q1 = 1/8 log(
1/8

31/32 ) +
7/8 log(

7/8
1/32 ) and

q = q2 = 5− 1/8 log(
1/8

31/32 )− 7/8 log(
7/8
1/32 ).

We now claim the following.

Theorem 4. ModelRevision1 and ModelRevision2 are NPPP-complete,
even for singleton binary variables Pred and Hyp.

Proof. Membership follows from the following algorithm: non-deterministically
guess a combination of values p and compute the (change in) relative entropy.
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This can be done in polynomial time using a non-deterministic Turing Machine
with access to an oracle for problems in PP.

To prove NPPP-hardness, we reduce ModelRevision from E-Majsat. Let
(φ,XE,XM) be an instance of Majsat and let Bφ be the Bayesian network
constructed from φ as described above. Observe that in Bφ, given the prior
probability distribution of X0, we have that Pr(P = t | Vφ, H,X0) = 0 indepen-
dent of the probability distribution of Vφ, and thus DKL = 0 + log(1/32) = 5. If
we revise the prior probability distribution of X0, we observe that DKL decreases
when Pr(X0 = t) goes to 1; DKL[Pr(X0=t)] is minimal for Pr(X0 = t) = 1. In that
case, for Pr(Vφ) = p, Pr(P = t | Vφ, H,X0) = (2p + 1)/16 and DKL[Pr(X0=t)=1] =
(2p + 1)/16 log(

(2p + 1)/16
31/32 ) + (15 − 2p)/16 log(

(15 − 2p)/16
1/32 ).

For Pr(Vφ) = 1/2, Pr(P = t | Vφ, H,X0) = 1/8 and DKL[Pr(X0=t)=1] =
1/8 log(

1/8
31/32 ) +

7/8 log(
7/8
1/32 ). We have in that case that DKL −DKL[Pr(X0=t)=1] =

5− 1/8 log(
1/8

31/32 )− 7/8 log(
7/8
1/32 ).

If there exists a truth assignment xE to XE such that the majority of truth
assignments to XM satisfies φ, then there exists a combination of values p to
P = XE ∪ {X0} such that Pr(Vφ) > 1/2 and thus DKL[Pr(X0=t)=1] < q1 and
DKL −DKL[Pr(X0=t)=1] > q2; namely, the combination of values to XE that sets
Pr(Xi = t) to 1 if Xi ∈ XE is set to t, and Pr(Xi = t) to 0 if Xi ∈ XE is set
to f , together with setting Pr(X0 = t) to 1. Vice versa, if we can revise P such
that DKL[Pr(X0=t)=1] < q1 and that DKL − DKL[Pr(X0=t)=1] > q2, then there
exists a truth assignment xE to XE such that the majority of truth assignments
to XM satisfies φ, namely, the truth assignment that sets Xi ∈ XE to t if
Pr(Xi = t) ≥ 1/2 and to f otherwise.

Given that the reduction can be done in polynomial time, this proves NPPP-
completeness of both ModelRevision1 and ModelRevision2. ��

6 Adding Additional Observations to the Model

Apart from revising the probability distribution of the hypotheses and from re-
vising the parameters in the model, we can also lower relative entropy by some
action that influences either the outside world or our perception of it. By observ-
ing previously unobserved variables in the model (i.e., changing our perception of
the world), the posterior probability of the prediction can be influenced; similarly,
we can intervene in the outside world, thus influencing the posterior probability
over the observation. In both cases, we will need to decide on which observations
to gather, respectively which variables to intervene on. Again we assume that the
set of allowed observations, respectively interventions, is designated. We will first
focus on the question which candidate observations to make. As in the previous
two problems, we formulate two decision problems that capture this question.

AddObservation1

Instance: A Bayesian network B with designated variables Hyp and Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
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Pr(Obs) over Pred; and rational number q. Let O ⊆ Int denote the set of observ-
able variables in B.
Question: Is there a joint value assignment o to O such that DKL[o] < q?

AddObservation2

Instance: As in AddObservation1.
Question: Is there a joint value assignment o toO such thatDKL −DKL[o] > q?

While these problems are conceptually different from the ModelRevision prob-
lems, from a complexity point of view they are very similar: the effect of setting
a prior probability of a variable Xi in the proof construct to 1, and observing
its value to be t, are identical; the same holds for setting it to 0, respectively
observing its value to be f . This allows us to prove NPPP-completeness of Ad-

dObservation using essentially the same construct as in the proof of Theorem
4; however, we must take care that the prior probability distribution of X0 is
such that no inconsistencies in the network emerge as a result of observing its
value to t. In particular, if Pr(X0 = t) = 0, then we cannot observe X0 to be t
without creating an inconsistency in the network.

So, we redefine Pr(X0 = t) = 1/2; now, Pr(P = t | Vφ, H,X0) (and thus also
DKL) becomes dependent of the probability distribution of Vφ. In particular, for
Pr(Vφ) = p we have that Pr(P = t | Vφ, H,X0) = (2p + 1)/32 and consequently,

DKL = (2p + 1)/32 log(
(2p + 1)/32

31/32 ) + (31 − 2p)/32 log(
(31 − 2p)/32

1/32 ). We therefore rede-

fine q2 = 1/16 log(
1/16
31/32 ) +

15/16 log(
15/16
1/32 ) − q1 = 1/16 log(

1/16
31/32 ) +

15/16 log(
15/16
1/32 ) −

1/8 log(
1/8

31/32 )− 7/8 log(
7/8
1/32 ). We set O = XE ∪ {X0}.

Theorem 5. AddObservation1 and AddObservation2 are NPPP-complete.

Proof. Membership follows from a similar argument as for ModelRevision. To
prove NPPP-hardness, we again reduce from E-Majsat. Let (φ,XE,XM) be an
instance of E-Majsat and let Bφ be the Bayesian network constructed from φ
as described above. The probability distribution Pr(P = t | Vφ, H,X0) depends
as follows on the observed value of X0: Pr(P = t | Vφ, H,X0 = t) = (2p + 1)/16
and Pr(P = t | Vφ, H,X0 = f) = 0. In particular, if Pr(Vφ) > 1/2, then Pr(P =

t | Vφ, H,X0 = t) > 1/8 and hence DKL[X0=t] < 1/8 log(
1/8

31/32 ) +
7/8 log(

7/8
1/32 ).

Similarly, Pr(P = t | Vφ, H,X0 = f) = 0 and hence DKL[X0=f ] = 5. So, only
if X0 is observed to be t and Pr(Vφ) > 1/2 we have that DKL[X0=t] < q1 and
DKL −DKL[X0=t] > q2.

If there exists a truth assignment xE to XE such that the majority of truth
assignments to XM satisfies φ, then there exists a joint value assignment to O =
XE∪{X0} such that Pr(Vφ) > 1/2 and DKL[o] < q1 and that DKL −DKL[o] > q2.
Namely, the joint value assignment that sets X0 to t and sets the variables in XE

according to xE. And vice versa, if there exists a joint value assignment o to O
such that DKL[o] < q1 and DKL −DKL[o] > q2, then there is a truth assignment
to XE such that the majority of truth assignments to XM satisfy φ, namely, the
truth assignment that sets Xi ∈ XE to t if Xi ∈ o is observed as t, and to f
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otherwise. As this reduction can be done in polynomial time, this proves that
AddObservation1 and AddObservation2 are NPPP-complete. ��

7 Intervention in the Model

We can bring prediction and observation closer to each other by changing our
prediction (by influencing the posterior distribution of the prediction by revi-
sion of beliefs, parameters, or observing variables), but also by what in the HPC
framework is called active inference: actively changing the causes of the observa-
tion to let the observation (“the real world”) match the prediction (“the model of
the world”). This is a fundamental aspect of the theory, which is used to explain
how a desire of moving one’s arm—i.e., the expectation or prediction that one’s
arm will be in a different position two seconds from now—can yield actual motor
acts that establish the desired movement. We implement this as intervention in
the Bayesian framework, and the problem that needs to be resolved is to decide
how to intervene.

The predicted result of an action of course follows from the generative model,
which represents how (hypothesized) causes generate (predicted) effects, for ex-
ample, how motor commands sent to the arm will change the perception of the
arm. So, from a computational point of view, the decision variants of the In-

tervention problem are identical to the decision variants of the Observation

problem:

Intervention1

Instance: A Bayesian network B with designated variables Hyp and Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
Pr(Obs) over Pred; and rational number q. Let A ⊆ Int denote the set of inter-
venable variables in B.
Question: Is there a joint value assignment a to A such that DKL[a] < q?

Intervention2

Instance: As in Intervention1.
Question: Is there a joint value assignment a toA such thatDKL −DKL[a] > q?

Corollary 1. Intervention1 and Intervention2 are NPPP-complete.

8 Parameterized Complexity

What situational constraints can render the computations tractable? From the
intractability proofs above we can already infer what does not make prediction
error minimization tractable. Even for binary variables, singleton hypothesis and
prediction nodes, and at most three incoming arcs per variable, all problems re-
main intractable. It is easy to show that ModelRevision, AddObservation,
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and Intervention remain PP-hard when there is just a single designated pa-
rameter, observable or intervenable variable. The complexity of these problems
is basically in the context that modulates the relation between hypothesis and
prediction.

AddObservation and Intervention are fixed-parameter tractable for the
parameter set {treewidth of the network, cardinality of the variables, size of
Pred} plus the size of O, respectively A. In that case, the computation of DKL

is tractable, and we can search joint value assignments to O, respectively A
exhaustively. Similarly, when the computation of DKL is tractable, one can use
parameter tuning algorithms to decide ModelRevision and BeliefRevision;
these problems are fixed-parameter tractable for the parameter set {treewidth
of the network, cardinality of the variables, size of Pred} plus the size of P,
respectively Hyp [5].

9 Conclusion

Hierarchical Predictive Coding (HPC) is an influential unifying theory in the-
oretical neuroscience, proposing that the brain continuously makes Bayesian
predictions about future states and uses the prediction error between prediction
and observation to update the hypotheses that drove the predictions. In this
paper we studied HPC from a computational perspective, formalizing the con-
ceptual ideas behind hypothesis updating, model revision, and active inference,
and studying the computational complexity of these problems. Despite rather
explicit claims on the contrary (e.g., [7, p.191]), we show that the Bayesian
computations that underlie the error minimization mechanisms in HPC are not
computationally tractable in general, even when hypotheses and predictions are
constrained to binary singleton variables. Even in this situation, rich contextual
modulation of the dependences between hypothesis and prediction may render
successful updating intractable. Further constraints on the structure of the de-
pendences (such as small treewidth and limited choice in which parameters to
observe or observations to make) are required.

In this paper, we focused on computations within a particular level of the
hierarchy and on error minimization. There is more to say about the compu-
tations that are postulated within HPC, for example how increasingly rich and
complex knowledge structures are learned from prediction errors. We leave that
for further research.
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Abstract. The problem of finding the most probable explanation to
a designated set of variables (the MAP problem) is a notoriously in-
tractable problem in Bayesian networks, both to compute exactly and
to approximate. It is known, both from theoretical considerations and
from practical experiences, that low treewidth is typically an essential
prerequisite to efficient exact computations in Bayesian networks. In this
paper we investigate whether the same holds for approximating MAP.
We define four notions of approximating MAP (by value, structure, rank,
and expectation) and argue that all of them are intractable in general.
We prove that efficient value-, structure-, and rank-approximations of
MAP instances with high treewidth will violate the Exponential Time
Hypothesis. In contrast, we hint that expectation-approximation can be
done efficiently, even in MAP instances with high treewidth, if the most
probable explanation has a high probability.

1 Introduction

One of the most important computational problems in Bayesian networks is
the MAP problem, i.e., the problem of finding the joint value assignment to a
designated set of variables (the MAP variables) with the maximum posterior
probability. The MAP problem is notably intractable; as it is NPPP-hard, it is
strictly harder (given usual assumptions in computational complexity theory)
than the PP-hard inference problem [17]. In a sense, it can be seen as combining
an optimization problem with an inference problem, both of which potentially
contribute to the problem’s complexity [17, p. 113]. Even when all variables
in the network are binary and the network has the (very restricted) polytree
topology, MAP remains NP-hard [5]. Only when both the optimization and the
inference part of the problem can be computed tractably (for example, if both
the treewidth of the network and the cardinality of the variables are small and
the most probable joint value assignment has a high probability) MAP can be
computed tractably [11]. It is known that, for arbitrary probability distributions
and under the assumption of the Exponential Time Hypothesis, a small treewidth
of the moralized graph of a Bayesian network is a necessary condition for the
inference problem to be tractable [13]; this result can easily be extended to MAP.
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MAP is also intractable to approximate [1,11,12,17]. While it is obviously the
case that a particular instance to the MAP problem can be approximated effi-
ciently when it can be efficiently computed exactly, it is as yet unclear whether
approximate MAP computations can be rendered tractable under different con-
ditions than exact MAP computations. Crucial here is the question what we
mean with a statement as ‘algorithm A approximates the MAP problem’. Typi-
cally, in computer science, approximation algorithms guarantee that the output
of the algorithm has a value that is within some bound of the value of the optimal
solution. For example, the canonical approximation algorithm to the Vertex

Cover problem selects an edge at random, puts both endpoints in the vertex
cover, and removes these nodes from the instance. This algorithm is guaranteed
to get a solution that has at most twice the number of nodes in the vertex cover
as the optimal vertex set. However, typical Bayesian approximation algorithms
have no such guarantee; in contrast, they may converge to the optimal value
given enough time (such as the Metropolis-Hastings algorithm), or they may
find an optimal solution with a high probability of success (such as repeated
local search strategies).

In this paper we assess different notions of approximation as relevant for
the MAP problem; in particular value-approximation, structure-approximation,
rank-approximation, and expectation-approximation of MAP. After introducing
notation and providing some preliminaries (Section 2), we show that each of these
approximations is intractable under the assumption that P �= NP, respectively
NP �⊆ BPP (Section 3). Building on the result in [13] we show in Section 4 that
bounded treewidth is indeed a necessary condition for efficient value-, structure-,
and rank-approximation of MAP; however, we show that MAP can sometimes
be efficiently expectation-approximated, even on networks where the moralized
graph has a high treewidth, if the most probable joint value assignment to the
MAP variables has a high probability. We conclude the paper in Section 5.

2 Preliminaries

In this section, we introduce our notational conventions and provide some pre-
liminaries on Bayesian networks, graph theory, and complexity theory; in par-
ticular definitions of the MAP problem, treewidth, parameterized complexity
theory, and the Exponential Time Hypothesis. For a more thorough discussion
of these concepts, the reader is referred to textbooks such as [4], [3], and [6].

2.1 Bayesian Networks

A Bayesian network B = (GB,Pr) is a graphical structure that models a joint
probability distribution over a set of stochastic variables. B includes a directed
acyclic graph GB = (V,A), where V models the variables and A models the
conditional (in)dependences between them, and a set of parameter probabilities
Pr in the form of conditional probability tables (CPTs), capturing the strengths
of the relationships between the variables. The network models a joint probability
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distribution Pr(V) =
∏n

i=1 Pr(Vi | π(Vi)) over its variables; here, π(Vi) denotes
the parents of Vi in GB. We will use upper case letters to denote individual nodes
in the network, upper case bold letters to denote sets of nodes, lower case letters
to denote value assignments to nodes, and lower case bold letters to denote joint
value assignments to sets of nodes.

One of the key computational problems in Bayesian networks is the problem to
find the most probable explanation for a set of observations, i.e., the joint value
assignment to a designated set of variables (the explanation set) that has highest
posterior probability given the observed variables (the joint value assignment to
the evidence set) in the network. If the network is bi-partitioned into explanation
variables and evidence variables this problem is known as Most Probable Ex-

planation (MPE). The more general problem, where the network also includes
variables that are neither observed nor to be explained is known as (Partial or
Marginal) MAP. This problem is typically defined formally as follows:

MAP

Instance: A Bayesian network B = (GB,Pr), where V is partitioned into a set
of evidence nodes E with a joint value assignment e, a set of intermediate
nodes I, and an explanation set H.
Output: A joint value assignment h to H such that for all joint value
assignments h′ to H, Pr(h | e) ≥ Pr(h′ | e).

In the remainder, we use the following definitions. For an arbitrary MAP
instance {B,H,E, e}, let cansolB denote a function returning candidate solutions
to {B,H,E, e}, with optsolB denoting a function returning the optimal solution
(or, in case of a draw, one of the optimal solutions) to the MAP instance.

2.2 Treewidth

An important structural property of a Bayesian network B is its treewidth, which
can be defined as the minimum width over all tree-decompositions of triangula-
tions of the moralization GM

B of the network. Treewidth plays an important role
in the complexity analysis of Bayesian networks, as many otherwise intractable
computational problems can be rendered tractable, provided that the treewidth
of the network is small. The moralization (or ‘moralized graph’) GM

B is the undi-
rected graph that is obtained from GB by adding arcs so as to connect all pairs
of parents of a variable, and then dropping all directions. A triangulation of GM

B
is any chordal graph GT that embeds GM

B as a subgraph. A chordal graph is a
graph that does not include loops of more than three variables without any pair
being adjacent.

A tree-decomposition [18] of a triangulation GT now is a tree TG such that
each node Xi in TG is a bag of nodes which constitute a clique in GT; and for
every i, j, k, if Xj lies on the path from Xi to Xk in TG, then Xi∩Xk ⊆ Xj. The
width of the tree-decomposition TG of the graph GT is defined as the size of the
largest bag in TG minus 1, i.e., maxi(|Xi| − 1). The treewidth tw of a Bayesian
network B now is the minimum width over all possible tree-decompositions of
triangulations of GM

B .
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2.3 Complexity Theory

We assume that the reader is familiar with basic notions from complexity theory,
such as intractability proofs, the computational complexity classes P, NP, and
polynomial-time reductions. In this section we shortly review some additional
concepts that we use throughout the paper, namely the complexity classes PP
and BPP, the Exponential Time Hypothesis and some basic principles from
parameterized complexity theory.

The complexity classes PP and BPP are defined as classes of decision problems
that are decidable by a probabilistic Turing machine (i.e., a Turing machine that
makes stochastic state transitions) in polynomial time with a particular (two-
sided) probability of error. The difference between these two classes is in the
bound on the error probability. Yes-instances for problems in PP are accepted
with probability 1/2 + ε, where ε may depend exponentially on the input size
(i.e., ε = 1/cn). Yes-instances for problems in BPP are accepted with a probabil-
ity that is polynomially bounded away from 1/2, i.e., (i.e., ε = 1/nc). PP-complete
problems, such as the problem of determining whether the majority of truth as-
signments to a Boolean formula φ satisfies φ, are considered to be intractable;
indeed, it can be shown that NP ⊆ PP. In contrast, problems in BPP are consid-
ered to be tractable. Informally, a decision problem Π is in BPP if there exists
an efficient randomized (Monte Carlo) algorithm that decides Π with high prob-
ability of correctness; given that the error is polynomially bounded away from
1/2, the probability of answering correctly can be boosted to be arbitrarily close
to 1. While obviously BPP ⊆ PP, the reverse is unlikely; in particular, it is
conjectured that BPP = P.

The Exponential Time Hypothesis (ETH), introduced by [8], states that there
exists a constant c > 1 such that deciding any 3Sat instance with n variables
takes at least Ω(cn) time. Note that the ETH is a stronger assumption than the
assumption that P �= NP. A sub-exponential but not polynomial-time algorithm
for 3Sat, such as an algorithm running in O(2

3
√
n), would contradict the ETH

but would not imply that P = NP. We will assume the ETH in our proofs that
show the necessity of low treewidth for efficient approximation of MAP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameters of the problem can be assumed to be small. In-
formally, a problem is called fixed-parameter tractable for a parameter k (or a
set {k1, . . . , kn} of parameters) if it can be solved in time, exponential (or even
worse) only in k and polynomial in the input size |x|, i.e., in time O(f(k)·|x|c) for
a constant c and an arbitrary function f . In practice, this means that problem
instances can be solved efficiently, even when the problem is NP-hard in general,
if k is known to be small. In contrast, if a problem is NP-hard even when k is
small, the problem is denoted as para-NP-hard for k.

3 Approximating MAP

It is widely known, both from practical experiences and from theoretical results,
that ‘small treewidth’ is often a necessary constraint to render exact Bayesian
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inferences tractable.1 However, it is often assumed that such intractable compu-
tations can be efficiently approximated using inexact algorithms; this assumption
appears to be warranted by the observation that in many cases approximation al-
gorithms seem to do a reasonable job in, e.g., estimating posterior distributions.
Whether this observation has a firm theoretical basis, i.e., whether approxima-
tion algorithms can or cannot in principle perform well even in situations where
treewidth can grow large, is to date not known.

Crucial in answering this question is to make precise what efficiently approx-
imated actually pertains to. The on-line Merriam-Webster dictionary lists as
one of its entries for approximate ‘to be very similar to but not exactly like
(something)’. In computer science, this similarity is typically defined in terms of
value: ‘approximate solution A has a value that is close to the value of the opti-
mal solution’. However, other notions of approximation can be relevant. One can
think of approximating not the value of the optimal solution, but the appearance:
‘approximate solution A′ closely resembles the optimal solution’. Also, one can
define an approximate solution as one that ranks close to the optimal solution:
‘approximate solution A′′ ranks within the top-k solutions’. Note that these no-
tions can refer to completely different solutions. One can have situations where
the second-best solution does not resemble at all the optimal solution, whereas
solutions that look almost the same have a very low value as compared to the
optimal solution [12]. Similarly, the second-best solution may either have a value
that is almost as good as the optimal solution, or much worse.

In many practical applications, in particular of Bayesian inferences, these
definitions of ‘approximation’ do not (fully) capture the actual notion we are in-
terested in. For example, when trying to approximate a distribution using some
sampling method we have no guarantee on how well the approximate distri-
bution matches the original distribution (e.g., in terms of the Kullback-Leibler
divergence); likely, we will (need to) settle for ‘probably approximately correct’
(PAC) approximations [19]. The added notion of approximation here, induced
by the use of randomized computations, is the allowance of a bounded amount
of error.

In the remainder of this section we will elaborate on these notions of approx-
imation when applied to the MAP problem. We will give formal definitions of
these approximate problems and show why all of them are intractable in general.
For MAP-approximation by value and by structure we will interpret known re-
sults in the literature. For MAP-approximation by rank we give a formal proof
of intractability; for MAP-approximation using randomized algorithms we give
an argument from complexity theory.

3.1 Value-Approximation

Value-approximating MAP is the problem of finding an explanation that has a
value, close to the value of the optimal solution. This problem is intractable in

1 An exception to this general observation might be algorithms that employ specific
local structures, such as context-specific dependences, in the network, as one of the
anonymous reviewers noted.
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general, even if the variables of the network are bi-partitioned into explanation
and evidence variables (i.e., when we approximate an MPE problem). Abdelbar
and Hedetniemi proved that it is NP-hard in general to find an explanation

h ∈ cansolB with a constant ratio bound Pr(optsolB | e)
Pr(h | e) ≤ ρ for any constant

ρ ≥ 1 [1]. In addition, it can be shown that it is NP-hard in general to find an
explanation h ∈ cansolB with Pr(h, e) > ε for any constant ε > 0 [11]. The
latter result holds even for networks with only binary variables and at most two
incoming arcs per variable.

3.2 Structure-Approximation

Structure-approximating MAP is the problem of finding an explanation that
structurally resembles the optimal solution. This is captured using a solution
distance function, a metric associated with each optimization problem relating
candidate solutions with the optimal solution [7]. For MAP, the typical structure
distance function dH(h ∈ cansolB, optsolB) is the Hamming distance between
explanation h ∈ cansolB and the most probable explanation optsolB. It has been
shown in [12] that no algorithm can calculate the value of even a single variable
in the most probable explanation in polynomial time, unless P = NP; that is, it
is NP-hard to find an explanation with dH(h ∈ cansolB, optsolB) ≤ |optsolB| −
1, even if the variables of the network are bi-partitioned into explanation and
evidence variables.

3.3 Rank-Approximation

Apart from allowing an explanation that resembles, or has a probability close
to, the most probable explanation, we can also define an approximate solution
as an explanation which is one of the k best explanations, for a constant k.
Note that this explanation may not resemble the most probable explanation nor
needs to have a relatively high probability, only that it is ranked within the
k most probable explanations. We will denote this approximation as a rank-
approximation, and we will prove that it is NP-hard to approximate MAP using
a rank-approximation for any constant k. We do so by a reduction from a variant
of LexSat, based on the reduction in [14]. LexSat is defined as follows:

LexSAT

Instance: A Boolean formula φ with n variables X1, . . . , Xn.
Output: The lexicographically largest truth assignment x to
X = {X1, . . . , Xn} that satisfies φ; the output is ⊥ if φ is not satisfiable.

Here, the lexicographical order of truth assignments maps a truth assignment
x = x1, . . . , xn to a string {0, 1}n, with {0}n (all variables set to false) is
the lexicographically smallest, and {1}n (all variables set to true) is the lexico-
graphically largest truth assignment. LexSat is NP-hard; in particular, LexSat
has been proven to be complete for the class FPNP [9]. In our proofs we will use
the following variant that always returns a truth assignment (rather than ⊥, in
case φ is unsatisfiable):
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X1 X2 X3 X4X0

¬ ¬

X

∨
Vψ
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Fig. 1. Example construction of Bφex from LexSat’ instance φex

LexSAT’

Instance: A Boolean formula φ with n variables X1, . . . , Xn.
Output: The lexicographically largest satisfying truth assignment x to
ψ = (¬X0) ∨ φ that satisfies ψ.

Note that if φ is satisfiable, then X0 is never set to false in the lexicographi-
cally largest satisfying truth assignment to ψ, yet X0 is necessarily set to false

if φ is not satisfiable; hence, unsatisfying truth assignments to φ are always or-
dered after satisfying truth assignments in the lexicographical ordering. Note
that LexSat trivially reduces to LexSat’ using a simple transformation. We
claim the following.

Theorem 1. No algorithm can k-rank-approximate MAP, for any constant k,
in polynomial time, unless P = NP.

In our proof we describe a polynomial-time Turing reduction from LexSat’ to
k-rank-approximated-MAP for an arbitrary constant k. The reduction largely
follows the reduction as presented in [14] with some additions. We will take the
following LexSat’-instance as running example in the proof: φex = ¬X1∧ (X2∨
¬X3); correspondingly, ψex = (¬X0) ∨ (¬X1 ∧ (X2 ∨¬X3)) in this example. We
set k = 3 in the example construct. We now construct a Bayesian network Bφ

from ψ as follows (Figure 1).
For each variable Xi in ψ, we introduce a binary root variable Xi in Bφ with

possible values true and false. We set the prior probability distribution of

these variables to Pr(Xi = true) = 1/2 − 2i+1−1
2n+2 . In addition, we include a

uniformly distributed variable Xn+1 in Bφ with k values x1
n+1, . . . , x

k
n+1. The

variables X0, . . . , Xn together form the set X. Note that the prior probability
of a joint value assignment x to X is higher than the prior probability of a
different joint value assignment x′ to X, if and only if the corresponding truth
assignment x to the LexSat’ instance has a lexicographically larger truth as-
signment than x′. In the running example, we have that Pr(X0 = true) = 15/32,
Pr(X1 = true) = 13/32, Pr(X2 = true) = 9/32, and Pr(X3 = true) = 1/32, and
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Pr(X4 = x1
4) = Pr(X4 = x2

4) = Pr(X4 = x3
4) = 1/3. Observe that we have that

Pr(X1) · . . . ·Pr(Xi−1) ·Pr(Xi) > Pr(X1) · · · · ·Pr(Xi−1) ·Pr(Xi) for every i, i.e.,
the ordering property such as stated above is attained.

For each logical operator T in ψ, we introduce an additional binary vari-
able in Bφ with possible values true and false, and with as parents the sub-
formulas (or single sub-formula, in case of a negation operator) that are bound by
the operator. The conditional probability distribution of that variable matches
the truth table of the operator, i.e., Pr(T = true | π(T )) = 1 if and only if the
operator evaluates to true for that particular truth value of the sub-formulas
bound by T . The top-level operator is denoted by Vψ. It is readily seen that
Pr(Vψ = true | x) = 1 if and only if the truth assignment to the variables in
ψ that matches x satisfies ψ. Observe that the k-valued variable Xn+1 is inde-
pendent of every other variable in Bφ. Further note that the network, including
all prior and conditional probabilities, can be described using a number of bits
which is polynomial in the size of φ. In the MAP instance constructed from φ,
we set Vψ as evidence set with Vψ = true as observation and we set X∪{Xn+1}
as explanation set.

Proof. Let φ be an instance of LexSat’, and let Bφ be the network constructed
from φ as described above. We have for any joint value assignment x to X that
Pr(X = x | Vψ = true) = α · Pr(X = x) for a normalization constant α if
x corresponds to a satisfying truth assignment to ψ, and Pr(X = x | Vψ =
true) = 0 if x corresponds to a non-satisfying truth assignment to ψ. Given the
prior probability distribution of the variables in X, we have that all satisfying
joint assignments x to X are ordered by the posterior probability Pr(x | Vψ =
true) > 0, where all non-satisfying joint value assignments have probability
Pr(x | Vψ = true) = 0 and thus are ordered after satisfying assignments. The
joint value assignment that has the highest posterior probability thus is the
lexicographically largest satisfying truth assignment to ψ.

If we take the k-th valued variable Xn+1 into account, we have that for every
x, the k joint value assignments to Pr(x, Xn+1 | Vψ = true) have the same
probability since Pr(x, Xn+1 | Vψ = true) = Pr(x | Vψ = true) · Pr(Xn+1).
But then, the k joint value assignments xk to X ∪ {Xn+1} that correspond to
the lexicographically largest satisfying truth assignment x to ψ all have the same
posterior probability Pr(xk | Vψ = true). Thus, any algorithm that returns one
of the k-th ranked joint value assignments to the explanation set X ∪ {Xn+1}
with evidence Vψ = true can be transformed in polynomial time to an algorithm
that solves LexSat’. We conclude that no algorithm can k-rank-approximate
MAP, for any constant k, in polynomial time, unless P = NP. ��

Note that, technically speaking, our result is even stronger: as LexSat’ is
FPNP-complete and the reduction described above actually is a one-Turing reduc-
tion from LexSat’ to k-rank-approximation-MAP, the latter problem is FPNP-
hard. We can strengthen the result further by observing that all variables (minus
Vψ) that mimic operators deterministically depend on their parents and thus can
be added to the explanation set without substantially changing the proof above.
This implies that k-rank-approximation-MPE is also FPNP-hard.
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3.4 Expectation-Approximation

The last notion of MAP approximation we will discuss here returns in polynomial
time an explanation that are likely to be the most probable explanation, but
allows for a small margin of error; i.e., there is a small probability that the
answer is not the optimal solution, and then no guarantees are given on the
quality of that solution. These approximations are closely related to randomized
algorithms that run in polynomial time but whose output has a small probability
of error, viz., Monte Carlo algorithms. This notion of approximation–which we
will refer to as expectation-approximation [15]–is particularly relevant for typical
Bayesian approximation methods, such as Monte Carlo sampling and repeated
local search algorithms.

In order to be of practical relevance, we want the error to be small, i.e., when
casted as a decision problem, we want the probability of answering correctly to be
bounded away from 1/2. In that case, we can amplify the probability of answering
correctly arbitrarily close to 1 in polynomial time, by repeated evocation of the
algorithm. Otherwise, e.g., if the error depends exponentially on the size of the
input, we need an exponential number of repetitions to achieve such a result.
Monte Carlo randomized algorithms are in the complexity class BPP; randomized
algorithms that may need exponential time to reduce the probability of error
arbitrarily close to 0 are in the complexity class PP.

As MAP is NP-hard, an efficient randomized algorithm solving MAP in poly-
nomial time with a bounded probability of error, would imply that NP ⊆ BPP.
This is considered to be highly unlikely, as almost every problem that enjoys an
efficient randomized algorithm has been proven to be in P, i.e., be decidable in
deterministic polynomial time.2 On various grounds it is believed that P = BPP,
and thus an efficient randomized algorithm for MAP would (under that assump-
tion) establish P = NP. Therefore, no algorithm can expectation-approximate
MAP in polynomial time with bounded margin of error unless NP ⊆ BPP. This
result holds also for MPE, which is in itself already NP-hard.

4 The Necessity of Low Treewidth for Efficient
Approximation of MAP

In the previous section we have shown that for four notions of approximating
MAP, no efficient general approximation algorithm can be constructed unless
either P = NP or NP ⊆ BPP. However, MAP is fixed-parameter tractable for a
number of problem parameters; for example, {tw, c, 1 − p}-MAP is in FPT for
parameters treewidth (tw), cardinality of the variables (c), and probability of
the most probable solution 1− p. Surely, if we can compute {k1, . . . , km}-MAP
exactly in FPT time, we can also approximate {k1, . . . , km}-MAP in FPT time.

2 The most dramatic example of such a problem is PRIMES: given a natural number,
decide whether it is prime. While efficient randomized algorithms for PRIMES have
been around quite some time (establishing that PRIMES ∈ BPP), only fairly recently
it has been proven that PRIMES is in P [2].
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A question remains, however, whether approximate MAP can be fixed-parameter
tractable for a different set of parameters than exact MAP.

Treewidth has been shown to be a necessary parameter for efficient exact
computation of the Inference problem (and, by a trivial adjustment, also of
MAP), under the assumption that the ETH holds [13]. In this section, we will
show that low treewidth is also a necessary parameter for efficient approximate
computation for value-, structure-, and rank-approximations. We also show that
it is not a necessary parameter for efficient expectation-approximation. In the
next sub-section we will review so-called treewidth-preserving reductions (tw-
reductions), a special kind of polynomial many-one reduction that preserves
treewidth of the instances [13]. In Subsection 4.2 we sketch how this notion
can be used to tw-reduce Constraint Satisfaction to Inference. Together
with the known result that Constraint Satisfaction instances with high
treewidth cannot have sub-exponential algorithms, unless the ETH fails [16], it
was established in [13] that there cannot be a polynomial-time algorithm that
decides Inference on instances with high treewidth in sub-exponential time,
unless the ETH fails; the reader is referred to [13] for the full proof.

Subsequently, we will show how this proof can be augmented to establish sim-
ilar results for MAP, value-approximate MAP, structure-approximate MAP, and
rank-approximate MAP (Sub-sections 4.3 and 4.4). In the last sub-section we
will give a small example where a simple forward-sampling algorithm can effi-
ciently expectation-approximate MAP despite high treewidth; we will elaborate
on the constraints needed to render such algorithms provably fixed-parameter
tractable and give pointers for future work.

4.1 Treewidth-Preserving Reductions

Treewidth-preserving reductions are defined in [13] as a means to reduce Con-

straint Satisfaction to Inference while ensuring that treewidth is pre-
served between instances in the reduction, modulo a linear factor.

Definition 1 ([13]). LetA andB be computational problems such that treewidth
is defined on instances of both A and B. We say that A is polynomial-time
treewidth-preserving reducible, or tw-reducible, to B if there exists a polynomial-
time computable function g and a linear function l such that x ∈ A if and only if
g(x) ∈ B and tw(g(x)) = l(tw(x)). The pair (g, l) is called a tw-reduction.

We will use this notion to show that Constraint Satisfaction also tw-
reduces to MAP, value-approximate MAP, structure-approximate MAP, and
rank-approximate MAP.

4.2 Proof Sketch

The tw-reduction from (binary) Constraint Satisfaction to Inference,
as presented in [13], constructs a Bayesian network BI from an instance I =
(V,D,C) of Constraint Satisfaction, where V denotes the set of variables
of I, D denotes the set of values of these variables, and C denotes the set of
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R1

X2

R2

X3

X1

X4

R4

R3

Fig. 2. Example construction of BI from example CSP instance I

binary constraints defined over V × V. The constructed network BI includes
uniformly distributed variables Xi, corresponding with the variables in V, and
binary variables Rj , corresponding with the constraints in C. The parents of
the variables Rj are the variables Xi that are bound by the constraints; their
conditional probability distributions match the imposed constraints on the vari-
ables (i.e., Pr(Rj = true | x ∈ Ω(π(Rj))) = 1 if and only if the joint value
assignment x to the variables bound by Rj matches the constraints imposed on
them by Rj . Figure 2, taken from [13], shows the result of the construction so far
for an example Constraint Satisfaction instance with four variables X1 to
X4, where C contains four constraints that bind respectively (X1, X2), (X1, X4),
(X2, X3), and (X3, X4).

The treewidth of the thus obtained network equals max(2, tw(GI)), where
GI is the primal graph of I; note that the treewidth of BI at most increases the
treewidth of GI by 1. In order to enforce that all constraints are simultaneously
enforced, the constraint nodes Rj need to be connected by extra nodes mimicking
‘and’ operators. A crucial aspect of the tw-reduction is the topography of this
connection of the nodes Rj : care most be taken not to blow up treewidth by
arbitrarily connecting the nodes, e.g., by a log-deep binary tree. The original
proof uses a minimal tree-decomposition of the moralization of BI and describes
a procedure to select which nodes need to be connected such that the treewidth
of the resulting graph is at most the treewidth of GI plus 3. The conditional
probability distribution of the nodes Ak is defined as follows.

Pr(Ak = true | x) =
{
1 if x =

∧
V ∈π(Ak)

(V = true)

0 otherwise

For a node Ak without any parents, Pr(Ak = true) = 1. The graph that results
from applying this procedure to the example is given in Figure 3 (also taken
from [13]). Now, Pr(A1 = true | x) = 1 if x corresponds to a satisfying value
assignment to V and 0 otherwise; correspondingly, Pr(A1 = true) > 0 if and
only if the Constraint Satisfaction instance is satisfiable.
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R1
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X3

X1

X4
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A1 A2 A3 A4 A5 A6

Fig. 3. Resulting graph BI after adding nodes Ak and appropriate arcs

4.3 MAP Result

The tw-reduction described in the previous sub-section can be easily be modified
to a tw-reduction from Constraint Satisfaction to MAP. We do this by
adding a binary node VI to the thus obtained graph, with A1 as its only parent
and with conditional probability Pr(VI = true | A1 = true) = 1 and Pr(VI =
true | A1 = false) = 1/2 − ε, where ε is a number, smaller than 1/|D||V|.
Consequently, we have that Pr(VI = true) > 1/2 if I is satisfiable, and Pr(VI =
true) < 1/2 if I is not satisfiable; hence, a MAP query with explanation set
H = VI will return VI = true if and only if I is satisfiable. We added a single
node to BI , with A1 as only parent, thus increasing the treewidth of BI by at
most 1. Hence, Constraint Satisfaction tw-reduces to MAP.

4.4 Approximation Intractability Results

In a similar way we can modify the reduction from Sub-section 4.2 to show
that value-, structure-, and rank-approximations can be tw-reduced from Con-

straint Satisfaction, as sketched below.

Value-Approximation. We add a binary node VI , with A1 as its only par-
ent, and with conditional probability Pr(VI = true | A1 = true) = 1 and
Pr(VI = true | A1 = false) = 0. We observe this variable to be set to true.
This enforces that Pr(A1 = true | VI = true) has a non-zero probability (i.e., I
is solvable) since otherwise there is conflicting evidence in the thus constructed
network. Thus, any value-approximation algorithm with with explanation set
H = A1 and evidence e = VI = true that can return a solution h ∈ cansolB
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with Pr(h, e) > ε for any constant ε > 0, effectively solves Constraint Satis-

faction. Given that we added a single node to BI , with A1 as only parent, this
increases the treewidth of BI by at most 1. Hence, Constraint Satisfaction

tw-reduces to value-approximate MAP.

Structure-Approximation. Observe from the tw-reduction to MAP in Sub-
section 4.3 that, since H consists of a singleton binary variable, we trivially have
that no algorithm can find an explanation with dH(h ∈ cansolB, optsolB) ≤
|optsolB| − 1 = 0 since that would solve the MAP query. We can extend this
result to hold for explanation sets with size k for any constant k, i.e., no structure-
approximation algorithm can guarantee to return the correct value of one of the
k variables in H in polynomial time in instances of high treewidth, unless the
ETH fails.

Instead of adding a single binary node VI as in the tw-reduction to MAP,
we add k binary nodes V 1

I . . . V k
I , all with A1 as their only parent and with

Pr(V j
I = true | A1 = true) = 1 and Pr(V j

I = true | A1 = false) = 1/2 − ε
for 1 ≤ j ≤ k and with ε as described in Sub-section 4.3. A MAP query with
explanation setH =

⋃
1≤j≤k V

j
I will then return ∀1≤j≤kV

k
I = true if and only if

I is satisfiable; if I is not satisfiable, a MAP query will return ∀1≤j≤kV
k
I = false

as most probable explanation. Hence, any structure-approximation algorithm
that can correctly return the value of one of the variables in H, effectively solves
Constraint Satisfaction. As we added k nodes to BI , with A1 as their
only parent, the treewidth of BI increases by at most k. Hence, Constraint

Satisfaction tw-reduces to structure-approximate MAP.

Rank-Approximation. We modify the proof of Sub-section 4.3 as follows.
In addition to adding a binary node VI as specified in that section, we also
add a uniformly distributed unconnected node KI with k values to H; a k-
rank-approximate MAP query with explanation set H = {VI ,KI} will return
VI = true (and KI set to an arbitrary value) if and only if I is satisfiable. The
addition of KI does not increase treewidth, hence, Constraint Satisfaction

tw-reduces to k-rank-approximate MAP.

4.5 Expectation-Approximation

In the previous section we showed that we cannot value-, structure-, or rank-
approximate MAP on instances with high treewith, unless the ETH fails. Now
what about expectation-approximation? We will argue that there are MAP in-
stances with high treewidth that can be efficiently expectation-approximated,
provided that the probability Pr(optsolB | e) is high. Note that it remains NP-
hard (to be precise: para-PP-hard) to decide Inference, even if the probability
of interest is arbitrarily close to 1 [10]; as Inference is a degenerate special
case of MAP, it follows that computing MAP exactly is also NP-hard in this
case. While this sketchy argument is not a fully worked-out proof, it hints that
efficient expectation-approximation of MAP indeed depends on a different set of
parameters than the other notions of approximation discussed above.
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The argument goes as follows. In order to generate MAP instances with high
treewidth, we construct them from SAT instances in a similar way as described
in Section 3.3. We can generate SAT instances with high treewidth by, e.g.,
picking an arbitrary formula φ and then boosting the treewidth by “inserting”
tautologies ∧(xi ∨ ¬xi) at strategic places in φ. We then construct a Bayesian
network Bφ from φ by including binary root truth-setting variables Xi for all
variables Xi in φ, and adding binary operator variables Tj for all logical opera-
tors in φ, and connecting them as described in Section 3.3. We again denote the
top-level operator as Vφ and we observe that Pr(Vφ = true) = #SAT/2n, i.e.,
the probability distribution over Pr(Vφ) corresponds to the number of satisfying
truth assignments to φ. If a majority of truth assignments satisfy φ, a MAP
query with H = Vφ will return true, if a minority of truth assignments satisfy
φ, the same MAP query will return false. Now, if the probability p of the most
probable joint value assignment is bounded away from 1/2, i.e., is guaranteed
to be 1/2 + 1/nc for a constant c, a simple forward sampling strategy (assigning
random joint value assignments to the variables Xi and propagating the assign-
ments according to the CPTs of the operator variables Tj) can decide this MAP
query with a bounded degree of error. To be precise, using the Chernoff bound
we can compute than the number of samples needed to have a degree of error
lower than δ is 1/(p − 1/2)2 ln 1/

√
δ = nc2 ln 1/

√
δ.

5 Conclusion

In this paper we analysed whether low treewidth is a prerequisite for approxi-
mating MAP in Bayesian networks. We formalized four distinct notions of ap-
proximating MAP (by value, structure, rank, or expectation) and argued that
approximate MAP is intractable in general using either of these notions. In case
of value-, structure-, and rank-approximation we showed that MAP cannot be
approximated using these notions in instances with high treewidth, if the ETH
holds. We argued that expectation-approximation, in contrast, may be rendered
fixed-parameter tractable, even in instances with high treewidth, if the proba-
bility q of the most probable explanation is high (and the cardinality c of the
variables is bounded). As Inference (and thus also MAP) is intractable even
when the probability of the most probable explanation is high, this result may
indeed lead to a {q, c}-fixed parameter tractable expectation-approximation al-
gorithm for MAP. We leave the proof of existence and the actual development
and analysis of such an algorithm for future work.
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Abstract. This paper introduces the notion of Bayesian networks aug-
mented with function nodes. Two types of function nodes are considered.
A real-valued function node represents a real value either used to param-
eterise one or more conditional probability distributions of the Bayesian
network or a real value computed after a successful belief update or
Monte Carlo simulation. On the other hand, a discrete function node
represents a discrete marginal distribution. The paper includes four real-
world examples that illustrate how function nodes have improved the
flexibility and efficiency of utilizing Bayesian networks for reasoning with
uncertainty in different domains.
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1 Introduction

A Bayesian network [18,3,10] is a powerful and popular model for probabilis-
tic inference. Its graphical nature makes it well-suited for representing complex
problems where the interactions between entities represented as variables are
described using conditional probability distributions (CPDs). One of the main
reasons for the popularity of Bayesian networks is the access to development
tools and tools for integrating Bayesian networks into other applications.

Bayesian networks are often used in applications where belief update is only
part of the calculations performed to produce the end result. That is the results
of belief update, i.e., posterior probabilities, are used as input for further calcu-
lations outside the framework of Bayesian networks. Also, the results of belief
update in one Bayesian network model may be used to parameterise another
Bayesian network. Bayesian networks do not readily support post belief update
calculations nor the possibility to link results of belief update in one model to pa-
rameters of a different model. Gated Bayesian networks [1] are a new formalism
to combine several Bayesian networks such that they may be active or inactive
during the belief update process depending on predefined logical statements.
This is different from how function nodes as presented in this paper are used to
link Bayesian networks where, for instance, information is passed between CPDs
in different Bayesian networks.

This paper introduces the notion of Bayesian networks augmented with func-
tion nodes. A real-valued function node represents a real value whereas a discrete
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function node represents a marginal probability distribution. Either is computed
from the results of a belief update or simulation operation. The main motivation
for introducing Bayesian networks augmented with function nodes is to enable
knowledge engineers and analysts to combine Bayesian networks with other tech-
niques, specify post belief update calculations, link Bayesian network models and
link parameterisation of a Bayesian network to user input. Bayesian networks
augmented with function nodes enable the knowledge engineer to achieve this in
a single integrated knowledge representation. Two types of function nodes are
considered, where type refers to the value a function node can take, i.e., either
a real value or a probability distribution. A real-valued function node specifies
a mathematical expression (can be a constant) evaluated as part of the belief
update or simulation process. A discrete function node can be used to compute
distributions derived from other distributions, i.e., a distribution computed from
the result of belief update.

This paper is organised as follows. Section 2 introduces preliminaries and
notation. Section 3 introduces the notion of networks with function nodes and
Section 4 describes how inference is performed in such networks. Section 5 de-
scribes four real-world examples showing how function nodes have improved the
flexibility and efficiency of utilizing Bayesian networks for reasoning with uncer-
tainty in different domains while Section 6 concludes the paper with a discussion
and concluding remarks.

2 Preliminaries and Notation

Let X = {X1, . . . , Xn} be a set of discrete random variables such that dom(X)
is the state space of X and ||X || = |dom(X)|. A discrete Bayesian network
N = (X , G,P) over X consists of an acyclic directed graph (DAG) G = (V,E)
with vertices V and edges E and a set of CPDs P = {P (X |pa(X)) : X ∈ X},
where pa(X) denotes the parents of X in G [18,3,10]. The discrete Bayesian
network N specifies a joint probability distribution over X

P (X ) =

n∏
i=1

P (Xi |pa(Xi)).

A Conditional Linear Gaussian (CLG) Bayesian network N = (X , G,P ,D)
is similar to a discrete Bayesian network where X = XΓ ∪ XΔ is a partition of
the random variables into discrete random variables XΔ and continuous random
variables XΓ and D is a set of CLG density functions [13]. The CLG Bayesian
network N = (X , G,P ,D) specifies a mixture distribution over XΓ ∪ XΔ

P (XΔ) · f(XΓ |XΔ) =∏
X∈XΔ

P (X |pa(X)) ·
∏

Y ∈XΓ

f(Y |pa(Y )).

If XΓ = ∅, then the CLG Bayesian network is a discrete Bayesian network.
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Belief update in N is defined as the task of computing the posterior marginal
P (X | ε), for each non-evidence variable X ∈ X \ Xε given a set of variable
instantiations ε, where Xε ⊆ X is the set of variables instantiated by ε. A belief
update operation is successful when no errors are produced, which, for instance,
would be the result of propagating inconsistent evidence, i.e., evidence that has
zero probability in N . A simulation is the process of performing a Monte Carlo
simulation over N given ε.

Each vertex v ∈ V represents a random variable X ∈ X and each X is
represented by a v ∈ V . This means that we will refer to a vertex and its random
variable interchangeably. Let N be a Bayesian network with DAG G = (V,E),
then G(Vi) is the subgraph induced by Vi ⊆ V . The moral graph Gm of a DAG
G is produced by adding an edge between vertices with a common child and
removing direction on the edges.

A trail π is a sequence of vertices π = (v1, . . . , vn) such that there is a link
vi → vi+1 or vi ← vi+1, i.e., either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E, between each
pair of consecutive vertices in the sequence. If each link between vi and vi+1 is
directed as (vi, vi+1) where vi is parent and vi+1 is child, then π is a directed
trail and v1 is the source and vn is the destination.

The ancestral set of a (vertex representing) variable X in G is denoted as
an(X) and the ancestral set of set of variables Xi ⊆ X is denoted as an(Xi).
Similarly, the sets of descendants are denoted as de(X) and de(Xi), respectively.

A B

E F

C D

Fig. 1. A CLG Bayesian network with XΔ = {A,B,C} and XΓ = {D,E, F}

Example 1. Figure 1 shows an example of a CLG Bayesian network over the ran-
dom variables A,B,C,D,E and F . Single-lined oval vertices represent discrete
random variables while double-lined oval nodes represent continuous random
variables. Thus, we have XΔ = {A,B,C} and XΓ = {D,E, F}.

3 Bayesian Networks with Function Nodes

A function node F expresses a real value or probability distribution calculated
after a successful belief update or simulation or a constant computed before belief
update over N . This enables the knowledge engineer to create one integrated
knowledge representation for belief update and calculations using the results of
a belief update. This is a significant contribution to representing, testing and
validating systems using Bayesian networks.
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3.1 Function Nodes

This section introduces real-valued and discrete function nodes.

Definition 1 (Real-Valued Function Node). A real-valued function node F
represents a single real value.

Definition 2 (Discrete Function Node). A discrete function node F repre-
sents a discrete marginal distribution.

In both cases, the entity is a function of the values or distributions of the
parents. A real-valued function node is not (directly) involved in the belief update
process. It cannot be instantiated by evidence, but its function can be evaluated
using the results of the belief update or a simulation. A discrete function node
can be instantiated by evidence with the same properties as a random variable
except it will not induce a likelihood over its parents, i.e., it will have the same
properties as a variable without parents (a root variable).

The set of real-valued function nodes is denoted FR and the set of discrete
function nodes is denoted FΔ.

Example 2. Figure 2 shows an example of a Bayesian network model augmented
with discrete function nodes F1 and F2 (hexagon) and a real-valued function node
p (hexagon with double lines). The real-valued function node p could denote a
constant in an expression for defining the content of the conditional probability
distribution for X1, e.g., the p parameter of a Binomial distribution, while F2

could denote a probability distribution computed from the posterior probability
distributions of X1 and X3, e.g., if P (X3 |ε) is an impact distribution and P (X1 |
ε) is a frequency distribution, then F2 could specify a total impact distribution
as the convolution of frequency and impact.

X1 X3

X2 X4

X5

p

F1

F2

Fig. 2. A Bayesian network augmented with function nodes
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3.2 Graphical Model Structure

A discrete Bayesian network augmented with function nodes N = (X , G,P ,F)
consists of a set of random variables X , DAG G = (V,E), a set of CPDs P and
a set of function nodes F . Each function node F ∈ F corresponds one-to-one
with a vertex in G and G(Fi) is the subgraph induced by Fi ⊆ F . This means
that G is a graph over X ∪ F .

Definition 3 (Functional Link). A functional link is a directed link (vi, vj) ∈
E in G = (V,E) that points to a vertex representing a function node or originates
from a vertex representing a real-valued function node.

Definition 4 (Functional Trail). A trail π = (v1, . . . , vn) of vertices in a
graph G that contains a functional link which must be directed as (vi, vi+1) is
called a functional trail.

A trail that contains no functional link is a non-functional trail. A trail
π = (v1, . . . , vn) of only function nodes is called a pure functional trail. A func-
tional trail π = (v1, . . . , vn) where v1, vn ∈ X and v2, . . . , vn−1 ∈ F is called a
connecting functional trail. Notice that if X and Y are connected by a functional
trail from X to Y , then Y is functionally dependent on X . On the other hand,
if there exists a non-functional trail between X and Y , then the dependence
relation is probabilistic.

The DAG G must not contain cyclic functional trails as a cyclic dependency
in the evaluation of function nodes is not allowed. The following example has
a cyclic dependency in the evaluation of function nodes. Let X1, X2 ∈ X and
F ∈ F such that pa(X2) = {X1, F} and pa(F ) = {X1}.

A maximal set of connected random variables is referred to as a Bayesian net-
work fragment or fragment. Fragments are connected using connecting functional
trails. A connecting functional trail represents the operation of transferring the
results of belief update in the network fragment of the source variable to the
network fragment of the destination variable.

A function node F is computed after a successful belief update or simulation
in the fragments containing random variables with a functional trail to F .

Example 3. Figure 3 shows an example of a Bayesian network augmented with
two real-valued function nodes F1 and F2 connecting the two Bayesian network
fragments N1 and N2.

The two trails π1 = (B,A,C, F1, F2, E,G) and π2 = (D,C, F1, F2, E,H) are
examples of functional trails with (C,F1, F2, E) in their connecting functional
trail. The model has fragments N1 and N2 which are indicated by clouds. Any
additional link between nodes in N1 and nodes in N2 would introduce a func-
tional cycle and is thus disallowed.

3.3 Function Node Models

It is common for many implementations of Bayesian networks to support the spec-
ification of CPDs using a compact representation such as a mathematical equation
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A

B C

D

F1 F2

H

E G

N1

N2

Fig. 3. Example of a Bayesian network augmented with function nodes connecting two
Bayesian network fragments

or expression [20,15]1. Here we adopt the framework introduced by [20,15]. This
framework introduces the notion of subtype of discrete random variables. A dis-
crete function node F ∈ FΔ has a subtype, which is either Labelled, Boolean,
Numbered or Interval defining how the states of F are interpreted when evaluat-
ing expressions containing F or specifying the CPD for F . A real-valued function
node expresses a calculation producing a real value and has no subtype.

Definition 5 (Function Node Model). Let F be a function node in a Bayesian
network N with DAG G. The model m(F ) specifies how the value or distribution
of F is computed from the values or distributions of pa(F ) in G.

Function nodes only support forward reasoning, i.e., the value or distribution
of a function node F ∈ F is computed using its model m(F ) and the values or
distributions of pa(F ).

For function node F ∈ FR, the calculation defined by the model m(F ) should
evaluate to a real value. Otherwise, the value of F is undefined and models of
child nodes referring to the value of F cannot be evaluated. Similarly, for function
node F ∈ FΔ, the calculation defined by the model m(F ) should evaluate to a
probability distribution. Otherwise, the distribution of F is undefined and models
of child nodes referring to the distribution of F cannot be evaluated. Notice that
m(F ) may, for instance, define a deterministic function that is translated into a
probability distribution for a random variable when m(F ) is evaluated.

Different mathematical functions can be used to define m(F ) for F ∈ FR

while additional operators can be used to define m(F ) for F ∈ FΔ. This includes
probability operators such as, for instance, the probability(X = x)-operator that
returns the probability that variableX ∈ XΔ is in a specific state x. ForX ∈ XΓ ,
the mean μ(X) of X is used as the value of X when evaluating models referring
to X .

1 E.g., Genie, Netica and HUGIN have this facility.
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Example 4. Consider p ∈ FR from Example 2. It could, for instance, repre-
sent the parameter value of a Binomial distribution for X1. In this case the
model m(p) is equal to a constant value for the probability p in the Binomial
distribution for X1. This use of a function node makes it explicit that the ex-
pression used to generate the probability distribution of X1 is parameterised
by p. Consider F1 ∈ FΔ from the same example and assume ||F1|| = 2 and
X2 is a Boolean variable, then the model m(F1) could be defined as m(F1) =
Distribution((probability(X2) +X5)/(1 +X5), 1− (probability(X2) +X5)/(1 +
X5)), where X5 denotes the mean of variable X5, i.e., the probability of the first
state of F1 is equal to the probability of X2 being true plus the mean of X5

(normalized to sum to one), see [7] for details on syntax.
Consider the network in Example 3. Assume dom(C) = (0, 1, 2, 3, 4) and as-

sume that the function node F1 ∈ FR should represent the probability that
C ≥ 2. In this case, we set m(F1) = probability(C ≥ 2).

4 Inference

Identifying dependence and independence properties between random variables
using d-separation [6] is an important element of inference and the algorithm
for determining d-separation needs to reflect the use of function nodes to link
Bayesian networks.

4.1 d-Separation

When the network contains function nodes, trails containing functional links
become directed. This means that d-separation is no longer a symmetric relation
as it is necessary to distinguish between source and destination of the trails. The
properties of d-separation for variables within the same network fragment are
unchanged. Notice that if variables X and Y are connected by a functional trail,
then they cannot be connected by a non-functional trail and vice versa.

[12] describes a criterion equivalent to d-separation for determining the inde-
pendence properties in a Bayesian network:

Given three sets of vertices: V , W and S. Construct the induced graph
G(V ∪W ∪S∪an(V ∪W ∪S)), and then form the moral graph Gm. If S
separates V \ S and W \ S in Gm, then V and W are d-separated by S.

To determine the independence properties in a Bayesian network augmented
with function nodes, the criterion is extended as follows. For functional links
information must follow the direction of the links. This means that functional
links are ignored when the ancestral graph is constructed, i.e., the ancestral
graph does not contain real-valued function nodes as V , W and S do not contain
real-valued function nodes. Subsequently, a depth first traversal is performed to
identify reachable descendants. This means function nodes can be reached if
they are descendants of a reachable vertex in the ancestral graph and that the
relation is no longer symmetric.
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Notice that a discrete function node should be considered equivalent to a root
random variable.

4.2 Belief Update

Belief update in a Bayesian network augmented with function nodes is defined
as the task of computing posterior marginals given evidence ε and calculating
all function nodes. The order in which this is performed is important.

There exist a number of types of algorithms for belief update in a Bayesian
network N = (X , G,P). We describe how belief update in a Bayesian network
augmented with function nodes is performed using the junction tree based algo-
rithm of [8] and [13] referred to as HUGIN propagation. In HUGIN propagation
over a discrete Bayesian network, a junction tree T = (C,S) is created from the
moral graph Gm and triangulation of Gm producing GT . The cliques C of T are
identified from GT and the cliques are connected by separators S. Each CPD
P ∈ P is assigned to a clique C such that dom(P ) ⊆ C. Each clique C ∈ C
has a probability potential φC and initially φC =

∏
P∈PC

P where PC is the set
of CPDs assigned to C. Belief update is performed by two rounds of message
passing over the separators S of T where messages are passed from the leaves of
T to the root R and subsequently from R to the leaves, see [8] for details.

Let N = (X , G,P ,F) be a Bayesian network augmented with function nodes
containing a single fragment. Once function nodes in an(Xi) ∩F are computed,
N can be considered a self-contained Bayesian network (without function nodes)
and belief update is performed as described above. After belief update, de(X )∩F
are computed.

If N = (X , G,P ,F) has more than one network fragment linked by connect-
ing functional trails, then it is necessary to make sure that computations are
performed in the right order. Let X1, . . . ,Xn be the sets of variables in the frag-
ments N1, . . . ,Nn of N . Before belief update in a fragment Xi can be performed,
it is necessary to calculate functional trails with destination in Xi. This means
calculating F ∩ an(Xi). Belief update in each network fragment and calculation
of function nodes can be organised as a DAG H where each node represents a
network fragment and links represent pure functional trails between fragments.
Belief update should be performed using a traversal scheme of H where parents
are evaluated before children.

Proposition 1 (Correctness). Belief update in a Bayesian network with func-
tion nodes is correct.

Proof. Each Bayesian network fragment Xi is a self-contained Bayesian network
once the values and distributions of function nodes in an(Xi)∩F are calculated.
As there are no cyclic functional trails in N , each network fragment can be
compiled into a junction tree and belief update can be performed in the junc-
tion forest using a junction tree propagation algorithm by considering the trees
according to the linking between network fragments.

Example 5. Figure 4 shows an example where belief update should be performed
in N1, before N2 and N3 followed by N4.
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N1

N2

N3

N4

Fig. 4. Belief update in a model with fragments N1, N2, N3 and N4

The belief update algorithm for evaluating function nodes in G(Fi) performs a
traversal from the root vertices in G(Fi) where Fi ⊆ F is a maximal connected
subset of F in G. In some cases it is not possible to compute the value of a func-
tion node F with model m(F ). This is the case when the model m(F ) depends
on the value of a random variable for which the value cannot be computed, e.g.,
a non-instantiated random variable of subtype Labelled.

5 Real-World Application

Here four real-world applications of function nodes are described.

5.1 Credit Scoring

Many real-world applications of Bayesian networks in the domain of financial
services require some kind of post-processing of the results of belief update. One
of the first real-world applications of Bayesian networks where we experienced the
need for post belief update calculations is BayesCredit described by [5] launched
in 2001. In [5] the authors describe how Bayesian networks combined with logistic
regression are used by Nykredit, the largest Danish mortgage provider, to predict
the probability that a customer will default. The probability of default P (D = 1)
is, in principle, computed as:

P (D = 1) =
exp(αEA + βEA ·H = j)

1 + exp(αEA + βEA ·H = j)
,

where αEA and βEA are real valued coefficients conditional on earlier arrears
(EA) and H is a random variable representing the health state of the company.
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The network in Fig. 5 illustrates the principle structure of the BayesCredit
model (adopted from [5] where a hexagon with double border represents a real-
valued function node). With a function node representation of D it is easy to
include additional calculations into the model, e.g., adjusting the value in high
risk periods or combining risk calculations in separate models into a single score.

Earlier Arrears

D

HealthPrevious Health

Age

Profit Margin Cash Flow Result Before Tax

Turnover

Equity

Fig. 5. Structure of the BayesCredit model using function nodes

Bayesian networks augmented with function nodes make it possible to specify
the entire credit risk evaluation as a single integrated knowledge representation.
This significantly improves the efficiency of evaluating and comparing different
credit risk policies at the individual customer level and at the portfolio level.
Policies can easily be adjusted and evaluated using one integrated knowledge
representation. This significantly improves the evaluation of models and reduces
the risk of errors in implementing the credit risk policy.

5.2 Risk Management in Pigs Production

RiBAY is a system for risk management in pigs production [19] launched in
2013. The core part of RiBAY is a Bayesian network augmented with function
nodes N = (X , G,P ,F). With ||X || = 28 and ||F|| = 162, it is clear that
function nodes play a significant and important role in the specification of N .
The Bayesian network is as an integrated modelling approach for representing
uncertainty and analysing risk management in agriculture.

The Bayesian network consists of three types of network fragments represent-
ing uncertain prices, uncertain production of slaughter pigs and uncertain yields
of rape seed and grain. The model covers one year of production with a focus
on risk at the gross marginal level referred to at economic outcome. It is aug-
mented with function nodes in part to support parameterisation of the model to
the properties of a particular farm and in part to link uncertainties of different
aspects of pigs production to the economic outcome of pigs production.
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Function nodes are, for instance, used to encode farm specific information in
the CPD expressions such as risk mitigation measures, budget numbers, system
variables (i.e., the type of production at the specific farm) and forecast variables,
e.g., prices on futures.

Fodder
Efficiency

Health
State

Trade of
piglets

No. of piglets
purchased

No. of slaughter
pigs produced

No. of
produced
piglets

No. of
piglets

Relative
pigs price
February

Relative
pigs price

May

Relative
pigs price
August

Relative
pigs price
November

Share of piglets
purchased

Slaughter pigs
revenue

Price

Fig. 6. Fragments representing uncertainty in the number of produced piglets and
slaughter pigs

Figure 6 shows a number of (simplified) network fragments from RiBAY en-
coding uncertainty on the number of produced piglets and slaughter pigs [19].
Notice that Share of piglets purchased is defined as a real-valued function node
and it is specified as an input parameter to a CPD. The random variable No.
of slaughter pigs produced is parent of a function node Slaughter pigs revenue,
which depends on random variables representing uncertainty on selling price.

The user interface to RiBAY is based on a web service implementation using
the architecture introduced by [14]. This makes it simple to link a function node
to a real value input widget on a web-site. This is used to link user input to a
specific parameter of a function node model or a CPD. This is used extensively
in the RiBAY application. See Fig. 7 for parts of the user interface for specifying
system variables (in Danish).

With a complete specification of farm specific properties including risk mit-
igation measures, Monte Carlo simulation in the network fragments is used to
create an empirical probability distribution for each function node including the
function node representing economic outcome. This makes it possible to compute
different statistics to support risk management at the farm level.
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Fig. 7. Input interface of Ribay (in Danish)

5.3 Operational Risk Management

Operational risk is often defined as the risk of loss resulting from inadequate
or failed internal processes, people and systems, or from external events, and
includes risks such as fraud, system failures, legal risks, environmental risks and
terrorism. Efficient handling of uncertainty is an important element of opera-
tional risk management (ORM) [16] and [2]. This means that a Bayesian network
can be a critical tool in ORM as it is well suited for modeling risk on the basis
of little or uncertain data.

In ORM it is common to compute a total impact of events distribution as
the aggregation of a frequency and an impact of event distribution. The fre-
quency distribution is a distribution for the number of events while the impact
distribution is a distribution for severity of losses.

The posterior probability distribution for total impact, the aggregate loss dis-
tribution, is calculated based on the convolution of the frequency and a impact
distribution. The frequency variable is of subtype Numbered and the impact
variable is of subtype Interval. The total impact distribution is computed as
P (F = 1) · I + P (F = 2) · (I + I) + P (F = 3) · (I + I + I) · · · where the I
variables are independent identically distributed random variables. This calcu-
lation cannot be specified in a Bayesian network (without function nodes) as
the aggregated distribution is created from the two posterior distributions for
frequency and impact. The calculation is represented as a discrete function node
T of subtype Interval in a Bayesian network augmented with function nodes and
the distribution is specified using the aggregate-operator in the model m(T ).
After belief update the aggregate-operator computes the distribution of T from
posterior distributions of I and F .

Figure 8, where the hexagon with single border represents the discrete function
node TI of subtype Interval, shows an example of aggregation of two distribu-
tions and the calculation of P (Total impact ≥ 2). Assuming dom(F ) = (0, 1, 2),
dom(I) = ([0; 1[, [1; 2[) and dom(TI) = ([0; 1[, [1; 2[, [2; 3[, [3; 4[, [4; inf [) with
uniform probability distributions on F and I, the aggregated distribution is
P (TI) = (0.542, 0.292, 0.125, 0.042, 0). The real-valued function node p repre-
sents the probability that Total impact ≥ 2 equal to 0.167, i.e., P (Total impact ≥
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F I

TotalImpact TotalImpact >= 2

TI p

Fig. 8. Aggregation of distributions of F and I into the distribution for TI and calcu-
lation of P (Total impact ≥ 2)

2) = 0.167 . This value is used as the prior probability of the child variable of p.
In this way, results of belief update in one Bayesian network fragment is trans-
ferred to other fragments using functional trails. The main advantage of the
framework of networks with function nodes is this support for performing all
computations in a single model linking Bayesian network fragments.

5.4 Geographic Information System

The combination of a Geographic Information System (GIS) and Bayesian net-
works is a powerful tool for decision analysis. It can, for instance, be used to
evaluate the impact of geospatial management decisions, see, e.g., [21] for a clas-
sification application and, e.g., [17,22] for prediction using dynamic and object-
oriented models. The geospatial area of interest is divided into a set of regions
defined as placemarks on a GIS map. In a common approach to linking a GIS
with Bayesian networks, the GIS provides placemark specific data to be analysed
by one or more Bayesian networks and the results of the analysis are displayed
on the map using color coding for visual interpretation of the consequences of
management decisions.

Y ield

Yield normalized Yield variance

Yield mean

Fig. 9. Normalization of the expected value of a variable
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One approach to mapping the results of belief update on a GIS map using color
coding is to display the probability of a particular state of a specific variable.
Alternatively, if the variable is of a numeric subtype, then the expected value of
the variable can be described. This requires that the value is normalized. This
can be integrated into the Bayesian network by augmenting the network with
function nodes. This creates one single knowledge base representing the entire
analysis and supports offline generation of the map for test and validation. Fig-
ure 9 shows a simplified example where the Yield variable of subtype Numbered
is normalized and its variance is computed using the probability-operator.

The web service architecture [14] supports the use of Bayesian networks in
combination with Google Maps, see Fig. 10. This is used in the OpenNESS
project to operationalize Ecosystem Services2. In this work some output variables
of Bayesian networks are of subtype Numbered. In this case, normalization of the
expected value (as opposed to the most likely value) can be used for color coding
the placemarks. This is readily supported within a single integrated knowledge
representation by the use of function nodes adding significant additional value
to the analysis using Bayesian network in combination with GIS.

Fig. 10. An example of linking Bayesian networks and Google Maps

6 Discussion and Conclusion

We have introduced the notion of a Bayesian network augmented with function
nodes. Both discrete and real-valued function nodes are considered. A real-valued
function node expresses a calculation that should be performed using the results
of a (successful) belief update or simulation. Similarly, a discrete function node
can be used to compute distributions derived from other distributions.

2 EU FP7 308428 — www.openness-project.eu

www.openness-project.eu
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The use of Bayesian networks with function nodes is illustrated using four
real-world applications in the domains of finance, insurance, risk management
and geospatial decision making using GIS. In each case, Bayesian networks aug-
mented with function nodes have made it possible to create a single knowledge
representation of the properties of the problem domain under consideration and
the calculations necessary to compute or specify parameter values as well as to
calculate real values or distributions based on the results of belief update or
simulation. This is extremely useful for the knowledge specification as well as for
testing and validating the performance of systems based on Bayesian networks.

In some domains such as ORM it is common to use multiple Bayesian net-
works for computing a total impact distribution for each business line. The total
impact distribution is computed using discrete function nodes while connect-
ing functional trails can be used to link the networks into a single knowledge
representation for risk management at the organisational level.

It is not possible to specify evidence on a real-valued function node and evi-
dence on a discrete function node F does not induce a likelihood function over
pa(F ). These are natural limitations from the definition of function nodes. If ev-
idence should be entered or should induce a likelihood function over the parents,
then the entity should be represented as a random variable in the network.

The plan for future work includes extending FR to include function nodes
representing the result of a simulation, i.e., the real value of a function node
is simulated from a probability distribution prior to belief update. This will
make it possible to represent and use the result of a simulation within a knowl-
edge representation. In addition, dynamic time-sliced Bayesian networks [4,9],
object-oriented Bayesian networks [11,15] and limited-memory influence dia-
grams should be augmented with function nodes.

Acknowledgments. The research leading to the example described in Sec-
tion 5.4 is part of the OpenNESS project and has received funding from the
European Union’s Seventh Programme for research, technological development
and demonstration under grant agreement no 308428. We also want to thank the
Norma and Frode S. Jacobsen Foundation and The Nordea Bank Foundation for
their financial support of the research producing the example in Section 5.2.
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Abstract. The framework of Bayesian networks is a widely popular
formalism for performing belief update under uncertainty. Structure re-
stricted Bayesian network models such as the Naive Bayes Model and
Tree-Augmented Naive Bayes (TAN) Model have shown impressive per-
formance for solving classification tasks. However, if the number of vari-
ables or the amount of data is large, then learning a TAN model from
data can be a time consuming task. In this paper, we introduce a new
method for parallel learning of a TAN model from large data sets. The
method is based on computing the mutual information scores between
pairs of variables given the class variable in parallel. The computations
are organised in parallel using balanced incomplete block designs. The
results of a preliminary empirical evaluation of the proposed method on
large data sets show that a significant performance improvement is pos-
sible through parallelisation using the method presented in this paper.

Keywords: Bayesian networks, TAN, parallel learning.

1 Introduction

A Bayesian network (BN) [5,14,15,16,19] is a powerful and popular model for
probabilistic inference. Its graphical nature makes it well-suited for represent-
ing complex problems where the interactions between entities represented as
variables are described using conditional probability distributions.

Structure restricted Bayesian network models such as the Naive Bayes (NB)
Model [7] and Tree-Augmented Naive Bayes (TAN) Model [11] have shown im-
pressive performance for solving classification tasks [7,20,24]. Data sets to be
analysed using NB and TAN models are ever increasing in number and size.
The size increases both with respect to the number of variables in the data sets
and the number of cases in each data set. Large data sets may challenge the
efficiency of pure sequential algorithms for constructing NB and TAN models
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from data. On the other hand, the computational power of computers is increas-
ing and access to computers supporting parallel processing is improving. This
includes improved access to computers with multiple CPUs and multicore CPUs
as well as high performance computers such as supercomputers. Therefore, there
is an increasing need for algorithms supporting parallel processing. In this paper,
we present a new method for parallel computing when learning a TAN model
from large data sets, where variables are scored pairwise in parallel. Hence, this
method focuses mainly on learning from data sets, where the number of feature
variables is large. The challenge is to distribute the pairwise scoring of subsets
of variables onto a set of compute nodes.

Balanced Incomplete Block (BIB) diagrams [23] are related to the statistical
issue of design of experiments. In [23] the author writes ”Combinatorial design
theory concerns questions about whether it is possible to arrange elements of
a finite set into subsets so that certain balance properties are satisfied.” When
learning a TAN model from data with many feature variables, where the scoring
is distributed onto a number of compute nodes, we need to arrange the features
into subsets such that all pairs of variables are scored (at least) once. Design
theory can provide one solution to this challenge. This paper describes how.

In [8] the authors describe a MapReduce-based method for learning Bayesian
networks from massive data using a search & score algorithm while [4] describes
a MapReduce-based method for machine learning on multicore computers. Also,
[21] presents the R package bnlearn which provides implementations of some
structure learning algorithms including support for parallel computing. [2] in-
troduces a method for accelerating Bayesian network parameter learning using
Hadoop and MapReduce. In this paper, we consider parallelisation of TAN learn-
ing on distributed memory concurrent computers using the standardized and
portable message-passing system referred to as the Message Passing Interface
(MPI) [10]. We employ the SPMD (Single Program, Multiple Data) technique
to achieve parallelism in the learning of the TAN model from data through a
MPI implementation. The implementation has a master process and a number
of worker processes where the master process will also be a worker process.
Tasks are divided into subtasks and run simultaneously on multiple processors
with different input. The results of the subtasks are communicated to a master
process, which collects the results and produces the final outcome.

This paper is organised as follows. Section 2 presents preliminaries and no-
tation including an introduction to BIB designs. Section 3 describes the details
of the proposed method for parallel TAN learning while Section 4 presents the
results of a preliminary empirical evaluation. Finally, Section 5, Section 6 and
Section 7 give a discussion, conclusions and outline future work, respectively.

2 Preliminaries and Notation

2.1 Bayesian Networks

Let X = {X1, . . . , Xn} be a set of discrete random variables such that dom(X)
is the state space of X and ||X || = |dom(X)|. A discrete BN N = (X , G,P) over
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X consists of an acyclic directed graph (DAG) G = (V,E) with vertices V and
edges E and a set of CPDs P = {P (X |pa(X)) : X ∈ X}, where pa(X) denotes
the parents of X in G [5,15,19]. The discrete BN N specifies a joint probability
distribution over X as

P (X ) =
n∏

i=1

P (Xi |pa(Xi)).

We only consider discrete Bayesian networks in this paper. We use upper case
letters, e.g., Xi and Y , to denote variables and lower case letters, e.g., xj and
y, to denote states of variables. Sets of variables are denoted using calligraphic
letters, e.g., X and F .

A TAN model T = (X , G,P) is a restricted type of BN with X = {C} ∪ F
where C is a class variable and F is a set of feature variables and G(F) is a tree
where G(X ′) is the subgraph of G induced by X ′ and C is parent of each F ∈ F .

Example 1. Figure 1 shows the graph G of a TAN model with |F| = n features
where pa(Fi) = {Fi−1, C} for i = 2, . . . , n, pa(F1) = {C} and pa(C) = ∅.

C

F1 F2 · · · Fn

Fig. 1. A TAN model with n features

The class variable C is a parent of each F ∈ F and each F ∈ F has at most
one other parent. If C is removed from G, a tree is obtained over the remaining
variables, i.e., F .

2.2 Learning a TAN from Complete Data

Let D = (c1, . . . , cN ) denote a data set of N complete cases over variables X =
{C} ∪ F where C is the classification variable and F is a set of n features. The
task of constructing a TAN model over X from D basically amounts to finding
a maximal weighted spanning tree over F , directing edges such that each vertex
has at most one parent and adding C as a parent of each F ∈ F . The algorithm
of [11] based on [3] is basically:

1. Compute mutual information I(Fi, Fj |C) for each pair, i �= j.
2. Build a complete graph G over F with edges annotated by I(Fi, Fj |C).
3. Build a maximal spanning tree T from G.
4. Select a vertex and recursively direct edges outward from it.
5. Add C as parent of each F ∈ F .
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In order to build the complete graph G over F , we need to compute I(Fi, Fj |
C) for

(
n
2

)
= n(n− 1)/2 pairs where n = |F|, i.e., there are n feature variables.

When using multiple processes we need to determine how to distribute the scor-
ing between processors to avoid computing the score of any pair more than once.
The ultimate level of parallelisation would be to create one process for each pair
to score. However, this may not be the most efficient approach in practice.

Once the structureG has been determined, the parameters of P are estimated.
We assume data D is complete and do not consider the process of estimating P
from D. Thus, we focus only on determining the structure of G.

2.3 Balanced Incomplete Block Designs

The use of block designs dates back to the statistical theory of design of exper-
iments [9], highly motivated in its origin by agricultural experiments. In such
scenarios, the goal was to compare the yield of different plant varieties, consid-
ering that the yield could be significantly affected by the environment, i.e., the
conditions under which the plants are grown. The idea was to remove the effect
of the environment by setting up blocks of uniform environmental conditions,
and distribute the plants among the blocks, as testing every plant in each block
might potentially have an unaffordable cost. The term balanced design refers to
the fact of keeping the probability that two varieties are compared (i.e., that
they fall inside the same block) constant for every pair. BIB designs are used to
distribute the pairwise scoring to obtain the highest level of parallelism making
sure that all pairs are scored and no pair is scored more than once.

The work of testing for independence between pairs of variables should be dis-
tributed evenly among the processes (or processors) available. At the same time,
we want each process to access as little data as possible (in order to minimize
IO and memory usage). If we have n variables, p processes, and each process
reads data for k variables, then the following inequality must always be satisfied
in order to cover all pairs of variables

p

(
k

2

)
≥
(
n

2

)
.

Solving for k produces k ≥ n
/√

p, and equality holds only when p = 1.
In order to come as close as possible to this theoretical minimum, we must

distribute the data among the processes in such a way that each pair of variables
is assigned to exactly one process. We use BIB designs to achieve this. In Design
Theory, a design is defined as:

Definition 1 (Design [23]). A design is a pair (X,A) s. t. the following prop-
erties are satisfied:

1. X is a set of elements called points, and
2. A is a collection of nonempty subsets of X called blocks.

We only consider cases where each block is a set (and not a multiset) and each
point will correspond to a subset of variables. A BIB design is defined as:
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Definition 2 (BIB design [23]). Let v, k and λ be positive integers s. t.
v > k ≥ 2. A (v, k, λ)-BIB design is a design (X,A) s. t. the following properties
are satisfied:

1. |X | = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

We use BIB designs to control the process of scoring pairs of feature variables.
A point corresponds to a subset of feature variables and a process is created for
each block. The number of blocks in a design is denoted b and r denotes the
replication number, i.e., how often each point appears in a block. Property 3
in the definition is the balance property that we need. We only want to score
each pair once and therefore require λ = 1. A BIB design is called incomplete
as k < v. A BIB design where v = b or r = k is symmetric, i.e., the number of
points equals the number of blocks or the replication number equals the block
size. In a (v, k, λ)-BIB design, every point occurs in r blocks where r = λ(v − 1)
/(k − 1) and the number of blocks is b = vr/k [23].

Example 2. Consider the (7, 3, 1)-BIB design. In this design, b = 7 · 3/3 = 7 and
r = 1 · (7− 1)/(3− 1) = 3. Hence, each point appears in three blocks and there
are seven blocks. The blocks are (one out of a number of possibilities):

{123}, {145}, {167}, {246}, {257}, {347}, {356}, (1)

where {abc} is shorthand notation for {a, b, c}. This BIB design is symmetric as
the number of blocks equals the number of points. This will not be the case in
general.

Examples of other designs that are known to exist include (16, 20, 5, 4, 1),
(91, 91, 10, 10, 1) and (871, 871, 30, 30, 1), using the notation (v, b, r, k, λ) for each
BIB design [6].

There is no single method to construct all BIB designs. However, a difference
set can be used to generate some symmetric BIB designs.

Definition 3 (Difference Set[23]). Assume (G,+) is a finite group of order v
in which the identity element is 0. Let k and λ be positive integers such that
2 ≤ k < v. A (v, k, λ)-difference set in (G,+) is a subset D ⊆ G that satisfies
the following properties:

1. |D| = k,
2. the multiset [x−y : x, y ∈ D, x �= y] contains every element in G\{0} exactly

λ times.

In our case, we are restricted to using (Zv,+), the integers modulo v.
If D ⊆ Zv is a difference set in group (G,+), then D + g = {x+ g|x ∈ D} is

a translate of D for any g ∈ G. The multiset of all v translates of D is denoted
Dev(D) and called the development of D [23], page 42.
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Theorem 1 ([23], Theorem 3.8 p. 43). Let D be a (v, k, λ)-difference set in
an Abelian group (G,+). Then (G,Dev(D)) is a symmetric (v, k, λ)-BIB design.

Example 3. The set D = {0, 1, 3} is a (7, 3, 1)-difference set in (Z7,+). The
blocks constructed by iteratively adding one to each element of D (modulo 7)
are:

{013}, {124}, {235}, {346}, {450}, {561}, {602}. (2)

Notice that the ith element of each block is unique across all blocks. This prop-
erty is used to assign blocks to processes.

Table 1 [12] shows difference sets for a set of symmetric BIB designs. The
corresponding BIB design blocks are constructed as illustrated in Example 3.
Notice that the first element of each difference set is unique. This means that
the first element of each block can be used to associate process ranks and blocks.

Table 1. Difference sets for a set of symmetric BIB designs

BIB design Difference set k/v

(3,2,1) (0,1) 0.67
(7,3,1) (0,1,3) 0.43
(13,4,1) (0,1,3,9) 0.31
(21,5,1) (0,1,4,14,16) 0.24
(31,6,1) (0,1,3,8,12,18) 0.19
(57,8,1) (0,1,3,13,32,36,43,52) 0.14
(73,9,1) (0,1,3,7,15,31,36,54,63) 0.12
(91,10,1) (0,1,3,9,27,49,56,61,77,81) 0.11
(133,12,1) (0,9,10,12,26,30,67,74,82,109,114,120) 0.09
(183,14,1) (0,12,19,20,22,43,60,71,76,85,89,115,121,168) 0.08

Notice how the block size k increases and that some values are missing in the
sequence. That is, there is no symmetric BIB design for k = 7 with λ = 1. We
know that a symmetric BIB design exists when k − 1 is a prime power and a
conjecture states that a symmetric BIB design exists only when this is the case.
For instance, 8− 1 = 71 and 9− 1 = 23 whereas 7− 1 = 6 = 2 ∗ 3 [13,12].

3 Parallelisation of TAN Learning

There are two obvious approaches to parallelise the TAN learning algorithm
described in Section 2.2. One approach is to assign the same number of cases to
each process. Each process would then count the configurations of all pairs of
variables (together with the class variable) in the data assigned to the process.
The counts from all processes are combined and used to perform the pairwise



308 A.L. Madsen et al.

scoring. We refer to this as horizontal parallelisation. This approach to horizontal
parallelization is embarrassingly parallel, i.e., it requires little effort to separate
the problem into a number of parallel tasks.

A second approach (and the one investigated in this paper) is to distribute the
scoring to the processes. The idea is to assign a set of variables to each process
such that each pair of variables is assigned to exactly one process as we need
to score each pair of variables at least once. This is only possible for certain
combinations of numbers of variables and processes. We refer to this as vertical
parallelisation.

Horizontal parallelisation mainly addresses learning from data sets with many
cases whereas vertical parallelization mainly addresses learning from data sets
with many feature variables. Horizontal and vertical parallelization can be com-
bined to cope with data sets where both N and |F| are large. In this paper, we
focus only on vertical parallelisation.

3.1 Parallel Scoring Using BIB Designs

In learning the structure of a TAN model, each pair of variables Xi, Xj ∈ F
should be scored for mutual information given C (at least once). The task of
calculating these scores in parallel can be solved using BIB designs. That is,
BIB designs are used to control the process of scoring all pairs of features in
Step 1 of the algorithm in Section 2.2, i.e., computing the mutual information
between Fi, Fj ∈ F given the class variable C. This means that BIB designs are
used to divide F into subsets to be assigned to each process. Each process will
score pairs of features assigned to it.

Fisher’s inequality states that b ≥ v [23] (who cites [9]). That is, no design
with b < v is possible. This means that the number of blocks b is larger than or
equal to the number of points v. On the other hand, |F| is usually much larger
than the number of processors available. This means that each point should
represent a subset of variables, i.e., each point p represents a set of variables
Fp ⊆ F . We do not include the class variable C in the set of points. As we need
to score pairs exactly once, we are only interested in designs with λ = 1.

A separate process with a unique rank is created for each block where the
rank is a number from zero to the number of processes minus one. Each process
computes the pairwise scores represented by the block as described below. This
means that ideally the number of blocks should match the number of processes
and each point in all blocks should represent the same number of features. This
may not be possible in practice as BIB designs for any combination of v and k
do not necessarily exist. Instead either some processors will be idle, more blocks
than processes can be created or idle processors can be used for other tasks such
as horizontal parallelisation.

The process of computing the scores in Step 1 of the algorithm in Section 2.2
can be organized and distributed using a BIB design. Each process computes
the score for each pair of features from different points. This is referred to as
inter-point scoring. This means that all variables in different points are scored.
In addition, each process computes the score for each pair of features in a



A New Method for Vertical Parallelisation of TAN Learning 309

unique point. This is referred to as intra-point scoring and ensures that all pairs
are scored exactly once. This is demonstrated by the next example continuing
Example 2.

Example 4. In the (7, 3, 1)-BIB design, each point p = 1, . . . , 7 represents a sub-
set Fp ⊆ F . If we assume |F| = 140, then |Fp| = 20, i.e., each point represents 20
features. As k = 3 each process is assigned 60 features, but each process does not
score all pairs as described below. The seven blocks (b = 7) of the (7, 3, 1)-BIB
design are shown in (1).

Example 5. Consider again the (7, 3, 1)-BIB design and assume |F| = 14. This
means that each point represents two features. Each process is assigned six fea-
tures. The seven blocks (b = 7) of the (7, 3, 1)-BIB design are shown in (1).

Figure 2 is a graphical illustration of how BIB designs are used to calculate
the scores in parallel using seven processes and assuming |F| = 14. Each process
is assigned a block containing three points. Each point represents two variables.

p = 1

0 1 3

X1 X2 X3 X4 X7 X8

x1 x2 x3 x4 x7 x8

· · ·

p = 7

6 0 2

X13 X14 X1 X2 X5 X6

x13 x14 x1 x2 x5 x6

Intra
Inter

Fig. 2. Illustration of how BIB designs are used to parallelise the pairwise scoring

The figure illustrates how process p = 1 performs both inter-point and intra-
point calculations. The block assigned to process p = 1 is {013}. Each point
represents a unique pair of variables, e.g., point 0 represents the set {X1, X2}.
Calculating the score for X1 and X2 is an intra-point operation whereas cal-
culating the score for X1 and X3 is an inter-point score as X1 and X3 are in
different points. The challenge is to make sure that all processes perform the
same number of computations.

Notice that each process reads k/v = 3/7 = 43% of the feature data in
addition to the class data.
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Each process p computes the score for all pairs of feature variables Xi, Xj

where Xi and Xj belongs to subsets represented by different points in the block
represented by p. These are the inter-point operations. In addition, each process p
computes the score for all pairs of feature variables Xi, Xj where Xi and Xj

belong to the subset represented by the first point in the block represented by p.
These are the intra-point operations. In this way, all pairs are scored exactly
once.

3.2 Generating Symmetric BIB Designs with λ = 1

Symmetric BIB designs with λ = 1 can be generated using difference sets as
described in Section 2.3 where Table 1 shows the difference sets needed to gen-
erate symmetric BIB designs with λ = 1 for k ≤ 14. Each process generates its
corresponding block using its unique rank by adding the rank to each element
of the difference set modulus the number of processes created.

3.3 Theoretical Performance Improvement

Each process p represents one block of points. If v < |F|, which is usually the
case, then each point represents a subset Fp ⊆ F . Here we assume that each
point represents the same number of features, i.e., we assume each point to
represent m feature variables. This means that each process p performs

(
k
2

)
m2

inter-point calculations, where k is the block size and m is the number of feature
variables in each point. Each process p performs

(
m
2

)
intra-point calculations.

Using a (v, k, λ)-BIB design each process will have to read k/v of the data set
in order to calculate the scores assigned to the process. If v = 7 and k = 3 (as
in Example 2), then each process reads 3/7 = 43% of the data. If v = 91 and
k = 10 (as in Example 2), then each process reads 10/91 = 11% of the data. The
last column of Table 1 shows the amount of feature data read by each process for
p ∈ {3, 7, 13, 21, 57, 73, 91, 133, 183}. All feature data are read for p = 1, which
is equivalent to a pure sequential algorithm.

Example 6. Assume a (13, 4, 1)-BIB design with m = 10 where m is the number
of feature variables in each point, i.e., |F| = 130. Each process performs

(
4
2

)
102+(

10
2

)
= 600 + 45 = 645 calculations and reads 40 data files (in addition to the

data file containing the class variable) out of 130 data files, i.e. 41/131 = 31%
of D. In total 13 · 41 = 533 files are read by the 13 processes.

A pure sequential implementation will read all data, i.e., 130 feature data files
and one class data file, and score

(
130
2

)
= 8385 pairs of feature variables. That

is, each process in the parallel program computes 8% of the scores computed by
the single process in a pure sequential application.

Although the proposed method achieves a linear (in the number of processes)
speed-up in the number of calculations (mutual information scores) performed
by a single process, it only achieves a speed-up of the square root of the number
of processes in the amount of data needed by a single process. This is optimal
for vertical parallelisation as explained in Section 2.3.
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4 Empirical Evaluation

This section reports on a preliminary empirical evaluation of the proposed par-
allel TAN learning algorithm.

4.1 Data Sets

Three different sources of data sets were considered in the empirical evaluation.
Random samples were generated from two real-world Bayesian networks of dif-
ferent sizes, i.e., the Munin1 [1] and Munin2 [1] networks. For each of these
networks a variable was arbitrarily chosen as class variable. The third source of
data was a sample generated from a real-world financial data set.

Table 2. Data sets used in the experiments

data set |X | N

Munin1 189 750,000
Munin2 1,003 750,000
Bank 1,823 1,140,000

Table 2 describes properties of the data sets used in the experiments. Munin1
and Munin2 are data sets of 750,000 cases generated from the Munin1 and
Munin2 networks, respectively, while Bank is a data set with 1,140,000 cases over
financial data. Bank is an artificial data set generated from a real-world data
set maintaining some of the statistical properties of the original data. Variable
names and values have been anonymised. Continuous variables were discretized
into five bins. All data sets used in the empirical evaluation are complete, i.e.,
there are no missing values in the data.

4.2 Hardware

The empirical evaluation was performed on three different computer systems.
One Linux server and two supercomputers Fyrkat and Vilje both running Linux:

1. A linux server running Ubuntu (kernel 2.6.38-11-server) with a four-core
Intel Xeon(TM) E3-1270 Processor and 32 GB RAM.

2. Fyrkat1 is a computer cluster where each worker node used has 2 Intel Xeon
(TM) X5260 Processors and 16GB RAM. It has a total of 80 such nodes. This
cluster system uses SLURM (simple Linux Utility for Resource Management)
for resource management.

1 http://fyrkat.grid.aau.dk

http://fyrkat.grid.aau.dk
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3. Vilje2 is a computer cluster where each worker node has dual eight-core Xeon
E5-2670 Processors and 32GB. It has a total of 1404 such nodes. This cluster
system uses PBS (Portable batch System) for resource management.

The algorithms were implemented using HUGIN software version 8.0 [17,18]
and MPI. The HUGIN software does not have any special features necessary for
implementing the ideas presented in this paper. It is important to notice that the
experiments were performed when the system was being used by other users and
running other applications. This is likely to impact performance and produce a
higher variance in execution times than if the experiments were performed on a
dedicated system.

4.3 Scoring Function

In the implementation, the score I(Xi, Xj |C) was computed from the likelihood
test statistics G = 2∗

∑
i Oi · log(Oi

Ei
), where Oi is the observed frequency and Ei

is the expected frequency under the null hypothesis. Since G = 2 ·N · I(Xi, Xj),
the mutual information score can be computed as I(Xi, Xj) = G/(2 ·N).

If the counts computed by each process are stored and communicated to the
master process, then (assuming complete data) the parameters of the conditional
probability distribution can be estimated.

4.4 Evaluations

The parallel algorithm was implemented employing the SPMD model. The sys-
tem has a master process and a number of worker processes. Each process has a
unique identifier referred to as its rank. The process of rank zero is referred to as
the master process. Each process, including the master process, reads data for
the feature variables assigned to it and the class variable. Each variable is stored
in a single file. This means that each process only reads data for its assigned
features and the class variable. The block assigned to a process is uniquely iden-
tified using the rank of the process and the difference set (each process knows the
number of processes created). The unique block of process p is calculated using
the rank of p and the difference set (see Theorem 1). All processes including the
process of rank zero compute the mutual information for its assigned pairs and
communicate the results back to the process of rank zero. The process of rank
zero collects the results and creates the maximum spanning tree (Step 3 - 5).
These last steps are very fast to perform compared to data reading and scoring.

The average computation time was calculated over ten runs with the same
data. The computation time was measured as the elapsed (wall-clock) time be-
tween two specific points in the program. Time was measured in the master
process from before it started reading data for its assigned features until the
scoring was completed and all results communicated to the master process. We
also report the time used for reading data and performing the scoring for the
process of rank zero to get an indication of the division of work between reading
data and computing scores as well as to verify the speed-up obtained.

2 https://www.hpc.ntnu.no/display/hpc/Vilje

https://www.hpc.ntnu.no/display/hpc/Vilje
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4.5 Results

This section reports on the results of the empirical evaluation of the proposed
method for vertical parallelisation of learning the structure of a TAN. Exper-
iments were performed using the three data sets described in Section 4.1 and
three systems described in Section 4.2.
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Fig. 3. Average run times for Munin1 and Munin2 on Ubuntu

Figure 3 (left) shows the average run time in seconds for Munin1 on Ubuntu
while Fig. 3 (right) shows the average run time in seconds for Munin2 on Ubuntu.
The figure shows that performance improved up to seven processes. For 13 and
21 processes performance deteriorated. This is expected as Ubuntu has only four
physical cores (and eight logical cores).

On Fyrkat data files were assumed mounted on the compute nodes before
executing the application. Figure 4 (left) shows the average running time for
Munin2 on Fyrkat while Fig. 4 (right) shows the average running time for Bank
on Fyrkat. It is clear that the average running time improved as the number of
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blocks, i.e., processors used, increased. The performance should be expected to
deteriorate if the number of blocks is higher than the number of processors used.

Figure 5 shows the average running time on Vilje for Munin2 (left) and Bank
(right). It is clear that the average running time improved as the number of
blocks, i.e., processors used, increased.
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Figure 6 (left) shows the speed-up factors for reading data (Time) and the
theoretical number of files read by each process (Files) relative to the case of
one processor as well as the square root of the number of processors (Optimal).
The theoretical number of files read by each process is computed as k/v · |X |.
Figure 6 (right) shows the speed-up factor for scoring as a function of the number
of processors used.

It is clear from Fig. 6 that the theoretical number of files read by each process
as expected follows the square root of the number of processes. Similarly, the
speed-up factor for time used on testing is approximately a linear function of
the number of processors used. It is more surprising that the measured time
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performance shows a higher speed-up that the square root of the number of
processes. The number of times a file was read by different processes increased
as the number of processors used increased. This means that the impact of
caching files increased with the number of processors used. We believe that this
explains the unexpected observed behaviour.

5 Discussion

This paper has introduced a new method for vertical parallelisation of TAN
learning based on using symmetric BIB designs with λ = 1. The use of BIB
designs makes it possible to achieve a work balance between processes such that
all processes score (almost) an equal number of pairs of feature variables. Sym-
metric BIB designs with λ = 1 do not exist for all values of v and k. Table 3
shows symmetric BIB designs with λ = 1 for k ≤ 14. Difference sets for sym-
metric BIB designs with λ = 1 for much higher k are known, see e.g.,[12]. If the
number of processors (or cores) does not match with a block size for which a
symmetric BIB design with λ = 1 is known to exist, then idle processors can
be used for horizontal parallelisation or parallelisation of the counting process.
Difference sets for b up to 1893 are implemented and this can be increased as
needed taking the prime power conjecture into account.

The results of the experimental evaluation show a clear time performance
improvement as the number of blocks, i.e., processors used, is increased. Notice
that even on a single CPU machine with multiple cores, a performance improve-
ment is achieved. For this system performance deteriorates when the number of
blocks is higher than the number of logical cores in the CPU. This should be
expected. There is some variance in the run time measured. This should also be
expected as the evaluation is performed on systems serving other users, i.e., the
experiments have not been performed on isolated systems.

Notice that the performance evaluation has been performed on three differ-
ent systems. From a personal computer running as a Linux server to powerful
supercomputers using different types of resource management systems. The re-
sults of the experiments show that a performance improvement can be realised
on each of these types of systems taking advantage of parallel computation. The
empirical evaluation has been performed using data sets of different complexity
both with respect to the number of variables and the number of cases.

6 Conclusion

This paper introduces a new method to vertical parallelisation of learning the
structure of a TAN model from data. The approach is based on the use of BIB
designs to distribute computing pairwise mutual information between features
given the class variable.

The results of an empirical evaluation of the proposed method on desktop as
well as supercomputers show a significant time performance improvement over
the pure sequential method.



316 A.L. Madsen et al.

7 Future Work

The principle of vertical parallelisation of pairwise scoring introduced in this
paper can be applied to the process of structure learning of a Bayesian network
using, e.g., the PC algorithm [22]. In the PC algorithm all variables are initially
tested for pairwise independence, which is similar to the scoring of all pairs
of F . In addition, a set of conditional independence tests are performed. The
principles of vertical parallelisation can be applied in both cases. The plan for
future work includes investigating how BIB designs can be applied to perform
the conditional independence tests in parallel.

Parallelising the counting process (horizontal parallelisation) can be consid-
ered as orthogonal to the pairwise scoring (vertical parallelisation). This means
that the methods can be combined to achieve even further performance improve-
ments when data sets are extremely large, i.e., do not fit into main memory of
the computer. Furthermore, we plan to investigate options for taking advan-
tage of multithreaded programming solving the tasks assigned to each process.
This may include both data reading for horizontal parallelisation of the count-
ing scheme as well as inter and intra pairwise conditional independence testing.
Furthermore, BIB designs can also be applied to improve the performance of the
pairwise scoring by a single process.
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Abstract. Two important tasks in probabilistic reasoning are the com-
putation of the maximum posterior probability of a given subset of the
variables in a Bayesian network (MAP), and the computation of the max-
imum expected utility of a strategy in an influence diagram (MEU). De-
spite their similarities, research on both problems have largely been con-
ducted independently, with algorithmic solutions and insights designed
for one problem not (trivially) transferable to the other one. In this work,
we show constructively that these two problems are equivalent in the
sense that any algorithm designed for one problem can be used to solve
the other with small overhead. These equivalences extend the toolbox of
either problem, and shall foster new insights into their solution.

Keywords: Bayesian networks, maximum a posteriori inference, influ-
ence diagrams, maximum expected utility.

1 Introduction

Maximum a posteriori inference (MAP) consists in finding a configuration of a
certain subset of the variables that maximizes the posterior probability distri-
bution induced by a Bayesian network [30]. MAP has applications, for example,
in diagnostic systems and classification of relational and sequential data [15].
Solving MAP is computationally difficult, and the literature contains a plethora
of approximate solutions, a few examples being the works in [4,29,17,18,13,21,26]

Influence diagrams extend Bayesian networks with preferences and actions
to cope with decision making situations [10,12]. The maximum expected utility
problem (MEU) is to select a mapping from observations to actions that maxi-
mizes the expected utility as defined by an influence diagram. MEU appears, for
example, in troubleshooting and active sensing [12]. Although MEU is computa-
tionally difficult to solve, it counts with a large number of approximate solutions,
for example, the works in [32,14,20,5,24,19,16,9,7,6].
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The MAP and MEU problems are closed for the complexity class NPPP [30,5],
which implies that any algorithm designed to solve one problem can in principle
be used to solve the other.1 Moreover, both problems are NP-complete when the
treewidth of the underlying diagram is assumed bounded [3,22,23].2 In practice,
however, these two problems have been investigated independently, with a few
similarities arising in the design of algorithms such as the use of clique-tree
structures and message-passing for fast probabilistic inference [20,21].

In this work we provide constructive proofs of the equivalences between these
two problems. We start by presenting background knowledge on graphs (Sec. 2),
Bayesian networks (Sec. 3) and influence diagrams (Sec. 4), and formalizing the
MAP and MEU problems. Then, we design a polynomial-time reduction that
maps MAP problems into MEU problems (Sec. 5). We show that the reduction
increases the treewidth by at most four, which makes the reduction closed in NP.
We proceed to build a polynomial-time reduction of MEU into MAP problems
(Sec. 6). The reduction increases treewidth by at most five, being also closed
in NP. These reductions enlarge the algorithmic toolbox of either problem, and
shall bring new insights into the design of new algorithms. We conclude with
an overview of the results and a brief discussion on some shortcomings of the
reductions developed here (Sec. 7).

2 Some Useful Concepts from Graph Theory

Consider a directed graph with nodes X and Y . A node X is a parent of a Y if
there is an arc going from X to Y , in which case we say that Y is a child of X .
The in-degree of a node is the number of its parents. We denote the parents of a
node X by pa(X) and its children by ch(X). The family of a node comprises the
node itself and its parents. A polytree is a directed acyclic graph (DAG) which
contains no undirected cycles. A DAG is loopy if it is not a polytree. Polytrees are
important, as they are among the simplest structures, and probabilistic inference
can be performed efficiently in some polytree-shaped Bayesian networks.

The moral graph of a DAG is the undirected graph obtained by connecting
nodes with a common child and dropping arc directions. The moral graph of a
DAG might contain (undirected) cycles even when the DAG itself does not (e.g.,
any polytree with maximum in-degree greater than one).

A tree decomposition of an undirected graph G is a tree T such that

1. each node i associated to a subset Xi of nodes in G;
2. for every edge X-Y of G there is a node i of T whose associated node set Xi

contains both X and Y ;
3. for any node X in G the subgraph of T obtained by considering only nodes

whose associate set contain X is a tree.

1 We assume here that the number of incoming arcs into any decision node in an
influence diagram is logarithmically bounded by the number of variables, which
limits the size of strategies to a polynomial in the input size.

2 The treewidth of a graph is a measure of its similarity to a tree.
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The third property is known as the running intersection property. A clique is a
set of pairwise connected nodes of an undirected graph. Any tree decomposition
of a graph contains every clique of it included in some of the associated node
sets [2]. The treewidth of a tree decomposition is the maximum cardinality of a
node set Xi associated to a node of it minus one. The treewidth of a graph G
is the minimum treewidth over all tree decompositions of it. The treewidth of a
directed graph is the treewidth of its corresponding moral graph. Polytrees have
treewidth given by the maximum in-degree of a node.

The elimination of a node X from a graph G produces a graph G′ by removing
X (and its incident arcs) and pairwise connecting all its neighbors. A node is
simplicial if all its neighbors are pairwise connected. Eliminating a simplicial
node is the same as simply removing it (and its incident arcs) from the graph.
Let G be a graph of treewidth κ, and G′ be the graph of treewidth κ′ obtained
from G by eliminating a node X of degree d. Then κ is at most max{κ′, d}, being
exactly that when X is simplicial [2]. By removing arcs or nodes we generate
graphs whose treewidth are not larger than the original graph.

3 Bayesian Networks and the MAP Problem

A Bayesian network consists of a DAG G over a set of variables X and a set
of conditional probability assessments P (X =x|pa(X)= π), one assessment for
every variable X in X and configurations x and π of X and pa(X), respectively.
The DAG encodes a set of Markov conditions: every variable is independent
of its non-descendant non-parents given its parents. These conditions induce
a joint probability distribution over the variables that factorizes as P (X) =∏

X∈X P (X |pa(X)).
The treewidth of a Bayesian network is defined as the treewidth of its un-

derlying DAG. When using tree decompositions of Bayesian networks we refer
to the sets associated to nodes of the tree as variable sets, since every node is
identified with a variable. Probabilistic inference can be performed in time at
most exponential in the treewidth of the network, hence in polynomial-time if
treewidth is bounded [15].

Let (M,E,H) denote a partition of X and ê be an assignment to E. The
set M contains MAP variables, whose values we would like to infer; the set E
contains evidence variables, whose values are known to be (i.e., they are fixed
at) ê; at last, the set H contains hidden variables, whose values we ignore (i.e.,
they are marginalized out). The MAP problem consists in computing the value

max
m

P (M=m,E= ê) = max
m

∑
H

P (M=m,E= ê,H) . (1)

A configurationm∗ which maximizes the equation above is known as a maximum
a posteriori configuration or posterior mode, as it also maximizes the posterior
probability distribution P (M|E= ê). We can compute m∗ by recursively solving
MAP problems as follows. First, solve the MAP problem (call this problem un-
constrained). Label all MAP variables free and repeat the following procedure
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until no free variables remain: Select a free variable Mi and clamp it at a value
m∗

i such that the MAP problem with Mi =m∗
i returns the same value as the

unconstrained problem; label this variable fixed. Note however that most algo-
rithms for the MAP problem are able to provide a configuration m∗ without
resorting to the procedure described (and with much less overhead).

MAP was shown to be NP-hard to approximate even in polytree-shaped
networks [30]. Specifically, it was shown that the decision version of MAP is
NPPP-complete on loopy networks, and NP-complete on networks of bounded
treewidth. More recently, de Campos [3] showed that the problem is NP-hard to
solve even in polytree-shaped networks with ternary variables, but admits a fully
polynomial-time approximation scheme in networks of bounded treewidth with
variables taking on a bounded number of values. A large number of approximate
algorithms have been designed to cope with such a computational difficulty, in-
cluding search-based methods [29], branch-and-bound techniques[17], dynamic
programming [12,21], message passing [18,13], function approximation [8,4,26],
and knowledge compilation [11].

4 Influence Diagrams and the MEU Problem

An influence diagram extends a Bayesian network with preferences and actions
in order to represent decision making situations. Formally, a influence diagram
consists of a DAG over a set of chance variables C, decision variables D, and
value variables V. The sets C, D and V are disjoint. A chance variable C repre-
sents quantities over which the decision maker has no control, and is associated
with conditional probability assessments P (C|pa(C)) as in a Bayesian network.
The restriction of an influence diagram to its chance variables characterizes a
Bayesian network. A decision variable D represents possible actions available to
the decision maker conditional on the observation of the values of pa(D). Deci-
sion variables are not (initially) associated to any function. A value variable V
represents costs or rewards of taking actions pa(V )∩D given an instantiation of
pa(V )∩C. Every value variable V is associated with utility functions U(pa(V ))),
which encode additive terms of the overall utility. The treewidth of an influence
diagram is the treewidth of the corresponding moral graph after deleting value
nodes.

A decision rule (a.k.a policy) for a decision variable D is a conditional distri-
bution P (D|pa(D)) specifying the probability of executing action D = d upon
observing pa(D) = π. A decision rule prescribes an agent behavior, which is not
necessarily deterministic (i.e., the agent might take different actions d when in
scenario π according to P (D|π)). When P (D|pa(D)) is degenerate for every π,
we can identify a policy with a function mapping configurations π into actions
d. Moreover, if D has no parents, then we can associated a decision rule for D
with an assignment of a value of D. We will often refer to degenerate policies as
functions or assignments (of root decision variables). A strategy is a set contain-
ing exactly one decision rule for each decision variable. The expected utility of
a strategy S = {P (D|pa(D)) : D ∈ D} is given by
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E(S) =
∑
V ∈V

∑
pa(V )

U(pa(V ))P (pa(V )|S) (2)

=
∑
V ∈V

∑
C,D

U(pa(V ))
∏

X∈C∪D

P (X |pa(X)) . (3)

The MEU problem is to compute the value of the maximum expected utility of
a strategy, that is, to compute maxS E(S). A strategy S∗ whose expected utility
equals that value is called an optimal strategy. We can obtain an optimal strategy
by recursively solving MEU problems, in a similar fashion to the computation
of a maximum a posteriori configuration of the MAP problem. Although in this
work we state the results of the reductions in terms of the MAP and MEU
problems (hence, problems whose output are numbers), the same results could
be stated with respect to maximum a posteriori configurations of MAP and
optimal strategies of MEU. It is well-known that the maximum expected utility
can be attained by a strategy containing only degenerate policies. Hence, in
what concerns the MEU problem there is no loss in allowing only deterministic
policies.

The perfect recall condition characterizes a non-forgetting agent, and trans-
lates graphically to the property that the parents of any decision variable are
also parents of any of its children. Perfect recall is a consequence of rationality
when the decision problem involves a single agent with unlimited resources, as
it equates with every known information being considered when making a deci-
sion. This is not the case when multiple agents are involved or resources such as
memory and computing power are limited. A related concept is that of regular-
ity, which requires a temporal order over the decision variables. Together, perfect
recall and regularity enable the solution of MEU by dynamic programming due
to Bellman’s principle of optimality. In our definition, we do not require or as-
sume perfect recall or regularity, although we do allow them to be present by
explicit specification in the graph. Influence diagrams that do not enforce perfect
recall and regularity are often called limited memory influence diagrams [16] or
decision networks [33], although there is some ambiguity about the use of the
latter.

De Campos and Ji [5] showed that the decision version of MEU is NPPP-
complete in loopy diagrams, and NP-complete in diagrams of bounded treewidth.
Mauá et al. strengthened those results by showing the problem to be NP-hard
even in polytree-shaped diagrams with ternary variables and a single value
variable [25], and even in polytree-shaped diagrams with binary variables and
arbitrarily many value variables [23]. They also showed that it is NP-hard to ap-
proximately solve the problem, even in polytree-shaped diagrams when variables
can take on arbitrarily many values [25], but that there is a fully polynomial-
time approximation scheme when both the diagram’s treewidth and the maxi-
mum variable cardinality are bounded [22]. The problem was also shown to be
polynomial-time computable in polytree-shaped diagrams with binary variables
[23], and in diagrams that satisfy perfect recall and whose minimal diagram has
bounded treewidth [16]. As with MAP, the computational hardness of the prob-
lem motivated the development of a large number of approximate algorithms.
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Some of the approaches include branch-and-bound [28,27,32,14], dynamic pro-
gramming [20,12,24], integer programming [5], message passing [19], combinato-
rial search [16,9], and function approximation [7,6].

5 Reducing MAP To MEU

Consider a MAP problem with Bayesian network N = (G,X, {P (X |pa(X)}),
MAP variables M ⊆ X and evidence E = ê. Assume w.l.o.g. that the variables
in E have no children [1]. Consider also an ordering M1, . . . ,Mn of the variables
in M consistent with the partial ordering defined by G (i.e., if there is a directed
path fromMi toMj in G then j > i), and an ordering E1, . . . , Em of the variables
in E also consistent with G. Let êi denote the assignment in e corresponding to
Ej , j = 1, . . . ,m. Obtain an influence diagram I by augmenting the Bayesian
network N in the following way.

1. Label every variable in X as chance variable;
2. Add root chance variables S0 and T0 with values t and f , and specify P (S0) =

P (T0) = 1/2;
3. For i = 1, . . . , n add a decision variable Di taking the same values as Mi;
4. For i = 1, . . . , n add a chance variable Si with values t and f , and parents

Si−1,Mi and Di, and specify

P (Si=1|Si−1,Mi, Di) =

{
1, if Si−1 = t and Mi = Di ;

0, otherwise.

5. For j = 1, . . . ,m add a variable Tj with values t and f , parents Tj−1 and
Ej , and specify

P (Tj=1|Tj−1, Ej) =

{
1, if Tj−1 = t and Ej = êj ;

0, otherwise.

6. Add a value variable V with parents Sn and Tm and utility function

U(Sn, Tm) =

{
1, if Sn = Tm = t ;

0, otherwise.

Figure 1 illustrates the influence diagram obtained in reduction above.

Remark 1. The above reduction takes time polynomial in the size of the input
Bayesian network.

Remark 2. The reduction might introduce (undirected) loops, that is, the re-
duction (potentially) maps a polytree-shaped Bayesian network into a loopy
influence diagram.
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M1 M2 · · · Mn Em · · · E2 E1

(a)

M1 M2 · · · Mn

S0 S1 S2 · · · Sn V

Em · · · E2 E1

Tm · · · T2 T1 T0

D1 D2 · · · Dn

(b)

Fig. 1. Fragments of (a) of a Bayesian network and (b) its equivalent influence diagram
produced by the procedure described

Lemma 1. Let P be the probability measure induced by I. Then,

P (Sn= t, S0, . . . , Sn−1|M,D) =

{
1/2, if Si = t and Mi = Di, i = 1, . . . , n ;

0, otherwise.

Proof. By induction in n. The base case for n = 1 follows from simple application
of the Chain Rule in Bayesian networks:

P (S1= t, S0|M1, D1) = P (S0)P (S1= t|M1, D1) =

{
1/2, if M1 = D1;

0, otherwise.

Assume the result holds for some n. Applying the Chain Rule and using the
conditional independences represented by the graph we obtain

P (Sn+1= t, S0, . . . , Sn|M1, . . . ,Mn+1, D1, . . . , Dn+1) =

P (Sn+1= t|Sn,Mn+1, Dn+1)P (S0, . . . , Sn|M1, . . . ,Mn, D1, . . . , Dn) .

By design P (Sn+1= t|Sn,Mn+1, Dn+1) vanishes unless Sn= t and Mn+1=Dn+1,
in which case the above equality equals

P (Sn = t, S0, . . . , Sn−1|M1, . . . ,Mn, D1, . . . , Dn) .

Hence, the induction hypothesis holds also for n+ 1, and the result follows. ��

Lemma 2. Let P be the probability measure induced by I. Then,

P (Tm= t, T1, . . . , Tm−1|E) =

{
1, if Tj = t and Ej = êj , j = 1, . . . ,m ;

0, otherwise.
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Proof. The proof is similar to the proof of Lemma 1. ��

Theorem 1. The MEU problem obtains the same value as the MAP problem.

Proof. Consider an arbitrary strategy S = {d1, . . . , dn}, and let S = {S0, . . . ,
Sn−1} and T = {T0, . . . , Tm−1}. By using the independences stated in I and the
Total and Chain Rules we derive

E(S) =
∑

Sn,Tm

U(Sn, Tm)P (Sn, Tm|S) = P (Sn= t, Tm= t|S)

=
∑

X,S,T

P (Sn= t, Tm= t,X,S,T|D=S)

=
∑

X,S,T

P (Sn= t,S|M,D=S)P (Tm= t,T|E)P (X) .

According to Lemmas 1 and 2, the product in the sum above vanishes whenever
Si �= t, for some i = 1, . . . , n − 1, Mi �= di, for some i = 1, . . . , n, Ti �= t, for
j = 1, . . . , n− 1, or Ej �= êj, for j = 1, . . . ,m. Whence,

E(S) =
∑

H,S0,T0

P (Sn= t|M=S)P (Tm= t|E= ê)P (M=S,E= ê,H)P (S0)P (T0)

= P (M=S,E= ê,H) .

It follows from the above that maxS E(S) = maxh P (M= h,E= ê,H), which
proves the result. ��

The next result shows that the reduction devised maintains at least part of
the structure of the reduced problem.

Theorem 2. Let κ denote the treewidth of the Bayesian network N . Then the
diagram I has treewidth at most κ+ 4.

Proof. Let T be an optimal tree decomposition (i.e., one with minimum
treewidth) for the DAG of N after deleting the arcs leaving variables in E
(removing arcs leaving evidence nodes does not alter the result of MAP infer-
ence [1]). We obtain a tree decomposition for I whose treewidth is at most the
treewidth of T plus three as follows. For i = 1, . . . , n find a node whose asso-
ciated variable set includes {Mi} ∪ pa(Mi), add a leaf node 	i as its neighbor
and associate 	i with {Mi} ∪ pa(Mi). Similarly, for j = 1, . . . ,m find a node
associated with a superset of {Ej} ∪ pa(Ej), add a leaf node 	n+j as its neigh-
bor, and associate 	n+j with {Ej} ∪ pa(Ej). Transform the resulting structure
such that it becomes binary, and denote the result by T1.3 Root T1 at a node
r (by orienting arcs away from r) such that 	1, . . . , 	n+m are visited in-order,
that is, in a depth-first tree traversal of T1 rooted at r, 	i is visited before 	j if

3 Any tree decomposition can be turned into a binary tree decomposition (i.e., one in
which each node has at most three neighbors) of same treewidth [31].



326 D.D. Mauá

and only if i < j. Obtain a structure T2 from T1 as follows. For every node 	i,
i = 1, . . . , n, add a node 	′i as a child of 	i and associate it to {Si, Si−1, Di,Mi}.
Similarly, for every node 	i, i = n+ 1, . . . ,m, add a child node 	′i associated to
{Ti, Ti−1, Ei}. The structure T3 is a not a valid tree-decomposition, as it vio-
lates the running intersection property: e.g. the variable set associated to a node
	′i, with i = 1, . . . , n, contains the variable Si, which is also in the variable set
associated to 	′i+1 but not in the variable set associated to any other node in
the path between them (as Si does not appear in T ). We obtain a valid tree-
decomposition T3 from T2 by walking around T2 in a Euler tour tree traversal
where each edge is visited exactly twice and enforcing the running intersection
property: for each node that appears after 	′i−1 and before 	′i during the walk,
we include Si−1 if i < n and Ti−1 if i > n in its associated variable set. Since
the Euler tour tree traversal visits each leaf once and each internal node at most
three times, the procedure inserts at most three new variables in any sets asso-
ciated to a node of T3. The treewidth of T3 thus exceeds the treewidth of T2 by
at most 3. The last step is to obtain T ′ from T3 by covering pa(V ) = {Sn, Em}
while respecting the running intersection property. To this end, we include Em

in the variable set associate with every node in the path from 	′n to 	′m. This
increases the treewidth by at most one, and guarantees that the treewidth of T ′

is in the worst case the treewidth of T plus four. ��

The above result implies that applying the reduction on the class of bounded
treewidth Bayesian networks produces a class of bounded treewidth influence
diagrams. Thus, (the decision version of) MAP problems that are NP-complete
are mapped into (the decision version of) MEU problems which are also NP-
complete.

6 Reducing MEU To MAP

Consider a MEU problem with influence diagram I. In order to obtain a Bayesian
network N we first need to apply a sequence of transformations that obtains
an MEU-equivalent influence diagram where decision variables have no parents
and there is a single value variable. The following transformation substitutes a
decision variable with multiple parents by multiple parentless decision variables
and preserves the value of the MEU.

Transformation 1 Select a decision variable D with at least one parent, and
let π1, . . . , πr be the configurations of pa(D).

1. Remove D;
2. Add parentless decision variables D1, . . . , Dr taking the same values as D;
3. Add variables X1, . . . , Xr taking the same values as D; set pa(X1) = pa(D)∪

{D1} and pa(Xi) = pa(D) ∪ {Mi, Xi−1} for i = 2, . . . , r; specify

Pr(X1|D1, pa(D)) =

⎧⎪⎨⎪⎩
1, if pa(D) = π1 and X1 = D1 ,

0, if pa(D) = π1 and X1 �= D1 ,

1/m if pa(D) �= π1 ;
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for i = 2, . . . , r, specify

Pr(Xi|Xi−1, Di, pa(D)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if pa(D) �= πi and Xi = Xi−1 ,

0, if pa(D) �= πi and Xi �= Xi−1 ,

1, if pa(D) = πi and Xi = Di ,

0, if pa(D) = πk and Xi �= Di ;

4. SubstituteD by Xr in pa(C) for every C in ch(D), and modify the conditional
probability functions Pr(C|pa(C)) accordingly.

Figure 2 depicts the result of applying Transformation 1 on a decision node.
The bottleneck of the computational performance of the transformation is the
specification of the O(r2v3) probability values Pr(Xi = xi|Xi−1 = xi−1, Di =
di, pa(D)=πk), where v is the cardinality of D.

pa(D)

D

ch(D)

(a)

D1

X1

D2

X2 · · ·

Dr

Xr

pa(D)

ch(D)

(b)

Fig. 2. A piece of a diagram before (a) and after (b) Transformation 1

Remark 3. Let c be the maximum cardinality of a variable in the family of D
and w = |pa(D)|. Then the transformation takes time O(c2w+3). If we assume
that the in-degree of decision variables are bounded, then w is a constant and
the transformation takes time polynomial in the input size.

If the in-degree of decision variables is not bounded then the specification of
an optimal strategy might take space exponential in the input. Thus, assuming
that w is bounded is reasonable.

Remark 4. The transformation might create loops in polytree-shaped diagrams.

The following two results were proved in [25, Proposition 7].

Lemma 3. Let I ′ be the result of applying Transformation 1 on a decision vari-
able D in a diagram I. There is a polynomial-time computable bijection between
strategies of I and I ′ that preserves expected utility.
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Corollary 1. Let I ′ be the result of applying Transformation 1 on a decision
variable D in a diagram I. The MEU of I ′ and I are equal.

Transformation 1 might increase the treewidth of the graph. To see this, con-
sider an influence diagram I containing one chance variable C, one decision
variable D and one value variable V , with graph structure C → D → V . The
treewidth of the transformed diagram is three while the treewidth of original
graph is one. The following result shows that the increase in treewidth is small.

Lemma 4. Transformation 1 increases the treewidth by at most two.

Proof. Let I ′ be the result of applying the transformation in a diagram I of
treewidth κ. Also, let M and M ′ be the moral graphs of I and I ′, respectively.
We can obtain M from M ′ by sequentially eliminating nodes D1, . . . , Dr and
X1, . . . , Xr−1, in this order, and replacing Xr with D. Let M1, . . . ,M2r be the
graphs obtained by applying each of these operations. Thus, M1 is the graph
obtained by removing D1 from M ′, and M2r equals M . Let κ1, . . . , κ2r be the
treewidth of the graphsM1, . . . ,M2r, respectively, and κ′ be the treewidth ofM ′.
The node D1 is simplicial and has degree |pa(D)|+ 1 in M ′. Since M1 contains
the clique {Xr, Xr−1, Dr} ∪ pa(D) (where pa(D) is taken with respect to M),
it follows that κ1 ≥ |pa(Xr)| = |pa(D)| + 2, which implies κ = max{|pa(D)| +
1, κ1} = κ1. Assume that κ� = κ0, for some 1 ≤ 	 < r − 1. The variable
D�+1 is simplicial and has degree |pa(D)| + 2 in M�. The treewidth κ�+1 ≥
|pa(D)| + 2 because M�+1 contains the clique {Xr, Xr−1, Dr} ∪ pa(D). Hence,
κ� = max{|pa(D)|+ 2, κ�+1} = κ�+1, and by induction we have that κ′ = κr−1 .
The node Dr is simplicial and has degree |pa(D)|+2 in Mr−1. Since Mr contains
the clique {Xr, Xr−1}∪pa(D), it follows that κr ≥ |pa(D)|+1, and thus κr−1 =
max{|pa(D)|+2, κr} ≤ κr+1. Hence, κr−1 ≤ κr+1 . A similar reasoning applies
for κ� with r < 	 < 2r. Mr+1 (i.e., the graph obtained by removing X1) contains
a clique of size |{Xr, Xr−1}∪pa(D)| = |pa(D)|+2, and the node X1 is simplicial
and has degree |pa(D)|+ 1 in Mr. Hence, κr = max{|pa(D)|+ 1, κr+1} = κr+1.
Assume κ� = κm for r < 	 < 2r − 2. Then X�−m+1 is simplicial and has degree
|pa(D)|+1 in M�. Since M�+1 contains the clique {Xr, Xr−1}∪pa(D), it follows
that κ� = max{|pa(D)| + 1, κ�+1} = κ�+1. Thus, by induction, κr = κ2r−2 .
Finally, the graph M2r−1 (obtained by removing Xr−1 from M2r−2) contains
the clique {Xr} ∪ pa(D) (so that κ2r−1 ≥ |pa(D)|), and Xr−1 is simplicial and
has degree |pa(D)|+1 in M2r−2. Therefore, κ2r−2 = max{|pa(D)|+1, k2r−1} ≤
k2r−1 + 1. Since the replacement of Xr with D used to generate M2r = M from
M2r−1 does not change the treewidth (i.e., κ = κ2r = κ2r−1), we have that

κ′ = κr−1 ≤ κr + 1 = κ2r−2 + 1 ≤ κ2r−1 + 2 = κ+ 2 ,

and the result follows. ��
The previous result can be generalized to recurrent applications of Transfor-

mation 1:

Corollary 2. Let I ′ be the result of applying Transformation 1 in a diagram
I of treewidth κ repeatedly until all decision variables are parentless. Then the
treewidth of I ′ is at most κ+ 2.
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Proof. Applying the transformation on two different decision variables affect
different parts of the graph of the original diagram. Hence, the new variables
introduced by the repeated applications can be eliminated in parallel, which
shows that the increase in treewidth remains bounded by two. ��

A final issue to circumvent in order to devise a mapping from MEU to MAP
problems is the treatment of multiple value variables. The following transforma-
tion maps diagrams with multiple value variables into MEU-equivalent diagrams
with a single value variable.

Transformation 2 Take an influence diagram I with value variables V1, . . . , Vn,
and let U = mini,πi U(pa(Vi) = πi) and U = maxi,πi U(pa(Vi) = πi) denote,
respectively, the minimum and maximum utility value associated to any value
variable.

1. Substitute each value variables Vi by a binary chance variable Wi taking
values t and f and with probability distribution given by

P (Wi= t|pa(Vi)) =
U(pa(Vi))− U

U − U
.

2. Add variables O1, . . . , On, each taking values t and f , with pa(O1) = {W1},
and pa(Oi) = {Oi−1,Wi}, i = 2, . . . , n; specify P (O1 = t|W1 = t) = 1,
P (O1= t|W1=f) = 0 and

P (Oi= t|Oi−1,Wi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Oi−1 = Wi = t

(i− 1)/i, if Oi−1 = t and Wi = f

1/i, if Oi−1 = f and Wi = t

0, if Oi−1 = Wi = f

;

3. Add a value variable V with pa(V ) = {On}, U(pa(V ) = t) = nU and
U(pa(V )=f) = nU .

Figure 3 illustrates the application of Transformation 2.

Remark 5. The transformation takes time polynomial in the size of the input
influence diagram.

Remark 6. The transformation might introduce loops.

The following three results were proved in [22, Theorem 1].

Lemma 5. Let I ′ be the result of applying Transformation 2 on an influence
diagram I. There is a polynomial-time computable bijection between strategies
of I and I ′ that preserves expected utility.

Corollary 3. Let I ′ be the result of applying Transformation 2 on an influence
diagram I. The MEU of I ′ and I are equal.
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V1 V2 · · · Vn

C,D

(a)

W1 W2 Wn

O1 O2 · · · On V

C,D

(b)

Fig. 3. (a) Influence diagram with multiple value variables. (b) Its equivalent influence
diagram obtained by Transformation 2.

Lemma 6. Transformation 2 increases the treewidth by at most three.

We are now ready to describe the reduction from MEU to MAP problems.

1. While there is a decision variable with at least one parent, apply Transfor-
mation 1;

2. If there is more than a value variable, apply Transformation 2;
3. Transform each (parentless) decision variable D into a chance variable M

taking on the same values, and with P (M) = 1/v, where v is the cardinality
of D;

4. Replace the (single) value variable V by a chance variable E taking values t
and f , and with

P (E = t|pa(V )) =
U(pa(V ))− U

U − U
,

where U = minπ U(pa(V )=π) and U = maxπ U(pa(V )=π).

Let N be the Bayesian network obtained by the reduction above, and denote
by M the set of variables introduced in step 3.

Theorem 3. Let MAP be the value of the MAP problem with Bayesian network
N , MAP variables M and evidence E = t, and MEU be the value of the MEU
problem with input I. For any configuration m of M we have that

MAP =
P (M=m)

U − U
MEU− U ,

where P (M) =
∏

M∈M P (M), and U and U are, respectively, the minimum and
the maximum of the utility function defined by I.

Proof. Let X denote the variables in N , and Y = X \ (M∪ {E}). Since the set
M contains only root variables associated to uniform probability distributions,
P (M=m) equals some constant C for any configuration m. Hence,
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MAP = max
m

∑
Y

P (E= t|pa(E))P (Y|M=m)P (M=m)

= Cmax
m

∑
Y

P (E= t|pa(E))P (Y|M=m)

= Cmax
m

∑
Y

U(pa(V ))− U

U − U
P (Y|M=m) =

C

U − U
MEU− U ,

which proves the result. ��

The following result shows that the reduction maps NP-complete instances of
MEU into NP-complete instances of MAP.

Corollary 4. Let κ denote the treewidth of an influence diagram. Then the
Bayesian network generated by the reduction has treewidth at most κ+ 5.

Proof. It follows from Lemmas 4 and 6. ��

7 Conclusions

Computing the maximum posterior probability of a subset of variables in a
Bayesian network and calculating the maximum expected utility of strategies in
an influence diagrams are common tasks in probabilistic reasoning. Despite their
similarities, these two problems have hitherto been investigated independently. In
this work, we showed constructively that these two problems are computationally
equivalent in that one problem can be reduced to the other in polynomial time.
Hence, any algorithm designed for one problem can be immediately used for
the other with a small overhead. Future work should evaluate the benefits and
drawbacks of applying algorithms designed for one problem to solve the other,
by means of the reductions presented here.

A common limitation of the correspondences devised here is that they map
problems with polytree-shaped graph structure into problems with loopy graph
structure. This reduces some tractable instances of one problem into apparently
intractable instances of the other problem. For instance, MEU is tractable in
polytree-shaped diagrams with binary variables and a single value node, but
the reduction shown here creates a MAP problem in a loopy Bayesian network,
for which no efficient algorithm exists. A similar problem appears if we try
to use the reductions developed here to prove the hardness of instances with
simple structure. For instance, the complexity of MAP in tree-shaped Bayesian
networks with binary variables is not known, and it cannot be characterized by
the reduction from MAP to MEU presented here because tree-shaped Bayesian
networks are mapped into loopy influence diagrams. It would be interesting to
devise reductions that preserve the topology of the graph structure.

Acknowledgments. The author thanks Fabio G. Cozman and the reviewers
for their valuable comments and suggestions. This work was partially supported
by the São Paulo Research Foundation (FAPESP) grant no. 2013/23197-4.
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Abstract. Limited memory influence diagrams are graph-based models
that describe decision problems with limited information, as in the case
of teams and agents with imperfect recall. Solving a (limited memory)
influence diagram is an NP-hard problem, often approached through lo-
cal search. In this paper we investigate algorithms for k-neighborhood
local search. We show that finding a k-neighbor that improves on the
current solution is W[1]-hard and hence unlikely to be polynomial-time
tractable. We then develop fast schema to perform approximate k-local
search; experiments show that our methods improve on current local
search algorithms both with respect to time and to accuracy.

1 Introduction

Limited memory influence diagrams (LIMIDs) are graph-based probabilistic de-
cision making models particularly suited for teams and limited-resource agents
[4,13]. LIMIDs relax the perfect recall requirement (a.k.a. no-forgetting assump-
tion) of traditional influence diagrams [9], and by doing so, require considerably
more computational effort in the search for optimal policies.

Finding an optimal strategy for polytree-shaped LIMIDs is NP-hard even if
variables are ternary and the utility function is univariate [18], or if variables
are binary and the utility function is multivariate [16]. Similar negative results
hold for approximating the problem within any fixed constant when either vari-
able cardinality or treewidth is unbounded [18]. And even though there are
polynomial-time approximations when cardinalities and treewidth are bounded
[17], constants in such solutions are so big as to prevent practical use. Currently
the state-of-art algorithm for solving LIMIDs exactly is Multiple Policy Updat-
ing (MPU) [15], that works by verifying a dominance criterion between partial
strategies. MPU has worst-case exponential cost but often finishes in reasonable
time. There are also anytime solvers based on branch-and-bound that can trade
off accuracy for efficiency [3,2,10].

In practice, local search methods are the most widely used algorithms for
approximately solving LIMIDs. Lauritzen and Nilsson [13] developed the Single
Policy Updating (SPU) algorithm for computing locally optimum strategies in
arbitrary LIMIDs. Their algorithm remains the most referenced and probably
used algorithm for solving medium and large LIMIDs. SPU iteratively seeks
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for a variable that can improve the incumbent global strategy by modifying its
associated actions. If no such variable is found the algorithm halts at a local
optimum. Detwarasiti and Shachter [4] extended SPU to allow larger moves in
the search space. Roughly speaking, their approach can be seen as a k-neighbor
local search in the space of strategies. In practice, exhaustive k-local search can
only be applied to networks with say less than n=100 decision variables and with
very small values of k (say, k=2), as every step requires exploration of O(nk)
candidates. There have also been proposals based on message-passing algorithms
to cope with high treewidth diagrams [14].

In this paper we focus on the local search that runs within the methods
in the last paragraph. First, we prove that k-local search is W[1]-hard, which
suggests that algorithms that run in time O(f(k)nα) are unlikely to exist, where
f is an arbitrary computable function and α is a constant independent of k
(Section 3). We take such a result as an indication that approximating local-
search is necessary for large values of k.

We thus investigate the use of MPU’s pruning to speed up SPU and related
k-local search schema (Section 4). We propose a relaxed and approximate ver-
sion of MPU’s pruning, with worst-case polynomial-time complexity (Section 5).
This approximate pruning method is used in each k-local search, leading to very
efficient versions of local search methods for LIMIDs. We prove that when k is
the number of action variables, our approximate pruning provides an additive
fully polynomial-time approximation scheme for LIMIDs of bounded treewidth
and bounded variable cardinality. Finally, we show by experiments with ran-
dom networks that our local search algorithms, both exact and approximate,
outperform existing local search methods (Section 6).

2 Limited Memory Influence Diagrams

LIMIDs are graphical representations of structured decision problems [8]. Vari-
ables in a decision problem can be partitioned into state (or chance) variables
S, which represent quantities unknown at planning stage, action (or decision)
variables A, which enumerate alternative courses of action, and value variables
V , which assess the quality of decisions for every configuration of state vari-
ables. We assume here that variables take on finitely many values. Each variable
in a decision problem represented as a LIMID is equated with a node in a di-
rected acyclic graph; in particular, value variables are equated to leaf nodes.
There is a (conditional) probability distribution P (S|PS) for every state vari-
able S ∈ S, where the notation PX denotes the parents of a variable X in the
graph. There is also a utility function U(PV ) for every value variable. The over-
all utility U is assumed to decompose additively in terms of the value variables
[22], that is, U(S,A)=

∑
V ∈V U(PV ). State variables are assumed to satisfy the

Markov condition, which states that any (state) variable is independent of its
non-descendant non-parents conditional on its parents. Consequently, the joint
distribution of state variables conditioned on a configuration A=a of the action
variables factorizes as P (S|A=a) =

∏
S∈S P (S|PS ,A=a).
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A strategy δ= {δA : A ∈ A} is a multiset of local decision rules, or policies,
one for each action variable in the problem. Each policy δA is a mapping from
the configurations of the values of the parents PA of A to values of A. We denote
by ΔA the set of all policies for variable A. A policy for an action variable with
no parents is simply an assignment of a value to that variable. We assume that
policies are encoded as tables. Hence, the size of a policy is exponential in the
number of parents of the corresponding action variable, which in real scenarios
forces us to constrain the maximum number of parents of an action node lest
the implementation of a policy be not practicable.

The perfect recall condition (a.k.a. no forgetting) assumes that all decisions
and observations are “remembered”. Graphically, it entails that if A and A′ are
two action nodes such that A is a parent of A′, then all parents of A are also
parents of A′. We assume that when perfect recall is satisfied the “remembered”
arcs are explicitly represented in the diagram.

The construction of an optimal strategy is harder for LIMIDs that do not
satisfy the perfect recall requirement, exactly due to the absence of links between
actions.

Given an action variable A and a policy δA, we let P (A|PA, δA) be the col-
lection of degenerate conditional probability distributions that assign all mass
to a= δA(PA) (or the degenerate marginal distribution P (A|δA) that places all
mass on δA in case A has no parents). With this correspondence between poli-
cies and (conditional) probability distributions, we can define a joint probability
distribution over the state and action variables for any given strategy δ as

P (S,A|δ) =
∏
S∈S

P (S|PS)
∏
A∈A

P (A|PA, δ) .

The expected utility of a strategy δ, E(U |δ), is then
∑

S,A U(S,A)P (S,A|δ).
Given a strategy δ, computing E(U |δ) can be reduced to a marginal infer-

ence in a Bayesian network [1]. Conversely, marginal inference in Bayesian net-
works, a #P -complete problem [20], can be reduced to the computation of an
expected utility by using a {0, 1}-valued utility and making the conditional prob-
abilities of the children of action nodes numerically independent of strategies.
Hence, those two problems are computationally equivalent. Marginal inference
can be performed in time exponential in the treewidth of the underlying graph by
e.g. variable elimination. This entails a polynomial-time algorithm for networks
of small treewidth (with treewidth considered constant in the complexity analy-
sis). Kwisthout et al. [12] showed that under the widely believed hypothesis that
SAT is not subexponential-time solvable, variable elimination’s performance is
optimal. Thus it seems necessary to constrain LIMIDs to bounded treewidth
diagrams if worst-case efficient computations are sought (it is possible that the
average cost of marginal inference is polynomial; we do not pursue this possibility
here).
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An important task with LIMIDs is that of finding the

Maximum Expected Utility (MEU)
Input: A LIMID and a rational k
Question: Is there a strategy δ such that E(U |δ) ≥ k?

MEU is NPPP-complete, and NP-complete for diagrams of bounded treewidth
[2]. The problem is NP-complete on LIMIDs of bounded treewidth even when
all variables are binary [16], and when all variables are ternary and there is a
single value node [18].

Provided that expected utilities can be succinctly encoded (i.e., represented
in space O(bα), where b is the size of the encoding and α is a constant), we can
compute the value of the maximum expected utility by binary search in polyno-
mial time if MEU can be solved in polynomial time. Similarly, if the in-degrees
of action nodes are bounded we can use a polynomial-time algorithm M that
solves MEU to obtain an optimal strategy in polynomial time as follows. First,
perform a binary search using M to compute the maximum expected utility and
use that value as k. Select an action variable A and for every policy δA build a
new LIMID where A is a state node with conditional probability P (A|δA). Now
run the algorithm M on those LIMIDs: the algorithm will certainly return a yes
answer on some of them; any policy δA corresponding to an affirmative answer
is part of the optimal strategy, and we can repeat the procedure for another
action variable until no action variables remains. Conversely, assuming the same
requirements on the representation of expected utilities and strategies, MEU
can be efficiently solved by any polynomial-time algorithm that computes the
maximum expected utility. Finally, if the treewidth of the diagrams is bounded,
MEU can trivially be solved in polynomial-time by any polynomial-time algo-
rithm that finds optimal strategies. Thus, MEU is largely equivalent to selecting
an optimal strategy and computing the value of the maximum expected utility.

We make extensive use of the following result that follows immediately from
the results in [17] and [18].

Proposition 1. Given a LIMID L of treewidth w we can construct in time
polynomial in its size a LIMID L′ and a function f such that (i) L′ has a single
value variable V such that 0 ≤ U(PV ) ≤ 1, and treewidth at most w+3; (ii) the
action nodes in L′ have no parents; (iii) f maps strategies δ′ of L′ into strategies
δ of L in linear time; (iv) if δ′ is such that E(U ′|δ′) > 0 and δ = f(δ′) then
E(U |δ) ∝ E(U ′|δ′), where U and U ′ denote the utility functions of L and L′,
respectively.

A corollary of the above result is that the MEU of L′ equals the MEU of L up
to a constant, and the optimal strategy for L can be obtained from the optimal
strategy for L′. Hence we assume in the rest of the paper that LIMIDs have a
single value node taking its values in [0, 1], and that action nodes are parentless.
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3 The Complexity of k-Neighborhood Local Search

Consider a strategy δ and a set N ⊆ A. The N -neighborhood of δ is the set
of strategies δ′ that coincide with δ on the policies of variables A ∈ A \ N . A
k-neighbor of δ is any strategy in a N -neighborhood of δ with |N |= k. The k-
neighborhood of δ is the set of its k-neighbors. Arguably, the most widely used
scheme for selecting strategies is as follows.

k-Policy Updating (kPU) Take a LIMID, a strategy δ0 and a positive
integer M : for i = 1 . . .M find a strategy δi in the k-neighborhood of
δi−1; at the end, return δM .

For large enough and finite M the procedure converges to a local optimum.
In particular, if k equals the number of action variables, a global optimum is
found in one iteration. The main bottleneck of kPU is the k-local search step,
where an improving solution is searched for; this can be formalized as

k-Policy Improvement (kPI)
Input: A LIMID L and a strategy δ
Parameter: A positive integer k
Question: Is there a k-neighbor δ′ of δ such that E(U |δ′) > E(U |δ)?

The same argument used when discussing MEU can be used here to show that
the problem of finding the maximum expected utility in the k-neighborhood of a
strategy and the problem of selecting a k-neighbor with higher expected utility
(if it exists) are largely equivalent to kPI in the sense that (under the same
requirements) a polynomial-time algorithm for one problem can be used to solve
another.

For a LIMID whose action variables are parentless, kPI can be solved by
exhaustive search in the k-neighborhood in time O(nkck), where n = |A| is
the number of action variables and c is the maximum cardinality of an action
variable. Such an approach is prohibitive for large values of n or c and moderate
values of k. It is thus interesting to look for faster methods for searching the
k-neighborhood of a strategy. In particular, we should ask whether there is an
algorithm that runs in time O(f(k)bα), where f is an arbitrary computable
function, b is the size of the LIMID (encoded as a bitstring), and α is a constant
independent of k. In other words, we are interested in knowing whether it is
possible to scale up k-local search to diagrams with hundreds of variables if k is
kept small. We now show that finding such an algorithm implies that FPT=W[1],
and is therefore unlikely. To this aim, we need to introduce some background in
the rich field of parameterized complexity.

Parameterized complexity investigates the runtime behavior of inputs (x, k)
that can be decomposed into two parts, its main part x and a parameter k.
Many interesting NP-hard problems are polynomial-time solvable for fixed val-
ues of the parameters, that is, when the parameter is not taken to be part of
the input. There are essentially two kinds of polynomial running time for fixed
parameters. A (decision) problem is said to be fixed-parameter tractable if there
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is an algorithm that solves any parameterized instance (x, k) of the problem in
time O(f(k)bα), where f is an arbitrary computable function, b is the size of the
input and α is a constant that does not depend on k [5]. The class of all fixed-
parameter tractable decision problems is denoted FPT. Note that NP-complete
problems can be either fixed-parameter tractable or intractable.

Similar to the polynomial hierarchy in the NP-completeness framework, the
family W[t] defines a hierarchy of nested and increasingly more complex pa-
rameterized problems for t = 1, 2, . . . ,. Roughly speaking, W[t] is the class of
parameterized problems that can compute Boolean circuits of depth at most
t. We have that FPT ⊆ W[1] ⊆ W[2] ⊆ · · · . It is unknown whether any of
these inclusions is proper, but there are good reasons to believe that at least the
first inclusion (i.e., FPT ⊆ W[1]) is proper [6]: if FPT=W[1] then NP-complete
problems can be solved in subexponential time [7].

Instead of polynomial-time reductions, which one uses to show NP-hardness
of non-parameterized problems, fixed-parameter intractability is usually shown
by many-one parameterized reductions to W[t]-hard problems. A many-one pa-
rameterized reduction from a problem A to problem B takes an instance (x, k)
of A and produces an instance (x′, g(k)) of B in time O(f(k)bα), where g and f
are arbitrary computable functions, b is the length of x and α is a constant.

The next result shows that if a fixed-parameter tractable algorithm that per-
forms k-local search on the space of strategies existed we would prove k-FLIP
MAX SAT to be fixed-parameter tractable.

Theorem 1. Unless W[1]=FPT, there is no algorithm that solves k-POLICY
IMPROVEMENT in time O(f(k)bα), where b is the size of bitstring encoding of
the LIMID, f is an arbitrary computable function and α is a constant indepen-
dent of k, even for polytree-shaped LIMIDs of bounded treewidth.

Proof. We use a parameterized reduction from k-FLIP MAX SAT to prove the
result; that is, we consider the following variant of MAX SAT:

k-Flip Max Sat
Input: A CNF formula F and a truth-value assignment τ0
Parameter: A positive integer k
Question: Is there a k-flip of τ0 satisfying more clauses of F?

A k-flip of an assignment τ is another assignment that differs from τ in the val-
ues assigned to at most k variables. Szeider [21] showed that the above problem
is W[1]-hard.

Consider formula F , truth assignment τ and parameter k, and let X1, . . . , Xn

be the variables in F , and C1, . . . , Cm be its clauses. We build a corresponding
LIMID with graph structure as in Figure 1 and numerical parameters speci-
fied as follows (this construction is similar to the construction used by [19] to
show NP-hardness of MAP inference in polytree-shaped Bayesian networks). The
variables S1, . . . , Sn take values in {0, 1, . . . ,m}. The variable S0 takes values in
{1, . . . ,m}, and the action variables are binary and take on values 0 and 1. The
conditional probabilities of the chance variables are specified as follows:
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Fig. 1. LIMID used to prove Theorem 1

P (Si=1|Si−1, Di) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Si=Si−1=0,

1 if Si=0 and Si−1=k ≥ 1 and Di satisfies Ck,

1 if Si = Si−1 = k ≥ 1 and Di does not satisfy Ck,

0 otherwise,

and P (S0 = s0) = 1/m for all s0. The utility is defined as U(Sn = 0) = 1 and
U(Sn = sn) = 0 for all sn �= 0. The variable S0 serves as a clause selector:
S0 = i denotes that clause i is being selected. Variable Si, i = 1, . . . , n, indicates
whether the clause selected by S0 is satisfied by some of D1, . . . , Di. We then
have that E(U |δ) = #SAT(δ)/m, where #SAT is the number of clauses satisfied
by a truth-value assignment corresponding to δ. Consider an arbitrary strategy δ
corresponding to the truth-value assignment τ . A k-neighbor of δ is a strategy δ′

differing from δ in at most k coordinates. Hence, there is a truth-value assignment
satisfying more clauses in F than τ if and only there is k-policy improvement of
δ, and the result is proved. ��

4 Improving k-Policy Updating: DkPU

The result in the previous section indicates that local search becomes difficult
once we try to refine search by increasing its width (through k). Thus we must
focus on approximate ways that allows us to climb up to reasonably large k (say,
10) for large values of n.

Assuming (w.l.o.g.) that a LIMID has parentless action variables of cardinality
c, a brute-force approach to k-local search can be accomplished by examining
the nk subsets N ⊆ A of cardinality k, and for each N examining all the ck

joint configurations of variables N . Hence, there are two sources of inefficiency
in this approach: finding N and selecting an N -neighbor. We tackle the first
problem by randomly sampling sets N , which guarantees uniform coverage. The
search for N -neighbors is more intricate. In this section we develop a fast proce-
dure for selecting the optimal N -neighbor of an incumbent strategy for a fixed
N (an optimal neighbor is one that maximizes the expected utility among all
neighbors).

4.1 Dominance Pruning

We start with some basic concepts; first, the notion of a potential.
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Definition 1. A potential φ with scope X is a nonnegative real-valued mapping
of configurations x of X .

We assume the usual algebra of potentials: the product φ · ψ of potentials φ
and ψ returns a potential γ on z ∼ Z = X ∪ Y such that γ(z) = φ(x) · ψ(y),
where x and y are the projections of z onto X and Y, respectively. The Y-
marginal

∑
X\Y φ of a potential φ with scope X , where Y ⊆ X , is the potential

ψ with scope Y such that ψ(y) =
∑

{φ(x) : x ∼ y}. The system of potentials
with product and marginalization forms a valuation algebra [11]. This entails
that a marginal

∑
X
∏

ψ∈Γ ψ can be computed by variable elimination: for each
variable X ∈ X in some ordering, remove from Γ all potentials whose scope
contain X , compute the marginal of those products which sums over X and add
the result to Γ .

Since by definition the probability and utility functions in a LIMID are po-
tentials, the expected utility of a given strategy can be computed by variable
elimination. The potentials produced during variable elimination satisfy the fol-
lowing property, which we use later on:

Proposition 2. Consider a LIMID with a single value variable V and a strategy
δ, and let Γ = {P (S|PS), P (A|δA), U(PV ) : S ∈ S, A ∈ A}. If 0 ≤ U(PV ) ≤ 1,
then every potential φ generated during variable elimination satisfies 0 ≤ φ ≤ 1.

Proof. Consider the step in variable elimination where all potentials contain-
ing a variable X are collected, and let Y be all variables Y < X . Let also
FY be the set of Y and its children. By design, the only potentials in the ini-
tial Γ whose scope include a variable Y are P (Y |PY ) (or U(PY ) if Y = V )
and P (Z|PZ) for Z ∈ FY . By the properties of a valuation algebra, it fol-
lows that ψX =

∑
X P (X |PX)

∑
Y
∏

Z∈FY :Z �=X,Y Y P (Z|PZ), where P (Z|PZ) is
U(PZ) if Z=V . The right-hand side of the equality is a convex combination of∑

Y
∏

Z∈FY :Z �=X,Y ∈Y P (Z|PZ), and therefore is a function not greater or smaller
than that in every coordinate. The result follows by induction. ��

The algebra of potentials can be extended to set-valued objects, so as to obtain
maximum expected utility and hence solve MEU [15]. To do so, we define:

Definition 2. A set-potential Φ(X ) is a set of potentials φ with scope X .

Definition 3. The product of two set-potentials Φ(X ) and Ψ(Y) is the set-
potential [Φ · Ψ ](X ∪ Y) = {φ · ψ : φ ∈ Φ, ψ ∈ Ψ}.

Definition 4. The Y-marginal of a set-potential Φ(X ) with respect to a variable
set Y ⊆ X is the set-potential [

∑
X\Y Φ](Y) = {

∑
X\Y φ : φ ∈ Φ}.

Mauá et al. [18] proved that the algebra of set-potentials is a valuation algebra
[11], and thus marginal inference with set-potentials can also be computed by
variable elimination (with potentials and their operations replaced by their set
counterpart).
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The product of set-potentials may create exponentially larger set-potentials.
Our interest in the algebra of set-potentials is, as we show later on, to select
one single table in a set-potential produced by marginalization and product of
many set-potentials. As most of the tables produced are irrelevant, we can save
computations by pruning them from set-potentials generated during variable
elimination. One way of doing this is by defining a dominance criterion between
potentials:

Definition 5. Consider two potentials φ(X ) and ψ(X ) with the same scope.
We say that φ dominates (resp., is dominated by) ψ if φ(x) ≥ ψ(x) (resp.,
φ(x) ≤ ψ(x)) for all x.

We can define the set of non-dominated potentials:

Definition 6. The dominance-pruning of a set-potential Φ(X ) is the set-
potential nd[Φ] of non-dominated potentials in Φ.

Note that if nd is applied on a set-potential with empty scope, it produces a
single real number. Mauá et al. [18] showed that dominance-pruning satisfies

nd[Φ(X )Ψ(Y)]=nd

[
nd[Φ(X )]nd[Ψ(Y)]

]
, nd

[∑
X\Z

Φ(X )

]
= nd

[∑
X\Z

nd[Φ(X )]

]
.

Those properties guarantee the correctness of computation of non-dominated
marginals by dominance-pruned variable elimination; that is, by a version of
variable elimination in which dominance-pruning is applied after every oper-
ation (product or marginalization). If dominance-pruned variable elimination
is applied on a multi-set Γ of set potentials whose joint scopes are X , by
the properties above, we have at the end of the computation a real number
r = nd

[∑
X
∏

Ψ∈Γ Ψ
]
. Note that while direct computation of the right-hand

side of this equality above takes time exponential in the size of the set-potentials
in Γ , applying dominance-pruning after each operation can enormously decrease
the overall cost of computation.

4.2 Local Search With Dominance Pruning

The main idea here is to use dominance pruning as in the MPU algorithm, but
to run efficient k-local search with the space of strategies. Our proposal is as
follows.

Dominance-Based N -Policy Updating (DNPU). Let N be a sub-
set of the action variables, δ be an arbitrary strategy, and Γ be an
initially empty set.
1. For each state variable S add a set-potential ΦS = {P (S|PS)} to Γ ,
2. for each action variable A in N add a set-potential ΦA = {P (A|δ′A) :

δ′A ∈ ΔA} to Γ ,
3. for each action variableA not inN add a set-potential ΦA = {P (A|δA) :

δA} to Γ , where δA is the policy of A in δ.
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4. Add the set-potential ΦV = {U(PV )}, where V is the value node,
5. run dominance-pruned variable elimination and return result.

Theorem 2. DNPU outputs a strategy δ′ such that δ′A = δA for all A �∈ N and
E(U |δ′) ≥ E(U |δ).

Proof. Let Δ(δ,N ) be the set of all strategies that agree on N with δ, that is,
all N -neighbors of δ. Note that δ is an element of Δ(δ,N ). By design, we have
that ∑

X

∏
Ψ∈Γ

Ψ = {E(U |δ′) : δ′ ∈ Δ(δ,N )} .

Hence, the result follows from the properties of the algebra of set-potential with
dominance pruning. ��

If we set N = A, DNPU collapses to the MPU algorithm [15], and hence
produces exact solution of LIMIDs (of moderate size). As with MPU, the worst-
case running time of DNPU is exponential in |N |, but dominance pruning can
significantly decrease that complexity, as our experiments in Section 6 show.

We call DkPU the method that randomly samples a fixed number of sets
N and on each set run DNPU. Importantly, D1PU offers an algorithm that
produces exactly the same result as the popular SPU, but only quicker. As we
show in Section 6, the gain in speed is not dramatic for D1PU, but it is very
significant for DkPU with larger values of k. The fact that DkPU allows us to
try larger values of k in practice is valuable as it leads to superior solutions
through local search; depending on the application, even marginal gains can be
important, and as such the move from kPU to DkPU is always recommended.

Note that additional computational savings could be gained by structuring
computations in a junction tree (as in SPU), and avoiding redundant compu-
tations among different runs of DkPU (i.e., with different sets N ). We do not
study such implementation techniques in this paper.

5 Approximate Policy Updating: AkPU

Even though dominance pruning often largely reduces the size of set-potentials,
there are cases where pruning is ineffective, as the following example shows.

Example 1. Consider a LIMID with action variables D1, . . . , Dn, state variables
A,B,C and utility node V . A and B have either all action variables as parents. C
has A and B as parents and V as child. All variables are binary and take values in
{0, 1}. The CPTs are P (A=1|D1, . . . , Dn) =

∑
i 2

−iDi, P (B=1|D1, . . . , Dn) =∑
i 2

−i(1 − Di), and P (C = 1|A,B) is 1 if A = B = 1, 1/2 if A �= B, and 0 if
A=B=0. The utility is U(C) = 2n+1C. Suppose we eliminate variables in order
D1, . . . , Dn, C and produce Ψ(A,B) = {

∑
C U(C)P (C|A,B)P (A|d)P (B|d) : d ∈

{0, 1}n}. We have that
∑

A,B Ψ(A,B) = {2nP (A|d)+2nP (B|d) : d ∈ {0, 1}n} =
{2n−1}. Hence, there are 2n non-dominated tables in Ψ(A,B) (as two potentials
whose values add to the same constant cannot one dominate each other).
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Bucketing, which we describe next, gives us a way of bounding the growth of
tables in such case at the expense of producing approximate inferences.

Let M be an upper bound we wish to impose over the number of tables
in a set-potential during variable elimination. Consider a set-potential Φ with
dimension d. Partition the hyperrectangle [0, 1]d into a lattice of smaller M

hypercubes called buckets. Let s
def
= 'M−1/d(. The bucket index of an arbitrary

table φ = [φ(x1), . . . , φ(xd)] in Φ is given by [ 'φ(x1)/s(, . . . , 'φ(xd)/s( ]. Any two
points assigned to the same bucket are less than a distance of s of each other
in any coordinate. Thus, by keeping one table per non-empty bucket we are
guaranteed not to introduce a local error of more than s. We call this approach
AkPU. This solution can be improved by any greedy algorithm for clustering
under absolute-norm or Euclidean norm (e.g., k-means).

Theorem 3. Consider a LIMID of treewidth w and maximum variable cardi-
nality c, and let r be the value computed by AkPU (in fact, with or without
dominance pruning) on that LIMID, choosing M at every step in a way that

s
def
= 'M−1/d( is bounded from above by a constant m, where d = cw. Denoting

by n the number of (action, state, and value) variables, we have∣∣∣∣r −max
δ

E(U |δ)
∣∣∣∣ ≤ 4n2 · [c+ 1]m.

Proof. Consider set-potentials Φ′ and Ψ ′ obtained by bucketing of set-potentials
Φ and Ψ , respectively. Now consider an element γ = φ · ψ in Γ = Φ · Ψ , and let
γ′ = φ′ · ψ′ ∈ Γ ′ = Φ′ · Ψ ′, where φ′ and ψ′ are in the same buckets as φ and ψ,
respectively. That is, |φ− φ′| ≤ m and |ψ−ψ′| ≤ m. Suppose that γ(x) ≥ γ′(x)
at some coordinate x. Then

γ(x)− γ′(x) ≤ φ(x)ψ(x) − [φ(x) + s][ψ(x)− s] = [φ(x) − ψ(x)] ·m−m2 ≤ 2m,

where in the last passage we assumed that φ(x) ≥ ψ(x) (otherwise γ(x)−γ′(x) ≤
0, contradicting our initial claim) and used Proposition 2 to bound expression
φ(x) − ψ(x) in one. Similarly, suppose that γ′(x) ≥ γ(x). Then

γ(x)− γ′(x) ≤ [φ(x) + s][ψ(x) + s]− φ(x)ψ(x) = [φ(x) + ψ(x)] ·m+m2 ≤ 3m,

where in the last passage we used Proposition 2 to bound expression φ(x)+ψ(x)
in two. Hence, for any γ in Γ there is γ′ in Γ ′ such that |γ(x) − γ′(x)| ≤ 3m.
Moreover, if Γ ′′ is a set-potential produced by bucketing of Γ ′ that for any γ in Γ
there is γ′′ in Γ ′′ such that |γ(x)−γ′(x)| ≤ 4m. This implies that bucketing after
every product introduces an error of at most 4m. Consider now a set-potential
Γ produced by Y -marginalization of a set-potential Φ(X ∪ {Y }), and let Φ′ be
the output of bucketing Φ. For any γ =

∑
Y φ in Γ there is γ′ =

∑
Y φ′ in Γ ′

such that

|γ(x)− γ′(x)| = |
∑
y

φ(x, y)−
∑
y

φ′(x, y)| ≤
∑
y

|φ(x, y) − φ′(x, y)| ≤ c ·m.
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Thus, bucketing after every marginalization introduces an error of at most [c+
1]m. Variable elimination performs n− 1 products and n − 1 marginalizations.
Hence the overall error introduced by bucketing is at most [n−1]·4·[n−1]·[c+1]m,
and the result follows. ��

This result leads to a conservative estimate of the maximum number of buckets
M we should use if we want to guarantee before runtime a maximum error on the
output. The rationale in the proof above can be used to obtain an estimate of the
overall error in the output when we fix the value of M at every step of variable
elimination (adjusting it according to the dimension of the tables). We simply
need to compute the actual worst-case induced error introduced by bucketing
in a given step, accounting for the propagated errors as in the proof: products
increase the current error by four, marginalization by c. This way, the algorithm
can provide bounds on its quality at the end of the computation. When the
values of the treewidth and the maximum variable cardinality are bounded by
constants, a similar approach serves to prove the existence of an additive fully
polynomial-time approximation scheme:

Theorem 4. Given a LIMID of treewidth bounded by a constant w and whose
variables have cardinalities bounded by a constant c, and ε > 0, AkPU returns a
strategy δε such that |E(U |δε)−maxδ E(U |δ)| ≤ ε in time polynomial in the size
of the input and in 1/ε.

Proof. Let n be the number of (action, state and value) variables in a LIMID, and
M be the maximum number of tables in a set potential produced during a run of
variable elimination with dominance pruning on that LIMID. Then MPU takes
time O(cw ·M ·n), which is O(M ·n), as cw is considered constant. Since bucketing
can be computed in time polynomial in M and cw, it follows that AkPU takes
time polynomial in M . Choose M such that M ≥ [4n2(c+1)]c

w

[1/ε]c
w

= O(nα ·
1/εβ), where α and β are some integer constants. Hence, AkPU runs in time
polynomial in the size of the input (which is at least linear in the number of

variables), and in 1/ε. Let r be the result of AkPU and s
def
= 'M−1/d(. By

Theorem 3, it follows that |r −maxδ E(U |δ)| ≤ ε. ��

For even moderately large values of n or c the estimate M obtained by ap-
plying Theorem 3 is prohibitively high, which implies that the above theorem is
mostly of theoretical interest except for small diagrams with binary or ternary
variables. For example, for a LIMID with structure as in Figure 1, n = 100 and
c = 10, we have that m = 1/[4 ·105]. The maximum dimension of a set-potential
produced during variable elimination for that LIMID (assuming a perfect elim-
ination order) is d = 103. Hence, M ≥ sd ≥ 22560. A more realistic estimate of
the required number of tables at every step can be obtained during runtime by
computation of the actual error introduced after every bucketing operation, and
consideration of the propagated error estimates. This way, M can be adjusted
adaptively, demanding much less computational resources than in the proof of
Theorem 4, but still guaranteeing a maximum error in the output in fully poly-
nomial time.
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6 Experiments

We compared the performance of DkPU and AkPU in a large set of randomly
sampled LIMIDs with graph structure as in Fig. 1. While the choice of a fixed
structure might seem restrictive, we note that any diagram can be transformed
into a diagram like that of Fig. 1 by merging and adding variables [18]. The
algorithms were implemented in Python and ran using the Pypy interpreter.1

We performed experiments varying the cardinality c of the variables and the
number n of variables. For each configuration of c and n, we compared running
times and expected value of the best strategy found by the algorithms in a set
of 30 LIMIDs, whose conditional probability distributions were independently
sampled from a symmetric Dirichlet distribution with parameter 1/c, and whose
utilities were independently sampled from a uniform distribution in [0, 1].
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Fig. 2. Comparison between SPU and D1PU

Bucketing was performed with M = 220/c2, thus keeping the size of set-
potentials (number of tables times their dimension) below 220, as the treewidth
of the LIMIDs we generate is 2. Local search was initialized with a uniform
strategy, but while 1-local search was ran until convergence, k-local search with
k > 1 ran for 1000 iterations.

Note first that SPU is by far the most popular algorithm for LIMIDs, and any
gain in SPU’s speed is welcome. Figure 2 shows that the overhead of dominance
verification pays off in terms of speed. Gains are not dramatic, staying at about
20%, but these gains are obtained without any penalty in the quality of policies
(as both SPU and D1PU produce identical runs).

Gains in speed with respect to kPU are important because they allow one
to move up to higher values of k, hopefully searching deeper to produce higher
expected values. Indeed, experiments summarized by Figures 3 and 4 show that

1 The code and diagrams are available at http://github.com/denismaua/kpu.

http://github.com/denismaua/kpu
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Fig. 4. Average time performance

DkPU can be used up to relatively high k with gains in expected value that reach
10%; also, the move to AkPU does control computing time while still leading to
gains in expected value.

Figure 3 shows the average of the ratio between expected value obtained with
k-local search schema to expected value obtained with 1-local search. Points
higher than one indicate that the corresponding method outperforms 1-local
search on average. Dashed curves report the performance of DkPU, whereas the
solid curves report the performance of AkPU. We see that the bucketing does
not decrease performance significantly, except for the approximate MPU variant,
whose accuracy decays considerably with the increase of variable cardinality.

Figure 4 shows average running times. We also see that bucketing adds little
overhead to computation for small values of k, but that it is crucial for effective
tractability for large k. Indeed, differently than the approximate MPU (AMPU),
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the exact version of MPU was not able to finish computations in most of the
diagrams within the limit of one day when c=2. The 10-local search methods
with and without bucketing took, respectively, about 9330 and 2600 seconds on
average on diagrams with c = 25, and are not displayed in the figure for clarity.

Although D10PU and A10PU performed on average similarly in time and
accuracy, their worst-case running time differed considerably. For example, for
c= 25, the maximum runtime of D10PU (which took about 10 hour) was one
order of magnitude greater than A10PU (which took about an hour).

7 Conclusion

Limited memory influence diagrams (LIMID) offer a rich graphical language to
describe decision problems, allowing the representation of limited information
scenarios which often arises in real applications. Finding an optimal strategy
for a LIMID is an NP-hard problem, and practitioners resort to local search
algorithms. For instance, the popular SPU algorithm implements 1-neighborhood
local search.

In this paper we investigated means of speeding up local search algorithms. We
showed that k-local search isW[1]-hard, and hence unlikely to be polynomial-time
tractable. We then developed fast local search algorithms based on dominance
pruning. Even with dominance pruning, searching for a k-policy improvement for
moderately large values of k can be slow. To remedy this, we designed an approx-
imate pruning strategy that removes a strategy if there is another close enough
strategy (in terms of L1-norm). We proved that the approximate pruning leads
to a fully polynomial additive approximation algorithm in bounded-treewidth
bounded-variable cardinality LIMIDs if we set k to be the number of action
variables.

Experiments with random diagrams of bounded treewidth and varying vari-
able cardinality showed that dominance pruning speeds up computations even
for 1-neighborhood local search (i.e., SPU). Hence dominance pruning is always
useful when one wishes to resort to local search. Moreover, dominance pruning
becomes essential for k-local search with k > 5. We also empirically showed that
the quality of approximate pruning decays quickly with the increase of variable
cardinalities, being only useful for variable cardinalities up to 15 or so.
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Abstract. An important goal of statistical relational learning formalisms
is to develop representations that are compact and expressive but also easy
to read and maintain. This is can be achieved by exploiting the modular-
ity of rule-based structures and is related to the noisy-or structure where
parents independently influence a joint effect. Typically, these rules are
combined in an additive manner where a new rule increases the proba-
bility of the effect. In this paper, we present a new language feature for
CP-logic, where we allow negation in the head of rules to express the inhi-
bition of an effect in a modular manner. This is a generalization of the
inhibited noisy-or structure that can deal with cycles and, foremost, is
non-conflicting. We introduce syntax and semantics for this feature and
show how this is a natural counterpart to the standard noisy-or. Exper-
imentally, we illustrate that in practice there is no additional cost when
performing inference compared to a noisy-or structure.

Keywords: Statistical Relational Learning, Bayesian networks, Noisy-
or, Inhibited noisy-or, CP-logic.

1 Introduction

Statistical Relational Learning (SRL) [7] and probabilistic logic learning [2] are
concerned with representations that combine the benefits of probabilistic models,
such as Bayesian networks, with those of logic representations, such as first-order
logic. In this work we focus on the family of SRL formalisms that associate
probabilities to directed logic programming rules and can be interpreted as cause-
effect pairs (e.g. CP-logic [17], ProbLog [6] or PRISM [14]).

An important goal of these formalism is to develop representations that are
easy to read and maintain. One way in which they attempt to achieve this is by
exploiting the inherent modularity of the rule-based structure of logic programs.
We will illustrate this using CP-logic because of its intuitive, causal interpreta-
tion but the results are generally applicable. A CP-logic theory consists of a set of
rules, and each rule is viewed as an independent causal mechanism. This makes
it easy to update an existing theory by adding a (newly discovered) causal mech-
anism, since none of the existing rules have to be touched. In certain restricted
cases, a theory in CP-logic can be translated into a Bayesian network in a very
straightforward way. The translation may preserve this modularity property by
using noisy-or nodes to represent the joint effect of different rules with the same
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head (i.e., different rules that may independently cause the same effect). It has
been shown that the use of such noisy-or nodes in Bayesian networks makes it
easier for human experts to supply probabilities and build more accurate models
[18]. This is further evidence for the importance of this modularity property in
probabilistic logics.

Currently, however, CP-logic’s modularity is limited, in the sense that each
new rule that is added for a given effect can only increase its probability. In
practice, it occurs just as often that an existing theory has to be modified because
a previously unknown mechanism makes some effect less likely in certain cases.
CP-logic currently offers no modular way of adding such a new mechanism to
an existing theory—it always requires changes to existing rules. In this paper,
we present a new language feature, where we allow negation in the head of rules.
We develop a syntax and semantics for this feature, and demonstrate that it
indeed extends the modularity property to the discovery of new mechanisms that
decrease the probability of existing events. In the special case where the CP-logic
theory can easily be translated to a Bayesian network, we show that this feature
of negation in the head reduces to an inhibited noisy-or structure [4]. While this
is a little known kind of node in the literature on probabilistic graphical models,
our analysis shows that it is a natural counterpart to the standard noisy-or.
Additionally, we show experimentally that this intuitive structure exhibits the
same advantageous properties as a noisy-or structure such as a linear number of
parameters and inference that is polynomial in the number of parents.

2 Preliminaries and Motivation

CP-logic offers a compact and robust way of specifying certain kinds of proba-
bility distributions. This is due to three interacting properties:

– Different causes for the same effect can be represented as separate rules,
each with their own probabilities, which are combined with a noisy-or when
necessary. This leads to a modular representation.

– Logical variables may be used to write down first-order rules that serve as
templates for sets of propositional rules. In this way, very compact represen-
tations can be achieved.

– The semantics of CP-logic is defined in a robust way, allowing, in particular,
also cycles in the possible cause-effect relations.

To illustrate these properties, consider the following example.

Example 1. An infectious disease spreads through a population as follows: when-
ever two people are in regular contact with each other and one is infected, there
is a probability of 0.6 of the infection spreading also to the other person. Given
a set of initially infected people and a graph of connections between individuals
in the population, the goal is to predict the spread of the disease.
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In CP-logic, this can be represented by a set of two rules:

(Inf (x) : 1.0) ← InitialInf (x). (1)

(Inf (x) : 0.6) ← Contact(x, y) ∧ Inf (y). (2)

Given any set of individuals and any interpretation for the exogenous predicates
InitialInf and Contact , this CP-theory defines the probability with which each
individual will be infected. In particular, no restrictions (such as acyclicity) are
imposed on the Contact -relation.

In addition to representing probability distributions in a compact way, CP-
logic also aims at being elaboration tolerant: once a CP-theory for a given domain
has been constructed, it should be easy to adapt this theory when we learn new
facts about the domain. Ideally, new knowledge should be incorporated in a way
which respects the inherent modularity of CP-logic, in the sense that it may
involve adding or removing rules, but not changing existing rules.

One such operation for which CP-logic is obviously well-suited is when a new
cause for some effect is discovered. For instance, suppose we learn that, in ad-
dition to being among the initially infected and having contact with infected
individuals from the population, people may also contract the disease by trav-
elling to particular locations (e.g., with probability 0.2). We can update our
CP-logic model accordingly, by simply adding an additional rule:

(Inf (x) : 1.0) ← InitialInf (x).

(Inf (x) : 0.6) ← Contact(x, y) ∧ Inf (y).

(Inf (x) : 0.2) ← RiskyTravel (x).

Importantly, there is no need to change our existing rules.
A second operation is discovering that certain parts of the population form

an exception to the general rules. For instance, suppose that certain people are
discovered to be especially susceptible (e.g., probability 0.8) to contracting the
disease through contact with an already infected person. We can represent this
by “case splitting” rule (2) into the following two rules:

(Inf (x) : 0.6) ← Contact(x, y) ∧ Inf (y) ∧ ¬Susceptible(x).
(Inf (x) : 0.8) ← Contact(x, y) ∧ Inf (y) ∧ Susceptible(x).

However, this solution has the downside that it forces us to change an existing
rule. A better alternative is to exploit the additive nature of different causes for
the same effect in CP-logic:

(Inf (x) : 0.6) ← Contact(x, y) ∧ Inf (y).

(Inf (x) : 0.5) ← Contact(x, y) ∧ Inf (y) ∧ Susceptible(x).

For non-susceptible individuals, only the first rule is applicable, so they still get
infected with the same probability of 0.6 as before. The same rule of course also
applies to susceptible individuals, whom the second rule then gives an additional
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probability of getting infected because they are susceptible. This brings their total
probability of being infected up to 0.6+ (1− 0.6) · 0.5 = 0.8. When compared to
the “case splitting” theory, this representation has the advantage that it allows
the “default” rule for normal people to remain unchanged.

In addition to discovering that certain parts of the population are especially
susceptible to the infection, it is equally possible to discover that certain people
tend to be more resistant to it. Again, this can be solved by case splitting:

(Inf (x) : 0.6) ← Contact(x, y) ∧ Inf (y) ∧ ¬Resistant(x).
(Inf (x) : 0.4) ← Contact(x, y) ∧ Inf (y) ∧ Resistant(x).

A solution in which we can keep our original “default” rule unchanged is not
possible using noisy-or or is not intuitive to impossible in current probabilistic
logics. Indeed, this is an obvious consequence of the fact that adding additional
rules can only increase probabilities. In this paper, we introduce the new feature
of negation in the head of rules, which will allow us to represent also a decrease
in probabilities. In particular, we will be able to represent our example as:

(Inf (x) : 0.6) ← Contact(x, y) ∧ Inf (y).

(¬Inf (x) : 1/3) ← Resistant(x).

3 Preliminaries: Formal Semantics of CP-Logic

A theory in CP-logic [17] consists of a set of CP-laws of the form: ∀x (A1 :
α1) ∨ · · · ∨ (An : αn) ← φ. Here, φ is a conjunction of literals and the Ai are
atoms, such that the tuple of logic variables x contains all free logic variables
in φ and the Ai. The αi are non-zero probabilities with

∑
αi ≤ 1. Such a rule

expresses that φ causes some (implicit) non-deterministic event, of which each
Ai is a possible outcome with probability αi. If

∑
i αi = 1, then at least one of

the possible effects Ai must result if the event caused by φ happens; otherwise,
the event may happen without any (visible) effect on the state of the world. For
a CP-law r, we refer to φ as body(r), and to the sequence (Ai, αi)

n
i=1 as head(r).

The semantics of a theory in CP-logic is defined in terms of its grounding, so
from now on we will restrict attention to ground theories, in which each tuple of
logic variables x is empty. Any theory can be made ground by replacing the logic
variables by constants. A ground atom can be considered as a binary random
variable.

Example 2. Suzy and Billy may each decide to throw a rock at a bottle. Suzy
throws with probability 0.5 and if she does, her rock breaks the bottle with
probability 0.8. Billy always throws and his rock hits with probability 0.6.

(Throws(Suzy) : 0.5).

(Throws(Billy) : 1).

(Broken : 0.8) ← Throws(Suzy).

(Broken : 0.6) ← Throws(Billy).
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The semantics of CP-logic is defined using the concept of an execution model.
This is a probability tree in which each node s is labeled with a set of partial
truth value assignments to atoms, which we denote as an interpretation I(s).
Such trees are constructed, starting from a root node in which all atoms are
false, by “firing” rules whose body holds. The following is an execution model
for Example 2. States s in which the bottle is broken (i.e., I(s) |= Broken) are
represented by an empty circle, and those in which it is still whole by a full one.
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����

����

•

0.8

Bottle breaks

������
����

���

0.2

doesn’t break

�����
����

����
•

1
Billy throws

��
◦

1
Billy throws

��

•
1

Billy throws

��

•
0.6

Bottle breaks

�� 0.4

doens’t break

�����
����

����

◦
0.6

Bottle breaks

�� 0.4

doesn’t break

�����
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����
◦ •

◦ ◦ ◦ •

Each such tree defines a probability distribution over its leaves, which induces
a probability distribution over the interpretations I(s) that are associated to
these leaves. A CP-theory may have many execution models, which differ in the
order in which they fire rules. The differences between these trees are irrelevant,
in the sense that they all produce the same probability distribution πT in the
end [17].

The above example can easily be represented as a Bayesian network, where
Broken is a noisy-or node with Throws(Suzy) and Throws(Billy) as its par-
ents. This is in general the case for CP-theories that are acyclic [12]. Naively
translating a CP-theory that is not acyclic to a Bayesian network would produce
a cyclic graph.

The execution model semantics of CP-logic elegantly handles such cycles.
As an example, we consider the following small instantiation of the previous
example:

Inf (Alice) ← InitialInf (Alice).

Inf (Bob) ← InitialInf (Bob).

(Inf (Alice) : 0.2) ← RiskyTravel (Alice).

(Inf (Bob) : 0.2) ← RiskyTravel (Bob).

(Inf (Bob) : 0.6) ← Inf (Alice).

(Inf (Alice) : 0.6) ← Inf (Bob).

In the root of the execution model of this theory, Inf (x) is still false for all x.
It is only by applying the different rules that Alice and Bob may get infected.
This ensure that the causal cycle between Inf (Alice) and Inf (Bob) is interpreted
correctly and that, in particular, they cannot each cause the other to be infected
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unless at least one of them was also initially infected or infected by risky travel.
However, this same property also makes it tricky to interpret negation in rule
bodies. For instance, suppose we also have a rule:

Quarantine(x) ← ¬Inf (x).

In the root of the tree, ¬Inf (x) still holds for all x — including those for which
InitialInf (x) holds! Naive application of this rule could therefore lead us to
conclude that also initially infected people need to be quarantined, which is
clearly not intended. To solve this problem, each node s in an execution model
not only keeps track of an interpretation I(s) that represents the actual state of
the world in that node, but also of an overestimate U(s) that looks ahead in the
causal process to see which atoms could potentially still be caused. As long as
an atom A ∈ U(s), it is still possible that A will be caused further on in the tree,
even if at the current node it is still the case that I(s) �|= A. While A ∈ U(s),
a rule that depends on the negative literal ¬A will therefore be prevented from
firing. We omit the formal details of how this U(s) is computed, but they can be
found in [17].

To translate cyclic CP-theories into Bayesian networks, it is typically neces-
sary to introduce additional nodes:
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�� ��

�� �	
Inf(Bob)

In general, this translation requires the addition of n2 of such new nodes in order
to eliminate a cycle between n nodes. For large CP-theories, such a blow-up may
render inference intractable. Moreover, because all of these new nodes are latent,
they also make the network harder to interpret or learn. Finally, because this
translation needs to consider the cycle as a whole, it may no longer be possible
to update the resulting network in a modular way.

4 Bayesian Net Interpretation for Negation in the Head

We now investigate how the semantics of CP-logic can be extended to accomo-
date negative literals in the head. Before addressing this question in general,
we first focus on a fragment of CP-logic that can be trivially translated into
a Bayesian net, namely, that of ground, acyclic CP-theories in which each rule
has only one atom in the head. We first show how the idea behind noisy-or
can be extended to accomodate negative literals in this simple fragment, before
investigating—in the next section—how this result can be extended to the whole
of CP-logic.
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Y : 0.6 ← X0.

Y : 0.3 ← X1.

. . .

Y : 0.4 ← Xn.

X0 · · · Xi · · · Xn

X ′
0 · · · X ′

i · · · X ′
n

Y

Fig. 1. CP-logic theory and the equivalent noisy-or Bayesian network

When adding a rule (Y : θi) ← Xi to a CP-logic theory, we increase the
probability of Y being true given that condition Xi is true. This is equivalent to
adding an additional parent Xi to a noisy-or construct (see Figure 1) and the
probability of Y given the parents Xi can be calculated with:

Pr(Y = * | X0:n) = 1−
∏

i∈[0,n]
Xi=�

(1− θi) =
∑

i∈[0,n]
Xi=�

weighing︷ ︸︸ ︷∏
j∈[0,i[
Xj=�

(1− θj) ·θi

To adhere to the laws of probability, the total probability that Y is true should
be equal or less than 1.0. The noisy-or structure achieves this by weighing each
contribution of a parent by the remainder of the total probability of the parents
already taken into account. The weighing expresses the probability that the
variable is not true due to any of the previous probabilities (see also Figure 2).

Suppose we now add a rule (¬Y : θn+1) ← Xn+1, which expresses a reduction
of the probability that Y is true if Xi is true. In this case we need to ensure
that the probability of Y is equal or larger than 0. Similar to noisy-or, we can
achieve this by weighing the probability we are subtracting. In this case, the
weighing factor is the total probability that Y is true because of any of the
previous (positive) parents (see Figure 2).

Pr(Y = * | X0:n, Xn+1 = *) = Pr(Y = * | X0:n)−
weighing︷ ︸︸ ︷

Pr(Y = * | X0:n) ·θn+1

= Pr(Y = * | X0:n) · (1− θn+1)

When adding multiple rules with negative literals in the head
¬Y : θn+1 ← Xn+1., . . ., ¬Y : θm ← Xm, the computation of the probability of
Y can be generalized to:

Pr(Y = * | X0:m) = Pr(Y = * | X0:n) ·

⎛⎜⎜⎝1−
∑

i∈]n,m]
Xi=�

∏
j∈]n,i[
Xj=�

(1− θj) · θi

⎞⎟⎟⎠ (3)

= Pr(Y = * | X0:n) · (1− Pr(Y = ⊥ | Xn+1:m)) (4)

To represent Formula 4 as a Bayesian net it must to be expressed as a set
of conditional probability tables. Given two auxiliary variables P and N with



Inhibited Effects in CP-Logic 357

Pr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y : 0.6 ← X0.

Y : 0.3 ← X1.

P r(y|x0, x1) = 0.72

Pr(y|x0, x1)

= 0.6 + 0.12 = 0.72

(11− Pr(y|x0, x̄1)) · Pr(y|x̄0, x1)

= (1= − 0.6) · 0.3 = 0.12

Prr(y|x0, x̄1) = 0.6

Prr((y|x̄0, x̄1) = 0.0

Pr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y : 0.6 ← X0.

¬Y : 0.3 ← X1.

P r(y|x0, x1) = 0.42

Pr(y|x0, x1)

= 0.6− 1.8 = 0.42

Pr(y|x0, x̄1) · Pr(y|x̄0, x1)

= 0.6 · 0.3 = 0.18

Prr(y|x0, x̄1) = 0.6

Prr((y|x̄0, x̄1) = 0.0

Fig. 2. Interpretation for probability scaling. For brevity we write X = � as x and
X = ⊥ as x̄.

respectively the noisy-or structures Pr(Y | X0:n) and Pr(Y | Xn+1:m), the
formula Pr(Y | X0:m) can now be written as Pr(Y | P,N). The conditional
probability table for this last conditional probability distribution is equivalent
to Y ⇔ P ∧ ¬N (see Figure 3).

Y : 0.6 ← X0.

Y : 0.3 ← X1.

. . .

Y : 0.4 ← Xn.

¬Y : 0.3 ← Xn+1.

. . .

¬Y : 0.5 ← Xm.

X0 · · · Xn Xn+1 · · · Xm

X ′
0 · · · X ′

n X ′
n+1 · · · X ′

m

P N

Y

P N Y Pr
0 0 0 1.0
0 0 1 0.0
0 1 0 1.0
0 1 1 0.0
1 0 0 0.0
1 0 1 1.0
1 1 0 1.0
1 1 1 0.0

Fig. 3. Bayesian network that efficiently encodes an inhibited noisy-or. P is a noisy-or
for X0, . . . , Xn and N for Xn+1, . . . , Xm.

5 Generalization to CP-Logic Programs

We now examine how we can incorporate the intuitions of the previous section
into the general setting of CP-logic. To be more precise, from now on, we allow
rules of the form:

∀x (L1 : α1) ∨ · · · ∨ (Ln : αn) ← φ.

Here, φ is again a first-order logic formula with x as free logic variables and the
αi ∈ [0, 1] are again such that Σαi ≤ 1. Each of the Li is now either a positive
effect literal A (i.e., an atom) or a negative effect literal ¬A.
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While the goal of this extension is of course to be able to represent such
phenomena as described in Section 2, let us first take a step back and consider,
in the abstract, which possible meanings this construct could reasonably have.
Clearly, if for some atom A only positive effect literals are caused, the atom
should end up being true, just as it always has. Similarly, if only negative effect
literals ¬A are caused, the atom A should be false. However, this does not even
depend on the negative effect literals being present: because false is the default
value in CP-logic, an atom will already be false whenever there are no positive
effect literals for it, even if there are no negative effect literals either.

The only question, therefore, is what should happen if, for some A, both a
positive and a negative effect literal are caused. One alternative could be that
the result would somehow depend on the relative strength of the negative and
positive effects, e.g., whether the power of aspirin to prevent a fever is “stronger”
than the power of flu to cause it. However, such a semantics would be a con-
siderable departure from the original version of CP-logic, in which cumulative
effects (synergy, interference, . . . ) are strictly ignored. In other words, CP-logic
currently makes no distinction whatsoever between a headache that is simul-
taneously caused by five different conditions and a headache that has just a
single cause. This design decision was made to avoid a logic that, in addition to
probabilities, would also need to keep track of the degree to which a property
holds. A logic combining probabilities with such fuzzy truth degrees would, in
our opinion, become quite complex and hard to understand.

In this paper, we want to preserve the relative simplicity of CP-logic, and we
will therefore again choose not to work with degrees of truth. Therefore, only
two options remain: when both effect literals A and ¬A are caused, the end
result must be that A is either true of false. This basically means that, in the
presence of both kinds of effect literals, we have to ignore one kind. It is obvious
what this choice should be: the negative effect literals already have no impact
on the semantics when there are only positive effect literals or when there are no
positive effect literals, so if they would also have no impact when positive and
negative effect literals are both present, then they would have never have any
impact at all and we would have introduced a completely superfluous language
construct. Therefore, the only reasonable choice is to give negative effect literals
precedence over positive ones, that is, an atom A will be true if and only if it is
caused at least once and no negative effect literal ¬A is caused.

This can be formally defined by a minor change to the existing semantics
of CP-logic. Recall that, in the current semantics, each node s of an execution
model has an associated interpretation I(s), representing the current state of
the world, and an associated three-valued interpretation U(s), representing an
overestimate of all that could still be caused in s. We now add to this a third
set, namely a set of atoms N (s), containing all atoms for which a negative effect
literal has already been caused. The sets I(s) and N (s) evolve throughout an
execution model as follows:

– In the root of the tree, I(s) = N (s) = {}
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– When a negative effect literal ¬A is caused in a node s, the execution model
adds a child s′ to s such that:
• N (s′) = N (s) ∪ {A};
• I(s′) = I(s) \ {A}.

– When a positive effect literal A is caused in a node s, the execution model
adds a child s′ to s such that:
• N (s′) = N (s);
• if A ∈ N (s), then I(s′) = I(s), else I(s′) = I(s) ∪ {A}.

Note that, throughout the execution model, we maintain the property that
N (s) ∩ I(s) = {}.

The overestimate U(s) is still constructed in the usual way (see [17]), with the
exception that atoms from N (s) may no longer be added to it.

To illustrate, let us consider the following simple example, where we assume
that Alice belongs to both exogenous predicates RiskyTravel and Resistant :

(Inf (Alice) : 0.2) ← RiskyTravel(Alice). (5)

(¬Inf (Alice) : 1
3
) ← Resistant(Alice). (6)

Representing nodes in which Alice is infected by a full circle, these two rules
may produce either of the following two execution models.
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Again, the differences between these two execution models are irrelevant, because
they both produce a distribution over final states in which P (Inf (Alice)) = 2

3 ·0.2,
which is of course the same probability as we obtain with formula 4 of the
previous section. Note that, in order to obtain this property, it is important that
inhibition always trumps causation, regardless of which happens first. Unlike
formula 4, the execution model semantics is equally applicable to cases with
cyclic causation.

To implement this feature of negation-in-the-head, a simple transformation
to regular CP-logic may be used. This transformation is based on the way in
which [3] encode causal ramifications in their inductive definition modelling of
the situation calculus.

For a CP-theory T in vocabulary Σ, let Σ¬ consist of all atoms A for which a
negative effect literal ¬A appears in T . For each atom A ∈ Σ¬, we introduce two
new atoms, CA and C¬A. Intuitively, CA means that there is a cause for A, and
C¬A means that there is a cause for ¬A. Let τA be the following transformation:
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– Replace all positive effect literals A in the heads of rules by CA

– Replace all negative effect literals ¬A in the heads of rules by C¬A

– Add this rule: A ← CA ∧ ¬C¬A

Let τ¬(T ) denote the result of applying to T , in any order, all the transformations
τA for which A ∈ Σ¬. It is clear that τ¬(T ) is a regular CP-theory, i.e., one
without negation-in-the-head. As the following theorem shows, this reduction
preserves the semantics of the theory.

Theorem 1. For each interpretation X for the exogenous predicates, the pro-
jection of πX

τ¬(T ) onto the original vocabulary Σ of T is equal to πX
T .

When comparing the transformed theory πτ¬(T ) to the original theory T , we
see that the main benefit of having negation-in-the-head lies in its elaboration
tolerance: there is no need to know before-hand for which atoms we later might
wish to add negative effect literals, since we can always add these later, without
having to change to original rules.

6 Application: Encoding Interventions

One of the interesting uses of negation-in-the-head is related to the concept of
interventions, introduced by [13]. Let us briefly recall this notion. Pearl works in
the context of structural models. Such a model is built from a number of random
variables. For simplicity, we only consider Boolean random variables, i.e., atoms.
These are again divided into exogenous and endogenous atoms. A structural
model now consists of one equation X := ϕ for each endogenous atom X , which
defines that X is true if and only if the boolean formula ϕ holds. This set of
equations should be acyclic, in order to ensure that an assignment of values to
the exogenous atoms induces a unique assignment of values to the endogenous
ones.

A crucial property of causal models is that they can not only be used to pre-
dicts the normal behaviour of a system, but also to predict what would happen if
outside factors unexpectedly intervene with its normal operation. For instance,
consider the following simple model of which students must repeat a class:

Fail := ¬Smart ∧ ¬Effort . Repeat := Fail ∧ Required .

Under the normal operation of this “system”, only students who are not smart
can fail classes and be forced to repeat them. Suppose now that we catch a
student cheating on an assignment and decide to fail him for the class. This
action was not foreseen by the causal model, so it does not follow from the
normal behaviour. In particular, failing the student may cause him to have to
repeat the class, but if the student is actually smart, then failing him will not
make him stupid. Pearl shows that we can model our action of failing the student
by means of an intervention, denoted do(Fail = *). This is a simple syntactic
transformation, which removes and replaces the original equation for Fail:

Fail := *. Repeat := Fail ∧ Required .
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According to this updated set of equations, the student fails and may have to
repeat the class, but he has not been made less smart.

In the context of CP-logic, let us consider the following simple medical theory:

(HighBloodPressure : 0.6) ← BadLifeStyle . (7)

(HighBloodPressure : 0.9) ← Genetics . (8)

(Fatigue : 0.3) ← HighBloodPressure . (9)

Here, BadLifeStyle and Genetics are two exogenous predicates, which are both
possible causes for HighBloodPressure . Suppose now that we observe a patient
who suffers from Fatigue. Given our limited theory, this patient must be suffering
from HighBloodPressure , caused by at least one of its two possible causes.

Now, suppose that a doctor is wondering whether it is a good idea to prescribe
this patient some pills that lowers high blood pressure. Again, the proper way
to answer such a question is by means of an intervention, that first prevents
the causal mechanisms that normally determine someone’s blood pressure and
then substitutes a new “mechanism” that just makes HighBloodPressure false.
This can be achieved by simply removing the two rules (7) and (8) from the
theory. This is an instance of a general method, developed in [16], of performing
Pearl-style interventions in CP-logic. The result is that probability of Fatigue
drops to zero, i.e., P (Fatigue | do(¬HighBloodPressure)) = 0.

In this way, we can evaluate the effect of prescribing the pills without actually
having these pills in our model. This is a substantial difference to the way in
which reasoning about actions is typically done in the field of knowledge repre-
sentation, where formalisms such as situation or event calculus require an explicit
enumeration of all available actions and their effects. Using an intervention, by
contrast, we can envisage the effects of actions that we never even considered
when writing our model.

Eventually, however, we may want to transform the above descriptive theory
into a prescriptive one that tells doctors how to best treat a patient, given his
or her symptoms. In this case, we would need rules such as this:

BPMedicine ← Fatigue. (10)

Obviously, this requires us to introduce the action BPMedicine of prescribing
the medicine, which previously was implicit in our intervention, as an explicit
action in our vocabulary. Negation-in-the-head allows us to syntactically express
the effect of this new action: ¬HighBloodPressure ← BPMedicine .

This transformation can be applied in general, as the following theorem shows.

Theorem 2. Let T be a CP-theory over a propositional vocabulary Σ. For an
atom A ∈ Σ, let T ′ be the theory T ∪ {r} with r the rule ¬A ← B and B an
exogenous atom not in Σ. For each interpretation X for the exogenous atoms of
T ′, if B ∈ X, then πX

T ′ = πX
do(T,¬A) and if B �∈ X, then πX

T ′ = πX
T .
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This theorem shows that negation-in-the-head allows CP-theories to “inter-
nalize” the intervention of doing ¬A. The result is a theory T ′ in which the
intervention can be switched on or off by simply choosing the appropriate in-
terpretation for the exogenous predicate that now explicitly represents this in-
tervention. Once the intervention has been syntactically added to the theory in
this way, additional rules such as (10) may of course be added to turn it from
an exogenous to an endogenous property.

It is important to note that this is a fully modular and elaboration tolerant
encoding of the intervention, i.e., the original CP-theory is left untouched and the
rules that describe the effect of the intervention-turned-action are simply added
to it. This is something that we can only achieve using negation-in-the-head.

7 Experiments

We have presented an intuitive and modular approach to express an inhibition
structure. In this section, we evaluate the computational cost associated with
this alternative structure. For this we perform inference on three theories: (i)
the inhibited noisy-or structure from Fig. 3, (ii) the inhibited noisy-or structure
translated to case splitting, and (iii) the infection example from Section 2. In-
ference was performed using ProbLog1, an SRL system to which CP-logic can
be compiled, for all three theories and using SMILE2, a state-of-the-art PGM
toolbox for the first two acyclic theories. All experiments are run on a 3GHz
Intel Core2 Duo CPU with 2GB memory and timings are averaged over 3 runs.

For the inhibited noisy-or structure, the inference can be linear depending
on the encoding of the noisy-or substructures [15,5]. The results (fig. 4a) show
that the use of negative effect literals, implemented by means of their noisy-or
encoding, is always more efficient than case splitting. Surprisingly, when using
SMILE the inference has exponential complexity with a growing number of par-
ents. This indicates that, although we used noisy-max encodings, noisy-or is not
fully exploited. ProbLog is able to exploit the local structure more efficiently and
performs inference for the inhibited noisy-or in time polynomial in the number
of parents.

The infection example contains cycles and can therefore only be processed by
ProbLog. For this theory, we let the number of people increase, while keeping
the number of contacts per person fixed (Fig. 4b). This increases the number
of inhibited noisy-or structures but, contrary to the previous theory, not the
number of parents. We see that the version using case splitting is slower with
approximately a constant factor.

We can conclude that the overhead introduced by the encoding for negative
literals in the head is marginal compared to normal noisy-or combinations and
inference can be performed efficiently.

1 http://dtai.cs.kuleuven.be/problog
2 http://genie.sis.pitt.edu

http://dtai.cs.kuleuven.be/problog
http://genie.sis.pitt.edu
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(a) Inference for an inhibited noisy-or structure. (b) Inference for the infection ex-
ample.

Fig. 4. Runtime of inference

8 Related Work

8.1 Inhibited Recursive Noisy-or

The structure we obtain is related to the inhibited recursive noisy-or structure
[10] which states that:

Pr(Y |X) = Pr(Y caused by X) · Pr(Y not inhibited by X)

The two parts are recursive noisy-or models, a generalisation of noisy-or that re-
laxes the ICI assumption. It allows to encode synergies, the combination of two
causes to have a stronger effect than expected, and interferences, the combina-
tion to have a softer effect. A problem, however, with recursive noisy-or models
is that the parametrisation may be asymmetric. As this causes confusion and
conflicts, this model does not allow for a modular representation and is not pop-
ular in common use [4]. Different in CP-logic is that concepts like synergy and
interference are not represented using a recursive parametric probability distri-
bution but directly in the program using the conditions in the body and positive
and negative literals. As such, CP-logic, offers a modular and non-conflicting
alternative to inhibited recursive noisy-or models.

8.2 The Certainty Factor Model

Rule-based systems are popular for expert and diagnostics systems because they
offer an intuitive syntax to human experts. In this setting, the concept of weigh-
ing the level of uncertainty of inhibiting factors has been proposed for certainty
factors used in the MYCIN system [1,11]. The weighing, however, is performed
independently for the measures of belief and disbelief and are joined only af-
terwards to define the certainty factor. These notions of uncertainty are not
well-founded from a probabilistic point of view but are used in practice be-
cause they are computationally simple and behave satisfactorily. It was argued
that the Bayesian framework was unsatisfactory because it would require too
many conditional probability parameters that have to be filled in by an expert.
This was a motivation to use the two different measures, one for belief and one
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for disbelief. The simplicity of the certainty factor model, however, was achieved
only with frequently unrealistic assumptions and with persistent confusion about
the meaning of the numbers being used [8]. Heckerman and Shortlife show how
Bayesian nets can be used to represent the certainty factor model in a principled
manner. Unfortunately, they show that “uncertain reasoning is inherently less
modular than is logical reasoning”, which is an attractive feature of the certainty
factor model. In this work we show that both concepts of belief and disbelief can
be represented in one rule-based framework with a strong foundation in proba-
bility theory and with the modularity properties of logical reasoning.

8.3 Interaction Rules in Probabilistic Logic

Negation in the head can be interpreted as a modification of the noisy-or inter-
action rule that is common among probabilistic logics. Probabilistic interaction
logic [9] is a framework that generalizes languages like CP-logic and ProbLog
to allow custom encodings of the interaction rules. This is achieved by building
on top of default logic instead of logic programming. Part of the example in
Section 2 can be expressed as:

D ={RiskyTravel(x) ∧ p(x) : Inf (x)

Inf (x)
}, W ={Resistant(x) ∧ q(x) → ¬Inf (x)}

with P (p(x)) = 0.2 and P (q(x)) = 1/3. Here, the single default in D expresses
that, if x has done risky travel, this will cause her to be infected with probability
0.2, unless we know otherwise. The implication in W then gives precisely such a
reason for knowing otherwise, namely, the fact that x might be resistant.

This logic is obviously quite general, allowing many more interaction patterns
to be expressed than just the simple inhibited effects we have considered here.
However, it does depend on the user to correctly encode these patterns in first-
order logic: for instance, adding the inhibiting effect of being resistant will require
a change to the original theory, unless the user had the foresight to already
include the justification Inf (x) in his original default.

9 Conclusion

In this paper, we have presented the new language feature of negative effect
literals. We have shown this for the case of CP-logic where it offers a natural
extension the capacity to represent causal models in a modular way. In the
particular case of theories that correspond to a Bayesian net, such negative effect
literals correspond to an inhibited noisy-or structure. Additionally, we show that
this new language feature can be encoded in such a manner that inference can
be performed with a complexity similar to standard noisy-or.
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Abstract. We propose a novel approach to learning parameters of
canonical models from small data sets using a concept employed in regres-
sion analysis: weighted least squares method. We assess the performance
of our method experimentally and show that it typically outperforms
simple methods used in the literature in terms of accuracy of the learned
conditional probability distributions.
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1 Introduction

Methodologies for extracting information from data have been one of the key
factors for the success of modern artificial intelligence. Bayesian networks — one
of the prime examples among probabilistic modeling techniques — are widely
acclaimed and used by the scientific communities as well as the industry. Nowa-
days, data for many problem domains are freely accessible and in many cases
growing at an exponential rate. Nonetheless, in some fields the amount of data
is small, usually due to the cost of acquisition or high complexity of the prob-
lem. The latter increases the number of parameters required for the accurate
modeling of the problem, which in turn calls for learning samples of large size. A
class of interactions within Bayesian networks, the so called ICI (Independence
of Causal Influence) models, find their applications in problems where obtaining
an adequately sampled dataset is infeasible. In this paper we focus on learning
parameters for the ICI models by framing the problem in terms of linear al-
gebra and then calculating the values of parameters by means of the weighted
least squares. We follow this up by an empirical test for learning accuracy of
the proposed method and highlight the cases in which it outperforms the two
common approaches to this problem: Expectation-maximization approach and
the method proposed by Onísko and Drużdżel [1].

2 ICI Models

ICI models [2,3,4,5] are based on the assumption of independence of causal in-
fluences. An effect variable, along with its causes, may fit an ICI model if the
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© Springer International Publishing Switzerland 2014
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mechanisms through which the causes impact the effect do not interact among
each other. This simple restriction greatly simplifies elicitation of parameters
from data and experts. Because some conditional probabilities can now be ex-
pressed as a function of a far smaller set of parameters, the number of indepen-
dent parameters required to define the CPT (Conditional Probability Table) of
the child node is reduced from exponential to linear in the number of parents.
Figure 1 shows an example of such model.

X1 X2 · · · Xn

I1 I2 · · · In

Y

Fig. 1. Structure of an ICI model: additional auxiliary nodes I1 - In are called in-
hibitors. The independence of mechanisms is represented by a lack of edges among the
inhibitor nodes I1 to In.

2.1 Noisy–OR/MAX

Deterministic models usually rely on a function that takes a set of input signals
which determine the state of the child node Y . The deterministic OR function
makes it impossible for the child to be activated if none of the parent nodes is
present. Noisy–OR [2,3] and Noisy–MAX [6] models are cases of deterministic
OR and deterministic MAX functions applied to the ICI framework [5]. Every
variable has a special state indicating that the phenomenon that it represents is
“absent,” we call such state the “distinguished state.” The term “activated state”
will then refer to any of the non-distinguished states. Uncertainty is introduced
to the model by adding a separate layer of inhibitor nodes (I1 through In in
Figure 1), which are activated based on their corresponding states of parents
(nodes X1 through Xn) with a certain probability. Once that is done, the states
of inhibitor nodes are used as input signals for the deterministic function. As
it turns out, all we need to provide to the model are the probabilities of every
parent variable activating the child independently, that is when every variable
other than the one in question is in its distinguished state. Thus, a Noisy–OR
parameter pi describes the probability of i-th parent activating the child:1

pi = P (+y|¬x1,¬x2, . . . ,+xi, . . . ,¬xn) . (1)

1 We will use lowercase to denote the states of variables. Distinguished states are
preceded with a negation sign, while activated states with a plus sign, e.g., +x1 and
¬x1 are activated and distinguished states of variable X1 respectively.
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Obtaining conditional probabilities for the combination of states of nodes Xi

other than the ones already described by the Noisy–MAX parameters can be
derived using the following equation:

P (+y|x) = 1−
∏

i∈I(x)

(1 − pi) , (2)

where I(x) is a set of indices of parents in combination x which are in their
activated states. In our case, OR is the deterministic function — the child is
active when any of the inhibitors is active. Deterministic MAX function is a
generalization of the deterministic OR as proposed independently by Dı́ez [6]
and Srinivas [7]. For that reason, we can treat Noisy–OR as a binary case of the
Noisy–MAXmodel. In further sections, we will occasionally use Noisy–OR/MAX
interchangeably, knowing that general ideas apply equally well to binary and
non-binary variables.

2.2 Leaky Noisy–OR/MAX

Deterministic OR function activates the child node only when at least one of
the parents is in its non-distinguished state. This is not always the case in the
real world — absence of any signal from the parental causes may still activate
the child variable. Sometimes a problem does not allow for explicit modeling of
each possible cause, either because it is not well understood, or because it would
require a large number of additional variables that would have minimal impact
on the child. In that case the unmodelled causes can be aggregated into a single
node called leak [2] (see Figure 2). Since leak is modeling mechanisms that we
do not control or actively observe, but that are present, we add the probability
of leak (pL) to the product on the right hand side of Equation 3:

P (+y|x) = 1− (1− pL)
∏

i∈I(x)

(1− pi) . (3)

X1 X2 · · · Xn

I1 I2 · · · In L

Y

Fig. 2. Structure of a Leaky ICI model: L is the implicit leak node
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2.3 Eliciting Parameters of ICI Models from Data

The problem of learning Noisy/Leaky–MAX parameters from data was ad-
dressed previously by Onísko and Drużdżel [1], Zagórecki et al. [8], and others
(e.g., [4,9]). The main problem with defining and learning the CPT is the expo-
nential growth of the table in the number of parents. The number of independent
parameters in a CPT (ICPT) can be calculated using Equation 4:

ICPT = (|Y | − 1)

n∏
i=1

|Xi| , (4)

where |Y | and |Xi| denote the number of states of the child node and the i-th
parent respectively. The corresponding number of independent parameters for
the Leaky–MAX gate (IMAX) is:

IMAX = (|Y | − 1)

n∑
i=1

(|Xi| − 1) + |Y | − 1 . (5)

We can see that the ICI models reduce the number of parameters required log-
arithmically. In real–life problems, it is not uncommon to find models consisting
of thousands of variables, some having many parent nodes. In such cases, the size
of the model’s CPTs can become huge. Not only is the computational complexity
of inference within such network high, but constructing such model in the first
place can be daunting. What we would have to ask the expert are specific ques-
tions about conditional probabilities for every possible scenario that can occur
within the problem domain. Assuming n binary parents, this involves eliciting 2n

numerical values from experts (this task becomes already cumbersome for even
small values of n). This effort can be eased by learning the parameters from data,
which in its basic form revolves around estimating the required conditional prob-
abilities according to the distributions observed in the data. This, however, does
not resolve the problem completely. Given a dataset of m records we obtain an

average of
m

2n
records per conditional probability distribution within a CPT.

When the probability distribution over various combinations of parent states is
skewed, some parameters will have no corresponding records within the data at
all. Most likely we will not be able to supply a sufficiently large dataset to main-
tain a reasonable records per parameter ratio, which is inherently associated with
a large error. Thus, reducing the number of required parameters which define
the model not only simplifies the storage and inference, but also the learning
from both data and experts.

Onísko and Drużdżel [1] propose a simple method of learning Noisy–MAX
parameters from data by limiting learning to only those records that describe
the parameters directly, namely the cases where only one of the parent nodes is
in its activated state. Another approach by Zagórecki and Drużdżel [10] aims at
learning the full CPT first and then fitting the Noisy/Leaky–MAX parameters
which are the closest (in Euclidian distance) to the original CPT distribution.
In this research, we propose yet another approach which somewhat resembles
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the previous two: Learning Leaky–MAX parameters directly from the data (yet
using the information from the full dataset), while also minimizing the sum of
distances towards each of the probabilistic scenarios in data using the weighted
least squares method.

3 Least Squares Approximation

Least Squares (also known as “Ordinary” or “Linear” Least Squares) is a pa-
rameter estimation method, commonly used in regression analysis [11]. As we
will show in this section, this approach resonates well with the constraints of our
problem and can be employed for the purpose of learning parameters of canoni-
cal models from data. In this research we focus on the Leaky–OR/MAX gates,
yet the same approach can be employed to the Leaky–AND/MIN models and
other canonical gates, as long as it is possible to frame the problem in terms of
a system of linear equations.

3.1 Expressing Probabilistic Information as a System of Linear
Equations

Following Equation 3 we can express any conditional probability within the
CPT using the Leaky–MAX parameters. Thus, given an arbitrary observation
of parent states x and child state y we have the following:

1− P̂ (+y|x) = (1− p̂L)
∏

i∈I(x)

(1− p̂i) , (6)

where P̂ (+y|x), p̂L and p̂i are the estimations of P (+y|x), pL and pi from data.
Taking the logarithm of both sides gives us:

log(1− P̂ (+y|x)) = log(1− p̂L) +
∑

i∈I(x)

log(1− p̂i) . (7)

By introducing substitutions q̂ = log(1 − P̂ (+y|x)), q̂L = log(1 − p̂L) and q̂i =
log(1− p̂i) we obtain a linear equation:

q̂ = q̂L +
∑

i∈I(x)

q̂i , (8)

with q̂ as a constant, and q̂L, q̂1, . . . , q̂n as the unknowns. Repeating the steps
above for each combination x observed within the data gives us a system of linear
equations. Solving for q̂i and q̂L gives us the corresponding values of log(1− p̂i)
and log(1− p̂L), from which we can obtain the original Leaky–MAX parameters
p̂i and p̂L:

p̂k = 1− exp(q̂k) for k ∈ {1, . . . , n, L} . (9)
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X1 X2 L

Y

(a) Structure of the problem

x = x1,x2 and y # records P̂ (+y|x)
+x1,+x2,+y 40 40

52+x1,+x2,¬y 12

¬x1,+x2,+y 1 1

3¬x1,+x2,¬y 2

+x1,¬x2,+y 16 16

25+x1,¬x2,¬y 9

¬x1,¬x2,+y 1 1

20¬x1,¬x2,¬y 19

(b) Sampled dataset

Fig. 3. Leaky–OR structure (left) along with a sample of 100 records (right)

Example 1. Let the binary nodes X1, X2 and Y form a Leaky–OR model, giving
us 8 possible observations in the sample (Figure 3a). Let us assume a sample of
100 records reflecting the structure (Table 3b). Expressing the observations from
the sample using the Equation 6, gives us the following system of equations:⎡⎢⎢⎣

(1− p̂1) · (1− p̂2) · (1 − p̂L)
(1− p̂2) · (1 − p̂L)

(1− p̂1) · (1 − p̂L)
(1 − p̂L)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1− P̂ (+y|+ x1,+x2)

1− P̂ (+y| ¬ x1,+x2)

1− P̂ (+y|+ x1,¬x2)

1− P̂ (+y| ¬ x1,¬x2)

⎤⎥⎥⎦ . (10)

We take logarithm of both sides of each of the equations:⎡⎢⎢⎣
log(1 − p̂1) + log(1 − p̂2) + log(1− p̂L)

log(1 − p̂2) + log(1− p̂L)
log(1 − p̂1) + log(1− p̂L)

log(1− p̂L)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
log(1− 40/52)
log(1− 1/3)
log(1− 16/25)
log(1− 1/20)

⎤⎥⎥⎦ , (11)

and apply the substitutions q̂L = log(1 − p̂L) and q̂i = log(1 − p̂i), which gives
us the following system of linear equations:⎡⎢⎢⎣

1 1 1
0 1 1
1 0 1
0 0 1

⎤⎥⎥⎦ ·

⎡⎣q̂1q̂2
q̂L

⎤⎦ =

⎡⎢⎢⎣
log(12/52)
log(2/3)
log(9/25)
log(19/20)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1.466 . . .
−0.405 . . .
−1.021 . . .
−0.051 . . .

⎤⎥⎥⎦ . (12)

�

3.2 Weighted Least Squares Method

In the previous section, we have shown a transition from discrete data, obeying
the assumptions of the Leaky-MAX model, to a system of linear equations. The
input in our case is an overdetermined system of linear equations, which can be
thought of as a set of hyperplanes. Least squares method allows for finding a
solution that minimizes the sum of vertical distances to each of the planes.
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Given an overdetermined system:

Ax = b , (13)

where A is an m×n matrix of real–valued coefficients, and x ∈ Rn and b ∈ Rm,
we can obtain an approximate solution x′ solving the following:

ATAx′ = AT b . (14)

Thus obtained solution x′ minimizes the sum of the squares of the errors for
each of the m equations. Since in our case the equations are obtained from data,
least squares method has no means of distinguishing between these equations
that were represented by a larger fraction of the dataset (potential lower error)
and those equations that were represented by only a handful of records (higher
error). For that reason we employ the weighted variant of the method [11], thus
allowing to promote the more significant equations.

Given the system of equations (13) and a diagonal matrix W with weights
on its main diagonal,2 we solve for the weight–induced approximate solution x′′

using the following:
ATWAx′′ = ATWb . (15)

Example 2. Let us continue the previous example and assume an overdetermined
system in Equation 12. By assuming

A =

⎡⎢⎢⎣
1 1 1
0 1 1
1 0 1
0 0 1

⎤⎥⎥⎦, b =

⎡⎢⎢⎣
−1.466 . . .
−0.405 . . .
−1.021 . . .
−0.051 . . .

⎤⎥⎥⎦,ATA =

⎡⎣2 1 2
1 2 2
2 2 4

⎤⎦ ,ATb =

⎡⎣−1.871 . . .
−2.487 . . .
−2.944 . . .

⎤⎦ ,x =

⎡⎣q̂1q̂2
q̂L

⎤⎦ ,

(16)
we can solve for an ordinary least squares solution x′

ATAx′ = ATb ⇒

⎡⎣2 1 2
1 2 2
2 2 4

⎤⎦x′ =

⎡⎣−1.821 . . .
−2.555 . . .
−2.894 . . .

⎤⎦⇒ x′ =

⎡⎣−0.399 . . .
−1.015 . . .
−0.028 . . .

⎤⎦ . (17)

Since x′ is a vector of approximate parameters q′1, q
′
2 and q′L, we apply Equation 9

to obtain the corresponding parameters p′1, p
′
2 and p′L:⎡⎣p′1p′2

p′L

⎤⎦ =

⎡⎣1− exp(q′1)
1− exp(q′2)
1− exp(q′L)

⎤⎦ =

⎡⎣0.329 . . .0.638 . . .
0.028 . . .

⎤⎦ . (18)

Alternatively, we can apply weights:3

W =

⎡⎢⎢⎣
52 0 0 0
0 3 0 0
0 0 25 0
0 0 0 20

⎤⎥⎥⎦ ,ATWA =

⎡⎣55 52 55
52 77 77
55 77 100

⎤⎦ ,ATWb =

⎡⎣ −77.465 . . .
−101.790 . . .
−104.033 . . .

⎤⎦ , (19)

2 wii ∈ W describes the weight of the i-th equation. Normalization of the weights is
not necessary.

3 For simplicity we assume wii ∈ W to be the number of records describing i-th
equation (see Table 3b).
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and solve for a weighted least squares solution x′′:

ATWAx′′ = ATWb ⇒

⎡
⎣55 52 55
52 77 77
55 77 100

⎤
⎦x′′ =

⎡
⎣ −77.465 . . .
−101.790 . . .
−104.033 . . .

⎤
⎦ ⇒ x′′ =

⎡
⎣−0.432 . . .
−0.988 . . .
−0.041 . . .

⎤
⎦ .

(20)

As previously highlighted, in order to obtain the final parameters p′′1 , p
′′
2 and

p′′L, we employ the Equation 9:⎡⎣p′′1p′′2
p′′L

⎤⎦ =

⎡⎣1− exp(q′′1 )
1− exp(q′′2 )
1− exp(q′′L)

⎤⎦ =

⎡⎣0.351 . . .0.628 . . .
0.040 . . .

⎤⎦ . (21)

�

4 Empirical Performance

This section describes experiments performed to test our approach in practice.
We perform two types of experiments: learning parameters using datasets gen-
erated from an ideal Leaky–MAX definition and a definition “distorted” by a
varying noise parameter κ. The latter models the situation in which we are fitting
a Leaky–MAX gate to a distribution that is not exactly a Leaky–MAX.

4.1 Data Generation

Data for the experiment were prepared and generated using the GeNIe and

SMILE�software packages.4 We focus on learning networks composed of only
one child and the number of binary parents varying between 2 and 6 plus
leak.After testing the accuracy of our method on non-binary parents, we have
found its performance to be correlated with the number of possible equations for
given test case. For that reason we model the “hardness” of the problem simply
by a varying number of binary parents. In order to provide statistical results, we
generate a thousand randomized networks for each number of parents. The prior
probabilities of parents, as well as the Leaky–MAX definition of the child are
randomized uniformly each time. For each of the 5000 networks, we generate 20
random datasets consisting of 100, 200, . . ., 1900 and 2000 records, which gives
us 100,000 datasets total.

Noise–Induced Leaky–MAX: In order to test the accuracy of both meth-
ods in cases when the original distribution differs from the ideal Leaky–MAX,
we introduce the “distortion” to the definition. We expand the Leaky–MAX
parameters to a full CPT and introduce the noise to each of the probability

4 Available at http://genie.sis.pitt.edu/.
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distributions pk (columns in CPT), by sampling a variate x from the Dirichlet
distribution, as defined by the following probability density function:

Dir(x1, . . . , xn−1;α1, . . . , αn) =
1

B(α)

n∏
i=1

xαi−1
i , (22)

where α = κ · pk and B(α) is the multinomial Beta function.
Figure 4 shows a visualization of the distortion of the distribution q =

[0.2, 0.3, 0.5] for decreasing values of κ. For the noise–induced data, we generate
similar groups of 100,000 learning datasets for κ = 100, 25 and 10.

Fig. 4. Distortion of original distribution q = [0.2, 0.3, 0.5] with a varying parameter κ
visualized by sampling a 100 new variates from the Dirichlet distribution

4.2 Tested Learning Algorithms

We compare three approaches to learning the Leaky–MAX parameters: (1) Sim-
ple learning method by Onísko and Drużdżel [1], (2) Leaky–MAX fitting to CPT
by Zagórecki and Drużdżel [10], and (3) Weighted Least Squares method pro-
posed in this paper. Small datasets may miss some of the information necessary
for the estimation of the parameters: if m records describe a given combination
of parent states, and the effect variable is activated in k of those records, we can
safely assume that the approximate conditional probability that the variable will

be activated is then equal to
k

m
. However, when none or all of the m records

contain the child in an activated state, we end up with probabilities 0 and 1
respectively, which are best avoided when defining a probabilistic model [12].
Our method of handling such extreme cases (for both methods) is as follows:

– If none of the observed m records contains the child in an activated state,

assume probability
1

m+ 1
.

– If all of the observedm records contain the child in an activated state, assume

probability
m

m+ 1
.
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– If a given scenario is nonexistent in the data, i.e., the joint probability of
a given combination of parents states was very small, assume the uniform
distribution for the child variable (Simple learning only).

In the remainder of this section, we will describe the three methods in detail:

Simple Learning

1. Perform a sweep through the dataset in search of records with only one
parent being in its activated state and compute the conditional probabilities
for the child node.

2. Since leak (denoted as L) is always taken into account, we are also interested
in the conditional probability of the child being present, when all of the
parents are in their corresponding distinguished states.

3. So far, the obtained values are the so–called compound parameters pc [2],
as they reflect the fact that implicit causes (leak node) might have acted
upon the effect variable. In order to obtain each of the corresponding net
parameters pn [6], we compute the following:

pn = 1− 1− pc
1− pL

. (23)

In case of a small dataset, it might occur that pc < pL, leading to pn being
a negative value, in which case we assume a uniform distribution.

Weighted Least Squares Method

1. Express the data as system of linear equations (Equations 6 through 8).
2. To reduce the potential error in the estimations, remove the equations which

were represented by fewer than 10 records. While more relaxed and flexible
rules can be considered here, they impact the general performance of the
algorithm minimally, and only for the smallest datasets.

3. Assume the following weight for each of the equations:

w = (m · 0.5δ)2 , (24)

where m is the total number of records describing a given equation, and δ is
the number of parents that were in their activated state in a given probabilis-
tic relationship. We want to promote the equations which were represented
by a larger share of the sample, but at the same time we want to penalize
complex equations with many activated parents. Higher prevalence of the
latter results in more complex linear combination for the final parameter,
increasing the error propagation. We have experimented with the degree
of penalty that could be applied to each equation, and found that weight
decreasing exponentially with the number of activated parents led to high-
est accuracy5. Proposed constants achieved the best results in preliminary
experiments.

5 Linear and polynomial penalty functions were also considered.
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4. Apply the Weighted Least Squares method as described in the previous sec-
tion. If any errors occur during learning (i.e., computed probability is neg-
ative or larger than 1), compute given parameter using the Simple learning
method described above.

Leaky–MAX Fitting to CPT

1. Initialize the CPT and the prior probabilities with uniform distributions.
2. Perform the Expectation-maximization learning of the full CPT.
3. Perform fitting of the Leaky–MAX parameters to thus obtained CPT using

the algorithm of Zagórecki and Drużdżel [10].6

4.3 Performance Assessment

This section describes our methodology for the performance evaluation of the
tested algorithms (see Figure 5):

1. The first step differs for each of the experiments:
(a) Leaky–MAX experiment: Parameters of the network (parents’ prior prob-

abilities and CPT) are randomized uniformly.
(b) Noise–induced experiment: Parameters of the network are randomized

uniformly and then subjected to a Dirichlet noising with parameter κ.
2. Thus obtained reference network is used for sampling of the datasets.
3. Tested algorithms learn the Leaky–MAX parameters from the data and ex-

pand them to full CPT.
4. Learned CPTs are compared against the original CPT using the Hellinger

distance [13].

Initial MAX Reference
Hellinger

Learning

randomize
uniformly

randomize
Dirichlet

generate
dataset

CPT

CPT

distance

Fig. 5. Experiment flowchart. Dashed line is an noise–induced variant to the uniform
randomization of the reference Leaky–MAX parameters.

We use two metrics based on the Hellinger distance to measure the average and
maximal errors within the learned CPT:

HMAX(P,Q) = max{H(P,Q, j) | j ∈ J} , (25)

HAVG(P,Q) = avg{H(P,Q, j) | j ∈ J} , (26)

6 Implementation of the Leaky–MAX fitting algorithm is available in

GeNIe/SMILE�software packages at http://genie.sis.pitt.edu/.
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where H(P,Q, j) is the Hellinger distance between the j-th columns (out of J
total) of the CPTs P and Q:

H(P,Q, j) =
1√
2

√√√√ I∑
i=1

(√
Pi
j −

√
Qi

j

)2
, (27)

and I is the number of states of the child node.

4.4 Results

Figure 6 presents the results of the first experiment. We can observe almost unan-
imous tendency for the Least Squares–based learning to achieve better accuracy
than the Simple learning method. However, for 2 and 3 parents Leaky–MAX fit-
ting seems to achieve the best performance in both average and maximal error.
The situation changes as we increase the number of parents to 5 and 6, in which
case the accuracy of the Leaky–MAX fitting deteriorates drastically.

Figure 7 presents the results in more detail for 100, 1000 and 2000 records.
Each of the boxplots represents 1000 experiment repetitions, with the center
box describing the 50% of cases between the two quartiles (also known as the in-
terquartile range – IQR). The whiskers extend further by a distances of 1.5 ·IQR,
with the outliers marked in red. Above each of the boxplots we gather four sta-
tistical measures (rounded to 4 decimal points): mean (μ), median (x̃), standard
deviation (σ) and a win ratio (ω), last of which was also shown on a separate plot
on the right. Win ratio is simply the fraction of the 1000 experiments in which
given method achieved the minimal distance among other algorithms (including
ties). The best value for each of the statistics among the tested algorithms is
signified with the boldface font.

Leaky–MAX fitting achieves the best overall performance for 2 parents by
almost all statistical measures across the experiment. Similar scenario (although
not as apparent) occurs for 3 parents, with Least Squares method performing
akin to Leaky–MAX fitting in mean, median and win ratio. However, when we

Fig. 6. Simple learning, Least Squares method and Leaky–MAX fitting approach. Av-
erage over 1000 repetitions.
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Fig. 7. Statistical performance of Least Squares (L.Squares), Simple learning (Sim-
ple) and Leaky–MAX fitting (L-M fitting) methods. Mean (μ), median (x̃), standard
deviation (σ) and win ratio (ω) over 1000 experiment repetitions (HAVG metric).

look at the case of 4 parents, the Least Squares method starts to outperform
the remaining methods and loses only to Simple learning in standard deviation
for 100 records. The effect continues to persist for 5 and 6 parents — for the
latter, Least Squares obtains the best statistical indicators for all three dataset
sizes. Analyzing the corresponding plots of the win ratio suggests that the Least
Squares method is almost consistently better than the Simple learning approach,
while for 4 and 6 parents it clearly outperforms both methods.

We show the results of the second experiment for 3, 4, and 5 parents in
Figure 8. Since all methods assume certain unmet properties about the data, it
is expected that the learning quality will deteriorate with lower values of κ. For
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Fig. 8. Average accuracy of the Least Squres, Simple learning and Leaky–MAX fitting
methods for various degrees of noise introduced to the learning data

relatively small deviation from the ideal Leaky–MAX (κ = 100), we observe that
the Least Squares method achieves the accuracy as good as the Simple learning
method, and not clearly different from the previous experiment. As we divert
away from the perfect scenario (κ = 25 and 10) a degeneration in accuracy starts
to occur, especially for the Least Squares method when assessed by the HMAX

metric. The Leaky–MAX fitting method seems to be more resistant to distortion,
especially when one considers maximal error – the degeneration is not as severe
as it is for the remaining methods.

4.5 Discussion

The degrading performance of the Leaky–MAX fitting for 4 and more parents
is not surprising, as the main drawback of the method is the lack of information
on the accuracy of the estimated parameters in the CPT after the Expectation-
maximization algorithm. When the number of parents is small (i.e., 2 or 3 nodes,
giving 4 and 8 parameters respectively), individual parameters in the CPT are
estimated based on a larger share of the sample. However, exponential increase in
the number of CPT parameters, without a corresponding exponential increase
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in the number of records, must lead to higher frequency of poorly estimated
or missing entries in a CPT. Missing information on the individual parameters
“quality” leads to higher error propagation during the Leaky–MAX fitting phase.

If we analyze the cases of 100–300 records and 5 parents, Least Squares and
Simple learning methods perform similarly in terms of win ratio. This is due to
the fact that the Least Squares method falls back to Simple learning when the
information within data is poorly estimated. However, as we increase the number
of records to 400 and more, we can notice an increasing difference between the
two methods, suggesting a higher frequency of “exclusive wins” for the Least
Squares approach (similarly for 6 parents with a threshold of 500 records).

Noise–induced experiment revealed a poor performance of Least Squares ap-
proach for the non-Leaky–MAX data. It is expected, as the assumptions about
the Leaky–MAX distributions are not met – most of the presumed relationships
between the equations and computations done, are simply incorrect. This leads
to a larger degree of error propagation in the final parameters. Simple learning
focuses only on the subset of data, without considering any relationships be-
tween observations. Intuitively, minor utilization of the false assumptions about
the data in the simple method leads to fewer points of failure.

5 Conclusions

Learning Leaky–MAX parameters from data can be improved in terms of accu-
racy by employing a method able to extract more information from the sample.
The method proposed in this research achieves better results in terms of learn-
ing precision than the simple approach and the Leaky–MAX fitting approach,
assuming that the data fits the Leaky–MAX definition. By employing the as-
sumptions of canonical models, we show that it is possible to render a connection
between the probabilistic relationships and linear algebra. This opens up room
for future research, as we believe that the approach thus presented resonates
equally well with other canonical models. Besides a possible wider application
of our solution, the core method itself can be improved as the problem of quasi
linear regression presented in this research was given much attention in the field
of regression analysis.
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Abstract. Marginal AMP chain graphs are a recently introduced fam-
ily of models that is based on graphs that may have undirected, directed
and bidirected edges. They unify and generalize the AMP and the mul-
tivariate regression interpretations of chain graphs. In this paper, we
present a constraint based algorithm for learning a marginal AMP chain
graph from a probability distribution which is faithful to it. We also
show that the extension of Meek’s conjecture to marginal AMP chain
graphs does not hold, which compromises the development of efficient
and correct score+search learning algorithms under assumptions weaker
than faithfulness.

Keywords: Chain graphs, marginal AMP chain graphs, learning graph-
ical models.

1 Introduction

Chain graphs (CGs) are graphs with possibly directed and undirected edges,
and no semidirected cycle. They have been extensively studied as a formal-
ism to represent independence models, because they can model symmetric and
asymmetric relationships between the random variables of interest. However,
there are three different interpretations of CGs as independence models: The
Lauritzen-Wermuth-Frydenberg (LWF) interpretation [6], the multivariate re-
gression (MVR) interpretation [4], and the Andersson-Madigan-Perlman (AMP)
interpretation [1]. It is worth mentioning that no interpretation subsumes an-
other: There are many independence models that can be represented by a CG
under one interpretation but that cannot be represented by any CG under the
other interpretations [1,17]. Moreover, although MVR CGs were originally repre-
sented using dashed directed and undirected edges, we like other authors prefer
to represent them using solid directed and bidirected edges.

Recently, a new family of models has been proposed to unify and general-
ize the AMP and MVR interpretations of CGs [11]. This new family, named
marginal AMP (MAMP) CGs, is based on graphs that may have undirected,
directed and bidirected edges. In this paper, we extend [11] by presenting an
algorithm for learning an MAMP CG from a probability distribution which is
faithful to it. Our algorithm is constraint based and builds upon those devel-
oped in [16] and [10] for learning, respectively, MVR and AMP CGs under the

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 382–395, 2014.
© Springer International Publishing Switzerland 2014
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faithfulness assumption. Finally, note that there also exist algorithms for learn-
ing LWF CGs under the faithfulness assumption [7,19] and under the milder
composition property assumption [13]. In this paper, we also show that the ex-
tension of Meek’s conjecture to MAMP CGs does not hold, which compromises
the development of efficient and correct score+search learning algorithms under
assumptions weaker than faithfulness.

The rest of this paper is organized as follows. We start with some preliminaries
in Section 2. Then, we introduce MAMP CGs in Section 3, followed by the
algorithm for learning them in Section 4. We close the paper with some discussion
in Section 5.

2 Preliminaries

In this section, we introduce some concepts of models based on graphs, i.e.
graphical models. Most of these concepts have a unique definition in the liter-
ature. However, a few concepts have more than one and we opt for the most
suitable in this work. All the graphs and probability distributions in this paper
are defined over a finite set V . All the graphs in this paper are simple, i.e. they
contain at most one edge between any pair of nodes. The elements of V are not
distinguished from singletons.

If a graph G contains an undirected, directed or bidirected edge between two
nodes V1 and V2, then we write that V1 − V2, V1 → V2 or V1 ↔ V2 is in G. We
represent with a circle, such as in ←⊸or ⊸⊸, that the end of an edge is unspecified,
i.e. it may be an arrow tip or nothing. The parents of a set of nodes X of G is
the set paG(X) = {V1∣V1 → V2 is in G, V1 ∉ X and V2 ∈X}. The children of X is
the set chG(X) = {V1∣V1 ← V2 is in G, V1 ∉ X and V2 ∈ X}. The neighbors of X
is the set neG(X) = {V1∣V1 − V2 is in G, V1 ∉ X and V2 ∈ X}. The spouses of X
is the set spG(X) = {V1∣V1 ↔ V2 is in G, V1 ∉ X and V2 ∈ X}. The adjacents of
X is the set adG(X) = neG(X) ∪ paG(X) ∪ chG(X) ∪ spG(X). A route between
a node V1 and a node Vn in G is a sequence of (not necessarily distinct) nodes
V1, . . . , Vn such that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. If the nodes in the route
are all distinct, then the route is called a path. The length of a route is the
number of (not necessarily distinct) edges in the route, e.g. the length of the
route V1, . . . , Vn is n − 1. A route is called descending if Vi → Vi+1 or Vi − Vi+1 is
in G for all 1 ≤ i < n. A route is called strictly descending if Vi → Vi+1 is in G for
all 1 ≤ i < n. The descendants of a set of nodes X of G is the set deG(X) = {Vn∣

there is a descending route from V1 to Vn in G, V1 ∈ X and Vn ∉ X}. The strict
ascendants of X is the set sanG(X) = {V1∣ there is a strictly descending route
from V1 to Vn in G, V1 ∉ X and Vn ∈ X}. A route V1, . . . , Vn in G is called a
cycle if Vn = V1. Moreover, it is called a semidirected cycle if Vn = V1, V1 → V2 is
in G and Vi → Vi+1, Vi ↔ Vi+1 or Vi − Vi+1 is in G for all 1 < i < n. A cycle has
a chord if two non-consecutive nodes of the cycle are adjacent in G. An AMP
chain graph (AMP CG) is a graph whose every edge is directed or undirected
such that it has no semidirected cycles. A MVR chain graph (MVR CG) is a
graph whose every edge is directed or bidirected such that it has no semidirected
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cycles. The subgraph of G induced by a set of its nodes X is the graph over X
that has all and only the edges in G whose both ends are in X .

We now recall the semantics of AMP and MVR CGs. A node B in a path ρ
in an AMP CG G is called a triplex node in ρ if A → B ← C, A → B − C, or
A−B ← C is a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when

– every triplex node in ρ is in Z ∪ sanG(Z), and
– every non-triplex node B in ρ is outside Z, unless A−B −C is a subpath of

ρ and paG(B) ∖Z ≠ ∅.

A node B in a path ρ in an MVR CG G is called a triplex node in ρ if
A ←⊸B ←⊸ C is a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V
when

– every triplex node in ρ is in Z ∪ sanG(Z), and
– every non-triplex node B in ρ is outside Z.

Let X , Y and Z denote three disjoint subsets of V . When there is no Z-open
path in an AMP or MVR CG G between a node in X and a node in Y , we
say that X is separated from Y given Z in G and denote it as X ⊥GY ∣Z. The
independence model represented by G, denoted as I(G), is the set of separations
X⊥GY ∣Z. In general, I(G) is different whether G is an AMP or MVR CG.

3 MAMP CGs

In this section, we review marginal AMP (MAMP) CGs. We refer the reader
to [11] for more details. Specifically, a graph G containing possibly directed,
bidirected and undirected edges is an MAMP CG if

C1. G has no semidirected cycle,
C2. G has no cycle V1, . . . , Vn = V1 such that V1 ↔ V2 is in G and Vi −Vi+1 is in

G for all 1 < i < n, and
C3. if V1 − V2 − V3 is in G and spG(V2) ≠ ∅, then V1 − V3 is in G too.

The semantics of MAMP CGs is as follows. A node B in a path ρ in an MAMP
CG G is called a triplex node in ρ if A ←⊸B ←⊸ C, A ←⊸B −C, or A−B ←⊸ C is
a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when

– every triplex node in ρ is in Z ∪ sanG(Z), and
– every non-triplex node B in ρ is outside Z, unless A−B −C is a subpath of

ρ and spG(B) ≠ ∅ or paG(B) ∖Z ≠ ∅.

Let X , Y and Z denote three disjoint subsets of V . When there is no Z-open
path in G between a node in X and a node in Y , we say that X is separated
from Y given Z in G and denote it as X ⊥ GY ∣Z. The independence model
represented by G, denoted as I(G), is the set of separations X ⊥ GY ∣Z. We
denote by X⊥pY ∣Z (respectively X /⊥p Y ∣Z) that X is independent (respectively
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dependent) of Y given Z in a probability distribution p. We say that p is faithful
to G when X ⊥ pY ∣Z iff X ⊥ GY ∣Z for all X , Y and Z disjoint subsets of V .
We say that two MAMP CGs are Markov equivalent if they represent the same
independence model. In an MAMP CG, a triplex ({A,C},B) is an induced
subgraph of the form A ←⊸B ←⊸C, A ←⊸B − C, or A − B ←⊸ C. We say that
two MAMP CGs are triplex equivalent if they have the same adjacencies and
the same triplexes. Two MAMP CGs are Markov equivalent iff they are triplex
equivalent [11, Theorem 7].

Clearly, the union of AMP and MVR CGs is a subfamily of MAMP CGs. The
following example shows that it is a proper subfamily.

Example 1. The independence model represented by the MAMP CG G below
cannot be represented by any AMP or MVR CG.

A B C

D E

To see it, assume to the contrary that it can be represented by an AMP
CG H . Note that H is an MAMP CG too. Then, G and H must have the
same triplexes. Then, H must have triplexes ({A,D},B) and ({A,C},B) but
no triplex ({C,D},B). So, C − B −D must be in H . Moreover, H must have
a triplex ({B,E},C). So, C ← E must be in H . However, this implies that H
does not have a triplex ({C,D},E), which is a contradiction because G has
such a triplex. To see that no MVR CG can represent the independence model
represented by G, simply note that no MVR CG can have triplexes ({A,D},B)
and ({A,C},B) but no triplex ({C,D},B).

Finally, other families of models that are based on graphs that may contain
undirected, directed and bidirected edges are summary graphs after replacing
the dashed undirected edges with bidirected edges [4], MC graphs [5], maximal
ancestral graphs [14], and loopless mixed graphs [15]. However, the separation
criteria for these families are identical to that of MVR CGs. Then, MVR CGs
are a subfamily of these families but AMP CGs are not. See also [14, p. 1025]
and [15, Sections 4.1-4.3]. Therefore, MAMP CGs are the only graphical models
in the literature that generalize both AMP and MVR CGs.

4 Algorithm for Learning MAMP CGs

In this section, we present our algorithm for learning an MAMP CG from a
probability distribution which is faithful to it. The algorithm builds upon those
developed in [16] and [10] for learning, respectively, MVR and AMP CGs un-
der the faithfulness assumption. The algorithm, which can be seen in Table 1,
resembles the well-known PC algorithm developed in [18] for learning Bayesian
networks under the faithfulness assumption, in the sense that it consists of two
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Table 1. Algorithm for learning MAMP CGs

Input: A probability distribution p that is faithful to an unknown MAMP CG G.
Output: An MAMP CG H that is triplex equivalent to G.

1 Let H denote the complete undirected graph
2 Set l = 0
3 Repeat while l ≤ ∣V ∣ − 2
4 For each ordered pair of nodes A and B in H st A ∈ adH(B) and
∣[adH(A) ∪ adH(adH(A))] ∖ {A,B}∣ ≥ l

5 If there is some S ⊆ [adH(A) ∪ adH(adH(A))] ∖ {A,B} st ∣S∣ = l and A⊥pB∣S
then

6 Set SAB = SBA = S
7 Remove the edge A −B from H
8 Set l = l + 1
9 Apply the rules R1-R4 to H while possible
10 Replace every edge A 
 B in H with A→ B
11 Replace every edge A −B or A
� B in H with A↔ B
12 Replace every induced subgraph A↔ B ↔ C in H st B ∈ SAC with A −B −C

13 If H has an induced subgraph A B C then

14 Replace the edge A↔ B in H with A −B
15 Go to line 13
16 Return H

Table 2. Rules R1-R4 in the algorithm for learning MAMP CGs

R1: A B C ⇒ A B C

∧ B ∉ SAC

R2: A B C ⇒ A B C

∧ B ∈ SAC

R3:
A . . . B

⇒

A . . . B

R4: A B

C

D

⇒ A B

C

D

∧ A ∈ SCD
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phases: The first phase (lines 1-8) aims at learning adjacencies, whereas the sec-
ond phase (lines 9-15) aims at directing some of the adjacencies learnt. Specif-
ically, the first phase declares that two nodes are adjacent if and only if they
are not separated by any set of nodes. Note that the algorithm does not test
every possible separator (see line 5). Note also that the separators tested are
tested in increasing order of size (see lines 2, 5 and 8). The second phase consists
of two steps. In the first step (line 9), the ends of some of the edges learnt in
the first phase are blocked according to the rules R1-R4 in Table 2. A block is
represented by a perpendicular line at the edge end such as in � or ��, and it
means that the edge cannot be a directed edge pointing in the direction of the
block. Note that �� does not mean that the edge must be undirected: It means
that the edge cannot be a directed edge in either direction and, thus, it must be
a bidirected or undirected edge. In the second step (lines 10-15), some edges get
directed. Specifically, the edges with exactly one unblocked end get directed in
the direction of the unblocked end. The rest of the edges get bidirected (see line
11), unless this produces a false triplex (see line 12) or violates the constraint
C2 (see lines 13-15). Note that only cycles of length three are checked for the
violation of the constraint C2.

The rules R1-R4 in Table 2 work as follows: If the conditions in the antecedent
of a rule are satisfied, then the modifications in the consequent of the rule are
applied. Note that the ends of some of the edges in the rules are labeled with a
circle such as in �⊸ or ⊸⊸. The circle represents an unspecified end, i.e. a block
or nothing. The modifications in the consequents of the rules consist in adding
some blocks. Note that only the blocks that appear in the consequents are added,
i.e. the circled ends do not get modified. The conditions in the antecedents of
R1, R2 and R4 consist of an induced subgraph of H and the fact that some of
its nodes are or are not in some separators found in line 6. The condition in
the antecedent of R3 consists of just an induced subgraph of H . Specifically, the
antecedent says that there is a cycle in H whose edges have certain blocks. Note
that the cycle must be chordless.

The rest of this section is devoted to prove that our algorithm is correct, i.e. it
returns an MAMP CG the given probability distribution is faithful to. We start
by proving some auxiliary results.

Lemma 1. After having executed line 8, G and H have the same adjacencies.

Proof. Consider any pair of nodes A and B in G. If A ∈ adG(B), then A /⊥pB∣S
for all S ⊆ V ∖{A,B} by the faithfulness assumption. Consequently, A ∈ adH(B)
at all times. On the other hand, if A ∉ adG(B), then consider the following cases.

Case 1. Assume that A ∉ deG(B) or B ∉ deG(A). Assume without loss of
generality that B ∉ deG(A). Then, A ⊥ pB∣paG(A) [11, Theorem 5]. Note
that, as shown above, paG(A) ⊆ adH(A) ∖B at all times.

Case 2. Assume that A ∈ deG(B) and B ∈ deG(A). Then, A ⊥ pB∣neG(A) ∪
paG(A ∪ neG(A)) [11, Theorem 5]. Note that, as shown above, neG(A) ∪
paG(A ∪ neG(A)) ⊆ [adH(A) ∪ adH(adH(A))] ∖ {A,B} at all times.
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Therefore, in either case, there will exist some S in line 5 such that A⊥pB∣S
and, thus, the edge A − B will be removed from H in line 7. Consequently,
A ∉ adH(B) after line 8.

Lemma 2. The rules R1-R4 block the end of an edge only if the edge is not a
directed edge in G pointing in the direction of the block.

Proof. According to the antecedent of R1, G has a triplex ({A,C},B). Then, G
has an induced subgraph of the form A ←⊸B ←⊸ C, A ←⊸B − C or A −B ←⊸ C.
In either case, the consequent of R1 holds.

According to the antecedent of R2, (i) G does not have a triplex ({A,C},B),
(ii) A ←⊸B or A − B is in G, (iii) B ∈ adG(C), and (iv) A ∉ adG(C). Then,
B → C or B −C is in G. In either case, the consequent of R2 holds.

According to the antecedent of R3, (i) G has a path from A to B with no
directed edge pointing in the direction of A, and (ii) A ∈ adG(B). Then, A← B
cannot be in G because G has no semidirected cycle. Then, the consequent of
R3 holds.

According to the antecedent of R4, neither B → C nor B → D are in G.
Assume to the contrary that A ← B is in G. Then, G must have an induced
subgraph that is consistent with

A B

C

D

because, otherwise, G has a semidirected cycle. However, this contradicts that
A ∈ SCD.

Lemma 3. At line 16, all the undirected edges in H are in G.

Proof. Note that lines 10-11 imply that H has no undirected edge when line 12
is to be executed. Note also that any undirected edges A −B and B −C added
to H in line 12 must exist in G, because this implies that H has an induced
subgraph A �� B �� C with B ∈ SAC when line 11 is to be executed, which
implies that (i) A and B as well as B and C are adjacent in G whereas A and
C are not adjacent in G by Lemma 1, and (ii) G has no directed edge between
A and B or B and C. Then, A −B −C must be in G by Lemma 2 and the fact
that B ∈ SAC .

The paragraph above implies that all the undirected edges in H are in G
when lines 13-15 are to be executed for the first time, which implies that the
undirected edge added to H in the first execution of lines 13-15 must also be in
G due to the constraints C1 and C2. By repeatedly applying this argument, all
the undirected edges in H at line 16 must be in G.

Lemma 4. At line 16, G and H have the same triplexes.
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Proof. We first prove that any triplex in H at line 16 is in G. Assume to the
contrary that H at line 16 has a triplex ({A,C},B) that is not in G. This is
possible if and only if H has an induced subgraph of one of the following forms
when lines 10-11 are to be executed:

A B C A B C A B C

A B C A B C A B C

Note that the induced subgraphs above together with Lemma 1 imply that A
is adjacent to B in G, B is adjacent to C in G, and A is not adjacent to C in G.
This together with the assumption made above that G has no triplex ({A,C},B)
implies that B ∈ SAC . Now, note that the second and fourth induced subgraphs
above are impossible because, otherwise, A �⊸B would be in H by R2. Likewise,
the third and fifth induced subgraphs above are impossible because, otherwise,
B �⊸ C would be in H by R2. Now, note that any triplex that is added to H in
line 11 due to the first and sixth induced subgraphs above is removed from H in
line 12 because, as shown above, B ∈ SAC . Finally, note that no triplex is added
to H in lines 13-15.

We now prove that any triplex ({A,C},B) in G is in H at line 16. Note that
B ∉ SAC . Consider the following cases.

Case 1. Assume that the triplex in G is of the form A→ B ⊸⊸ C (respectively
A ⊸⊸ B ← C). Then, when lines 10-11 are to be executed, A � B �⊸C
(respectively A �⊸ B � C) is in H by R1 and Lemmas 1 and 2. Then, the
triplex is added to H in lines 10-11. Moreover, the triplex added is of the
form A → B ⊸⊸ C (respectively A ⊸⊸ B ← C) and, thus, it does not get
removed from H in lines 12-15.

Case 2. Assume that the triplex in G is of the form A↔ B ⊸⊸ C or A ⊸⊸ B ↔
C. Then, when lines 10-11 are to be executed, A�⊸ B �⊸C is in H by R1 and
Lemmas 1 and 2. Then, the triplex is added to H in lines 10-11. Moreover,
the triplex cannot get removed from H in lines 12-15. To see it, assume the
contrary. Note that all lines 12-15 do is replacing bidirected edges in H with
undirected edges. Thus, the triplex cannot get removed from H unless it is
of the form A↔ B ↔ C, A↔ B −C, or A −B ↔ C. Consider the following
cases.

Case 2.1. Assume that the triplex gets removed from H in line 12. Assume
that the triplex is of the form A ↔ B ↔ C. The proofs for the forms
A↔ B −C and A−B↔ C are similar. Note that the triplex cannot get
removed from H by applying line 12 to A↔ B ↔ C because, as shown
above, B ∉ SAC . Then, for the triplex to get removed from H in line 12,
H must have two induced subgraphs A′ ↔ A ↔ B and B ↔ C ↔ C′

with A ∈ SA′B and C ∈ SBC′ when line 12 is to be executed. This implies
that A�� B �� C is in H when lines 10-11 are to be executed because, as
shown above, A�⊸ B �⊸C is in H when lines 10-11 are to be executed.
Therefore, H has two induced subgraphs A′ �� A�� B and B �� C �� C′

by R2 when lines 10-11 are to be executed. Then, A′−A or A′ ↔ A must
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be in G by Lemmas 1 and 2. Then, A − B or A → B must be in G by
Lemmas 1 and 2 and the fact that A ∈ SA′B. However, A→ B cannot be
in G because A�� B is in H when line 11 is to be executed. Then, A−B
must be in G. Likewise, B −C must be in G. However, this contradicts
the assumption that G has a triplex ({A,C},B).

Case 2.2. Assume that the triplex gets removed from H in lines 13-15.
Recall that all the undirected edges in H at line 16 are in G by Lemma
3. Therefore, any triplex that gets removed from H in lines 13-15 cannot
exist in G.

The proofs of the following two lemmas can be found in [10, Lemmas 5 and
6]. The fact that G is an AMP CG in that work whereas it is an MAMP CG in
this work is irrelevant for the proofs. What matters is that both works use the
same rules R1-R4.

Lemma 5. After having executed line 9, H does not have any induced subgraph

of the form A B C .

Lemma 6. After having executed line 9, every chordless cycle ρ ∶ V1, . . . , Vn = V1

in H that has an edge Vi � Vi+1 also has an edge Vj � Vj+1.

Lemma 5 is used in the proof of Lemma 6. It is worth noting that one may
think that Lemma 5 implies that H does not have any induced subgraph of the

form A B C after having executed line 12 and, thus, that lines 13-15

are not needed. However, this is wrong as the following example illustrates.

Example 2. The MAMP CG G below shows that lines 13-15 are necessary.

A

B

C D

EF

I A

B

C D

EF

I

G H after line 9

A

B

C D

EF

I

H after line 12

We can now prove the correctness of our algorithm.

Theorem 1. At line 16, H is an MAMP CG that is triplex equivalent to G.
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Proof. Lemma 1 implies that H at line 16 has the same adjacencies as G. Lemma
4 implies that H at line 16 has the same triplexes as G. Lemma 6 implies that H
has no semidirected chordless cycle after having executed line 11. This implies
that H has no semidirected chordless cycle at line 16, because all lines 12-15
do is replacing bidirected edges in H with undirected edges. To see that this
in turn implies that H has no semidirected cycle at line 16, assume to the
contrary that H has no semidirected chordless cycle but it has a semidirected
cycle ρ ∶ V1, . . . , Vn = V1 with a chord between Vi and Vj with i < j. Then, divide
ρ into the cycles ρL ∶ V1, . . . , Vi, Vj , . . . , Vn = V1 and ρR ∶ Vi, . . . , Vj , Vi. Note that
ρL or ρR is a semidirected cycle. Then, H has a semidirected cycle that is shorter
than ρ. By repeated application of this reasoning, we can conclude that H has
a semidirected chordless cycle, which is a contradiction. Therefore, H at line 16
satisfies the constraint C1.

We now show that H at line 16 satisfies the constraint C2. Assume to the
contrary that H has a cycle ρ ∶ V1, . . . , Vn = V1 such that V1 ↔ V2 is in H and
Vi − Vi+1 is in H for all 1 < i < n. Note that ρ must be of length greater than
three by lines 13-15, i.e. n > 3. Note also that Vi − Vi+1 must be in G for all
1 < i < n by Lemma 3, which implies that V1 −V2 is also in G by the constraints
C1 and C2. This implies that V1 and V3 are adjacent in G because, otherwise,
G and H have not the same triplexes, which contradicts Lemma 4. Then, V1

and V3 are adjacent in H by Lemma 1. In fact, V1 ↔ V3 must be in H because,
otherwise, H has a cycle of length three that violates the constraint C1 or C2
which, as shown above, is a contradiction. Then, H has a cycle that violates the
constraint C2 and that is shorter than ρ, namely V1, V3, . . . , Vn = V1. By repeated
application of this reasoning, we can conclude that H has a cycle of length three
that violates the constraint C2 which, as shown above, is a contradiction.

We finally show that H at line 16 satisfies the constraint C3. Assume to the
contrary that H at line 16 has a subgraph of the form V1 −V2 −V3, and V2 ↔ V4

is in H but V1 − V3 is not in H . We show below that G (respectively H at line
16) has the graph to the left (respectively right) below as an induced subgraph.

V1 V2 V3

V4

V1 V2 V3

V4

That V1 − V2 − V3 is in H at line 16 but V1 − V3 is not implies that V1 and V3

cannot be adjacent in H because, otherwise, H violates the constraint C1 or C2
which, as shown above, is a contradiction. This implies that V1 and V3 are not
adjacent in G either by Lemma 1. That V1 − V2 − V3 is in H at line 16 implies
that V1 − V2 − V3 is also in G by Lemma 3. That V2 ↔ V4 is in H at line 16
implies that V2 �� V4 is in H after having executed line 9, which implies that
V2 −V4 or V2 ↔ V4 is in G by Lemmas 1 and 2. In fact, V2 −V4 must be in G be-
cause, otherwise, G violates the constraint C3 since, as shown above, V1−V2−V3

is in G but V1−V3 is not. Finally, note that V1 and V4 as well as V3 and V4 must be
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adjacent in G and H because, otherwise, H at line 16 does not have the same
triplexes as G, which contradicts Lemma 4. Specifically, V1 − V4 − V3 must be
in G and V1 ↔ V4 ↔ V3 must be in H at line 16 because, otherwise, G or H
violates the constraint C1 or C2 which, as shown above, is a contradiction.

However, that G (respectively H at line 16) has the graph to the left (re-
spectively right) above as an induced subgraph implies that H has a triplex
({V1, V3}, V4) that G has not, which contradicts Lemma 4. Then, V1 and V3

must be adjacent in H which, as shown above, is a contradiction.

5 Discussion

MAMP CGs are a recently introduced family of models that is based on graphs
that may have undirected, directed and bidirected edges. They unify and gen-
eralize AMP and MVR CGs. In this paper, we have presented an algorithm for
learning an MAMP CG from a probability distribution p which is faithful to it.
In practice, we do not usually have access to p but to a finite sample from it. Our
algorithm can easily be modified to deal with this situation: Replace A⊥ pB∣S
in line 5 with a hypothesis test, preferably one that is consistent so that the
resulting algorithm is asymptotically correct. We are currently working in the
implementation and empirical evaluation of our algorithm. It is worth mention-
ing that, whereas R1, R2 and R4 only involve three or four nodes, R3 may involve
more. Unfortunately, we have not succeeded so far in proving the correctness of
our algorithm with a simpler R3. Note that the output of our algorithm would
be the same. The only benefit might be a decrease in running time.

The correctness of our algorithm relies upon the assumption that p is faithful
to some MAMP CG. This is a strong requirement that we would like to weaken,
e.g. by replacing it with the milder assumption that p satisfies the composition
property. Specifically, p satisfies the composition property when X ⊥pY ∣Z ∧X⊥

pW ∣Z ⇒X ⊥pY ∪W ∣Z for allX , Y , Z andW pairwise disjoint subsets of V . Note
that if p is a Gaussian distribution, then it satisfies the composition property
regardless of whether it is faithful or not to some MAMP CG [20, Corollary 2.4].

When making the faithfulness assumption is not reasonable, the correctness
of a learning algorithm may be redefined as follows. Given an MAMP CG G,
we say that p is Markovian with respect to G when X ⊥ pY ∣Z if X ⊥GY ∣Z for
all X , Y and Z pairwise disjoint subsets of V . We say that a learning algorithm
is correct when it returns an MAMP CG H such that p is Markovian with
respect to H and p is not Markovian with respect to any MAMP CG F such
that I(H) ⊆ I(F ).

Correct algorithms for learning Bayesian networks and LWF CGs under the
composition property assumption exist [3,9,13]. The way in which these algo-
rithms proceed (a.k.a. score+search based approach) is rather different from
that of the algorithm presented in this paper (a.k.a. constraint based approach).
In a nutshell, they can be seen as consisting of two phases: A first phase that
starts from the empty graph H and adds single edges to it until p is Markovian
with respect to H , and a second phase that removes single edges from H until
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p is Markovian with respect to H and p is not Markovian with respect to any
graph F such that I(H) ⊆ I(F ). The success of the first phase is guaranteed by
the composition property assumption, whereas the success of the second phase
is guaranteed by the so-called Meek’s conjecture [8]. Specifically, given two di-
rected and acyclic graphs F and H such that I(H) ⊆ I(F ), Meek’s conjecture
states that we can transform F into H by a sequence of operations such that,
after each operation, F is a directed and acyclic graph and I(H) ⊆ I(F ). The
operations consist in adding a single edge to F , or replacing F with a triplex
equivalent directed and acyclic graph. Meek’s conjecture was proven to be true
in [2, Theorem 4]. The extension of Meek’s conjecture to LWF CGs was proven
to be true in [13, Theorem 1]. The extension of Meek’s conjecture to AMP and
MVR CGs was proven to be false in [10, Example 1] and [12], respectively. Un-
fortunately, the extension of Meek’s conjecture to MAMP CGs does not hold
either, as the following example illustrates.

Example 3. The MAMP CGs F and H below show that the extension of Meek’s
conjecture to MAMP CGs does not hold.

A B

C D E

A B

C D E

A B

C D E

F H F ′

We can describe I(F ) and I(H) by listing all the separators between any pair
of distinct nodes. We indicate whether the separators correspond to F or H with
a superscript. Specifically,

– SFAD = S
F
BE = S

F
CD = S

F
DE = ∅,

– SFAB = {∅,{C},{D},{E},{C,D},{C,E}},
– SFAC = {∅,{B},{E},{B,E}},
– SFAE = {∅,{B},{C},{B,C}},
– SFBC = {∅,{A},{D},{A,D},{A,D,E}},
– SFBD = {∅,{A},{C},{A,C}}, and
– SFCE = {{A,D},{A,B,D}}.

Likewise,

– SHAD = S
H
BD = S

H
BE = S

H
CD = S

H
DE = ∅,

– SHAB = {∅,{C},{E},{C,E}},
– SHAC = {∅,{B},{E},{B,E}},
– SHAE = {∅,{B},{C},{B,C}},
– SHBC = {{A,D},{A,D,E}}, and
– SHCE = {{A,D},{A,B,D}}.

Then, I(H) ⊆ I(F ) because SHXY ⊆ S
F
XY for all X,Y ∈ {A,B,C,D,E} with

X ≠ Y . Moreover, the MAMP CG F ′ above is the only MAMP CG that is triplex
equivalent to F , whereas there is no MAMP CG that is triplex equivalent to H .
Obviously, one cannot transform F or F ′ into H by adding a single edge.
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While the example above compromises the development of score+search learn-
ing algorithms that are correct and efficient under the composition property
assumption, it is not clear to us whether it also does it for constraint based
algorithms. This is something we plan to study.
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Abstract. This work is focused on learning maximum weighted graphs
subject to three structural constraints: (1) the graph is decomposable,
(2) it has a maximum clique size of k + 1, and (3) it is coarser than
a given maximum k-order decomposable graph. After proving that the
problem is NP-hard we give a formulation of the problem based on integer
linear programming. The approach has shown competitive experimental
results in artificial domains. The proposed formulation has important
applications in the field of probabilistic graphical models, such as learning
decomposable models based on decomposable scores (e.g. log-likelihood,
BDe, MDL, just to name a few).

Keywords: Maximum weighted graph problem, decomposable graph,
bounded clique size, integer linear programming.

1 Introduction

The learning of probabilistic graphical models can be divided into two parts, the
structural learning and the parametric learning [4]. Usually, the structural learn-
ing consists of obtaining a graph that maximizes a score function. This problem
can be viewed from the more general perspective of Graph Theory [1] through
the maximum weighted graph problems. Maximum weighted graph problems
consist of learning a graph by maximizing a weight function associated to the
constructed structure. Most of these problems restrict the space of solutions
by imposing a set of structural constraints. Additionally, in some problems, the
weight functions can be additively decomposed in terms of the structural compo-
nents of the graph, e.g. the edges or the complete sets of vertices. The structural
constraints and the decomposability of the weight function allow the design of
efficient algorithms to deal with maximum weighted graph problems.

An illustrative example of this kind of problems is the maximum weighted tree
problem. The solutions to this problem are constrained to the set of graphs with
tree structure. In this problem the weight function is additively decomposable
in terms of the edges included in the solution. This problem can be solved using
learning algorithms with a polynomial computational complexity in the number

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 396–408, 2014.
c© Springer International Publishing Switzerland 2014
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of vertices [5]. The proposed algorithms have been applied to the problem of
learning a maximum likelihood model with tree structure [2].

The maximum weighted k-order decomposable graph (MWk) problem was
proposed in [9] as a natural generalization of the maximum weighted tree prob-
lem. Solutions to this problem are constrained to be k-order decomposable graphs
(see Sect. 2). The weight function is additively decomposable in terms of com-
plete sets of edges up to size k. For k = 2 the problem reduces to the maximum
weighted tree problem. Unfortunately, MWk is an NP-hard problem for k > 2,
even for 0− 1 weights associated to the sets of size two [9]. The author of [9,10]
provides an approximate algorithm with theoretical guarantees for a version of
the problem where the weights are constrained to be monotone increasing, i.e.
the addition of a (valid) edge increases (or maintains) the weight. This algo-
rithm has been applied to the problem of learning maximum likelihood k-order
decomposable models [9,10].

In this work we propose a problem related to MWk with the following struc-
tural constraints (see Problem 1 in Section 3):

– The solution is a (k + 1)-order decomposable graph, and
– the solution is coarser than a given maximal k-order decomposable graph.

In this problem the weight function is also additively decomposable in terms of
complete sets of vertices. We show that this problem remains being NP-hard
and we provide a formulation based on Integer Linear Programming that can be
used to solve it. The provided formulation could be used as the building block
for constructing algorithms to approach the maximum weighted graph problem
proposed in [9]. Hence, the formulation can be also used learning decomposable
models [6] with a bounded clique size using decomposable scores, such as log-
likelihood, Bayesian Dirichlet equivalent score or Minimum Description Length
[4] (see Sect. 5 for further details).

This work is organized as follows. In Sect. 2 we introduce the theoretical
concepts required for the correct understanding of the work. Section 3 defines our
maximum weighted graph problem. In Sect. 4 we provide a set of properties to
deal with this problem. Section 5 presents a formulation of the problem based on
Integer Linear Programming. Section 6 provides a set of experimental results in a
set of artificial domains using the Integer Linear Programming approach. In Sect.
7 we propose an approach to the MWk problem [9] which can be used to learn
decomposable models with a bounded clique size. Finally, Sect. 8 summarizes
the main contributions of this work and indicates how to avoid the drawbacks
of the proposed formulation.

2 Background

This section provides a set of theoretical concepts related to decomposable
graphs. The theoretical concepts are illustrated using the undirected graphs G3

and G+
3 presented in Figures 1 and 2, respectively.
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Let G = (V,E) be an undirected graph, where V = {1, ..., n} is a set of
indexes called the vertices and E is a set of pairs of vertices {u, v} called edges.
In the graphical representation of undirected graphs shown in Figures 1a and 2a
the vertices are represented by circles and edges by lines. Let G+ = (V +, E+) be
an undirected graph. G+ is coarser than G (or equivalently, G is thinner than
G+) when V = V + and E � E+, and it is denoted as G ≺ G+. For example,
G+

3 is coarser than G3.
A graph is said to be complete if it contains any possible edge, i.e. E =

{{u, v} : {u, v} ⊂ V }. An empty graph is a graph without edges, i.e. E = ∅. The
subgraph induced by R ⊆ V , G(R) = (R,E(R)), is a graph with the vertex set
R, where the set of edges is given by E(R) = {{u, v} : {u, v} ⊂ R, {u, v} ∈ E}.
When a set R ⊂ V induces a complete subgraph for G, it is called a complete
set. The set of all complete sets of G is denoted as C(G). Any set C ⊆ V is
called a clique for G if it is a complete set and there is no proper superset which
is complete. For example, the set {1, 2, 4} is a clique for G3 but it is not for G+

3

because the superset {1, 2, 4, 9} is also a complete set for G+
3 .

A path of length l from u to v is a sequence u = w0, ..., wl = v of distinct
vertices such that {wi−1, wi} ∈ E for i = 1, ..., l. A cycle of length l is a path
w0, ..., wl of length l with the modification that w0 = wl, i.e. it begins and ends
in the same point. A chord of a cycle is an edge between two vertices not adjacent
in the cycle. For example, the sequence 1, 2, 3, 8, 1 is a cycle for G3 and it has the
chord {1, 3}. Two vertices u and v are said to be connected if there is a path from
u to v. A connected component of a graph is a subgraph induced by R ⊆ V such
that there exists a path between any two vertices and, in the original graph, the
vertices of the component are not connected to vertices from V \R. For example,
G3 and G+

3 have a single connected component.
The neighborhood of u in G is the set of vertices connected by an edge to

u, N(u|G) = {v ∈ V : {u, v} ∈ E}. We define the neighborhood of a set of
vertices S in G as the set of vertices connected by edges to all the vertices in
S, N(S|G) = {v ∈ V : ∀u ∈ S, {u, v} ∈ E} =

⋂
u∈S N(u|G). The neighborhood

is denoted simply by N(S), when the graph is clear from the context. Note
that this definition of neighborhood is the intersection of the neighborhood of
each vertex instead of the union. For example, N({1, 2}|G3) = {3, 4, 5} and
N({1, 2}|G+

3 ) = {3, 4, 5, 8, 9}.
Given two non-adjacent indexes u and v, a subset S ⊆ V \ {u, v} sepa-

rates u and v, when the graph induced by V \ S separates u and v into two
different connected components. We denote by u ⊥G v|S that S separates
u and v in G. If no proper subset of S is a separator for u and v, then S
is a minimal separator for u and v. The set of the minimal separators of G
is denoted as S(G). For example, S(G3) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}} and
S(G+

3 ) = {{1, 2}, {2, 3}, {1, 3}}. Henceforth, we call separator to a minimal sep-
arator, for the sake of brevity. The set of vertices associated to each connected
component obtained by the removal of a separator S from G will be denoted
by comp(S|G). For example, comp({1, 3}|G3) = {{2, 4, 5, 6, 9}, {7}, {8}} and
comp({1, 3}|G+

3 ) = {{2, 4, 5, 6, 8, 9}, {7}}.
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We say that an undirected graph is a decomposable graph (DG) if for any
cycle of length greater than 3 there exists a chord. A remarkable property of
DGs is that their minimal separators are complete sets and they are included in
a minimum of two of its cliques [6]. For example, G3 and G+

3 are decomposable
graphs because any cycle of length greater than 3 has a chord.

Next, we introduce a theoretical characterization, adapted from [3], of the set
of the edges that can be added to a DG maintaining its decomposability. These
edges are henceforth called candidate edges.

Theorem 1. [3] Given a DG G = (V,E), an edge {u, v} /∈ E is a candidate
edge if and only if exists S ⊆ V \ {u, v} such that

– S is the (minimal) separator for u and v in G, and
– {u, v} ⊂ N(S|G).

We say that {u, v} is a candidate edge due to S.

For example, {3, 4} is a candidate edge due to {1, 2} for G3 because 3 ⊥G3

4|{1, 2} and {3, 4} ⊂ N({1, 2}|G3) = {3, 4, 5}. {3, 9} is not a candidate edge
due to {1, 2} for G3 because {3, 9} �⊂ N({1, 2}|G3). On the contrary, {3, 9} is a
candidate edge due to {1, 2} for (the coarser) G+

3 because 3 ⊥G+
3
4|{1, 2} and

{3, 9} ⊂ N({1, 2}|G+
3 ). Clearly, the addition of a set of edges can change the

neighborhood of a separator S and, in consequence, the set of candidate edges
due to S.

Corollary 1. Let G be a DG. The addition of a candidate edge {u, v} due to
S ∈ S(G) to G creates the clique {u, v} ∪ S.

The addition of the candidate edge {2, 9} due to {1, 4} to G3 creates the clique
{1, 2, 4, 9}.

In this work we are particularly interested in two types of decomposable graphs
which control explicitly the maximum clique size.

Definition 1. A k-order decomposable graph (kDG) is a DG for which
the maximum clique size is k. A maximal k-order decomposable graph
(MkDG) is a kDG for which all the cliques are of size k and the addition
of a candidate edge creates a clique of size k + 1.

For example, a forest is a 2DG and a tree is an M2DG, G3 is an M3DG and G+
3

is a 4DG. MkDGs are also known in the literature as (k − 1)-hypertrees [9]. We
are interested in kDGs and MkDGs because Problem 1 (see Sect. 3) is defined
in terms of these types of DGs. An MkDG Gk has the following interesting
structural properties [7], among others [9]:

– the set of cliques is of size n− k + 1, and
– the size of all the (minimal) separators in S(Gk) is k − 1.

MkDGs are maximal in the sense that the addition of any candidate edge creates
a clique of size greater than k. For example, the addition of {2, 9} and {2, 8} to
G3, generates G+

3 , which has the cliques {1, 2, 4, 9} and {1, 2, 3, 8} of size four.
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(a) Undirected graph. The edges of G3

are represented by lines and vertices by
circles.

(b) Junction tree. The cliques of G3 are
represented by ellipses and separators
by squares.

Fig. 1. This figure shows two alternative representations of the M3DG G3. The undi-
rected graph representation provides the fine details of G3 and the junction tree is a
high level representation which highlights the cliques and separators of G3.

3 Maximum Weighted (k + 1)DG Problem

In this section we define the maximum weighted graph problem to be studied.

Problem 1. Let G be an MkDG and let W = {wR : R ⊂ V , where |R| ≤ k+1}
be a set of weights associated to the sets of vertices of size lower than or equal
to k + 1. Find a maximum weighted (k + 1)DG coarser than G:

G∗ = argG+∈Gk+1
w(G+) (1)

where Gk+1 is the set of (k + 1)DGs coarser than G and w(G+) is the weight
function given by

w(G+) =
∑

R∈C(G+)

wR (2)

Note that C(G+) denotes the entire set of complete subgraphs of G+, not only
the cliques. This weight function includes the decomposable scores such as log-
likelihood, Bayesian Dirichlet equivalent and Minimum Description Length [4]
(see Sect. 7).

As we will see in Sect. 4, many of the weights included in W are irrelevant for
solving Problem 1 (see Corollary 2). However, we have decided to include the
entire set W in the definition of Problem 1, to highlight the similarities with the
MWk problem defined in [9].

Theorem 2. Problem 1 is NP-hard for k > 2.

Proof. The proof is equivalent to the proof provided in [9], Theorem 4.1. We
can reduce 3SAT to Problem 1, by constructing an MkDG coarser than the core
structure given in Theorem 4.1 of [9].
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(a) Undirected graph of G+
3 . (b) Junction tree of G+

3 .

Fig. 2. This figure shows two alternative representations of the 4DG G+
3 . G+

3 is coarser
than G3. The set of candidate edges has changed with respect to G3, due to the
addition of {2, 8} and {2, 9}: now {3, 9}, {4, 8}, {5, 8}, {5, 9}, and {8, 9} are candidate
edges for G+

3 .

4 Results

In this section we illustrate the main ideas behind the Integer Linear Program-
ming approach to Problem 1, which will be presented in Section 5. These in-
tuitions make use of the particular structural features of MkDGs and coarser
(k + 1)DGs.

Proposition 1. (Lemma 2.21, [6]) Let G be a decomposable graph and let G+

be a coarser decomposable graph with exactly m edges more. Then, there is a
sequence of coarser decomposable graphs G = G0 ≺ G1 ≺ ... ≺ Gm = G+, where
Gi is obtained from Gi−1 by adding a candidate edge for Gi−1, for i = 1, ...,m.

Clearly, any (k+ 1)DG coarser than a given MkDG G can be obtained starting
from G by adding candidate edges sequentially. Therefore, Problem 1 can be
solved by considering the addition of candidate edges of successive DGs, only.
We would like to highlight that, as we noted in Sect. 2, the neighborhood of
a separator can change by the addition of edges and, in consequence, the set
of candidate edges of the obtained structure can be different (see Figure 2). In
other words, the candidate edge added to Gi does not need to be a candidate
edge for Gi−1.

Next, we define the set of all candidate edges due to S that create cliques of
size k + 1 for an MkDG G and for all the possibles (k + 1)DG coarser than G.

Definition 2. Let G be an MkDG. An edge is called edge of interest (EOI)
due to S for G when it is a candidate edge for G or for a (k + 1)DG coarser
than G, and its addition creates a clique of size k + 1.

For example, the edge {6, 8} is an EOI due to {2, 3} for G3 because it is a
candidate edge due to {2, 3} for G+

3 , G3 ≺ G+
3 and its addition to G+

3 creates
the clique {2, 3, 6, 8} of size 4.
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Proposition 2. Let G be an MkDG. The set of EOIs due to S for G is given
by

ES(G) = {{u, v} : u ⊥G v|S}

For example, {5, 9} is included in E{1,4}(G3) while {5, 8} is not included.
Let consider an EOI {u, v} due to S for G that is a candidate edge due to

S for a (k + 1)DG G+ coarser than G. By Corollary 1 the addition of {u, v}
to G+ creates the clique {u, v} ∪ S. By Theorem 1, G+ contains the edges
{{u, s} : s ∈ S} ∪ {{v, s} : s ∈ S} and, thus, in order to add the EOI {u, v} due
to S for G we need to add in advance this set of edges. For example, in order
to add the EOI {6, 8} due to {2, 3} to G3 we would need to add in advance the
edge {2, 8} which creates the clique {2, 3, 6, 8}. Taking into account the edges
that must be added in advance to G, we say that the EOI {u, v} due to S for
G is associated to the clique {u, v}∪S. Note that the addition of the same EOI
due to a different separator has associated a different clique. For example, the
addition of the EOI {5, 6} due to {2, 3} for G3 requires to add in advance {3, 5}
and creates the clique {2, 3, 5, 6}, while its addition due to {1, 2} requires to add
in advance of {1, 6} and creates the clique {1, 2, 5, 6}. Thus the addition of the
same edge {u, v} can create different cliques and, therefore, the separator must
be stated explicitly in the EOIs.

In order to characterize the set of cliques that can form part of the solution
to Problem 1, we need to determine the set of separators of size k− 1 for G and
for any (k+1)DG coarser than G. The next result states that this set is the set
of separators of G.

Proposition 3. [8] Let G+ be a (k+1)DG coarser than the MkDG G. The set
of the separators of size k − 1 of G+ is contained in the set of separators of G.

This result reduces the set of separators to be considered for solving Problem 1
to the separators of the given MkDG. Note that, as already indicated in Sect. 2,
all the separators of an MkDG are of size k−1. The following result characterizes
the set of cliques of size k+1 that can be contained in the solution to Problem 1.

Proposition 4. Let G be an MkDG. The set of cliques of size k+1 of any kDG
coarser than G is given by

{{u, v} ∪ S : {u, v} ∈ ES(G), for an S ∈ S(G)}

The cliques are associated to an EOI due to a separator for G. By Propositions
2 and 3 the EOIs correspond to ES(G) for S ∈ S(G). By Theorem 1 in order
to add the EOI {u, v} due to S for G we need to add in advance the edges
{{u, s} : s ∈ S} ∪ {{v, s} : s ∈ S}, which generates G+. Finally, by Corollary 1
the addition of {u, v} due to S to G+ generates the clique {u, v}∪S. For example,
the clique {1, 2, 8, 9} can be created from G3 because {8, 9} ∈ E{1,2}(G3). But
the clique {1, 3, 4, 5} can not be created from G3 because {4, 5} �∈ E{1,3}(G3)
and {3, 5} �∈ E{1,4}(G3). Thus, only a subset of cliques can be part of the solution
structure.
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The next result quantifies the contribution of an EOI due to S to the weight
of a structure.

Proposition 5. Let G be an MkDG and let {u, v} be an EOI due to S, {u, v} ∈
ES(G). The contribution of {u, v} due to S to the total weight of a solution is
wu,v|S =

∑
R⊆S w{u,v}∪R.

By Theorem 1, the addition of the EOI {u, v} due to S requires to add in advance
the edges {{u, s} : s ∈ S}∪{{v, s} : s ∈ S}, which generates G+. Therefore, the
addition of {u, v} to G+ creates the new complete sets {{u, v}∪R : R ⊆ S}, only.
For example the EOI {5, 9} due to {1, 4} for G3 requires the addition of {4, 5}
in advance. After the inclusion of {4, 5}, the addition of {5, 9} creates the new
complete sets {5, 9}, {1, 5, 9}, {4, 5, 9} and {1, 4, 5, 9}, only. Thus the EOI {5, 9}
due to {1, 4} has a weight w5,9|{1,4} = w{5,9} + w{1,5,9} + w{4,5,9} + w{1,4,5,9}.

Clearly, the set of weights that have to be considered to solve Problem 1 is a
subset of W .

Corollary 2. Let G be an MkDG. The set of weights required to solve Problem
1 is limited to

W(G) = {w{u,v}∪R : R ⊆ S and {u, v} ∈ ES(G), where S ∈ S(G)}

5 An Integer Linear Programming Formulation
of Problem 1

This section presents a formulation based on Integer Linear Programing for
solving Problem 1, using the results presented in Sect. 4.

Let G = (V,E) be the input MkDG. The decision variables of the problem
are binary and correspond to the next set (see Proposition 2):

{Xu,v|S : S ∈ S(G), {u, v} ∈ ES(G)} (3)

where

Xu,v|S =

{
1, if the EOI {u, v} due to S is included in the solution.
0, if the EOI {u, v} due to S is NOT included in the solution.

(4)
An edge {u, v} is included in the solution if Xu,v|S = 1 for any S ∈ S(G), where
{u, v} ∈ ES(G), while {u, v} is not included in the solution if Xu,v|S = 0 for
all S ∈ S(G), where {u, v} ∈ ES(G). The (k + 1)DG codified by the decision
variables is G+ = (V,E+), where E+ = E ∪ {{u, v} : Xu,v|S = 1 for some S ∈
S(G)}. As we noted in Sect. 4, by Proposition 5 the addition of an EOI {u, v}
due to S contributes to the total weight of the obtained (k + 1)DG with wu,v|S
and, thus, the assignment Xu,v|S = 1 has the associated weight wu,v|S to the
solution.

Problem 1 can be rewritten as the next Integer Linear Programming
(ILP) problem:

max
∑

S∈S(G),{u,v}∈ES(G)

wu,v|SXu,v|S (5)
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subject to the following set of constraints:

1.
∑

S∈S(G):{u,v}∈ES(G) Xu,v|S ≤ 1 for {u, v} �∈ E

2. [
∑

R∈S(G):{u,v}∈ER(G)

∑
s∈S Xu,s|R]− (k − 1) ·Xu,v|S ≥ −

∑
s∈S 1u,s

[
∑

R∈S(G):{u,v}∈ER(G)

∑
s∈S Xv,s|R]− (k − 1) ·Xu,v|S ≥ −

∑
s∈S 1v,s

for Xu,v|S .
3.
∑

T �=U∈C
∑

u∈T

∑
v∈U Xu,v|S ≤ |C| − 1 for S ∈ S(G) and C ⊂ comp(S|G)

The constants 1u,v of constraints (2) take the value 1 if {u, v} ∈ E, and 0
otherwise. In constraints (3), C represents a set of sets of vertices, and T and U
are sets of vertices associated to (distinct) connected components of G(V \ S).

Constraints (1) guarantee that each EOI is considered by one separator, which
guarantees that each edge can be added only once in the solution. Constraints (2)
guarantee that {u, v} is in the neighborhood of S in the solution (see Theorem
1 and Figure 3a). In Sect. 4 we indicate that Problem 1 can be solved by adding
sequentially a set of candidate edges (see Proposition 1). The proposed ILP
formulation does not define an explicit ordering of the candidate edges added,
but, it is possible to define the next partial ordering among the EOIs: if {u, v}
is an EOI due to S, then the edges {u, s} and {v, s} for s ∈ S not included
in the MkDG G have to be added in advance. Constraints (3) guarantee that
the vertices u and v were separated due to S before the edge was added. For
example, in Figure 3b, it is possible to add an edge from the component of v to
the component of w because they are separated due to S. On the contrary, an
edge from the component of v to the component of u can not be added because
they are not separated due to S. Note that constraints (3) guarantee that we
add a forest among the connected components of each separator.

(a) Constraints (2): These constraints
ensure that if {u, v} is added to the
structure creating the clique {u, v} ∪ S
then u and v are in the neighborhood
of S.

(b) Constraints (3): These con-
straints ensure that the edges be-
tween two vertices in different con-
nected components form a forest.

Fig. 3. This figure illustrates the constraints of the Integer Linear Programming for-
mulation to Problem 1. Small circles represent vertices, big circles separators, ellipses
connected components and lines edges.
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In the worst case, the number of decision variables of the ILP formulation is
O(n3) because the set of separators can be of size O(n) and the number of edges
can be O(n2). The number of constraints (1) correspond to the number of edges
which can be O(n2). The number of constraints (2) is proportional to the num-
ber of decision variables and is O(n3). In the worst case, the bottleneck of this
approach are the constraints (3), which are O(

∑
S∈S(G) 2

dS). Therefore, they are
exponential in dmax, the maximum degree of the separators of G. The worst case,
for example, corresponds to an MkDG with a single separator because there are
O(2n−k) constraints (3). This fact limits the range of applications of the pro-
posed approach to deal with MkDGs to the ones with moderate values of dmax.
However, in the performed experimentation, we have observed a linear growth in
the number of constraints (3) with respect to n (see Sect. refsec:experiments).

6 Experiments

The experiments have been restricted to generating maximum weighted 3DGs
from M2DGs (Problem 1 for k = 2). Further experimentation is left to future
work.

The experimental results outlined in this section were obtained on a cluster
of PCs with "Intel(R) Xeon(R) CPU E5450" CPUs of 8 nuclii of 3000 MHz
and 32 Gigabyte of RAM. Moreover, the ILP formulation was solved with IBM
ILOG CPLEX V12.1 [12]. A run of CPLEX was stopped once (at least) 3600
CPU seconds had passed. The output (result) of CPLEX is the value of the best
feasible integer solution found within the CPU time limit. The results obtained
by CPLEX are compared against the ones of a greedy approach where, at each
step, the algorithm considers the addition of the candidate edge {u, v} due to S
with the maximum weight wu,v|S among the set of candidate edges.

The instances of Problem 1 have been randomly generated as follows:

– An M2DG (a tree) with n vertices G is generated at random using the
Kruskall algorithm for maximization where the weights associated to the
edges are randomly generated.

– The set of weights W(G) (see Corollary 2) has been uniformly sampled from
the set {−50, 49, ...,−1, 0, 1, ..., 149, 150}.

100 domains have been generated for each n ∈ {25, 50, 75, 100}. The obtained
experimental results are summarized in Table 1.

The proposed ILP approach has obtained the best average results for all the
values of n (see Table 1). ILP obtains the optimum for all the domains with
n = 25 and, for n = 50, has reached the optimum in 91 domains out of 100.
Moreover, the time required to approach Problem 1 for n = 50 is very low (less
than 10 seconds) and for n = 25 is even lower (less than 1 second). However, as
n increases CPLEX is generally not able to provide (provenly) optimal solutions
within the given CPU time limit (see column Gap). For instance, with n = 75
the optimum solution has been obtained for only one problem instance.
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Table 1. Summary of the results obtained for the generated artificial domains. The
columns Vars., Cons-1, Cons-2 and Cons-3 show the average number of decision vari-
ables and constraints (1), (2) and (3), respectively, for the ILP formulation of the
problem. The column Weight shows the average objective function values obtained by
Greedy and ILP. The column Edge provides the average weight of each edge added
to the solution by both approaches. The column Gap provides information about the
average optimality gap (in percent), which refers to the gap between the value of the
best valid solution that was found and the current lower bound at the time of stopping
a run. The column APD is the average percentage deviation of ILP with respect to
Greedy.

Problem features Greedy ILP
n Vars. Cons-1 Cons-2 Cons-3 Weight Edge Weight Edge Gap APD
25 1173.9 276 1795.8 55.9 2449.0 98.9 2718.3 118.2 0.0 11.8
50 7311.5 1176 12271.0 131.2 5195.1 105.1 5802.9 116.8 0.4 12.0
75 21262.0 2701 37122.1 201.5 78911.1 109.8 8733.7 121.0 6.0 11.0
100 43458.7 4851 77215.5 277.2 10663.8 107.9 11053.1 109.8 15.7 3.7

There is a severe drop in the gain with respect to Greedy from n = 75 to
n = 100 (see column APD) which indicates that CPLEX is not appropriate—
with a CPU time limit of 3600 seconds—for n > 100. Besides, in two instances
CPLEX is not able to provide any feasible integer solution within the CPU time
limit. These facts suggests the use of the solution of the greedy approach as
starting solution for the ILP approach. This is called a warm start in CPLEX
terminology.

As we noted in Sect. 5, the number of constraints (3) grows exponentially
with the maximum size of the neighborhoods of the separators. However, the
experimental results show a linear increase in the number of constraints (3) with
respect to n (see column Cons-3 in Table 1). The reason for the linear growth is
because, on average, the number of vertices of degree d in a random tree (M2DG)
decreases exponentially with d, O( n

2d ). This observation can be generalized to
other values of k. The obtained experimental results suggest that the bottleneck
of the proposed formulation in order to deal with MkDGs with many vertices is
the number of decision variables and constraints (2). Actually, we are developing
strategies to alleviate this problem.

7 An Approach to the MWk Problem [9]

In this section we propose an approach to the MWk problem [9] (see Sect. 1)
based on the proposed ILP formulation. The intuition is to construct a sequence
of coarser M(i + 1)DGs for i = 1, ..., k − 1, where M(i + 1)DG is obtained from
the given MiDG using the ILP formulation proposed in Sect. 7. In order to
guarantee that an M(i + 1)DG is constructed from a given MiDG using the
ILP formulation the inequality (≤) in constraints (3) is replaced by an equality
(=). This slight modification ensures that n − i edges are added to the given
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MiDG, which produces an M(i + 1)DG. Based on this modified formulation we
can approach the MWk problem [9] as follows:

– Growth stage: Construct a sequence of coarser M(i+1)DGs from i = 1, ..., k−
1 starting from the empty graph (i.e. M1DG). At the end of this stage an
MkDG is generated.

– Removal stage: Obtain a maximum weighted DG thinner than the con-
structed MkDG using a procedure similar to [11].

As we noted before, the modification of constraints (3) forces the addition of
n − i edges at step i of the growth stage. Consequently, some spurious edges
could be added to the structure during the growing stage and, if the score is
not monotone increasing, the spurious edges could degrease the weight of the
obtained graph. The removal stage tries to eliminate this set of spurious edges.

This procedure can be used to learn decomposable models with a bounded
clique size using decomposable scores such as log-likelihood, Bayesian Dirichlet
equivalent or Minimum Description Length. The decomposable scores can be
additively decomposed as follows:

s(G;D) =
∑
u∈V

s(u|Pa(u);D)

where D is the available data and Pa(u) is the set of parents of u fixed an
ancestral ordering for the vertices V . Using a decomposable score, the weight of
the EOI {u, v} by S in the ILP formulation corresponds to wu,v|S = s(u|v, S;D)−
s(u|S;D). For example, using the log-likelihood score the weight wu,v|S is the
empirical conditional mutual information Î(u; v|S).

8 Conlusions

In this work we have formally defined the problem of learning a maximum
weighted (k + 1)-order decomposable graph coarser than a given maximum k-
order decomposable graph. We have provided a set of intuitions for the design
of learning algorithms to deal with this problem. Using the presented results we
have proposed a formulation based on Integer Linear Programming for solving
the problem. The proposed approach has obtained competitive results, especially
for graphs with moderate values of n (n < 100). Due to the general nature of
the weights of Problem 1 and the fact that it considers decomposable graphs
only, the proposed formulation is an interesting building block in order to de-
sign algorithms for learning decomposable models with a bounded clique size
(see Sect. 7).

The main drawback of the presented formulation based on Integer Linear Pro-
gramming is related with the number of decision variables and constraints (2),
O(n3). This bottleneck implies practical difficulties to deal with structures with
many vertices. Actually, we are developing strategies to alleviate this problem by
limiting the set of edges of interest considered: we only consider the edge of in-
terest {u, v} due to S if the length of the minimum path from u (and v) to s ∈ S
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is lower than a predefined threshold l. With this additional constraint we can
effectively control the number of decision variables and constraints (constraints
(1) and (2)) considered for obtaining an approximate solution to Problem 1.
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Abstract. Hierarchical Multi-label Classification (HMC) is the task of
assigning a set of classes to a single instance with the peculiarity that the
classes are ordered in a predefined structure. We propose a novel HMC
method for tree and Directed Acyclic Graphs (DAG) hierarchies. Us-
ing the combined predictions of locals classifiers and a weighting scheme
according to the level in the hierarchy, we select the “best” single path
for tree hierarchies, and multiple paths for DAG hierarchies. We devel-
oped a method that returns paths from the root down to a leaf node
(Mandatory Leaf Node Prediction or MLNP) and an extension for Non
Mandatory Leaf Node Prediction (NMLNP). For NMLNP we compared
several pruning approaches varying the pruning direction, pruning time
and pruning condition. Additionally, we propose a new evaluation met-
ric for hierarchical classifiers, that avoids the bias of current measures
which favor conservative approaches when using NMLNP. The proposed
approach was experimentally evaluated with 10 tree and 8 DAG hier-
archical datasets in the domain of protein function prediction. We con-
cluded that our method works better for deep, DAG hierarchies and in
general NMLNP improves MLNP.

1 Introduction

The traditional classification task deals with problems where each example e is
associated with a single label y ∈ L, where L is the set of classes. However,
some classification problems are more complex and multiple labels are needed.
This is called multi-label classification. A multi-label dataset D is composed
of N instances (x1, J1), (x2, J2), ..., (xN , JN ), where J ⊂ L. The task is called
Hierarchical Multi-label Classification (HMC) when the labels are ordered in
a predefined structure, typically a tree or a DAG (Direct Acyclic Graph), the
main difference between them is that in the DAG a node can have more than
one parent node.

In hierarchical classification, an example that belongs to certain class auto-
matically belongs to all its superclasses (hierarchy constraint), e.g., in Figure 1b
an instance that belongs to class node 3 also belongs to nodes 1, 4 and root.

Some major applications of HMC can be found in the fields of text cate-
gorization [10], protein function prediction [13], music genre classification [12],
phoneme classification [6], etc.

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 409–425, 2014.
© Springer International Publishing Switzerland 2014
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root

1 4

2 3 5 6

(a) Tree hierarchy

root

1 4

2 3 5 6

(b) DAG hierarchy

Fig. 1. An example of a tree and a DAG structure

Two general approaches can be distinguished in HMC [14]. The first is a
global approach that builds a single classification model, taking into account
the class hierarchy as a whole. These methods are incapable of handling large
scale datasets because the models become too complex and thus time consuming.
The second is a local approach that divides the problem in several subproblems
according to a strategy (can be a local classifier per level, per node or per non
leaf node). The main problem of this approach is that it does not incorporate
the relations (underlying structure) in the local classification.

We propose a novel HMC approach, Chained Path Evaluation (CPE). CPE
belongs to the local approaches so it can work effciently with large scale datasets;
a local classifier is trained for each non-leaf node in the hierarchy. To include the
relations between the classes, and diminish the limitation of local approaches, an
extra attribute is added to the instances in each node which corresponds to the
parent node class according to the hierarchy. We also incorporated a weighting
scheme to value more the predictions of the more general classes than the more
particular ones. CPE scores all the paths in the hierarchy to select the best one.
CPE predicts single paths from the root down to a leaf node for tree hierarchies
(e.g., in Figure 1a 2, 1, root) and multiple paths for DAG hierarchies (e.g., in
Figure 1b 3, 1, 4, root).

We developed an extension of the base method for Non Mandatory Leaf Node
Prediction (NMLNP); in which a pruning phase is performed to select the best
path. We compared several pruning approaches, the best approach for the task
was to prune and then choose the optimal path in a top-down fashion, using the
most probable child as the condition to prune a node. Additionally, we proposed
a new evaluation metric for hierarchical classifiers, that avoids the bias of current
measures which favor conservative predictions (predictions of short paths that
only predict the most general classes) when using NMLNP.

The proposed approach was experimentally evaluated with 10 tree and 8 DAG
hierarchical datasets in the domain of protein function prediction. We concluded
that our method in both versions, MLNP and NMLNP, is competitive with other
methods in the state of the art, and performs better in deeper, DAG hierarchies.

The document is organized as follows. Section 2 reviews the relevant work
in the area, Section 3 describes the method in detail, Section 4 outlines the
framework for the experiments, Section 5 evaluates experimentally our approach,
and Section 6 summarizes the paper and suggests possible future work.
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2 Related Work

When the labels in a multi-label classification problems are ordered in a pre-
defined structure, typically a tree or a Direct Acyclic Graph (DAG), the task
is called Hierarchical Multi-label Classification (HMC). The class structure rep-
resent an “IS-A” relationship, these relations in the structure are asymmetric
(e.g., all cats are animals, but not all animals are cats) and transitive (e.g., all
Siameses are cats, and all cats are animals; therefore all Siameses are animals).
In hierarchical classification, there are basically two types of classifiers: global
classifiers and local classifiers.

Global classifiers construct a global model and train it to predict all the classes
of an instance at once. Vens et al. [15] present a global method that applies
a Predicting Clustering Tree (PCT) to hierarchical multi-label classification,
transforms the problem in a hierarchy of clusters with reduced intra-cluster
variance. One problem of global classifiers is that the computational complexity
grows exponentially with the number of labels in the hierarchy.

Local classifiers can be trained in three different ways: a Local Classifier per
hierarchy Level (LCL), that trains one multi-class classifier for each level of the
class hierarchy; training a Local binary Classifier per Node (LCN), where each
classifier decides if a node is predicted or not; the third way is training a Local
Classifier per Parent Node (LCPN), where a multi-class classifier is trained to
predict its child nodes.

Cerri et al. [5] propose a method that incrementally trains a multilayer per-
ceptron for each level of the classification hierarchy (LCL). Predictions made by
a neural network at a given level are used as inputs to the network of the next
level. The labels are predicted using a threshold value. Finally, a post processing
phase is used to correct inconsistencies (when a subclass is predicted but its
superclass is not). Some difficulties of this approach are the selection of a correct
threshold and the need of a post-processing phase.

Alaydie et al. [1] developed HiBLADE (Hierarchical multi-label Boosting with
LAbel DEpendency), an LCN algorithm that takes advantage of not only the
predefined hierarchical structure of the labels, but also exploits the hidden corre-
lation among the classes that is not shown through the hierarchy. This algorithm
attaches the predictions of the parent nodes as well as the related classes. How-
ever, appending multiple attributes can create models that over-fit the data.

Silla et al. [12] propose an LCPN algorithm combined with two selective meth-
ods for training. The first method selects the best features to train the classifiers,
the second selects both the best classifier and the best subset of features simul-
taneously, showing that selecting a classifier and features improves the classifica-
tion performance. A drawback of this approach is that the selection of the best
features and the best classifier for each node can be a time-consuming process.

Bi et al. [3,4] propose HIROM, a method that uses the local predictions to
search for the optimal consistent multi-label classification using a greedy strat-
egy. Using Bayesian decision theory, they derive the optimal prediction rule by



412 M. Ramírez-Corona, L. Enrique Sucar, and E.F. Morales

minimizing the conditional risk. The limitations of this approach is that it opti-
mizes a function that does not necessarily maximizes the performance in other
measures.

The approach of Hernandez et al. [7], used for tree structured taxonomies,
learns an LCPN. In the classification phase, it classifies a new instance with the
local classifier at each node, and combines the results of all of them to obtain
a score for each path from the root to a leaf-node. Two fusion rules were used
to achieve this: product rule and sum rule. Finally it returns the path with the
highest score. One limitation of this method is that it favors shorter (product
rule) or longer paths (sum rule) depending on which combination rule is used.
Another limitation is that it does not take into account the relations between
nodes when classifying an instance.

Extending the work of Hernandez et al., our method (Chained Path Evalua-
tion or CPE), changes the way the classifiers are trained to include the relations
between the labels, specifically of the parent nodes of the labels, to boost the
prediction. The score for each path is computed using a fusion rule that takes
into account the level in the hierarchy, thus minimizing the effect that the length
of the path has in the score. We also extended the method to work with DAG
structured hierarchies.

To include the relations of the parent nodes we used the idea of chain classifiers
proposed by Read et al. [9] and further extended by Zaragoza et al. [16]. The
chain classifiers proposed by Read link the classifiers along a chain where each
classifier deals with the binary classification problem associated with a label.
The feature space of each classifier in the chain is extended with the 0/1 label
of all the previous classifiers in the chain. Zaragoza et al. propose a Bayesian
Chain Classifier where they obtain a dependency structure out of the data. This
structure determines the order of the chain, so that the order of the class variables
in the chain is consistent with the structure found in the first stage. We adapt
this idea to a hierarchical classifier, such that the chain structure is determined
by the hierarchy.

3 Chained Path Evaluation

Let D be a training set with N examples, ek = (xk, Jk), where xk is a d-
dimensional feature vector and J ⊂ L, L = {l1, 12, ..., lM} a finite set of M
possible labels. These labels are represented as Y ∈ {0, 1}M , where yi = 1 iff
yi ∈ Jk else yi = 0. The parent of label yi in the hierarchy is represented as pa(yi),
the children nodes as child(yi) and the siblings as sib(yi), the siblings include
all the children nodes of pa(yi) except yi. Our method exploits the correlation
of the labels with its ancestors in the hierarchy and evaluates each possible path
from the root to a leaf node, taking into account the level of the predicted labels
to give a score to each path and finally return the one with the best score.
The method is composed of two phases: training and classification. There is an
additional optional phase, pruning, which can be applied for non-mandatory leaf
node prediction.
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3.1 Training

The method trains local classifiers per parent node (LCPN). A multi-class clas-
sifier Ci is trained for each non leaf node yi. The classes in Ci are the labels in
the set of child(yi) plus an “unknown” label that corresponds to the instances
that do not belong to any child(yi).

The training set for Ci is composed of two sets. The positive training set
(Tr+(Ci)) consists of the instances where child(yi) = 1. Each instance in this
set will be labeled with the corresponding child(yi) label. The negative training
set (Tr−(Ci)) consists of instances in sib(yi), in case yi has no siblings this
set will include the uncle nodes, these instances are labeled as “unknown”. The
number of instances on Tr−(Ci) is proportional to the average of the training
examples for each child(yi) to create a balanced training set. The idea behind
Tr−(Ci) is to include instances where the associated label of the parent has the
value zero. The intuition is that the instances that has the parent label set as
zero, will have less probability to be predicted as true that the ones that have
the parent predicted as one.

As in multidimensional classification, the class of each node in the hierarchy
is not independent from the other nodes. To incorporate these relations, inspired
by chain classifiers, we include the class predicted by the parent node(s) as an
additional attribute in the LCPN classifier. That is, the feature space of each
node in the hierarchy is extended with the 0/1 label association of the parent
(tree structure) or parents (DAG structure) of the node, as in a Bayesian Chain
Classifier [16].

3.2 Classification

The classification phase consists in calculating for each new instance with feature
vector xe, the probability of a node i to occur given the feature vector and the
prediction of the parents at each label P (yi = 1|xe, pa(yi)). When the structure
of the dataset is a DAG it is possible to obtain more than one prediction for
one class, then the associated prediction is the average of the prediction of all
the parents for that class. After computing a probability for each node, the
predictions are merged using a rule to obtain a score for each path.

Merging Rule. The rule that merges the predictions of each local classifier
into one score considers the level in the hierarchy of the node to determine the
weight that this node will have in the overall score. Misclassifications at the upper
hierarchy levels (which correspond to more generic concepts) are more expensive
than those at the lower levels (which correspond to more specific concepts).

To achieve this task, the weight of a node (w(yi)) is defined in Equation (2)
and depicted on Figure 2, where level(yi) is the level at which the node yi is
placed in the hierarchy (Equation (1)). For a tree structure it is simply the weight
of its parent plus one, and for DAG structures it is computed as the mean of the
levels of the m parents (pa(yi)) of the node (yi) plus one. Finally, maxLevel is
the length of the longest path in the hierarchy. This way of computing the weight
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of each node assures that the weights are well distributed along the hierarchy;
so that the weights of the lower levels do not tend rapidly to zero, as in other
approaches [3,15].

level(yi) = 1 +

∑m
j=1 level(pa(yi)j)

|pa(yi)|
(1)

wi = 1− level(yi)

maxLevel+ 1
(2)

Equation (3) describes the merging rule which is the sum of the logarithms
of the probabilities on the nodes along the path or paths (when it is a DAG),
where n is the number of nodes in the path, hi is the ith node in the path and
P (hi = 1|xe, pa(hi)) is the probability of the node hi to be predicted as true
by the local classifier. Taking the sum of logarithms is used to ensure numerical
stability when computing the probability for long paths. Figure 2 depicts the
classification procedure.

score =

n∑
i=1

whi ∗ log(P (hi|xe, pa(hi))) (3)

This scheme assumes independence between the labels, although in an indirect
way the dependencies with the parent nodes are considered by incorporating
them as additional attributes. As in chain classifiers, this scheme looks for a
balance between classification accuracy and computational complexity.

For DAG structures there might be numerous paths from the root to one leaf
node. In that case, all the paths that end in that leaf node are returned.

(a)

root

0.75*log(0.4) 0.75*log(0.5)

0.5*log(0.3) 0.5*log(0.4)

0.375*log(0.7)

0.5*log(0.4) 0.5*log(0.2)

0.125*log(0.5)

0.25*log(0.1) 0.25*log(0.5)

+ +

+

+

+

+ +

+ +=

=

= =

-0.560

-0.819

-0.675 -0.5

-0.575
=

(b)

Fig. 2. Example of the application of the merging rule. (a) Each node has an associated
probability. (b) The local probabilities are combined to obtain a score for each path.
The path with highest score is highlighted.

3.3 Pruning

Sometimes the information available is not sufficient to estimate the class of an
instance at the lower levels in the hierarchy, so it could be better to truncate
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the predicted path at some level, this is known as non-mandatory leaf node
prediction (NMLNP). We introduce a pruning phase to obtain NMLNPs. We
consider three decisions that need to be taken into account for pruning: pruning
direction, pruning time and pruning condition.

Pruning direction. Determines the way the hierarchy is traversed to prune:

1. Top-Down. The hierarchy is traversed starting from the root node, when
the pruning condition is met in one node, the traversing is stopped and the
descendants of the node are pruned.

2. Bottom-Up. The hierarchy is traversed starting from the leaf nodes, when
the pruning condition is met in one node, the traversing is stopped and the
node and its descendants are pruned.

Pruning time. Determines when to perform the pruning stage:

1. Prune & Choose. Prune the hierarchy before the classification phase.
2. Choose & Prune. Prune the path that the classification phase selected.

Pruning condition. Establishes the condition to fulfill to prune a node:

1. Sum children probabilities (SUM). Prunes if the sum of the probabilities of
the children is less than the probability of the ’unknown’ label.

2. Most probable child (BEST). Prunes if the probability of the most probable
child is less than the probability of the ’unknown’ label.

3. Information Gain (IG). Prunes if there is not information gain when includ-
ing the child in the prediction.

In the experiments we compared the different pruning strategies.

4 Experimental Setup

The proposed method, Chained Path Evaluation (CPE), was evaluated experi-
mentally with several tree and DAG structured hierarchies, using five different
evaluation metrics and compared with several state of the art hierarchical clas-
sification techniques.

4.1 Databases

Eighteen datasets were used in the tests, these datasets are from the field of
functional genomics1. Ten of them (tree structured) are labeled using the FunCat
annotation scheme [11]. The remaining eight datasets (DAG structured) are
labeled using the Gene Ontology vocabulary [2]. From the set of paths that each
instance owned we selected only the first to get instances with just one path.
We prunned the hierarchy to obtain nodes with enough instances (more than
50) to train. The two tables in Table 1 represent two datasets: the first used in
1 http://dtai.cs.kuleuven.be/clus/hmcdatasets/

http://dtai.cs.kuleuven.be/clus/hmcdatasets/
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MLNP experiments (all the class paths end on a leaf node) and the second used
in NMLNP experiments (the class paths does not always end on a leaf node);
they have the same names and number of attributes but not the same number of
labels and instances, because the prunning was more exhaustive in MLNP case.

Table 1. Description of the datasets for the experiments. M=Number of Labels,
A=Number of Attributes, N=Number of Instances and D=Maximum Depth.

(a) MLNP experiments

Dataset M A N D
Tree Hierarchies

cellcylcle_FUN 36 77 2339 4
church_FUN 36 29 2340 4
derisi_FUN 37 65 2381 4
eisen_FUN 25 81 1681 3
expr_FUN 36 553 2346 4

gasch1_FUN 36 175 2356 4
gasch2_FUN 36 54 2356 4
pheno_FUN 17 71 1162 3
seq_FUN 39 480 2466 4
spo_FUN 36 82 2302 4

DAG Hierarchies
cellcycle_GO 53 77 1708 11
church_GO 53 29 1711 11
derisi_GO 54 65 1746 11
expr_GO 53 553 1720 11

gasch1_GO 53 175 1716 11
gasch2_GO 53 54 1720 11

seq_GO 52 480 1711 11
spo_GO 53 82 1685 11

(b) NMLNP experiments

Dataset M A N D
Tree Hierarchies

cellcylcle_FUN 49 77 3602 4
church_FUN 49 29 3603 4
derisi_FUN 49 65 3675 4
eisen_FUN 35 81 2335 4
expr_FUN 49 553 3624 4

gasch1_FUN 49 175 3611 4
gasch2_FUN 49 54 3624 4
pheno_FUN 22 71 1462 3
seq_FUN 51 480 3765 4
spo_FUN 49 82 3553 4

DAG Hierarchies
cellcycle_GO 56 77 3516 11
church_GO 56 29 3515 11
derisi_GO 57 65 3485 11
expr_GO 56 553 3537 11

gasch1_GO 56 175 3524 11
gasch2_GO 56 54 3537 11

seq_GO 59 480 3659 11
spo_GO 56 82 3466 11

4.2 Evaluation Metrics

Measures for conventional classification are not adequate for hierarchical multi-
label classification, for that reason specific measures for HMC have been pro-
posed. In our work we use four of the most common evaluation metrics and
propose a new metric.

Let M be the number of labels in L, N the number of instances in the training
set, yi the real set of labels and ŷi the predicted set of labels. The labels of an
instance are represented in a 0/1 vector of size M where the predicted/real labels
are set to 1 and the rest with 0.

Accuracy. Is the ratio of the size of the union and intersection of the predicted
and actual label sets, taken for each example, and averaged over the number of
examples.

Accuracy =
1

N

N∑
i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

(4)
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Exact Match. The exact match represents the proportion of the real label sets
that were predicted.

ExactMatch =
1

N

N∑
i=1

1yi=ŷi (5)

F1-measure. F1-measure (F1) is calculated as in Equation (6) but redefining
precision and recall as:

precision as the fraction of predicted labels which are actually true |zi∧ẑi|
|ẑi| .

recall as the fraction of true labels which are also predicted |zi∧ẑi|
|zi| .

F1 =
2× precision× recall

precision+ recall
(6)

We have specified a vector z instead of the yi vector, because in the multi-label
context there are two ways to average this measure.

F1-macro D (Equation (7)) is averaged by instances; we obtain N vectors of
zi ≡ yi.

F1macro×D(D) =
1

N

N∑
i=0

F1(zi, ẑi) (7)

F1-macro L (Equation (8)) is averaged by labels; we obtain M vectors of
zi ≡ [y1i , ..., y

N
i ].

F1macro×L(D) =
1

M

M∑
i=0

F1(zi, ẑi) (8)

Gain-Loose Balance. In this paper we propose a new evaluation measure for
hierarchical classifieres that avoids conservative predictions when using NMLNP.
Gain-Loose Balance (GLB) is a measure that rewards the nodes that are correct
and penalizes the ones that are incorrect. The rewards and penalties are deter-
mined using the number of siblings of the node and the depth of the node in the
hierarchy.

Based on the notion that discriminating few categories is much easier than
discriminating many of them, a correctly classified node with few siblings has a
minor impact on the rewards than one with many. On the contrary, a misclas-
sified node with few sibling has a mayor impact on the penalty than one with
many.

A correctly classified node that belongs to a deep level in the hierarchy has
more impact on the rewards than one in shallow levels, because reaching the
most specific node is the goal of the prediction. In contrast, a deeper misclassified
node in a deep level of the hierarchy has less impact in the penalty than one in
shallow levels, while the predicted classification is near to the real it become less
expensive.

Equation (9) describes the GLB measure, where np is the number of correct
classified labels, nfp is the number of false positive errors, nfn is the number of
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false negative errors, nt is the number of true labels; N represents the number
of siblings plus one (the node that is being evaluated).∑np

i=0(1 − 1
N )(1 − wi)∑nt

i=0(1 − 1
N )(1 − wi)

−
(nfp∑

i=0

1

N
wi +

nfn∑
i=0

1

N
wi

)
(9)

Gain-Loose Balance ranges from 1 (when the predicted path is equal to the
real path) to −maxL

2 (see Equation (10)), where maxL is the maximum number
of levels in the hierarchy (see Equation (1)). In the worst case scenario the node
has just two sibling and N = 2. wi is defined in Equation (2).

As we know the maximum and minimum values of the GLB measure we
transformed it into a (0, 1) range maintaining the ratio.

minV alue = −2

maxL∑
i=1

1

N
wi = −2

maxL∑
i=1

1

2

(
1− i

maxL + 1

)
(10)

= −2

(
maxL∑
i=1

1

2
− 1

2(maxL+ 1)

maxL∑
i=1

i

)
(11)

= −maxL+
maxL

2
(12)

5 Experiments

The proposed method, Chained Path Evaluation (CPE), was evaluated experi-
mentally with a number of tree and DAG structured hierarchies and compared
with various hierarchical classification techniques. We performed three sets of
experiments to: (i) compare our method using MLNP with other state of the
art techniques, (ii) evaluate the different pruning strategies, (iii) analyze the
NMLNP alternative, comparing it with MLNP and other method.

For MLNP related experiments we used the datasets in Table 1a and con-
sidered the first four evaluation metrics, for NMLNP related we used Table 1b
and considered the five metrics, including GLB. The results were obtained by a
stratified 10-fold cross-validation. The best results are marked in bold. Random
Forest was used as base classifier for CPE in all the experiments because is the
base classifier that best suits the data in our method.

5.1 Comparison of CPE-MLNP against other Methods

Results are summarized in Tables 2 and 3, the complete set of tables is presented
in Appendix A.1.

Tree Structured Datasets. For tree structured hierarchies, we compared CPE
against three HMC methods:
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1. Top-Down LCPN (TD). Proposed by Koller et al. [8], this method trains a
LCPN and selects at each level the most probable node. Only the children of
this node are explored to preserve the consistency of the prediction. Random
Forest was used as base classifier. This is the most typical approach for MHC.

2. Multidimensional Hierarchical Classifier (MHC). Proposed by Hernandez et
al. [7]. Random Forest was used as base classifier as reported by the authors.
This is the method that we are extending.

3. HIROM. Proposed by Bi et al. [4]. The used base classifier was Support
Vector Machines as reported by the authors. This is a recent work in local
based HMC.

Table 2. Comparing CPE against other methods in tree structured datasets

Metric CPE TD MHC HIROM
Accuracy 23.63 20.67 19.93 3.10

Exact Match 18.33 16.63 9.79 3.05
F1-macro D 26.30 22.76 25.07 3.12
F1-macro L 13.79 14.38 2.44 0.86

DAG Structured Datasets. For DAG structured datasets, we compared CPE
against tree HMC methods:

1. Top-Down LCPN (TD).
2. Top-Down LCPN Corrected (TD-C). The only difference between this

method and TD is that when a leaf node is reached, all the paths to that
node are appended to the final prediction. TD returns a single path.

3. HIROM. The variant for DAG structures.

Table 3. Comparing CPE against other methods in DAG structured datasets

Metric CPE TD TD-C HIROM
Accuracy 38.74 36.48 36.42 19.02

Exact Match 21.87 18.59 19.22 0.0
F1-macro D 48.86 46.76 46.57 29.28
F1-macro L 13.68 16.18 16.94 2.93

Discussion. For tree structured datasets we observe that the proposed method
is superior in terms of accuracy and exact match to other methods, and in most
cases the difference is significant. In the case of F1-macro D and F1-macro L, it is
superior to HIROM and competitive with MHC and TD. For DAG hierarchies,
our method is clearly superior for the first three measures and for the fourth
measure it is beaten by TD-C. One possible explanation is that it is difficult to
design a method that is better in all measures, however the proposed approach
is overall competitive in all measures and superior in some.
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F1-macro L metric is the exception where CPE never obtains the best results.
In this metric the results are averaged by labels, that means that there is proba-
bly a label(s) which does not have many instances classified, where our method
could fail.

5.2 Selection of the Best NMLNP Approach

The pruning approaches described in Subsection 3.3 for the NMLNP version
of CPE were tested to select the best one. In the case of the DAG structured
datasets the root of the hierarchy has only one child and this child (l0) is parent
of the rest of the nodes of the hierarchy. The problem in this kind of hierarchies
is that most measures score the conservative classifications as the better ones.
In this case, the method “Top-Down, Select & Prune, IG” predict just the l0
for every new instance, this classification is useless due to the fact that every
instance belongs to l0 and nevertheless is the one that is better scored.

Gain-Loose Balance deals with this problem and gives better scores to other
methods that return relevant predictions. For that reason, and the fact that the
other measures were inconsistent along the databases and the different struc-
tures, the methods were compared using Gain-Loose Balance. The results for
the NMLNP approaches are depicted on Table 4, the results are averaged along
the datasets.

Table 4. Comparison in terms of GLB (%) of the different approaches for NMLNP in
tree and DAG structures

Dataset
Top-Down Bottom-Up

Prune & Select Select & Prune Prune & Select Select & Prune
SUM BEST IG SUM BEST IG SUM BEST IG SUM BEST IG

Tree/DAG 71.02 71.53 68.71 69.79 70.12 69.31 70.34 70.61 68.68 69.66 69.83 68.58

Discussion. We observe that “Top-Down, Prune & Select, BEST” method ob-
tains in most of the cases the better score in both, tree and DAG structures.
The datasets have approximately 16% percent of instances which real label set
is just the label l0 . Since the average number of labels per instance is three,
when a method predict only l0 it already has 1/3 of the correct answer. This
can be one of the reasons why the rest of the metrics give high scores with the
“Top-Down, Select & Prune, IG” method.

5.3 Comparison of CPE NMLNP-version against MLNP-version

We compared the best NMLNP method (Top-Down, Prune & Select, BEST)
against the MLNP to determine if it is worth to prune the hierarchies. Table 5
depicts the results. The datasets in Table 1b were split by hierarchy structure
and the results averaged along the datasets.
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Table 5. Gain-Loose Balance Metric (%) comparing NMLNP against MLNP

Dataset structure NMLNP MLNP
Tree 61.688 59.419
DAG 83.826 80.262

Discussion. In every dataset the results obtained by NMLNP version were sig-
nificantly superior compared to the MLNP version for NMLNP datasets. Thus,
prunning obtains better scores than returning complete paths to a leaf node
according to the GLB metric.

5.4 Comparison of CPE-NMLNP against Other Methods

We compared CPE-NMLNP against HIROM, a method proposed by Bi et al.
[4] which has a variant for DAG structures. The base classifier used for HIROM
was SVM as reported by the authors. The results are depicted on Table 6.

Table 6. Comparison of MLNP methods

(a) Tree structured datasets

Metric CPE HIROM
Accuracy 17.10 3.98

Exact Match 11.16 3.89
F1-macro D 19.87 4.02
F1-macro L 11.51 0.76

GLB 59.41 41.35

(b) DAG structured datasets

Metric CPE HIROM
Accuracy 32.29 14.92

Exact Match 9.31 0.02
F1-macro D 44.68 24.81
F1-macro L 8.56 3.33

GLB 80.18 64.03

Discussion. CPE obtains better results than HIROM in most of the datasets
along all the metrics, most of them with statistical relevance. This can be due
to the fact that HIROM optimizes a loss function that does not necessarily
improves its score in other metrics. Other fact is that HIROM is designed to
return multiple paths instead of just one.

6 Conclusions and Future Work

We presented a novel approach for hierarchical multi-label classification for tree
and DAG structures. The method estimates the probability of each path by
combining LCPNs, including a pruning phase for NMLNP. A new metric was
introduced that avoids conservative classifications. Experiments with 18 tree and
DAG hierarchies show that: (i) the proposed method is competitive compared
against other state-of-the-art methods for tree hierarchies and superior for DAGs,
(ii) the best pruning strategy is top-down, prune first and based on the most
probable child; (iii) NMLNP improves mandatory leaf-node prediction.

As future work we plan to extend the proposed method for multiple path
prediction.
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A Appendix

For the comparison of more than two methods (Appendix A.1) we performed
a Friedman test and for the comparison of two methods (Appendix A.2) we
performed a one tailed t-test; both with a confidence degree of 95%. Statistically
inferior results against CPE are marked with ↓ and statistically superior results
are marked with ↑.
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A.1 Comparison of CPE-MLNP against Other Methods

Table 7. Tree structured datasets

(a) Accuracy (%)

Dataset CPE TD MHC HIROM
cellcycle_FUN 22.76 20.14 19.74 4.20↓
church_FUN 14.24 12.79 19.71 6.30↓
derisi_FUN 18.58 13.20 19.43 4.41↓
eisen_FUN 31.07 27.25 21.77 3.27↓
expr_FUN 29.46 23.36 19.63↓ 1.96↓

gasch1_FUN 28.39 19.83 19.66↓ 2.83↓
gasch2_FUN 22.32 19.57 19.63 3.94↓
pheno_FUN 18.39 23.0 22.49 6.63
seq_FUN 30.52 32.36 17.30 2.48↓
spo_FUN 20.57 15.22↓ 19.92 3.82↓

(b) Exact Match (%)

Dataset CPE TD MHC HIROM
cellcycle_FUN 17.53 17.02 9.92 4.10↓
church_FUN 11.20 10.90 9.87 6.24↓
derisi_FUN 13.27 10.63 9.70 4.28↓
eisen_FUN 23.32 23.32 9.99↓ 3.27↓
expr_FUN 23.47 20.20 9.85↓ 1.78↓

gasch1_FUN 22.12 16.88 9.85↓ 2.77↓
gasch2_FUN 17.49 15.58 9.85 3.78↓
pheno_FUN 14.90 11.62 9.47↓ 6.63↓
seq_FUN 25.26 27.90 9.41 2.31↓
spo_FUN 14.73 12.29 9.95↓ 3.69↓

(c) F1-macro D (%)

Dataset CPE TD MHC HIROM
cellcycle_FUN 25.40 21.71 24.74 4.24↓
church_FUN 15.77 13.87 24.71 6.32↓
derisi_FUN 21.27 14.73 24.38 4.45↓
eisen_FUN 34.98 29.33 27.66 3.27↓
expr_FUN 32.47 24.98 24.60↓ 2.01↓

gasch1_FUN 31.53 21.33↓ 24.64 2.85↓
gasch2_FUN 24.76 21.62 24.60 3.99↓
pheno_FUN 20.16 28.71 29.00↑ 6.63
seq_FUN 33.17 34.64 21.40 2.53↓
spo_FUN 23.49 16.64 24.98 3.87↓

(d) F1-macro L (%)

Dataset CPE TD MHC HIROM
cellcycle_FUN 14.34 18.05 2.09 0.69↓
church_FUN 7.72 6.80 2.09 0.98↓
derisi_FUN 11.54 10.53 2.01↓ 0.70↓
eisen_FUN 19.59 17.73 3.21↓ 0.76↓
expr_FUN 18.45 20.30 2.08 0.57↓

gasch1_FUN 17.24 15.73 2.08↓ 0.47↓
gasch2_FUN 8.74 11.22 2.08 0.61↓
pheno_FUN 11.14 9.83 4.86↓ 1.46↓
seq_FUN 17.21 21.05 1.75 0.71↓
spo_FUN 11.97 12.54 2.11↓ 0.63↓

Table 8. DAG structured datasets

(a) Accuracy (%)

Dataset CPE TD TC-C HIROM
cellcycle_GO 36.60 34.70 34.64 19.01↓
church_GO 32.09 31.11 30.86 19.11↓
derisi_GO 33.42 32.61 32.45 18.44↓
expr_GO 42.80 38.93 38.91↓ 19.18↓

gasch1_GO 42.03 39.39 39.23 19.17↓
gasch2_GO 39.53 36.44 36.29↓ 19.18↓

seq_GO 48.99 46.03 46.55 19.26↓
spo_GO 34.45 32.63 32.44↓ 18.79↓

(b) Exact Match (%)

Dataset CPE TD TD-C HIROM
cellcycle_GO 19.26 16.74 17.27 0.00↓
church_GO 13.79 12.45 12.74 0.00↓
derisi_GO 15.41 14.09 14.43 0.00↓
expr_GO 27.33 21.86↓ 22.50 0.00↓

gasch1_GO 26.28 22.09 22.73 0.00
gasch2_GO 22.62 19.01↓ 19.30 0.00↓

seq_GO 33.31 28.46↓ 30.51 0.00↓
spo_GO 16.97 14.01↓ 14.24 0.00↓

(c) F1-macro D (%)

Dataset CPE TD TD-C HIROM
cellcycle_GO 47.03 45.19 44.98 29.28↓
church_GO 43.24 42.05 41.68 29.40↓
derisi_GO 44.25 43.40 43.14 28.59↓
expr_GO 52.14 48.77 48.64↓ 29.47↓

gasch1_GO 51.52 49.27 48.97 29.47↓
gasch2_GO 49.60 46.69 46.41↓ 29.47↓

seq_GO 57.94 55.28 55.55 29.54↓
spo_GO 45.12 43.45 43.15 29.03↓

(d) F1-macro L (%)

Dataset CPE TD TD-C HIROM
cellcycle_GO 10.45 14.32 15.17↑ 2.92
church_GO 8.72 10.41 10.51 2.93↓
derisi_GO 9.50 13.17 13.35↑ 2.81
expr_GO 17.45 17.82 18.80 2.95↓

gasch1_GO 16.70 18.24 18.29 2.94↓
gasch2_GO 12.52 15.02 15.42 2.95

seq_GO 24.28 28.21 31.60↑ 3.02
spo_GO 9.79 12.21 12.38 2.89
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A.2 Comparison of CPE-NMLNP against Other Methods

Table 9. Tree structured datasets

(a) Accuracy (%)

Dataset CPE HIROM

cellcycle_FUN 16.26 4.2↓
church_FUN 9.12 6.3↓
derisi_FUN 13.71 4.41↓
eisen_FUN 21.46 3.27↓
expr_FUN 21.44 1.96↓

gasch1_FUN 20.92 2.83↓
gasch2_FUN 16.44 3.94↓
pheno_FUN 13.36 6.63↓
seq_FUN 24.05 2.48↓
spo_FUN 14.26 3.82↓

(b) Exact Match (%)

Dataset CPE HIROM

cellcycle_FUN 10.74 4.2↓
church_FUN 5.86 6.3
derisi_FUN 8.62 4.41↓
eisen_FUN 14.91 3.27↓
expr_FUN 13.99 1.96↓

gasch1_FUN 13.87 2.83↓
gasch2_FUN 10.76 3.94↓
pheno_FUN 8.35 6.63↓
seq_FUN 15.64 2.48↓
spo_FUN 8.81 3.82↓

(c) F1-macro D

Dataset CPE HIROM

cellcycle_FUN 18.87 4.24↓
church_FUN 10.7 6.32↓
derisi_FUN 16.22 4.45↓
eisen_FUN 24.45 3.27↓
expr_FUN 24.81 2.01↓

gasch1_FUN 24.19 2.85↓
gasch2_FUN 19.11 3.99↓
pheno_FUN 15.63 6.63↓
seq_FUN 27.85 2.53↓
spo_FUN 16.84 3.87↓

(d) F1-macro L (%)

Dataset CPE HIROM

cellcycle_FUN 11.94 0.69↓
church_FUN 4.47 0.98↓
derisi_FUN 8.58 0.7↓
eisen_FUN 13.28 0.76↓
expr_FUN 16.21 0.57↓

gasch1_FUN 15.82 0.47↓
gasch2_FUN 8.28 0.61↓
pheno_FUN 10.64 1.46↓
seq_FUN 16.36 0.71↓
spo_FUN 9.52 0.63↓

(e) GLB (%)

Dataset CPE HIROM

cellcycle_FUN 58.96 39.99↓
church_FUN 56.40 41.18↓
derisi_FUN 57.66 40.03↓
eisen_FUN 60.96 44.5↓
expr_FUN 60.48 38.78↓

gasch1_FUN 60.69 39.2↓
gasch2_FUN 59.26 39.89↓
pheno_FUN 59.6 50.62↓
seq_FUN 62.16 39.55↓
spo_FUN 57.9 39.71↓

Table 10. DAG structured datasets

(a) Accuracy (%)

Dataset CPE HIROM

cellcycle_GO 41.08 16.73↓
church_GO 40.41 18.49↓
derisi_GO 40.98 17.08↓
expr_GO 39.15 14.7↓

gasch1_GO 40.82 15.4↓
gasch2_GO 42.14 17.19↓

seq_GO 40.9 14.08↓
spo_GO 41.19 17.18↓

(b) Exact Match (%)

Dataset CPE HIROM

cellcycle_GO 3.61 0.0↓
church_GO 3.10 0.0↓
derisi_GO 4.10 0.09↓
expr_GO 8.76 0.0↓

gasch1_GO 7.01 0.0↓
gasch2_GO 5.00 0.0↓

seq_GO 9.65 0.0↓
spo_GO 4.53 0.0↓

(c) F1-macro D (%)

Dataset CPE HIROM

cellcycle_GO 55.81 27.43↓
church_GO 55.27 29.90↓
derisi_GO 55.61 27.85↓
expr_GO 52.53 24.59↓

gasch1_GO 54.80 25.60↓
gasch2_GO 56.69 28.14↓

seq_GO 54.28 23.70↓
spo_GO 55.76 28.10↓

(d) F1-macro L (%)

Dataset CPE HIROM

cellcycle_GO 5.09 3.96↓
church_GO 3.77 4.07

derisi_GO 5.16 3.93↓
expr_GO 10.34 3.34↓

gasch1_GO 8.87 3.55↓
gasch2_GO 4.64 3.87

seq_GO 11.44 2.96↓
spo_GO 5.37 4.12↓

(e) GLB (%)

Dataset CPE HIROM

cellcycle_GO 83.83 65.51↓
church_GO 83.57 67.32↓
derisi_GO 83.73 65.65↓
expr_GO 83.55 63.76↓

gasch1_GO 83.96 64.35↓
gasch2_GO 84.12 66.27↓

seq_GO 84.01 63.24↓
spo_GO 83.84 65.87↓
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Abstract. This work presents two new score functions based on the
Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian
network structures. They consider the sensitivity of BDeu to varying pa-
rameters of the Dirichlet prior. The scores take on the most adversary
and the most beneficial priors among those within a contamination set
around the symmetric one. We build these scores in such way that they
are decomposable and can be computed efficiently. Because of that, they
can be integrated into any state-of-the-art structure learning method
that explores the space of directed acyclic graphs and allows decom-
posable scores. Empirical results suggest that our scores outperform the
standard BDeu score in terms of the likelihood of unseen data and in
terms of edge discovery with respect to the true network, at least when
the training sample size is small. We discuss the relation between these
new scores and the accuracy of inferred models. Moreover, our new cri-
teria can be used to identify the amount of data after which learning
is saturated, that is, additional data are of little help to improve the
resulting model.

Keywords: Bayesian networks, structure learning, Bayesian Dirichlet
score.

1 Introduction

A Bayesian network is a versatile and well-known probabilistic graphical model
with applications in a variety of fields. It relies on a structured dependency
among random variables to represent a joint probability distribution in a
compact and efficient manner. These dependencies are encoded by an acyclic
directed graph (DAG) where nodes are associated to random variables and con-
ditional probability distributions are defined for variables given their parents in
the graph. Learning the graph (or structure) of Bayesian networks from data is
one of its most challenging problems.

The topic of Bayesian network learning has been extensively discussed in
the literature and many different approaches are available. In general terms,
the problem is to find the structure that maximizes a given score function that
depends on the data [1]. The research on this topic is very active, with numerous
methods and papers [2, 3, 4, 5, 6, 7, 8, 9, 10]. The main characteristic tying
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together all these methods is the score function. Arguably, the most commonly
used score function is the Bayesian Dirichlet (likelihood) equivalent uniform
(BDeu), which derives from BDe and BD [11, 12, 1] (other examples of score
functions are the Bayesian Information Criterion [13], which is equivalent to
Minimum Description Length, and the Akaike Information Criterion [14]). There
are also more recent attempts to devise new score functions. For example, [15]
presents a score that aims at having its maximization computationally facilitated
as the amount of data increases.

The BDeu score aims at maximizing the posterior probability of the DAG
given data, while assuming a uniform prior over possible DAGs. In this work
we propose two new score functions, namely Min-BDeu and Max-BDeu. These
scores are based on the BDeu score, but they consider all possible prior proba-
bility distributions inside an ε-contaminated set [16] of Dirichlet priors around
the symmetric one (which is the one used by the original BDeu). Min-BDeu is
the score obtained by choosing the most adversary prior distributions (that is,
those minimizing the score) from the contaminated sets, while Max-BDeu is the
score that uses the most beneficial priors to maximize the resulting value. We
demonstrate that Min-BDeu and Max-BDeu can be efficiently calculated and
are decomposable. Because of that, any structure learning solver can be used
to find the best scoring DAG with them. We empirically show that Min-BDeu
achieves better predictive accuracy (based on the likelihood of held-out data)
than the original BDeu for small sample sizes, and performs similarly to BDeu
when the amount of data is large. On the other hand, Max-BDeu achieves better
edge accuracy (evaluated by the Hamming distance between the set of edges of
true and learned moralized graphs).

A very important question regarding structure learning is whether the result
is accurate, that is, whether it produces a network that will give accurate results
on future unseen data. In this regard, we empirically show an interesting relation
between accuracy obtained with a given training sample size and the gap between
Max-BDeu and Min-BDeu. This relation might be used to identify the amount of
data that is necessary to obtain an accurate network, as we will discuss later on.

The paper is divided as follows. Section 2 defines Bayesian networks, intro-
duces our notation and the problem of structure learning. Section 3 presents
our new score functions and demonstrates the existence of efficient algorithms
to compute them. Section 4 describes our experimental setting and discusses
two experiments regarding the accuracy of Min-BDeu and the use of Max-BDeu
and Min-BDeu to help in predicting the amount of data needed to achieve a
desired learning accuracy. Finally, Section 5 concludes the paper and discusses
future work.

2 Learning Bayesian Networks

A Bayesian network represents a joint probability distribution over a collection
of random variables, which we assume to be categorical. It can be defined as a
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triple (G,X ,P), where G .
= (VG , EG) is an acyclic directed graph (DAG) with VG

a collection of n nodes associated to random variables X (a node per variable,
which might be used interchangeably to denote each other), and EG a collection
of arcs; P is a collection of conditional mass functions p(Xi|Πi) (one for each
instantiation of Πi), where Πi denotes the parents of Xi in the graph (Πi may
be empty), respecting the relations of EG . In a Bayesian network every variable
is conditionally independent of its non-descendant non-parent variables given its
parent variables (Markov condition).

We use uppercase letters such as Xi, Xj to represent variables (or nodes of the
graph), and xi to represent a generic state of Xi, which has state space ΩXi

.
=

{xi1, xi2, . . . , xiri}, where ri
.
= |ΩXi | ≥ 2 is the number of (finite) categories of

Xi (| · | is the cardinality of a set or vector). Bold letters are used to emphasize
sets or vectors. For example, x ∈ ΩX

.
= ×X∈XΩX , forX ⊆ X , is an instantiation

for all the variables in X. rΠi

.
= |ΩΠi | =

∏
Xt∈Πi

rt is the number of possible
instantiations of the parent set Πi of Xi, and θ = (θijk)∀ijk is the entire vector of
parameters with elements θijk = p(xik|πij), for i ∈ {1, . . . , n}, j ∈ {1, ..., rΠi},
k ∈ {1, ..., ri}, and πij ∈ ΩΠi . Because of the Markov condition, the Bayesian
network represents a joint probability distribution by the expression p(x) =
p(x1, . . . , xn) =

∏
i p(xi|πij), for every x ∈ ΩX , where every xi and πij are

consistent with x.
Given a complete data set D

.
= {D1, . . . , DN} with N instances, where Du

.
=

xu ∈ ΩX is an instantiation of all the variables, the goal of structure learning is
to find a DAG G that maximizes a given score function, that is, we look for G∗ .

=
argmaxG∈G sD(G), with G the set of all DAGs with nodes X , for a given score
function sD (the dependency on data is indicated by the subscript D).1 In this
paper, we consider the Bayesian Dirichlet equivalent uniform (BDeu) [11, 12, 1].
The BDeu score idea is to compute a function based on the posterior probability
of the structure p(G|D). In this work we use p(D|G), which is equivalent to the
former (in the sense of yielding the same optimal graphs) if one assumes p(G) to
be uniform over DAGs:

sD(G) .
= log p(D|G) = log

∫
p(D|G, θ) · p(θ|G)dθ ,

where the logarithm is used to simplify computations, p(θ|G) is the prior of θ
for a given graph G, assumed to be a Dirichlet with parameters α

.
= (αi)∀i with

αi
.
= (αijk)∀jk (which are assumed to be strictly positive and whose dependence

on G, or more specifically on Πi, is omitted unless necessary in the context):

p(θ|G) =
n∏

i=1

rΠi∏
j=1

Γ (
∑
k

αijk)

ri∏
k=1

θ
αijk−1
ijk

Γ (αijk)
.

From now on, we denote the Dirichlet prior by its defining parameter α. Under
these assumptions, it has been shown [12] that

1 In case of many optimal DAGs, then we assume to have no preference and argmax
returns one of them.
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sD(G) = log

n∏
i=1

rΠi∏
j=1

Γ (
∑

k αijk)

Γ (
∑

k(αijk + nijk))

ri∏
k=1

Γ (αijk + nijk)

Γ (αijk)
, (1)

where nijk indicates how many elements of D contain both xik and πij (the
dependence of nijk on Πi is omitted too). The BDe score assumes the prior
α to be such that αijk

.
= α∗ · p(θijk|G), where α∗ is the parameter known

as the Equivalent Sample Size (or the prior strength), and p(θijk|G) is the prior
probability for (xik∧πij) given G (or simply given Πi). The BDeu score assumes

further that p(θijk |G) is uniform and thus αijk
.
= α∗

rΠi
ri

and α∗ becomes the only

free parameter.
An important property of BDeu is that its function is decomposable and can

be written in terms of the local nodes of the graph, that is, sD(G) =
∑n

i=1 si(Πi)
(the subscript D is omitted from now on), such that

si(Πi) =

rΠi∑
j=1

(
log

Γ (
∑

k αijk)

Γ (
∑

k(αijk + nijk))
+

ri∑
k=1

log
Γ (αijk + nijk)

Γ (αijk)

)
. (2)

3 Min-BDeu and Max-BDeu Scores

In order to study the sensitivity of the BDeu score to different choices of prior α,
we define an ε-contaminated set of priors. Let β denote α∗

rΠi
, 1 denote the vector

[1, . . . , 1] with length ri, and S denote the set of the ri distinct degenerate mass
functions of dimension ri. Then

∀ij : Aε
ij

.
= CH

{
β

(
(1− ε)

ri
1+ εv

)
| v ∈ S

}
=

{
∀k : αijk ∈

[
β
(1− ε)

ri
, β

(
ε+

(1− ε)

ri

)]
,

ri∑
k=1

αijk = β

}
,(3)

where CH means the convex hull operator. Equation (3) defines a set of priors for
each i, j by allowing the Dirichlet parameters to vary “around” the symmetric
Dirichlet with sum of parameters β. To accommodate possible different choices
of priors, we rewrite the score function for each node to take into account the
value of α:

si(Πi,αi) =

rΠi∑
j=1

si,j(Πi,αij),

si,j(Πi,αij) = log
Γ (
∑

k αijk)

Γ (
∑

k(αijk + nijk))
+ s′i,j(Πi,αij), and

s′i,j(Πi,αij) =

ri∑
k=1

log
Γ (αijk + nijk)

Γ (αijk)
=

∑
k∈{1,...,ri}:

nijk �=0

log
Γ (αijk + nijk)

Γ (αijk)
. (4)
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where αij ∈ Aε
ij for a given 0 < ε ≤ 1. Using this extended parametrization of

the score, we can define our new score functions Min-BDeu s and Max-BDeu s.

s(G) .
= min

α

n∑
i=1

si(Πi,αi) and s(G) .
= max

α

n∑
i=1

si(Πi,αi) ,

where maximization and minimization are taken with respect to the sets Aε
ij , for

every i, j. The names Max-BDeu and Min-BDeu represent the fact that a max-
imization (or minimization) of the Bayesian Dirichlet equivalent uniform score
over the ε-contamination set is performed. However, we note that Min-BDeu
and Max-BDeu scores as defined here do not necessarily respect the likelihood
equivalence property of BDeu. These scores can be seen as a sensitivity analysis
of the structure under different prior distributions [17]. It is possible to maintain
likelihood equivalence by enforcing constraints among the Dirichlet parameters,
but decomposability would be lost and the score computation would become
very expensive [18]. Arguments about varying priors and likelihood equivalence
are given in [19].

We devote the final part of this section to demonstrate that Min-BDeu and
Max-BDeu can be efficiently computed. The first important thing to note is that
the maximization can be performed independently for each i, j (the same holds
for the minimization):

s(G) = max
α

n∑
i=1

si(Πi,αi) =
n∑

i=1

max
αi

si(Πi,αi) =
n∑

i=1

rΠi∑
j=1

max
αij∈Aε

ij

si,j(Πi,αij) ,

where

max
αij∈Aε

ij

si,j(Πi,αij) = log
Γ (β)

Γ (β +
∑

k nijk)
+ max

αij∈Aε
ij

s′i,j(Πi,αij) .

Expanding the Gamma functions of s′i,j(Πi,αij) by repeatedly using the equality
Γ (z + 1) = zΓ (z), we obtain the following convex optimization problem with
linear constraints:

max
(αijk)∀k

∑
k∈{1,...,ri}:

nijk �=0

nijk−1∑
w=0

log(αijk + w)

subject to

ri∑
k=1

αijk = β and ∀k : αijk ∈
[
β
(1− ε)

ri
, β

(
ε+

(1− ε)

ri

)]
.

Hence, the solution of maxαi si(Πi,αi) to obtain the local score of parent set
Πi of Xi can be done with rΠi calls to a convex programming solver, each of
which runs in worst-case time cubic in ri [20].

The solution for the minimization minαij∈Aε
ij
s′i,j(Πi,αij) is even simpler: it

is enough to find k∗ = argminnijk and take as optimal solution the prior with

αijk∗ = β

(
ε+

(1− ε)

ri

)
and ∀k �= k∗ : αijk = β

(1− ε)

ri
.
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In order to compute the score of parent set Πi, we simply repeat this procedure
for every j and compute the associated scores. While much easier to solve, the
proof of correctness is slightly more intricate. We do it in three steps. The first
step considers the case when at least one nijk = 0. In this case, we can safely
choose any k∗ such that nijk∗ = 0 and the solution value is trivially minimal,
because the corresponding term does not appear in the objective function defined
by (4) and each function

g(η, αijk) =

η−1∑
w=0

log(αijk + w)

appearing in (4) is monotonically increasing with η > 0, hence we cannot do

better than choosing the minimum possible value (that is, β (1−ε)
ri

) for each αijk

associated to non-zero nijk.
Now we can assume that nijk ≥ 1 for every k. The second step of the proof

is by contradiction and its goal is to show that only one αijk will be different

from β (1−ε)
ri

. So, suppose that the optimal solution is attained at a point αij

such that there are k1 �= k2 with αijk1 > (1−ε)β
ri

, αijk2 > (1−ε)β
ri

, nijk1 ≥ 1 and
nijk2 ≥ 1. Let μ = αijk1 + αijk2 . Take the terms of the objective function in (4)
that correspond to k1 and k2:

f(μ, αijk1 ) =

nijk1
−1∑

w=0

log(αijk1 + w) +

nijk2
−1∑

w=0

log(μ− αijk1 + w) .

While keeping μ constant, we can decrease αijk1 until β (1−ε)
ri

, or increase it until

αijk2 = β (1−ε)
ri

. The second derivative of f(μ, αijk1 ) with respect to αijk1 is

−
nijk1

−1∑
w=0

1

(αijk1 + w)2
−

nijk2
−1∑

w=0

1

(μ− αijk1 + w)2
< 0 ,

so the function is concave in αijk1 . Because of that, the minimum is attained at

one of its extremes, that is, either at αijk1 = β (1−ε)
ri

or at αijk2 = β (1−ε)
ri

. If we
take such a new solution α′

ij , it achieves value strictly smaller than that of αij ,
which is a contradiction.

Hence we can assume that all k �= k∗ must have αijk = β (1−ε)
ri

and we only

need to choose the k∗ whose αijk∗ will be β
(
ε+ (1−ε)

ri

)
. The third step of the

proof is straightforward: the best choice for k∗ in order to minimize s′i,j(Πi,αij)
is such that

k∗ = argmin
k

g

(
nijk, β

(
ε+

(1 − ε)

ri

))
,

that is, the one of smallest nijk, simply because the function g is monotonically
increasing with η, as described previously, and also with αijk.
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4 Experimental Setup

We begin this section by describing data and settings that are used in the ex-
periments. Our goals are to assess the accuracy of the new proposed scores and
to understand the relation between them and the quality of inferred networks.
The experimental procedure is performed in steps, as explained in the following.

In order to allow for a comparison against the true model, we generate data
from pre-defined Bayesian networks. We experiment both with networks from
the literature and with random-generated networks. In the former case, we use
the well-known networks named child (20 nodes) [21], insurance (27 nodes) [22],
water (32 nodes) [23], and alarm (37 nodes) [24]. In the latter case, we employ
the BNGenerator package v0.3 of [25] to obtain random Bayesian networks. The
options passed to the program are the desired number of nodes in the randomly
generated network and the maximum degree (sum of number of parents and
children) allowed for each node in the graph (to avoid excessively dense graphs,
which would require a too large amount of data for learning because of their
complexity). The maximum degree (sum of incoming and outgoing arcs) is fixed
to six in all the experiments, while the number of nodes varies from 20 to 50
nodes. The number of states is 2 for every node. For each different number of
nodes, ten networks are randomly generated.

From each one of these networks, data sets are sampled with ten different
sample sizes N = 10 · 2i, ∀i ∈ {1, . . . , 10} using the R package bnlearn v3.5 [26].
These data sets are then used to compute the BDeu scores for each node, as well
as Min-BDeu and Max-BDeu, with equivalent sample size α∗ set to one, ε set to
one half, and upper limit of three parents per node (because of decomposability,
scores are always computed per node and stored in some data structure for later
querying). We point out that we have not tuned these values, but instead we
chose values that are common in the literature. In spite of that, the results
presented in this work remain unaltered under small modifications of α∗ around
the chosen value (data not shown). We leave for future work a thorough analysis
of different values for α∗. Limiting the number of parents per node is a common
practice and has the purpose of avoiding a large computational cost of evaluating
the scores of a great number of parent sets per node (this number increases
exponentially with the limit). We discuss the implications of this decision later
on. After the scores are computed and pruned [27], we call the structure learning
solver Gobnilp v1.4.1 [2, 3] to infer the Bayesian network in an optimal way (that
is, we wait until the solver finds the globally optimal structure for the given local
scores). With that network, parameter estimation is performed using the same
Dirichlet prior parameters and the same data as used for structure learning.

In order to check the accuracy of the inferred networks, from each true net-
work we generate an additional data set with 10000 samples that is not available
to the learning procedure. On these data we compute the log-likelihood function
using both the true network and the inferred network, and to make the outputs
comparable we take the percentage difference between them, which we call like-
lihood accuracy. Lower values of this measure indicate that the inferred network
evaluates the log-likelihood of the held-out data in a more similar way to the
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evaluation done by the true network. The evaluation of the log-likelihood using
the inferred network over unseen data sampled from the true network approxi-
mates the Kullback-Leibler (KL) divergence and converges to the latter when the
amount of data goes to infinity. We refrained from a direct use of KL divergence or
other measure of distance between the true distribution (represented by the true
network) and the inferred one because of the computational cost of evaluating KL,
given that true and inferred networks have (almost always) different structures.

In summary, each execution (i) generates a network (or picks a known one) of
a given number of nodes; (ii) generates a data set for accuracy evaluation; (iii)
generates a data set for training of a given number of samples; (iv) computes the
local scores for each variable using the training data set, for a given decomposable
score function; (v) calls the learning procedure using the just calculated local
scores; (vi) evaluates the likelihood accuracy with learned/true networks using
the held-out data.

4.1 Comparison among Scores

In this experiment, we compare the likelihood accuracy obtained by our proposed
scores and the original BDeu. Figure 1 show the average results of the experiment

(a) 20 nodes. (b) 30 nodes.

(c) 40 nodes. (d) 50 nodes.

Fig. 1. Average likelihood accuracy among networks learned from different score func-
tions. The graphs feature BDeu (square points), Max-BDeu (cross points), Min-BDeu
(circle points), Empty net (bullet points). Each curve of the graph corresponds to the
average over random networks used for sampling the data. The points in those curves
correspond to the accuracy for different training data sample size.
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(a) Child network. (b) Insurance network.

(c) Water network. (d) Alarm network.

Fig. 2. Likelihood accuracy among networks learned from different score functions
using data generated with well-known Bayesian networks. The graphs feature BDeu
(square points), Max-BDeu (cross points), Min-BDeu (circle points), Empty net (bullet
points). The points in the curves correspond to the accuracy for different training data
sample size.

for random networks ranging from 20 to 50 nodes. Min-BDeu achieves better
accuracy with respect to the original BDeu on held-out data for training sample
size smaller than 100 to 200 samples, and performs similar to the others for
larger sample sizes. On the other hand, Max-BDeu achieves worse accuracy than
BDeu. Results are consistent across different true networks and network sizes.
We conjecture that Min-BDeu has been able to produce better networks by
reducing the amount of fitting to the training data when sample size was small,
and by transparently increasing this fitting with the increase of the sample size.
For the same reason, we further conjecture Max-BDeu produced worse results
than BDeu when given few training data because of its increase in fit. The
evaluation for well-known Bayesian networks is presented in Fig. 2. The same
overall behavior as with random networks is observed.

We also compare the similarity between learned and true networks. We obtain
a measure of dissimilarity by computing the moral graph of both true and learned
networks, and by counting the total number of mismatches over all pairs of
nodes. Figure 3 shows average results for random networks ranging from 20 to
50 nodes. Max-BDeu achieves a better similarity than others for training sample
size smaller than 100 to 200 samples, and performs similarly for larger sample
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(a) 20 nodes. (b) 30 nodes.

(c) 40 nodes. (d) 50 nodes.

Fig. 3. Comparison on average computed dissimilarity between true and learned moral
graphs using different score functions. The graphs feature BDeu (square points), Max-
BDeu (cross points), Min-BDeu (circle points), Empty net (bullet points). The points
in the curves correspond to the total number of mismatches between the moral graph
of true and learned networks.

sizes. On the other hand, Min-BDeu achieves worse similarity than BDeu. Results
are consistent across different network sizes. To analyze further these findings,
we show the average total number of arcs produced by the different scores on the
same experiments (Fig. 4). Notably, Max-BDeu yields denser inferred networks,
while Min-BDeu prefers sparser networks.

The results obtained so far suggest that Min-BDeu and Max-BDeu aim at
different goals. Min-BDeu has better likelihood accuracy, which is achieved by
using sparser graphs than original BDeu’s. Max-BDeu has better edge accuracy,
computed as the learned graph similarity to the true one, which is achieved by
using denser graphs than BDeu’s. These results suggest that with small amount
of data, better likelihood accuracy is obtained with networks that are simpler
than the true network, probably because the data are not enough to learn good
parameters if a denser network were used. This might explain the reason why
Max-BDeu has poorer performance in terms of log-likelihood of held-out data.
In fact, we further analyzed this situation by learning the parameters of inferred
graphs using a large data set of 5000 samples (the graphs themselves were learned
with the appropriate varying sample sizes). Figure 5 shows average results for
random networks of 20 nodes and different training sample sizes for structure
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(a) 20 nodes. (b) 30 nodes.

(c) 40 nodes. (d) 50 nodes.

Fig. 4. Comparison on average total number of arcs in the learned networks from
different score functions. The graphs feature BDeu (square points), Max-BDeu (cross
points), Min-BDeu (circle points), true network (bullet points). The points in the curves
correspond to the total number of arcs in the graphs of learned networks.

learning, while using 5000 samples for parameter learning. In this scenario, Max-
BDeu performed better than the others did even in terms of likelihood accuracy,
suggesting that its poorer performance was related to poorer parameter esti-
mation. When training sample size becomes large enough, the behavior of all
different methods becomes similar.

4.2 Relation between Scores and Learning Saturation

The proposed scores Min-BDeu and Max-BDeu have an interpretation as the pes-
simistic and optimistic scenarios with respect to unknown “ideal” prior Dirichlet
distributions. The set of priors that we employ can be seen as a way to take into
account the sensitivity of the score to variations of the local priors. Min-BDeu
is aimed at finding the structure that maximizes the BDeu score under the most
adversary prior, that is, learning with Min-BDeu is done by a maximin approach.
Because of that, the fitting of Min-BDeu is less aggressive than that of BDeu.
On the other hand, Max-BDeu is a maximax approach: it yields the structure
that maximizes BDeu under the most beneficial prior, so it tends to fit more
aggressively than BDeu.
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Fig. 5. Average likelihood accuracy among networks learned from different score func-
tions. The graphs feature BDeu (square points), Max-BDeu (cross points), Min-BDeu
(circle points) for networks with 20 nodes. The structure of the networks is learned
with the given training data sample size, while the network parameters are learned
with a training data set of 5000 samples.

With these considerations in mind, one may define a measure of “sensitivity”
for an inferred graph G as the difference between s(G) and s(G) (note that these
values are logarithms of probabilities, so imprecision here is defined as the ratio
between upper and lower probabilities log(p(D|G)/p(D|G))). We have performed
experiments using only the BDeu score for learning, but whose result is later
evaluated in terms of this measure. That is, we execute experiments with only
the BDeu score using randomly generated networks to sample training and held-
out data. The curves in the upper graph of Fig. 6 show the average likelihood
accuracy (over ten runs) obtained by the original BDeu for domains with different
number of nodes, as done before. Such accuracy can only be computed because
(for testing) we have available the true networks, thus we can generate samples
from it to create the held-out test data. Such curves decrease with the amount
of data used for learning, as expected. On the other hand, the same Fig. 6
(lower graph) displays the average sensitivity measure (score ratio) of the optimal
networks that have been found by BDeu (because of scale differences, we divided
them by the lower score so as to have them displayed in the same graph), which
does not depend on knowing the true network and thus can be computed in the
moment of learning. These curves of the lower graph of Fig. 6 also decrease as
the amount of data increases, an expected phenomenon as the importance of
the prior reduces with the increase in sample size. We can see in the figure a
relation between likelihood accuracy and the sensitivity measure. This suggests
that one can use the measure to determine (approximately) the amount of data
after which structure learning will not benefit anymore (or will benefit very little)
from additional data. In these tests, this saturation point happens around one
thousand samples. Previous to the saturation point, the likelihood accuracy of
the inferred networks greatly increases from the provision of more training data.
Past this saturation point, this increase becomes small and might not be cost-
effective in many situations. We note that the score alone could not be used for
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Fig. 6. Curves for likelihood accuracy (upper graph) and sensitivity measure as ratio
of Max- and Min-BDeu (lower graph) for inferred networks learned from training data
of different sizes using randomly generated Bayesian networks with 10 to 40 nodes.

Fig. 7. Average likelihood accuracy curves of learned networks from data of randomly
generated Bayesian networks with 20 nodes and maximum degree of six. Different
curves represent the result of inferred networks under different parent set size limits
during learning: maximum of one parent up to maximum of six parents.

this task, as it does not usually converge with the increase in the amount of data
(recall that we use the logarithm of the probability of data given the structure).

One might have noticed that the accuracy curves in Fig. 6 do not converge
to zero with the increase in the amount of data. This can be explained as an
effect of the restricted maximum number of parents per node during learning
(defined as three in our simulations). Figure 7 shows the likelihood accuracy
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of original BDeu for varying limits on the number of parents (from 1 to 6) for
learned networks from data of randomly generated Bayesian networks with 20
nodes (true networks have no such limit in the number of parents, but have a
total degree limit of six). It is also very interesting to note the shape of the
accuracy curves. With small training sample size, it is seems better to force
stronger limits, as the inferred networks with greater number of parents might
be unreliable (recall that the number of training data and number of parents per
node are very related in terms of learning accuracy). This indicates, at least in
these experiments, that the original BDeu score was not able to control well the
complexity of the learned network with small sample sizes, given that the limit
on the number of parents was able to improve learning accuracy. This empirical
result corroborates with our previous results about Min-BDeu outperforming
the original BDeu when sample size is small.

5 Conclusions

In this paper we presented two new score functions for learning the structure
of Bayesian networks from data. They are based on allowing the Dirichlet prior
parameters of the Bayesian Dirichlet equivalent uniform (BDeu) to vary inside
a contamination set around the symmetric Dirichlet priors, while keeping its
strength fixed. Over this set of priors we choose the most adversary and the most
beneficial priors to construct the Min-BDeu and the Max-BDeu, respectively.
Learning with Min-BDeu is equivalent to a maximin approach, as one must find
the graph that maximizes the minimum score (over BDeu scores with priors
in the contaminated set). Min-BDeu prefers sparser graphs than the original
BDeu does when sample size is small, and converges to the original BDeu as the
amount of data increases. Max-BDeu is analogous, but using the most beneficial
prior, that is, a maximax approach.

We demonstrate that these new score functions can be efficiently computed
and are decomposable just like the original BDeu, so they can be used within
most of the current state-of-the-art structure learning solvers. In our experi-
ments, Min-BDeu has led to networks with higher accuracy than that of the
original BDeu score, in terms of fitting the true model. On the other hand, Max-
BDeu has led to better edge accuracy, that is, has fit the graph structure better.
We also employ a combination of Max-BDeu and Min-BDeu as a measure of sen-
sitivity. This measure visually correlates with the accuracy of inferred networks
and might be used to identify the amount of data that saturates the learning,
that is, the amount of data after which the accuracy of the inferred network
does not considerably improve anymore if additional data were made available.
Finally, an analysis of the BDeu accuracy with respect to the restriction on
the maximum number of parents per node helps to explain the better accuracy
of Min-BDeu against the original BDeu score when the training sample size is
small. Scenarios of small sample size are particularly important in applied fields
such as biomedicine and bioinformatics.

As future work we intend to expand our experiments, including the study of
the sensitivity of the parameters that define the size of the contamination and
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the strength of the prior, as well as a deeper analysis about the consequences of
limiting the number of parents of each variable, in order to better understand
the properties of Min-BDeu and Max-BDeu. We also want to further study the
characteristics of the original BDeu and to investigate other score functions, for
instance using entropy as criterion to select priors.
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200021 146606 / 1 and 200020 137680 / 1, and by the Swiss CTI project with
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Abstract. Bayesian Constraint-based Causal Discovery (BCCD) is a
state-of-the-art method for robust causal discovery in the presence of la-
tent variables. It combines probabilistic estimation of Bayesian networks
over subsets of variables with a causal logic to infer causal statements.
Currently BCCD is limited to discrete or Gaussian variables. Most of
the real-world data, however, contain a mixture of discrete and continu-
ous variables. We here extend BCCD to be able to handle combinations
of discrete and continuous variables, under the assumption that the re-
lations between the variables are monotonic. To this end, we propose
a novel method for the efficient computation of BIC scores for hybrid
Bayesian networks. We demonstrate the accuracy and efficiency of our
approach for causal discovery on simulated data as well as on real-world
data from the ADHD-200 competition.

Keywords: Causal discovery, hybrid data, structure learning.

1 Introduction

Causal discovery is widely used for analysis of experimental data focusing on the
exploratory analysis and suggesting probable causal dependencies. There is a
variety of causal discovery algorithms in the literature. Some of these algorithms
rely on the assumption that there are no latent variables in the model; others do
not provide a scoring metric to easily compare the reliability of two candidate
models. Bayesian Constraint-based Causal Discovery (BCCD) [6] is a state-of-
the-art-algorithm for causal discovery that tries to combine the strength of the
best algorithms in the field. BCCD is able to detect latent variables in the model
and determines the reliability of the edges between variables that makes it very
easy to compare alternative models.

The idea of BCCD is to estimate the reliability of causal relations by scor-
ing Directed Acyclic Graphs (DAGs) for a smaller subset of variables using a
Bayesian score and then to combine these statements to infer a final causal
model. The Bayesian score has a closed form solution for discrete variables that
makes the scoring of causal relations fast and efficient. The BCCD algorithm is
currently limited to discrete or Gaussian variables as there is no closed form so-
lution for the Bayesian score for a mixture of discrete and continuous variables.
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To extend BCCD, we need a new scoring method to estimate the reliability of
causal relations.

There are several scoring methods in the literature for mixtures of discrete
and continuous variables. Most of these methods either rely on strict assump-
tions about the structure of the network that do not apply in practice, such
as forbidding structures in the network with a continuous variable as a parent
having a discrete variable as child, or are time consuming or/and memory in-
efficient. In this paper we propose a fast and memory efficient method to score
DAGs with both discrete and continuous variables, under the assumption that
the relationships between these variables are monotonic. This appears to be a
reasonable assumption for many real-world data sets.

The scoring method proposed in this paper estimates the Bayesian information
criterion (BIC) score by approximating the mutual information for a combination
of discrete and continuous variables. Through simulations we will show that the
BCCD algorithm with this scoring method can accurately estimate the structure
of the Bayesian network for both simulated and real-world data.

The rest of the paper is organized as follows. Section 2 describes background
information about causal discovery and graphical models. Section 3 describes
algorithms for structure learning. Section 4 briefly summarizes the idea of the
BCCD algorithm. Section 5 explains the scoring method for a mixture of discrete
and continuous variables. Section 6 presents the results of the experiments of the
BCCD algorithm on simulated data and real-world data. Section 7 provides our
conclusion and future work.

2 Background

A Bayesian network is a pair (G,Θ) where G = (X,E) is a Directed Acyclic
Graph (DAG) with a set of nodes X representing domain variables and a set of
arcs E; θXi ⊂ Θ is a set of parameters representing the conditional probability of
variable Xi ⊂ X given its parents Pai in a graph G. Using Bayesian networks we
can model causal relationships between variables. In that case an edge A → B
between variables represents a direct causal link from A to B . This means that
A influences the values of B , but not the other way around.

Saying that two variables A and B are conditionally independent given C ,
means that if we know C , learning B would not change our belief in A. Two
DAGs are called equivalent to one another, if they entail the same conditional
(in)dependencies. All DAGs that are equivalent to a graph G form an equivalence
class of a graph G, where all members are indistinguishable in terms of implied
independencies. To represent the members of this equivalence class, a different
type of structure is used, known as a partially directed acyclic graph (PDAG).

The three main assumptions that are often used when learning the structure
of causal networks are the following.

1. Causal Markov Condition: each variable is independent of its non-descendant
conditioned on all its direct causes.
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2. Faithfulness assumption: there are no independencies between variables that
are not implied by the Causal Markov Condition.

3. Causal sufficiency assumption: there are no common confounders of the ob-
served variables in G.

In this paper we do not rely on the causal sufficiency assumption, i.e. we do
allow for latent variables. One can represent the structure of a Bayesian network
with latent variables using a so-called Maximal Ancestral Graph (MAG) on only
the observed variables. In contrast to DAGs, MAGs can also contain bi-directed
X ↔ Y arcs (indicating that there is a common confounder) and undirected
arcs X −Y . The equivalence class for MAGs is a partial ancestral graph (PAG).
Edge directions are marked with “ − ” and “>” if the direction is the same for
all graphs belonging to the PAG and with “◦” otherwise.

3 Structure Learning of Causal Networks

There is a variety of methods that can be used to learn the structure of a
causal network. A broad description of methods can be found in [8]. In general,
methods are divided into two approaches: constraint-based and score-based. The
constraint-based approach works with statistical independence tests. Firstly, this
approach finds a skeleton of a graph by starting from the complete graph and
excluding edges between variables that are conditionally independent, given some
other set of variables (possibly empty). Secondly, the edges are oriented to arrive
at an output graph. The constraint-based approach learns the equivalence class
of DAGs and outputs a PDAG. Examples of the constraint-based approach are
the IC algorithm [23], PC-FCI [27], and TC [24].

A score-based approach uses a scoring metric. It measures the data goodness
of fit given a particular graph structure and accounts for the complexity of the
network. There are many different scoring metrics, where the Bayesian score [9]
and the BIC score [26] are among the most common. The goal is to find the
graph that has the highest score. Unfortunately, this optimization problem is
NP-hard, so different heuristics are used in practice. These methods are divided
in local search methods, such as greedy search [5], greedy equivalence search [4],
and global search methods, such as simulated annealing [10] and genetic algo-
rithms [17].

An advantage of the constraint-based approach is that it does not have to rely
on the causal sufficiency assumption, which means that the algorithm can detect
common causes of the observed variables. A disadvantage of the constraint-based
approach is that it is sensitive to propagating mistakes in the resulting graph.
A standard approach makes use of independence tests, whose results for border-
line independencies/dependencies sometimes can be incorrect. The outcome of
learning a network can be sensitive to such errors. In particular, one such error
can produce multiple errors in the resulting graph. A set of conservative meth-
ods such as CPC [25] and CFCI [28] tackles the problem of lack of robustness,
outperforming standard constraint-based methods such as PC.
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An advantage of the score-based approach is that it indicates the measure
of reliability of inferred causal relations. This makes the interpretation of the
results easier and prevents incorrect categorical decisions. A main drawback of
the approach is that it relies on the causal sufficiency assumption and as a result
cannot detect latent confounders.

4 Bayesian Constraint-Based Causal Discovery

One of the state-of-the-art algorithms in causal discovery is Bayesian Constraint-
based Causal Discovery (BCCD). Claassen and Heskes [6] showed that BCCD
outperforms reference algorithms in the field, such as FCI and Conservative PC.
Moreover, it provides an indication of the reliability of the causal links that makes
it easier to interpret the results and compare alternative models. The advantage
of the BCCD algorithm is that it combines the strength of constraint-based and
score-based approaches. We here describe only the basic idea of the method. A
more detailed description can be found in [6]. The main two steps of BCCD are
the following:

Step 1. Start with a fully connected graph and perform adjacency search, esti-
mating the reliability of causal relations, for example X → Y . If a causal re-
lation declares a variable conditionally independent with a reliability higher
than a predefined threshold, delete an edge from the graph between these
variables.

Step 2. Rank all causal relations in decreasing order of reliability and orient
edges in the graph starting from the most reliable relations. If there is a
conflict, pick the causal relation that has a higher reliability.

Based on the score of the causal relations, we can rank these relations and
avoid propagating unreliable decisions giving preference to more confident ones.
This can solve the drawback of a standard constraint-based method that can
end up with an unreliable result. Moreover, using a Bayesian score we get a
reliability measure of the final output, which makes it easier to interpret the
results and compare with other alternative models. The BCCD algorithm does
not rely on the causal sufficiency assumption, thus it can detect latent variables
in the model.

The first step of the algorithm requires estimating the reliability of a causal
relations L : ‘X → Y ′ given a data set D, which is done using a Bayesian score:

p(L : ‘X → Y ′|D) =

∑
M∈M(L) p(D|M)p(M)∑
M∈M p(D|M)p(M)

, (1)

where p(D|M) denotes the probability of data D given structure M, p(M) rep-
resents the prior distribution over structures and M(L) is the set of structures
containing the relation L. This reliability measure (1) gives a conservative esti-
mate of the probability of a causal relation. Claassen and Heskes approximate
the probability p(D|M) by p(D|G), the marginal likelihood of the data given
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graph G that has a closed form solution for discrete variables, known as the
Bayesian Dirichlet (BD) metric [16]. There is also a closed-form solution when
all variables have a Gaussian distribution, called the BGe metric [16]. To es-
timate (1), the algorithm requires calculating the marginal likelihood over all
possible graphs for each causal relation that we infer. For speed and efficiency
of the algorithm, the set of possible graphs is limited to the graphs with at most
five vertices, which gives a list of at most 29,281 DAGs. In theory, limiting the
number of vertices to five may lead to loss of information. In practice, however,
the accuracy of the BCCD algorithm is hardly affected and it still outperforms
standard algorithms that perform conditional independence tests for more than
five vertices [6].

The use of BD/BGe metrics to score DAGs estimating the marginal likelihood,
limits the BCCD algorithm to work only with discrete variables or only with
Gaussian variables. However, many real-world data sets contain a mixture of
discrete and continuous variables. One of the possible solutions to this problem
would be to discretize continuous variables [12,21]. This, however, can lead to
a loss of information comprised in continuous variables, spurious dependencies
and misleading results of the method [27]. Another solution to this problem is
to define a new scoring method that can estimate the marginal likelihood when
the data is a mixture of discrete and continuous variables. Since the estimation
of the marginal likelihood is repeated many times for a large number of possible
graphs, such a new scoring method must be fast and memory efficient.

5 The Scoring Metric for Discrete and Continuous
Variables

In this section we discuss methods that can estimate the Bayesian score (1) for a
mixture of discrete and continuous variables. In Sect. 5.1 we provide an overview
of existing scoring algorithms and in Sect. 5.2 we propose our scoring method.

5.1 Alternative Approaches

There are few score-based methods that can work with a mixture of discrete and
continuous variables. Geiger and Heckerman [13] proposed a closed-form solution
for the Bayesian score of a mixture of discrete and continuous variables, but this
solution only works in case a number of assumptions are met. These assumptions
imply that the data are drawn from a conditional Gaussian distribution and
forbid structures in the network with a continuous variable having a discrete
variable as a child.

An alternative method is described in [11] which uses a multiple regression
framework for scoring structures. However, the method is applicable only for
time-series data. Bach and Jordan [1] use Mercer kernels to estimate the struc-
ture of causal models, but calculation of a Gramm matrix requires significant
computational costs (O(N3), where N is the sample size) and may be inefficient
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for data sets with large sample sizes. Monti and Cooper [20] use neural net-
works to represent the density function for a mixture of discrete and continuous
variables. Estimation of the neural network parameters to calculate (1) requires
significant computational costs which should be repeated multiple times and
becomes too slow to be applicable in the BCCD algorithm.

5.2 Proposed Scoring Method

Existing scoring methods for a mixture of discrete and continuous variables are
either computationally or/and memory expensive or rely on strict assumptions
that limit the types of data that can be used considerably. In this section we
propose a fast and memory efficient method for scoring DAGs that relies only
on the assumption that relationships between variables are monotonic. This is a
reasonable assumption for many domains.

We consider the BIC score, which is an approximation of the Bayesian score,
to estimate the marginal likelihood p(D|G). The BIC score can be decomposed
into the sum of two components, the mutual information I(Xi, Pai) with Pai the
parents of node Xi and Dim[G] the number of parameters necessary to estimate
the model. The first component measures the goodness of fit, and the second
penalizes the complexity of the model:

BICscore(D|G) = M

n∑
i=1

I(Xi, Pai)−
logM

2
Dim[G] , (2)

where n is the number of variables and M is a sample size.
To estimate (2) for a mixture of discrete and continuous variables we need

to estimate the mutual information and the complexity penalty. We propose
to approximate the mutual information based on the formula for continuous
variables drawn from a Gaussian distribution [7]:

I(Xi, Pai) = −1

2
log

|R|
| RPai |

, (3)

where R is a correlation matrix between all variables and RPai is a correlation
matrix between the parents of variable Xi.

Estimation of the complexity penalty for the model containing a mixture of
variables is reduced to calculation of the number of parameters in the model:

Dim[G] =
n∑

i=1

didPai ,with dPai =
∑

j∈Pai(G)
dj , and

dj =

{
1, if Xj is continuous
s− 1, if Xj is discrete ,

(4)

where s is the number of states of the discrete variableXj . In case the variableXi

does not have parents, we assign (3) and (4) a zero value. Due to that assignment,
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(4) represents the difference in the number of parameters, when there is an edge
between Xi and Pai and when there are no edges between them.

We propose a scoring method that approximates the BIC score for a mixture
of discrete and continuous variables using (3) and (4) and substituting Pearson
correlation with Spearman in (3). We assume hereby explicitly that the vari-
ables obey a so-called non-paranormal distribution. For univariate monotone
functions f1, ..., fd and a positive-definite correlation matrix Σ0 ∈ Rd×d we say
that a d-dimensional random variable X = (X1, ..., Xd)

T has a non-paranormal
distribution X � NPNd(f,Σ

0), if f(X) = (f1(X1), ..., fd(Xd)) � Nd(0,Σ
0). As

shown in [15], conditional independence tests for non-paranormal data based on
Spearman correlations are more accurate than those based on Pearson correla-
tions for non-Gaussian continuous data. Ignoring the discreteness of the discrete
variables does introduce some bias in the approximation of the BIC score, how-
ever, as we will argue and show in the next section, this bias hardly affects the
scoring of the network structures. In case of categorical variables we propose to
perform so-called dummy coding, binarising the variable into several variables
when calculating the correlation matrix and then adjusting for the correlation
between these variables when calculating the mutual information.

The most computationally expensive part of the proposed scoring method is
the calculation of the correlation matrix. However, one can compute the full cor-
relation matrix once beforehand, which can then be stored and used to efficiently
construct the correlation matrices for any subset of variables. The proposed
method is thus computationally and memory efficient.

In this section we described the scoring method for a mixture of discrete and
continuous variables. Now we can use this scoring method to estimate marginal
likelihood in the loop of the BCCD algorithm.

6 Experiments

In this section we describe the results of our experiments. Section 6.1 describes
the accuracy of estimating mutual information using (3). In Sect. 6.2 we describe
the results of the experiments on simulated data, where the ground truth about
the structure of the network is known. In Sect. 6.3 we describe the results of the
experiments on real-world data, where the ground truth is unknown.

6.1 Testing Mutual Information

In the previous section we proposed a method to score DAGs for a mixture
of discrete and continuous variables that approximates mutual information in
the BIC score using (3). To estimate the accuracy of this approximation, we
performed a series of simulations. In these simulations we randomly generated
two variables with particular distributions and a sample size of 1000 and then
compared the exact value of mutual information with the approximated value.
Since the strength of association between variables can influence the accuracy of
the estimation we performed the simulations changing the correlation between
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the variables from 0 to 1. Simulations were performed for three types of data:
continuous, discrete, and a mixture of discrete and continuous.

Figure 1 (a) shows the difference between the exact mutual information and
mutual information estimated using (3) between two normally distributed ran-
dom variables. There is a slight difference between the exact and approximated
mutual information, since we use Spearman correlation instead of Pearson in (3)
in order to capture monotonic relations between variables that may be non-
normally distributed.

Figure 1 (b) shows the difference between the exact mutual information and
mutual information estimated using (3) between two discrete binary variables.
The difference between the estimates of mutual information arises when the
correlation between two variables is close to one. This happens because our mu-
tual information estimate is based upon the incorrect assumption that discrete
variables can have an infinite amount of values.

In practice, however, the approximated mutual information for discrete vari-
ables will not strongly affect the selection of the correct structure. For the range
of correlations when the mutual information is off, the probability of the edge
between two variables is always close to one. Thus, higher levels of mutual in-
formation cannot overestimate the probability of an edge, since it has already
achieved its maximum. As a result, overestimation of the mutual information for
discrete variables hardly affects the scoring of the structures.

Figure 1 (c) shows the difference between the exact mutual information and
mutual information estimated using (3) between one binary parent and one
normally distributed child with its mean depending on the value of the binary
parent. Figure 1 (c) shows that the approximated value of mutual information
stays very close to the actual value.

6.2 Application on Simulated Data

To test our algorithm on simulated data we chose two widely used Bayesian net-
works: the Asia Network [18] and the Waste Incinerator Network [19] to test the
algorithm for discrete variables and a mixture of discrete and continuous vari-
ables, respectively. The case of only continuous variables was already discussed
in [15]. We randomly generated data for four different sample sizes: 100, 500,
1000, and 1500 and repeated our experiments 20 times. Performance is measured
by PAG accuracy measure, that evaluates how many edges were oriented cor-
rectly in the output PAG. We also estimated the correctness of the skeleton by
calculating the amount of correct, missing, and spurious edges of the resulting
graph.

The Asia data set describes the effect of visiting Asia and smoking behavior
on the probability of contracting tuberculosis, cancer or bronchitis. The network
contains eight binary variables that are connected by eight arcs as can be seen
in Figure 2. For this network we compared the results of the BCCD using BD
as a scoring method, following [16] and using our approximated BIC score.

Figure 3 compares the accuracy of the BCCD algorithm for the Asia Network
when the BIC score is estimated using BD metric (BIC original) or correlation
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(a) two normally distributed variables

(b) two binary variables

(c) one binary and one normally distributed variable

Fig. 1. The exact mutual information (MI) and mutual information calculated using
Spearman correlation for different values of the correlation coefficient between: (a)
two normally distributed variables, (b) two binary variables, (c) one binary and one
normally distributed variable.
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Fig. 2. Asia Network represented as (a) DAG and (b) PAG. The node names are
abbreviated as follows: Visit to Asia? (A) Smoker? (S) Has tuberculosis? (T) Has
lung cancer? (C) Has bronchitis? (B) Tuberculosis or cancer (TC) Positive X-ray? (X)
Dyspnoea? (D)

matrix (BIC Corr). Figure 3 suggests that there is no significant difference in
PAG accuracy and in the skeleton of the graph between the two methods which
is also confirmed by a Students t-test. The larger the sample size, the higher is
the PAG accuracy and the more accurate the skeleton. Based on these results,
we suggest that estimating mutual information using the correlation matrix for
discrete variables gives an accurate estimation of the causal structure.

The Waste Incinerator Network describes the emission from a waste incinera-
tor depending on filter efficiency, waste type, burning regime, and other factors.
The network contains nine variables that are connected by ten arcs as can be
seen in Fig. 4.

The network contains three discrete (B, F, W) and six continuous variables (C,
E, MW, ME, D, L). The original parameters of Waste Incinerator Network have a
very low variance that results in an almost one-to-one deterministic relationship
between the variables, which violates the faithfulness assumption. To avoid this
problem, we increased the variance between variables E, F, and V to 2.5 and
between other variables to 0.2.

Figure 5 represents the accuracy of the BCCD algorithm when the BIC score
is estimated using the correlation matrix for the Waste Incinerator Network.
Figure 5 shows that the PAG and skeleton accuracy increases with the increase
of sample size and becomes close to one. That suggests that the BCCD algorithm
is able to estimate the structure of a Bayesian network for a mixture of discrete
and continuous variables. Based on this conclusion we now can apply the BCCD
algorithm on real-world data.

6.3 Application on Real-World Data: ADHD

To test the BCCD algorithm on real-world data, we use the data set collected
by [3] that contains a mixture of discrete and continuous variables. This data set
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Fig. 3. The accuracy of the BCCD algorithm for the Asia Network in which mutual
information for the BIC score is estimated using: frequency counts (BIC orig) and
correlation matrices (BIC corr). (a) PAG accuracy. (b) Percentage of correct edges. (c)
Percentage of missing edges. (d) Percentage of spurious edges.

Fig. 4. Waste Incinerator Network represented as (a) DAG and (b) PAG. The node
names are abbreviated as follows: Burning regime (B) Filter state (F) Waste type(W)
CO2 concentration (C) Filter efficiency (E) Metal in waste (MW) Light penetrability
(L) Dust emission (D) Metals emission (ME)
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Fig. 5. The accuracy of the BCCD algorithm for the Waste Incinerator Network (a)
PAG accuracy. (b) Percentage of correct edges. (c) Percentage of missing edges. (d)
Percentage of spurious edges.

describes phenotypic information about children with Attention Deficit Hyper-
activity Disorder (ADHD) and is publicly available as a part of the ADHD-200
competition. The ADHD data set contains 23 variables for 245 subjects. We
excluded subjects that had missing information, so our final data set contained
223 subjects. We also excluded eleven variables that either did not have enough
data or were considered irrelevant, leaving only the following nine variables:

1. Gender (binary: male/female )
2. Attention deficit score (continuous)
3. Hyperactivity/impulsivity score (continuous)
4. Verbal IQ (continuous)
5. Full IQ (continuous)
6. Performance IQ (continuous)
7. Aggressive behavior (binary: yes/no)
8. Medication status (binary: näıve/not näıve)
9. Handedness (binary: right/left)

The BCCD algorithm using Spearman correlation was applied to the ADHD
data set. Due to the small sample size the BCCD algorithm inferred only the
skeleton of the network, but not the direction of the edges for the resulting
network. However, including prior knowledge about the domain that no variable
in the network can cause gender, BCCD inferred the direction of several edges.
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Figure 6 shows the network inferred by the BCCD algorithm. This figure
includes the edges with a reliability of a direct causal link higher than 50%,
that are calculated based on (1). The resulting network suggests that there is a
strong effect of gender on the level of attention deficit and consequently hyperac-
tivity/impulsivity symptoms. This statement is confirmed by different studies in
the field of ADHD [2]. The effect of attention deficit on hyperactivity/impulsivity
was also found in [30]. From the network we can see that the level of aggression
is associated with both: attention deficit and hyperactivity/impulsivity. More-
over, the network suggests that left-handedness is associated with a higher risk
of aggressive behavior. The BCCD algorithm inferred that prescription of med-
ication is mainly associated with a high level of inattention and aggression. The
network suggests that the association between level of performance IQ, verbal
IQ, and full IQ is explained by a latent common cause. Thus, an IQ-related la-
tent variable can be introduced to model the association between different types
of IQ measurements. On the other hand, only the performance IQ has a causal
link with attention deficit symptoms either direct or through a latent common
cause between these two variables. The presence of a relation between attention
deficit and intelligence is confirmed in several medical studies [22,29].

Fig. 6. The causal graph representing causal relationships between variables for the
ADHD data set. The graph represents a PAG, where edge directions are marked with
“ − ” and “ >” for invariant edge directions and with “◦” for non-invariant edge
directions. The reliability of an edge between two variables is depicted with a percentage
value near each edge.

7 Conclusion and Future Work

In this paper we extended the state-of-the-art BCCD algorithm for causal discov-
ery to mixtures of discrete and continuous variables. In order to extend BCCD,
we developed a method to estimate the score of the DAG for data sets with a
mixture of discrete and continuous variables, under the assumption that rela-
tionships between variables are monotonic. The developed method approximates
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mutual information using Spearman correlation to calculate the BIC score. Sim-
ulation studies on different types of data show that this appears to be a rea-
sonable approximation of mutual information. The small bias introduced to it
hardly influences the outcome of the BCCD algorithm.

The most computationally expensive part of the proposed scoring method is
the calculation of the correlation matrix. However, to estimate the BIC score
for all possible subsets of variables it is not necessary to recalculate correlation
matrix for each subset. The correlation matrix between all variables can be
calculated beforehand and the required elements of the matrix can be selected
depending on a subset of variables used to calculate the BIC score. As a result,
the proposed scoring method does not require expensive calculations and requires
to store only the correlation matrix, which makes it fast and memory efficient.

Our extended version of BCCD is now able to learn causal relationships be-
tween a mixture of discrete and continuous variables, assuming that the relations
between them are monotonic. For future work we will relax this assumption for
discrete variables and learn non-monotonic relations, by introducing a prelimi-
nary transformation to combine the parents of the variables. Another possible
extension of the method is to handle missing values. This is a quite common
problem in many fields, while standard solutions such as data deletion or data
imputation lead to loss of information or introduction of bias into the results.

An alternative approach for structure learning is through conditional inde-
pendence tests. Several methods [31,14] employing kernels have been proposed
to measure conditional independence without assuming a functional form of de-
pendency between the variables as well as the data distributions. It would be
interesting to consider how we can use these tests to obtain alternative scoring
methods for the BCCD algorithms.
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MICAI 2007. LNCS (LNAI), vol. 4827, pp. 496–506. Springer, Heidelberg (2007)

12. Friedman, N., Goldszmidt, M.: Discretizing continuous attributes while learning
Bayesian networks. In: Proceedings of the ICML Conference, pp. 157–165 (1996)

13. Geiger, D., Heckerman, D.: Learning Gaussian networks. In: Proceedings of the
UAI Conference, pp. 235–243. Morgan Kaufmann (1994)

14. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A
kernel statistical test of independence. In: NIPS. Curran Associates, Inc. (2007)

15. Harris, N., Drton, M.: PC algorithm for nonparanormal graphical models. Journal
of Machine Learning Research 14, 3365–3383 (2013)

16. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. In: Machine Learning, pp. 197–243
(1995)
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Abstract. In this paper we study the expressiveness of the Andersson-
Madigan-Perlman interpretation of chain graphs. It is well known that all
independence models that can be represented by Bayesian networks also
can be perfectly represented by chain graphs of the Andersson-Madigan-
Perlman interpretation but it has so far not been studied how much more
expressive this second class of models is. In this paper we calculate the
exact number of representable independence models for the two classes,
and the ratio between them, for up to five nodes. For more than five
nodes the explosive growth of chain graph models does however make
such enumeration infeasible. Hence we instead present, and prove the
correctness of, a Markov chain Monte Carlo approach for sampling chain
graph models uniformly for the Andersson-Madigan-Perlman interpre-
tation. This allows us to approximate the ratio between the numbers
of independence models representable by the two classes as well as the
average number of chain graphs per chain graph model for up to 20
nodes. The results show that the ratio between the numbers of repre-
sentable independence models for the two classes grows exponentially
as the number of nodes increases. This indicates that only a very small
fraction of all independence models representable by chain graphs of the
Andersson-Madigan-Perlman interpretation also can be represented by
Bayesian networks.

Keywords: Chain graphs, Andersson-Madigan-Perlman interpretation,
MCMC sampling.

1 Introduction

Chain graphs (CGs) is a class of probabilistic graphical models (PGMs) that
can contain two types of edges, representing symmetric resp. asymmetric rela-
tionships between the variables in question. This allows CGs to represent more
independence models than for example Bayesian networks (BNs) and thereby
represent systems more accurately than this less expressive class of models. To-
day there do however exist several different ways of interpreting CGs and what
conditional independences they encode, giving rise to different so called CG inter-
pretations. The most researched CG interpretations are the Lauritzen-Wermuth-
Frydenberg (LWF) interpretation [6, 9], the Andersson-Madigan-Perlman (AMP)
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interpretation [1] and the multivariate regression (MVR) interpretation [3, 4].
Each interpretation has its own way of determining conditional independences
in a CG and it can be noted that no interpretation subsumes another in terms
of representable independence models [5, 15].

Although it is well known that any independence model that can be rep-
resented by BNs also can be represented by CGs, and that the opposite does
not hold, it is unclear how much more expressive the latter class of models is.
This question has previously been studied for CGs of the LWF interpretation
(LWF CGs) and MVR interpretation (MVR CGs) [11, 16]. The results from
these studies show that the ratio of the number of BN models (independence
models representable by BNs) compared to the number of CG models (indepen-
dence models representable by CGs) decreases exponentially as the number of
nodes in the graphs increases. In this article we carry out a similar study for the
AMP CG interpretation and investigate if the previous results also hold for this
interpretation of CGs.

Measuring the ratio of representable independence models should in principle
be easy to do. We only have to enumerate every independence model repre-
sentable by CGs of the AMP interpretation (AMP CGs) and check if they also
can be perfectly represented by BNs. The problem here is that the number
of AMP CG models grows superexponentially as the number of nodes in the
graphs increases and it is infeasible to enumerate all of them for more than
five nodes. Hence we instead use a Markov chain Monte Carlo (MCMC) ap-
proach that previously has been shown to be successful when studying BN
models, LWF CG models and MVR CG models [11, 16]. The approach con-
sists of creating a Markov chain whose states are all possible AMP CG mod-
els with a certain number of nodes and whose stationary distribution is the
uniform distribution over these models. This does then allow us to sample
the AMP CG models from approximately the uniform distribution over all
AMP CG models by transitioning through the Markov chain. With such a
set of models we can thereafter approximate the ratio of BN models to AMP
CG models for up to 20 nodes. Moreover, since there exists an equation for
calculating the exact number of AMP CGs for a set number of nodes [17],
we can also estimate the average number of AMP CGs per AMP CG model.
Finally we also make the AMP CG models publicly available online and it
is our intent that they can be used for further studies of AMP CG models
and to evaluate for example learning algorithms to get more accurate eval-
uations than what is achieved with the randomly generated CGs used today
[10, 12].

The rest of the article is organised as follows. In the next section we will cover
the definitions and notations used in this article. This is then followed by Section
3 where we discuss the theory of the MCMC sampling algorithm used and also
prove that its unique stationary distribution is the uniform distribution of all
AMP CG models. In Section 4 we then discuss the results found and in Section
5 we give a short conclusion.
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2 Notation

All graphs are defined over a finite set of variables V . If a graph G contains an
edge between two nodes V1 and V2, we denote with V1→V2 a directed edge and
with V1−V2 an undirected edge. A set of nodes is said to be complete if there
exist edges between all pairs of nodes in the set.

The parents of a set of nodes X of G is the set paG(X) = {V1∣V1→V2 is in G,
V1 ∉ X and V2 ∈ X}. The children of X is the set chG(X) = {V1∣V2→V1 is in G,
V1 ∉X and V2 ∈X}. The neighbours of X is the set nbG(X) = {V1∣V1−V2 is in G,
V1 ∉X and V2 ∈X}. The boundary of X is the set bdG(X) = paG(X)∪nbG(X).
The adjacents of X is the set adG(X) = {V1∣V1→V2,V1←V2 or V1−V2 is in G,
V1 ∉X and V2 ∈X}.

A route from a node V1 to a node Vn in G is a sequence of nodes V1, . . . , Vn

such that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A path is a route containing only
distinct nodes. The length of a path is the number of edges in the path. A
path is called a cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1) ∪

nbG(Vi+1) for all 1 ≤ i < n. The descendants of a set of nodes X of G is the
set deG(X) = {Vn∣ there is a descending path from V1 to Vn in G, V1 ∈ X and
Vn ∉ X}. A path is strictly descending if Vi ∈ paG(Vi+1) for all 1 ≤ i < n. The
strict descendants of a set of nodes X of G is the set sdeG(X) = {Vn∣ there
is a strict descending path from V1 to Vn in G, V1 ∈ X and Vn ∉ X}. The
ancestors (resp. strict ancestors) of X is the set anG(X) = {V1∣Vn ∈ deG(V1), V1 ∉

X,Vn ∈ X} (resp. sanG(X) = {V1∣Vn ∈ sdeG(V1), V1 ∉ X,Vn ∈ X}). A cycle is
called a semi-directed cycle if it is descending and Vi→Vi+1 is in G for some
1 ≤ i < n.

A Bayesian network (BN) is a graph containing only directed edges and no
semi-directed cycles while a Markov network (MN) is graph containing only
undirected edges. A CG under the Andersson-Madigan-Perlman (AMP) inter-
pretation, denoted AMP CG, contains only directed and undirected edges but
no semi-directed cycles. Note that we in this article only will study the AMP
CG interpretation, but that we will use the term CG when the results or notion
generalizes to all CG interpretations. A connectivity component C of an AMP
CG is a maximal (wrt set inclusion) set of nodes such that there exists a path
between every pair of nodes in C containing only undirected edges. A subgraph
of G is a subset of nodes and edges in G. A subgraph of G induced by a set of
its nodes X is the graph over X that has all and only the edges in G whose both
ends are in X .

To illustrate these concepts we can study the AMP CG G with five nodes
shown in Fig. 1a. In the graph we can for example see that the only child of
A is B and that D is a neighbour of E. D is also a strict descendant of A due
to the strictly descending path A→B→D, while E is not. E is however in the
descendants of A together with B and D. A is therefore an ancestor of all nodes
except itself and C. We can also see that G contains no semi-directed cycles since
it contains no cycle at all. Moreover we can see that G contains four connectivity
components: {A},{B},{C} and {D,E}. In Fig. 1b we can see a subgraph of G
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(a) An AMP CG G (b) The subgraph of G induced by
{B,D,E}

(c) A LDG H

Fig. 1. Three different AMP CGs

with the nodes B,D and E. This is also the induced subgraph of G with these
nodes since it contains all edges between the nodes B,D and E in G.

Let X , Y and Z denote three disjoint subsets of V . We say that X is con-
ditionally independent from Y given Z if the value of X does not influence the
value of Y when the values of the variables in Z are known, i.e. pr(X,Y ∣Z) =
pr(X ∣Z)pr(Y ∣Z) holds and pr(Z) > 0. We say that X is separated from Y given
Z, denoted X⊥GY ∣Z, in an AMP CG, BN or MN G iff there exists no S-open
path between X and Y . A path is said to be S-open iff every non-head-no-tail
node on the path is not in Z and every head-no-tail node on the path is in
Z or sanG(Z). A node B is said to be a head-no-tail in an AMP CG, BN or
MN G between two nodes A and C on a path if one of the following config-
urations exists in G: A→B←C, A→B−C or A−B←C. Moreover G is also said
to contain a triplex ({A,C},B) iff one such configuration exists in G and A
and C are not adjacent in G. A triplex ({A,C},B) is said to be a flag (resp.
a collider) in an AMP CG or BN G iff G contains one following subgraphs in-
duced by A,B and C: A→B−C or A−B←C (resp. A→B←C). If an AMP CG
G is said to contain a biflag we mean that G contains the induced subgraph
A→B−C←D where A and D might be adjacent, for four nodes A,B,C and D.
Given a graph G we mean with G ∪ {A→B} the graph H with the same struc-
ture as G but where H also contains the directed edge A→B in addition to any
other edges in G. Similarly we mean with G ∖ {A→B} the graph H with the
same structure as G but where H does not contain the directed edge A→B.
Note that if G did not contain the directed edge A→B then H is not a valid
graph.

To illustrate these concepts we can once again look at the graph G shown
in Fig. 1a. G contains no colliders but two flags, B→D−E and C→E−D, that
together form the biflag B→D−E←C. This means that B⊥GE holds but that
B⊥GE∣D does not hold since D is a head-no-tail node on the path B→D−E.

The independence model M induced by a graph G, denoted as I(G), is the
set of separation statements X⊥GY ∣Z that hold in G. We say that two graphs
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G and H are Markov equivalent or that they are in the same Markov equivalence
class iff I(G) = I(H). Moreover we say that G and H belong to the same strong
Markov equivalent class iff I(G) = I(H) and G and H contain the same flags.
By saying that an independence model is perfectly represented in a graph G we
mean that I(G) contains all and only the independences in the independence
model.

An AMP CG model (resp. BN model or MN model) is an independence model
representable by an AMP CG (resp. BN or MN). AMP CG models do today have
two possible unique graphical representations, largest deflagged graphs (LDGs)
[14] and AMP essential graphs [2]. In this article we will only use LDGs. A
LDG is the AMP CG of a Markov equivalence class that has the minimum
number number of flags while at the same time contains the maximum number
of undirected edges for that strong Markov equivalence class.

For AMP CGs there exists a set of operations that allows for changing the
structure of edges within an AMP CG without altering the Markov equivalence
class it belongs to. In this article we use the feasible split operation [15] and
the legal merging [14] operation. A split is said to be feasible for a connectivity
component C of an AMP CG G iff it can be divided into two disjoint sets U
and L such that U ∪L = C and if replacing all undirected edges between U and
L with directed edges orientated towards L results in an AMP CG H such that
I(G) = I(H). It has been shown that if the following conditions hold in G then
such a split is possible: [15] (1) ∀A ∈ neG(L) ∩U,L ⊆ neG(A), (2) neG(L) ∩U is
complete and (3) ∀B ∈ L,paG(neG(L) ∩U) ⊆ paG(B).

A merging is on the other hand said to be legal for two connectivity compo-
nents U and L in an AMP CG G, such that U ∈ paG(L), iff replacing all directed
edges between U and L with undirected edges results in an AMP CGH such that
G andH belongs to the same strong Markov equivalence class. It has been shown
that if the following conditions hold in G then such a merging is possible [14] (1)
paG(L)∩U is complete in G, (2) ∀B ∈ paG(L)∩U,paG(L)∖U = paG(B) and (3)
∀A ∈ L,paG(L) = paG(A). Note that a legal merging is not the reverse operator
of a feasible split since a feasible split handles Markov equivalence classes, while
a legal merging handles strong Markov equivalence classes.

If we once again look at the CGs in Fig. 1 we can see that G, shown in Fig. 1a,
and H , shown in Fig. 1c, are Markov equivalent since I(G) = I(H). Moreover we
can note that G and H must belong to the same strong Markov equivalence class
since they contain the same flags. This means that G cannot be a LDG since H is
larger than G. In G it exists no feasible split, but one legal merging which is the
merging of the connectivity components {A} and {B} that results in a CG with
the same structure as H . In H it does on the other hand exist no legal merging
but one feasible split which is the split of the connectivity component {A,B}
into either A→B or B→A. We can finally note that this feasible split would result
in no additional flags and hence, since no legal mergings are possible in H , that
H must be a LDG.
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3 Markov Chain Monte Carlo Approach

In this section we cover the theory behind the MCMC approach used in this
article for sampling LDGs from the uniform distribution. Note that we only
cover the theory of the MCMC sampling method very briefly and for a more
complete introduction of the sampling method we instead refer the reader to the
work by Häggström [7].

The MCMC sampling approach consists of creating a Markov chain whose
unique stationary distribution is the desired distribution and then sample this
Markov chain after a number of transitions. The Markov chain is defined by a
set of operators that allows us to transition from one state to another. It can
then be shown that if these operators have certain properties and the number
of transitions goes to infinity then all states have the same probability of being
sampled [7]. Moreover, in practice it has also been shown that the number of
transitions can be relatively small and a good approximation of the uniform
distribution can still be achieved.

In our case the possible states of the Markov chain are all possible indepen-
dence models representable by AMP CGs, i.e. AMP CG models, represented
by LDGs. The operators then add and remove certain edges in in these LDGs,
allowing the MCMC method to transition between all possible LDGs. For the
stationary distribution to be the unique uniform distribution of all possible LDGs
we only have to prove that the operators fulfill the following properties [7]: ape-
riodicity, irreducibility and reversibility. Aperiodicity, i.e. that the Markov chain
does not end up in the same state periodicly, and irreducibility, i.e. that any LDG
can be reached from any other LDG using only the defined operators, proves that
the Markov chain has a unique distribution. Reversibility then proves that this
distribution also is the stationary distribution.

The operators used are defined in Definition 1 and it follows from Lemma 1,
2 and 3 that they fulfill the properties described above for LDGs with at least
two nodes.

Definition 1. Markov Chain Operators
Choose uniformly and perform one of the following six operators to transition
from a LDG G to the next LDG H in the Markov chain.

– Add directed edge. Choose two nodes X,Y in G uniformly and with re-
placement. If X ∉ adG(Y ) and G ∪ {X→Y } is a LDG let H = G ∪ {X→Y },
otherwise let H = G.

– Remove directed edge. Choose two nodes X,Y in G uniformly and with
replacement. If X→Y is in G and G∖{X→Y } is a LDG let H = G∖{X→Y },
otherwise let H = G.

– Add undirected edge. Choose two nodes X,Y in G uniformly and with
replacement. If X ∉ adG(Y ) and G ∪ {X−Y } is a LDG let H = G ∪ {X−Y },
otherwise let H = G.
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– Remove undirected edge. Choose two nodes X,Y in G uniformly and with
replacement. If X−Y is in G and G∖{X−Y } is a LDG let H = G∖{X−Y },
otherwise let H = G.

– Add two directed edges. Choose four nodes X,Y,Z,W in G uniformly and
with replacement. If X ∉ adG(Y ), Z ∉ adG(W ) and G ∪ {X→Y,Z→W} is a
LDG let H = G∪{X→Y,Z→W}, otherwise let H = G. Note that Y might be
equal to W in this operation.

– Remove two directed edges. Choose four nodes X,Y,Z,W in G uniformly
and with replacement. If X→Y and Z→W are in G and G∖ {X→Y,Z→W}
is a LDG let H = G∖{X→Y,Z→W}, otherwise let H = G. Note that Y might
be equal to W in this operation.

Lemma 1. The operators in Definition 1 fulfill the aperiodicity property when
G contains at least two nodes.

Proof. Here it is enough to show that there exists at least one operator such that
H is equal to G, and at least one operator such that it is not, for any possible
G with at least two nodes. The latter follows directly from Lemma 3 since there
exist more than one possible state when G contains at least two nodes. To see
that the former must hold note that if the add directed edge operation results in
a LDG for some nodes X and Y in a LDG G, then clearly the remove directed
edge X→Y operation must result in a LDG H equal to G for that G. ◻

Lemma 2. The operators in Definition 1 fulfill the reversibility property for the
uniform distribution.

Proof. Since the desired distribution for the Markov chain is the uniform dis-
tribution proving that reversibility holds for the operators simplifies to proving
that symmetry holds for them. This means that we need to show that for any
LDG G the probability to transition to any LDG H is equal to the probability to
transition from H to G. Here it is simple to see that each operator has a reverse
operator such as remove directed edge for add directed edge etc. and that the
“forward” operator and reverse operator are chosen with equal probability for a
certain set of nodes. Moreover we can also see that if H is G with one operator
performed upon it, such that H ≠ G, then clearly there can exist no other oper-
ator that transition G to H . Hence the operators fulfill the symmetry property
and thereby the reversibility property. ◻

Lemma 3. Given a LDG G any other LDG H can be reached using the opera-
tors described in Definition 1 such that all intermediate graphs are LDGs.

Proof. Here it is enough to prove that any LDG H can be reached from the
empty graph G∅ since we, due to the reversibility property, then also know that
G∅ can be reached from H (or G). That such a procedure exists follows from
Lemma 4. ◻
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Lemma 4. There exists an algorithm that, given a LDG H, constructs G from
the empty graph using the operators in Definition 1 such that G = H when the
algorithm terminates and all intermediate graphs are LDGs.

The algorithm and the proof of its correctness are rather technical and we omit
these due to page limitations. In short the algorithm works by iteratively adding
the connectivity components to G one by one until G = H . The complete algo-
rithm, and the proof of its correctness, can be found in an extended version of this
paper available at http ∶ //www.ida.liu.se/∼dagso62/PGM2014Extended.pdf .

Finally we do also have to prove what the conditions are for when the inde-
pendence model of a LDG can be represented as a BN resp. a MN.

Lemma 5. Given a LDG G there exists a BN H such that I(G) = I(H) iff G
contains no flags and G contains no chordless undirected cycles.

Proof. Since H is a BN and BNs is a subclass of AMP CGs we know that for
I(G) = I(H) to hold H must be in the same Markov equivalence class as G
if it is interpreted as an AMP CG. However, since G is a LDG and contains
a flag we know that that flag must exist in every AMP CG in the Markov
equivalence class of G. Hence I(G) = I(H) cannot hold if G contains a flag.
Moreover it is also well known that the independence model of a MN containing
chordless cycles cannot be represented as a BN. On the other hand, if G contains
no flag and no chordless undirected cycles, then clearly all triplexes in G must
be unshielded colliders. Hence, together with the fact that G can contain no
semi-directed cycles, we can orient all undirected edges in G to directed edges
without creating any semi-directed cycles as shown by Koller and Friedman [8,
Theorem 4.13]. This means that the resulting graph must be a BN H such that
I(G) = I(H). ◻

Lemma 6. Given a LDG G there exists a MN H such that I(G) = I(H) iff G
contains no directed edges.

Proof. This follows directly from the fact that G contains a triplex iff it also
contains a directed edge and MNs cannot represent any triplexes. It is also clear
that if G contains no directed edges than it can only contain undirected edges
and hence be interpreted as a MN. ◻

4 Results

Using the Markov chain presented in the previous section we were able to sample
AMP CG models uniformly for a set number of nodes for up to 20 nodes. For each
number of nodes 105 samples were sampled with 105 transitions between each
sampled sample. The success rate for the transitions, i.e. the percentage of transi-
tions such that H ≠ G, was for 20 nodes approximately 10% and this corresponds
well with earlier studies for LWF and MVR CGs [16]. To check if a graph G was
a LDG it was first checked whether it was an AMP CG. If so then the LDG H in
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Table 1. Exact and approximate ratios of AMP CG models whose independence mode
can be represented as BNs, MNs, neither (in that order)

NODES EXACT APPROXIMATE

2 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

3 1.0000 0.7273 0.0000 1.0000 0.7275 0.0000

4 0.8259 0.2857 0.1607 0.8253 0.2839 0.1609

5 0.5987 0.0689 0.3958 0.6019 0.0632 0.3931

6 0.4292 0.0112 0.5694

7 0.2987 0.0019 0.7010

8 0.2021 0.0002 0.7979

9 0.1373 0.0000 0.8627

10 0.0924 0.0000 0.9076

11 0.0604 0.0000 0.9396

12 0.0394 0.0000 0.9606

13 0.0251 0.0000 0.9749

14 0.0152 0.0000 0.9849

15 0.0106 0.0000 0.9894

16 0.0065 0.0000 0.9935

17 0.0044 0.0000 0.9956

18 0.0028 0.0000 0.9972

19 0.0017 0.0000 0.9983

20 0.0010 0.0000 0.9990

Table 2. Exact and approximate ratios of AMP CG models to AMP CGs

NODES EXACT APPROXIMATE

2 0.5000 0.5074

3 0.2200 0.2235

4 0.1327 0.1312

5 0.1043 0.1008

6 0.0860

7 0.0775

8 0.0701

9 0.0668

10 0.0616

11 0.0594

12 0.0595

13 0.0608

14 0.0635

15 0.0559

16 0.0598

17 0.0557

18 0.0567

19 0.0596

20 0.0632
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the Markov equivalence class of G was created whereafter it was checked whether
H and G had the same structure. To construct the LDG of G the algorithm
defined by Roverato and Studený was used [14]. The implementation was carried
out in C++, run on an Intel Core i5 processor and it took approximately one
week to complete the sampling of all sample sets. Moreover we also enumerated
all LDGs for up to five nodes to allow a comparison between the approximated
and exact values. The sampled graphs and code are available for public access at
http ∶ //www.ida.liu.se/divisions/adit/data/graphs/CGSamplingResources.

The results are shown in Tables 1 and 2. If we start with Table 1 we can
here see the ratio of the number of BN models resp. MN models compared to
number of AMP CG models. We can note that the approximation seems to be
very accurate for up to five nodes but for more than five nodes we do not have
any exact values to compare the approximations to. We can however plot the
ratios of the number of BN models compared to the number of AMP CG models
in a graph with logarithmic scales, as seen in Fig. 2. We can then see that the
ratio follows the equation R = 5 ∗ 0.664n very closely, where n is the number of
nodes and R the ratio. This means that the ratio decreases exponentially as the
number of nodes increases and hence that the previous results seen for LWF and
MVR CGs also hold for AMP CGs [16].

Fig. 2. The ratios of the number of BN models compared to the number of AMP CG
models for different number of nodes. (Displayed with a logarithmic scale)

If we go back to the table we can also note that the ratio of the number
of MN models compared to the number of AMP CG models is almost zero for
more than eight nodes similarly as seen in previous studies for LWF and MVR
CGs. Moreover, if we compare the ratio of the number BN models to the num-
ber of CG models for the different CG interpretations we can see that the ratio
is approximately 0.0017 for LWF CGs, 0.0011 for MVR CGs and 0.0010 for AMP
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CGs for 20 nodes [16]. This means that LWF CGs can represent the smallest
amount of independence models while MVR and AMP CGs can represent about
the same amount. Another interesting observation that can be made here is that
the difference between the ratios of the number of BN models compared to the
number of AMP CG models resp. MVR CG models is very small for any number
of nodes.

If we continue to Table 2 we can here see the exact and approximate ratios of
AMP CG models to AMP CGs. This ratio can be calculated using the equation

#CGmodels

#CGs
=
#BNs

#CGs
∗
#BNmodels

#BNs
∗
#CGmodels

#BNmodels
(1)

where #CGmodels represents the number of AMP CG models etc. The ratio
#BNs
#CGs

can then be found using the iterative equations by Robinsson [13] and

Steinsky [17] while #BNmodels
#BNs

can be found in previous studies for BN models

[11]. Finally we can also get the ratio #CGmodels
#BNmodels

by inverting the ratio found
in Table 1. If we study the values in Table 2 we can see that the ratio seems to
converge to somewhere around 0.06 similarly as seen for the average number of
BNs per BN model [16]. In the previous study estimating the average number
of LWF CGs per LWF CG model no such convergence has been seen [11]. We
can however note that this study only goes up to 13 nodes but also that the
approximated values for the LWF CG interpretation is considerably lower than
0.06. The ratio also shows that traversing the space of AMP CG models when
learning CG structures is considerably more efficient than traversing the space
of all AMP CGs.

5 Conclusion

In this article we have approximated the ratio of the number of AMP CG mod-
els compared to the number of BN models for up to 20 nodes. This has been
achieved by creating a Markov chain whose unique stationary distribution is the
uniform distribution of all AMP CG models. The results show that the ratio of
the number of independence models representable by AMP CGs compared to
the corresponding number for BNs grows exponentially as the number of nodes
increases. This confirms previous results for LWF and MVR CGs but a new,
and unexpected, result is also that AMP and MVR CGs seem to be able to
represent almost the same amount of independence models. It has previously
been shown that there exist some independence models perfectly representable
by both MVR and AMP CGs, but not BNs [15], and it would now be interesting
to see how large this set is compared to the set of all AMP resp. MVR CG
models.
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In addition to the comparison of the number of AMP CG models to the
number of BN models we have also approximated the average number of AMP
CGs per CG model. The results indicate that the average ratio converges to
somewhere around 0.06. Such a convergence has not previously been seen for
any other CG interpretation but it has been found to be ≈ 0.25 for BNs [11].

With these new results sampling methods for CG models of all CG interpre-
tations are now available [11, 16]. This opens up for MCMC based structure
learning algorithms for the different CG interpretations that traverses the space
of CG models instead of the space of CGs. More importantly it does also open up
for further studies on what independence models and systems the different CG
interpretations can represent, which is an important question where the answer
is still unclear.
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Learning Bayesian Network Structures When

Discrete and Continuous Variables Are Present

Joe Suzuki

Department of Mathematics, Osaka University,
Toyonaka, Osaka 560-0043, Japan

Abstract. In any database, some fields are discrete and others contin-
uous in each record. We consider learning Bayesian network structures
when discrete and continuous variables are present. Thus far, most of
the previous results assumed that all the variables are either discrete or
continuous. We propose to compute a new Bayesian score for each sub-
set of discrete and continuous variables, and to obtain a structure that
maximizes the posterior probability given examples. We evaluate the
proposed algorithm and make experiments to see that the error proba-
bility and Kullback-Leibler divergence diminish as n grows whereas the
computation increases linearly in the logarithm of the number of bins in
the histograms that approximate the density.

Keywords: Learning Bayesian network structures, discrete and
continuous variables, Kullback-Leibler divergence, density estimation,
universality.

1 Introduction

We consider a learning Bayesian network structure from examples.
Suppose we have three random variables X,Y, Z and wish to express the

distribution by one of the eleven factorizations:

P (X)P (Y )P (Z), P (X)P (Y,Z), P (Y )P (Z,X),

P (Z)P (X,Y ),
P (X,Y )P (X,Z)

P (X)
,
P (X,Y )P (Y,Z)

P (Y )
,

P (X,Z)P (Y,Z)

P (Z)
,
P (Y )P (Z)P (X,Y, Z)

P (Y,Z)
,
P (Z)P (X)P (X,Y, Z)

P (Z,X)
,

P (X)P (Y )P (X,Y,Z)

P (X,Y )
, and P (X,Y, Z) ,

where hereafter we number the eleven equations as (1) through (11). Then, we
can express the corresponding Bayesian networks as in Figure 1. In this paper,
we do not distinguish structures that share the same distribution (Markov equiv-
alent structures). For examples, although the three structures can be considered
for (5) as in Figure 2, they express the same distribution. On the other hand,
only one structure exists for (8).

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 471–486, 2014.
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Fig. 1. The eleven Bayesian networks with three variables X, Y, Z

The problem we consider in this paper is to identify the structure from exam-
ples (X = x1, Y = y1, Z = z1), · · · , (X = xn, Y = yn, Z = zn). We assume that
the n examples without missing values are independently emitted.

There are several approaches to tackle this problem. For example, we may
apply statistical tests on conditional independence w.r.t. a positive error proba-
bility α many times to choose one structure such as the PC Algorithm [22]. In
this paper, we solve the problem based on the Bayes principle: specifying the
prior probabilities over parameters and models, we choose a model that maxi-
mizes the posterior probability.

Suppose that P (X), P (Y ), P (X,Y ) are expressed in terms of some parameter
θ, and denote them by P (X |θ), P (Y |θ), and P (X,Y |θ), respectively. For xn =
(x1, · · · , xn) and yn = (y1, · · · , yn), let Pn(xn|θ) :=

∏n
i=1 P (xi|θ), Pn(yn|θ) :=∏n

i=1 P (yi|θ), Pn(xn, yn|θ) :=
∏n

i=1 P (xi, yi|θ),

Qn(xn) :=

∫
Pn(xn|θ)w(θ)dθ , Qn(yn) :=

∫
Pn(yn|θ)w(θ)dθ ,

and

Qn(xn, yn) :=

∫
Pn(xn, yn|θ)w(θ)dθ ,

respectively, where w(·) is the prior probability over the candidate parameters.
If the prior probability p of X ⊥⊥ Y (X,Y are independent) is available, the
posterior probability of X ⊥⊥ Y given examples (xn, yn) can be expressed by

P (X ⊥⊥ Y |xn, yn) =
pQn(xn)Qn(yn)

pQn(xn)Qn(yn) + (1 − p)Qn(xn, yn)
,
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so that we can decide whether X ⊥⊥ Y or X �⊥⊥ Y by

X ⊥⊥ Y ⇐⇒ pQn(xn)Qn(yn) ≥ (1 − p)Qn(xn, yn) .

(5) (8)
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Fig. 2. Markov equivalent Bayesian networks: (5) and (8) have three and one Markov
equivalent structures, respectively

The idea can be applied to learning Bayesian networks: let p1, · · · , p11 be the
prior probabilities of the eleven structures above. If we are given examples zn as
well as xn, yn, we can compute Qn(zn), Qn(xn, zn), Qn(yn, zn), Qn(xn, yn, zn)
as well. Then, we obtain the eleven quantities

p1Q
n(xn)Qn(yn)Q(zn), p2Q

n(xn)Qn(yn, zn), p3Q
n(yn)Qn(zn, xn),

p4Q
n(zn)Qn(xn, yn), p5

Qn(xn, yn)Qn(xn, zn)

Qn(xn)
, p6

Qn(xn, yn)Qn(yn, zn)

Qn(yn)
,

p7
Qn(xn, zn)Qn(yn, zn)

Qn(zn)
, p8

Qn(yn)Qn(zn)Q(xn, yn, zn)

Qn(yn, zn)
, p9

Qn(zn)Qn(xn)Qn(xn, yn, zn)

Qn(zn, xn)
,

p10
Qn(xn)Qn(yn)Qn(xn, yn, zn)

Qn(xn, yn)
, p11Q

n(xn, yn, zn) ,

so that we can select a structure that maximizes the posterior probability.
The same idea with three variables can be extended into the cases with N

variables in a straightforward manner.
The idea of replacing the true P by such some Q to obtain a Bayesian solution

has been used since the early 1990’s. Wray Buntine considered its application to
construction of classification trees [1], Cooper and Herskovits estimated Bayesian
network structures using such a Q [5], and Suzuki [24] used the MDL principle to
the Bayesian network structure learning problem and proposed a modified ver-
sion of the Chow-Liu algorithm. Since then, many authors reported applications
using similar techniques thus far.

However, if some attributes take continuous values, it is hard to construct
such a Q in order to identify the structure given {(xi, yi, zi)}ni=1. For example,
suppose that X is continuous, that Y is finite, and that Z is countable and
infinite, such as X ∈ [0, 1), Y ∈ {0, 1}, and Z ∈ {1, 2, · · ·}.

Suppose that all the variables are continuous and that a marginal density
function exists. Then, constructing a kernel function [18] to which the training
data fit may show better performance in some cases. However, and in order to
compute scores for each structure, multivariate correlation should be obtained.
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So, it seems to be hard for the kernel methods to obtain the structure that
maximizes the posterior probability.

Most previous works have either solved the problem by discretization, or as-
sumed that the data are generated by a Gaussian distribution. Heckerman and
Geiger [8] considered structure estimation when both Gaussian and finite vari-
ables are present in a Bayesian network. Monti and Cooper [15] used neural net-
works to represent conditional densities. Recently, in the R-package, Bottcher
and Dethlefsen [2] deal with a learning algorithm for both discrete and contin-
uous data, but the method works only when conditional Gaussian distributions
can be assumed (Lauritzen and Wermuth [14]). Friedman and Goldszmidt [7]
proposed an estimation method to discretize continuous attributes while learn-
ing Bayesian networks.

However, if we quantize the continuous data to take care of only discrete data,
it is not easy to optimize the number of bins in the histogram for each n. For
example, if we discretize [0, 1) forX to [0, 2−k), [2−k, 2·2−k), · · · , [(2k−1)·2−k, 1),
how should we decide k := k(n) ? What quantization is the best in {1, 2, · · ·}
for Y ? The previous works ([12], for example) do not give any answer to those
questions.

Recently, several authors take approaches such as mixtures of truncated ex-
ponentials, mixtures of polynomials and mixtures of truncated basis functions.
However, there is no guarantee for any required property such as consistency [21].

In this paper, we propose how to choose an optimal structure given
{(xi, yi, zi)}ni=1 in the sense of maximizing the posterior probability without
assuming that each variable is either discrete or continuous. The main issue is
what Q is qualified to be an alternative to P in more general settings. We will
give an answer to the problem by generalizing the aforementioned idea. The
theory developed in this paper is partially due to Boris Ryabko’s density estima-
tion [20]. Based on the generalized principle, we propose a method to estimate
Bayesian network structures when the random variables are arbitrary.

Section 2 introduces the notion of universality for sequences consisting of
elements in a finite set, and the idea of density function developed by Boris
Ryabko [20]; Section 3 generalizes the notions of universality and density esti-
mation based on histogram sequences; Section 4 gives a way of learning Bayesian
network structures based on the generalized method; Section 5 makes several ex-
periments to see the error probability and Kullback-Leibler divergence diminish;
and Section 6 summarizes the contributions and state future works.

2 Preliminaries

2.1 Universality

Suppose random variable X takes binary values, and that the prior probability
of θ = P (X = 1) is expressed by

w(θ) =
1

C
· θa−1(1− θ)b−1
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in terms of a, b > 0 and C :=
∫
θa−1(1− θ)b−1dθ (the Dirichlet distribution).

For example, if a = b = 1, then the prior distribution w is uniform. In particular,
it is known that Qn takes the closed form:

Qn(xn) =

∫ 1

0

θc(1− θ)n−cdw(θ)dθ =

n∏
i=1

ci + ai
i− 1 + a+ b

, (12)

where ci is the number of xi in xi−1, and ai = a, b for xi = 1, 0, respectively,
and c is the number of ones in xn.

Proposition 1 (Ryabko[19]). For any θ,

1

n
log

Pn(xn|θ)
Qn(xn)

→ 0

as n → ∞ with probability one.

Notice that a, b > 0 are arbitrary, even if our prior knowledge on the values of a, b
is not correct, the estimation is asymptotically correct although the convergence
may be slower.

It is known that Proposition 1 is true even if X takes finite values rather than
binary values. Let A,B be finite sets, and suppose X,Y takes values in A,B,
respectively. Then, A × B = {(a, b)|a ∈ A, b ∈ B} is apparently a finite set, so
that we have for any θ,

1

n
log

Pn(yn|θ)
Qn(yn)

→ 0 and
1

n
log

Pn(xn, yn|θ)
Qn(xn, yn)

→ 0 .

Thus, from 1
n log p

1−p → 0, we have

1

n
log

pQn(xn)Qn(yn)

(1− p)Qn(xn, yn)
− 1

n
log

Pn(xn|θ)Pn(yn|θ)
Pn(xn, yn|θ) → 0 ,

which means that the decision does not depend on the prior probability p asymp-
totically although more correct prior information makes estimation converge
faster for finite n.

The idea with two variables can be extended into the ones with N variables
in a straightforward manner.

In summary, we can asymptotically obtain a Bayesian network structure with
the maximum posterior probability even if the prior probabilities w and {pi}
over parameters and structures, respectively, are not available.

Hereafter, we refer Qn in Proposition 1 to a universal probability w.r.t. finite
set A.

2.2 Learning Bayesian Networks with Continuous Data

Let {Aj} be such that A0 = {A}, and that Aj+1 is a refinement of Aj , where A
is the range of X . For example, suppose that random variable X takes values in
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1 (a

(1)
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Qn
2 (a

(2)
1 , · · · , a(2)

n )

λ(a
(2)
1 ) · · · λ(a(2)

n )

Qn
j (a

(j)
1 , · · · , a(j)

n )

λ(a
(j)
1 ) · · ·λ(a(j)

n )

Fig. 3. Density estimation based on weighting histograms

A = [0, 1] and generate the sequence as follows:
A1 = {[0, 12 ), [

1
2 , 1)}

A2 = {[0, 14 ), [
1
4 ,

1
2 ), [

1
2 ,

3
4 ), [

3
4 , 1)}

. . .

Aj = {[0, 2−(j−1)), [2−(j−1), 2 · 2−(j−1)), · · · , [(2j−1 − 1)2−(j−1), 1)} .
. . .
For each j, we quantize each x ∈ [0, 1] into the a ∈ Aj such that x ∈ a. For

example, if x = 0.4 and j = 2, then a = [ 14 ,
1
2 ) ∈ A2. Let λ be the Lebesgue

measure (width of the interval). For example, λ([ 14 ,
1
2 )) =

1
4 and λ({ 1

2}) = 0.
Notice that each Aj is a finite set. As we constructed Qn in (12) for A = {0, 1},

we can construct a universal probability Qn
j w.r.t. finite set Aj for each j. Given

xn = (x1, · · · , xn) ∈ [0, 1]n, we obtain a quantized sequence (a
(j)
1 , · · · , a(j)n ) ∈ An

j

for each j, so that we can compute the quantity

gnj (x
n) :=

Qn
j (a

(j)
1 , · · · , a(j)n )

λ(a
(j)
1 ) · · ·λ(a(j)n )

for each j. If we prepare a sequence of positive reals w1, w2, · · · such that
∑

j wj =
1, we can compute the quantity

gn(xn) :=

∞∑
j=1

wjg
n
j (x

n) .

On the other hand, let f be the true density function, and fj(x) := P (X ∈
a)/λ(a) for a ∈ Aj and j = 1, 2, · · ·, if x ∈ a. We may regard fj as an approxi-
mated density functions assuming histograms {Aj} (Figure 3). For the given xn,
we define fn(xn) = f(x1) · · · f(xn)and fn

j (x
n) := fj(x1) · · · fj(xn).

Thus, we have the following proposition, which is a continuous version of
Proposition 1.
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Proposition 2 (Ryabko 2009). For anydensity functionf such thatD(f ||fj)→
0 as j → ∞,

1

n
log

fn(xn)

gn(xn)
→ 0

as n → ∞with probability one, whereD(f ||fj) is the Kullback-Leibler divergence
between f and fj.

For example, for three variables X,Y, Z, if we compute the quantities gn(yn),
gn(zn), gn(xn, yn), gn(xn, zn), gn(yn, zn), gn(xn, yn, zn) as well as gn(xn), we
obtain the eleven quantities

p1g
n(xn)gn(yn)gn(zn), p2g

n(xn)gn(yn, zn), p3g
n(yn)gn(zn, xn),

p4g
n(zn)gn(xn, yn), p5

gn(xn, yn)gn(X, zn)

gn(xn)
, p6

gn(xn, yn)gn(yn, zn)

gn(yn)
,

p7
gn(xn, zn)gn(yn, zn)

gn(zn)
, p8

gn(yn)gn(zn)gn(xn, yn, zn)

gn(yn, zn)
, p9

gn(zn)gn(xn)gn(xn, yn, zn)

gn(zn, xn)
,

p10
gn(xn)gn(yn)gn(xn, yn, zn)

gn(xn, yn)
, p11g

n(xn, yn, zn) ,

so that we can select a structure that maximizes the posterior probability. The
idea with three variables can be extended into the ones with N variables in a
straightforward manner.

3 General Case

It is easy to verify that Propositions 1 and 2 can be applied to the Bayesian net-
works with only discrete variables and only continuous variables, respectively,
which is considered to be rather unrealistic. In fact, in our daily life, we expe-
rience that some fields are discrete and others continuous in any database. If
X is discrete and Y is continuous, the joint random variable (X,Y ) is neither
discrete nor continuous, and none of Propositions 1 and 2 can be applied.

Besides, from Proposition 2, we may not obtain universality without the as-

sumption D(f ||fj) → 0 as j → ∞. For example, if
∫ 1

1
2
f(x)dx > 0 and {Aj} is

given by the following sequence, we cannot obtain universality because the range
[ 12 , 1) will not be refined:

A1 = {[0, 12 ), [
1
2 , 1)}

A2 = {[0, 14 ), [
1
4 ,

1
2 ), [

1
2 , 1)}

. . .
Aj = {[0, 2−(j−1)), [2−(j−1), 2 · 2−(j−1)), · · · , [ 12 − 2−(j−1), 1

2 ), [(
1
2 , 1)} .

. . .

3.1 For the Random Variables that Are Neither Discrete nor
Continuous

Suppose we wish to estimate the distribution over the positive integers N. Ap-
parently, N is not a finite set and has no density function. We consider the
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histogram sequence {Bk}: B0 = {N},
B1 := {{1}, {2, 3, · · ·}}
B2 := {{1}, {2}, {3, 4, · · ·}}
. . .
Bk := {{1}, {2}, · · · , {k}, {k + 1, k + 2, · · ·}}
. . .

For each k, we quantize each y ∈ N into the b ∈ Bk such that y ∈ b. For
example, if y = 4 and k = 2, then b = {3, 4, · · ·} ∈ B2. Let η be the measure
such that

η({k}) = 1

k
− 1

k + 1
, k ∈ N . (13)

For example, η({2}) = 1
6 and η({3, 4}) = 2

15 .
Notice that each Bk is a finite set, and we construct a universal probability

Qn
k w.r.t. finite set Bk for each k. Given yn = (y1, · · · , yn) ∈ Nn, we obtain a

quantized sequence (b
(k)
1 , · · · , b(k)n ) ∈ Bn

k for each k, so that we can compute the
quantity

gnk (y
n) :=

Qn
k (b

(k)
1 , · · · , b(k)n )

η(b
(k)
1 ) · · · η(b(k)n )

for each k. If we prepare a sequence of positive reals w1, w2, · · · such that∑
k wk = 1, we can compute the quantity

gn(yn) :=

∞∑
k=1

wkg
n
k (y

n) .

On the other hand, although no density function (w.r.t. λ) exists over N
because Y is a discrete random variable, however, there does exist a density
function in a generalized sense. In this case, the generalized density function
w.r.t. η is obtained via

f(y) =
P (Y = y)

η({y}) (14)

for y ∈ N (f takes arbitrary values for y �∈ N). Even if η is not given by (13), if
η({y}) �= 0 for all y ∈ N such that P (Y = y) �= 0, (14) will become the density
function. The readers who wants to prove (14) might want to consult the theory
of Radon-Nikodym.

In general, we obtain the following result:

Theorem 1. For any generalized density function f such that D(f ||fk) → 0 as
k → ∞,

1

n
log

fn(yn)

gn(yn)
→ 0

as n → ∞ with probability one

Proof: see https://arxiv.org/submit/985408/view
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Notice that Theorem 1 contains Proposition 1 as well as Proposition 2 as
special cases. In fact, for random variable Z such that P (Z = z) �= 0 ⇐⇒ z ∈ C
for a finite set C, the generalized density function can be expressed by (14) using
η(z) �= 0 for z ∈ C.

3.2 Universal Histogram Sequences

Theorem 1 assumes a specific {Bk}. We find a histogram sequence {Bk} such
that for any f , D(f ||fk) → 0 as k → ∞, and remove the condition D(f ||fk)
converge to zero as k → ∞.

To this end, we choose any μ, σ ∈ R, where σ should be positive, and generate
the sequence:

C0 = {(−∞,∞)}
C1 = {(−∞, μ], (μ,∞)}

Given Ck = {(−∞, ck,1], (ck,1, ck,2], · · · , (ck,2k−2, ck,2k−1], (ck,2k−1,∞)} for k ≥
1, we define

Ck+1 = {(−∞, ck+1,1], (ck+1,1, ck+1,2], · · · , (ck+1,2k+1−2, ck+1,2k+1−1], (ck+1,2k+1−1,∞)}

by
ck+1,1 = μ− kσ , ck+1,2k+1−1 = μ+ kσ

ck+1,2j = ck,j , j = 1, · · · , 2k − 1

ck+1,2j+1 =
ck,j + ck,j+1

2
, j = 1, · · · , 2k − 2

In this way, given the values of μ, σ, we obtain the sequence {Ck}∞k=0.
Let B be the set in which random variable Y takes values, and define

B∗
k := {B ∩ c|c ∈ Ck}\{φ} ,

where φ is the empty set.
For example, suppose that density function f exists over [0, 1] as in Section

2.3. Then, there exists a unique sequence {(ak, bk]}∞k=1 such that 0 ≤ ak ≤ y ≤
bk ≤ 1, k = 1, 2, · · ·, so that the ratio

P (Y ∈ (ak, bk]))

λ((ak, bk])
=

FX(bk)− FX(ak)

bk − ak

converges to f(x) as k → ∞. Thus, D(f ||fk) → 0 as k → ∞ for any f , where
FX is the distribution function of X .

For example, the sequence {Bk} in Section 3.1 is obtained by μ = 1 and
σ = 1 in the histogram sequence {B∗

k}. Then, for each y ∈ N = {1, 2, · · ·}, there
exists K ∈ N and a unique {Dk}∞k=1 such that y ∈ Dk ∈ B∗

k , k = 1, 2, · · · and
{y} = Dk ∈ B∗

k for k = K,K + 1, · · ·, so that

fk(y) =
P (Y ∈ Dk)

η(Dk)
→ f(y) =

P (Y = y)

η({y})
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for each y ∈ B and D(f ||fk) → 0 as k → ∞ for any f .
The choice of μ, σ may be arbitrary, but we should take the prior knowledge

into consideration in order to make the estimation correct even for small n. For
{B∗

k} and the supporting measure, we can compute gn(yn) given examples yn.

Theorem 2. For any generalized density function f ,

1

n
log

fn(yn)

gn(yn)
→ 0

as n → ∞ with probability one

Proof: see https://arxiv.org/submit/985408/view

3.3 Multivariable Universal Probabilities

Suppose we wish to estimate the distribution over [0, 1]×N. Apparently, [0, 1]×N
is not a finite set and has no density function. Theorem 1 can be applied to this
situation.

Since Aj ×Bk is a finite set, we can construct a universal probability Qn
j,k for

Aj ×Bk

gnjk(x
n, yn) :=

Qn
j,k(a

(j)
1 , · · · , a(j)n , b

(k)
1 , · · · , b(k)n )

λ(a
(j)
1 ) · · ·λ(a(j)n )η(b

(k)
1 ) · · · η(b(k)n )

If we prepare the sequence such that
∑

jk ωjk = 1, ωjk > 0, then we obtain the
quantity

gn(xn, yn) :=

∞∑
k=1

ωjkg
n
jk(x

n, yn) .

In this case, the (generalized) density function is obtained via

f(x, y) =
FX(x|y)

dx
· P (Y = y)

η({y})

for y ∈ N (f takes arbitrary values for x �∈ [0, 1] and y �∈ N), where FX(·|y) is
the conditional distribution function of X given Y = y.

Theorem 3. For any generalized density function f ,

1

n
log

fn(xn, yn)

gn(xn, yn)
→ 0

as n → ∞ with probability one

Proof: see https://arxiv.org/submit/985408/view
It is straightforward to extend Theorem 2 into the N variable case.
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4 Learning Bayesian Network Structures When Discrete
and Continuous Variables Are Present

There are two stages before choosing a structure that minimizes the score. For
example, if we are given n = 100 examples xn, yn, zn and obtain the seven
quantities of − log gn(·) in the upper values of Table 1, we compute the eleven
scores w.r.t. the structures in the lower values of Table 1. For example, for (10),
the score can be computed via

1

n
{− log p10−log gn(xn)−log gn(yn)−log gn(xn, yn, zn)+log gn(xn, yn)} . (15)

Then, a structure that minimizes− log gn(·) will be chosen. In this case, structure
(1) is chosen.

Let M(N) be the number of the DAGs with N nodes when the structures
within each Markov equivalent class are regarded to be identical. For example,
M(2) = 2 and M(3) = 11 (see Figure 1). First, we compute 2N values of
− log gn(·), Then, we compare M(N) values of the scores such as (15) for N = 3
and structure (10).

Table 1. The eleven scores obtained from the seven scores for X,Y, Z

X Y (X,Y ) Z (X,Z) (Y,Z) (X,Y, Z)

− log gn(·) 1.617 1.533 3.249 1.647 3.318 3.290 4.943

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

4.799 4.908 4.852 4.897 4.950 5.006 4.962 4.833 4.890 4.845 4.943

For the first stage, we need to bound the length K of histogram sequence {Ak}
and specify the values of the weights {wk}Kk=1. In the experiments in Section 5,
we set wk = 1/K although the convergence will be faster if we know the values
clearly. For two variables, the histogram sequence {Ak × Bk}Kk=1 of length K
rather than {Aj×Bk}j,k of length K2 should be specified. Even for the settings,
we can obtain the asymptotically optimal property for large n if K is large
enough.

For each xn = (x1, · · · , xn) ∈ An, we obtain (a
(k)
1 , · · · , a(k)n ) for each k =

1, · · · ,K, where A is the range of random variable X . In the experiments in

Section 5, we apply binary search to obtain a
(k+1)
i ∈ Ak+1 from a

(k)
i ∈ Ak for

each i = 1, · · · , n, where {Ak} contains 2k elements.
On the other hand, if A is a finite set and xn ∈ An, it is known that

Qn(xn) =

n∏
i=1

c(xi, x
i−1) + 1/2

i− 1 + |A|/2

is a universal probability of xn ∈ An, where c(x, xi−1) is the number of occur-
rences of x ∈ A in xi−1 ∈ Ai−1, and |A| is the cardinality of A.
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The resulting algorithm is shown in Figure 4, where ηX and ηY are the sup-
porting measures of X and Y , respectively. Those procedure can be applied to
the N variable case.

(A) Input xn ∈ An, Output gn(xn)

1. For each k = 1, · · · ,K, gnk (x
n) := 0

2. For each k = 1, · · · ,K and each a ∈ Ak, ck(a) := 0
3. For each i = 1, · · · , n, for each k = 1, · · · ,K

(a) Find a ∈ Ak from xi ∈ A

(b) gnk (x
n) := gnk (x

n)− log ck(a)+1/2
i−1+|Ak|/2

+ log(ηX(a))

(c) ck(a) := ck(a) + 1
4. gn(xn) :=

∑K
k=1

1
K
gnk (x

n)

(B) Input xn ∈ An and yn ∈ Bn, Output gn(xn, yn)

1. For each k = 1, · · · ,K, gnk (x
n, yn) := 0

2. For each k = 1, · · · ,K and each a ∈ Ak and b ∈ Bk, ck(a, b) := 0
3. For each i = 1, · · · , n, for each k = 1, · · · ,K

(a) Find a ∈ Ak and b ∈ Bk from xi ∈ A and yi ∈ B

(b) gnk (x
n, yn) := gnk (x

n, yn)− log ck(a,b)+1/2
i−1+|Ak||Bk|/2 + log(ηX(a)ηY (b))

(c) ck(a, b) := ck(a, b) + 1
4. gn(xn, yn) :=

∑K
k=1

1
K
gnk (x

n, yn)

Fig. 4. The Algorithm calculating gn: for given supporting measures ηX , ηY etc., the
score gn is calculated. In Step 3(a) for (A) and (B), binary search is applied, so that
the computations in those steps complete in constant times.

For the first stage, its computational complexity is at most O(nK) for ob-
taining the value of g(xn) for one variable X and even for obtaining the values
of g(xn, yn, · · ·) w.r.t. variables X,Y, · · ·, whereas even if all the variables are
discrete, O(n) computation is required. For the second stage, since we com-
pare M(N) structures, we need O(M(N)) time (we do not care about whether
the original values are either discrete or continuous). Thus, the total time is
O(max{nK2N ,M(N)}).

Another issue is its space complexity. We require memory space for storing
ck(a) for a ∈ A and k = 1, · · · ,K with size O(2K). For the score withm variables,
the size is O(2mK), which is is more severe than the discrete only case. However,
if we fix the total number n of examples, the number of examples in each bin
dramatically reduces as K grows, so we specify the value of K for the scores
with m variables to be les than 1

n logM(N), so that the expected number of
examples in each bin is uniform over all the scores. On the other hand, for the
second stage, we need to keep M(N) values. Thus, the total space complexity
is O(max{2NK ,M(N)}) = O(M(N)) and we find that the space complexity
remains the same even if the variable set contain continuous one.
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5 Experiments

5.1 Convergence of Kullback-Leibler Divergence

First, we consider two Bayesian networks with four nodes to see convergence of
the KL divergence of the score from the true distribution: we generate (X,Y, U, V )
defined by

1. X,Y ∈ {0, 1}, X ⊥⊥ Y , takes one with probability 0.5, and U ∼ N(x+ y, 1)
and V ∼ N(x− y, 1), and

2. X,Y ∼ N(0, 1), X ⊥⊥ Y , and U, V ∈ {0, 1} such that

P (U = 1|X + Y = z) = P (V = 1|X − Y = z) =

⎧⎨⎩
0, z < −1
(z + 1)/2, −1 ≤ z ≤ 1
1, z > 1

in Figures 4(a) and 4(b), respectively, where N(μ, σ2) is the normal distribution
with mean μ and variance σ2.
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Fig. 5. Experiment 1: Bayesian Networks with 2 Discrete and 2 Gaussian Nodes

We obtain the values of arithmetic average over 100 trials of
− log gn(·) and their execution times in Table 2. As can be seen from Table 2,
− 1

n log gn(xn, yn, un, vn) converges to h(X,Y, U, V ) as n grows, which means that
the K-L divergence goes to zero. This property (universality) is the key to learning
Bayesian network structures. The closer score gn to differential entropy h for each
subset of the N variables, the more correct structure obtained. The computation
is almost linear in n.

Table 2. Experiment 1: the results for the Bayesian networks Figures 5(a) and 5(b),
where h(X,Y, U, V ) is the differential entropy of X,Y, U, V

Bayesian Networks n 100 200 500 1000 2000

Figure 5(a) gn(xn, yn, un, vn) 5.009 4.858 4.626 4.616 4.552
h(X,Y, U, V ) = 4.224 KL divergence 0.785 0.634 0.402 0.392 0.328

execution time (sec) 1.079 1.276 1.939 4.596 7.047

Figure 5(b) gn(xn, yn, un, vn) 4.435 4.191 4.002 3.867 3.771
h(X,Y, U, V ) = 3.372 KL divergence 1.063 0.819 0.630 0.495 0.399

execution time (sec) 0.601 0.849 1.721 2.582 4.619
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5.2 Structure Learning of Bayesian Networks

Secondly, we made experiments using Bayesian networks with three variables to
see its basic performance.

In the experiment (Experiment 2), we prepare eleven Bayesian networks with
three Gaussian variables as in Figure 1. In particular, we generate n tuples of
random numbers as follows, where the values of −1 ≤ ρ, ρa, ρb ≤ 1 in (2) through
(10) are 0.6, and −1 ≤ ρa, ρb, ρc ≤ 1 in (11) are 0.5.

(1) X,Y, Z ∼ N(0, 1).
(2)(3)(4) X,U ∼ N(0, 1), Y = ρX +

√
1− ρ2U , Z ∼ N(0, 1).

(5)(6)(7) X,U ∼ N(0, 1), Y = ρaX +
√
1− ρ2aU , Z = ρX +

√
1− ρ2bU .

(8)(9)(10) X,U, V ∼ N(0, 1), Y = ρaX +
√
1− ρ2aU , Z = ρbX +

√
1− ρ2bV .

(11) X,U, V ∼ N(0, 1), Y = ρaX+
√
1− ρ2aU , Z = ρbX+ρcY+

√
1− ρ2b − ρ2cV .

Table 3. Experiment 2: the KL divergence and error probabilities for Bayesian network
structure learning

true differential n = 100 n = 200 n = 500 n = 1000 n = 2000
structure entropy score error score error score error score error score error

(1) 4.256816 4.875 0.28 4.645 0.02 4.480 0.00 4.417 0.00 4.355 0.00
(2)(3)(4) 4.033672 4.699 0.42 4.573 0.12 4.434 0.10 4.350 0.02 4.269 0.00
(5)(6)(7) 3.810528 4.732 0.34 4.565 0.14 4.385 0.10 4.289 0.02 4.175 0.00
(8)(9)(10) 3.810528 4.710 0.32 4.498 0.12 4.370 0.06 4.282 0.00 4.178 0.00

(11) 3.766401 4.731 0.14 4.5431 0.06 4.335 0.02 4.261 0.00 4.150 0.00

For each of the five structure classes, given xn, yn, zn, if the true and chosen
structures do not coincide in any edge, we say that an error occurs. We repeat
L = 50 times to generate xn, yn, zn and choose a structure that minimizes the
score such as (15). We compute the KL divergence between the true and chosen
Bayesian networks, where we define the error rate to be the number of errors in
L trials divided by L. We obtained data as in Table 3, and find that both the
error rate and KL divergence diminish to zero for all the cases.

Next, We apply the proposed algorithm for actual data prepared in the R
data set. For the second part, we do not care about whether the original values
are either discrete or continuous. Thus, we evaluate the execution times only
for the first part (the true Bayesian network structures are not known but only
data sets are given). The five data sets faithful, quakes, attitude, longley, and
USJudgeRatings in Table 4 are obtained in the R datasets package1.

From Table 4, by comparing attitude and longley with seven discrete and
continuous variables, respectively, we can see that computing gn(·) for continuous
variables does not take so much time compared with computing them for discrete
variables. For the dataset USJudgeRatings, it took about 30 minutes but the
total execution time divided by 2N = 1024 was not so large.

1 http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/00Index.html

http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/00Index.html
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Table 4. Experiment 3: using real datasets in the R

data.frame N data.type n time (sec) time (sec)/2N

faithful 2 c,d 272 6.08 3.04
quakes 5 c,c,d,d,c 1000 60.77 1.90
attitude 7 d,d,d,d,d,d,d 30 27.66 0.216
longley 7 c,c,c,c,c,c,d 16 44.63 0.349

USJudgeRatings 12 c,c,c,c,c,c,c,c,c,c,c,c 43 1946.63 0.4752

6 Concluding Remarks

We proposed the Bayesian network structure learning algorithm such that each
variable in the dataset is either discrete or continuous. The posterior probability
converges to the true value even if the prior probabilities over parameters and
models are not correct. The computational and space complexities are at most
O(max{nK2N ,M(N)}) and O(M(N)), and we find that they are not severe for
implementation. In fact, the execution time is almost linear in K because binary
search is applied for finding the quantized values.

Although the proposed algorithm is not the first algorithm to learn Bayesian
network structures with discrete and continuous variables, it finds the structure
that maximizes the posterior probability given examples, and can be applied to
general situations.

Future work includes further experiments to find a way to obtain the depth
K for n and N , histogram sequences such as {Ak}, {Bk}, and the supporting
measures such as μX , μY . They are not mathematically analyzed, and experience
by data will be required.
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Abstract. Constraint-based causal discovery algorithms use conditional
independence tests to identify the skeleton and invariant orientations of
a causal network. Two major disadvantages of constraint-based methods
are that (a) they are sensitive to error propagation and (b) the results of
the conditional independence tests are binarized by being compared to a
hard threshold; thus, the resulting networks are not easily evaluated in
terms of reliability. We present PROPeR, a method for estimating poste-
rior probabilities of pairwise relations (adjacencies and non-adjacencies)
of a network skeleton as a function of the corresponding p-values. This
novel approach has no significant computational overhead and can scale
up to the same number of variables as the constraint-based algorithm of
choice. We also present BiND, an algorithm that identifies neighborhoods
of high structural confidence on causal networks learnt with constraint-
based algorithms. The algorithm uses PROPeR to estimate the confi-
dence of all pairwise relations. Maximal neighborhoods of the skeleton
with minimum confidence above a user-defined threshold are then identi-
fied using the Bron-Kerbosch algorithm for identifying maximal cliques.
In our empirical evaluation, we demonstrate that (a) the posterior prob-
ability estimates for pairwise relations are reasonable and comparable
with estimates obtained using more expensive Bayesian methods and
(b) BiND identifies sub-networks with higher structural precision and
recall than the output of the constraint-based algorithm.

Keywords: Posterior probabilities, causal networks, constraint-based
causal discovery.

1 Introduction

Constraint-based algorithms are a popular choice for learning causal models;
they are fast, scalable, and usually guarantee soundness and completeness in the
sample limit. However, for smaller sample sizes, identification of false constraints
poses a challenge: An erroneous identification of a conditional independence can
propagate through the network and lead to erroneous edge identifications or con-
flicting orientations even in seemingly unrelated parts of the network. Particu-
larly for networks with many variables and small sample sizes, error propagation
can result in unreliable networks.
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Constraint-based algorithms query the data for conditional independencies
and then use the results to constrain the search space of possible causal models.
Failure to identify which parts of the output of a constraint-based algorithm are
reliable is partly due to the nature of conditional independence tests: The test
returns a p-value, which stands for the probability of getting a test statistic at
least as extreme as the the one actually observed in the data, given that the null
hypothesis (conditional independence) is true. If this probability is lower than a
chosen significance threshold (typically 5-10%), the null hypothesis is rejected,
and the alternative hypothesis is implicitly accepted. While lower p-values indi-
cate higher confidence conditional dependencies, the p-value can not be inter-
preted as the probability of a conditional independence, and it therefore cannot
be used to compare a conditional dependence to a conditional independence
in terms of belief. Thus, the decisions made by the constraint-based algorithm
(accept or reject a conditional independence) cannot be evaluated in terms of
confidence.

We propose Posterior RatiO PRobability (PROPeR), a method for identifying
posterior probabilities for all (non) adjacencies of a causal network learnt with
a constraint-based algorithm. We use the term pairwise relations to denote
adjacencies and non-adjacencies in a causal graph (ignoring orientations).

For each pair of variables, a constraint-based algorithm tries a number of con-
ditional tests of independence. We use the maximum p-value obtained for every
pair of variables as a representative of the corresponding pairwise relation. Poste-
rior probabilities are then estimated as a function of these representative p-values.
Themethod has no significant computational overhead, and can therefore scale up
to the same number of variables as the algorithm of choice. Moreover, it does not
depend on any additional assumptions (e.g. acyclicity, causal sufficiency, paramet-
ric assumptions) and can therefore be used with any constraint-based algorithm
equipped with an appropriate test of conditional independence.

Notice that PROPeR is not used to improve the algorithm per se, but to
produce confidence estimates for pairwise relations learnt from the algorithm.
Identifying which parts of the learnt network are reliable is of great importance
for practitioners who use causal discovery methods, and are often interested in
high-confidence pairwise connections among variables or in avoiding a specific
type of error (e.g. false positive or false negative edges). It can also be useful
for selecting subsequent experiments for a system under study, by pointing out
relationships that are uncertain.

We use the estimates obtained by PROPeR, to identify neighborhoods of high
structural confidence in causal networks. The proposed method, called BiND
(β-NeighborhooDs), takes as input a causal graph G along with representative
p-values for every pairwise relation in G and a desired threshold of confidence
β. The algorithm outputs all neighborhoods in G for which all pairwise relations
have confidence estimates above β. Internally, BiND uses PROPeR to obtain
probability estimates for each pairwise relation, creates a graph Hβ where edges
correspond to pairwise relations with confidence above β, and then uses the
Bron-Kerbosch algorithm to identify all maximal cliques in graph Hβ.
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In our empirical evaluation, we use simulated data to test the calibration of
PROPeR’ s probability estimates, and compare against two Bayesian methods
that can be used to obtain similar estimates [1][2]. Results indicate that PROPeR
produces reasonable probability estimates, while being significantly faster than
other approaches. The behavior of BiND was also examined using simulated
data sets. Results indicate that BiND identifies neighborhoods that include a
smaller proportion of false positive and false negative edges, compared to the
original induced network.

2 Background

We use V to denote random variables (interchangeably nodes of a causal graph),
and bold upper-case letters to denote sets of variables. We use the notation
X⊥⊥Y |Z to denote the independence of variables X and Y given the set of
variables Z. We use G=(V,E) to denote a graph over variables V with edges E .
For the scope of this work, we only deal with undirected edges, thus, members
of E are unordered tuples of V.

Bayesian networks consist of a Directed Acyclic Graph (DAG) G over a set
of variables V and a joint probability distribution P over the same variables. A
directed edge in G denotes a direct causal relation (in the context of measured
variables). The DAG G and the distribution P are connected by the Causal
Markov condition (CMC): Every variable is independent of its non-descendants
given its parents. The graph in conjunction with the CMC entails a set of condi-
tional independencies that hold in P . The faithfulness condition (FC) states that
all the conditional independencies that hold in P stem from G and the CMC,
instead of being accidental parametric properties of the distribution.

Under CMC and FC, the conditional (in)dependencies that hold in P can
be identified from the graph G according to a graphical criterion, namely d-
separation. For graphs and distributions that are faithful to each other, we say
that P satisfies the global Markov property with respect to G: X ⊥⊥Y |Z in P
if and only if X and Y are d-separated given Z in G. Constraint-based methods
for learning Bayesian Networks use independence relations present in the data
to constrain the search space of possible underlying causal graphs. The following
theorem is the cornerstone of constraint-based causal learning:

Theorem 1. [3] If 〈G,P〉 is a Bayesian network over V and G is faithful to P,
then the following holds: For every pair of variables X,Y ∈ V: X and Y are not
adjacent in G ↔ ∃Z ⊆ V \ {X,Y } s.t. X ⊥⊥ Y |Z.

The theorem states that every missing edge in G corresponds to a conditional
independence in P . This is also known as the pairwise Markov property. Es-
sentially, the theorem matches the skeleton of the causal graph to a kernel of
conditional independencies (one for every missing edge). Thus, to identify the
network skeleton, constraint-based algorithms use a search strategy to iterate
over all pairs of variables in V. For each such pair (X , Y ), the algorithm tries
to identify a set of variables Z that renders X and Y independent. If no such
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set exists, X and Y are adjacent in the resulting causal graph G, otherwise the
edge between them is removed and Z is reported as the separating set of X and
Y . The set of all conditional independencies that hold in a probability distribu-
tion is called the independence model J of the distribution P . Under CMC
and FC, the minimal set of independencies identified by a (sound and complete)
constraint-based algorithm are sufficient to entail all conditional independencies
in J .

Apart from CMC and FC, Bayesian networks rely on the assumption of causal
sufficiency: Pairs of variables in a Bayesian network cannot be confounded, i.e.
they cannot be effects of the same unmeasured common cause. This assump-
tion is very restrictive and likely to be violated in many applications. Maximal
Ancestral Graphs (MAGs) are extensions of Bayesian networks that can handle
possible hidden confounders. In faithful MAGs, the graph G and the distribu-
tion P are connected through a graphical criterion similar to d-separation, called
m-separation. MAGs also satisfy the pairwise Markov property: a missing edge
in G corresponds to a conditional independence in P . Edges and orientations
in MAGs, however, have slightly different causal semantics than in Bayesian
networks.

Methods presented in this work do not depend on the assumption of causal
sufficiency, and can therefore work for both DAGs and MAGs. They do require,
however, that the causal graph and the distribution satisfy the pairwise Markov
property: every missing edge must correspond to a conditional independence.
This holds for DAGs and MAGs, but is not true for all graphical models.

Typically, for a joint probability distribution P over a set of variables V,
there exists a class (instead of a single) of causal graphs (DAGs or MAGs) that
entail all and only the conditional independencies that hold in P . Causal graphs
that belong to the same class, and cannot be distinguished based on conditional
independencies alone, are called Markov Equivalent. For both DAGs and MAGs,
Markov Equivalent graphs share the same skeleton, and vary in some of the
orientations.

For the scope of this work, we only attempt to quantify our belief to the
adjacency or non-adjacency of each pair of variables, regardless of orientations.
Thus, we only need to take into account the output of the skeleton identification
step of a constraint-based algorithm. In the remainder of this paper, we use G
=(V, E) to denote the output such an algorithm, thus, the skeleton of a BN or
a MAG without orientations.

3 Posterior Probabilities for Pairwise Relations

In this section, we present the PROPeR algorithm for estimating posterior prob-
abilities of pairwise relations in causal networks. PROPeR takes as input the
causal skeleton G returned by a constraint-based algorithm and a set of rep-
resentative p-values and outputs a posterior probability estimate for every ad-
jacency and non-adjacency in G. We use P (X—Y ) and P (¬X—Y ) to denote
the posterior probability of the adjacency and non-adjacency of X and Y in G,
respectively.
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N = 20, α = 0.05, sample size = 100
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Fig. 1. Representative p-values for adjacencies and non-adjacencies. Normal-
ized histograms of 190 representative p-values identified by the PC skeleton algorithm
for a random network of 20 variables. p-values corresponding to adjacencies in the
data-generating network (left) follow a distribution with decreasing density. p-values
corresponding to non-adjacencies in the data-generating network (right) follow a uni-
form distribution in the interval [α, 1]. A smaller number of predictions fall in the [0, α]
interval. This bias is introduced due to constraint-base search strategy: while the repre-
sentative p-value is below the threshold, the algorithm performs more tests. Naturally,
in real scenarios, we do not know which p-values come from which distribution.

According to the pairwise Markov condition, a non-adjacency in a causal
graph G over variables V corresponds to a conditional independence given a
subset of V. In contrast, an adjacency in G corresponds to the lack of such
a subset: If X and Y are adjacent in G, there exists no subset Z of observed
variables such that X⊥⊥Y |Z. Thus, edge X—Y will be present in P if the data
support the null hypothesis

H0 : ∃Z ⊂ V : X ⊥⊥ Y |Z less than the alternative H1 : ∀Z ⊂ V : X �⊥⊥ Y |Z (1)

For a network with N variables, this complex set of hypotheses involves |2N−2|
conditional independencies. To simplify Equation 1, we use a surrogate condi-
tioning set. For each pair of variables, during the skeleton search, a constraint-
based algorithm performs a number of tests, each for a different conditioning set.
To avoid performing all possible tests, most algorithms avoid conditioning sets
that are theoretically not likely to be d-separating the variables, and also use
a threshold on the cardinality of attempted conditioning sets. Let pXY be the
maximum p-value of any attempted test of conditional independence between
X and Y , and let ZXY be the corresponding conditioning set. pXY is used in
constraint-based algorithms to determine whether X and Y are adjacent. If pXY

is lower than the threshold α, the edge is present in G. Otherwise, the edge is
absent in G. We approximate Equation 1 with the following set of hypotheses:

H0 : Ind(X,Y |ZXY ) against the alternative H1 : ¬Ind(X,Y |ZXY ), (2)

Under H0, the p-values follow a uniform distribution. Under H1, the p-values
follow a distribution with decreasing density. Sellke et al. [4] propose using Beta
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alternatives to model the distribution of the p-values under the null and the al-
ternative hypotheses, respectively: Beta(1, 1) is the uniform distribution and de-
scribes the distribution of the p-values under the null hypothesis.Beta(ξ, 1), 0 <
ξ < 1 is a distribution defined in (0, 1) with density decreasing in p. It is therefore
suitable to model the distribution of p-values under the alternative hypothesis.
Figure 1 shows an example of the distributions of representative p-values under
H0 and H1, identified using the PC skeleton on data simulated from a known
network. Equation 2 can be re-formulated on the basis of the representative
p-value:

H0 : pXY ∼ Beta(1, 1) against H1 : pXY ∼ Beta(ξ, 1) for some ξ ∈ (0, 1). (3)

We can now estimate whether adjacency is more probable than non-adjacency for
a given representative p-value p, by estimating which of the Beta alternatives it is
most likely to follow. We use V2 = {(X,Y ), X,Y ∈ V, X �= Y } to denote the set
of unordered pairs of V, i.e. the set of pairwise relations in a causal skeleton G.
Let p = {pXY : (X,Y ) ∈ V2} be the set of the representative p-values for each
pairwise relation. We assume that this population of p-values follows a mixture
of Beta(ξ, 1) and Beta(1, 1) distributions. If π0 is the proportion of p-values
following Beta(1, 1), then the corresponding probability density function is:

f(p|ξ, π0) = π0 + (1 − π0)ξp
ξ−1

For given estimates π̂0 and ξ̂, the posterior odds of H0 against H1 for variables
X , Y is

PO(pXY ) =
P (pXY |H0)P (H0)

P (pXY |H1)P (H1)
=

P (pXY |pXY ∼ Beta(1, 1))P (pXY ∼ Beta(1, 1))

P (pXY |pXY ∼ Beta(ξ̂, 1))P (pXY ∼ Beta(ξ̂, 1))
=

π̂0

ξ̂pξ̂−1
XY (1− π̂0)

.
(4)

Obviously, if PO(pXY ) > 1, non-adjacency is more probable than adjacency for

the pair of variables X , Y . Notice that for some ξ̂ and π̂0, it is possible that
PO(pXY ) > 1, while X and Y are adjacent in G.

Based on the ratios in Equation 4, we can obtain the probability estimates:

P (X—Y ) =
1

1 + PO(pXY )
, P (¬X—Y ) =

PO(pXY )

1 + PO(pXY )
(5)

To estimate the probabilities in Equation 5, we need to obtain estimates for π̂0

and ξ̂. To estimate π0, we use the method described in [5]. The authors propose
fitting a natural cubic spline to the distribution of the p-values to estimate the
proportion of p-values that come from the null hypothesis.

The method requires that the p-values are i.i.d., an assumption that is clearly
violated for the sample of p-values obtained during a skeleton identification
algorithm: Typically, the tests of independence attempted by constraint-based
network learning algorithms depend on the results of previously attempted tests.
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Algorithm 1. PROPeR

input : causal network G over V, representative p-values {pXY }
output: Probability estimates P (X—Y ), P (¬X—Y )

1 Estimate π̂0 from {pXY } using the method described in [5];

2 Find ξ̂ that minimizes −
∑

(X,Y )∈V2 log(π̂0 + (1− π̂0)ξp
ξ−1
XY );

3 foreach (X,Y ) ∈ V2 with representative p-value pXY do

4 PO(pXY ) ← π̂0

ξ̂p
ξ̂−1
XY

(1−π̂0)
;

5 P (X—Y ) ← 1
PO(pXY )+1

, P (¬X—Y ) ← PO(pXY )
PO(pXY )+1

;

6 end

Moreover, each pXY is the maximum among many attempted tests. Finally, the
p-values coming from the null hypothesis are not uniform, since independence is
only accepted if p > α. Thus, the obtained estimate π̂0 may be biased. Never-
theless, we believe that the estimates produced using this method are reasonable
approximations. An example of the distribution of representative p-values com-
ing from H0 and H1 is illustrated in Figure 1.

For a given π̂0, the likelihood for a set of representative p-values {pXY } is

L(ξ) =
∏

(X,Y )∈V2

(π̂0 + (1− π̂0)ξp
ξ−1
XY ).

The respective negative log likelihood is

−LL(ξ) = −
∑

(X,Y )∈V2

log(π̂0 + (1− π̂0)ξp
ξ−1
XY ). (6)

Equation 6 can easily be optimized for ξ. Algorithm 1 describes how to obtain
probability estimates for all pairwise relations given their representative p-values.

4 Identifying Neighborhoods of High Structural
Confidence

Algorithm 2 takes as input a causal skeleton G, confidence estimates on G’s
pairwise relations and a confidence threshold β and outputs the set of all β-
neighborhoods in G. In the previous section we presented a method for obtaining
posterior probability estimates for all pairwise relations in a causal skeleton. In
this section, we will use these estimates to identify neighborhoods of high struc-
tural confidence on the same skeleton. We define a neighborhood of structural
confidence β as follows:

Definition 1 (β-neighborhood). Let G = (V, E) be a causal skeleton, and
{PXY , (X,Y ) ∈ V2} the set of probability estimates:

PXY =

{
P (X—Y ), if (X,Y ) adjacent in G

P (¬X—Y ), if (X,Y ) not adjacent in G



494 S. Triantafillou, I. Tsamardinos, and A. Roumpelaki

Fig. 2. An example maximum 0.8-neighborhood identified using Algorithm
2. We used the DAG of the Alarm network coupled with random parameters to simulate
100 samples. PC-skeleton was used to obtain the network skeleton G, consisting of 34
edges: 31 true positive edges (solid lines in the figure) and 3 false positive edges (− ·−
lines). 15 edges were not identified by the algorithm, even though they are present
in the data-generating graph (false negative edges, depicted as lines). Algorithm 2
was used to identify the maximum 0.8-neighborhoods of G. One of the maximum 0.8-
neighborhoods, consisting of 24 variables that share 17 adjacencies, is noted: elliptical
blue nodes denote variables in the neighborhood, while the remaining variables are
shown as rectangular grey nodes (the neighborhood is also separated from the rest of
the network with a dashed grey line). The proportion of false inferences within the
clique is far lower than the overall proportion of false inferences: The clique includes
only two false negative edges and only one false positive. Most of the false inferences
are pairwise relations between members and non-members of the neighborhood.

A subgraph G′ = (V′, E ′) of G is a β-neighborhood iff: ∀X,Y ∈ V′ : PXY > β
The size of a β-neighborhood G′ = (V′, E ′) is |V′|.

Thus, a neighborhood of confidence β is a subgraph of the causal network in
which the posterior probability of every pairwise relation is above a given thresh-
old β. For a causal skeleton and a set of confidence estimates on all pairwise
relations, finding a β - neighborhood can be reformulated as a graph theoretical
problem: Let H = (V, Eβ) be an undirected graph with edges defined as follows:

(X,Y ) ∈ Eβ if PXY ≥ β, (X,Y ) �∈ Eβ if PXY < β (7)

Variables X and Y are adjacent in Hβ only if the probability of their re-
spective pairwise relation in G is above the confidence threshold β. Finding
β-neighborhoods in G is equivalent to identifying cliques in Hβ .

Naturally, a causal skeleton can have many β-neighborhoods. Moreover, if a
subgraph G′ = (V′, E ′) of G is a β-neighborhood, then every subgraph of G′ is
a β-neighborhood. More interesting inferences may be made by identifying all
maximal β-neighborhoods on a graph:

Definition 2. Let G=(V, E) be a causal skeleton and G′ = (V′, E ′) be a β-
neighborhood. G is a maximal β-neighborhood if �V′′ ⊃ V′ such that the sub-
graph G′′ = (V′′, E ′′) is a β-neighborhood.
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Algorithm 2. BiND

input : causal network G over V, pairwise confidence estimates PXY ,
confidence threshold β

output: β-neighborhoods {G′}
1 Hβ ← empty graph;
2 foreach (X,Y ), X, Y ∈ V do
3 if PXY ≥ β then add (X, Y ) to Hβ

4 end
5 {V′} ← Bron-Kerbosch(Hβ);
6 {G′} ← subgraphs of G over {V′};

Thus, a maximal β-neighborhood is a β-neighborhood that is not part of a
larger neighborhood. Identifying all maximal β-neighborhoods in G can be solved
by finding all maximal cliques in the corresponding Hβ . Identifying maximal
cliques is NP-hard [6], but algorithms that run in exponential time or identify
approximate solutions are available. We use the Bron-Kerbosch algorithm [7].

Maximal cliques can often be very small; for example, if no larger cliques ex-
ist, all adjacencies and all non-adjacencies with PXY > β are (trivial) maximal
cliques of size 2. Another interesting problem that could be solved using Algo-
rithm 2 is to identify the maximum β-neighborhoods of a causal skeleton, i.e.
the maximal β-neighborhoods with the maximum possible number of variables.
This is equivalent to identifying all maximum cliques in Hβ , and can be easily
obtained from the output of Algorithm 2. Figure 2 shows an example maximum
clique, identified using Algorithm 2 on simulated data. The neighborhood in-
cludes 24 out of 37 variables. While the neighborhood includes more than half of
the total variables and edges of G, the number of false positive and false negative
edges within the neighborhood is much lower than the corresponding number in
the entire skeleton.

5 Related Work

Friedman et al. [8] propose a method for estimating probabilities on features
of Bayesian networks. They use bootstrap to resample the data and learn a
Bayesian network from each sampled data set. The probability of a structural
feature is then estimated as the proportion of appearances of the feature in
the resulting networks. Friedman and Koller [9] present a Bayesian method for
estimating probabilities of features using MCMC samples over variable orderings.
The methods are evaluated in terms of the classification performance (i.e. how
accurately they accept or reject a feature), but not in terms of the calibration
of predicted probability estimates.

Koivisto and Sood [10] and Koivisto [11] present algorithms for identifying
exact posterior probabilities of edges in Bayesian networks. The methods use
a dynamic programming strategy and constrain the search space of candidate
causal models by bounding the number of possible parents per variable. The
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algorithms require a special type of non-uniform prior that does not respect
Markov equivalence. Thus, resulting probabilities may be biased. Subsequent
methods try to fix this problem by using MCMC simulations to compute network
priors [2] or exploiting special types of nodes [12]. All methods in this category
scale up to about 25 variables, since the minimum time and space requirement
of these algorithms is O(n2n).

Claasen and Heskes [1] propose a method for estimating Bayesian probabilities
of a feature as a normalized sum of the posterior probabilities of all networks that
entail this feature. The method requires exhaustive search of the space of possible
networks, and is therefore not applicable for networks with more than 5-6 vari-
ables. The authors propose using this method as a standalone test of conditional
independence, and also use it to decide on features inside a constraint-based
algorithm. Pena, Kocka and Nielsen [13] estimate the confidence of a feature as
the fraction of models containing the feature out of the different locally optimal
models.

6 Experimental Evaluation

We performed a series of experiments to characterize the behavior of the pro-
posed algorithms.

6.1 Calibration of Estimated Probabilities

We initially used simulated data to examine if the returned probability estimates
are calibrated. We generated random DAGs with 10 and 20 variables, where
each variable had 0 to 5 parents (randomly selected). The networks were then
coupled with random parameters to create linear gaussian networks (continuous
data) or discrete Bayesian networks (binary data). For continuous variables, a
minimum correlation coefficient of 0.2 was imposed on the parameters to avoid
weak interactions. We then simulated networks of various sample sizes, to test
the method’s behavior in different settings.

We used the PC skeleton identification step [3] with significance threshold
α = 0.05 and maximum conditioning set size 3 (explained below), modified to
additionally return the maximum p-value encountered for each pair of variables.
The set of maximum p-values was then used as input in Algorithm 1 to produce
probability estimates for all pairwise relations. We compared our method against
two alternative approaches:

1. BCCD-P: A method based on the BCCD algorithm presented in [1]. As
mentioned above, the method estimates the posterior probability of a feature
as a normalized sum of the posterior probabilities of DAGs that entail this
feature. The algorithm scores all possible DAGs, and the authors use it to
estimate probabilities for networks of at most 5 variables. To estimate the
probabilities of pairwise relations, we scored the DAGs over variables X ,
Y and ZXY , where ZXY is the conditioning set maximizing the p-value of
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N =10, continuous variables
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N =10, discrete variables
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Fig. 3. Probability calibration plots for PROPeR, BCCD-P and
MCMC+DP for networks of 10 variables. Bars indicate the quartiles. All meth-
ods tend to overestimate probabilities. Bayesian scoring methods are often very confi-
dent: For continuous variables, most of the probability estimates predicted by BCCD-P
or MCMC+DP lie in the interval [0.9, 1], while MCMC+DP exhibits similar behavior
for discrete variables also.

the tests X⊥⊥Y |Z performed by PC. This means that the cardinality of
ZXY cannot exceed 3. For a fair comparison, we used 3 as the maximum
conditioning set of PC in all experiments. The probability of an adjacency
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N =20, continuous variables
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Fig. 4. Probability calibration plots for PROPeR, BCCD-P and
MCMC+DP for networks of 20 variables. Bars indicate the quartiles. Similar to
the results in Figure 3, Bayesian scoring methods tend to overestimate probabilities.
MCMC+DP produced memory errors and failed to complete in all iterations for the
BGE score, and is therefore not inlcuded in the corresponding plot.

was estimated as: P (X—Y ) =
∑

G�X—Y P (D|G)P (G). Consistent priors
described in [1] were pre-calculated and cached. To speed up the algorithm,
we only scored one DAG per Markov equivalence class. For both approaches,
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Fig. 5. Running times for PROPeR, BCCD-P and MCMC+DP

we used the BDe metric for discrete data and the BGe metric for gaussian
data. Both metrics are score-equivalent.

2. DP+ MCMC: The method presented in [2] for identifying exact proba-
bilities for edges in Bayesian networks. The method uses a combination of
the DP algorithm [11] and MCMC sampling to correct the bias from the
modular priors. We used the implementation provided by the authors in
the BDAGL package. Maximum parents was set to 5, and the default pa-
rameters suggested by the authors in the package documentation were used.
The method estimates probability estimates for directed edges, so we used
P (X—Y ) = P (X Y ) + P (Y X), P (¬X—Y ) = 1− P (X—Y ).

To produce the probability calibration plots, the resulting predicted probabil-
ities in [0.5, 1] were binned in 5 intervals. For every pair of variables, P (X—Y )
=1-P (¬X—Y ). Thus, to consider each estimate once, we only need to consider
half of the interval [0, 1]. If N pairwise relations have probability estimates

{P̂i}Ni=1 that lie in interval [γ, γ + 0.1], we expect that
¯̂
Pi × N of the corre-

sponding relations will be true. The actual probability Pγ for each interval is
the fraction of relations with probability estimates in the given interval that are
actually true in the data-generating graph. Figures 3 and 4 illustrate the mean
estimated versus the mean actual probability for each bin, as well as the fraction
of predictions in each bin for networks with 10 and 20 variables. Running times
for all methods are shown in Figure 5.

Overall, results indicate that:

– PROPeR produces reasonable probability estimates, particularly in com-
parison to the more expensive BCCD-P and MCMC+DP approaches.

– MCMC+DP tends to identify very high (resp. very low) probabilities for
the pairwise relations, even for small sample sizes for both metrics (BGE
and BDE). BCCD has similar behavior for the BGE score, but not for the
BDE score. This could explain the large deviations (and the seemingly un-
predictable behavior) observed for these algorithms in the first four bins ([0.5
0.9]), since the means are computed over very few data points.

– As far as running times are concerned, both BCCD-P and MCMC+DP al-
gorithms have (theoretically) exponential complexity with respect to the
number of variables. BCCD-P also increases exponentially with sample size,
but this is probably due to an increase in maximum conditioning set sizes
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reported by PC skeleton for larger sample sizes. i.e., BCCD-P iterates net-
works with many variables (4-5) for most pairwise relations. This also ex-
plains the poor performance of BCCD-P for the BDE metric and sample
size 100: estimates are obtained by scoring smaller networks. The employed
implementation of MCMC+DP failed to complete any iterations for N=20
and continuous variables.

We must point out that the calibration of the probability estimates is not neces-
sarily related to the predictive power of the respective approaches, which depends
more on the relative ranking of probabilities among pairwise relations, rather
than the actual estimates. For example, MCMC+DP has been shown to pro-
duce rankings of edges with very high AUC [2]. For the purposes of this work,
however, obtaining estimates that are calibrated is important for identifying
neighborhoods of a user-defined confidence. For example, using MCMC+DP es-
timates in Algorithm 2 would result in an almost fully connected H0.9 , since
most of the pairwise relations have probability estimates above this threshold.

6.2 Evaluation of Neighborhoods Identified with BiND

To demonstrate the value of BiND, we simulated data of 100 and 1000 samples
from random networks with 20 and 50 variables, as described above. For the
causal skeletons identified with the PC skeleton algorithm and the posterior
probability estimates produced by PROPeR, all maximal β-neighborhoods for
β=0.6, 0.7 and 0.9 were identified using Algorithm 2.

We examined the structural precision (# edges in G′ and the ground truth
# edges in G′ ) and re-

call (# edges in G′ and the ground truth
# edges in the ground truth ) of the resulting neighborhoods, compared to

the baseline precision and recall for G. As mentioned above,the maximal cliques
can be very small and uninformative, particularly for high confidence thresholds.
We are more interested in identifying large parts of the networks that we are
confident about, and therefore focused in the maximum β-neighborhoods. Fig-
ure 6 illustrates the precision, recall and size of maximum β-neighborhoods for
networks of 20 and 50 variables, for both discrete and continuous data. The algo-
rithm took 85.56 seconds on average to identify the maximum 0.6-neighborhoods
for 50 variables and 1000 samples (the most expensive case). Detailed time re-
sults are omitted due to space limitations.

Results indicate the following:

– The method identifies subgraphs with lower ratios of false inferences com-
pared to the entire skeleton.

– For high confidence thresholds and small sample sizes, the algorithm cannot
identify large neighborhoods.

– The algorithm is particularly useful in small sample sizes, where the overall
recall is very low.
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N =20, continuous variables
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Fig. 6. Precision, recall, number and size of maximum cliques identified
using BiND in networks of 20 continuous variables. Bars indicate quartiles.
Dashed horizontal lines show the mean baseline precision and recall (mean precision
and recall of the output of PC skeleton. BiND identifies neighborhoods of higher
structural precision and recall than the corresponding baseline, particularly for small
sample sizes.

7 Discussion

Equipping constraint-based causal discovery algorithms with a method that can
provide some measure of confidence on their output improves their usability.
Bayesian scoring and bootstrapping methods can be employed for this purpose,
but are computationally expensive and do not scale up to the number of variables
constraint-based algorithms can handle.

We have presented PROPeR, an algorithm for estimating posterior probabili-
ties of adjacencies and non-adjacencies in networks learnt using constraint-based
methods. The algorithm has no significant computational overhead and is scal-
able to practically any input size: increasing the number of variables processed
by the constraint-based algorithm merely increases the sample size of p-values
on which PROPeR fits a probability density function. PROPeR is shown to
produce calibrated probability estimates, while being significantly faster than
other state of the art algorithms. We have also presented BiND, an algorithm
that identifies the maximal (or maximum) neighborhoods of high confidence
on a causal network. In simulated scenarios, the algorithm is able to identify
neighborhoods that are indeed more reliable.

PROPeR and BiND can easily accompany any constraint-based algorithm
on any type of data, provided an appropriate test of conditional independence



502 S. Triantafillou, I. Tsamardinos, and A. Roumpelaki

is available. Estimating posterior probabilities based on p-values can be of use
in several causal discovery tasks, including conflict resolution, improving orien-
tations, and experiment selection.
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Abstract. The theory of causal independence is frequently used to fa-
cilitate the assessment of the probabilistic parameters of probability dis-
tributions of Bayesian networks. Continuous time Bayesian networks are
a related type of graphical probabilistic models that describe stochastic
processes that evolve over continuous time. Similar to Bayesian networks,
the number of parameters of continuous time Bayesian networks grows
exponentially in the number of parents of nodes. In this paper, we study
causal independence in continuous time Bayesian networks. This new
theory can be used to significantly reduce the number of parameters
that need to be estimated for such models as well. We show that the
noisy-OR model has a natural interpretation in the parameters of these
models, and can be exploited during inference. Furthermore, we gener-
alise this model to include synergistic and anti-synergistic effects, leading
to noisy-OR synergy models.

1 Introduction

During the past two decades, probabilistic graphical models, and in particular
Bayesian networks [17], have become popular methods for building applications
involving uncertainty in many real-world domains. One of the key challenges in
building probabilistic graphical models is that the number of parameters needed
to assess a family of conditional probability distributions for a variable E grows
exponentially with the number of its causes. This is clearly problematic when
developing such models manually, e.g., by acquiring relevant knowledge from
experts in a domain, but also when learning these models from data.

The theory of causal independence is frequently used in such situations, ba-
sically to decompose a probability table in terms of a small number of factors
[10,17,8,12]. A well-known example of this is the noisy-OR model, where the
number of required parameters is only linear in the number of parents. Later,
the theory of causal independence was also called intercausal independence or in-
dependence of causal influence [2]. These names emphasise that in these models
the causes are not independent, but the effects of causes are modelled indepen-
dently, which leads to the reduction in parameters.
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Several generalisations of Bayesian networks that incorporate time have been
proposed. One of the most popular models is dynamic Bayesian networks (DBNs),
where random variables are indexed by elements from a set of discrete time
points. One could look upon such networks as a regular Bayesian network, where
causal independence principles can be applied. Another type of temporal network
are temporal-nodes Bayesian networks [1] and networks of probabilistic events
in discrete time [5], where time intervals are modelled as part of the values of
random variables. Also for these type of temporal models, causal independence
models have been proposed [2]. Finally, for models in continuous time, continu-
ous time Bayesian networks (CTBNs) [14] have been proposed. CTBNs represent
a Markov process over continuous time, using a factorisation to obtain a more
compact representation, similar to Bayesian networks. However, also similar to
Bayesian networks, the number of parameters in CTBNs, which are represented
as intensity matrices rather than conditional probability tables, increases expo-
nentially in the number of parents as well. Therefore, a further decomposition
of the these matrices is required if the number of parents is large.

This paper introduces the concept of causal independence models for CTBNs.
In particular, we show that the noisy-OR applied to CTBNs has a natural inter-
pretation in terms of the parameters of this model. To obtain more flexibility, we
further generalise this noisy-OR, using the theory of probabilistic independence
of causal influence (PICI) [22] such that known synergies and anti-synergies
between the parents of a node can be modelled in an intuitive manner. We il-
lustrate this concept with an example of antibiotic treatment where there are
several synergistic and anti-synergistic effects between the treatments.

This paper is organised as follows. In the next section, we will introduce the
required preliminaries with respect to causal independence modelling, as well as
CTBNs. Then, in Section 3, we introduce one particular manner to incorporate
causal independence models into CTBNs, in particular the CTBN noisy-OR
model. This acts as a basis for Section 4, where this model is further generalised
to the case where there are synergistic and anti-synergistic relationships between
parents on the effect. Then, in Section 5, we discuss related work, in particular
with respect to causal independence modelling. Finally, in Section 6, we conclude
the paper and discuss directions for further research.

2 Preliminaries

In the following, we will denote random variables by upper case, e.g., X , Y , etc.
In this paper, we will mainly consider binary variables where X = x indicates
that X is ‘true’ and X = x̄ indicates that X has the value ‘false’. Instead of
X = x we will frequently write simply x. We will also use capital letters X to
vary over values in summations and products.

2.1 Causal Independence Models

As explained, a popular way to specify interactions among statistical
variables in a compact fashion is offered by the notion of causal independence [8]
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C1 C2
. . . Cn

I1 I2 . . . In

E
b

Fig. 1. Causal-independence model

or independence of causal influences (ICI). The global structure of a causal-
independence model is shown in Fig. 1; it expresses the idea that causes C =
{C1, . . . , Cn} influence a given common effect E through intermediate variables
I = {I1, . . . , In} and a Boolean-valued function b. The influence of each cause Ck

on the common effect E is independent of each other cause Cj , j �= k. The func-
tion b represents in which way the intermediate effects Ik, and indirectly also the
causes Ck, interact to yield the final effect E. Hence, the function b is defined in
such a way that when a relationship, as modelled by the function b, between Ik,
k = 1, . . . , n, and E = true is satisfied, then it holds that b(I1, . . . , In) = true.

In terms of probability theory, the notion of causal independence can be for-
malised for the occurrence of the effect E as follows. By standard probability
theory:

P (E | C1, . . . , Cn) =
∑

I1,...,In

P (E | I1, . . . , In, C1, . . . , Cn)

P (I1, . . . , In | C1, . . . , Cn) (1)

meaning that the causes C = {C1, . . . , Cn} influence the common effect E
through the intermediate effects I1, . . . , In. The deterministic probability dis-
tribution P (E | I1, . . . , In) corresponds to the Boolean function b, such that
b(I1, . . . , In) = true if P (e | I1, . . . , In) = 1; otherwise, b(I1, . . . , In) = false if
P (e | I1, . . . , In) = 0. Note that the effect variable E is conditionally independent
of C1, . . . , Cn given the intermediate variables I1, . . . , In, and that each variable
Ik is only dependent on its associated variable Ck; hence, it holds that

P (e | I1, . . . , In, C1, . . . , Cn) = P (e | I1, . . . , In)

and

P (I1, . . . , In | C1, . . . , Cn) =

n∏
k=1

P (Ik | Ck)

Formula (1) can now be simplified to:

Pb(e | C) =
∑

b(I1,...,In)

n∏
k=1

P (Ik | Ck) (2)
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Typical examples of causal-independence models are the noisy-OR [17,8] and
noisy-MAX [3,10] models, where the function b represents a logical OR and a
MAX function, respectively. It is usually assumed in these models that if a cause
is absent, then the intermediate variable is false as well, i.e., the probability
distributions P (Ik | Ck) are defined as follows:

P (Ik = ik | Ck = ck) = Qi

P (Ik = ik | Ck = c̄k) = 0

where the state of the cause for which the probability is zero is sometimes referred
to as the distinguished state.

These causal independence or ICI models were later generalised to a more
general model, called probabilistic ICI [22]. As said, in a normal causal indepen-
dence model, we have a Boolean function b such that E = b(I). Similar to ICI
models, a PICI model assumes intermediate variables, but instead of a function
b defined in I, it assumes a function f such that P (E) = f(Q, I), where Q are
the parameters defined for the conditional probabilities P (Ik = ik | Ck = ck).
This allows, for example, the modelling of the average probability, leading to a
noisy-average model [22].

2.2 Continuous Time Bayesian Networks

Let V (t) = {V1(t), . . . , Vn(t)} be a set of random variables at time t. A CTBN
models a continuous time Markov process over {V (t) | t ≥ 0}. Let G = (V,E) be
a directed graph and QV an intensity matrix that models rates q ≥ 0 for moving
between states over time, where each state is described by a configuration of
random variables V . Then, in a CTBN, the joint intensity QV is factorised
according to G, i.e., it can be written as

QV =
∏
Vi∈V

QVi|pa(Vi),

where multiplication is defined as amalgamation [14] and QVi|pa(Vi) is the condi-
tional intensity matrix of Vi given the parents of Vi in G. For example, consider
a set of binary variables V = {C,D,E} with pa(E) = {C,D} and the following
conditional intensity matrices:

QC =

[
−qc qc

qc̄ −qc̄

]
QD =

[
−qd qd

qd̄ −qd̄

]

QE|c̄,d̄ =

[
−qec̄,d̄ qec̄,d̄
qēc̄,d̄ −qēc̄,d̄

]
QE|c,d̄ =

[
−qec,d̄ qec,d̄
qēc,d̄ −qēc,d̄

]

QE|c̄,d =

[
−qec̄,d qec̄,d
qēc̄,d −qēc̄,d

]
QE|c,d =

[
−qec,d qec,d
qēc,d −qēc,d

]

where, for each variable X ∈ V , qx models the transition rate from x̄ to x and
qx̄ models the transition rate from x to x̄, given the state of their parents.
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The joint intensity QV is then given by:

QV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z1 qc qd 0 qec̄,d̄ 0 0 0

qc̄ −z2 0 qd 0 qec,d̄ 0 0

qd̄ 0 −z3 qc 0 0 qec̄,d 0

0 qd̄ qc̄ −z4 0 0 0 qec,d

qēc̄,d̄ 0 0 0 −z5 qc qd 0

0 qēc,d̄ 0 0 qc̄ −z6 0 qd

0 0 qēc̄,d 0 qd̄ 0 −z7 qc

0 0 0 qēc,d 0 qd̄ qc̄ −z8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the states in QV are ordered by

{(c̄, d̄, ē), (c, d̄, ē), (c̄, d, ē), (c, d, ē), (c̄, d̄, e), (c, d̄, e), (c̄, d, e), (c, d, e)}
For example, the (1, 2)-entry in this matrix indicates that the transition rate
from C = c̄, D = d̄, E = ē to C = c,D = d̄, E = ē is qc, which follows directly
from the specification of QC . Note that two variables cannot transition at the
same time, which results in the zeros in QV . The values for zi ensure that each
row in the intensity matrix sums to 0, e.g., z1 = qc+ qd+ qe

c̄,d̄
. These parameters

can be interpreted as the parameters that govern the time until the next state
change, while the q parameters indicate to which state the transition leads.

Given a joint intensity matrix QV , we can describe the transient behaviour of
V as follows. Each row and column refers to a particular state, modelled by a
particular configuration of V . Let zi be at the i’th position of the diagonal ofQV .
The time of transitioning from a state i to another state is then modelled by some
random variable Ti ∼ Exp(zi). We will denote its probability density function
by f and its cumulative distribution function by F , i.e., F (t) = P (Ti ≤ t). The
function G is the tail distribution of T , i.e., G(t) = P (Ti > t) = 1 − F (t). The
expected time of transitioning, i.e., the expected value of Ti is 1/zi. It shifts to
state j with probability qij/zi. Given this transient behaviour, we can describe
the probability of not transitioning as follows:

P (V (t+Δt) = vi | V (t) = vi) = G(Δt) = exp(−ziΔt)

Usually, we are interested in the instantaneous transitions, i.e., when Δt is small.
In this case, this probability can be given a straightforward interpretation.

Proposition 1. For Δt → 0, it holds that the instantaneous transition proba-
bility is:

P (V (t+Δt) = v̄i | V (t) = vi) = 1−G(Δt) ≈ ziΔt

Proof. The Taylor series of G(t) = exp(−zit) at t0 = 0 is:

∞∑
n=0

G(n)(t0)

n!
(t− t0)

n =

∞∑
n=0

(−zi)
n

n!
tn

= 1− zit+
z2i t

2

2
− z3i t

3

3!
+

z4i t
4

4!
− . . .

≈ 1− zit ��
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In other words, the probability of transitioning from the i’th state is approxi-
mately proportional to both zi and Δt.

3 Causal Independence in CTBNs

In this section, we will introduce a general methodology for specifying causal in-
dependence models in CTBNs. First, we discuss causal independence in general.
Then we study the case where we have noisy-OR models. This will be taken as
a starting point for the next section, where this model is generalised so that it
can include synergistic and anti-synergistic effects.

3.1 General Causal Independence Models

While in general Bayesian networks the goal is to model the distribution P (E |
C1, . . . , Cn), in CTBNs we aim to model the distribution:

P (E(t+Δt) = e | E(t) = ē, C1, . . . , Cn)

i.e., the probability of transitioning from a state where ē at t to some other
state where e holds within Δt time, depending on the causes C1, . . . , Cn. While
these causes are also time-dependent, whether E transitions always depends on a
particular configuration of causes that hold between t and t+Δ, so time is ignored
in the notation of this conditional probability distribution. As illustrated in the
preliminaries, for each configuration of C, a different parameter is introduced to
model this transition.

Similar to the general causal independence model, we introduce additional
variables I1, . . . , In as intermediate nodes with intensity matrices QIi|Ci

, so that
the number of parameters is only linear in n. Furthermore, we define:

P (E(t+Δt) = e | E(t) = ē, C1, . . . , Cn)

=
∑

b(I1,...,In)

n∏
k=1

P (Ik(t+Δt) = Ik | Ik(t) = ı̄k, Ck)

where b is a Boolean interaction function. In other words, it defines that a tran-
sition occurs if a Boolean combination of intermediate nodes I transitions from
ı̄ to i. Note that such interactions are not necessarily representable in a CTBN,
however, as we will show in the remainder of this paper, in some cases it is.

3.2 Continuous Time Noisy-OR Models

A particularly useful causal independence model for Bayesian networks is the
noisy-OR model. As mentioned in the preliminaries, it is usually assumed in
causal independence models that there is a distinguished state (say false in the
binary case) such that the probability of P (̄ıj | c̄j) = 1, which implies that
E can only become true if at least one of its causes is true, i.e., it implies
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P (ē | c̄1, . . . , c̄n) = 1. In the CTBN case, we have a similar assumption: suppose
E has parents C and D, then:

P (E(t+Δt) = ē | E(t) = ē, C = c̄, D = d̄) = 1

for all Δt. Since:

P (E(t+Δt) = ē | E(t) = ē, C = c̄, D = d̄) = exp(−qec̄,d̄Δt)

this assumption implies that qe
c̄,d̄

= 0.

The noisy-OR effect of independent influences turns out to result in additive
parameters, as shown in the following theorem.

Theorem 1. Given a CTBN with effect variable E and parents C = {C1, . . . ,
Cn}. Suppose E is determined by a noisy-OR, i.e., a causal independence model
where b is the logical OR:

P (E(t+Δt) = e | E(t) = ē, C1, . . . , Cn) =∑
I1∨···∨In

n∏
k=1

P (Ik(t+Δt) = Ik | Ik(t+Δt) = ı̄k, Ck)

Let qek be the intensity of transitioning from ı̄k to ik given Ck for all k. Then the
intensity of transitioning from ē to e is given by qeC =

∑n
k=1 q

e
k.

Proof. The noisy-OR model can be rephrased as:

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn) =
n∏

k=1

P (Ik(t+Δt) = ı̄k | Ik(t+Δt) = ı̄k, Ck)

Let Gk be the tail distribution of the transition function for Ik given Ck, i.e,
Gk(t) = exp(−qekt). So then:

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn) =
∏n

k=1 Gk(Δt)
=
∏n

k=1 exp(−qekΔt)
= exp(−(

∑n
k=1 q

e
k)Δt)

and hence,

P (E(t+Δt) = e | E(t) = ē, C1, . . . , Cn) = 1− exp
(
−
( n∑
k=1

qek
)
Δt
)

which implies that the intensity of transitioning from ē to e is
∑n

k=1 q
e
k. ��

Therefore, the noisy-OR results into an additive effect on the transition proba-
bility:

P (E(t+Δt) = e | E(t) = ē, C1, . . . , Cn) ≈
n∑

k=1

qekΔt
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when Δt → 0.
Another way to look at this is to consider a causal independence model for

the probability of staying in the same state, i.e.,

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn)

=
∑

b(I1,...,In)

n∏
k=1

P (Ik(t+Δt) = Īk | Ik(t+Δt) = ı̄k, Ck)

where b is a Boolean function. If we take b to be a logical-AND, i.e., we have a
noisy-AND model, it follows that:

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn)

=

n∏
k=1

P (Ik(t+Δt) = ı̄k | Ik(t+Δt) = ı̄k, Ck)

=

n∏
k=1

Gk(Δt) = exp
(
−
( n∑
k=1

qek
)
Δt
)

From now, we will describe this interaction between causes on the effect by
an interaction function h, which maps the state of causes C1, . . . , Cn to a linear
function over the intensities defined for each of the causes separately. As the
discussion above shows, the noisy-OR model may be described by a simple sum
of intensities, i.e., h(C1, . . . , Cn) =

∑n
k=1 q

e
k.

Having such a simple interaction function, this noisy-OR formalisation can
also be exploited during inference. We illustrate this by means of elimination of
the parents from the conditional probability distribution of E, which is normally
a summation exponential in the number of parents.

Theorem 2. Let P (E(t + Δt) = e | E(t) = ē, C1, . . . , Cn) be defined in terms
of a noisy-OR CTBN model, and let P (Ck) be given for all 1 ≤ k ≤ n. Then
P (E(t+Δt) = e | E(t) = ē) can be computed in O(n).

Proof. Consider computing P (E(t+Δt) = ē | E(t) = ē), which is 1 − P (E(t +
Δt) = e | E(t) = ē). Let GCk

be the tail distribution of the transition function
for Ik given Ck, i.e., Gck = exp(−qekΔt) and Gc̄k = 1. By basic probability
theory, we have:

P (E(t+Δt) = ē | E(t) = ē)

=
∑

C1,...,Cn

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn)

n∏
k=1

P (Ck)

=
∑

C1,...,Cn

n∏
k=1

GCk
(Δt)

n∏
k=1

P (Ck)

=
∑
C1

GC1(Δt)P (C1) · · ·
∑
Cn

GCn(Δt)P (Cn)
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=

n∏
k=1

(exp(−qekΔt)P (ck) + P (c̄k)) ��

4 Noisy-OR Synergy Models

The previous section shows that the noisy-OR has an additive effect in terms of
intensities of parents. In practice, however, there are often synergies of parents
on their common children, e.g., parents may be reinforcing or inhibiting each
other. Some of these synergies can be modelled using Boolean functions [12];
however, most of these functions do not have a straightforward interpretation in
terms of transition intensities in CTBNs.

In this section, we introduce a new causal-independence synergy model, which
is closely related to the additive nature of intensities in parameters. The main
advantage is that this synergistic model can be easily exploited using existing
CTBN methods. Moreover, it has a natural interpretation in CTBN models.

4.1 Synergies

Synergy has been studied in context of qualitative probabilistic networks [19],
where an additive synergy expresses how the interaction between two variables
influences the probability of observing the values of a third variable.

Definition 1. Let Ci and Cj be two parents of E and Z the set of other parents
of E. We say there is a positive additive synergy of Ci and Cj on E, if

P (e | ci, cj , Z)− P (e | c̄i, cj , Z) ≥ P (e | ci, c̄j, Z)− P (e | c̄i, c̄j , Z)

Negative and zero additive synergies are defined similarly by replacing the ≥
sign with ≤ or =, respectively. The intuition behind this definition is that the
influence of Ci, i.e., the difference of the probability of e when Ci is true and
when Ci is false, is larger when Cj is also true compared to when Cj is false.
Also note that this definition is symmetric in Ci and Cj . Similarly, we can say
that in a CTBN a positive synergy for the transition from ē to e occurs if:

P (E(t+Δt) = e | E(t) = ē, ci, cj , Z)− P (E(t+Δt) = e | E(t) = ē, c̄i, cj , Z)

≥ P (E(t+Δt) = e | E(t) = ē, ci, c̄j , Z)− P (E(t+Δt) = e | E(t) = ē, c̄i, c̄j , Z)

i.e., Ci and Cj have a synergistic effect on the influence of the transition proba-
bility of e. Again, negative and zero synergies can be defined similarly.

Wellman [19] also proved that the noisy-OR model results in a negative syn-
ergy. For example, suppose e has two parents C1 and C2, then:

P (e | c̄1, c̄2) = 0 P (e | c1, c̄2) = P (i1 | c1)
P (e | c̄1, c2) = P (i2 | c2) P (e | c1, c2) = 1− P (̄ı1 | c1)P (̄ı2 | c2)
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The negative synergy is easy to verify as:

(1 − (1 − P (i1 | c1))(1 − P (i2 | c2)))− P (i2 | c2)
= P (i1 | c1) + P (i2 | c2)− P (i1 | c1)P (i2 | c2)− P (i2 | c2) ≤ P (i1 | c1)− 0

While in a noisy-OR the probability of e monotonically increases by the number
of true causes, the negative synergy holds because causes have relatively less
effect if other causes are already true, especially when the effects of individual
causes are relatively large.

4.2 Basic Noisy-OR Synergies

Given the discussion in Section 3, it is clear to see that the noisy-OR can also be
seen as a PICI model defined on the parameters of the intermediate variables:

P (E(t+Δt) = e | E(t) = ē, c1, . . . , cn) = f(G1(Δt), . . . , Gn(Δt))

The restriction that there are no further interactions between different causes
is a fairly strong assumption. We can relax the assumption by allowing some
interaction between causes, where the goal is to increase the expressivity without
resorting to the full (exponential) model. We define an interaction function on the
intensities of the causes with a parameter to model synergistic or anti-synergistic
effects between causes. This leads to the following noisy-OR synergy model:

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn) =

{
Gck(Δt) if one Ck is true(∏n

k=1 GCk
(Δt)

)s

otherwise

with s an additional synergistic parameter.
In the full model with binary variables given in the introduction, we have

four parameters for the intensities Qe|pa(E), one for each parent configuration. A
synergistic effect implies that the intensity of the effect increases when multiple
causes are present.

Similar to the noisy-OR, this model can also be written as an interaction
function h(C) which models the intensity of transitioning from ē to e. Suppose
all causes are true, then:

P (E(t+Δt) = e | E(t) = ē, c1, . . . , cn) = 1− exp
(
− s

( n∑
k=1

qek
)
Δt
)

so h(c1, . . . , cn) = s
∑n

k=1 q
e
k. For example, let h be an interaction function for

the intensity of E given only two causes C,D. Now, when we let the base rates
for the single causes be qe

c,d̄
and qec̄,d we obtain:

h(c̄, d̄) = 0 h(c̄, d) = qec̄,d

h(c, d̄) = qec,d̄ h(c, d) = s · (qec̄,d + qec̄,d)
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where s is the synergy parameter that applies when both causes are true. Note
that we regain the noisy-OR as a special case by choosing s = 1; we call it a
synergistic model when s > 1 and an anti-synergistic model when s < 1. The
motivation for this is given by the following theorem.

Theorem 3. Given a CTBN over the variables {C,D,E}, let E be the effect
variable and h an interaction function with synergy parameter s between causes
C and D. If

s =
log(exp(−qeCΔt) + exp(−qeDΔt)− 1)

−(qeC + qeD)Δt

then the synergy between C and D is zero on E at Δt. Furthermore, if Δt → 0,
then s ≈ 1.

Proof. In this model, it is given that:

P (E(t+Δt) = e | E(t) = ē, c̄, d̄) = 0
P (E(t+Δt) = e | E(t) = ē, c, d̄) = 1− exp(−qeCΔt)
P (E(t+Δt) = e | E(t) = ē, c̄, d) = 1− exp(−qeDΔt)
P (E(t+Δt) = e | E(t) = ē, c, d) = 1− exp(−s(qeC + qeD)Δt)

So a zero synergy implies:

(1− exp(−s(qeC + qeD)Δt))− (1− exp(−qeDΔt)) = 1− exp(−qeCΔt)− 0

which implies the formula given for s at Δt. It can be shown that the series
expansion of s at Δt = 0 is:

s = 1 +
qeC · qeD ·Δt

qeC + qeD
+

1

2
· qeC · qeD · (Δt)2 +O((Δt)3)

so s ≈ 1 if Δt → 0. Alternatively, one can also consider the instantaneous
transition probabilities directly, where a zero synergy implies that:

P (E(t+Δt) = e | E(t) = ē, c, d)− P (E(t+Δt) = e | E(t) = ē, c̄, d)

≈ s(qeC + qeD)Δt− qeDΔt = qeCΔt− 0Δt ≈
P (E(t+Δt) = e | E(t) = ē, c, d̄)− P (E(t+Δt) = e | E(t) = ē, c̄, d̄)

if Δt → 0. Obviously, this implies s = 1. ��

This theorem may seem to contradict the earlier statement that a noisy-OR
interaction is a negative synergy and therefore s < 1, but this is not the case.
Recall that the noisy-OR is a negative synergy because

P (i1 | c1)− P (i1 | c1)P (i2 | c2) ≤ P (i1 | c1).

The second term on the left hand side can be written as

P (i1 | c1)P (i2 | c2) = (1− exp(−qec1Δt))(1 − exp(−qec2Δt)),

which will vanish as Δt goes to zero, resulting in the statement in the theorem
that s = 1.
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4.3 Noisy-OR Synergies with Local Interactions

It may sometimes be appropriate to allow local synergy effects instead of synergy
over all causes C. This implies that particular subsets of causes can have different
synergy parameters. Let hi be a local interaction function, i.e. a synergistic noisy
function over i arguments. In order to allow arbitrary synergy effects we can
assign a synergy parameter to all subsets of causes, such that h(C1, . . . , Cn) is
defined in terms of 2n synergy parameters. We then obtain the probability

P (E(t+Δt) = ē | E(t) = ē, C1, . . . , Cn) =
n∏

k=1

GCk
(Δt)sC1 ,...,Cn

where sC1,...,Cn indicates that s depends on the configuration of causes. In prac-
tice we are interested in particular restricted classes of local interaction models,
using just enough synergy parameters to represent certain effects of interest. The
most restricted case with a single s is the situation described above. It is easier
to work with the interaction function directly in terms of combinations of local
interaction functions. Let si be the synergy parameter corresponding to the inter-
action function hi. Then, for example, a three-way synergy could be h3(c1, c2, c3) =
s3 · (qec1 + qec2 + qec3), while e.g. h(c1, . . . , c6) = h3(c1, c2, c3) + h3(c4, c5, c6).

Since arbitrary synergy interaction functions can be constructed from local in-
teraction functions, it is also possible to combine synergistic and anti-synergistic
local interactions. In order to specify synergistic and anti-synergistic effects that
involve the same cause, a local interaction h1 can be used to apply a partic-
ular synergy parameter to a single cause. This is illustrated in an example in
Section 4.4.

The idea of a noisy-OR synergy easily generalises to multi-valued variables.
Consider n parent variables where variable i has ri possible values. The number of
parameters without CI is then

∏n
i=1 ri. After introducing a noisy-OR this reduces

to
∑n

i=1 ri. If we then introduce synergy parameters sj , with j the number of
variables not in their distinguished state, which implies that the values except
the distinguished state do not influence the amount of synergy, the number of
parameters is (n − 1) +

∑n
i=1 ri. Allowing independent anti-synergy would add

another n − 1 parameters, which is still linear in the number of variables and
values. However, a single parameter for synergy and anti-synergy can also be
defined by taking s− = 1/s+, leading to a further reduction in parameters.

4.4 Drug Interaction Example

Consider a patient with an infection who has to be treated with antibiotics. Dif-
ferent antibiotics each target particular types of bacteria; however, there might
be interaction effects between the different drugs. Say we have three drugs,
{A,B,C}. A and B have a synergistic effect, because when both are present
it is more likely that the infection is removed than when used separately. C
targets a different type of bacteria and therefore does not have a positive syner-
gistic effect; the effect is independent of A. Unfortunately, the presence of B and
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C results in an adverse chemical reaction that reduces the effectiveness of both
drugs. Now assume that we have three variables corresponding to the presence
of drugs A,B,C and an effect variable E that models the infection, all binary
for ease of exposition. The rate parameters for E making a transition e → ē –
from infection to no infection – can be specified by the interaction function h as
follows:

h(ā, b̄, c̄) = 0 h(a, b̄, c̄) = qa

h(ā, b̄, c) = qc h(a, b̄, c) = h0
2(qa, qc)

h(ā, b, c̄) = qb h(a, b, c̄) = h+
2 (qa, qb)

h(ā, b, c) = h−
2 (qb, qc) h(a, b, c) = h0

2(h
+
2 (qa, h

−
1 (qb)), h

−
1 (qc))

where h+, h− are synergistic and anti-synergistic local interaction functions re-
spectively, and h0 a zero synergy, i.e. a noisy-OR. Note that here we have a
synergy and anti-synergy on B, which only has an effect if s+ �= s−. The
specification in terms of local interaction functions is not unique as h(a, b, c) =
h0
2(h

+
1 (qa), h

−
2 (h

+
1 (qb), qc)), however, it results in simple linear statements for the

parameters of E that are straightforward to implement. For example, h(a, b, c) =
s+qa + s+s−qb + s−qc.

Now consider the situation where an infection is observed at t = 0. Antibiotic
A is applied at t = 0.5; B is added at t = 1 and C at t = 2. The effect of the
synergy parameters is visualised for this situation in Fig. 2 for different values
of s+ and s−. Observe that the positive synergy decreases the probability of an
infection, the anti-synergy increases the probability and the combination results
in the expected intermediate scenario.

5 Related Work

General causal independence models for Bayesian networks were first described
in [7] and further refined in [9]. It discusses the noisy-OR, noisy-MAX, and a
noisy-ADD for discrete variables as special cases. The last paper also considers
a continuous version of causal independence, namely the linear Gaussian model.

For general Bayesian networks, there have been two approaches to exploit
causal independence for speeding up inference by changing the network struc-
ture, namely the parent-divorcing method [16] and the temporal transformation
method [7]. Other approaches use the insight that efficient probabilistic infer-
ence is made possible by working with a factorisation of the joint probability
distribution, rather than working with the joint probability distribution itself.
As causal independence models allow decomposition of the probability distribu-
tion beyond the factorisation implied by the conditional independences derived
from the associated graph, this insight can be exploited in algorithms that work
with these factorisations directly such as variable elimination [23]. The results
in this paper suggests that similar principles apply for CTBNs.

Right from the beginning, causal-independence models were not only used to
improve probabilistic inference (by approximating the actual model), but also to
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Fig. 2. Probability of infection given the presence of drugs A,B,C from t = 0.5, t = 1,
t = 2 respectively, for (s+, s−) = (1, 1) (solid line); (s+, s−) = (3/2, 1) (dashed line);
(s+, s−) = (1, 2/3) (dotted line); (s+, s−) = (7/5, 5/6) (dash-dot line)

facilitate the manual construction of Bayesian networks, as the number of param-
eters in, e.g., noisy-OR models that has to be estimated is proportional rather
than exponential in the number of parents [10,16,15]. This is the main reason
why causal-independence models are considered as important canonical mod-
els for knowledge engineering. Particularly related are a number of approaches
specifically designed to model undermining effects, where the presence of more
causes decreases the probability of the effect. Undermining can be modelled
with anti-synergies, however, anti-synergy and undermining are not equivalent,
cf. [20]. In noisy-OR models this undermining cannot be represented, because
the causes collectively increase the probability of the effect. In general causal
independence, however, this can be modelled by a Boolean expression that incor-
porates negation. The recursive noisy-OR model [11] is an approach to represent
positive and negative influences, but these cannot be combined within the same
model. A more general approach related to this work is the non-impeding noisy-
AND tree (NIN-AND) [20], which can be seen as a noisy-AND with negations.
A similar approach is [13], where gates are modelled by a conjunctive normal
form.

Related work in context of CTBNs is done by Weiss et al. [18], where a
different parameterisation is given for CTBNs which allows arbitrary parameter
tying between states. Although this approach is very general, the parameter
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tying is not related to the graph structure, and generally no interpretation of
such models can be given.

6 Conclusions

CTBNs are a widely applicable class of graphical models to reason about tem-
poral processes, with applications ranging from social network dynamics [4], in-
trusion detection [21], and medicine [6]. However, similar to Bayesian networks,
the number of parameters grows exponentially with the maximal in-degree of
the graph. In this paper we have studied whether causal independence models
can be applied to CTBNs to overcome this problem.

This paper shows that noisy-OR models are a particularly suitable framework
for defining parameters in CTBNs. Similar to Bayesian network noisy-OR mod-
els, this leads to exponential savings in the number of parameters and can lead
to exponential savings in inference time when computing transition probabili-
ties. As a second contribution, we have introduced synergy models that allow
a limited kind of interaction between different causes, while remaining linear in
the number of parameters. In particular, we introduced the noisy-OR synergy
model which allows the modelling of synergistic relationships between parents
on their effect explicitly, where synergy here has a natural interpretation derived
from the qualitative reasoning literature [19].

In conclusion, the paper shows that causal independence models are a useful
tool to simplify model construction, not only in static probabilistic graphical
models, or discrete-time temporal models, but also in models with continuous
time. An open question is which noisy-OR synergy models can be used to speed
up inference. In the noisy-OR case, the speedup is related to the decomposabil-
ity of the local interaction function; however, it appears most noisy-OR synergy
models are not decomposable. In future research, we will further study the rela-
tionship between properties of the interaction function and tractable inference.
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Abstract. Bayesian network classifiers are widely used in machine
learning because they intuitively represent causal relations. Multi-label
classification problems require each instance to be assigned a subset of
a defined set of h labels. This problem is equivalent to finding a multi-
valued decision function that predicts a vector of h binary classes. In this
paper we obtain the decision boundaries of two widely used Bayesian net-
work approaches for building multi-label classifiers: Multi-label Bayesian
network classifiers built using the binary relevance method and Bayesian
network chain classifiers. We extend our previous single-label results to
multi-label chain classifiers, and we prove that, as expected, chain classi-
fiers provide a more expressive model than the binary relevance method.

Keywords: Bayesian network classifier, multi-label classification,
expressive power, chain classifier, binary relevance.

1 Introduction

We consider a multi-label classification problem [19] over categorical predictors,
that is, mapping every instance x = (x1, . . . , xn) to a subset of h labels:

Ω1 × · · · ×Ωn → Y ⊂ Y = {y1, . . . , yh},

where Ωi ⊂ R, |Ωi| = mi < ∞. This could be transformed into a multi-
dimensional binary classification problem, that is, finding an h-valued decision
function f that maps every instance of n predictor variables x to a vector of h
binary values c = (c1, . . . , ch) ∈ {−1,+1}h:

f : Ω = Ω1 × · · · ×Ωn → {−1,+1}h

(x1, . . . , xn)  → (c1, . . . , ch),

where ci = +1 (−1) means that the ith label is present (absent) in the predicted
label subset. Moreover, we consider the predictor variables X1, . . . , Xn and the
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binary classes Ci ∈ {−1,+1} as categorical random variables. Real examples in-
clude classification of texts into different categories by counting selected words,
diagnosis of multiple diseases from common symptoms and identification of mul-
tiple biological gene functions.

The simplest method to build a multi-label classifier is to consider h single-
label binary classifiers, one for each class variable Ci. Each classifier fi is learned
from predictor variables and Ci data, and the results are combined to form
multi-label prediction. This method, called binary relevance [6], is easily imple-
mentable, has low computational complexity and is fully parallelizable. Hence it
is scalable to a large number of classes. However, it completely ignores depen-
dencies among labels and generally it does not represent the most likely set of
labels.

Chain classifiers [14] relax the independence assumption by iteratively adding
class dependencies in the binary relevance scheme, that is, the kth classifier in
the chain predicts class Ck from X1, . . . , Xn, C1, . . . , Ck−1.

We study differences in the expressive power of these two methods when
Bayesian network (BN) classifiers [1] are used. Sucar et al. [15] employed naive
Bayes within chain classifiers. We use the results on the decision boundaries
and expressive power of one-dimensional BN classifiers. (a) For naive Bayes
classifiers, Minsky [9] proved that the decision boundaries are hyperplanes if
binary predictors are used. (b) Peot [11] observed that Minsky’s results could
be extended to categorical predictors. (c) Recently, we have developed a method
[18] to compute decision boundaries for a broad class of BN classifiers. In this
paper we extend these results to multi-label classifiers. Moreover, we suggest
some theoretical reasons why the binary relevance method performs poorly and
prove that chain classifiers provide more expressive models.

The paper is organized as follows. In Sect. 2 we give some definitions and re-
port our results on one-label classifiers. We describe the binary relevance method
in Sect. 3 and chain classifiers in Sect. 4. In Sect. 5 we compare the decision
boundaries, and expressive power of the two methods. In Sect. 6 we present our
conclusions and some ideas for future research.

2 Expressive Power of One-Dimensional BN Classifiers

We first report some results on the decision boundary and expressive power of
one-label, or equivalently one-dimensional binary, BN classifiers [18]. In partic-
ular we look at Bayesian network-augmented naive Bayes (BAN) classifiers [5].

BAN classifiers are Bayesian network classifiers where the class variable C is
assumed to be a parent of every predictor and the predictor sub-graph can be a
general BN. The decision function induced by the BAN classifier is

fBAN
G (x1, . . . , xn) = arg max

c∈{−1,+1}
P (C = c,X1 = x1, . . . , Xn = xn),



Binary Relevance vs. Chain Classifiers 521

where P (C = c,X1 = x1, . . . , Xn = xn) could be factorized according to BN
theory [10] as

P (C = c)
n∏

i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
,

where Xpa(i) stands for the vector of parents of Xi in the predictor sub-graph
G. Moreover, pa(i) denotes the set of indexes defining the parents of Xi that are
not C and Mi = ×s∈pa(i){1, . . . ,ms}, the set of possible configurations of the
parents of Xi.

Let us recall that the sign function sgn(t) is defined as

sgn(t) =

⎧⎪⎨⎪⎩
+1 if t > 0

0 if t = 0

−1 if t < 0.

We define [18]:

Definition 1. Given a decision function f : Ω → {−1,+1}, where Ω ⊂ Rn,
|Ω| < ∞ and r : Rn  → R is a polynomial, we say that r sign-represents f if

f(x) = sgn(r(x)) for every x ∈ Ω.

Moreover, given a set of polynomials P, we denote by sgn(P) the set of decision
functions that are sign-representable by polynomials in P and by {−1,+1}|Ω|,
the set of all 2|Ω| decision functions over Ω.

Example 1. We consider Ω = {0, 2} × {−3, 1} and the decision function over Ω

f(x1, x2) =

{
+1 if (x1, x2) = (0,−3), (2,−3), (0, 1)

−1 if (x1, x2) = (2, 1).

We have that the polynomial r(x1, x2) = −x2
1 − x2 +3 sign-represents f over Ω,

precisely:

r(0,−3) = 6 > 0, r(2,−3) = 2 > 0, r(0, 1) = 2 > 0 and r(2, 1) = −2 < 0.

Next let us recall the definition of the Vapnik-Chervonenkis (VC) dimension
[17].

Definition 2. Given a subset of decision functions F ⊂ {−1,+1}|Ω|, we say
that F shatters Ω0 ⊂ Ω if for every g ∈ {−1,+1}|Ω0| there exists a decision
function f ∈ F such that f|Ω0

= g, where f|Ω0
indicates the restriction of f over

Ω0.

That is, F shatters Ω0 if every decision over Ω0 is representable by some ele-
ments of F . The cardinality of the largest subset shattered by F is called the
VC dimension of F . It indicates the maximum number of points that can be
discriminated by F .
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Definition 3. The VC dimension of F ⊂ {−1,+1}|Ω|, denoted by dV C(F), is
defined by

dV C(F) = max{|Ω0| s.t. Ω0 is shattered by F}.

For every predictor variable Xi ∈ Ωi = {ξ1i , . . . , ξmi

i }, we define the Lagrange
basis polynomials over Ωi

	Ωi

j (x) =
∏
k �=j

(x− ξki )

(ξji − ξki )
for every j = 1, . . . ,mi and x ∈ R. (1)

Then we have [18]:

Lemma 1. If f is the decision function induced by a BAN classifier for a clas-
sification problem with n categorical predictor variables {Xi ∈ Ωi ⊂ R, |Ωi| =
mi}ni=1, then there exists a polynomial of the form

n∑
i=1

mi∑
j=1

	Ωi

j (xi)
∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

	Ωs

ks
(xs)

that sign-represents f , where we write
∑

k∈Mi
βi(j|k)

∏
s∈pa(i) 	

Ωs

ks
(xs) = βi(j)

when a variable does not have parents different from C, that is, pa(i) = ∅.

The proof of Lemma 1 [18] is constructive and the coefficients βi(j|k) of the
built polynomial are related to the conditional probability tables of the BAN.
Precisely we have that

βi(j|k) = ln
P (Xi = ξji |Xs(i) = ξks

s , ∀s ∈ pa(i), C = +1)

P (Xi = ξji |Xs(i) = ξks
s , ∀s ∈ pa(i), C = −1)

, (2)

where k =
(
ks
)
s∈pa(i)

, ks ∈ {1, . . . ,ms}.
When the predictor sub-graph G does not contain V-structures, the inverse

implication of Lemma 1 is provable and thus the following theorem [18] holds.

Theorem 1. Let G be a directed acyclic graph with nodes Xi for i ∈ {1, 2, . . . , n}
and f , a decision function over predictor variables Xi ∈ Ωi = {ξ1i , . . . , ξmi

i }. Sup-
pose that G does not contain V -structures, then we have that f is sign-represented
by a polynomial of the form

r(x) =
n∑

i=1

mi∑
j=1

	Ωi

j (xi)
∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

	Ωs

ks
(xs),

if and only if f is induced by a BAN classifier whose predictor sub-graph is G.

The above result applies in a lot of practical cases as naive Bayes (NB)
classifier [9], tree augmented naive Bayes (TAN) classifier [5] and super-parent
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one-dependence-estimator (SPODE) classifier [8], because the corresponding pre-
dictor sub-graphs do not contain V-structures. Moreover, Theorem 1 implies that
when G does not contain V-structures the family of polynomials

PG =

⎧⎨⎩r(x) =

n∑
i=1

mi∑
j=1

	Ωi

j (xi)
∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

	Ωs

ks
(xs) s.t. βi(j|k) ∈ R

⎫⎬⎭
(3)

completely represents the set of decision functions induced by BAN classifiers,
that is, sgn(PG) is exactly the set of decision functions induced by BAN classifiers
whose predictor sub-graph is G.

Remark 1. In the simplest NB classifier case, that is, when the predictor sub-
graph G is an empty graph, we have that

PG ≡ PNB =

⎧⎨⎩r(x) =

n∑
i=1

mi∑
j=1

αi(j)	
Ωi

j (xi) s.t. αi(j) ∈ R

⎫⎬⎭
is exactly the set of polynomials that sign-represent the decision function induced
by NB classifiers.

We can prove that the set PG is a vector space of dimension

d =

n∑
i=1

⎛⎝(mi − 1)
∏

s∈pa(i)

ms

⎞⎠+ 1

and that the VC dimension of sgn(PG) is precisely d. Theorem 1 also places
an upper bound on the number of decision functions representable by BAN
classifiers without V-structures [18].

Corollary 1. Consider a BAN classifier over predictor variables Xi ∈ Ωi,
|Ωi| = mi for every i = 1, . . . , n. Moreover suppose that the predictor sub-graph
G does not contain V -structures. Then we have

|sgn(PBAN
G )| ≤ C(M,d) = 2

d−1∑
k=0

(
M − 1

k

)
,

where d =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i) ms

)
+ 1 and M =

∏n
i=1 mi.

Remark 2. If Ω = Ω1 × · · · × Ωn, we observe that |{−1,+1}|Ω|| = 2|Ω| = 2M .
Thus Corollary 1 implies that in the case of the NB classifier the quotient of
decision functions representable by NB classifiers over 2M becomes vanishingly
small as the number of predictors increase. Figure 1 shows the number of total
decision functions (2|Ω|) and the bounding of Corollary 1 for NB classifiers with n
binary predictors, C(M,d). Observing that the scale of the graph is logarithmic,
the graph shows that the number of decision functions induced by NB classifiers
is small compared with all possible decision functions over Ω.
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NB Upper Bound vs. Total Number of Decision Functions

n

Fig. 1. Total number of decision functions over n binary predictors (gray) and the
bounding C(M,d) of Corollary 1 (dashed black) for NB classifiers

Remark 2 could be extended to every type of BAN classifier, such that for every
variable the number of parents is bounded (Corollary 17 in Varando et al. [18]),
that is, |pa(i)| < K.

Remark 3. When the predictor sub-graph G of a BAN classifiers contains V-
structures, Lemma 1 is still valid and exists a polynomial that sign-represents
the induced decision function. The problem is that the associated family of
polynomials is not a linear space as in (3), thus is not possible to employ the
same techniques as in Varando et al. [18] to prove the bounding in Corollary 1.

3 Binary Relevance Method

We consider the binary relevance method with BAN classifiers, that is, for every
class Ci we build a BAN classifier with predictor sub-graph G. Thus every one-
dimensional classifier has the same predictor structure and differs with respect to
the values of the conditional probability tables that define the BAN models. From
a practical point of view, the advantages of this method are that the structure
of the predictor sub-graph has only to be learned once and the parameters of
the BN are then fitted to the different data sets related to each class.

From Lemma 1 it follows that if f = (f1(x), f2(x), . . . , fh(x)) is the multi-
valued decision function induced by the h BAN classifiers, then there exist

p1(x), . . . , ph(x) ∈ PG ,

such that fi(x) = sgn(pi(x)) for every i ∈ {1, . . . , h}. Thus, in Lemma 2, we
bound the number of multi-valued decision functions representable by the BAN
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binary relevance method, when the predictor sub-graph does not contain V-
structures.

Lemma 2. Consider h BAN classifiers, whose predictor sub-graph G contains
no V-structures, to predict h binary classes. We have that N(G, h), the number of
h-valued decision functions representable by the BAN binary relevance method,
satisfies

N(G, h) ≤ C(M,d)h,

where C(M,d) = 2
∑d−1

k=0

(
M−1

k

)
, d =

∑n
i=1

(
(mi − 1)

∏
s∈pa(i) ms

)
+ 1 and

M =
∏n

i=1 mi.

Proof. The proof is a straightforward application of Corollary 1. �

Remark 4. The total number of h-valued decision functions over n categorical
predictors is 2h

∏
mi = 2hM . Then the fraction of h-valued decision functions

representable by the BAN binary relevance method is bounded by

N(G, h)
2hM

≤
(
C(M,d)

2M

)h

.

Thus, as in Remark 2, we have that if we fix the structure of the predictor sub-
graph, and it does not contain V-structures, the number of representable multi-
valued decision functions becomes vanishingly small as the number of predictors
increase. Moreover, using the binary relevance method, the speed at which the
ratio between representable multi-valued decision functions and the total number
of multi-valued decision functions drops to zero, is exponential in h, the number
of classes.

The above bound could also be computed when each of the h BAN classifiers
is built with different structures, that is, the kth classifier to predict class Ck is
a BAN classifier whose predictor sub-graph Gk does not contain V-structures.
Then if we denote N(G1, . . . ,Gh) the number of h-valued decision functions built
with h BAN classifiers whose predictor sub-graph is G1, . . . ,Gh respectively, we
have that

N(G1, . . . ,Gh) ≤
h∏

k=1

C(M,dk),

where dk =
∑n

i=1

(
(mi − 1)

∏
s∈pak(i)

ms

)
+ 1 , pak(i) is the set of Xi parents

in Gk and M =
∏n

i=1 mi.

Example 2. We consider two binary classes C1, C2 and two predictor variables
X1 ∈ {0, 1} and X2 ∈ {2, 3, 4}. Using the binary relevance method we build two
independent NB classifiers, see Fig. 2.

Next, we list the conditional probability tables for both classifiers (Tables 1a
and 1b).
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C1

X1 X2

C2

X1 X2

Fig. 2. Two NB classifiers in Example 2

Table 1. Conditional probability tables in Example 2 for the two NB classifiers

(a) NB for C1

X1 C1 = +1 C1 = −1
0 0.5 0.25
1 0.5 0.75

X2 C1 = +1 C1 = −1

2 0.3 0.1

3 0.5 0.7

4 0.2 0.2

(b) NB for C2

X1 C2 = +1 C2 = −1
0 0.7 0.4
1 0.3 0.6

X2 C2 = +1 C2 = −1

2 0.1 0.6

3 0.1 0.2

4 0.8 0.2

From the representation of Theorem 1 we have that there exist two polyno-
mials p1, p2 that sign-represent the decision functions induced by the two NB
classifiers

p1(x1, x2) = ln

(
0.5

0.25

)
x1 − 1

−1
+ ln

(
0.5

0.75

)
x1

1

+ ln

(
0.3

0.1

)
(x2 − 3)(x2 − 4)

2
+ ln

(
0.5

0.7

)
(x2 − 2)(x2 − 4)

−1

+ ln

(
0.2

0.2

)
(x2 − 2)(x2 − 3)

2

and

p2(x1, x2) = ln

(
0.7

0.4

)
x1 − 1

−1
+ ln

(
0.3

0.6

)
x1

1

+ ln

(
0.1

0.6

)
(x2 − 3)(x2 − 4)

2
+ ln

(
0.1

0.2

)
(x2 − 2)(x2 − 4)

−1

+ ln

(
0.8

0.2

)
(x2 − 2)(x2 − 3)

2
.
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We have that

f(x) =

(
sgn

(
p1(x)

)
, sgn

(
p2(x)

))
is the bi-valued decision function that predicts C1, C2 from X1, X2. Figure 3
shows the decision boundaries of the two classifiers (black for C1 and gray for
C2). We observe that the predictor space Ω = {0, 1} × {2, 3, 4} is partitioned
into four subsets corresponding to the four different predictions of the two binary
classes. Moreover, the value of the respective predicted class changes when one
of the decision boundaries is crossed.

(0,2)

(0,3)

(0,4)

(1,2)

(1,3)

(1,4)

(+1,−1)

(+1,−1)

(+1,+1)

(+1,−1)

(−1,−1)

(−1,+1)

Fig. 3. Decision boundaries for the two NB classifiers in Example 2. The value of the
predicted classes and the coordinates of the points are reported.

4 BN Chain Classifiers

The easiest way to relax the strong independence assumption of the binary
relevance method is to gradually add the predicted classes to the predictors.
Specifically, suppose that we have to predict h binary classes C1, . . . , Ch from n
predictor variables X1, . . . , Xn. We consider h BAN classifiers such that the kth
BAN classifier predicts Ck from the variables

X1, . . . , Xn, C1, . . . , Ck−1.

From Lemma 1 we have that there exist h polynomials p1, . . . , ph such that

pk(x, c1, . . . , ck−1) : R
n+k−1 → R
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pk ∈ PGk
,

where Gk is the predictor sub-graph related to the kth BAN classifier over
X1, . . . , Xn, C1, . . . , Ck−1.

If we consider only naive Bayes classifiers, we state

Pk =

⎧⎪⎨
⎪⎩

r(x) =
n∑

i=1

mi∑
j=1

αi(j)�
Ωi
j (xi) +

k−1∑
i=1

βi(+1)�
{−1,+1}
+1 (ci) + βi(−1)�

{−1,+1}
−1 (ci)

s.t. αi(j), βi(+1), βi(−1) ∈ R

⎫⎪⎬
⎪⎭ ,

(4)

for the set of polynomials sign-representing the decision function of the kth
classifier in the chain, that is, the NB classifier that predicts Ck from X1, . . . , Xn

and C1, . . . , Ck−1. Moreover, observe that

	
{−1,+1}
+1 (ci) =

ci + 1

2
=

{
1 if ci = +1

0 if ci = −1

	
{−1,+1}
−1 (ci) =

1− ci
2

=

{
0 if ci = +1

1 if ci = −1

For the first class C1, we have that the first classifier is a NB over X1, . . . , Xn

and so the decision function for C1 is

f1(x) = sgn
(
p1(x)

)
, (5)

where p1(x) =
∑n

i=1

∑mi

j=1 αi(j)	
Ωi

j (xi) ∈ P1. For the second class C2, we have
a NB classifier over X1, . . . , Xn, C1. Thus f2(x), the decision function for C2, is

f2(x) = sgn

(
p2
(
x, c1

))
, (6)

where p2 ∈ P2 and c1 = f1(x). Substituting (5) in (6), we obtain

f2(x) = sgn

(
p2
(
x, sgn(p1(x))

))
.

This chain classifier over two classes is equivalent to the bi-valued decision func-
tion

f =
(
f1(x), f2(x)

)
.

Iterating the above computations, we have that the kth decision function that
predicts class Ck is given by

fk(x) = sgn

(
pk
(
x, f1(x), . . . , fk−1(x)

))
,
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where pk ∈ Pk. More explicitly, we have that

fk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sgn

(
qk(x) + γ(+1,+1, . . . ,+1)

)
if f1(x) = +1, . . . , fk−1(x) = +1

...
...

sgn

(
qk(x) + γ(σ1, σ2 . . . , σk−1)

)
if f1(x) = σ1, . . . , fl−1(x) = σk−1

...
...

sgn

(
qk(x) + γ(−1,−1, . . . ,−1)

)
if f1(x) = −1, . . . , fk−1(x) = −1

(7)

where qk(x) ∈ P1 and γ(σ1, . . . , σk−1) ∈ R for every (σ1, . . . , σk−1) ∈
{−1,+1}k−1. In other words, the kth decision function, in every subset of Ω
defined by the previous k − 1 decision functions, is sign-represented by a poly-
nomial in P1 or equivalently by a NB classifier over the original predictors. The
only difference between these polynomials is the additive coefficients. Precisely
the additive coefficients γ(σ1, . . . , σk−1) are obtained from the representation in
(4) as follows:

γ(σ1, . . . , σk−1) =

k−1∑
i=1

βi(σi),

where

βi(σi) = ln
P (Ci = σi|Ck = +1)

P (Ci = σi|Ck = −1)
.

Figure 4 shows two examples of decision boundaries of a NB chain classifier for
two classes. The predictor domain in both examples is {0, 1, 2, 3} × {0, 1, 2, 3}.
We observe that the decision boundaries related to the second class in the chain
C2 (dashed black line) are dependent on the decision boundaries of the first class
C1 (gray line).

Remark 5. For simplicity’s sake, we have presented the computation of the de-
cision boundaries in the NB case. The same arguments as used above could be
applied to a broader class of chain classifiers, specifically to every model where a
BAN classifier with predictor sub-graph Gk is built in the kth step of the chain.
If the previously predicted classes C1, . . . , Ck−1 are added in a naive way, that
is, they have only one parent, Ck and they have no children, we have that the
form of the kth decision function is similar to (7), where the previously predicted
classes contribute in the form of additive constants.

Example 3. We use a chain NB classifier over the prediction problems of Example
2. The NB classifier for predicting class C1 is the same as in Example 2 (see Fig.
2 left and Table 1a). The predictors of the NB classifier for predicting C2 now
include C1. We consider the same conditional probability tables as in Example
2 (Tables 1a and 1b). Moreover we have to specify the conditional probabilities
of C1 given C2 in the NB that predicts C2. We set

P (C1 = +1|C2 = +1) = 0.3 and P (C1 = −1|C2 = +1) = 0.7
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(3,1)

(3,2)

(3,3)

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Fig. 4. Decision boundaries for NB chain classifiers with two predictor variables

P (C1 = +1|C2 = −1) = 0.9 and P (C1 = −1|C2 = −1) = 0.1

And, thus, coefficients β1(+1) and β1(−1) as defined in (4) are given by

β1(+1) = ln

(
0.3

0.9

)
and β1(−1) = ln

(
0.7

0.1

)
.

We have that the decision function to predict C2 is given by

f2(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
sgn

(
p2(x1, x2) + β1(+1)

)
if p1(x1, x2) > 0

sgn

(
p2(x1, x2) + β1(−1)

)
if p1(x1, x2) < 0

where p1 and p2 are the polynomials defined in Example 2. The decision bound-
aries of the two classes are shown in Fig. 5. We observe that the two boundaries
are no longer independent; the decision boundary for the second class C2 (dashed
black line) depends on the predicted value of the first class C1.

5 Binary Relevance vs. Chain Classifier

We denote the set of multi-valued decision functions representable by a NB chain
classifier over X1, . . . , Xn and by a multiple independent NB classifiers built as
in the binary relevance method by F and D, respectively. We can prove the
following lemma.

Lemma 3.
|F| > |D|.

In other words, NB chain classifiers are more expressive than the NB binary
relevance method.
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(0,2)

(0,3)

(0,4)

(1,2)

(1,3)

(1,4)

(+1,−1)

(+1,−1)

(+1,+1)

(+1,−1)

(−1,+1)

(−1,+1)

Fig. 5. Decision boundaries for the chain NB classifier in Example 3. The value of the
predicted classes and the coordinates of the points are reported

Proof. We need only consider two class variables, since the result in the general
case is proved analogously. If we define Pk for k = 1, 2 as in (4), we have that

D = sgn(P1)× sgn(P1) ⊂ sgn(P1)× sgn(P2) = F .

So, obviously, |F| ≥ |D|. Thus to prove the lemma we just have to disprove
the equality. Moreover, the VC dimension of sgn(P1) (the cardinality of the
maximum shattered subset) is equal to

d =

n∑
i=1

mi − n+ 1 < |Ω| =
n∏

i=1

mi.

Then, by the definition of VC dimension, there exists Ω0 ⊂ Ω such that |Ω0| = d
which is shattered by sgn(P1). We now choose ω ∈ Ω \Ω0 and find that there
exists p0(x) ∈ P1 such that

p0(ω) < 0

and
p0(x) > 0 for every x �= ω.

Consider the bi-valued decision function f ∈ F with the form

f =

(
sgn

(
p0(x)

)
, sgn

(
p2(x, sgn(p0(x)))

))
.

We observe from (4) that we have

p2
(
x, sgn(p0(x)

)
=

{
q(x) + β1(+1) if p0(x) > 0

q(x) + β1(−1) if p0(x) < 0,
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where q(x) ∈ sgn(P1). We now prove that the set of decision functions{
f2 = sgn

(
p2
(
x, sgn(p0(x)

))
s.t. p2 ∈ P2

}
can shatter a subset of cardinality d+1 and thus cannot be represented by a NB
classifier over predictors X1, . . . , Xn alone. We have that q(x) + β1(+1) ∈ P1.
Thus, by varying q ∈ P1, it can sign-represent every decision function over Ω0

because of the choice of Ω0. But the value of f2(x) over ω can be set indepen-
dently by choosing β1(−1) ∈ R. So we have that choosing the polynomial q ∈ P1

and the real numbers β1(+1) and β1(−1), the defined decision functions f2(x)
can shatter Ω0 ∪ {ω}, a subset of cardinality d+ 1. �
Remark 6. As the number of classes grows, we see from (7) that the number of
extra parameters, that is, the coefficients γ(. . .) that are added in a chain classi-
fier model increase. Thus the chain NB classifier is considerably more expressive
than a set of NB classifiers built with the binary relevance method.

From Remark 5, it follows that Lemma 3 could be extended to compare the ex-
pressive power of BAN chain classifiers versus the BAN binary relevance method,
proving that BAN chain classifiers are in general more expressive than classifiers
built using binary relevance.

Moreover we observe that changing the order of classes in which the classifier
is built implies a change in the expressive power of the resulting multi-label
classifier. In fact we find that the first class in NB chain classifiers is predicted
as in the binary relevance method, and from Lemma 3, we get that the chain
classifier is more expressive than binary relevance over the second variable. In
general it is possible to prove that if the chain classifier for classes C1, . . . , Ch, is
built with the class ordering j1, . . . , jh, we have that the kth classifier for Cjk is
more expressive than all the previous classifiers in the chain. So, by changing the
order of the classes, we obtain a multi-label classifier with different expressive
power. This last observation led us to formulate an easy expressiveness-based
heuristic to select an ordering for the chain classifier. We built h classifiers,
one for each class as in the binary relevance method. We sorted the classifiers
according to some evaluation metric and we used the resulting order to build a
chain classifier. Precisely we started with the classifier with the best prediction
performance and we ended with the worst predicted classes. In other words,
we tried to employ the more expressive classifiers in the chain for the classes
that were predicted worst by the binary relevance model. Moreover, if the BAN
chain classifier is built as suggested in Remark 5, that is, by adding the previously
predicted classes in a naive way, we find that the above heuristic introduces a low
computational complexity: once the binary relevance model is built we have only
to compute the additive coefficient, corresponding to the previously predicted
classes to build the chain classifier. In real problems, where the coefficient of
the models have to be estimated, overfitting could be an issue, specially with
a limited number of observations available. In those cases we have to check
that the increased expressive power of the chain model does not increase the
classification errors. This could be achieved estimating the errors with cross-
validation techniques [7] or using structural risk minimization [16].
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6 Conclusions and Future Work

In this paper we have extended our previous results on the decision bound-
aries and expressive power of one-label BN classifiers to two types of BN multi-
label classifiers: BAN classifiers built with binary relevance method and BAN
chain classifiers. We have given theoretical grounds for why the binary relevance
method provides models with poor expressive power and why this gets worst
for larger numbers of classes. In both models we have expressed the multi-label
decision boundaries in polynomial forms, and we have proved that chain clas-
sifiers provide more expressive models than the binary relevance method when
the same type of BAN classifier is used as the base classifier.

As possible future research, we would like to extend our results to general
multi-dimensional BN classifiers [4,12,2,13]. Multi-dimensional BN classifiers
permit BN structures between classes and predictors, and so the multi-valued
decision functions have to be found by a global maximum search over the possi-
ble class values. This fact does not permit to employ the same arguments used
in this work. Class-Bridge decomposable multi-dimensional BN classifiers [2,3]
could be easier to study due to the factorization of the maximization problem
into a number of maximization problems in lower dimensional spaces.
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ish Ministry of Economy and Competitiveness through the Cajal Blue Brain
(C080020-09) and TIN2013-41592-P projects.
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Prague, 182 08, Czech Republic
http://www.utia.cas.cz/

Abstract. We propose an approximate probabilistic inference method
based on the CP-tensor decomposition and apply it to the well known
computer game of Minesweeper. In the method we view conditional prob-
ability tables of the exactly �-out-of-k functions as tensors and approxi-
mate them by a sum of rank-one tensors. The number of the summands
is min{l + 1, k − l + 1}, which is lower than their exact symmetric ten-
sor rank, which is k. Accuracy of the approximation can be tuned by
single scalar parameter. The computer game serves as a prototype for
applications of inference mechanisms in Bayesian networks, which are
not always tractable due to the dimensionality of the problem, but the
tensor decomposition may significantly help.
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Decomposition, Symmetric Tensor Rank.

1 Introduction

In many applications of Bayesian networks [1,2,3], conditional probability tables
(CPTs) have a certain local structure. Canonical models [4] form a class of CPTs
with their local structure being defined either by:

– a deterministic function of the values of the parents (deterministic models),
– a combination of the deterministic model with independent probabilistic

influence on each parent variable (ICI models), or
– a combination of the deterministic model with probabilistic influence on a

child of the deterministic model (simple canonical models).

In this paper we will pay special attention to deterministic models.
A common task solved efficiently with the help of Bayesian networks is proba-

bilistic inference, which is the computation of marginal conditional probabilities
of all unobserved variables given observations of other variables. During the in-
ference the special local structure of deterministic CPTs can be exploited. Dı́ez
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and Galán [5] suggested to rewrite each CPT of a noisy-max model as a prod-
uct of two-dimensional potentials ψi, i = 1, . . . , k. Later, Savický and Vomlel [6]
generalized the method to any CPT. Assume a CPT P (Y = y|X1, . . . , Xk) with
the state y of variable Y being observed, then we can write

P (Y = y|X1, . . . , Xk) =
∑
B

k∏
i=1

ψ(B,Xi) , (1)

where B is an auxiliary variable and the summation proceeds over all its values.
The above equality can be always satisfied if the number of states of B is

the product of the number of states of variables X1, . . . , Xk. The transformation
becomes computationally advantageous if the number of states of B is low. It was
observed in [6] that each CPT can be understood as a tensor and the minimum
number of states of B equals the rank of tensor A defined as

Ai1,...,ik = P (Y = y|X1 = xi1 , . . . , Xk = xik ),

for all combinations of states (xi1 , . . . , xik ) of variables X1, . . . , Xk. The decom-
position of tensors into the form corresponding to the right hand side of for-
mula (1) is known now as Canonical Polyadic (CP) or CANDECOMP-PARAFAC
(CP) decomposition [7,8].

In [9] we have shown how the CP decomposition can be applied to the noisy
threshold model of the probabilistic tables. We have presented exact CP decom-
position of these tensors, which have rank k if the table size is 2×2× . . .×2 (k×)
in real domain, and slightly lower rank in complex domain. Similar decomposi-
tions were derived for the probabilistic tables that represent deterministic exact
	-out-of-k functions. The tensor rank is about the same. It was shown that using
the CP decomposition approach it is possible to perform probabilistic inference
also in cases where the classical method cannot be applied because of a large di-
mensionality of the probabilistic tables. Next, it was shown that the complexity
reduction using CP decomposition is better than in the popular parent divorcing
method. Finally, it was shown that the tensor decomposition approach can be
combined with another alternative mechanism for Bayesian inference, which is
Weighted Model Counting (WMC) [9].

In this paper we take a closer look at tensors representing one specific type of
a canonical model – deterministic exact 	-out-of-k functions. An 	-out-of-k func-
tion is a function of k binary arguments that takes the value one if exactly 	 out of
its k arguments take value one – otherwise the function value is zero. These ten-
sors appear naturally in Bayesian network models with CPTs P (y|X1, . . . , Xk)
representing the addition of binary parent variables X1, . . . , Xk and with evi-
dence Y = y on the child variable. We suggest a new approximation by a sum of
rank-one tensors, where the number of the summands is min{l+1, k− l+1} and
the approximation error can be tuned by a single scalar parameter. This means
that we propose less complex (lower rank) approximations, which are computa-
tionally simpler, but they approach the desired probabilistic table (tensor) quite
accurately, with an arbitrarily small error. The main advantage is the lower rank
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of the approximation, which is much lower than the true rank (k), if 	 is low or
	 is close to k.

The paper is organized as follows. In Section 2 we introduce the necessary
tensor notation, define tensors of the exact 	-out-of-k functions, and present
their basic properties. Section 3 represents the main original contribution of this
paper. We propose two approximate CP decompositions of tensors of the 	-out-
of-k functions based on the symmetric border rank of these tensors. We present
a comparison of the CP decomposition with the parent divorcing method in
Section 4. In Section 5 we introduce our Bayesian network model for the game of
Minesweeper. In Section 6 we apply the suggested decomposition to Minesweeper
and compare the computational efficiency and the approximation error of the
suggested approximate CP decompositions, the exact CP decomposition, and
the standard inference approach based on moralization of parent variables.

2 Preliminaries

Tensor is a mapping A : I → X, where X = R or X = C, I = I1 × . . .× Ik, k is a
natural number called the order of tensor A, and Ij , j = 1, . . . , k are index sets.
Typically, Ij are sets of integers of cardinality nj . Then we can say that tensor
A has dimensions n1, . . . , nk. In this paper all index sets will be {0, 1}.
Example 1. A visualization of a tensor of order k = 4 and dimensions n1 = n2 =
n3 = n4 = 2 with successive dimensions alternating between rows and columns1:

A =

⎛⎜⎜⎜⎝
(
0 1
1 0

) (
1 0
0 0

)
(
1 0
0 0

) (
0 0
0 0

)
⎞⎟⎟⎟⎠

Tensor A has rank one if it can be written as an outer product of vectors:

A = a1 ⊗ . . .⊗ ak ,

with the outer product being defined for all (i1, . . . , ik) ∈ I1 × . . .× Ik as

Ai1,...,ik = a1,i1 · . . . · ak,ik ,

where aj = (aj,i)i∈Ij
, j = 1, . . . , k are real or complex valued vectors.

Each tensor can be decomposed as a linear combination of rank-one tensors:

A =

r∑
i=1

bi · ai,1 ⊗ . . .⊗ ai,k , (2)

The rank of a tensor A, denoted rank(A), is the minimal r over all such decom-
positions. The decomposition of a tensor A to tensors of rank one that sum up
to A is called CP tensor decomposition.

1 The first dimension is the row of the outer matrix, the second is the column of the
outer matrix, the third is the row of the inner matrix, and the fourth is the column
of the inner matrix.
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Example 2. The tensor A from Example 1 can be written as:

A = (0, 1)⊗ (1, 0)⊗ (1, 0)⊗ (1, 0)

+(1, 0)⊗ (0, 1)⊗ (1, 0)⊗ (1, 0)

+(1, 0)⊗ (1, 0)⊗ (0, 1)⊗ (1, 0)

+(1, 0)⊗ (1, 0)⊗ (1, 0)⊗ (0, 1) .

This implies that its rank is at most 4.

The tensors studied in this paper are symmetric.

Definition 1. Let X be either R or C. Tensor A : {0, 1}k → X is symmetric if
for (i1, . . . , ik) ∈ {0, 1}k it holds that

Ai1,...,ik = Aiσ(1) ,...,iσ(k)
,

for any permutation σ of {1, . . . , k}.

Example 3. The tensor A from Example 1 is symmetric.

Definition 2. Let X be either R or C. The symmetric rank srankX(A) of a
tensor A is the minimum number of symmetric rank-one tensors taking values
from X such that their linear combination is equal to A, i.e.,

A =

r∑
i=1

bi · a⊗k
i , (3)

where ai, i = 1, . . . , r are vectors of length equal to dimensions of A taking values
form X, bi ∈ X, i = 1, . . . , r, and a⊗k

i is used to denote ai ⊗ . . .⊗ ai︸ ︷︷ ︸
k copies

.

As we will discuss later some tensors A can be approximated with arbitrarily
small error by tensors of lower rank than their rank. This can be formalized
using the notion of border rank.

Definition 3. The border rank of A : {0, 1}k → R is

brank(A) = min{r : ∀ε > 0 ∃E : {0, 1}k → R, ||E|| < ε, rank(A+ E) = r} ,

where || · || is any norm.

Next we give an example of a tensor that has its border rank at most two. The
example is a specialization of Example 4.2 from [10].

Example 4. Let k = 4. Then for q > 0 tensor

B(q) = 1

2q
· (1, q)⊗ (1, q)⊗ (1, q)⊗ (1, q)

− 1

2q
· (1,−q)⊗ (1,−q)⊗ (1,−q)⊗ (1,−q)



An Approximate Tensor-Based Inference Method 539

has rank at most two. Note that

lim
q→0

B(q) = A

where A is the tensor from Example 1. This implies that brank(A) ≤ 2.

A class of tensors that appear in the real applications are tensors representing
functions. In this paper we pay special attention to tensors representing the exact
	-out-of-k functions, i.e. a Boolean function taking value 1 if and only if exactly
	 of its k inputs have value 1.

Definition 4. Tensor S(	, k) : {0, 1}k → {0, 1} represents an exact 	-out-of-k
function if it holds for (i1, . . . , ik) ∈ {0, 1}k:

Si1,...,ik(	, k) = δ(i1 + . . .+ ik = 	)

δ(i = 	) =

{
1 if i = 	
0 otherwise.

Example 5. The tensor A presented in Examples 1– 4 is tensor S(1, 4). It follows
from Example 2 it has rank at most 4 and border rank at most 2 (Example 4).

3 Approximate Tensor Decompositions

Tensors S(	, k) were studied in [9]. It was shown that their symmetric rank in the
real domain is equal to k for all integer k, 	 [9, Proposition 1 and Proposition 3],
except for the trivial cases 	 ∈ {0, k}, where the rank is one [9, Lemma 2],
symbolically:

srankR(S(	, k)) =
{
k for 1 ≤ 	 ≤ (k − 1)
1 for 	 ∈ {0, k}. (4)

In the complex domain the tensor rank is slightly smaller for 	 in vicinity of k/2:

srankC(S(	, k)) = max{	+ 1, k − 	+ 1} for 1 ≤ 	 ≤ (k − 1), (5)

see [9, Proposition 3]. The proofs in [9] are constructive.
In practical applications, the tensors with 	 near zero, 	 = 1, 2, 3, 4 and with

	 near k, i.e. 	 = k − 1, k − 2, k − 3, k − 4, seem to be more common that those
with 	 around k/2. For example, in Section 5 we discuss an application to the
computer game of Minesweeper where CPTs with values of 	 around k/2 appear
rarely. For 	 near k/2 we recommend decomposition in the complex domain [9],
which has the rank specified in formula (5).

Earlier it was shown in [10, Theorem 4.3] that the symmetric border rank of
the tensor S(	, k) can be bounded as

brank(S(	, k)) ≤ min{	+ 1, k − 	+ 1} .
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It means that the tensor can be expressed as a limit of a series of tensors having
the displayed rank. Unfortunately, the CP decomposition of the approximating
tensors are such that some elements of the factor matrices converge to zero and
some other converge to infinity. For practical applications it is indeed possible to
work with an inaccurate decomposition, provided that the approximation error
is sufficiently low, and the corresponding factor matrices do not have too large
Frobenius norm, so that there are no serious numerical issues with these factors.

The paper [10, Section 6] contains a general construction of series of tensors
of rank min{	 + 1, k − 	 + 1} that converge to S(	, k) for a general pair (k, 	).
Convergence of the series is relatively slow with respect to the Frobenius norm
of the factor matrices, except for the special case 	 = 1.

1-out-of-k

The tensor S(1, k) can be written as a limit

S(1, k) = lim
x→∞

Sa(1, k, x)

where

Sa(1, k, x) = (x, y)⊗k − (x,−y)⊗k

y = y(x, k) =
1

2xk
.

Obviously, rank of Sa(1, k, x) is 2. The error of the approximation is

E(1, k, x) = ‖S(1, k)− Sa(1, k, x)‖∞ =
1

4x2k
.

Note that Example 4 represents a special case for k = 4.

A Method for Tensor Approximations

In this paper we extend the above result for the cases 	 = 2, 3, 4 and a general
k. In other words we write the tensor S(	, k) as a limit of an appropriately
parameterized tensor Sa(	, k, x) of a low rank,

S(	, k) = lim
x→∞

Sa(	, k, x) .

We have conducted a series of numerical experiments attempting to decompose
the tensors numerically, using Levenberg-Marquardt method [11] starting from
different random starting points, which allowed us to guess a functional form of
suitable approximations.

Once the functional form of the approximation was found, we used symbolic
matlab tool to evaluate the assumed tensor decomposition as a function of 2 to 5
designed parameters. These parameters were selected to approximate the exact
tensor of interest to the maximum possible extent, with a single parameter left.
This parameter allows one to control the quality of the approximation, possibly
at the expense of numerical stability.
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2-out-of-k

For 	 = 2 we get

Sa(2, k, x) = (x, y)⊗k + (x,−y)⊗k − 2xk(1, 0)⊗k

y = y(x, k) =
1√

2x(k−2)/2
.

The error of the approximation is

E(2, k, x) = ‖S(2, k)− Sa(2, k, x)‖∞ =
1

2xk
.

3-out-of-k

For 	 = 3 we get

Sa(3, k, x) = (x, y)⊗k − (x,−y)⊗k − (z, w)⊗k + (z,−w)⊗k

with

y = y(x, k) = −1

2
x1−k/3

z = z(x, y, k) =

(
2x3k−3y3

2xk−3y3 − 1

)1/(2k)

w = w(x, y, z, k) = y
(x
z

)k−1

.

The error of the approximation is

E(3, k, x) = ‖S(3, k)− Sa(3, k, x)‖∞ =
3

2x2k/3
.

4-out-of-k

Finally, for 	 = 4 we get

Sa(4, k, x) = (x, y)⊗k + (x,−y)⊗k − (z, w)⊗k − (z,−w)⊗k − 2(xk − zk)(1, 0)⊗k

with

y = y(x, k) = x1−k/4

z = z(x, y, k) =

(
2x2k−4y4

2xk−4y4 − 1

)1/k

w = w(x, y, z, k) = y
(x
z

)k/2−1

.

The error of the approximation is

E(4, k, x) = ‖S(4, k)− Sa(4, k, x)‖∞ =
3

2xk/2
.
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(k − 
)-out-of-k

Approximations for 	 = k − 1, k − 2, k − 3, k − 4 can be constructed from 	 =
1, 2, 3, 4, respectively, by swapping values of all vectors in the CP decompositions,
i.e., from

Sa(	, k) =

r∑
i=1

bi · a⊗k
i ,

we get

Sa(k − 	, k) =

r∑
i=1

bi · a⊗k
i ,

where vector ai = (yi, xi) is obtained from ai = (xi, yi) by swapping its values.

Approximate Decompositions of Threshold Tensors

Similar functional forms can be derived also for approximate decompositions
of threshold tensors discussed in [9]. For tensors T (	, k) with 	 near zero (	 =
1, 2, 3, 4) and with 	 near k (	 = k − 1, k − 2, k − 3, k − 4) we can use already
derived expressions for S(	, k) and combine them using the following identity:

T (	, k) =

{∑k
m=� S(m, k) for 	 = k − 1, k − 2, . . .

(1, 1)⊗k −
∑�−1

m=1 S(m, k) for 	 = 1, 2, . . ..

Complex Valued Decompositions

It is worth noting that if complex-valued factors in the decomposition are al-
lowed, the approximation is possible with higher accuracy for the same variable
x. We consider the same functional form as in the real-valued decomposition.

In particular, for 	 = 3 the dependence of the variable y on x can be taken
as y = (2−2/3 − 1/x2)x1−k/3, and for 	 = 4 we propose the choice y = (2−1/2 −
1/x2)x1−k/4. With these choices, the variables z and w become complex-valued,
but the decomposition remains valid and the total approximation error is
reduced.

Approximation Errors

In Table 1 we present maximum2 approximation error for approximate decom-
positions of 	-out-of-k tensors. These errors were obtained for variable x = 10.
With higher variable x, the approximation errors could be still lower, but for
the price of a risk of numerical issues.

2 The maximum is taken over all absolute values of differences of all corresponding
pairs of tensor values.
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The first two column present errors of the complex-valued and real-valued
decomposition described above. For 	 = 1 and 	 = 2 there is no difference, no
increase of accuracy can be attained in the complex domain. For 	 = 3 and
	 = 4 the former decomposition is more accurate, but for the price of involving
arithmetic with complex numbers. The third column contains the error obtained
by a rank-k approximation in the real domain suggested in [9]. The error is
effectively zero.

Table 1. Maximum approximation error for approximate and exact decompositions
of �-out-of-k tensors. The errors for decompositions of (k − �)-out-of-k tensors are the
same as of �-out-of-k by their construction.

CPT complex approx. real approx. real exact

1-out-of-4 2.5e-09 2.5e-09 1.465e-14
2-out-of-4 5,00e-05 5,00e-05 1.908e-15
1-out-of-5 2.5e-11 2.5e-11 1.399e-14
2-out-of-5 5,00e-06 5,00e-06 5.995e-15
1-out-of-6 2.5e-13 2.5e-13 1.654e-14
2-out-of-6 5,00e-07 5,00e-07 6.573e-14
3-out-of-6 3.78e-06 6.3e-05 1.248e-13
1-out-of-7 2.5e-15 2.5e-15 7.472e-14
2-out-of-7 5,00e-08 5,00e-08 2.315e-12
3-out-of-7 8.144e-07 4.454e-05 6.625e-14
1-out-of-8 1.11e-16 1.11e-16 1.798e-12
2-out-of-8 1.192e-07 1.192e-07 1.396e-12
3-out-of-8 1.755e-07 2.18e-05 2.376e-12
4-out-of-8 5.698e-06 0.00015 1.239e-12

Remark 1. For the three cases 2-out-of-4, 3-out-of-6 and 4-out-of-8 presented
in Table 1 we can get exact CP complex decomposition of the same symmetric
rank as the approximate one – see formula (5).

4 A Comparison with the Parent Divorcing Method

A different transformation that can be applied to CPTs of 	-out-of-k functions
is the parent-divorcing method [12].

On the right hand side of Figure 1 we present the graph after parent divorcing
and consequent moralization for k = 5 and 	 = 1. First, we add k − 2 auxiliary
variables and connect each of them with two parents. The CPT of each auxiliary
node is for 	 ≤ k/2, j = 2, . . . , k − 1 and y = 0, 1, . . . ,min{j, 	+ 1} defined as

P (Yj = y|Yj−1 = y′, Xj = x) =

⎧⎨⎩
1 if either y = y′ + x or

y′ + x ≥ 	 and y = 	+ 1
0 otherwise,
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where for j = 2 variable Yj−1 is replaced by X1. Note that we need not consider
the values of Yj greater than 	 + 1 since in these cases the exact 	-out-of-k
function is already ensured to be zero and by adding the values of the remaining
variables Xj , . . . , Xk the sum cannot decrease. For 	 > k/2 the CPTs are defined
similarly but with values of y swapped.

X1 X2 X3 X4 X5

B

2 2 2 2 2

2

3

Y3

Y2

X5X4X3X2X1

2 2 2 2 2

3

3

Y4

Fig. 1. The graph after the CP decomposition (left) and the parent divorcing method
with consequent moralization (right) for k = 5 and � = 1. The small numbers attached
to nodes represent number of states of corresponding variables.

In the moralization step all parents of each node are pairwise connected by an
undirected edge and directions of edges are removed. Finally, the last auxiliary
node is connected to the last parent node by an undirected edge. The table
corresponding to clique {Yk−1, Xk} is for the observed value y of Y defined as

P (Y = y|Yj−1 = y′, Xj = x) =

⎧⎨⎩
1 if either 	 = y′ + x and y = 1 or

	 �= y′ + x and y = 0
0 otherwise.

Table Size

The table size is the number of numerical values (memory units) that are needed
to represent all tables of a CPT. In Table 2 we compare the table size of CPT
after the real approximate (tsCPa) and real exact CP decompositions (tsCPe) of
	-out-of-k tensors compared with the parent divorcing (PD) method (tsPD) and
the full table size (tsf ). The table sizes were for given k ≥ 4 and (k− 1) ≥ 	 ≥ 1
computed by following formulas:
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tsCPa = 2kmin{k − 	+ 1, 	+ 1}
tsCPe = 2k2

tsPD =

k−1∑
j=2

2min{j, k − 	+ 2, 	+ 2} ·min{j + 1, k − 	+ 2, 	+ 2}

+2min{k − 	+ 2, 	+ 2}
tsf = 2k

Table 2. Table size for the real approximate and real exact CP decompositions com-
pared with the parent divorcing (PD) method and the full table size. On the right we
present a plot of table sizes for k = 8. The table sizes for decompositions of (k − �)-
out-of-k tensors are the same as of �-out-of-k by their construction.

CPT tsCPa tsCPe tsPD tsf
1-out-of-4 16 32 36 16
2-out-of-4 24 32 44 16
1-out-of-5 20 50 54 32
2-out-of-5 30 50 76 32
1-out-of-6 24 72 72 64
2-out-of-6 36 72 108 64
3-out-of-6 48 72 136 64
1-out-of-7 28 98 90 128
2-out-of-7 42 98 140 128
3-out-of-7 56 98 186 128
1-out-of-8 32 128 108 256
2-out-of-8 48 128 172 256
3-out-of-8 64 128 236 256
4-out-of-8 80 128 292 256
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5 The Game of Minesweeper

In [13] the computer game of Minesweeper was used to illustrate a few modeling
tricks utilized when applying Bayesian networks in real applications. In [10] this
game was used to illustrate the benefits of CP tensor decompositions of CPTs of
noisy exact 	-out-of-k functions. In this paper we will use the Bayesian network
model of this game to compare exact and approximate CP tensor decompositions
of deterministic CPTs of exact 	-out-of-k functions.

Minesweeper is a one-player game. The game starts with a grid of n×m blank
fields. During the game the player clicks on different fields. If the player clicks on
a field containing a mine the game is over. Otherwise the player gets information
on how many fields in the neighborhood of the selected field contain a mine. The
goal of the game is to find all mines without clicking on them. In Figure 2 two
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Fig. 2. Two screenshots from the game of Minesweeper. The screenshot on the right
hand side is taken after the player stepped on a mine and it shows the actual position
of mines.

screenshots from the game are presented. More information about Minesweeper
can be found at Wikipedia [14].

The Bayesian network of Minesweeper contains two variables for each field
on the game grid. One variable is binary and corresponds to the (originally un-
known) state of each field of the game grid. It has state 1 if there is a mine on this
field and state 0 otherwise. The second variable corresponds to the observation
made during the game. It has state variables on the neighboring positions in the
grid as its parents. It conveys the number of its neighbors with a mine. Thus,
its number of states is the number of its parents plus one. Its CPT is defined by
the addition function. Whenever an observation is made the corresponding state
variable can be removed from the BN since its state is known. If its state is 1
the game is over, otherwise its state is 0. When evidence from an observation
is distributed to its neighbors the node corresponding to the observation can be
removed. By entering evidence to a CPT of addition a table of exact 	-out-of-k
function is created. Variables from the second set that were not observed are not
included in the BN model since they are barren variables [2, Section 5.5.1]. The
above considerations implies that in every moment of the game we will have at
most one node for each field of the grid and all tables in the BN are either one
dimensional priors that are the same for each position or tables of exact 	-out-of-
k function. Thus, the BN of Minesweeper represent a good test bed for inference
algorithms exploiting the local structure of tables of 	-out-of-k functions. This
paragraph is a digest of a more detailed description of the BN of Minesweeper
in [10, Section 7.1].

In Figure 3 we present an example of the game grid after 175 random obser-
vations of fields without a mine from the point of view of a game oracle. The
players do not see the positions of mines.
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S(1, 3)

S(2, 8)

Fig. 3. The game grid after 175 random observations. The points ”.” represent covered
fields without a mine, crosses ”x” represent covered fields with a mine. The numbers
correspond to uncovered fields and give the number of mines in the neighborhood.
The neighborhoods of 2 out of 175 observed fields are denoted by rectangles. In the
corresponding steps of the game the CPTs S(1, 3) and S(2, 8) are added to the Bayesian
network. Note that nodes of observed fields are connected to uncovered fields only –
therefore we add CPT S(1, 3) instead of S(1, 8).

6 Numerical Experiments

We performed experiments with Minesweeper of 20 × 20 grid size. We imple-
mented all algorithms in the R language [15]. In each of 350 steps of the game
the oracle randomly selected a field to be observed from those 350 not contain-
ing a mine and we created a Bayesian network corresponding to that step. We
compared two transformations:

– the standard method consisting of moralization and triangulation steps and
– the CP tensor decomposition applied to CPTs with higher number of par-

ents3 – for other CPTs we used the moralization followed by the triangulation
step.

In both networks we used the lazy propagation method [16] which is junction
tree based methods where the computations are performed with messages that
are kept as long as possible as lists of tables.

3 We applied CP tensor decomposition only when the total size of created tables was
less than the size of the table after moralization. Roughly speaking, this happened
when the number of parents was higher than three for the approximate methods and
higher than six for the exact method.
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Fig. 4. Results of the experiments for the real exact decompositions – (a) and (b),
the real approximate decompositions – (c) and (d), and the complex approximate
decompositions – (e) and (f).
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At each step of the game we recorded (1) decadic logarithm of the size of the
largest table created during the lazy propagation and (2) the conditional marginal
probabilities given current observations computed by (1) the standard method
and three versions of methods exploiting the CP tensor decomposition: (2) the
real exact decompositions, (3) the real approximate decompositions, and (4) the
complex approximate decompositions. The value of parameter x was set to 10.

For the results of experiments see Figure 4. All values represent the average
over ten different games. The plots in the first column present the decadic loga-
rithm of the size of the largest table created at each step of the game. The plots
in the second column present the average error (measured by the absolute value
of difference) of the conditional marginal probabilities.

We can see that when using exact CP tensor decomposition the size of largest
tables are not reduced but there is no approximation error (as expected). When
the real or complex approximate CP tensor decomposition is used at some stages
of the game the size of largest tables is reduced by an order of magnitude. But
this is achieved at an expense of a certain loss of the accuracy. The loss is lower
for the complex CP tensor decomposition (ranging from 0 to 0.2) than for the
real CP tensor decomposition (ranging from 0 to 0.25). Unfortunately, for some
particular configurations the approximation error is high. The numerical stability
of probabilistic inference seems to be an important issue here – however, we did
not study this issue in depth and leave it as a topic for our future research.

7 Conclusions

The reduction of maximal table size is important for applications where large
tables imply memory requirements that forbid using standard probabilistic infer-
ence schemes based on moralization and triangulation. The game of Minesweeper
is a prototype application, where the tensor decomposition approach can be re-
ally useful for reducing computational load of the inference mechanism. For this
particular game, the computational savings are low, if any, because the maxi-
mum number of parents (order of the probability tables) is at most 8. However,
we can imagine more complex situations, where the number of parents is higher.
In such cases the computational advantage would be more apparent.

We can consider, for example, a 3D generalization of Minesweeper, where each
field has not only 8 but 26 neighbors. The complexity of such problem would
grow significantly. We believe that the tensor decompositions presented in this
paper might be very suitable for the probabilistic inference in Bayesian networks
of such a type.
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3. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer (2007)

4. Dı́ez, F.J., Druzdzel, M.J.: Canonical probabilistic models for knowledge engineer-
ing.Technical Report CISIAD-06-01, UNED, Madrid, Spain (2006)

5. Dı́ez, F.J., Galán, S.F.: An efficient factorization for the noisy MAX. International
Journal of Intelligent Systems 18, 165–177 (2003)

6. Savicky, P., Vomlel, J.: Exploiting tensor rank-one decomposition in probabilistic
inference. Kybernetika 43(5), 747–764 (2007)

7. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional
scaling via an n-way generalization of Eckart-Young decomposition. Psychome-
trika 35, 283–319 (1970)

8. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions
for an ”explanatory” multi-mode factor analysis. UCLA Working Papers in Pho-
netics 16, 1–84 (1970)
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Compression of Bayesian Networks

with NIN-AND Tree Modeling

Yang Xiang and Qing Liu
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Abstract. We propose to compress Bayesian networks (BNs), reducing
the space complexity to being fully linear, in order to widely deploy in
low-resource platforms, such as smart mobile devices. We present a novel
method that compresses each conditional probability table (CPT) of an
arbitrary binary BN into a Non-impeding noisy-And Tree (NAT) model.
It achieves the above goal in the binary case. Experiments demonstrate
that the accuracy is reasonably high in the general case and higher in
tested real BNs. We show advantages of the method over alternatives on
expressiveness, generality, space reduction and online efficiency.

Keywords: Bayesian networks, causal models, local distributions,
approximation of CPTs, NIN-AND tree models.

1 Introduction

The space complexity of a discrete BN of μ variables, each with up to n parents
and up to κ possible values, is O(μ κn). Consider a BN that has at least 25
variables (among others) whose CPTs satisfy κ = 6 (perhaps due to discretizing
continuous variables) and n = 8. With 4 bytes per probability, this BN takes
a space of about 25 ∗ 68+1 ∗ 4 ≈ 1 gigabytes, more than the full memory of
iPhone 5s, making it undeployable in such a device. We propose to compress BNs
so that they can be widely deployed in low-resource platforms, such as smart
mobile devices and intelligent sensors. Specifically, the reported research has the
ultimate goal to reduce the BN space complexity from O(μ κn) to O(μ κ n)
(fully linear). An important contribution of this paper is the accomplishment of
this goal for the case κ = 2.

A compression method must maintain the expressiveness of the BN reason-
ably well and enable more efficient inference. The combination of space and time
reduction is the key to broader applications of BNs in low-resource platforms.
Many existing techniques aimed at reducing parameter complexity in BNs to
ease knowledge acquisition can be viewed from the perspective of space reduc-
tion. QPNs [1] represent qualitative influences by signs without using numerical
parameters. They are limited in expressiveness and cannot resolve parallel in-
fluences of opposite signs, although they have been extended to alleviate the
limitation, e.g., [2]. Coarsening [3] reduces κ to τ < κ, but the space complexity
is still exponential on n (i.e., O(μ τn)). Divorcing [4] cuts down the value of n,
reducing the space exponentially, but is not always applicable. The noisy-OR
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[5] and several causal independence models, e.g., [6,7], reduce space complexity
to being linear on n. They capture only reinforcing causal interactions and are
limited in expressiveness. A NAT model [8] can also express undermining and is
more expressive. Assuming that a BN family (a child plus its parents) satisfies
a NAT model, it can be recovered by exhaustively evaluating alternative NATs
[9]. The space of the junction tree of a BN is reduced in lazy propagation [10].

We present a novel method, denoted TDPN (Tree-Directed, Pci-based Nat
search), to compress an arbitrary binary (κ = 2) BN CPT into a NAT model. It
overcomes limitations of several alternatives discussed above on expressiveness,
generality and efficiency. The compression process consists of an offline and an
online stage. A novel search tree is constructed offline and is used online to
reduce the search space of NAT structures. Numerical search for parameters is
performed over the subspace to yield a compressed model.

Section 2 reviews the background on NAT models. The main idea of TDPN is
described in Section 3. Its key components are elaborated in Sections 4 through
8. Section 9 reports empirical evaluations. We analyze the advantages of TDPN
over alternatives in Section 10.

2 Background on NIN-AND Tree Models

We briefly introduce terminologies on NAT models and more details are found in
[9]. A NAT model is defined over an effect variable e and a set C = {c1, ..., cn}
of uncertain causes, where e ∈ {e−, e+}, e+ denotes e = true, n ≥ 2, and
ci ∈ {c−i , c+i }. The probability of a causal success, where ci caused e to occur
when other causes are false, is denoted P (e+ ← c+i ) and is referred to as a
single-causal (probability). Similarly, P (e+ ← c+1 , c

+
2 ) is a double-causal or multi-

causal. Causal and conditional probabilities are related. If C = {c1, c2, c3}, then
P (e+|c+1 , c+2 , c−3 ) = P (e+ ← c+1 , c

+
2 ). With X = {c1, c2} ⊂ C, the multi-causal is

also written as P (e+ ← x+). The probability of the corresponding causal failure
is P (e− ← x+) = 1− P (e+ ← x+). When all causes are false, the effect is false,
i.e., the leak probability is P (e+|c−1 , c−2 , c−3 ) = 0.

Causes reinforce each other if they are collectively at least as effective as when
only some act. They undermine each other if collectively they are less effective.
A NAT expresses reinforcing and undermining between individual causes as well
disjoint subsets. Fig. 1 (a) shows a NAT over C = {c1, ..., c4}, where black nodes
are labeled by causal events. Undermining between c1 and c2 is encoded by a
direct Non-Impeding Noisy-AND (NIN-AND) gate g1. The gate dictates P (e+ ←
c+1 , c

+
2 ) = P (e+ ← c+1 )P (e+ ← c+2 ). Hence, P (e+ ← c+1 , c

+
2 ) < P (e+ ← c+i ) for

i = 1, 2 (undermining). The similar holds for c3 and c4. Subsets {c1, c2} and
{c3, c4} reinforce each other, encoded by a dual NIN-AND gate g3. The left input
event to g3 is causal failure e− ← c+1 , c

+
2 , where the white oval negates an event.

Gate g3 dictates P (e− ← c+1 , c
+
2 , c

+
3 , c

+
4 ) = P (e− ← c+1 , c

+
2 )P (e− ← c+3 , c

+
4 ).

Hence, we have P (e+ ← c+1 , c
+
2 , c

+
3 , c

+
4 ) ≥ P (e+ ← c+1 , c

+
2 ) (reinforcing).

A NAT model is a tuple M = (e, C, T, Sp), where |C| = n, T is a NAT over e
and C, and Sp is a set of n single-causals. M uniquely defines a CPT PM (e|C).
Hence, a NAT modeled-CPT has a space complexity linear on n.
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Fig. 1. (a) A NAT of 4 root events, (b) its root-labeled tree of 4 roots, and (c) a NAT
of n = 7 causes with labels omitted

A NAT can be concisely represented as a root-labeled tree by omitting gates
and non-root labels, and simplifying root labels, as shown in Fig. 1 (b). From
the root-labeled tree and the type of leaf gate g3, the NAT in (a) is uniquely
determined. Hence, each root-labeled tree encodes two distinct NATs.

A NAT defines a pairwise causal interaction (PCI) function from pairs of
causes to the set {u, r} (undermining or reinforcing). For instance, the NAT in
Fig. 1 (a) defines pci(c1, c2) = u and pci(c1, c4) = r. Given an order of cause pairs,
denoting {u, r} by {0, 1}, a PCI pattern (bit string) is derived from the function.
Using the order (〈c1, c2〉, 〈c1, c3〉, 〈c1, c4〉, ...), the PCI pattern from Fig. 1 (a) is
(u, r, r, ...) or (0, 1, 1, ...). Each NAT has a unique PCI pattern [11].

3 Tree-Directed, PCI-Based NAT Search

We consider how to compress a target CPT PT into a NAT model M . In other
words, we approximate PT by PM (the CPT defined by M). The accuracy of
approximation is measured by the average Euclidean distance (denoted by ED)
below, where K = 2n. The range of ED is [0, 1] and matches that of probability.

ED(PT , PM ) =

√√√√ 1

K

K∑
i=1

(PT (e+|c+i )− PM (e+|c+i ))2

When ED(PT , PM ) = 0, the approximation is perfect. This is not possible for
every PT in general. Hence, M∗ that minimizes ED is deemed optimal.

A related problem was solved [9] where e and C are assumed to observe an
underlying NAT model. Single-causals and double-causals are estimated from
observed frequencies, from which a PCI pattern is derived. The pattern is com-
pared with that of every alternative NAT, and a best matching NAT plus the
single-causals define the output model. Although the method works well, it does
not solve the current problem.

First, PT does not always yield a well-defined PCI pattern. A bit pci(ci, cj) = u
in a PCI pattern is well-defined if P (e+ ← c+i , c

+
j ) < P (e+ ← c+k ) (k = i, j), and

pci(ci, cj) = r is well-defined if P (e+ ← c+i , c
+
j ) ≥ P (e+ ← c+k ). The PCI bit
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pci(ci, cj) is not well-defined when PT yields P (e+ ← c+i ) < P (e+ ← c+i , c
+
j ) <

P (e+ ← c+j ), and nor is the corresponding PCI pattern.
Assuming an underlying NAT model, the above case may still occur due to

sampling errors. It can be corrected by soft PCI identification [9]. That is, if ci
and cj are closer to undermining than reinforcing, treat them as undermining.
In particular, assign pci(c1, c2) = u if the following holds,

|P (e+ ← c+1 , c
+
2 )−min(P (e+ ← c+1 ), P (e+ ← c+2 ))|

< |P (e+ ← c+1 , c
+
2 )−max(P (e+ ← c+1 ), P (e+ ← c+2 ))|,

and assign pci(c1, c2) = r otherwise. This heuristics often recovers correct PCI
bits.

Given an arbitrary PT , interaction between a pair of its causes may be neither
undermining nor reinforcing. Hence, softly identified PCI bits do not always lead
to an accurate PM . On the other hand, requiring well-defined PCI bits leads to
a partial PCI pattern with missing bits.

Second, single-causals estimated from frequencies are directly used in the out-
put model. This works well when the underlying model is a NAT and the NAT
is recovered correctly. For an arbitrary PT (not a NAT model in general), no
matter which NAT is used, its combination with the single-causals directly from
PT is unlikely to yield an accurate PM . We demonstrate this in Section 9.

In additional to these fundamental limitations, the method evaluates NATs
exhaustively. The number of alternative NATs is O(n! 0.386−n n−3/2) [12]. Even
though n is not unbounded in BN CPTs, the exhaustive NAT evaluation can be
costly for larger n values.

To overcome these limitations, we propose a new method, TDPN, for ap-
proximating an arbitrary PT with a NAT model. The basic idea is to organize
seemingly incomparable NATs in a search tree based on their PCI patterns.
Through the search tree, a partial pattern retrieves a small number of promising
candidate NATs. Only these NATs are evaluated, which greatly improves effi-
ciency. Rather than using the single-causals directly from PT , they are searched
during evaluation of the candidate NATs.

TDPN consists of an offline and an online phase. The offline phase is conducted
before PT is given. It enumerates root-labeled trees of n roots and constructs a
PCI pattern based search tree (PST). Each non-root node of PST is assigned a
value of a PCI bit. Each path from the root to a leaf is the PCI pattern of a NAT.
For each n value, a PST is constructed offline and is reused online to process
any PT of n causes. Sections 4 and 5 elaborate on PST and its construction. The
online phase below starts when a PT is given.

1. Identify a well-defined partial PCI pattern Pat from PT .
2. Use Pat to retrieve a set of candidate NATs from the PST.
3. For each candidate, search for single-causals so that the resultant NAT model

M minimizes ED(PT , PM ).
4. From the above candidate NAT models, select M∗ of the minimum ED as

the approximate NAT model of PT .

Steps 2 and 3 are elaborated in Sections 6 and 7.
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4 PCI Pattern Based Search Trees

A PST is used to retrieve candidate NATs according to a given PCI pattern.
First, we specify the PST for retrieving a single NAT from a full PCI pattern.

A NAT of n roots defines a PCI pattern of N = C(n, 2) bits. A PST for a
given n has N + 1 levels, indexed from 0 to N , with the root t placed at level
0. Each level k > 0 is associated with a PCI bit, and each node at the level is
labeled by a bit value u or r. All leaf nodes occur at level N . A leaf z exists iff
the path from t to z forms the PCI pattern of a NAT, and the NAT is assigned
to z. For each node y at level k < N , y has a child node x iff bit values at y and
x are part of a well-defined PCI pattern.

A PST for n = 3 is shown in Fig. 2. It has 4 levels (N = 3). Levels 1 to 3
are labeled by PCI bit values. The NAT assigned to each leaf is indicated by an
arrow. This PST (n = 3) is the only balanced one. For instance, when n = 4, we
have N = 6. A balanced binary tree of 7 levels has 2N = 64 leaf nodes, but the
PST has only 52 leaf nodes (for 52 NATs). From a PCI pattern, e.g., (r, u, r), a
path in the PST can be followed to retrieve a NAT, e.g., T6. It takes O(n2) time
(since N is quadratic in n).

Fig. 2. A PST for n = 3 with the NATs at the bottom

If PT yields a partial PCI pattern, all NATs whose PCI patterns are consistent
with the partial pattern need to be retrieved. A partial pattern missing m > 0
bits has up to 2m consistent NATs. Following these paths takes O(2mn2) time.
We enhance the PST below so that the retrieval from a pattern of m missing
bits takes O(n2 −m) time at best (see below) and O(2mn2) time at worst.

After the above PST is formed, index NATs assigned to leaves from left to
right in ascending order. Thus, for any node x, the NATs assigned to leaves
under x are consecutively indexed. These indexes can be specified by an interval
[i, j], which is used to label x. For leaf x, specify i = j.
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In Fig. 2, NATs assigned to leaves are indexed from left to right at 0 through
7, e.g., T7 is indexed at 6. If the m missing bits are located at the deepest levels,
the search for NATs follows a single path to the level N−m only, and the interval
at the last node contains all NATs consistent with the partial pattern. It takes
O(n2 − m) time. For example, the pattern (r, u, ?) leads to the node with the
interval [4, 5] and retrieves T1 and T6.

5 PST Construction

Let W be the number of distinct NATs of n causes. Before building a PST for n,
the W NATs are enumerated [13]. For each NAT, treat its PCI pattern as a base-
2 number R = (a0, ..., aj , ..., aN−1), where aj ∈ {0, 1} = {u, r} and its position
has weight 2N−1−j. We refer to PCI patterns and PCI numbers interchangeably.

Algorithm 1. SetPST
Input: the number n of causes; the set of W NATs;

1 for each NAT, compute R = (a0, ..., aj , ..., aN−1);
2 sort PCI numbers ascending into (R0, ..., RW−1);
3 sequence corresponding NATs as (T0, ..., TW−1);
4 initialize PST to contain root t;
5 label t by interval [0,W − 1] and lower bound B = 0;
6 initialize set Fringe = {t};
7 for level k = 0 to N − 1,
8 Leaves = ∅;
9 for each v ∈ Fringe with labels [i, j] and B,
10 remove v from Fringe;

11 B′ = B + 2N−(k+1);
12 if Rj < B′,
13 add left child x to v and insert x to Leaves;
14 label x by ak = 0, [i, j] and B;
15 else if Ri ≥ B′,
16 add right child y to v and insert y to Leaves;
17 label y by ak = 1, [i, j] and B′;
18 else
19 add left child x and right child y to v;
20 insert x and y to Leaves;
21 search index d in (Ri, ..., Rj) such that Rd−1 < B′ and Rd ≥ B′;
22 label x by ak = 0, [i, d− 1] and B;
23 label y by ak = 1, [d, j] and B′;
24 Fringe = Leaves;
25 return PST;

To compute the interval [i, j] for each PST node x, associate x with a lower
bound of PCI numbers for NATs assigned to leaves below x. The lower bound
is discarded once the PST is completed.
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Construction of a PST starts at level 0 and proceeds to each deeper level.
Current leaf nodes are maintained in a set Fringe. Newly generated leaf nodes
are recorded in a set Leaves. SetPST specifies details of construction.

Lines 12 to 23 expand a current leaf by one child or both, depending on
whether each leads to a NAT. Hence, a PST is generally imbalanced. Its size
is about 2W . W has the complexity of O(n! 0.386−n n−3/2) [12] and so does
SetPST. It grows faster than n!. Fortunately, PSTs are reusable and can be
constructed offline once for all.

6 Search for Candidate NATs

At online time, after a well-defined partial PCI pattern Pat is obtained from PT ,
candidate NATs whose PCI patterns are consistent with Pat are retrieved using
a PST. For a given Pat, some deep PST levels may not be involved, and need
not be loaded. Each unloaded deep level reduces the loading time and space by
half. Given the O(n! 0.386−n n−3/2) space complexity of PST, such saving is
worthwhile.

Denote the set of bits in Pat by Bits. The partially loaded PST includes only
top levels of the full PST such that all bits in Pat are covered. Denote the PCI
bit for level i > 0 by bi. We assume that the PST has K +1 levels (K ≤ N) and
bK ∈ Bits.

The retrieval starts from the root t. Each path consistent with Pat is followed
to a node at level K, where the interval specifies candidate NATs. If b1 ∈ Bits,
one child of t is followed, according to the value of b1 in Pat. Otherwise, both
child nodes of t are followed. In general, when the loaded PST includes PCI bits
absent from Bits, multiple nodes at a given level may be followed. They are
maintained in a set Front. GetCandidateNAT specifies details of the retrieval.

A Pat extracted from PT may be invalid (no defining NATs). This condition
is captured in line 10, where no PST path is consistent with Pat and hence an
empty candidate set is returned. To handle such cases, one option is to con-
tinue as if the error causing bit is a missing bit. It will guarantee an non-empty
candidate set in the end.

From uniqueness of PCI pattern [11] and construction of PST by SetPST, it
can be proven that, given any well-defined Pat, GetCandidateNAT will return
exactly the set of NATs whose PCI patterns are consistent with Pat. As shown
in Section 4, the time complexity is O(2mn2).

A refinement to SetPST and GetCandidateNAT can be devised to improve
efficiency for both. As mentioned before, each root-labeled tree corresponds to
two NATs T0 and T1, differing in the type of leaf gate. Hence, their PCI patterns
are bitwise complement of each other. Consider a PST built by SetPST. Let x be
the leaf assigned with T0, and y be the leaf assigned with T1. On the path from
root t to x, the PCI bit value at each level is the complement of the corresponding
bit value on the path from t to y. That is, the path from t to x is the bitwise
complement of the path from t to y.
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Algorithm 2. GetCandidateNAT
Input: a partial pattern Pat over a set Bits of PCI bits; a PST of K + 1 levels
(K ≤ N) that covers Bits;

1 initialize Front = {t}, where t is the root of PST;
2 for level i = 1 to K,
3 Temp = ∅;
4 if bi ∈ Bits,
5 retrieve value bi = vi in Pat;
6 for each x ∈ Front,
7 remove x from Front;
8 if x has child y whose bit value is vi,
9 add y to Temp;
10 if Temp = ∅, return ∅;
11 else
12 for each x ∈ Front,
13 remove x from Front;
14 add each child of x to Temp;
15 Front = Temp;
16 initialize Candidates = ∅;
17 for each x ∈ Front with interval [i, j],
18 Candidates = Candidates ∪ {Ti, ..., Tj};
19 return Candidates;

This observation allows to refine SetPST and to construct a PST only for
NATs of direct leaf gates. The reduced PST relative to that in Fig. 2 is shown
in Fig. 3. With the reduced PST, GetCandidateNAT must be run twice and the
candidate set is the union of results from both runs. The 2nd run assumes the
bit value complement at each node and a dual leaf gate for each NAT.

Fig. 3. A PST for NATs of direct leaf gates

This refinement reduces the time of SetPST to half and reduce the space of
the PST to half. For GetCandidateNAT, the total search time in both runs is
equivalent to the time used before. Since the half-sized PST needs to be loaded
only once, the load time is reduced to half.
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7 Parameter Search by Steepest Descent

After candidate NATs are obtained, single-causals must be obtained to fully spec-
ify corresponding NAT models. It is possible to use the single-causals defined by
the target CPT PT . However, this option, though efficient, does not usually lead
to accurate compressed NAT models, as we demonstrate in Section 9. Instead,
TPDN searches single-causals for each NAT so that the resultant model M mini-
mizes ED(PT , PM ). To this end, we apply the method of steepest descent, where
a point moves along the surface of a multi-dimensional function, in the direction
of the steepest descent, until the gradient is less than a threshold. Alternative
techniques, e.g., simulated annealing, may be used instead.

Descent is guided by the function ED(PT , PM ) between the target CPT PT

and the CPT PM of a candidate NAT model M . The search space has the
dimension n, where each point p is a vector of n single-causals. Each single-
causal is bounded in (0, 1). To guard against finding a local extremum, multiple
searches are randomly started for each given NAT. If they converge to a single
point, the confidence increases that it is the global extremum.

8 Anytime Approximation

The TDPN presented above extracts a well-defined partial PCI pattern Pat
from PT and uses it to search for candidate NATs. As Pat is a heuristic guide
to focus evaluation of alternative NATs, there is no guarantee that candidate
NATs consistent with Pat include the best NAT. The number of bits in Pat
directly affects the number of candidate NATs. The shorter Pat is, the larger
the number of candidate NATs and the more accurate the resultant NAT model.
On the other hand, evaluating more NATs is more costly, due primarily to time
for steepest descent. To balance accuracy and efficiency, we present an anytime
enhancement to TDPN that constrains the model approximation computation
by a user specified time limit.

LetW be the number of NATs of n causes, rt be the average runtime for steep-
est descent per NAT, Rt be the user specified runtime, and m be the number
of missing bits in Pat. The number of candidate NATs that can be processed
in Rt time is about Rt/rt. The number of NATs consistent with a PCI pat-
tern of m missing bits is about 2m−C(n,2) W . Hence, the largest m such that
2m−C(n,2) W < Rt/rt best balances accuracy and efficiency, given the user time.

What remains is to decide the m missing bits. Suppose PT yields C(n, 2)−m′

well-defined PCI bits. If m > m′, then m −m′ deepest bits in PST (Section 4)
can be dropped from Pat before it is used for NAT retrieval. If m < m′, then
m′ −m soft-identified PCI bits that are shallowest in PST can be added. This
ensures a Pat of C(n, 2) − m length, where well-defined PCI bits are used as
much as possible.
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9 Experimental Evaluation

To evaluate the effectiveness of TDPN, we conducted four groups of experiments.
The 1st group compares approximation accuracy of TDPN with the optimal
baseline, the 2nd compares TDPN with the well-known noisy-OR, and the 3rd
demonstrates effectiveness of the anytime enhancement to TDPN. Five batches
of target CPTs (a total of 353 CPTs) were used in these experiments. The 4th
group examines the offline PST construction time.

Approximation Accuracy. The 1st group mainly evaluates the approximation
accuracy of TDPN. The 1st batch of 99 target CPTs were randomly generated
(the most general targets), where n = 4 and the leak probability is 0 (Section 2).

For comparison, the approximation accuracy by exhaustive search over all
NAT models is used as the baseline. We refer to the method by OP. The choice
of n = 4 (with W = 52) was made because running OP for a larger n value is
much more costly, e.g., W = 472 for n = 5.

For each target CPT PT , OP computes an optimal NAT model as follows.
For each distinct NAT, the best set of single-causals is obtained by steepest
descent and ED of the resultant NAT model is calculated. The model of the
minimum ED is selected by OP. Note that exhaustive search over all NATs by
OP is the same as an earlier method [9]. On the other hand, the earlier method
uses single-causals from the target CPT, while OP produces them by steepest
descent. Hence, the ED resultant from OP signifies the best accuracy that NAT
models can achieve.

For each PT , a NAT model is also obtained by TDPN, as well as its ED. If
TDPN selects the same NAT as OP, then difference between the two EDs is
zero, and the performance of TDPN for this PT is deemed optimal.

The 1st box in Fig. 4 (left) depicts EDs obtained by OP, where ends of
whiskers represent the minimum and maximum. The sample mean is 0.1787.
It shows that, under the most general condition, NAT model approximation can
achieve a reasonably high accuracy, while reducing the CPT complexity from
being exponential to being linear on n.

The 2nd box in Fig. 4 (left) depicts EDs by TDPN. Out of 99 target CPTs,
TDPN selected the same NAT as OP in 69 of them. The sample mean of EDs
is 0.1855 and is fairly close to that of OP. Fig. 4 (right) shows the runtime
comparison between OP (average 7.7 sec) and TDPN (average 0.8 sec). This
result shows that PCI heuristics of TDPN works well. Using 10% of time of OP,
TDPN either found the optimal NAT model or one very close to the optimal.

The runtime ratio of OP versus TDPN is expected to grow more than expo-
nentially on n (in favour of TDPN). This is due to super-exponential growth of
W on n and the same growth of OP runtime. On the other hand, the number
of NATs evaluated by TDPN is determined by the length of the partial PCI
pattern and can be well controlled through the anytime enhancement.

Each PT was also run with a modified version (SOFT) of TDPN. Instead of
using a well-defined, partial PCI pattern, SOFT uses soft PCI identification [9]
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Fig. 4. Left: Boxplot of EDs of NAT models by OP, TDPN, SOFT, TARSC and NOR
from the 1st batch of target CPTs. Right: Runtime by OP, TDPN and NOR in msec.

(introduced in Section 3) and a full, softly-defined PCI pattern. The 3rd box in
Fig. 4 (left) depicts EDs by SOFT. Out of 99 target CPTs, it selected the same
NAT as OP did in 30 of them (less than half compared to TDPN). Its sample
mean of EDs is 0.2550 and much worse than TDPN, relative to the OP baseline.
This comparison demonstrates the superiority of partial PCI patterns consisting
of only well-defined PCI bits.

In addition, each PT was run with an earlier method [9], referred to as TARSC.
It can be viewed as a modified OP, where single-causals of the target CPT are
used directly. The 4th box in Fig. 4 (left) depicts EDs by TARSC. It selected the
same NAT as OP did in 54 of them and its sample mean of EDs is 0.2234. Even
though TARSC searches NATs exhaustively, it performed worse than TPDN,
relative to the OP baseline. This comparison demonstrates the benefit of single-
causal search by steepest descent.

The results by SOFT and TARSC show that the existing technique [9] for
recovering underlying NAT models does not work well for compressing gen-
eral CPTs. Hence, the innovations in TDPN (well-defined PCI bits, partial PCI
patterns, PST guided search, and single-causals by steepest descent) are both
effective and necessary.

Comparison with Noisy-OR. The 2nd group of experiments compares TDPN
with noisy-OR approximation. For each PT , the latter method (NOR) searches
single-causals of a noisy-OR model by steepest descent.

The result of running NOR on the 1st batch of target CPTs is shown by the
5th box in Fig. 4 (left). For two target CPTs, NOR selected the same NAT as OP
did, compared with 69 by TDPN. The sample mean of EDs by NOR is 0.2662.
In comparison, TDPN is much more accurate, relative to the OP baseline.

Both NOR and TPDN were run on a 2nd batch of 100 randomly generated
noisy-OR target CPTs (each CPT follows a noisy-OR model) with n = 7. For
each PT , TDPN returned the same NAT as NOR did without exception. The
EDs by both methods are about 0.0013, and both ran about 1.5 seconds per
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target CPT. Hence, TDPN performs equally well as NOR when the underlying
CPT is the noisy-OR. This result confirms the generality of NAT models with
noisy-OR as a special case.

NOR and TPDN were run on a 3rd batch of 99 randomly generated NAT
CPTs (each CPT follows a NAT model) with n = 7. An example NAT is in
Fig. 1 (c). The ED performance of both methods are shown in Fig. 5 (left). Since
each target CPT is a NAT model, TPDN was able to express the target model
accurately, and hence close to zero ED. On the other hand, NOR was unable to
express undermining causal interaction between causes, and hence had a much
lower approximation accuracy. The runtimes of the two methods are shown in
Fig. 5 (right). TPDN not only compresses more accurately, but also runs faster
than NOR. This is because TDPN selected the NAT that matched well with
the target CPT, making subsequent search for single-causals converging quickly.
On the other hand, causal interactions assumed by noisy-OR did not match well
with the NAT modeled CPT, slowering down the search for single-causals.

Fig. 5. Left: Euclidean distances obtained by TDPN and NOR from the 3rd batch of
target CPTs. Right: Runtime by TDPN and NOR in msec.

The fourth batch was run on target CPTs from three real BNs: Alarm [14],
Hailfinder [15], and HeparII [16]. Since all three BNs use multi-valued variables,
they were coarsened equivalently into binary, and target CPTs were collected
from all variables of 3 or more parents since a non-trivial NAT model has at
least 3 causes. A total of 25 target CPTs were collected: 3 from Alarm, 6 from
Hailfinder, and 16 from HeparII. Among them, 14 CPTs have n = 3, 7 CPTs
have n = 4, 3 CPTs have n = 5, and one CPT has n = 6.

The ED performances of TPDN and NOR are shown in Fig. 6. For almost all
target CPTs, the data points are above the X = Y line, signifying smaller ED
by TPDN. A Friedman test with k = 2 [17] resulted in the test statistic 8.8947,
which is larger than the critical 0.01 χ2 value 6.63. Therefore, TDPN compresses
these real BN CPTs significantly more accurate than NOR.
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Fig. 6. Euclidean distances obtained by TDPN (X-axis) and NOR (Y-axis) from the
4th batch of target CPTs

The sample mean of EDs by TDPN over all 25 target CPTs is 0.1497. Com-
pared with 0.1855 from the random target CPTs, it suggests that TDPN approx-
imates real BN CPTs more accurately than the random CPTs. In other words,
real BN CPTs are closer to NAT models than random CPTs.

The runtimes for the 4th batch are shown in Fig. 7. Because a single model
structure was evaluated by NOR, while multiple NATs were evaluated by TDPN,
NOR runs faster. The three most time consuming CPTs in HeparII (at top of
chart) took TDPN between 16 to 50 seconds due to the need to evaluate a large
number of alternative NATs.

Fig. 7. Log10 runtimes from 4th batch in order of Alarm, Hailfinder and HeparII

By comparing TDPN runtimes between the 3rd batch (Fig. 5, mostly < 2 sec)
and 4th (up to 50 sec), we see that TDPN is able to adapt its amount of com-
putation according to the target CPT. When the target CPT is fairly close to a
NAT model, very few alternative NATs are evaluated by steepest descent. More
NATs are evaluated only when it is necessary.

Effectiveness of Anytime Enhancement. The 3rd group of experiment ex-
amines effectiveness of anytime enhancement to TDPN, where the length of a
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PCI pattern is controlled to influence the runtime and accuracy. A 5th batch
of 30 target CPTs with n = 5 were randomly generated. For n = 5, we have
N = 10. We chose to run TDPN for each PT using the following m (number of
missing bits in Pat) values: 2, 3, 4, 5, and 6. Fig. 8 summarizes the results.

Fig. 8. Left: Euclidean distances obtained by TDPN from the 5th batch of target
CPTs. Right: Runtimes in msec.

As m was increased from 2 to 6, the number of candidates NATs and runtime
was increased by more than 10 times, though still less than 30 sec. For some PT ,
the resultant ED was reduced by as much as 0.0609, and for some as little as 0.
The result shows that, with a small m value, TPDN runs fast with a reasonably
high accuracy and, with larger m values, the accuracy improves moderately with
the controlled extra time.

PST Construction Time. The 4th group of experiments examines the offline
time for NAT enumeration and PST construction. Table 1 reports the runtime
using a 2.9 GHz laptop.

Table 1. Number of distinct NATs, runtime of NAT enumeration and PST construc-
tion, in relation to n

n 6 7 8 9

# NATs 5,504 78,416 1.32 × 106 2.56 × 107

NAT enu. 110ms 0.3s 4.6s 134.5s

PST con. 828ms 16.8s 1.8h 42.9h

Table 1 shows that for n ≤ 9, construction of PSTs are practical, since it
is performed offline once for all and the resultant PSTs are reusable. Due to
conditional independence encoded in BN structures, the n value for BN CPTs
are not unbounded and are unlikely to be much larger than 9. Furthermore, for
target CPTs with n ≥ 10, it is possible to decompose the BN family into two or
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more subsets where n < 10 and to apply TDPN to each. Constructing PSTs for
n ≥ 10 will then be unnecessary. We leave this to a sequel of the current work.

10 Conclusion

This paper presents three key contributions in order to compress BNs for de-
ployment in low-resource platforms. First, we defined PCI pattern based search
trees (PSTs) and developed an algorithm for their construction. PSTs organize
seemingly incomparable NAT structures into a uniform searchable representa-
tion. PSTs enable exponential online complexity [9] to be shifted to offline and
to be incurred once for all. Second, we presented an algorithm for searching
highly promising NAT structures based on partial PCI patterns and proposed
its combination with steepest descent. This combination enables efficient online
compression of general target CPTs with reasonable accuracy. Third, our exper-
imental study demonstrated several key results: (a) many general target CPTs
can be approximated fairly well by NAT models, (b) NAT models lead to more
accurate approximations than noisy-OR models, and (c) TDPN is superior in
approximation accuracy than alternatives where either soft PCI identification or
single-causals from target CPT are used.

TDPN overcomes limitations of several existing techniques. Relative to QPNs,
a NAT-modeled BN retains the full range of probability. Relative to the noisy-
OR, NAT-modeled BNs encode both reinforcing and undermining. Hence, TDPN
leads to more expressive compression. Earlier method [9] can only recover a tar-
get CPT accurately if it is truly a NAT model. TDPN does not assume an
underlying NAT model and still achieves a reasonably high accuracy. Hence,
TDPN provides a general method to reduce the space complexity of BNs from
O(μ κn) to O(μ κ n) for κ = 2. It can be viewed as complementing techniques
such as divorcing by providing yet another alternative. Relative to coarsening
whose space complexity is still exponential on n, complexity of NAT-modeled
BNs is linear on n. Hence, TDPN has better space efficiency. The earlier method
[9] takes an exponential online time, while online computation of TDPN is effi-
cient (O(2mn2) where m is a user-controllable, small integer). BNs compressed
by TDPN support more efficient inference: lazy propagation in NAT-modeled
BNs can be one-order of magnitude faster [18].

Extension of TDPN to multi-valued NAT models where κ ≥ 2 remains the
most important for further research. We have shown that TDPN can practically
compress binary CPTs of up to at least n = 9. Although complexity of PST
construction is exponential, the computation is offline, it is incurred once for all,
and n is not unbounded in BNs. For target CPTs with n ≥ 10, promising direc-
tions include decomposition and parallel PST construction. Relaxation to target
CPTs of positive leak probabilities will also extend the generality of TPDN.
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ments. Financial support through Discovery Grant from NSERC, Canada is
acknowledged.
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Abstract. Interesting equalities have recently been discovered about
latent tree models. They relate distributions of two or three observed
variables with joint distributions of four or more observed variables, and
with model parameters that depend on latent variables. The equations
are derived by using matrix and tensor decompositions. This paper sheds
new light on the equalities by offering an alternative derivation in terms
of variable elimination and structure manipulations. The key technique
is the introduction of inverse edges.

Keywords: Matrix decomposition, parameter estimation, latent tree
models.

1 Introduction

The Expectation-Maximization (EM) algorithm, introduced by Dempster et al.
[4], is commonly used to estimate parameters of latent variable models. A well-
known drawback of EM is that it tends to get trapped in local optima. New
estimation techniques have recently been developed that do not share the short-
coming [7,5,2]. Those techniques are suitable for a class of latent variable models
called latent tree models [11,8]. They are based on matrix decompositions and
tensor computations.

Anandkumar et al. [2] further developed the techniques and provided a unified
framework in terms of low order moments and tensor decompositions. Their works
cover a number of latent variable models, including latent tree models, Gaussian
mixture models, hidden Markov models, and Latent Dirichlet allocation.

At the heart of the techniques are equalities that related model parameters to
quantities that can be directly estimated from data. Equalities of similar flavor
are discovered by Parikh et al. [10] that relate joint distributions of four or
more observed variables in a latent tree model with distributions of two or three
observed variables. Those equalities allows one to estimate the joint probability
of a particular assignment of all observed variables without estimating the model
parameters.

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 567–580, 2014.
c© Springer International Publishing Switzerland 2014



568 N.L. Zhang, X. Wang, and P. Chen

In this paper, we study the equalities in the context of latent tree models. We
augment latent tree models with what we call inverse edges. The equalities are
then derived by eliminating variables from the augmented models according to
different orders. The derivations are insightful and give intuitive explanations as
why the equalities hold.

The rest of this paper is organized as follows. In Section 2 we introduce pre-
liminary concepts and notations, and in Section 3 we introduce the key concept
of inverse edges. Equalities for joint probability estimation are derived in Section
4, and equalities for parameter estimation are derived in Section 5. Conclusions
are provided in Section 6.

2 Preliminaries

We start by introducing several technical concepts.

2.1 Markov Random Fields

A Markov random field (MRF) over a set of discrete variables is defined by a list
of potentials. Each potential is a non-negative function of some of the variables.
The product of the potentials is the joint distribution of all the variables.

An example MRF is shown in Figure 1. There are four potentials φ1(A,B),
φ2(B,C,D), φ3(D,E) and φ4(E,F ). The figure shows the structure of the MRF.
The edge between A and B indicates that there is a potential for them; the
hyperedge consisting of B, C, and D indicates the same for those three variables;
and so on.

2.2 Latent Tree Model

A latent tree model (LTM) is a tree structured MRF where the leaf nodes repre-
sent observed variables, while the internal nodes represent latent variables [11].
An example is shown in Figure 2. The variables A, B, C and D are observed,
while H and G are latent. There are multiple ways to specify parameters for the
LTM. One way is to give: P (A|H), P (B|H), P (H,G), P (C|G) and P (D|G).

A

B C

D

E F

φ1

φ2

φ3 φ4

Fig. 1. An example on Markov random fields
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A

B C

DH G

Fig. 2. An example on latent trees

A C
D

F

φ5

φ6

Fig. 3. Result of eliminating B and E from Figure 1

2.3 Variable Elimination in MRF

To eliminate a variable X from an MRF means to remove all the potentials that
involve X , compute their product, marginalize out X from the product, and add
the result to the MRF as a new potential [12].

Consider eliminating the variable B from the MRF shown in Figure 1. The
potentials φ1 and φ2 are first removed and the following new potential is created:

φ5(A,C,D) =
∑
B

φ1(A,B)φ2(B,C,D). (1)

If we further eliminate E, then the potentials φ3 and φ4 are also removed and
the following new potential is created:

φ6(D,F ) =
∑
E

φ3(D,E)φ4(E,F ). (2)

The new model is shown in Figure 3. The new structure is obtained from the
old one by deleting the edges that involve B and E, and creating two new edges
that consist of the neighbors of B and E respectively.

2.4 Matrix Representation of Potentials

For any variable X , use |X | to denote its cardinality, i.e., the number of possible
values. Denote the values of X as 1, 2, . . . , |X |. A generic value of X will be
referred to using the lower case letter x.

A potential of two variables can be represented using a matrix. Take φ1(A,B)
for example. The matrix representation of φ2(A,B) is a |A| × |B| matrix. The
value at the a-th row and b-th column is φ2(A=a,B=b). We denote this matrix
as φAB, and the value φ2(A=a,B=b) as φab.

Matrix representation allows us to write the results of variable elimination
as matrix multiplications. Let φDE , φEF , φDF be the matrix representations of
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φ3(D,E), φ4(E,F ) and φ6(D,F ) respectively. Using matrix multiplication, we
can write Equation (2) simply as

φDF = φDEφEF . (3)

For particular values a, b, c and d of the corresponding variables, denote the val-
ues φ5(A=a, C=c,D=d) and φ2(B=b, C=c,D=d) as φacd and φbcd respectively.
Use φBcd to denote the column vector where the value on the b-th row is φbcd,
and use φaB to denote the column vector where the value on the b-th row is φab.
Those notations allow us to rewrite Equation (1) as:

φacd = φT
aBφBcd, (4)

for any given value a, c and d of A, C and D,
For the probability distributions P (A|H), P (B|H), P (H,G), P (C|G) and

P (D|G) of the LTM shown in Figure 2, their matrix representations are denoted
as PA|H , PB|H , PHG, PC|G and PD|G respectively.

3 Identity and Inverse Edges

In an MRF, potentials are non-negative. In this paper, for introducing inverse
matrices or inverse edges into the potential operations, we generalize the concept
by allowing potentials to take negative values. This results in generalized MRF.
In a generalized MRF, the product of all potentials is a joint potential on all the
variables. It is not necessarily a probability distribution. Marginal potentials can
be obtained from the joint through marginalization. Variable elimination and
the corresponding manipulations with model structure are the same as in the
case of MRF. LTMs are MRFs, and hence are generalized MRFs.

3.1 Identity Edges

For the rest of this section, we consider only generalized MRFs with tree struc-
tures. Let X and X ′ be two neighboring variables that have equal cardinality.
Suppose the matrix representation φXX′ of the potential φ(X,X ′) is an identity
matrix I. Then we say that the edge (X,X ′) is an identity edge. The potential
matrix is written as IXX′ .

Let X be a variable with two or more neighbors. Splitting X into an identity
edge means to: (1) create another variable X ′ such that |X ′| = |X |, (2) divide
the neighbors of X between X ′ and X , (3) connect X ′ and X and make it an
identity edge.

In the model of Figure 4 (a), splitting the variable B results in the model of
(b). The identity edge (B,B′) is introduced. The potential matrix φB′C equals
φBC . It is the same matrix, except the rows are indexed by values of B′, not
of B.

The following theorem is obvious.
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A B C

φAB φBC

(a) A simple MRF.

A B B′ C

φAB IBB′ φB′C

(b) Obtained from (a) by split-
ting variable B into an identity
edge.

φAB φBZ φZB′ φBC

A B Z B′ C

(c) Obtained from (b) by replacing the
identity edge (B,B′) with a pairs of
edges (B,Z) and (Z,B′) that are in-
verse of each others.

Fig. 4. Illustration of identity and inverse edge introduction

Theorem 1. Let m be a generalized MRF with a tree structure, and X be a
variable in m and Y be a subset of other variables. Suppose X has two or more
neighbors. Let m′ be a new model obtained from m by splitting X into an identity
edge. Then the marginal potential of Y in the model m equals that in m′.

Another way to state the theorem is that the elimination of X ′ fromm′ results
in the model m.

3.2 Inverse Edges

Continue with the example shown in Figure 4 (b). Suppose there is another
variable Z such that |Z| ≥ |B|. Let φBZ be matrix representation for a potential
of the two variables. Construct a new model by: (a) inserting Z between B
and B′, (2) setting the potential matrix of (B,Z) to be φBZ , and (3) setting
the potential matrix φZB′ of (Z,B′) to satisfy that IBB′ = φBZφZB′ . This is
well-defined because |B′| = |B|. The new model is shown in Figure 4 (c).

It is obvious that φBZ = φ−1
ZB′ when |Z| = |B|. So, we say that (Z,B′) is the

inverse edge of (B,Z) and vice versa. Because of IBB′ = φBZφZB′ , eliminating
Z from (c) gives us (b).

In general, we have the following theorem.

Theorem 2. Suppose (X,X ′) is an identity edge in a generalized MRF m whose
model structure is a tree. Let Y be a subset of other variables. Constructing a
new model m′ by replacing the edge (X,X ′) with a pair of edges that are inverse
of each other. Then the marginal potential of Y in the model m equals that in m′.

Two remarks are in order. First, the matrix φZB′ might contain negative val-
ues even though the matrix φBZ does not. This is why we need to generalize
the concept of MRF. Second, when |Z| = |B|, the notation φZB′ in Figure 4 (c)
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can be replaced by φ−1
BZ , with the understanding the columns of the matrix are

indexed using values of B′.

4 Equalities for Joint Probability Estimation

Parikh et al. [10] have recently discovered equations about LTMs that relate
distributions of four or more observed variables to distributions of two or three
observed variables. Those equations enable the estimation of the joint proba-
bility of particular value assignments of all observed variables without having
to estimate the model parameters. The equations were derived using matrix
decomposition and tensor computation. In this section, we give an alternative
derivation using inverse edges.

4.1 Quartet Trees

We start with model shown in Figure 2. It is called a quartet model and will be
referred to as M1. We assume that all the variables have equal cardinality and
all the probability matrices have full rank. In the following, we will derive an
equation that relates P (A,B,C,D) to P (A,B,D), P (B,D), and P (B,C,D).

Starting from M1, we split the two latent nodes H and G into two identity
edges (H ′, H) and (G,G′), resulting in the model M2 of Figure 5 (a). Next, we
replace the edge (H ′, H) with a pairs of edges (H ′, D′) and (D′, H), where D′ is
new variable such that |D′| = |D|. The potential matrices for the two edges are
set as: φH′D′ = PHD and φD′H = P−1

HD . Here PHD is the matrix representation
of P (H,D). It is invertible because all the probability matrices in M1 have full
rank. So, the two edges (H ′, D′) and (D′, H) are inverse of each other. Similarly,
we replace the edge (G,G′) with two edges (G,B′) and (B′, G′) that are inverse
of each other. The resulting model M3 is shown in Figure 5 (b). According to
Theorems 1 and 2, the joint distribution P (A,B,C,D) in M3 is the same as that
in M1. In other words, eliminating D′, B′, H ′ and G′ from M3 yields M1. Note
that further eliminating H and G in M1 gives us P (A,B,C,D).

Another way to compute P (A,B,C,D) in M3 is to eliminate the variables in
the following order: H ′, G′, H , G, D′ and B′. The model M4 shown in Figure 5
(c) is that we obtain after eliminating the first four variables. In the following,
we explain how the result is obtained.

The elimination of H ′ involves three potentials. In function form, they are
P (A|H ′), P (B|H ′), and P (H ′, D′). The elimination of H ′ gives us the potential∑

H′
P (A|H ′)P (B|H ′)P (H ′, D′)P (A,B,D′).

Similarly, the elimination of G′ gives us P (B′, C,D).
The elimination of H and G also involves three potentials. In matrix form,

they are φD′H = P−1
HD, PHG and φGB′ = P−1

BG. Note that in M1 we have PHD =
PHGP

T
D|G and PBG = PB|HPHG. So, the elimination of H and G gives us the

following potential:
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(a) M2 — Result of splitting H and G
in the model of Figure 2.
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(b) M3 — Results of replacing the identity edges in M2
with pairs edges that are inverse of each other.
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(c) M4 — Result of eliminating H ′, G′, H
and G from M3. Two of the potentials are
given in function form, while the third in ma-
trix form.

Fig. 5. Transforms applied on the model of Figure 2

φD′HPHGφGB′ = P−1
HDPHGP

−1
BG

= (PT
D|G)

−1P−1
HGPHGP

−1
HGP

−1
B|H

= (PT
D|G)

−1P−1
HG(PB|H)−1

= (PB|HPHGP
T
D|G)

−1 = P−1
BD.

This is the matrix representation of the potential for the edge (D′, B′), i.e.,
φD′B′ = P−1

BD.
Finally, the elimination of D′ and B′ in M4 gives us the distribution P (A,B,

C,D). For specific values a, b, c and d of the corresponding variables, denote the
probability P (A=a,B=b, C=c,D=d) as Pabcd. It is clear that

Pabcd = PT
abDP−1

BDPBcd, (5)

where PabD and PBcd are column vectors obtained from the joint distributions
P (A,B,D) and P (B,C,D) in the way described in Section 2.4.

The following theorem summarizes the foregoing derivations, which construct
inverse edges and potentials for variable elimination:

Theorem 3. In the quartet model of Figure 2, suppose all the variables have
equal cardinality and all probability matrices have full rank. Then the distribution
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P (A,B,C,D) can be computed from P (A,B,D), P (B,D), P (B,C,D) using
Equation (5).

4.2 Observed Variables with Unequal Cardinalities

Next we generalize Theorem 3 to the case where the observed variable might
have unequal cardinalities. The latent variables are still required to have equal
cardinality and it must be no greater than the cardinality of any observed vari-
able. We further require that the probability matrices PA|H , PB|H , PHG, PC|G
and PD|G have full column rank.

The technical issue to deal with in this case is that the matrices PHD , PBG

and PBD might not be invertible.
Let the cardinality of H and G be r, and those of B and D be s and t

respectively. In model M1 we have

PBD = PB|HPHGP
T
D|G.

Because all the matrices on the right hand side have full column rank, the rank
of PBD is r. Consider the singular decomposition of PBD = UΛV T , where Λ is a
r× r diagonal matrix, U and V are s× r and t× r column orthogonal matrices
respectively. We have

PBD = PB|HPHGP
T
D|G

= PB|HPHGP
−1
HGPHGP

T
D|G

= PBGP
−1
HGPHD. (6)

Consequently,

PBGP
−1
HGPHD = UΛV T ,

UTPBGP
−1
HGPHDV = Λ.

This implies that UTPBG and PHDV are invertible.
Construct the model M3 as in the previous subsection, except that we set the

potential matrices for the edges (D′, H) and (G,B′) as follows:

φD′H = V (PHDV )−1, φGB′ = (UTPBG)
−1UT .

It is clear that the product of PHD and V (PHDV )−1 is an identity matrix. So,
the edge (D′, H) is the inverse edge of (H ′, D′). It is also clear that the product
of (UTPBG)

−1UT and PBG is an identity matrix. So, the edge (G,B′) is the
inverse edge of (B′, G′).

When we move from M3 to M4, everything is the same as in the previous sub-
section, except that the elimination of H and G now involves different potential
matrices. The result is

φD′HPHGφGB′ = V (PHDV )−1PHG(U
TPBG)

−1UT

= V (UTPBGP
−1
HGPHDV )−1UT

= V (UTPBDV )−1UT ,



A Study of Recently Discovered Equalities about LTMs 575

A

B C D

E

Fig. 6. A general latent tree model

where the last equality is due to Equation 6. This is the potential matrix for the
edge (D′, B′).

Consequently, for any specific values a, b, c and d of the variables, we have

Pabcd = PT
abDV (UTPBDV )−1UTPBcd. (7)

Theorem 4. In the quartet model of Figure 2, suppose the conditions specified
in the first paragraph of this subsection hold. Then the distribution P (A,B,C,D)
can be computed from P (A,B,D), P (B,D), P (B,C,D) using Equation (7),
where U and V are from the singular decomposition of PBD.

Note that Equation (7) is same as Equation (5) except that the matrices U
and V are used to deal with the issue that PBD might not be invertible.

4.3 General Trees

To apply Theorems 3 and 4 in general trees, we divide all the variables into four
groups S1, S2, S3 and S4 such that, when each group is viewed as a joint variable,
the relationship among them is a quartet tree. By applying the theorems, we
can compute P (S1, S2, S3, S4) to from P (S1, S2, S4), P (S2, S4), P (S2, S3, S4).
In the process, we need to invert the matrix representation of P (S2, S4). For
computational efficiency, S2 and S4 should be singletons. The same strategy can
then be repeated on P (S1, S2, S4) and P (S2, S3, S4) until all the distributions
needed for the computation are for no more than 3 variables. Such distributions
are directly estimated from data.

Let us illustrate the strategy using the model shown in Figure 6. First, parti-
tion the variables into four groups as follows: S1 = {A}, S2 = {B}, S3 = {C,D}
and S4 = {E}. This allows us to reduce P (A,B,C,D,E) to P (A,B,E), P (B,E),
and P (B,C,D,E). The first two distributions involve no more than three vari-
ables and are directly estimated from data. To compute the last distribution, con-
sider a restriction of the model onto the four variables involved. Let S1 = {B},
S2 = {C}, S3 = {D} and S4 = {E}. This allows us to reduce P (B,C,D,E)
to P (B,C,E), P (C,D), and P (C,D,E). All those distributions are estimated
from data.

The description of a complete algorithm and the discussion of related issues
are out the scope of this paper.
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Fig. 7. A latent tree model with one latent variable

5 Equalities for Parameter Estimation

In this section, we derive a group of equations that are used to estimate param-
eters of LTMs [2].

5.1 Some Notations

Consider the LTM shown in Figure 7. Suppose all variables have equal cardi-
nality. We parameterize the model with the distributions P (A|H), P (B|H) and
P (H,C). In matrix notation, they are PA|H , PB|H and PHC .

Let b be a particular value of B. For reasons to become clear later, we consider
the joint probability P (A=a,B=b, C=c) when variables A = a and C = c. It is
obvious that

P (A=a,B=b, C=c) =
∑
H

P (A=a|H)P (B=b|H)P (H,C=c). (8)

Use PAbC to denote the matrix where the element at the a-th row and c-th
column is Pabc. Use Pb|H to denote the column vector where the element at
the h-row is P (B=b|H=h), which in turn is denoted as Pb|h. Use diag(Pb|H) to
denote the diagonal matrix with the elements of the vector Pb|H as the diagonal
elements. Equation (8) can be rewritten in matrix form as follows:

PAbC = PA|Hdiag(Pb|H)PHC . (9)

5.2 The Case of Equal Cardinality

Suppose all the probability matrices are invertible. Augment the model of Figure
7 with two edges (C,H ′) and (H ′, A′), where |A′| = |A| and |H ′| = |H |. Let the
potential matrices for the two new edges be:

φCH′ = P−1
HC , φH′A′ = P−1

A|H .

Note that the edge (C,H ′) is the inverse edge of (H,C).
For the rest of this subsection, fix the value of B at b. Consider calculating

the marginal potential P (A,B=b, A′) in the model of Figure 8 (a). In matrix
form, it is PAbA′ .
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(a) A model obtained from Figure 7 by adding two
edges.
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(c) Result of eliminating H and H ′ from
(a).

Fig. 8. Operations on a model obtained by augmenting the model of Figure 7

One way to compute PAbA′ is to first eliminate C and then eliminate H ′ and
H . Eliminating C from the model of (a) results in the model of (b). Because the
edge (C,H ′) is the inverse edge of (H,C), the potential for the edge (H,H ′) is
an identity matrix IHH′ . Further eliminating H ′ results in a model that has the
structure shown in Figure 7 with the variable C replaced with A′ (ref. Theorem
1). The potential matrix for the edge (H,A′) is P−1

A|H . According to Equation

(9), we have

PAbA′ = PA|Hdiag(Pb|H)P−1
A|H . (10)

Another way to compute PAbA′ is to first eliminate H and H ′, and then
eliminate C. The elimination of H and H ′ leads to the model of (c). According
to Equation (9), the elimination of H gives us the potential matrix PAbC . The
elimination of H ′ gives us the following potential matrix:

φCH′φH′A′ = P−1
HCP

−1
A|H = (PA|HPHC)

−1 = P−1
AC .

Further eliminating C from the model of (c), we get

PAbA′ = PAbCP
−1
AC . (11)

Putting the two equations (10) and (11) together, we get the following
theorem.

Theorem 5. Suppose that all the variables in the LTM shown Figure 7 have
equal cardinality and that all the probability matrices are invertible. Then,

PA|Hdiag(Pb|H)P−1
A|H = PAbCP

−1
AC . (12)
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Note that the two terms on the right hand side involve only observed variables.
They can be directly estimated from data. On the other hand, the left hand side
involves model parameters, and particularly the diagonal elements of Pb|H are

the eigenvalues of PAbCP
−1
AC .

5.3 The Case of Unequal Cardinalities

Next we generalize Theorem 5 to the case where the observed variables might
have unequal cardinalities. The cardinality of H latent variables is required to
be no greater than the cardinality of any observed variable. We further require
that the probability matrices PA|H and PT

HC have full column rank.
The technical issue to deal with in this case is that the matrices PA|H , PHC

and PAC might not be invertible.
Let the cardinalities of H , A and C be r, s and t. In the model of Figure 7,

we have PAC = PA|HPHC . Because PA|H and PT
HC have full column rank, the

rank of PAC is r. Consider the singular decomposition of PAC = UΛV T , where
Λ is a r × r diagonal matrix, U and V are s × r and t × r column orthogonal
matrices respectively. By following the same line of reasoning as in Section 4.2,
we can conclude that UTPA|H and PHCV are invertible.

Note that (UTPA|H)−1UT is a r×s matrix, and V (PHCV )−1 is a t×r matrix.
Construct the model of Figure 8 (a) in the same way as in the previous subsec-
tion, except that we set potential matrices of the edges (H ′, A′) and (C,H ′) as
follows:

φH′A′ = (UTPA|H)−1UT , φCH′ = V (PHCV )−1.

Now consider the marginal potential matrix PAbA′ . One way to compute it is
to first eliminate C and then eliminate H ′ and H . Eliminating C from the model
of (a) results in the model of (b). Because the product of PHC and V (PHCV )−1

is an identity matrix, the potential for the edge (H,H ′) an identity edge. Further
eliminating H ′ results in a model that has the structure shown in Figure 7 with
the variable C replaced with A′ (ref. Theorem 1). The potential matrix for the
edge (H,A′) is (UTPA|H)−1UT . According to Equation (9), we have

PAbA′ = PA|Hdiag(Pb|H)(UTPA|H)−1UT . (13)

Another way to compute PAbA′ is to first eliminate H and H ′, and then
eliminate C. The elimination of H and H ′ lead to the model of (c). As in the
previous section, the elimination of H gives us the potential matrix PAbC . The
elimination of H ′ gives us the following potential matrix:

φCH′φH′A′ = V (PHCV )−1(UTPA|H)−1UT

= V (UTPA|HPHCV )−1UT

= V (UTPACV )−1UT

Further eliminating C from the model of (c), we get

PAbA′ = PAbCV (UTPACV )−1UT . (14)
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Putting the two equations (13) and (14) together, we get

PA|Hdiag(Pb|H)(UTPA|H)−1UT

= PAbCV (UTPACV )−1UT .

Consequently,

UTPA|Hdiag(Pb|H)(UTPA|H)−1

= UTPAbCV (UTPACV )−1. (15)

Theorem 6. Suppose that, in the LTM shown Figure 7, the cardinality of H is
no greater than that of any observed variable, and that the probability matrices
PA|H and PT

HC have full column rank. Then, Equation (15) holds.

Note that Equation (15) is the same as Equation (12) except that the column
orthogonal matrices U and V are used to deal the issue that PA|H and PAC

might not be invertible.

5.4 Parameter Estimation

To use Equation (15) for parameter estimation, observe that the eigenvalues
of the matrix on the right hand side are the diagonal elements of diag(Pb|H),
which in turn are the values for the conditional distribution P (B=b|H). To
estimate P (B|H), we can: (1) estimate PABC and PAC from data; (2) compute
the singular decomposition of the of PAC to obtain the matrices U and V ; (3) for
each value b for B, form the matrix on the right hand side; and (4) calculate the
eigenvalues of the matrix. Those eigenvalues are the values for the distribution
P (B|H).

If all the variables have equal cardinality, we can use Equation (12) instead.
In this case, there is no need calculate the matrices U and V .

To see how the strategy can be applied to LTMs with multiple latent variables,
consider the model of Figure 2. For simplicity, we assume all the variables have
equal cardinality. Restricting the model to the variable A, B, C and H , we get
the model of Figure 7. Using the strategy, we can estimate P (A|H), P (B|H)
and P (C|H). In similar fashion, we can estimate P (C|G), P (D|G) and P (A|G).
Then P (G|H) can be calculated from P (H |C) and P (C|G) using the relationship
PG|H = P−1

C|GPC|H .

The description of a complete algorithm and the discussion of related issues
are out the scope of this paper.

6 Conclusions

Starting from a latent tree model, we introduce inverse edges to obtain a gener-
alized MRFs. Variables are then eliminated from the generalized MRFs in dif-
ferent orders to obtain equalities about the model. Two groups of equalities are
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obtained. One group allows us to calculate the joint probability one of particular
assignment of all observed variables without estimating the model parameters.
The other group of equalities gives us a new method for estimating the model
parameters, which has advantages over the commonly used EM algorithm. For
example, it does not have the difficulty of getting trapped in local maxima.
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Abstract. Lack of relevant data is a major challenge for learning Bayesi-
an networks (BNs) in real-world applications. Knowledge engineering
techniques attempt to address this by incorporating domain knowledge
from experts. The paper focuses on learning node probability tables using
both expert judgment and limited data. To reduce the massive burden
of eliciting individual probability table entries (parameters) it is often
easier to elicit constraints on the parameters from experts. Constraints
can be interior (between entries of the same probability table column)
or exterior (between entries of different columns). In this paper we intro-
duce the first auxiliary BN method (called MPL-EC) to tackle parameter
learning with exterior constraints. The MPL-EC itself is a BN, whose
nodes encode the data observations, exterior constraints and parameters
in the original BN. Also, MPL-EC addresses (i) how to estimate tar-
get parameters with both data and constraints, and (ii) how to fuse the
weights from different causal relationships in a robust way. Experimental
results demonstrate the superiority of MPL-EC at various sparsity lev-
els compared to conventional parameter learning algorithms and other
state-of-the-art parameter learning algorithms with constraints. More-
over, we demonstrate the successful application to learn a real-world
software defects BN with sparse data.

Keywords: BN parameter learning, Monotonic causality, Exterior con-
straints, MPL-EC model.

1 Introduction

Bayesian networks have proven valuable in modeling uncertainty and supporting
decision making in practice [1]. However, in many applications there is extremely
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limited data available to learn either the BN structure or probability tables. In
such situations we have to use qualitative knowledge from domain experts in
addition to any quantitative data available [2]. There are numerous recent real-
world applications in which BN models incorporate significant expert judgment
– for example, in medical diagnostics [3,4], traffic incident detection [5] and
facial action recognition [6]. However, eliciting expert judgment remains a major
challenge.

Directly asking experts to provide quantitative parameter values is time con-
suming and error-prone because the number of parameters increase exponentially
with the number of nodes in the BN. For example, for a nodeX with 3 states that
has 5 parents (each with 2-states), the probability table for X has 32 columns
and 3 rows, i.e., 96 probability values to be elicited. Since the columns sum to 1,
each column requires only 2 probability values to be elicited, so we consider these
as ‘parameters’ and there are 64 in total. Recent study [7] shows exploring qual-
itative relationships and their generated constraints would greatly reduce the
elicitation burden. However, in applying this method, central challenges include
how to estimate parameters with both data and constraints [8], how to optimally
perform expert judgments elicitation [9], and how to fuse different weights from
different causal relationships and different parent state configurations. These are
crucial to ensure that parameter learning is accurate and effective. Despite the
finding of qualitative relationships published more than twenty years ago, only
limited work [8,10,6,11] has been done on addressing these challenges.

In this paper we assume the BN structure is already defined and only inves-
tigate elicited constraints on parameters to help learn a target BN with sparse
data. The paper extends earlier work [12] in which we introduced an auxiliary
BN method (multinomial parameter learning with constraints, which is also re-
ferred as MPL-C) for learning parameters given expert constraints and limited
data. In that work we considered only parameters constraints restricted to a
single probability table column; for example:

“P(cancer = true|smoker = true) > 0.01)” or
“P(cancer = true|smoker = true) > P(cancer = false|smoker = true)”
In this paper we extend this to exterior parameter constraints (across columns)

like:
“P(cancer = true|smoker = true) > P(cancer = true|smoker = false)”
This kind of exterior parameter constraints are encoded in monotonic causality

between two BN variables [13,14,15]. Parameter learning with this constraints
normally is solved via establishing a constrained optimization problem [6,11],
and is restricted to assumptions of binary nodes and convex constraints.

Our contribution in this paper is to extend the original MPL-C model (now
refered to as MPL-EC) to support parameter learning with both data obser-
vations and exterior constraints. In MPL-EC the original parameter estimation
problem converts to a BN inference problem. In this way, our model supports ei-
ther convex or non-convex exterior constraints. Because the MPL-EC is a hybrid
BN (contains continuous, as well as discrete, nodes) the inference is achieved via
a dynamic discretization junction tree (DDJT) algorithm [16]. Some other works
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[17,18,19] also support inference in hybrid BNs with deterministic conditional
distributions. In this paper, we mainly focus on building the hybrid BN model
to support the parameter learning with exterior constraints. Hence, we will not
compare the DDJT with other inference algorithms. In our model, different exte-
rior constraints have different strengths (added as the margin in each inequality
[13]), which has a generative equation that encodes the weights from different
causal relationships and the weights from different parent state configurations.
This is itself an important output for modeling the constraints in a more precise
way. To evaluate the algorithm, we conduct experiments on three standard net-
works, i.e., Weather, Cancer and Asia BNs, comparing against three baselines
and prior learning with constraints methods. Finally, we apply our method to
parameter learning in a real-world software defects BN.

2 Bayesian Networks Parameter Learning

2.1 Preliminaries

A BN consists of a directed acyclic graph (DAG) G = (U,E) (whose nodes U =
{X1, X2, X3, . . . , Xn} correspond to a set of random variables, and whose arcs E
represent the direct dependencies between these variables), together with a set
of probability distributions associated with each variable. For discrete variables1

the probability distribution is described by a node probability table (NPT) that
contains the probability of each value of the variable given each instantiation of
its parent values in G. We write this as P (Xi|pa(Xi)) where pa(Xi) denotes the
set of parents of variable Xi in DAG G. Thus, the BN defines a simplified joint
probability distribution over U given by:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|pa(Xi)) (1)

Let ri denote the cardinality of the space ofXi, and qi represent the cardinality
of the space of parent configurations of Xi. The k -th probability value of a
conditional probability distribution P (Xi|pa(Xi) = j) can be represented as
θijk = P (Xi = k|pa(Xi) = j), where θijk ∈ θ, 1 ≤ i ≤ n, 1 ≤ j ≤ qi and 1 ≤
k ≤ ri. Assuming D = {D1, D2, . . . , DN} is a dataset of fully observable cases
for a BN, then Dl is the l -th complete case of D, which is a vector of values of
each variable. The classical maximum likelihood estimation (MLE) is to find the
set of parameters that maximize the data loglikelihood l(θ|D) = log

∏
l P (Dl|θ).

Let Nijk be the number of data records in sample D for which Xi takes its k -th
value and its parent pa(Xi) takes its j -th value. Then l(θ|D) can be rewritten as
l(θ|D) =

∑
ijk Nijk log θijk. The MLE seeks to estimate θ by maximizing l(θ|D).

In particular, we can get the estimation of each parameter as follows:

θ∗ijk =
Nijk

Nij
(2)

1 For continuous nodes we normally refer to a conditional probability distribution.
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However, for several cases in the unified model, a certain parent-child state
combination would seldom appear, and the MLE learning fails in this situation.
Hence, another classical parameter learning algorithm (maximum a posteriori,
MAP) can be used to mediate this problem via introducing Dirichlet prior:
θ∗ = argmaxθ P (D|θ)P (θ). Therefore, we can derive the following equation for
MAP:

θ∗ijk =
Nijk + αijk − 1

Nij + αij − 1
(3)

Intuitively, one can think of the hyperparameter αijk in Dirichlet prior as an
experts’ guess of the virtual data counts for the parameter θijk. When there is
no related expert judgments, people usually use uniform prior or BDeu prior [2]
in the MAP.

2.2 Constrained Optimization Approach

Although the Dirichlet prior is widely used, it is usually difficult to elicit the nu-
merical hyperparameters from experts. Since the ultimate goal of MAP is to infer
a posterior distribution, people directly introduce expert provided constraints to
regularize the posterior estimation. As discussed above, some related work solves
this problem via constrained optimization (CO). In CO, the expert judgments
are encoded as convex constraints. For example, based on the previous definition,
a convex constraint can be defined as f(θijk) ≤ μijk , where f : Ωθijk → R is
a convex function over θijk, and μijk ∈ [0, 1]. Regarding parameter constraints,
the scores are computed by a constrained optimization approach (i.e., gradient
descent). In detail, for ∀i,j,k θijk, we maximize the score function l(θ|D) subject
to g(θijk) = 0 and f(θijk) ≤ μijk, where the constraint g(θijk) = −1+

∑ri
k=1 θijk

ensures the sum of all the estimated parameters in a probability distribution
is equal to one. To model the strength of the constraints, [6] introduced a
confidence level λijk for the penalty term in the objective function, i.e., let

f(θijk) = θijk, and the penalty term is defined as penalty(θijk) = [μijk − θijk ]
−,

where [x]
−
= max(0,−x). Therefore, the constrained maximization problem can

be rewritten as follows:

argmaxθ l(θ|D)− w
2

∑
ijk λijk · penalty(θijk)2

s.t. ∀i,j,k g(θijk) = 0
(4)

where w is the penalty weight, which is chosen empirically. Obviously, the
penalty varies with the confidence level for each constraint λijk. To ensure the
solutions move towards the direction of reducing constraint violations (the max-
imal score), the score function must be convex, which limits the usage of con-
straints. Meanwhile, because the starting points are randomly generated in gra-
dient descent, this may cause unacceptably poor parameter estimation results
when learning with zero or limited data counts Nijk in the score function.

2.3 Multinomial Parameter Learning with Constraints

Because the basic parameter learning method can be modeled with an auxil-
iary BN model, the constraints can be easily incorporated as the shared child
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of the nodes representing the constrained parameters. This auxiliary BN is a
hybrid model (see Figure 1) containing a mixture of discrete and (non-normally
distributed) continuous nodes. Therefore, the parameter estimation problem con-
verts to a BN inference problem, where the data statistics and constraints are
observed, and the target parameters are updated by a dynamic discretization
inference algorithm [16].

Fig. 1. The multinomial parameter learning model with constraints (MPL-C) and its
associated distributions. Cm is a constraint node, which encodes constraints within a
NPT column, i.e., C1 : P1 > 0.5 and C2 : P2 > P1.

In Figure 1, for simplification, we use Pk (k = 1 to r) to represent the r
parameters of a single column instead of θijk. Similarly, the N (instead of Nij)
represents the data counts of a parent state configuration, and the Nk (instead
of Nijk) represent the data counts for its k -th state under this parent state con-
figuration. Given the above model and its related observations, inference refers
to the process of computing the discretized posterior marginal of unknown nodes
Pk (these are the nodes without evidence). These nodes encode uniform priors,
which prevents the problem of random initial values in constrained optimiza-
tion. After inference, the mean value of Pk will be assigned as the parameter
estimation (i.e., the corresponding NPT cell value). Full details can be found
in [12].

3 The New Method

In this section we first describe (Section 3.1) the type of monotonic causality and
its associated exterior constraints. In Section 3.2 we describe the extended ver-
sion of the auxiliary BN model to incorporate new forms of exterior constraints
provided from expert judgments in order to supplement the MPL-C. Because
there is a state combination explosion problem in the extended BN model, we
describe a novel alternative BN model which keeps the properties of the orig-
inal extended BN but with fewer state combinations. In Section 3.3, a simple
example is presented to show how to build and apply the MPL-EC model for
parameter learning.



586 Y. Zhou, N. Fenton, and M. Neil

3.1 Parameter Constraints

There are two types of node parameter constraints that we consider: interior and
exterior. An interior constraint, which is also called inter-relationship constraint,
constrains two parameters that share the same node index i, and parent state
configuration j (i.e., this is a constraint between values in the same column of a
node probability table). An example of such a constraint is θijk ≥ θijk′ , where
k �= k′. Interior constraints, which can only be elicited from expert judgment,
were studied extensively in our previous work [12]. We showed in [12] that sig-
nificant improvements to table learning could be achieved from relatively small
number of expert provided interior constraints. However, in many situations it
is possible (and actually more efficient) to elicit constraints between parameters
in different probability table columns. These are the exterior constraints.

Formally, an exterior constraint (also called inter-relationship constraint) is
where two parameters in a relative relationship constraint share the same node
index i, and state index k. Typically an exterior constraint will have the form:
θijk ≥ θij′k where j �= j′. This kind of constraint is encoded in monotonic
causality which can greatly reduce the burden of expert judgment elicitation.
Before we examine exterior constraints in detail, we need some definitions and
notations:

The positive/negative monotonic causality: For the simplest single mono-
tonic causal connection: X causes Y (X → Y ), the causality can either be

positive or negative. Positive monotonic causality is represented by X
+→ Y

(increasing value of X leads to increases in Y ). Negative monotonic causality

is represented by X
−→ Y (increasing value of X leads to decrease in Y ); for

example, if X is a particular medical treatment and Y is patient mortality.
Let cdf(·) denote the cumulative distribution function. The formal equation of

these two kinds of monotonic causality can be formulated as exterior constraints
as follows:

X
+→ Y : cdf(P (Y |pa(Y ) = j)) ≥ cdf(P (Y |pa(Y ) = j′))

X
−→ Y : cdf(P (Y |pa(Y ) = j)) ≤ cdf(P (Y |pa(Y ) = j′))

Here both X and Y are ordered categorical variables, j′ and j are integers sat-
isfying the inequality relationships 0 < j′ < j < |pa(Y )|, where the |pa(Y )| rep-
resents the total number of state configurations in pa(Y ). InX → Y , pa(Y ) = X .
As we can see, the negative causality represents the opposite causal relationship
compared with positive causality. The model of introducing a single positive
monotonic causality has been well discussed in previous work [7,13,20]. How-
ever, real-world BNs usually contain nodes whose parents provide a mixture of
positive and negative causality, as synergistic interactions [11]. Previous work
[11] has addressed this synergy problem at some point, where all the causalities
should either be positive or negative (homogeneous synergies). Therefore, this
work does not allow the synergy relationship have different types of monotonic
causalities, which is referred as heterogeneous synergies. Recently, researchers
[21,22] introduced a novel canonical gate (refered to as NIN-AND tree) to model
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different causal interactions: reinforcing and undermining. However, this work
does not support learning with monotonic constraints and their margins. Actu-
ally, the synergies of different causalities are different when the causal weights
(the confidences of the causal connections) are considered. Previous studies rarely
discussed this problem, and no relevant model has tackled this issue.

In this paper, we introduce a generative form of the exterior constraint equa-
tion, which support homogeneous/heterogeneous synergies with different weights.
Assume we have a BN with variables U = {Y,X1, X2, . . . , Xn} and the sim-
ple inverted naive structure, which means the variable Y is the shared child of
X1, X2, . . . , Xn. Then our generative exterior constraint is:{

cdf(P (Y |pa(Y ) = j))− cdf(P (Y |pa(Y ) = j′)) ≥ Mjj′ if Mjj′ > 0

cdf(P (Y |pa(Y ) = j))− cdf(P (Y |pa(Y ) = j′)) ≤ Mjj′ if Mjj′ < 0
(5)

where Mjj′ =
∑n

i=1 M
i
jj′ =

∑n
i=1 wi · cli · εijj′ and 0 < j′ < j < |pa(Y )|. The

Mjj′ represents the overall margin of the synergies, which is the summation of
each single margin M i

jj′ . M
i
jj′ contains three terms: wi ≥ 1 represent the global

weight (the subjective confidence) of the causal relationship Xi → Y , its default
value wi = 1 indicates there is no subjective confidence on the causality; cl is the

causality label (cli = 1 indicates the positive causality Xi
+→ Y ; and cli = −1

represents the negative causality Xi
−→ Y ); εijj′ is the term that describes the

confidence of the inequality introduced by state configuration gap in a causality.
That is to say, the εijj′ is a small positive value proportional to the state config-
uration distance in Xi under two indices j and j′ in pa(Y ) = {X1, X2, . . . , Xn}.

To calculate εijj′ , we need to find the subindices (ind2subi(j) and ind2subi(j
′))

ofXi from the single indices in pa(Y ). Thus we have: εijj′ =
ind2subi(j)−ind2subi(j

′)
λ·|Xi| .

Here the λ > 1 is the trade-off parameter that controls the effect of the confi-
dence introduced by state configuration gap. Because size |pa(Y )| =

∏n
i=1 |Xi|

increases exponentially with an increase of parent nodes, it would be very ex-
pensive to find all combinations of two indices in |pa(Y )|. Therefore, in this
paper, we only discuss a very simple way to get the combinations. For state con-
figuration size |pa(Y )|, we generate two indices pairs iteratively (“|pa(Y )|, 1”,
“(|pa(Y )| − 1), 2”, ...) until no more pairs can be found.

As shown in equation 5, the type (≥ or ≤) of the exterior constraint is decided
by the value of the margin. The margin is equal to zero (M = 0) only in the
situation where the effects of different causalities are intermediate in the shared
child node. Thus, there is no associated exterior constraints.

Next, we present a simple example of our model: we assume the target variable
Y is binary, and it has two binary parents X1 and X2 with “T” and “F” states.

Assume the first causality is positive X1
+→ Y , and the second causality is

negative X2
−→ Y . Therefore, the exterior constraints induced by these two

monotonic causalities can be represented as:
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cdf(P (Y |pa(Y ) = 4))− cdf(P (Y |pa(Y ) = 1)) ≥ w1 · ε141 − w2 · ε241
cdf(P (Y |pa(Y ) = 3))− cdf(P (Y |pa(Y ) = 2)) ≥ w1 · ε132 − w2 · ε232
In addition, there is no subjective judgments on their weights, i.e. w1 = w2 =

1. Thus the margin of the first equation equal to zero (w1 · ε141 = w2 · ε241), and
this equation is discarded. Also, because Y is binary, this means y = {yT , yF }.
Therefore, we can have the following exterior constraints based on the above
equation:

P (yT |x1T , x2F )− P (yT |x1F , x2T ) ≥ 1
λ

P (yT |x1T , x2F ) + P (yF |x1T , x2F )− P (yT |x1F , x2T )− P (yF |x1F , x2T ) = 0
Note the equality only happens when y reaches the full range (the biggest)

value in cdf(P (y)).

3.2 The Extended MPL-C Model

In this subsection, we present the extended MPL-C model (MPL-EC) to encode
the constraints in equation 5. For any monotonic causality, we need to introduce
a set of shared children nodes to model the introduced constraints C1, C2, . . . , Cr

(see Figure 2). The size of the constraints set is equal to the number of states
(ranges from 1 to r) in variable Y . In order to simplify the notation, we use
Pk and Pk′ (k/k′ = 1 to r/r′) to represent parameters in Y under different
state configurations of Xi. Therefore, for a single positive monotonic causality

Xi
+→ Y , we have the following arithmetic constraints encoded in the MPL-

EC model to constrain the parameters under two state configurations of Xi (j
and j′): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C1 : P1 − P1′ ≥ wi · cli · εijj′
C2 : P1 + P2 − P1′ − P2′ ≥ wi · cli · εijj′

C3 : P1 + P2 + P3 − P1′ − P2′ − P3′ ≥ wi · cli · εijj′
...

Cr :
∑r

k=1 Pk −
∑r

k′=1 Pk′ = 0

(6)

In the last exterior constraint equation Cr, two sides of the relative relation-
ship are equal to each other. As we can see there are additional (1 +n) · n edges
when we introduce n constraint nodes. To reduce the model complexity it must
be replaced by an equivalent model whose structure has a restricted number of
parents.

Previous work has proposed a binary factorization algorithm [23] to improve
the efficiency of the DDJT algorithm. This idea can also be applied here to
produce an alternative model of the straightforward MPL-EC. The new model
is called binary summation model, which introduces an additional 2 · (n − 1)
auxiliary nodes, which only encode the simple sum arithmetic equations to model
the summations of its parents. This model has the same number of edges as the
straightforward model, but the maximal number of parents is fixed as two in this
model. This avoids the parent state combination explosion problem. The detail
of its structure can be found in Figure 2(b).
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Fig. 2. The straightforward MPL-EC model and its alternative binary summation
model. Due to the space limitation, the MPL-EC model presented here only display
the part for modeling introduced constraints, the left part for modeling multinomial
parameter learning is not displayed, which is the same as MPL-C in Section 2.3.

3.3 A Simple Example

In this subsection, we use a simple example to demonstrate the exterior con-
straints and its generated MPL-EC model. This example encodes the simplest

single positive causal connection: X
+→ Y , where the two nodes involved are

both binary with “T” and “F” states. Therefore, we have two parameter columns
under two parent state instantiations to estimate in Y , which are P (Y |xT ) and
P (Y |xF ). Its MPL-EC model is shown in Figure 3.
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yy yy

Fig. 3. The original BN and its training data in the simple example. (a) The DAG and
its associated NPTs. (b) The 6 data records for the two variables in the BN. (c) The
MPL-EC model for estimating the parameters in Y . The constraint nodes are modeled
as binary (True/False) nodes with expressions that specify the constraint relationships
between its parents. The auxiliary BN model is implemented in AgenaRisk [24], which
supports hybrid BNs containing conditionally deterministic expressions. For example,
the software statement for C1 is: if(P (yT |xT )−P (yT |xF ) ≥ w ·cl ·ε, “True”, “False”).

The detail of the exterior constraints encoded in the constraint nodes of MPL-
EC is: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 : P (yT |xT ) + P (yF |xT )

S1′ : P (yT |xF ) + P (yF |xF )

C1 : P (yT |xT )− P (yT |xF ) ≥ w · cl · ε
C2 : S1 − S1′ ≥ w · cl · ε

(7)

where cl = 1, ε = 1
2λ . according to above definition, and w represents the

subjective confidence whose value can be chosen empirically from the domain
knowledge.
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Based on the statistics on the dataset (Figure 3(b)) and previous definition,
we have: NT = 5 (NTF = 2, NTT = 3) under the condition of X = xT , and
NF = 1 (NFF = 0, NFT = 1) in the state initiation of X = xF . Therefore, the
MLE results of Y are P (yT |xT ) = 0.6 and P (yT |xF ) = 1. As we can see, the
estimation of P (yT |xF ) is far away from the ground truth (0.6 and 0.4) due to
the sparse data records under the X = xF condition.

With the above data observations, we now can set the evidence for certain
nodes including constraint nodes (all are set as “True” observations), number of
trials, total numbers, and the summation of all the estimated parameters. Based
on these evidences, the inference in the MPL-EC is to compute the discretized
posterior marginals of each of the unknown nodes yF/T (these are the nodes
without evidence) via DDJT algorithm [16]. This algorithm alternates between
two steps: 1) performing dynamic discretization, which searches and splits the
regions with the highest relative entropy error determined by a bounded K-L
divergence with the current approximated estimates of the marginals; 2) per-
forming junction tree inference, which updates the posterior of the marginals.
At convergence, the mean value of yF/T will be assigned as the final correspond-
ing NPT cell values. After inference with the model in Figure 3(c), we have
P (yT |xT ) = 0.67 and P (yT |xF ) = 0.50, which are much reasonable than the
MLE results.

4 Experiments

The goal of the experiments is to demonstrate the benefits of our method and
show the advantages of using elicited signs of causalities (either from ground
truth or from expert judgment) and their generated exterior constraints to im-
prove the parameter learning performance. We test the method against the con-
ventional learning techniques (MLE and MAP) as well as against the competing
method that incorporates exterior constraints (i.e., the constraint optimization
method). Sections 4.1 and 4.2 describe the details of the experiments. The first
(Section 4.1) uses the well-known Weather, Cancer and Asia BN (their signs are
elicited from the ground truth), while the second (Section 4.2) uses a software
defects BN, and its signs of causalities are elicited from a real expert.

In all cases, we assume that the structure of the model is known and that the
‘true’ NPTs that we are trying to learn are those that are provided as standard
with the models. Obviously, for the purpose of the experiment we are not given
these ‘true’ NPTs but instead are given a number of sample observations which
are randomly generated based on the true NPTs. The experiments consider a
range of sample sizes. In all case the resulting learnt NPTs are evaluated against
the true NPTs by using the K-L divergence measure [25], which is recommended
to measure the distance between distributions. The smaller the K-L divergence
is, the closer the estimated NPT is to the true NPT. If frequency estimated
values are zero in MLE, Laplace smoothing is applied to guarantee they can be
computed. The global weights of all causal relationships are set as default value
wi = 1 in all experiment settings, and the trade-off value λ is set as 10.
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4.1 Different Standard BNs Experiments

In the first set of experiments we use three standard models [26,27,28] that have
been widely used for evaluating different learning algorithms. Based on these BNs
and elicited signs, we compare the performance of different parameter learning
algorithms: MLE, MAP, CO and MPL-EC.

Table 1 shows the structure of each BN and its associated parameter learning
results. The BN structures are presented in the middle column of the table and
annotated with positive/negative signs on their edges. The learning results in
each setting are presented in the last column for each row. In each sub figure, the
x-coordinate denotes the data sample size from 10 to 100, and the y-coordinate
denotes the average K-L divergence for each parameter. For each data sample
size, the experiments are repeated 5 times, and the results are presented with
their mean and standard deviation.

As shown in the last column of Table 1, for all parameter learning meth-
ods, the K-L divergence decreases as expected when the sample size increases.
Specifically, methods of learning with constraints, i.e., CO and MPL-EC always
outperform the conventional MLE algorithm, especially in the sparse data situa-
tions. However, the CO failed to outperform MAP in all data settings of Cancer
and Asia BNs, while the MPL-EC method always achieves the best performance
in all cases for the three different BNs.

4.2 Software Defects BN Experiment

In this section, we consider a very well documented BN model that has been
used by numerous technology companies worldwide [29] to address a real-world
problem: the software defects prediction problem. The idea is to be able to
predict the quality of software in terms of defects found in operation based on
observations that may be possible during the software development (such as
component complexity and defects found in testing). This BN contains eight
nodes: “design process quality (DQ)”, “component complexity (C)”, “defects
inserted (DI)”, “testing quality (T)”, “defects found in testing (DT)”, “residual
defects (R)”, “operation usage (O)” and “defects found in operation (DO)”. All
of them are discrete, which have 3 ordered states: “Low”, “Medium”, and “High”.

Figure 4(a) represents the structure of the BN, the signs on the edges indi-
cate whether the associate monotonic causalities are positive or negative. These
causalities are elicited from real expert judgments, i.e., as design process quality
(DQ) goes from “Low” to “High”, the defects inserted (DI) go from “High” to
“Low”, this encodes a negative monotonic causality.

Figure 4(b) shows the learning results, where the MPL-EC outperforms all
other algorithms in every scenario. Compared with the state-of-art CO algo-
rithm, our MPL-EC significantly improves the parameter learning performance,
i.e., the MPL-EC outperforms the CO in all training sample sizes, with an overall
47.06% K-L divergence reduction.
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Table 1. Learning results for MLE, MAP, CO and MPL-EC in Weather, Cancer and
Asia BN learning problems. Four lines are presented in each sub figure, where the solid
line with circle marker represents the learning results of baseline MLE algorithm, the
dotted line with right-pointing triangle marker represents the learning results of MAP
algorithm, the dotted line with square marker denotes the results of the CO algorithm,
and the bold dash-dot line with diamond marker shows the learning results of the
MPL-EC method.

Name
Directed acyclic
graph (DAG)

Learning performance

Weather S R

C

W

+

+ +

0 10 20 30 40 50 60 70 80 90 100

0

0.25

0.5

0.75

1

Number of training data

A
ve

ra
g

e
 K

−
L 

d
iv

e
rg

e
n

c
e

Weather BN

MLE
MAP
CO
MPL−EC

Cancer
B C

A

D

E

+ +

+

+

+

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

Number of training data

A
ve

ra
g

e
 K

−
L 

d
iv

e
rg

e
n

c
e

Cancer BN

MLE
MAP
CO
MPL−EC

Asia
T L

SA

E

D

B

X

+ +

+

+ + +

+ +

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

Number of training data

A
ve

ra
g

e
 K

−
L 

d
iv

e
rg

e
n

c
e

Asia BN

MLE
MAP
CO
MPL−EC



594 Y. Zhou, N. Fenton, and M. Neil

T DI

CDQ

DT

DO

R

O

+

+

+

+ + +

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

Number of training data

A
ve

ra
g

e
 K

−
L 

d
iv

e
rg

e
n

c
e

Software Defects BN

MLE
MAP
CO
MPL−EC

(a) (b)

Fig. 4. The Learning results for MLE, MAP, CO and MPL-EC in software defects BN
learning problem: (a) The DAG and real elicited exterior constraints; (b) The details
of the learning results for different training data sample sizes

5 Conclusions

When data is sparse, purely data driven BN learning is inaccurate. Our frame-
work tackles this problem by leveraging a set of exterior constraints elicited
from experts. Our model is an auxiliary BN, which encodes all the information
(i.e., data observations, parameters we wish to learn, and exterior constraints
encoded in monotonic causalities) in parameter learning. By converting the pa-
rameter learning problem into a Bayesian inference problem, we are able to
perform robust and effective parameter learning even with heterogeneous mono-
tonic causalities and zero data observations in some cases. Our approach applies
with categorical variables, and is robust to any degree of data sparsity. Standard
BNs experiments show that MPL-EC consistently outperforms the conventional
methods (MLE and MAP) and former learning with constraints algorithms. Fi-
nally, experiments with a real-world software defects network show the practical
value of our method. In future work we will investigate the extension to the
continuous variables, and integrating expert constraints with structure learning
so structure can also be refined.
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Wang, Xiaofei 567
Whittle, Chris 1

Xiang, Yang 551

Zaffalon, Marco 176, 426
Zhang, Nevin L. 567
Zhou, Yun 581


	Preface
	Organization
	Table of Contents
	Structural Sensitivity for the Knowledge Engineering of Bayesian Networks
	1 Introduction
	2 Background
	2.1 Bayesian Networks
	2.2 Knowledge Engineering Bayesian Networks
	2.3 Sensitivity Measures

	3 Structual Sensitivity
	3.1 Distance Weighted Influence
	3.2 Representing Difference in Influence Order

	4 Case Studies
	4.1 The Goulburn Fish BN
	4.2 Alpine Peatland Ecological Risk Assessment
	4.3 VRE Colonisation Risk Assessment
	4.4 Variation of IC for Different Values of Influence

	5 Conclusions and Future Work

	A Pairwise Class Interaction Framework for Multilabel Classification
	1 Introduction
	2 Background
	2.1 Notation and Problem Definition
	2.2 Evaluation
	2.3 Approaches to Multi-dimensional Classification

	3 A General Framework for Multi-label Classification
	3.1 The Proposed Framework
	3.2 Scalable Learning and Inference

	4 Experimental Evaluation
	4.1 Experiments
	4.2 Results on Scalability

	5 Conclusions

	From Information to Evidence in a Bayesian Network
	1 Introduction
	2 Notations and Basics of Bayesian Network
	3 Likelihood Evidence: Definition and Characteristics
	3.1 Definition, Properties and Examples
	3.2 Propagation of Likelihood Evidence with Pearl's Method of Virtual Evidence

	4 Fixed Probabilistic Evidence and Not-fixed Probabilistic Evidence
	4.1 Definition and Shared Properties
	4.2 Not-fixed Probabilistic Evidence: Specific Properties and Examples
	4.3 Propagating Not-fixed Probabilistic Evidence: Jeffrey Rule and Conversion in Likelihood Evidence
	4.4 Fixed Probabilistic Evidence: Specific Properties and Examples
	4.5 Propagating Fixed Probabilistic Evidence
	4.6 Synthesis

	5 Review of Terminology in Related Works
	5.1  About the Definition of Findings
	5.2 About the Use of the Terms Soft Evidence
	5.3 About the Distinction between Fixed and Not-fixed Probabilistic Evidence, and the Question of Commutation

	6 Conclusion

	Learning Gated Bayesian Networks for Algorithmic Trading
	1 Introduction
	1.1 Algorithmic Trading

	2 Gated Bayesian Networks
	3 Evaluating Alpha Models
	3.1 Backtesting
	3.2 Alpha Model Metrics
	3.3 Buy and Hold Benchmark

	4 Learning Algorithm
	4.1 Gated Bayesian Network Templates
	4.2 K-Fold and Time Series Cross-Validation
	4.3 Algorithm

	5 Application
	5.1 Methodology
	5.2 Results and Discussion

	6 Conclusions and Future Work

	Local Sensitivity of Bayesian Networks to Multiple Simultaneous Parameter Shifts
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Networks and Sensitivity Analysis
	2.2 Directional Derivatives 

	3 Defining an n-Way Sensitivity Value
	4 Computing an n-Way Sensitivity Value
	4.1 Computing Partial Derivatives for Sensitivity Functions
	4.2 n-Way Partial Derivatives From One-Way Functions 
	4.3 Joint vs. Synergistic Effect in n-Way Analyses

	5 Parameter Tuning
	6 Discussion

	Bayesian Network Inference Using Marginal Trees
	1 Introduction
	2 Definitions
	2.1 Bayesian Network
	2.2 Variable Elimination

	3 Marginal Trees
	4 Marginal Tree Inference
	4.1 Determine Reusable Computation
	4.2 Determine Missing Computation

	5 VE with Precomputation
	6 Experimental Results
	7 Conclusions

	On SPI-Lazy Evaluation of Influence Diagrams
	1 Introduction
	2 Preliminaries
	2.1 Influence Diagrams
	2.2 Lazy Evaluation
	2.3 Motivation

	3 SPI Lazy Evaluation
	3.1 Overview
	3.2 Removal of Chance Variables
	3.3 Removal of Decision Variables
	3.4 Heuristics
	3.5 Example

	4 Experimental Work
	4.1 Procedure
	4.2 Results

	5 Conclusions and Future Work

	Extended Probability Trees for Probabilistic Graphical Models
	1 Introduction
	2 Potentials, Probability Trees and Inference in Bayesian Networks
	3 Extended Probability Trees
	4 Inference with ePTs
	4.1 Restriction
	4.2 Combination
	4.3 Marginalisation

	5 Example of Use
	6 Applying ePTs to Real Data
	6.1 Transforming CPDs into ePTs
	6.2 Simplifying ePTs
	6.3 Inference Results

	7 Conclusions

	Mixture of Polynomials Probability Distributions for Grouped Sample Data
	1 Introduction
	2 Notation and Definitions
	2.1 Grouped Data
	2.2 Mixtures of Polynomials
	2.3 Quality and Size of MOP Approximations

	3 B-Spline Estimation of MOPs
	4 Grouped Data Estimation
	4.1 Creating an Approximate Dataset
	4.2 Control Points

	5 Examples
	5.1 Example 1
	5.2 Example 2

	6 Conclusions

	Trading off Speed and Accuracyin Multilabel Classification
	1 Introduction
	2 Probabilistic Multilabel Classification
	3 Structural Learning
	4 Computational Complexity
	5 Experiments
	5.1 Insights on the mNB Structure
	5.2 Avoiding Empty Predictions

	6 Conclusions

	Robustifying the Viterbi Algorithm
	1 Introduction
	2 Hidden Markov Models
	2.1 Local Uncertainty Models
	2.2 Constructing a Joint Model
	2.3 The Viterbi Algorithm

	3 Imprecise Hidden Markov Models
	3.1 Local Imprecise Uncertainty Models
	3.2 Constructing an Imprecise Joint Model
	3.3 Generalising the Notion of Optimality

	4 A More Convenient Characterisation of Maximality
	4.1 Defining the Local Parameters
	4.2 Rewriting the Solution Set

	5 A Recursive Algorithm
	5.1 Ruling out Multiple Sequences at Once
	5.2 Turning it into an Algorithm
	5.3 Complexity Analysis

	6 Common Local Models and Their Parameters
	6.1 Frequently Used Imprecise-Probabilistic Models
	6.2 Local Parameters for an -Contaminated Model

	7 Experiments
	7.1 Computational Complexity Experiments
	7.2 A Closer Look at the Number of Maximal State Sequences

	8 Conclusions and Future Work

	Extended Tree Augmented Naive Classifier
	1 Introduction
	2 Classification and Learning TANs
	2.1 Improving Learning of TANs

	3 Learning Extended TANs
	4 Experiments
	5 Conclusions

	Evaluation of Rules for Coping with Insufficient Data in Constraint-Based Search Algorithms
	1 Introduction
	2 The Blacklisting Rule
	3 Measure of Data Set Size for the Experiments
	4 Experiment 1: Keep vs. Remove Rules in Structure Retrieval
	4.1 Methodology
	4.2 Results

	5 Experiment 2: Keep Rule vs. Remove Rule in Classification Accuracy
	5.1 Methodology
	5.2 Results

	6 Discussion

	Supervised Classification Using Hybrid Probabilistic Decision Graphs
	1 Introduction
	2 Notation and Preliminaries
	2.1 Discrete PDGs
	2.2 Conditional Gaussian PDGs
	2.3 Mixtures of Truncated Basis Functions

	3 Hybrid PDGs Based on MoTBFs
	4 PDG Classifiers
	4.1 Learning MoTBF-PDG Classifiers from Data

	5 Experimental Evaluation
	5.1 Discussion

	6 Concluding Remarks

	Towards a Bayesian Decision Theoretic Analysis of Contextual Effect Modifiers
	1 Introduction
	2 Association Measures
	2.1 Effect Size
	2.2 Strong Relevance

	3 Bayesian Network Based Association Measures
	3.1 Strong Relevance in Bayesian Networks
	3.2 Bayesian Effect Size
	3.3 Effect Size Conditional Existential Relevance

	4 Contextual Relevance and Effect Modifiers
	4.1 Bayesian Decision Theoretic Approach for Research Preferences

	5 Results
	6 Conclusions

	Discrete Bayesian Network Interpretation of Cox's Proportional Hazards Model
	1 Introduction
	2 Background Knowledge
	2.1 Cox's Proportional Hazard Model
	2.2 Kaplan-Meier Estimator

	3 Bayesian Networks
	4 Bayesian Network Interpretation of the Cox Proportional Hazard Model
	5 Empirical Evaluation
	5.1 Recidivism Prediction with Four Risk Factors
	5.2 Recidivism Prediction with All Risk Factors

	6 Discussion
	7 Conclusion

	Minimizing Relative Entropyin Hierarchical Predictive Coding
	1 Introduction
	2 Preliminaries
	2.1 Computational Complexity
	2.2 Previous Work

	3 The Complexity of Computing Relative Entropy in HPC
	4 Revision of Beliefs
	5 Revision of Models
	6 Adding Additional Observations to the Model
	7 Intervention in the Model
	8 Parameterized Complexity
	9 Conclusion

	Treewidth and the Computational Complexityof MAP Approximations
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Networks
	2.2 Treewidth
	2.3 Complexity Theory

	3 Approximating MAP
	3.1 Value-Approximation
	3.2 Structure-Approximation
	3.3 Rank-Approximation
	3.4 Expectation-Approximation

	4 The Necessity of Low Treewidth for Efficient Approximation of MAP
	4.1 Treewidth-Preserving Reductions
	4.2 Proof Sketch
	4.3 MAP Result
	4.4 Approximation Intractability Results
	4.5 Expectation-Approximation

	5 Conclusion

	Bayesian Networks with Function Nodes
	1 Introduction
	2 Preliminaries and Notation
	3 Bayesian Networks with Function Nodes
	3.1 Function Nodes
	3.2 Graphical Model Structure
	3.3 Function Node Models

	4 Inference
	4.1 d-Separation
	4.2 Belief Update

	5 Real-World Application
	5.1 Credit Scoring
	5.2 Risk Management in Pigs Production
	5.3 Operational Risk Management
	5.4 Geographic Information System

	6 Discussion and Conclusion

	A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs
	1 Introduction
	2 Preliminaries and Notation
	2.1 Bayesian Networks
	2.2 Learning a TAN from Complete Data
	2.3 Balanced Incomplete Block Designs

	3 Parallelisation of TAN Learning
	3.1 Parallel Scoring Using BIB Designs
	3.2 Generating Symmetric BIB Designs with =1
	3.3 Theoretical Performance Improvement

	4 Empirical Evaluation
	4.1 Data Sets
	4.2 Hardware
	4.3 Scoring Function
	4.4 Evaluations
	4.5 Results

	5 Discussion
	6 Conclusion
	7 Future Work

	Equivalences betweenMaximum a Posteriori Inferencein Bayesian Networks and Maximum Expected Utility Computation in Influence Diagrams
	1 Introduction
	2 Some Useful Concepts from Graph Theory
	3 Bayesian Networks and the MAP Problem
	4 Influence Diagrams and the MEU Problem
	5 Reducing MAP To MEU
	6 Reducing MEU To MAP
	7 Conclusions

	Speeding Up k-Neighborhood Local Search in Limited Memory Influence Diagrams
	1 Introduction
	2 Limited Memory Influence Diagrams
	3 The Complexity of k-Neighborhood Local Search
	4 Improving k-Policy Updating: DkPU
	4.1 Dominance Pruning
	4.2 Local Search With Dominance Pruning

	5 Approximate Policy Updating: AkPU
	6 Experiments
	7 Conclusion

	Inhibited Effects in CP-Logic
	1 Introduction
	2 Preliminaries and Motivation
	3 Preliminaries: Formal Semantics of CP-Logic
	4 Bayesian Net Interpretation for Negation in the Head
	5 Generalization to CP-Logic Programs
	6 Application: Encoding Interventions
	7 Experiments
	8 Related Work
	8.1 Inhibited Recursive Noisy-or
	8.2 The Certainty Factor Model
	8.3 Interaction Rules in Probabilistic Logic

	9 Conclusion

	Learning Parameters in Canonical Models Using Weighted Least Squares
	1 Introduction
	2 ICI Models
	2.1 Noisy–OR/MAX
	2.2 Leaky Noisy–OR/MAX
	2.3 Eliciting Parameters of ICI Models from Data

	3 Least Squares Approximation
	3.1 Expressing Probabilistic Information as a System of Linear Equations
	3.2 Weighted Least Squares Method

	4 Empirical Performance
	4.1 Data Generation
	4.2 Tested Learning Algorithms
	4.3 Performance Assessment
	4.4 Results
	4.5 Discussion

	5 Conclusions

	Learning Marginal AMP Chain Graphs under Faithfulness
	1 Introduction
	2 Preliminaries
	3 MAMP CGs
	4 Algorithm for Learning MAMP CGs
	5 Discussion

	Learning Maximum Weighted (k+1)-Order Decomposable Graphs by Integer Linear Programming
	1 Introduction
	2 Background
	3 Maximum Weighted (k+1)DG Problem
	4 Results
	5 An Integer Linear Programming Formulation of Problem 1
	6 Experiments
	7 An Approach to the MWk Problem [9]
	8 Conlusions

	Multi-label Classification for Tree and Directed Acyclic Graphs Hierarchies
	1 Introduction
	2 Related Work
	3 Chained Path Evaluation
	3.1 Training
	3.2 Classification
	3.3 Pruning

	4 Experimental Setup
	4.1 Databases
	4.2 Evaluation Metrics

	5 Experiments
	5.1 Comparison of CPE-MLNP against other Methods
	5.2 Selection of the Best NMLNP Approach
	5.3 Comparison of CPE NMLNP-version against MLNP-version
	5.4 Comparison of CPE-NMLNP against Other Methods

	6 Conclusions and Future Work

	Min-BDeu and Max-BDeu Scores for Learning Bayesian Networks
	1 Introduction
	2 Learning Bayesian Networks
	3 Min-BDeu and Max-BDeu Scores
	4 Experimental Setup
	4.1 Comparison among Scores
	4.2 Relation between Scores and Learning Saturation

	5 Conclusions

	Causal Discovery from Databases with Discrete and Continuous Variables
	1 Introduction
	2 Background
	3 Structure Learning of Causal Networks
	4 Bayesian Constraint-Based Causal Discovery
	5 The Scoring Metric for Discrete and Continuous Variables
	5.1 Alternative Approaches
	5.2 Proposed Scoring Method

	6 Experiments
	6.1 Testing Mutual Information
	6.2 Application on Simulated Data
	6.3 Application on Real-World Data: ADHD

	7 Conclusion and Future Work

	On Expressiveness of the AMP Chain Graph Interpretation
	1 Introduction
	2 Notation
	3 Markov Chain Monte Carlo Approach
	4 Results
	5 Conclusion

	Learning Bayesian Network Structures When Discrete and Continuous Variables Are Present
	1 Introduction
	2 Preliminaries
	2.1 Universality
	2.2 Learning Bayesian Networks with Continuous Data

	3 General Case
	3.1 For the Random Variables that Are Neither Discrete nor Continuous
	3.2 Universal Histogram Sequences
	3.3 Multivariable Universal Probabilities

	4 Learning Bayesian Network Structures When Discrete and Continuous Variables Are Present
	5 Experiments
	5.1 Convergence of Kullback-Leibler Divergence
	5.2 Structure Learning of Bayesian Networks

	6 Concluding Remarks

	Learning Neighborhoods of High Confidence in Constraint-Based Causal Discovery
	1 Introduction
	2 Background
	3 Posterior Probabilities for Pairwise Relations
	4 Identifying Neighborhoods of High Structural Confidence
	5 Related Work
	6 Experimental Evaluation
	6.1 Calibration of Estimated Probabilities
	6.2 Evaluation of Neighborhoods Identified with BiND

	7 Discussion

	Causal Independence Models for Continuous Time Bayesian Networks
	1 Introduction
	2 Preliminaries
	2.1 Causal Independence Models
	2.2 Continuous Time Bayesian Networks

	3 Causal Independence in CTBNs
	3.1 General Causal Independence Models
	3.2 Continuous Time Noisy-OR Models

	4 Noisy-OR Synergy Models
	4.1 Synergies
	4.2 Basic Noisy-OR Synergies
	4.3 Noisy-OR Synergies with Local Interactions
	4.4 Drug Interaction Example

	5 Related Work
	6 Conclusions

	Expressive Power of Binary Relevance and Chain Classifiers Based on Bayesian Networks for Multi-label Classification
	1 Introduction
	2 Expressive Power of One-Dimensional BN Classifiers
	3 Binary Relevance Method
	4 BN Chain Classifiers
	5 Binary Relevance vs. Chain Classifier
	6 Conclusions and Future Work

	An Approximate Tensor-Based Inference Method Applied to the Game of Minesweeper
	1 Introduction
	2 Preliminaries
	3 Approximate Tensor Decompositions
	4 A Comparison with the Parent Divorcing Method
	5 The Game of Minesweeper
	6 Numerical Experiments
	7 Conclusions

	Compression of Bayesian Networks  with NIN-AND Tree Modeling
	1 Introduction
	2 Background on NIN-AND Tree Models
	3 Tree-Directed, PCI-Based NAT Search
	4 PCI Pattern Based Search Trees
	5 PST Construction
	6 Search for Candidate NATs
	7 Parameter Search by Steepest Descent
	8 Anytime Approximation
	9 Experimental Evaluation
	10 Conclusion

	A Study of Recently Discovered Equalities about Latent Tree Models Using Inverse Edges
	1 Introduction
	2 Preliminaries
	2.1 Markov Random Fields
	2.2 Latent Tree Model
	2.3 Variable Elimination in MRF
	2.4 Matrix Representation of Potentials

	3 Identity and Inverse Edges
	3.1 Identity Edges
	3.2 Inverse Edges

	4 Equalities for Joint Probability Estimation
	4.1 Quartet Trees
	4.2 Observed Variables with Unequal Cardinalities
	4.3 General Trees

	5 Equalities for Parameter Estimation
	5.1 Some Notations
	5.2 The Case of Equal Cardinality
	5.3 The Case of Unequal Cardinalities
	5.4 Parameter Estimation

	6 Conclusions

	An Extended MPL-C Model for Bayesian Network Parameter Learning with Exterior Constraints
	1 Introduction
	2 Bayesian Networks Parameter Learning
	2.1 Preliminaries
	2.2 Constrained Optimization Approach
	2.3 Multinomial Parameter Learning with Constraints

	3 The New Method
	3.1 Parameter Constraints
	3.2 The Extended MPL-C Model
	3.3 A Simple Example

	4 Experiments
	4.1 Different Standard BNs Experiments
	4.2 Software Defects BN Experiment

	5 Conclusions

	Author Index



