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Preface

This volume contains the papers presented at the Second International Conference on
Statistical Language and Speech Processing (SLSP 2014), held in Grenoble, France
during October 14–16, 2014.

SLSP 2014 is the second event in a series to host and promote research on the wide
spectrum of statistical methods that are currently in use in computational language or
speech processing; it aims to attract contributions from both fields. The conference
encourages discussion on the employment of statistical methods (including machine
learning) within language and speech processing. The scope of the SLSP series is rather
broad, and includes the following areas: phonology, phonetics, prosody, morphology;
syntax, semantics; discourse, dialog, pragmatics; statistical models for natural language
processing; supervised, unsupervised and semi-supervised machine learning methods
applied to natural language, including speech; statistical methods, including biologi-
cally-inspired methods; similarity; alignment; language resources; part-of-speech tag-
ging; parsing; semantic role labeling; natural language generation; anaphora and
coreference resolution; speech recognition; speaker identification/verification; speech
transcription; speech synthesis; machine translation; translation technology; text sum-
marization; information retrieval; text categorization; information extraction; term
extraction; spelling correction; text and web mining; opinion mining and sentiment
analysis; spoken dialog systems; author identification, plagiarism and spam filtering.

SLSP 2014 received 53 submissions, which were reviewed by the Program Com-
mittee members, some of whom consulted with external referees as well. Among the
submissions, 32 received three reviews, and 21 two reviews. After a thorough and
lively discussion, the committee decided to accept 18 papers (which represents an
acceptance rate of 33.96 %). The program also includes three invited talks.

Part of the success in the management of such a number of submissions is due to the
excellent facilities provided by the EasyChair conference management system. We
would like to thank all invited speakers and authors for their contributions, the Program
Committee and the reviewers for their cooperation, and Springer for its very profes-
sional publishing work.

July 2014 Laurent Besacier
Adrian-Horia Dediu
Carlos Martín-Vide
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Syntax and Data-to-Text Generation

Claire Gardent(B)

CNRS/LORIA, Nancy, France
claire.gardent@loria.fr

Abstract. With the development of the web of data, recent statisti-
cal, data-to-text generation approaches have focused on mapping data
(e.g., database records or knowledge-base (KB) triples) to natural lan-
guage. In contrast to previous grammar-based approaches, this more
recent work systematically eschews syntax and learns a direct mapping
between meaning representations and natural language. By contrast, I
argue that an explicit model of syntax can help support NLG in sev-
eral ways. Based on case studies drawn from KB-to-text generation, I
show that syntax can be used to support supervised training with little
training data; to ensure domain portability; and to improve statistical
hypertagging.

Keywords: Computational grammars · Natural language generation ·
Statistical natural language processing · Hybrid symbolic/statistical
approaches

1 Introduction

Given some non-linguistic input, the task of data-to-text generation consists in
producing a text verbalisating that input. Data-to-text generation has been used,
e.g., to summarise medical data [31], to generate weather reports from numerical
data [32] and to automatically produce personalised letters [11].

Earlier statistical work on data-to-text generation has mainly focused on
inducing large probabilistic grammars from treebanks and on using these gram-
mars to generate from meaning representations derived from those same tree-
banks. Thus, [9] induces a Probabilistic Lexical Functional Grammar (LFG)
from the PTB and uses it to generate from f(unctional)-structures automati-
cally derived from that treebank. Reference [3] uses a large scale Tree Adjoining
Grammar (TAG, [34]) and a tree model trained on the derivation trees of 1 mil-
lion words of the Wall Street Journal to map dependency trees to sentences. And
[38] induces a probabilistic Combinatory Categorial Grammar (CCG, [33]) from
the CCGBank [21] which is then used to generate from hybrid logic dependency
semantics [2].

With the development of the web of data however, interest has recently
shifted to data-to-text generators which can generate from less linguistic, more
data oriented, meaning representations. While logical formulae and dependency
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 3–20, 2014.
DOI: 10.1007/978-3-319-11397-5 1



4 C. Gardent

trees may provide generic meaning representations for natural language, they
typically fail to support a straightforward mapping between data and natural
language (NL) expressions. This is because both the signature of the meaning
representation language and the alignment between meaning and basic gram-
mar units are specified independently of the application data. Typically, pred-
icate names are simply lemmas (each word will be represented by a meaning
representation including its lemma as a predicate symbol) and the alignment
between meaning and string is determined by syntax. When generating from
e.g., knowledge or database data, these assumptions generally fail to hold. That
is, lemmas must be disambiguated and mapped to application-specific predicate
symbols while the alignment between meaning representation sub-units and NL
expressions is often at odd with grammar syntax.

To address these issues, recent statistical, data-to-text approaches have there-
fore focused on mapping e.g., database records or knowledge-base (KB) triples
to natural language. In particular, data-to-text generators [1,10,23,24,39] were
trained and developed on datasets from various domains including the air travel
domain [13], weather forecasts [5,26] and sportscasting [10]. In contrast to the
previous, grammar-based approaches, this more recent work systematically
eschews syntax. Instead, the dominant approach consists in learning a direct
mapping between meaning representations and natural language.

In this paper, we take a middleroad between these two approaches. We focus
on generating from “real” data i.e., knowledge base data, but we argue that an
explicit model of syntax is valuable in several ways. More specifically, we argue
that syntax:

– can help compensate for the lack of large quantities of training data. Using an
international benchmark consisting of only 207 training instances, we show
that inducing a linguistically principled, non probabilistic grammar from this
data, allows for the development of a data-to-text generator which shows good
coverage while preserving output quality. When compared with the other two
participating systems, the approach performs comparably with a rule-based,
manually developed system and markedly outperforms an existing statistical
generator.

– can help ensure genericity. Focusing on the task of verbalising user queries on
knowledge bases, we show that a small hand-crafted grammar, combined with
an automatically constructed lexicon, permits verbalising queries independent
of which domain the queried KB bears on.

– can help improve the performance of a statistical, hypertagging module
designed to reduce the initial search space of the generator. In particular,
we show that the high level linguistic abstractions captured by the gram-
mar permits developing a hypertagging module which improves the generator
speed, supports sentence segmentation and preserves output quality.

The paper is structured as follows. In Sect. 2, we start by introducing the gram-
mar framework which we use to support data-to-text generation namely, Feature-
Based Lexicalised Tree Adjoining Grammar (FB-LTAG). We then explain the
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generation algorithm which permits generating sentences given some input data
and an FB-LTAG. Sections 3, 4 and 5 illustrate how an explicit model of syn-
tax can help improve generation. Section 6 concludes with pointers for further
research.

2 Feature-Based Lexicalised Tree Adjoining Grammar

In this section, we start by defining the grammar formalism (Sect. 2.1) and the
lexicon (Sect. 2.2) we use to mediate between data and natural language. We then
describe the generation algorithm which exploits these lexicon and grammar to
map data into text (Sect. 2.3).

NP[idx:j]

John

john(j)

S[idx:b]

NP↓[idx:j] VP
[idx:b]

[idx:a]

V[idx:a]

runs

run(a,j)

VP[idx:a]

often VP*[idx:a]

often(a)

named(j,john), run(a,j), often(a)

Fig. 1. Derivation and Semantics for “John often runs”

2.1 Grammar

Following [17], we use a Feature-Based Lexicalised Tree Adjoining Grammar
(FB-LTAG) augmented with a unification based semantics for generation. For
a precise definition of FB-LTAG, we refer the reader to [36]. In essence, an FB-
LTAG is a set of trees whose nodes are decorated with feature structures and
which can be combined using either substitution or adjunction. Substitution of
tree γ1 at node n of the derived tree γ2 rewrites n in γ2 with γ1. n must be a
substitution node (marked with a downarrow). Adjunction of the tree β at node
n of the derived tree γ2 inserts β into γ2 at n (n is spliced to “make room” for
β). The adjoined tree must be an auxiliary tree that is a tree with a foot node
(marked with a star) and such that the category of the foot and of the root node
is the same.

In an FB-LTAG with unification semantics, each tree is furthermore asso-
ciated with a semantics and shared variables between syntax and semantics
ensure the correct mapping between syntactic and semantic arguments. As trees
are combined, the semantics of the resulting derived tree is the union of their
semantics modulo unification.

The semantic representation language used to represent meaning in the gram-
mar is a flat semantics language [6,12] which consists of a set of literals and can
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be used e.g., to specify first order logic formulae or RDF triples. For a precise
definition of the syntax and semantics of that language, see [18].

Figure 1 shows an example toy FB-LTAG with unification semantics. The dot-
ted arrows indicate possible tree combinations (substitution for John, adjunction
for often). Thus given the grammar and the derivation shown, the semantics of
John often runs is as shown namely, named(j john), run(a,j), often(a).

2.2 Lexicon

Semantics: run
Tree: nx0V
Syntax: Canonical
Anchor: runs

Semantics: sleep
Tree: nx0V
Syntax: Canonical
Anchor: sleep

S[idx:E1]

NP↓[idx:A] VP
[idx:E1]
[idx:E]

V[idx:E]

R(E,A)

Fig. 2. FB-LTAG tree schema nx0V and two Lexical Entries associated with that tree
schema.

The Lexicon permits abstracting over lexical and semantic information in
an FB-LTAG tree and relating a single tree schema to several lexical items.
For instance, the lexical entries shown on the left of Fig. 2 relates the predi-
cate symbols run and sleep to the TAG tree nx0V shown on the right. During
generation, these relation predicate symbols will be used to instantiate the pred-
icate variable R in the semantic schema R(E,A) associated with that tree; and
the anchor values (runs/sleeps) to anchor this tree i.e., to label the terminal node
marked with the anchor sign (�). That is, the � node will be labelled with the
terminal runs/sleeps.

2.3 Surface Realisation

For surface realisation, we use the chart-based algorithm described in [19]. This
algorithm proceeds in four main steps as follows.

– Lexical Selection. Retrieves from the grammar all grammar units whose seman-
tics subsumes the input semantics. For instance, given the semantics named(j

john), run(a,j), often(a), lexical selection will return the three trees shown in
Fig. 1.

– Tree Combination. Substitution and adjunction are applied on the set of
selected trees and on the resulting derived trees until no further combina-
tion is possible. For instance, the three trees selected in the previous lexical
selection step will be combined to yield a complete phrase structure tree.
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– Sentence Extraction. All syntactically complete trees which are rooted in S
and associated with exactly the input semantics are retrieved. Their yields
provide the set of generated (lemmatised) sentences e.g., John run often in our
running example.

– Morphological Realisation. Lexical lookup and unification of the features asso-
ciated with lemmas in the generated lemmatised sentences yield the final set
of output sentences e.g., John runs often.

3 Grammar as a Means to Compensate for the Lack of
Training Data

The kbgen task1 was introduced as a new shared task at Generation Challenges
2013 [4] to evaluate and compare systems that generate text from knowledge
base data. Figure 3 shows an example input and output.

:TRIPLES (
(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)
(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)
(|Gated-Channel64605| |has-function||Release-Of-Calcium646|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))
:INSTANCE-TYPES

(|Particle-In-Motion64582| |instance-of| |Particle-In-Motion|)
(|Endoplasmic-Reticulum64603| |instance-of| |Endoplasmic-Reticulum|)

(|Gated-Channel64605| |instance-of| |Gated-Channel|)
|Release-Of-Calcium646| |instance-of| |Release-Of-Calcium|))

:ROOT-TYPES (
(|Release-Of-Calcium646| |instance-of| |Event|)

(|Particle-In-Motion64582| |instance-of| |Entity|)
(|Endoplasmic-Reticulum64603| |instance-of| |Entity|)

(|Gated-Channel64605| |instance-of| |Entity|)))

The function of a gated channel is to release particles from the endoplasmic reticulum

Fig. 3. Example KBGEN Input and Reference Sentence

One characteristic of the KBGen shared task is that the size (207 input/output
pairs) of the training data is relatively small which makes it difficult to learn
efficient statistical approaches. In what follows, we show that, by inducing a
linguistically principled grammar from the training data, we can develop a gen-
erator which performs well on the test data. While fully automatic, our approach
produces results which are comparable to those obtained by a hand written, rule
based system; and which markedly outperform a data-driven, generate-and-rank
approach based on an automatically induced probabilistic grammar.

Grammar induction generally relies on large syntactically annotated corpora
(treebank) and results in large grammars whose combinatorics are constrained
by the probability estimates derived from the treebank. In contrast, we define
a grammar induction algorithm which yields compact, linguistically principled,
FB-LTAG grammars. The induction process is informed by the two main prin-
ciples underlying the linguistic design of an FB-LTAG namely, the extended
domain of locality and the semantic principle. The extended domain of locality
1 http://www.kbgen.org

http://www.kbgen.org
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Algorithm 1. Grammar Induction Algorithm
Require: An input semantics (set of triples) φ with variables Vφ, reference sentence

S and parse tree τS .
1: Variable/String Alignment Align each variable in Vφ with one or more tokens

in S
2: Variable Projection Use the Variable/String alignment and a set of hand-written

rules to project the input semantics variables onto non terminal nodes in the parse
tree τS of the reference sentence.

3: Extracting Trees Extract NP and relational (prepositions, verbs, conjunctions,
etc.) trees from τS using the variables labelling the nodes of the parse tree. NP
trees are NP subtrees whose root node are labelled with an input variable (v ∈ Vφ).
Relational trees are subtrees containing all and only input variables that are related
to each other by relations in φ (cf. [20] for a more precise definition).

4: Associating Trees with Semantics. Each subtree is assigned a set of input
triples based on the input variables it is labeled with. An NP tree labeled with
input variable v is associated with all input literal whose first argument is v. Each
relational tree is associated with all literals whose argument variables are variables
labelling this tree.

5: Generalising from Trees to Tree Schemas Isomorphic trees which differ only
in their semantics and lexical content are converted to a single tree schema and
several lexical entries capturing the multiple possible instantiations of that tree
schema.

6: Generalising from Bigger to Smaller Trees Large Verb trees are used to
derive smaller more general trees e.g., by deriving an intransitive verb tree from a
transitive one; or by splitting a tree containing a PP into one tree without that PP
and a PP tree.

7: return An FB-LTAG with unification semantics and a lexicon mapping semantic
triples to FB-LTAG trees

S

NP VP

NP PP VBZ S

DT NN IN NPGC VPRoC

DT NN NN TO VB NPPM PP

IN NPER

DT NN NN

the fn of a gated channel is to release particles from the endoplasmic reticulum

instance-of(GC,Gated-Channel),instance-of(RoC,Release-of-Calcium)
instance-of(PM,Particle-In-Motion),instance-of(ER,Endoplasmic-Reticulum)

Fig. 4. Parse tree with projected semantic variables. Input variables are first aligned
with word forms (Step 1) and then projected onto parse tree nodes (Step 2).
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SRoC3

NP VPRoC3
RoC2

NP PP VBZ SRoC2
RoC1

DT NN IN NP↓GC is VPRoC1
RoC

the fn of TO VBRoC NP↓PM PP

to release IN NP↓ER

from

instance-of(RoC,Release-of-Calcium)
object(RoC,PM)
base(RoC,ER)

has-function(GC,RoC)
agent(RoC,GC)

NPGC

DT NN NN

a gated channel

instance-of(GC,Gated-Channel)

NPPM

particles

instance-of(PM,Particle-In-Motion)

NPER

DT NN NN

the endoplasmic reticulum

instance-of(ER,Endoplasmic-Reticulum)

Fig. 5. Extracted Grammar for “The function of a gated channel is to release parti-
cles from the endoplasmic reticulum”. Variable names have been abbreviated and the
kbgen tuple notation converted to terms so as to fit the input format expected by our
surface realiser.

principle requires that elementary TAG trees group together in a single struc-
ture a syntactic functor and its arguments while the semantic principle requires
that each elementary tree captures a single semantic unit. Together these two
principles ensure that TAG elementary trees capture basic semantic units and
their dependencies.

Figure 1 gives a high level description of our grammar algorithm (see [20] for
a more detailed description). In brief, the algorithm takes as input a set of (φ,
S) pairs provided by the KBGen challenge where φ is a set of triples and S is
a sentence verbalising φ. First, input variables in φ are aligned with word forms
in S. Variables are then projected on non terminal nodes of S parse tree and
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SRoC3

NP VPRoC3
RoC2

NP PP VBZ SRoC2
RoC1

DT NN IN NP↓GC is VPRoC1
RoC

the fn of TO VBRoC NP↓PM

to release

instance-of(RoC,Release-of-Calcium)
object(RoC,PM)

has-function(GC,RoC)
agent(RoC,GC)

VPRoC

VP∗,RoC PP

IN NP↓ER

from

base(RoC,ER)

Fig. 6. Deriving smaller from larger trees

System All Covered Coverage # Trees
IMS 0.12 0.12 100%
UDEL 0.32 0.32 100%
AutExp 0.29 0.29 100% 477

Fig. 7. BLEU scores and grammar size (number of elementary TAG trees)

Fluency Grammaticality Meaning Similarity
System Mean Homogeneous Subsets Mean Homogeneous Subsets Mean Homogeneous Subsets
UDEL 4.36 A 4.48 A 3.69 A
AutExp 3.45 B 3.55 B 3.65 A
IMS 1.91 C 2.05 C 1.31 B

Fig. 8. Human evaluation results on a scale of 0 to 5. Homogeneous subsets are deter-
mined using Tukey’s Post Hoc Test with p < 0.05
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used to constrain both tree extraction and the association of syntactic trees with
semantics. Steps 5 and 6 of the algorithm generalise the extracted grammar by
abstracting away from specific lexical and predicative information (Step 5) and
by deriving smaller trees from extracted ones (Step 6).

Figure 4 shows a parse tree after variable projection and Fig. 5 shows the
grammar produced by Step 4. Generalisation is illustrated in Fig. 6.

As illustrated by Figs. 5 and 6, the grammars extracted by our grammar
induction algorithm are FB-LTAGs which conform with the semantic and the
extended domain locality principle. In [20], we show that inducing such grammars
help compensate the small size of the training data. Figures 7 and 8 show the
results obtained on the KBGen data and compare them with those of the other
two participating systems namely, a symbolic system based on hand written
rules (UDEL) and a statistical system (IMS) based on a probabilistic grammar
extracted from the KBGen training data. As the results show, our approach
provides an interesting middle way between the two approaches. On the one
hand, it produces sentences that are comparable in quality with those generated
by the symbolic UDEL system but it produces them in a fully automatic manner
thereby eschewing the need for highly skilled and time consuming manual labour.
On the other hand, it generates sentences of much higher quality than those
output by the statistical system. In sum, by extracting a linguistically principled
grammar, we achieved good quality output while eschewing the need for manual
grammar writing.

4 Grammar as a Means to Increase Domain Independence

We now turn to a second data-driven NLG application namely, the task of ver-
balising knowledge-base queries. Interfaces to knowledge bases which make use
of Natural Language Generation have been shown to successfully assist the user
by allowing her to formulate a query while knowing neither the formal query
language nor the content of the KB being queried. In these interfaces, the user
never sees the formal query. Instead, at each step in the query process, the gen-
erator verbalises all extensions of the current query which are consistent with
this query and with the knowledge base. The user then chooses from among the
set of generated NL queries, the query she intends.

One issue with such NLG based interfaces is that they should be domain inde-
pendent. They should be usable for various KBs and various domains. Moreover,
they should allow for an incremental processing of the user query. That is, they
should support the user in incrementally refining her queries in a way that is
consistent with the KB content.

While most previous work on generating from knowledge bases has assumed a
restricted syntax and used either templates or a procedural framework (Definite
Clause Grammars) to model the interaction between syntax, NL expressions and
semantics, we developed an approach which uses a small hand-written FB-LTAG
with unification semantics to support query verbalisation [30]. In essence, this
approach consists in implementing a small hand-written FB-LTAG with unifi-
cation semantics; in automatically constructing a lexicon which maps concept
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and relation names to trees in the FB-LTAG; and in adapting an Earley style
parsing algorithm to support the incremental revision of a user queries.

In [30], we showed that this approach has several advantages.
First, because it does not rely on the existence of a training corpus, it is

generic i.e., it results in a KB query system which can be used with different
KBs on different domains. The key to developing a generic approach lies in
combining a generic grammar which captures syntactic variations (canonical
clauses, relative clauses, ellipses etc) with an automatically extracted lexicon
which captures the lexicalisation of concepts and relations. While the grammar is
hand written, the lexicon is automatically extracted from each ontology using the
methodology described in [35]. When tested on a corpus of 200 ontologies, this
approach was shown to be able to provide appropriate verbalisation templates for
about 85 % of the relation identifiers present in these ontologies. 12 000 relation
identifiers were extracted from the 200 ontologies and 13 syntactic templates
were found to be sufficient to verbalise these relation identifiers (see [35] for
more details on this evaluation).

Thus, in general, the extracted lexicons permit covering about 85 % of the
ontological data. We further evaluated the coverage of our approach by running
the generator on 40 queries generated from five distinct ontologies. The domains
observed are cinema, wines, human abilities, disabilities, and assistive devices, e-
commerce on the Web, and a fishery database for observations about an aquatic
resource. The extracted lexicons contained 453 lexical entries in average and the
coverage (proportion of formal queries for which the generator produced a NL
query) was 87 %. Fuller coverage could be obtained by manually adding lexical
entries, or by developing new ways of inducing lexical entries from ontologies
(c.f. e.g. [37]).

A second advantage of the grammar based approach is that because it uses
a well-defined grammar framework rather than e.g., templates or a procedural
framework, it allows for the use of existing generation techniques and algorithms.
In particular, we showed that the Earley style generation algorithm proposed in
[8] could straightforwardly be adapted to support the incremental generation of
user queries.

Finally, using a fully blown approach to syntax rather than templates or
programs allows for more syntactic variability and better control on syntactic
and lexical interactions (e.g., by using features to ensure number agreement
or control the use of elliptical constructions). In comparison, template based
approach often generate one clause per relation2. Thus for instance, the template-
based Quelo system [16] will generate (1a) while our grammar based approach
supports the generation of arguably more fluent sentences such as (1b).

(1) a. I am looking for a car. Its make should be a Land Rover. The body style
of the car should be an off-road car. The exterior color of the car should
be beige.

2 This is modulo aggregation of relations. Thus two subject sharing relations may be
realised in the same clause.
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b. I am looking for car whose make is a Land Rover, whose body style is
an off-road car and whose exterior color is beige.

A human-based experiment indicate that the queries generated by our gram-
mar based approach are perceived as more fluent than those produced by the
Quelo template based approach (1.97 points3 in average for the grammar based
approach against 0.72 for the template based approach).

5 Grammar as a Means to Improve Statistical
Disambiguisation

The generation algorithm described in Sect. 2.3 (i) explores the whole search
space and (ii) is limited to generating a single sentence at a time. Generation
from flat semantics is NP-complete however [7,22] and existing algorithms for
realization from a flat input semantics all have runtimes which, in the worst case,
are exponential in the length of the input. Moreover, user queries can typically
require the generation of several sentences. For instance, the query in (2) is better
verbalised as (2a) than as (2b).

(2) a. CarMake(x) isMakeOf(x y) CrashCar(y) DemonstrationCar(y) hasCar-
Body(y z) OffRoad(z) soldBy(z w) CarDealer(w)

b. I am looking for a car make which should be the make of a crash car, a
demonstration car. The body style of the crash car should be an off road
and it should be sold by a car dealer.

c. I am looking for a car make which should be the make of a crash car
which is a demonstration car and whose body style should be an off road
and should be sold by a car dealer.

In [29], we present a hypertagger which (i) restricts the search space output
by the lexical selection step and (ii) segments the input into sentence size chunks.
That is, our hypertagger not only restricts the initial search space thereby reduc-
ing timeouts and generation time, but it also permits a joint modelling of sur-
face realisation and sentence segmentation. This is possible because, in contrast
to approaches such as [14,23,24,27] which directly map semantics to strings,
we mediate this relation using a grammar which differentiates between sentence
starting (e.g., nx0VVVpnx1 in Fig. 1) and clause extending trees (e.g., relative
clauses, sentence and VP coordination, PPs and elliptical clauses). Thus, a tag-
ging sequence in effect determines sentence segmentation. For instance, given the
query shown in (3a), if the hypertagger returns the sequence of tree tags shown
in (3b), the output verbalisation will be (3d) because the tag Tnx0VVpnx1 indi-
cates a sentence starting tree thereby forcing the segmentation of the input into
two sentences.

3 Fluency was rated on a scale from 0 to 5.
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(3) a. CarDealer(x) locatedIn(x,y) City(y) sell(x z) Car(z) runOn(z w) Diesel(w)
b. (Trees) Tnx betanx0VPpnx1 nx ANDWHnx0VVnx1 nx nx0VVpnx1 nx
c. (Synt.Classes) NP ParticipialOrGerund NP SubjRelAnd NP Canonical
d. I am looking for a car dealer located in a city and who should sell a car.

The car should run on a diesel.

In practice however, we do not use tree names as hypertags because of data
sparsity. The hypertagger is a model learned on a parallel corpus of NL and
formal queries. Creating such a corpus is labour intensive and we only collected
145 training instances. A first experiment which predicts tree as labels yielded
a tagging accuracy on complete inputs of 57.86 when considering the 10 best
outputs. More importantly, the model often failed to predict a sequence which
would allow for generation even when inputing to the tree combination phase
the 10 best tree sequences predicted by the hypertagger.

The tags learned by our hypertagger are therefore not tree names but more
general syntactic classes which capture the syntactic realisation of a semantic
token independent of its lexical class. Thus, the input query in (3a) will, in fact,
be tagged with the syntactic classes shown in (3c).

Table 1 shows the tree names and the syntactic classes associated with each
tree selected by the equippedWith relation while Table 2 shows example tree
names for lexical classes with distinct subcategorisation patterns. As can be
seen, while a tree name describes both the lexical and the syntactic pattern of a
lexical item (e.g., nx0VVVnx1 describes a transitive verb with canonical subject
and object NPs), syntactic classes capture syntactic generalisations which cut
across all subcategorisation patterns (e.g., the Canonical class is true of all reali-
sations with canonical subject and object NPs). Since in our grammar, each tree
is automatically associated by the grammar compilation process with its syntac-
tic class, we first use the hypertagger to predict the syntactic class of an input
literal. We then restrict the set of trees that were lexically selected by that literal
to only those trees which have the syntactic class returned by the hypertagger.
For instance, given the literal equippedWith, while lexical selection will return
the set of trees shown in Table 1, if the hypertagger predicts the SubjRelAnd
class for this literal given the overall input, then the tree combination step of
the generation algorithm will only consider the tree labeled with that syntactic
class namely, the W0nx0VVVpnx1 tree.

Hypertagging is viewed as a sequence labelling task in which the sequence
of semantic input needs to be labelled with appropriate syntactic classes. The
linear order of the semantic input is deterministically given by the linearisation
process of the tree based conjunctive input (see [15] for more details).

We use a linear-chain Conditional Random Field (CRF, [25]) model to learn
the mapping between observed input features and hidden syntactic classes. This
probabilistic model defines the posterior probability of labels (syntactic classes)
y = {y1, . . . , yn} given the sequence of input literals x = {x1, . . . , xk}:

P (y | x) =
1

Z(x)

T∏

t=1

exp
K∑

k=1

θkΦk(yt, yt−1,xt
)
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Table 1. Verbalisations of the equippedWith relation captured by the lexicon and
the grammar.

Example Tree Name Syntactic Class

NP0 should be
equipped with NP1

nx0VVVpnx1 Canonical

It0 should be equipped
with NP1

PRO0VVVpnx1 SubjPro

and NP0 should be
equipped with NP1

sCONJnx0VVVpnx1 Scoord

and it0 should be
equipped with NP1

sCONJPRO0VVVpnx1 ScoordSubjPro

NP0 which should be
equipped with NP1

W0nx0VVVpnx1 SubjRel

NP0 (...) and which
should be equipped
with NP1

ANDWHnx0VVVpnx1 SubjRelAnd

NP0 (...), which should
be equipped with
NP1

COMMAWHnx0VVVpnx1 SubjRelComma

NP0 equipped with
NP1

betanx0VPpnx1 ParticipialOrGerund

NP0 (...) and equipped
with NP1

betanx0ANDVPpnx1 ParticipialOrGerundAnd

NP0 (...), equipped
with NP1

betanx0COMMAVPpnx1 ParticipialOrGerundComma

NP1 with which NP0

should be equipped
W1pnx1nx0VV PObjRel

NP0 (equipped with X)
and with NP1

betavx0ANDVVVpnx1 SubjEllipAnd

NP0 (equipped with
X), with NP1

betavx0COMMAVVVpnx1 SubjEllipComma

Z(x) is a normalisation factor and the parameters θk are weights for the
feature functions Φk.

Given a set of candidate hypertags (syntactic classes) associated with each
literal, the hypertagging task consists into finding the optimal hypertag sequence
y∗ for a given input semantics x:

y∗ = argmaxy∗P (y∗ | x)
whereby the most likely hypertag sequence is computed using the Viterbi algo-
rithm. We used the Mallet toolkit [28] for parameter learning and inference.

We train the CRF on a corpus aligning formal queries with the syntactic
classes present in the FB-LTAG grammar. The corpus contains 145 training
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Table 2. Example of Canonical Trees for each Subcategorisation Class

NP0 should generate NP1 nx0VVnx1

NP0 should run on NP1 nx0VVpnx1

NP0 should be equipped with NP1 nx0VVVpnx1

NP0 should be the equipment of NP1 nx0VVDNpnx1

NP0 should have access to NP1 nx0VVNpnx1

NP0 should be relevant to NP1 nx0VVApnx1

NP0 should be an N1 product nx0VVDNnx1

instance with queries for 9 ontologies for different domains (car, cinema, wines,
assistive devices and fishery).

All features are derived from the input semantics i.e., a sequence of inter-
leaved relations and concepts. Since concepts have low lexical ambiguity (they
mostly select NP trees), most of the features are associated with relations only
and in the following, we write Ri−1 to denote the relation which precedes rela-
tion Ri independently of how many concepts intervene between Ri and Ri−1.
Features describe (i) the chaining relations between entities, (ii) the shape of rela-
tion names and correspondingly their lexicalisation properties i.e., the sequence
of POS tags and indirectly the TAG tree that will be used to verbalise them,
and (iii) global structural features pertaining to the overall shape of the input.

We evaluate the hypertagging module both in isolation and in interaction
with the generator. The results show that hypertagging with syntactic classes4:

– improves hypertagging accuracy. Hypertagging with syntactic classes rather
than tree names improves accuracy by up to 10.62 points for token accuracy;
and by up to 20.77 points for input accuracy (token accuracy is the proportion
of input literals correctly labelled while input accuracy is the proportion of
correctly labelled input sequences).

– improves generation coverage by up to 17.25 points when compared with
treename-based hypertagging (Generation coverage is the proportion of input
for which generation yields an output).

– improves speed both with respect to both a generator using a treename-based
hypertagger (-66 ms in average per input) and a symbolic generator without
hypertagging. The symbolic generator repeatedly times out yielding an aver-
age generation time of 17 min on 145 inputs.

– preserves output quality. When compared with both a grammar based and
a template based generation system, the output of our hybrid statistical
hypertagging/grammar-based generation system is consistently perceived by
human raters as clearer and more fluent. The human based evaluation involved
ratings from 12 raters on a set of 30 input queries related to 9 knowledges
bases. In comparison, the template based system generates one clause per

4 For all results discussed, we assume a hypertagging module returning up to 20 best
solutions.
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Input
Query

Flight hasCurrentDepartureDate.[Date] hasCurrentArrivalDate.[Date]
hasDestination.[Airport hasFlightTo.[Airport]] hasCarrier.[Airline] ha-
sTicket.[AirTicket hasDateOfIssue.[Date]]

Temp I am looking for a flight. Its current departure date should be a date. The
current arrival date of the flight should be a date. The destination of the flight
should be an airport. The airport should have flight to an airport. The carrier
of the flight should be an airline. The ticket of the flight should be an air ticket.
The air ticket should have date of a date.

Hyb I am looking for a flight whose current departure date should be a date, whose
current arrival date should be a date and whose destination should be an
airport. The airport should have flight to an airport. The carrier of the flight
should be an airline. The ticket of the flight should be an air ticket whose date
of issue should be a date.

Symb I am looking for a flight whose current departure date should be a date and
whose current arrival date should be a date and whose destination should be
an airport which should have flight to an airport. Its carrier should be an
airline, the ticket of the flight should be an air ticket and its date of issue
should be a date.

Fig. 9. Example input and outputs. Temp is a template based system, Symb the sym-
bolic generator described in Sect. 2.3 and Hyb the same generator augmented with the
Hypertagger

relation and, on long queries, is judged unnatural (low fluency) by the raters.
The symbolic generator often fails to adequately segment the input or to
score the most fluent output highest. Figure 9 shows an example input and
the corresponding output by each of the three systems being compared.

6 Conclusion

Syntax describes how words combine together to form complex NL expressions.
Syntax is also often viewed as a scaffold for semantic construction. In other
words, syntax provides both a means to abstract over lexical units and to medi-
ate between form and meaning. While, when enough training data is available,
statistical approaches can be developed which directly map meaning to form,
there is, linguistically, no good reason to ignore the wealth of research that has
gone into describing the syntax and the syntax/semantics interface of natural
languages. In this paper, I have argues that syntax is in fact, a valuable com-
poment of natural language generation. In particular, I have shown that, by
providing a higher level of abstraction, syntax permits improving a hypertag-
ger performance; facilitates the development of a generic, domain independent,
query verbaliser; and supports the induction of compact, linguistically principled
grammars which are well suited for data-to-text generation.
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Abstract. Over the past thirty years, the field of spoken language
processing has made impressive progress from simple laboratory demon-
strations to mainstream consumer products. However, commercial appli-
cations such as Siri highlight the fact that there is still some way to go in
creating Autonomous Social Agents that are truly capable of conversing
effectively with their human counterparts in real-world situations. This
paper suggests that it may be time for the spoken language processing
community to take an interest in the potentially important developments
that are occurring in related fields such as cognitive neuroscience, intel-
ligent systems and developmental robotics. It then gives an insight into
how such ideas might be integrated into a novel Mutual Beliefs Desires
Intentions Actions and Consequences (MBDIAC) framework that places
a focus on generative models of communicative behaviour which are
recruited for interpreting the behaviour of others.

Keywords: Spoken language processing · Enactivism · Language grou-
nding · Mirror neurons · Perceptual control · Cognitive architectures ·
Autonomous Social Agents

1 Introduction

Since the 1980s, the introduction of stochastic modelling techniques - particularly
hidden Markov models (HMMs) - into the field of spoken language processing
has given rise to steady year-on-year improvements in capability [1,2]. Cou-
pled with a relentless increase in the processing power of the necessary comput-
ing infrastructure, together with the introduction of public benchmark testing,
the field has developed from a specialist area of engineering research into the
commercial deployment of mainstream consumer products. With the advent of
smartphone applications such as Apple’s Siri, Microsoft’s Cortana and Google’s
Now, speech-based interaction with ’intelligent’ devices has entered the popular
imagination, and public awareness of the potential benefits of hands-free access
to information is at an all-time high [3].

The gains in performance for component technologies such as automatic
speech recognition and text-to-speech synthesis have accrued directly from the
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 21–36, 2014.
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deployment of state-of-the-art machine learning techniques in which significantly
large corpora of annotated speech (often thousands of hours) are used to estimate
the parameters of rich context-sensitive Bayesian models. Indeed, the immense
challenges posed by the need to create accurate and effective spoken language
processing has meant that speech technology researchers have become acknowl-
edged pioneers in the use of the most advanced machine learning techniques
available. A recent example of this is the performance gains arising from the use
of deep neural networks (DNNs) [4].

However, notwithstanding the immense progress that has been made over the
past thirty or so years, it is generally acknowledged that there is still some way
to go before spoken language technology systems are sufficiently reliable for the
majority of envisaged applications. Whilst the performance of state-of-the-art
systems is impressive, it is still well short of what is required to provide users
with an effective and reliable alternative to traditional interface technologies such
as keyboards and touch-sensitive screens [5]. Moreover, it is clear that spoken
language capabilities of the average human speaker/listener are considerably
more robust in adverse real-world situations such as noisy environments, dealing
with speakers with foreign accents or conversing about entirely novel topics. This
means that there is still a clear need for significant improvements in our ability
to model and process speech, and hence it is necessary to ask where these gains
might arise - more training data, better models, new algorithms, or from some
other source [6]?

It is posited here that it is time for the spoken language processing com-
munity to look outside the relatively narrow confines of the discipline in order
to understand the potentially important developments that are taking place
in related areas. Fields such as cognitive neuroscience, intelligent systems and
developmental robotics are progressing at an immense pace and, although some
of the tools and techniques employed in spoken language processing could be of
value to those fields, there is a growing understanding outside the speech area
of how living systems are organised and how they interact with the world and
with each other. Some of these new ideas could have a direct bearing on future
spoken language systems, and could provide a launchpad for the kinds of devel-
opments that are essential if the potential of speech-based language interaction
with machines is to be realised fully. This paper addresses these issues and intro-
duces a number of key ideas from outside the field of spoken language processing
which the author believes could be of some significance to future progress.

2 Looking for Inspiration Outside

It is often remarked that spoken language could be the most sophisticated behav-
iour of the most complex organism we know [7–9]. However, the apparent ease
with which we as human beings interact using speech tends to mask the variety
and richness of the mechanisms that underpin it. In fact the spoken language
processing research community has become so focused on the rather obvious
surface patterning - such as lexical structure (i.e. words) - that the founda-
tional principles on which spoken interaction is organised has a tendency to be



Spoken Language Processing 23

overlooked. In reality, long before spoken language dialogue evolved as a rich
communicative behaviour, the distant ancestors of modern human beings were
coordinating their activities using a variety of communicative modes and behav-
iours (such as the synchronisation of body postures, making explicit gestures,
the laying down of markers in the environment and the use of appropriate sounds
and noises). Interactivity is thus a fundamental aspect of the behaviour of living
systems, and it would seem appropriate to found spoken language interaction on
more primitive behaviours.

Interestingly, interactivity is not solely concerned with the behavioural rela-
tionship between one organism and another. In the general case, interactivity
takes place between an organism and its physical environment, where that envi-
ronment potentially incorporates other living systems. From an evolutionary
perspective, interactive behaviour between an organism and its environment can
be seen to emerge as a survival mechanism aimed at maintaining the persistence
of an organism long enough for successful procreation, and these are issues that
have engaged deep thinking theorists for any years. Of particular relevance here
is the growth of an approach to understanding (and modelling) living systems
known as enactivism.

2.1 Enactivism

Enactivism grew out of seminal work by Humberto Maturana and Francisco
Varela [10] in which they tackled fundamental questions about the nature of
living systems. In particular, they identified autopoiesis (a process whereby
organisational structure is preserved over time) as a critical self-regulatory mech-
anism and cognition (the operation of a nervous system) as providing a more
powerful and flexible autopoietic mechanism than purely chemical interactions.
They defined a minimal living system such as a single cell as an autopoietic
unity whereby the cell membrane maintains the boundary between the unity and
everything else. Hence, a unity is said to be structurally coupled with its exter-
nal environment - 1st-order coupling - and, for survival, appropriate interactive
behaviours are required to take place (such as moving up a sugar gradient).

Likewise, unities may be coupled with other unities forming symbiotic or
metacellular organisational structures - 2nd -order coupling - which can then be
viewed organisationally as unities in their own right. The neuron is cited as a
special type of cell emerging from particular symbiotic coupling, and the ner-
vous system is thus seen as facilitating a special form of 2nd-order metacellular
organisation termed a cognitive unity. Finally, Maturana and Varela propose
that interaction between cognitive unities - 3rd-order coupling - is manifest in
the form of organised social systems of group behaviour, and the emergence
of cooperation, communication and language are posited as a consequence of
3rd-order coupling.

The enactive perspective thus establishes a simple and yet powerful frame-
work for understanding the complexity of interaction between living systems,
and it holds the promise for the investigation of computational approaches that
seek to mimic these same behaviours. The emphasis on the coupling between a
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cognitive unity and its external environment (including other unities) is central
to the approach, and this provides two clear messages - interactivity must be
viewed as essentially multimodal in nature and that interaction is grounded in
the context in which it takes place. Likewise, enactivism makes it clear that
(spoken) language interaction is founded upon more general-purpose behaviours
for continuous communicative coupling rather than simple turn-by-turn message
passing [11,12].

2.2 Multimodal Interaction and Communication

In principle, the modality in which interaction between a living system and its
environment (including other living systems) takes place should be irrelevant.
However, in practice, the characteristics and affordances [13] of the different
modes greatly influence the modalities employed. For example, it may be easier
to move a heavy object by pushing it bodily rather than by blowing air at it.
Similarly, it may be safer to influence the behaviour of another living system by
making a loud noise from a distance rather than by approaching it and touching
it physically.

Nevertheless, notwithstanding the static advantages and disadvantages of
any particular mode of interaction, in a dynamic and changing world it makes
sense for an organism to be able to actively distribute information across alterna-
tive modes as a function of the situational context. Hence, even a sophisticated
behaviour such as language should be viewed as being essentially a multimodal
activity. Given this perspective, it would be natural to assume that there exists
some significant relationship between physical gestures and vocal sounds. In such
a framework, the power of multimodal behaviour such as speaking and pointing
would be taken for granted, and the emergence of prosody as a fundamental
carrier of unimodal vocal pointing behaviour would be more obvious.

For an up-to-date review of multimodal integration in general, see [14], and
for speech and gesture in particular, see [15]. The argument here is that such
behaviours are not simply ’nice to have’ additional features (as they tend to be
treated currently), but that they represent the basic substrate on which spo-
ken language interaction is founded. Indeed a number of authors have argued
that vocal language evolved from gestural communication (freeing up the hands
for tool use or grooming) [16–18]. Hence, these insights suggest that informa-
tion about multimodal characteristics and affordances should be intrinsic to the
computational modelling paradigms employed in spoken language systems.

2.3 Language Grounding

The notion that an organism is not only coupled with its environment, but also
with other organisms in the environment, introduces another important and
fundamental aspect of interactive behaviour - passive information flow versus
active signalling. In the first case, almost any behaviour could have indirect con-
sequences in the sense that the environment could be disturbed by any physical
activity, and such disturbance may provide a cue to other organisms as to what
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has taken place. As a result, organisms could exploit the availability of such
information for their own benefit; for example, a predator could track a prey by
following its trail of scent. In this situation, the emergent coupled behaviour is
conditioned upon passive (unintentional) information transfer between individ-
ual organisms via the environment. In this case, the information laid down in
the environment has meaning for the receiver, but not for the sender. However,
living systems may also actively manage the information flow, and this would
take the form of active (intentional) signalling - signals that have meaning for
the sender (and hopefully, the receiver).

Meaning and semantics have been rather latecomers to the spoken language
processing party. However, from the perspective being developed here, it is clear
that the significance and implications of a behaviour are fundamental to the
dynamics of the coupling that takes place between one individual and another.
In other words, meaning is everything! The implication of this view is that the
coupling is contingent on the communicative context which, in general terms,
consists of the characteristics of the agents involved, the physical environment
in which they are placed and the temporal context in which the actions occur.
In modern terminology, meaningful communication is said to be grounded in
the real world [19], and that generating and interpreting such behaviour is only
possible with reference to the embodied nature and situated context in which the
interactions take place. The grounding provided by a common physical environ-
ment gives rise to the possibility of shared meanings and representations [20],
and crucial behaviours such joint attention and joint action emerge as a direct
consequence of managing the interaction [21–24].

Such a perspective has taken strong hold in the area of developmental robotics
in which autonomous agents acquire communication and language skills (and in
particular, meanings) not through instruction, but through interaction [25–29].
These approaches address the symbol grounding problem [30] by demonstrating
that linguistic structure can be mapped to physical movement and sensory per-
ception. As such, they represent the first steps towards a more general approach
which hypothesises that even the most abstract linguistic expressions may be
understood by the use of metaphor to link high-level representations to low-level
perceptions and actions [31].

2.4 Mirror Neurons and Simulation

One of the drivers behind grounding language in behaviour is the discovery in the
1990s of a neural mechanism - so-called mirror neurons - that links action and
perception [32,33]. The original experiment involved the study of neural activ-
ity in the motor cortex of a monkey grasping a small item (such as a raisin).
The unexpected outcome was that neurons in the monkey’s pre-frontal motor
cortex fired, not only when the monkey performed the action, but also when
the monkey observed a human experimenter performing the same action. As
a control, it turned out that activation did not occur when the human experi-
menter used a tool (such as tweezers) to perform the action. The implication was
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that, far from being independent faculties, action and perception were somehow
intimately linked.

The discovery of mirror neurons triggered an avalanche of research aimed at
uncovering the implications of significant sensorimotor overlap. The basic idea
was that mirror structures appeared to facilitate mental simulations that could
be used for interpreting the actions and intentions of others [34]. Simulation not
only provides a generative forward model that may be used to explain observed
events, but it also facilitates the prediction of future events, the imagination of
novel events and the optimal influence of future events. The mirror mechanism
thus seemed to provide a basis for a number of important behaviours such as
action understanding [35], imitation and learning [36], empathy and theory of
mind [37] and, of most significance here, the evolution of speech and language
[38–41].

Since the simulation principle suggests that generative models of spoken lan-
guage production could be implicated in human speech recognition and under-
standing, the discovery of mirror neurons sparked a revival of interest in the
motor theory of speech perception [42]. The jury is still out as to the precise role
of the speech motor system in speech perception, but see [43–45] for examples
of discussion on this topic.

The mirror neuron hypothesis has also had some impact on robotics research
(see [46], for example), and the notion of mental simulation as a forward model/
predictor mechanism has inspired new theories of language [47–49] and speech
perception [50].

2.5 Perceptual Control Theory

As suggested above, the structural coupling of an agent with its environment
(including other agents) could be instantiated as a one-way causal dependency.
However, it is more likely that coupling would be bi-directional, and this implies
the existence of a dynamical system with feedback. Feedback - in particular,
negative feedback - provides a powerful mechanism for achieving and maintaining
stability (static or dynamic), and feedback control systems have been posited as
a fundamental property of living systems [51,52].

Founded on principles first expounded in the field of cybernetics [53], and
railing against the traditional behaviourist perspective taken by mainstream
psychologists, perceptual control theory (PCT) focuses on the consequence of
a negative-feedback control architecture in which behaviour emerges, not from
an external stimulus, but from an organism’s internal drive to achieve desired
perceptual states [54]. Unlike the traditional stimulus-response approach, PCT
is able to explain how a living organism can compensate for (unpredictable)
disturbances in the environment without the need to invoke complex statistical
models. For example, the orientation of a foot placed on uneven ground is con-
trolled, not by computing the consequences of an unusual joint angle, but by the
need to maintain a stable body posture. Likewise, PCT suggest that the clarity
of speech production is controlled, not by computing the consequences of the
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amount of noise in an environment, but by the need to maintain a suitable level
of perceived intelligibility.

Indeed, the importance of feedback control in speech has been appreciated
for some time, coupled with the realisation that living systems have to balance
the effectiveness of their actions against the (physical and neural) effort that is
required to perform the actions [55]. This principle has been used to good effect
in a novel form of speech synthesis that regulates its pronunciation using a crude
model of the listener [56].

2.6 Intentionality, Emotion and Learning

PCT provides an insight into a model of behaviour that is active/intentional
rather than passive/reactive, and this connects very nicely with the observation
that human beings tend to regard other human beings, animals and even inan-
imate objects as intentional agents [57]. It also links with the view of language
as an intentional behaviour [58], and thus with mirror neurons as a mechanism
for inferring the communicative intentions of others [59].

Intentionality already plays a major role in the field of agent-based modelling,
in particular using the BDI Beliefs, Desires, Intentions paradigm [60,61]. BDI is
an established methodology for modelling emergent behaviours from swarms of
‘intelligent’ agents, but it doesn’t specify how to recognise/interpret behaviour
under conditions of ambiguity or uncertainty. Nevertheless, BDI does capture
some important features of behaviour, and it is useful to appreciate that beliefs
equate to priors (which equate to memory), desires equate to goals, and inten-
tions drive planning and action.

Viewing the behaviour of living systems as intentional with the consequences
of any actions being monitored using perceptual feedback, leads to a model of
behaviour that is driven by a comparison between desired and actual perceptual
states (that is, by the error signal in a PCT-style feedback control process). This
difference between intention and outcome can be regarded as an appraisal [62]
of emotional valence whereby a match is regarded as positive/happy and a mis-
match is regarded as negative/unhappy [63]. From this perspective, emotion can
be seen as a driver of behaviour (rather than simply a consequence of behaviour)
and provides the force behind adaptation and learning.

3 Bringing the Ideas Inside

The foregoing provides a wealth of insights from outside the technical field of
spoken language processing that could have a direct bearing on future spoken
language systems. In particular, it points to a novel computational architecture
for spoken language processing in which the distinctions between traditionally
independent system components become blurred. It would seem that speech
recognition and understanding should be based on forward models of speech
generation/production, and that those models should be the same as those used
by the system to generate output itself. It turns out that dialogue management



28 R.K. Moore

should be concerned less with turn taking and more with synchronising and
coordinating its behaviours with its users.

The ideas above also suggest that a system’s goals should be to satisfy users’
rather than systems’ needs, and this means that systems need to be able to model
users and determine their needs by empathising with them. A failure to meet
users’ needs should lead to negative affect in the system, an internal variable
which is not only used to drive the system’s behaviour towards satisfying the
user, but which could also be expressed visually or vocally in order to keep a
user informed of the system’s internal states and intentions. The previous section
also points to a view of spoken language processing that is more integrated
with its external environment, and to systems which are constantly adapting to
compensate for the particular contextual circumstances that prevail.

3.1 Existing Approaches

A number of these ideas have already been discussed in the spoken language
processing literature, and some are finding their way into practical systems. For
example, the PRESENCE (PREdictive SENsorimotor Control and Emulation)
architecture [64–66] draws together many of these principles into a unified frame-
work in which the system has in mind the needs and intentions of its users, and
a user has in mind the needs and intentions of the system. As well as the lis-
tening speech synthesiser mentioned earlier [67], PRESENCE has informed a
number of developments in spoken language processing including the use of user
emotion to drive dialogue [68], AnTon - an animatronic model of the human
tongue and vocal tract [69] and the parsimonious management of interruptions
in conversational systems [70,71].

Another area of on-going work that fits well with some of the themes identi-
fied above is the powerful notion of incremental processing whereby recognition,
dialogue management and synthesis all progress in parallel [72–75]. These ideas
fit well with contemporary approaches to dialogue management using POMDPs
Partially-Observable Markov Decision Processes [76,77].

However, despite these important first steps, as yet there is no mathemati-
cally grounded framework that encapsulates all of the key ideas into a practical
computational architecture. Of course, this is not surprising - these are complex
issues that can be difficult to interpret. So, where might one start? The following
is a preliminary taste of what might be required [78].

3.2 Towards a General Conceptual Framework

One of the main messages from the foregoing is that a key driver of behaviour
- including speaking - for a living system seems to be intentionality (based on
needs). Consider, therefore, a world containing just two intentional agents -
agent1 and agent2. The world itself obeys the Laws of Physics, which means
that the evolution of events follows a straightforward course in which actions
lead to consequences (which constitute further actions) in a continuous cycle of
cause and effect.
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Actionst � Consequences �→ Actionst+1. (1)

The behaviour of the world can thus be characterised as...

Consequences = fworld (Actions) , (2)

where f is some function which transforms Actions into Consequences.
The two intentional agents are each capable of (i) effecting changes in the

world and (ii) inferring the causes of changes in the world.
In the first case, the intentions of an agent lead to actions which in turn lead

to consequences...

Intentions � Actions � Consequences. (3)

The behaviour of the agent can thus be characterised as...

Actions = gagent (Intentions) , (4)

where g is some function that transforms Intentions into Actions.
In the second case, an agent attempts to infer the actions that gave rise to

observed consequences.

Actions � Consequences � ̂Actions. (5)

The behaviour of the agent can thus be characterised as...

̂Actions = hagent (Consequences) , (6)

where h is some function that transforms Consequences into estimated
Actions.

This analysis becomes interesting when there is (intentional) interaction
between the two agents. However, before taking that step, it is necessary to
consider the interactions between the agents and the world in a little more detail.

An Agent Manipulating the World. Consider an agent attempting to
manipulate the world, that is intentions are transformed into actions which are
transformed into consequences. In robotics, the process of converting an inten-
tion into an appropriate action is known as action selection, and the relevant
transformation is shown in Eq. 4. Note, however, the emphasis here is not on the
actions that are required, but on the consequences of those actions.

Consequences = fworld (gagent (Intentions)) , (7)

where g is a transform from intentions to actions and, as before, f is the
transform from actions to consequences.

Of course, whether the intended consequences are achieved depends on the
agent having the correct transforms. It is possible to discuss how f and g might
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be calibrated. However, there is an alternative approach that is not dependent
on knowing f or g, and that is to search over possible actions to find those that
create the best match between the intentions and the observed consequences.

̂Actions = arg min
Actions

(Intentions − Consequences) , (8)

where Intentions−Consequences constitutes an error signal that reflects the
agent’s appraisal of its actions. A large value means that the actions are poor; a
small value means that the actions are good. Hence, the error signal can be said
to be equivalent to emotional valence - as discussed in Sect. 2.6. Overall, this
optimisation process is a negative feedback control loop that operates to ensure
that the consequences match the intentions even in the presence of unpredictable
disturbances. This is exactly the type of control structure envisaged in Perceptual
Control Theory - Sect. 2.5.

The approach works will only function if the agent can observe the conse-
quences of its actions. However, when an agent is manipulating another agent,
the consequences are likely to be changes in internal state and thus potentially
unobservable. This situation is addressed below, but first it is necessary to con-
sider an agent interpreting what’s happening in the world.

An Agent Interpreting the World. The challenge facing an agent attempt-
ing to interpret what is happening in the world is to derive the actions/causes
from observing their effects/consequences. If the inverse transform f−1 is known
(from Eq. 2), then it is possible to compute the actions directly from the observed
consequences...

Actions = f−1
world (Consequences) . (9)

However, in reality the inverse transform is not known. If it can be estimated
f̂−1, then it is possible to compute an estimate of the actions...

̂Actions = ̂f−1
world (Consequences) . (10)

Of course the accuracy with which the causes can be estimated depends on
the fidelity of the inverse transform.

An alternative approach, which aligns well with some of the ideas in the
previous section, is not to use an inverse model at all, but to use a forward
model - that is, an estimate of f (f̂). Estimation then proceeds by searching
over possible actions to find the best match between the predicted consequences
( ̂Consequences) and the observed consequences - again, a negative-feedback con-
trol loop.

̂Actions = arg min
̂Consequences

(
Consequences − ̂Consequences

)
. (11)

Of course the forward model is itself an estimate...

̂Consequences = ̂fworld (Actions) , (12)
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which leads to...

̂Actions = arg min
Actions

(
Consequences − ̂fworld(Actions)

)
. (13)

As an aside, the same idea can be expressed in a Bayesian framework, but the
principle is the same - interpretation is performed using search over a forward
model...

Pr(Actions|Consequences) =
Pr(Consequences|Actions) Pr(Actions)

Pr(Consequences)
. (14)

Hence the estimated action is that which maximises the following...

̂Actions = arg max
Actions

(Pr(Consequences|Actions)) , (15)

where Pr(Consequences|Actions) is the forward/generative model (equiva-
lent to ̂fworld (Actions)).

An Agent Communicating Its Intentions to Another Agent. Now it is
possible to turn to the situation where one agent - agent1 - seeks to manipulate
another agent - agent2. As mentioned above, in this case the consequences of
agent1’s actions may not be observable (because agent1’s intention is to change
the mental state of agent2). However, if agent1 can observe its own actions, then
it can use a model to emulate the consequences of its actions. That is, agent1
uses an estimate of the forward transform ̂hagent2.

̂Actions = arg min
Actions

(
Intentions − ̂hagent2(Actions)

)
. (16)

This solution is equivalent to agent1 actively trying out actions in order to
arrive at the correct ones. However, an even better solution is for agent1 not to
search in the real world, but to search in a simulated world - that is, to imagine
the consequences of its actions in advance of performing the chosen ones. This is
emulation as described in Sect. 2.4 which introduced the action of mirror neurons.

̂Actions = arg min
˜Actions

(
Intentions − ̂hagent2( ˜Actions)

)
. (17)

As before, a negative-feedback control loop manages the search and, inter-
estingly, it can also be viewed as synthesis-by-analysis.

An Agent Interpreting the Actions of Another Agent. For an agent to
interpret the actions of another agent, they are effectively inferring the intentions
of that agent. In this case, agent2 needs to infer the intentions of agent1 by
comparing the observed actions with the output of a forward model for agent1...

̂Intentions = arg min
Intentions

(
Actions − ĝagent1(Intentions)

)
. (18)

As before, a negative-feedback control loop manages the search to find the
best match and, in this case the process can be viewed as analysis-by-synthesis.
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3.3 Using Self to Model Other

Most of the derivation thus far is relatively straightforward in that it reflects
known approaches, albeit caste in an unusual framework. This is especially obvi-
ous if one maps the arrangements into a Bayesian formulation. The overlap with
some of the ideas outlined in Sect. 2 should be apparent.

However, there is one more step that serves to set this whole approach apart
from more standard analyses, and that step arises from the question “where do
ĝ and ĥ come from”? From the perspective of agent1, ĥ is a property of agent2
(and vice-versa). Likewise, From the perspective of agent2, ĝ is a property of
agent1 (and vice-versa). The answer, drawing again on concepts emerging from
Sect. 2, is that for a particular agent - self - the information required to model
another agent - other - could be derived, not from modelling the behaviour of
other, but from the capabilities of self ! In other words, the simulation of other
recruits information from the existing abilities of self - just as observed in mirror
neuron behaviour (Sect. 2.4).

If spoken language is the behaviour of interest, then such an arrangement
would constitute synthesis-by-analysis-by-synthesis for the speaker and analysis-
by-synthesis-by-analysis for the listener.

4 Conclusion

This paper has reviewed a number of different ideas from outside the main-
stream field of spoken language processing (starting from the coupling between
living cells), and given an insight into how they might be integrated into a novel
framework that could have some bearing on the architecture for future intel-
ligent interactive empathic communicative systems [79]. The approach - which
might be termed MBDIAC Mutual Beliefs Desires Intentions Actions and Con-
sequences - is different from the current paradigm in that, rather than estimate
model parameters off-line using vast quantities of static annotated spoken lan-
guage material, it highlights an alternative developmental paradigm based on
on-line interactive skill acquisition in dynamic real-world situations and environ-
ments. It also places a focus on generative models of communicative behaviour
(grounded in movement and action, and generalised using metaphor) which are
subsequently recruited for interpreting the communicative behaviour of others.

What is also different about the approach suggested here is that, in principle,
it subsumes everything from high-level semantic and pragmatic representations
down to the lowest-level sensorimotor behaviours. The approach is also neutral
with respect to the sensorimotor modalities involved; hence gesture and prosody
have an equal place alongside the more conventional vocal behaviours. The over-
all message is that it may be time to step back from worrying about the detail of
contemporary spoken language systems in order to rediscover the crucial com-
municative context in which communicative behaviour takes place. That way we
might be able to design and implement truly Autonomous Social Agents that
are capable of conversing effectively with their human counterparts.
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Finally, some readers may be tempted to think that this approach is promot-
ing a debate between statistical and non-statistical modelling paradigms. On
the contrary, the entire edifice should be capable of being caste in a probabilistic
framework. The concern here is not about probability but about priors!
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Abstract. Text-to-speech synthesis is a task that solves many real-
world problems such as providing speaking and reading ability to people
who lack those capabilities. It is thus viewed mainly as an engineering
problem rather than a purely scientific one. Therefore many of the solu-
tions in speech synthesis are purely practical. However, from the point of
view of phonetics, the process of producing speech from text artificially
is also a scientific one. Here I argue – using an example from speech
prosody, namely speech melody – that phonetics is the key discipline in
helping to solve what is arguably one of the most interesting problems
in machine learning.

Keywords: Phonetics · Machine learning · Speech synthesis · Prosody

1 Introduction

Speech is a vague term that refers to a number phenomena that range from
language and linguistic structure to articulatory gestures and acoustics as well
as the neurophysiological features that make both its production and perception
possible. Perhaps the best metaphor summarising the phenomena is the so called
speech chain [21] that depicts speech as a chain of systems, events, and processes
that transport ideas and intentions from the mind of a speaker to the mind of a
listener via the medium of sound, or light in the case of sign language. However,
what is special about speech is that it is a uniquely human behaviour emerging
from human social interactions and the articulatory capabilities afforded by the
human anatomy.

Speech synthesis was originally developed as a tool to study speech produc-
tion; first from a mechanical point of view and later from acoustic and artic-
ulatory. The history is fairly long starting from the mechanical synthesisers of
von Kempelen and Kratzenstein at the end of the 18th century [56,69,91] to
modern articulatory models based on e.g., data from MRI machines [14,15,38,
72,74]. Modern synthesis systems are mostly digital, although mechanical ver-
sions still exist [33,57]. These synthesisers are mainly used in laboratories and
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were designed for research purposes; the systems available to the public are typi-
cally designed for different purposes, namely to convert textual and other data to
speech. These text-to-speech synthesisers (TTS) can be roughly divided into two
types: ones using prerecorded speech data that is spliced together from a various
range of sizes of units [17,42] and parametric synthesisers that use statistical
models to produce the signals. The various kinds of unit-selection synthesisers
based on recordings are of little phonetic interest, whereas the statistical para-
metric synthesisers [82,83,94] provide some interest to a speech scientist.1 For
machine learning, the statistical parametric synthesis provides an ideal set of
problems for testing and developing new algorithms.

The main task of a text-to-speech synthesiser is to convert a string of dis-
crete graphical symbols (letters, numerals, punctuation marks, mathematical
signs and symbols etc.) into continuous sound waveforms [24,44,73,81]. The
task reflects the process of a person reading text out loud. First the text is inter-
preted as a linguistic entity which is then converted to a series articulatory plans
resulting in gestures and, finally, an acoustic signal. Depending on the type of
text, the requirements to understand its meaning varies. In the case of neutral
and maximally informative text, such as e.g., found in the newspaper, the under-
standing can be very shallow, whereas in the case of prose with written dialogue
the requirements are considerably deeper.

Typical text-to-speech systems not so much model the speech chain as
emulate the process of reading aloud. That is, they have a somewhat similar
relationship with human speech as airplanes have with bird flight. As such,
mapping text and speech is an attractive computational task that is at the same
time extremely complex and extremely easy. That is, it is fairly easy to produce
intelligible speech with fairly simple models [26,29,45] or by simply cutting and
splicing together prerecorded samples. The ease is, however, a mirage based on
both the redundancy of the speech signal on both linguistic and phonetic levels
[46,67] and the extremely good human perceptual capabilities. Two characteris-
tics that are heavily exploited in both automatic speech recognition (ASR) and
text-to-speech synthesis (TTS).

Modern machine learning techniques offer a compelling means to take the
synthesis technology further without actually utilising more basic knowledge of
the speech phenomena themselves. This is very much visible in the development
of modern statistical synthesisers which can utilise all of the correlations and
correspondences that the complexity of the speech signal and its underlying
linguistic structure provide. Given enough data, these systems can in principle
be trained to produce any kind of speech with high quality.

The question arises whether in the future traditional phonetic knowledge
about speech will play any role in the advancement of speech synthesis. There
are, in fact, systems already in existence which forgo even such basic phonetic
concepts as phones (speech sounds) and phonemes [1,92]) and translate letters
directly into sound without an explicit phonetic and phonological representa-
tions. The quality of such systems is poor at the moment but it is obvious that
1 For a good overview of techniques used see [43].
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with more data, better statistical models and learning algorithms the quality
will in the foreseeable future be on par with systems that utilise more tradi-
tional representations – such as e.g., phonemes and syllables.

The important fact that the speech chain metaphor provides us is that speech
is a cascade of separate processes all of which require different representations
from a number of different domains. That is, the synthesis systems necessitate
at least some modularity that desists monolithic modelling. It is in the internal
structure of the modules and how they interact with each where the scientific
knowledge is best utilised. It can be argued, that the scientifically optimal model
will be the easiest and most efficient to train regardless of the algorithms used. To
be phonetically relevant, the architecture of a synthesis system should resemble
the outline of the speech chain. It is as if nature has already solved many of the
(most difficult) optimisation problems in the field [11].

Speech synthesis has its origin in phonetics research [19] and many of the
breakthrough in the science itself have come from modelling speech [51]. It is
only recently in its long history that the synthesis technology has escaped pho-
netics laboratories into the wild; namely to laboratories dealing with electrical
engineering and even more recently, to laboratories engaged in computer science
and machine learning.

Phonetics is a science that takes the speech chain as a metaphor for its
research programme. As such it produces knowledge that is essential for text-
to-speech synthesis and speech synthesis in general. Thus, it at least potentially
offers the most appropriate knowledge for the optimal conceptual structure for
a synthesis system. That is, the process of turning a graphical textual represen-
tation of a linguistic sign into a time varying acoustic signal might best be done
by reflecting the flow of information and actions that produce speech in humans.
As such speech synthesis should be seen as a part of the greater field of artificial
intelligence as its final goal is to understand and model the mechanisms that
allow us to convey via speech the understanding of the world that surrounds
us [12]. Phonetics deals with how speech interfaces with the different sources of
information in the world and it is essential in recognising those sources. However,
dealing with the sources themselves is outside the scope of phonetics. What pho-
netics, as an established discipline provides is the possibility to design a speech
synthesis system on firm scientific grounds to reflect the theoretical knowledge
of speech production. This should help the designer avoid falling into traps that
are likely to lead to local minima in the optimisation process. Optimisation here
refers to both the training of a separate system and to the process of designing
the system itself.

Figure 1 shows the speech production side of the speech chain, where the flow
of information is from the original linguistic intent via the motor system and the
articulatory apparatus to the acoustic speech sound which is a product of the
sound source and the vocal tract filter function. This is, of course, a simplified
view, and does in no way represent the whole of speech production. Nevertheless,
it is conceptually a good working model for a TTS system in terms of modularity.
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Fig. 1. The speech production chain from intention to acoustics.

The typical architecture of a TTS system does resemble the speech chain
in that it is perforce divided into at least three modules: (1) the linguistic one
that analyses the raw input into paragraphs, sentences, and words and turns the
corresponding text into a string of phonemes or phones as opposed to letters;
(2) something that could be called the phonetic module which assigns acoustic
features to the linguistic input, and finally (3) a signal generation component
which renders the phonetic input into sound. The phonetic components typically
predict the desired prosody (phone durations and fundamental frequency con-
tour) as well as other phonetic features. In statistical parametric synthesis this
stage is the crucial one where the statistical models (usually HMMs) convert the
symbolic input into continuous parameter tracks, which are then turned into an
acoustic signal by a vocoder. Typically many more levels and modules are needed
to produce high-quality output. A conceptually optimal synthesis system is one
that avoids bottlenecks in the flow of information while at the same time reduces
the dimensionality – that the complexity of speech provides – in a productive
manner.

In simple terms, the synthesis system needs to model the process of speaking
in conceptual terms from intentions to acoustics. It is not necessary to model
the functioning of the nervous, motor, and articulatory systems per se. However,
to remain scientifically interesting the modularity of the system should be such
that each module could in principle be replaced with another of altogether differ-
ent kind without breaking the synthesis flow in a crucial manner. For instance,
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changing the module mapping abstract representations of utterances to acoustics
should not impact the linguistic analyses. Similarly, the linguistic analysis should
not impact the acoustic modules directly.

2 Hierarchical Nature of Speech

Spoken language is organised hierarchically both structurally and phonetically.
Syntactic hierarchy has been disputed lately [30], but the fact that phonology
(the abstract sound structure of a language) is structured hierarchically cannot
be disputed: words belong to phrases and are built up from syllables which
are further divisible phonemes which stand for the actual speech sounds when
the structures are realised as speech. This has many non-obvious effects on the
speech signal that need to be modelled. The assumption of hierarchical structure
combined with new deep learning algorithms has lead to recent breakthroughs
in automatic speech recognition [23]. In synthesis the assumption has played
a key role for considerably longer. The prosodic hierarchy has been central in
TTS since 1970’s [39,40] and most current systems are based on some kind of a
hierarchical utterance structure. Few systems go above single utterances (which
typically represent sentence in written form), but some take the paragraph sized
units as a basis of production [90].

Figure 2 depicts the hierarchical nature of speech as captured in a time-
frequency scale-space by a continuous wavelet transform (CWT) of the signal

Fig. 2. A continuous wavelet transform based on the signal envelope of an English
utterance showing the hierarchical structure of speech. The lower pane shows the wave-
form and the upper pane the CWT. In the CTW figure, the wavelet scale diminishes
towards the top of the figure. The lower parts show the syllables as well as prosodic
words (see text for more detail).
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envelope of a typical English utterance. The upper part contains the formant
structure (which is not visible due to the rectification of the signal) as well
as the fundamental frequency in terms of separate pulses. Underneath the f0

scale are the separate speech segments followed by (prominent) syllables, as well
as prosodic words. The lower part including the syllables and prosodic words
depicts the suprasegmental and prosodic structure which has typically not been
represented in e.g., the mel-frequency cepstral coefficient (MFCC) based features
in both ASR and TTS.

The utterance structure serves as a basis for modeling the prosody, e.g.,
speech melody, timing, and stress structure of the synthetic speech. Model-
ing prosody in synthesis has been based on a number of different theoretical
approaches stemming from both phonological considerations as well as phonetic
ones. The phonologically based ones stem from the so called Autosegmental
Metrical theory [34] which is based on the three-dimensional phonology devel-
oped in [36,37] as noted in [44]. These models are sequential in nature and the
hierarchical structure is only implicated in certain features of the models. The
more phonetically oriented hierarchical models are based on the assumption that
prosody – especially intonation – is truly hierarchical in super-positional fash-
ion. The superpositionality was described eloquently by Bollinger [16] as follows:
“The surface of the ocean responds to the forces that act upon it in movements
resembling the ups and downs of the human voice. If our vision could take it
all in at once, we would discern several types of motion, involving a greater and
greater expanse of sea and volume of water: ripples, waves, swells, and tides. It
would be more accurate to say ripples on waves on swells on tides, because each
larger movement carries the smaller ones on its back.” We can, thus, assume the
different local prosodic phenomena have different sources – either linguistic or
physiological, or both.

Actual models capturing the superpositional nature of intonation were first
proposed in [58] by Öhman, whose model was further developed by Fujisaki
[31,32] as a so called command-response model which assumes two separate
types of articulatory commands – accents associated with stressed syllables and
phrases. The accent commands produce faster changes which are superposed on
a slowly varying phrase contours. Several superpositional models with a varying
degree of levels have been proposed since Fujisaki [5,9,47,48]. Superpositinal
models attempt to capture both the chunking of speech into phrases as well
the highlighting of words within an utterance. Typically smaller scale changes,
caused by e.g., the modulation of the airflow (and consequently the f0) by the
closing of the vocal tract during certain consonants, are not modelled.

3 Prominence Based Prosody and Wavelets

Prominence at the level of word is a functional phonological phenomenon that
signals syntagmatic relations of units within an utterance by highlighting some
parts of the speech signal while attenuating others. Thus, for instance, some of
syllables within a word stand out as stressed [25]. At the level of words promi-
nence relations can signal how important the speaker considers each word in
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relation to others in the same utterance. These often information based rela-
tions range from simple phrasal structures (e.g., prime minister, yellow car) to
relating utterances to each other in discourse as in the case of contrastive focus
(e.g., “Where did you leave your car? No, we WALKED here.”). Although promi-
nence probably works in a continuous fashion, it is relatively easily categorised
in e.g., four levels where the first level stands for words that are not stressed in
any fashion prosodically to moderately stressed and stressed and finally words
that are emphasised (as the word WALKED in the example above). These four
categories are fairly easily and consistently labeled even by non-expert listeners
[6,18,89]. In sum, prominence functions to structure utterances in a hierarchical
fashion that directs the listener’s attention in a way which enables the under-
standing of the message in an optimal manner.

As a functional – rather than a formal – phenomenon prominence lends itself
optimally to statistical synthesis. That is because the actual signalling of prosody
and prominence in terms of speech parameters is extremely complex and con-
text sensitive. As a one-dimensional feature, prominence provides for a means
to reduce the complexity of a synthesis system at a juncture that is relevant in
terms of both representations and data scarcity. The complex feature set that is
known to effect the prosody of speech can be reduced to a few categories or a
single continuum from dozens of context sensitive features, such as e.g., part-of-
speech and whatever can be computed from the input text. Taken this way, word
prominence can be viewed as an abstract phonological function that impacts the
phonetic realisation of the speech signal. It is an essential part of the utter-
ance structure, whereas features like part-of-speech or information content (IC)
are not.

Word prominence has been shown to work well in TTS for a number of lan-
guages, even for English which has been characterised as a so called intonation
language, which in principle should require a more detailed modelling scheme
which requires explicit knowledge about the intonational forms [7,10,76–78]. The
perceived prominence of a given word in an utterance is a product of many sepa-
rate sources of information; mostly signal based although other linguistic factors
can modulate the perception [86,89]. Typically a prominent word is accompanied
with a f0 movement, the stressed syllable is longer in duration, and its intensity
is higher. However, estimating prominences automatically is not straight-forward
and a multitude of algorithms have been suggested.

Statistical speech synthesis requires relatively little data as opposed to
unit-selection based synthesis. However, labelling even small amounts of speech –
especially by experts – is prohibitively time consuming. In order to be practicable
the labelling of any feature in the synthesis training data should be preferably
attainable with automatic and unsupervised means. We have recently devel-
oped methods for automatic prominence estimation based on continuous wavelet
transform (CWT) which allow for fully automatic and unsupervised means to
estimate word prominences as well as boundary values from a hierarchical rep-
resentation of speech [75,79,87].
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Fig. 3. CWT of the f0 contour of a Finnish utterance. The lower pane shows the
(interpolated) contour itself as well as orthographic words (word boundaries are shown
as vertical lines in both panes). The upper pane shows the wavelet transform as well
as eight separated scales (grey lines) ranging from segmentally influenced perturbation
or microprosody (lowest scale) to utterance level phrase structure (the highest level).

Wavelets are used in many machine-learning applications to represent hier-
archical properties of objects such as photographs or graphemes in both image
compression and recognition. In speech research there is also a long history going
back to the 1980’s [4,65,66]. Summary of wavelets in speech technology can be
found in [27].

The most important aspect of wavelet analysis is that it allows for time-
frequency localisation for what is a priori known to exist in the speech signal;
that is speech sounds, syllables, (phonological) words, phrases and so forth. This
is not possible with e.g., Fourier analysis, which is painfully obvious to anyone
familiar with traditional spectrograms.

Figure 3 shows a CWT of the f0 contour of a Finnish utterance “Aluette,
jossa puhetta tutkivat eri tieteenalat kohtaavat toisensa on perinteisesti kut-
suttu fonetiikaksi”, (The area where the sciences interested in speech meet each
other has been traditionally called phonetics). The lower pane shows the (inter-
polated) contour itself as well as orthographic words (word boundaries are shown
as vertical lines in both panes). The upper pane shows the wavelet transform as
well as eight separated scales (grey lines) ranging from segmentally influenced
perturbation or microprosody (lowest scale) to utterance level phrase structure
(the highest level). The potentially prominent peaks in the signal are clearly
visible in the scalogram.

The time-scale analysis allows for not only locating the relevant features in
the signal but also estimating their relative salience, i.e., their prominence. The
relative prominences of the different words are visible as positive local extrema
(red in Fig. 3). There are several ways to estimate word prominences from a
CWT. In [80,87] we simply used amplitude of the word prosody scale which was
chosen from a discrete set of scales with ratio 2 between ascending scales as the
one with the number of local maxima as close to the number of words in the
corpus as possible. A more sophisticated way is presented in [88] where the lines
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Fig. 4. CWT and LoMA based analysis of an utterance producing a hierarchical tree
structure. The word prominences based on the strength of the accumulated LoMA
values that reach the hierarchical level corresponding to words. See text for more detail.

of maximum amplitude (LoMA) in the wavelet image were used [35,54,66]. This
method was shown to be on par with human estimated prominence values (on
a four degree scale). However, the method still suffers from the fact that not
all prominent words are identified and – more importantly – some words are
estimated as prominent whereas they should be seen as non-prominent parts of
either another phonological word or a phrase.

Figure 4 shows an f0 contour of an English utterance (“Sometimes the players
play in festivities to enliven the atmosphere.”) analysed with CWT and LoMa.
The analyses provide both an accurate measure for the locations of the promi-
nent features in the signal as well as their magnitudes. All in all, the CWT
and LoMA based analysis can be used for a fully automatic labelling of speech
corpora for synthesis. The synthesis, however, cannot produce a full CWT at
run time; neither does it make sense to use the full transform for training. That
is, the CWT needs to be partitioned into meaningful scales for both training
and producing the contours. In [75] we partitioned the CWT into five scales
(two octaves apart) which roughly corresponded to the segmentally conditioned
microprosody at the lowest level (smallest scale) to syllables, phonological words,
phrases, and utterances (at to larges scale). In the HMM framework each level
was modelled with a separate stream, which allows for the system to take prop-
erly into account the different sources responsible for the changes at all levels. At
synthesis time the separate levels have to be reconstructed into a single contour.
This procedure is similar to the ones used for image compression and produces
a small amount of error, which is however negligible as is shown in Fig. 5. For
a more technical presentation of the CWT and LoMA analyses, as well as the
signal reconstruction, see [88].
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Fig. 5. An original interpolated f0 contour and its reconstruction from five separate
wavelet scales two octaves apart (upper pane) and reconstruction error (lower pane).

In earlier work, wavelets have been used in speech synthesis context mainly
for parameter estimation [49,55,68] but never as a full modelling paradigm. In
the HMM based synthesis framework, decomposition of f0 to its explicit hier-
archical components during acoustic modeling has been investigated in [50,93].
These approaches rely on exposing the training data to a level-dependent subset
of questions for separating the layers of the prosody hierarchy. The layers can
then be modelled separately as individual streams [50], or jointly with adaptive
training methods [93].

In our recent work [79] we have extended the prominence based synthesis by
using two-dimensional tagging of prosodic structure; in addition to the LoMA
based prominence we use a boundary value of each word in order to (1) better
represent the hierarchical structure of the signal, and (2) to disambiguate those
prominence estimates that are estimated to be similarly prominent by the LoMA
estimation alone. This brings the labelling system closer to the traditional tone-
sequence models which have been widely used – with varying rates of success –
in English TTS [24,41,81]. The boundary value for each word can be estimated
by e.g., following the lines of minimum amplitude at word boundaries (blue areas
in Fig. 4). The combination of word prominence and boundary values – together
with the traditional text based utterance structure – are enough to represent
the sound structure of any utterance. These utterance structures can be further
modified by other functional features such as whether the utterance is a question
or a statement by simply adding the feature to the top-level of the tree.

The above described scheme reduces the complexity of the symbolic represen-
tation of speech at a juncture that optimises the learning of the actual phonetic
features derived from the speech events – be they parameter tracks or something
else, such as e.g., articulatory gestures.

4 Implementation of Wavelet and Prominence Based
Prosody in GlottHMM Synthesis

The prosody models introduced in the previous section have been implemented
in the GlottHMM synthesis system, which has been developed jointly by two
groups at the Aalto University (formerly Helsinki University of Technology) and
University of Helsinki. It is a statistical parametric TTS system that is based on
a new vocoder (signal generation component) that utilises glottal inverse filtering
to estimate both the vocal tract and voice source parameters, which are modelled
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separately at the synthesis stage. The basic idea of glottal inverse filtering is to
separate the glottal source and the vocal tract filter based on the linear speech
production model [28]. This theory assumes that the production of speech can be
interpreted as a linear cascade of three processes: S(z) = G(z)V (z)L(z), where
S(z) denotes speech, and G(z), V (z), and L(z) denote the voice source, the
vocal tract filter, and the lip radiation effect, respectively. Conceptually, glottal
inverse filtering corresponds to solving the glottal volume velocity G(z) according
to G(z) = S(z)1/V (z)1/L(z). That is, the model separates the glottal excitation
formed by the vocal folds vibrating in the pulmonic airflow from the acoustic
filter characteristics of the upper vocal tract as it moves to form different speech
sounds. In the GlottHMM system, an automatic glottal inverse filtering method,
Iterative Adaptive Inverse Filtering (IAIF) [2,3] is used as a computational tool
to implement glottal inverse filtering. The current TTS system utilises deep
neural networks (DNN) for modelling the pulse shape [60,61]. The structure of
the current version of GlottHMM system is presented in Fig. 6. The use of DNNs
for modelling the glottal flow shapes has produced very promising results and we
are currently looking into replacing the other components of the system, namely
the decision trees and linguistic analysis components with suitable deep learning
algorithms.

Fig. 6. The architecture of the GlottHMM synthesis system.
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Fig. 7. A representative sample of a glottal flow signal and its derivative from the
current study. The sample depicts a five glottal pulse sequence from a male speaker
producing a vowel [ ].

Figure 7 (from [89]) show a glottal flow signal (and its derivative) acquired
by the IAIF method. The measures used for computing certain characteristics of
the pulse shape are also illustrated. Grounding the system on human physiology
provides it with both transparency and quantifiability and consequently better
control of the dynamics of speech. The system has been used successfully in
modelling the whole continuum from whispery quiet speech to noise induced
Lombard speech and even shouting [62–64,76]. In sum, it provides an easily
trainable system for speech synthesis which at a representational level models
the human speech production.

5 Discussion

Modelling speech prosody hierarchically on several temporal levels is practicable
from both linguistic and phonetic points of view as it allows for more trans-
parency (and consequently more control) over the factors affecting the resulting
speech acoustics. One can probably arrive at similar speech quality with mod-
ern deep learning techniques as opposed to – what I would call – phonetically
oriented models, without similar overall architecture or the time-scale analyses
and representations presented in this paper. New deep learning methods [22] can
probably capture the hierarchical structure directly from the surface signal (e.g.,
the f0 contour) and be able to predict the signal accordingly. However, from a
purely scientific point of view, such modelling would not be as fruitful and might
not carry as well into the future. On the other hand, utilising the best machine
learning algorithms with a conceptually correct architecture should lead to bet-
ter and more interesting results. In terms of speech prosody, as suggested in this
paper, it is advisable to separate the features that influence the abstract sound
structure of speech from the description of the sound structure itself. That is, the
systems should predict the functional phonological structure from the linguistic
and statistical properties of the input, not the behaviour of the actual phonetic
parameters themselves. The phonological – or sound structural – description of
an utterance is, on the other hand, on such an abstract level, that it can be used
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as input to a synthesiser which can be either acoustic or articulatory. That is,
modularity based on phonetic principles that reflect the true nature of speech
are more general should in practice work more efficiently than ones based on
e.g., practical needs or constraints.

Modelling speech synthesis after human speech production analogously to
the speech chain has several advantages over developing systems based on the
requirements and solutions stemming from machine learning techniques alone –
or needs that come from outside the scientific enterprise. Most of the advantages
are not obvious and will only be relevant in the future as the methods for repre-
senting speech outside the domain of acoustic signals advance to a level where it
will be practicable to build articulatory synthesisers capable of producing speech
in a human-like manner, including the reductions found in spontaneous every-
day talk. There are several reasons why we would prefer articulatory synthesis
over ones based on acoustic parameters and signal processing. First, as a purely
scientific problem, speech synthesis should model human speech production in a
fashion that sheds light to the phenomenon of speech itself. For that, the current
modelling as it is implemented in TTS systems is not adequate.2 Secondly, the
current methodology does not allow true interactivity between machines and
humans in terms of e.g., entrainment and structuring of interactions [13].

It may be too lofty a goal, but speech synthesis (including TTS) as argued
here should be viewed as modelling an integral part of the speech chain, where
the other half of the whole deals with receiving and understanding the messages.
Many recent findings in cognitive sciences have found evidence for the motor
theory of speech perception [8,20,52], which points to the fact that at some
level both speech production and speech perception could be modelled jointly
even in speech technological solutions. The inclusion of the motor system in
a model entails that the system be embodied in some fashion since it is via
the actual articulators that the system learns to interpret the input [70,71].
Furthermore, the eventual understanding of language will require the models to
include – not only the speech production and perception apparata – but arms
and hands, as well [84,85]. In conclusion, when considered from the point of
view of phonetics, the machine learning involved with speech synthesis should be
biologically inspired [59] at all levels of representation. Moreover, as a science,
phonetics is the best equipped to guide in what is arguably one of the most
universally interesting machine learning problems in existence.
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Abstract. Existing bilingual dictionaries of technical terms suffer from
limited coverage and are only available for a small number of language
pairs. In response to these problems, we present a method for auto-
matically constructing and updating bilingual dictionaries of medical
terms by exploiting parallel corpora. We focus on the extraction of multi-
word terms, which constitute a challenging problem for term alignment
algorithms. We apply our method to two low resourced language pairs,
namely English-Greek and English-Romanian, for which such resources
did not previously exist in the medical domain. Our approach combines
two term alignment models to improve the accuracy of the extracted
medical term translations. Evaluation results show that the precision of
our method is 86% and 81% for English-Greek and English-Romanian
respectively, considering only the highest ranked candidate translation.

1 Introduction

Bilingual dictionaries of technical terms are important resources for many Nat-
ural Language Processing (NLP) tasks. In Statistical Machine Translation
(SMT), an up-to-date, bilingual dictionary can be used to dynamically update
the SMT system in order to provide more accurate translations of unseen terms
[12,15], i.e., current SMT approaches fail to translate terms that do not occur in
the training data. In Cross-Language Information Retrieval, the use of a bilin-
gual dictionary to expand queries is reported to enhance the overall performance
[2]. Bilingual dictionaries can also be particularly useful for human translators
who are not familiar with the domain specific terminology [10].

However, manually creating and updating bilingual dictionaries of technical
terms is a labourious process. Especially in the biomedical domain, where there
is a proliferation of newly coined terms [23], keeping such resources up to date
can be extremely costly. For this reason, many existing bilingual dictionaries of
technical terms remain incomplete and only cover a limited number of language
pairs.

c© Springer International Publishing Switzerland 2014
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The UMLS metathesaurus1 is a popular, multilingual terminological resource
for the biomedical domain. UMLS contains terms in more than 20 languages,
which are linked together using common concept ids. However, UMLS does not
index terms in Greek and in Romanian. Hence, our goals is it expand UMLS
for these two low resourced languages. In the English part of UMLS, MWTs
correspond to phrases that can have various syntactic forms, e.g., noun phrases
(bipolar disorder) or adjective phrases (abnormally high), and which cover a wide
range of biomedical concepts, e.g., qualitative concepts (moderate to severe), dis-
eases or syndromes liver cirrhosis, pharmacological substances (lactose mono-
hydrate), etc. In contrast to previous approaches, which have been concerned
exclusively with identifying translations of noun phrases [9,19,28], we do not
restrict the term alignment problem to specific syntactic categories. Without
this restriction, our method is general enough to extract candidate term trans-
lations for all types of MWTs appearing in UMLS, thus providing the potential
to significantly increase coverage for other languages.

Most existing term alignment algorithms suggest N ranked candidate transla-
tions for each source term (usually in the range of [1, 20]). Translation accuracy is
evaluated by determining the percentage of source terms whose top N candidates
contain a correct translation. Naturally, as N increases, the system performance
improves, because a greater number of candidate translations is being consid-
ered. Thus, the evaluation results only tell us, if a correct translation exists, it
will be somewhere amongst the N possible translation candidates. Dictionaries
created using such methods (i.e., with N candidate translations for each word)
are noisy, and can only be useful for a limited number of applications, e.g., in
SMT systems, which use a language model to select the most probable trans-
lation out of N possible candidates. However, [8] showed that such dictionaries
decreased the translation accuracy of human translators. Furthermore, automat-
ically compiled dictionaries cannot be used to update high-quality terminological
resources before human translators have removed the noisy candidates. In this
paper, we aim to improve the translation accuracy on the first ranked candidate.

Our novel method firstly analyses a parallel corpus to identify terms in the
source language which have a corresponding entry in UMLS. Additionally, each
source term is annotated with: (a) concept id and (b) semantic category that
are derived from UMLS. As a second step, we apply a term alignment method
to obtain the translation equivalence in the target language. Finally, we prop-
agate the concept id and the semantic category from the source term to the
corresponding target translation.

To obtain the translation of a source term, we investigate three term align-
ment methods, i.e.: (a) a phrase alignment module which is part of an SMT
toolkit (SPA) (b) a supervised machine learning approach that uses character
n-grams, i.e., a Random Forest (RF) classifier and (c) the intersection of the
above two methods, which we call the voting system.

For evaluation purposes, we sampled 1000 terms with their corresponding
translations, and we asked bilingual speakers of both English-Greek and
1 nlm.nih.gov/research/umls

http://nlm.nih.gov/research/umls
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English-Romanian to judge the translations. The results that we obtained showed
that the voting method achieved the best translation accuracy for the top 1 can-
didate translation by a significant margin. Furthermore, the same voting method
exhibited competitive performance in the translation of both frequent and rare
terms, in contrast to SPA, which was shown to be largely dependent on the
frequency of terms in the corpus.

2 Related Work

Early works on term alignment immediately recognised the potential benefits of
automatically constructed bilingual terminological resources. At AT&T labs, [6]
presented Termight, a term alignment tool that was shown to be useful for human
translators of technical manuals, despite of its fairly low accuracy (40% trans-
lation accuracy on the top 1 candidate for English-German). Termight firstly
performed word alignment [7] to compile a bilingual list of single words from the
parallel corpus. A simple heuristic was then used to extract MWT translations,
i.e., for each source MWT, candidate translations were defined as sequences
whose first and last words were aligned with any of the words contained in the
source MWT.

Several approaches have explored statistical methods to align MWTs in par-
allel corpora. Reference [25] investigated the alignment of collocations which are
frequently occurring word pairs (e.g., powerful computer). Champollion, their
proposed system, was iteratively building a translation by selecting words in
the target language that are highly correlated (Dice coefficient) with the input
source collocation. Their method achieved competitive performance of approx-
imately 70% translation accuracy on an English-French parallel corpus. Other
approaches have investigated the use of co-occurrence frequency [9] and mutual
information [5].

While statistical approaches for term alignment are frequently reported in the
literature, several other techniques have been explored, including machine learn-
ing, distributional methods and hybrid approaches. Reference [19] introduced a
machine learning method, an Expectation-Maximisation algorithm, for extract-
ing translations of noun-phrases from an English-French parallel corpus. The
authors reported an accuracy of 90%, but only when considering the 100 high-
est ranking correspondences. Reference [3] used a simple distributional semantics
approach, namely a Vector Space model. They constructed boolean term vectors
in a source and target language of size N , where N is the number of sentences
in the corpus. Each dimension of a vector corresponded to a sentence and its
value indicated whether or not the term appeared in the sentence. For rank-
ing candidate translations they used the Jaccard Index between the vector of a
source and target term. For evaluation, they did not compute the standard preci-
sion and recall. They rather measured the effect of using the extracted bilingual
dictionary within an SMT system. The results obtained showed a small improve-
ment of +0.30 BLEU points [22] over the baseline SMT system. Reference
[29] introduced a hybrid collocation alignment system that combines statistical
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(log likelihood ratio) and syntactic information (part-of-speech patterns). Their
system achieved a competitive performance when applied on a distant language
pair, namely English-Chinese.

In contrast to previous works that applied their methods to well-resourced
language pairs, e.g., English-French, few approaches have focussed on low-
resourced language pairs. Reference [28] applied term alignment to extend the
Slovenian WordNet. Their method relied on word alignments and on lexico-
syntactic patterns. In total, they were able to extract 5, 597 new multi-word
terms for the Slovenian WordNet, of which 2, 881 were correct.

In this work, we aim at enriching UMLS with low-resourced languages that
previously were absent from the thesaurus. Overall, our system retrieved 5, 926
and 5, 446 multi-word terms with a translation accuracy of 86% and 81% on the
top 1 ranked candidate for English-Greek and English-Romanian respectively.

3 Methodology

We use EMEA, a biomedical parallel corpus from the European Medicines Agency
[27]. The corpus contains approximately 1, 500 sentence-aligned documents in 22
European languages. As a first step, English MWTs are identified in the corre-
sponding part of EMEA, using a monolingual term extraction tool. For this, we
use MetaMap [1], which automatically recognises biomedical terms in an input
English text. Furthermore, MetaMap assigns a UMLS concept id and a semantic
category to each term. In this way, the extracted English terms are mapped to
the UMLS metathesaurus. This step identified 17, 907 unique English MWTs in
the English-Greek part of the corpus and 16, 625 MWTs in the English-Romanian
part of the corpus.

For the target part of the parallel corpus (Greek/Romanian), we extract
candidate translations by simply considering all contiguous sequences containing
up to four words. These candidates are used in both SPA and RF. Additionally,
the system computes the intersection of the alignment methods (voting system)
in order to improve the quality of the extracted dictionaries.

3.1 Statistical Phrase Alignment

We adopt a standard approach used in Statistical Machine Translation to align
phrases from parallel corpora [16]. The Statistical Phrase Alignment (SPA)
method builds phrase alignments using a single-word bilingual dictionary that
was previously extracted from the parallel corpus. The performance of SPA is
heavily dependent on the quality of the word alignment module. Word align-
ments are established using GIZA++ [21], an open source implementation of
the 5 IBM-models [4]. GIZA++ is trained on both translation directions and
extracts two word alignment tables Ls → Lt and Lt → Ls between a source Ls

and target Lt language. Then we combine the two tables using the grow-diag-final
heuristic which starts with all alignments found in the intersection of the tables
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and then adds neighbouring alignments of the union set. The merged transla-
tional table yields a better recall and precision of word-to-word correspondences
than the intersection or union of the two tables.

Using the word alignments that are established as described above, we extract
any pair of phrases (sn, tm), where sn is a source phrase containing of n words
and tm a target phrase of m words, with the condition that the words in sn are
aligned to the words in tm and not to any other words outside tm. Finally, the
candidate phrase pairs are ranked using the lexical translation probability.

3.2 Random Forest Aligner

References [17,18] introduced an Random Forest (RF) aligner that is able to
automatically learn association rules of textual units between a source and tar-
get language when trained on a corpus of positive and negative examples. The
method is based on the hypothesis that terms across languages are constructed
using semantically equivalent textual units. Hence, if we know the translations
of the basic building blocks of a term, e.g., morphemes, prefixes, suffices, we
can predict the term in a target language. Table 1 illustrates an example of the
training and prediction process of the RF aligner. In this toy example, the RF
aligner is trained on two English-Greek and English-Romanian instances and
learns how to translate the morphemes cardio and vascular. Once trained, the
model uses the previously learned associations of textual units to extract new
term translations, e.g., <cardio-vascular, καρδι-αγγειακó, cardio-vascular>.

Table 1. Example of training and prediction process of RF Aligner

English Greek Romanian

cardio-myopathy μυo-καρδιo-π θεια cardio-miopatie
training extra-vascular εξω-αγγ ειακó extra-vascular

prediction cardio-vascular καρδι-αγγειακó cardio-vascular

The RF aligner is a supervised, machine learning method. It uses n-grams
(size of [2, 5] characters) to represent a pair of terms in a source and in a target
language. The feature vectors have a fixed size of 2q. The first q n-grams are
extracted from the source term while the last q n-grams from the target term.
For dimensionality reduction, we considered only the 1, 000 (500 source and 500
target) most frequent character n-grams. Given a term in a source language,
the model outputs a list of the top N ranked candidate translations. For rank-
ing candidate translations, we use the prediction confidence, i.e., classification
margin.

To train the RF aligner, we use BabelNet [20]. BabelNet is a multilingual,
multi-domain, encyclopedic dictionary containing terms in 50 languages includ-
ing English, Greek and Romanian. For both language pairs (English-Greek and
English-Romanian) we select 10K positive and 10K negative instances to learn
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positive and negative associations of character grams between the source and
target language. Pseudo-negative instances are created by randomly matching
non-translation terms.

In addition to the two alignment models, we use a voted system that considers
the intersection of the two models. The combined system is expected to increase
the accuracy of the automatically extracted dictionaries.

4 Experiments

In this section, we evaluate the three dictionary extraction methods, namely
SPA, RF and the voted system on two biomedical parallel corpora for English-
Greek and English-Romanian.

We follow a standard evaluation methodology reported in the literature. We
select the top N ranked translations for each source term as given by the term
alignment methods and we mark a correct answer when a true translation is
found among the top N candidates. In some cases both the RF and SPA failed
to propose any candidate translations for a given source term (the list of ranked
candidates was empty). Based upon, we use two evaluation metrics in our exper-
iments, namely the top-N precision and top-N recall. The top-N recall is defined
as the percentage of source terms whose top N candidates contain a correct
translation. The top-N precision is the percentage of source terms whose list of
top N candidates: (a) is not empty and (b) contains a correct translation.

4.1 Results

For evaluation purposes, we randomly sampled 1, 000 English MWTs. For each
English MWT, we selected the top 20 translation candidates. We asked two
people whose native languages are Greek and Romanian, respectively, and who
are fluent English speakers, to manually judge the translations of the English
MWTs. The curators marked only exact translations as being correct.

Figures 1 and 2 show the top 20 precision of the dictionary extraction meth-
ods. We note that the performance of SPA is consistently better than RF in
both datasets. SPA achieves a precision of 93.2% and 89% on the top 20 can-
didates, while RF achieves a precision of 67.1% and 67.7% for English-Greek
and English-Romanian, respectively. A possible explanation for the poor perfor-
mance of RF is that we trained the model on an out-of-domain lexicon, namely
BabelNet, due to the lack of existing bilingual biomedical dictionaries for the
two language pairs. Hence, the model does not explicitly learn character n-gram
mappings of biomedical terms, which leads to noisy translations when we apply
the model to in-domain datasets.

SPA achieves robust performance when considering the top 20 candidate
translations. However, the performance of SPA declines steadily as fewer trans-
lation candidates are considered (49% for English-Greek and 48% for English-
Romanian on the top 1 candidate). Thus, although SPA is able to determine
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Fig. 1. Precision of top N candidates of SPA, RF and the voted method (SPA + RF)
for English-Greek
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Fig. 2. Precision of top N candidates of SPA, RF and the voted method (SPA + RF)
for English-Romanian

an exact translation in most cases, this could lie anywhere within the top 20
candidates.

In an attempt to improve the precision of higher ranking candidates, we
considered the intersection between RF and SPA. This “hybrid” method achieved
significantly better performance than either RF or SPA when considering only
the highest ranked candidate (86% and 81% for English-Greek and English-
Romanian, respectively). For the top 20 candidates, the performance of the voted
system is approximately the same with SPA.

The recall which determines the coverage of the extracted dictionary is a
further important feature of term alignment methods. Figures 3 and 4 illustrate
the recall of SPA, RF and the voted system on an increasing number of ranked
candidate translations. We observe that the recall of RF is significantly better
than the recall of SPA and the voted system. For the top 20 candidate trans-
lations, RF achieves the best observed recall of approximately 67% for both
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Fig. 3. Recall of top N candidates of SPA, RF and the voted method (SPA + RF) for
English-Greek
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Fig. 4. Recall of top N candidates of SPA, RF and the voted method (SPA + RF) for
English-Romanian

English-Greek and English-Romanian. In contrast, the voted system performs
poorly, with a total coverage of 30% on the top 20 candidates. The low recall
of the voted system is caused by the significantly decreased coverage of SPA
compared to RF. This impacts negatively on the voted system, since its results
constitute the intersection of the two alignment methods. SPA extracted correct
translations for only 48% and 40% of the English terms from the English-Greek
and English-Romanian corpus, respectively.

4.2 Error Analysis

In this subsection, we discuss the results of an error analysis that was performed
to reveal common noisy translations extracted by RF and SPA.

In the case of the RF, we identified two types of erroneous translations: (a)
partial matches and (b) discontinuous translations. Partial matches refer to the
cases where RF translated part of the English term but failed to retrieve an exact
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match. For example, the English term “urea cycle disorder” was partially trans-
lated into Romanian as “tulburărilor ciclului” (missing translation for “urea”).
Additionally, in several cases, a partial translation was ranked higher than the
exact match, which led to a decrease in the precision for top 1 candidate. The
top ranked Greek translation for “urea cycle disorders” was “ ” (urea
cycle) while the exact matched ( ) was ranked fifth.
In fewer cases, the translation of an English term occurred as discontinuous
sequence in the target corpus. For example, the term “metabolic diseases” (boli
de metabolism) occurred in the Romanian corpus as a discontinuous sequence
with the span “boli ereditare de metabolism” (hereditary metabolic diseases).
However, the current implementation of RF searches for candidate translations
only in contiguous sequences, in order to minimise the number of classification
instances. Hence, these type of translations were not captured by RF.
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Fig. 5. Precision of top 20 candidates on different frequency ranges of SPA, RF and
the voted method (SPA + RF), English-Greek dataset
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SPA is a statistical based alignment tool whose performance is largely affected
by the frequency of the terms in the corpus. For high frequency terms, SPA has
stronger evidence of term alignment and extracts correct translations with higher
confidence. However, we predicted that the alignment quality would decrease for
rarely occurring terms.

To further investigate this intuition, we evaluated the performance of SPA
on terms having varying frequencies in the corpus. We segmented the 1, 000
test terms for both English-Greek and English-Romanian, that were previously
evaluated by the human curators, into 7 frequency ranges, from high-frequency
to rare terms. Then we computed the precision for the top 20 candidates for
RF, SPA and the voted system on those frequency ranges. Figures 5 and 6 show
the performance of the term alignment methods. We observe that for frequent
terms (i.e., those terms occurring 25 times or more in the corpus), SPA shows
a robust performance for both language pairs. However, for less frequent terms,
the precision of SPA steadily decreases. In contrast to SPA, RF does not exploit
any corpus statistics to align terms between a source and a target language and
as a result, its performance is not dependent on the frequency of occurrence of a
term. Accordingly, the precision of RF fluctuates only slightly over different term
frequency ranges. Furthermore, the voted system presents a stable precision over
different frequency ranges, since it is the intersection of RF and SPA. Hence, we
can conclude that the dictionary extracted by the voted system is robust to
differences in frequency ranges of terms.

5 Conclusion

In this paper, we have presented a hybrid approach to the automatic compi-
lation of bilingual dictionaries of biomedical terms from parallel corpora. Our
novel voted system combines a supervised machine learning approach, i.e., a
Random Forest (RF) aligner, with a Statistical Phrase Alignment (SPA) align-
ment method, to improve the accuracy of extracted term translations. We have
applied our method to two low-resourced language pairs, namely English-Greek
and English-Romanian, and candidate translations have been evaluated by bilin-
gual speakers of these two language pairs. The voted system exhibits significantly
better translation accuracy for the highest ranked translation candidate than
either the RF or SPA methods, when they are used in isolation. In addition, the
voted system achieved a considerably better performance in translating rarely
occurring terms than SPA.

As future work, we plan to exploit other sources of information in order to
increase the size of the automatically extracted bilingual dictionaries. Parallel
corpora are useful resources for SMT and for compiling high-quality bilingual
dictionaries. However, such corpora are expensive to construct because human
translators need to provide the translations of the source documents. Conse-
quently, parallel corpora are of limited size and they quickly become out-of-date
(and thus are unlikely to contain neologisms). Additionally, they are not avail-
able for every domain or language pair. Due to the sparsity of parallel document
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collections, researchers have started to explore comparable corpora, since they
are more readily available, more up-to-date and they are easier and cheaper to
construct. In common with a parallel corpus, a comparable corpus is a collection
of documents in a source and target language. However, in contrast to a par-
allel corpus, the documents in a comparable corpus are not direct translations
of each other. Rather, they share common features, such as covering the same
topic, domain, time period, etc. Large comparable collections can be readily con-
structed using freely available multilingual resources, e.g., Wikipedia [13,26,30].
This means that comparable corpora constitute a promising resource to aid in
the construction and maintenance of bilingual dictionaries, especially when par-
allel corpora are limited or unavailable for a given language pair.

Whilst the hybrid system described in this paper cannot be applied directly
to comparable corpora, since the SPA module can only process parallel data,
we are planning to incorporate a context-based method into our system. This
method is widely used to facilitate term alignment approaches involving com-
parable corpora. Context-based methods approaches (context vectors) [11,24]
adapt the distributional hypothesis [14] to extract term translations from com-
parable corpora. They hypothesise that a term and its translation tend to appear
in similar lexical contexts. Intuitively, the RF aligner and the context-based app-
roach are complementary, since RF exploits the internal structure of terms, while
context vectors use the surrounding lexical context. Therefore, it will be inter-
esting to investigate how these two methods can be combined within a hybrid
system.

Acknowledgements. This work was funded by the European Community’s Seventh
Framework Program (FP7/2007–2013) [grant number 318736 (OSSMETER)].

References

1. Aronson, A.R.: Effective mapping of biomedical text to the umls metathesaurus:
the metamap program. In: Proceedings of the AMIA Symposium, p. 17. American
Medical Informatics Association (2001)

2. Ballesteros, L., Croft, W.: Phrasal translation and query expansion techniques for
cross-language information retrieval. In: ACM SIGIR Forum, vol. 31, pp. 84–91.
ACM (1997)

3. Bouamor, D., Semmar, N., Zweigenbaum, P.: Identifying bilingual multi-word
expressions for statistical machine translation. In: LREC, pp. 674–679 (2012)

4. Brown, P., Pietra, V., Pietra, S., Mercer, R.: The mathematics of statistical
machine translation: parameter estimation. Comput. linguist. 19(2), 263–311
(1993)

5. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexi-
cography. Comput. linguist. 16(1), 22–29 (1990)

6. Dagan, I., Church, K.: Termight: identifying and translating technical terminology.
In: Proceedings of the Fourth Conference on Applied Natural Language Processing,
pp. 34–40. Association for Computational Linguistics (1994)



68 G. Kontonatsios et al.

7. Dagan, I., Church, K.W., Gale, W.A.: Robust bilingual word alignment for machine
aided translation. In: Proceedings of the Workshop on Very Large Corpora, pp. 1–8
(1993)

8. Delpech, E.: Evaluation of terminologies acquired from comparable corpora: an
application perspective. In: Proceedings of the 18th International Nordic Confer-
ence of Computational Linguistics (NODALIDA 2011), pp. 66–73 (2011)

9. Van der Eijk, P.: Automating the acquisition of bilingual terminology. In: Proceed-
ings of the Sixth Conference on European Chapter of the Association for Computa-
tional Linguistics, pp. 113–119. Association for Computational Linguistics (1993)

10. Fung, P., McKeown, K.: A technical word-and term-translation aid using noisy
parallel corpora across language groups. Mach. Transl. 12(1), 53–87 (1997)

11. Fung, P., Yee, L.Y.: An ir approach for translating new words from nonparallel,
comparable texts. In: Proceedings of the 17th International Conference on Compu-
tational linguistics, vol. 1, pp. 414–420. Association for Computational Linguistics
(1998)

12. Habash, N.: Four techniques for online handling of out-of-vocabulary words in
arabic-english statistical machine translation. In: Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics on Human Language
Technologies: Short Papers, pp. 57–60. Association for Computational Linguistics
(2008)

13. Haghighi, A., Liang, P., Berg-Kirkpatrick, T., Klein, D.: Learning bilingual lexicons
from monolingual corpora. In: ACL, vol. 2008, pp. 771–779 (2008)

14. Harris, Z.: Distributional structure. Word (1954)
15. Irvine, A., Callison-Burch, C.: Combining bilingual and comparable corpora for

low resource machine translation. In: Proceedings of the Eighth Workshop on Sta-
tistical Machine Translation. Association for Computational Linguistics, August
2013

16. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceed-
ings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, vol. 1, pp. 48–54.
Association for Computational Linguistics (2003)

17. Kontonatsios, G., Korkontzelos, I., Tsujii, J., Ananiadou, S.: Using a random for-
est classifier to compile bilingual dictionaries of technical terms from compara-
ble corpora. In: Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics: Short Papers, vol. 2, pp. 111–116.
Association for Computational Linguistics, April 2014, http://www.aclweb.org/
anthology/E14-4022

18. Kontonatsios, G., Korkontzelos, I., Tsujii, J., Ananiadou, S.: Using random for-
est to recognise translation equivalents of biomedical terms across languages. In:
Proceedings of the Sixth Workshop on Building and Using Comparable Corpora,
pp. 95–104. Association for Computational Linguistics, August 2013, http://www.
aclweb.org/anthology/W13-2512

19. Kupiec, J.: An algorithm for finding noun phrase correspondences in bilingual cor-
pora. In: Proceedings of the 31st Annual Meeting on Association for Computational
Linguistics, pp. 17–22. Association for Computational Linguistics (1993)

20. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

21. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment mod-
els. Comput. linguist. 29(1), 19–51 (2003)

http://www.aclweb.org/anthology/E14-4022
http://www.aclweb.org/anthology/E14-4022
http://www.aclweb.org/anthology/W13-2512
http://www.aclweb.org/anthology/W13-2512


Compiling Bilingual Dictionaries of Medical Terms from Parallel Corpora 69

22. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318. Association for Compu-
tational Linguistics (2002)

23. Pustejovsky, J., Castano, J., Cochran, B., Kotecki, M., Morrell, M.: Automatic
extraction of acronym-meaning pairs from medline databases. Studies in health
technology and informatics, pp. 371–375 (2001)

24. Rapp, R.: Automatic identification of word translations from unrelated english and
german corpora. In: Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics on Computational Linguistics, pp. 519–526. Association
for Computational Linguistics (1999)

25. Smadja, F., McKeown, K.R., Hatzivassiloglou, V.: Translating collocations for
bilingual lexicons: a statistical approach. Comput. linguist. 22(1), 1–38 (1996)

26. Tamura, A., Watanabe, T., Sumita, E.: Bilingual lexicon extraction from compara-
ble corpora using label propagation. In: Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pp. 24–36. Association for Computational Linguistics (2012)

27. Tiedemann, J.: News from opus-a collection of multilingual parallel corpora with
tools and interfaces. In: Recent Advances in Natural Language Processing, vol. 5,
pp. 237–248 (2009)

28. Vintar, S., Fiser, D.: Harvesting multi-word expressions from parallel corpora. In:
LREC (2008)

29. Wu, C.C., Chang, J.S.: Bilingual collocation extraction based on syntactic and
statistical analyses. In: ROCLING (2003)

30. Yu, K., Tsujii, J.: Bilingual dictionary extraction from wikipedia. In: Proceedings
of Machine Translation Summit XII, pp. 379–386 (2009)



Experiments with a PPM Compression-Based
Method for English-Chinese Bilingual Sentence

Alignment

Wei Liu(B), Zhipeng Chang, and William J. Teahan

School of Computer Science, Bangor University,
Dean Street, Bangor, Gwynedd LL57 1UT, UK
{w.liu,z.chang,w.j.teahan}@bangor.ac.uk

http://www.bangor.ac.uk/cs

Abstract. Alignment of parallel corpora is a crucial step prior to
training statistical language models for machine translation. This paper
investigates compression-based methods for aligning sentences in an
English-Chinese parallel corpus. Four metrics for matching sentences
required for measuring the alignment at the sentence level are com-
pared: the standard sentence length ratio (SLR), and three new met-
rics, absolute sentence length difference (SLD), compression code length
ratio (CR), and absolute compression code length difference (CD). Initial
experiments with CR show that using the Prediction by Partial Matching
(PPM) compression scheme, a method that also performs well at many
language modeling tasks, significantly outperforms the other standard
compression algorithms Gzip and Bzip2. The paper then shows that for
sentence alignment of a parallel corpus with ground truth judgments, the
compression code length ratio using PPM always performs better than
sentence length ratio and the difference measurements also work better
than the ratio measurements.

Keywords: Statistical models for natural language processing · Parallel
corpora · Sentence alignment · Text compression · PPM · Gzip · Bzip2

1 Background & Motivation

Accurate alignment of textual elements (e.g. paragraphs, sentences, phrase) in
a parallel bilingual corpus is a crucial step for statistical machine translation.
A number of different approaches have been developed over the years for aligning
sentences between comparable text in a bilingual parallel corpus—for example,
those based on using: sentence length; word co-occurrence; cognates; dictionaries;
and parts of speech.

The assumption behind length-based approaches is that short sentences in
the source language will be translated into short sentences in the target language,
and the same for longer sentences, and that there is enough variation in sentence
length between adjacent sentences to correct mis-alignments when they occur.
c© Springer International Publishing Switzerland 2014
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Gale and Church [7] aligned sentences in English-French and English-German
corpora by calculating the character length of all sentences, producing a Carte-
sian product of all possible alignments, then aligning the most plausible align-
ments iteratively until all sentences are accounted for. Their overall accuracy
rate for both corpora was 96 % (97 % for English-German and 94 % for English-
French). The best results were for 1:1 alignments, where one sentence in one
language corresponds to one sentence in the other language. For 1:1 alignments,
the error rate was only 2 %. However, there was a 10 % error rate for 2:1 align-
ments and 33 % error rate for 2:2 alignments. In comparison for English-Chinese
corpora, Wu [19] also proposed aligning English-Chinese corpora by determining
sentence length (in bytes) and also produced a high accuracy of over 95 % [19].
Length-based measurement has also had satisfactory results for evaluating the
corpus extracted from China National Knowledge Infrastructure (CNKI) [6].

Brown et al. [2] calculated the length of sentences by calculating the number
of words in each sentence. This generated similar results—96 to 97 %. Kay and
Röscheisen [10] combined word and sentence alignment in one program. They
used the dice co-efficient to calculate the probabilities of words in one language
being aligned with words in the other language. Simard, Foster and Isabelle [17]
pursued a cognate based approach to sentence alignment after analysing the
errors produced in length-based alignment (ibid., p. 70). While they found that
cognates alone cannot produce better alignments than length differences, a two-
pass program, whereby strong alignments based on sentence length are made in
the first pass, and cognates are used to align the more difficult sentences in the
second pass, did produce better results than the simple length-based alignment.
Haruno and Yamazaki [9] use both probabilistic and a bilingual dictionary to
find word cognates to help align sentences. Like Kay and Röscheisen [10], this is
a combined sentence and word alignment program. Haruno and Yamazaki [9] do
not make use of length-based techniques because they state that these methods
do not work for such structurally different languages as English and Japanese.

Papageorgiou, Cranias, and Piperidis [16] have devised a sentence alignment
scheme that matches sentences on the basis of the highest matching part of
speech tags, the matches restricted to content words—nouns, adjectives and
verbs. With 99 % accuracy, they obtained the best results of all for sentence
alignment algorithms. Melamed [13] (ibid., p. 5) however points out that “It is
difficult to compare this algorithm’s performance to that of other algorithms in
the literature, because results were only reported for a relatively easy bitext.”

In recent years, there have been relatively few new proposals for parallel
corpora sentence alignment [21]. Existing sentence alignment algorithms are not
able to link one-to-many or many-to-one mutual translations [12]. This paper will
focus on adopting a novel compression-based approach as the distance measure
to determine whether two sentences are aligned.

This paper is organised as follows. The next section motivates the use of
compression-based methods for alignment, and describes four distance metrics
for matching sentences, two based on sentence length and two based on calcu-
lating the compression code length of the sentences. The section also describes
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several compression algorithms used in the experiment—PPM, Gzip and Bzip2,
and then describes how the compression code lengths can be calculated using a
relative entropy approach and “off-the-shelf” compression software. The align-
ment algorithm we have used is then described next. Two experiments are then
described—the first to find out which compression algorithm works best for the
code length ratio metric; and the second to compare which of the four metrics
perform best at aligning a corpus which was constructed with ground truth judg-
ments concerning the alignment. Conclusions are provided in the final section.

2 Compression-Based Alignment

Our idea of using compression-based measures for alignment hinges on the
premise that the compression of co-translated text (i.e. documents, paragraphs,
sentences, clauses, phrases) should have similar compression code lengths [1].
This is based on the notion that the information contained in the co-translations
will be similar. Since compression can be used to measure the information con-
tent, we can simply look at the ratio of the compression code lengths of the
co-translated text pair to determine whether the text is aligned. That is, if you
have a text string (i.e. paragraph, sentence, or phrase) in one language, and its
translation in another language, then the ratio of the compression code lengths
of the text string pair should be close to 1.0. Alternatively, we can use a relative
entropy related measure, and use an absolute code length difference measure—in
this case, a value close to 0 indicates that the text string pair are closely aligned.

Formally, given a text string of length n symbols SL = x1x2, . . . xn in lan-
guage L and a model pL for that language, then the cross-entropy is calculated
as follows:

H(SL) = − 1
n

log2 pL(SL)

i.e. the average number of bits to encode the text string using the model.

2.1 Distance Measures

Four metrics for matching sentences required for measuring the alignment at
the sentence level are compared: the standard sentence length ratio (SLR), and
three new metrics, absolute sentence length difference (SLD), compression code
length ratio (CR), and absolute compression code length difference (CD):

SLR = max
{
L(SE)
L(SC)

,
L(SC)
L(SE)

}
(1)

SLD =
∣∣L(SE) − L(SC)

∣∣ (2)

CR = max
{
H(SE)
H(SC)

,
H(SC)
H(SE)

}
(3)

CD =
∣∣H(SE) −H(SC)

∣∣ (4)
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where L represents sentence length and H means code length. SE and SC denote
English and Chinese sentences.

Sentence Length Ratio used to be used by Mújdricza-Maydt et al. [15] and
has achieved good performance. The remainder of this section will describe com-
pression schemes that we have used in the code length calculations for the exper-
iments described below.

2.2 PPM

Prediction by Partial Matching (PPM) is an adaptive online compression scheme
that predicts the next symbol or character based on a prior context with fixed
length. Cleary and Witten [5] proposed PPM first using the variants of PPMA
and PPMB. Then PPMC and PPMD were developed by Moffat in 1990 and
Howard in 1993 [20]. The main difference between PPMA, PPMB, PPMC and
PPMD is the calculation of the escape probability which is needed by the
smoothing mechanism used by the algorithm for backing off to lower order mod-
els. Experiments show that PPMD in most cases performs better than PPMA,
PPMB and PPMC. PPM-based methods have been widely used in natural lan-
guage processing, including verification of text collections which ensures whether
the collection is valid or consistent [11].

The probability p of the next symbol ϕ for PPMD is calculated using the
following formula:

p(ϕ) =
2cd(ϕ) − 1

2Td

where d denotes the current coding order, cd(ϕ) denotes the number of times that
the symbol ϕ in the current context and Td presents the total number of times
that the current context has occurred. The calculation of the escape probability
e by PPMD is as follows:

e =
td

2Td

where td is the total number of unique symbols that occur after the current
context. When PPMD is encoding the upcoming symbol, it always starts first
from the maximum order model. A maximum order of 5 is usually used in most
of the experiments [18] and order 5 has also been found effective for Chinese
text [20]. If the model contains the prediction for the upcoming symbol, it will
be transmitted according to the order 5 distribution. If the model does not
contain the prediction, the encoder will escape down to order 4. The escape
process will repeat until a model is found that is able to predict the upcoming
symbol, backing off if needed to a default order −1 model where symbols are
equiprobable [18].

PPM code length is the size (in bytes) of the PPM-compressed output file.
When using PPM as a natural language processing tool to compress text, the
code length can be used to estimate the cross-entropy of the text. The cross-
entropy can be calculated by the following formula:
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H(S) = − 1
n

log2 p(S) = − 1
n

n∑

i=1

− log2 p(xi|x1 . . . xn−1)

where H(S) is the average number of bits to encode the text. Order 5 PPMD
models are used for both English and Chinese in this paper compressing the byte
sequence of the text. i.e. for English, a single ASCII byte represents a single
English character, whereas for GB-encoded Chinese text, a Chinese character
is denoted by two bytes (and therefore 5 bytes will span 2.5 characters). Text
compression experiments with Chinese text [20] show that compressing the byte
or character sequence is noticeably better than when using the word sequence,
and we also wish to avoid the problem of word segmentation for Chinese text,
hence the reason for using bytes for the experiments described in this paper.

2.3 Gzip & Bzip2

Gzip (also called GNU zip) was created by the GNU project and written by Jean-
Loup Gailly and Mark Adler [8]. It uses a dictionary-based Lempel-Ziv based
method as opposed to the statistical context-based approach of PPM. Gzip is
now a popular lossless compression utility on the Internet and Unix operating
system.

Bzip2 is another lossless compression algorithm that was developed by Julian
Seward [3]. It uses a block sorting compression algorithm that makes use of the
Burrows Wheeler method to transform the text. Bzip2 performs better than
Gzip but the speed is slower.

The reason for choosing PPM, Gzip and Bzip2 in the experiments reported
below is that the three schemes represent very different compression methods—
statistical (context) based, dictionary and block sorting. A primary motivation
for this paper was to determine which scheme was most effective when applied
to the problem of sentence alignment for parallel corpora.

2.4 Calculating Code Lengths of Gzip, Bzip2 and PPMD

We will use a relative entropy method to calculate the compression code lengths
for PPM, Gzip and Bzip2. This allows us to use “off-the-shelf” software without
having to re-implement the compression schemes. Since the size of the text being
compressed in each sentence is relatively small, these compression schemes will
not have had sufficient data to compress the text effectively since their models
are uninitialised and therefore not well tuned for the languages being compressed
(English and Chinese). To overcome this problem, a simple expedient is to prime
the models using a large representative training sample for each language. The
relative entropy technique allows us to do this in order to calculate the code
length using the formula ht = hT+t − hT where h is the size of a file after it
has been compressed, T represents the large training text and t is the testing
text (i.e. the sentence being compressed) for which the compression code length
calculation is being computed. The method simply calculates the difference in
size between the compressed training text with testing text added and the com-
pressed training text by itself.
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Fig. 1. 5-tree for aligning sentences.

3 Alignment Algorithm

We describe the algorithm that we used to align sentences in this section. Align-
ment of sentences may be one to one (1:1), one to many (e.g. 1:2, 1:3), many
to one (e.g. 2:1 and 3:1) and many to many (e.g. 2:2). For efficiency reasons for
our alignment algorithm, we do not consider the many to many case or the 1:n
and n:1 cases where n > 3. In contrast, Moore [14] also proposed n ≤ 2 because
the situation of n > 3 is extremely rare. However, we have found that n = 3 did
happen in English-Chinese parallel corpora, so therefore for our experiments,
we use n ∈ [2, 3]. Therefore, for our setting, the search for the best alignment
can be considered to be a 5-tree with five branches at each node as shown in
Fig. 1. The search begins at the node labelled “Start” at depth d = 0 in the tree
where the algorithm is positioned at the beginning of each of the two list of sen-
tences being aligned. In this example, the lists of sentences have been denoted as
[ABCDEF. . . ] and [abcdef. . . ]. From the Start node there are five possible align-
ments to examine at depth d = 1—a 1:1 mapping where sentence A is aligned
with sentence a, a 1:2 mapping, where sentence A is instead aligned with the
first two sentences in the second list, denoted by ab, a 1:3 mapping for sentence
pairs A and abc, the 2:1 mapping for the pair AB with a and the 3:1 mapping
for the pair ABC and a.
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For each node at depth d = 1, there are five child nodes at d = 2 that then
have to be searched in turn. Note that only a subset of the set of nodes in the
5-tree are shown in Fig. 1 as it is not possible to display the full 5-tree in the
diagram within the space available. The figure shows the expansion of the first
two nodes at depth d = 1, and two selected nodes at depth d = 2 for illustration
purposes. For example, the top node at depth d = 3 represents the alignment
where sentence A has been aligned with sentence a, then sentences BC have
been aligned with b, then sentence D has been aligned with c.

The path cost from a node to one of its child nodes is defined as a calculation
result by a given distance metric that measures the quality of the specific align-
ment, such as ones based on sentence length (SLR and SLD) and ones based
on code length (CR and CD). The aim of the search is to find a path with the
minimum sum of path costs through the tree to a leaf node (which is determined
by the maximum depth of the tree).

The complexity of the search for the 5-tree is 5d. Therefore, when d = 9,
searching the best path in the 5-tree with the minimum path cost will need to
compare 59 = 1953125 paths i.e. find the minimum sum of cost paths from nearly
two million numbers. In our experiments described below, we have explored the
case when d ∈ [1, 9]. Experiments with the four distance metrics show that in
most cases, the deeper the search, the better the overall alignment quality, but
this is at the cost of significantly longer time spent on the search.

In order to align the full list of sentences, a sliding window method was
adopted. An alignment at a particular position is chosen using the 5-tree search
which then determines the width of the window according to the alignment. The
algorithm then advances to the next position after the window and so on until
the entire text has been aligned.

4 Experiment 1: Comparing Different Compression
Algorithms for Sentence Alignment

The purpose of the first experiment was to find out the compression scheme that
is the most effective at aligning parallel corpora and also to compare the sentence
length and code length metrics. For the experiment, a test corpus was needed
to provide the ground truth data in order to investigate the effectiveness of
the different compression algorithms. We chose 1,000 matching Chinese-English
parallel sentences from the DC parallel corpus [4] at random. Table 1 shows
sample calculations for the first three sentence pairs in the corpus and Fig. 2
graphs CR for all the sentences, for the three compression schemes PPMD, Gzip
and Bzip2. In order to compute the code length values (as shown in bytes in
Table 1), the concatenation of all of the sentences in the corpus was used as the
training text T to prime the compression models, and the values were calculated
by the formula for ht (see Sect. 2.4). These values were then inserted into the
formula (with H(S) = ht) listed in Sect. 2.1 to calculate CR.

Note that for the second sentence (Id 0002), the ht value for Bzip2 was 0 (the
compression size in bytes of the training and testing text was exactly the same
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Table 1. Comparing codelength ratio for GZIP, BZIP2 and PPMD for the test corpus.

Sent. ID Language GZIP GZIP CR BZIP2 BZIP2 CR PPMD PPMD CR

(bytes) (bytes) (bytes)

0001 Chinese 51 1.3784 115 3.2857 47 1.1750

English 37 35 40

0002 Chinese 17 2.4286 66 66.0 24 1.4118

English 7 1 17

0003 Chinese 85 1.6038 135 3.9706 74 1.3962

English 53 34 53

... ... ... ... ... ... ... ...

Fig. 2. Adjusted codelength ratios of the 1000 training models.



78 W. Liu et al.

as the training text by itself). For the cases when ht was 0, this was replaced
with a value of 1 in order to avoid infinite values resulting for the CR ratio
calculation. We can see from the graphs that the code length ratios of PPMD
are the most stable with the largest value being 2.833. In comparison, Gzip has
greater variation, with many instances when the CR value exceeds 4.0 despite the
sentence pairs chosen for the corpus being accurate translations of each other.
(The graphs were truncated to a maximum CR value of 4.0 in order that the
three graphs could be directly compared). The widest variation clearly belongs
to Bzip2, where most values are higher than 10.

Figure 3 graphs the percentages of how many sentence pairs are below a
certain SLR or CR value (for PPMD, Gzip and Bzip2). From the figure, we
can see that the CR values for PPMD performs better than Gzip and Bzip2 at
identifying matching sentences for the lower threshold values with similar values
to the SLR metric. However, the behavior for CR values calculated using Gzip
and Bzip2 are noticeably different. For example, if we focus on the range between
1.0 and 1.5, there are 930 sentences out of 1,000 in this range for PPMD, but
for Gzip and Bzip2, the amounts are much lower (633 and 129).

It is not clear why PPM performs significantly better at alignment than the
other two compression schemes, since Gzip and Bzip2 are known to also provide
good estimates of the entropy, although Gzip frequently flushes its dictionary,
whereas Bzip2 uses a non-streaming approach unlike the other two algorithms
and this may affect the relative entropy calculations. Further investigation is
required to determine the reasons for the difference and also to check whether
this result occurs for all language pairs and for other alignment tasks.

Fig. 3. Percentage of sentence pairs in text corpus below different SLR and CR values.
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5 Experiment 2: Sentence Alignment for the Training
Corpus

The purpose of the second experiment was to compare the four different metrics
defined in Sect. 2.1. For the second experiment, another test corpus was also
needed in order to verify the effectiveness of the different metrics. The test
corpus includes 1000 1:1 parallel sentences, fifty 1:2 and 1:3 sentences and fifty
2:1 and 3:1 sentences placed throughout the corpus in an ad hoc manner. All the
sentences were bilingual news or parallel articles downloaded from the Internet
on various topics. The English part of the corpus includes 15932 words and 92508
characters, and the Chinese part has 29046 Chinese characters.

The alignment algorithm described in Sect. 3 was applied to the problem of
aligning the test corpus. Table 2 compares at various search tree depths the
sentence alignment accuracies that resulted using the four different metrics.

Table 2. Comparison at various search tree depths of sentence length alignment accu-
racies for different metrics: SLR, SLD, CR and CD.

Depth SLR SLD CR CD

1 87.5 % 90.3 % 88.4 % 91.6 %

2 88.4 % 93.6 % 90.1 % 93.6 %

3 88.3 % 93.2 % 91.5 % 94.2 %

4 87.5 % 94.3 % 92.3 % 94.5 %

5 86.7 % 93.8 % 92.8 % 95.2 %

6 87.6 % 94.1 % 93.5 % 95.5 %

7 88.6 % 94.4 % 93.1 % 95.9 %

8 88.3 % 94.7 % 93.3 % 95.5 %

9 88.5 % 95.2 % 93.5 % 96.1 %

Fig. 4. Comparison at various search tree depths of sentence length alignment accura-
cies for the different metrics: SLR, SLD, CR and CD.
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From the table, we can see that difference based metrics (SLD and CD) always
performed better than their corresponding ratio based metrics (SLR and CR)
and that code length metrics (CR and CD) performed better than sentence
length metrics (SLR and SLD). Overall, the code length difference metric (CD)
is the best performed metric in this comparison.

Figure 4 shows the performance tendencies of the four metrics where we can
see significant improvements with growing depths for SLD, CR and CD. However,
SLR did not show a growth trend. It is reasonable to believe that there will be
more competitive results if the depth of the 5-tree is greater than 9 although
this would be at a significant cost in search time. Although not optimized, the
speed of code length calculation is much slower than sentence length calculation
especially when depth d ≥ 6, with it taking 7.7 s on average on a Macbook Pro
laptop per 5-tree search at d = 6 and 69.9 s at d = 9. Note that there are some
dips in Fig. 4, especially for depth d = 5 for SLR. One of the possible reasons
is that sentences of the test corpus were not in a natural sequential order, and
therefore the results may be affected by this.

6 Conclusion

Three new distance metrics have been introduced for matching sentences for
alignment of parallel corpora. Two of the metrics are based on computing the
compression code length of the sentences as this is an accurate measure of the
information contained in the text. The idea is that if the sentences are aligned,
then the information contained in sentences that are co-translations of each other
should match. The compression-based measures will give a more accurate metric
well founded in information theory than alternative metrics based on sentence
length which are essentially cruder estimates of the information. Overall, the best
metric for determining sentence alignment was based on absolute compression
code length difference between sentence pairs. Absolute difference based metrics
(including when using sentence length) were also more effective than using ratio
based metrics.

Experimental results show that the Prediction by Partial Matching (PPM)
compression scheme is the most effective for alignment purposes compared to
Gzip and Bzip2. PPM provides better entropy estimates than Gzip of Bzip2, and
this is reflected in the alignment results. In addition, Gzip frequently flushes its
model, whereas Bzip2 uses a non-streaming approach, and this may contribute
to these algorithms being less effective for alignment purposes. We are confident
that the PPM alignment method will also be effective for alignment down to
phrase and even word levels. Further experiments are required to determine
how well the new methods perform compared to the approach taken by other
researchers, for example the approach adopted by Gale and Church [7].
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Abstract. We present experimental results showing that integrating
cross-lingual semantic frame similarity into the semantic frame based
automatic MT evaluation metric MEANT improves its correlation with
human judgment on evaluating translation adequacy. Recent work shows
that MEANT more accurately reflects translation adequacy than other
automatic MT evaluation metrics such as BLEU or TER, and that more-
over, optimizing SMT systems against MEANT robustly improves trans-
lation quality across different output languages. However, in some cases
the human reference translation employs different scoping strategies from
the input sentence and thus standard monolingual MEANT, which only
assesses translation quality via the semantic frame similarity between the
reference and machine translations, fails to fairly and accurately reward
the adequacy of the machine translation. To address this issue we propose
a new bilingual metric, BiMEANT, that correlates with human judgment
more closely than MEANT by incorporating new cross-lingual semantic
frame similarity assessments into MEANT.

1 Introduction

We show that a new bilingual version of MEANT (Lo et al. [19]) correlates with
human judgments of translation adequacy even more closely than MEANT by
integrating cross-lingual semantic frame similarity assessments. We assess cross-
lingual semantic frame similarity by (1) incorporating BITG constraints for word
alignment within the semantic role fillers, and (2) using simple lexical translation
probabilities, instead of the monolingual context vector model used in MEANT
for computing the semantic role fillers similarities. We then combine this cross-
lingual semantic frame similarity into the MEANT score. Our results show that
integrating cross-lingual semantic frame similarity into MEANT improves its
correlation with human judgment on evaluating translation adequacy.

The MEANT family of metrics (Lo and Wu [20,22]; Lo et al. [19]) adopt
the principle that a good translation is one where a human can successfully
understand the central meaning of the foreign sentence as captured by the basic
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 82–93, 2014.
DOI: 10.1007/978-3-319-11397-5 6
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event structure: “who did what to whom, for whom, when, where, how and why”
(Pradhan et al. [31]). MEANT measures similarity between the MT output and
the reference translations by comparing the similarities between the semantic
frame structures of output and reference translations. Previous work indicates
that the MEANT family of metrics correlates better with human adequacy judg-
ment than commonly used MT evaluation metrics (Lo and Wu [20,22]; Lo et al.
[19]; Lo and Wu [24]; Macháček and Bojar [25]). In addition, MEANT has been
shown to be tunable—translation adequacy across different genres (ranging from
formal news to informal web forum and public speech) and different languages
(English and Chinese) is improved by replacing BLEU or TER with MEANT
during parameter tuning (Lo et al. [16]; Lo and Wu [23]; Lo et al. [18]).

Particularly for very different languages—Chinese and English, for instance—
monolingual MT evaluation strategies that compare reference and machine
translations, including MEANT, often fail to properly recognize cases where
alternative strategies for scoping, topicalization, and the like are employed by
the input sentence and the MT output, leading to artificial differences between
the reference and machine translations. As pointed out in the empirical study of
Addanki et al. [1], this can result in drastically different semantic frame annota-
tions. To combat this, we propose a strategy where direct bilingual comparisons
of the machine translation and the original input sentence are incorporated into
MEANT.

2 Related Work

2.1 MT Evaluation Metrics

A number of large scale meta-evaluations (Callison-Burch et al. [6]; Koehn and
Monz [13]) report cases where BLEU (Papineni et al. [30]) strongly disagrees with
human judgments of translation adequacy. Other surface-form oriented metrics
such as NIST (Doddington [8]), METEOR (Banerjee and Lavie [2]), CDER
(Leusch et al. [14]), WER (Nießen et al. [27]), and TER (Snover et al. [35]) can
also suffer from similar problems because the degree of n-gram match does not
accurately reflect how well the “who did what to whom, for whom, when, where,
how and why” is preserved across translation, particularly for very different
language pairs where reference translations can be extremely non-deterministic.

To address these problems of n-gram based metrics, Owczarzak et al. [28,29]
apply LFG to extend the approach of evaluating syntactic dependency structure
similarity proposed by Liu and Gildea [15]. Although they showed improved cor-
relation with human fluency judgments, they did not achieve higher correlation
with human adequacy judgments than metrics like METEOR. TINE (Rios et al.
[32]) is a recall-oriented evaluation metric which aims to preserve the basic event
structure. However, its correlation with human adequacy judgments is similar to
that of BLEU and worse than that of METEOR. For a semantic MT metric
to work better at the current stage of technology, we believe that it is neces-
sary to choose (1) a suitable abstraction level for the meaning representation,
and (2) the right balance of precision and recall.
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Instead of prioritizing simplicity and representational transparency as Rios
et al. [32] and Owczarzak et al. [28,29] do, Giménez and Màrquez [11,12] incor-
porate several semantic similarity features into a huge collection of n-gram and
syntactic features within ULC so as to improve correlation with human adequacy
judgments (Callison-Burch et al. [4]; Giménez and Màrquez [11]; Callison-Burch
et al. [5]; Giménez and Màrquez [12]). However, there is no work towards tuning
an SMT system using a pure form of ULC perhaps due to its expensive run
time. Both SPEDE (Wang and Manning [37]), an MT evaluation metric that
predicts the edit sequence needed for the MT output to match the reference
via an integrated probabilistic FSM and probabilistic PDA model, and Sagan
(Castillo and Estrella [7]), a semantic textual similarity metric based on a com-
plex textual entailment pipeline, may also be susceptible to similar problems.
These aggregated metrics require sophisticated feature extraction steps, contain
several dozens of parameters to tune and employ expensive linguistic resources,
like WordNet and paraphrase tables. Because of their expensive training, tun-
ing and/or running times, such metrics become less useful in the MT system
development cycle. We have taken the approach of keeping the representation of
meaning simple and clear in MEANT, so that the resulting metric can not only
be transparently understood when used in error analysis, but also be employed
when scoring massive number of hypotheses for training and tuning MT systems.

2.2 The MEANT Family of Metrics

Addanki et al. [1] shows that for very different languages—Chinese and English,
for example—there would be cases where alternative strategies for scoping or
topicalization are employed by the input sentence and the MT output, leading to
artificial differences between the reference and machine translations. This drives
us to investigate avenues toward further improving MEANT by incorporating
the cross-lingual semantic frame similarity into MEANT, so that translation
output whose semantic structure is closer to the foreign input sentence than the
human reference translation can be scored more fairly.

MEANT, which is a weighted f-score over the matched semantic role labels
of the automatically aligned semantic frames and role fillers, has been shown
to correlate with human adequacy judgments more highly than BLEU, NIST,
TER, WER, CDER, and others (Lo et al. [19]). It is relatively easy to apply to
other languages, requiring only an automatic semantic parser and a large mono-
lingual corpus in the output language; these resources are used for identifying the
semantic structures and the lexical similarity between the semantic role fillers
of the reference and machine translations, respectively. MEANT is computed as
follows:

1. Apply an automatic shallow semantic parser to both the reference and machine
translations. (Figure 1 shows examples of automatic shallow semantic parses on
both reference and machine translations.)

2. Apply maximum weighted bipartite matching to align the semantic frames
between the reference and machine translations, according to the lexical sim-
ilarities of the predicates.
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Fig. 1. Examples of monolingual semantic frame similarity captured by MEANT. MT2,
the more adequate translation than MT1, is penalized by monolingual MEANT for
producing translation output with more “inaccurate” semantic frames according to
the reference translation. The dotted lines represent a low similarity (<0.5) semantic
role alignments made by MEANT.

3. For each pair of the aligned frames, apply maximum weighted bipartite match-
ing to align the arguments between the reference and machine translations,
according to the lexical similarity of the semantic role fillers.

4. Compute the weighted f-score over the matching role labels of these aligned
predicates and semantic role fillers according to the following definitions:

q0i,j ≡ ARG j of aligned frame i in MT

q1i,j ≡ ARG j of aligned frame i in REF

w0
i ≡ #tokens filled in aligned frame i of MT

total #tokens in MT

w1
i ≡ #tokens filled in aligned frame i of REF

total #tokens in REF
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wpred ≡ weight of similarity of predicates
wj ≡ weight of similarity of ARG j

si,pred ≡ predicate similarity in aligned frame i
si,j ≡ ARG j similarity in aligned frame i

precision =

∑
i w

0
i

wpredsi,pred+
∑

j wjsi,j

wpred+
∑

j wj|q0
i,j|∑

i w
0
i

recall =

∑
i w

1
i

wpredsi,pred+
∑

j wjsi,j

wpred+
∑

j wj|q1
i,j|∑

i w
1
i

MEANT =
2 · precision · recall
precision · recall

where q0i,j and q1i,j are the argument of type j in frame i in MT and REF
respectively. w0

i and w1
i are the weights for frame i in MT/REF respectively.

These weights estimate the degree of contribution of each frame to the overall
meaning of the sentence.

The weights wpred and wj are the weights of the lexical similarities of the
predicates and role fillers of the arguments of type j between the reference trans-
lations and the MT output. There are a total of 12 weights for the set of semantic
role labels in MEANT as defined in Lo and Wu [21]. For MEANT, wpred and
wj are determined using supervised estimation via a simple grid search to opti-
mize the correlation with human adequacy judgments (Lo and Wu [20]). For
UMEANT (Lo and Wu [22]), wpred and wj are estimated in an unsupervised
manner using relative frequency of each semantic role label in the reference
translations. UMEANT can thus be used when human judgments on adequacy
of the development set are unavailable.

si,pred and si,j are the lexical similarities based on a context vector model of
the predicates and role fillers of the arguments of type j between the reference
translations and the MT output. Lo et al. [19] and Tumuluru et al. [36] described
how the lexical and phrasal similarities of the semantic role fillers are computed
using geometric mean. A subsequent variant of the phrasal aggregation function
that normalizes phrasal similarities according to the phrase length more accu-
rately was proposed in Mihalcea et al. [26] and used in the work of Lo et al. [16];
Lo and Wu [23]; Lo et al. [18] and later further improved by a f-score aggregation
in Lo et al. [17].

Recent studies (Lo et al. [16]; Lo and Wu [23]; Lo et al. [18]) show that tuning
MT systems against MEANT produces more robustly adequate translations than
the common practice of tuning against BLEU or TER across different data
genres, such as formal newswire text, informal web forum text and public speech.

The promising results in evaluating and tuning with MEANT has led us
to the present question: is it possible to further improve MEANT’s correlation
with human adequacy judgments by leveraging not only monolingual, but also
cross-lingual, semantic frame similarities?
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3 BiMEANT: Bilingual Semantic Frame Accuracy

Our new bilingual metric starts with monolingual MEANT’s assessment of the
degree of goodness of the translation, and then also integrates an assessment of
roughly how well the translation captures the core semantics of the foreign input
utterance. Whereas MEANT measures the lexical similarity using the monolin-
gual context vector model and aggregates the lexical similarity into phrasal sim-
ilarity using a variant of the aggregation function in Mihalcea et al. [26], for the
new additional subtask of measuring semantic frame similarity cross-lingually,
we propose to instead substitute simple lexical translation probabilities and a
length-normalized inside probability at the root of the BITG biparse (Wu [38];
Zens and Ney [39]; Saers and Wu [34]; Adanki et al. [1]).

An example of the sorts of issues that the bilingual approach empirically
helps to alleviate is shown in Fig. 1, which depicts examples of automatic shallow
semantic parses on both reference and machine translations. In this case, the
translation output MT2 is a more adequate translation than MT1, yet it is
still too harshly penalized by monolingual MEANT for producing translation
output with more “inaccurate” semantic frames as judged against the reference
translation. This issue arises here because of a scoping choice in handling “not
only”: MT2 legitimately chooses to apply it to two separate semantic frames for
the “speak” predicate, instead of the reference translation’s choice of moving
it inside to apply to the ARG1 of a single “speak” predicate. The dashed lines
represent a low similarity (<0.5) semantic role alignments made by MEANT.

The bilingual approach, however, additionally incorporates a second way
of assessing how well the semantic frames have been preserved in translation.
Figure 2 shows how, by integrating a cross-lingual semantic frame similarity into
MEANT, BiMEANT is able to reward the MT2 output that is closer to the
semantic structure of the foreign input more fairly and accurately. To accom-
plish this, we compute cross-lingual semantic frame similarity in BiMEANT as
follows (the differences from MEANT are underlined):

1. Apply an input language automatic shallow semantic parser to the foreign
input and an output language automatic shallow semantic parser to the MT
output. (Figure 2 shows examples of automatic shallow semantic parses on
both foreign input and MT output. The Chinese semantic parser used in our
experiments is C-ASSERT in Fung et al. [9,10].)

2. Apply the maximum weighted bipartite matching algorithm to align the
semantic frames between the foreign input and MT output according to the
lexical translation probabilities of the predicates.

3. For each pair of the aligned frames, apply the maximum weighted bipartite
matching algorithm to align the arguments between the foreign input and
MT output according to the aggregated phrasal translation probabilities of
the role fillers.

4. Compute the weighted f-score over the matching role labels of these aligned
predicates and role fillers according to the definitions similar to those in
Sect. 2.2 except for replacing REF with IN in q1i,j and w1

i .
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Fig. 2. Examples of bilingual semantic frame similarity captured by BiMEANT. MT2,
the more adequate translation than MT1, is now fairly rewarded by the bilingual
BiMEANT for producing translation with more accurate semantic frames according
to the foreign input.

ei,pred ≡ the output side of the pred of aligned frame i
fi,pred ≡ the input side of the pred of aligned frame i

ei,j ≡ the output side of the ARG j of aligned frame i
fi,j ≡ the input side of the ARG j of aligned frame i

G ≡ 〈{A} ,W0,W1,R,A〉
R ≡ {A → [AA] ,A → 〈AA〉,A → e/f}

p ([AA] |A) = p (〈AA〉|A) = 0.25

p (e/f |A) =
1
2

√
t (e|f) t (f |e)
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xsi,pred =
1

1 − ln
(

P
(
A ∗⇒ei,pred/fi,pred|G
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∑
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xf =
2 · xp · xr
xp · xr

BiMEANT = [α ∗ MEANT + (1 − α) ∗ xf]

where G is a bracketing ITG, whose only nonterminal is A, and where R is
a set of transduction rules where e ∈ W0 ∪ {ε} is an output token (or the
null token), and f ∈ W1 ∪ {ε} is an input token (or the null token). The rule
probability function p is defined using fixed probabilities for the structural rules,
and a translation table t trained using IBM model 1 (Brown et al. [3]) in both
directions. A small constant (10−5) is used when one of the ts is undefined.
To calculate the inside probability of a pair of segments, P

(
A ∗⇒ e/f |G

)
, we

use the algorithm described in Saers et al. [33]. xsi,pred and xsi,j are the length
normalized BITG parsing probabilities of the predicates and role fillers of the
arguments of type j between the input and the MT output. xp, xr and xf are
the precision, recall and f-score of the cross-lingual semantic frame similarity
computed by aggregating the BITG parsing probabilities of the predicates and
role fillers in the same way as MEANT.

4 Results

Table 1 shows that BiMEANT significantly outperforms MEANT on sentence-
level correlation with human adequacy judgment. This occurs despite the fact
that only minimal adaptation has been done on the phrasal similarities for the
cross-lingual semantic role fillers, suggesting that the performance of BiMEANT
may be even better when settings are optimized.

Preliminary analysis indicates two reasons that BiMEANT improves correla-
tion with human adequacy judgement. First, the semantic structure of the MT
output often tends to be closer to that of the input sentence than that of the ref-
erence translation, due to somewhat arbitrary choices in scoping, topicalization,
and similar phenomena. Secondly, the BITG constraints used in the cross-lingual
assessment provide a more robust phrasal similarity aggregation function com-
pared to the naive bag-of-words based heuristics previously employed in MEANT.
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Similar results have been observed while trying to estimate word alignment prob-
abilities where BITG constraints outperformed alignments from GIZA++ (Saers
and Wu [34]).

Table 1. Sentence-level correlation with human adequacy judgement (GALE phase
2.5 evaluation data)

Kendall

BiMEANT 0.50

MEANT 0.46

NIST 0.29

BLEU/METEOR/TER/PER 0.20

CDER 0.12

WER 0.10

5 Conclusion

We have presented a new bilingual automatic MT evaluation metric, BiMEANT,
that correlates even more closely with human judgments of translation adequacy
than standard monolingual MEANT. While previous work has established that
MEANT accurately reflects translation adequacy via semantic frames and that
optimizing SMT against MEANT improves translation quality, for very different
languages the performance of purely monolingual metrics such as MEANT can
be degraded by surface differences in choices such as scoping or topicalization,
that lead to artificial differences between the reference and machine translations.
The bilingual strategy employed by BiMEANT combats this by incorporating
cross-lingual similarity assessments directly between the semantic frames of the
input and output sentences. This is accomplished by (1) incorporating bracketing
ITG constraints for aligning the lexicons in semantic role fillers, and (2) replac-
ing the monolingual context vector model in MEANT with simple translation
probabilities for computing the similarities of the semantic role fillers.

We would like to note that in this first study on a bilingual semantic frame
based MT evaluation metric, we have performed minimal adaptation on the
phrasal similarity assessments for the cross-lingual semantic role fillers. It is
reasonable to expect that the performance of BiMEANT may further improve
when the settings are optimized. The encouraging results suggest interesting
potential for BiMEANT, especially across very different languages.
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Abstract. In the last few years, the use of i-vectors along with a gener-
ative back-end has become the new standard in speaker recognition. An
i-vector is a compact representation of a speaker utterance extracted from
a low dimensional total variability subspace. Although current speaker
recognition systems achieve very good results in clean training and test
conditions, the performance degrades considerably in noisy environments.
The compensation of the noise effect is actually a research subject of
major importance. As far as we know, there was no serious attempt to
treat the noise problem directly in the i-vectors space without relying
on data distributions computed on a prior domain. This paper proposes
a full-covariance Gaussian modeling of the clean i-vectors and noise dis-
tributions in the i-vectors space then introduces a technique to estimate
a clean i-vector given the noisy version and the noise density function
using MAP approach. Based on NIST data, we show that it is possible
to improve up to 60 % the baseline system performances. A noise adding
tool is used to help simulate a real-world noisy environment at different
signal-to-noise ratio levels.

Keywords: i-vectors · MAP adaptation · Speaker recognition · Addi-
tive noise

1 Introduction

Recent work on the robustness of i-vector -based speaker recognition systems has
been carried out at different levels in order to track and compensate the additive
noise effect without altering the speaker-related information. After the success of
VTS (Vector Taylor Series) in robust ASR applications [1], a VTS-based i-vectors
extractor was proposed in [7,8] and then developed in [9] using “Unscented
transforms” trying to model non-linear distortions in the mel-cepstral domain
based on a non-linear noise model in order to compensate both convolutive and
additive noises. This compensation scheme tackles the problem on an early stage
by computing the “clean i-vector” directly by fitting the corresponding noisy
GMM to a given noisy speech segment. That requires information about spectral
c© Springer International Publishing Switzerland 2014
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data distribution to do the link between the two domains. The biggest weakness
of this technique is the complexity of the estimation model and the number
of imposed constraints which makes it extremely rigid and hardly extendable.
The integration of many interesting techniques (like feature warping [11] for
robust channel mismatch) becomes a hard task and requires to rebuild the whole
model.

This motivates the development of a new kind of noise models which operates
directly in the i-vectors space. We show in this paper that it’s possible to reach
far better results than VTS-based techniques based on an additive noise model in
the i-vectors space using only noise and clean i-vectors distributions. We start by
assuming that both clean i-vectors and noise can be modeled by full-covariance
Gaussian distributions. Then, we present an i-vectors “cleaning” technique that
uses the MAP approach to estimate a clean i-vector given a noisy i-vector version
and a normal noise distribution model.

This paper is structured as follows. Section 2 describes the i-vector frame-
work for speaker recognition. Section 3 details the proposed approach. Section 4
presents the experimental protocol, the experiments and the corresponding
results.

2 The i-vectors Framework

In this section we present the i-vectors framework along with the scoring proce-
dure that will be used further in our experiments.

2.1 The Total-Variability Subspace

In this approach, an i-vector extractor converts a sequence of acoustic vectors
into a single low-dimensional vector representing the whole speech utterance.
The speaker- and session-dependent super-vector s of concatenated Gaussian
Mixture Model (GMM) means is assumed to obey a linear model of the form:

s = m+ Tw (1)

where:

– m is the mean super-vector of the Universal Background Model (UBM)
– T is the low-rank variability matrix obtained from a large dataset by MAP

estimation [6]. It represents the total variability subspace.
– w is a standard-normally distributed latent variable called “i-vector”.

Extracting an i-vector from the total variability subspace is essentially a
maximum a-posteriori adaptation of w in the space defined by T . The algorithms
for the estimation of T and the extraction of i-vectors are described in [10].
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2.2 The i-vectors Scoring System

Many dimensionality reduction techniques (such as LDA) and generative mod-
els (like PLDA, and the Two-covariance model) have been developed in order to
improve the i-vectors comparison in speaker verification trials. The speaker ver-
ification score given two i-vectors w1 and w2 is the likelihood ratio described by:

score = log
P (w1, w2|θtar)
P (w1, w2|θnon)

(2)

where the hypothesis θtar states that inputs w1 and w2 are from the same speaker
and the hypothesis θnon states they are from different speakers.

We focus in the following on the generative model that we used in our work:
the two-covariance scoring model.

The Two-Covariance Scoring Model: This model is a particular case of the
Probabilistic Linear Discriminant Analysis (PLDA) described in [12]. It can be
seen as a scoring method and a convolutive noise compensation technique. It
consists of a simple linear-Gaussian generative model in which an i-vector w of
a speaker s can be decomposed in:

w = ys + ε (3)

where the speaker model ys is a vector of the same dimensionality as an i-vector,
ε is Gaussian noise and:

P (ys) = N (μ,B) (4)

P (w|ys) = N (ys,W ) (5)

N denotes the normal distribution, μ represents the overall mean of the training
data set, B and W are the between- and within-speaker covariance matrices
defined as:

B =
S∑

s=1

ns

n
(ys − μ)(ys − μ)t (6)

W =
1
n

S∑

s=1

ns∑

i=1

(ws
i − ys)(ws

i − ys)t (7)

where ns is the number of utterances for speaker s, n is the total number of
utterances, wi are the i-vectors of sessions of speaker s, ys is the mean of all the
i-vectors of speaker s and μ represents the overall mean of the training data set.
Under assumptions (6) and (7), the score from Eq. (2) can be expressed as:

s =
∫ N (w1|y,W )N (w2|y,W )N (y|μ,B)dy∏

i=1,2

∫ N (wi|y,W )N (y|μ,B)dy
(8)

the explicit solution of (8) is given in [3].
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3 MAP Estimation of Clean i-vectors

Given a noisy i-vector Y0, the goal of this section will be to estimate the corre-
sponding clean version X̂0. We will work exclusively in the i-vectors space and
build a clean i-vectors estimator based solely on “i-vector space”-related data
using a MAP approach.

Let’s start by defining two random variables in the i-vectors space:

– X which corresponds the clean i-vectors.
– Y which corresponds the noisy i-vectors.

To model the additive noise in the i-vectors space, we define a third random
variable N that links X and Y according to the following expression:

N = Y −X (9)

We assume that both clean i-vectors (X) and noise data (N) can be represented
by two normal distributions in the i-vectors space. We can then define the cor-
responding probability distribution functions f(X) and f(N) as:

f(X) = N (μX , ΣX) (10)

f(N) = N (μN , ΣN ) (11)

where N (μi, Σi) denotes a normal distribution with mean μi and full covariance
matrix Σi.

Referring to hypothesis (9), (10) and (11) we can express f(Y0|X) for a given
Y0 as:

f(Y0|X) =
1

(2π)
p
2 |Σ| 1

2
exp{(Y0 −X − μN )tΣ−1

N (Y0 −X − μN )} (12)

Based on the noise model (9) and the two previously defined distributions, we
can estimate for a given noisy i-vector Y0 its clean version X̂0 using a MAP
estimator:

X̂0 = argmax
X

{ln f(X/Y0)} (13)

Using the Bayesian rule, we can write f(X/Y0) as:

f(X/Y0) =
f(Y0/X)f(X)

f(Y0)
(14)

After combining (13) and (14):

X̂0 = argmax
X

{ln f(Y0/X)f(X)} (15)

Finding X̂0 becomes equivalent to solving:

∂

∂X
{ln f(Y0/X) + ln f(X)} = 0 (16)
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By developing (16) using (10) and (12), we end up with:

∂

∂X
{(Y0 −X − μN )tΣ−1

N (Y0 −X − μN ) + (X − μX)tΣ−1
X (X − μX)} = 0 (17)

After the derivation, we have:

−Σ−1
N (Y0 − X̂0 − μN ) +Σ−1

X (X̂0 − μX) = 0 (18)

then, we find the final expression of the clean i-vector X̂0 given the noisy version
Y0 and both X and N distributions parameters:

X̂0 = (Σ−1
N +Σ−1

X )−1(Σ−1
N (Y0 − μN ) +Σ−1

X μX) (19)

The estimation of f(X) and f(N) are done as so:

– f(X) : μX and ΣX are estimated once and for all over a large set of clean
i-vectors. Since this distribution is independent from the noise, there is no
constraints on the number of i-vectors to be used.

– f(N) : In real-world conditions, the available amount of noisy data is generally
limited. Possible improvements of this technique could be proposed in future
publications to deal with this constraint. Based on a set of clean and noisy
i-vectors pairs corresponding to the same clean utterances, the noise data set
in the i-vectors space is firstly computed using N = Y −X. Then μN and ΣN

are estimated as any regular normal distribution parameters.

In i-vector -based speaker recognition systems, length-normalization was
proved to improve the overall system performance [4]. In our case, it’s important
to mention that all used noisy and clean i-vectors in the estimation process of
X̂0, f(X) and f(N) were initially length-normalized.

4 Experimental Protocol and Results

In this section, we present the configuration used in the LIA speaker recogni-
tion system along with the training and test data sets. Then, the noise adding
procedure and the realized experiments are detailed.

4.1 The LIA Speaker Recognition Baseline System

Our experiments operate on 19 Mel-Frequency Cepstral Coefficients (plus energy)
augmented with 19 first (Δ) and 11 second (ΔΔ) derivatives. A mean and vari-
ance normalization (MVN) technique is applied on the MFCC features estimated
using the speech portion of the audio file. The low-energy frames (corresponding
mainly to silence) are removed.

A gender-dependent 512 diagonal component UBM (male model) and a total
variability matrix of low rank 400 are estimated using 15660 utterances cor-
responding to 1147 speakers (using NIST SRE 2004, 2005, 2006 and Switch-
board data). The LIA SpkDet package of the LIA RAL/ALIZE toolkit is used
for the estimation of the total variability matrix and the i-vectors extraction.
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The implemented algorithms are described in [10]. Finally a two-covariance-
based scoring scheme is applied.

4.2 Noise Adding

We will use two different noises in our analysis:

– A crowd-noise
– An air-cooling noise

The open-source toolkit FaNT [5] (Filtering and Noise Adding Tool) was
used to add these noises at different SNR levels generating new noisy audio files.

In order to have a good estimation of the clean normal i-vectors distribution,
we have selected the 6000 utterances from the training data having an SNR
greater than 30 dB.

For each test condition, we used 3000 pairs of clean and noisy i-vectors to
estimate the normal noise distribution model. N is firstly computed with N =
Y −X then f(N) is estimated by computing μN and ΣN .

At the end, six trial conditions will be evaluated for each noise:

– Noisy test/target data with “Crowd-noise” at SNR levels 10 db, 5 db and 0 db.
– Noisy test/target data with “Air-cooling noise” at SNR levels 10 db, 5 db and

0 db.

4.3 Test Data and Performance Evaluation

The equal-error rate (EER) over the NIST SRE 2008 test data will be used as
a reference to monitor the performance improvement compared to the baseline
system in noisy conditions. We will be only focused on the “short2/short3” task
under the “det7” conditions [2]. In order to help visualize the improvement in the
error-rate in each test configuration, the relative improvement measure (RI%)
will be added.

The two studied noises have been used to create noisy versions of the test
and target data over 10 db, 5 db and 0 db SNR levels.

4.4 Experiments and Results

The LIA speaker verification baseline system reaches EER=1.59 % in clean con-
ditions. This error-rate will be the lower bound that helps evaluate the gain of
the proposed technique compared to the noisy baseline performance.

In the following tables, the estimated clean i-vectors corresponding to noisy
test or target i-vectors will be referred to as “I-MAP” vectors.

The system performances will be presented in two different configurations:

– Clean target i-vectors and noisy test i-vectors.
– Noisy target i-vectors and noisy test i-vectors.
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First, we evaluate the baseline system performances before and after the
application of our method when all noisy data (test and target noisy i-vectors)
are produced by the same noise.

Clean Target i-vectors and Noisy Test i-vectors (Crowd-Noise): The
Table 1 summarizes the baseline system performance while used with noisy test
i-vectors (Crowd-noise) and clean target i-vectors compared to the proposed
method performance:

Table 1. System performance using noisy test data (Crowd-noise)

EER (%) RI (%)

Baseline system with I-MAP test

SNR=10db 5.86 3.18 45.73

SNR=5db 9.53 4.34 54.46

SNR=0db 17.08 8.43 50.64

We observe more than 50 % relative improvement in average at the three
SNR levels. This encourages the use of clean target models when available with
noisy test data.

Clean Target i-vectors and Noisy Test i-vectors (Air-Cooling Noise):
The Table 2 summarizes the baseline system performance while used with noisy
test and target i-vectors (Air-cooling noise) and clean target i-vectors compared
to the proposed method performance:

Table 2. System performance using noisy test data (Air-cooling noise)

EER (%) RI (%)

Baseline system with I-MAP test

SNR=10db 7.47 4.78 36.01

SNR=5db 15.68 7.3 53.44

SNR=0db 27.33 13.89 49.18

We observe more than 46 % relative improvement in average at the three SNR
levels. The overall performance is comparable to the previous one and validates
the proposed method for different noisy test conditions.

Noisy Target i-vectors and Noisy Test i-vectors (Crowd-Noise): In real
speaker recognition applications, clean target data could not be available, so it’s
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important to check the validity of the proposed method in noisy target i-vectors
conditions.

The Table 3 summarizes the baseline system performance while used with
noisy test and target i-vectors (Crowd-noise) compared to the proposed method
performance:

Table 3. System performance using noisy test and target data (Crowd-noise)

EER (%) RI (%)

Baseline system with I-MAP target and I-MAP test

SNR=10db 10.72 4.34 59.51

SNR=5db 17.79 8.15 54.19

SNR=0db 24.77 13.44 45.74

We observe more than 53 % relative improvement in average at the three
SNR levels. It’s important to note that our method keeps its efficiency even with
noisy target i-vectors.

Noisy Target i-vectors and Noisy Test i-vectors (Air-Cooling Noise):
The Table 4 summarizes the baseline system performance while used with noisy
test and target i-vectors (Air-cooling noise) compared to the proposed method
performance:

Table 4. System performance using noisy test and target data (Air-cooling noise)

EER (%) RI (%)

Baseline system with I-MAP target and I-MAP test

SNR=10db 16.14 6.83 57.68

SNR=5db 20.73 10.5 49.35

SNR=0db 32.89 20.5 37.67

We observe more than 48 % relative improvement in average at the three
SNR levels. The relative improvement with this noise is also comparable with
the “clean target - noisy test” performance. This validates the robustness of the
proposed method in different noisy target and test conditions.

It’s easy to see the considerable leap between the baseline system perfor-
mance and the one obtained after the MAP estimation of the clean i-vectors in
all previous conditions. For each of the two noises, the average relative improve-
ment exceeds 48 % in 10 dB and 5 dB SNR levels conditions. One of the most
interesting results is the efficiency of this method even on very low SNR levels
(0 dB).
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Noisy data in real-world applications could be affected by different noise
sources. Based on this idea, it’s interesting to evaluate the performance of this
technique in test conditions where more than one noise is present. To test this
possibility, we mixed evenly for each SNR level the noisy i-vectors coming from
both noises. This way, for every SNR level, 50 % of the noisy test i-vectors are
related to the “crowd-noise” and the other 50 % is related to the “air-cooling”
noise. The same mixing scheme is done on noisy target i-vectors in the “noisy
test - noisy target” configuration.

The following tables summarizes the baseline system performance before and
after the application of our technique.

Clean Target i-vectors and Noisy Test i-vectors (Two Noises): The
Table 5 summarizes the system performance before and after the application of
our technique for clean target data and mixed noisy test i-vectors (coming from
two different noises):

Table 5. System performances for clean target and mixed noisy test i-vectors

EER (%) RI (%)

Baseline system with I-MAP target and I-MAP test

SNR=10 db 7.06 3.92 44.47

SNR=5 db 13.24 5.92 55.28

SNR=0 db 22.55 11.86 47.40

We observe more than 50 % relative improvement in average at the three SNR
levels. The overall performance is maintained compared to the first configurations
when we used only one noise. These results validate the efficiency of the proposed
method.

Noisy Target i-vectors and Noisy Test i-vectors (Two Noises in Both):
The Table 6 summarizes the system performance before and after the application
of our technique for mixed noisy target and test i-vectors (coming from two
different noises):

Table 6. System performances for mixed noisy test and target i-vectors

EER (%) RI (%)

Baseline system with I-MAP target and I-MAP test

SNR=10 db 15.49 6.16 60.23

SNR=5 db 24.15 9.79 59.46

SNR=0 db 34.16 22.78 33.31
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Similar performance is also observed in this condition (51 % average relative
improvement) showing the validity of the used method in the “noisy target -
noisy test” configuration.

5 Conclusion

In this work, we introduced a new clean i-vector estimation technique referring
to a noisy version based on a normal distribution model of both clean i-vectors
and noise in the i-vectors space using a MAP approach. The observed improve-
ment compared to the baseline system performance reaches 60 % in low SNR
test conditions and outperforms recently developed robust speaker recognition
techniques (like VTS-based i-vector extractors).

Further improvements could be achieved by extending the noise distribu-
tion model in the i-vectors space (using Gaussian mixtures instead of unimodal
Gaussian distributions for example). The use of a factor analysis -based tech-
nique like PLDA could also be explored to improve the quality of the i-vectors
used to build the noise distribution model.
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Abstract. Speaker variability is a well-known problem of state-of-the-
art Automatic Speech Recognition (ASR) systems. In particular, han-
dling children speech is challenging because of substantial differences in
pronunciation of the speech units between adult and child speakers. To
build accurate ASR systems for all types of speakers Hidden Markov
Models with Gaussian Mixture Densities were intensively used in com-
bination with model adaptation techniques.

This paper compares different ways to improve the recognition of chil-
dren speech and describes a novel approach relying on Class-Structured
Gaussian Mixture Model (GMM).

A common solution for reducing the speaker variability relies on gen-
der and age adaptation. First, it is proposed to replace gender and age
by unsupervised clustering. Speaker classes are first used for adaptation
of the conventional HMM. Second, speaker classes are used for initial-
izing structured GMM, where the components of Gaussian densities are
structured with respect to the speaker classes. In a first approach mix-
ture weights of the structured GMM are set dependent on the speaker
class. In a second approach the mixture weights are replaced by explicit
dependencies between Gaussian components of mixture densities (as in
stranded GMMs, but here the GMMs are class-structured).

The different approaches are evaluated and compared on the TIDIG-
ITS task. The best improvement is achieved when structured GMM is
combined with feature adaptation.

Keywords: Speech recognition · Unsupervised clustering · Speaker class
modeling · Stochastic trajectory modeling

1 Introduction

Hidden Markov Models with Gaussian Mixture observation densities (HMM-
GMM) are successfully applied in automatic speech recognition systems, despite

c© Springer International Publishing Switzerland 2014
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their inability to accurately model the dynamic properties of speech coming from
different speakers and recording conditions. The accuracy is usually improved
by applying various tuning techniques and more advanced feature processing.

Children speech is a good example of the data that is hard to recognize with
conventional HMM-GMM because of the variability of the acoustic features of
the same phonetic units spoken by adult and child speakers. Such variability
comes from the differences in the size of the vocal tract and mispronunciation
of certain phones by children [2,14]. For example, children have shorter vocal
tract, than adults, which leads to higher F0 (fundamental frequency) [12].

The task becomes more complicated as the amount of available annotated
children speech is not large enough for training separate models for children
data. Also, frequently, the information about speaker age is available neither for
test, nor for training data.

An effective strategy for handling child speech (or speaker variability in gen-
eral) consists in adapting the ASR systems. These techniques either modify the
acoustic features (VTLN [17], fMLLR [5]), or the model parameters (MLLR,
MAP [6]) to maximize the likelihood of the adaptation data. A review paper
[13] discusses various improvements and applications of VTLN-based algorithms
for improving automatic recognition of children speech.

The conventional approach for handling speaker variability assumes age and
gender known at least for the training data. In this case separate models are con-
structed for different age and gender classes by adapting the Speaker-Independent
(SI) model trained on the full training dataset. In decoding the corresponding
model is selected for each utterance based on knowledge of the speaker age and
gender (if available), or on an automatic classification. A different approach rely-
ing on interpolation of several models was proposed in [16] and demonstrated
significant improvements also on children speech data.

The main part of this work focuses on the general situation, when the dataset
contains speakers of different age and gender, but the speaker age and gender are
known neither for testing, nor for training. In such case unsupervised clustering
is applied at the utterance level, assuming that the speaker class is not changing
within the sentence [1]. Increasing the number of classes decreases the number
of available training utterances associated with each class. This problem can
be partially handled by soft clustering techniques, such as eigenvoice approach,
where the parameters of an unknown speaker are determined as a combination
of class models [10], or by explicitly enlarging the class data by allowing one
utterance to belong to several classes [7,9].

Furthermore, a novel approach is proposed in this work for using speaker
classes to structure an HMM-GMM. The idea is to include the speaker class
information into the structure of a single HMM-GMM instead of building sepa-
rate models for each class. To do this, the components of GMMs are composed
from GMMs with a smaller number of components per density and trained (or
adapted) on class data. Speaker class structuring leads to GMM, in which each
kth component of the density (or a subset of components) is associated with a
given class in contrast to conventional GMM, where the components are trained
independently.
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When the components are structured, the speaker class is represented as
a subspace of the structured GMM (kth component, or subset of components
of each GMM corresponds to kth speaker class). To select the corresponding
subspace, additional modifications are proposed in the form of dependencies
added on weights of the Gaussian components.

Class-structured GMM was first used with mixture Weights dependent on
the speaker class in addition to the associated HMM state. Such a model with
Speaker class-dependent Weights (SWGMM) was originally investigated in a
radio broadcast transcription system [8]. In this model, the mixture weights are
class-dependent and the Gaussian means and variances are class-independent,
but class-structured.

Another way of using class-structured GMM is to replace state and class-
dependent mixture weights by only state-dependent Mixture Transition Matrices
(MTMs) of Stranded Gaussian Mixture Model (SGMM). SGMM is similar to
conditional Gaussian model [15], which was recently extended, re-formulated
and investigated for robust ASR [18]. In SGMM the Mixture Transition Matrix
(MTM) defines the dependencies between the components of adjacent Gaussian
mixture observation densities.

In [18] it was originally proposed to initialize SGMM from the conventional
HMM-GMM. Instead, here, for a class-Structured SGMM (SSGMM), the SGMM
is initialized from SWGMM and each GMM component (or each set of compo-
nents) mainly represents a different speaker class. MTM in SSGMM is used to
model the probabilities of either keeping the same component (speaker class)
over time, or to dynamically switch between dominating components (classes).

The advantage of using explicit component dependencies over class-dependent
mixture weights is that the weights are no more fixed at the utterance level
(determined by the speaker class), but rather change depending on the observa-
tion from the previous frame. As a result, explicit trajectory modeling improves
the recognition accuracy. Moreover, it does not require an additional classifica-
tion step to determine the class of the utterance in decoding.

The paper is organized as follows. Section 2 describes the system and
discusses the conventional adaptation-based approach. Section 3 discusses unsu-
pervised class-based-adaptation approach for ASR (CA-GMM). Section 4 intro-
duces class-structured GMM with Speaker class-dependent Weights (SWGMM)
and describes the corresponding experiments. Section 5 recaps Stranded GMM
(SGMM) framework, describes the initialization of the class-Structured SGMM
(SSGMM) from SWGMM and explains the corresponding experiments. The
paper ends with conclusion and future work.

2 Adaptation for Handling Age and Gender Variability

The section describes conventional approaches based on gender and age adapta-
tion with MLLR, MAP and VTLN. Unlike the main objective of the work (use
no prior information about speakers), within this section the speaker classes
(adult/child and male/female) are assumed to be known for the training data.
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2.1 TIDIGITS Baselines

The experiments in this paper are conducted on the TIDIGITS connected digits
task [11]. The full training data set consists of 41224 digits (28329 for adult and
12895 for child speech). The test set consists of 41087 digits (28554 for adult and
12533 for child). Similarly to other work with TIDIGITS [3] the signal is down
sampled to 8 kHz in order to roughly model the telephone-quality data.

The Sphinx3 toolkit [4] is used for modeling. The digits are modeled as
sequences of word-dependent phones. Each phone is modeled by a 3-state HMM
without skips. Each state density is modeled by 32 Gaussian components. The
front-end computes 13 standard MFCC (12 cepstral + log energy) plus the first
and second derivatives and a cepstral mean normalization (CMN) is applied.

Two speaker-independent (SI) models are trained from the adult subset only
and from the full training set. The corresponding Word Error Rates (WER) for
baseline models are shown in Table 1.

Table 1. Baseline WERs on TIDIGITS data

Adult Child

Training on adult data 0.64 9.92

Training on adult+child data 1.66 1.88

Training on adult data provides the best results for adult speakers, but shows
a weak performance on the child subset. When child data are included in the
training set, the conventional HMM-GMM improves on child, but degrades on
adult subset.

2.2 Model Adaptation

Better baselines are achieved when age-gender classes are used for adapting the
SI baselines with MLLR for GMM mean values followed by MAP for all model
parameters.

With class-based modeling, decoding is usually done in 2 passes. In the 1st
pass, for each utterance, the corresponding class is determined using a GMM
classifier trained on age-gender labels of the training data. In 2nd pass the stan-
dard decoding is done with the corresponding class-based model.

In addition, the recognition hypothesis can be used for applying rapid adap-
tation of the features (VTLN) using only the utterance data. After such VTLN-
based feature transformation a 3rd pass decoding is done.

Word Error Rates for baselines, 2-pass and 3-pass decoding of TIDIGITS
data are summarized in Table 2.

Although for SI baseline using all data in training provides better results, the
adaptation is more efficient when initial SI model is trained on adult data. In all
cases additional VTLN pass in decoding further improves the model accuracy.
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Table 2. Baseline WERs for SI and Gender-Age adapted models

Decoding Adaptation in decoding WER

Adult Child

Training on adult data 1 pass – 0.64 9.92

+Gender-Age adaptation 2 pass – 0.54 1.08

+Utterance Rapid adaptation 3 pass VTLN 0.54 0.97

Training on adult+child data 1 pass – 1.66 1.88

+Gender-Age adaptation 2 pass – 1.34 1.45

+Utterance Rapid adaptation 3 pass VTLN 1.29 1.41

3 Unsupervised Clustering for Multi-model ASR

Let us consider a set of training utterances without any knowledge about the
speaker identity or class (age, gender, etc.). The objective is to automatically
group the training data into classes of acoustically similar data.

A GMM-based utterance clustering algorithm is applied [9]. In this approach,
a single GMM with a large number of components is first trained on the full
dataset. Then, the GMM is duplicated and the mean values are perturbed. Next,
the data are classified with Maximum Likelihood criterion and the GMMs are
trained from the corresponding classes. The classification and training steps are
repeated until convergence. This split-classification-training process is repeated
until the desired number of classes is achieved. The class data are then used for
adapting the SI HMM-GMM model parameters. The same classification GMMs
are used in decoding to identify the class for selecting the best model for each
utterance of the test set.

Although clustering of the utterances is not exactly equivalent to speaker
clustering, here and later we assume that the main source of variability comes
from the speaker and we will refer to the described process as speaker clustering
and to the resulting classes of utterances as speaker classes.

Analyzing data clustering for mixed adult-child data. This unsupervised
clustering is applied on the TIDIGITS train data. The classification GMMs
consist of 256 components. The corresponding distributions of Age-Gender over
these classes are summarized in Fig. 1.

The first clustering step (2 classes) mainly splits male speakers from female
and child speakers. The second split (4 classes) allows to separate female speakers
from child speakers. It seems impossible to distinguish boys from girls, even with
more classes.

After clustering, the SI acoustic model (32 Gaussian per density) trained on
full train data (adult and child) is adapted using each class data with MLLR+
MAP. The bars “CA-GMM ” in Fig. 4 illustrate WERs with the associated 95 %
confidence intervals. The best result is achieved with 4 classes, for which the
WER (see details in the “4 classes CA-GMM ” row of the Table 3) is similar
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Fig. 1. Number of training utterances for each Age-Gender in the resulting 2, 4 and 8
classes

to the supervised Gender-Age adaptation of the mixed Adult-Child SI model
results (see Table 1). After 4 classes, the performance degrades, because there is
not enough data to adapt the class-based models.

4 Class-Structured GMM with Class-Dependent Weights

Instead of adapting all GMM parameters for each class of data, a more efficient
and compact parameterization was investigated: structured GMM with Speaker
class-dependent Weights (SWGMM) [8]. GMM components of this model are
shared and structured with respect to speaker classes and only the mixture
weights are class-dependent.

The SWGMM pdf for an HMM state j and a given speaker class c has the
following form:

b
(c)
j (ot) =

M∑

k=1

w
(c)
jk N (ot,μjk,U jk) (1)

where M is the number of components per mixture, ot is the observation vector
at time t and N (ot,μjk,U jk) is the Gaussian pdf with the mean vector μjk and
the covariance matrix U jk.

In decoding, each utterance to be recognized is firstly automatically assigned
to some class c. After that, the Viterbi decoding with the corresponding set of
mixture weights is performed.

The class structuring consists in concatenating the components of GMMs of
smaller dimensionality, separately trained from different classes. For example, to
train a target model with mixtures of M Gaussian components from Z classes,
first Z models with L = M/Z components per density are trained. Then, these
components are merged into a single mixture as follows:
[
μ

(c1)
j1 , . . . ,μ

(c1)
jL

]
. . .

[
μ

(cZ)
j1 , . . . ,μ

(cZ)
jL

]
⇒ [

μj1, . . . ,μjL, . . . ,μM−L+1, . . . ,μM

]
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For the combined (structured) model, mixture weights are also concatenated,
copied and re-normalized. Finally, the means, variances and mixture weights
are re-estimated in the iterative Expectation-Maximization manner. The class-
specific data are used for updating the class-dependent mixture weights, whereas
the whole data set is used for re-estimating the means and variances:

ω
(ci)
jk =

∑T
t=1 γ

(ci)
jk (t)

∑T
t=1

∑M
l=1 γ

(ci)
jl (t)

μjk =

∑Z
i=1

∑T
t=1 γ

(ci)
jk (t)ot

∑Z
i=1

∑T
t=1 γ

(ci)
jk (t)

(2)

where γ(ci)
jk (t) is the Baum-Welch count of the kth component of the state j,

generating the observation ot from the class ci. Summation over t means sum-
mation over all frames of all training utterances of the class. The variances
are re-estimated in a similar way as means. Means can also be estimated in a
Bayesian way (MAP) to take into account the prior distribution.

After such re-estimation the class-dependent mixture weights are larger for
the components that are associated with the corresponding classes of data (Fig. 2
shows the examples of class-dependent mixture weights of structured GMM,
averaged over HMM states, for classes c7, c17 and c27).

1 7 12 17 22 27 32

0,0

0,2

0,4

ω̃c7 ω̃c17 ω̃c27

Fig. 2. Example of class-dependent mixture weights of structured GMM after joint re-
estimation. Here mixture weights are averaged over HMM states with corresponding
standard deviation in bars (here Z = 32, M = 32)

Experiments with class-structured SWGMM. The previous GMM-based
unsupervised clustered data were used to build the proposed SWGMM. In order
to build models with 32 Gaussians per density, smaller class-dependent models
are combined: 2 classes modeled with 16 Gaussians per density, or 4 classes with
8 Gaussians per density, and so on up to 32 classes.

Once the SWGMM is initialized, the model is re-estimated. ML estimation
(MLE) is used for mixture weights and MAP for means and variances. The
corresponding results are described by the bars “SWGMM ” in Fig. 4.
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This parameterization allows to use the information from all classes for a
robust estimation of the means and variances, and significantly reduces the WER
with a limited number of parameters, due to the sharing of the Gaussian para-
meters. This model achieves the best result of 0.80 % for adult and 1.05 % for
child data (see 8 and 32 classes SWGMM rows in Table 3).

5 Class-Structured Stranded Gaussian Mixture Model

Stranded GMM was proposed [18] in the robust ASR framework. The corre-
sponding extended training and decoding algorithms were also introduced in the
original paper. This model expands the observation densities of HMM-GMM and
explicitly adds dependencies between GMM components of the adjacent states.

Originally, an SGMM is initialized from an HMM-GMM. In this section after
briefly recalling the conventional Stranded GMM approach, a class-Structured
SGMM (SSGMM) is proposed.

5.1 Conventional Stranded GMM

The conventional SGMM consists of the state sequence Q = {q1, ..., qT }, the
observation sequence O = {o1, ...,oT }, and the sequence of components
of the observation density M = {m1, ...,mT }, where every mt ∈ {1, ...,M}
is the component of the observation density at the time t, and M denotes the
number of such components in the mixture.

i j z

aii

aij

ajj

ajz

azz

mi1 mj1 mz1

mi2 mj2 mz2

miM mjM mzM

⇔

⇔

⇔

a0i 1

1

1

1

Fig. 3. (a) Stranded GMM with schematic representation of the component dependen-
cies; (b) the idea of Structured SGMM, i.e., associating each kth component with some
class of data
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The difference of SGMM from HMM-GMM is that an additional dependency
between the components of the mixture at the current frame mt and at the pre-
vious frame mt−1 is introduced (Fig. 3-a). The joint likelihood of the observation,
state and component sequences is defined by:

P (O,Q,M|λ) =
T∏

t=1

P (ot|mt, qt)P (mt|mt−1, qt, qt−1)P (qt|qt−1) (3)

where P (qt = j|qt−1 = i) = aij is the state transition probability, P (ot|mt =
l, qt = j) = bjl(ot) is the probability of the observation ot with respect to the
single density component mt = l in the state qt = j and P (mt = l|mt−1 =
k, qt = j, qt−1 = i) = c

(ij)
kl is the mixture transition probability.

The set of component transition probabilities corresponds to the mixture
transition matrices (MTMs) C(ij) = {c(ij)kl }, where

∑M
l=1 c

(ij)
kl = 1,∀i, j, k.

Experiments with conventional SGMM. In conventional SGMM, MTM
rows are initialized from the mixture weights of convention HMM-GMM, and
the model parameters are re-estimated with MLE. Such initialization and train-
ing processes are applied in this section. In addition, to reduce the number of
parameters, only 2 MTMs are used for each state (i.e., cross-phone MTMs are
shared). The WERs for SGMM are shown in the bar “SGMM ” in Fig. 4 and in
the corresponding row of Table 3.

Compared to the conventional HMM-GMM trained on all data (adult+child),
SGMM improves from 1.66 % to 1.11 % on adult and from 1.88 % to 1.27 % on
child speech. Both improvements are statistically significant with respect to 95 %
confidence interval. The SGMM performance is even better than the Gender-Age
adapted baseline, but it does not outperform SWGMM, proposed in the previous
section.

5.2 Class-Structured Stranded GMM

The idea of class-Structured SGMM (SSGMM) is to structure the components
of SGMM, such that initially the kth component of each density corresponds
to a class of data (Fig. 3-b). To do this, the SSGMM is initialized from the re-
estimated SWGMM, described in Sect. 4. The means and variances are taken
from SWGMM and MTMs are defined with uniform probabilities. The class-
dependent mixture weights of the SWGMM are not used.

When the initialization of SWGMM is done from class-models with 1 Gaussian
per density, each component corresponds to a class. After EM re-estimation of
all parameters, the diagonal elements of MTMs are dominating, which leads to
the consistency of the class within utterance decoding. At the same time, non-
diagonal elements allow other Gaussian components to contribute to the acoustic
score computation.

The advantage of SSGMM is that it explicitly parameterizes speech trajecto-
ries and allows to automatically switch between different components (speaker
classes). Therefore, the classification algorithm is no more needed in decoding.
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Fig. 4. WER for adult (top) and child (bottom) sets, computed with full Class-Adapted
model (CA-GMM), class-structured GMM with Speaker-class dependent Weights
(SWGMM), conventional Stranded GMM and class-Structured Stranded GMM built
from 32 classes (SSGMM)

Table 3. Summary of the best results and the number of model parameters. Com-
pared the baseline (SI GMM), 4 full Class-Adapted model (CA-GMM), 8 and 32
class-structured GMM with Speaker-class dependent Weights (SWGMM), conventional
Stranded GMM and class-Structured Stranded GMM built from 32 classes (SSGMM)
without and with additional VTLN pass in decoding)

Model Decoding Parameters/state Adult Child

SI GMM 1 pass 78*32+32=2528 1.66 1.88

4 classes CA-GMM 2 pass 4*(78*32+32)=10112 1.32 1.57

8 classes SWGMM 2 pass 78*32+8*32=2752 0.75 1.21

32 classes SWGMM 2 pass 78*32+32*32=3520 0.80 1.05

SGMM 1 pass 78*32+2*32*32=4544 1.11 1.27

SSGMM 1 pass 78*32+2*32*32=4544 0.52 0.86

SSGMM+VTLN 2 pass 78*32+2*32*32=4544 0.52 0.81

Experiments with class-Structured Stranded GMM. In the experimental
study, the SSGMM is initialized from SWGMM, which was constructed using
32 classes with 1 Gaussian per class and re-estimated with ML for mixture
weights and MAP for Gaussian means and variances (corresponds to the result
32 classes SWGMM in Table 3). Two MTMs per states are defined with uniform
probabilities. Then, the parameters of SSGMM are re-estimated with MLE.

The WERs for such SSGMM are described with the bars “SSGMM ” in Fig. 4
and in the corresponding rows of Table 3. Initializing SSGMM from SWGMM
with different number of classes (2, 4, 8 and 16) was always leading to accuracy
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improvement, compared to SGMM. Only the best result, corresponding to 32
classes, is reported.

While conventional SGMM improves from 1.66 % to 1.11 % on adult and from
1.88 % to 1,27 % on child data, compared to the SI GMM trained on full train
data (adult+child), the proposed Class-Structured SGMM (SSGMM) further
improves by achieving 0.52 % WER on adult and 0.86 % on child data.

The key improvements from all proposed techniques are summarized in
Table 3. Notice, that SSGMM can be further combined with rapid feature adap-
tation to further slightly improve the recognition result on child data (see row
SSGMM+VTLN).

6 Conclusion and Future Work

This paper investigated an efficient unsupervised approach for handling hetero-
geneous speech data without prior knowledge about speaker age and gender.
Unsupervised clustering does not allow to build many speaker class models,
when the amount of training data is limited. To address this problem, an effi-
cient class-structured parameterization of GMM components has been proposed.

The structuring consists in associating subsets of Gaussian components with
given speaker classes. Two models, which include this class-structured parame-
terization, have been investigated and lead to significant improvements of the
ASR accuracy.

The first model uses Speaker class-dependent Weights (SWGMM). Unlike
standard class model adaptation, the performance does not degrade, when the
number of classes increases and when the number of class-associated data
decreases. The class structuring approach was also applied for Stranded GMM
- an explicit trajectory model with additional dependencies between the com-
ponents of the observation densities. Class-Structured SGMM is initialized from
SWGMM, in which Gaussian components are structured with respect to speaker
classes. Mixture Transition Matrices (MTMs) were then used to replace class-
dependent mixture weights and to model dependencies between components
(speaker classes). SSGMM provides very promising results for both child and
adult data. Moreover, it does not require classification algorithm before utter-
ance decoding. SSGMM combined with VTLN achieves overall best performance,
outperforming even the strong 3-pass MLLR+MAP age-gender adapted baseline
with VTLN pass in decoding.

In the future the proposed techniques should be applied for large vocabulary
speech recognition task including adult and child speakers.
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Abstract. In this paper the development of an online monitoring system is
shown in order to track physiological and cognitive condition of crew members
of the Concordia Research Station in Antarctica, with specific regard to
depression. Follow-up studies were carried out on recorded speech material in
such a way that segmental and supra-segmental speech parameters were mea-
sured for individual researchers weakly, and the changes of these parameters
were detected over time. Two kind of speech were recorded weekly by crew
members in their mother tongue: a diary and a tale (“North Wind and The Sun”).
An automatic language independent program was used to segment the records in
phoneme level for the measurements. Such a way Concordia Speech Dat-
abases were constructed. Those acoustic-phonetic parameters were selected for
the follow up study at Concordia, which parameters were statistically selected
during a research on the base of the analysis of Seasonal Affective Disorder
Databases gathered separately in Europe.

Keywords: Acoustic-phonetic speech analysis � Seasonal affective depres-
sion � Cognitive status monitoring � Statistical analysis � Two sample t test

1 Introduction

Physiological and cognitive condition of humans is reflected in the speech production,
therefore, in the acoustic phonetic-parameters of speech as well. It is well known, that
in case of vocal disorders the acoustical parameters of speech significantly differ from
the normal speech. Speech production is a complicated process involving coordination
of several brain areas and peripheral muscle controls. This is the reason why the
acoustic-phonetic parameters of speech are sensitive to many neurological defects
(cognitive dysfunctions). These defects can cause changes also in speech [1–3]. The
defects generally occur in areas of phonation, articulation, prosody, and the fluency of
speech. In the case of phonation defects, due to improper working of muscles, vocal
cords do not work perfectly. In this case the fluctuation and scattering of pitch fre-
quency (F0), which is described by standard deviation or by jitter (a measure of period
by period variation of F0) - different from the typical one [4]. The articulation defects
are reflected primarily in the pronunciation of consonants [5]. The biggest problems [5,
6] occur mainly in the pronunciation of plosives. This is again due to the improper
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working of muscles involved in speech production, in this case the active articulatory
organs (lips, tongue tip, the center of the tongue, tongue base, epiglottis, and larynx).
During the pronunciation of plosives the position of articulation organs changes rap-
idly. In some cases, patients are not able to perform these rapid changes [7]. The Voice
Onset Time (VOT) defined as the time interval between the release of the plosive and
the beginning of the vocal fold vibration associated with the subsequent vowel, is
another frequently used acoustical parameter to determine speech production problems
[8]. For example it was proved that average VOT was shortened in case of hypoxia [9]
during a 48-h exposure, in a 4300 m simulated altitude.

Resonance occurs in the larynx, oral and nasal cavities. The frequencies at which
these resonances occur are called formants. Formant values and corresponding spaces
in the cavity are affected by the position of speech organs. Formant frequencies can be
estimated by frequency analyses of speech. A disadvantage of the formant frequencies
is their strong dependence on age and sex. Speaker prosody is partly based on pho-
nation, due to the fact that the three basic acoustic features are pitch frequency (F0),
speech intensity and speech rate. In addition to these basic parameters the prosodic
features also include rhythm, intonation, accent, timing [10, 11], etc. These parameters
are particularly sensitive to changes in mood states and emotions [12, 13]. These three
areas of the continuous speech production: the phonation, the articulation, and the
prosody are closely related to each other. The relationships between depression and
different acoustic phonetic parameters were examined in the last years [14–17]. Data
indicates that more depressed patients take longer to express themselves. They don’t
vocalize more; rather they speak with greater hesitation, producing more cumulative
and variable pauses. Consequently, voice acoustic measures such as the percentage of
pause time, vocalization or pause ratio, and speaking rates reflect depression severity.
Moreover pitch variability about F0 and first and second formants correlate signifi-
cantly with overall depression severity.

We are participating in an international ESA project, AO-11-Concordia, titled:
Psychological Status Monitoring by Computerized Analysis of Language phenomena
(COALA). The research is planned to take for two major periods: the year of 2013 and
2014. The duty of our laboratory is phonetic data collection and processing. The aim is
the examination of the sensitivity of acoustic-phonetic parameters of speech regarding
hypoxia and Seasonal Affective Disorder (SAD), furthermore the development of a
system and a metric that alerts crew members at early stage of cognitive dysfunction
(Automatic detection). For this research purposes we have developed two types of
databases.

For the determination of those acoustic-phonetic parameters which are sensitive to
the SAD symptoms, the Seasonal Affective Disorder Database was developed and
used. The database development is described in Sect. 2, the methods and the obtained
results are described in the Sect. 3.

For the physiological and cognitive status monitoring of the crew members in
Concordia research station, the Concordia Speech Database has been developed. The
database development is described in Sect. 2 and methods and the obtained results are
described in the Sect. 4.
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2 Databases

Recorded Material for the Concordia Speech Database. Speech data was collected
from all crew members using their mother tongue, weekly during their stay at the
Concordia Station. Baseline data was collected in normal circumstances once in Europe
before arrival to Antarctica. This way the inflections due to hypoxia and occasional
occurrence of SAD symptoms could be monitored. This collection of speech samples is
called the Concordia Speech Database. The Concordia Speech Database consists of two
parts: the first is spontaneous speech obtained from the diaries used for content analysis
too. In the second part, the participants had to read a text, a standard phonetically
balanced short folk tale (about 6 sentences all together), “The North Wind and the
Sun”. This story is from the booklet “The Principles of the International Phonetic
Association” (International Phonetic Association, 1999). In this booklet phonetic
transcriptions of the story are given in 50-odd languages, in order to illustrate the use of
the International Phonetic Alphabet (IPA). The tale is frequently used in the phoniatric
practice for all European languages, and commonly used for acoustic analysis in the
framework of international, multi-lingual clinical studies.

In the Concordia Station the crew members had either French, Italian or Greek
mother tongue (both seasons the doctor’s mother tongue was Greek, but they were
speaking English during the whole project and on the recordings as well). In the
experiment, two seasons was planned: 2013 and 2014 (Tables 1 and 2). The recordings
were recorded at a sampling rate of 44 100 Hz, using 16-bits.

Recorded Material for the Seasonal Affective Disorder Database. Parallel with the
data collection in the Concordia Station another data collection was also performed on
the seasonal affective disorder patients in normal atmospheric conditions, practically in
the doctor’s consulting room. This, so called Seasonal Affective Disorder Database is
necessary for the development of a good metric to detect SAD. Certainly, speech
recording is necessary in symptomatic as well as in symptom free period of the same

Table 1. The Concordia speech database (2013)

Language Number of persons Diary length Tale length Total length

French 8 17 h 3 h 40 min 20 h 40 min

Italian 6 7 h 20 min 2 h 2 min 9 h 22 min

English 1 2 h 50 min 331 min 3 h 21 min

Table 2. The Concordia speech database (2014 still in progress)

Language Number of persons Diary length Tale length Total length

French 5 2 h 39 min 2 h 39 min

Italian 6 5 h 1 h 18 min 6 h 18 min

English 1 1 h 30 min 23 min 1 h 53 min

122 G. Kiss and K. Vicsi



patient, to detect the differences between the examined parameters. For the Seasonal
Affective Disorder Database we are collecting records from Hungarian patients
(Table 3). (Italian SAD collection is also going on, but until now we have only small
data, thus here we speak only about the Hungarian SAD databases.) We gather data
from people who are suffering from depression. The Seasonal Affective Disorder
database consists of two parts: the first is spontaneous speech obtained from the dis-
cussion between the patient and the doctor, the second one is the reading of the same
text as before in the Concordia Speech Database, “The North Wind and the Sun”. The
recordings were recorded on 44 100 Hz and 16 bits per sample.

To measure depression we used Beck Depression Inventory (BDI), this is to specify
the severity of depression in the range 0 to 63 [18]. The distribution of the BDI indices
of patients for Hungarian patients is shown in Fig. 1. The distribution of the Ages of the
patients for Hungarian patients is shown in Fig. 2.

Table 3. The seasonal affective disorder database

Language Persons Diary length Tale length Total length

Hungarian 45 3 h 45 min 41 min 4 h 26 min

0

5

10

10-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

BDI - Indices

Fig. 1. The distribution of BDI indices of the depressed people in the database

0

10

20

21-30 31-40 41-50 51-60 61-70

Age Distribution

Fig. 2. The distribution of age of the depressed people in the database
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Segmentation and Labelling. In order to measure the acoustic-phonetic parameters,
first the speech needs to be segmented into phoneme level. For the segmentation we
used an automatic language independent segmentation which was developed by our
laboratory [19]. Every 10 ms unit was classified into language independent acoustic
classes. The classification was made using SVM (Support Vector Machine) on the basis
of the spectrum of the speech. Then the final phoneme level segmentation was made
using the text of the speech and the acoustic classes. For the higher precision manual
correction was made on the automatic segmentation.

Both databases were preprocessed and was segmented and labeled. The speech was
segmented into phoneme level and every phoneme was labeled by SAMPA charset.
Every plosive was segmented into two parts: the voiced/unvoiced section, and the burst
section.

3 Selection of Acoustic-Phonetic Parameters

For the selection of the acoustic-phonetic parameters we used the Seasonal Affective
Database. First we segmented the speech into phoneme level, just as was discussed in
the Sect. 3.3.

We examined the acoustic-phonetic parameters in two groups according to their
segmental and suprasegmental (prosodic) features.

The segmental features were measured at the middle of the same vowel (“E”). The
following segmental features were measured according to the international studies
[20–22]: fundamental frequency of ‘E’ vowels (F0), first and second formant frequency
of ‘E’ vowels (F1, F2), jitter of the vowels ‘E’, shimmer of the vowels ‘E’. For the
measurement of formants, fundamental frequency and the spectral values, a Hamming
window was used with 25 ms frame size and these features were always evaluated from
the middle of each vowel ‘E’.

The supra-segmental (prosodic) features were measured by the total length of each
recording. The following features were measured: volume dynamics of speech (range
of intensity), fundamental frequency dynamics of speech (range of fundamental fre-
quency), ratio of total length of pauses and the total length of the recording, articulation
and speech rate.

For the measurement of the intensity and the fundamental frequency a 100 ms
frame size window was used. For statistical significance testing, we used two-tailed
tests. The analysis was performed separately by gender and it was done on the reading
text. Every segmental feature showed significant difference between healthy speech and
depressed speech (Table 4).

Two (independent) suprasegmental parameters showed significant difference, in
both gender, between healthy speech and depressed speech (Range of F0 and Pause
Length) (Table 5).
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Table 4. Two-sample T tests results for segmented features

Feature Gender Group Mean Standard
deviation

Significance
level

Pitch [Hz] Women Depressed 154 24 99.9 %

Normal 199 33
Men Depressed 101 14 95 %

Normal 116 19
F1 [Hz] Women Depressed 613 74 99.5 %

Normal 695 47
Men Depressed 512 56 <90 %

Normal 531 46
F2 [Hz] Women Depressed 1764 112 99.9 %

Normal 1955 87
Men Depressed 1565 83 99 %

Normal 1672 80
Jitter [%] Women Depressed 3.4 4.2 95 %

Normal 1.9 2.3
Men Depressed 5.3 4.7 95 %

Normal 1.7 2.7
Shimmer [%] Women Depressed 14.1 8.8 95 %

Normal 8.6 7.7
Men Depressed 17 9.3 95 %

Normal 9.6 6.2

Table 5. Two-sample T tests results for suprasegmental features

Feature Gender Group Mean Standard
deviation

Significance
level

Range of F0
[Hz]

Women Depressed 49.8 12.5 95 %

Normal 61.4 14.3
Men Depressed 32.5 11.4 97.5 %

Normal 47.6 17.8
Pause length
[sec]

Women Depressed 9.2 3.3 95 %

Normal 6.6 3.1
Men Depressed 12.2 5.6 95 %

Normal 7.6 4.2

Monitoring the Acoustic-Phonetic Speech Parameters 125



4 Physiological and Cognitive Status Monitoring of the Crew
Members at Concordia

We built an online monitoring system which tracks the acoustic-phonetic parameters of
a subject’s speech in time and compares the collected data with the reference. The
system has two aims. The primary aim is the alert at early stage of cognitive dys-
function, the second on is the suggestions that the system gives about the reason of the
vocal disorder. An automatic (semi - automatic) online alerting system is planned
which records speech at a given time rate and gives alerts (and predicts). The flow chart
of an online alerting system is shown on Fig. 3.

The system has three main parts: Preprocessing and Segmentation unit, the unit that
measures the parameters (Measuring Parameters) and the Alert unit. Operation of each
part are described in the next Sects. 4.1–4.3).

4.1 Preprocessing and Segmentation

The system gets the recorded speech and preprocesses it. With the help of the tran-
scription of the recorded speech, it makes the automatic phoneme level segmentation,
as it was described in Sect. 3. This part of the processing is only semi-automatic,
because, for the segmentation the program needs the text of the speech. We plan to
make it automatic, then the preprocessing and segmentation would be fully automatic.

4.2 Measuring the Selected Features

The following parameters of speech were selected for monitoring: F0, F1, F2, jitter,
shimmer, range of F0, pauses of total length for segmental and supra-segmental
parameters. These parameters showed significant differences between healthy and
depressed people in case of Seasonal Affective Disorder Database, as it was described
in Sect. 4. Furthermore the Voice Onset Time (VOT), average length of the vowels,
and the ratio of stationary and transient sections of the speech were measured, which
correlate highly with hypoxia [9].

Fig. 3. The online alerting system flowchart
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4.3 Alert Unit

The changing of the values of the selected acoustic-phonetic parameters as a function
of time was examined. The system compares the actual measured parameters with the
parameters of the reference data (measured before the departure in Europe in normal
circumstances). For the comparison two-sample T test was used, because these
parameters shows normal distribution and the variances are equal. 98 % significance
level (1-alpha) was selected. The acoustic phonetic parameters could change from a
variety of reasons, not only from the examined two cognitive dysfunctions (hypoxia
and SAD). For example alcoholic condition, flew, or sleepiness could cause significant
changes of certain parameters together with other body conditions. The separate
examination of the hypoxia and SAD is almost impossible. This is the reason that our
work includes the examination of the relationship between the acoustic-phonetic
parameters and other biological and psychological data of crew members measured in
the station, like: Long term medical survey data (LTMS) and O2 saturation data.
Unfortunately, we have not received these data until now. Thus we can measure and
examine only the acoustic-phonetic parameters in this follow up study. In the fol-
lowing, the parameters of two crew members will be presented: person “A” where a big
change was detected (Fig. 4, Table 6), and person “B” where there was no big change
in the values of the selected parameters (Fig. 5, Table 7).

Fig. 4. F0, F1, jitter, shimmer, range of F0 and total length of pauses parameters changes by
person “A”, October is the reference.
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Table 6. The results of the two-sample t tests in case person “A”

March April May June July

F0 P_Value 9,27 20,14 7,07 0,34 3,09
Critical_Value 2,33 2,33 2,33 2,33 2,33
IsSignficant Yes Yes Yes No Yes

F1 P_Value 1,41 0,41 0,57 1,97 2,56
Critical_Value 2,41 2,41 2,41 2,41 2,41
IsSignficant No No No No Yes

Jitter P_Value 0,41 0,04 0,3 0,3 0,74
Critical_Value 2,4 2,4 2,4 2,4 2,4
IsSignficant No No No No No

F1 P_Value 2,87 2,33 0,41 2,01 0,87
Critical_Value 2,4 2,4 2,4 2,4 2,4
IsSignficant Yes No No No No

Fig. 5. F0, F1, jitter, shimmer, range of F0 and total length of pauses parameters changes by
person “B”, October is the reference.
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Person “A” had some big changes in acoustic phonetic parameters around April
compared to the reference, and then values started to move back to the reference.

Person “B” had almost the same values of the selected acoustic phonetic param-
eters. There was no significant difference at any measured parameter compare to ref-
erence. Person B is supposed to have no change of physical and psychological
condition.

15 crew members were monitored in such a way, and checked when the differences
from the references rich the 98 % significance level. The psychological and biological
results of these crew members were measured parallel in the Concordia research sta-
tion, but we have not received those data until now. Of course we have to examine
those data parallel with the speech parameters. The final decision can be taken only on
the evaluation of those data too.

For example the linear combination of the differences of the corresponding
(appropriate) parallel parameters reaches a threshold, alert can be given. Determination
of this threshold is a very difficult task and need further important researches.

5 Conclusions, Future Tasks

The reviewed study shows an online monitoring system which tracks the cognitive
condition of a subject by voice. This system was developed to follow up the crew
members’ psychological condition of Concordia Station and to give alerts if it expe-
riences any vocal disorder which can be a sign of cognitive dysfunction (hypoxia and
SAD). We have found some segmental and supra-segmental acoustic-phonetic
parameters from continuously read speech that can show significant differences
between the speech of depressed people and a healthy reference group. We have found
that segmental parameters: fundamental frequency, F1, F2 formants frequencies, jitter,
shimmer; and supra-segmental parameters: number of phonemes, speech rate, length of

Table 7. The results of the two-sample t tests in case person “A”

March April May June July

F0 P_Value 0,56 0,47 0,87 0,08 1,32
Critical_Value 2,33 2,33 2,33 2,33 2,33
IsSignficant No No No No No

F1 P_Value 0,88 0,06 1,27 0,78 0,52
Critical_Value 2,41 2,41 2,41 2,41 2,41
IsSignficant No No No No No

Jitter P_Value 0,81 0,42 0,11 1,14 1,61
Critical_Value 2,47 2,32 2,47 2,48 2,47
IsSignficant No No No No No

Shimmer P_Value 1,35 0.96 1,17 1,05 0,52
Critical_Value 2,41 2,41 2,41 2,41 2,41
IsSignficant No No No No No
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pauses, intensity and fundamental frequency dynamics in the speech of depressed
people shows significant changes compared to a healthy reference group.

The examined number of depressed people is small according to the wide range of
degree of the depression. But the database is under continuous expansion with more
and more recordings with further people, speaking different languages as mother thong.
A proper number of sound samples will allow us to perform a full analysis, and thus we
can select a complete set of acoustic features that enables more precise conclusions to
deduct. The ultimate goal would be to find a clear correlation between the severity of
depression and the change of the acoustic-phonetic parameters.

Until now standard read speech (the folk tale) was used for our research, but free
speech have also been recorded from the same persons and stored in both type of the
databases, in the Seasonal Affective Disorder Database and in Concordia Speech
Databases, for further analysis. Finally, the results of this presented study show that on
the base of the extended databases the development of a metric that alert crews at early
stage of cognitive dysfunction (Automatic detection) is possible, and the research
should continue.
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Abstract. In the last decade, there was a growing interest in conversa-
tional speech in the fields of human and automatic speech recognition.
Whereas for the varieties spoken in Germany, both resources and tools
are numerous, for Austrian German only recently the first corpus of read
and conversational speech was collected. In the current paper, we present
automatic methods to phonetically transcribe and segment (read and)
conversational Austrian German. For this purpose, we developed an auto-
matic two-step transcription procedure: In the first step, broad phonetic
transcriptions are created by means of a forced alignment and a lexi-
con with multiple pronunciation variants per word. In the second step,
plosives are annotated on the sub-phonemic level: an automatic burst
detector automatically determines whether a burst exists and where it
is located. Our preliminary results show that the forced alignment based
approach reaches accuracies in the range of what has been reported for
the inter-transcriber agreement for conversational speech. Furthermore,
our burst detector outperforms previous tools with accuracies between
98% and 74 % for the different conditions in read speech, and between
82% and 52% for conversational speech.

Keywords: Speech transcription · Austrian German · Conversational
speech · Automatic burst detection · Forced alignment

1 Introduction

In the last decade, there was a growing interest in spontaneous and conversa-
tional speech in the fields of human and automatic speech recognition. There-
fore, large conversational speech corpora have been created for many languages
(e.g., for English [17], for Japanese [13], for Dutch [5], and for French [28]). For
conversational German, large speech resources are limited to the varieties spo-
ken in Germany (e.g., [7,12,31]). For the varieties of Austria, only recently the
first corpus of conversational speech was recorded (i.e., Graz corpus of Read
and Conversational Speech (GRASS ) [27]). In order to make the GRASS cor-
pus accessible for speech technology as well as linguistic and phonetic research,
c© Springer International Publishing Switzerland 2014
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it needs to be segmented and transcribed phonetically. The aim of the current
paper is to present a transcription tool for read and conversational German. The
tool is operating in two subsequent steps. First, a broad phonetic transcription
is created by means of a forced alignment (i.e., with a HMM-based approach).
Second, a non-stochastic MATLAB tool annotates whether plosives are real-
ized with a burst and, in case of an existing burst, where it is positioned. The
resulting transcriptions are exported to PRAAT TextGrid format [3].

1.1 STEP 1: Broad Phonetic Transcription

Traditionally, phonetic transcriptions are produced manually by one or more
transcribers. Since this approach is time consuming, methods have been devel-
oped to create broad phonetic transcriptions with the help of an ASR system
(e.g., [2,4,9]). The accuracy of these systems has steadily increased and the agree-
ment between automatic and manual transcriptions for some systems already
is in the range of the agreements reported for human transcribers (e.g., [26]).
Furthermore, automatically created transcriptions have successfully been used
for phonetic investigations concerning pronunciation variation (English: [34];
German: [1]; French: [2] and Dutch: [26]).

There are different methods for creating broad transcriptions automatically.
For instance, free and constrained phone recognition have been reported to work
well for read speech but not for spontaneous telephone dialogues [30]. Since we
aim at using the transcription tool for the casual conversations, which are part
of the GRASS corpus, we did not follow this approach.

A method which does not make use of a phone recognizer based on
Hidden Markov models, has been presented by Leitner et al. [11]. Their example-
based approach is non-parametric and uses methods from template-based speech
recognition. This tool has been trained on isolated words read by male trained
Austrian speakers. Even though this tool reaches a high accuracy on carefully
pronounced speech, it does not capture the variation found in spontaneous
Austrian German.

Another method for creating broad phonetic transcriptions automatically is
forced alignment (e.g., [2,4]). For instance, the tool MAUS (Munich Automatic
Segmentation) is a forced-alignment based tool which is available for German
(among other languages) [20]. It works as follows: The orthographic transcrip-
tion and the speech files of an utterance are uploaded to an online-tool. Then,
a canonical transcription is created for each word with the Balloon tool [19].
Then, possible pronunciation variants are created based on phonological rules.
Finally, an HMM based ASR system chooses the most probable pronunciation
variant for each word and places the segment boundaries. We have tested this
tool for our Austrian German data of the GRASS corpus and we have observed
a good accuracy of the segmentation for the read speech component. For the
conversational speech, however, the MAUS tool did not cover well typical char-
acteristics of Austrian German pronunciation. For instance, MAUS annotated
the alveolar fricative, which in Austrian German is typically pronounced voice-
less, as voiced. Furthermore, words which tend to be reduced in spontaneous
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speech were not transcribed correctly. For example, the highly frequent word ich
‘I’, which in Austria is typically pronounced as [ ], was transcribed in its canon-
ical form / /. To conclude, none of the existing transcription tools fulfilled our
requirements. Therefore, we decided to develop a HMM based ASR system in
forced alignment mode to transcribe Austrian German. The main difference of
our approach to the MAUS tool (described above) is that our method to creates
an Austrian German pronunciation dictionary with several variants per word
type (see Sect. 3.2). Most importantly, MAUS does not provide a sub-phonemic
annotation of plosives, which is the task of Step 2.

1.2 STEP 2: Sub-phonemic Annotation of Plosives

Figure 1 shows three examples for different realizations of /t/ in conversational
Dutch. The example of the left panel is the canonical realization of /t/, which
consists of a voiceless complete closure followed by a strong burst and a sub-
sequent release friction. The example on the right panel shows a realization of
/t/ where all characteristic properties of a plosive are absent. [25] showed that
80.4 % of /t/s in conversational Dutch are realized somewhere in between these
two extremes (e.g., example in the middle panel). Recently, numerous studies
investigated the different realizations of plosives in spontaneous speech and the
conditions for their occurrence (for English (e.g., [18]), for Dutch (e.g., [22]), for
French (e.g., [29]) and for German (e.g., [10,35]). In these studies, sub-phonemic
annotations of the plosives were created manually for a relatively small set of
tokens. At the same time, they used high level statistical modeling techniques
to estimate which are the predictors for the variation observed. In this paper,
we propose a method to create such annotations automatically, which allows to
enlarge the amount of data available for future phonetic investigations.

Fig. 1. Three realizations of /t/ in spontaneous Dutch. Left panel: canonical
/t/. Middle panel: reduced /t/. Right panel: absent /t/ [23]
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2 Speech Material

The speech material transcribed with the developed tool is the Graz corpus of
Read And Spontaneous Speech (GRASS ) [27]. For each of the 38 speakers (male
and female), this corpus contains 62 phonetically balanced sentences, 20 (read
and spontaneous) commands elicited with pictures and one hour of conversation
(approximately 1200 utterances per speaker). All conversations were between
family members or friends and the speakers were relaxed and talked completely
freely about everyday topics (in the absence of an experimenter). Therefore, the
style of the conversational speech is informal and casual. The speakers are gender
balanced, with a similar average age per group. They were born in one of the
eastern provinces of Austria and they all were living in Graz at the time of the
recordings.

Since the corpus was collected with speech technology applications in mind,
it fulfills the requirements for automatic processing (e.g., [26]): the recordings
took place in a soundproof studio with both head-mounted and large-membrane
microphones at 48 kHz. The relative position of the speakers and the according
directivity of the microphones was adjusted to optimize the SNR in the presence
of overlapping speech. On average over all conversations, the resulting SNR was
46.4 dB [27].

Since for a forced alignment, the orthographic transcription is needed as input
(see Sect. 3), the quality and consistency of the orthographic transcriptions is
especially relevant. For instance, Gubian et al. [6] reported that mistakes on the
orthographic level can not be compensated on the overlying transcription layers,
the contrary is the case. The orthographic transcriptions of the GRASS corpus
were created having also such further (semi-) automatic transcription layers
in mind: Speakers were transcribed on separate tiers with speech stretches of
less than six seconds. Transcriptions contain information of overlapping speech,
hesitations, disfluencies and other vocal and non-vocal noises [27].

3 STEP 1: Creation of a Broad Phonetic Transcription

As motivated in Sect. 1, we used a forced alignment to create broad phonetic
transcriptions automatically. For this purpose, we used the HTK speech recog-
nition toolkit [33]. A forced alignment needs the following input: (1) the acoustic
signal, (2) the orthographic transcriptions, (3) acoustic phone models and (4)
a lexicon containing pronunciation variants for each word. With this input, the
alignment system determines the most likely pronunciation variant for each word
appearing in the transcription of an utterance and places the corresponding
segment boundaries. Finally, we exported the output of HTK to the PRAAT
TextGrid format [3].

3.1 Monophone Acoustic Models

The 35 (34 phones + silence) acoustic models were continuous density 3-state
monophone acoustic models with 5 Gaussians per state. The models have been
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trained on 5000 utterances from 50 German speakers of the BAS read speech
corpus [21]. The acoustic parameterization was as follows: 16 kHz sampling fre-
quency, frame shift and length of 10 and 32 ms, 1024 frequency bins, 26 mel
channels and 13 cepstral coefficients with cepstral mean normalization. After
adding delta and delta-delta features, each final MFCC vector had 39 compo-
nents (see also [24]).

3.2 Pronunciation Dictionary

The only existing pronunciation dictionary is the Austrian Phonetic Database
[15]. It is based on isolated words produced by a trained speaker and thus does
not cover the pronunciation variation found in the conversational speech of the
GRASS corpus. In the following, we describe how we created a pronunciation
dictionary for Austrian German, with several pronunciation variants per word
type.

First, for each word a canonical pronunciation (German standard) was cre-
ated with the Balloon tool [19], which makes use of a set of 49 SAMPA phoneme
symbols providing syllabic and morphological boundaries, as well as primary
and secondary stress. This tool is also used by the MAUS transcription sys-
tem [20]. Whereas in MAUS the output is not corrected manually, we corrected
the resulting canonical transcriptions. Errors mainly concerned proper names,
foreign words and compounds, especially regarding the syllable boundaries and
primary and secondary stress marks. The correction of the syllable boundaries
and stress marks is especially important since the automatic creation of pronun-
ciation variants is based on rules which are specific for certain syllabic structures
(e.g., deletion of /r/ in coda position) and certain stress patterns (e.g., schwa
deletion in unstressed syllables).

Subsequently, we applied a set of 32 rules to the canonical pronunciations.
These rules can be divided into three groups. The first group is formed by
those rules covering co-articulation, assimilation and reduction rules which are
also typical for spontaneous German spoken by speakers from Germany. These
rules include those mentioned by Wesenick [32] and by Schiel [20]. Secondly,
we applied rules formulated on the basis of literature on standard Austrian
German. Several of these rules have earlier been used for a text-to-speech engine
for Austrian German [16]. The majority of these rules, however, have been for-
mulated on the basis of phonetic studies and have not yet been used in speech
technology (e.g., [14]). These rules include the deletion and lenition of plosives
in all word positions. For a detailed description of each rule and their frequencies
see [24].

Finally, variants were created manually for the 150 most frequent words and
for certain verbs which tend to have typical Austrian realizations which cannot
be easily derived from the citation form (e.g., möchte ‘would like to’: citation
form / / as / /.
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Table 1. Discrepancy between automatically created and manually corrected broad
phonetic transcriptions in absolute number of phones and in % of deletions, insertions
and substitutions

Read Commands Conversational

Total # Phones 1826 429 10836

Deletions 0.4 % [8] 0.0 % [0] 1.3 % [133]

Insertions 1.7 % [31] 0.2 % [1] 2.1 % [228]

Substitutions 16.8 % [307] 17.0 % [73] 15.1 % [1637]

Total discrepancy 18.9 % [346] 17.2 % [74] 18.4 % [1998]

3.3 Validation

In order to validate the created broad phonetic transcriptions, a phonetically
trained transcriber corrected the labels of the created transcriptions of part of
the GRASS material. Then the number of substitutions, insertions and deletions
was calculated (for all phones but the silence segments). Table 1 shows the dis-
crepancies between the components of the corpus. Overall, there was a 18.5 %
discrepancy between the phone labels of the forced alignment and the manually
corrected ones. This was mainly due to substitutions, with only a small num-
ber of insertions and deletions. These deviations between automatic and manual
transcriptions are in the range of earlier reported inter-annotator discrepancies
on manual transcriptions (21.2 % for spontaneous speech [9]). Furthermore, the
accuracy of our system lies within the range of other automatic transcription
systems. For instance, Cucchiarini and Binnenpoorte [4] reported a discrepancy
of 24.3 % for spontaneous speech.

4 STEP 2: Automatic Sub-phonemic Annotation
of Plosives

The following section describes the components of a burst-detector which is used
to annotate plosives at the sub-phonemic level. The detector determines whether
the plosive contains a closure and a burst and in case of a burst, it determines
its position. Similar as in [8], the detector uses the power and its derivative with
respect to time as principal source of information. We, however, developed a
more elaborate decision stage.

4.1 Preprocessing

In a first step, the signal is Fourier transformed, high pass filtered and subse-
quently the power densities for each sample are accumulated to a power curve.
Then, the signal passes an envelope generator that interpolates all local max-
ima. To suppress erroneous behavior, the interpolation stage discards all envelope
points previous to the first or after the last detected maximum (Fig. 2).
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Fig. 2. Block diagram of the complete algorithm: FFT: Fouriertransform/Spectral
analysis; HP: High Pass;

∑
: Generation of power curve from power spectral densi-

ties; d/dt: Discrete Derivative

If insufficient supporting points are found to generate an envelope, the detec-
tion is categorically aborted and the result is set to contain no burst, as the
majority of signals which result in such a condition do not contain any signif-
icant spikes in power that would hint at a burst event. We tested the positive
impact of this feature on detection performance (see Sect. 4.3). Finally, the dis-
crete derivative of the resulting envelope is calculated. The resulting two signals
are then passed to the decision stage.

4.2 Decision Stage

First, the maximum of the derivative is compared to a plosive dependent thresh-
old (i.e., different for /p/, /t/, /k/, etc.). If the threshold is not exceeded, the
decision process is aborted with the decision that no burst is present.

Second, thresholds for power as well as for the derivative are obtained by
taking the maximum value of each signal multiplied by a manual parameter set.
These parameters are chosen individually for each plosive. The algorithm then
starts at the maximum power and proceeds backwards along the time axis until
both power and its derivative fall below their respective threshold. If the values
do not fall below the threshold, the decision is that no burst is present. If these
two conditions are met, the process is aborted and a burst is detected.

Finally, if a burst was detected, a plosive dependent offset is added to the
sample at which the algorithm stopped to obtain the burst time. The reason for
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this offset stems from the usage of an envelope in the power signal, which shifts
the onset of the burst forward, as well as there being an optimization problem
between overall burst detection and temporal precision. If parameters are opti-
mized to obtain optimal burst detection, the temporal precision suffers and vice
versa. We found that an offset was an easy method to avoid this optimization
conflict.

4.3 Sub-phonemic Annotation of Plosives in Read Speech

For evaluating the accuracy of the burst detector in read speech, we used a
subset of the German Kiel Corpus [7]. The subset contains German read speech
of the same text spoken by nine male and seven female speakers. The corpus
comes with detailed manually created phonetic transcriptions, also at the sub-
phonemic level of plosives, which made it an ideal reference to validate the burst
detector. In total, we used 1579 bursts for the validation of our automatically
created sub-phonemic annotation of the plosives.

We evaluated both the decision of the detector (is there a burst?, yes or
no) and the position of the plosive (distance from manual burst in ms). For
the analysis, we calculated the deviations from the manual transcription sepa-
rately for the different plosives (/p/,/t/,/k/,/b/,/d/,/g/) and we grouped them
in terms of position within the word (word initial, word medial and word final).
For each of these combinations the following measures were calculated to esti-
mate the accuracy of the burst detector:

– P1: A burst was detected and it was present in the manual transcription.
– P2: No burst was detected and it was absent in the manual transcription.
– P: Detector decision is correct.
– Δb: Arithmetic mean of the temporal error between the detected and the

manually labeled burst position (in numbers of samples).

Table 2 shows the results separately for the different plosives as well as the
overall result. The numbers in the squared brackets represent the number of
occurrences of the respective case. In 161 cases spanning all plosives in all possi-
ble positions, no burst was detected because insufficient supporting points were
found to generate a hull curve (also see Sect. 4.1). This detector decision was
correct in 98 % of the cases.

Overall plosive categories, the decision of whether a burst was present was
correct in 93 % of the cases, with a maximum of 98 % for initial, voiceless plo-
sives and a minimum of 74 % for word-final /k/. These values are much better
than previously reported. [8], for instance, reached a similarly high maximum of
97 % agreement for the presence of bursts in word-initial position, but only 47 %
agreement for the absence of bursts in word-medial position.

4.4 Sub-phonemic Annotation of Plosives in Austrian German

In order to evaluate the accuracy of the burst detector on Austrian German,
we extracted 2071 word tokens containing a plosive from the GRASS corpus.
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Table 2. Automatic annotation of bursts in plosives in the Kiel Corpus of
Read Speech. Percentages P1 - P3: P1: Burst detected and it was present in the
manual transcription. P2: No burst detected and it was absent in the manual tran-
scription. P: Detector decision is correct. Δb: Temporal error (in numbers of samples,
the sampling frequency was 44 kHz)

Total /p/ /t/ /k/ /b/ /d/ /g/

Overall

P 0.93 [1579] 0.96 [50] 0.96 [673] 0.92 [119] 0.92 [112] 0.89 [494] 0.87 [131]

P1 0.91 [822] 0.92 [12] 0.92 [263] 0.91 [93] 0.97 [35] 0.89 [351] 0.88 [68]

P2 0.95 [757] 0.97 [38] 0.98 [410] 0.92 [26] 0.90 [77] 0.91 [143] 0.86 [63]

Δb 43 [744] 76 [11] 50 [243] 44 [85] 50 [34] 37 [311] 35 [60]

Initial

P 0.92 [528] - 0.98 [48] 1.00 [16] 0.94 [64] 0.92 [352] 0.88 [48]

P1 0.93 [407] - - 1.00 [16] 1.00 [33] 0.93 [313] 0.89 [45]

P2 0.90 [121] - 0.98 [48] - 0.87 [31] 0.85 [39] 0.67 [3]

Δb 39 [379] - - 25 [16] 51 [33] 38 [290] 37 [40]

Medial

P 0.92 [801] 0.97 [32] 0.96 [424] 0.95 [80] 0.90 [48] 0.82 [134] 0.87 [83]

P1 0.89 [338] 1.00 [6] 0.94 [208] 0.95 [61] 0.50 [2] 0.55 [38] 0.87 [23]

P2 0.94 [463] 0.96 [26] 0.98 [216] 0.95 [19] 0.91 [46] 0.93 [96] 0.87 [60]

Δb 46 [302] 26 [6] 48 [196] 50 [58] 38 [1] 27 [21] 32 [20]

Final

P 0.94 [250] 0.94 [18] 0.96 [201] 0.74 [23] - 1.00 [8] -

P1 0.82 [77] 0.83 [6] 0.85 [55] 0.69 [16] - - -

P2 0.99 [173] 1.00 [12] 0.99 [146] 0.86 [7] - 1.00 [8] -

Δb 58 [63] 135 [5] 54 [47] 39 [11] - - -

For these tokens, the bursts in the plosives were annotated manually by a trained
transcriber. The results for the different plosives are shown in Table 3. Since
basically all tools work better for read than for spontaneous speech, it could
be expected that also our burst detector did not achieve as high accuracies for
the material from the GRASS corpus as for the carefully pronounced speech
from the Kiel Corpus. Nevertheless, the tool reached a maximum accuracy of
82 % for /g/ and a minimum for /b/ of 52 %. These values are still within the
range of what [8] (max. 97 %, min. 47 %), and [23] (average 63 %) reported for
spontaneous American English.

One explanation for the lower accuracy reached for detection of bursts in
/b/ might be that /b/ is frequently realized as voiced labiodental fricative in
spontaneous Austrian German. Another reason might be the different recording
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Table 3. Automatic annotation of bursts in plosives in the GRASS corpus.
Percentages P1 - P3: P1: Burst detected and it was present in the manual transcription.
P2: No burst detected and it was absent in the manual transcription. P: Detector
decision is correct. Δb: Temporal error (in numbers of samples; the sampling frequency
was 16 kHz)

/p/ /t/ /k/ /b/ /d/ /g/

P 0.59 [144] 0.68 [917] 0.81 [198] 0.52 [158] 0.67 [466] 0.82 [188]

P1 0.39 [95] 0.60 [676] 0.84 [176] 0.26 [102] 0.63 [355] 0.82 [137]

P2 0.98 [49] 0.90 [241] 0.64 [22] 0.98 [56] 0.82 [111] 0.82 [51]

Δb 4 [37] 13 [403] 9 [147] 5 [27] 10 [222] 9 [112]

conditions of the two corpora. In future work, we will develop automatic meth-
ods to optimize the parameterization for the different plosives, specifically for
conversational speech.

5 Conclusions

In the current paper, we presented automatic methods to phonetically transcribe
and segment the recently collected GRASS corpus, which is the first corpus of
read and conversational Austrian German [27]. For this purpose, we developed
a two-step procedure: In the first step, broad phonetic transcriptions were cre-
ated by means of a forced alignment and a lexicon with multiple pronunciation
variants per word. In order to create pronunciation variants typical for Austrian
German, we applied 32 rules to the canonical pronunciations of the words. In a
second step, all plosives were annotated on the sub-phonemic level: a burst detec-
tor automatically determined whether a burst existed in a plosive and where it
was located. After this step, both the broad phonetic transcription and the sub-
phonemic plosive annotation are exported in form of a PRAAT TextGrid.

The quality of both steps was evaluated separately by comparison with man-
ually created transcriptions. We found that the forced alignment based approach
reached accuracies in the range of what has been reported for inter-transcriber
agreement for conversational speech. Furthermore, our burst detector outper-
formed previous tools with accuracies between 98 % and 74 % for the different
conditions in read speech, and between 82 % and 52 % for conversational speech.

In future work, we will tune the parameters of the burst detector for the con-
versational speech. Then, we will use the created annotations to model which
are the predictors for plosive reduction in read and conversational Austrian Ger-
man in comparison to the varieties spoken in Germany. These plosive-reduction
models will not only inform linguists interested in conversational speech, but
they will also be incorporated into the pronunciation model of an ASR system
for Austrian German.
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Abstract. We examine supervised learning for multi-class, multi-label
text classification. We are interested in exploring classification in a real-
world setting, where the distribution of labels may change dynamically
over time. First, we compare the performance of an array of binary classi-
fiers trained on the label distribution found in the original corpus against
classifiers trained on balanced data, where we try to make the label distrib-
ution as nearly uniform as possible. We discuss the performance trade-offs
between balanced vs. unbalanced training, and highlight the advantages
of balancing the training set. Second, we compare the performance of two
classifiers, Naive Bayes and SVM, with several feature-selection methods,
using balanced training. We combine a Named-Entity-based rote classi-
fier with the statistical classifiers to obtain better performance than either
method alone.

Keywords: Text categorisation · Information extraction

1 Introduction

In much research on supervised classification it is traditional to assume not only
that the test data has the same distribution of labels as the training data, but
also that the classifier will be applied in the future to data drawn from the same
distribution. However, this is not always the case: the label distribution may
change over time, even within the same news stream. For example, it is unlikely
that the distribution of industry-sector labels in the RCV1 corpus, which was
collected over 15 years ago, is similar to that in the current Reuters news-wire.
Furthermore, a single set of classifiers may be required to label data from multiple
sources, such as a variety of news feeds.

We present PULS, a framework for Information Extraction (IE) from text,
designed for decision support in various domains and scenarios, including busi-
ness [10]. PULS works with a large business corpus, currently consisting of over
1.5 M news articles. Articles are collected daily from multiple sources, there-
fore, one of our goals is to build classifiers that are not biased toward the
particular distribution of labels in a given training set. Rather than using all
available documents from a training set, we experiment with smaller subsets of
balanced data. We use a balancing procedure, suitable for the multi-label setting.
c© Springer International Publishing Switzerland 2014
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Using a collection of test sets, with different label distributions, we demonstrate
that classifiers trained on balanced data perform better, on average, than clas-
sifiers trained using the original distribution of labels in the corpus.

We compare several classification methods, including Naive Bayes (NB) and
Support Vector Machine (SVM), with two well-known feature selection meth-
ods, Information Gain (IG) and Bi-Normal Separation (BNS). We also combine
supervised classification with a “baseline” Rote classifier, which uses knowledge
collected from the corpus via IE.

2 Related Work

There are two principal approaches to adapt methods for single-label classifi-
cation to the multi-label task: problem transformation and algorithm adapta-
tion [20]. In problem transformation, multi-label classification is converted into
a series of single-label classification sub-tasks, while algorithm adaptation is
an extension of single-label methods to handle the multi-label data directly.
One common method for problem transformation, which we adopt in our work,
is cross-training [1]: a single binary classifier is trained for each label, using
instances having the given label as positive examples, and all remaining instances
as negative.

Text datasets are typically “naturally skewed,” [15], since topics differ both
in frequency and importance, depending on where the data originates; additional
skew may be introduced by annotator bias. Such imbalance poses a challenge for
categorization, especially when the classes have a high degree of overlap [16]. This
problem can be tackled on the data level or the algorithmic level [13]. The data-
level approach is based on various re-sampling techniques [2]. Some re-sampling
techniques applied to the text classification task are described in [4,6,18]. Two
approaches to re-sampling are oversampling, i.e., adding more instances of the
minor classes into the training set, and under-sampling, i.e., removing instances
of the major classes from the training set [11]. Over- and under-sampling can be
either random or focused (i.e., informed). We follow the random under-sampling
approach, which means that documents in the training set are randomly selected
from each class.

A commonly used data representation for text categorization is the “bag of
words” model, which ignores any document structure and assumes that words
occur independently [12]. This model can be extended by using n-grams [5,23].
We use the bag-of-words model with a combination of unigrams and bigrams.
Information Extraction (IE) can be used to obtain additional features for classi-
fication [9,10]. We use company names extracted from the text by PULS named-
entity recognition system, to build a baseline, Rote classifier (Sect. 5).

Text data is characterised by a very large number of distinct word types,
which can exceed the number of training documents by an order of magnitude [7].
Thus dimensionality reduction becomes a key step in most text classification
approaches. This aims not only to accelerate processing but also to improve cat-
egorization performance [12,19] through avoidance of over-fitting [15]. Reduc-
tion can be done either by selection of highly-relevant features or by grouping
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(i.e., clustering) features [12]. In this paper we use feature selection which is
based on comparing the discriminative power of a given word, relative to all
other words in the feature set. Comparative studies of various feature selection
methods can be found in, e.g., [7,22].

3 Data

We focus on supervised-learning techniques to classify news articles into industry
sectors. Although we are primarily interested in our own news collection, all
experiments we present here are conducted on the publicly available Reuters
corpus (RCV1),1 to allow meaningful comparison and to assure replicability.
RCV1 contains 800,000 news stories published by Reuters between 1996–1997.
Documents are labeled using 103 Topic labels, 350 Industry labels and 296 Region
codes; the labels are organised hierarchically. In this paper we use a subset of
200 industry sectors.2

Although RCV1 is a popular dataset, relatively few papers use its sector
classification, and not all of them are directly comparable with our study. To
the best of our knowledge there are four papers directly comparable to our work
in that they use a large number of sector labels and report micro- and/or macro-
averaged F-measures: [3,14,17,24]. In Table 5 (in the Results section) we present
a detailed comparison between their results on RCV1 industry labels and ours.

We use the raw text data from RCV1.3 We only use documents that have
sector labels, 351,810 in total. These documents were manually classified into 350
industry sectors. There are seven- and five-digit industry codes; seven-digit codes
are children of the corresponding five-digit codes: e.g., Fruit Growing (I0100206),
Vegetable Growing (I0100216) and Soya Growing (I0100223) are all children of
Horticulture (I01002).

This sector classification has some inconsistencies, as observed by others,
e.g., [14]. We map all seven-digit codes to their corresponding parent codes,
and merge labels that have the same name but different code.4 After this pre-
processing, 245 distinct sector labels remain.

4 Array of Balanced Binary Classifiers

As mentioned in Sect. 2, we split the multi-label classification task into many
binary classification sub-tasks, carried out by an array of statistical classifiers,
one trained for each individual sector. All classifiers in the array use exactly the
same training set, where all documents labeled with a given sector are used as
1 http://about.reuters.com/researchandstandards/corpus/
2 Henceforth we use the terms label, class and (industry) sector interchangeably.
3 The commonly-used pre-processed data from [14] is not suitable, for two reasons: (a)

we need plain text as input for IE, and (b) the preprocessed dataset contains only
unigrams, while we use a combination of unigrams and bigrams as features.

4 For example, we merge I64000 and I65000, both called Retail Distribution.

http://about.reuters.com/researchandstandards/corpus/
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positive instances for that sector’s classifier, while all remaining training doc-
uments are used as negative instances. We experiment with two supervised-
learning algorithms: Naive Bayes and Support Vector Machines (SVM). We use
implementations from the open-source WEKA toolkit [8].

4.1 Text Representation

Each training and test document is represented using bag-of-words features from
the text. We use only nouns, adjectives, and verbs in our feature set, and apply
simple filters to remove all stop-words, proper names, locations, dates, and com-
mon verbs such as “have” and “do”. We also generate bigrams that consist of
these three parts of speech. When indexing documents after feature selection,
we use a unigram as a feature only if it appears outside of any bigram features
extracted from that document. For example if the phrase “power plant” appears
in a document we will consider “power” or “plant” as independent features, only
if they also appear elsewhere in the document (and not in another extracted
bigram). This allows us to resolve ambiguity to some extent; for example, we
can more easily distinguish documents containing the feature “SIM card,” which
may be relevant for Telecommunications, from “credit card,” which is relevant
for Commercial Banking.

In total, 77,636 training instances (documents) have 49,262 unique features;
each binary classifier has 49,262 features. We use two standard feature-selection
methods—we select the top 500 features, as ranked by Information Gain (IG)
[22], and Bi-Normal Separation (BNS) [7]. We then try different learning algo-
rithms and feature selection methods to find the combination with the best
performance.

4.2 Training and Test Data Pools

If a particular sector S1 is dominant in the training set, the negative features for
other classifiers could become dominated by features drawn from S1, which may
hurt performance on some other sector, S∗, since it won’t learn negative features
from other, “minor” sectors (those having fewer documents in the corpus). If S1

is also over-represented in the test set, we run the risk of over-fitting. For these
reasons we try to keep the training data as balanced as possible across sectors,
and ensure that the test set will contain a sufficient number of instances for
every binary classifier in the array.

In cross-training (defined in Sect. 2) we use a single pool of training instances
and a single pool of test instances; recall that documents may have multiple
labels. In creating a balanced training pool, we aim to provide each of the 245
binary classifiers a sufficient number of examples in both pools. Ranking the sec-
tors by size, from 1 to N, we begin collecting data into the pools from the sector,
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SN , that has the smallest number of instances in the corpus.5 We randomly select
up to 600 documents labeled with SN , and split them into two subsets: 3/4 for
the training pool and 1/4 for test. If there are not enough documents (< 600) for
SN , all available instances are collected, with the same training/test proportion.
In this way we try to guarantee some data will be available for testing, even for
the smallest sectors.
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Fig. 1. Document distribution among sectors in the training pool (right): aiming for
approximately 450 documents per sector; distribution in the original corpus (left).

Table 1. Number of positive instances in the training pool, for the most frequent
sectors

Sector Instances Sector Instances
Diversified Holding Companies 3644 Electricity Production 1986
Commercial Banking 3153 Agriculture 1980
Petroleum and Natural Gas 2628 Computer Systems and Software 1805
Telecommunications 2145 Air Transport 1754
Metal Ore Extraction 2099 Passenger Cars 1713

We then move on to the second smallest sector, SN−1, and repeat the collec-
tion process, except now we first check how many documents labeled with SN−1

are already present in the training and test pools—which may happen due to
multiple labeling (label overlap). The number of documents collected for SN−1

at this step is reduced by the number already collected. The collection process
continues in this manner for all sectors. Collection may be skipped for a sector
if it already has more than 450 documents in the training pool (this happens for
sectors with high label overlap). As stated, it is also possible that some sectors
will have fewer documents for training, based on total availability. These are
inherent limitations of the skew in the original corpus, and cannot be avoided.

The resulting set, called the “balanced training data pool” has 77,636 doc-
uments. It is still skewed, as seen in Fig. 1, on the right, though much more
balanced than the initial distribution, shown on the left. As can be inferred from
the Figure, between 50 and 60 sectors contain fewer than 150 instances each.
Since a lower amount of data makes it difficult to obtain reliable results, we use
5 Otherwise we cannot guarantee that each sector will have a sufficient number of

instances in the training and test pools. For example, if we collect the training and
testing data in random order and happen to start with the largest sectors, then by
the time we come to the smallest sectors all of its data may already be included in
the training pool (due to multiple labeling of documents), leaving none for testing.
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Fig. 2. Label distributions of an original test set, and permuted test-sets (2 of 50
shown).

Table 2. Sector distribution for company “Apple”

Sector Freq Prob

Computer Systems and Software 549 0.61

Electronic Active Components 61 0.07

Datacommunications and Networking 36 0.04

Telecommunications 19 0.02

Electrical and Electronic Engineering 13 0.01

only the 200 largest sectors in our experiments, which cover approximately 99 %
of the original corpus.

Table 1 shows the most frequent sectors in the balanced training pool. We
can see, e.g., that although we only collected 450 positive training instances for
Diversified Holding Companies, it still receives 3644 positive instances in the
pool, most of which were picked up when collecting data for other sectors.

For comparison, (Sect. 7.2), we use an unbalanced training pool, which is
simply half of the corpus.

All data outside the balanced and unbalanced training pools—called the “test
pool”—are available for the construction of test sets. From the test pool, we
generate 10 samples of 10,000 documents each, using the original distribution
in the corpus. We use one of these samples as a held-out development set for
parameter tuning (Sect. 4.3), and the remaining nine as test sets.

To simulate the effect of changing trends in news streams, we generate 50
additional datasets. To build these sets, we calculate the individual proportions
of the sectors in the original distribution, then assign these proportions to 50
random permutations of the sector labels. We then attempt to sample 10,000
documents from the testing pool according to the new, permuted distributions.
Each set among these 50 has its own label distribution, different from both the
original and from each other. The distribution of labels in these random test sets
will appear “naturally skewed,” since it mimics the original shape.

Three example test sets are shown in Fig. 2, one “original,” and two “per-
muted.” The permuted distributions are still somewhat biased toward the largest
classes in the original corpus. This is expected because some larger classes (such
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as Diversified Holding Companies) still have a high degree of overlap, and because
the smallest sectors may not have enough data to dominate the permuted distri-
bution. However, the distributions of the permuted test sets look substantially
different from the original distribution and contain significantly more instances
from small- and medium-sized sectors. We use the original and permuted test
sets in our comparison of balanced and unbalanced training (Sect. 7.2).

4.3 Classification

The SVM classifiers output a binary decision for every document. For Naive
Bayes, the output for each sector is a confidence score between 0.01 and 1;
thus a decision threshold is required to make a classification. We learn the best
threshold over a range of thresholds (in increments of 0.01), using a held-out
development set (one of the test sets, described in Sect. 4.2). We then evaluate
on the remaining test sets using the learned threshold.

5 Rote Classifier

The Rote classifier labels documents based on the company–sector relationships
present in the RCV1 corpus. PULS finds mentions of companies in the cor-
pus, using a named-entity (NE) recognition module. It distinguishes company
names from other proper names in the text, e.g., persons and locations. NE also
merges together variants of the same name, for example, “Apple,” “Apple Inc.,”
“Apple Computer, Inc.,” etc. For each company we collect all sector labels from
all documents where it is mentioned; sectors co-occurring with a company fewer
than 3 times are discarded. For example, Table 2 shows the top sectors that
co-occur with “Apple.”; it shows the frequency (the co-occurrence count of the
company with the sector), and the proportion, which is the normalized count.

For every document, the Rote classifier returns a sector associated with the
companies found in the text if the proportion for this sector is higher than a
certain threshold; the threshold is chosen from the range 0.01 to 1, using the
development set. If the same sector co-occurs with more than one company
found in the text, we apply the highest proportion.

6 Combined Classifiers

We experiment with several methods of combining the Rote classifier, described
in Sect. 5, with the balanced probabilistic classifiers, described in Sect. 4, to see
whether the combination can produce better overall prediction of the sector
labels. One method of combining is a simple two-stage process: for each docu-
ment, we first try to identify sectors using the Rote classifier; if that does not
return any sectors, we then attempt to classify using the statistical classifiers.
We also experiment with the reverse order of these classification stages. The
motivation for this method is to give the overall system a “second chance” at
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classification, in the hope that together the two methods may overcome their
respective shortcomings. Another method of combining classifiers is to return
the union of the results of the two classifiers—rote and probabilistic. Again,
We learn the optimal threshold for each classifier in the combination using the
development set.

7 Experiments and Results

7.1 Evaluation Measures

Common measures in text classification are precision, recall, and F-measure. For
a given class c, these are calculated as:

Recc =
TPc

TPc + FNc
Precc =

TPc

TPc + FPc
F1c =

2 × Rec × Prec

Rec + Prec

where TPc, TNc, FPc and FNc are the number of true positive, true negative,
false positive, and false negative classified instances for the class, respectively;
|c| is the number of documents in the test pool labeled with this class.

In evaluating multi-label classification, macro-averaging and micro-averaging
are commonly reported [21]. In micro-average evaluation, first the numbers
of true- and false-positives, and true- and false-negatives are counted for all
instances in the test set, and then the standard measures, e.g., recall or preci-
sion, are calculated using these numbers:

Recµ =
Σi∈STPi

Σi∈S(TPi + FNi)
Precµ =

Σi∈STPi

Σi∈S(TPi + FPi)
μ-F1 =

2 × Recµ × Precµ

Recµ + Precµ

where S is the set of all classes. In the macro-average evaluation scheme, the
measures are calculated for each class separately first, and then these are averaged
across all classes:

RecM =
Σi∈SReci

|S| PrecM =
Σi∈SPreci

|S| M -F1 =
Σi∈SF1c

|S|
We report both evaluation schemes, although we focus more on the macro-
average scores, as explained below, since they are less dependent on the particular
distribution of labels in the corpus. Henceforth we denote the macro-averaged
F-measure by M-F1, and micro-averaged F-measure by µ-F1.

7.2 Balanced vs. Unbalanced Training

To justify the use of balanced training data in building our classifiers, we compare
two sets of classifiers, built using two distinct training pools: one balanced, under-
sampled training set and one unbalanced training set, comprised of half the total
data, selected at random. All data outside these training pools are available for
the construction of test sets. As described in Sect. 4.2, we generate 10 “original”
test sets that preserve the original label distribution, and 50 “permuted” test
sets with label distributions that are meant to simulate the effect of changing
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Table 3. Results for SVM+IG classifiers trained on balanced vs. unbalanced training
sets, applied to originally-distributed and permuted test sets

10 originally distributed testsets 50 permuted testsets
training Rec Pre F1 training Rec Pre F1

M-average M-average
balanced 31.8±1.3 59.1±1.1 37.1±1.1 balanced 32.6±0.9 70.9±1.3 41.8±0.9

unbalanced 24.3±0.9 73.6±1.3 31.8±0.9 unbalanced 23.5±0.9 74.0±1.5 31.4±0.8
µ-average µ-average

balanced 30.4±0.4 72.6±0.6 42.9±0.5 balanced 34.4±0.4 78.6±1.4 47.8±0.2
unbalanced 36.8±0.6 79.5±0.5 50.3±0.6 unbalanced 29.8±1.8 76.9±1.4 43.0± 2.1
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Fig. 3. F-measure obtained by SVM+IG classifiers trained on balanced vs. unbalanced
data, for all permuted test sets.

trends in news streams, over time or due to shifts in emphasis toward new sectors
in a particular source.

The averaged results obtained on both original and permuted test sets are
presented in Table 3. To save space we present only the SVM + IG results, since
results for all classifiers follow the same pattern: classifiers trained on the original
distribution have higher µ-F1 on originally distributed test sets, but lower on
the permuted test sets; the classifiers trained on the balanced training set yield
higher M-F1 on all test sets, both original and permuted.

A comparison of balanced and unbalanced training is presented in Fig. 3,
where we plot macro- and micro-averaged F-measure obtained by classifiers
trained on balanced vs. unbalanced data for each permuted test set. As can
be seen from the plot in the left figure, the classifier trained on balanced data
has significantly and consistently higher M-F1: for each test set M-F1 is over
30 % higher for the balanced classifiers.

As seen from the right plot, in the majority of cases, the classifier trained
on balanced data also yields higher µ-F1 than the classifier trained on unbal-
anced data, although the difference between two classifiers has somewhat higher
variance (also seen from Table 3, standard deviation scores). Thus the M-F1
appears to be more stable for both classifiers. This suggests that focusing on
macro-averaged results is more appropriate for real-world news classification
tasks.

7.3 Comparison of Classifiers and Feature Selection Methods

Results obtained by all classifiers are shown in Table 4; we present only results
obtained with balanced training data, since they are consistently higher—in terms
of M-F1—than results obtained using unbalanced training.
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Table 4. Results from all classifiers and feature selection methods, averaged across 9
test sets randomly sampled from original distribution; single classifiers on top, com-
bined classifiers on bottom. For each classifier, the best threshold is trained on one
random, originally-distributed development set; → and ∪ denote, respectively, two-
stage and union combining methods, described in Sect. 6.

M-average µ-average

Classifier Rec Pre F1 Rec Pre F1

NB+ IG 31.3 ± 0.9 21.9 ± 0.6 19.7 ± 0.6 31.5 ± 0.5 22.4 ± 0.6 26.2 ± 0.5

NB+BNS 34.2 ± 1.1 16.6 ± 0.6 15.8 ± 0.5 33.1 ± 0.7 13.4 ± 0.4 19.0 ± 0.5

SVM+IG 31.9 ± 1.3 59.2 ± 1.1 37.1 ± 1.2 30.5 ± 0.4 72.7 ± 0.6 42.9 ± 0.4

SVM+BNS 32.7 ± 0.9 55.2 ± 1.0 36.2 ± 0.7 30.1 ± 0.5 70.8 ± 0.6 42.2 ± 0.5

Rote 35.0 ± 0.8 67.6 ± 1.0 43.8 ± 0.8 42.4 ± 0.6 64.2 ± 0.4 51.1 ± 0.5

Rote → NB+BNS 51.5 ± 0.9 33.6 ± 0.4 36.1 ± 0.4 57.6 ± 0.6 39.1 ± 0.4 46.6 ± 0.4

NB+BNS→ Rote 49.7 ± 1.0 24.0 ± 0.2 26.9 ± 0.3 53.3 ± 0.4 23.7 ± 0.3 32.8 ± 0.3

Rote ∪ NB+BNS 59.2 ± 0.9 25.4 ± 0.3 30.7 ± 0.3 64.3 ± 0.5 26.2 ± 0.3 37.2 ± 0.3

Rote → NB+IG 51.8 ± 0.9 39.8 ± 0.6 41.5 ± 0.6 59.1 ± 0.5 47.3 ± 0.4 52.5 ± 0.4

NB+ IG→ Rote 48.7 ± 1.0 31.5 ± 0.5 33.4 ± 0.4 53.0 ± 0.5 36.3 ± 0.3 43.1 ± 0.3

Rote ∪ NB+IG 57.2 ± 0.9 32.7 ± 0.4 37.3 ± 0.4 63.2 ± 0.5 38.1 ± 0.3 47.5 ± 0.4

Rote → SVM+BNS 48.2 ± 1.0 67.5 ± 1.0 54.7 ± 0.9 53.7 ± 0.5 70.1 ± 0.3 60.8 ± 0.4

SVM+BNS → Rote 48.0 ± 1.1 63.0 ± 1.0 52.6 ± 1.0 50.2 ± 0.4 70.8 ± 0.4 58.7 ± 0.4

Rote ∪ SVM+BNS 54.0 ± 0.9 62.0 ± 0.8 56.1 ± 0.8 58.5 ± 0.4 68.2 ± 0.3 63.0 ± 0.3

Rote → SVM+IG 46.2 ± 1.0 73.7 ± 0.8 55.1 ± 0.8 52.5 ± 0.5 75.9 ± 0.4 62.0 ± 0.4

SVM+IG → Rote 47.0 ± 1.2 67.7 ± 0.9 53.7 ± 1.1 49.9 ± 0.3 73.9 ± 0.3 59.6 ± 0.3

Rote ∪ SVM+IG 52.2 ± 1.1 66.3 ± 0.8 56.9 ± 0.9 57.7 ± 0.4 71.1 ± 0.3 63.7 ± 0.4

Table 5. Classification results on RCV1 industry sectors, compared with state of
the art.

Reference Algorithm M-F1 μ-F1

[14] SVM 29.7 51.3

[24] SVM 30.1 52.0

[17] Naive Bayes - 70.5

[3] Bloom Filters 47.8 72.4

Our best results Rote → SVM + IG 56.9 63.7

As seen from the table, the SVM classifier yields higher performance than
NB, independently of the feature selection method used. IG performs better than
BNS with both Naive Bayes and SVM.

The baseline Rote classifier yields the highest F-measure among single clas-
sifiers; combining Rote with SVM + IG yields the best combined performance.
The M-F1 obtained by this two-stage classifier is higher than the best previ-
ously reported results, as shown in Table 5. It also can be seen from the table
that the difference between M-F1 and µ-F1 for our classifiers is smaller than
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that reported in prior work. This supports the claim that our classifiers are less
sensitive to changes in label distribution (due to the balancing of the training),
which is one of our main objectives.

The µ-F1 in our experiments is lower than the best µ-F1 reported in the
literature on RCV1. This is likely due to the fact that both [3,17] try to model
inter-dependencies among the labels in the corpus. This is not done in [14] or
[24]. We plan to investigate this further in future work; however, our results
suggest that balancing the training data improves the classifier performance
overall, regardless of the method used.

8 Conclusion

We have described an approach using supervised learning for labeling business-
news documents with multiple industry sectors. We treat the multi-class, multi-
label problem as a set of binary sub-tasks, with one binary classifier for each
sector. We attempt to create robust classifiers, suitable for real-world text
classification (rather than improving performance on a given static corpus), by
balancing the training data given to each classifier. Our results suggest that,
compared to classifiers trained on labels drawn from the original corpus distrib-
ution, the balanced training helps improve the scores—M-F1 in particular—when
classifying data drawn from different distributions of labels.

We explore several combinations of learning algorithms and feature selection
methods, and evaluate them using a large number of manually-labeled docu-
ments. Combining a named-entity-based Rote classifier with the set of balanced
classifiers, into a two-stage classifier, yields better results than either classifier
alone. Additionally, this method improves on the best M-F1 previously reported,
while using the same amount of training data for the Rote classifier, and con-
siderably less for the statistical classifiers.
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Abstract. With growing amounts of text data the descriptive metadata become
more crucial in efficient processing of it. One kind of such metadata are key-
words, which we can encounter e.g. in everyday browsing of webpages. Such
metadata can be of benefit in various scenarios, such as web search or content-
based recommendation. We research keyword extraction problem from the
perspective of vector space and present a novel method to extract relevant words
from an article, where we represent each word and phrase of the article as a
vector of its latent features. We evaluate our method within text categorisation
problem using a well-known 20-newsgroups dataset and achieve state-of-the-art
results.

1 Introduction

The distributional hypothesis that features of a word can be learned based on its context
was formulated sixty years ago by Harris [5]. In the area of natural language processing
(NLP), the context of a word is commonly represented by neighbouring words that
surround it (i.e. both the preceding and succeeding words). Since Harris, many NLP
researchers built on his hypothesis and developed methods for learning both syntactic
and semantic features of words. Hinton [6] was one of the pioneers who represented
words as vectors in continuous feature space. Collobert and Weston [2] showed that
such feature vectors can be used to significantly improve and simplify many NLP
applications.

With advent of deep learning, more efficient methods for training feature vectors of
words have been discovered. This allows us to use larger sets of training data, leading
to higher quality of learned vectors, which in turn open possibilities for more practical
applications of those vectors.

The advantage of such distributed representation of words, which maps words onto
points in hyperspace is that we can employ standard vector operations to achieve
interesting tasks e.g., to measure similarity between pairs of words. We can also
calculate what words are the most similar by finding the closest vectors, or a vector that
encodes a relationship between a pair of words, e.g., a vector transforming singular
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form into plural one, etc. Mikolov et al. showed that with such word vectors, we can
encode many semantic and also syntactic relations [14].

One of the open problems in the current NLP is the computation of meaning of
complex structures. The solvability of this problem is unanimously presupposed by
notion of language compositionality, which is regarded as one of the defining prop-
erties of human language. One of the definitions of language compositionality, as
almost an uncontroversial notion among linguists, can be found in [3]:

“(…) the meaning of (that) complex expression is fully determined by the meanings of its
component expressions plus the syntactic mode of organization of those component
expressions.”

There are various approaches to solve the problem of compositionality in distri-
butional semantics. The standard approach to model the composed meaning of a phrase
is the vector addition [13]. There are also other approaches to model composition in
semantic spaces that include vector point-wise multiplication [15], or even more
complex operations like tensor product [4]. For purpose of this paper, we utilise vector
addition to compose meaning of a phrase as it is reported to give very good results and
to hold multiple relations between vectors [14] on the corpus we use in our experi-
ments. We do not experiment with other methods of composition, but focus our
experiments on applying various weighting schemes to analyse and compare their
performance.

In this paper, we leverage feature vectors of words to extract relevant words from
documents and evaluate such representation in text categorization problem. Such
representation has a big potential in NLP and we can only anticipate that in a few years
it will gradually supersede all those manually crafted taxonomies, ontologies, thesauri
and various dictionaries, which are often rather incomplete (like most of artificial data).
Moreover, there is no means of measuring similarity directly between pairs of words in
such hand-crafted data. Most relations are just qualitative and described by their type
(e.g. approach in [1] reveals only a relation type, but it cannot determine the relation
quantitatively) and thus, all existing methods for measuring (semantic) similarity are
limited to achieving only rather imprecise results.

2 Related Work

In the past, we were studying a problem of extracting key-concepts from documents.
Our approach described in [17], uses key-concepts (instead of features) to classify
documents. We evaluated the proposed method using 20-newsgroups dataset, giving
classification accuracy 41.48 % using naïve Bayes classifier. However, 20-newsgroups
dataset is one of the most commonly used in text categorisation problem and most of
the researchers use micro-average F1 score to evaluate their classification performance.
If we calculate micro-averaged F1 score for results in [17], it yields 58.63 % using
naïve Bayes classifier and 55.85 % using kNN classifier.

There are many other researchers, who used the same dataset to evaluate and
compare their work. The most important and relevant are those that study novel
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weighting schemes. Authors of [8] propose TF-RF for relevant term extraction, which
can be viewed as an improvement of well-known TF-IDF weighting. The problem of
TF-IDF is that it treats each word equally across different categories. The novelty of
TF-RF weighting is that it discriminates the relevance of words based on the frequency
differences in different categories. Evaluation using 20-newsgroups dataset gives
micro-averaged F1 score 69.13 % using kNN and 80.81 % using SVM classifier.

Approach in [19] is based on two concepts – category frequency and inverse
category frequency. Authors propose ICF-based weighting scheme that is reported to
give better results than TF-RF using Reuters-21578 dataset, which has many categories
(52). However, using 20-newsgroups dataset, they report not as good performance as
TF-RF. Our explanation is that 20-newsgroups dataset has fewer categories and thus,
the discriminating power of their “icf assumption” is weaker.

There are also approaches that do not focus on weighting of words, but try to
employ various more sophisticated methods. In [9] we can find an approach using
Discriminative Restricted Boltzmann Machines that achieves 76.2 % micro-averaged
F1 score using 20-newsgroups dataset and in [10] authors propose an error-correcting
output coding method, which using naïve Bayes classifier achieves 81.84 %.

3 Data Pre-processing

We processed each article with Stanford CoreNLP [16] to transform raw text into
sequence of words labelled with part-of-speech tags. Approach in [18] inspired us to
build a finite automaton (Fig. 1) that accepts candidate phrases for further processing.
We assume that extracted candidate phrases describe the content of given article and
have a potential to contribute with good features to topical representation, which would
help us to extract better words. Using these patterns of labelled words, we got rid of
stopwords and retained only valid candidate phrases that could possibly influence the
process of choosing the most relevant words that would be most distinctive for clas-
sifying the article into its correct category.

Fig. 1. Finite automaton for generating candidate phrases.
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Also, we tried choosing only noun phrases obtained by chunking, however, it
skipped noun phrases prefixed by adjectives, which sometimes significantly influence
the meaning of a phrase. We also tried choosing only the words that are nouns,
adjectives, verbs or adverbs, but it gave us worse results than considering candidate
phrases accepted by this automaton.

We simulate the understanding of word semantics by using distributed word rep-
resentation [13], which represents each word as vector of latent features. We use pre-
trained feature vectors1 trained on part of Google News dataset (about 100 billion
words) using neural network and negative sampling algorithm. The model contains
300-dimensional vectors for 3 million words and phrases. The vectors of phrases were
obtained using a simple data-driven approach described in [13].

4 Transforming Phrases into Vectors

After we have obtained the list of noun phrases for each article, we transform each
phrase into the corresponding feature vector. The model contains not just words, but
also many multi-word phrases that have a specific meaning different from what we
would get if we just summed up the vectors of words in those phrases. Let us call both
the words and the phrases present in the model simply as unit phrases. Since there is no
direct mapping in the model for every possible phrase, we try to assemble the longer
phrases by concatenating the most probable unit phrases that are present in the model.
We use a simple dynamic programming technique to minimise number of concatenated
unit phrases and thus, prefer the longer unit phrases present in the model. In case of
ambiguity we choose the sequence of unit phrases that are more similar to each other.
Here follows the description of our algorithm:

1 Available online at - https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?
usp=sharing (last accessed on May 14, 2014).
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We use NO_UNITS array to track the minimal number of unit phrases that com-
prise longer phrases. Thus, we prefer unit phrases with multiple words, since their
learned feature vector has higher quality than if we just summed up feature vectors of
their individual words. In case of ambiguity, we use SCORE array to track the simi-
larity of the composing unit phrases. Thus, we prefer more common expressions.
The array V serves as an intermediate storage of computed vectors, which is used to
retrieve the final result. The step 4.3 is a handler for unknown words (tokens) present in
the phrase, which simply skips to the next available word. This mostly handles the
common cases of various punctuation characters present in the phrase, which are not
included in the model we used.

5 Searching for Relevant Words with t-SNE Visualisation

Since in the corpus we use each word is a real-valued vector, we can map each word to
a point in 300 dimensional feature space. We used t-SNE [11] (t-Distributed Stochastic
Neighbour Embedding), which is a technique for dimensionality reduction particularly
well suited for visualisation of high-dimensional datasets, and visualised word vectors
to analyse and better understand what exactly is going on with these vectors. A priori,
we state the following hypothesis:

“If a word in the article is more relevant (i.e. if it is a keyword), it means that it is more relevant
to the discussed topic. On the other hand, if a word is not relevant to the discussed topic, it will
diverge randomly in the vector space. If divergence of non-relevant words was not random,
those words would form another topic in the article.”

There are multiple possibilities of what exactly to visualise. First, we can visualise
all the words and phrases extracted from the article by Stanford CoreNLP parser.
However, that results in a big incomprehensible mess of words. Alternatively, we can
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reduce the set to only the candidate phrases as described in Sect. 3. Although it is much
better, we cannot really see any natural word clusters as could be expected a priori.
Although similar words are grouped together, there are not just a topical word clusters
relevant to the article and thus, we cannot infer easily which of those words should be
chosen as keywords. An explanation for why the sole candidate phrases are not suf-
ficient, is that since we do not use any frequency statistics, we cannot infer which
words are more or less common than others and thus approximate the relevance.

To cope with that we could visualise the whole corpus along the extracted words
and phrases to simulate general language understanding. However, this proves to be not
usable and mostly impractical. Although there exists the fastest t-SNE implementation
so far called Barnes-Hut-SNE that is specifically designed for big dataset and utmost
performance, we did not succeed to process the whole corpus of word vectors due to its
huge size. We analysed the source code of t-SNE implementation and applied multiple
optimisations, which improved the overall performance even more, however, it did not
suffice. We identified the bottleneck of the computation, which was the search of k
nearest neighbours. We found out that in case of our corpus of word vectors, the simple
linear search is faster than the vantage-point tree used in Barnes-Hut-SNE. This is
probably due to bigger ratio between number of dimensions (300) and number of words
(3000000) and division by vantage-point does not help to speed up the algorithm in
practice. However, computation of k nearest neighbours for each word in vocabulary
would require roughly at least (3*106)2*300 = 2.7*1015 operations, which is imprac-
tically too much even with parallelisation over multiple processor cores.

Finally, we can use a golden mean of above approaches and enrich the feature
vectors of candidate phrases in the article with feature vectors of k nearest neighbours
present in the corpus. For each such unit phrase that we get, we increase its relevance
relative to its cosine similarity to the query noun phrase. Thus, we sum up the total
relevance for each unit phrase and are able to visualise the top 100 keywords.

Initially, we optimised our method to extract relevant words from articles on
Washington Post website. The reason was that we intended to create a dataset of
articles annotated with keywords. Although it turned out to be not suitable for our
needs, it helped us to tune our method and not to overfit on the evaluation dataset used
in this paper. We can see the t-SNE visualisation of top 100 most relevant words for a
random article2 produced by our method in Fig. 2.

We can see that visualisation of top 100 most relevant words forms several clusters.
Most of these clusters hide at least one of the keywords. The red words are those
keywords that are present in the keyword list on the webpage of the article. The blue
ones are keywords that we would also manually and subjectively choose as the most
relevant for this article and we can clearly see their relevance just from looking at the
headline of the article. The absence of these words in the original list of keywords is
probably due to SEO (search engine optimisation), since SEO probably focuses just on
a few words and their variants.

2 Available online at - http://www.washingtonpost.com/world/national-security/cybersecurity-poll-
americans-divided-over-government-requirements-on-companies/2012/06/06/gJQAmWqnJV_story.
html (last accessed on May 14, 2014).
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However, what is more significant for our method is that there are many words in
used corpus, which represent only a noise (mostly typos). Thus, we reduced the ori-
ginal corpus to only 200 000 most frequent words. We calculated frequency of each
word in corpus by processing whole Google N-gram dataset.3 This cleaned up the
corpus and also sped up further processing, which would be intractable in some cases.
We can see that many words representing words with typos disappeared. We can see
the result of this second alteration in Fig. 3.

As we can see, most of the keywords remained in the top, which is a positive result.
However, there are still some stopwords, which represent determiners, prepositions,
names and some letters that probably emerged from name initials present in the training
data. Although the finite automaton described in Sect. 3 ignores such stopwords present
in text, after the selection of k nearest neighbours, there still emerge such stopwords.
Therefore, we employed TF-IDF statistics to filter out these stopwords. We also
removed all words shorter than 3 letters. As we can see in Fig. 4, it didn’t clean out all
stopwords (names) as discussed in previous paragraph, but still it removed a good
portion of them (there are only 4 stopwords, which are all in one small cluster).
However, it might be speculative if names are really stopwords, since there are some
persons mentioned in the article as well. We can see that most words are more relevant
than in the previous case, since they are more coherent and focused on given topic.

Based on analysis in this section, we finally used TF-RF weighting instead of
TF-IDF, since it has been reported to give better results in text categorisation task [8].

Fig. 2. Top 100 most relevant words computed by our method and visualised by t-SNE. Red
words are keywords from website and blue words are keywords that we would also manually and
subjectively choose as the most relevant for this article (Color figure online).

3 Available online at - http://storage.googleapis.com/books/ngrams/books/datasetsv2.html (last acces-
sed on May 14, 2014).
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Fig. 3. Top 100 most relevant words computed by our method using top 200 k word vector
corpus and visualised by t-SNE.

Fig. 4. Top 100 most relevant words computed by our method with TF-IDF weighting using top
200 k word vector corpus and visualised by t-SNE.
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6 Evaluation by Text Categorisation

We evaluated proposed method in text categorisation problem. We used 20-news-
groups dataset, which consists of 18 846 news documents divided into 20 categories.
We used the version “by date” divided into training and testing sets, consisting of
11 314 and 7 532 documents respectively.

For each document, we computed one feature vector as a normalised sum of vectors
of top relevant words output from our method. Thus, each document was expressed by
300 features. We tried different number of top words to create the feature vector of a
document and also multiple common classifiers, which seemed most reasonable to us.

We tried using k-NN classifier, however, it didn’t yield very good results (only
below 80 %). We used linear discriminant analysis presuming that each category can be
expressed as a linear combination of features in a vector and thus not treating all
features as equal could yield better results. Truly, we achieved better F1 score 82.85 %
for top 1200 words. We also applied linear SVM classifier, which we found having
better performance in other researchers’ work [8]. Our expectation was fulfilled by
SVM yielding state-of-the-art performance of 84.5 % micro-averaged F1 score (com-
pared to approaches from Sect. 2). We can see summarisation of achieved results in
Fig. 5.

In results of SVM classification for sum of top 900 words (Table 1), we can see that
the vast majority of the erroneous predictions fall into categories that are very similar to
the predicted ones. We can see that categories like rec.sport.* and talk.politics.mideast
that are rather different from the rest, were classified with very high precision. On the
other hand, we can see that wrong predictions from categories comp.* mostly retained

Fig. 5. Micro-averaged F1 score using different number of top words and different classifiers.
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within these, since they are very similar. Also, misclassifications in categories about
politics remain roughly within the respective categories. We can see that classification
performance for articles in talk.religion.misc category is very poor, although majority
of misclassification are classified into very similar categories – alt.atheism and soc.
religion.christian, which are also about religion. Our explanation is that although we
form better thematic representation by using higher number of top words to compute
feature vector of a document, we are limited in differentiation of articles about mis-
cellaneous religion topics, since they probably include also topics discussed in other
two more specific categories about religion.

Table 1. Classification results using linear SVM and sum of top 900 word vectors used as a
feature vector for document.
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7 Conclusions

We can see in this paper that word vectors can significantly help in the task of relevant
words extraction. We have presented a working method of extracting relevant words
based on the feature vectors of words. We evaluated our method in text categorisation
and succeeded to achieve state-of-the-art results, which we consider the main contri-
bution of our work.

The method we have proposed in this paper has wide application. Basically,
relevant words can be used as a metadata for compact description of a document.
Further, such metadata can be used for indexing purposes and can be utilise to ease
search in document collections. Perhaps the most active area is web, since it contains
ever growing huge amounts of web documents that need to be organised. We have
shown that extracted relevant words are good for categorisation, but that also implies
that the underlying representation captures the semantics of documents quite
accurately.

On web, the application is twofold. In the first case, it can be used on the “Wild
Web” to categorise web pages by their topic, e.g. in personalised search [7], or more
broadly to assist in regular keyword-based web search [12]. Alternatively, it can be
utilised also in some specific domains, not just to help categorise new documents or to
facilitate the search using keywords where we are aware of the topical structure of the
domain, but even to create the topical structure of the domain from scratch, based
solely on the documents in a collection and thus let the data speak itself.

In our future research, we plan to focus on more thorough analysis of vector
representation of words for the purpose of text classification, where we have found a
great open space for further research. We would also like to research utilisation of
vector representation in other tasks, which till now, used manually crafted semantic
representations like taxonomies.
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0208-10 and it is the partial result of the Research and Development Operational Programme
project “University Science Park of STU Bratislava”, ITMS 26240220084, co-funded by the
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Abstract. Machine learning systems can be distinguished along two
dimensions. The first is concerned with whether they deal with a feature
based (propositional) or a relational representation; the second with the
use of eager or lazy learning techniques. The advantage of relational
learning is that it can capture structural information. We compare sev-
eral machine learning techniques along these two dimensions on a binary
sentence classification task (hedge cue detection). In particular, we use
SVMs for eager learning, and kNN for lazy learning. Furthermore, we
employ kLog, a kernel-based statistical relational learning framework as
the relational framework. Within this framework we also contribute a
novel lazy relational learning system. Our experiments show that rela-
tional learners are particularly good at handling long sentences, because
of long distance dependencies.

1 Introduction

Solutions to NLP problems require one to take into account both structural
information and domain knowledge. Learning systems have essentially two ways
of dealing with such information. First, several methods encode the relational
information using a set of (automatically or manually) derived features [20].
This effectively propositionalizes the data after which standard machine learning
algorithms apply. The drawback of these techniques is that propositionalization
results in information loss. On the other hand, (statistical) relational [17] and
graph-based learners use the structural information directly, but are often more
complex to use. Today there is a growing interest in the use of such statistical
relational learning approaches in NLP and several successes have been reported.

Learning techniques can also be distinguished along another dimension that
indicates whether they are eager or lazy. Eager techniques (such as SVMs) com-
pute a concise model from data, while lazy (or memory-based) learners (MBL)
simply store the data and use (a variant) of the famous kNN algorithm to classify
unseen data. Today, eager methods are much more popular than memory-based
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 171–184, 2014.
DOI: 10.1007/978-3-319-11397-5 13
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ones. Nevertheless, it has been argued [10] that MBL is particularly suited for
NLP, since language data contains in addition to regularities, also a lot of sub-
regularities and productive exceptions. Consequently, lazy learning may identify
these subregularities and exceptions, while eager learning often discards them
as noise. Thus, lazy learning also has some advantages. It has proven to be suc-
cessful in a wide range tasks in computational linguistics (e.g., for learning of
syntactic and semantic dependencies [21]).

The key contributions of this paper are that we evaluate the performance of
learning systems on an NLP task (hedge cue detection) alongst these two dimen-
sions: propositionalized versus relational representations, and eager versus lazy
learning. As part of this investigation we also contribute a novel lazy relational
learning technique.

A wide range of eager learners have been developed and tailored for NLP
tasks. Support vector machines (SVM) [7] are one of the most prominent meth-
ods, and will be used here as a representative eager learning method. For lazy
learning we shall employ a kNN framework.

Our relational framework shall be based on kLog [15], a kernel-based statis-
tical relational learning framework, that uses graphicalization; a technique that
transforms the relational data into a graph-based representation and employs
graph-kernels afterwards. The graphicalization does not result in information
loss, and is easily understandable. Furthermore, kLog offers a declarative spec-
ification of the domain that supports the use of domain knowledge. Our novel
lazy relational memory-based learner is based on the kLog representation, and
it employs the kLog kernel to define its similarity measure in a memory-based
setting.

Thanks to its focus on relations between abstract objects, graph-based rela-
tional learning offers the possibility to model a problem on different levels simul-
taneously, and provides the user with the possibility to represent the problem at
the right level of abstraction. For example, sentence classification can be carried
out using instances on the token level, without having to resort to a two-step
system in which the first step consists of labeling the tokens and the second step
is an aggregation step to reach a prediction on the sentence level. Attributes
on a higher level, e.g., sentences, can be predicted on the basis of lower level
subgraphs, e.g., sequences of tokens, taking into account the relations in the lat-
ter, e.g., the dependency tree. This approach has already proven successful for
several tasks in NLP [19,30] and computer vision [1].

Our analysis is performed on a partition of the CoNLL-2010 Shared Task
dataset on hedge cue detection, a binary sentence classification task. Sentence
classification is particularly interesting for our evaluation as long sentences tend
to contain complex dependencies that can be represented with relational repre-
sentations.

The paper is organized as follows: Sect. 2 gives an overview of related work. In
Sect. 3 we review kernel-based relational learning with kLog and introduce a new
relational memory-based learner. An empirical analysis on the different aspects
of the declarative, relational representation is given in Sect. 4, and discusses the
advantages in more depth. Finally, Sect. 5 concludes.
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2 Related Work

Since our analysis comprises a comparison of lazy versus eager learning, both
in the relational and propositional setting, the discussion of related approaches
is structured along these lines. Since the evaluation uses a dataset from the
CoNLL-2010 shared task, state-of-the-art approaches for this problem will be
discussed as well.

A wide range of statistical relational learning (SRL) systems exist [17]. In
principle, many of these are useful to solve problems in computational linguistics.
The most popular formalism, Markov Logic, has already been used for tasks such
as coreference resolution [24]. Most SRL systems are based on a combination of
learning and inference techniques from probabilistic graphical models.

The technique that we propose is based on kLog1 [15], a declarative language
for kernel-based logical and relational learning with graphs. kLog has two distin-
guishing features when compared to Markov Logic. First, it employs kernel-based
methods grounded in statistical learning theory. Second, it employs Prolog for
defining and using background knowledge. As Prolog is a programming language,
this is more flexible than the formalism used by Markov Logic. Furthermore,
kLogNLP [28] offers a natural language processing module for kLog that enriches
kLog with NLP-specific preprocessors, and enables the use of existing libraries
and toolkits within this powerful declarative machine learning framework.

A number of approaches have combined relational and instance-based learn-
ing. RIBL [12] is a relational instance-based learning algorithm that combines
memory-based learning with statistical relational learning. It was extended by
Horváth et al. [18] to support representations of lists and terms. Armengol and
Plaza [2] introduced Laud; a distance measure that can be used to estimate
similarity among relational cases, with Shaud [3] as an improvement that is
able to take into account the complete structure provided by the feature terms.
Ramon [25] proposes a set of methods to perform IBL using a relational rep-
resentation, and extends distances and prototypes to more complex objects. To
the best of the authors’ knowledge, these lazy relational learners have not been
applied to natural language processing tasks.

In this paper, the classification problem of the CoNLL-2010 Shared Task,
hedge cue detection, is tackled in an in-domain, closed manner. Hedge cues are
words that indicate speculative language. The goal is identifying if a sentence
contains such type of words, thus distinguishing factual from uncertain sentences.
Since this task involves analyzing the language beyond its propositional meaning,
in addition to the lexico-syntactic features of individual words, also the context
of the individual words in the sentence or document plays a more important role.
This motivates the use of the graph-based relational representation.

During the shared task, Georgescul [16] obtained the best score for the closed
task of in-domain Wikipedia hedge cue detection with a macro-averaged F1-score

1 http://klog.dinfo.unifi.it/

http://klog.dinfo.unifi.it/
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of 75.13 % 2. This score was obtained despite the fact that the system does not use
any intricate feature architecture. Each hedge cue of the training set is taken as
a feature and prediction occurs directly at the sentence level. For generalization,
the set of hedge cues is extended with n-gram subsets of the cues. In a sense,
this system resembles a bag-of-words approach. Interestingly, Georgescul [16] also
reports the scores for a simple, but effective baseline algorithm: if a test sentence
contains any of the hedge cues occurring in the training corpus, the sentence is
labeled as uncertain. This baseline system obtains a macro-averaged F1-score
of 69 %. During the shared task and for the Wikipedia data, only the top 3 is
able to do better than baseline on the uncertain class.

3 Kernel-Based Relational Learning with Graphs

kLog [15] is a logical and relational language for kernel-based learning, that is
embedded in Prolog, and builds upon and links together concepts from database
theory, logic programming and learning from interpretations (i.e., each inter-
pretation is a set of tuples that are true in the example, and can be seen as a
small relational database). It is based on a technique called graphicalization that
transforms relational representations into graph based ones and derives features
from a grounded entity/relationship diagram using graph kernels. This leads to
an extended high-dimensional feature space on which a statistical learning algo-
rithm can be applied. The general workflow is illustrated in Fig. 1 and will be
explained in the following paragraphs.

3.1 Declarative Domain Specification and Feature Construction

Since kLog is rooted in database theory, the modeling of the problem domain is
done using an entity-relationship (ER) model [6]. It gives an abstract represen-
tation of the interpretations. An example ER model for the hedge cue detection
task is given in Fig. 3. This ER model is coded declaratively in kLog using an

Database
Extensionalized 

database
Graph

Kernel matrix/
feature vectors

Statistical 
learner

Raw data
(sentence)

Feature extraction
Declarative feature 

construction
Graphicalization

Feature 
generation

Graph kernel 
(NSPDK)kLog

Fig. 1. General kLog workflow.

2 This equals an F1-score on the uncertain class of 60.17 %, but in this paper we
prefer reporting the macro-averaged F1-score because it takes the performance on
both class labels into account.
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extension of the logic programming language Prolog3. Every entity or relation-
ship is declared with the keyword signature, which can either be extensional or
intensional. Extensional signatures represent information that is readily avail-
able from the input data. An example is the dependency relationship (depRel)
between two word (w) entities, where each relation has its type (depType) as a
property.

signature dependency(word1 ::w, word2 ::w, dep_rel :: property ).

On top of these extensional signatures, intensional ones can be defined. In
contrast to extensional signatures, intensional signatures introduce novel rela-
tions using a mechanism resembling deductive databases. For this type of signa-
tures, due to the declarative nature, no additional preprocessing is required. This
type of signatures is mostly used to add domain knowledge about the task at
hand. For the hedge cue detection task, the following features provide meaningful
additional knowledge [29].

signature cw(cw_id ::self , lemma::property , pos:: property ).

cw(CW, L, P) :- w(W,L,P,_,1,_), atomic_concat(c,W,CW).

signature leftof(cw_id ::cw, lemma ::property , pos:: property ).

leftof(CW,L,P) :- cw(W,_,_), atomic_concat(c,W,CW),

next(W1,W), w(W1 ,L,P,_,_,_).

cw retains only the words, together with their respective lemma and pos-
tag, that appear in a predefined list of hedge cues that was compiled from the
training data. leftOf, and a similarly defined predicate rightOf, also take the
two surrounding words of a cw in the sentence into account.

3.2 Relational Feature Generation

Subsequently, these interpretations are graphicalized, i.e., transformed into graphs.
This can be interpreted as unfolding the ER-diagram over the data. We will now
extract features from these graphs using a feature generation technique that is
based on Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) [8], a par-
ticular type of graph kernel. Informally the idea of this kernel is to decompose a
graph into small neighborhood subgraphs of increasing radii r < rmax. Then, all
pairs of such subgraphs whose roots are at a distance not greater than d < dmax

are considered as individual features. The kernel notion is finally given as the frac-
tion of features in common between two graphs. For the sake of completeness we
briefly report the formal definitions.

For a given graph G = (V,E), and an integer r ≥ 0, let Nv
r (G) denote the

subgraph of G rooted in v4 and induced5 by the set of vertices V v
r
.= {x ∈ V :

d(x, v) ≤ r}, where d(x, v) is the shortest-path distance between x and v. A
neighborhood Nv

r (G) is therefore a topological ball with center v and radius r.

3 The full relational model and data are available at http://people.cs.kuleuven.be/
∼mathias.verbeke/klogmbl.html.

4 A graph is rooted when we distinguish one of its vertices as root.
5 In a graph G, the induced-subgraph on a set of vertices W = {w1, . . . , wk} is a graph

that has W as vertex set and contains every edge of G whose endpoints are in W .

http://people.cs.kuleuven.be/~mathias.verbeke/klogmbl.html
http://people.cs.kuleuven.be/~mathias.verbeke/klogmbl.html
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Fig. 2. Illustration of the NSPDK feature concept. Left: two root nodes at distance 4
highlighted; Right: (a subset of) the resulting features for radius 0; radius 1; radius 2.

Formally the relation is defined in terms of neighborhood subgraphs as Rr,d =
{(Nv

r (G), Nu
r (G), G) : d(u, v) = d}, that is, a relation Rr,d that identifies pairs

of neighborhoods of radius r whose roots are exactly at distance d. Finally:

κr,d(G,G′) =
∑

A,B∈R
−1
r,d

(G)

A′,B′∈R
−1
r,d

(G′)

1A∼=A′ · 1B∼=B′ (1)

where R−1
r,d(G) indicates the multiset of all pairs of neighborhoods of radius r

with roots at distance d that exist in G, and where 1 denotes the indicator
function and ∼= the isomorphism between graphs.

The NSPDK graph kernel is illustrated in Fig. 2 for a distance of 4 between
two roots of the neighborhood subgraphs and varying radii. In this toy example,
the graph kernel takes a graphicalized sentence parse tree as input, and outputs
the subgraphs on the right as (a subset of the) resulting features. This yields
a high-dimensional feature space that is much richer than most of the other
direct propositionalization approaches, as the relations are explicitly encoded.
The result is a propositional learning setting, which enables the use of this set
of features in any statistical learner.

3.3 Relational Memory-Based Learning

In order to construct a relational memory-based learner, the relational informa-
tion constructed with kLog and MBL are combined, using the NSPDK graph
kernel as a relational distance measure. The similarities between the instances
are readily available from the kernel matrix (also known as the Gram matrix ),
which is calculated by the graph kernel, and thus can be exploited efficiently.
A kernel K can be easily transformed into a distance metric, using dK(x, y) =√
K(x, x) − 2K(x, y) +K(y, y). This will be referred to as kLog-MBL. We both

employed a regular kNN setup [14], referred to as kLog-MBL (NW), as well as
a distance-weighted variant [11], referred to as kLog-MBL (W). In the latter, a
neighbor that is close to an unclassified observation is weighted more heavily
than the evidence of another neighbor, which is at a greater distance from the
unclassified observation.
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Fig. 3. ER-diagram modeling the hedge
cue detection task. Attributes are repre-
sented as oval nodes.

Table 1. Number of sentences per
class in the training, downsampled
training and test partitions (CoNLL-
ST 2010, Wikipedia dataset).

Wikipedia Train TrainDS Test

certain 8,627 2,484 7,400

uncertain 2,484 2,484 2,234

Total 11,111 4,968 9,634

4 Advantages of the Relational Representation

In order to illustrate the different steps and the respective advantages of the
relational representation, we will evaluate our approach on the CoNLL 2010
Shared Task dataset (Sect. 4.1). In Sect. 4.2, we will describe the details of the
baseline and benchmarks that were used in the comparison, before turning to
an in-depth discussion of the characteristics of the relational representation.

4.1 Dataset

The dataset under consideration consists of sentences from Wikipedia articles
that were manually annotated [13]. Due to the collaborative nature of Wikipedia,
sentences in this dataset show a very diverse structure. A sentence is considered
uncertain if it contains at least one hedge cue, which is referred to as a weasel
in the context of Wikipedia. The number of instances per class in the training
and test partitions are listed in Table 1.

As can be seen from the table, the data is unbalanced. This can lead to
different issues for machine learning algorithms [27]. For MBL, the majority class
tends to have more examples in the k-neighbor set, due to which a test instance
thus tends to be assigned the majority class label. As a result, the majority
class tends to have high classification accuracy, in contrast to a low classification
accuracy for the minority class, which affects the total performance and partly
obfuscates the influence of the distance measure [26].

Since the goal of this paper is to show the influence of the relational represen-
tation and distance measure, we want to reduce the influence of the imbalanced-
ness of the dataset. Several approaches have been proposed to deal with this (i.e.,
adjusting misclassification costs, learning from the minority class, adjusting the
weights of the examples, etc.). One of the two most commonly used techniques
to deal with this problem is sampling [5], where the training dataset is resized
to compensate for the imbalancedness. We created a downsampled version of
the training sets. This was done in terms of the negative examples (the certain
sentences), i.e., we sampled as many negative examples as there are positive
examples. We will refer to this dataset as TrainDS.
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Table 2. General evaluation of the different systems on the CoNLL-2010 ST Wikipedia
corpus with downsampled training set. All scores are macro-averaged.

Baseline TiMBL TiMBL SVM kLog-MBL kLog-MBL kLog-SVM

(5%) (30%) (NW) (W)

Precision 11.59 65.65 69.45 73.03 73.02 73.02 75.37

Recall 50.00 67.83 76.76 79.00 75.24 75.24 73.99

F1-score 18.82 50.92 69.34 74.59 73.96 73.96 74.63

4.2 Baseline and Benchmarks

In this paper, we want to examine the behavior of a system that uses a relational,
graph-based representation to classify the sentence as a whole (i.e., using the
graphicalization process) and contrast it with lazy and eager learning systems
that do not use this extra step. For this reason, several baselines and benchmarks
are included in the result table (Table 2).

The first, simple baseline is a system that labels all sentences with the uncer-
tain class. This enables us to compare against a baseline where no information
about the observations is used.

The first group of benchmarks consists of systems that operate without rela-
tional information. These systems typically use a two-step approach; first the
individual words in the sentence are classified, whereafter the target label for
the sentence is determined based on the number of tokens that are labeled as
hedge cues. This requires an extra parameter to threshold this number of indi-
vidual tokens from which the sentence label is derived (i.e., if more than X %
of the token-level instances are marked as being a hedge cue, the sentence is
marked as uncertain). To optimize this parameter, the training set was split
in a reduced training set and a validation set (70/30 % split). The influence of
this parameter is discussed in more detail in Sect. 4.5.

The Tilburg Memory-based Learner6 (TiMBL), a software package imple-
menting several memory-based learning algorithms, among which IB1-IG, an
implementation of k-nearest neighbor classification with feature weighting suit-
able for symbolic feature spaces, and IGTree, a decision-tree approximation of
IB1-IG. We will use it in the same setup and with the same feature set as
Morante et al. [22]. They used a 5 % percentage threshold for sentences, how-
ever, our optimization procedure yielded better results with a 30 % threshold.
In the result table, these variants are referred to as TiMBL (5%) and TiMBL
(30%).

In order to parameterize TiMBL for the word classification, we used
paramsearch7 [4], a wrapped progressive sampling approach for algorithmic para-
meter optimization for TiMBL. The IB1 algorithm was chosen as optimal setting,
which is the standard MBL algorithm in TiMBL.

6 http://ilk.uvt.nl/timbl/
7 http://ilk.uvt.nl/paramsearch/

http://ilk.uvt.nl/timbl/
http://ilk.uvt.nl/paramsearch/
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The same is done with SVMs8. In a first step the (non-graphicalized repre-
sentation of the) data is converted into binary feature vectors9. Subsequently,
the SVMs are optimized in terms of the cost parameter C using a grid search
with 10-fold cross-validation on the reduced training set. Hereafter the percent-
age threshold was optimized on the validation set. The SVM without relational
information is referred to as SVM in the result tables.

We contrasted these systems with a lazy and eager learning approach that
use the graph-based relational representation from kLog. For kLog-SVM, we used
an SVM as statistical learner at the end of the kLog workflow. The results were
obtained using the model and graph kernel hyperparameter settings from our
previous work [29], for which the cost parameter of the SVM was optimized using
cross-validation on the downsampled training set.

The second pair of relational systems use memory-based learning, as dis-
cussed in Sect. 3.3. The value of k was optimized using the reduced training and
validation set as discussed above.

4.3 Performance

Table 2 contains the macro-averaged F1-scores of these seven systems. Look-
ing at the tables, one may conclude that all systems perform better than the
uncertain baseline.

The systems are best compared in a pairwise manner. A first interesting
observation is that the memory-based learners that use a relational representa-
tion (i.e., kLog-MBL), perform significantly better than those that use a rela-
tional approach, i.e., the TiMBL systems. The weighted and unweighted variants
of kLog-MBL score equally well.

For the SVM setups, SVM and kLog-SVM score equally well. At first sight,
the relational representation does not seem to add much to the performance
of the learner. However, when comparing the relational approach on the full
(unbalanced) dataset to an SVM using the propositional representation, kLog-
SVM performs significantly better (Table 3). Furthermore, when comparing the
results of the regular SVM on the balanced and full dataset, a decrease in per-
formance is observed, which is not present for the kLog-SVM setup. This indi-
cates that the relational representation increases the generalization power of the
learner. We also compared the kLog-SVM setup to the best scores obtained dur-
ing the CoNLL 2010 Shared Task, viz. Georgescul [16], in which kLog-SVM is
able to outperform the state-of-the-art system. This can be attributed to the
relational representation, which offers the possibility to model the sentence as a
whole and perform the classification in a single step (i.e., avoiding the need for
a two step approach where first token-based classification is performed followed
by a thresholding step to obtain the sentence-level classification). We will study
this effect in more detail in Sect. 4.5. In addition, the relational representation

8 We used the implementation from scikit-learn [23].
9 The exact implementation is available at http://www.cnts.ua.ac.be/∼vincent/

scripts/binarize.py.

http://www.cnts.ua.ac.be/~vincent/scripts/binarize.py
http://www.cnts.ua.ac.be/~vincent/scripts/binarize.py
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Table 3. Comparison of kLog-
SVM with the state-of-the-art
results and an SVM using the
propositional representation on
the full dataset. All scores are
macro-averaged.

Georgescul SVM kLog-SVM

Precision 79.29 81.59 77.27

Recall 72.80 68.96 74.16

F1-score 75.13 72.17 75.48

Table 4. Relational feature ranking.

# Feature Score Triplet Score

1 CW 27.20 cw-next-cw 49.79

2 RightOf 6.69 cw-dh-cw 49.73

3 LeftOf 4.30 cw-dh-word 37.29

4 Next 4.02 cw-next-word 31.79

5 DH 3.42 word-dh-word 12.62

6 WString −2.35 word-next-word −5.76

6 InList −2.35

6 Chunk −2.35

6 Lemma −2.35

6 PoS −2.35

is able to model the relations between the words in the sentence explicitly. The
graph kernel thus seems to provide a good way to translate the context of the
words in a sentence.

4.4 Relational Regularization and Feature Ranking

The importance of the relational features can now be estimated using kLog’s
relational regularization and feature ranking methods [9], which lift regulariza-
tion and feature selection to a relational level. The techniques use the relational
structure and topology of the domain. Based on a notion of locality, relevant
features in the ER-model are tied together. It enables to get deeper insights
into the relative importance of the elements in the ER model of the domain.
As the added declarative features (CW, LeftOf and RightOf) showed a clear
improvement in the results, it is to be expected that these relational features
are the main discriminative predicates, while the propositional lexico-syntactic
features should be less informative. When measured for kLog-SVM on the full
dataset, the results in Table 4 are obtained. In addition, the method also enables
to rank the importance of predicate triplets. The right hand side of Table 4 lists
the ranking of the possible triplets of predicates of type entity - relationship -
entity. Pairs of consecutive hedged words and hedged words that are linked by
a dependency relation are clearly very informative relational features.

4.5 Level of Abstraction

The graph-based representation has the advantage that attributes on a higher
level, e.g., sentences, can be predicted on the basis of lower level subgraphs, e.g.,
tokens. It furthermore enables taking into account the relations in the latter, e.g.,
the dependency tree. This leads to a one-step classification, without the need
for an additional thresholding parameter to go from the lower-level classification
(e.g., the classification of the individual tokens) to the higher level (e.g., the
sentences). The goal of this section is to show when sentence-based systems are
more fit for the task than token-based systems.
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Fig. 4. Fraction of sentences in the
Wikipedia test corpus with a given sen-
tence length (—) and the proportion of
uncertain sentences in each bin (- -).

Fig. 5. Macro-averaged F1-score as a
function of sentence length, expressed in
number of tokens.

The baseline system predicts only one type of class label, namely the minority
class. The other systems label sentences with both labels and apart from the
observation that one system is more inclined to assign the certain label than
the other, the general scores are not of much help to get more fundamental
insights. For this reason, an extra dimension is introduced, namely sentence
length. It is an intuitive dimension and other dimensions, like the number of
uncertainty cues, are indirectly linked to the sentence length. Figure 5 shows
the evolution of the macro-averaged F1-score when the sentences to be labeled
contain more tokens. To create this figure, the sentences are distributed over 9
bins centered on the multiples of 10. The last bin contains all larger sentences.

Figure 4 shows the fraction of the corpus that is included in each bin (solid
line) and the fraction of sentences in each bin that is labeled as uncertain
(dashed line). There are fewer long sentences and long sentences tend to be
labeled as uncertain. As a sanity check, we can look at the behavior of the
baseline system in Fig. 5. The observation of an increasing number of uncer-
tain sentences with increasing sentence length (Fig. 4) is consistent with the
increasing F1-score for the baseline system in Fig. 5.

A more interesting observation is the curve of TiMBL (5%), that quickly
joins the baseline curve in Fig. 5. Although this system performs significantly
better than the baseline system, it behaves like baseline systems for longer sen-
tences. Because a large fraction of the sentences is short, this undesirable behav-
ior is not readily noticeable when examining the scores of Table 2. Optimizing
the threshold can be a solution to this problem. Changing the threshold influ-
ences the chances of a sentence being labeled as uncertain depending on the
sentence length. Increasing the threshold leads to a more unequal distribution
of the chances over sentence length. As a result, the behavior of the optimized
TiMBL system is more stable with varying sentence length (see TiMBL (30%)).
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The token-based systems (SVM and TiMBL (30%)) behave very similar
after optimization of the threshold. Indeed, the SVM and optimized TiMBL
curves follow more or less the same course; a course that is different from the
other systems. This indicates that by using a two-step approach, the choice
of the classifier is of a lesser importance. Although to a more limited extent,
this behaviour is also noticeable for kLog-MBL in the case of longer sentences.
However, when contrasting the kLog-based systems, the curves of the kLog-SVM
and kLog-MBL systems are mutually divergent for longer sentences, indicating
the importance of the classifier.

The importance of the threshold parameter for the propositional, two-step
approaches (TiMBL (5%), TiMBL (30%) and SVM ) may be an argument to
opt for relational systems. Indeed, the threshold is an extra parameter that has
to be learned during training and may introduce errors because of its rigidness.
It is the same fixed value for all sentences and it weakens the, possibly positive,
influence of the classifier. The kLog-based systems do not require such a threshold
and are thus able to dynamically look for the best prediction on sentence level
using the dependencies between the separate tokens.

The claim that dynamically looking for the best prediction on sentence level
is better, is based on the observation that, in general, the kLog-based systems
perform better than their non-relational counterparts. For the dataset under
consideration, the SVM system performs not significantly different in F1 than
the kLog-SVM system, but if we look at their behavior in Fig. 5 we see that for
almost all sentence lengths kLog-SVM performs better. Furthermore, as shown in
Sect. 4.3, kLog-SVM generalizes better to the unbalanced version of the dataset
when compared to SVM, and also obtains the most stable predictions across all
sentence lengths.

5 Conclusions

We have used the task of hedge cue detection to evaluate several types of machine
learning systems along two dimensions. The results show that relational repre-
sentations are useful, especially for dealing with long sentences and capturing
complex dependencies amongst constituents. The relational representation also
allows for one-step classification, without the need for an additional thresholding
parameter to go from word to sentence level predictions. We have shown that the
kLog framework can be used in both an eager SVM type of learner and a lazy
or memory-based learning framework. Especially useful for natural language is
that its declarative representation offers a flexible experimentation approach and
more interpretable results. In future work we will investigate a hybrid approach
that combines lazy and eager learning in the relational case.
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Abstract. Sequence labeling has wide applications in natural language
processing and speech processing. Popular sequence labeling models suf-
fer from some known problems. Hidden Markov models (HMMs) are
generative models and they cannot encode transition features; Condi-
tional Markov models (CMMs) suffer from the label bias problem; And
training of conditional random fields (CRFs) can be expensive. In this
paper, we propose Linear Co-occurrence Rate Networks (L-CRNs) for
sequence labeling which avoid the mentioned problems with existing
models. The factors of L-CRNs can be locally normalized and trained
separately, which leads to a simple and efficient training method. Exper-
imental results on real-world natural language processing data sets show
that L-CRNs reduce the training time by orders of magnitudes while
achieve very competitive results to CRFs.

Keywords: Sequence labeling · Co-occurrence rate · HMMs · CRFs

1 Introduction

Sequence labeling is a sub-task of structured prediction. A wide range of fun-
damental applications in natural language processing and speech processing can
be formulated as sequence labeling models, such as named entity recognition,
part-of-speech tagging and speech recognition. A common nature of these appli-
cations is that these applications desire a sequence of labels as output rather
than a single label. This makes sequence labeling stand out from the typical
supervised classification tasks which normally predict a single label as output.
Here we give a simplified example of named entity recognition (NER) to illus-
trate the typical scenario of sequence labeling. Given a sentence, which consists
of a sequence of words, NER systems assign each word of the sentence a label.
These labels indicate the types of named entities, such as location (LOC), person
(PER), organization (ORG), or out of any named entity (O).

[Jimmy]PER [de]PER [Graff]PER [is]O [a]O [member]O [of]O [the]O [Dutch]ORG
[National]ORG [Research]ORG [School]ORG [for]ORG [Knowledge]ORG [Systems]ORG.

Our C++ implementation of L-CRNs and the datasets used in this paper can be
found at https://github.com/zheminzhu/Co-occurrence-Rate-Networks.

c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 185–196, 2014.
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The words in a sentence are observations. From this example, we can see
that intuitively two kinds of information can affect the prediction of the label at
current position:

1. Label dependence. Adjacent labels can affect prediction of the current label.
For example, if the adjacent labels are ORG, the current label is more likely
to be ORG.

2. Observation evidence. The current word observed can affect the current label.
For example, the word Dutch is more likely to be ORG than the word is.

Accordingly, a sequence labeling model should do the following three tasks well.

– Task 1. Modeling label dependence.
– Task 2. Modeling observation evidence.
– Task 3. Combining these two parts to obtain results.

Task 3 has been paid less attention. The two parts should be given relative
weights properly when we combine them. As we will discuss, failure in doing this
will lead to a subtle problem called the label bias problem [11], in which label
dependence is given too much weight and observation evidence is underestimated
or even ignored.

Due to its wide applications, sequence labeling has been heavily studied for a
long history. There exist a rich set of popular models for sequence labeling, such
as hidden Markov models (HMMs) [14], conditional Markov models (CMMs) [13]
and conditional random fields (CRFs) [11].1 The general idea under all of these
models is factorization. That is to decompose a high-dimensional joint proba-
bility into a product of small factors based on some conditional independence
assumptions. A model is characterized by its factorization. Hence we can see the
pros and cons of a model from its factorization.

1.1 Hidden Markov Models (HMMs)

Figure 1 shows a first order HMM. S = [s1, s2, . . . , sn] is the label sequence
and O = [o1, o2, . . . , on] is the observation sequence. In the NER example, S is
the sequence of NER labels and O is the sequence of words. HMMs are directed

Fig. 1. Hidden Markov models

1 Another popular model is structured (structural) SVM [1] which essentially applies
factorization to kernels. Due to its lack of a direct probabilistic interpretation, we
leave it for future work.
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and generative models. Hence HMMs can also be considered as a special Bayesian
network [6]. HMMs factorize a joint probability as follows:

p(S,O) ≈ p(s1)
n∏

i=1

p(oi|si)
n−1∏

j=1

p(sj+1|sj). (1)

The factors of HMM are probabilities which can be locally normalized. There
are two known drawbacks with HMMs [4] which can be observed from Eq. 1.
The first drawback is the label transition probabilities p(sj+1|sj) in HMMs are
not conditioned by observations. That is, HMMs use the universal transition
probabilities p(sj+1|sj) without respect to observations. Hence we cannot use
observation evidence to help predicting label transition probabilities. Transition
features extracted from observation evidence contain valuable information. The
second drawback is called mismatch problem. In training stage, HMMs optimize
a joint probability p(S,O). But in decoding stage, we search for a sequence of
labels which maximizes a conditional probability p(S|O). Klein et al. [9] show
that the mismatch problem can reduce accuracy.

To avoid the mismatch problem, we need to directly factorize the conditional
probability p(S|O). And in order to encode the transition features, we can set
observation evidence to conditions of the transition factors. Conditional Markov
models just implement these ideas.

1.2 Conditional Markov Models (CMMs)

Figure 2 shows a CMM. Maximum entropy markov models (MEMMs) [13] are
typical CMMs which train the model using a maximum entropy framework,
which was later shown to be equivalent to maximum likelihood estimation.
CMMs are discriminative models which factorize a conditional probability:

p(S|O) = p(s1|O)
n−1∏

i=1

p(si+1|si, O). (2)

CMMs avoid the mismatch problem of HMMs because they directly factorize
P (S|O). And probabilities p(si+1|si, O) predicting the next label are conditioned
by previous label si together with the observation O. In this way, the transi-
tion features can be encoded into CMMs. Hence the first drawback of HMMs
is avoided. But this causes a new problem. By putting the previous label si

Fig. 2. Conditional Markov models
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and observations O together in the condition leads to the label bias problem
(LBP). Intuitively, this is because the label dependence (given by si) and obser-
vation evidence (given by O) are mixed together in one factor. One of them may
dominate the factor when its distribution is of low entropy, while the other is
underestimated or even ignored. An extreme case is when si has only one possi-
ble out-going transition si+1

2, then p(si+1|si, O) is always equal to 1 no matter
what O is. That is the observation evidence O is ignored and the label depen-
dence dominates the results. Hence CMMs do not perform the Task 3 perfectly.
See [11,12,19] for more examples and discussions.

To avoid the label bias problem, we need to guarantee that the observation
evidence can always be used in prediction3. This can be done by decoupling the
label dependence and observation evidence into different factors, such that none
of them can dominate the other. Conditional random fields implement this.

1.3 Conditional Random Fields (CRFs)

Figure 3 shows a linear-chain conditional random field. CRFs [11] are discrimi-
native and undirected graphical models. The factorization for undirected models
is based on the Hemmersley-Clifford Theorem [7] which implies a linear-chain
CRF can be factorized as follows:

p(S|O) =
1
ZO

n−1∏

i=1

ψ(si, si+1, O)
n∏

j=1

φ(sj , O),

ZO is a global normalization constant, also called partition function, which
ensures

∑
S p(S|O) = 1. ψ and φ are non-negative factors defined over pair-

wise and unary cliques. The factors of local models, such as HMMs and CMMs,
are probabilities. These factors can be locally normalized. By contrast, CRFs are
globally normalized models. The factors of CRFs, ψ and φ, have no probabilistic
interpretations4 and cannot be locally normalized.

CRFs model the conditional probability P (S|O). Hence they avoid the mis-
match problem of HMMs. Also the bigram factors ψ(si, si+1, O) modeling label

Fig. 3. Conditional random fields

2 In this extreme case, the entropy of p(si+1|si) is the lowest: 0.
3 HMMs do not suffer from the label bias problem, because the factors p(oi|si) in Eq. 1

guarantee that the observation evidence is always used.
4 Sometimes they are intuitively explained as the compatibility of the nodes in cliques.

But the notion compatibility has no mathematical definition.
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dependence include the observations. Hence the transition features can be encoded
into CRFs. Furthermore, CRFs decouple the label dependence (modeled by
ψ(si, si+1, O)) and observation evidence (modeled by φ(sj , O)) into different fac-
tors. This guarantees that none of them can dominate the other. Obviously, uni-
gram factors φ(sj , O) guarantee thatO is always used for prediction. Therefore the
label bias problem is avoided. Nevertheless, training of CRFs can be very expen-
sive [4,16]. This is because we need to re-calculate the global partition function
ZO for each instance in each optimization iteration.

In this paper, we propose a model called Linear Co-occurrence Rate Networks
(L-CRN) for sequence labeling. L-CRNs avoid the problems mentioned above.
More specifically, L-CRNs model a conditional probability. Hence they avoid the
mismatch problem of HMMs. The label dependence is modeled by the quantity
called Co-occurrence Rate (CR), which is conditioned by observations. In this
way, transition features can be easily encoded into L-CRNs. Furthermore, in
the factorization of L-CRNs, the label dependence and observation evidence are
decoupled into difference factors. Thus none of them can dominate the other.
The label bias problem is naturally avoided. Finally, L-CRNs are local models.
The factors of L-CRNs can be locally normalized and trained separately. This
leads to a very efficient maximum likelihood training method. Experiments on
real-world datasets show that L-CRNs reduce the training time by orders of
magnitudes and achieve very competitive, even slightly better, results to CRFs.

The rest of this paper is organized as follows. In Sect. 2, we present the
co-occurrence rate networks and show that this model avoids the problems men-
tioned above. Section 3 describes the details of learning and decoding. Experi-
ments are reported in Sect. 4. Conclusions follow in the last section.

2 Linear Co-occurrence Rate Networks (L-CRN)

Firstly, we define a quantity which is called Co-occurrence Rate (CR) as follows:

CR(X1;X2; . . . ;Xn) :=
p(X1, . . . , Xn)
p(X1). . .p(Xn)

.

For convenience, CR with a single variable is defined to be 1. Intuitively, if
CR > 1, the events are attractive; If CR = 1, the events are independent ;
And if CR < 1, the events are repulsive. CR is the exponential function of
pointwise mutual information [3], and also related to Copulas [21]. Furthermore,
we distinguish the following two notations:

CR(X1;X2;X3) :=
p(X1,X2,X3)

p(X1)p(X2)p(X3)
, CR(X1X2;X3) :=

p(X1,X2,X3)
p(X1,X2)p(X3)

.

The first one is the CR between three variables. By contrast, the second one
is the CR between a joint variable (X1X2) and a single variable (X3). More
comprehensive description of CR can be found in [18,20]. The factorization of
L-CRN consists of steps:
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1. Decouple the conditional probability into two parts:

p(s1, . . . , sn|O) = CR(s1; s2; . . . ; sn|O)
n∏

i=1

p(si|O),

where

CR(s1; s2; . . . ; sn|O) :=
p(s1, . . . , sn|O)∏n

i=1 p(si|O)
.

This step seems trivial. But this is the key to avoid the label bias problem. The
conditional probability is decoupled into two parts: CR(s1; s2; . . . ; sn|O) mod-
els label dependence and

∏n
i=1 p(si|O) models observation evidence. So none

of them can dominate the other.
∏n

i=1 p(si|O) guarantees that the observa-
tion O is always used for prediction. Hence the label bias problem is naturally
avoided. We show this experimentally in [19].

2. Further factorize the joint CR into a product of smaller CRs according to
Theorems 1 and 2. See Sect. 6.2 for their proofs.

Theorem 1 (Partition Operation). CR(X1; . . . ;Xj ;Xj+1; . . . ;Xn) =
CR(X1; ..;Xj)CR(Xj+1; ..;Xn)CR(X1..Xj ;Xj+1..Xn)

Theorem 2 (Reduce Operation). If X ⊥⊥ Y | Z, then CR(X;Y Z) = CR
(X;Z).

X ⊥⊥ Y | Z means X is independent of Y conditioned by Z. Putting two steps
together, the factorization of L-CRN is obtained as follow:

p(s1, s2, . . . , sn |O) = CR(s1; . . . ; sn |O)
n∏

i=1

p(si |O)

= CR(s1|O)CR(s2; . . . ; sn|O)CR(s1; s2. . .sn|O)
n∏

i=1

p(si|O)

= CR(s2; . . . ; sn |O)CR(s1; s2 |O)
n∏

i=1

p(si |O)

. . .

=
n−1∏

j=1

CR(sj ; sj+1 |O)
n∏

i=1

p(si |O).

The second equation is obtained by partitioning s1 out. We obtain the third
equation from the second by CR(s1 |O) = 1 and applying the reduce operation
to the factor CR(s1; s2. . .sn |O) since s1 ⊥⊥ s3. . .sn |s2. By repeating this process,
we can get the final factorization. Hence we obtain a L-CRN factorization on a
chain graph as follows:

p(s1, s2, . . . , sn|O) =
n−1∏

j=1

CR(sj ; sj+1 |O)
n∏

i=1

p(si |O). (3)
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From this factorization, we can see the following facts. L-CRNs model a condi-
tional probability. Hence they avoid the mismatch problem of HMMs. The label
dependence of L-CRNs is modeled by

∏n−1
j=1 CR(sj ; sj+1|O), which is conditioned

by observations. Thus transition features can be easily encoded into L-CRNs.
Furthermore,

∏n
i=1 p(si | O) guarantee the observation is always used for pre-

diction. Therefore the label bias problem is avoided. Finally, L-CRNs are local
models. The factors of L-CRNs can be locally normalized and hence separately
trained. This leads to a very simple and efficient maximum likelihood training
as described in the next section. [2] shows local models can outperform globally
normalized models on some NLP tasks. CR factorization can be extended to
arbitrary graphs (Sect. 6.2 of [18]).

3 Learning and Decoding

Since the factors of L-CRNs can be normalized locally and trained separately, the
learning of L-CRNs becomes very simple and efficient. It is no more than training
a set of regression models for each factor in training stage, and combining them
together to find a maximum sequence probability in decoding stage. Accroding
to Eq. 3, there are two kinds of factors to be trained: unigram factors p(s|O) and
bigram factors CR(s; s′|O). We describe the details as follows. See Sect. 6.1 for
the justification of this training method. In fact, this is the maximum likelihood
estimation of Eq. 3.

3.1 Learning Unigram Factor p(s|O)

For the factors p(s|O) in Eq. 3, where s is a label and O is an observation. As
described in Sect. 6.1, its MLE is just the relative frequency p̂(s|O) = #(s,O)∑

s #(s,O) ,
where #(s,O) is the number of times (s,O) appears in the training dataset. This
relative frequency can be easily obtained from the training dataset by counting.
Let g1(O), g2(O), . . . , gn(O) be feature functions of O, which are called unigram
features with respect to the unigram label s. For each label s in the label space,
we train a regression model φs:

p̂(s|O) = φs : (g1(O), g2(O), . . . , gn(O)) �→ #(s,O)∑
s #(s,O)

.

In decoding, for an observation O, we use φs(g1(O), . . . , gn(O)) as the estimation
of p(s|O). If g1(O), g2(O), . . . , gn(O) has been seen in the training dataset, we
just use #(s,O)∑

s #(s,O) as the estimation of p(s|O). Because this is the MLE of p(s|O)
(see Sect. 6.1). Otherwise, φs is used.
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3.2 Learning Bigram Factor CR(s; s′|O)

Similarly, we train regression models ψs,s′ separately for each bigram label s, s′

for predicting :

ĈR(s; s′|O) = ψs,s′ :(h1(O), h2(O), . . . , hm(O))

�→ #(s, s′, O)∑
s,s′ #(s, s′, O)

/
#(s,O)∑
s #(s,O)

/
#(s′, O)∑
s′ #(s′, O)

.

h1(O), h2(O), . . . , hm(O) are bigram features extracted fromO. Similarly, in deco-
ding, ψs,s′(h1(O), h2(O), . . . , hm(O)) are used as the prediction of CR(s; s′|O). If
h1(O), h2(O), . . . , hm(O) has been observed in the training dataset, we directly
use the empirical value. Otherwise, we use ψs,s′ .

We use the traditional Viterbi algorithm for selecting the label sequence with
maximum probability in decoding stage.

3.3 Support Vector Regression

There exist a rich set of regression models which may be used for modeling φs

and ψs,s′ . In this paper, we adopt the support vector regression (SVR) [15] for
modeling φs and ψs,s′ discussed above. SVR is linear in the high dimensional
transformed space and tolerant to low error points with small residuals. Such
tolerance seems to fit the natural language processing applications well, in which
the input and final output are normally categorical. In text classification, large-
margin methods achieve very good results [8]. And there are good implemen-
tations of SVR which can handle very large number of instances and features
efficiently. These reasons lead us to prefer SVR. In future, we will try other
regression models. To avoid endowing unwanted metric and order structures to
a single categorical variable, we use the dummy coding as the representation of
categorical input variables.

4 Experiments

In this section, we compare L-CRN with CRFs5. We adopt CRF++ version 0.58
[10] as the implementation for CRFs and LIBLINEAR version 1.94 [5] for linear
SVR in L-CRNs. We set the configurations of LIBLINEAR as L2-regularization
L2-loss support vector regression (solving dual). For a fair comparison, we always
use a single thread for training6. We apply CRFs and L-CRNs to an important
natural language processing application: named entity recognition (NER).

5 [11,12] show superiority of CRFs over other models. Hence it is reasonable to com-
pare with CRFs.

6 L-CRNs can be easily parallellized. Obviously, each regression model can be trained
parallely with others.
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4.1 Named Entity Recognition

The English part of the CoNLL-2003 NER dataset7 [17] is used for our NER
experiment. There are three data files in this dataset: ner.train, ner.testa and
ner.testb. The first one is designed for training and the last two are used for
testing. The size of the label space is 8. These three files include 14987, 3466,
3684 sentences and 204567, 51578, 46666 words respectively. We use the same
orthographic features as those used by [11]: “whether a spelling begins with a
number or upper case letter, whether it contains a hyphen, and whether it ends
in one of the following suffixes: −ing, −ogy, −ed, −s, −ly, −ion, −tion, −ity,
−ies”. Additionally, we use the chunk tags and POS tags provided together with
the CoNLL dataset.

Table 1 gives the time taken by CRF and L-CRN. We can see L-CRN reduces
the training time significantly.

Tables 2 and 3 show the quality metrics achieved by CRF and L-CRN on
ner.testa and ner.testb, respectively. The first three columns show the per-word
accuracies (%) on all, known and unknown words8. On all and known words,
L-CRN consistently outperforms CRF slightly. As described in Sect. 3, L-CRN
can directly use empirical values for known word prediction. This may be con-
sidered as an advantage of L-CRN. On unknown words, CRF performs better
on ner.testa, but L-CRN performs slightly better on ner.testb. The last three
columns give the precision, recall and F1 metrics. These metrics were evalu-
ated using the standard CoNLL evaluation tool9. CRF obtains better results in
precision. L-CRN obtains better results in recall and F1.

Table 1. Training time (seconds) on NER

CRF L-CRN

1,666 112

Table 2. Metrics on ner.testa

All Known Unknown Precision Recall F1

CRF 97.00 98.27 85.42 84.66 82.31 83.47

L-CRN 97.44 98.80 85.05 84.21 84.45 84.33

Table 3. Metrics on ner.testb

All Known Unknown Precision Recall F1

CRF 95.00 97.46 80.32 75.61 74.70 75.15

L-CRN 95.55 98.06 80.62 75.78 76.43 76.10

7 http://www.cnts.ua.ac.be/conll2003/ner/
8 Known words are the words that appear in the training data. Unknown words are

the words that have not been seen in the training data. All words include both.
9 http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

http://www.cnts.ua.ac.be/conll2003/ner/
http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
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5 Conclusions

We propose the linear co-occurrence rate networks (L-CRN) for sequence label-
ing. This model avoids problems of the existing models, such as mismatching
problems and the label bias problem. The transition features can be encoded
into L-CRN. Furthermore, the factors of L-CRN can be normalized locally and
trained independently, which leads to very efficient training. In this paper, we use
support vector regression as the regression models of factors in L-CRN. Exper-
imental results show L-CRNs reduce the training time by orders of magnitudes
and achieve very competitive results to CRFs on real-world NLP data.

Acknowledgments. We thank SLSP 2014 reviewers for their comments. This work
has been supported by the Dutch national program COMMIT/.

6 Appendix

6.1 Closed-Form MLE Training of L-CRN

We maximize the log likelihood of Eq. 3 over the training dataset D with CR
and p as parameters:

max .
∑

(S,O)∈D

[
n−1∑

i=1

log CR(si; si+1|O) +
n∑

j=1

log p(sj |O)]

s.t.
∑

s,s′
CR(s; s′|O)p(s|O)p(s′|O) = 1,∀s, s′

∑

s

p(s|O) = 1,∀s

CR(s; s′|O) ≥ 0,∀s, s′

p(s|O) ≥ 0,∀s

First we ignore the last two non-negative inequality constraints. Using Lagra-
nge Multiplier, we obtain the unconstrained objective function:

∑

(S,O)∈D

[
n−1∑

i=1

log CR(si; si+1|O) +
n∑

j=1

log p(sj |O)]+

∑

s,s′
[λs,s′(

∑

s,s′
CR(s; s′|O)p(s|O)p(s′|O) − 1)]

+
∑

s

[λs(
∑

s

p(s|O) − 1)].
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Calculate the first derivative for each parameter and set them to zero, we get
the closed form MLE for CR and p:

p̂(s|O) =
#(s,O)∑
s #(s,O)

,

ĈR(s; s′|O) =
#(s, s′, O)∑
s,s′ #(s, s′, O)

/
#(s,O)∑
s #(s,O)

/
#(s′, O)∑
s′ #(s′, O)

.

That is, the MLE of p and CR are just their relative frequencies in the training
dataset. Fortunately the non-negative inequality constraints which were ignored
in optimization are automatically met.

6.2 Theorems of Co-occurrence Rate

Proof of Partition Operation

Proof.

CR(X1; ..;Xj)CR(Xj+1; ..;Xn)CR(X1..Xj ;Xj+1..Xn)

=
p(X1, ..,Xj)
p(X1)..p(Xj)

p(Xj+1, ..,Xn)
p(Xj+1)..p(Xn)

p(X1, ..,Xn)
p(X1, ..,Xj)p(Xj+1, ..,Xn)

=
p(X1, ..,Xn)
p(X1)..p(Xn)

= CR(X1; ..;Xn).

Proof of Reduce Operation

Proof. Since X ⊥⊥ Y | Z, we have p(X,Y |Z) = p(X|Z)p(Y |Z), then p(XY Z) =
p(X,Z)p(Y,Z)

p(Z) . Hence,

CR(X;Y Z) =
p(X,Y,Z)
p(X)p(Y,Z)

=
p(X,Y,Z)
p(X)p(Y,Z)

=
p(X,Z)
p(X)p(Z)

= CR(X;Z).
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Abstract. Long Short-Term Memory Recurrent Neural Networks are
the current state-of-the-art in handwriting recognition. In speech recog-
nition, Deep Multi-Layer Perceptrons (DeepMLPs) have become the
standard acoustic model for Hidden Markov Models (HMMs). Although
handwriting and speech recognition systems tend to include similar com-
ponents and techniques, DeepMLPs are not used as optical model in
unconstrained large vocabulary handwriting recognition. In this paper,
we compare Bidirectional LSTM-RNNs with DeepMLPs for this task.
We carried out experiments on two public databases of multi-line hand-
written documents: Rimes and IAM. We show that the proposed hybrid
systems yield performance comparable to the state-of-the-art, regard-
less of the type of features (hand-crafted or pixel values) and the neural
network optical model (DeepMLP or RNN).

Keywords: Handwriting recognition · Recurrent Neural Networks ·
Deep neural networks

1 Introduction

Handwriting recognition is the problem of transforming an image into the text it
contains. Unlike Optical Character Recognition (OCR), segmenting each char-
acter is difficult, mainly due to the cursive nature of handwriting. One usually
prefers to recognize whole words or lines of text, i.e. the sequence of characters,
with HMMs or RNNs.

In HMMs, the characters are modeled as sequences of hidden states, associ-
ated with an emission probability model. Gaussian Mixture Models (GMMs) is
the standard optical model in HMMs. However, in the last decade, emission prob-
ability models based on artificial neural networks have (re)gained considerable
interest in the community, mainly due to the deep learning trend in computer
vision and speech recognition. In this latter domain, major improvements have
been observed with the introduction of deep neural networks.
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 199–210, 2014.
DOI: 10.1007/978-3-319-11397-5 15
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A significant usage of neural network for handwriting recognition should
also be noted. The MNIST database of handwritten digits received a lot of
attention in computer vision and in the application of deep learning techniques.
Convolutional Neural Networks introduced by Le Cun et al. [20] have soon been
applied to handwriting recognition problems, and were recently tested on public
databases for handwritten word recognition, yielding state-of-the-art results [5].

The state-of-the-art performance on many public handwriting databases is
achieved by RNNs. This type of neural network has the ability to use more con-
text than HMMs and to model the whole sequence directly. The best published
results on IAM [19], Rimes [19,26] and OpenHaRT [26,31], were achieved by
systems involving an RNN component.

In this work, we compare different approaches to optical modeling in hand-
writing recognition systems. In particular, we studied different kinds of neural
networks (DeepMLPs and RNNs), and features (hand-crafted and pixel values).

We report results on the publicly available IAM [22] and Rimes [1] databases.
Major improvements have been recently reported on these tasks, mainly due to a
better pre-processing of the images, and an open-vocabulary language model [19].
This work shows that similar Word Error Rates (WERs) can be achieved with
different kinds of features (hand-crafted geometric and statistical features, and
pixel values), and optical models (DeepMLPs and RNNs), and a rather standard
pre-processing. We note that for DeepMLPs to be comparable in performance
to RNNs, a sequence training criterion, such as state-level Minimum Bayes Risk
(sMBR) [18] should be used.

This paper is divided as follows. Section 2 contains a brief litterature review.
Section 3 describes our systems. Section 4 presents the experiments carried out
and the results obtained. Conclusions are drawn in Sect. 5.

2 Relation to Prior Work

Recurrent Neural Networks, with the Long Short-Term Memory (LSTM) units,
are particularly good for handwriting recognition. State-of-the-art systems for
many public databases include an RNN component. Kozielski et al. [19] trained
a bidirectional LSTM-RNN (BLSTM-RNN) on sequences of feature vectors, and
HMM state targets. They then extract features from hidden layer activations to
train a standard GMM-HMM, and report the best known results on the IAM
database. On the other hand, Graves et al. [14], and more recently [4,26] trained
Multi-Dimensional LSTM-RNNs (MDLSTM-RNNs), which operate directly on
the raw image, with a Connectionist Temporal Classification (CTC) objective,
which allows to train the network directly using the sequence of characters as
targets. With the dropout technique, [26] report the best results on both Rimes
and OpenHaRT databases.

Multi-layer Perceptrons with one hidden layer were used for optical mod-
eling in hybrid systems by España-Bocquera et al. [11] and Dreuw et al. [10].
Deep Neural Networks (DeepMLPs), were applied to simple handwriting recog-
nition tasks such as isolated character or digits recognition [7,8]. More recently,
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they were used in combination with HMMs for keywords spotting in handwrit-
ten documents [30]. They enjoy considerable research attention since efficient
training methods have been proposed. They achieve excellent results in various
computer vision tasks (e.g. object recognition), but also in speech recognition,
where they replace efficiently the conventional GMMs in HMMs. Their architec-
ture is simple (multi-layer perceptrons), and their depth seems to contribute to
better modeling [25] and robustness [9]. It has been shown [28,32] that optimiz-
ing training criteria over whole sequences (e.g. sMBR), including the language
constraints, leads to improvements compared with a framewise criterion. Simi-
lar (global) training of handwriting recognition systems were already proposed
in the 90s [20,21]. In this work, we show that the framework of DeepMLP and
sequence training used in speech recognition can successfully be applied to hand-
writing recognition, with very good results on public databases, and compete
with RNNs.

3 System Overview

3.1 Image Pre-processing and Feature Extraction

The goal of pre-processing is to remove the undesirable variabilities from images.
First, the lines are deskewed [3] and deslanted [6]. Then, the darkest 5 % of pixels
are mapped to black and the lightest 70 % are mapped to white, with a linear
interpolation in between, to enhance the contrast. We added 20 columns of white
pixels to the beginning and end of each line to account for empty context. Most
systems require an image with fixed height. We first detect three regions in the
image (ascenders, descenders and core region) [33], and scale these regions to
three fixed heights.

We built baseline systems using the handcrafted features described in [2],
which gave reasonable performance on several public databases [2,23]. We extr-
acted them with a sliding window, scanned left-to-right through the preprocessed
text line image. It is defined by two parameters: its width and shift (controlling
the overlap between consecutive windows). To fix these parameters, we trained
GMM-HMMs using the handcrafted features and different widths and shifts of
the sliding window and keep the parameters yielding the best performance on
the validation set. The optimal values we found are a width of 3px, a shift of
3px for both databases.

We also carried out experiments on pixel features (for NNs only). They
are extracted with a sliding window of width 45px and shift 3px, rescaled to
20 × 32px. The pixel values are normalized to lie in the interval [0, 1] (1 cor-
responding to white), producing 640-dimensional feature vectors. No Principal
Component Analysis or other decorrelation or dimensionality reduction algo-
rithm were applied.

3.2 Hidden Markov Models

The topology of the HMM is left-to-right: two output transitions per state, one
to itself and one to the next state. We tried different number of HMM states
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in character models (along with different sliding window parameters), and kept
the values yielding the best GMM-HMM results on the validation sets. We built
6-state models for IAM and 5-state models for Rimes. We added two 2-state
silence HMMs to model optional empty context on the left and right of words.

3.3 Neural Networks

Multi Layer Perceptrons and Deep Neural Networks. Multi Layer Per-
ceptrons (MLPs) are networks organized in several layers, each one fully con-
nected to the next. The input corresponds to an observation vector, optionally
concatenated with a small amount of previous and next frames. The output is
a prediction of the HMM states. Deep Neural Networks (DeepMLPs) are MLPs
with several hidden layers. We first initialize the weights with unsupervised pre-
training, consisting in stacking Restricted Boltzmann Machines, trained with
contrastive divergence, as explained in [15]. Then, we perform a supervised dis-
criminative training of the whole network. The targets are obtained by forced
alignment of the training set with a bootstrapping model. We optimize the cross-
entropy criterion with Stochastic Gradient Descent (SGD).

Sequence training of neural networks consists in optimizing the network para-
meters with a sequence-discriminative criterion rather than using the frame-level
cross-entropy criterion. Sequence training is similar to the discriminative training
of GMM-HMMs. Among different possibilities, we chose the state-level Minimum
Bayes Risk (sMBR) criterion, described in [18], which yields slightly better WER
than other sequence criteria on a speech recognition task (Switchboard) [32]. In
speech recognition, sequence training results in relative performance gains of
5–10 % for various tasks [29,32].

Recurrent Neural Networks (RNNs). In RNNs, the input to a given recur-
rent layer are not only the activations of the previous layers, but also its own
activations at the previous time step. This characteristic enables them to natu-
rally work with sequential inputs, and to use the past context to make predic-
tions. Long Short-Term Memory (LSTM) units are recurrent neurons, in which
a gating mechanism avoids the vanishing gradient problem, appearing in con-
ventional RNNs [14,16], and enables to learn arbitrarily long dependencies. In
Bi-Directional LSTM-RNNs (BDLSTM-RNNs), LSTM layers are doubled: the
second layer is connected to the “next” time step rather than the previous one.
Thus the input sequence is processed in both directions, so past and future con-
text are used to make predictions (see Fig. 1). The information coming from both
directions is summed component-wise after the LSTM layers, and the result is
an input for a feed-forward layer. This is a generalization of the MDLSTM-RNN
architecture described in [14,26] to the case of sequences of feature vectors.

Finally, the Connectionnist Temporal Classification (CTC) paradigm [13]
has been used to train the RNNs. With CTC, no prior segmentation of the
training data (line images) is required. Therefore, we do not need a bootstrapping
procedure involving forced alignments with a previously trained HMM. Instead,
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Fig. 1. Bidirectional Recurrent Neural Networks

we can select the target sequence to be the sequence of character in the image
annotation, which simplifies the training procedure.

4 Experiments and Results

4.1 Rimes and IAM Databases

The Rimes database [1] consists of images of handwritten paragraphs from sim-
ulated French mail. The setup for the ICDAR 2011 competition is a training set
of 1,500 images, and an evaluation set of 100 images. We held out the last 149
images from the training set for system validation. We built a 4-gram language
model (LM) with modified Kneser-Ney discounting from the training annota-
tions. The vocabulary is made of 12k words. The language model has a per-
plexity of 18 and out-of-vocabulary (OOV) rate of 2.9 % on the validation set
(18 and 2.6 % on the evaluation set).

The IAM database [22] consists of images of handwritten documents. They
correspond to English texts extracted from the LOB corpus [17], copied by dif-
ferent writers. The database is split into 747 images for training, 116 for val-
idation, and 336 for evaluation. We used a 3-gram language model limited to
the 50k most frequent words from the training set. It was trained on the LOB,
Brown and Wellington corpora. The passages of the LOB corpus appearing in
the validation and evaluation sets were removed prior to LM training. The result-
ing model has a perplexity of 298 and OOV rate of 4.3 % on the validation set
(329 and 3.7 % on the evaluation set).

4.2 Decoding Method

We used the Kaldi toolkit [27] to decode the sequences of observation vec-
tors (GMMs, DeepMLPs), or the sequences of character predictions (RNNs).
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The decoding was done for complete paragraphs rather than lines, to benefit
from the language model history across line boundaries. The optical scaling fac-
tor, balancing the importance given to the optical model scores and to the lan-
guage model scores, and the word insertion penalty were tuned on the validation
sets. This optimization can yield from 1 to 3 % absolute improvement.

4.3 GMM-HMM

We trained GMM-HMM on both tasks, using the handcrafted features, and the
Maximum Likelihood criterion. The number of Gaussians in the mixtures was
increased at each iteration until the performance on the validation set decreases
for more than 5 iterations. The GMM-HMM have not been discriminatively
trained. They were only used to bootstrap the training of DeepMLPs.

4.4 Deep Neural Networks

To train the DeepMLPs, we performed the forced alignments of the training set
with the GMM-HMMs, to have a target HMM state for each input observation.
We held out 10 % of this dataset for validation and early stopping. Overall, the
datasets contain 5,6M examples for Rimes and 3,8M examples for IAM.

DeepMLP on Handcrafted Features. We inverstigated different numbers
of hidden layers (1 to 7) in the DeepMLP and different sizes of input context
(±{1, 3, 5, 7, 9} frames). The number of hidden nodes in each layer was set to
1,024. The input features were normalized to zero mean and unit variance along
each dimension. The networks were pre-trained using 1 epoch of unsupervised
training for each layer, followed by a few epochs of supervised training with
stochastic gradient descent and a cross-entropy criterion. The training finished
when no more improvement was observed on the validation set.

The results are depicted on Fig. 2. The performances of the different networks
are similar to each other. It looks like more than one hidden layer is generally
better, but the performance gain when we add more layers is not significant.
We selected the best architectures based on the performance on the validation
sets: 5 hidden layers with 1,024 units and 15 frames of context (central frame
±7) for IAM, 4 hidden layers with 1,024 units and 7 frames of context (central
frame ±3) for Rimes. Additionally, training the networks with 5 more epochs of
sMBR sequence training allowed to obtain 4 to 6 % relative WER improvement
(Table 1).

DeepMLP on Pixels. Instead of adding context frames to the central frames,
we extracted the pixels values in a larger sliding window. The means and standard
deviations were computed across all dimensions simultaneously, not separately.

For the pixel DeepMLP, we notice a wider difference between one and more
hidden layers (Fig. 3) than for DeepMLP on handcrafted features. The justifi-
cation could be that in hancrafted features DeepMLPs, the inputs are already



Handwriting Recognition with Deep and Recurrent Neural Networks 205

Fig. 2. Effect of depth and size of context (Features DeepMLP, Rimes validation set)

Table 1. Improvement brought by sMBR sequence training (results reported on
validation sets)

System WER - Rimes CER - Rimes WER - IAM CER - IAM

Features DeepMLP 14.1% 4.0% 12.4% 4.1%
+ sMBR training 13.5% (-4.2%) 4.0% (-0.0%) 11.7% (-5.6%) 3.9% (-4.9%)

Pixel DeepMLP 13.6% 3.9% 12.4% 4.4%
+ sMBR training 13.1% (-3.7%) 3.8% (-2.6%) 11.8% (-4.8%) 4.2% (-4.5%)

Fig. 3. Effect of increasing the number of hidden layers (Pixel DeepMLP, Rimes
validation set)
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a higher level representation of the image, while in pixel DeepMLPs, the first
layer(s) perform the transformation of the image into a higher level representa-
tion. We selected the best architectures based on the performance on the val-
idation sets: 4 hidden layers with 1,024 units for IAM, 7 hidden layers with
1,024 units for Rimes. Again, sMBR training brought a few percents relative
improvement over cross-entropy training (Table 1).

4.5 Recurrent Neural Networks

Since the RNNs are trained with a CTC objective function to predict sequences
of characters, there is no need for a bootstrapping procedure. All the RNNs have
been trained on the whole training set and validated on the validation set.

BDLSTM-RNN on Handcrafted Features. The RNNs naturally takes into
account the left and right context to make predictions. Thus, we did not con-
catenate context feature frames. The input features were normalized to zero
mean and unit variance along each dimension. We explored different depths and
widths, and also applied the dropout regularization technique in feed-forward
layers, as explained in [26].

Table 2. RNNs on handcrafted and pixel features, results for Rimes validation set.
uCER stands for unconstrained CER. WER and CER are computed with a lexicon
and language model.

Handcrafted features Pixel features

Archi. dropout CTC cost uCER WER CER CTC cost uCER WER CER

1x100 - 0.5217 14.5 14.9 4.7 1.201 33.8 24.1 10.3
3x100 - 0.3864 10.6 13.6 4.1 0.4834 12.9 15.1 5.1
5x100 - 0.3516 9.3 14.7 4.3 0.3637 9.8 14.0 4.4
5x200 - 0.3295 8.5 13.5 3.9 0.3724 9.7 15.4 4.9
7x100 - 0.3093 8.0 13.8 4.1 0.3313 8.7 14.5 4.5
7x200 - 0.2969 8.0 14.1 4.1 0.3445 8.9 14.7 5.0
7x200 x 0.2397 5.7 12.7 3.6 0.2351 6.0 13.6 4.1
9x100 - 0.2937 7.6 13.2 3.9 0.3229 8.6 14.5 4.5
9x100 x 0.2565 6.0 13.1 3.8 0.2559 6.3 13.8 4.4

We report the results in Table 2. uCER stands for unconstrained CER, and
refers to the character error rate when the RNN is used alone to make character
predictions, i.e. without lexical and language model. While it seems better to
have more than one hidden layer, the biggest improvements were achieved with
dropout. The best architectures, selected based on the results on the validation
sets, are 7 hidden layers (4 LSTM and 3 feed-forward) of 200 units with dropout
for Rimes and IAM.
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BDLSTM-RNN on Pixels. For pixel features, the inputs are normalized with
the mean and standard deviation of pixel values across all dimensions. We also
explored different widths and depths and dropout, and selected the best models
based on the validation results. For Rimes and IAM, the best network has 7
hidden layers of 200 units and dropout. The results for different architectures on
Rimes database are shown on Table 2. Again, we notice that the effect of having
more than one hidden layer is more important for pixel-based models than for
models using handcrafted features.

Table 3. Results on IAM database

Dev. Eval.
WER CER WER CER

g. GMM-HMM baseline 15.2 6.3 19.6 9.0

df. Features DeepMLP-5x1024 11.7 3.9 14.7 5.8
dp. Pixel DeepMLP-4x1024 11.8 4.2 14.7 5.9
rf. Feature BDLSTM-RNN 7x200 + dropout 11.9 3.9 14.3 5.3
rp. Pixels BDLSTM-RNN 7x200 + dropout 11.8 4.0 14.8 5.6

ROVER rf + rp + df + dp 9.7 3.6 11.9 4.9

Kozielski et al. [19] 9.5 2.7 13.3 5.1
Pham et al. [26] 11.2 3.7 13.6 5.1

Kozielski et al. [19] 11.9 3.2 - -

Table 4. Results on Rimes database

Dev. Eval.
WER CER WER CER

g. GMM-HMM baseline 17.2 5.9 15.8 6.0

df. Features DeepMLP-4x1024 13.5 4.0 13.5 4.1
dp. Pixel DeepMLP-7x1024 13.1 3.8 12.9 3.8
rf. Feature BDLSTM-RNN 7x200 + dropout 12.7 3.6 12.7 4.0
rp. Pixels BDLSTM-RNN 7x200 + dropout 13.6 4.1 13.8 4.3

ROVER rf + rp + df + dp 11.8 3.4 11.8 3.7

Pham et al. [26] - - 12.3 3.3
Messina et al. [24] - - 13.3 -

Kozielski et al. [19] - - 13.7 4.6

The final results, comparing different models and input features on the one
hand, and comparing our proposed systems with other published results on the
other hand, are reported on Table 3 (IAM) and Table 4 (Rimes). We see that
both handcrafted and pixel features, and both DeepMLPs and RNNs can achieve
results that are close to the best reported ones. For DeepMLPs, sequence training
seems crucial to attain this performance. Furthermore, we notice that although
RNNs have become a standard component of handwriting recognition systems,
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DeepMLPs – which have become standard in hybrid speech recognition systems
– can perform equally well. Finally, we cannot draw a clear conclusion regard-
ing whether RNNs or DeepMLPs should be preferred, or whether handcrafted
features are more suited than pixel values.

Our different optical models and features are also complementary, as shown
by their ROVER combination [12], which, to the best of our knowledge constitute
the best published results on both databases, outperforming the open-vocabulary
approaches proposed in [19,24].

5 Conclusion

In this paper, we shown that state-of-the-art WERs can be achieved with both
DeepMLPs - standard method for speech recognition, and RNNs - standard
method for handwriting recognition. Even with a pretty simple image prepro-
cessing, the pixel values could replace handcrafted features. Future work may
include an evaluation of convolutional neural networks and Multi-Dimensional
(MD)LSTM-RNNs for a more comprehensive comparison of neural network
optical modeling. An evaluation of a tandem combination (where the neural
networks are used to extract features rather than to make predictions) could be
carried out. Finally, it would be interesting to evaluate the robustness of the
proposed models, i.e. to see how good the results could be when these systems
are applied to new databases, not seen during training.

Acknowledgments. The authors would like to thank Michal Kozielsky and his col-
leagues from RWTH for providing the language model used in IAM experiments. This
work was partly achieved as part of the Quaero Program, funded by OSEO, French
State agency for innovation and was supported by the French Research Agency under
the contract Cognilego ANR 2010-CORD-013.

References
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Abstract. Authorship verification is the task of determining if a given text is
written by a candidate author or not. In this paper, we present a first study on
using an anomaly detection method for the authorship verification task. We have
considered a weakly supervised probabilistic model based on a multivariate
Gaussian distribution. To evaluate the effectiveness of the proposed method, we
conducted experiments on a classic French corpus. Our preliminary results show
that the probabilistic method can achieve a high verification performance that
can reach an F1 score of 85 %. Thus, this method can be very valuable for
authorship verification.

Keywords: Authorship verification � Anomaly detection � Multivariate
gaussian distribution

1 Introduction

Authorship verification is a special case of the authorship attribution problem. The
authorship attribution problem can be generally formulated as follows: given a set of
candidate authors for whom samples of written text are available, the task is to assign a
text of unknown authorship to one of these candidate authors [17]. This task has been
addressed mainly as a problem of multi-class discrimination, or as a text categorization
task [16]. In the authorship verification problem, though, we are given samples of texts
written by a single author and are asked to assess if a given different text is written by
this author or not [13]. As a categorization problem, modifying the original attribution
problem in this way makes the task of authorship verification significantly more dif-
ficult partly because building a characterising model of one author is much harder than
building a distinguishing model between two authors [12].

Authorship verification has two key steps: an indexing step based on style markers
is performed on the text using some natural language processing techniques such as
tagging, parsing, and morphological analysis; then an identification step is applied
using the indexed markers to verify the validity of the authorship. Many style markers
have been used to characterise writing styles, from early studies based on sentence
length and vocabulary richness [19] to more recent and relevant work based on
function words [9, 20], punctuation marks [2], part-of-speech (POS) tags [14], parse
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trees [6] and character-based features [11]. There is an agreement among researchers
that function words are the most reliable indicator of authorship [17].

The verification step can be addressed as a one-class problem (written-by-the-
author) or as a binary classification problem (written-by-the-author as positive vs not-
written-by-the-author as negative). However, both of these formulations of the problem
have drawbacks: In the case of binary classification, one should collect a reasonable
amount of representative texts of the entire “not-written-by-the-author” class, which is
difficult, if not impossible. In the case of one-class classification, one does not take
advantage from negative examples that we do not actually lack for them even though
they are not representative of the entire class.

In this paper, we address the authorship verification problem as an anomaly
detection problem where texts written by the candidate author are seen as normal data
while texts not written by that author are seen anomalous data. We propose a proba-
bilistic anomaly detection method that can benefit from negative examples for the
authorship verification process.

We first give an overview of the anomaly detection problem in Sect. 2 and then
describe our method in Sect. 3. We than experimentally validate the proposed method
in Sect. 4 using a classic French corpus. Finally we use this method to settle a literary
mystery case.

2 Anomaly Detection

Anomaly detection is a challenging task which consists of identifying patterns in data
that do not conform to expected (normal) behaviour. These non-conforming patterns
are called anomalies or outliers [3]. Anomaly detection has been successfully used in
many applications such as fault detection, radar target detection and hand written digit
recognition [15].

This technique has also been used to deal with textual data for various purposes
such as detecting novel topics, events, or news stories in a collection of documents or
news articles [3]. Anomaly detection is based on the idea that one can never train a
classification algorithm on all the possible classes that the system is likely to encounter
in real application. Anomaly detection is also suitable for situations in which the class
imbalance problem can affect the accuracy of classification (see Fig. 1) [18].

Fig. 1. The anomaly detection and the classification learning schemas
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Many anomaly detection techniques fall under the statistical approach of modelling
data based on its statistical properties and using this information to estimate whether a
test sample comes from the same distribution or not [15]. Another common method for
anomaly detection is the one-class SVM that determines a hyper sphere enclosing the
normal data [8]. In this contribution, we describe and use a probabilistic anomaly
detection method for authorship verification that straightforwardly follows the defini-
tion given above. The method is discussed in the next section.

3 Proposed Method

In our method, we address the authorship verification problem as an anomaly detection
problem where texts written by a given author X are seen as normal data, while texts not
written by that author X are seen anomalous data. We use a probabilistic anomaly
detection method that can benefit from anomalous examples for the authorship verifi-
cation process based on a multivariate Gaussian modelling. Given the fact that unsu-
pervised anomaly detection approaches often fail to match the required detection rates in
many tasks and there exists a need for labelled data to guide the model generation [7],
our proposed methods is weakly supervised in the sense that it takes into consideration a
small amount of representative anomalous data for the model generation.

The approach to anomalous text detection is to train a multivariate Gaussian dis-
tribution model on the style markers extracted from sample of text written by an author
X. Every newly arriving text (data instance) that we went to verify as written by X or
not is contrasted with the probabilistic model of normality, and a normality probability
is computed. The probability describes the likelihood of the new text to have been
written by X compared to the average data instances seen during the training. If the
probability does not surpass a predefined threshold α, the instance is considered an
anomaly and the text is considered not to have been written by the author X. To define
the probability threshold, we cross-validate over a data set containing both anomalous
and non-anomalous data and we set the threshold to the value that maximizes the
authorship verification performance on this data set. The method can be formu-
lated into three steps as follow: Let xi be a n-dimensional vector representing the text
i (i = 1,…, m).

1. Train a Multivariate Gaussian distribution model M(x) on the normal data. This is
done by estimating the two distribution parameters: the multivariate location μ and the
covariance matrix Σ:

l ¼ 1
m

Xm
i¼1

xðiÞ ð1Þ

R ¼ 1
m

Xm
i¼1

x ið Þ � l
� �

x ið Þ � l
� �T

ð2Þ
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2. Given a new instance x, compute the probability p(x):

p xð Þ ¼ 1

ð2pÞn2 Rj j12
expð� 1

2
x� lð ÞTR�1 x� lð ÞÞ ð3Þ

3. Predict the anomaly (y = 1) of the instance x given the probability threshold α:

y ¼ 1 if p xð Þ\ /
0 if p xð Þ� /

(
ð4Þ

The nature of the style markers used as attributes to describe and to get an n-
dimensional vector representing the text is very important and determines the appli-
cability of our method. In fact, the nature of these attributes should respect the Gaussian
assumption made to train the multivariate Gaussian model. For our experiment, we
chose to test this method on two types of style markers separately. Each text in our data
set is mapped onto a vector of the frequency of the most frequent function words and a
vector of the frequency of POS-tags.

There are two main reasons for using the frequency of function words as attributes.
First, because of their high frequency in a written text, function words are very likely to
have a Gaussian behaviour (see Fig. 2). Secondary, function words, unlike content
words, are difficult to consciously control, thus they are more independent from the
topic or the genre of the text [4]. In fact, Koppel and Schler found that all the work of
distinguishing the styles of different authors is accomplished with a small set of features
containing frequent function words [12]. Based on that information and to get a right
balance between the features-set size and the dataset size, we limit our study to the
most 30th frequent function words. The part-of-speech-based markers are also shown
to be very effective because they partly share the advantages of function words.

Fig. 2. The probability of frequency of the French function word “de” has a Gaussian behavior
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4 Experimental Validation

4.1 Data Set

To test the effectiveness of our method, we used novels written by: Balzac, Dumas and
France. This choice was motivated by our special interest in studying the classic French
literature of the 19th century, and by the availability of electronic texts from these
authors on the project Gutenberg website1 and in the Gallica electronic library.2 Our
choice of authors was also affected by the fact that we wished to get a challenging
problem since these three authors are knows to have relatively comparable syntactic
styles. More information about the data set used for the experimentation is summarized
in Table 1.

For each of the three authors mentioned above, we collected 4 novels, so that the
total number of novels was 12. The next step was to divide these novels into smaller
pieces of texts in order to have enough data instances (artificial documents) to train and
test the probabilistic model. Researchers working on authorship attribution in literary
texts have used different dividing strategies. For example, Hoover [10] decided to take
just the first 10,000 words of each novel as a single text, while Argamon and Levitan
[1] treated each chapter of each book as a separate text. In our experiment, we chose
simply to chunk each novel into approximately equal parts of 2000 words, which is
below the threshold proposed by Eder [5] specifying the smallest reasonable text size to
achieve good attribution. This increases the degree of the difficulty of the task.

4.2 Verification Protocol

In our experiment, the corpus was POS tagged and function words were extracted.
Each text is then represented by two vectors Rn = {r1, r2,…,rn}, one for the normalized
frequencies of occurrence of the top 30 function words in the corpus, and another for
the normalized frequencies of occurrence of POS-tags. The normalization of the vec-
tors of frequency representing a given text was done according to the size of the text.
Then, for each author, we used 75 % of the data generated by texts written by this
author to estimate the parameters of the model representing this author, and 20 % of the
data from each author for testing it. The remaining 5 % data was merged with 5 % of

Table 1. Data set used in our experiment

Author name # of texts

Balzac, Honoré de 126
Dumas, Alexandre 190
France, Anatole 128

1 http://www.gutenberg.org/
2 http://gallica.bnf.fr/
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the data (anomalous data) generated by each one of the other authors and was used to
estimate the probability threshold α. To get a reasonable estimate of the expected
generalization performance, we used a resampling with replacement method. The
training and testing process was done 10 times. The overall authorship verification
performance is taken as the average performance over these 10 runs. For evaluating the
verification performance, we used the standard measures, calculating precision (P),
recall (R), and Fβ where:

Fb ¼ ð1þ b2ÞRP
ðb2RÞ þ P

ð5Þ

We consider precision and recall to have the same value, so we set β equal to 1.

4.3 Baselines

To evaluate the effectiveness of the proposed method we used one-class SVM and
binary SVMs classifier using RBF kernel (best performing). The one-class SVM was
trained and tested on the same data used to train and test the multivariate Gaussian
model respectively. The binary SVM classifier was trained on both the data used to
train the probabilistic model and the data used to estimate the probability threshold, and
it was tested on the same data as our probabilistic model. The overall baseline clas-
sification performance is taken as the average performance over the 10 runs.

4.4 Results

The results of measuring the verification performance for the two different style
markers presented in our experimental validation are summarized in Table 2 for
function words and in Table 3 for POS tags. These results show in general the supe-
riority of the proposed method over the baselines in terms of F1 score and recall. These
results also show in general a better performance when using frequent function words
than POS-tag for both the proposed method and the baselines.

Our study here indicates that the multivariate Gaussian model for anomaly detec-
tion combined with features based on frequent function words can achieve a high
verification performance (e.g., F1 = 0.85). By contrast, the one-class SVM performs
particularly poorly on this task. The binary SVM achieved relatively good results but
doesn’t outperform the probabilistic model; this shows that the authorship verification
problem should not be handled as a binary class problem unless a sufficient amount of
representative negative data is present to avoid the class imbalance problem.

Table 2. Results of the authorship verification using frequent function words

Method P R F1
One-class SVMs 0,34 0,50 0,40
Binary SVMs 0,86 0,75 0,80
Multivariate Gaussian model 0,82 0,88 0,85
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Finally, these results are in line with previous work that claimed that semi-super-
vised anomaly detection approaches, originating from a supervised classifier, are
inappropriate and hardly detect new and unknown anomalies, and that semi-supervised
anomaly detection needs to be grounded in the unsupervised learning paradigm [7].

5 A Classic French Literary Mystery: “Le Roman
de Violette”

In this section, we apply our probabilistic method to settle one of the classic French
literary mysteries. “Le Roman de Violette”3 is a novel published in 1883. The
authorship of this novel has still not been determined. Even though the novel was
edited under the name of Alexandre Dumas, some literary critics state that a serious
candidate for its authorship is “La Marquise de Mannoury d’Ectot”. But this hypothesis
cannot be definitely proved, partly because there is only one known book written by
that author, which limits the quantity of text available to validate the computational
authorship identification methods including our method.

We applied our proposed authorship verification method to handle this case. Since
there is not enough available text written by “La Marquise de Mannoury d’Ectot” to
verify whether she is the writer of “Le Roman de Violette” or not, we set Alexandre
Dumas as the author candidate that we want to verify as the writer or not. We trained
the probabilistic model based on frequent function words on texts written by Alexandre
Dumas. The only known book written by “La Marquise de Mannoury d’Ectot” was
used as the representative anomalous text to set the probability threshold. Finally, the
verification test was performed on the “Roman de Violette”. The authorship probability
produced by the novel using our proposed method is under the threshold needed to
validate the authorship. This result suggests that the novel “Le Roman de Violette” was
not written by Alexandre Dumas.

6 Conclusion

In this paper, we have presented a study on using an anomaly detection method for the
authorship verification task. We have considered a weakly supervised probabilistic
model based on a multivariate Gaussian distribution. To evaluate the effectiveness of

Table 3. Results of the authorship verification using frequent POS-tags

Method P R F1
One-class SVMs 0,51 0,45 0,48
Binary SVMs 0,81 0,58 0,67
Multivariate Gaussian model 0,69 0,89 0,77

3 http://ero.corneille-moliere.com/?p=page52&m=ero&l=fra
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the proposed method, we conducted experiments on a classic French literary corpus.
Our preliminary results show that the probabilistic method can achieve a high verifi-
cation performance that can reach an F1 score of 85 %.

Based on the current study, we have identified several future research directions.
First, we will explore incorporating the non-verification option into our probabilistic
model. In fact, in the field of authorship identification, the non-attribution option is
better than a false attribution. Second, this study will be expanded to include more style
markers. Third, we intend to experiment with other languages and text sizes using
standard corpora employed in the field at large.
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Abstract. We propose a new similarity measure between texts which,
contrary to the current state-of-the-art approaches, takes a global view
of the texts to be compared. We have implemented a tool to compute our
textual distance and conducted experiments on several corpuses of texts.
The experiments show that our methods can reliably identify different
global types of texts.

1 Introduction

Statistical approaches for comparing texts are used for example in machine trans-
lation for assessing the quality of machine translation tools [19,20,23], or in
computational linguistics in order to establish authorship [3,15,18,25,26,31] or
to detect “fake”, i.e., automatically generated, scientific papers [17,22].

Generally speaking, these approaches consist in computing distances, or sim-
ilarity measures, between texts and then using statistical methods such as, for
instance, hierarchical clustering [11] to organize the distance data and draw con-
clusions.

The distances between texts which appear to be the most popular, e.g., [15,23],
are all based on measuring differences in 1-gram frequencies: For each
1-gram (token, or word) w in the union of A and B, its absolute frequencies in
both texts are calculated, i.e., FA(w) and FB(w) are the numbers of occurrences
of w in A and B, respectively, and then the distance between A and B is defined
to be the sum, over all words w in the union ofA andB, of the absolute differences
|FA(w) − FB(w)|, divided by the combined length of A and B for normalization.
When the textsA andB have different length, some adjustments are needed; also,
some algorithms [19,23] take into account also 2-, 3- and 4-grams.

These distances are thus based on a local model of the texts: they mea-
sure differences of the multisets of n-grams for n between 1 and 4. Borrowing
techniques from economics and theoretical computer science, we will propose
below a new distance which instead builds on the global structure of the texts. It
simultaneously measures differences in occurrences of n-grams for all n and uses
a discounting parameter to balance the influence of long n-grams versus short
n-grams.

Following the example of [17], we then use our distance to automatically
identify “fake” scientific papers. These are “papers” which are automatically
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 220–232, 2014.
DOI: 10.1007/978-3-319-11397-5 17



Measuring Global Similarity Between Texts 221

generated by some piece of software and are hence devoid of any meaning, but
which, at first sight, have the appearance of a genuine scientific paper.

We can show that using our distance and hierarchical clustering, we are
able to automatically identify such fake papers, also papers generated by other
methods than the ones considered in [17], and that, importantly, some parts of
the analysis become more reliable the higher the discounting factor. We conclude
that measuring global differences between texts, as per our method, can be a more
reliable way than the current state-of-the-art methods to automatically identify
fake scientific papers. We believe that this also has applications in other areas
such machine translation or computational linguistics.

Due to space constraints, some of the proofs and of the statistical analysis of
results announced in this paper are available in a companion technical report [5].

2 Inter-textual Distances

For the purpose of this paper, a text A is a sequence A = (a1, a2, . . . , aNA
)

of words. The number NA is called the length of A. As a vehicle for showing
idealized properties, we may sometimes also speak of infinite texts, but most
commonly, texts are finite and their length is a natural number. Note that we
pay no attention to punctuation, structure such as headings or footnotes, or
non-textual parts such as images.

2.1 1-Gram Distance

Before introducing our global distance, we quickly recall the definition of stan-
dard 1-gram distance, which stands out as a rather popular distance in compu-
tational linguistics and other areas [3,15–18,25,26,31].

For a text A = (a1, a2, . . . , aNA
) and a word w, the natural number FA(w) =

|{i | ai = w}| is called the absolute frequency of w in A: the number of times
(which may be 0) that w appears in A. We say that w is contained in A and
write w ∈ A if FA(w) ≥ 1.

For texts A = (a1, a2, . . . , aNA
), B = (b1, b2, . . . , bNB

), we write A ◦ B =
(a1, . . . , aNA

, b1, . . . , bNB
) for their concatenation. With this in place, the 1-gram

distance between texts A and B of equal length is defined to be

d1(A,B) =
∑

w∈A◦B |FA(w) − FB(w)|
NA +NB

,

where |FA(w) − FB(w)| denotes the absolute difference between the absolute
frequencies FA(w) and FB(w).

For texts A andB which are not of equal length, scaling is used: forNA < NB ,
one lets

d1(A,B) =

∑
w∈A◦B |FA(w) − FB(w)NA

NB
|

2NA
.
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By counting occurrences of n-grams instead of 1-grams, similar n-gram dis-
tances may be defined for all n ≥ 1. The BLEU distance [23] for example, popular
for evaluation of machine translation, computes n-gram distance for n between
1 and 4.

2.2 Global Distance

To compute our global inter-textual distance, we do not compare word fre-
quencies as above, but match n-grams in the two texts approximately. Let
A = (a1, a2, . . . , aNA

) and B = (b1, b2, . . . , bNB
) be two texts, where we make no

assertion about whether NA < NB , NA = NB or NA > NB . Define an indicator
function δi,j , for i ∈ {1, . . . , NA}, j ∈ {1, . . . , NB}, by

δi,j =

{
0 if ai = bj ,

1 otherwise
(1)

(this is the Kronecker delta for the two sequences A and B). The symbol δi,j
indicates whether the i-th word ai in A is the same as the j-th word bj in B.
For ease of notation, we extend δi,j to indices above i, j, by declaring δi,j = 1 if
i > NA or j > NB .

Let λ ∈ R, with 0 ≤ λ < 1, be a discounting factor. Intuitively, λ indicates
how much weight we give to the length of n-grams when matching texts: for
λ = 0, we match 1-grams only (see also Theorem 1 below), and the higher λ,
the longer the n-grams we wish to match. Discounting is a technique commonly
applied for example in economics, when gauging the long-term effects of economic
decisions. Here we remove it from its time-based context and apply it to n-gram
length instead: We define the position match from any position index pair (i, j)
in the texts by

dpm(i, j, λ) = δi,j + λδi+1,j+1 + λ2δi+2,j+2 + · · ·

=
∞∑

k=0

λkδi+k,j+k.
(2)

This measures how much the texts A and B “look alike” when starting with
the tokens ai in A and bj in B. Note that it takes values between 0 (if ai and
bj are the starting points for two equal infinite sequences of tokens) and 1

1−λ .
Intuitively, the more two token sequences are alike, and the later they become
different, the smaller their distance. Table 1 shows a few examples of position
match calculations.

This gives us an NA-by-NB matrix Dpm(λ) of position matches; see Table 2
for an example. We now need to consolidate this matrix into one global dis-
tance value between A and B. Intuitively, we do this by averaging over position
matches: for each position ai in A, we find the position bj in B which best
matches ai, i.e., for which dpm(i, j, λ) is minimal, and then we average over
these matchings.
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Table 1. Position matches, starting from index pair (1, 1) and scaled by 1 − λ, of
different example texts, for general discounting factor λ and for λ = .8. Note that the
last two example texts are infinite.

Text A Text B (1 − λ)dpm(1, 1, λ) λ = .8

“man” “dog” 1 1

“dog” “dog” λ .8

“man bites dog” “man bites dog” λ3 .51

“man bites dog” “dog bites man” 1 − λ + λ2 .84

“the quick brown fox
jumps over the lazy
dog”

“the quick white fox
crawls under the
high dog”

λ2 − λ3 + λ4 −
λ6 + λ7 − λ8 + λ9

.45

“me me me me...” “me me me me...” 0 0

Table 2. Position match matrix example, with discounting factor λ = .8.

the quick fox jumps over the lazy dog

the 0.67 1.00 1.00 1.00 1.00 0.64 1.00 1.00

lazy 1.00 0.84 1.00 1.00 1.00 1.00 0.80 1.00

fox 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00

Formally, this can be stated as an assignment problem: Assuming for now
that NA = NB , we want to find a matching of indices i to indices j which
minimizes the sum of the involved dpm(i, j). Denoting by SNA

the set of all
permutations of indices {1, . . . , NA} (the symmetric group on NA elements), we
hence define

d2(A,B, λ) = (1 − λ)
1
NA

min
φ∈SNA

NA∑

i=1

dpm(i, φ(i), λ).

This is a conservative extension of 1-gram distance, in the sense that for
discounting factor λ = 0 we end up computing d1:

Theorem 1. For all texts A, B with equal lengths, d2(A,B, 0) = d1(A,B).

Proof. For λ = 0, the entries in the phrase distance matrix are dpm(i, j, 0) = δi,j .
Hence a perfect match in Dpm, with

∑NA

i=1 dpm(i, φ(i), 0) = 0, matches each word
in A with an equal word in B and vice versa. This is possible if, and only if,
FA(w) = FB(w) for each word w. Hence d2(A,B, 0) = 0 iff d1(A,B) = 0. The
proof of the general case is in [5]. ��

There are, however, some problems with the way we have defined d2. For
the first, the assignment problem is computationally rather expensive: the best
know algorithm (the Hungarian algorithm [13]) runs in time cubic in the size of
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the matrix, which when comparing large texts may result in prohibitively long
running times. Secondly, and more important, it is unclear how to extend this
definition to texts which are not of equal length, i.e., for which NA �= NB . (The
scaling approach does not work here.)

Hence we propose a different definition which has shown to work well in
practice, where we abandon the idea that we want to match phrases uniquely. In
the definition below, we simply match every phrase in A with its best equivalent
in B, and we do not take care whether we match two different phrases in A with
the same phrase in B. Hence,

d3(A,B, λ) =
1
NA

NA∑

i=1

min
j=1,...,NB

dpm(i, j, λ).

Note that d3(A,B, λ) ≤ d2(A,B, λ), and that contrary to d2, d3 is not sym-
metric. We can fix this by taking as our final distance measure the symmetriza-
tion of d3:

d4(A,B, λ) = max(d3(A,B, λ), d3(B,A, λ)).

3 Implementation

We have written a C program and some bash helper scripts which implement
the computations above. All our software is available at http://textdist.gforge.
inria.fr/.

The C program, textdist.c, takes as input a list of txt-files A1, A2, . . . , Ak

and a discounting factor λ and outputs d4(Ai, Aj , λ) for all pairs i, j = 1, . . . , k.
With the current implementation, the txt-files can be up to 15,000 words long,
which is more than enough for all texts we have encountered. On a standard
3-year-old business laptop (Intel R© CoreTM i5 at 2.53GHz×4), computation of
d4 for takes less than one second for each pair of texts.

We preprocess texts to convert them to txt-format and remove non-word
tokens. The bash-script preprocess-pdf.sh takes as input a pdf-file and con-
verts it to a text file, using the poppler library’s pdftotext tool. Afterwards,
sed and grep are used to convert whitespace to newlines and remove excessive
whitespace; we also remove all “words” which contain non-letters and only keep
words of at least two letters.

The bash-script compareall.sh is used to compute mutual distances for a
corpus of texts. Using textdist.c and taking λ as input, it computes d4(A,B, λ)
for all texts (txt-files) A, B in a given directory and outputs these as a matrix.
We then use R and gnuplot for statistical analysis and visualization.

We would like to remark that all of the above-mentioned tools are free or
open-source software and available without charge. One often forgets how much
science has come to rely on this free-software infrastructure.

4 Experiments

We have conducted two experiments using our software. The data sets on which
we have based these experiments are available on request.

http://textdist.gforge.inria.fr/
http://textdist.gforge.inria.fr/
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4.1 Types of Texts Used

We have run our experiments on papers in computer science, both genuine papers
and automatically generated “fake” papers. As to the genuine papers, for the
first experiment, we have used 42 such papers from within theoretical computer
science, 22 from the proceedings of the FORMATS 2011 conference [9] and 20
others which we happened to have around. For the second experiment, we col-
lected 100 papers from arxiv.org, by searching their Computer Science repository
for authors named “Smith” (arxiv.org strives to prevent bulk paper collection),
of which we had to remove three due to excessive length (one “status report”
of more than 40,000 words, one PhD thesis of more than 30,000 words, and one
“road map” of more than 20,000 words).

We have employed three methods to collect automatically generated “papers”.
For the first experiment, we downloaded four fake publications by “Ike Antkare”.
These are out of a set of 100 papers by the same “author” which have been gen-
erated, using the SCIgen paper generator, for another experiment [14]. For the
purpose of this other experiment, these papers all have the same bibliography,
each of which references the other 99 papers; hence not to skew our results (and
like was done in [17]), we have stripped their bibliography.

SCIgen1 is an automatic generator of computer science papers developed in
2005 for the purpose of exposing “fake” conferences and journals (by submitting
generated papers to such venues and getting them accepted). It uses an elaborate
grammar to generate random text which is devoid of any meaning, but which
to the untrained (or inattentive) eye looks entirely legitimate, complete with
abstract, introduction, figures and bibliography. For the first experiment, we
have supplemented our corpus with four SCIgen papers which we generated on
their website. For the second experiment, we modified SCIgen so that we could
control the length of generated papers and then generated 50 papers.

For the second experiment, we have also employed another paper generator
which works using a simple Markov chain model. This program, automogensen2,
was originally written to expose the lack of meaning of many of a certain Dan-
ish political commentator’s writings, the challenge being to distinguish genuine
Mogensen texts from “fake” automogensen texts. For our purposes, we have
modified automogensen to be able to control the length of its output and fed
it with a 248,000-word corpus of structured computer science text (created by
concatenating all 42 genuine papers from the first experiment), but otherwise,
its functionality is rather simple: It randomly selects a 3-word starting phrase
from the corpus and then, recursively, selects a new word from the corpus based
on the last three words in its output and the distribution of successor words of
this three-word phrase in the corpus.
1 http://pdos.csail.mit.edu/scigen/
2 http://www.kongshoj.net/automogensen/

http://pdos.csail.mit.edu/scigen/
http://www.kongshoj.net/automogensen/
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Fig. 1. Dendrograms for Experiment 1, using average clustering, for discounting factors
0 (left) and .95 (right), respectively. Fake papers are numbered 28-31 (Antkare) and
43-46 (SCIgen), the others are genuine.

Fig. 2. Dendrograms for Experiment 1, using Ward clustering, for discounting factors
0 (left) and .95 (right), respectively. Fake papers are numbered 28-31 (Antkare) and
43-46 (SCIgen), the others are genuine.

4.2 First Experiment

The first experiment was conducted on 42 genuine papers of lengths between
3,000 and 11,000 words and 8 fake papers of lengths between 1500 and 2200
words. Figure 1 shows two dendrograms with average clustering created from the
collected distances; more dendrograms are available in [5]. The left dendrogram
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Table 3. Minimal and maximal distances between different types of papers depending
on the discounting factor.

Type Discounting 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

genuine/genuine min .23 .26 .30 .35 .40 .45 .52 .59 .68 .79 .86

max .55 .56 .57 .59 .61 .64 .67 .72 .78 .85 .90

fake/fake min .26 .28 .31 .35 .39 .43 .49 .55 .63 .73 .81

max .38 .40 .43 .46 .49 .53 .58 .64 .71 .80 .86

fake/genuine min .44 .46 .49 .52 .55 .59 .64 .70 .76 .84 .89

max .58 .60 .62 .64 .66 .68 .72 .76 .80 .87 .92

was computed for discounting factor λ = 0, i.e., word matching only. One clearly
sees the fake papers grouped together in the top cluster and the genuine papers
in cluster below. In the right dendrogram, with very high discounting (λ = .95),
this distinction is much more clear; here, the fake cluster is created (at height
.85) while all the genuine papers are still separate. The dendrograms in Fig. 2,
created using Ward clustering, clearly show that one should distinguish the data
into two clusters, one which turns out to be composed only of fake papers, the
other only of genuine papers.

We want to call attention to two other interesting observations which can
be made from the dendrograms in Fig. 1. First, papers 2, 21 and 22 seem to
stick out from the other genuine papers. While all other genuine papers are
technical papers from within theoretical computer science, these three are not.
Paper 2 [10] is a non-technical position paper, and papers 21 [24] and 22 [12]
are about applications in medicine and communication. Note that the λ = .95
dendrogram more clearly distinguishes the position paper [10] from the others.

Another interesting observation concerns papers 8 [2] and 33 [1]. These papers
share an author (E. Asarin) and are within the same specialized area (topological
properties of timed automata), but published two years apart. When measuring
only word distance, i.e., with λ = 0, these papers have the absolutely lowest
distance, .23, even below any of the fake papers’ mutual distances, but increasing
the discounting factor increases their distance much faster than any of the fake
papers’ mutual distances. At λ = .95, their distance is .87, above any of the fake
papers’ mutual distances. A conclusion can be that these two papers may have
word similarity, but they are distinct in their phrasing.

Finally, we show in Table 3 (see also Fig. 10 in [5] for a visualization) how the
mutual distances between the 50 papers evolve depending on the discounting
factor. One can see that at λ = 0, the three types of mutual distances are
overlapping, whereas at λ = .95, they are almost separated into three bands:
.81-.86 for fake papers, .86-.90 for genuine papers, and .89-.92 for comparing
genuine with fake papers.

Altogether, we conclude from the first experiment that our inter-textual dis-
tance can achieve a safe separation between genuine and fake papers in our
corpus, and that the separation is stronger for higher discounting factors.
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Fig. 3. Dendrogram for Experiment 2, using Ward clustering, for discounting factor
.95. Black dots mark arxiv papers, green marks SCIgen papers, and automogensen

papers are marked red (Color figure online).

4.3 Second Experiment

The second experiment was conducted on 97 papers from arxiv.org, 50 fake
papers generated by a modified SCIgen program, and 50 fake papers generated by
automogensen. The arxiv papers were between 1400 and 15,000 words long, the
SCIgen papers between 2700 and 12,000 words, and the automogensen papers
between 4,000 and 10,000 words. The distances were computed for discounting
factors 0, .4, .8 and .95; with our software, computations took about four hours
for each discounting factor.

We show the dendrograms using average clustering in Figs. 11 to 14 in [5];
they appear somewhat inconclusive. One clearly notices the SCIgen and
automogensen parts of the corpus, but the arxiv papers have wildly varying
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distances and disturb the dendrogram. One interesting observation is that with
discounting factor 0, the automogensen papers have small mutual distances com-
pared to the arxiv corpus, comparable to the SCIgen papers’ mutual distances,
whereas with high discounting (.95), the automogensen papers’ mutual distances
look more like the arxiv papers’. Note that the difficulties in clustering appear
also with discounting factor 0, hence also when only matching words.

The dendrograms using Ward clustering, however, do show a clear distinction
between the three types of papers. We can only show one of them here, for λ = .95
in Fig. 3; the rest are available in [5]. One clearly sees the SCIgen cluster (top)
separated from all other papers, and then the automogensen cluster (middle)
separated from the arxiv cluster.

There is, though, one anomaly: two arxiv papers have been “wrongly”
grouped into their own cluster (between the SCIgen and the automogensen clus-
ters). Looking at these papers, we noticed that here our pdf-to-text conversion
had gone wrong: the papers’ text was all garbled, consisting only of “AOUOO
OO AOO EU OO OU AO” etc. The dendrograms rightly identify these two
papers in their own cluster; in the dendrograms using average clustering, this
garbled cluster consistently has distance 1 to the other clusters.

We also notice in the dendrogram with average clustering and discounting
factor .95 (Fig. 14 in [5]) that some of the arxiv papers with small mutual
distances have the same authors and are within the same subject. This applies
to [27] vs. [28] and to [32] vs. [33]. These similarities appear much more clearly
in the λ = .95 dendrogram than in the ones with lower discounting factor.

As a conclusion from this experiment, we can say that whereas average clus-
tering had some difficulties in distinguishing between fake and arxiv papers,
Ward clustering did not have any problems. The only effect of the discounting
factor we could see was in identifying similar arxiv papers. We believe that
one reason for the inconclusiveness of the dendrograms with average cluster-
ing is the huge variety of the arxiv corpus. Whereas the genuine corpus of the
first experiment included only papers from the verification sub-field of theoret-
ical computer science, the arxiv corpus is comprised of papers from a diverse
selection of research areas within computer science, including robotics, network
detection, computational geometry, constraint programming, numerical simula-
tion and many others. Hence, the intra-corpus variation in the arxiv corpus
hides the inter-corpus variations.

5 Conclusion and Further Work

We believe we have collected enough evidence that our global inter-textual dis-
tance provides an interesting alternative, or supplement, to the standard 1-gram
distance. In our experiments, we have seen that measuring inter-textual distance
with high discounting factor enables us to better differentiate between similar
and dissimilar texts. More experiments will be needed to identify areas where
our global matching provides advantages over pure 1-gram matching.

With regard to identifying fake scientific papers, we remark that, according
to [17], “[u]sing [the 1-gram distance] to detect SCIgen papers relies on the
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fact that [...] the SCIgen vocabulary remains quite poor”. Springer has recently
announced [30] that they will integrate “[a]n automatic SCIgen detection system
[...] in [their] submission check system”, but they also notice that the “intention
[of fake papers’ authors] seems to have been to increase their publication numbers
and [...] their standing in their respective disciplines and at their institutions”;
of course, auto-detecting SCIgen papers does not change these motivations. It is
thus reasonable to expect that generators of fake papers will get better, so that
also better tools will be needed to detect them. We propose that our phrase-based
distance may be such a tool.

There is room for much improvement in our distance definition. For once,
we perform no tagging of words which could identify different spellings or inflec-
tions of the same word. This could easily be achieved by, using for example the
Wordnet database3, replacing our binary distance between words in Eq. (1) with
a quantitative measure of word similarity. For the second, we take no considera-
tion of omitted words in a phrase; our position match calculation in Eq. (2) can-
not see when two phrases become one-off like in “the quick brown fox jumps...”
vs. “the brown fox jumps...”.

Our inter-textual distance is inspired by our work in [6–8] and other papers,
where we define distances between arbitrary transition systems. Now a text is a
very simple transition system, but so is a text with “one-off jumps” like the one
above. Similarly, we can incorporate swapping of words into our distance, so that
we would be computing a kind of discounted Damerau-Levenshtein distance [4]
(related approaches, generally without discounting, are used for sequence align-
ment in bioinformatics [21,29]). We have integrated this approach in an experi-
mental version of our textdist tool.
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Abstract. The automatic processing of clinical documents created at
clinical settings has become a focus of research in natural language
processing. However, standard tools developed for general texts are not
applicable or perform poorly on this type of documents. Moreover, sev-
eral crucial tasks require lexical resources and relational thesauri or
ontologies to identify relevant concepts and their connections. In the
case of less-resourced languages, such as Hungarian, there are no such
lexicons available. The construction of annotated data and their organi-
zation requires human expert work. In this paper we show how applying
statistical methods can result in a preprocessed, semi-structured trans-
formation of the raw documents that can be used to aid human work.
The modules detect and resolve abbreviations, identify multiword terms
and derive their similarity, all based on the corpus itself.

Keywords: Clinical text processing · Abbreviations · Multiword terms ·
Distributional similarity · Less-resourced languages · Unsupervised
methods

1 Introduction

Clinical records are documents created at clinical settings with the purpose of
documenting every-day clinical cases or treatments. The quality of this type
of text stays far behind that of biomedical texts, which are also the object of
several studies. Biomedical texts, mainly written in English, are the ones that
are published in scientific journals, books, proceedings, etc. These are written
in the standard language, in accordance with orthographic rules [11,16]. On
the contrary, clinical records are created as unstructured texts without using
any proofing tools, resulting in texts full of spelling errors and nonstandard use
of word forms in a language that is usually a mixture of the local language
(Hungarian in our case) and Latin [18,19]. These texts are also characterized by
a high ratio of abbreviated forms, most of them used in an arbitrary manner.
Moreover, in many cases, full statements are written in a special notational
c© Springer International Publishing Switzerland 2014
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language [1] that is often used in clinical settings, consisting only, or mostly of
abbreviated forms.

Another characteristics of clinical records is that the target readers are usu-
ally the doctors themselves, thus using their own unique language and notational
habits is not perceived to cause any loss in the information to be stored and
retrieved. However, beyond the primary aim of recording patient history, these
documents contain much more information which, if extracted, could be useful
for other fields of medicine as well. In order to access this implicit knowledge, an
efficient representation of the facts and statements recorded in the texts should
be created.

Several attempts have been made to apply general text processing tools to
clinical notes, but their performance is much worse on these special texts, than
on general, well-formed documents (e.g. see [15]). Moreover, applications used
for processing domain-specific texts are usually supported by some hand-made
lexical resources, such as ontologies or vocabularies. In the case of less-resourced
languages, there are very few such datasets and their construction needs quite an
amount of human work. Furthermore, as facts and statements in clinical records
are from a narrow domain, applications of the sublanguage theory [8] have been
used in similar approaches, which also requires a domain-specific categorization
of words of the specific sublanguage [7,9,16].

In order to be able to support the adaptation of existing tools, and the build-
ing of structured resources, we examined a corpus of Hungarian ophthalmology
notes. In this study, statistical methods are applied to the corpus in order to
capture as much information as possible based on the raw data. Even though
the results of each module are not robust representations of the underlying infor-
mation, these groups of semi-structured data can be used in the real construction
process.

In this paper, these preprocessing methods are applied to a Hungarian corpus
of ophthalmology notes. The core of each module is based on statistical obser-
vations from the corpus itself, augmented by some linguistic rules or resources
at just a very few points. First, we describe the clinical corpus and compare it
to a general Hungarian corpus along several aspects in Sect. 2. Then, in Sect. 3
the applied methods are described. Finally, the results of the transformation are
presented, which is followed by some concluding thoughts.

2 The Corpus

In this research, anonymized clinical documents from the ophthalmology depart-
ment of a Hungarian clinic were used. This corpus contains 334 546 tokens (34 432
sentences). The models were built using this set, and tested on another set of
documents, which contained 5 599 tokens (693 sentences). The state of the cor-
pus before processing was a structured high-level xml as described in [19]. It was
also segmented into sentences and tokens and pos-tagged applying the methods
described in [14,15]. Though such preprocessing tasks are considered to be solved
for most languages in the case of general texts, they perform significantly worse
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in the case of clinical documents as discussed in the aforementioned publications.
Still, this level of preprocessing was unavoidable.

When our clinical notes are compared to a general Hungarian corpus, we
find reasonable differences between the two domains. This explains some of the
difficulties that prevent tools developed for general texts working in the clinical
domain. These differences are not only present in the semantics of the content,
but in the syntax and even in the surface form of the texts and fall into three
main categories discussed in the following subsections. The corpus used in the
comparison as general text was the Szeged Corpus [4], containing 1 194 348 tokens
(70 990 sentences) and the statistics related to this corpus was taken from [20].

2.1 Syntactic Behaviour

The length of the sentences used in a language reflects the complexity of the
syntactic behaviour of utterances. In the general corpus, the average length of
sentences is 16.82 tokens, while in the clinical corpus it is 9.7. Doctors tend to
use shorter and rather incomplete and compact statements. This habit makes
the creation of the notes faster, but the high frequency of ellipsis of crucial
grammatical constituents makes most parsers fail when trying to process them.

Regarding the distribution of part-of-speech (pos) in the two domains, there
are also significant differences. While in the general corpus, the three most
frequent types are nouns, verbs and adjectives, in the clinical domain nouns are
followed by adjectives and numbers in the frequency ranking, while the number
of verbs in this corpus is just one third of the number of the latter two. Another
significant difference is that in the clinical domain, determiners, conjunctions,
and pronouns are also ranked lower in the frequency list. These occurrence ratios
are not surprising, since a significant portion of clinical documents record a
statement (something has a property, which is expressed in Hungarian with a
phrase containing only a noun and an adjective), or the result of an examination
(the value of something is some amount, i.e. a noun and a number). Furthermore,
most of the numbers in the clinical corpus are numerical data. Table 1 shows the
detailed statistics and ranking of pos tags in the two corpora.

Table 1. The distribution and ranking of part-of-speech in the clinical corpus (CLIN)
and the general Szeged Corpus (SZEG)

NOUN ADJ NUM VERB ADV PRN DET POSTP CONJ

CLIN 43,02 % 13,87 % 12,33 % 3,88 % 2,47 % 2,21 % 2,12 % 1,03 % 0,87 %

SZEG 21,96 % 9,48 % 2,46 % 9,55 % 7,60 % 3,85 % 9,39 % 1,24 % 5,58 %

NOUN ADJ NUM VERB ADV PRN DET POSTP CONJ

CLIN 1 2 3 4 5 6 7 8 9

SZEG 1 3 8 2 5 7 4 9 6
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2.2 Spelling Errors

Clinical documents are usually created in a rush without proofreading. The
medical records creation and archival tools used at most Hungarian hospitals
provide no proofing or structuring tools. Thus, the number of spelling errors
is very high, and a wide variety of error types occur [18]. These errors are not
only due to the complexity of the Hungarian language and orthography, but also
to characteristics typical of the medical domain and the situation in which the
documents are created. The most frequent types of errors are the following:

– mistyping, accidentally swapping letters, inserting extra letters or just missing
some,

– lack or improper use of punctuation (e.g. no sign of sentence boundaries,
missing commas, no space between punctuation and the neighboring words),

– grammatical errors,
– sentence fragments,
– domain-specific and often ad hoc abbreviations, which usually do not corre-

spond to any standard
– Latin medical terminology not conforming to orthographical standards.

A common characteristic of these phenomena is that the prevailing errors
vary with the doctor or assistant typing the text. Thus it can occur that a cer-
tain word is mistyped and should be corrected in one document while the same
word is a specific abbreviation in another one, which does not correspond to
the same concept as the corrected one. Latin medical terms usually have two
standard forms, one based on Latin and another based on Hungarian orthogra-
phy, however what we find in the documents is often an inconsistent mixture of
the two (e.g. tensio/tenzio/tensió/tenzió). Even though the spelling of these
forms is standardized, doctors tend to develop their own customs which they use
inconsistently.

The ratio of misspelled words is 0.27 % in the general Hungarian texts in
the Szeged Corpus, while it is 8.44 % in the clinical notes. Moreover, the general
corpus has several subcorpora, including one of primary school essays, which still
has only an 0.87 % error rate.

2.3 Abbreviations and Word Forms

The use of a kind of notational text is very common in clinical documents.
This dense form of documentation contains a high ratio of standard or arbitrary
abbreviations and symbols, some of which may be specific to a special domain
or even to a doctor or administrator. These short forms might refer to clinically
relevant concepts or to some common phrases that are very frequent in the
specific domain. For the clinicians, the meaning of these common phrases is as
trivial as the standard shortened forms of clinical concepts due to their expertise
and familiarity with the context. The difference in the ratio of abbreviations in
the general and clinical corpora is also significant, being 0.08 % in the Szeged
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Corpus, while 7.15 % in the clinical corpus, which means that the frequency of
abbreviations is two orders of magnitude larger in clinical documents than in
general language.

3 Applied Methods

In this section, three methods are described which are later combined in order
to provide a semi-structured overview of a clinical record. The first module is
responsible for resolving abbreviations and acronyms in the texts. The second
one extracts multiword term candidates from the document and ranks them
according to the proposed metric. The last one assigns similarity measures to
pairs of words, which is in our case applied to the multiword terms. In all of the
three modules, the emphasis is put on statistical characteristics of the corpus.

3.1 Resolving Abbreviations

The task of abbreviation resolution is often treated as word sense disambiguation
(WSD) [13]. The best-performing approaches of WSD use supervised machine
learning techniques. In the case of less-resourced languages, however, neither
manually annotated data, nor an inventory of possible senses of abbreviations is
available, which are prerequisites of supervised algorithms [12]. On the other
hand, unsupervised WSD methods are composed of two phases: word sense
induction (WSI) must precede the disambiguation process. Possible senses for
words or abbreviations can be induced from a corpus based on contextual fea-
tures. However, such methods require large corpora to work properly, especially
if the ratio of ambiguous terms and abbreviations is as high as in the case of
clinical texts. Due to confidentiality issues and quality problems, this approach
is not promising either.

Thus, in this research, a corpus-based approach was applied for the resolution
of abbreviations with using the very few lexical resources available in Hungarian.
Even though the first approach was based on the corpus itself, it did not pro-
vide acceptable results, thus the construction of a domain-specific lexicon was
unavoidable. But, instead of trying to create huge resources covering the whole
field of medical expressions, it was shown in [2] that a small domain-specific
lexicon is satisfactory, and the abbreviations to be included can be derived from
the corpus itself.

Having this lexicon and the abbreviated tokens detected, the resolution was
based on series of abbreviations. Even though standalone abbreviated tokens are
highly ambiguous, they more frequently occur as members of multiword abbre-
viated phrases, in which they are usually easier to interpret unambiguously. For
example o. could stand for any word either in Hungarian or in Latin, starting
with the letter o, even if limited to the medical domain. However, in the oph-
thalmology reports, o. is barely used by itself, but together with a laterality
indicator, i.e. in forms such as o. s., o. d., or o. u. meaning oculus sinister ‘left
eye’, oculus dexter ‘right eye’, or oculi utriusque ‘both eyes’, respectively. In such
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contexts, the meaning of the abbreviated o. is unambiguous. It should be noted,
that these are not the only representations for these abbreviated phrases, for
example oculus sinister is also abbreviated as o. sin., os, OS, etc. Thus, when
performing the resolution of abbreviations, we considered series of such short-
ened forms instead of single tokens. A series is defined as a continuous sequence
of shortened forms without any unabbreviated word breaking the sequence.

Moreover, in order to save mixed phrases (when only some parts of a multi-
word phrase is abbreviated) and to keep the information relevant for the reso-
lution of multiword abbreviations, the context of a certain length was attached
to the detected series. Beside completing such mixed phrases, the context also
plays a role in the process of disambiguation. The meaning (i.e. the resolution)
of abbreviations of the same surface form might vary in different contexts.

These abbreviation series are then matched against the corpus, looking for
resolution candidates, and only unresolved fragments are completed based on
searching in the lexicon. The details of the algorithm and the results are pub-
lished in [2,17]. It is shown there that having the corpus as the primary source is
though insufficient, but provides more adequate resolutions in the actual domain,
resulting in a performance of 96.5 % f-measure in the case of abbreviation detec-
tion and 80.88 % f-measure when resolving abbreviations of any length, while
88.05 % for abbreviation series of more than one token.

3.2 Extracting Multiword Terms

In the clinical language (or in any other domain-specific or technical language),
there are certain multiword terms that express a single concept. These are impor-
tant to be recognized, because a disease, a treatment, a part of the body, or other
relevant information can be in such a form. Moreover, these terms in the clinical
reports could not be covered by a standard lexicon. For example, the word eye is
a part of the body, but by itself it does not say too much about the actual case.
Thus, in this domain the terms left eye, right eye or both eyes are single terms,
referring to the exact target of the event the note is about. Moreover, the word
eye seldom occurs in the corpus without a modifier. This would indicate the
need to use some common method for collocation identification, e.g. one based
on mutual information or another association measure. After a review of such
methods, in [6] a c-value approach is described for multiword term extraction,
emphasising the recognition of nested terms.

We used a modified version of this c-value algorithm. First, a linguistic filter
is applied in order to ensure that the resulting list of terms contains only well-
formed phrases. Phrases of the following forms were allowed:

(Noun|Adjective|PresentParticiple|Past(passive)Participle)+Noun

This pattern ensures that only noun phrases are extracted and excludes frag-
ments of frequent cooccurrences. It should be noted that other types of phrases,
such as verb phrases, might be relevant as well, however, as described in Sect. 2.1,
the ratio of verbs is much lower in the clinical corpus, than in a general one. Thus,
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having only a relatively small corpus of this domain, statistical methods would
be inefficient to build accurate models.

After collecting all n-grams matching this pattern, the corresponding c-value
is calculated for each of them, which is an indicator of the termhood of a
phrase. The c-value is based on four components: the frequency of the candi-
date phrase; the frequency of the candidate phrase as a subphrase of a longer
one; the number of these longer phrases; and the length of the candidate phrase.
These statistics are derived from the whole corpus of clinical notes. The details
of the algorithm are found in [6].

3.3 Distributional Semantic Models

Creating groups of relevant terms in the corpus requires a similarity metric
measuring the closeness of two terms. Instead of using an ontology for retrieving
similarity relations between words, the unsupervised method of distributional
semantics was applied. Thus, the similarity of terms is based on the way they
are used in the specific corpus.

The theory behind distributional semantics is that semantically similar words
tend to occur in similar contexts [5] i.e. the similarity of two concepts is deter-
mined by their shared contexts. The context of a word is represented as a set of
features, each feature consisting of a relation (r) and the related word (w′). In
other studies these relations are usually grammatical relations, however in the
case of clinical texts, the grammatical analysis performs poorly, resulting in a
rather noisy model. In [3], Carroll et al. suggest using only the occurrences of
surface word forms within a small window around the target word as features.
In this research, a mixture of these ideas was used by applying the following
relations to determine the features for a certain word:

– prev 1: the previous word
– prev w: words preceding the target word within a distance of 2 to 4
– next 1: the following word
– next w: words following the target word within a distance of 2 to 4
– pos: the part-of-speech tag of the actual word
– prev pos: the part-of-speech tag of the preceding word
– next pos: the part-of-speech tag of the following word

Each feature is associated with a frequency determined from the corpus. From
these frequencies the amount of information contained in a tuple of (w, r, w′)
can be computed by using maximum likelihood estimation. This is equal to the
mutual information between w and w′. Then, to determine the similarity between
two words (w1 and w2) the similarity measure described in [10] was used, i.e.:

∑
(r,w)∈T (w1)

⋂
T (w2)

(I(w1, r, w) + I(w2, r, w))
∑

(r,w)∈T (w1)
I(w1, r, w) +

∑
(r,w)∈T (w2)

I(w2, r, w)

where T(w) is the set of pairs (r, w′) such that I(w, r, w′) is positive.
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Having this metric, the pairwise distributional similarity of any two terms
can be counted. Though in theory it could be applied to any two words, it does
not make sense to compare a verb to a noun or an adjective, or vice versa.
This makes the comparison of multiword terms a more complex task. However,
as in the present state of this research, these terms are defined as nouns with
some modifiers, they fall into the category of nouns. Thus, the similarity of these
multiword terms corresponds to the similarity of the last noun in the phrase.

4 Results

The aim of this research was to create a transformation of clinical documents into
a semi-structured form to aid the construction of hand-made resources and the
annotation of clinical texts. Thus, the results of each module were to be presented
in various formats for human judgement. For a set of randomly selected docu-
ments taken one by one, the modules described above were applied. First, abbre-
viations were detected, collected and resolved. The resolutions were expanded
with Latin and Hungarian variants as well. Then, multiword terms were iden-
tified and ranked for each document by the corresponding c-value. Finally, the
pairwise similarity values for these terms were displayed in a heatmap and by
listing the groups of the most similar terms.

An example for a processed document is shown in Fig. 1. The similarity
of terms reveals that tiszta törőközeg, ‘clean refractive media’ and békés elülső
szegmentum, ‘calm anterior segment’ behave very much alike, while they are
different from bal szem, ‘left eye’. This differentiation could indicate two types
of annotation or two clusters of these three terms in this small example. These
clusters can then be populated from more related terms extracted from other
documents as well. Moreover, standalone words (nouns in our case) can be added
to these clusters, when they are not part of any longer terms.

Other reasonable clusters that arise during the processing are ones that col-
lect measurement units, such as d sph and d cyl. These terms appear as abbre-
viations as well in such documents, thus their resolution can also be linked to
the cluster. Names of diseases are also grouped automatically, such as asteroid
hyalosis and cat. incip. which are found in the same document. Note that the
term cat. incip. is also an abbreviated form and is correctly recognized by both
the multiword term extractor as a single term, and the abbreviation resolver,
which generated the correct resolution as cataracta inicipiens. Another phenom-
enon that can be observed is the collection of word form or even phrase form
variants, such as misspelled forms.

Being presented with such preprocessed, semi-structured transformation of
the raw documents, human experts are more willing to complete the annotation.
For example, if a group of semantically related terms are collected (such as
diseases, treatments, etc.), the human annotator can just name the group and the
label will be assigned to all items. Moreover, similarity values of looser relations
can also be used as an initial setting when building a relational thesaurus.
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eulav-cnoitalsnarthsilgnEmreT

’eyetfel‘mezslab 2431.708
ép papilla ‘intact papilla’ 1172.0

gezökőrötatzsit ‘clean refractive media’ 373.0
mutnemgezsőslülesékéb ‘calm anterior segment’ 160.08

sulopóstáh ‘posterior pole’ 47.5
sélürésapmot ‘faint damage’ 12.0

noitalsnarthsilgnEsnoituloseRnoitaiverbbA

mydr mydrum mydrum
mksz mindkét szem; oculi utriusque both eyes
V visus visus
D dioptria dioptre
mou tajjusavlolőrretém reads fingers from meters of

jnü tı́vajmengevü glasses do not help
o. u oculi utriusque; mindkét szem both eyes
F szemfenék; fundus oculi; fundus fundus
j.o. jobb oldal right side

Fig. 1. A fraction of a processed document with some examples of multiword terms,
resolved abbreviations and the heatmap of the similarities between terms in the actual
document. The lighter a square is, the more similar the two terms are.
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5 Conclusion

Clinical documents represent a sublanguage regarding both the content and
the language used to record them. However, one of the main characteristics
of these texts is the high ratio of noise due to misspellings, abbreviations and
incomplete syntactic structures. It has been shown that for a less-resourced lan-
guage, such as Hungarian, there is a lack of lexical resources, which are used in
similar studies to identify relevant concepts and relations for other languages.
Thus, such lexicons should be built manually by human experts. However, an
initial preprocessed transformation of the raw documents makes the task more
efficient. Due to the availability of efficient implementations, statistical meth-
ods can be applied to a wide variety of text processing tasks. That is why, in
this paper, we have shown that corpus-based approaches (augmented with some
linguistic restrictions) perform well on abbreviation resolution, multiword term
extraction and distributional similarity measures. Applying such methods can
result in a semi-structured representation of clinical documents, appropriate for
further human analyses.
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Abstract. Online health fora are increasingly visited by patients to get help and
information related to their health. However, these fora are not limited to
patients: a significant number of health professionals actively participate in
many discussions. As experts their posted information are very important since,
they are able to well explain the problems, the symptoms, correct false affir-
mations and give useful advices, etc. For someone interested in trusty medical
information, obtaining only these kinds of posts can be very useful and infor-
mative. Unfortunately, extracting such knowledge needs to navigate over the
fora in order to evaluate the information. Navigation and selection are time
consuming, tedious, difficult and error-prone activities when done manually. It is
thus important to propose a new method for automatically categorize informa-
tion proposed both by non-experts as well as by professionals in online health
fora. In this paper, we propose to use a supervised approach to evaluate what are
the most representative components of a post considering vocabularies, uncer-
tainty markers, emotions, misspellings and interrogative forms to perform effi-
ciently this categorization. Experiments have been conducted on two real fora
and shown that our approach is efficient for extracting posts done by
professionals.

Keywords: Text categorization � Text mining � Online health fora

1 Introduction

The Text Mining and Natural Language Processing communities have extensively
investigated the huge amount of data on online health fora for different purposes, such
as: classifying lay requests to an internal medical expert [1], assisting moderators on
online health fora [2], identifying sentiments and emotions [3], identifying the targets
of the emotions [4], etc. Indeed, online health fora are increasingly visited by both sick
and healthy users to get help and information related to their health [2]. However, these
fora are not limited to non-health professional users. More and more frequently, sig-
nificant number of medical experts is involved in online discussions. For example,
many websites, also called “Ask the doctor” services, allow non-health expert users to
interact with medical experts [1].

For users searching medical information in online health fora, it may be interesting
to automatically distinguish between posts made by health professionals and those
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made by lay men. For instance, users may be more interested by posts made by health
professionals, who should give more precise and trustier answers. Some medical
websites hire health experts and indicate explicitly their health role. The main purpose
of this study is to use such websites to build classification models that can be used to
predict roles of users (medical experts vs patients) on websites while this information is
not explicitly indicated. Indeed, according to personal indications we obtained, medical
experts confirmed that they usually post messages to help non health professional users
online, although their medical expert role may not be indicated.

Health professional and non-health professional posts present some differences that
are related, for instance, to the used vocabulary, to the practice of subjectivity markers
(emotion and uncertainty) and to the nature and the quality of the produced text
(question forms and misspellings). We assume that health professionals may use a
different vocabulary by comparison with non-health professionals. Then, lay men may
show their emotions more easily than health experts, for example to express their
sadness due to their illness: the pain was so bad, etc., while health professionals may
use more uncertainty words, for example to make an uncertain diagnosis: you may have
an arteritis, etc. Finally, non-health professionals may ask more questions and make
more misspellings. In our work, we propose to consider these differences to evaluate
what are the most representative components of a forum post to perform efficiently
medical role categorization in online health fora.

Several studies have been proposed for user profiling [5] as well as the studies
proposed for the identification of user roles on social media [6, 7], etc. but less works
are concerned with the identification of medical roles. Among the works done to
automatically categorize the discourse of doctors and the discourse of patients,
Chauveau-Thoumelin and Grabar [8] have proposed to use subjectivity markers
(emotions and uncertainty markers) in a supervised approach. The discourse of doctors
was obtained from scientific papers and clinical reports, while the discourse of patients
was obtained from fora posts. The results obtained by the Random Forests algorithm
[9] showed high F-scores (from 0.91 to 0.95 for bi-class classification and from 0.88 to
0.90 for tri-class classification). A medical consultations transcriptions corpus has been
used by Tanguy et al. [10]. Using linguistic and statistical techniques, the authors have
highlighted some characteristics (for example the length of the discourse, the used
vocabulary, the gender, the proportion of questions, etc.) that can be interesting for
improving our categorization task.

The rest of this paper is organized as follows: Sect. 2 presents two fora that have
been used for evaluating the most significant components of a post. Section 3 intro-
duces our categorization method. Section 4 presents the results obtained and a dis-
cussion is proposed in Sect. 5. Finally, Sect. 6 concludes and proposes future work.

2 Studied Corpora

Two French corpora from two different fora have been collected and cleaned as
described below.
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2.1 Data Collection

Posts from two French websites have been collected.

AlloDocteurs. AlloDocteur is a French health forum with more than 16,000 posts1

covering a large number of topics related to health issues like potentially dangerous
medicines, alcoholism, diseases, pregnancy, and sexuality. The forum contains two
categories of users: health professional users and non-health professional users. The
health professional category may include professional physicians or medical students.
Even if their number is limited (16 health professional users are indicated to participate
in the forum discussions), their participation in the forum exchanges is important.
Indeed, they posted more than 3,000 posts among the 16,000 collected.

MaSanteNet. MaSanteNet is an online ‘ask the doctor service’ subject to charges, that
allows users to ask one or more questions to two doctors. The range of topics covered is
also large. Users can ask questions on more than 20 different topics such as nutrition,
dermatology, and pregnancy. All the questions published on the website have answers.
More than 12,000 posts2 have been collected from this website equitably divided
between patient questions and doctor answers.

2.2 Data Cleaning

Once the two corpora collected, a cleaning step has been applied in order to improve
their quality. First, all posts containing quotes have been filtered out. Indeed, some
health professionals repeat the questions before answering them, which may introduce
patient statements into health professional posts. Furthermore, all pieces of texts such
as author signatures and date of the last modification have been deleted. Finally, posts
with less than 10 words have been considered as irrelevant and therefore removed.

2.3 Data Preparation

After this cleaning step, we obtained two datasets with more or less balanced data from
health professional posts and non-health professional posts.

Table 1 shows that the first corpus has fewer posts than the second (about 4,400
posts from AlloDocteurs and about 12,000 posts from MaSanteNet) but more words
per post (on average 85 words per post of AlloDocteurs and 57 words per post of
MaSanteNet). It also shows that in both datasets non-health professional posts are
longer than health professional posts.

3 Methods

The proposed and implemented method consists in three main steps: annotation, pre-
processing and classification.

1 www.allodocteurs.fr/forum-rubrique.asp [collected on: 19-11-2013].
2 www.masantenet.com/questions.php [collected on: 18-02-2014].
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3.1 Annotation

The Ogmios platform [11] was used to perform the following annotations:

Medical Concepts. Terms belonging to three semantic types (diseases, treatments and
procedures) have been detected as medical concepts using the following medical ter-
minologies and classifications:

• The Systematized Nomenclature of Human and Veterinary Medicine3

• The Thériaque database4

• The Unified Medical Language System5

• The list of authorized medication that can be marketed in France.

Two lists of all medical terms detected in each corpus have been extracted for a
later use.

Emotions. A French emotion lexicon [12], containing about 1,200 words, was used to
annotate adjectives, verbs and nouns conveying emotions (joy, sadness, anger, fear,
surprise, etc.). In addition to this lexicon, some non-lexical expressions of emotions,
such as repeated letters, repeated punctuation signs, smileys, slang and capital letters,
have been detected and annotated with specifically designed regular expressions.

Uncertainty. A set of 101 uncertainty words, built in previous study [7], has been used
to annotate verbs, nouns, adjectives and even adverbs conveying uncertainty meaning
in our corpus.

3.2 Pre-processing

As observed by Balahur [13], fora posts have several linguistic peculiarities that may
influence the classification performance. For this reason the following pre-processing
steps have been applied:

Table 1. The number of words and the number of posts in the two datasets

AlloDocteurs MaSanteNet
Health
professionals

Non health
professionals

Health
professionals

Non health
professionals

Number of words 147,419 222,463 233,565 452,453
Number of posts 2,193 2,179 5,876 6,136
Mean words/posts 67 102 40 74

3 www.ihtsdo.org/snomed-ct [last access: 06-05-2014].
4 www.theriaque.org [last access: 06-05-2014].
5 www.nlm.nih.gov/research/umls [last access: 06-05-2014].
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Slang Replacement. Some expressions are frequently used in Social Media (“lol”).
They have been replaced by the corresponding standard text (“lot of laugh”).

Replacement of User Tags. All user tags have been identified in our corpora and
replaced by the word “Tag” (for example “@Laurie…” becomes “Tag Laurie …”).

Hyperlinks and Email Addresses. All the hypertext links have been replaced by the
word “link” and all the email addresses have been replaced by the word “mail”.

Health Pseudonyms. The health professional pseudonyms, previously extracted from
each website, are used to replace these pseudonyms in posts by the word “fdoctor”.
Similarly, pseudonyms of non-health professionals have been extracted and used for
their replacement by the word “fpatient”.

Lowercasing and Spelling Correction. All words have been lowercased and pro-
cessed with the spell checker Aspell.6 The default Aspell French dictionary was
expanded with medical words extracted from our corpora during the annotation step.
The number of misspellings has been computed for each post and used as attribute for
the classification.

3.3 Classification

Supervised classifications to categorize health professional and non-health professional
posts have been done as follows.

Descriptors Used. In order to detect the most discriminative features for our classi-
fication task, the number of occurrences of medical concepts, emotions, uncertainty
markers, misspellings and question marks have been calculated in both health and non-
health professional posts for the two websites processed.

From Table 2, we can note that medical words are used massively by both health
and non-health professionals and that there is no significant difference between the two

Table 2. The number of occurrences of each feature group in both health and non-health
professional posts for the two websites

AlloDocteurs MaSanteNet
Health
professionals

Non-health
professionals

Health
professionals

Non-health
professionals

Medical concepts 8,924 8,888 21,690 22,921
Emotions (EM) 554 2,137 865 2,962
Uncertainty markers (UM) 5,561 3,871 8,449 7,356
Misspellings (MI) 3,828 12,921 11,529 22,137
Question marks (QM) 560 2,594 509 16,991

6 www.aspell.net [last access: 06-05-2014].
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categories of users. Nevertheless, the other descriptors indicate that there is difference
between these two kinds of users. Non-health professionals express their emotions
more frequently than health professionals. Uncertainty markers are slightly more fre-
quent in health professional posts. And as expected, there are also more misspellings
and question marks in non-health professional posts.

According to these observations, emotions, uncertainty markers, misspellings and
question marks have been chosen as descriptors in our classification task. For each
feature, we compute the number of occurrences normalized by the corresponding post
length. The length of each post corresponds to the number of words it contains.

In addition to the four features presented before, word ngrams have been consid-
ered. The following process has been applied to each corpus: First, all unigrams
(words) and bigrams (two words sequences) that appear at least two times are extracted.
Then, the number of occurrences of each considered ngram is computed for every post.
This number is also normalized by the corresponding post length (number of words)
and weighted by its tf-idf score (term frequency * inverse document frequency) [14].
Finally, ngrams obtained from the first corpus have been also used on the second
corpus and those obtained from the second have been used on the first, which allowed
us to test models learned on posts provided by one corpus with the posts from the other
corpus. All these treatments were performed with the “StringToWordVector” filter
from the Weka platform [15].

Feature Selection. A feature selection step has been applied to select the most dis-
criminant features: those that frequently appear in one category of posts but not in the
other one. Therefore, the selected features should characterize one category of users as
compared to the other category. Another filter algorithm from the Weka platform,
named “InfoGainAttributeEval”, has been used to perform the selection. The gain of
each attribute on the classification task has been computed and features that have
negative gain (i.e. those that don’t improve the classification) have been removed.
Table 3 indicates most discriminant ngrams (those that had the best gain scores) for
each category in the two datasets.7

Table 3. Most discriminant unigrams and bigrams for the two categories of users in AlloDocteurs
and in MaSanteNet

AlloDocteurs MaSanteNet
Non-health
professionals

Health
professionals

Non-health
professionals

Health
professionals

Unigrams (U) I, am, thanks,
me, have,
my

Cordially, hello,
you, can

Am, I, thanks,
hello, my

Fpatient, must,
good, cordially,
have

Bigrams (B) I am, I have,
thanks,
my, that I

Your doctor,
cordially,
fdoctor, can
you

I am, I have,
thanks,
that I, is it

Cordially, you
must, you have,
fpatient you

7 For readability reasons, ngrams have been translated from French to English.
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Table 3 shows that each group uses a specific vocabulary, which is almost the same
in both websites. Non-health professionals use the first person singular pronouns
(I, my) while health professionals use the second person pronouns (you, your), which
makes sense because the subject of the talk is often the patient and his illness. Besides,
non-health professionals show their acknowledgment (thanks) while health profes-
sionals prefer using a more formal discourse (cordially).

Evaluation. Four classification algorithms implemented inWeka have been used to test
our approach: SVM SMO [16], Naive Bayes [17], Random Forest [9], JRip [18]. For
each algorithm, Weighted F-scores are computed with different combinations of fea-
tures. F-score measures the accuracy of a class; it combines both precision and recall.
Usually, it is computed as the harmonic mean of the precision and the recall of the
class. Weighted F-score is the mean of all class F-scores weighted by the proportion of
elements in each class.

4 Results

Four experiments have been tested: (1) 10-fold cross validation [19] on AlloDocteurs,
(2) 10-fold cross validation on MaSanteNet, (3) AlloDocteurs as train set and MaS-
anteNet as test set and finally (4) MaSanteNet as train set and AlloDocteurs as test set.

4.1 10-Fold Cross Validation on AlloDocteurs

See Table 4.

Table 4. Weighted F-scores obtained with 10-fold cross validation on AlloDocteurs.

Feature group Number of
features

SVM
SMO

Naive
Bayes

Random
Forest

JRip

U 1,120 0.938 0.869 0.901 0.892
U + B 2,160 0.921 0.865 0.902 0.889
EM 1 0.565 0.529 0.564 0.609
UM 1 0.682 0.660 0.657 0.689
MI 1 0.636 0.601 0.641 0.653
QM 1 0.560 0.516 0.613 0.653
EM + UM + MI + QM 4 0.751 0.66 0.725 0.751
U + EM + UM + MI + QM 1,124 0.940 0.872 0.901 0.900
U + B+EM + UM + MI + QM 2,164 0.927 0.866 0.906 0.897
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4.2 10-Fold Cross Validation on MaSanteNet

See Table 5.

4.3 AlloDocteurs as Train Set and MaSanteNet as Test Set

See Table 6.

Table 5. Weighted F-scores obtained with 10-fold cross validation on MaSanteNet.

Feature group Number of
features

SVM
SMO

Naive
Bayes

Random
Forest

JRip

U 3,096 1.000 0.935 0.999 1.000
U + B 4,567 1.000 0.949 1.000 1.000
EM 1 0.503 0.495 0.542 0.558
UM 1 0.678 0.653 0.690 0.680
MI 1 0.438 0.648 0.739 0.686
QM 1 0.748 0.715 0.773 0.773
EM + UM + MI + QM 4 0.761 0.741 0.858 0.851
U + EM + UM + MI + QM 3,100 1.000 0.942 0.999 1.000
U + B+EM + UM + MI + QM 4,571 1.000 0.953 1.000 0.999

Table 6. Weighted F-scores obtained by consideringAlloDocteurs as train set andMaSanteNet
as test set

Feature group Number of
features

SVM
SMO

Naive
Bayes

Random
Forest

JRip

U 1,120 0.948 0.862 0.938 0.960
U + B 2,160 0.940 0.914 0.938 0.970
EM 1 0.558 0.460 0.504 0.558
UM 1 0.679 0.665 0.654 0.681
MI 1 0.436 0.453 0.44 0.371
QM 1 0.773 0.608 0.720 0.773
EM + UM + MI + QM 4 0.677 0.605 0.679 0.705
U + EM + UM+ MI + QM 1,124 0.930 0.866 0.946 0.975
U + B+EM + UM + MI + QM 2,164 0.954 0.915 0.970 0.961
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4.4 MaSanteNet as Train Set and AlloDocteurs as Test Set

See Table 7.

5 Discussion

Globally, the cross validations on both websites processed shows good results. First,
the use of ngrams shows high F-scores (between 0.865 and 0.938 obtained on Allo-
Docteurs and between 0.935 and 1 obtained on MaSanteNet) comparing to the use of
emotions, uncertainty markers, misspellings and question marks which shows low and
medium F-scores (between 0.516 and 0.751 obtained on AlloDocteurs and between
0.438 and 0.858 obtained on MaSanteNet). The combination of ngrams with the rest of
the features increases slightly the classification performances (between 0.866 and 0.94
obtained on AlloDocteurs and between 0.942 and 1 obtained on MaSanteNet). This
increase is so small (between 0.001 and 0.008) that it tends to be statistically
insignificant.

The models learned on AlloDocteurs and tested on MaSanteNet shows similar
results. Ngrams show high F-scores (between 0.862 and 0.97) while emotions,
uncertainty markers, misspellings and question marks show low F-scores (between
0.371 and 0.773). The combination of all features doesn’t improve the classification
performances or improves them very little (F-scores obtained by considering all the
features are between 0.866 and 0.97). These results tend to confirm the hypothesis
according to which the models learned on one website can be efficiently used on other
websites.

The models learned on MaSanteNet and tested on AlloDocteurs gives the worst
results. Ngrams show low and medium F-scores if we do not consider Naive Bayes
(between 0.334 and 0.615), but high F-scores using Naïve Bayes (between 0.816 and
0.841). Similarly, the results obtained with emotions, uncertainty markers, misspellings
and question marks show low F-scores if we do not consider Naive Bayes (between

Table 7. Weighted F-scores obtained by consideringMaSanteNet as train set and AlloDocteurs
as test set

Feature group Number of
features

SVM
SMO

Naive
Bayes

Random
Forest

JRip

U 3,096 0.559 0.816 0.615 0.334
U + B 4,567 0.421 0.841 0.599 0.335
EM 1 0.610 0.555 0.579 0.610
UM 1 0.681 0.656 0.669 0.681
MI 1 0.313 0.438 0.490 0.440
QM 1 0.653 0.584 0.650 0.653
EM + UM + MI + QM 4 0.685 0.645 0.641 0.595
U + EM + UM + MI + QM 3,100 0.582 0.821 0.555 0.334
U + B+EM + UM + MI + QM 4,571 0.434 0.841 0.560 0.335
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0.371 and 0.685), low and medium using it (between 0.438 and 0.821). The combi-
nation of all features doesn’t improve the classification performances neither: the
F-scores obtained by considering all the features are between 0.334 and 0.841.

The difference between the two last experiments can be explained by the fact that the
first website is a forum, where 16 health professionals post messages in many threads.
This makes the discourse of medical users more extensive and diversified, so that
models learned on this website may cover the topics and medical discourse observed on
the other website: these models have more chances to identify medical professional
posts on other websites. On the other hand, the second website is an “Ask the doctor”
service where only two medical experts answers the questions. Moreover, their answers
are constrained and normalized, as they always answer in the same way. This makes the
discourse of medical experts extremely specific to this website: for this reason it appears
to be less adapted to learn language models that can be used on other data.

6 Conclusion and Perspectives

In this paper, we presented a supervised method that allows categorizing posts made by
health professionals and those made by non-health professionals. Several features have
been tested to perform the categorization: ngrams, emotions, uncertainty markers,
misspellings and question marks. The experiments indicate that ngrams are the most
efficient. The results indicate that models leaned on appropriate websites may be used
efficiently on other websites. Moreover, models learned on more general and varied
websites (like fora) where many health professionals are involved provide better data
for the learning step.

The results obtained are very encouraging but they can be improved. First, the filter
used in the feature selection step computes the gain of each feature independently from
the other features and doesn’t treat the case of redundancy between the features, which
may influence the results of some classification algorithms (such as: Naive Bayes)
which assume that the features are independent. Furthermore, we used a small French
emotion lexicon (containing about 1,200 words). A more comprehensive emotion
lexicon [20] is now under construction; we are translating and expanding to synonyms
the English emotion lexicon NRC [21] with the help of a professional translator. Up to
now, the new emotion lexicon contains more than 20,000 emotion words and we
expect it will become even more extensive. The spell checking can also be improved
either by considering grammar rules or by a more stringent human supervision of the
correction process which also implies that we may obtain a more correct number of
misspellings.

The question of detecting trustier and more precise posts in online health fora may
be addressed with different methods. Indeed, trust models tested on other social media
may be applied either by looking at the structure of the threads (computing scores
based on the number of quotes, the number of likes, the number of posts between each
post and its replies, etc.) [22, 23] or by inferring these information from the text [24].
In addition to these models, we plan to include the emotional reaction of users to a
specific post while computing the trust scores (for example posts arousing the anger of
the users).
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Finally, we are interested in other applications of Natural Language Processing and
Text Mining on online health fora. Currently, we are working on a recommendation
system that suggests appropriate topics where the user should post his message.
We exploit the content of the posts (title and body), the gender and the age of users, etc.
An additional descriptor may be related to the topics where the user has already posted
the messages: we assume it may improve the automatic system because the previous
preferences of the users may be indicative of his current interests.

Acknowledgement. This paper is based on studies supported by the “Maison des Sciences de
l’Homme de Montpellier” (MSH-M) within the framework of the French project “Patient’s
mind”.8
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Abstract. Discourse parsing for the Informal Mathematical Discourse
(IMD) has been a difficult task because of the lack of data sets, partly
because the Natural Language Processing (NLP) techniques must be
adapted to informality of IMD. In this paper, we present an end-to-end
discourse parser which is a sequential classifier of informal deductive
argumentations (IDA) for Spanish. We design a discourse parser using
sequence labeling based on CRFs (Conditional Random Fields). We use
the CRFs on lexical, syntactic and semantic features extracted from a
discursive corpus (MD-TreeBank: Mathematical Discourse TreeBank).
In this article, we describe a Penn Discourse TreeBank (PDTB) styled
End-to-End discourse parser into the Control Natural Languages (CNLs)
context. Discourse parsing is focused from a discourse low level perspec-
tive in which we identify the IDA connectives avoiding complex linguistic
phenomena. Our discourse parser performs parsing as a connective-level
sequence labeling task and classifies several types of informal deductive
argumentations into the mathematical proof.

Keywords: Discourse parser · Support Vector Machines · Informal Dis-
course Mathematical · Controlled Natural Language · Connectives ·
Arguments · CRFs · Sequence labeling

1 Introduction

Discourse parsing for the Informal Mathematical Discourse (IMD) has been a dif-
ficult task because of the lack of data sets, partly because the Natural Language
Processing (NLP) techniques must be adapted to informality of IMD. Various
complex linguistic phenomena have been treated in relation to discourse parsing
deep level in the IMD context. In this sense, we note that many works have
been developed such as anaphoric resolution, disambiguation of mathematical
structures, narrative structures of mathematical texts processing and a complete
mathematical language processing on the syntactical, morphological, semantic
and pragmatic level [5,9,17,18]. In this paper, IMD processing is described like
a PDTB-styled End-to-End discourse parser into the CNL context in which dis-
course parsing is performed under a discourse low level perspective. We avoid
complex linguistic phenomena such as resolution anaphora and focus in the use
c© Springer International Publishing Switzerland 2014
L. Besacier et al. (Eds.): SLSP 2014, LNAI 8791, pp. 259–271, 2014.
DOI: 10.1007/978-3-319-11397-5 20
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of rhetorical relations within the informal mathematical discourse. These rhetor-
ical relations are automatically modeled using machine learning for classifying
IDA types. We also think that linguistic phenomena in the mathematical proof
can be reduced by including CNLs, given that they allow to eliminate ambi-
guity and reduce the complexity [4]. Specifically, our approach treats discourse
parsing of paraphrased mathematical argumentations (IDAs) like two subtasks
of classification. First, we focus on explicit connectives and the identification of
their arguments (Arg1 and Arg2), and second, we proceed with the classification
of the IDA types by using CRFs. We exclusively focus here on the classification
of informal deductive argumentations as a sequence labeling problem under the
annotation protocol of Penn Discourse TreeBank (PDTB) [9]. In this regard, the
discourse parser is designed as a cascade of CRFs trained on different sets of lex-
ical and syntactic features from a Mathematical TreeBank (M-TreeBank) corpus
[11]. We also train CRFs on contextual features of connectives from Mathemat-
ical Discourse Treebank (MD-TreeBank) corpus following PDTB guidelines [9].
This article is organized as follows: in Sect. 2 we present related work to dis-
course parsing. In Sect. 3 we present corpus linguistics in the IMD. In Sect. 4,
for the considered IDAs, we focus on explicit connectives and the identification
of their arguments. In Sect. 5 we detail the classification of informal deductive
argumentations. In Sect. 6 we describe the experiments and results; and, finally,
we draw our conclusions in Sect. 7.

2 Related Work

In this paper, we address the tasks of automatically extract discourse arguments
and classification of mathematical argumentations under a discourse low level
perspective. Automatic extraction of discourse arguments is performed for giv-
ing IDA by using a explicit discourse connectives. On the one hand, we refer to
parsing discourse based on the identification of discourse arguments using the
PDTB guidelines. Dines [2] was the first to carry out such an experiment on the
PDTB in which were extracted complete arguments with boundaries. Wellner
and Pustejovsky [16] extracted discourse arguments using a sophisticated prob-
abilistic model based on argument heads. In contrast, Ghosh [3] integrates the
argument spans for identifying arguments and defines an end-to-end system for
discourse parsing. In addition, Lin [6] defines an end-to-end system which iden-
tify arguments using contextual features to implicit and explicit connectives. In
this sense, Pitler et al. [8] investigated features ranging from low-level word pairs
to high-level linguistic features. In our work, we identify arguments in IDAs using
spans and mathematical features under tne PDTB protocol. On the other hand,
we indicate the little work related to rhetorical relations in IMD. Zinn [18] was
the first introducing anaphoric resolution in mathematical discourse parsing and
uses DRT (Discourse Representation Theory) analyses for course-books proofs.
Humayoun [4] also uses DRT for mathematical discourse processing. Wolska
[17] defines a language for processing more informal dialogues on mathematical
proofs including annotation of rhetorical relations. Another important work was
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defined by Kamareddine [5] in which rhetorical relations are annotated under
a logic structure based on graphs. All previous approaches have as their main
characteristic the anaphor resolution and also they plan to implement their algo-
rithms informed by a corpus analysis [18]. To date, our approach is the only that
has studied rhetorical relations data-driven based under PDTB guidelines. In the
broader context, our work is the starting point and a focus for processing of ver-
ifying informal proofs (as in [18]).

3 Corpus Linguistics in the IMD Context

3.1 The Mathematical TreeBank

The Mathematical TreeBank (M-TreeBank) is a manually annotated corpus with
syntactic structures for supporting study and the analysis of IMD phenomena.
The M-TreeBank consists of about 748 sentence/tree pairs in Spanish. The aver-
age sentence length is 33 tokens. These sentences are part of the 150 IDAs of
our standard corpus. On average, each IDA has 132 tokens and between five
or six sentences per IDA. The treebank trees contain information about the
constituency and syntactic structure, as well as connective annotations, indef-
inite and definite descriptions annotation [18] and morphological information.
The standard corpus is composed of a standard set of 150 IDAs in which their
sentences are well-formed within our CNL. The standard corpus is the transfor-
mation of a defined original corpus after a previous experiment in which the stu-
dents were required to demonstrate two theorems of set theory: (1) if A ⊆ B then
U ⊆ A ∪ B; (2) P (A ∩ B) = P (A) ∩ P (B). The M-TreeBank annotation scheme
basically follows the Penn TreeBank II (PTB) scheme [7], human-annotated.
Based on PTB, we used the clausal structure, as well as most of the labels. We
adapted annotation structure of connectives from UAM Spanish TreeBank [13]
as well as the annotation scheme for morphological information. We also adapted
the set of morphological features from Freeling 2.2.1

3.2 Discursive Annotation of a Standard Corpus

The Mathematical Discourse TreeBank (MD-TreeBank) is a discursive corpus
over the standard corpus. This corpus was annotated with 150 argumenta-
tions and it was defined in the annotation protocol of Penn Discourse Tree-
Bank (PDTB). As in PDTB, the MD-TreeBank is syntactically supported by
the M-TreeBank. In MD-TreeBank, we only follow explicit relations and focus
on the types and subtypes of class level (Temporal, Contingency, Comparison,
Expansion). We define ten semantic classes or senses which specify both func-
tionality and deductive character of connectives, among the classes defined are:
alternative-conjunctive (A-C), alternative-disjunctive (A-D), cause-justification
(C-J), cause-result (C-Re), cause-reason (C-R), cause-transitive (C-T),
conclusion-result (D-C), conditional-hypothetical (C-H), instantiation (I), and
1 http://nlp.lsi.upc.edu/freeling/
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262 R.E. Gutierrez de Piñerez Reyes and J.F. Dı́az-Fŕıas

restatement-equivalence (R-E). We also focus on attributions of arguments,
specifically, the property type in which we defined six types of attributions
according to CNL. The attribution type labels defined are: AFIRM: Statements,
COND: Conditionals, SUP: Assumptions, EXP: Explanations, DED: Deduc-
tions, JUS: Justifications. In MD-TreeBank, we annotate discourse arguments
(Arg1 and Arg2) like paraphrased logic propositions. These propositions keep
a deductive order and share a linear order within mathematical proof. Each
IDA is annotated as a sequence of connectives by following the CNL’s discourse
structure. Note that although this annotation is only linguistic it’s not intended
for annotating his logic representation. As operating in PDTB, the argument in
clause that is syntactically bound to the connective is called Arg2; the other one
is called Arg1. For example, causal relation in (3) belongs to type “Pragmatic
Cause” with subtype label “Justification” in which connective porque indicates
that Arg1 is expressing a claim and Arg2 is providing justification for this claim.

(3) Entonces el elemento x pertenece al conjunto complemento de A o
al conjunto A [the element x belows to the complement set A or to set
A] porque [because] la unión de el conjunto complemento de A
con el conjunto A es igual al conjunto universal U [The union of
complement set A with set A is equal to universal set U ].

In MD-TreeBank the statistics of the position of Arg1 w.r.t. the discourse con-
nective is shown in Table 1. The position of Arg1 w.r.t. the discourse connective
shows that 55 % of explicit relations are same sentence (SS); 45 % are precedent
sentence (PS). In PS, the position Arg1 in previous, adjacent sentence (IPS) is
20 % and previous, non adjacent sentence (NAPS) is 25 %.

Table 1. Statistics of position Arg1 in MD-TreeBank.

Position

Arg1, in same sentence (SS) as connective 55 %

Arg1, in previous, adjacent sentence (IPS) 20 %

Arg1, in previous, non-adjacent sentence (NAPS) 25 %

4 Identification of Arguments in an IDA

Before classifying the informal deductive argumentations within mathematical
proof, we identified and labeled the connectives and their arguments (propo-
sitions). In this section, we present a discourse parser that, given an input
argumentation (IDA) automatically extracts discourse arguments (Arg1 and
Arg2) linked to each connective of the argumentation. We develop the iden-
tification of arguments as a set of steps in which a step output feeds input of
the next step based on Support Vector Machines (SVMs) [14]. In this work,
SVMs are used for identifying Arg1 and Arg2 given a mathematical argumen-
tation following the annotation protocol of PDTB [9]. As in [3,6], our discourse
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Fig. 1. System pipeline for the arguments classifier

parser labels Arg1 and Arg2 for each explicit connective of a mathematical
proof. We follow in three steps: (1) identifying the Arg2, (2) identifying the
locations of Arg1 as SS or PS, and (3) identifying the Arg1 and labeling of
Arg1 and Arg2 spans. Figure 1, shows the pipeline architecture used for such a
process. First (1), we identify the Arg2 and then we extract the Arg2 span; next
(2), we identify the relative position of Arg1 as same sentence (SS) or prece-
dence sentence (PS). Then that relative position is propagated to an argument
extractor and the Arg1 is correspondingly labeled; finally (3), Arg1 is identi-
fied given (Arg2,SS,PS) spans, and arguments (Arg1 and Arg2) are extracted.
Before the segmentation and labeling of Arg1 and Arg2 arguments of the input
text (mathematical argumentation), we must do a preprocessing phase (The left
side of Fig. 1). First, we take the input text and segment it into sentences; sec-
ond, each sentence is tagged; third we use a statistical parser model (Bikel’s
parser [1]) for obtaining the parsed tree for each sentence. Next, we use a rule
based algorithm for building a features vector for each proposition found in
each parsed tree. For each proposition corresponds a numerical transformed
feature vector which will serve as dataset of SVMs (In Fig. 1, the bolded line
represents the test data and the dotted line represents the training data). In
this section, we only present the results of Arg1 classifier in which the Arg1
and Arg2 arguments are classified and labeled (For information, see [12]). We
trained the Arg1 classifier under two models; M1=CONN+NoS+POS+Arg2-
s+mf and M2=CONN+NoS+POS+Arg2-s+mf+SS-s+PS-s. These two models
are differentiated because M2 including the corresponding SS and PS spans. We
use contextual features to the connective and their corresponding contextual
features to the arguments (Arg1 and Arg2). For instance, we define as contex-
tual features the connective string (CONN ), its syntactic category (POS ) and
the sentence number (NoS ) in which the connective is found. Among contex-
tual features to the arguments we define: the Arg2 span (Arg2-s), the SS span
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(SS-s), the PS span (PS-s) and the mathematical features (mf ). We trained Arg1
classifier under the two models. For Arg1 and Arg2 arguments, the M1 model
was 97 % F1 score and the M2 model was 98 % F1 score. As it was expected,
this small increment is due to adding of SS (SS-s) and PS (PS-s) spans. This
result will be used in the next phase for the classification of informal deductive
argumentations.

5 Classification of Informal Deductive Argumentations

5.1 Discursive Structure of an IDA

Informal deductive argumentations are mathematical proofs that have been
paraphrased and annotated in MD-TreeBank. An informal deductive argumen-
tation type is annotated as a sequence of connectives with their corresponding
connective POSs, semantic senses and argument attributions, respectively. For
each argumentation type, we define a semantic senses sequence that represents
a deductive and linear order according to mathematical argumentations of the
standard corpus. This senses sequence represents an argumentation type which
is characterized as one of 15 argumentation types annotated in the standard
corpus. IDA types were labeled with numbers such as {01,03,04,05,06,07,09,
023,024,025,026,052,115}. In Fig. 2, we show the connectives sequence of IDA
type 05 (at the top of figure) with its corresponding semantic senses sequence
{C-R, R-E, A-C, C-Re, A-C, R-E, D-C} (at the bottom of figure). The sen-
tences s1, s2 and s3 have a following linear order s1 ≺ s2 ≺ s3 and therefore
their connectives. In Fig. 2, we define the discursive structure for the IDA type
05. This argumentation type consists of three sentences s1, s2, s3 in which s1 is
an assumption with explanation, s2 is a statement with explanation and s3 is a
deduction. Additionally, we define semantic information for each sentence based
in semantic sense of each connective (see Sect. 3.2). We define a semantic sense
for each explicit connective that depends of relation between Arg1 and Arg2. For
each sentence, we can suppose one or two propositions between each connective.
The following excerpt in text s1 in the IDA type 005: Suponga que prop1: la
intersección del conjunto potencia de A y el conjunto pontencia de B contiene al
conjunto X, es decir, prop2: el conjunto X pertenece al conjunto A y prop3: el
conjunto X pertenece al conjunto B. In Fig. 2, the tag cause-reason (C-R) is used
because the connective “Suponga que” indicates that the situation described in
prop1=Arg2 is the cause and the situation described in prop2+prop3=Arg1 is
the effect. The tag restatement-equivalence (R-E) is applied because the connec-
tive “es decir” indicates that prop1=Arg1 and prop2+prop3=Arg2 describe
the same situation from different perspectives.

5.2 Classification of IDAs as a Sequence Labeling Problem

In this work, the classification problem of argumentation types is tackled as a
sequence labeling task in which are built two sequence classifiers; first, we devel-
oped a classifier for automatically annotation of semantic senses which feeds a



Informal Mathematical Discourse Parsing with Conditional Random Fields 265

Fig. 2. The IDA type 05 annotated in MD-TreeBank.

second classifier for classification of argumentation types. More formally, the clas-
sification task of semantic senses can be treated as a sequence labeling problem.
Let x = (x1, x2, . . . xn) denote the observations sequence in an argumentation
instance, where ci is a sequence of connectives and xi is ci augmented with addi-
tional information such as the POS tag (ti) and the sentence number tag (si) of
ci. Each observation xi is associated with a label yi ∈ {C-R, C-Re, C-J, A-C,
A-D, D-C, C-H, I, R-E} (which are the hidden labels or tags, and these are
called hidden states in the general concept) which indicates the semantic sense
of ci. Let y = (y1, y2, . . . yn) denote the sequence of labels for x, then for a can-
didate argumentation instance x, let Ŷ denote the valid set of label sequences.
Our task consists in finding the best label sequence ŷ among all the possible
label sequences for x, that means to find an appropriate sequence of tags can
maximize the conditional likelihood according to Eq. (1).

ŷ = argmax
y∈Ŷ

p(y|x) = argmax
y∈Ŷ

n∏

i=1

p(yi|c1:n, t1:n, s1:n, yi−1) (1)

Similarly, we also can formulate the classification of informal deductive argu-
mentations as a sequence labeling problem taking into account the semantic
senses annotated in the senses classifier. Let x* = (x1, x2, . . . xn) denote the
observations sequence in an argumentation instance, where ci is a sequence of
connectives and xi is ci augmented with additional information such as the POS
tag (ti), the sentence number tag (si) and semantic sense tag (ri) of ci. Each
observation xi is associated with a label yi ∈ {01,03,04,05,06,07,09,023,024,025,
026,052,115} which indicates the argumentation types of ci. Let y* = (y1, y2, . . .
yn) the sequence of labels for x*, then for a candidate argumentation instance x*,
let Ẑ denote the valid set of label sequences. As well as in first classifier the
idea consists in finding the best label sequence ŷ∗ among all the possible label
sequences for x*.

ŷ∗ = argmax
y*∈Ẑ

p(y*|x*) = argmax
y∈Ŷ

n∏

i=1

p(yi|c1:n, t1:n, s1:n, r1:n, yi−1) (2)

For the models above is very hard to compute both equations as it involves
too many parameters. In order to reduce the complexity, we employ two linear-
chain CRFs for solving our two sequence labeling problems. In this sense, we use
linear-chain CRFs in which all nodes in the graph form a linear chain and each
feature involves only two consecutive hidden states [10]. For the first CRF (see



266 R.E. Gutierrez de Piñerez Reyes and J.F. Dı́az-Fŕıas

Eq. (1)), we define the general form of a feature function as fi(yj−1, yj , c1:n, t1:n,
s1:n, j), which maps in a pair of adjacent states yj , yj−1, the whole input sequence
c1:n as well as t1:n, s1:n and the current connective’s position. For example, we can
define a simple feature function which produces binary values: it is 1 if current
connective cj is “es decir”, the corresponding part-of-speech tj is “CONN-EXP”,
the sentence number in the IDA sj is 1 and the current state yj is the semantic
sense “R-E”:

fi(yj−1, yj , c1:n, t1:n, s1:n, j) =

⎧
⎨

⎩

1, if cj = es decir, tj = CONN-EXP, sj = 1
and yj = R-E
0, otherwise

(3)

Another example of feature function is used for classifying of IDA types:

fi(yj−1, yj , c1:n, t1:n, s1:n, r1:n, j) =

⎧
⎨

⎩

1, if cj = es decir, tj = CONN-EXP, sj = 1,
rj = R-E and yj = 05
0, otherwise

(4)

Where rj is the semantic sense and the hidden labels yj , yi−1 are IDA types. The
feature functions in Eqs. (3) and (4) will be both active with the IDA type 05,
if, besides the current connective is “es decir”, the POS tag is “CONN-EXP”,
and it is found in the sentence S1 with the semantic sense as R-E. In both
classifiers we define a set of training instances {x(m),y(m)}M

m=1 where y(y) is the
correct label sequence for x(k). For this we need fully labeled data sequences, for
instance, for training the semantic senses CRF we define the fully labeled review
data as {(c(1), t(1), s(1), y(1)), . . . , (c(M), t(M), s(M), y(M))}, where c(i) = c

(i)
1:n1

is
the first connectives sequence and x(1) = (c(1), t(1), s(1)) is the first observations
sequence.

5.3 Processing of an End-to-End System

Discourse parser is an end-to-end system that has two main components: in
Fig. 1, we showed the first component such as the preprocessing phase and the
arguments classifier. In Fig. 3, we present the second component which is an
architecture of an IDA types classifier. Automatically discursive parsing can
range according to application domain and depends on robustness of corpus and
extraction methods. However, we applied natural language processing techniques
to IMD processing into the low-level discourse framework. In this sense, we
develop the three basic phases according to [3,15] such as (1) segmentation of
basic units, (2) identification of arguments and relations, and (3) definition of
relation types between arguments. In this section, we tackle the third phase as
a labeling sequence problem and we develop an end-to-end system based on
phases 1 and 2. In this work, we present the pipeline architecture for solving
two sequential labeling problems involved in the classification of IDA types.
First (1), we identify the semantic sense for each connectives sequence of input
text, and next (2), we use this first result for identifying the informal deductive
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Fig. 3. The informal deductive argumentations classifier.

argumentation types. As shown in Fig. 3, for (1), we extract the POS (POS tag of
connectives ci), CONN (connectives span ci) and No-Sent (sentence number si)
from the arguments classifier (see Sect. 4). The senses classifier is trained using
the senses features from the MD-TreeBank (the dotted line in figure). Next, for
(2) in Fig. 3, we use the same input features of (1) plus of the output sequences
from the senses classifier. The IDA classifier is trained using features from the
MD-Treebank. Finally, the IDA classifier annotates the argumentation type of
an informal deductive argumentation (input text) as output.

Table 2. Results for the senses
classifier.

Sense Prec. Rec. F1 Fre.

A-C 79.31 97.87 87.62 58

A-D 83.33 55.56 66.67 6

C-R 80.85 86.36 83.52 94

C-J 80.00 94.12 86.49 20

C-Re 84.62 75.00 79.52 40

C-T 83.33 83.33 83.33 10

D-C 80.00 94.12 86.49 94

C-H 80.00 80.00 80.00 12

I 90.00 81.82 85.71 12

R-E 85.71 100.00 92.31 42

Table 3. Results for the IDA Types
classifier.

Pro. type Prec. Rec. F1 Fre.

01 42.86 68.85 52.83 294

03 81.82 61.76 70.39 77

04 83.33 19.44 31.53 42

05 78.57 76.24 77.39 98

06 66.67 20.25 31.07 24

07 77.93 82.33 80.07 299

09 84.00 63.16 72.10 100

023 20.27 57.69 30.00 74

024 41.85 86.92 56.50 270

025 90.56 96.45 93.41 180

026 50.59 89.58 64.66 85

052 91.59 95.15 93.33 107

115 73.20 44.09 54.04 153
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6 Experiments and Results

In this section, we present the results of two sequential classifiers. Information
related to syntactic parser and arguments classifier are presented in [11,12]. Per-
formance of the two classifiers was measured using precision (P), recall (R) and
F1 measures. We use the MD-TreBank for extraction of semantic features and
use the M-TreeBank for extraction of contextual features to the connective. We
performed a 10-fold cross-validation, since we ensure that 150 proofs can be par-
titioned into 10 equal size proofs; that is, we define 15 demonstration models at
the 150 proofs. In Table 2, we report performance of the senses sequential classi-
fier given an IDA input. Performance measures (P and R) were used according
to semantic senses where the frequency (Frec.) is the number of times that shows
semantic sense in the proposition. A sentence consists of prepositions (Arg1 and
Arg2) and an IDA has many sentences. We establish the individual annotation of
each tag corresponding to semantic sense for each connective on the input IDA.
Semantic sense in IDAs means that a label represents the relational semantic of
the connectives according to PDTB. In this regard, it is worth highlighting that
results of Table 2 are more focused to statistics of senses per propositions. We use
leave-one-out-cross-validation (LOOCV) in which a single sample of test data
is tested against the training data partitions. Test data collected were obtained
from the performed tests to students (these were in advance instructed over the
CNL), 226 IDAs in total, with 1949 propositions of which 1815 were correctly
considered, for an overall precision of 93.12 %. In Table 2, we report precision,
recall and F1 based on a basic features set (CONN+POS+No-Sent+SEN). As
expected, the R-E (restatement-equivalence) shows 92.31 % F1-measure because
it do not present ambiguity with respect to other senses. The sense R-E is the
semantic class a single connective “es decir”. Others senses such as I,D-C,A-C
also show a score very similar to R-E because these senses have a single con-
nective. Although the sense D-C is the semantic class of two connectives. In
contrast, the sense C-Re (cause-reason) shows the lowest F1 (79.52 %), which
means that this sense is very ambiguous being the semantic class of the con-
nectives “Entonces, por lo tanto, de modo que, etc.”. In this regard, we discard
F1 score from A-D (alternative-disjunctive) like the lowest because this seman-
tic class has the lowest frequency. We extract all features from MD-TreeBank
for training data and we extract all features from the arguments classifier for
testing data (see Fig. 3). In Table 3 we show results of IDA types classifier. As
with the senses classifier, we collected 256 IDAs as test data, with 2179 proposi-
tions of which 1445 were correctly considered, for an overall precision of 63.31 %.
We extract all features from MD-TreeBank for training data. For testing data
(see Fig. 3), we extract some features such as (POS+CONN+No-Sent) from the
arguments classifier. For each IDA type, we manually annotated propositions
or arguments (Arg1 or Arg2) with the IDA type. For instance, we annotate ten
(10) propositions with the number 01. We did the same with rest of IDA types.
Note that each proposition begins by a connective. As seen Table 3, IDA types
01 and 115 show the same F1 score due to these argumentations have a similar
discursive structure. Therefore, their connectives sequences also are very similar
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as well as semantic senses sequence. For instance, we found that many anno-
tated propositions like IDA type 01 were annotated like IDA type 115 and vice
versa. It could explain because F1 score of both 01 and 115 have similar F1
scores (52.83 % and 54.04 %, respectively). Precision of IDA type 115 is larger
than Precision of IDA type 01 and Recall of IDA type 01 is larger than Recall
of IDA type 115. We can infer that the number of bad annotations is equal the
number of correct annotations. With respect to lowest F1 scores for types 04 and
023 it is because their frequencies are very low. This can be ratified given that
types 04 and 024 have the same discursive structure. In proportion, F1 score
for type 04 should be fewer with respect to frequencies number compared with
type 024. The highest F1 score was for type 025, in this case, we found connec-
tives sequences such as {Suponga, es decir, y, De manera que, es decir, y, Por
lo tanto} in which we can note a greater number of unambiguous connectives
related to semantic senses, for instance, the connective “es decir” has a single
semantic sense. A similar situation applies to the connective “y” which has a
single semantic sense.

7 Conclusions

In this work, we presented an algorithm that performs IMD parsing within CNL
context in which an end-to-end system is implemented. This system is a dis-
course parser which was performed in three phases; a first preprocessing phase,
a second phase in which we identify connectives and their arguments (Arg1 and
Arg2), and a third phase where we classify informal deductive argumentations
by using sequential labeling. We define a discursive structure for each IDA type
in which both linear and deductive order were defined. This discursive structure
was annotated as a connectives sequence in MD-Treebank. For the senses clas-
sifier, we trained a CRF classifier with lexical, syntactic and semantic features
extracted from MD-TreeBank. For the IDA types classifier, we trained another
CRF classifier taking advantage the output labels of senses classifier. We tested
a set of IDAs that consists of argumentations performed by students in which
these were instructed in advance on the CNL. Finally, we presented results of
two classifiers. We think that these results benefited from ambiguity underlying
in connectives and senses. We also think that the use of sequential labeling of
connectives is a first approach to automation of mathematical proof under a dis-
course low level perspective. In the light of these results, to intermediate term,
the objective will set other CRF structures more contextuals for treatment of
ambiguity.
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Abstract. In this paper corpus-based information extraction and opinion min-
ing method is proposed. Our domain is restaurant reviews, and our information
extraction and opinion mining module is a part of a Russian knowledge-based
recommendation system.

Our method is based on thorough corpus analysis and automatic selection of
machine learning models and feature sets. We also pay special attention to the
verification of statistical significance.

According to the results of the research, Naive Bayes models perform well at
classifying sentiment with respect to a restaurant aspect, while Logistic
Regression is good at deciding on the relevance of a user’s review.

The approach proposed can be used in similar domains, for example, hotel
reviews, with data represented by colloquial non-structured texts (in contrast
with the domain of technical products, books, etc.) and for other languages with
rich morphology and free word order.

Keywords: Information extraction � Opinion mining � Restaurant recommen-
dation system � Machine learning

1 Introduction

In this paper information extraction (IE) and opinion mining (OM) for the restaurant
recommendation system are considered. Our goal is to introduce an effective corpus-
based restaurant IE and OM method for Russian using machine learning techniques.
We try to combine thorough language analysis, adopted from corpus linguistics, with
fully automatic machine learning techniques.

The system is built in several steps. First, we define a set of restaurant aspects; the
most frequently occurring ones are to be extracted using machine learning techniques.
We conduct corpus analysis and construct dictionaries and sentiment lexicon (these
procedures are described in our earlier paper [27]). Second, we compare several
classification techniques in combination with various feature sets to determine the best
classifier for each of the restaurant aspects defined earlier [27].

There are two types of restaurant aspects extracted from reviews: those which are
evidently subjective and depend on the user’s tastes (staff amiability, food quality, etc.)
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and those which are more or less objective (crampedness, noise, etc.) – users usually
agree on them. Thus, our task is similar to IE or OM depending on a restaurant aspect.
In this paper we do not distinguish these two tasks and use the term OM to refer to both
of them when conducting our experiments.

2 Related Work

IE and OM system we implement is a part of the restaurant recommendation system.
Recommendation systems are usually classified as content-based and collaborative
filtering ones [25, 26, 28]. In text-based systems checking items similarity usually
demands the application of text mining techniques. However, using linguistic methods
or ideas is not common practice in this area: the overview of text mining methods gives
an idea of the dominating bag-of-words and key words approaches [11, 16, 21].
Sometimes more advanced techniques are applied, but IE is completely integrated into
items ranking algorithm inside the recommendation system [17].

As far as IE and OM are concerned, the corresponding problems are solved using
both rule-based and statistics-based methods.

In the early days of IE, hand-crafted rules were used. They were later substituted
with automatically extracted ones, and then machine learning-based approach devel-
oped [30]. Although traditionally IE is a domain dependent task, machine learning
approaches to IE are both domain dependent and domain independent [12, 35]. In OM,
rule-based approaches usually include the application of a semantic thesaurus [10], and
machine learning ones do not always demand such linguistic resources.

As part of our research, we analyze features and classifiers commonly used in OM
(and/or sentiment analysis). They are listed in Tables 1 and 2.

As far as unigrams are concerned, it is shown in [22] that occurrence-based uni-
gram features generally perform better than frequency-based ones. Some researches
consider higher order n-grams (non-contiguous ones) not useful [22] while others argue
that they improve overall performance for some tasks [7, 36, 37].

Table 1. Features in sentiment analysis

Feature References

Unigrams [2, 4, 7, 12, 15, 22, 29, 37]

N-grams (bigrams, trigrams, etc.) [2, 4, 7, 22, 37]

Unigrams of a certain POS (adjectives, adverbs, etc.) [2, 7]

N-grams of certain POS [2, 3]

Token positions [22]

Emoticons [8, 19, 31]

Substrings [7]

Syntactic relations, syntactic n-grams [19, 23, 33, 34]

Valence shifters [12, 15]

Semantic classes [7, 29]

Sentiment lexicon words [6, 15, 31]
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Sometimes position information (i.e., the position of a token in a paragraph) is also
included in the feature set [22]. Lower order features, such as substrings, are experi-
mented with in [7].

When dealing with informal language (e.g., tweets or sms), some authors propose
taking emoticons into account [8, 19, 31].

As for part-of-speech (POS) information, unigrams of certain POS as well as word
combinations of certain POS [2] (e.g., adverbs and adjectives in [3]) are often used.

Deeper linguistic-based features include dependency or constituent-based features
[24]. Semantic classes of words are also employed. Thus, words referring to a particular
object are replaced with their class labels (and extracted inside n-grams) [7, 29]. In [14]
valence shifters (intensifiers, diminishers and negations) are used. As for negation, a
common approach to its handling involves attaching “not” to the negated word [2, 6, 7,
19, 20].

As far as classifiers are concerned, it can be seen from Table 2 that Naive Bayes
classifier (NB) and Support Vector Machines (SVM) and the most popular ones in
sentiment analysis. NB is commonly used as a baseline model, as SVM usually
demonstrates better performance. However, it is shown in [4] and [37] that NB can
outperform SVM on short-form domain like microblogs.

As stated earlier, our goal is to introduce an effective corpus-based restaurant IE
and OM method using machine learning techniques. Since there is lack of linguistic
resources for Russian, we heavily rely on corpus analysis and our focus is on the
application of machine learning to the problem. Our objectives include the identifi-
cation of feature sets and models to experiment with, and the automatic selection of the
best model and feature set combination. Our tasks are to conduct corpus analysis and
construct dictionaries, to define feature sets and models for the experiments, to evaluate
the classifiers and to propose the rules for automatic selection of the best classifier.

As far as features are concerned, our choice is dictated by the realities of the
Russian language. Since there are no available linguistic sentiment resources for
Russian known to us, we employ various lexicons either learnt semi-automatically or
constructed manually from the corpus. Thus, we use combinations like “modi-
fier + predicative-attributive word” as one of the features, and this idea is similar to that
of “adverb + adjective” pairs and valence shifters. We also experiment with occur-
rence-based unigrams and contiguous bigrams, emoticons and exclamation marks. As
there is lack of parsing tools for Russian, we consider non-contiguous bigrams an

Table 2. Supervised models in sentiment analysis

Model References

Naive Bayes [2, 4, 6, 7, 20, 22, 29, 31, 37]

Logistic Regression [31]

Maximum Entropy [22, 29]

Support Vector Machines [2, 4, 7, 12, 15, 22, 23, 31]

Random Forest [31]

Perceptron [1, 2]

Neural Networks [32, 34]
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alternative to syntactic ones, taking into account free word order and the variety of
sentiment expression in Russian. Negation is also to be covered by non-contiguous
bigrams.

As for machine learning models, in our research we experiment with NB, Logistic
Regression (LogReg), linear SVM and Perceptron [28]. NB appears to be the best one
at classifying opinion in our domain for most restaurant aspects. It agrees with the
results obtained in earlier papers [4] and [37] for English and with the notion that NB,
as a simple generative model, is better at small amount of data.

3 Data

The data consists of 32525 reviews (4.2 millions of words) about restaurants in
informal Russian language. The corpus is full of slang, misprints and prolonged vowels
(as a means of expressing emotions). The reviews are mostly unstructured and vary
from 1 to 96 sentences. A part of the corpus, with 1025 reviews about 206 restaurants
from the central part of Saint-Petersburg, is annotated.

We outline a list of restaurant characteristics which are presumably mentioned in
users’ reviews (see Table 3). Our recommendation system suggests a dialogue with a
user based on a predefined list of restaurants aspects, and therefore we do not perform
automatic topic clustering described, for example, in [18].

Table 3. Restaurant aspects

Aspect Value
domain

Aspect Value domain Aspect Value
domain

Restaurant
type

String Noise level {−2; −1; 0; 1;
2}

Dancefloor {yes; no}

Cuisine
type

String(s)a Cosiness {yes; no} Bar {yes; no}

Food
quality

{−2; −1; 0;
1; 2}

Romantic
atmosphere

{yes; no} Parking
place

{yes; no}

Company {large;
small}

Crampedness {yes; no} VIP room {yes; no}

Audience String(s) Price level {−2; −1; 0; 1;
2}

Dancefloor {yes; no}

Service
quality

{−2; −1; 0;
1; 2}

Average
cheque

Integer or
Interval

Railway
station

{yes; no}

Service
speed

{−2; −1; 0;
1; 2}

Smoking
room

{yes; no; area;
room}

Hotel {yes; no}

Staff
politeness

{−2; −1; 0;
1; 2}

Children {yes; no} Shopping
mall

{yes; no}

Staff
amiability

{−2; −1; 0;
1; 2}

Children’s
room

{yes; no}

a Multiple valued cuisine type and audience are split into several binary aspects
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Our task can be considered a classification problem. For each aspect the system
should either label a review with one of the possible classes or reject it as irrelevant
with respect to the given aspect.

The aspects in italics are the most frequent ones in the annotated subcorpus. As
most restaurants characteristics are never mentioned in the reviews, we define an
empirical threshold frequency value of 10 % and consider aspects mentioned in at least
10 % of reviews frequent. We only train classifiers for the frequent aspects. In Table 4
the 11 selected aspects are divided into groups according to their frequency in the
reviews.

4 Methods

The research described in this paper is conducted in several stages, including corpus
analysis, features and classifiers identification and the automatic selection of the best
classifiers and features.

4.1 Corpus Analysis

The first step is described in [27] in detail. It consists of corpus preprocessing (toke-
nization, lemmatization, spell checking and splitting into sentences) and dictionaries
learning. The dictionaries learnt from the corpus include

• trigger words dictionaries (for service and food frames only),
• predicative-attributive dictionaries (for service and food frames only),
• modifiers dictionary (for aspects taking one of the 5 values from “−2” to “2”),
• key words and phrases dictionary and
• sentiment lexicon (for aspects taking one of the 5 values from “−2” to “2”).

Trigger words and predicative-attributive dictionaries are learnt semi-automatically
from non-contiguous bigrams (gathered from the corpus) using bootstrapping proce-
dure. Here and further in the paper by trigger words we mean such nominations for
service or food that if a trigger word occurs in a review, the review is likely to contain
relevant information about the aspect in question. Predicative-attributive words are
adjectives and participles which occur in the context of trigger words.

The modifiers are filtered from the adverbs list (collected from the corpus) and key
words are written out and annotated manually. Sentiment lexicon consists of adjectives
and participles and is also annotated manually.

Table 4. Restaurant aspects distribution in the corpus

Occurrence percentage List of aspects

[85 %; 100 %] Food quality (86 %)

[55 %; 85 %) Service quality (55 %)

[25 %; 55 %) Staff politeness & amiability, service speed, price level, cosiness

[10 %; 25 %] Noise level, crampedness, romantic atmosphere, company
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4.2 Features Identification

We try to incorporate the dictionaries learnt at the corpus analysis stage into our feature
sets. There are 11 different feature sets defined (see Table 5).

All the features except for the emoticons and exclamations (taking frequency
values) are occurrence-based and binary. Baseline features consist of unigrams and
bigrams, and non-contiguous n-gram features are represented by non-contiguous bi-
grams (with at most two words between the components).

There are predicative-attributive features for each word from the respective dic-
tionaries. They take “1” values when a word from predicative-attributive dictionary
occurs within 3 words to the left from any of the trigger words. If a modifier occurs
inside such left context, a corresponding feature is taken into account too. Sentiment
lexicon features also take “1” values when occurring in a trigger word context. They
take form “LEX_label_LEFT” or “LEX_label_RIGHT” depending on their position
with respect to the trigger word, and “label” stands for aspects class label e.g., “−2”,
“−1”, etc.).

Table 5. Feature sets

Feature set
\feature

N-
grams

Non-
contiguous
N-grams

Emoticons
and
exclamations

Key
words

Predicative-
attributive words
and modifiers

Sentiment
lexicon

Baseline +

Extended
Distant

+ +

Extended
Distant
Emoticons

+ + +

Extended
Distant
Emoticons
Lex

+ + + +

Extended
KWs

+ +

Extended
KWs
PredAttr
Lex

+ + +

Extended
PredAttr

+ +

Extended Lex + +

Extended
KWs Lex

+ + +

Extended
Emoticons
KWs Lex

+ + + +

Extended All + + + + + +
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Since the size of feature space appears to be quite large, we prune irrelevant features
using Randomized Logistic Regression implemented in scikit-learn.

4.3 Models

The models we experiment with include NB (Bernoulli, with non-occurring features
taken into account, and Multinomial, with non-occurring features ignored), LogReg,
linear SVM and Perceptron (with shuffled samples) from scikit-learn1.

For each of the restaurants aspects there are two classifiers trained: first, to label a
review as relevant or irrelevant with respect to the aspect, and then, if relevant, to
predict its class. Given the size of our annotated corpus, it should be mentioned that

Table 6. Best models and feature sets according to Holm-Bonferroni tests series

Aspect Model: feature set Priority
class

Accuracy,
%

Average
F1, %

Class selection

Amiability MNB:extended_All 3 77,30 76,84

Cosy MNB:extended_Distant 3 96,00 95,74

Cramped MNB:baseline 2 87,86 87,52

Level MNB:baseline 2 65,00 61,82

Noise MNB:extended_KWs 3 82,67 80,40

Politeness NB:extended_All 3 79,66 79,20

Service quality MNB:
extended_Distant_Emoticons

3 72,71 71,96

Food quality MNB:extended_Distant 3 75,05 74,05

Speed MNB:
extended_KWs_PredAttr_Lex

2 69,71 68,72

Relevant vs. irrelevant

Amiability NB:baseline 3 82,78 82,76

Company LogReg:baseline 2 93,24 92,66

Cosy LogReg:baseline 3 89,91 89,78

Cramped LogReg:baseline 3 92,22 91,73

Level LogReg:baseline 3 92,96 92,95

Noise LogReg:baseline 3 93,89 93,68

Politeness LogReg:baseline 3 87,59 87,52

Service quality LogReg:baseline 3 82,87 82,79

Romantic Prcp:baseline 2 93,98 93,91

Speed LogReg:baseline 2 88,33 88,30

1 http://scikit-learn.org
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while for the relevance/irrelevance task there are only two classes and the whole
training data set available, while for further sentiment classification task only relevant
reviews are considered. Therefore, when the latter task is concerned, we have a limited
amount of data for some of the aspects, especially for the subjective ones.

5 Evaluation: Classifiers Selection

To choose the best combination of model and feature set for each of the restaurant
aspects, we conduct a two-step procedure. First, 10-fold cross-validation is held (with
models trained and tested on the same random data splits and test size equal to 10 % of
the corpus). Then statistical tests are employed to check whether the best combinations
are significantly better than the other ones.

As it was mentioned in Sect. 4.3, we choose two classifiers for each of the aspects:
the first one is to decide whether a review was relevant or not and the second one – to
predict its class label. As far as the former is concerned, it is an intermediate task, and
we only try the classifiers on baseline feature set according to the empirically derived
conclusion that n-grams-based approach is sufficient to separate relevant reviews from
the irrelevant ones. For the latter task we experiment with 11 different feature sets (or 4,
for the aspects not belonging to service and food frames). Thus, there are 5 and 55 (or
20) different combinations respectively.

To be able to compare the models, one has to choose some single score. During the
cross-validation procedure we calculate average weighted F1 scores for our “classi-
fier + feature set” combinations. These F1 scores are average across all the classes with
weights equal to their frequencies in the training data set.

To test whether the best combinations are significantly better than the other ones,
we follow the recommendations described in [9]. The tests are conducted in two stages.
First, we apply a modified non-parametric Friedman test (proposed by Iman and
Davenport in [13]) to see whether there is any significant difference between our
models performance scores. Then, in case the difference is significant, we proceed with
a series of post hoc Holm-Bonferroni tests (also described in [9]).

Holm-Bonferroni test is quite powerful and can be used for comparing one clas-
sifier to the others even for dependent data sets. In our research we not only test
whether the best classifier is significantly better than the other ones, but also divide
them into groups according to their ranks. The ranks are calculated for each classifier as
average ranks for each test set in the cross-validation.

Thus, let us assume there are four types of classifiers: the best one (class 3)2, those
which are significantly worse than the best one (class 0), those which are significantly
better than each classifier from class 0, except for the best one (class 2) and all the rest
(class 1). As far as the latter (class 1) is concerned, one cannot tell whether there is any

2 It should be noted that the classifier (“model + feature set” combination) with the highest rank does
not necessarily demonstrate the highest average weighted F1 score. The classes 0, 1, 2 and 3 assigned
to the classifiers in this paper are based on their ranks (according to non-parametric Holm-Bonferroni
test) and not F1 scores.
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significant difference between their ranks compared to the best rank (class 3) or the
worst ranks (class 0).

Having divided our classifiers (i.e., “classifier + feature set” combinations) into the
groups as described above (in case there is significant difference according to Friedman
test), we choose the classifier for each of the restaurant aspects according to the
following rules:

• if there is no statistically significant difference between the classifiers (e.g., null
hypothesis is not rejected in Friedman test or all groups belong to class 1), choose
the simplest combination3 among the classifiers with scores within 2 % from the
maximal score (in case of ties the classifier with better scores should be chosen);

• if there is statistical difference according to Friedman test, and the groups are class 3
and class 0 only (or class 3 and classes 1 and 0 only), choose the only element of
class 3;

• if there is statistical difference according to Friedman test, and all the four groups (0,
1, 2 and 3) take place, choose the simplest combination among those class 3 + class
2 classifiers which are within 1 % from the class 3 F1 score, either higher or lower
(if none such classifiers in class 2, choose the only element of class 3; in case of ties
choose the classifier with better scores).

Such an approach seems reasonable because it guarantees that significantly worse
classifiers (if any) are never chosen and provides a balance between high performance
scores and computational effectiveness.

Cross-validation results are shown in Table 6. It contains information only about
the aspects for which Friedman test proves significant difference at the 0.05 level
between classifiers performance. During the series of Holm-Bonferroni tests we also
test the null hypotheses at the 0.05 significance level. For the aspects for which the null
hypothesis in Friedman test is not rejected we adopt Multinomial NB classifier and
baseline feature set by default.

As far as relevance/irrelevance task is concerned, LogReg appears to be the best
classifier. For crampedness, politeness and service quality (in bold) LogReg is sig-
nificantly better than all the rest classifiers at the 0.05 level. For most of the other
aspects it performs better than Bernoulli and Multinomial NB and Perceptron. And
indeed, LogReg is known to be better on large training sets, and for the relevance/
irrelevance task there is more training data than for the task of classifying relevant
reviews.

Thus, we suggest that LogReg could be recommended for the classification of
informal unstructured Russian texts into those which contain information or opinion
about the specific aspect and those which do not.

3 Baseline features set is considered the simplest one, while Extended_All – the most complex one.
MNB and NB models are considered the simplest models, Perceptron – a more complex one, and
LogReg and linear SVM – the most complex ones (in fact, they are both similar to Perceptron but
their training is more computationally expensive [5]). MNB and NB classifiers are considered similar
in the degree of “simplicity” as well as LogReg and linear SVM. A simple model with complex
features is considered simpler than a complex model with simple (e.g., baseline) features.
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As for deciding on the sentiment or opinion class, NB classifiers are chosen for all
the aspects. It can be partly explained by the nature of the classifier itself and the rules
which direct our choice. Namely, NB, having high bias, usually behaves better when
there is small amount of training data, and, according to the outlined rules, simple
classifiers have higher priority. However, with the given rules, for 6 aspects out of 9,
NB classifiers, combined with extended feature sets, still have the highest ranks.
Therefore it might be suggested that NB is good at classifying sentiment in the informal
texts with small training set.

Holm-Bonferroni test series also reveals the following tendency: some of the
“model + feature set” combinations are never labeled with class 0 for any of the aspects
considered. Such combinations include Naive Bayes (Bernoulli) with the following
feature sets: extended_PredAttr, extended_KWs_PredAttr_Lex, extended_Distant,
extended_Distant_Emotions and extended_Distant_Emotions_Lex. It suggests that
even if we simply pick up one of these combinations for each of the aspects, the
obtained scores will not be among the worst ones.

Another observation that can be made is that including emoticons and exclamations
into the extended_Distant feature set is not a good idea unless the aspect to be extracted
is service quality. For the other restaurant aspects extended_Distant_Emoticons feature
set does not improve F1 score or even worsens it.

As for dictionaries, the corresponding features can improve the results for the
service frame. However, food quality, one of the most important restaurant charac-
teristics along with service quality, is best extracted using just non-contiguous bigrams
which seem to cover a wide variety of the expressions of opinion. Thus, a more
elaborate lexicon and dictionaries construction could be one of our future work
directions. For example, sentiment lexicon currently includes ambiguous words and
thus demands elaborate sense differentiation.

6 Conclusion: Further Work

In this paper we propose a corpus-based method of information extraction and opinion
mining for the restaurant recommendation system. It uses machine learning techniques
and is based on elaborate corpus analysis and automatic classifier selection.

We have experimented with a number of machine learning models and feature sets
with respect to our tasks, and employed statistical tests to select the optimal classifier
for each of the restaurant aspects. The features include dictionaries constructed during
corpus analysis stage (the latter is described in our earlier paper [27]). Selection pro-
cedure is based on a set of rules and classifiers priorities and enables us to choose the
most computationally effective combination of a model and a feature set among those
which perform best during cross-validation.

As a result of the experiments, Bernoulli and Multinomial Naive Bayes classifiers
appear to be the most appropriate ones for the opinion class labeling. For the task of
deciding on the relevance of a user’s review Logistic Regression, outperforms other
models. Thus, these classifiers could be recommended for the tasks similar to those
described above where the data is represented by colloquial non-structured texts and its
amount is limited.
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For service quality frame, the application of dictionaries improves models perfor-
mance, which confirms the idea of employing preliminary corpus analysis.

Thus, the results of the research verify the effectiveness of corpus-based methods
with respect to the problem of information extraction and opinion mining from col-
loquial non-structured texts (in domains similar to restaurants) inflective languages
with rich morphology and relatively free word order (like Russian), especially under
resourced ones.

Our further work directions include more sophisticated sentiment and modifiers
lexicons construction and annotation with the help of several experts. Since sentiment
degree of a word may depend on the restaurant aspect it refers to, the words are to be
annotated with respect to every aspect separately; verbs are also to be included in the
lexicon. We also plan to extend annotated subcorpus and to conduct another series of
experiments according to the method described in the paper to verify that Logistic
Regression and SVM which are normally more effective than Naive Bayes on larger
data sets will outperform it.
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