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1            Introduction 

 The previous chapter showed that our understanding about the cognitive reasoning 
process of cyber analysts is rather limited. Here, we focus on ways to close this 
knowledge gap. This chapter starts by summarizing the current understanding about 
the cognitive processes of cyber analysts based on the results of previous cognitive 
task analyses. It also discusses the challenges and the importance to capture “fi ne- 
grained” cognitive reasoning processes. The chapter then illustrates approaches to 
overcoming these challenges by presenting a framework for non-intrusive capturing 
and systematic analysis of the cognitive reasoning process of cyber analysts. The 
framework includes a conceptual model and practical means for the non-intrusive 
capturing of a cognitive trace of cyber analysts, and extracting the reasoning process 
of cyber analysts by analyzing the cognitive trace. The framework can be used to 
conduct experiments for extracting cognitive reasoning processes from professional 
network analysts. When cognitive traces are available, their characteristics can be 
analyzed and compared with the performance of the analysts. 

 Detecting complex multi-step cyber attacks are challenging for cyber analysts 
for several reasons. First, the alerts received by cyber analysts include false posi-
tives. This requires the analyst to fi lter out false positive alerts in a timely fashion. 
The false positive alert may mislead the analysts such that their time is wasted on 
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false alarms, delaying their attention to the alerts related to actual attacks. Second, 
an alert related to the attack may be missing (i.e., false negative) due to an unknown 
vulnerability or a new way of exploiting a known vulnerability. Due to missing 
alerts, analysts may not be able to identify certain attack steps in an attack chain, 
and hence delay the time to detect the multi-step attack. 

 One way to deal with false positive alerts and missing alerts is to leverage previ-
ous experience (both successful and failure experience) of cyber analysts in han-
dling similar situations. For example, a failure experience associated with a previous 
false alarm can prevent an analyst from pursuing a similar false alarm. Similarly, a 
successful experience associated with a previous missing alert can help the analyst 
to adapt the experience to deal with a similar missing alert in a new cyber attack. A 
senior analyst, with years of rich experience in cyber analysis, accumulates many 
experiences of different types. If the cognitive process of these experiences can be 
effectively captured and analyzed such that they can be aggregated and effectively 
reused by other analysts, it will provide several important benefi ts. 

 Previous Cognitive Task Analyses (CTAs) about cyber defense have provided 
valuable insights about the high-level cognitive processes of cyber analysts in the 
real world. Biros and Eppich ( 2001 ) identifi ed four cognitive capabilities. D’Amico 
and Whitley ( 2008 ) generated six analysis roles of cyber analysts:  triage analysis , 
 escalation analysis, correlation analysis, threat analysis, incident response , and 
 forensic analysis . We will elaborate on these roles and their relationship with other 
related cognitive processes. Erbacher et al. ( 2010a, b ) extended the scope of the CTA 
further to include  vulnerability assessment  and a “big picture” component to high-
light the interaction between the tactical-level cyber analysis (e.g., analyzing attacks 
within an enterprise’s regional network) and strategic-level cyber analysis (e.g., 
detecting attacks involving multiple regions or multiple countries around the globe). 

 Based on the results of these CTA’s, we synthesized and summarized the high- level 
cognitive processes of cyber analysts and their dependency relationships in Fig.  1 . 
The ovals in the fi gure represent processes, and the rectangles in the fi gure represent 
Data or Information. Because some of the processes are performed by human analysts 
while some are performed by machine, we distinguish them using solid ovals for 
cognitive processes of cyber analysts, and white ovals for processes automated by 
software. For example, “IDS” refers to “intrusion detection system” such as SNORT.  

 A cyber analysis process transforms a huge amount of raw data in the network 
(e.g., network packets) and in each computer in the network (e.g., record of system 
calls such as authentication of a user’s password) into decisions about “incident” 
(which represents a cyber attack that needs to be responded), which lead to response 
actions (e.g., shutting down a compromised machine) and further actions to mitigate 
the impact of the incident. This is the tactical level cyber analysis. Cyber analysts also 
need to correlate related incidents (which may be detected in different regions, differ-
ent countries, or even possibly far in time) that are parts of a larger attack scheme. 
This is referred to as the strategic level cyber analysis (D’Amico and Whitley  2008 ). 

 The tactical-level cyber analysis also includes vulnerability scanning (typically 
performed by machine, but can be initiated and scheduled by a human analyst), which 
perform vulnerability assessment based on known vulnerabilities. Vulnerability of 
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machines often plays a key role for an analyst to confi rm an incident. After an inci-
dent is detected, a formal report is generated by the analyst and disseminated for four 
types of further analyses at the tactical level: (1) incident response (for minimizing 
damage and expedited repairs), (2) impact analysis and mitigation plan (e.g., impacts 
to the current mission of war fi ghters), (3) identify and track attackers through threat 
analysis (i.e., intelligence gathering, analysis, and fusion for identifying the sponsor 
and the intent of the attack), and (4) forensic and malware analysis to obtain further 
details about the incident. The fourth step is especially important for a zero-day attack 
(e.g., an attack exploiting an unknown vulnerability), because they are crucial to 
identify the “signature” of the attack so that they can be incorporated into IDS for 
detecting future attacks of the same type. 

 D’Amico and Whitley ( 2008 ) identifi ed six analysis roles that accounted for all 
the cognitive work performed by cyber analysts: (1) triage analysis, (2) escalation 
analysis, (3) correlation analysis, (4) threat analysis, (5) incident response, and (6) 
forensic analysis. While the role of the latter three has been explicitly represented in 
Fig.  1 , the fi rst three cognitive roles are part of Incident Detection and other func-
tions performed by the analysts. Triage analysis fi lters the large amount of data 
(e.g., IDS alerts, network or system log) to identify “suspicious activity”, which 
feed to escalation analysis to investigate, interpret, and assemble data from multiple 
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  Fig. 1    The tactical-level cognitive processes of cyber analysts       
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sources over a time period longer than that of triage analysis. Correlation analysis 
searches for patterns and trends in current or historic data. D’Amico and Whitley 
( 2008 ) also described the workfl ow involving these three roles as an iterative pro-
cess. Some of the details of these processes are still not well understood. For exam-
ple, D’Amico and Whitley pointed out that analysts look for unexplained patterns 
during correlation analysis:

  An analyst might not know what patterns they are looking for in advance; instead, the ana-
lyst might “know it when they see it”. When they encounter a pattern that they cannot 
explain, they form hypotheses about potential malicious intent, which they try to confi rm or 
contradict via additional investigation. 

   How do cyber analysts actually perform this and other cognitive roles? What are 
the cognitive processes that tie these analysis roles together? To answer these ques-
tions, we need to capture and analyze the fi ne-grained cognitive reasoning processes 
of cyber analysts. In the following section, we describe the state-of-the-art in cap-
turing fi ne-grained cognitive reasoning processes and the diffi culties for applying it 
to the tasks performed by cyber analysts. 

1.1      Fine-Grained Cognitive Reasoning Process Capture 
and Analysis 

 We use the term “fi ne-grained cognitive reasoning process” to refer to the detailed 
cognitive process that describes individual actions and reasoning steps performed 
by an analyst and the relationships between these actions and reasoning steps. For 
example, one or more hypotheses can be formulated by the analyst at a particular 
point of the reasoning process based on the observations the analyst has made up to 
that point. These hypotheses can be later refi ned, rejected, or confi rmed by the ana-
lyst during his/her reasoning process. For cyber analysts, such detailed cognitive 
reasoning process can complement the “high-level cognitive processes” described 
in the previous section in four important ways. First, it will improve our understand-
ing about the difference in the cognitive reasoning processes of the experts and 
less-experienced analysts. Such an understanding is critically important to facilitate 
the design of better training tools for cyber analysts. Second, the fi ne-grained cogni-
tive reasoning process of cyber analysts can provide a unique basis for identifying 
the opportunities to improve the visualization support for cyber analysts (Erbacher 
et al.  2010a, b ). Third, the analysis of fi ne-grained cognitive reasoning process can 
lead to the design of automated cognitive aid tools by reusing and/or aggregating the 
processes of analysts to enhance the performance of analysts. Finally, the automated 
capture of the fi ne-grained cognitive reasoning process of cyber analysts can facili-
tate the sharing of relevant information and knowledge between cyber analysts, 
whether they are in different work shifts or in different geographic locations. 

 Existing methods for capturing fi ne-grained cognitive reasoning process include 
(1) talk-aloud protocol, (2) think-aloud protocol, (3) retrospective reports protocol, 
(4) observational case study, and (5) behavior trace capture. The fi rst three methods 
are also referred to as types of “verbal protocol analysis” (Ericsson and Simon  1980 , 
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 1993 ). In a verbal protocol analysis, a subject performs a given task while being 
monitored by experimenters and being recorded (audio or video). In a talk-aloud 
protocol, the subject is asked to verbally articulate anything that comes to their mind 
in performing a given mental task. In a think-aloud protocol, the subject is asked to 
verbally describe anything that comes to their mind as they think to solve a problem. 
In a retrospective reports protocol, the subject is asked to refl ect and articulate their 
thinking after they solve the problem. Retrospective reports can be combined with 
one of the fi rst two protocols to validate their completeness (Ericsson and Simon 
 1993 ). Protocol analysis is the basis for knowledge acquisition methods, which 
elicit expert knowledge and encode them in an artifi cial intelligence system (often 
referred to as “expert systems”, “knowledge-based systems”, or “intelligent agents”) 
through interviews and case studies. Due to the complexity of these tasks, the verbal 
protocol analysis needs to be augmented with an “interviewer” (typically referred to 
as a “knowledge engineer” due to their familiarity of the target representation lan-
guage to be used to encode the expertise), who guides the thinking aloud protocol 
by asking probing questions, and by providing information to simulate the outcome 
of an action (e.g., test result of a diagnostic task) performed by the subject (Durkin 
 1994 ). While this elicitation method is feasible for tasks whose actions generate a 
limited number of outcomes (e.g., result of a test is positive or negative), it is diffi -
cult to apply the method to cyber analysis task whose actions (e.g., fi lter alerts for a 
particular port number) can lead to a wide range of possible outcomes. 

 The fourth method for acquiring fi ne-grained cognitive reasoning process is 
observational case study, which observes the subject in performing a task (Bell and 
Hardiman  1989 ). This method can be combined with think aloud protocol and/or 
retrospective report protocol. A case or a scenario is used in observational study to 
provide a context and relevant information in response to the actions of the subject. 

 The fi fth method for obtaining fi ne-grained cognitive reasoning process is behav-
ior trace, which transforms the observational data gathered from the subject into a 
“behavior trace”. Tools (such as MacSHAPA) have been developed to facilitate the 
generation of such behavior trace from observational data (Sanderson et al.  1994 ). 
For example, a knowledge/cognitive engineer can use MacSHAPA to encode actions 
and/or communications captured in the observational data as template or predicate. 
While this type of tool is useful, it cannot extract the cognitive process that the sub-
ject did not explicitly articulate in the think-aloud protocol. 

 In the rest of this chapter, we fi rst provide a literature review about research 
related to capturing cognitive process. This is followed by a framework for non- 
intrusive capturing and analysis of fi ne-grained reasoning cognitive processes, 
which includes (1) the Action-Observation-Hypothesis (AOH) conceptual model, 
(2) the non-intrusive capturing of a cognitive trace of cyber analysts containing a 
temporal sequence of AOH objects and relationships, and (3) extracting the reason-
ing process of cyber analysts by analyzing the cognitive trace. Section  4  presents a 
case study of applying the framework to systematic capturing of the cognitive rea-
soning process from professional network analysts and the initial results of analyz-
ing the cognitive traces. Finally, we summarize the key contributions of systematic 
capturing of the cognitive reasoning process of cyber analysts and its critical 
enabling role toward a more agile cyber defense.   
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2     Literature Reviews 

2.1     Cognitive Task Analysis 

 A cognitive task analysis (CTA) (Crandall et al.  2006 ) derives the required tasks for 
highly analytical (cognitive) activities such as decision-making; network analyst deter-
mination of network event relevance, importance, and characterization is of particular 
relevance. More specifi cally, a CTA attempts to determine what tasks are required to 
be performed and how the target experts perform said tasks. A cognitive task analysis 
is critical for developing correct tools and capabilities to improve the effectiveness of 
the network analyst, such as advanced displays, recommender systems, etc. Three 
CTAs are particularly relevant to network analysis from existing literature.

•    The fi rst CTA ( Foresti and Agutter n.d. ) examined the tools used by network 
experts at the time of the CTA as well as the advanced displays that had been 
developed for use by network experts. The focus of the CTA was to acquire the 
fundamentals necessary for the development of advanced displays geared 
towards improving network administrator effi ciency. Additionally, results of the 
CTA identifi ed the temporal organization of decisions and event prioritization 
through semi-structured interviews.  

•   The second CTA (D’Amico et al.  2005 , D’Amico and Whitley  2008 ) had three 
goals. First was to study the set of analyst goals. Second was to identify the 
needed analyst expertise and their depth. Third was to identify the viability of 
visual representations and how such visual representations might be used. This 
study was performed through subject interviews of seven different 
organizations.  

•   The third study (Erbacher et al.  2010a ,  b ) performed interviews of individuals 
with different levels of decision-making responsibility within network opera-
tions at Pacifi c Northwest National Laboratory. In addition to a wide range of 
requirements, this study generated a cyber command and control task fl ow dia-
gram with primary tasks including assessment, detailed assessment, response, 
audit, and big picture, which is shown in Fig.  2 .      

2.2     Case-Based Reasoning 

 The reuse of cyber analysts’ analytical reasoning results has been investigated using 
case-based reasoning (CBR). Given a problem, a CBR system retrieves a similar 
problem from a case library (also referred to as case base or knowledge base), modi-
fi es its solution for the given problem, and retains the new problem and solution in 
the case library (Stahl  2004 ). The original concept of CBR derives from a cognitive 
model of dynamic memory by Schank ( 1982 ), which led to computer-based CBR 
systems (Kolodner  1983 ; Lebowitz  1983 ). The process model of CBR developed by 

J. Yen et al.



125

Aamodt and Plaza ( 1994 ), consists of four components: retrieve, reuse, revise, and 
retain. The model has driven the majority of research and application development 
in CBR research. Research into each of the four component areas has been exten-
sive resulting in numerous reviews and surveys (De Mantaras et al.  2005 ). An exten-
sion of CBR model, shown in Fig.  3 , explicitly includes the generation of incident 
reports by analysts (Erbacher and Hutchinson  2012 ).  

 In operations, a new scenario is matched against the existing scenarios to fi nd the 
most relevant match, which is then mapped, using a similarity metric, to the new 
scenario providing an updated solution. Such case-based reasoning has been applied 
to a wide range of domains including:

•    Breathalyzers (Doyle  2005 )  
•   Bronchiolitis (Doyle  2005 )  
•   E-Clinic (Doyle  2005 )  
•   Intelligent tutoring systems (Soh and Blank  2008 )  
•   Help desk systems, i.e. diagnosis (Stahl  2004 )  
•   Electronic commerce product recommendation systems (Stahl  2004 )  
•   Classifi cation, i.e., class membership (Stahl  2004 )    

 The retrieval component of CBR requires a similarity metric between cases. A 
survey/taxonomy of similarity metrics can be found in Cunningham ( 2008 ). 
Examples of research in retrieval mechanisms include:

•    Information theory approaches (Ranganathan and Ronen  2010 ). This research 
provides for the identifi cation of similarities between instances in an ontology.  

•   User defi ned functions (Sterling and Ericson  2006 ). The associated patent also 
covers the representative database issues.  

  Fig. 2    A cyber command and control task fl ow (Erbacher et al.  2010a ,  b )       
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•   Abduction versus deduction (Sun et al.  2005 ).  
•   Fuzzy similarity (Sun et al.  2005 ).  
•   Contextual probability (Wang and Dubitzky  2005 ). This metric integrates prob-

ability with distance-based neighborhood weighting and works for both ordinal 
and nominal data.  

•   Adaptive similarity (Long et al.  2004 ). This paradigm allows for specifi cation of 
new similarity metrics and identifi cation of the similarity metric to be applied in 
particular scenarios without the need for reprogramming.  

•   Semantic vs. syntactical similarities (Aamodt and Plaza  1994 ).  
•   Models of similarity (Osborne and Bridge  1997 ). The goal of this work was to 

identify the primary classes of similarity including absolute and relative similar-
ity metrics.    

 Specifi c similarity metrics for categorical data include overlap, eskin, IOF, OF, 
Lin, Lin1, Goodall1, Goodall2, Goodall3, Goodall4, Smirnov, Burnaby, Anderberg, 
and Neighborhood Counting Metric (Boriah et al.  2008 ; Wang and Dubitzky  2005 ). 

 Case-based reasoning has been applied to support the reuse of an analyst’s 
“report” that summarizes the analyst’s analytical reasoning results regarding previ-
ous cyber-attacks so that the efforts of generating reports for a newly detected attack 
can be reduced signifi cantly (Erbacher and Hutchinson  2012 ). However, CBR has 
not been used to capture and reuse the process of the analyst’s analytical reasoning 
process. One of the challenges in applying CBR to retrieving and reusing analytical 
reasoning processes is a lack of non-intrusive way to capture them.   

  Fig. 3    An extended case-based reasoning process model       
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3     A Systematic Cognitive Reasoning Process Capture 
and Analysis Framework 

 To address the challenges of capturing a detailed cognitive process of a cyber ana-
lyst, we have developed a framework and associated cognitive trace tool for captur-
ing the cognitive reasoning process of a cyber analyst. The framework not only 
integrates observational study and behavior trace methods described in Sect.  1.1 , 
but also extends the previous approaches by enabling analysts to record their think-
ing (as “hypotheses”), and linking them to observations of interests during the 
observational study. In a way, the framework transforms “think aloud” to “type 
aloud”— instead of verbally articulating their thinking, analysts record each step of 
their cognitive reasoning process in a naturalistic way (not necessarily monitored) 
in the context of solving a given case involving cyber-attacks. 

 In the rest of this section, we fi rst describe the conceptual model of the framework, 
which we will refer to as the A-O-H model, named after the three main objects in the 
framework:  Actions  performed by a subject,  Observations  of interest to the subject, 
and  Hypothesis  generated by the subject based on the observations. We then intro-
duce the relationship between these objects that forms the analytical reasoning pro-
cess of cyber analysts. Section  3.3  describes the AOH objects and relationship captured 
in a non-intrusive way. Finally, we discuss how the reasoning process can be extracted 
from the cognitive trace to provide the basis for systematic analysis of the cognitive 
reasoning processes at the individual level as well as across multiple analysts. 

3.1     The A-O-H Conceptual Model of an Analytical 
Reasoning Process 

 A conceptual model of the analytical process of cyber analysis is informed by 
cognitive science theories including sense making theory and naturalistic decision 
making. The sense making theory builds on three key cognitive constructs: 
 Action ,  Observation , and  Hypothesis . Actions refer to analysts’ evidence 

  Fig. 4    The iterative 
analytical reasoning process 
involving action, observation 
and hypothesis (A-O-H 
Model) (Zhong et al.  2013 )       
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exploration activities; Observations refer to the observed data/alerts considered 
relevant by the analysts; Hypotheses represent the analysts’ awareness and 
assumptions in a certain situation. These three constructs iterate and form reason-
ing cycles. Actions can lead to new or updated observations, which result in new 
or updated hypotheses, and later subsequent Actions. Not surprisingly, these three 
constructs, being part of the general sense making theory, naturally map to cogni-
tive activities of cyber analysts. While Actions and Observations in cyber analysis 
are obvious, Hypotheses are not explicit (i.e., they are “tacit” knowledge) and 
cannot be fully anticipated due to new attack behaviors (hence needs to be entered 
by the analyst in a semi-formal representation). Often, a Hypothesis is not known 
for certain until further evidence (e.g., presence of relevant vulnerability on a 
node) is gathered to confi rm or disconfi rm. All the Hypotheses maintained by an 
analyst are called “ Working Hypotheses ”. We call the instances of Action, 
Observation and Hypothesis as “ AOH Objects ”.   

3.2     The AOH Objects and Their Relationships Can Represent 
the Analytical Reasoning Processes 

 In the iterative cycles of analytical reasoning processes, Hypotheses in different sense 
making cycles be related in important ways. One set of Actions and Observations can 
lead to a set of disjunctive hypotheses. Therefore, the AOH Objects are connected to 
each other in an analytical reasoning process. This is illustrated in Fig.  5 . Since an 
Action always results in an Observation, we put Action and Observation in a unit, 
called “ AO ”. The Hypotheses (“ H ”s) being the children of an AO indicates these 
Hypotheses are generated based on the AO. An AO being a child of an H indicates 
that this AO is triggered by the H. We can also consider the Hypotheses only. If an  H   1   
has an AO unit as its child and another H  H   2   is a child of AO, we say that  H   2   is a child 

  Fig. 5    An analytical reasoning process represented by the AOH objects       
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hypothesis of  H   1 .  A parent H is connected to its immediate children H showing a 
conjunctive AND relationship (i.e., refi ned sub- hypotheses). If an H  H   1   and an  H   2   
have the same AO as their parent, we say that  H   2   is a sibling hypothesis of  H   1 .  The 
sibling Hypotheses have disjunctive OR relationships (i.e., alternative hypotheses). 
Therefore, the AOH Objects in an analytical reasoning process are interconnected.   

3.3      Capturing the Analytical Reasoning Processes 

3.3.1     The Representation Indicates What Should Be Captured 

 We have proposed a model of analytical reasoning processes, which includes the 
AOH Objects and their relationships. The proposed model supports both a semi- 
structured representation of interconnected sense making constructs: Actions, 
Observations, and Hypothesis as well as an AND-OR organization of the Hypothesis. 
Actions and Observations can be captured in a structured representation, because 
the analysts’ data exploration behaviors and the selected data can be automatically 
recorded. The Hypothesis constructs can be recorded in free text, which enables a 
fl exible and analyst-friendly representation of analysts’ thoughts. 

 An analyst could conduct various operations on the AOH Objects: the operations 
on Action could include fi ltering, searching, inquiring and data selecting; the opera-
tions on Observation could be selecting data entries and linking the data; the opera-
tions on Hypothesis could be creating a new Hypothesis, modifying an existing 
Hypothesis, switching the context and confi rming/denying an existing Hypothesis. 
We will describe the operations in detail in Sect.  4 . Therefore, we should also record 
the sequence of an analyst’s operations on the AOH Objects in a temporal order.  

3.3.2     Non-intrusive Capture 

 Regarding the importance of tacit knowledge and expertise, we capture the analyti-
cal reasoning processes of cyber analysis in a non-intrusive way. A monitoring sys-
tem is developed to support the construction of AOH Objects, investigation and 
refi nement of Hypotheses. This system audits the analysts’ behaviors (e.g. data 
manipulation, hypothesis creation and refi nement) and records them in traces, called 
“Cognitive Traces”. This system would never interrupt the analysts. The Actions 
and related Observation are automatically tracked as the analysts selected data 
sources and specifi c entries of interest from each data source. When the analyst 
wishes to create a Hypothesis, the previously tracked Observations are automati-
cally included in an initial list to be included as AO (i.e., the action-observation 
unit). The analyst can choose to modify the list to exclude data entries he/she looked 
at, but not relevant to the created Hypothesis. After the analyst confi rms the cap-
tured AO to be associated with a Hypothesis, she/he is presented with a GUI inter-
face to enter a short free-text description of the Hypothesis. Once the analyst 
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completes the entering of Hypothesis description, the newly created AO and 
Hypothesis and their relationships are recorded to capture the analytic process of 
the cyber analyst. When the analyst wants to confi rm a Hypothesis, he/she can mark 
the Hypothesis as “True”. Alternatively, the analyst can reject a Hypothesis by 
marking it as “False”.   

3.4     Reasoning Processes in AOH Representation Can 
Be Extracted from the Cognitive Traces 

 Using the proposed representation, an analytical reasoning process is a process of 
evolving construction of AOH Objects, investigation and refi nement of Hypotheses. 
Since the monitoring system has recorded the analysts’ behaviors of construction of 
AOH Objects, investigation and refi nement of the Hypotheses, we can extract the 
analytical reasoning processes given the captured cognitive traces. 

 Figure  6  shows the framework of the proposed cognitive tracing analysis. The 
conceptual AOH model lays the cognitive foundation of our representation of ana-
lytical reasoning processes. This representation helps us to capture the analytical 
reasoning processes in a non-intrusive way. We can then extract the reasoning pro-
cesses by analyzing the cognitive traces.  

 By analyzing the cognitive traces, which are generated by cyber analysts and gath-
ered in a non-intrusive way, we can identify gaps and opportunities that lay the foun-
dation for the next generation of cyber defense training, education, and development. 
More specifi cally, the results of analyzing analytical reasoning traces of cyber ana-
lysts will provide key insights about the differences of analytical reasoning between 
highly experienced analysts and less-experienced analysts so that opportunities to 
improve the training of analysts can be identifi ed. Furthermore, the results of the 
trace analysis will demonstrate the feasibility and the opportunities about leveraging 
the experience of experienced analysts to support the analytical reasoning of less-
experienced analysts. Another important benefi t of the results of trace analysis is to 

  Fig. 6    The framework of the cognitive tracing analysis       
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demonstrate the opportunities to improve the sharing and  communication of 
 knowledge regarding cyber attacks to the decision makers through a systematic con-
struction of “story telling” using the traces. Finally, the results of the trace analysis 
involving multi-step attacks will identify opportunities for multiple analysts to col-
laborate and share forensic-sound information to facilitate near real- time cyber 
forensics to support “fi ght through” under an asymmetric information environment.   

4       A Case Study about Professional Network Analysts 

4.1     A Tool for Capturing the Cognitive Traces 

 We developed ARSCA (Analytical Reasoning Support Tool for Cyber Analysis) 
toolkit to track the traces of analysts’ analytical reasoning processes while they are 
doing cyber analysis tasks. Figure  7  shows the architecture of ARSCA. ARSCA 
provides analysts with two main views: Data View and Analysis View. Data View 
integrates the monitoring data sources, for example, network topology, IDS alerts 
and fi rewall logs in this case. The Analysis View enables analysts to create instances 
of Action, Observation and Hypothesis (i.e. AOH Objects).  

 Figure  8  shows the interfaces of ARSCA. While an analyst is exploring the mon-
itoring data, the tool automatically captures the activities of data manipulation (for 
example, searching and fi ltering) in an emerging Action instance, and also captures 
the selected data and other information resulting from the previous activities in the 
emerging Observation instance. ARSCA also enables an analyst to write down their 
thoughts as a Hypothesis instance and relate it to its corresponding Actions and 
Observations (Zhong et al.  2013 ).   

  Fig. 7    The architecture of a cognitive trace capture tool       
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4.2     Conducting Human Studies for Collecting Cognitive 
Traces from Professional Network Analysts 

 We conducted human studies with professional cyber analysts to gather their cogni-
tive traces of the analytical reasoning processes. First of all, we needed to prepare 
the network monitoring data and the attack scenarios. We adopted the cyber analysis 
data of VAST 2012 Challenge Mini-challenge 2 (VAST Challenge  2012 ), including 
about 35,000 IDS alerts and 26,000,000 Firewall logs. Figure  9  shows the network 

  Fig. 8    The interface of ARSCA (Zhong et al.  2013 ) ( a ) Data view ( b )Analysis view       
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topology of the VAST 2012. This dataset implies a multi-step attack that took place 
over two days (about 40 h). Considering the fact that it is impossible for humans to 
process such large amounts of data without the help of external data analysis tools 
in a limited time, we cut out four pieces of the dataset which includes some key 
attack events and made four tasks using each of them. We made the tasks containing 
the same number of key attack events occurring in a similar amount of time, and 
containing a similar amount of network data. Table  1  shows the detailed information 
about the time period and dataset size of each task. Therefore, we can assume the 
tasks are at the same level of diffi culty. 

   In collaboration with the U.S. Army Research Laboratory (ARL), the study 
recruited participants from professional network analysts working at ARL. In each 
task, analysts were asked to analyze the prepared network monitoring data with the 
goal of detecting the attack events. We also requested that the analyst use this tool 
to accomplish the analysis. Therefore, the tool would capture their analytical rea-
soning traces while they were doing the tasks. 

  Fig. 9    The network topology of VAST 2012 Mini Challenge 2 (VAST 2012)       

 Task  Time period  Raw data size 

 1  4/5 20:18–20:30 (12 min)  IDS: 214 
 Firewall: 123,133 

 2  4/5 22:15–22:26 
 (11 min) 

 IDS: 239 
 Firewall: 115,524 

 3  4/6 0:00–0:10 
 (10 min) 

 IDS: 296 
 Firewall: 112, 766 

 4  4/6 18:01–18:15 
 (14 min) 

 IDS: 252 
 Firewall: 85,463 

  Table 1    Time period and 
size of dataset of the tasks  
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 Since the analysts are asked to use our tool, we provided a training session before 
each task and designed a quiz to test an analyst’s profi ciency of working with 
ARSCA. Each subject had to pass the quiz before he/she performs the task. 

 As a part of the experiment, we also ask subjects to respond to a pre-task ques-
tionnaire and a post-task questionnaire. The pre-task questionnaire contains ques-
tions about the demographic of the analyst, reasoning style, and the level of 
knowledge and skills regarding cyber analysis. The post-task questionnaire includes 
the analyst’s retrospective summarization of the key fi ndings and conclusions, as 
well as their assessment about the usefulness of the tool.  

4.3     The Cognitive Traces 

4.3.1     What Is in a Cognitive Trace? 

 Once an analyst completes his/her task, ARSCA generates the analyst’s cognitive 
trace. In the rest of the chapter, we will use one of the subjects, S1, as an example to 
demonstrate in further detail the cognitive trace captured by ARSCA. 

 Figure  10  shows the AOH Objects created by subject S1 and their relationships. 
The ovals are the AO units and the rectangles are Hs. The text in an oval or a rect-
angle is the ID number for the AOH Object. We refer to the set of Hypotheses that 
are linked to the same AO (i.e. Action-Observation unit) as Alternative Hypotheses. 
For example, the Hypotheses in the dotted box in Fig.  10  are Alternative Hypotheses.  

 The operations on the AOH Objects are recorded in the cognitive trace in the 
temporal order they were performed by the analyst. Each item in a trace contains a 
timestamp and an operation on the AOH Objects. These operations can be grouped 
into three categories: (1) the operations related to Action (i.e. “AOP_Inquring”, 
“AOP_Filtering”, “AOP_Searching”, and “AOP_Selecting”), (2) the operations 

  Fig. 10    The AOH objects and their relationships in S1’s cognitive trace       
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related to Observation (i.e. “OOP_Selected” and “OOP_Linking”), and (3) the 
operations related to Hypothesis (i.e. “HOP_Confi rm/Deny”, “HOP_Modify”, 
“HOP_SwitchContext”, “HOP_Add_Sibling”, and “HOP_New”). Table  2  summa-
rizes these operations.

   Figure  11  shows a portion of the fi le that records the cognitive trace generated by 
subject S1. Each item in the trace includes a timestamp and an operation. The opera-
tions in the trace items shown in Fig.  11  can be explained as follows. 

•    “FILTERING” (AOP_Filtering): Filtering the data source “Task2IDS” by the 
condition “SourcePort=6667”.  

•   “SELECTING” (AOP_Selecting): Selecting the data entries in the fi ltered 
data set.  

•   “SELECTED” (OOP_Selected): The selected data entries. Such kind of opera-
tions always come in pairs with AOP_Selecting operations.  

•   “NEW” (HOP_NEW): Creating a new Hypothesis.     

4.3.2     Cognitive Trace Analysis 

 We have conducted a preliminary analysis about the basic features of the collected 
cognitive traces from ten subjects, denoted by “S1”, “S2”, “S3”, “S4”, “S5”, “S6”, 
“S7”, “S8”, “S9”, and “S10”. Figure  12  shows the number of Action-Observation 
units and the number of hypotheses in the cognitive traces of these analysts, and the 
time they took to complete the cyber analysis task (based on VAST 2012). There is 
a signifi cant differences among the analysts in terms of these three characteristics of 
their cognitive traces.  

 We further compared the number and the types of operations for the ten subjects 
in this case study. As shown in Fig.  13 , there is a signifi cant difference among 
the analysts both in terms of the number of operations and the type of operations 

    Table 2    The description of operations   

 Operation  Description 

 Operation 
on action 

 AOP_Filtering  Filter a data source 
 AOP_Searching  Search a keyword in a data source 
 AOP_Selecting  Select some data entries in a data source 
 AOP_Inquiring  Inquire about a port or a term 

 Operation on 
observation 

 OOP_Selected  Generate an observation based on the selected data 
 OOP_Linking  Link the selected data 

 Operation on 
hypothesis 

 HOP_New  Create a new hypothesis 
 HOP_Add_Sibling  Add an alternative hypothesis 
 HOP_SwitchContext  Switch the current focus of attention from one 

hypothesis to another hypothesis 
 HOP_Modify  Modify the content of a hypothesis 
 HOP_Confi rm/Deny  Confi rm/deny a hypothesis 
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  Fig. 11    An example output fi le of S1’s cognitive trace       
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  Fig. 12    The number of AOH’s in the traces and task completion time       

ID s10s9s8s7s6s5s4s3s2s1

250

200

150

100

50

0

DD
aa

ttaa HOP_Add_Sibling
HOP_New

OOP_Linking
AOP_Inquring
AOP_Filtering
AOP_Searching
OOP_Selected
AOP_Selecting
HOP_Confirm/Deny
HOP_Modify
HOP_SwitchContext

Operation
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they performed. This “heterogeneity” of the cognitive trace motivates us to further 
investigate to see whether there is any possible relationship between characteristics 
of cognitive traces and the performance of analysts. We will return to this point in 
the next section.  

 To gain a deeper understanding about the reasoning process of analysts, further 
analyses about the temporal ordering of these operations are also important. For 
example, switching context is an interesting aspect for trace analysis, because it may 
reveal the rationale and associated reasoning that enables the analyst to change 
focus of attention at a particular time in his/her reasoning process. We will use the 
trace of S1 to illustrate this: S1 switched context twice (shown in Fig.  14 ). The rel-
evant trace segments are shown on the left of Fig.  14 , and the AOH Objects (i.e. AOs 
and Hs) and their connections in S1’s trace are shown on the right. In the fi rst case 
of context switching, S1 jumped from Hypothesis “H39431008” (labelled “1”) to 
“H46131157” (labelled “2”). Following this operation, S1 created a new Hypothesis 
“H666431551” (labelled “3”) as a sibling Hypothesis of “H46131157”. In the sec-
ond case, S1 jumped from “H89931527” to “H58331044”, and then change the truth 

  Fig. 14    Two cases of switching to previous hypothesis in S1’s trace       
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value of “H58331044” from “Unknown” to “False” (i.e. rejecting it). Even though 
the analyst S1 switched contexts in both cases, the rationales are quite different. In 
the fi rst case, S1 went back to a previous hypothesis to create an alternative hypoth-
esis. In the latter case, he/she recalled a previous hypothesis to reject it. This exam-
ple illustrates the importance in analyzing the temporal sequence of operations to 
obtain a richer understanding about the reasoning process of the analyst.    

4.4     What Are the Characteristics of Cognitive Traces 
for Different Levels of Performance? 

 Since the pursuit of our research is to improve the analysts’ performance in cyber 
analysis, we are interested in the analysts’ performance in our tasks and the charac-
teristics of cognitive traces for different levels of performance. 

 The ground truth of our tasks is known, which is the attack scenario of the VAST 
2012 Challenge Mini Challenge 2. Therefore, we can evaluate the analyst’s perfor-
mance in a task based on how accurate his/her fi ndings and conclusions are com-
pared to the known ground truth. We conducted two rounds of evaluation to decide 
a fi nal performance score for each subject, on a scale of 0–5 (with 5 being the best 
performance). Figure  15  shows the performance score of the ten subjects. Three 
analysts were rated highest (5 points), four analysts received 4 points, and three 
analysts were rated lowest (3 points).  
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  Fig. 15    The performance score of the ten subjects       
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 Next, we categorize the cognitive traces into three groups according to the per-
formance score (that is, the traces with 3 points, 4 points and 5 points respectively), 
and investigate the characteristics of these traces in each group. 

 We fi rst compare the completion time and the number of AO units and hypotheses 
for analysts with different levels of performance (i.e. 3 points, 4 points, and 5 points). 
Figure  16  shows that traces in the lowest performance group have, on average, the 
smallest number of AO units and hypotheses in their traces. The task completion 
time for the group with the best performance is also larger, on the average, than the 
completion time of those from the other two groups. While we are not able to arrive 
at conclusions about the relationship between analyst performance and the charac-
teristics of their traces due to the small sample size of the analysts, these preliminary 
fi ndings do suggest that further studies are warranted to further investigate potential 
relationships between analyst performance and the characteristics of their traces.  

 Using a similar strategy, we want to investigate whether the number of operations 
for each operation type is related to analyst performance in some way. Figure  17  
shows the result of this comparison. The group of high performance analysts, on the 
average, uses more fi ltering operations (AOP) than the two other groups. They also 
tend to do more context switching (HOP SwitchContext) than the others. Finally, the 
high performance group performs more linking operations among selected observa-
tions (OOPLinking). As we mentioned before, more samples and further studies are 
needed to investigate whether these detailed trace characteristics are correlated with 
analyst performance in a statistical signifi cant way. These preliminary results, how-
ever, do suggest that comparing the characteristics of cognitive traces of analysts 
with their performance is a promising direction of future research.    
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  Fig. 16    The completion time and the number of A-O-H objects in the three groups of cognitive 
traces with different levels of performance scores       
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5     Summary 

 As computing devices connected to the internet explode for personal health moni-
toring and management, environment and physical security surveillance, smart 
home appliances, smart vehicles, smart energy grid, and ubiquitous computing 
(e.g., Google Glass), the complexity and the frequency of cyber-attacks faced by 
cyber defense analysts of governments and business enterprises continue to increase 
at a rapid speed. The ultimate goal of cyber defense is to increase its agility even 
for zero-day attacks (e.g., attacks leveraging vulnerabilities that are not known by 
the cyber defenders), so that the time from detection of attacks to creating auto-
mated support tool to enable early and effective detection of future similar attacks is 
as close to real-time as possible. A critical obstacle on the path to achieving this 
vision is lacking a systematic framework and supporting methods/tools for captur-
ing the analytical reasoning process of professional cyber defense analysts. 

 In this chapter, we have described the current understanding about the high-level 
cognitive process of cyber analysts, based on Cognitive Task Analysis (CTA) con-
ducted previously with professional cyber defense analysts, and the diffi culty of 
capturing fi ne-grained cognitive reasoning process of analysts using existing meth-
ods. To address this diffi culty in a way that is well-founded theoretically (for high 
generality) and, in the same time, practically feasible for being embedded into the 
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work environment of analysts in a “non-intrusive” way, we present a paradigm, we 
believe, that has a potential to create transformational impacts toward a much more 
agile cyber defense in the near future. We summarize below the key features of the 
framework and how they can contribute to enhancing the agility of cyber defense. 

 First, the sense making cognitive theory foundation of the A-O-H conceptual 
model enables the framework to be general and broadly applicable to a wide range 
of tasks and domains. The notion of actions, observations, and hypotheses naturally 
map to the observable actions performed by the analysts, observations from immense 
data presented to the analysts, and their hypothesized attack step, sequence, and/or 
plan. Because the framework is built on the A-O-H model, it can be applied not only 
to intrusion detection at the tactical level as demonstrated in the case study, but also 
to other types of tactical cyber analysis tasks (e.g., forensics) as well as to cyber 
defense tasks at the strategic level. In fact, the framework can also be applied to 
other domains such as intelligence analysis. 

 Second, the non-intrusive nature of the framework enables the capturing of the 
cognitive process to be embedded in the work environment of the professional ana-
lysts. The system audits the analysts’ behaviors (e.g. data manipulation, hypothesis 
creation and refi nement) and records them in “Cognitive Traces” without interrupt-
ing the analysts. The Actions and related Observation are automatically tracked as 
the analysts selected data sources and specifi c entries of interest from each data 
source. When the analyst wishes to create a Hypothesis, the previously tracked 
Observations are automatically included in an initial list to be included as AO (i.e., 
the action-observation unit). The non-intrusive capturing of cognitive trace is a key 
enabler toward a more agile defense because it enables the cognitive trace to be 
captured at the earliest possible time, and signifi cantly reduce the time and the cost 
(e.g., due to extra efforts the analysts need to make) it may take to extract reasoning 
process from the analysts otherwise. 

 Third, the cognitive traces captured in non-intrusive way, as demonstrated by the 
case study, provide, for the fi rst time, important characteristics of the reasoning 
process of analysts and their potential relationship to the performance of analysts. 
These characteristics and relationship offers promising indication that the analysis 
of the reasoning process (both at the individual level and at the aggregate level) can 
be benefi cial to the design of training programs and cognitive aids for enhancing the 
performance of analysts (Zhong et al,  2014 ). 

 In summary, this book chapter presents a theoretically well-founded and practi-
cal non-intrusive framework for capturing and analyzing the cognitive reasoning 
processes of professional cyber analysts. It provides important basis for further 
studies regarding collaboration among analysts (e.g., in two adjacent work shifts), 
visualization needs and design for supporting analysts, cognitive aids, and training 
procedures that leverage the reasoning processes captured to assist analysts to per-
form the cyber defense analysis at hand with higher quality and more effi ciency.     
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