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      Preview 

             Alexander     Kott     ,     Cliff     Wang    , and     Robert     F. Erbacher   

        Cyber security has emerged as one of the dominant challenges to our highly net-
worked society. Individuals, corporations and Governments are increasingly con-
cerned about the costs and threats imposed on them by cyber crime, cyber espionage 
and cyber warfare. Within the fi eld of cyber defense, situational awareness is par-
ticularly prominent. It relates to science, technology and practice of perception, 
comprehension and projection of events and entities in the relevant environment—
in our case cyber space. Situational Awareness is diffi cult to achieve in such fi elds 
as aviation, plant operation or emergency management. It is even more diffi cult—
and poorly understood—in the relatively young fi eld of cyber defense where the 
entities and events are so unlike the more conventional physical phenomena. 

 We (here and below, “we” refers to all co-authors of this book collectively) begin 
the book with the chapter titled  Foundations and Challenges —an overview of how 
cyber operators develop SA and an analysis of the requirements for supporting SA in 
cyber operations. Based on the unique challenges in this domain, several key thrusts 
for research and development are identifi ed that need to be addressed to provide tools 
that effectively support cyber operator SA and decision making. We explain why the 
development of cyber situation awareness is critical to effective defense of networks 
and the assurance of security in cyber operations. A number of factors limit cyber SA 
in current operations, including: a highly complex and fl uid system topology, rapidly 
changing technologies, a high signal to noise ratio,  potentially long durations 

        A.   Kott      (*) 
   709 Lamberton Drive ,  Silver Spring ,  MD   20920 ,  USA    

  United States Army Research Laboratory ,   2800 Powder Mill Rd. ,  Adelphi ,  MD   20783 ,  USA   
 e-mail: Alexander.kott1.civ@mail.mil   

    C.   Wang    
  United States Army Research Offi ce ,   4300 S Miami Blvd ,  Durham ,  NC   27703 ,  USA     

    R.F.   Erbacher    
  United States Army Research Laboratory ,   2800 Powder Mill Rd. ,  Adelphi ,  MD   20783 ,  USA    

mailto: Alexander.kott1.civ@mail.mil


2

between the insertion of an attack and its effect, rapidly evolving and multi-faceted 
threats, speed of events that exceed human capacity, non-integrated tools that are 
poorly aligned with SA needs, data overload and meaning underload, and automa-
tion challenges. 

 Although a fairly new topic in the context of cyber security, SA has a far longer 
history of study and applications in such areas as control of complex enterprises and 
in conventional warfare. For this reason, far more is known about the SA in conven-
tional military confl icts, or adversarial engagements, than in cyber confrontations. 
By exploring what is known about SA in conventional—also commonly referred to 
as kinetic—battles, we may gain insights and research directions relevant to cyber 
confl icts. This is the topic of the chapter titled  Cyber and Kinetic , where we dis-
cuss the nature of SA in conventional (often called kinetic) confl ict, review what is 
known about such a conventional SA (KSA), and then offer a comparison with what 
is currently understood regarding the cyber SA (CSA). We fi nd that challenges and 
opportunities of KSA and CSA are similar or at least parallel in several important 
ways. With respect to similarities, in both kinetic and cyber worlds, SA strongly 
impacts the outcome of the mission. Also similarly, cognitive biases are found in 
both KSA and CSA. As an example of differences, KSA often relies on commonly 
accepted, widely used organizing representation—such as a map of the physical 
terrain of the battlefi eld. No such common representation has emerged in CSA, yet. 

 Having discussed the importance and key features of CSA, we proceed to explore 
how it emerges. Formation of Cyber Situational Awareness is a complex process 
that goes through a number of distinct phases and produces a number of distinct 
outputs. Humans with widely different roles drive this process while using diverse 
procedures and computerized tools. The  Formation of Awareness  chapter explores 
how situational awareness forms within the different phases of the cyber defense 
process, and describes the different roles that are involved in the lifecycle of situa-
tional awareness. The chapter presents an overview of the overall process of cyber 
defense and then identifi es several distinct facets of situational awareness in the 
context of cyber defense. An overview of the state of the art is followed by a detailed 
description of a comprehensive framework for Cyber Situational Awareness devel-
oped by the authors of this chapter. We highlight the signifi cance of fi ve key func-
tions within CSA: learning from attacks, prioritization, metrics, continuous 
diagnostics and mitigation, and automation. 

 In the next chapter— Network-wide Awareness —we continue the theme of 
awareness formation while focusing on a particular type of SA that deals with the 
holistic, network-wide view of a network. We use the term “macro” SA to refer to 
the overall dynamics of the network that is seen as a single organism and where 
individual elements or events are perceived in aggregate. This contrasts with CSA 
that focuses on individual atomic elements of the network’s assets or behaviors, 
such as an individual suspicious packet, an alert of a potential intrusion, or a vulner-
able computer. On the other hand, atomic events can have a broad impact on the 
operation of the entire network. This means that the scope of CSA must accommo-
date both “micro and “macro” perspectives. The process of gaining network-wide 
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awareness includes discovery and enumeration of assets and of defense capabilities, 
along with threat and attack awareness. We argue that effective CSA must focus on 
improved decision-making, collaboration, and resource management, and discuss 
approaches to achieving effective network-wide SA. 

 Because the human cognition—and the technology necessary to support it—are 
central to Cyber Situational Awareness, they are the foci of the chapter  Cognition 
and Technology . To illustrate the challenges and approaches to integration of infor-
mation technology and computational representations of human situation aware-
ness, the chapter focuses on the process of intrusion detection. We argue that 
effective development of technologies and processes that produce CAS in a way 
properly aligned with human cognition calls for cognitive models—dynamic and 
adaptable computational representations of the cognitive structures and mecha-
nisms involved in developing SA and processing information for decision making. 
While visualization and machine learning are often seen among the key approaches 
to enhancing CSA, we point out a number of limitations in their current state of 
development and applications to CSA. The current knowledge gaps in our under-
standing of cognitive demands in CSA include the lack of a theoretical model of 
cyber SA within a cognitive architecture; the decision gap, representing learning, 
experience and dynamic decision making in the cyberspace; and the semantic gap, 
addressing the construction of a common language and a set of basic concepts about 
which the security community can develop a shared understanding. 

 Accepting that our understanding about the cognitive reasoning process of cyber 
analysts is rather limited, the next chapter— Cognitive Process —focuses on ways 
to close this knowledge gap. It starts by summarizing the current understanding 
about the cognitive processes of cyber analysts based on the results of previous 
cognitive task analyses. It also discusses the challenges and the importance to cap-
ture “fi ne-grained” cognitive reasoning processes. The chapter then illustrates 
approaches to overcoming these challenges by presenting a framework for non- 
intrusive capturing and systematic analysis of the cognitive reasoning process of 
cyber analysts. The framework includes a conceptual model and practical means for 
the non-intrusive capturing of a cognitive trace of cyber analysts, and extracting the 
reasoning process of cyber analysts by analyzing the cognitive trace. The framework 
can be used to conduct experiments for extracting cognitive reasoning processes 
from professional network analysts. When cognitive traces are available, their char-
acteristics can be analyzed and compared with the performance of the analysts. 

 In many fi elds, analyses of complex systems and activities benefi t from visual-
ization of data and analytical products. Analysts use images in order to engage their 
visual perception in identifying features in the data, and to apply the analysts’ 
domain knowledge. One would expect the same to be true in the practice of cyber 
analysts as they try to form situational awareness of complex networks. Earlier, the 
Cognition and Technology chapter introduced the topic of visualization: its critical-
ity to the users, e.g., cyber analysts, as well as its pitfalls and limitations. Now, this 
 Visualization and Analysts  chapter takes a close look at visualization for Cyber 
Situational Awareness. We begin with a basic overview of scientifi c and information 
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visualization, and of recent visualization systems for cyber situation awareness. 
Then, we outline a set of requirements, derived largely from discussions with expert 
cyber analysts, for a candidate visualization system. We conclude with a case study 
of a web-based tool that supports such requirements. 

 The importance of visualization does not diminish the critical role that algorithmic 
analysis plays in achieving CSA. Algorithms reason about the voluminous observa-
tions and data about the network and infer important features of the situation that 
help analysts and decision-makers form their situational awareness. In order to per-
form this inference, and to make its output useful to other algorithms and human 
users, an algorithm needs to have its inputs and outputs represented in a consistent 
vocabulary of well-specifi ed terms and their relations, i.e., it needs an ontology with 
a clear semantics and a standard. This topic is the focus of the present chapter titled 
 Inference and Ontology . We already touched on the importance of semantics in the 
Cognition and Technology chapter. Now we discuss in detail how, in cyber opera-
tions, inference based on ontology can be used to determine the threat actor, the 
 target and purpose in order to determine potential courses of action and future 
impact. Since a comprehensive ontology for cyber security does not exist, we show 
how such an ontology can be developed by taking advantage of existing cyber secu-
rity related standards and markup languages. 

 The next chapter— Learning and Semantics —further elaborates on the issue of 
inference by focusing on a particular class of algorithms important for processing of 
cyber information—machine learning. The chapter also continues the thread of 
ontology and semantics as it explores the tradeoffs between the effectiveness of an 
algorithm and the semantic clarity of its products. It is often diffi cult to extract 
meaningful contextual information from a machine learning algorithm, because 
those algorithms that provide high accuracy also tend to use representations less 
comprehensible to humans. On the other hand, those algorithms that use more 
human-accessible vocabulary can be less accurate—they produce more false alerts 
(false positives), which confuse analysts. A related tradeoff is between the internal 
semantics of the algorithm versus the external semantics of its output. We illustrate 
this tradeoff with two case studies. Developers of CSA systems must be aware of 
such tradeoffs, and seek ways to mitigate them. 

 As the Foundations and Challenges chapter explained, the second level of SA is 
called comprehension and deals with determining the signifi cance and relations of 
various elements of the situation to other elements and to the overall goals of the 
network. It is also often called situation understanding and involves the “so what” 
of the information that has been perceived. Previous chapters of this book have not 
focused on this level of SA. Therefore, the next chapter— Impact Assessment —
elaborates specifi cally on the comprehension level of CSA. The chapter explains 
that an effective way to comprehend signifi cant relations between the disparate ele-
ments of the situation is to concentrate on how these elements impact the mission of 
the network. This involves asking and answering questions of how various sus-
pected attacks relate to each other, how they relate to remaining capabilities of the 
network’s components, and how the resulting disruptions or degradation of services 
impact elements of the mission and the mission’s overall goals. 
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 Having discussed the second level of SA, we now proceed to the third level, in 
the chapter titled  Attack Projection . The highest level of SA—projection—
involves inferring how the current situation will evolve into the future situation and 
the anticipation of the future elements of the situation. In the context of CSA, par-
ticularly important is the projection of future cyber attacks, or future phases of an 
ongoing cyber attack. Attacks often take a long time and involve multitudes of 
reconnaissance, exploitations, and obfuscation activities to achieve the goal of 
cyber espionage or sabotage. The anticipation of future attack actions is generally 
derived from the presently observed malicious activities. This chapter reviews the 
existing state-of- the-art techniques for network attack projection, and then explains 
how the estimates of ongoing attack strategies can then be used to provide a predic-
tion of likely upcoming threats to critical assets of the network. Such projections 
require analyzing potential attack paths based on network and system vulnerabili-
ties, knowledge of the attacker’s behavior patterns, continuous learning or new pat-
terns and the ability to see through the attacker’s obfuscations and deceptions. 

 Discussion of challenges and ways of improving Cyber Situational Awareness 
dominated our previous chapters. However, we have not yet touched on how to 
quantify any improvement we might achieve. Indeed, to get an accurate assessment 
of network security and provide suffi cient Cyber Situational Awareness (CSA), 
simple but meaningful metrics—the focus of the  Metrics of Security  chapter—are 
necessary. The adage, “what can’t be measured can’t be effectively managed,” 
applies here. Without good metrics and the corresponding evaluation methods, 
security analysts and network operators cannot accurately evaluate and measure the 
security status of their networks and the success of their operations. In particular, 
this chapter explores two distinct issues: (i) how to defi ne and use metrics as quan-
titative characteristics to represent the security state of a network, and (ii) how to 
defi ne and use metrics to measure CSA from a defender’s point of view. 

 As we come to the end of the book, we look at the end-goals of achieving CSA. 
In the  Mission Resiliency  chapter we explain that the ultimate objective of CSA is 
to enable situation management, i.e., continuous adjustments of both the network 
and the mission that the network supports, in order to ensure that the mission contin-
ues to achieve its objectives. Indeed, several previous chapters stressed that CSA 
exists in the context of a particular mission, and serves the purposes of the mission. 
A mission that is able to absorb the attacks and keep returning to an acceptable level 
of execution is called a resilient mission. It can be said that the purpose of CSA is to 
maintain mission resiliency. This chapter explains that mission-centric resilient 
cyber defense should be based on collective and adaptive behavior of two interacting 
dynamic processes, cyber situation management in the cyber space, and mission 
situation management in the physical space. It discusses architecture and enabling 
technologies of such mutually adaptive processes that keep the mission persisting 
even if the network that supports the mission may be compromised by a cyber attack.   
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      Foundation and Challenges 

             Mica     R.     Endsley      and     Erik     S.     Connors    

1            Introduction 

 The proliferation of network-centric warfare capabilities has led to a greater need to 
defi ne and understand cyber networks. Critical systems and information sources 
maintained on such networks are lucrative targets for terrorists, foreign govern-
ments, criminal organizations, and competitive businesses. The very same technol-
ogy that enables effi cient communications and conduct within military, government 
and business communities enables hostile individuals and organizations to identify 
and exploit vulnerabilities within secure computer networks. Protecting and main-
taining these networks is inherently more challenging when compared to traditional 
information and communication networks. 

 Cyber network threats tend to be highly complex, and attacks may involve inter-
nal or external attackers that span varying levels of sophistication—from amateurs 
to highly organized entities. Cyber networks may be hacked by coordinated, distrib-
uted attacks, which are constantly changing to circumvent and exploit cyber defense 
methodologies. A cyber attack can have severe consequences in a military network 
(e.g., loss of nodes leading to warfi ghter fatality or a compromise of security) as 
well as to civilian network infrastructures (e.g. SCADA systems that control the 
electrical grid or water processing facilities, banking systems, corporate intellectual 
property and personal identity information). 
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 As cyberspace threats continue to increase in sophistication and complexity, new 
solutions are needed to provide the information and processing necessary to support 
critical missions during a cyber confl ict. For example, networks and systems must 
be built with the capability to use alternate paths, as well as survivable architectures 
and algorithms, in order to perform even when attacked in unanticipated ways that 
attempt to interfere with normal operations. New methodologies and algorithms are 
needed for the next generation of cyber networks to support situation awareness, 
node-based assessment of cyber effects, and dynamic and autonomic response to 
attacks including reconfi guration, recovery, and reconstitution, all while allowing 
mission-critical systems to continue to function. Before cyber operators can act to 
defend against these attacks, perform recovery actions, or even retaliate, they must 
fi rst achieve and maintain a level of situation awareness (SA) that allows them to 
identify, understand, and anticipate evolving threats. 

 Successfully achieving SA of the cyber environment has been shown to be quite 
diffi cult with today’s systems, however. A recent comprehensive study of cyber 
operations in the U.S. Air Force, for example, concluded that “the Air Force lacks 
the comprehensive cyber situation awareness that is a pre-requisite for cyberspace 
assurance” (United States Air Force  2012 ). Similarly, the U.S. Army lists cyber situ-
ation awareness and understanding as one of its top R&D needs (United States 
Army  2013 ). Far more than just a military problem, industry, critical transportation 
systems and public utilities are all vulnerable to cyber attacks. These entities require 
signifi cant assistance in developing a comprehensive understanding of their sys-
tems and the cyber threats against those systems in order to assure the security and 
integrity of their operations. 

 Achieving SA for any complex domain is always a unique blend of technology 
with human cognitive abilities. Establishing effective understanding of the complex 
and often hidden aspects of the cyberspace domain stresses this human-technology 
relationship beyond that of typical network operations or military and intelligence 
applications. The extreme volume of data and the speed at which that data fl ows 
rapidly exceeds human cognitive limits and capabilities. Additionally, new methods 
of attack and exploitation are constantly being developed and permuted in order to 
circumvent existing cyber defense methodologies. This motivates the development 
of new technologies that can operate in these extreme conditions to effectively aug-
ment human understanding and decision-making. 

 To ensure that technology developments are appropriately focused, it is fi rst neces-
sary to fully understand the requirements for cyber defense SA. This begins with 
developing an understanding of the effects of disruptions and information attacks on 
cyber systems, the information that is required to understand these cyber events and 
situations, the decisions that operators are required to make, and how technology 
solutions should be evaluated with respect to their ability to improve SA and the deci-
sion making processes. A clear defi nition of what exactly constitutes SA in cyber 
environments, the processes used for deriving SA out of the multitude of information 
that is available about cyber networks and mission operations, and the existing theo-
retical foundation for building effi cient, effective systems for supporting SA is needed. 
This will provide a better basis for understanding the current state of cyber SA in 
existing networks as well as provide directions for the research needs going forward.  
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2     Cyber Situation Awareness (SA) 

2.1     Defi nition of SA 

 One of the earliest and most widely used defi nitions of SA was provided by Endsley 
( 1995 ) who described it as the “perception of the elements in the environment 
within a volume of time and space, the comprehension of their meaning and the 
projection of their status in the near future,” (p. 36). Based on this defi nition, SA is 
comprised of three levels: (1) perception, (2) comprehension, and (3) projection, 
(Fig.  1 ), which directly feed into the decision and action cycle.  

 Level 1 SA, perception, involves the sensory detection of signifi cant information 
about the system one is operating and the environment it is operating in. For exam-
ple, cyber operators need to be able to see relevant displays or hear an alarm signal. 
In the cyber environment, Level 1 SA may include awareness of the state of various 
system nodes, current protocols, nodes that have been compromised, a history of 
activities and the IP address of effected systems. 

 Comprehension, or Level 2 SA, is important because situation awareness encom-
passes far more than simply perceiving a bunch of data on a series of computer 
screens. Comprehending the meaning or signifi cance of that information in relation 
to one’s goals is needed. This process includes developing a comprehensive picture 
of the system—adding 2 and 2 together to get 4—to form a more complete and 
integrated understanding of what is happening. Level 2 SA is often called situation 
understanding and involves the “so what” of the information that has been per-
ceived. Thus, cyber operators with good Level 2 SA are able to understand how 
vulnerable particular nodes are, the signature of an attack, what separate events 
might be inter-related, the effect of a given event on current mission operations, and 
the correct prioritization of competing events. 

 Projection, the highest level of SA, consists of extrapolating information forward 
in time to determine how it will affect future states of the operating environment. 
This combines what the individual knows about the current situation (e.g., events 
and attacks present on the system) with their mental models of the system to predict 
what is likely to happen next—for example, being able to project the impact of 
malicious activity on other nodes across the network, or projected avenues for 
future attacks. Higher levels of SA allow cyber operators to function in a timely and 
effective manner, even with very complex and challenging tasks. 

  Fig. 1    Situation awareness       
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 Operators will continuously search the environment to build up this constantly 
evolving picture of the situation, so they may decide to gather more information 
based on their current understanding of the situation (e.g. to fi ll in holes or confi rm 
some assessment), or at some point may choose to select a course of action to 
change the system in some way to align with their goals. Because the state of the 
environment and the system are constantly changing, there is an ongoing and 
dynamic need to update SA.  

2.2     SA Requirements for Cyber Operations 

 The specifi c aspects of the cyber situation that a given individual needs to be aware 
of depend on the role of that individual in the operation. These SA needs vary con-
siderably between different roles. For example, within an organization involved in 
cyber defense there may be multiple roles, each of which are focusing on different 
parts of the network, or who work in conjunction with each other to address differ-
ent types of threats or different parts of the work fl ow. Conversely, the commander 
of an air operations center or the manager of a public utility has a very different set 
of goals and objectives, but will need to understand the cyber picture at a higher 
level so that she can understand how the cyber environment may impact a given 
mission operation. 

 In that the goals and objectives of these various roles are different, and the deci-
sions they need to make likewise differ, the specifi c SA needs of each role must be 
carefully delineated so that the technology solutions developed to support them pro-
vide information that is tailored to their needs at all three levels of SA. This analysis 
has traditionally been performed through a Goal-Directed Task Analysis (GDTA) 
(Endsley  1993 ; Endsley and Jones  2012 ). The GDTA develops a high level goal 
structure for each role, lists the major decisions to be made by that role, and details 
the SA requirements at each of the three levels that are needed to support each deci-
sion. For example, the GDTA goal tree and a portion of the detailed GDTA SA 
requirements for a typical cyber operator are shown in Figs.  2  and  3  (Connors et al. 
 2010 ). Based on such analyses, not only is it possible to determine the basic data 
that needs to be provided to a cyber operator, but also the types of integrated infor-
mation that the system needs to provide, examples of which are shown in Table  1 .  

2.3        Cognitive Mechanisms for SA 

 Endsley ( 1988 ,  1995 ) describes a framework cognitive model of SA, showing how 
human operators gather and understand information to form SA, which is summa-
rized here in Fig.  4 . Key features of the environment affect how well people are able 
to obtain and maintain SA, including: 

    1.    The capability of the system for providing the needed information (e.g. relevant 
sensors, data transmission capabilities, networking, etc.),   

M.R. Endsley and E.S. Connors
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   2.    The design of the system interface determining which information is available to 
the individual along with the format of the displays for effectively transmitting 
information,   

   3.    System complexity, including number of components, inter-relatedness of those 
components and rate of change of information, affecting the ability of the indi-
vidual to keep up with needed information and to understand and project future 
events,   

   4.    The level of automation present in the system, affecting the ability of the indi-
vidual to stay “in-the-loop”, aware of what is happening and understanding what 
the system is doing, and   

   5.    Stress and workload that occur as a function of the task environment, the system 
interface and the operational domain, each of which can act to decrease SA.    

  In addition to these external factors, the model points out many features of the 
individual that determine whether a person will develop good SA, given the same 
environment and equipment as others. In combination, the mechanisms of short- 
term sensory memory, perception, working memory and long term memory form 

Detect, Identify, and Prevent Malicious Activity

3.0

Determine future attacks

3.1
Determine system vulnerabilities

3.2

Prevent and predict future attacks

3.3
Profile attackers

3.4
Provide effective communication

(see Goal 1.2)

2.6
Provide effective communication

(see Goal 1.2)

2.5

Maintain operational status of
network

2.4

Determine correlation analysis

2.3
Determine threat analysis

2.2

Determine escalation analysis

2.1

Determine proper
countermeasures

2.0

Defend network against attacks

1.0

1.1

Analyze traffic to detect suspicious or unexpected
behaviour

Determine system misuse and unauthorized
system access

1.2
Provide effective communication

  Fig. 2    GDTA goal tree for a cyber operator (Connors et al.  2010 )       
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the basic structures on which SA is based. According to this model, elements in the 
environment (such as the operator’s displays) may be initially processed in parallel 
preattentively where certain emergent properties are detected, such as spatial prox-
imity, color, simple properties of shapes, or movement, providing cues for further 
focalized attention. Those objects which are most perceptually salient (e.g. based on 
bright colors or motion) are further processed using focalized attention to achieve 
perception. Limited attention creates a major constraint on the operator’s ability to 
accurately perceive multiple items in parallel, and, as such, is a major limit on 
 people’s ability to maintain SA in complex environments where the amount of data 
available far exceeds a person’s ability to attend to it. 

 SA is far more complex than simple cue-based perception, however, and also 
relies on a number of other cognitive mechanisms that signifi cantly augment this 
simple data driven information fl ow. First, attention and the perception process can 
be directed by the contents of both working memory and long-term memory. Advance 
knowledge regarding the location of information, the form of the information, the 
spatial frequency, the color, or the overall familiarity and appropriateness of infor-

2.2

Determine escalation analysis

Expected alert assessment (see Goal 1.1)

D1: What was the malicious activity?
D2: How did the malicious activity occur?

Impact of attack vector on asset
Attack vector

Impact of communication histroy on damage assessment

Time of attack
Speed of attack
Type of attack

Human involvement
Complete automation

Asset

Communication history of external IP to destination IPs
Communication history of internal IP to other internal IPs

Services
Compliance with security policies

  Fig. 3    GDTA: goal 2.2 determine escalation analysis (Connors et al.  2010 )       
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mation all can signifi cantly facilitate perception, for instance. Long term memory 
also serves to shape the perception of objects in terms of known categories or mental 
representations. Categorization tends to occur almost instantly. Thus, experienced 
cyber operators often know where to look for key information and how to interpret 
it, and can be biased towards looking for information based on their expectations. 

 For operators who have not developed other cognitive mechanisms (novices and 
those in novel situations) the perception of the elements in the environment, the fi rst 
level of SA, is signifi cantly limited by attention and working memory. In the absence 
of other mechanisms, most of the operator’s active processing of information must 
occur in working memory. New information must be combined with existing knowl-
edge and a composite picture of the situation developed. Projections of future status 
and subsequent decisions as to appropriate courses of action will occur in working 
memory as well. Working memory will be signifi cantly taxed with simultaneously 
achieving the higher levels of SA, formulating and selecting responses and carrying 
out subsequent actions. Thus novice cyber operators, like those in other domains, 
are quickly overloaded and unable to effectively process and integrate much of the 
data that are available. Their overall level of SA tends to be extremely limited in a 
very complex domain like cyber network operations. For example, a new cyber 
operator will be able to read available displays and logs, but would not be attuned to 
realizing the implications of the data, and would be far more likely to not understand 

  Fig. 4    Model of situation awareness in dynamic decision making (Endsley  1995 )       
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that a cyber attack was occurring or its implications for ongoing operations. They 
would also have a much harder time in determining which data of all that available 
they should focus more attention on in which circumstances. 

 In actual practice, however, both goal-directed processing and long term memory 
mechanisms (in the form of mental models and schema) can be used by more expe-
rienced cyber operators to circumvent the limitations of working memory and more 
effectively direct attention. First, much relevant knowledge about a system is 
hypothesized to be stored in mental models. Rouse and Morris ( 1985 ) defi ne mental 
models as “mechanisms whereby humans are able to generate descriptions of sys-
tem purpose and form, explanations of system functioning and observed system 
states, and predictions of future states”. 

 Mental models are cognitive mechanisms that embody information about system 
form and function; often they are relevant to some physical system (e.g. a car, com-
puter network, or power plant) or to an organizational system (e.g. how a company, 
military unit, or cyber attacker works). They typically contain information about not 
only the components of a particular system, but also how those components interact 
to produce various system states and events. Cyber operators must develop good 
mental models of their networks and the various inter-related components to develop 
an understanding of how it works. Mental models can signifi cantly aid SA as people 
recognize key features in the world that map to key features in the model. The model 
then creates the mechanism for determining associations between observed states of 
components (comprehension) and predictions of the behavior and status of these 
elements over time. For example, a good mental model of a network and its compo-
nents can be used to understand its particular vulnerabilities to attack. A mental 
model of how cyber attackers work can be used to formulate an understanding of 
attack vectors and projections of likely targets. These mental models can be called 
upon when examining data of current network events to help interpret observed data 
and project likely attack progression. Thus mental models can provide for much of 
the higher levels of SA (comprehension and projection) without loading working 
memory. Mental models allow experienced cyber operators to comprehend the ulti-
mate meaning of information provided about the state of the network as it relates to 
their goal of assuring a safe network. 

 Associated with mental models are also schema—prototypical classes of states 
the system (e.g. what a particular attack signature looks like, or what typical user 
behavior consists of). These schema are even more useful to the formation of SA, as 
these recognized classes of situations provide immediate one step retrieval from 
memory of the higher levels of SA based on pattern matching between situation 
cues and known schema in memory. Very often scripts, set sequences of actions, 
have also been developed for these schema, so that much of the load on working 
memory for generating alternate behaviors and selecting among them is also dimin-
ished. These mechanisms allow the cyber operator to simply execute a predeter-
mined action for a given recognized class of situations (based on their SA). For 
example, known cyber attack signatures and event types can be easily recognized, 
with procedures predetermined for how to respond to them. The current situation 
does not even need to be exactly like one encountered before due to the use of 
 categorization mapping—as long as a close-enough mapping can be made into 
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 relevant categories, a situation can be recognized, comprehended in terms of the 
model, predictions made and appropriate actions selected. In that people have very 
good pattern matching abilities, this process can be almost instantaneous and pro-
duce a much lower load on working memory making high levels of SA possible for 
 experienced personnel, even in very demanding situations. In the cyber environ-
ment, where attacks can happen in time frames that exceed human perception 
and response limitations, this process may be automated for known classes of 
attacks, however, novel attacks or malware signatures will likely still require 
human interventions. 

 Expertise, therefore, plays a major role in the SA process. For novices or those 
dealing with novel situations, decision making in complex and dynamic systems 
can be very demanding or impossible to accomplish successfully in that it would 
require detailed mental calculations based on rules or heuristics, placing a heavy 
burden on working memory. Where experience has allowed the development of 
mental models and schema, pattern matching between the perceived elements in the 
environment and existing schema/mental models can occur on the basis of pertinent 
cues that have been learned. Thus the comprehension and future projection required 
for the higher levels of SA can be developed with far less effort and within the con-
straints of working memory. When scripts have been developed, tied to these 
schema, the entire decision making process will be greatly simplifi ed. The ability of 
the system displays to support the operator’s need to pattern match between critical 
cues in the information presented and these mental models is highly important for 
supporting rapid SA formation and decision making. 

 The cyber operator’s goals also play an important part in the process. These 
goals can be thought of as ideal states of the system model that the operator wishes 
to achieve. The cyber operator’s goals and plans will direct which aspects of the 
environment are attended to in the development of SA. Goal-driven or top-down 
processing is very important in effective information processing and the develop-
ment of SA. Conversely, in a bottom-up or data-driven process, patterns in the envi-
ronment may be recognized which will indicate to the operator that different plans 
will be necessary to meet goals or that different goals should be activated. 

 An alternating of goal-driven and data-driven is characteristic of much human 
information processing and underpins much of SA development in complex worlds. 
People who are purely data driven are very ineffi cient at processing complex infor-
mation sets—there is too much information to take so they are simply reactive to 
which ever cues are most salient. People who have clearly developed goals, how-
ever, will search for information that is relevant to those goals, allowing informa-
tion search to be more effi cient and providing a mechanism for determining the 
relevance of information that is perceived. If one is only goal-driven however, it is 
likely that key information that indicates a change in goals is needed (e.g. cease 
with the goal of “determine system vulnerabilities” and activate the goal of “diag-
nose new event”) will be missed. Thus effective information processing is charac-
terized by alternating between these modes—using goal driven processing to 
effi ciently fi nd and process the information needed for achieving goals, and using 
data driven processing to regulate the selection of which goals should be most 
important at any given time. 
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 The development of SA is dynamic and on-going process, affected by these key 
cognitive mechanisms. While it can be very challenging in the cyber domain, with 
the cognitive mechanisms that can be developed through experience (schema and 
mental models), we fi nd that people are able to circumvent known limitations 
(working memory and attention) to develop suffi cient levels of SA to function very 
effectively. Never-the-less, developing accurate SA remains a very challenging fea-
ture in complex settings such as cyber operations and demands signifi cant operator 
time and resources. Thus, developing selection batteries, training program and sys-
tem designs to enhance SA is a major goal for the cyber domain.   

3     Challenges for SA in Cyber Operations 

3.1     Complex and Fluid System Topology 

 First, the sheer size and complexity of computer networks creates a signifi cant chal-
lenge for SA. Developing an understanding of the effect of an attack or other event 
depends on having a good mental model of the system and its components which is 
inherently diffi cult the larger the network gets and the more nodes and branches it 
contains. In addition, those networks can change signifi cantly over the course of 
days or weeks as new nodes are added or removed, technology is updated, and 
people join and leave with mobile technologies. 

 As computer networks have become enormous, with many nodes and compo-
nents, developing and maintaining an accurate picture of that network has become 
a seemingly insurmountable challenge in many organizations. Software systems, 
similarly are composed of long strings of code, often highly nested and complex, 
making understanding the effects of small changes to that code very diffi cult to 
predict. The size and dynamic nature of cyber systems make not only detecting 
problems challenging, but also create signifi cant diffi culty in understanding the 
impact of potential events on the health of network. People’s ability to develop and 
maintain an accurate mental model of the network is often rapidly exceeded, impact-
ing both SA comprehension and projection without signifi cant aiding.  

3.2     Rapidly Changing Technologies 

 Technologies change very rapidly in the cyber arena. New software, computer sys-
tems, routers and other components are introduced on an almost daily basis. Not 
only does this make it challenging to maintain an accurate understanding of the 
system topology, but the new and different capabilities introduced by technology 
evolution can have profound effects on system vulnerabilities and behaviors. This 
aspect of network architecture seriously taxes SA comprehension and projection. 
People simply will have a very limited ability to develop and maintain up-to-date 
and effective mental models upon which to form suffi cient understanding of new 
events in the network and to make accurate and timely predictions.  

Foundation and Challenges
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3.3     High Noise to Signal Ratio 

 Detecting that the system has come under a cyber attack may also be diffi cult in 
many cases. This is because anomalous events are quite common in working with 
computer networks. Users are quite used to systems not working properly and may 
easily dismiss nefarious activity as being due to a normal system problem (Endsley 
and Jones  2001 ). The noisy background of system failures, software glitches, main-
tenance updates, forgotten passwords and other disruptions to “normal” all may act 
to mask the features of an actual cyber attack, Fig.  5 . Thus even Level 1 SA, percep-
tion of an attack, may be affected.   

3.4     Time Bombs and Lurking Attacks 

 The time frame between an attack and its effect may also be quite distributed. 
A cyber attack may be injected by code that lies dormant for a long period until a 
particular time or event triggers it into action. This creates a very poor ability for 
tying the actions associated with a particular attack to the consequences of those 
actions. Thus, network operators can go for long periods of time unaware that mali-
cious code already resides in their network.  

3.5     Rapidly Evolving and Multi-Faceted Threats 

 The developers of cyber attacks have a wide range of potential attack vectors that 
can be used, Fig.  6 . And the numbers and types of attack signatures are growing 
exponentially. One estimate shows that by 2025 there will be roughly 200 million 
new malware signatures per year (United States Air Force  2012 ). This means that 
developing an understanding of the threat and its effects through normal learning 
and experience will be almost impossible.   

  Fig. 5    Decision context for interpreting potential cyber attacks (Endsley and Jones  2001 )       
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3.6     Speed of Events 

 Cyber operations are carried out within a cycle of detecting and understanding 
events, making decisions and taking actions—often called the Observe-Orient- 
Decide Act (OODA) loop. A cyber attack can happen in a fraction of a second, 
however, effectively eliminating the ability of an individual to detect and react to that 
attack. This has led cyber operators to describe their OODA loop as an OODA point. 
In such circumstances there is no time for preventing an attack, or reacting to it in 
real-time. Rather human activity becomes focused on forensic actions to determine 
what components have been affected by an attack and the impact on operations.  

3.7     Non-integrated Tools 

 Current cyber operations are hampered by the fact that an integrated set of tools to 
provide the information needed to detect, understand and react to cyber attacks is 
not present. Rather cyber operators must work with an incomplete set of tools, each 
of which provides some useful information, but which is not complete in meeting 
their SA needs (Connors et al.  2010 ). This creates a highly manually intensive and 
slow process for fi nding needed information and mentally integrating it to form a 
picture of the system and the effects of cyber attacks.  

  Fig. 6    Elements of a contested cyber environment (United States Air Force  2012 )       
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3.8     Data Overload and Meaning Underload 

 In addition to the high level of overload associated with perceiving data from across 
a very large and complex network, and the challenges associated with fi nding the 
needed data across multiple, non-integrated tools, cyber operators are also highly 
challenged by the lack of support for comprehension and projection, level 2 and 
level 3 SA (Connors et al.  2010 ). That is, individuals are often left to fi gure out on 
their own how cyber events may be impacting current operations, or what vulnera-
bilities may be attacked in future. Given the severe challenges in developing 
the mental models that would allow people to make such assessments mentally, and 
the signifi cantly reduced timelines, this lack of support has signifi cant consequences 
for cyber SA.  

3.9     Automation Induced SA Losses 

 To help overcome the signifi cant challenges with network complexity, change and 
speed of cyber operations, various types of automated tools for assisting in the auto-
matic detection of cyber attacks, and resultant responses have been developed or are 
in development. While such tools are likely to be necessary for supporting opera-
tions given the limits to human cognition and speed of reaction, they also introduce 
their own challenge for operator SA. High levels of automation have been found to 
actually reduce SA by virtue of putting the operator “out-of-the-loop”, making it 
diffi cult for them to detect and understand system operations and to be able to inter-
vene effectively when the automation encounters new events or situations that it is 
not programmed to handle (Endsley and Kiris  1995 ).  

3.10     Summary of Cyber SA Challenges 

 In summary, while the human brain is well designed to derive SA from the world 
based on a complex set of cognitive processes and mental models and schema 
learned through experience, the artifi cial world of cyber operations seriously 
stresses that process. The combined effects of network complexity and fl uidity, 
combined with a rapidly changing and complex attack vector, events that happen at 
the millisecond level, high noise to signal ratios, and a very slow linkage between 
malware introduction and the attack event all conspire to make real-time SA of 
cyber operations very diffi cult to achieve. The lack of good integrated tools that 
help bridge this gap by assisting the operator with an comprehensive set of needed 
information, transformations of the data to understand the impact of attacks on 
operations and autonomous actions, and tools to support proactive network defense 
therefore becomes all the more important. Addressing this gap is critical for devel-
oping the necessary cyber SA required for secure operations.   
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4     Research and Development Needs for Cyber SA 

 General Keith Alexander, head of the U.S. Defense Department’s Cyber Command, 
has called for the development of a better common operational picture for Cyber. 
“We must fi rst understand our networks and build an effective cyber situation 
 awareness in real time through a common, sharable operating picture” (Bain  2010 ). 
Currently situation awareness of cyber events across networks is often based on 
forensics generated after an incident has occurred. Cyber operations must move 
from reactive forensics to a real-time, proactive and preventative counter-cyber 
operation, with an informed cyber operator acting in concert with effective tools 
and automated aids. 

4.1     The Cyber Common Operating Picture 

 One of the most direct needs cyber operations is the creation of effective common 
operating pictures (COP) for cyber networks. The Cyber COP needs to be custom-
ized for each of the unique cyber operator positions involved in cyber operations. 
Further carefully fi ltered and interpreted versions of cyber information needs to 
fl ow into organizational command centers where cyber effects may become integral 
in the future. Each of these roles has unique needs for perception, comprehension 
and projection, of which cyber comprises only a portion of this focus, but which 
must be integrated with their other SA needs. 

 The situation awareness oriented design (SAOD) process (Endsley and Jones 
 2012 ) provides a systematic method for creating role relevant, tailored COPs that 
are effective for supporting SA based on both an understanding of how the brain 
forms SA, and some 25 years of research on the topic. SAOD provides a structured 
approach to the development of COPs and operator displays that incorporates SA 
considerations into the design process, including a determination of SA require-
ments, design principles for SA enhancement, and measurement of SA in design 
evaluation (Fig.  7 ).  

 SA requirements analyses are conducted using the GDTA process to identify the 
goals of a particular role or job class, and to defi ne the decisions and information 
requirements for meeting each higher goal. This goal-oriented approach moves 

  Fig. 7    SA-oriented design (SAOD) is a three-phase methodology for optimizing operator SA 
(Endsley and Jones  2012 )       
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away from consideration of just task steps or processes (which refl ect current 
 technology and processes) and focuses on the operator’s cognitive requirements. 
The GDTA methodology has been used extensively to determine SA requirements 
in a wide variety of operations including power systems, oilfi eld services, commer-
cial aviation, and military command and control, as well as for cyber operations, 
presented previously in this chapter. 

 The SA design phase starts with an in-depth analysis of SA requirements feeding 
directly into the design process as a key mechanism for developing information 
presentations that avoid high workload and maximize SA. By applying the 50 
SAOD principles, SA design (1) ensures that the key information needed for high 
levels of SA is included in each interface, (2) integrates the information in needed 
ways to support high levels of comprehension and projection of ongoing operations, 
directly presented on display visualizations, (3) provides big picture integrated 
information displays to keep global SA high, while providing easy access to details 
needed for situation understanding, (4) uses information salience to direct the user’s 
attention to key information and events, and (5) directly supports multi-tasking that 
is critical for SA. This is a signifi cant addition to traditional human factors design 
principles (which largely address surface features such as legibility, contrast, and 
readability of information), and human computer interaction principles, which pro-
vide effective task interaction mechanisms on computer displays. In addition key 
principles are provided for dealing with complexity and uncertainty, integrating 
automation, effective use of alarm systems, and support for shared SA across dis-
tributed teams, all of which are highly relevant in cyber operations. 

 For example, cyber tools could benefi t from displays that provide trending infor-
mation on events and signatures of interest. Tools that allow analysts to keep up-to- 
date information regarding current, recent and past alerts that support assessment of 
the signifi cance events across analysts and shifts would also be helpful, as would 
tools that provide the ability to correlate data and examine patterns across the infra-
structure. Overall network health indicators and maps, as well as tools that support 
impact analysis of key events on current operations are another example of displays 
needed to support cyber SA. 

 The third step in the SAOD process involves assessing the effectiveness of the 
designed system. Depending on project requirements and goals, SA, workload, 
 performance, and usability measures can be used as metrics to evaluate the system. 
When feasible, objective SA measures provide a proven way to assess operator SA 
levels and thus system effectiveness. For example, the Situation Awareness Global 
Assessment Technique (SAGAT) has been successfully used to provide this infor-
mation by directly and objectively measuring operator SA (Endsley and Garland 
 2000 ). SAGAT provides Query to operators during freezes in simulated operations 
to assess their knowledge of relevant aspects of the situation, and compares their 
answers to ground truth. A composite score of accuracy across multiple samples 
over time and across operators provides an objective assessment of how well a 
given system design supports operator SA, including a consideration of both the 
adequacy of the system information and how well it is presented to meet human 
cognitive needs and limitations. A version of SAGAT for measuring SA in cyber 
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operations has been developed (Connors et al.  2010 ). It includes Query for the 
 operator such as:

•    Has the  source IP address y  been involved in suspicious activity previously?  
•   Is the packet payload for  alert A  unusual for  destination IP address x ?  
•   What other assets will be impacted if  alert A  occurs and attacks  destination IP 

address x ?    

 SAOD can be applied systematically to cyber operations in order to design future 
Cyber COPs and other mission COPs to support the cyber related decisions that we 
face, taking advantage of signifi cant work that has been done in this arena.  

4.2     Visualization of Large-Scale Complex and Dynamically 
Changing Networks 

 Cyber operations provide a unique challenge in terms of the sheer size of the net-
works involved and their inherent level of dynamics. Understanding the topography 
of the cyber network is a key component to being able to understand the potential 
impact of a particular event or attack on a given mission or operation. This has 
proven to be quite challenging in many cases. New research will be need to help 
operators to better visualize existing networks, particularly as they change. As we 
develop networks that dynamically morph as a function of their design, as well as a 
function of other factors (e.g. computers or software getting added or deleted, 
mobile users joining the network at various locations and times), the understand-
ability of the network will be severely strained. New methods to support operators 
by mapping system topology to operational decisions are needed. This research will 
need to address not just abstract visualization, but also the types of display support 
that are needed for addressing the various types of comprehension and projection 
needs of operators who are answering very real questions about the system’s perfor-
mance (e.g. see Table  1 ). For example, displays that assist the operator in assessing 
the impact of a malicious activity on current protection schemes and needed assets. 
These sorts of SA requirements have been found to be very poorly supported in 
many existing tools (Connors et al.  2010 ).  

4.3     Support for Decision Maker SA 

 It is also recognized that outside of a cyber operations center, most cyber effects will 
be viewed from the lens of organizational managers who will make decisions about 
cyber within the context of their mission objectives. In the military domain, com-
manders will also examine cyber options along with other types of both lethal and 
non-lethal effects at their disposal. For instance, will it be better to eliminate an 
enemy command center by attacking it with a conventional kinetic weapon, or by 
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employing a missile that uses microwave energy to knock out its electronic systems, 
or to use a cyber attack to disable the command and control system? What would be 
the expected outcomes of these various options, what are the risks, and how long 
would it take to carry them out? These are the types of realistic questions that will 
need to be answerable and supported in future military command centers in order 
for cyber effects to be used within the context of broader mission operations. Future 
COPs in mission command centers will need to provide the SA needed to address 
these sorts of questions.  

4.4     Synergistic Human-Autonomy Teams 

 Due to the rapidity of cyber effects, it is widely recognized that automated tools will 
likely be needed to help detect potential cyber attacks and to respond to them in a 
timely manner. The speed at which operations can occur in the cyber world signifi -
cantly outpaces the ability of human operators to perceive and react. Therefore, 
automated tools in this domain are inevitable. 

 Automation is not an easy answer, however. Considerable research has shown 
that the use of automation can render the human operator out-of-the-loop, with a 
much delayed ability to detect that a problem is occurring and a reduced ability to 
be able to understand the situation and act in a timely manner (Wickens  1992 ; 
Wiener  1988 ). This out-of-the-loop performance decrement has been shown to be 
due to lower SA when working with automated systems (Endsley and Kiris  1995 ). 
In part this can be due to lower vigilance (automation complacency) or poor design 
of the interface to support understanding of automation, but fundamentally, even 
when these two factors are not present, it is because automation makes people pas-
sive in the processing of information which inherently lowers SA (Endsley and 
Kiris  1995 ). In addition, challenges with poor understanding of system states and 
modes, and lack of trust in automation have been found to lead to problems in many 
systems where automation has been implemented, reducing its ultimate effective-
ness (Lee and See  2004 ; Sarter and Woods  1995 ). 

 If the automation works perfectly for all cases (which it rarely does), this would 
not be such a problem. However, in the evolving world of cyber, it is likely that 
automation will only work well for known classes of problems and new types of 
attacks the automation is not programmed for would proceed unabated. Therefore, 
there will always be a need for human operators to understand the basic state of the 
system and any potential attacks occurring on it. Even with learning algorithms that 
are envisioned for systems with higher levels of autonomy, the need for operators to 
interact with the autonomy to deal with novel cyber attacks will be high. 

 As automation is introduced to take care of more and more of the routine situa-
tions, it will be highly incumbent on designers to take care to make sure that the 
human operator is fully aware of both the state of the automation and the underlying 
cyber network that it is acting upon. Design principles for supporting the 
required human-automation synergy for effective teaming include (1) providing for 
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supervised fl exible autonomy across various levels of automation, (2) automation 
transparency supporting the ability to understand both current actions of the auton-
omy and projected future actions, (3) maintaining the human operator in-the-loop 
and in control of the functioning of the system, (4) providing support for informa-
tion integration to provide the needed comprehension and projection for decision 
making, (5) keeping the system understandable, minimizing modes and making 
 system states salient (Endsley and Jones  2012 ). 

 A high degree of shared SA between the autonomy and the human operator will 
be needed to support goal alignment, task alignment, dynamic function allocation 
and reallocation and effective performance of both the human and the autonomy. 
The goal is simple, smooth and seamless transitions between the human operator 
and the autonomy—requiring high levels of shared SA that will need to be 
 zsupported as we transition to the greater use of autonomy in cyber operations.  

4.5     Verifi cation and Validation of Components and Code 

 Any work on cyber necessitates that a serious, systematic effort be applied to the 
verifi cation and validation of both the components and the code that are involved. 
To this end, trust in autonomy will require new verifi cation and validation methods 
(United States Air Force  2013 ). Complex adaptive systems with autonomous recon-
fi gurability implies an approach to an infi nite state system even for moderate levels 
of autonomy, exceeding the capabilities of traditional software testing methods 
based on requirements traceability. Problems are exacerbated by data and commu-
nication link losses that may occur. This is an extremely challenging problem, but 
one that must be addressed to provide the level of trust in autonomous cyber opera-
tions that will be needed. Methods for graceful degradation and system safeing need 
to be considered, along with methods for making systems cyber resistant, cyber 
tolerant and cyber resilient.  

4.6     Proactive Control 

 In a shift to proactive control, operators will not wait for a cyber attack to occur, but 
rather will be undertaking activities to cyber-proof the network. This requires tools 
that will allow them to better understand inherent cyber vulnerabilities and prevent 
both future attacks of a known type and future attacks that have never occurred 
before, but which might be possible. They will need tools that will allow them to 
profi le suspected attackers, creating profi les of identities, motives and sponsors that 
can be used to formulate mission relevant strategies. And they need tools that can 
help them to share knowledge of potential future attacks and defensive countermea-
sures. Tools that will better illuminate the impact of possible attacks and potential 
countermeasures on mission operations will ultimately be needed to support effec-
tive decision-making.   
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5     Summary 

 Cyber is as signifi cant a change to warfare as the invention of the airplane, and 
likely to change the face of warfare accordingly. History has not been kind to coun-
tries who have ignored technological change and continued to fi ght in outmoded 
ways. And it will not be kind to those who fail to grasp the new opportunities and 
dangers inherent in the cyber world. The development of cyber situation awareness 
is critical to effective defense of networks and the assurance of security in cyber 
operations. SA is comprised of three levels: (1) perception, (2) comprehension, and 
(3) projection, (Fig.  1 ), which directly feed into the decision and action cycle. The 
specifi c aspects of the cyber situation that a given individual needs to be aware of 
depend on the role of that individual in the operation. The specifi c SA needs of each 
role must be carefully delineated so that the technology solutions developed to sup-
port them provide information that is tailored to their needs at all three levels of 
SA. This analysis has traditionally been performed through a Goal-Directed Task 
Analysis (GDTA) The GDTA develops a high level goal structure for each role, lists 
the major decisions to be made by that role, and details the SA requirements at each 
of the three levels that are needed to support each decision. A number of factors act 
to severely limit cyber SA in current operations, including: a highly complex and 
fl uid system topology, rapidly changing technologies, a high signal to noise ratio, 
potentially long durations between the insertion of an attack and its effect, rapidly 
evolving and multi-faceted threats, speed of events that exceed human capacity, 
non-integrated tools that are poorly aligned with SA needs, data overload and mean-
ing underload, and automation challenges. One of the most direct needs cyber oper-
ations is the creation of effective common operating pictures (COP) for cyber 
networks. The Cyber COP needs to be customized for each of the unique cyber 
operator positions involved in cyber operations. New research will be needed to 
help operators to better visualize existing networks, particularly as they change. 
New methods to support operators by mapping system topology to operational deci-
sions are needed. There will always be a need for human operators to understand the 
basic state of the system and any potential attacks occurring on it. A high degree of 
shared SA between the autonomy and the human operator will be needed.     
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      Kinetic and Cyber 

             Alexander     Kott     ,     Norbou     Buchler     , and     Kristin     E.     Schaefer    

1            Introduction 

 Although a fairly new topic in the context of cyber security, situation awareness (SA) 
has a far longer history of study and applications in such areas as control of complex 
enterprises and in conventional warfare. Far more is known about the SA in conven-
tional military confl icts, or adversarial engagements, than in cyber ones. By exploring 
what is known about SA in conventional—also commonly referred to as kinetic—
battles, we may gain insights and research directions relevant to cyber confl icts. For 
this reason, having outlined the foundations and challenges on CSA in the previous 
chapter, we proceed to discuss the nature of SA in conventional (often called kinetic) 
confl ict, review what is known about this kinetic SA (KSA), and then offer a com-
parison with what is currently understood regarding the cyber SA (CSA). We fi nd that 
challenges and opportunities of KSA and CSA are similar or at least parallel in sev-
eral important ways. With respect to similarities, in both kinetic and cyber worlds, SA 
strongly impacts the outcome of the mission. Also similarly, cognitive biases are 
found in both KSA and CSA. As an example of differences, KSA often relies on com-
monly accepted, widely used organizing representation—map of the physical terrain 
of the battlefi eld. No such common representation has emerged in CSA, yet. 
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1.1     The Transition from a Conventional to a Virtual Battlefi eld 

 The dynamics of confl ict continue to evolve over time and are historically punctu-
ated by rapid technological advancements. The grinding attrition of industrial-age 
confl ict of the past century, whereby interaction occurred face-to-face, is currently 
giving way to information-age confl ict (Moffat  2006 ). For reference, some key 
characteristics of the prior industrial-age and the current information-age are pre-
sented in Fig.  1 . Current Information Age confl icts encompass conventional and 
virtual battlefi elds, with perhaps an increasing emphasis on the latter.  

 In our view, the Information Age battlefi eld is defi ned by the rise of networked 
forms of organization. In a networked organization, the number of potential col-
laborators is virtually limitless, as is the availability of information. Operating in 
such a broadly collaborative and information-rich environment confers unprece-
dented advantages to a military organization (National Research Council  2005 ). For 
instance, the transformation of U.S. and NATO countries in the late 1990s and early 
2000s to networked forms of organization has given rise to large, interacting, and 
layered networks of Mission Command personnel communicating and sharing 
information within and across various command echelons as well as across joint, 
interagency, intergovernmental, and multinational seams and boundaries. Our 
dependency upon networked organizations has the consequence that warfare is no 
longer limited to the physics of the conventional battlefi eld. Increasingly, confl icts 
are waged purely across networks in virtual cyberspace. 

 A departure for our comparison is to understand the domain characteristics of 
kinetic and cyber operations highlighted in Table  1 . This is fi rst seen through the 
prominent divergence between kinetic and cyber operations specifi c to the domain 
of threat. Kinetic confl ict has occurred for centuries within the immutable physical 
world where threat characteristics are physically observable through direct (visual 
observation) or augmented (technology assisted) means. However, unlike this 
kinetic confl ict situation, the cyber domain is highly malleable and prone to decep-
tion. For instance, a spoofi ng attack is a situation in which one person or computer 
program successfully masquerades as another by falsifying data and thereby gain-
ing an illegitimate advantage (Gantz and Rochester  2005 ).

  Fig. 1    Characteristics of the industrial age to the information age       
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   Further, classic military doctrine in which the defender has numerous advantages 
(e.g. defensive fortifi cations and advantageous information asymmetries) is 
 completely up-ended in the cyber domain where the attacker is advantaged. The 
advantages to the cyber-attacker are numerous and include: (1) anonymity: the abil-
ity to hide in a global network across national sovereignty and jurisdiction boundar-
ies complicates attack attribution, (2) targeted attacks: adversaries can pick the time, 
place, and tools, (3) exploitation: global reach to probe weaknesses of the cyber- 
defense, (4) human weaknesses: trust relationships are susceptible as evidenced in 
“social engineering” attacks, and (5) forensics: volatile and transient nature of evi-
dence complicates attack analysis, which can be quite cumbersome (Jain  2005 ). 
Although there are differences between kinetic and cyber domains, it is likely that 
many of these challenges to cyber operations can be addressed by applying lessons 
learned from the successful management of kinetic operations.  

1.2     The Importance of Situation Awareness 

 It is likely that the dynamics of confl ict are extensible to the virtual battlefi eld. Some 
key concepts with which to compare kinetic and cyber confl icts are derived from a 
conceptual framework of  network-enabled operations  underlying information-age 
confl ict (Alberts  2002 ; Alberts et al.  1999 ). This framework is comprised of four 
primary tenets (Alberts and Hayes  2003 ):

    1.    A robustly networked force improves information sharing and collaboration   
   2.    Such sharing and collaboration enhance the quality of information and shared 

situational awareness   
   3.    This enhancement, in turn, enables further self-synchronization and improves 

the sustainability and speed of command   
   4.    The combination dramatically increases mission effectiveness    

  Many of these payoffs to network-enabled operations are conceptualized at 
human and organizational levels in terms of maintaining and enhancing SA, which 
can in turn lead to force-synchronization and increased mission effectiveness. This 
conceptual framework explicitly assumes that greater information sharing in a net-
worked organization produces better SA. SA is defi ned as “the ability to maintain a 
constant, clear mental picture of relevant information and the tactical situation 
including friendly and threat situations as well as terrain” (Dostal  2007 ). We sub-
scribe to a theoretical model of SA described by Endsley ( 1988 ,  1995 ) in which SA 
is the perception of relevant elements (e.g., status, attributes, dynamics) in the envi-
ronment within a volume of time and space (Level 1), the comprehension or under-
standing of their meaning (Level 2), and the projection of future actions (Level 3). 

 The tenets of network-enabled operations are posited to yield cumulative effects to 
organizational effectiveness in military confl icts. Performance and effectiveness may 
be limited by a failure or bottleneck at any step in the sequence. For instance, an 
increase in information available to commanders and their staff is postulated to 
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increase the quality of decision-making due to enhanced SA. There may be situations, 
however, where increased information sharing increases the  quantity  of available 
information without a corresponding increase in  quality.  The sheer volume and rapid 
pace of information received and readily accessible through networked  systems can 
be overwhelming. This presents a challenge to the command staff as there are clear 
limits to human cognition and how much information can be attended to, processed, 
and shared in a given amount of time, which can potentially limit situational aware-
ness. The following subsections highlight the importance of SA to confl ict- based situ-
ation management across kinetic (conventional) and cyber (virtual) battlefi elds.  

1.3     Kinetic SA 

 On the conventional battlefi eld, information is largely gathered directly whether by 
physical sensors, human sensory perception, or tele-operation of unmanned intelli-
gence, surveillance, and reconnaissance platforms. This corresponds to Level 1 situ-
ation awareness (SA). The battlefi eld is physical and immutable and the opposing 
forces perceive various states of the same physical battlefi eld and have access to 
many similar elements of situational information. In kinetic operations, SA is often 
dependent upon a careful analysis of the geography of the physical terrain (major 
waterways, roads, etc.) coupled to target sightings and movements, and friendly 
positions. Developing and maintaining an accurate  analog  model of the physical 
battlefi eld is a critical process, whether “sand tables” (prior 1960s), board game 
varieties (1960–1980s), or maps with digital overlay (since 1990s). Such models are 
critical for both perception of the battlefi eld and comprehension by reasoning 
about it. 

 However, there is often a tradeoff between data acquisition and comprehension. 
Additional efforts in data acquisition may provide more information about the bat-
tlefi eld space; however, adding too much data could overwhelm human processing 
capacities to analyze the information in a timely manner, greatly impacting compre-
hension of the current situation. A key research question is understanding the limits 
to human information processing and how they are manifest in complex, information- 
rich and broadly-collaborative networked operational environments.  

1.4     Cyber SA 

 Technological advancement of the information-age continues to push us towards 
virtual confl ict of networked organizations and individuals. Through mediums such 
as the Internet, traditional geographical boundaries are subsumed. Thus, a primary 
goal on the virtual battlefi eld is to mount a robust cyber-defense. Cyber analysts 
clamor for advanced capabilities to support their cyber mission and provide better 
SA. These should include the capabilities that automatically map all paths of 
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vulnerability through networks; correlate and fuse data from a variety of sources; 
provide visualization of attack paths; automatically generate mitigation recommen-
dations; and ultimately produce analysis of mission impact from cyber attacks 
(Jajodia et al.  2011 ).   

2     Examples of Research in KSA 

 In the following sections, we describe a challenge in kinetic warfare, and then 
attempt to review what is known about related challenges in cyber world. In some 
cases, we fi nd signifi cant similarities or at least parallels, while in others we fi nd 
instructive differences. In yet other cases, too little is known yet about challenges—
or lack thereof—in cyber situation awareness (CSA), and therefore in such cases we 
merely point out a potential research direction. We begin by describing two exam-
ples of research efforts that quantifi ed and illustrated signifi cant aspects of KSA, 
particularly the characteristic challenges of KSA experienced by practitioners. 

2.1     Example of Research in KSA: The DARPA 
MDC2 Program 

 The fi rst of the two examples of KSA research we use in this chapter is the program 
called Multicell and Dismounted Command and Control (Kott  2008 ), performed in 
2004–2007 by the United States’ Defense Advanced Research Programs Agency 
(DARPA). The main thrust of that research was an experimental exploration of bat-
tle command in light-armored, information-rich, distributed networked forces. At 
the time, the U.S. Army was eyeing the possibility of future combat force based on 
a combination of fi ghting units mounted on fast-moving, lightly armored vehicles 
with large number of sensors—fl ying drones and autonomous ground sensors—and 
precise, far-shooting weapons. Such combat units would rely far less on the thick-
ness of their armor than today’s ground forces, and far more of their ability to see 
and destroy the enemy from far away. 

 In effect, in such a concept, the combat unit was trading the value of heavy armor 
for the value of advanced information about its enemy. The concern with this con-
cept was whether the human soldiers, the consumers and users of all the rich infor-
mation that would enable the defectiveness of this hypothetical combat force, would 
be able to absorb, comprehend and act on this complex and voluminous informa-
tion. In other words, whether the cognitive challenges imposed by information-rich 
command environment would prove to be insurmountable. 

 Since previous battle command systems were not designed to function in such an 
information-rich environment, a prototype of a new human-machine system was 
created to translate high-rate infl ow of battlespace data into high-quality situation 
awareness and command decisions. The new prototype system included specially 
developed situation awareness tools that continuously and autonomously fused all 
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data into a shared situation portrait. Also included were action execution tools that 
helped human soldiers control intelligence gathering, movements on the battlefi eld 
and assessments of results of long-range attacks by precision weapons. Here we 
start to see some similarities to CSA—very large volume of information and relative 
absence of direct physical cues. 

 The research proceeded through a series of intricately organized and rather 
expensive experiments—simulated battles. In each battle, the Blue Force were 
U.S. Army soldiers who sat in mock-up battle vehicles equipped with elaborate 
information systems, and fought a reasonably realistic battle against the well-trained 
Red Force, portrayed by military professionals. The battle was fought on a simu-
lated battlefi eld where special simulation software calculated and depicted all phys-
ical effects—movements of vehicles, observations of sensors, and shooting of 
weapons. A set of instrumentation and human observers recorded the state of situa-
tion awareness, including the degree of awareness that could be potentially possible 
given the available information, and the degree of awareness actually exhibited by 
the soldiers. The actual state of the battle was also recorded for every moment of the 
battle, e.g., how many Red soldiers were in a particular forest, as opposed to what 
Blue sensors observed or Blue soldiers recognized. This allowed quantitative track-
ing of situation awareness overtime, using metrics that combined location, state of 
health, priority and quantity of opponent’s forces. Such metrics could be analyzed 
also by comparing them with soldiers’ understanding of the available information as 
transpired form their verbal exchanges and actions. In a later section, we continue 
to discuss the KSA-related fi ndings of this program in comparison with Cyber SA.  

2.2     Another Example of Research in KSA: 
The RAID Program 

 The research program titled Real-time Adversarial Intelligence and Decision- 
making (RAID) was sponsored by the United States’ Defense Advanced Research 
Programs Agency (DARPA) during the period of 2004–2008 (Kott  2007 ; Kott et al. 
 2011 ; Ownby and Kott  2006 ). The objective of the program was to build tools for 
automated generation of enemy situation estimates and predictions of enemy near- 
term action (Level 3 SA) in military operations. A part of the program was also to 
measure the situation awareness of the human soldiers and to compare their aware-
ness with the estimates of the automated tool. 

 The RAID program focused on an intentionally narrow but still very challenging 
domain: tactical combat of Blue Force (infantry, supported by armor and air plat-
forms) against the Red Force (an insurgent-like irregular infantry) in an urban ter-
rain. The problem situation may involve the defense of Blue facilities, the rescue of 
downed aircrew, the capture of an insurgent leader, the rescue of hostages or the 
reaction to an attack on a Blue patrol. 

 In planning and executing a battle like this, the company commander, his sup-
porting staff (including possibly the staff at the higher echelon of command) and his 
subordinate unit leaders would receive and integrate (mentally or with the aid of 
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computerized fusion system like RAID) a bewildering array of information (Fig.  2 ). 
For example, information on the Blue force composition and mission plan; detailed 
maps of the area, potentially including detailed 3D data of the urban area; known 
concentrations of non-combatants such as markets; culturally sensitive areas such 
as worship houses; reports of historic and recent prior activities such as explosions 
of roadside bombs in the area; continuous updates on the locations and status of the 
Blue force as they move before and during the battle.  

 Using all this information, commander and staff typically produce two types of 
output. First is the estimate of the Red force’s current situation: estimated actual 
locations of the Red force (most of which are normally concealed and are not 
observed by the Blue force); the current intent of the Red force, and potential decep-
tions that the Red force may be performing. The second type of output describes the 
estimated future events: Red force’s future locations (as a function of time), move-
ments, fi re engagements with the Blue force, changes in strengths and intent. 

 Each of multiple experiments in the RAID program consisted of wargames exe-
cuted by live Red and Blue commanders in a simulated computer wargaming envi-
ronment. In half of the wargames the Blue commander received the support of a 
human team of competent assistants (staff). Their responsibilities included produc-
ing estimates of enemy situation. This set of wargames constituted the control 
group. In the other half of wargames Blue commander operated without a human 
staff. Instead, he obtained a similar support from the RAID automated system which 
produced enemy situation estimates. These wargames constituted the test group. 
The data collection and redaction process compared the accuracy of the control 
group with the accuracy of the test group. In effect, we were able to compare situa-
tion awareness of human staff with that of the automated tool. Like the MDC2 
program, the RAID program also yielded observations about KSA which we will 
compare with those of CSA in the following section.   
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3     Instructive Similarities and Formidable Differences 
Between KSA and CSA 

 We now turn to selected experimental fi ndings of the two KSA-focused programs 
introduced above, and compare them to those in CSA. Challenges and opportunities 
of KSA and CSA are similar or at least parallel in several important ways. In both 
kinetic and cyber worlds, SA strongly impacts the outcome of the mission. The pro-
cess of developing effective and effi cient SA through information collection (Level 1 
SA), organization (Level 2 SA), and sharing (Level 3 SA) is diffi cult to manage in 
both KSA and CSA (Kott and Arnold  2013 ). Effective SA and concurrent decision 
making can be limited by an individual’s cognitive biases. Collaboration for the sake 
of forming shared SA is another challenge common to both kinetic and cyber worlds. 
However, the need for collaboration is often a requirement of kinetic confl ict, while 
cyber confl ict is often managed at the individual level. Further, collaboration itself is 
often diffi cult, particularly because cyber defenders of different roles and backgrounds 
do not yet share a common set of concepts, terms and boundary objects. These are yet 
to emerge in this young fi eld. Also, more than in the kinetic world, cyber defenders 
may need stronger tailored pictures of the same shared model. Table  2  highlights the 
key similarities and differences that are further discussed in the sections below.

3.1       KSA and CSA Strongly Impact Mission Outcome 

 The fi rst fi nding may seem obvious—higher KSA leads to notable increase in mission 
outcome, such as fewer casualties in the battle as compared to opponent’s, or the abil-
ity to capture the opponent territory or to defend one’s own ground. In fact, it is not an 
obvious fi nding, and certainly not a well-quantifi ed one in prior work. It becomes 
particularly non-trivial when we note the difference between the information available 
to the soldiers and the level of its comprehension, i.e., the cognitive component of situ-
ation awareness. On a more fundamental level, one might wonder whether the intan-
gible benefi ts of higher SA can possibly compare with mighty effects of such tangible 
factors as speed and armor of combat vehicles, or range and precision of weapons. 

 Nevertheless, quantitative experimental fi ndings of MDC2 program were 
unequivocal—higher SA does translate into signifi cantly better battle outcome. 
Indeed, it was the difference between the amount of information available to the 
Blue Force versus the information available to the Red Force (the information that 
is obtained from various sources such as sensors or scouts, and made available to the 
commander and staffs) that emerged as a key predictor of battle outcome. Because 
this difference was so important, the Blue force found (empirically) that limiting 
Red’s ability to see the Blue force was critical to winning the battle. The informa-
tion available to Red routinely increased during the fi ght when distances between 
Red and Blue were small enough that relatively weaker Red sensors became effec-
tive. As the Blue detection of the Red’s high-priority targets increased, so did the 
potential for battle outcomes favorable to Blue. 
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 Similarly, In RAID program, we also found clear statistical evidence that with 
more accurate estimates of the Red situation (Level-2 SA, comprehension) and 
intent (Level-3 SA, projection), the Blue commander was more likely to achieve 
better battle outcome. To measure the accuracy of SA objectively, we used a metric 
similar to Circular Error Probable (CEP). Roughly speaking, it gives a typical error 
between the actual location of an opponent entity, and the location as perceived or 
projected by the Blue commander. The experimental data were very clear—battle 
outcome (wargame score) improves as the situation assessment becomes more 
accurate (i.e., CEP decreases). 

 In literature on cyber security research, there is recognition, but not yet a quantitative 
evidence of the impact of CSA on metrics of effectiveness and mission outcomes, such 
as timely detection if a cyber intrusion. Situation awareness is recognized to be limited 
in the cyber domain: inaccurate and incomplete vulnerability analysis is common as 

   Table 2    Similarities and differences of KSA and CSA   

 KSA  CSA  Research direction 

 Mission outcome  Characterized by 
quantitative, tangible 
metrics (e.g., location 
and number of enemy 
targets) 

 Mission-defi ned metrics 
are not well understood 

 Development of CSA 
metrics related to 
mission and mission 
outcome 

 Representation  Tends to have a 
commonly accepted, 
widely used organizing 
paradigm—the physical 
terrain of the battlefi eld 
(e.g., map) 

 No map-like common 
reference has emerged 

 Development of a 
shared non-physical 
network “map” 

 Information 
collection, 
organization, 
and sharing 

 Challenged by 
diffi culties with timely 
processing of large 
amounts of data about 
current battle state 
space (e.g., managing 
dynamic, moving, and 
relatively scarce 
sensors) 

 Challenged with the 
organization, 
coordination, and timely 
analysis of volumes of 
heterogeneous 
information from 
automated sensors, 
intrusion detection 
systems, and correlating 
analytical reports 

 Approaches to 
effective 
representation and 
fusion of information 
at optimal levels of 
abstraction 

 Cognitive bias  Largely suffer from 
confi rmation bias and 
availability heuristic 

 Some evidence of 
risk-aversion as well as 
confi rmation bias and 
availability heuristic 

 Additional research 
on the formation and 
mechanisms related 
to cognitive bias 

 Collaboration/
shared SA 

 Collaboration has to be 
controlled, encouraged, 
and synchronized in 
order to mitigate 
potential staff tendency 
to aggravate cognitive 
biases and to misdirect 
precious cognitive 
resources 

 Task responsibilities are 
managed at the level of 
the individual and are 
often not shared 

 Given the malleable 
nature of the cyber 
domain, a common 
set of concepts, 
terms, and boundary 
objects are critical 
for developing CSA 
and should be a 
priority for research 
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is the failure to adapt to evolving networks and attacks; and the ability of cyber defend-
ers to transform raw data into cyber intelligence remains quite restricted. Cyber 
researchers argue that advanced capabilities are needed for mission-centric CSA. These 
should include the capabilities that automatically map all paths of vulnerability through 
networks; correlate and fuse data from a variety of sources; provide visualization of 
attack paths; automatically generate mitigation recommendations; and ultimately pro-
duce analysis of mission impact from cyber attacks (Jajodia et al.  2011 ). Such tools 
would increase CSA, arguably yielding better cyber defense outcomes, as is the case 
with KSA.  

3.2     Cognitive Biases Limit Comprehension of Available 
Information 

 Both KSA and CSA may suffer from cognitive biases. The exact manner in which a 
cognitive bias infl uences the formation of SA remains a topic for research, in both 
cyber and kinetic worlds. It cannot be excluded that CSA suffers from different 
biases than KSA, and perhaps through different mechanisms. In kinetic battles (as 
found in the MDC2 program), commander and staff surprisingly often dismissed or 
misinterpreted the available correct information. They also overestimated the com-
pleteness and correctness of their KSA, perhaps partly because the advanced sen-
sors and information displays lulled them into false sense of security—”I can see it 
all.” There was an alarming gap between information available to the commander 
and staff and the KSA they derived from that information: commander’s assessment 
of the available information was correct only approximately 60 % of the time. A 
cognitive bias—a kind of “belief persistence”—appeared to be a common cause of 
this inadequacy of comprehension of available information. 

 In particular, such seeing-understanding gaps often manifested themselves in 
poor synchronization of information and movements. Commanders frequently over- 
estimated the strength of the threat they faced, or signifi cantly underestimated that 
strength. Over-estimate of threat resulted in unnecessarily slowing down the advance 
of the force in order to acquire more information. Under-estimate of threat caused 
the force enter into the close contact with the enemy while lacking suffi cient infor-
mation and thereby making Blue Force more vulnerable. 

 In the RAID program, we also found that human KSA was signifi cantly lower or 
less accurate than what was possible to achieve using all the available information. 
We compared two assessments of enemy situation and intent: one produced by 
humans and another one produced by an automated tool. The tool lacked either the 
experience or intuition of human soldiers. Nevertheless, the error of the tool’s esti-
mates was signifi cantly (on average) lower than that of humans. The fact that the 
automated tool compared well with competent human staff implied that suffi cient 
information was indeed present in the data, but not extracted by staff in order to 
yield the best possible KSA. 

 But why were humans’ estimates less accurate than tool’s? On one hand, SMEs 
and psychologists found many similarities in reasoning of humans and of the tool. 
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The difference, however, seemed to be mainly in human cognitive biases. Although 
such biases are often useful as convenient shortcuts, on balance they lead to reduced 
accuracy. For example, we often observed a fi xation on a presumed pattern or rule: 
humans estimated the Red situation by applying a previously learned pattern or 
doctrine. Then, if disconfi rming evidence arose, the humans discounted the evi-
dence. When faced with a clever, rapidly innovating Red opponent, such a fi xation 
on previously observed patterns often produced gross errors in Blue’s KSA. 

 Cognitive biases are also widely evident in CSA. Researchers note that cyber 
defenders exhibit over-reliance on intuition: with few reliable statistics on cyber 
attacks, decision makers rely on their experience and intuition, fraught with cogni-
tive biases. Such biases are likely to lead to suboptimal decisions. For example, 
when faced with the trade-off between a certain loss in the present (e.g., investing in 
improved security) and a potential loss in the future (consequences of a cyber inci-
dent), a common risk-aversion bias is toward the second option. In a related obser-
vation, cyber defenders tend to believe that their particular organization is less 
exposed to risks than other parties, particularly if they feel like having a degree of 
control over the situation—some refer to this as “optimistic bias.” Many are more 
afraid of risks if they are vividly described, easy to imagine, memorable, and they 
have occurred in the recent past (related to what is called “availability bias”). 

 Further, a common bias is to ignore evidence that contradicts one’s preconceived 
notions, i.e., the confi rmation bias (Julisch  2013 ). With respect to the optimistic bias 
mentioned above, it is important to note that individuals distinguish between two 
separate dimensions of risk judgment—personal level and societal level. Individuals 
display a strong optimistic bias about online privacy risks, judging themselves to be 
signifi cantly less vulnerable than others to these risks. Internal belief (perceived con-
trollability) and individual difference (prior experience) signifi cantly modulate opti-
mistic bias (Cho et al.  2010 ). There is a tendency for individuals to interpret ambiguous 
information or uncertain situations in a self-serving direction. Perceived controllabil-
ity and distance of comparison target infl uence this tendency (Rhee et al.  2012 ). 

 In summary, although cognitive biases play important roles in both KSA and 
CSA, the limited available literature does not allow us to determine the degree of 
similarity in specifi c mechanisms involved. Research in CSA may benefi t from an 
explicit and systematic investigation of whether the biases affecting KSA also play 
a key role in CSA.  

3.3     Information Collection, Organization 
and Sharing is Diffi cult to Manage 

 Effective situation awareness takes us through a three-phase process of perception of 
the data collected (Level 1 SA), organizing said data in a way that it becomes useful 
information (Level 2 SA), which in turn allows us to make and share decisions based 
on future predictions (Level 3 SA). Yet this process of information collection, orga-
nization, and sharing is diffi cult to manage in both kinetic and cyber confl icts. 
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 For example, in MDC2 experiments, the commander and staff had diffi culties 
tracking the extent and timing of the sensor coverage available in different parts of 
the kinetic battlefi eld. In effect, they often did not know what they had seen and 
what they had not—an inadequate SA of their own information collection assets. 
Flaws in sensor layering also led to critical gaps in sensor coverage, which com-
monly went unnoticed by commanders. These gaps were directly tied to poor KSA 
related to threat location and proximity, and thus increased the likelihood for 
encountering an ambush by the opponent. 

 Especially diffi cult was management of multiple diverse sensors with signifi -
cantly different capabilities. Not only they differed in capabilities, area of coverage, 
agility and latency of information, but also in their organizational ownership and 
rules of who and when was allowed to use or reposition them. As a result, soldiers 
had to dedicate a large fraction of their available time and attention to issues of 
information acquisition. In many cases it became the primary concern of the com-
mander who focused on managing sensor assets, and delegated other tasks. Indeed, 
over 50 % of all decisions were made to acquire information. “Seeing” was consid-
ered the hardest task while “shooting” was considered the easiest task. Commander 
and Staff also found that battle damage assessment has grown as a critical and most 
demanding task and a key detriment to KSA. Diffi culties in assessing the “state” of 
engaged targets signifi cantly degraded the level of KSA. 

 Indeed, a major tenet of the U.S. Offi ce of Secretary of Defense’s “data to deci-
sions” initiative and a primary challenge for military commanders and their staff is 
to shorten the cycle time from data gathering to decisions (Swan and Hennig  2012 ). 
A key information-age challenge is that the sheer volume of information available 
constrains military decision-making cycles, so that the staff is stuck in observe- 
orient, the “seeing” part of the cycle, rather than advancing further into the decide- 
act, or “shooting” part of the cycle. 

 These challenges in KSA parallel the challenges of managing information for 
CSA. Lack of information, such as reliable statistics on the probability and impact of 
cyber attacks, induce decision makers to rely unduly on their experience and intuition. 
In acquiring information about the cyber environment, important classes of informa-
tion include: (a) the probability of particular types of cyber attacks; (b) the effective-
ness of existing countermeasures in defending against these attacks; and (c) the impact 
or cost of attacks (Julisch  2013 ). Because dynamic cyber intelligence is diffi cult to 
acquire, over-reliance on static knowledge versus dynamic intelligence is common. 

 Other peculiarities of cyber security world add to the complexity of information 
acquisition, management, and related formation of CSA. Missions are generally 
defi ned in terms of abstract resources and not actual systems and devices (making 
comprehension of relations between missions and tangible systems more diffi cult); 
organizations often outsource parts or all responsibility for cyber defense (thereby 
complicating understanding of responsibilities and correlation of information); 
resources are managed in a highly dynamic fashion; and increasingly large number 
of sensors overload human analysts (Greitzer et al.  2011 ). 

 Cyber researchers note additional related challenges: information sharing meth-
ods are immature, especially as the process of forming CSA is distributed across 
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human operators and technological artifacts operating in different functional areas. 
Add to this the rapid rate of environmental change, overwhelming volume of infor-
mation, and lack of physical world constraints. With such ensemble of challenges in 
information acquisition and management, it is not surprising that CSA is distrib-
uted, incomplete, and domain-specifi c (Tyworth et al.  2012 ).  

3.4     Collaboration Can Be Challenging 

 The essence of collaborative teamwork within an organization is the ability to effi -
ciently maintain a coherent set of tasks across multiple people and shared assets. It is 
commonly understood that SA benefi ts from effective collaboration of participants of 
the SA-generation process. However, collaboration also can have a dark side and 
exact a high cost. In MDC2 experiments, we observed on a number of occasions that 
a commander’s KSA degraded as a result of collaborations with subordinates, peers, 
or higher echelon decision-makers. Collaboration can reinforce an incorrect percep-
tion by apparent acquiescence by other decision makers. Information gaps—the 
importance of which we mentioned earlier in this chapter—are not necessarily appre-
ciated by individual commanders, and collaboration does not help to alleviate that. 

 As an example, out of seven episodes of collaboration in a particular experiment 
in the MDC2 program, three episodes produced improved KSA, two collaboration 
episodes distracted the decision-maker from the more critical focus, and two others 
led the decision-makers to reinforce the wrong interpretation of the situation. The 
mechanisms by which collaboration may impose costs on KSA vary: in some cases 
collaboration tends to reinforce confi rmation bias; in other cases collaboration 
 mis- directs the attention away from most critical issues. 

 In the RAID program, we observed a negative correlation between the number of 
collaboration events within the staff, and the quality of KSA. This could be explained 
as follows: more intensive collaboration may lead to greater consumption of cogni-
tive resources, resulting in lower accuracy of KSA and lower battle score. 

 In the literature on cyber defense, we do not fi nd concerns about a potential nega-
tive impact of collaboration on CSA. However, concerns about the diffi culties of 
enabling effective collaboration are common in the world of cyber defense. On one 
hand, collaboration in cyber security teams can be very effective. Experiments in 
synthetic IDS environment demonstrate that collaborative teams outperformed indi-
viduals on average. However, this appears to apply when the teams focuses on 
“hard” cases requiring diverse expertise. It is not unlikely that in “easy” cases, col-
laboration could be counterproductive (Rajivan et al.  2013 ). 

 On the other hand, it is argued that in cyber defense, collaboration suffers from 
the lack of boundary objects (i.e., intermediate products that can be shared—com-
mon in more mature fi elds of practice). CSA tends to be distributed, incomplete, and 
highly domain-specifi c. Boundary objects that have emerged in cyber defense are 
currently limited to reports; these are inadequate and not as effective as boundary 
objects in other fi elds. To alleviate the current lack of commonly understood bound-
ary objects, cyber defense may benefi t from visualizations capable of presenting 
cross-domain information for domain specifi c purposes (Tyworth et al.  2012 ). 
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 Other cyber researchers highlight the diffi culty of assessing trustworthiness in 
collaborative communications. For example, means for numeric and verbal com-
munication of cybersecurity risks are not yet adequately developed and are poorly 
understood in cyber defense (Nurse et al.  2011 ). This is further exacerbated by 
barriers between individuals of different roles and backgrounds in cyber defense. 
For example, cyber experts see users both as potential cyber defense resources, but 
also as sources of accidents and potential threats. Unlike users, experts tend to use 
probability rather than consequences as a basis for evaluating risk. In addition, 
experts’ lack of detailed knowledge of their users’ information security perfor-
mance complicates effective collaboration (Albrechtsen and Hovden  2009 ). As a 
result, CSA suffers.  

3.5     Shared Picture Does Not Assure Shared SA 

 In addition to effective collaboration, shared picture of the situation is often seen as 
a key to collaborative SA. However, experiments in MDC2 indicated that sharing 
picture is no substitute for sharing intent. While a commander often thought that his 
subordinates understood his intent because they could see it all on the screen, the 
subordinates in fact could not perceive the commanders intent from the picture he 
shared with them. And when staff members do not share the commander’s SA, 
including an understanding of the commander’s intent, they may be less likely to 
take initiative. 

 Perhaps this should not be surprising: because different viewers of the same 
“shared” picture differ signifi cantly in their roles and backgrounds, they should see 
different, properly tailored pictures in order to arrive to a common SA. Indeed, 
some cyber researchers argue that the common picture should not be common. 
Modalities of interaction and information requirements are inherently different for 
different types of users. One proposed approach is a model-based cyber defense 
situation awareness: a common model represents the current security situation of all 
protected resources, updated over time. Based on this common model, different 
intuitive visualization can be employed for different users (Klein et al.  2010 ).   

4     Summary 

 By exploring what is known about SA in conventional—also commonly referred to 
as kinetic—battles, we may gain insights and research directions relevant to cyber 
confl icts. For the sake of brevity, we use the abbreviation CSA for Cyber Situation 
Awareness and KSA for Kinetic Situation Awareness. The Information Age is 
defi ned by the rise of networked forms of organization and an increase in informa-
tion available to commanders and their staff is postulated to increase the quality of 
decision-making due to enhanced situational awareness. However, there are clear 
limits to human cognition and how much information can be attended to, processed, 
and shared in a given amount of time, which can potentially limit situational awareness. 
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Challenges and opportunities of KSA and CSA are similar or at least parallel in 
several important ways. In both kinetic and cyber worlds, SA strongly impacts the 
outcome of the mission. In literature on cyber security research there is recognition, 
but not yet a quantitative evidence of the impact of CSA on metrics of effectiveness 
and mission outcomes. Researchers and practitioners of KSA have a commonly 
accepted, widely used organizing representation—map of the physical terrain of the 
battlefi eld. Yet no map-like common representation has emerged in CSA. It is likely, 
although not yet examined, that cognitive biases are general to both KSA and 
CSA. For example, in KSA, the human tendency to look for confi rming evidence has 
routinely been exploited in intelligence deception. Cognitive biases are also widely 
evident in CSA, such as “optimistic bias.” Limited or incorrect incoming data, such as 
reliable statistics on the probability and impact of attacks (whether kinetic or cyber), 
induce decision-makers to rely unduly on their experience and intuition. Collaboration 
also can have a dark side and exact a high cost. Collaboration may reinforce an incor-
rect perception by apparent acquiescence by other decision makers.     
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      Formation of Awareness 

             Massimiliano     Albanese      and     Sushil     Jajodia    

1            Introduction 

 Having discussed the importance and key features of CSA, both in general and in 
comparison with a better known Kinetic Situational Awareness, we now proceed to 
explore how and from where the CSA emerges. Formation of Cyber Situational 
Awareness is a complex process that goes through a number of distinct phases and 
produces a number of distinct outputs. Humans with widely different roles drive this 
process while using diverse procedures and computerized tools. This chapter 
explores how situational awareness forms within the different phases of the cyber 
defense process, and describes the different roles that are involved in the lifecycle 
of situational awareness. The chapter presents an overview of the overall process of 
cyber defense and then identifi es several distinct facets of situational awareness in 
the context of cyber defense. An overview of the state of the art is followed by a 
detailed description of a comprehensive framework for Cyber Situational Awareness 
developed by the authors of this chapter. We highlight the signifi cance of fi ve key 
functions within CSA: learning from attacks, prioritization, metrics, continuous 
diagnostics and mitigation, and automation. 

 The chapter is organized as follows. Section  2  presents an overview of the overall 
process of cyber defense, whereas Sect.  3  identifi es several facets of situational 
awareness in the context of cyber defense. Section  4  provides an overview of the 
state of the art. Then, Sect.  5  describes the details of a comprehensive framework for 
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Cyber Situational Awareness developed by the authors of this chapter. Finally, 
Sect.  6  discusses future research directions and gives some concluding remarks.  

2      The Cyber Defense Process 

 This section provides an overall description of the typical process and organization 
of cyber defense, which is often quite distributed and involves individuals in several 
different roles (security analysts, security engineers, security architects, etc.). Five 
major functions are involved in the cyber defense process and, as we show in the 
next section, different types of situational awareness form within the domain of 
each of these functions. 

2.1     Today’s Cyber Landscape 

 In today’s complex cyberspace, we are constantly facing the risk of massive data 
losses or data leaks, theft of intellectual property, credit card breaches, denial of 
service, identity theft and threats to our privacy. As defenders we have access to a 
wide range of security tools and technologies (e.g., intrusion detection and preven-
tion systems, fi rewalls, antivirus software), security standards, training resources, 
vulnerability databases [e.g., NVD ( NIST ), CVE ( MITRE )], best practices, catalogs 
of security controls [e.g., NIST Special Publication 800-53 (NIST  2013 ) and CSA 
Cloud Controls Matrix ( Cloud Security Alliance )], and countless security check-
lists, benchmarks, and recommendations. To help us understand current threats, we 
have seen the emergence of threat information feeds, reports [e.g., Symantec’s 
Internet Security Threat Report (Symantec Corporation  2014 ) and Mandiant’s 
APT1 report (Mandiat  2013 )], tools (e.g., Nessus, Wireshark), alert services, stan-
dards, and threat sharing schemes. And to put it all together, we are surrounded by 
security requirements, risk management frameworks [e.g., NIST Special Publication 
800-37 (NIST  2010 )], compliance regimes, regulatory mandates, and so forth. 
Therefore, there is certainly no shortage of information available to security practi-
tioners on how they should secure their infrastructure. 

 However, without well-defi ned processes to integrate all this knowledge in a 
consistent and coherent manner, all these resources may have the undesired conse-
quence of introducing competing options, priorities, opinions, and claims that can 
paralyze or distract an enterprise from taking critical actions. In the last decade, 
threats have evolved dramatically, malicious actors have become smarter, and users 
have become more mobile. Data is now distributed across multiple platforms and 
locations, many of which are not within the physical control sphere of the organiza-
tion. With more reliance on cloud computing platforms, data and applications are 
becoming more distributed, thus progressively eroding the traditional notion of 
security perimeter.  
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2.2     Cyber Defense Process at a Glance 

 The overall process of cyber defense relies on the combined knowledge of actual 
attacks and effective defenses, and ideally involves every part of the ecosystem 
(the enterprise, its employees and customers, and other stakeholders). It also 
entails the participation of individuals in every role within the organization and 
this includes threat responders, security analysts, technologists, tool developers, 
users, policymakers, auditors, etc. Top experts from all these roles can pool their 
extensive fi rst- hand knowledge in defending against actual cyber-attacks and 
develop a consensus list of the best defensive techniques to prevent or track them, 
and effectively respond to and mitigate damage from the most common or the 
most advanced of those attacks. 

 Defensive actions are not limited to preventing the initial compromise of sys-
tems, but also address detection of already-compromised machines and prevention 
or disruption of attackers’ subsequent actions. The defenses identifi ed deal with 
reducing the initial attack surface by hardening device confi gurations, identifying 
compromised machines to address long-term threats inside an organization’s net-
work (such as advanced persistent threats), disrupting attackers’ command-and- 
control of implanted malicious code, and establishing an adaptive, continuous 
defense and response capability that can be maintained and improved. 

 Several critical functions need to be guaranteed in order to setup an effective 
cyber defense framework. Each of these functions relies on different types or com-
ponents of the overall situational awareness developed within the organization, and 
involves different groups, such as system administrators, network administrators, 
cyber analysts, national CERTs, Managed Security Services, forensic consultants, 
recovery operators, etc. The main fi ve functions can be described as follows:

    1.     Learning from attacks . This function entails using knowledge of actual attacks 
that have compromised a system to provide the foundation for continually learn-
ing from these events in order to build effective, practical defenses.   

   2.     Prioritization . This function identifi es and gives higher priority to controls that 
will provide the greatest risk reduction and protection against the most danger-
ous threat actors, and that can be feasibly implemented in the existing computing 
environment.   

   3.     Metrics . This function is intended to establish common metrics to provide a 
shared language for executives, IT specialists, auditors, and security offi cials to 
measure the effectiveness of security controls within an organization so that 
required adjustments can be identifi ed and implemented quickly.   

   4.     Continuous diagnostics and mitigation . This function consists in carrying out 
continuous measurement to test and validate the effectiveness of current security 
controls, and to help drive the prioritization of the next steps.   

   5.     Automation . This function aims at automating defenses so that organizations 
can achieve reliable, scalable, and continuous monitoring of security relevant 
events and variables, while relieving human analyst from the most labor- intensive 
and error-prone tasks.     
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 Situational awareness—in different shapes and at different scales—forms in all 
the functional areas listed above. Specifi cally, each of these areas involves different 
roles, some of which may be responsible for generating situational awareness, 
whereas others may benefi t from it while carrying out their own tasks. For instance, 
with respect to the fi rst function—learning from attacks—forensic specialists and 
cyber analysts may be responsible for investigating past incidents and deriving 
information about existing weaknesses as well as knowledge of the attacker’s 
behavior, thus generating situational awareness. On the other hand, network and 
system administrators may use such knowledge to harden confi gurations and pre-
vent future occurrences of the same incidents.  

2.3     Cyber Defense Roles 

 New threats and new measures to counter such threats call for a reorganization of 
cyber defense teams so that they can focus on defending the organization from tar-
geted attacks. In the last decade, most enterprises have established independent 
security teams to perform a wide range of security-related activities, including: 
addressing vulnerabilities by deploying and maintaining patches, updating data-
bases of virus signatures, confi guring and maintaining fi rewalls, confi guring and 
maintaining intrusion detection and prevention systems. 

 To ensure that policies were created and properly enforced, most organizations 
also created the position of Chief Information Security Offi cer (CISO) who enacts 
those policies and becomes responsible for ensuring that the organization is in com-
pliance with applicable standards and regulations. Conversely, to ensure adequate 
implementation of security policies, standards, and guidelines, a number of more 
technical roles were defi ned. The specifi c responsibilities assigned to each role may 
vary across organizations, but they can be roughly summarized as follows.

    1.     Security Analyst.  A security analyst is responsible for analyzing and assessing 
existing vulnerabilities in the IT infrastructure (software, hardware, and net-
works), investigating available tools and countermeasures to remedy identifi ed 
vulnerabilities, and recommending solutions and best practices. A security ana-
lyst also analyzes and assesses damage to either the data or the infrastructure as 
a result of security incidents, examines available recovery tools and processes, 
and recommends solutions. Finally, analysts test for compliance with security 
policies and procedures, and may assist in the creation, implementation, and/or 
management of security solutions.   

   2.     Security Engineer.  A security engineer is responsible for performing security 
monitoring, security and data/logs analysis, and forensic analysis, detecting 
security incidents, and initiating incident response. A security engineer investi-
gates and utilizes new technologies and processes to enhance security capabili-
ties and implement improvements. An engineer may also review code or execute 
other security engineering methodologies.   
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   3.     Security Architect.  A security architect is responsible for designing a security 
system or major components of a security system, and may lead a security design 
team building a new security system.   

   4.     Security Administrator.  A security administrator is responsible for installing 
and managing organization-wide security systems. Security administrators may 
also take on some of the tasks of a security analyst in smaller organizations.   

   5.     Security Consultant/Specialist.  Security consultant and security specialist are 
broad titles that encompass any one or all of the other roles and titles, tasked with 
protecting computers, networks, software, data, and/or information systems 
against viruses, worms, spyware, malware, intrusions, unauthorized access, 
denial-of-service attacks, and an ever increasing list of attacks by malicious users 
acting as individuals or as part of organized crime or foreign governments.     

 Despite an organization’s best effort to protect their cyber assets, incident will 
inevitably occur over time. Therefore, no security policy should be considered com-
plete until procedures are put in place that allow for the handling of and recovery 
from even the most devastating incidents. A possible solution that most organiza-
tions have adopted is the creation of a Computer Incident Response Team (CIRT). 
A CIRT is a carefully selected and well-trained group of professionals whose pur-
pose is to promptly and correctly handle an incident so that it can be quickly con-
tained, investigated, and recovered from. It is usually comprised of members of the 
organizations, but the actual composition largely depends on the needs and resources 
of the organization. However, it is critical to the success of the CIRT that individuals 
in different roles and capacities are included in the team. First of all, it is essential 
to have a member of upper level management in the team, as this will give the team 
authority to operate and make critical decisions. Of course, members of the cyber 
defense team (security analysts, security administrators, etc.) must be included in 
the team. They will be responsible for assessing the extent of the damage, conduct-
ing forensic analysis, containing the incident, and recovering from the incident. 

 Many organizations are also beginning to utilize IT auditors that are specially 
trained in the area of computer technology. Their role within the organization is to 
ensure that procedures are being followed, and to help foster change when current 
procedures are no longer appropriate. They may also be present during a crisis, but 
they would not take action at that time. The role of the IT auditor is to observe, learn 
why the incident occurred, ensure procedures are being followed, and work with IT 
and security personnel to avoid similar incidents in the future. They are invaluable 
members of the team when conducting post-incident reviews. 

 Other roles that may be represented in a CIRT include: (i) physical security 
personnel, responsible for assessing any physical damage to the facility or to IT 
gear, collecting and investigating physical evidence, and guarding evidence during 
a forensics investigation to maintain a chain of custody; (ii) an attorney, useful for 
providing legal advice in situations where incidents may have legal implications; 
(iii) Human Resource, which can provide advice as to how best handle situations 
involving employees; (iv) Public Relations, which can best advise on the type and 
tone of communications that should emanate from the company during and/or 
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after an incident, so as to preserve the organization’s reputation; (v) a fi nancial 
auditor, who can put a monetary fi gure on the damage that has occurred as a result 
of an incident. 

 A large organization with divisions spread around the globe or separate large 
business units may well have cyber defense teams deployed in each division with 
their own leaders who report up to the Chief Information Security Offi cer.   

3       The Multiple Facets of Situational Awareness 

 The previous section has provided an overview of the overall cyber defense process. 
In this section we discuss in more detail the process of situational awareness, which, 
without loss of generality, can be viewed as a three-phase process: situation percep-
tion, situation comprehension, and situation projection (Cyber Situational 
Awareness: Issues and Research  2010 ).  Perception  provides information about the 
status, attributes, and dynamics of relevant elements within the environment. 
 Comprehension  of the situation encompasses how people combine, interpret, store, 
and retain information.  Projection  of the elements of the environment (situation) 
into the near future encompasses the ability to make predictions based on the knowl-
edge acquired through perception and comprehension. We examine the process of 
situational awareness with respect to several key questions security analysts are 
routinely trying to answer in order to perceive, comprehend and project the cyber 
situation, and with respect to each of the fi ve functions identifi ed earlier in this 
chapter. When applicable, we discuss what type of situational awareness is formed 
within the domain of each of these questions and functions, its temporal and spatial 
scope, its scale, and its temporal dynamics. We also discuss what metrics can be 
used to quantify a specifi c type of situational awareness, what inputs are needed to 
generate it and what output is generated, how situational awareness generated in one 
domain relates to situational awareness generated in other domains. Then, in the 
next section, we will present specifi c techniques, mechanisms, and tools that can 
help form specifi c types of situational awareness. These mechanisms and tools are 
part of a comprehensive framework for Cyber Situational Awareness (CSA) devel-
oped by the authors of this chapter as part of a funded research project. This frame-
work aims at enhancing the traditional cyber defense process we described in the 
previous section by automating some of the capabilities that have traditionally 
required a signifi cant involvement of human analysts and other individuals. Ideally, 
we envision the evolution of the current  human in the loop  approach to cyber defense 
into a  human on the loop  approach, where human analysts would be responsible for 
examining and validating or correcting the results of automated tools, rather than 
combing through daunting amounts of log entries and security alerts. 

 Among all the cyber defense roles presented earlier in this chapter, the security 
analyst—or cyber defense analyst—clearly plays a major role in all the operational 
aspects of maintaining the security of the enterprise. Security analysts are also 
responsible for studying the threat landscape with an eye towards emerging threats 
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to the organization. Unfortunately, given the current state of the art in the area of 
automation, the operational aspects of IT security may still be too time-consuming 
to allow this type of outward looking focus in most realistic scenarios. Therefore, 
the scenario we envision—were automated tools would gather and preprocess large 
amounts of data on behalf of the analyst—is a highly desirable one. Ideally, such 
tools should be able to automatically answer most, if not all, the questions an ana-
lyst may ask about the current situation, the impact and evolution of an attack, the 
behavior of the attackers, the quality of available information and models, and the 
plausible futures of the current situation. In the following, we defi ne the fundamen-
tal questions that an effective Cyber Situational Awareness framework must be able 
to help answer.

    1.     Current situation . Is there any ongoing attack? If yes, what is the stage of the 
intrusion and where is the attacker? 

 Answering this set of questions implies the capability of effectively detect-
ing ongoing intrusions, and identifying the assets that might have been compro-
mised already. With respect to these questions, the input to the SA process is 
represented by IDS logs, fi rewall logs, and data from other security monitoring 
tools (Albanese et al.  2013b ). On the other hand, the product of the SA process 
is a detailed mapping of current intrusive activities. This type of SA may quickly 
become obsolete—if not acted upon timely or updated frequently—as the 
intruder progresses within the system.   

   2.     Impact . How is the attack impacting the organization or mission? Can we assess 
the damage? 

 Answering this set of questions implies the capability of accurately assessing 
the impact (so far) of ongoing attacks. In this case, the SA process requires 
knowledge of the organization’s assets along with some measure of each asset’s 
value. Based on this information, the output of the SA process is an estimate of 
the damage caused so far by the intrusive activity. As for the previous case, this 
type of SA must be frequently updated to remain useful, as damage will increase 
as the attack progresses.   

   3.     Evolution . How is the situation evolving? Can we track all the steps of an attack? 
 Answering this set of questions implies the capability of monitoring ongoing 

attacks, once such attacks have been detected. In this case, the input to the SA 
process is the situational awareness generated in response to the fi rst set of ques-
tions above, whereas the output is a detailed understanding of how the attack is 
progressing. Developing this capability can help address the limitations on the 
useful life of the situational awareness generated in response to the fi rst two sets 
of questions.   

   4.     Behavior . How are the attackers expected to behave? What are their strategies? 
 Answering this set of questions implies the capability of modeling the attack-

er’s behavior in order to understand its goals and strategies. Ideally, the output of 
the SA process with respect to this set of questions is a set of formal models (e.g., 
game theoretic, stochastic) of the attacker’s behavior. Such behavior may change 
over time, therefore models need to adapt to a changing adversarial landscape.   
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   5.     Forensics . How did the attacker create the current situation? What was he trying 
to achieve? 

 Answering this set of questions implies the capability of analyzing the logs 
after the fact and correlating observations in order to understand how an attack 
originated and evolved. Although this is not strictly necessary, the SA process 
may benefi t from the situational awareness gained is response to the fourth set of 
questions when addressing this additional set of questions. In this case, the out-
put of the SA process includes a detailed understanding of the weaknesses and 
vulnerabilities that made the attack possible. This information can help security 
engineers and administrators harden system confi gurations in order to prevent 
similar incidents from happening again in the future.   

   6.     Prediction . Can we predict plausible futures of the current situation? 
 Answering this set of questions implies the capability of predicting possible 

moves an attacker may take in the future. With respect to this set of questions, the 
input to the SA process is represented by the situational awareness gained in 
response to the fi rst (or third) and fourth sets of questions, namely, knowledge about 
the current situation (and its evolution) and knowledge about the attacker’s behav-
ior. The output is a set of possible alternative scenarios that may realize in the future.   

   7.     Information . What information sources can we rely upon? Can we assess their 
quality? 

 Answering this set of questions implies the capability of assessing the quality 
of the information sources all other tasks depend upon. With respect to this set of 
questions, the goal of the SA process is to generate a detailed understanding of how 
to weight all different sources when processing information in order to 
answer all other sets of question the overall SA process is aiming to address. 
Being able to assess the reliability of each information source would enable 
automated tools to attach a confi dence level to each result.     

 It is clear from our discussion that some of these questions are strictly correlated, 
and the ability to answer some of them may depend on the ability to answer other 
questions. For instance, as we have discussed above, the capability of predicting 
possible moves an attacker may take depends on the capability of modeling the 
attacker’s behavior. A cross-cutting issue that affects all other aspects of the SA 
process is scalability. Given the volumes of data involved in answering all these 
questions, we need to defi ne approaches that are not only effective, but also compu-
tationally effi cient. In most circumstances, determining a good course of action in a 
reasonable amount of time may be preferable to determining the best course of 
action, if this cannot be done in a timely manner. 

 In the following, we describe the situational awareness process with respect to 
the fi ve major functions described earlier in this chapter. We discuss what type of 
situational awareness is formed in each of these areas, its scope and scale, and its 
lifecycle.

    1.     Learning from attacks . With respect to this function, situational awareness is 
mainly generated through forensic analysis (see the fi fth set of questions above), 
and consists of a deep understanding of how the attack started, evolved, and 
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eventually reached its goal. This type of situational awareness is usually gener-
ated after the fact by security analysts, and it is an invaluable resource in guiding 
how systems should be upgraded or redesigned in order to prevent similar inci-
dents from occurring again in the future.   

   2.     Prioritization . With respect to this function, situational awareness is mostly an 
input to the prioritization function rather than the outcome of the process itself. 
In fact, the task of prioritizing resource allocation for prevention and remediation 
is informed by knowledge of the current situation, the attacker’s behavior, and 
possible evolution of the current situation. A risk analysis framework can be 
adopted to put all these elements together, and identify the most cost-effective 
set of preventive and/or corrective actions to take on the system.   

   3.     Metrics and Continuous diagnostics and mitigation . With respect to this 
function, situational awareness is generated by continuously monitoring the sys-
tem, the environment, and any deployed countermeasure, and assessing them 
against a set of common metrics that provide a shared language for executives, 
IT specialists, auditors, and security offi cials. On the other hand, situational 
awareness formed through this process can help defi ne effective prevention and 
mitigation strategies, which will then need to be prioritized as described before.   

   4.     Automation . The role of situational awareness with respect to automation is 
twofold. On one hand, automation is critical for enhancing situational aware-
ness, both in terms of quality and in terms of volume. On the other end, auto-
mated situational awareness tools require inputs that may consist of either 
background knowledge provided by human experts or situational awareness 
derived by other tools. In addressing the seven classes of questions above, we 
have illustrated several cases in which answering one specifi c set of questions 
relies on the capability of answering other sets of questions.     

 In conclusion, the situational awareness process in the context of cyber defense 
entails the generation and maintenance of a body of knowledge that informs and is 
augmented by all the main functions of the cyber defense process. Situational 
awareness is generated or used by different mechanisms and tools aimed at address-
ing seven classes of questions that security analysts may routinely ask while execut-
ing their work tasks.  

4      State of the Art 

 Although the ultimate goal of research in Cyber Situational Awareness is to design 
systems capable of gaining self-awareness—and leveraging such awareness to 
achieving self-protection and self-remediation capabilities—without involving any 
humans in the loop, this vision is still very distant from the current reality, and there 
does not exist yet a tangible roadmap to achieve this vision in a practical way. 

 For these reasons, in our analysis, we still view human analysts and decision 
makers as an indispensable  component  of the system gaining situational awareness. 
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Nonetheless, we show that humans in the loop can greatly benefi t from the adoption 
of automated tools capable of reducing the semantic gap between an analyst’s cog-
nitive processes and the huge volume of available fi ne-grained monitoring data. 

 Practical cyber situational awareness systems include not only hardware sensors 
(e.g., a network interface card) and “smart” computer programs (e.g., programs that 
can learn attack signatures), but also models of the mental processes of human beings 
making advanced decisions (Gardner  1987 ; Johnson-Laird  2006 ). Cyber situational 
awareness can be gained at multiple abstraction levels: raw data is typically collected 
at the lower levels, whereas more refi ned information is collected at the higher levels, 
as data is analyzed and converted into more abstract information. Data collected at the 
lowest levels can easily overwhelm the cognitive capacity of human decision makers, 
and situational awareness based solely on low level data is clearly insuffi cient. 

 Cyber situational awareness systems and physical situational awareness systems 
have fundamental differences. For instance, physical situational awareness systems 
rely on specifi c hardware sensors and signal processing techniques, but neither the 
physical sensors nor the specifi c signal processing techniques play an essential role 
in cyber situational awareness systems [although there is research that has looked at 
applying signal processing techniques to analyze network traffi c and trends (Partridge 
et al.  2002 ; Cousins et al.  2003 )]. Cyber situational awareness systems rely on cyber 
sensors such as intrusion detection systems (IDS), log fi les, anti-virus systems, mal-
ware detectors, and fi rewalls: they all produce events at a higher level of abstraction 
than raw network packets. Additionally, the speed at which the cyber situation 
evolves is usually orders of magnitude higher than in physical situation evolution. 

 Existing approaches to automate the process of gaining cyber situational aware-
ness mostly rely on vulnerability analysis (using attack graphs) (Jajodia et al.  2011 ; 
Albanese et al.  2011 ; Ammann et al.  2002 ; Phillips and Swiler  1998 ), intrusion 
detection and alert correlation (Wang et al.  2006 ), attack trend analysis, causality 
analysis and forensics (e.g., backtracking intrusions), taint and information fl ow 
analysis, damage assessment (using dependency graphs) (Albanese et al.  2011 ), and 
intrusion response. However, these approaches only work at the lower (abstraction) 
levels. Higher level situational awareness analyses are still done manually by human 
analysts, making the process labor-intensive, time-consuming, and error-prone. 

 Although researchers have recently started to address the cognitive needs of 
decision makers, there is still a huge gap between the mental models and cognitive 
processes of human analysts and the capabilities offered by existing cyber situa-
tional awareness tools. 

 First, existing approaches are not always able to properly handle uncertainty. 
Uncertainty in observed or perceived data could lead to distorted situational aware-
ness. For instance, most attack graph analysis toolkits are designed to do determin-
istic attack consequence estimation. When real time capabilities are critical, such 
consequence estimates could be extremely misleading due to various uncertainties. 
Similarly, alert correlation techniques cannot handle the inherent uncertainties asso-
ciated with inaccurate interpretations of reports from intrusion detection sensors. 
Such inaccurate interpretations can lead to either false positives or false negatives in 
determining whether an IDS alert corresponds to a real attack. 
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 Second, lack of data and incomplete knowledge may create additional uncertainty 
management issues. For instance, lack of data may lead to insuffi cient understanding 
of the system being defended. Such partial knowledge may be the consequence of 
different factors, including but not limited to: incomplete information about system 
confi gurations, which is possible when no confi guration management system is used;  
incomplete information about vulnerabilities (Albanese et al.  2013a ); incomplete 
sensor deployment, meaning that sensors deployed across the organization’s infra-
structure are not suffi cient to capture all security relevant events. Similarly, incom-
plete knowledge about the attacker’s behavior may lead to the inability of fully 
comprehending the current situation. In this scenario, it would then be critical to at 
least isolate what current models are incapable of explaining (Albanese et al.  2014 ). 

 Last, existing approaches also lack the reasoning and learning capabilities 
required to gain full situational awareness for cyber defense. The key capabilities 
that would enable viable cyber situational awareness—as defi ned by the seven 
classes of questions presented in Sect.  3 —have been treated as separate problems. 
However, effective cyber situational awareness requires that all these capabilities be 
integrated into a holistic approach to the three phases of situational awareness, 
namely perception, comprehension, and projection. Such a solution is in general 
still missing, but the framework discussed in Sect.  5  represents a fi rst important step 
in this direction. Furthermore, looking beyond cyber situational awareness and con-
sidering how cyber situational awareness solutions complement other cyber defense 
technologies, the conclusion is that cyber situational awareness activities need to be 
better integrated with effect-achieving or environment-infl uencing activities (e.g., 
intrusion response activities).  

5       A Framework for Situational Awareness 

 In this section, we present a framework—encompassing a number of techniques and 
automated tools—for enhancing situational awareness. This framework aims at 
addressing the limitations of the typical cyber situational awareness process—which 
tends to be mostly manual—and enhancing the analyst’s performance as well as his 
understanding of the cyber situation. Most of the work presented in this section is 
the result of research efforts conducted by the authors of this chapter as part of a 
funded multi-year multi-university research project. 

 The fi rst step in achieving any level of automation in the situational awareness 
process is to develop the capability of modeling cyber-attacks and their conse-
quences. This capability is critical to support many of the additional capabilities 
needed to address the key questions presented earlier in this chapter (e.g., modeling 
the attacker, predicting future scenarios). 

 Attack graphs have been widely used to model attack patterns, and to correlate 
alerts. However, existing approaches typically have two major limitations. First, 
attack graphs do not provide mechanisms for evaluating the likelihood of each 
attack pattern or its impact on the organization or mission. Second, scalability of 
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alert correlation has not been fully addressed, and may represent a major impediment 
to the development of real-time cyber situational awareness systems. In order to 
address these limitations, we present a framework to analyze massive amounts of 
raw security data in real time, comprehend the current situation, assess the impact 
of current intrusions, and predict future scenarios. 

 The proposed framework is illustrated in Fig.  1 . We start from analyzing the 
topology of the network, known vulnerabilities, possible zero-day vulnerabilities 
(these must be hypothesized), and their interdependencies. Vulnerabilities are often 
interdependent, making traditional point-wise vulnerability analysis ineffective. 
Our topological approach to vulnerability analysis allows to generate accurate 
attack graphs showing all the possible attack paths within the network. A node in an 
attack graph represents (depending on the level of abstraction) an exploitable vul-
nerability (or family of exploitable vulnerabilities) in either a subnet or an individ-
ual machine or an individual software application. An edge from a node  V  1  to a node 
 V  2  represents the fact that V  2  can be exploited after  V  1 , and it is labeled with the 
probability that an occurrence of the attack will exploit  V  2  within a given time period 
after  V  1  has been exploited. This approach extends the classical defi nition of attack 
graph by encoding probabilistic knowledge of the attacker’s behavior. Probabilities 
and temporal intervals labeling the edges can be estimated by studying the relative 
complexity of exploiting different vulnerabilities (Leversage and Byres  2008 ). 
Information required to perform this task may be derived from available  vulnerability 
databases, such NIST’s National Vulnerability Database (NVD) ( NIST ) and 
MITRE’s Common Vulnerabilities and Exposures (CVE) ( MITRE ).  

  Fig. 1    Cyber situational awareness framework       
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 In order to enable concurrent monitoring of multiple attack types, we merge 
multiple attack graphs in a compact data structure and defi ne an index structure on 
top of it to index large amounts of alerts and sensory data (events) in real-time 
(Albanese et al.  2011 ). The proposed index structure allows us to solve three impor-
tant problems:

•     The Evidence Problem.  Given a sequence of events, a probability threshold, 
and an attack graph, fi nd all minimal subsets of the sequence that validate the 
occurrence of the attack with a probability above the threshold.  

•    The Identifi cation Problem.  Given a sequence of events and a set of attack 
graphs, identify the most likely type of attack occurring in the sequence.  

•    The Prediction Problem.  Identify all possible outcomes of the current situation 
and their respective likelihood.    

 We also perform dependency analysis to discover dependencies among services 
and/or machines and derive dependency graphs encoding how these components 
depend on one other. Dependency analysis is critical to assess current damage caused 
by ongoing attacks (i.e., the value or utility of services disrupted by the attacks) and 
future damage (i.e., the value or utility of additional services that will be disrupted if 
no action is taken). In fact, in a complex enterprise, many services may rely on the 
availability of other services or resources. Therefore they may be indirectly affected 
by the compromise of the services or resources they rely upon (Fig.  2 )   .  

  Fig. 2    Example of attack graph       
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 For each possible outcome of the current situation, we can then compute an esti-
mate of future damage that ongoing attack might cause by introducing the notion of 
attack scenario graph, which combines dependency and attack graphs, thus bridging 
the gap between known vulnerabilities and the missions or services that could be 
ultimately affected by the exploitation of such vulnerabilities. An example of attack 
scenario graph is shown in Fig.  3 . In the fi gure, the graph on the left is an attack 
graph modeling all the vulnerabilities in the system and their relationships, whereas 
the graph on the right is a dependency graph capturing all the explicit and implicit 
dependencies between services and machines. The edges from nodes in the attack 
graph to nodes in the dependency graph indicate which services or machines are 
directly impacted by a successful vulnerability exploit, and are labeled with the cor-
responding exposure factor, that is the percentage loss the affected asset would 
experience upon successful execution of the exploit.  

 Finally, in Albanese et al. ( 2011 ) we have proposed effi cient algorithms for both 
detection and prediction, and have shown that they scale well for large graphs and 
large volumes of alerts. In order to achieve scalability, these algorithms rely on the 
index structure mentioned earlier. 

 In summary, the proposed framework provides security analysts with a high- level 
view of the cyber situation. From the simple example of Fig.  3 —which models a 
system including only a few machines and services—it is clear that manual analysis 
could be extremely time-consuming even for relatively small systems. Instead, the 
graph of Fig.  3  provides analysts with a visual and very clear understanding of the 
situation, thus enabling them to focus on higher-level tasks that require experience 
and intuition, and thus are more diffi cult to automate. Additionally, other classes of 
automated analytical processes may be developed within this framework to support 

  Fig. 3    Example of attack scenario graph       
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the analyst during these higher-level tasks as well. For instance, based on the model 
of Fig.  3 , we could automatically generate a ranked list of recommendations on the 
best course of actions analysts should take to minimize the impact of ongoing and 
future attacks [e.g., sets of network hardening actions (Albanese et al.  2012 )].  

6      Summary 

 Building on the material presented in previous chapters, we have explored in more 
detail the process of situational awareness in the context of cyber defense. As we 
discussed, this process can consists of three phases: situation perception, situation 
comprehension, and situation projection. Situational awareness is generated and 
used across these three phases, and we have examined the process of situational 
awareness with respect to several key questions security analysts are routinely try-
ing to answer, and with respect to each of the fi ve cyber defense functions identifi ed 
earlier in this chapter. Whenever applicable, we have discussed what type of situa-
tional awareness is formed within the domain of each of these functions, its tempo-
ral and spatial scope, its scale, and its temporal dynamics. 

 We have pointed out the major challenges we face when designing systems that 
can achieve self-awareness, and we have discussed the limitations of current tech-
nological solutions to this important problem. We have then proposed an integrated 
approach to cyber situational awareness, and presented a framework—comprising 
several mechanisms and automated tools—that can help bridge the gap between the 
available low-level data and the mental models and cognitive processes of security 
analysts. Although this framework represents a fi rst important step in the right 
direction, a lot of work remains to be done for systems to achieve self-awareness 
capabilities. Key areas that need to be further investigated include adversarial mod-
eling and reasoning under uncertainty, and promising approaches may include 
game-theoretic and control-theoretic solutions.     
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      Network-Wide Awareness 

             Nicholas     Evancich     ,     Zhuo     Lu     ,     Jason     Li     ,     Yi     Cheng     ,     Joshua     Tuttle     , and     Peng     Xie    

1            Introduction 

 In this chapter we continue the theme of awareness formation started in the 
preceding chapter. Here, however, we focus on a particular type of CSA that deals 
with the holistic, network-wide view of a network. We use the term “macro” CSA 
to refer to the overall dynamics of the network that is seen as a single organism and 
where individual elements or events are perceived in aggregate. This contrasts with 
CSA that focuses on individual atomic elements of the network’s assets or behav-
iors, such as an individual suspicious packet, an alert of a potential intrusion, or a 
vulnerable computer. On the other hand, atomic events can have a broad impact on 
the operation of the entire network. This means that the scope of CSA must accom-
modate both “micro and “macro” perspectives. The process of gaining network-
wide awareness includes discovery and enumeration of assets and of defense 
capabilities, along with threat and attack awareness. We argue that effective CSA 
must focus on improved decision-making, collaboration, and resource management, 
and discuss approaches to achieving effective network-wide SA. 
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1.1     Process of Developing Cyber Situational Awareness 

 The process for developing SA is as follows: (i) defi ne a goal, (ii) gather data, (iii) 
transform the data into information, and (iv) project a decision from the information.

    (i)    The user wants to get a defi ned goal from the SA process. The goal could be 
answering a question or gaining general knowledge of the network. In CSA, 
some examples of questions could be fi nding out what avenues or attacks the 
network is vulnerable to, or why a switch is dropping packets. The goal of SA 
is to answer the desired questions.   

   (ii)    The next step of gathering data is the act of collecting the available data, sensor 
outputs, and user experience. In CSA, this is taking network sensor data (the 
metrics for this data are described in Sect.  6.1 ) in order to prepare the data that 
was collected and applying the user experience and mission/functions to the 
data, which aids in moving the data from simple data points into information, 
once context has been overlaid. In an ideal case, the data over-describes the 
desired goal.   

   (iii)    The data is then translated into contextual information by applying knowledge 
to the data. The context applied to the data is the domain specifi c knowledge of 
the purpose and/or function of the network.   

   (iv)    Finally, the information is used to create a decision about the information, and 
how it relates to the desired goal.     

 These steps will be further elaborated in the SA theory (Sect.  1.4 ). 
 The three major groups needed for the collection of CSA are network administra-

tors, network defenders, and users. Their roles are described below:

•    A network administrator must instrument the network for data collection. When the 
raw data is collected without context, the throughput (for example) from one net-
work to another is not very comparable without the context or purpose of the net-
work. The context is the operational and historic knowledge about how the network 
should function, which is often network or mission or application specifi c. The 
network administrator is aware of the services and level of service required for their 
network, and must apply context to the data via mission and operational needs.  

•   Network defenders are needed in CSA, in order to determine what types of infor-
mation they require to defend the network. The defender’s role in CSA is as a 
consumer of the SA picture, which shows the available data and contextual infor-
mation about the network at a point in time. This SA picture may be used to 
determine what posture changes are needed. The posture change is how the net-
work administrator or defender alters the network to respond to the attack or 
service level change in the network. A posture change could be disabling a ser-
vice that is compromised (e.g., like FTP) or moving services to a full operational 
network element (e.g., in the event of a router that suddenly had a port go bad).  

•   Finally, users are the last essential element in developing CSA. They act as the 
source of much of the data, and of problems. Users act like “canaries in the mine-
shaft” and are often the fi rst to issue a warning about a problem with the network.     
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1.2     Inputs and Outputs for Cyber Situational Awareness 

 The inputs, outputs and stages of effort for developing CSA are shown in Fig.  1  
(Hoogendoorn et al.  2011 ).  

 The process of developing SA is moving from raw data to information that can 
guide a decision. The inputs to this process are (i) the raw data from the network 
sensors and user experience, (ii) the context applied to the operation or mission 
capabilities for the network, and (iii) the model of the network that the network 
administrator uses. The raw data is processed by observations (which are unsubstan-
tiated guesses about the network), which in turn yield insights about the data. In 
CSA, the output is the potential change in posture that network administrators 
should take to ensure network services continue, or the network changes that are 
needed in order to repair or mitigate an issue. 

 For example, if a web page is slow to load and the full take packet capture (which 
is a log of every packet on the network) shows that Domain Name System (DNS) is 
timing out, the observation could be that the Internet Service Provider’s (ISP) DNS 
is offl ine. These observations are converted into information by applying context. 
This process for developing a SA picture was defi ned by Hoogendoorn et al. ( 2011 ). 
The information becomes a belief, which in this example, is that the DNS is at the 
root of the problem and the network administrator believes that moving to a differ-
ent DNS server will correct the issue. The administrator makes the decision and 
follows that course of action. 

 These process inputs and outputs map to the theoretical models of SA discussed 
below.  

1.3     Theoretical Models of Situational Awareness 

 The most commonly used theoretical model of SA was developed by Endsley 
( 1995 ). This model looks at three stages of developing SA: perception, comprehen-
sion, and projection, which are described below.

•    Perception involves data gathering and determining the parameters of the envi-
ronment. The fi rst two steps of data gathering and the initial phase of understand-
ing the data are shown in Fig.  1 . Perception will be discussed in the guise of 
discovery and enumeration of the network and its elements later in Sect.  2 ).  

Gather Data
Process Data

with
Observations

Transform
Oberservations

into
Information

Use Information
to Form / Alter

Belief

Belief Guides
Decision

  Fig. 1    SA development       
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•   Comprehension involves aggregating the data and determining the impact of this 
data on the goals of the system. This will be discussed in terms of awareness for 
the CSA. This corresponds to the third and fourth steps in Fig.  1 .  

•   Projection involves predicting future actions based on current conditions of the 
system. When this level of SA is achieved, the SA moves to being effective SA 
(ESA). This is the last step in Fig.  1  and what makes SA into ESA.     

1.4      Gaps in Current Cyber Situational Awareness 

 Gaps in the current state of CSA include: (i) lack of theoretical modeling with a 
cyber context, (ii) overabundance of raw sensor data, and (iii) disparate fusion and 
visualization tools. In addition, the cyber domain also has some specifi c issues 
related to the context and data: the speed at which cyber data is collected and events 
occur, and the continued use of the network during these cyber events. 

 Though there are theoretical models for SA, applying them within a cyber con-
text is still necessary. There exists a gap between theoretical models for SA with 
respect to the cyber context, which is the amount of raw data that a network gener-
ates. Often SA research has studied SA in low data or limited data contexts like the 
SA of an airplane, which may have at most a few hundred sources of input and many 
fewer outputs. A network, on the other hand, will often generate many times what 
an airplane will and hence the data rate can overwhelm the SA models. 

 The raw data coming from various network sensors can easily outstrip the full 
take of the network traffi c, which is a log of every packet on the network. The raw 
data from the network sensors is often the full take of that sensor’s data plus some 
metadata. Storing both full take and all of the raw sensor data easily doubles the 
data storage requirements. This means more data sifting for the network analysts 
creating a “needle in a haystack” situation. The network administrator or defender 
has to sift through the full take of the packet capture returns from the network traffi c 
to correlate packets to events. This prevents cyber defenders and network adminis-
trators from having effective SA. 

 Finally, the fusion and visualization tools do not use a common set of inputs and 
outputs. Each tool is custom to the network and the mission or operation of that 
network. Standardization and common metrics are needed.   

2      Cyber Situational Awareness in a Network Context 

 The network context helps to defi ne the scope and issues that are specifi c to the 
network for which the SA picture is being developed. In the CSA case, network 
context is defi ned as the network and components (users, applications, sensors, etc.) 
that comprise the network. The issues discussed below are not exhaustive, but cover 
the major challenges associated with obtaining CSA.
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    1.     Diffi culty in enumeration of a changing network or environment : Very few 
networks are truly static. The elements of the network change (e.g. hosts get 
powered off) and the condition of the network changes (e.g., the load on a specifi c 
server will change over time), which makes enumeration of the network a diffi -
cult ongoing task. The network needs to be enumerated in order to develop the 
SA picture. The best SA pictures have the most complete view of the network, 
including attribution of the assets on the network. The purpose and the value of 
the asset must be determined in order to evaluate the impact of a state change 
of that asset.   

   2.     Wire speed attackers vs. human speed defenders : Another issue is the capa-
bility gap between attackers and defenders. Computer network attacks (CNAs) 
generally happen at wire speed, which is defi ned as reaction at the speed of the 
network as opposed to human reaction times. Wire speed is often several orders 
of magnitude faster than a human reaction speed. If the attack is new or at least 
unknown to the defender, the defender does not have wire speed tools, and has 
only human speed tools to detect and analyze the attack. Network defenders 
need to realize the scope and intent of the attack, and CSA aids their ability to 
gain such understanding.   

   3.     Heterogeneous SA toolset and non-unifi ed or aggregated views : CSA is 
sensed by various tools such as intrusion detection system (IDS) and metric cap-
tures. Currently, the data is fused outside of these tools and a common SA picture 
is generated. This, especially with a non-static network, leads to gaps in the 
SA picture.     

 In this context, cyber threats or attacks, which include syntactic, semantic, and 
service attacks, will generally be used interchangeably, unless the type of attack has 
a specifi c effect on CSA.  

3     Situational Awareness Solutions for Network Operations 
and Cyber Security 

 Network operations are “always-on” and need to move at wire speed in a wide range 
of environments: tactical, operational, and strategic. These environments change the 
scope of network operations. In a connected and networked world, the network is a 
service that is expected to be “always-on” and a constantly updating SA picture 
needs to be created. In order to accomplish this, SA solutions need to:

    1.     Scale across the network operations scope and be usable at a “macro” or 
“micro” level view of the network.  The “macro” scale is the view of the entire 
network. The “micro” is a view into a single network element or event.   

   2.     Present views across different time scales.  Current network issues might have 
had a root cause that happened hours or days ago. The ability to view these 
 different points in time and at different scale levels is important to a complete SA 
picture.   
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   3.     Offer an impact assessment to defense options.  A SA picture of the network 
has limited value because most current SA views simply present the current status 
of the network. Its real value lies in aiding the analyst in making better decisions 
about the course of action. ECSA provides a type of impact assessment to the 
analyst, or helps in conjunction with the analyst’s knowledge base. The impact 
assessment details how the operation or mission’s effectiveness will be degraded 
by changing the posture of the network or by deploying different defense options. 
This will offer predictive scenarios that show network or mission performance vs. 
resistance to the attack, and give the ability to triage the network. Often the prob-
lem cannot be fi xed quickly but things can be “patched” in order to have the net-
work operate until the problem can be fully dealt with. Defense measures or 
postures can be enacted if the network defenders recognize the attack quickly.      

4      Situational Awareness Lifecycle 

 The lifecycle of Cyber Analysts’ SA consists of placing the network context into 
awareness. This lifecycle contains three steps: network, threat or attack, and opera-
tional or mission awareness. Awareness in this context is a cognizance of the aspect. 
It contains both current and historical status and capability. 

4.1     Network Awareness 

 This consists of a current picture of the condition and status of the elements that 
comprise the network. The elements are everything required for the network to 
function, such as servers, appliances, power, and cabling. The network needs a 
proper confi guration. Assets often depend on each other and some may have redun-
dancies. The network awareness also includes a recovery time, which includes any-
thing from a reboot to a patch to a hardware failure. The process of gaining network 
awareness is listed below.

    1.     Discovery/enumeration of assets : The fi rst step in gaining network awareness 
is discovering the assets. This is diffi cult to do especially in a very large and 
complex network. Elements of the network are constantly in fl ux (patch level, 
state, etc.), as is the purpose and value of the asset. Running the discovery tools 
adds an uncertainty to the measurement. By simply measuring the network, the 
measure degrades the service level of the network and hence alters the data from 
the ground truth.   

   2.     Defense capabilities : Additionally, the defense options for the network need to 
be determined. The defense capabilities become a set of options for the defend-
ers to use. They can determine what assets can and cannot be taken offl ine, 
brought online, or repurposed. This provides the answers the defenders will have 
to respond to the attack with. The defenders often have the ability to reroute. 
If they have a good SA picture, they know the network better than the attackers 
and can turn off or reroute services that are under attack.      
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4.2     Threat/Attack Awareness 

 This consists of a current picture of possible attacks and vectors against the network 
in question. Often this is best accomplished by asking a series of questions.

    1.    Current attacks: What are the newest set of attacks and how is the network 
 vulnerable to them? Based on the attack traffi c and non-traffi c attacks (social 
engineering, for example) what attacks is the network currently experiencing?   

   2.    Historic attacks: Based on network history, what are the likely attacks to be lev-
eled against this network? Are there attacks that occur at a specifi c time? Has the 
owner of the network taken any actions that might result in a series of attacks 
(press-release or insider threat)?   

   3.    Network operation fl aws/holes: What are the current fl aws of this network? 
Based on the various exploit repositories like common vulnerabilities and expo-
sures (CVEs), and the network assets, are they any attacks that would be effec-
tive against this network? Will there be a confi guration change to the network 
that might expose fl aws?     

 These questions can be answered by combining the knowledge about the net-
work topology and confi guration, and the knowledge about vulnerabilities and how 
attacks may happen in a network setting. In particular, graphical models (Amman 
et al.  2002 ; Jajodia et al.  2003 ; Sheyner et al.  2002 ) have turned out to be effective 
in representing potential attack paths in an enterprise network. Given a comprehen-
sive graphical model that captures how exploits may penetrate and propagate in an 
enterprise network, one can answer the above questions that are related to the cur-
rent security posture and exploits of interest via running static analysis algorithms 
on top of the model. 

 In addition, such graphical models can also enable  dynamic analysis  because (i) 
current reported alerts can also be incorporated and visualized; (ii) previous events 
(that might have been omitted by IDS) can be recovered via back-tracking on the 
graph; and (iii) future potential attacks can be predicted via simulating further prop-
agation on the graph (Xie et al.  2010 ).  

4.3     Operation/Mission Awareness 

   Operation/Mission Awareness      This consists of a picture of how decreased or 
degraded network operations will affect the mission of the network. Very few net-
works are built without purpose. Therefore, the network has a “job” or a function, 
which could be mobile device connectivity or a lab-bench test network or control of 
critical infrastructure. This is defi ned as the network’s mission. The operational 
status of the network directly affects the mission readiness, which can be discovered 
by measuring the value and purpose of the assets.  
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   Overlay of Services vs. Defense Options      The network provides services (e.g. 
email, authentication etc.). Changing the network posture or engaging defenses may 
affect these services. Defense often comes at the cost of service availability. Knowing 
this provides mission/operational awareness. Two examples are given below:  

     1.    Suspending port 53 (this is the standard port defi ned by the DNS standard, RFC- 
1035) external calls and switching over (for the duration of the attack) to a 
cached DNS proxy is an example that highlights network agility. CSA will 
inform the administrator about the potential impacts of making this change. The 
network becomes agile by being able to move critical services from an offl ine (or 
overloaded) host to a host that provides the required critical functionality;   

   2.    Service suspension while crypto keys are being changed is an example that high-
lights network resiliency. CSA will inform the administrator about the potential 
impacts of making this change. A resilient network can remain online and pro-
vide the critical services during confi guration changes to the network.     

 SA is essential to network security and mission assurance. According to Force 
( 2010 ), mission assurance in cyberspace needs “measures required to accomplish 
essential objectives of missions in a contested environment”, and “entails prioritiz-
ing mission essential functions, mapping mission dependence on cyberspace, iden-
tifying vulnerabilities, and mitigating risk of known vulnerabilities This clearly 
highlights the need for connecting mission dependencies to cyberspace, identifying 
mission-critical assets, analyzing network vulnerabilities and risks, and mitigating 
cyber impacts on missions to ensure mission success. Essentially, to answer 
 questions like “who, what, when, where, and how of a cyber-attack and potentially 
predict and defeat it effectively to reduce the impact, security analysts need to 
have a robust understanding of their network along with the corresponding cyber 
activities. Therefore, CSA is critical and extremely important to network security 
and mission assurance. 

 Today, most organizations depend heavily on computer networks to execute their 
daily work and critical operations. Cyberspace also provides adversaries with afford-
able attack vectors against critical cyber assets and information infrastructure, as 
well as the business-critical operations carried out in the network. To achieve mission 
assurance in cyberspace, mission essential functions (MEFs) need to be mapped onto 
the underlying cyber network, so that critical assets can be identifi ed. In addition, to 
remediate an asset compromise, analysts need to clearly understand the dependency 
relationships between the compromised asset and the affected operations.   

5     The Need for Effective Cyber Situational Awareness 

 The current state of the art for CSA in a context of network operations is a collection 
of dispersed tools, which lack an integrated view. This results in a capability that does 
not meet current or future needs. The community needs to move to Effective CSA 
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(ECSA), which is CSA that improves decision-making, collaboration, and resource 
management. ECSA differs from CSA by providing the defenders intelligence on the 
network beyond a simple SA picture. The key concepts in ECSA are:

    1.     Giving a predicted SA picture based on possible actions : ECSA will give the 
defenders the ability to see the likely outcome for various “what if?” scenarios. 
This will allow defenders to optimize the defense choice. The optimization will 
be a choice between network service availability and network posture level of 
protection. This requires a great deal of awareness both current and historic or 
more simply ECSA.   

   2.     Integrating sensor data to a unifi ed and current view : In general, network 
sensors measure the conditions of the network. The sensor data can be almost 
anything from a “green-light” informing that power is on, to logs and alerts. This 
sensor data must be fused into a common operational picture. Seeing how one 
sensor is reporting in the context of other sensors is the key here.      

6     Overview of Effective Cyber Situational Awareness 

 CSA is diffi cult due to the dynamic nature of networks. Nodes or elements of the 
network change very quickly and the level of service to any specifi c node varies 
across time and network load. This makes discovery and enumeration more diffi cult 
and requires refreshing the network scan. The changing elements in the network 
are: network assets and the network itself are in fl ux, attacks are happening at wire 
speed, and the sensor data is stove-piped. Additionally, the threats brought against 
the network are changing. 

 ECSA is greater than monitoring, reporting, and visualization. Moving from 
CSA to ECSA requires that the picture provided to the analyst helps the analyst to 
have better intelligence about the status of the network. Figure  2  details the four 
elements that comprise ECSA which are expanded in Sect.  7 .  

 ECSA should help the analyst to make decisions about actions by providing a 
picture that broadens the view that the analyst has. This gives them a better world-
view, which may highlight actions that are not apparent without the ECSA picture. 

  Fig. 2    Effective cyber 
situational awareness       
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It also should do more than simply present data. It should provide the ability to run 
various scenarios and see the mission/operational impact, so that the analyst can 
assess the impact. These scenarios will also show what services will be impacted by 
what defense posture and the change in the service level of the network. 

  Macro  vs.  micro  SA represent the different granularities of the picture.  Macro  is 
the holistic view of the network. It is the entire network, which shows the attacks, 
the network elements, and defense options.  Micro  focuses on events or hosts, which 
are the components that the  macro  view is built from. ECSA has the ability to drill 
down to a micro level and provide insight on a specifi c event or host. This gives the 
analysts the ability to see the status of any specifi c element in the network. It also 
has the ability to take a “bird’s eye” view of the network and see the sum total of 
hosts and elements on the network and the events. 

 The purpose of SA is not to simply visualize the network, but rather to provide 
the analysts and defenders with a tool that improves their ability to defend the net-
work. Thus, the primary purpose of SA is to improve the quality and timeliness of 
collaborative decision-making regarding the employment, protection, and defense 
of the network. The goal of CSA is to enable better decision-making; it is an enabling 
technology. ECSA does not exist just to prove a visualization of the status of the 
network, but to provide actionable intelligence about the network. 

6.1      Instrument the Network to Obtain Data for Effective Cyber 
Situational Awareness 

 The data elements that enable ECSA are described here.  Tomography  measures the 
internals of the network by using information taken from end-to-end link data. The 
main goal is to limit the uncertainty derived from measuring the network from an 
external point-of-view.  Route Analytics  is a concept from network monitoring that 
is used to analyze the routing protocols in a network. It often operates at layer 3 (in 
the Open Systems Interconnection model), listening to the routing protocols. It uses 
the “best effort” of IP networks and looks at the control panel to obtain detailed 
route information.  Protocol Monitoring  looks at the standard protocols (HTTP, FTP, 
POP3, TCP, SSL, etc.) and checks them for speed and correctness. This is used to 
determine the quality of service for the network. Service metrics are directly mea-
surable characteristics of specifi c features of a service. They are used to measure the 
overall health of the service. The most common ones measured are:

    (i)    Host metrics: CPU utilization, Memory consumed, etc.   
   (ii)    Response time   
   (iii)    Availability   
   (iv)    Uptime   
   (v)    Consistency   
   (vi)    Reliability    
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  IDS is an appliance or application that monitors network or system activities. It 
scans the activities for malicious events or policy infractions. There are two general 
classes of IDS: Network IDS (NIDS) and Host IDS (HIDS). NIDS monitors net-
work traffi c holistically, and checks the traffi c for malicious patterns from alerts/
logs. Some NIDS systems have the ability to engage in automated defenses. HIDS 
runs on hosts on the network, monitors inbounds and outbound packets for hosts, 
looks for suspicious activity, and sends alerts to a monitoring server. NIDS often has 
the ability to monitor a host for changes to the fi les system or running processes.  

6.2     Projecting the Current Situational Awareness 
into the Future 

 ECSA should give the analyst a view into possible futures based on the actions they 
might take now. This gives the analyst the ability to quickly see how actions taken 
now will affect the operational capability of the network and how the threats are 
likely to respond. Changing postures is often the goal of an attacker and having the 
ability to see how the threats will act on different postures is a key element of ECSA.  

6.3     Potential Approaches to Achieve Effective Cyber 
Situational Awareness 

6.3.1     How to Display the Data 

 ECSA’s data will come from dispersed tools, and needs to be integrated into a holis-
tic view. Disparate visualization that comes from stove-piped tools does not add to 
ECSA. The various data needs to be fused. Data fusion will happen with like-to-like 
or similar sensors (this enables different sensors to monitor the same phenomena) 
and synthesizing data from the measured or observed data, which give the network 
administrator the ability to create second order data products that are often specifi c 
to the network. Additionally, the data shall be displayed in a format that gives a 
common operating picture. This picture aids the network analyst in making informed 
choices about the operation of the network. CSA has a unique challenge in data col-
lection since similar sensors might be different but measuring the same type of data, 
which can yield a different measurement of the same phenomena. One example of 
this is measuring  goodput  and  throughput , which are both measures of the service 
level of the network, but show different scales (“macro” or “micro”) and utility. 
This kind of information from sensors data will be fused and compared. Another 
source of information is synthesized (and artifi cial) data, which is data that was not 
measured, but is a product of a well-instrumented network. An example would be a 
green light telling the users that all services are active and usable.  
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6.3.2     How to Keep the SA Updated 

 The network and the conditions of the network are dynamic, strategies should be 
employed to ensure that the ECSA has a current and valid picture. The network 
should be scanned as often as possible without decreasing service. Tools like Nmap 
(Network Mapper) and ZMap (Zmap—The Internet Scanner), which are described 
in Sect.  7.2.1 , provide effective network scans. The result of the scan needs to be 
evaluated for legitimate and illegitimate assets on the network.  

6.3.3     Inferences and Anti-Inferences 

 These are two terms used to discuss the context of the cyber event. Both are needed 
in ECSA as parts of the impact assessment. Changing the defense posture of the 
network might be a goal of the attacker. Knowing the context or intention of the 
attack can greatly alter defense response. 

 Inferences are estimations of the capabilities of an attacker, along with the 
attacker’s intentions. Attackers can have various levels of suffi ciation: State 
Sponsored, Criminal Organization, Hacker Collective, Lone Hacker, and Individual 
with scripted tools. Figure  3  shows the overlap and resulting abilities of capabilities 
and intentions.  

 Also, the intentions can vary from exploration to targeted exfi ltration. The inten-
tion of the attacker and their capabilities will alter the impact assessment. The inten-
tion of the attack is the reason the attack was launched. Intention is mostly a 
post-event action; it is often diffi cult to determine what the intent of the attack is 
while it is in progress. It is usually forensic in nature and the defender cleans up the 
damage and sees what was accessed. Of course, denial of service attacks or service 
interruption attacks are different and the intention is usually apparent. 

Capability: Highly
Skilled

Intension:
Malicious

Capability: Unskilled

Intension:
Exploration

  Fig. 3    Inference and 
anti-inference       
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 Anti-inferences are the tools the defender has to attempt to determine the inten-
tions and capabilities of the attacker. This is not a honey pot that is used to trap 
traffi c. It is a shadow pot that is used to consume traffi c, and not give the attacker 
any additional knowledge. The traffi c enters the shadow pot and the attacker does 
not receive a return. The defender on the other hand sees the techniques that the 
attacker is using and has the ability to analyze the various attacks.    

7      Towards Achieving Effective Cyber Situational Awareness 

 CSA can be executed by gaining awareness of network, threats, and the mission or 
operation. Having a current and valid representation of these three items will yield 
situation recognition. Situation recognition (SR) gives the SA at a specifi c point in 
time. The condition of the network, the threats currently being deployed, and fi nally 
the current needs of the mission/operation are the elements needed for SA. Collecting 
enough SR points will yield ECSA (Fig.  4 ).  

 The methodology is to gain a deeper SR. The goal is to know as much as possible 
about the network, which includes the action, reason, intent, and value of the event. 
If a disk access happened, was that due to a legitimate query? Was it to access data 
that the process should have access to? Does that process’s access carry more value 
than another? 

7.1     Use Case: ECSA 

 In this section, an operational use case will be outlined using the previously dis-
cussed tools and objectives. The fi rst step will be to gather the awareness required 
and perform the threat analysis. Then, an ECSA picture will be created. Finally, the 
scenarios will be run through to show the various possible outcomes. 

 This ECSA will give the analyst the various defense options and the associated 
impact assessment based on a change in network posture. The impact of the posture 
change on the operation/mission capabilities will be highlighted. Leads given to the 

  Fig. 4    Towards effective cyber situational awareness       
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analyst/defender will help them make better choices, or optimize the defense based 
on mission criteria. 

 This can be achieved by examining the lifecycle of CSA. The lifecycle of CSA con-
sists of network awareness (discovery and valuation of assets), threat awareness, and 
network status prediction. Figure  4  shows the generic process fl ow of this lifecycle. 

 Discovery is the event where SA is informed about the current elements in the 
network and their associated status. This act is called enumeration. After enumera-
tion, the current overall status of the network is discovered. This includes things like 
current attacks and service level. In order to move from SA to ECSA, the analyst 
needs context. Status context can be achieved by adding historic data to the SA 
picture. If the network was attacked 2 months ago by attack A, then B, then C, and 
it is currently being attacked by attack B after attack A has been observed, ECSA 
will highlight the fact that attack C is likely. 

 Threat enumeration is the act of applying possible attacks vs. likely attack vs. 
effi cient attacks against the network. These attacks can originate from inside of the 
network (by disgruntled employee, attacker who has gained physical access, etc.), 
which is a reason to place more emphasis on ECSA. Most networks have defenses 
in place to mitigate the majority of the external network threats and attacks which 
are more common. ECSA is needed for the times that these external attacks cause 
degradation in network service level or operational readiness. 

 The fi nal piece of the puzzle is prediction. SA will have the status of the network 
at the current time. ECSA will give the status of the network in the near and distant 
futures, which are plotted using likely attacks and likely responses. These views of 
the current and near future states of the network enable the analysts and defenders 
to plan posture changes. The far future or post posture change scenario prognosti-
cates the status of the network given these changes, which will fi nally present the 
analyst and defender with the best available views to make network changes too. 

 Additionally, the network defenders have the inferences and anti-inferences 
tools. While the attack is underway, the defenders can start making inferences of the 
capabilities and intentions of the attacks. This is used as an input to the impact 
assessment of the various postures and to predict how the attacker will react to the 
change in the network’s defense. The network can have shadow pots placed in 
attack pressure points to determine how the attacker reacts to them. This is an imbal-
anced trade-off for the attacker because they have to expend resources to understand 
the shadow pot and do not receive any useful data in return. The defenders on the 
other hand will see the sophistication of the attacks by expending very little effort.  

7.2     Towards Achieving Network Awareness 

 Network mapping is the study of the physical connectivity of networks. As today’s 
networks become more complex, network mapping is of essential importance to 
discover network connectivity and enhance network situational awareness. In this 
section, we will introduce and summarize state-of-the-art network mapping tech-
nologies and tools. 
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7.2.1      Review of Current Network Mapping Tool 

   General-Purpose Network Mapping Tool, Nmap 

 Nmap (Network Mapper) is a free general-purpose network mapping tool that has 
been widely used in the network community. Nmap supports a variety of scanning 
techniques and has been used for recent Internet-wide survey research. Nmap is 
designed with the following functionalities: (i) Host discovery: Identifying hosts on 
a network, e.g., listing (the IP address of) hosts that respond to   TCP    /UDP requests 
or have a particular port open. (ii)   Port scanning    : Enumerating the open   ports     on 
target hosts, such as port 80 (HTTP) and ports 20/21 (FTP). (iii) Version detection: 
Interrogating network services on remote devices to determine application name 
and version number. (iv)   Operating system detection    : Determining the   operating 
system     and hardware characteristics of network devices. In addition, Nmap can 
provide additional information on a targeted machine, such as device types and 
  MAC-layer addresses    . 

 To reliably detect a host, Nmap maintains a state for the connection to the host, and 
retransmits a probe packet if the previous one times out. Nmap also adapts its probe 
packets transmission rate to avoid saturating the upstream or target networks. Such a 
mechanism in Nmap ensures that it can reliably discover a host, but on the other hand 
it substantially reduces the scanning speed. It has been shown that Nmap usually 
spends tens of days to fi nish scanning all the IPv4 address space in the Internet. 

 The main focus of Nmap is on probing network hosts. Therefore, it does not 
provide full-fl edged network management functions, such as network topology dis-
covery, network leakage detection, and device profi ling. 

 Nmap initially comes only with console commands. Zenmap is the offi cial Nmap 
GUI developed for multiple platforms such as Linux, Microsoft Windows, Mac OS 
and Solaris.  

   Fast Internet Scanning Tool, ZMap 

 ZMap (Zmap—The Internet Scanner) is a recent open source network scanner 
developed by the University of Michigan. Compared with Nmap, ZMap features a 
much faster IPv4 scanning speed, and is capable of performing a complete scan of 
the IPv4 address space for a particular port number in under 45 min, approaching 
the theoretical limit of gigabit Ethernet. 

 ZMap is designed for fast IPv4 scanning over Linux or Berkeley Software 
Distribution (BSD). ZMap is stateless compared with Nmap which maintains the 
state for each connection. ZMap does not initiate a real TCP connection nor does it 
maintain a state for each probe packet. It simply crafts a TCP connection packet and 
sends it out immediately to the Ethernet, bypassing the network stack processing in 
the operating system. 

 Because of the stateless probing feature, the estimated time for ZMap to execute 
an Internet-wide scan with two probe packets for each host is 2 h 12 min (Durumeric 
et al.  2013 ). Thus, it is an extremely fast tool for network scanning. 
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 It is worth noting that there are two assumptions behind the effi cient use of 
ZMap: (i) No bandwidth limit on upstream networks: ZMap sends probe packets as 
fast as possible. Thus, it assumes that an upstream network provider can offer or 
match the network speed that ZMap is sending at. If the network provider imposes 
a bandwidth limit, ZMap has no way to know whether a large number of probe 
packets are being dropped by the network provider due to traffi c or congestion con-
trol. ZMap does provide a rate control interface, through which a user can specify 
the scanning rate, at the level of Gbps, Mbps, or Kbps. It is assumed that the user 
must choose a rate that matches the upstream network provider’s speed control. (ii) 
Linux admin privilege: ZMap is currently designed for Linux. Most popular Linux 
distributions require admin privilege to use raw sockets. Therefore, a user has to be 
elevated (at least temporarily) to admin to run ZMap in Linux. 

 The only goal of ZMap is to ensure the fastest scanning in the IPv4 address space 
in the Internet. It only supports TCP/IPv4 and does not support IPv6, or any net-
work topology discovery or management functions. It cannot fi nd any other infor-
mation (e.g. fi ngerprinting) of a host, such as operating system and MAC address.  

   Commercial Products for Network Mapping 

 Nmap and ZMap are free network mapping and scanning tools ready for immediate 
download and use. There are several commercial products with more network man-
agement features, including:

•    IPsonar: A product suite that is based on technology that fi rst mapped the Internet. 
IPsonar is meant for large enterprise networks of greater than 5,000 nodes. The 
patented technology discovers and maps every IP connected device on the network, 
giving a clear view of risks and policy violations arising from network change.  

•   SolarWinds: SolarWinds provides a product called Network Topology Mapper 
(NTM) which automatically discovers every device on the network, including 
routers, switches, servers, wireless AP’s, VoIP phones, desktops, and printers.  

•   WhatsUpGold: A network management suite with similar capabilities as 
SolarWinds, WhatsUpGold works at a layer 2 and 3 level and supports discovery 
of IPv6 devices. It can discover all devices on the network including port-to-port 
connectivity.  

•   OpManager: A comprehensive network monitoring software that provides an 
integrated console for managing routers, fi rewalls, servers, switches, and print-
ers. Its network scanning is based on either ICMP pings or Nmap.    

 These commercial products for network mapping offer comprehensive GUIs with 
an extensive set of network management capabilities for network administers to dis-
cover and handle network events. We compare the features of these products in 
Table  1  in terms of (i) IPv6 support, (ii) reliance on dedicated hardware (for scan-
ning), (iii) virtual device detection, (iv) geo location mapping (that correlates an IP 
to a geographical location), (v) network topology discovery (that detects the topology 
of the network where the scanner is), and (vi) reliance on the software (which means 
that it uses other software to fi nish the network scanning function).
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   From Table  1  we can see that all commercial products support virtual device 
detection, geo location mapping and network topology discovery. However, IPsonar 
currently provides less information on IPv6 enabled nodes compared with IPv4 
enabled nodes. SolarWinds only runs under Microsoft Windows with dedicated hard-
ware, and its scanning speed is slow. WhatsUpGold supports a variety of functions, 
but has limited mapping outputs. OpManager’s scanning function relies on Nmap. 

 Network mapping tools are an essential part of network SA toolsets. From such 
tools, analysts can obtain valuable and updated information about their network 
assets and connectivity. However, current mapping tools lack in one critical aspect 
of mapping IPv6 topology and assessing security breaches via comparing IPv6 and 
IPv4 topologies against pre-defi ned security policies (which in most cases are deter-
mined upon IPv4 confi gurations).   

7.2.2     From Network Mapping to Network Awareness 

 IPv6 is the next generation protocol designed to replace current IPv4 protocol. 
However, IPv4 is so successful and widely deployed today that it will take a very 
long time for IPv6 to replace IPv4 completely. Many IPv6 transition mechanisms 
are proposed to facilitate the transition to IPv6 protocol. IPv6 transition mecha-
nisms typically adopt dual-stack nodes and various tunneling techniques to enable 
IPv6 networks to coexist with IPv4 networks. The dual-stack nodes are nodes that 
support both IPv4 and IPv6 protocols. Tunneling techniques encapsulate IPv6 pack-
ets in IPv4 packets for delivery across IPv4 network infrastructure. However, due to 
the different security assumptions between IPv6 and IPv4 protocols, IPv6 transition 
mechanisms may generate security problems if confi gured inappropriately. 

 IPv6 transition mechanisms may hurt or even nullify the security mechanisms 
adopted in IPv4 networks. Many security tools were designed for IPv4 networks, and 
the deployment of dual-stack nodes and tunnels in networks may invalidate the 
assumptions adopted in these security tools. For example, many IDS systems are 
deployed in some critical locations in networks to detect port scan attacks against 
network hosts. If the victim host is a dual-stack node, TCP port scanning packets, such 
as TCP SYNs, can be sent as IPv6 packets, which are then encapsulated as UDP pack-
ets. The UDP packets can pass the IDS for port scan without triggering any alarm. 
Additionally, the traffi c generated by dual-stack nodes and tunnels can penetrate fi re-
walls deployed in networks. Most fi rewalls, NAT (network address translation) 

    Table 1    Comparisons of commercial network mapping tools   

 Detecting 
IPv6 devices 

 Reliance on 
dedicated 
hardware 

 Virtual 
device 
detection 

 Geo 
location 
mapping 

 Network 
topology 
discovery 

 Reliance 
on other 
software 

 IPSonar  Yes  No  Yes  Yes  Yes  No 
 SolarWinds  Yes  Yes  Yes  Yes  Yes  No 
 WhatsUpGold  Yes  No  Yes  Yes  Yes  No 
 OPManager  Yes  No  Yes  Yes  Yes  Yes 
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devices or fi lters do not block UDP traffi c initialized by inside hosts. Some IPv6 
transition mechanisms, such as the Teredo protocol, encapsulate IPv6 packets in IPv4 
UDP packets, which can easily pass these security checks. 

 Moreover, IPv6 transition mechanisms may also be exploited to evade the secu-
rity checks in IPv4 networks. For example, the IPv6 routing header, in conjunction 
with tunneling techniques can be used to evade the IPv4 security checkpoints 
deployed in networks. The attacker can encapsulate an IPv6 packet within an IPv4 
UDP packet and send it to a tunnel-enabled node. UDP traffi c can pass most fi re-
walls or NAT devices. Once the tunnel-enabled node receives the packet, it will 
extract the IPv6 packet and process the IPv6 packet in its IPv6 stack. If the IPv6 
packet contains the routing header, then it will be forwarded to the nodes that it is 
not allowed to visit otherwise. 

 IPv6 transition mechanisms are ubiquitous and almost inevitable. Many software 
products already support IPv6 transition mechanisms. If there exists an IPv6 subnet 
within the organization network, IPv6 transition mechanisms are necessary for 
these IPv6 subnets to access network services provided by IPv4 networks. Simply 
shutting down IPv6 transition mechanisms in today’s network is not an option. In 
addition, IPv6 transition mechanisms are easy to confi gure. Users can confi gure 
their computers with some IPv6 transition mechanisms on their own. For example, 
the tunneling mechanism can be enabled automatically by software installed in the 
computer or by a mistaken confi guration. However, the users may have no authori-
zation or suffi cient security knowledge to take the security measures necessary to 
secure the confi gured tunneling interface. It is impractical for the network adminis-
trator to guarantee that every node in networks is well confi gured. 

 It is very diffi cult to evaluate potential security consequences caused by IPv6 
transition mechanisms in networks, due to the following reasons:

    1.    IPv6 transition mechanisms create a complex network topology. The deploy-
ment of IPv6 transition mechanisms in a network generates two topologies: IPv4 
topology and IPv6 topology. The tunnel between two dual-stack nodes essen-
tially adds a link between these two nodes in the perspective of IPv6, but does 
not affect the IPv4 topology at all.   

   2.    The IPv4 topology and IPv6 topology of networks are dynamic. The topology 
dynamics of networks are caused by many factors. The deployment of dual-stack 
nodes changes the network topology. The newly deployed dual-stack nodes can 
potentially communicate with all other dual-stack nodes, and generate more tun-
nels in the networks, thus changing the IPv6 topology. Software updates may 
also change the network topology—when a user updates the software to a newer 
version, the user may inadvertently transform an IPv4-only node into a dual- 
stack node, thus changing the IPv6 topology.   

   3.    The consequences caused by IPv6 transition mechanisms in networks are not 
determined only by network topology, but also by the applications running on net-
works, and/or missions supported by these applications. For example, a web server 
is usually deployed in a Demilitarized Zone (DMZ) for public access. Generally 
speaking, it is harmless for the web server to be confi gured as a dual- stack node. 
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However, if some application running on the web server is allowed to access a 
 critical database deployed behind a fi rewall via UDP traffi c, then the confi gura-
tion of such a web server as a dual-stack node can be potentially exploited to set 
up a tunnel across the DMZ. Validation of IPv6 transition mechanisms and asso-
ciated risk analysis must be conducted in the context of the network level, appli-
cation level and mission level.     

 It is infeasible to assume that the network administrators have enough time, 
energy and knowledge to handle all these problems. The following approaches can 
assist in developing capabilities to address these challenging problems:

•    Obtain a thorough understanding of the state-of-the-art tools that can be lever-
aged to obtain accurate and effi cient measurement of network topologies, for 
both IPv4 and IPv6 networks.  

•   Select and leverage appropriate probing techniques, as much as possible, to 
detect the connectivity among nodes in various network confi gurations. Examples 
of probes include ICMP-based probe packets, TCP-based and UDP-based probe 
packets. This is important since networking devices and hosts may respond dif-
ferently (or even not respond) to the same probing packets, and combining dif-
ferent probes increases the hit rate.  

•   Resolve IP address aliases. A networking device (e.g., a router) in networks may 
possess multiple IP addresses, called aliases. It is necessary to map the aliases to 
the physical node in order to generate the correct topology.  

•   “Fingerprint” the enumerated nodes via leveraging Nmap to obtain system con-
fi guration information such as operating system, version number, available ser-
vices, etc.  

•   Develop specifi c techniques to detect the existence of automatically or manually 
confi gured tunnels for IPv6 transition mechanisms. For example, intercepting 
traffi c can assist in capturing Teredo packets, generated by the Teredo protocol 
and detecting automatic tunneling. To detect manually confi gured tunnels, (spe-
cifi cally crafted) probe packets can be sent into the patch between two IPv6 
subnets to check if there exists a confi gured tunnel.  

•   Establish a test bed of scale (that is representative of the network in question) to 
verify that the system can effectively generate network topologies, detect dual- 
stack nodes and various tunnels.      

7.3     Towards Achieving Threat/Attack Awareness 

7.3.1     Capturing Threats and Attacks with Graphical Models 

 In order to effectively evaluate the impacts, and assess the damages of threats and 
attacks in a network, Attack Graphs (AG) (Amman et al.  2002 ; Jajodia et al.  2003 ; 
Sheyner et al.  2002 ) have become a widely adopted technology recently in analyzing 
the casual relationships between attack events and evaluating the potential impact of 
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multi-step attacks. In a typical AG, each node represents a particular state of a host, 
and each edge represents a possible state transition. The discovered network topolo-
gies and node confi guration serve as one base to generate such AG models. 

 However, existing AG techniques have very limited capability in assessing the 
cyber impacts on a high level mission, as they cannot directly represent the depen-
dency relationship between missions and the corresponding cyber assets. Another 
limitation of existing AG techniques is that they are not scalable and practical for 
use with large-scale networks. 

 To address these limitations, our team has developed an effi cient AG model dur-
ing our previous efforts for Army Research Offi ce (ARO) and Air Force Research 
Lab (AFRL). The key idea of our AG model lies in the differentiation of the  Type 
Abstract Graph (TAG) , the  Network Attack Graph (NAG) , and the  Real-time Attack 
Graph (RAG) . These attack graph models have been developed into a software tool-
kit, called “NIRVANA” that can automatically generate TAG with the most updated 
vulnerability entries, and derive network reachability from the imported network 
confi guration fi les and the fi rewall rules. Based on TAG and the (computed) net-
work reachability, NIRVANA can automatically generate a corresponding NAG for 
static security analysis. When a real attack happens, NIRVANA can automatically 
generate the RAG (triggered by IDS alerts) for dynamic security analysis and 
 damage assessment. 1  

 In particular, TAG models the abstract exploit scenarios that include the depen-
dency relationships among prerequisites, exploits, and effects. It is not specifi c to any 
network, and serves as a base for generating a network-specifi c AG. In our team’s 
approach, the TAG is generated by transforming more than 30,000 public CVE 
records (Common Vulnerabilities and Exposures) into a specifi c class of generic 
 vulnerability graphical model. Figure  5  shows an example of the generated TAGs.  

 Given a network setup (for example, the discovered network topologies and con-
fi gurations), we can create another AG to capture both the exploit dependency and 
the actual network reachability. Such a derived AG is called a  Network Attack Graph 
(NAG) . NAG can be generated through offl ine operations, by using specifi c network 
confi gurations to instantiate the abstract TAGs. NAG is particularly useful for static 
security analysis for a given network, which covers most of the needs mentioned in 
Sect.  4 . Figure  6  shows an example of the generated NAGs.  

   Threat Awareness      Based on the NAG, one can answer questions such as whether a 
particular exploit can exist, the current security posture of the network, the weakest 
point in the network, and the course of action in terms of which assets to harden fi rst.  

   Attack Awareness      To analyze the received attacks, a RAG can also be generated. In 
our model, when observed evidence (e.g., IDS alert) is captured, a RAG is triggered 
to be generated. RAGs are constructed through online operations, which facilitate 
the (near) real-time security analysis and damage assessment. Figure  7  shows an 
example the generated RAGs.    

1   Patent pending on the process of creation and utilization of TAG, NAG, and RAG. 
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  Fig. 5    An example type abstract graph (TAG)       

  Fig. 6    An example network attack graph (NAG)       
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7.3.2      Interactive Cyber Situational Awareness and Impact Analysis 

 Given the network and RAGs, informed interactions can be achieved to help ana-
lysts better understand past, current, and future security situations. For example, 
backtracking current attacks on the NAG can enable focused forensics analysis, and 
enhance intrusion detection accuracy and timeliness (e.g., what must have gone 
wrong, but was missed by current detection sensors). In addition, looking down-
stream of current attacks on the NAG can enable prediction and save precious time 
for downstream protection. 

 More importantly, such models also enable what-if analysis. The NAG contains 
all potential attack paths for a given network. This makes it possible for graph tra-
versal and operations (e.g., pruning) to possess security semantics. For example, 
consider that a critical asset (e.g., the database server) should not be reached from the 
current attack, but unfortunately given current network settings, the NAG shows that 
it is actually possible for it to be reached. In order to cut off the attack paths that may 
lead to the database server, an algorithm can be run to fi nd the critical nodes on NAG. 
“Critical” here means that once such nodes are “disabled,” no attack paths can lead 
to the database server. Each node in NAG generally represents a particular physical 
host with some vulnerabilities in some services (e.g., email services, web services). 

  Fig. 7    An example real-time attack graph (RAG)       
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One can use a software tool (the author team has developed such a tool) to visualize 
the graphs, and show the effects of “disabling” services on selected nodes, in terms 
of future potential attack paths.  

7.3.3     State and Predictive Scenario Playback 

 CSA needs the ability to playback various network events by using a saved condi-
tion. Additionally, the ability to quickly generate scenarios and test them against 
each other is needed. The analysts need the ability to preserve the state of the net-
work for running experiments and predicting outcomes of various defense scenar-
ios. Analysts need the ability to look at historic events to determine their applicability 
to the current situation. The data needs to be presented in a way that is common and 
customizable to each defender or team. Finally, the ability to quickly generate 
 scenarios and run them is needed. 

 The authors have developed a software system, called Hermes, which aims to 
achieve such goals. Since the state of the network is saved at specifi c points in time, 
the defenders can go back for “after action” analysis and experiment with different 
defense postures and examine the resultant ECSA. For example, a good starting place 
would be to see why the IDS failed to observe the initial infection for some attack 
scenarios. The details of this software tool are omitted due to space limitation.   

7.4     Towards Achieving Mission/Operational Awareness 

 Essentially, mission decomposition will provide users with an effi cient interface to 
transform a complex mission or operation into a set of specifi c, more manageable 
tasks. On the other hand, the mission-to-asset mapping will automatically identify 
the corresponding network components and cyber assets that are required to carry 
out the intended mission and tasks. 

 We assume that a complex global  mission  can be divided into a set of simplifi ed 
 sub-missions  or  tasks  that have to be performed. If all the specifi ed tasks are per-
formed, it is concluded that the mission has been successfully achieved. Additionally, 
there are two types of tasks in our model, namely,  compound  and  primitive  tasks. 
A primitive task is defi ned as a basic action that a user can perform directly. A com-
pound task, on the other hand, is regarded as a task that is composed of primitive 
tasks and/or other compound tasks. Additionally, tasks in a mission are interrelated 
to each other by dependencies and external constraints such as time and resources. 
It might not be possible to perform a task until some other tasks are completed; that 
is, the task depends on the completion of other tasks. 

 Figure  8  illustrates a mission decomposition diagram, in which circles represent 
the compound tasks, and squares represent the primitive tasks. A compound task 
is composed of one or more tasks, each of which can also consist of one or more 
compound or primitive tasks. The root node M0 is regarded as the mission itself. M0 
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is said to be achieved, if and only if tasks M1, M2, and M3 are completed. In turn, 
task M3 is completed only if tasks M3.1, M3.2, and M3.3 are completed. In this 
diagram, dependencies are represented by dashed-arrows in a mission decomposi-
tion diagram. Task T1 is said to be dependent on task T2 if there is a dashed arrow 
drawn from T1 to T2. Taking this notion into account, we can say that in Fig.  8 , task 
M1 depends on task M3.2.2 and task M3.1 depends on task M3.2. This means that 
task M1 cannot be executed until task M3.2.2 has been executed. Subsequently, task 
M3.1 cannot be carried out until task M3.2 has been completed. Task dependencies 
are important aspects that have to be captured in a mission because they represent 
real-world situations.  

7.4.1     Mission Mapping and Integration with Attack Graphs 

 A mission asset map is designed to capture and represent the dependency between 
high-level missions and the underlying cyber networks. Generally speaking, each 
mission carried out in a network depends on certain cyber operations that are further 
supported by particular network segment and/or cyber assets. In order to identify the 
specifi c dependency between a mission and the related cyber assets, we need to 
decompose a complex mission into a set of manageable tasks which can be directly 
supported by some network component (e.g., a computer or server) or cyber service 
(e.g., email, web, FTP). It is clear that different missions have different asset maps. 

 We briefl y classify the cyber assets into three categories:  hosts  (e.g., servers, 
desktops, hand-held devices),  switches  (e.g., routers, fi rewalls, VPN equipment, 
base stations.), and  communication links  (e.g., wired and wireless). Each host 
or switch can be viewed as an atomic unit of the mission, whose identifi cation 

  Fig. 8    Mission decomposition diagram       

 

N. Evancich et al.



87

(e.g., host name, IP address) and associated information (e.g., location, user) will be 
marked on the map. Physical connections between hosts are marked as an edge on 
the map. In addition, each switch could be associated with a connectivity table 
showing the (allowed) logical connections among various hosts. 

 Mission asset maps will be used to bridge the gap between mission descriptions 
and low-level attack events. For this purpose, we need to embed a novel set of infor-
mation items into mission asset maps, and glue AGs and mission asset maps 
together. 

 One of the core requirements is to effi ciently and accurately map various cyber 
assets to the intended missions and tasks. Essentially, to assess the impacts of a 
compromised/degraded cyber asset, network administrators need to know: (i) Where 
is the attacked asset? (ii) Whose/what job is relying on the attacked asset? (iii) What 
organizational mission is impacted? and (iv) What other cyber assets or network 
capabilities will be affected? 

 Due to the lack of contextual information, it is hard for today’s administrators to 
answer the above questions. If we assume that some domain knowledge or initial 
information about the intended mission is present, this information can help us iden-
tify some required assets to execute the mission. For instance, mission commanders 
can briefl y divide a complex mission into a set of operational tasks, and give opera-
tors an initial asset assignment for each task. Based on such information, we can at 
least identify some host-level assets required for a mission. For example, if we 
know that in Mission A, User B needs to contact Customer C via Email, it is not 
hard to identify that  User B’s Computer  and  Email Server  will be required for this 
mission. Then, from these two assets, we can automatically derive other required 
host-level cyber assets based on the network topology and reachability analysis. 

 After identifying the mission-related cyber assets in a network, the next step is to 
carry out impact assessment and security analysis. In AG models, each node represents 
a particular state of a host, and each edge represents a possible state transition. This 
graphical model has limited capability in assessing the cyber impacts on high- level 
missions. Therefore, we need to fi nd an effi cient way to associate the derived mission 
asset maps (MAP) with the AGs. Essentially, a three-step process can be utilized to 
glue AGs and associated MAPs together: (i) incorporate MAPs with state information 
present in the AGs; (ii) incorporate MAPs with exploit event information; and (iii) 
merge AGs into MAPs. The details of this process are omitted here for brevity.  

7.4.2     Mission Awareness via Graphical Models 

 With integrated missions and attacks, the graphical modes can fundamentally facili-
tate mission awareness and decision making via graph traversal algorithms. For 
example, before attacks, analysis algorithms can be carried out on the integrated 
graphs and answer questions such as:

•    What are the weakest security points in my network?  
•   Which missions could be affected by these weak points?  
•   If we harden such cyber assets, what benefi ts will be obtained for mission success?    

Network-Wide Awareness



88

 In addition, given current attacks, the following questions can be answered 
readily:

•    Which applications and missions are affected by the attacks, and how severely?  
•   What is the overall security and mission assurance posture?    

 Furthermore, decision support can be provided via what-if analysis throughout 
the cyber related graphs and the mission graphs, again via graph traversal. For 
example, expanding the case described in Sect.  7.3.2 , one can answer questions 
regarding the impact of what-if ideas (related to disabling some cyber services) on 
missions. 

 Considering all the factors in the attack and mission graphs, and combing cyber 
asset and policy information, one can formulate decision-making problems and 
solve such problems with optimal course of action to provide decision support.  

7.4.3     Mission Asset Prioritization 

 To focus limited resources on the most critical cyber assets, network components 
need to be prioritized based on their criticality in support of mission assurance. The 
prioritization can be based on the severity analysis of the impacts caused by a cyber- 
attack. Given the mission asset map and critical values of the assets, many candidate 
decision algorithms can be used for prioritization. One example is the Analytic 
Hierarchy Process (AHP) for risk analysis and cyber asset prioritization. 

 The procedure of the prioritization can be summarized as follows:

    1.    Model the problem as a hierarchy containing the decision goal, the alternatives, 
and the criteria.   

   2.    Establish priorities among the elements based on pair-wise comparisons.   
   3.    Synthesize judgments to yield a set of overall priorities for the hierarchy.   
   4.    Check the consistency of the judgments.   
   5.    Come to a fi nal decision.     

 Figure  9  illustrates a simple example, in which three assets (i.e., desktop A, 
Router H and Database P) need to be prioritized based on three factors:  mission 
relevance ,  attack risk  and  asset value . Suppose that attack risk and mission rele-
vance are both twice as important as asset value, a pair-wise comparison matrix can 
be used to decide the proper weights for each factor. In this case, the weights for 
attack risk and mission relevance are set to 0.4, and the weight for asset value is set 
to 0.2. Each asset has a vector to specify its relative value corresponding to the three 
factors, which is used to calculate the asset’s criticality based on the weighted fac-
tors. Figure  9  shows the prioritizing result of the three assets, in which Database P 
was the preferred entity, with a priority of 0.715. It was ten times as strong as 
Desktop A, whose priority was 0.07. Router H fell somewhere in between. Therefore, 
Database P is the most critical asset in this case, and it should be well protected from 
potential attacks to assure mission success.     
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8     Future Directions 

 There are several challenges ahead to realizing ECSA. Three issues at the forefront 
are: software defi ned networking (SDN), adoption of encrypted and anonymous 
services, and contextually aware services. 

 SDN moves the control panel out of the network’s data panel. This enables the 
network to be altered very quickly. The network’s confi guration resides on a sepa-
rate bus, which enables control of the normal processing of the network from out-
side. This presents several challenges to ECSA: (i) New methods of enumerating 
the network will need to be developed, as the network can be constantly changing. 
(ii) Attacks/service interruptions can now happen on two separate panels, which 
makes troubleshooting more diffi cult. (iii) Finally, network changes may experi-
ence a “butterfl y effect.” On a positive note, SDN networks can respond to posture 
changes much more quickly, which will make service levels more robust. 

 The wide spread adoption of encrypted and anonymous services has become 
problematic for network operators seeking to limit this type of traffi c. The develop-
ers of these encrypted and anonymous services are in an arms race with the people 
attempting to block the service. These services present a challenge to ECSA, 
because the services are simply unknown. The network does not know if the traffi c 
is malicious or if a user is covering their tracks. ECSA can simply record the relays, 
bridges, and users, which can be displayed as consumed bandwidth. 

 Contextually aware services use some derived or calculated data to aid in the 
richness of the experience delivered to the user. Examples include using the user’s 
current location to serve traffi c data or suggesting searches based on open applica-
tions. This ubiquitous computing becomes a challenge for ECSA due to the perva-
sive nature of the data collection. Context aware services often query the device for 
details about OS version, location, current tasking, etc. This can provide attackers 
with more knowledge than the network defenders would like exposed.  

  Fig. 9    Prioritization of cyber assets with AHP       
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9     Summary 

 “Macro” SA refers to the holistic dynamics of the network. It views the network as 
a single entity and views elements or events in the aggregate. In contrast, “micro” 
SA examines single elements of the network or single events. The three major 
groups involved in the CSA formation process are network administrators, network 
defenders, and users. The inputs to this process are (i) the raw data from the network 
sensors and user experience, (ii) the context applied to the operation or mission 
capabilities for the network, and (iii) the model of the network that the network 
administrator uses. The output is the potential change in posture that network 
administrators should take to ensure network services continue, or the network 
changes that are needed in order to repair or mitigate an issue. The lifecycle of 
Cyber Analysts’ SA includes three steps: network, threat or attack, and operational 
or mission awareness. The process of gaining network awareness includes discov-
ery and enumeration of assets and of Defense capabilities. Threat and attack aware-
ness consists of a current picture of possible attacks and vectors against the network 
in question. Operation and mission awareness is a picture of how decreased or 
degraded network operations will affect the mission of the network. Effective CSA 
(ECSA) is CSA that improves decision-making, collaboration, and resource man-
agement. The key concepts in ECSA are giving a predicted SA picture based on 
possible actions and integrating sensor data to a unifi ed and current view. The ele-
ments that enable ECSA include: Tomography measures the internals of the net-
work by using information taken from end-to-end link data; Route Analytics 
analyzes the routing protocols in a network; and Protocol Monitoring checks the 
standard protocols for speed and correctness. Inferences are estimations of the capa-
bilities of an attacker, along with the attacker’s intentions. Anti-inferences are the 
tools the defender has to attempt to determine the intentions and capabilities of the 
attacker. Network mapping is essential to discover network connectivity and 
enhance network situational awareness. State-of-the-art network mapping technolo-
gies and tools, such as Nmap and Zmap, can be useful. Attack graphs underline the 
models called the Type Abstract Graph (TAG), the Network Attack Graph (NAG), 
and the Real-time Attack Graph (RAG). These attack graph models have been 
developed into a software toolkit, called “NIRVANA” that can automatically gener-
ate TAG with the most updated vulnerability entries, and derive network reachabil-
ity from the imported network confi guration fi les and the fi rewall rules. Based on 
TAG and the (computed) network reachability, NIRVANA can automatically gener-
ate a corresponding NAG for static security analysis. When a real attack happens, 
NIRVANA can automatically generate the RAG (triggered by IDS alerts) for 
dynamic security analysis and damage assessment. A mission asset map is designed 
to capture and represent the dependency between high-level missions and the under-
lying cyber networks. Network components need to be prioritized based on their 
criticality in support of mission assurance. The prioritization can be based on the 
severity analysis of the impacts caused by a cyber-attack. Given the mission asset 
map and critical values of the assets, an algorithm such as the Analytic Hierarchy 
Process (AHP) can be applied for risk analysis and cyber asset prioritization.     
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Cognition and Technology

Cleotilde Gonzalez, Noam Ben-Asher, Alessandro Oltramari, 
and Christian Lebiere

1  Introduction

As the previous chapters emphasized, the human cognition—and the technology 
necessary to support it—are central to Cyber Situational Awareness. Therefore, this 
chapter focuses on challenges and approaches to integration of information technol-
ogy and computational representations of human situation awareness. To illustrate 
these aspects of CSA, the chapter uses the process of intrusion detection as a key 
example. We argue that effective development of technologies and processes that 
produce CAS in a way properly aligned with human cognition calls for cognitive 
models—dynamic and adaptable computational representations of the cognitive 
structures and mechanisms involved in developing SA and processing information 
for decision making. While visualization and machine learning are often seen among 
the key approaches to enhancing CSA, we point out a number of limitations in their 
current state of development and applications to CSA. The current knowledge gaps 
in our understanding of cognitive demands in CSA include the lack of a theoretical 
model of cyber SA within a cognitive architecture; the decision gap, representing 
learning, experience and dynamic decision making in the cyberspace; and the 

C. Gonzalez (*) 
Social and Decision Sciences Department, Carnegie Mellon University,  
5000 Forbes Ave, Porter Hall 208, Pittsburgh, PA 15213, USA
e-mail: coty@cmu.edu 

N. Ben-Asher 
Dynamic Decision Making Laboratory, Social and Decision Sciences Department,  
Carnegie Mellon University, Pittsburgh, USA
e-mail: noamba@cmu.edu 

A. Oltramari • C. Lebiere 
Department of Psychology, Carnegie Mellon University, Pittsburgh, USA
e-mail: aoltrama@andrew.cmu.edu; cl@cmu.edu

mailto: coty@cmu.edu
mailto: noamba@cmu.edu
mailto: aoltrama@andrew.cmu.edu
mailto: cl@cmu.edu


94

semantic gap, addressing the construction of a common language and a set of basic 
concepts about which the security community can develop a shared understanding.

Far from being downgraded to interconnected computer technologies that 
 constitute its physical substratum, cyberspace can be seen as a communication 
infrastructure built by humans to access and share information in real-time by means 
of a variety of interfaces and languages. In this regard, “cyberspace is defined as 
much by the cognitive realm as by the physical or digital” (Singer and Friedman 
2014). The centrality of cognition in the cyber world is clearly illustrated in the 
process of detection, where a human analyst (i.e., a defender) is responsible for 
protecting client networks from illegal intrusions and hostile activity (i.e., cyber 
attack) that would jeopardize the integrity of its information and infrastructure. The 
detection process may be seen as analogous to the Data-Information-Knowledge-
Wisdom (DIKW) hierarchical model that is central for information and knowledge 
management (Rowley 2007). In the DIKW model, often depicted as a pyramid, a 
hierarchical process is proposed where data is transformed into information, infor-
mation into knowledge, and knowledge into wisdom.

Figure 1 illustrates this process for Detection. The existence of multiple and 
diverse sensors result in a large amount of network activity data. Cyber security tools 
(e.g., Intrusion Detection Systems, IDS) are meant to organize and structure network 
activity to make it relevant, meaningful and useful to support traffic monitoring and 
to minimize the damage that an attack can cause. Cyber security technologies pro-
vide ways to facilitate and protect an analyst from the cognitive challenges that the 
cyber world presents. For example, it does so by reducing, filtering and organizing 
large amounts of network events and by preprocessing events to help reduce the 
information workload of the human analyst. These technologies would help in 

Fig. 1 The detection process
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improving the analyst’s Situation Awareness (SA): an accurate  perception of the 
 elements in the network within a volume of time and space, the comprehension of 
their meaning, and the projection of their future status (Endsley 1988). However, SA 
is rarely integrated into technology that would combine information with under-
standing and capability. Although there are multiple critical technologies to support 
an analyst in intrusion detection, they are often static and do not adapt to the ana-
lyst’s state of mind and SA. Furthermore, SA is not an end in itself but rather the 
means by which analysts can make informed decisions in these complex, fast mov-
ing situations. SA is a precondition to make accurate intrusion detection decisions.

To properly design dynamic, adaptive technologies that support the detection 
process, one needs a strong, quantitative, validated model of the human cognitive 
processes. Otherwise, the result is often a system that works at counter-purposes 
with the human user, such as the infamous Microsoft paperclip that constantly 
changed the ordering of information in menus in a futile attempt to optimize physi-
cal movements at the greater cognitive cost to the user of constantly having to 
relearn a new interface.

Cognitive models are dynamic and adaptable computational representations of 
the cognitive structures and mechanisms involved in developing SA and processing 
information for decision making. Cognitive modeling technologies have been 
developed in the context of the cognitive sciences, which rely on theories of mind 
that allow for the construction of generative models to be eventually tested against 
behavioral, physiological, and neural data. The advantage of cognitive models1 
resides in their ability to dynamically learn from experience, to adjust to new inputs, 
environments, and tasks in similar ways as humans do, and to predict performance 
in situations that haven’t been encountered and for which data is not yet available. 
In this regard, cognitive models differ from purely statistical approaches, such as 
machine learning, that are often capable of evaluating only stable, long-term sequen-
tial dependencies from existing data but fail to account for the dynamics of human 
cognition, including learning processes and short-term sequential dependencies 
(Lebiere et al. 2003; West and Lebiere 2001).

Cognitive models are often built within a cognitive architecture. Cognitive archi-
tectures are computational representations of unified theories of cognition (Newell 
1990). They represent the invariant mechanisms and structures of cognition, as 
implemented in the human brain. For example, the well-known ACT-R architecture 
(Anderson and Lebiere 1998; Anderson et al. 2004), discussed later, is organized as 
a distributed framework of modules, each devoted to processing a particular kind of 
information that is integrated and coordinated through a centralized production 
 system module, which may represent the SA and decision making processes. A 
cognitive model of SA and decision making should represent the perception, 
 comprehension, and projection status of the human mind, which are the pre- 
conditions to choice and decision making (Gonzalez et al. 2006). However, to build 

1 Note that the distinction between ‘model’ and ‘agent’ when dealing with cognitive architectures 
is a blurred one. In general, an agent can be conceived as a cognitive model that dynamically inter-
acts with the environment.
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a cognitive model of cyber SA, more research on the particular cognitive challenges 
involved in the cyber world is needed.

Research on cyber SA is relatively new (Jajodia et al. 2010), and it will require 
large amounts of collaborative work to determine how much of what is known of 
SA in the physical world is applicable to the cyber world. The dynamics in the cyber 
environment do not follow the laws of physics and are not subject to physical con-
straints. For example, a cyber attack does not utilize physical weapons (a gun, a 
knife, a bomb) that we can see, touch, or hear and for which we have good estab-
lished mental models. Cyber attacks use digital weapons that are mostly indiscern-
ible at the human level and for which we often do not have strong intuitions. A cyber 
attack is not limited by geography and political boundaries. In contrast to physical 
wars, attacks can be highly distributed, meaning that the attacker can initiate the 
attack from multiple places at the same time and the same cyber attack can hit mul-
tiple targets at once (Singer and Friedman 2014). Furthermore, cyberspace is highly 
dynamic and it is also a distributed system, “one in which the failure of a computer 
you didn’t even know existed can render your own computer unusable” (Lamport 
1987). Thus, the traditional SA triad of perception, comprehension, and projection 
may have very different meanings in the cyber arena.

This chapter aims at outlining current knowledge gaps in our understanding of 
cognitive demands in the cyber world; and to present challenges that cognitive 
architectures and computational approaches face in order to represent and support 
SA and decision making in the cyber security domain. In what follows, we discuss 
some particular challenges for obtaining SA and achieving optimal decision making 
in the cyber world. The gaps identified and discussed in the subsequent sections are: 
the cognitive gap, namely defining a theoretical model of cyber SA within a cogni-
tive architecture; the decision gap, representing learning, experience and dynamic 
decision making in the cyberspace; the semantic gap, addressing the construction of 
a common language and a set of basic concepts about which the security community 
can develop a shared understanding; the adversarial gap, developing ways to repre-
sent adversarial behavior; and the network gap, scaling up models of human behav-
ior to complex networks and cyber warfare representations. Next, we discuss 
existing technology developed to support the analyst and recent cognitive models of 
cyber SA and decision making from which new research may derive.

2  Challenges of the Cyber World and Implications 
for Human Cognition

In contrast to the physical world, there are many distinct cognitive challenges that a 
decision maker confronts in the cyber world. First, the amount of data available to the 
analyst is unusually large and highly diverse. This is due to the relatively inexpensive 
ways of collecting data (network activity) and to the number and diversity of possible 
data sources (each network node or piece of equipment can serve as a sensor).
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Second, cyber attacks can take many forms, and each form might target different 
parts or services in the network. As such, an attack might be represented only in one 
data source or in combinations of several data sources, but not in all the data sources 
at the same time and in the same manner. Thus, the analyst needs to expend more effort 
in searching and diagnosing information to achieve the comprehension level of SA.

Third, the cyber world involves rapid and constant change. In normal day-to-day 
operation, changes like the maintenance of network equipment, the addition of sub- 
networks, and changes in services or users may be legitimate operations; however, 
they may also resemble signs of an attack. Furthermore, changes in network behav-
iors can be abrupt, drastic, and caused by both internal and external factors. For 
example, a sudden spike in network activity on a retailer network can be caused by an 
approaching holiday (external), the retailer having a sale (internal), or a cyber attack.

Fourth, the cyber SA of an analyst highly depends on the information coming 
from sensors (network monitoring equipment, logs, etc.). The analyst needs to con-
stantly determine his level of trust in the sensors and whether to rely on the informa-
tion coming from them; as it is not possible to directly evaluate the sensors’ 
reliability. For example, an attacker may first compromise sensors to deceive the 
analyst about the status of the network before and during the attack.

Fifth, cyber attacks are adversarial digital ways of determining who gets power, 
wealth, and resources. Thus, beyond the SA of one individual, defenders (analysts 
and end users) in the cyber world need to be aware of cyber attackers. Attackers 
have one important advantage over defenders: they know their target and decide 
who, when, and how to attack. Defenders face many difficulties in identifying the 
origin, attribution, and goal of these attacks. In the cyber world, it becomes very 
difficult to determine the identity, organizational affiliation, and nationality of those 
sitting behind a computer with malicious intentions. Furthermore, the defender 
monitors the network, identifies threats, and repairs each and any vulnerability, 
while the attacker needs to find a single vulnerability that can be exploited. This 
simplified view highlights the asymmetric relationship between the defender’s SA 
and the attacker’s SA. Cyber SA for a defender, thus, must involve awareness of the 
attackers’ SA and intentions. This is a concept that is not currently well-known in 
the SA literature. A good amount of research has been devoted to the concept of 
Shared SA, a requirement to perform well in teams and achieve coordination and 
collaboration among team members (e.g., Gorman et al. 2006; Saner et al. 2009). 
Shared SA represents the “degree to which team members possess the same SA on 
shared SA requirements” (Endsley and Jones 2001, p. 48). While the information 
requirements by one individual that overlap among members of a group are essen-
tial elements for shared SA in friendly situations (Saner et al. 2009), the disparity, 
conflict, and disagreement of information needed to successfully deceive defenders 
and attackers is one of the most important weapons of agents involved in a cyber 
war. Thus, a concept of Adversarial SA needs to be developed to enhance the theory 
and models of theory of mind in cyber settings.

In summary, given the challenges of the cyber world and their implications for 
human cognition outlined above, it is clear that the development of cognitive  
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models and computational approaches to represent and support cyber SA and 
 decision making of the analyst are only in their infancy. In the next section, we 
review some existing technologies aimed at representing and supporting cyber SA 
and the detection of cyber attacks. We also introduce the ACT-R cognitive architec-
ture and cognitive models aimed at representing processes involved in cyber defense. 
In these descriptions, we highlight the current knowledge and outline how cognitive 
architectures and models can be used to address these gaps.

3  Technology for Supporting an Analyst in Intrusion 
Detection

A cyber analyst is mainly responsible for reviewing logs from various security tools 
and network traffic analyzers; they compile information and report incidents based 
on the intrusions that are detected. Given the cognitive challenges discussed above 
(e.g., large amounts of raw data collected by network sensors; variable speeds and 
workloads of events; and complex interrelationships of various elements of a net-
work), the analyst’s ability to grasp pieces of information as a coherent whole 
diminishes when dealing with a cyber environment. An important technology that 
helps support cyber SA and human decision making in the detection of threats and 
cyber attacks is the Intrusion Detection System (IDS). IDS are relatively well- 
established technology, and they are widely used in different settings to automati-
cally analyze packets for signs of possible incidents and to highlight those to the 
human analyst. A comprehensive review of the IDS-based methodologies and tech-
nologies that are more commonly used for intrusion detection and prevention are 
presented by Bernardi and colleagues (2014). IDS and their derivatives are mostly 
rule-based systems that require knowledge of the vulnerabilities in the networks. 
Snort (http://www.snort.org/) is probably the most well-known IDS: it is an open 
source software with millions of users, and it is considered a standard capable of 
performing packet sniffing and real-time traffic analysis. Snort rules are supported 
by an active community that improves the rules and the tool’s capabilities. Other 
open source tools such as Bro (https://www.bro.org/) offer faster network capabili-
ties and have also increased in popularity. Bro was developed as a research platform 
for intrusion detection and is commonly used by the research community.

A main challenge for the analyst is that the IDS generates a large number of false 
alarms, from which an analyst must identify real threats. IDSs may be used in con-
junction with many other tools that help human detection. Of particular interest is 
the development of correlation models and the estimation of relationships between 
suspicious events flagged by the IDS, which may help humans detect patterns, the 
paths of attacks, and the attackers’ intentions. Attack graphs have also been widely 
used to highlight alert correlations and to improve the prediction of the attackers’ 
intentions. These attack graphs highlight the dependencies between network com-
ponents and known vulnerabilities, and they may be important in providing an ana-
lyst with improved SA regarding the possible attack propagation within the network. 
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Combining attack graphs with dependency graphs, which capture dependencies 
among assets in the network, can provide the analyst with a more informed decision 
making process (Albanese et al. 2011).

Another way to support the analyst’ cyber SA is with computational assistance 
tools that filter and visualize data and help prevent “cognitive overload” (Etoty et al. 
2014). By and large, as Erbacher (2012) has recently pointed out, the vast majority 
of these state-of-the art assistance tools are targeted at network analysts with the 
common function of correlating cyber events within a network topology and facili-
tating the interpretation of low-level events (where an “anomaly” is essentially a 
cyber event that violates some pre-defined constraints and deviates from previously 
observed patterns). This kind of tool (e.g., VisAlert: http://www.visalert.com/, 
NVisionIP: Lakkaraju et al. 2004, etc.) leverages machine learning and information 
fusion techniques to extrapolate meaningful structures for the cyber analyst, but 
they are not designed to either provide a high-level representation of the data (which 
would include notions like risk management, agility handling tasks, etc.) or to factor 
into play the distinctive cognitive elements in genuine SA, such as perception, atten-
tion, memory, experience, reasoning capabilities, expectations, confidence, perfor-
mance, etc. Hence, the aim of most existing visualizations tools is to make the data 
more accessible to the analyst and alleviate some of the effort of the perception 
phase. Such tools provide less support to the comprehension and projection phases 
of cyber SA. Furthermore, numerous pitfalls of visualizations can bias the analyst’s 
SA and should be carefully considered when visualizing network data (Tufte and 
Graves-Morris 1983). For example, visualizations can highlight some data attri-
butes and can lead to over-consideration of these attributes in the decision process 
while directing less attention to other relevant attributes.

When huge amounts of network traffic need to be analyzed, Machine Learning 
(ML) methods can provide a means to instantiate IDS processes (Chauhan et al. 
2011; Harshna 2013). In general, ML techniques are split into two large groups, 
namely “classification” and “clustering”: the former aims at minimizing the number 
of false positives (normal events mistakenly classified as attacks) and false nega-
tives (undetected attacks) by using labeled data sets as training examples; the objec-
tive of the latter is to extract clusters of similar patterns from a dataset, thus de facto 
creating multiple data subsets differentiated by some suitable distance measure. The 
main advantage of clustering is that it does not involve any training phase, which 
conversely makes classification more effective for a dataset where training data are 
available, but classification is less reusable across scenarios and less adaptive to 
novel situations. Among the ML classification techniques used for intrusion detec-
tion, we find Inductive Rule Generation (e.g., the Ripper system; Cohen 1995), 
Genetic Algorithms, Fuzzy Logics, Neural Networks, Immunological-based tech-
niques, and Support Vector Machines. Concerning ML clustering techniques, statis-
tical methods based on Bayes estimators and Markov models represent the most 
complex frameworks of analysis, where patterns can be computed in a variable 
time-scale and in a per-host or per-service scale. Overall, ML tools can be very 
efficient in handling large amounts of data and can provide meaningful insights 
regarding the state of a network. However, they rely on complex algorithms and 
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intensive computational processes when detecting threats. Eventually, the analyst is 
provided with a recommendation without the ability to understand the details of the 
processes that generated that recommendation. Without the ability to acquire the 
appropriate level of SA, this can expose the analysts to various biases related to trust 
in automation and eventually harm the comprehension and projection levels of SA.

The technology to support the analyst in intrusion detection is critical to the ana-
lyst’s acquisition of cyber SA and decision making. But in order to create adaptable 
technology that accounts for the analyst’s mode of thinking, the analyst’s cognitive 
processes and limitations ultimately need to be represented in this technology. Next, 
we discuss the ACT-R cognitive architecture and the instance-based learning theory 
(IBLT) (Gonzalez et al. 2003), a theory of decisions from experience in dynamic 
tasks, which has recently been used to create cognitive models of the intrusion 
detection process.

4  ACT-R Cognitive Architecture

Cognitive architectures are computational instantiations of unified theories of cog-
nition (Newell 1990). They represent the invariant mechanisms and structures of 
cognition, as implemented in the human brain. The ACT-R architecture (Anderson 
and Lebiere 1998; Anderson et al. 2004) is organized as a set of modules, each 
devoted to processing a particular kind of information that is integrated and coordi-
nated through a centralized production system module (see Fig. 2). Each module is 
assumed to access and deposit information into a buffer associated with the module, 
and the central production system can only respond to the contents of the buffers, 
not the internal encapsulated processing of the modules. Each module and associ-
ated buffer has been correlated with activation in particular brain locations (Anderson 
2007). The visual module and buffer keep track of objects and locations in the visual 
field. The manual module and buffer are associated with control of the hands. The 
declarative module and retrieval buffer are associated with the retrieval of informa-
tion from long-term declarative memory. The goal buffer keeps track of the goals 
and the internal state of the system in problem solving, while the imaginal buffer 
(not pictured) keeps track of problem information. Finally, the procedural module is 
charged with coordinating the activity of other modules by directing the flow of 
information between them. That module, implemented as a production system, 
includes components to pattern matching against buffer contents, to select a single 
production rule to fire at one time, and to trigger activity in various modules by 
directing information into their buffer.

The declarative module and procedural module, respectively, store and retrieve 
information that corresponds to declarative knowledge and procedural knowledge. 
Procedural knowledge consists of the implicit skills that we display in our behavior, 
generally without any conscious awareness. Production rules represent procedural 
knowledge in the form of the strategies and heuristics used to manipulate that 
 information and achieve problem solving. They specify procedures that represent and 
apply cognitive skill in the current context to retrieve and modify information in the 
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buffers and transfer it to other modules. While those procedures could specify expert 
solutions to the problem, it is generally assumed that achieving expert levels of per-
formance requires up to thousands of hours of experience in the most complex 
domains. Instead, a common hypothesis in modeling task performance is to assume 
that individuals rely on direct recognition or recall of relevant experience from 
declarative memory to guide their solution or, failing that, resort to very general 
problem-solving heuristics. This compute-vs-retrieve process is a common design 
pattern used to structure ACT-R models (Taatgen et al. 2006). For instance, it would 
apply in cyber security when a novice analyst would painstakingly apply a procedure 
to make a judgment about a new intrusion, while an expert analyst would simply 
recognize the pattern and make a snap judgment.
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Fig. 2 ACT-R is a production system architecture with multiple modules corresponding to differ-
ent kinds of perception, action, and cognitive information stores. Modules have been identified 
with specific brain regions. A central procedural module synchronizes information flow to and 
from the other modules
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Declarative knowledge is the kind of explicit knowledge that a person can attend 
to, reflect upon, and usually articulate in some way (e.g., by declaring it verbally or 
by gesture). Declarative knowledge in ACT-R is represented formally in terms of 
chunks that are structured sets of slots and associated values, which can in turn be 
other chunks, thus enabling the creation of complex hierarchical representations. The 
chunks in the declarative memory module correspond to episodic and semantic 
knowledge that stores the long-term experience of the model. A chunk typically inte-
grates information available in a common context at a particular point in time in a 
single representational structure. Chunks are retrieved from long-term declarative 
memory by an activation process (see Table 1 for detailed equations) that reflects the 
statistics of the environment (Anderson 1993). Each chunk has a base-level activation 

Table 1 List of activation mechanisms in the ACT-R architecture

Mechanism Equation Description

Activation Ai = Bi + Si + Pi − εi Bi: Base-level activation reflects the recency and 
frequency of use of chunk i
Si: Spreading activation reflects the effect that 
buffer contents have on the retrieval process
Pi: Partial matching reflects the degree to which 
the chunk matches the request
εi: Noise value includes both a transient and 
(optional) permanent component (permanent 
component not used by the integrated model)
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the model)
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most similar and −1 being the largest difference
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that reflects its recency and frequency of occurrence, which accounts for the power 
laws of practice and forgetting that are pervasive in human behavior. Activation 
spreads from the current focus of attention, including goal and imaginal buffers, 
through associations among chunks in declarative memory to account for phenomena 
such as associative priming, in which the context plays an implicit role in our access 
to information. These associations are built up from experience and they reflect how 
chunks co-occur in cognitive processing. The spread of activation from one cognitive 
structure to another is determined by combining the weight of attentional focus from 
the originating cognitive structure with its associative strength to the other structure. 
Chunks are compared to the desired pattern specified in the retrieval buffer by using 
a partial matching mechanism that subtracts its degree of mismatch to the desired 
pattern from the activation, referred to as similarity. This is done additively for each 
component of the pattern and corresponding chunk value, weighted by a mismatch 
penalty factor. This ability to match to imperfect information allows us to deal with 
changing, approximate, and probabilistic environments. Finally, noise is added to 
chunk activations to make retrieval a probabilistic process governed by a Boltzmann 
(softmax) distribution, accounting for the probabilistic nature of human cognition. 
While the most active chunk is usually retrieved, a blending process (Lebiere 1999) 
can also be applied; which returns a derived output encoding the consensus value 
reflecting the similarities between the values of the content of all chunks, weighted 
by their retrieval probabilities as determined by their activations and partial-matching 
scores. This blending process is often used to provide a constrained way of making 
decisions in continuous domains as proposed in IBLT (Gonzalez 2013; Gonzalez and 
Dutt 2011; Gonzalez et al. 2003), which is described next.

5  Instance-Based Learning Theory and Cognitive Models

The notion that learners have a general-purpose mechanism whereby situation-
decision- utility triplets are stored as chunks and later retrieved to generalize solu-
tions to future decisions originates from instance-based learning theory (IBLT) 
(Gonzalez et al. 2003). IBLT is a theory of decisions from experience in dynamic 
tasks. A simple cognitive model, derived from IBLT, has recently been proposed for 
representing individual learning and for reproducing choice behavior in repeated 
binary choice tasks (Gonzalez and Dutt 2011; Lejarraga et al. 2012). This model has 
shown to be a robust accounting of the choice and learning process in a large variety 
of tasks and environmental conditions (for a summary, see Gonzalez 2013). Its 
greatest strength is that it offers a single learning mechanism to account for behavior 
observable in multiple paradigms and decision making tasks (for a summary, see 
Gonzalez 2013). However, Gonzalez and colleagues (2003) argue that the strength 
of IBLT is the explanations of decision making in complex dynamic situations, such 
as cyber security. With the aim of scaling up from simple binary choice models to 
the type of complex dynamic tasks that IBLT intended to explain, Gonzalez and 
colleagues have used the cognitive model for binary choice to represent the detec-
tion process in cyber security.
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Dutt et al. (2011) proposed an IBL model to study cyber SA. The model 
 represented the cognitive processes of a cyber-security analyst who needs to moni-
tor a computer network and detect malicious network events that constitute a simple 
island-hopping cyber attack. In this model, the memory of a simulated analyst was 
pre-populated with instances encoding possible network events, including a set of 
attributes (e.g., IP address, whether the IDS issued an alert, etc.) that define a net-
work event. An instance also included the analyst’s decision regarding that specific 
combination of attributes, meaning whether the analyst decided that the event (i.e., 
set of attributes and their values) described malicious network activity or not. 
Finally, an instance also stored the outcome of that decision, indicating whether the 
event actually represented a malicious network activity or not. Controlling the rep-
resentation of the analyst’s memory provided the ability to manipulate situation 
awareness by adjusting the amount of instances in memory that represent malicious 
network activity. For example, the memory of a very selective analyst had 75 % 
malicious instances and 25 % non-malicious instances, while a less selective ana-
lyst’s memory had 25 % malicious instances and 75 % non-malicious instances. 
When making a decision about whether a new network event is part of a malicious 
network activity or not, the model retrieved similar instances from memory accord-
ing to the cognitive judgment mechanisms. Through the process of judging, the 
modeled analyst accumulated evidence that can indicate if there is an ongoing cyber 
attack. The risk tolerance parameter of the model governed this accumulation pro-
cess. The number of malicious network events that the model detected was con-
stantly compared to the analyst’s risk tolerance, and once the number of malicious 
events was equal to or higher than the risk tolerance, the modeled analyst declared 
that there is an ongoing cyber attack. Thus, risk tolerance served as a threshold for 
evidence accumulation and risk taking.

The results from simulating different cyber analysts demonstrated that both the 
risk tolerance level and the past experiences of the analyst affect the analyst’s cyber 
SA, with the effect of experiences (in memory) being slightly more impacting than 
risk tolerance. This work also highlighted the importance of modeling the adver-
sary’s behavior, by comparing the influence of impatient and patient attacker strate-
gies on the performance of the defender. Patient attacker strategy and longer delays 
between the threat incursions on the network can challenge the security analyst and 
decrease her ability to detect threats. Thus, the cognitive model was capable of cap-
turing the phenomenon that some attack patterns are more challenging than others 
to the simulated security cyber analyst.

6  Research Gaps for Understanding the Cognitive  
Demands of the Cyber World

Many advances need to be made in several research directions to make cognitive 
models useful and effective in representing and supporting the job of a cyber secu-
rity analyst. Based on the current state of technology discussed above, we identified 
five gaps in our understandings of the cognitive demands of the cyber world.
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6.1  The Cognitive Gap: Mapping Cognitive Architecture 
Mechanisms to Cyber SA

The general processes of a cognitive architecture such as ACT-R can be mapped 
systematically onto the concepts of cyber SA, such that the distinct levels of situa-
tion awareness can be related to concrete cognitive mechanisms. This mapping does 
not take the form of a one-to-one correspondence between cyber SA concepts and 
cognitive modules, but it instead maps those concepts onto modeling idioms that 
leverage multiple modules using common patterns. The first level of cyber SA cor-
responds to the processes involved in the direct acquisition of information from the 
environment. This perception level can be directly associated with the perceptual 
modules of the ACT-R cognitive architecture, including the visual and aural mod-
ules. However, those modules do not operate on their own, but through the direct 
supervision and control of the procedural module. Attention is a fundamental con-
struct that reconciles the limited processing resources of our cognitive (including 
perceptual) modules with the considerable demands arising from the open-ended 
complexity of the external world. Attentional focus is used to decompose complex 
external scenes, like a complex cyber security display, into simple components that 
can be processed directly by our perceptual systems.

The typical flow of control for perception in an ACT-R model (e.g., Anderson 
et al. 2004) proceeds in a top-down manner. While attention can be directed by 
external events in the environment, effective performance of complex tasks in 
information- rich environments typical of cyber security requires structured, goal- 
directed perceptual processing of information. The first step of perception is there-
fore a request for a location that matches a specific content condition.2 This location 
might already be known if the user is sufficiently familiar with his environment and 
the environment is stable enough, in which case it will be provided by retrieval 
from declarative memory. Otherwise, it is directly supplied by a production rule, if 
sufficient experience has transformed that knowledge into a skill through produc-
tion compilation. If not, the location will be determined by searching the environ-
ment to match the specified condition. Once the location has been obtained, it is 
supplied to the visual buffer to trigger processing of that area of the visual field in 
the visual module. This will result in the chunk representing the object recognized 
at that location to be returned in the same visual buffer. That chunk is then trans-
ferred to the imaginal buffer holding the representation of the current situation 
being elaborated on, which is where the process of comprehension starts. Hence, in 
the context of cyber SA, this phase correspond to the process through which a cog-
nitive model retrieves and encodes source and destination IP address, protocol type, 
and other attributes of the network. Comprehension corresponds to the second level 
of cyber SA, which results in the semantic representation of a perceived situation, 
a product of the cognitive process known as sensemaking (Klein et al. 2006a). 
According to Klein et al. (2006b),  sensemaking is the process of abstraction that 

2 This discussion will be focused on visual attention, though the same principles apply to other 
perceptual modules such as auditory perception.
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maps concrete situations to the general by using mental representations called 
frames, which correspond to structured conceptual models of the world. Lebiere 
et al. (2013) describe how sensemaking is fundamentally compatible with IBLT, and 
more specifically how frames can be mapped onto the chunk representations of situ-
ations used in that process. For instance, in the domain of geospatial intelligence, 
frames correspond to a pattern of input data, aggregating layers of information from 
independent sensors and associating them with specific hypotheses. “Comprehension” 
thus corresponds to the process of gradually aggregating the information from per-
ception into hierarchical chunks implementing integrated frames. In the next sec-
tion, we argue that “ontologies” can enhance this second level of cyber SA by 
mapping ACT-R declarative chunks to highly expressive semantic structures that 
formally specify the conceptual models encapsulated in frames. Going back to cyber 
SA and detection, in this comprehension phase, IP address obtained during the per-
ception phase are organized into categories that reflect whether it is internal or exter-
nal to the monitored network. This type of reasoning can also bind an event (e.g., an 
IDS alert) and the reason that the event occurred (e.g., an IDS rule regarding the 
maximal number of open connections for a communication protocol), thus generat-
ing a hypothesis for the observed behavior that will drive further investigations. The 
third level of cyber SA corresponds to the process of projection, or the generation of 
expectations about future states of the system. Those changes in system state can 
result from the actions of the decision maker, from those of an opponent or team-
mate, or from other independent parts of the system. Projection is essential in evalu-
ating the effect of potential actions by including feedback from the outcome of past 
actions. Because many cyber security interactions are fundamentally adversarial, it 
is essential to also being able to generate expectations of the opponent’s future 
actions, encompassing both independent actions and actions taken in response to 
one’s own decisions. Finally, since the actions of third parties, such as system users, 
also impact the outcome of security measures, generating expectations of their 
actions is crucial to projecting future system states and effective system control. 
From the cyber SA perspective, this phase occurs after perceiving an IDS alert and 
comprehending that it was generated by a rule that limits the number of open con-
nections. Now, when the number of open connections exceeds the limit, projection 
is used to evaluate whether this is a temporary benign spike in the demand for a 
service or if it is an indication for a cyber attack. Making such a decision requires 
integration of additional information that can be perceived and comprehended 
explicitly from the environment, like the source IP addresses of the connections, as 
well as consideration of implicit information like the consequence to the network if 
the number of open connections will continue to increase.

6.2  The Semantic Gap: Integrating Cognitive Architectures 
with Ontologies of Cyber Security

In the previously mentioned models, modelers themselves directly specified the 
semantics of the representation. In order to enable full-fledged reasoning capabili-
ties in cognitive architectures, these systems need to incorporate “re-usable 
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declarative representations that correspond to objects and processes of the world” 
(McCarthy 1980). Similarly, cognitive architectures must provide a way to repre-
sent world entities (Sowa 1984), i.e., an “ontology”.3 An ontology is a language- 
dependent cognitive artifact committed to a certain conceptualization of the world 
by means of a given language4 (Guarino 1998). Thus, in broad terms, an ontology 
corresponds to a semantic model of the world (or of a portion of it, i.e., a “domain”): 
when the model is simply described in natural language, an ontology reduces to a 
dictionary, thesaurus, or terminology; when the model is expressed as an axiomatic 
theory (e.g., in first order logic), it is called a formal ontology. Ultimately, if logical 
constraints are encoded into machine-readable formats, formal ontologies take the 
form of computational ontologies, and enter de facto in the family of semantic tech-
nologies, which include search engines, automatic reasoners, knowledge-based 
platforms, etc. In the context of a cognitive architecture like ACT-R, computational 
ontologies can extend the semantics of the chunks stored in declarative memory. 
Although these extensions are not usually required by ACT-R models that perform 
relatively narrow cognitive tasks, declarative memory should be designed to encom-
pass a rich spectrum of concepts when dealing with decision making in complex 
scenarios like cyber operations, including classifications of cyber security policies, 
risks, attacks, system’s functionalities, human responsibilities, user’s privileges, as 
well as the mutual connection among them. Widening the scope beyond ACT-R, 
state of the art work on cognitive architectures has also gone in the direction of map-
ping ontologies (like Cyc, see Lenat et al. 1985) to declarative memory (see Ball 
et al. 2004; Best et al. 2010; Emond 2006). It aims to enhance not only the “capabil-
ity” of representing the available knowledge of a domain but also the functionality 
of automatically deriving inferences from it, a feature that would also help to 
increase the “Comprehension” level in cyber SA. In this regard, the role of ontolo-
gies in cognitive architectures is to (1) formally characterize chunks in long-term 
memory that depict conceptual models of situations (frames) and (2) foster automa-
ticity of certain cognitive tasks, “that significantly benefit SA by providing a mecha-
nism for overcoming limited attention” and improve the decision making process.

There has been little work on ontologies for cyber security and cyber warfare. An 
ontology of IDS is discussed by Undercoffer et al. (2003); within a broader paper, 
there is a brief discussion of an ontology for DDoS attacks (Kotenko 2005); and a 
general ontology for cyber warfare is discussed in D’Amico et al. (2009). Obrst et al. 
(2012) provides the best sketch of a cyber warfare ontology, and the scale of the 
project and its difficulties are discussed by Dipert (2013). With regard to human 
users and human-computer interface, the most important step in understanding a 
complex new domain involves producing accessible definitions and classifications 
of entities and phenomena. Mundie (2013) stressed this point when talking about the 
Jason Report (The MITRE Corporation 2010). Discussions of cyber warfare often 

3 This was the genesis of using the word ‘ontology’ in AI. Ontology, ‘the study of being as such’—
as Aristotle named it—originated as a philosophical discipline.
4 Guarino distinguishes between ‘Ontology’ as a discipline (with the capital ‘o’) and ‘ontologies’ 
as engineering cognitive artifacts.
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begin with the difficulties created by misused terminology (such as characterizing 
cyber espionage as an “attack”). The Joint Chiefs of Staff created a list of cyber term 
definitions (Joint Staff Department of Defense 2010) that has been further developed 
and improved in a classified version. Nevertheless, none of these definitions has 
been encoded in OWL (Staab and Studer 2003) or in any other computational 
semantic format, which is a necessary requirement to make them machine-under-
standable. Likewise, various agencies and corporations (NIST, MITRE, Verizon) 
have formulated enumerations of types of malware, vulnerabilities, and exploita-
tions, sometimes expressed in XML-based semantics: but without a common vocab-
ulary, their sprawling English descriptions in large, incompatible databases are not 
directly machine-usable and are nearly impossible to maintain. Efforts that have 
been made toward developing computational ontologies of cyber security and cyber 
warfare typically do not work within any standard framework and do not utilize 
existing military reference ontologies such as UCORE-SL, which define concepts 
such as the notion of “agent,” “organization,” “artifact,” “weapon,” etc.

As a consequence of this general deficiency, one of the first and perhaps most 
generally useful tasks that will need to be completed to fill the “semantic gap” is to 
collect definitions of key cyber security concepts that are currently scattered across 
existing ontologies, controlled vocabularies, doctrines, and other documental 
resources and to suitably harmonize them in a homogenous computational ontol-
ogy. As a second step, the capabilities of this cybersecurity ontology will have to be 
dynamically tested in cognitive models of decision making in cyber operations.

6.3  The Decision Gap: Representing Learning, Experience, 
and Dynamic Decision Making in the Cyber World

Given the complexity and variability of the cyber environment, there is an ongoing 
effort to provide decision makers with tools that can support their decision process 
and provide insights to manage the complex dynamics of the cyber world. To gain 
and maintain situation awareness, the decision maker is constantly required to make 
multiple and interdependent decisions in a highly dynamic environment. Dynamic 
decision making requires an understanding of multiple, interrelated attributes and the 
ability to anticipate the way that the environment will develop over time. Making the 
right decision and acting appropriately and in a timely manner can maximize the 
decision value (Brehmer 1992; Edwards 1962; Gonzalez 2005; Gonzalez et al. 2005).

The modeling of human decision processes in cyber security highlights some 
important aspects of cyber SA that cognitive models need to account for. For exam-
ple, pattern recognition under uncertainty represents a defender’s attempt to find 
patterns in the attacker’s sequence of actions in order to predict the attacker’s next 
operation and to provide the best response to it. However, if the attacker is aware of 
these attempts to detect sequential dependencies, one possible path of action is to 
constantly change the malicious operations and to exploit the sequential dependen-
cies. Cognitive models in ACT-R (Anderson and Lebiere 1998, 2003) and neural 
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networks (West and Lebiere 2001) are capable of accounting for the human ability 
to detect sequential dependencies, and they use the perceived sequence to project 
the next action that an opponent will most likely take in a strategic interaction. 
Through their natural stochasticity, those models can balance the exploitation of the 
opponent’s patterns with some measure of deception and self-protection by avoid-
ing becoming too predictable themselves. Also, cognitive models such as those 
derived from ACT-R and IBLT provide the capability to learn from experience and 
the ability to utilize past experiences in novel decision situations.

Human decision makers use the same cognitive system for a vast array of diver-
gent tasks. The underlying cognitive system represents a highly efficient, multipur-
pose mechanism that has evolved to be as effective as possible across a wide variety 
situations and conditions (West et al. 2006). Cognitive architectures share the same 
flexibility and diversity, and as such can efficiently represent and capture human 
decision making in cyber security. However, continued efforts are needed to main-
tain and update the formal representation of the cyber environment that the 
 architectures use. This requirement emphasizes the need for cognitive architectures 
to develop better and more efficient models of perception and information encod-
ing. For cognitive architectures to serve a meaningful role in future cyber security 
engagements, two main aspects should be carefully developed: the first is the flexi-
bility of reasoning that underlies human adaptivity and the second is the active and 
efficient perceptual processes that search, detect, and encode information in a 
dynamic environment.

6.4  The Adversarial Gap: Representing Adversarial Cyber SA 
and Decision Making

Cognitive architectures provide rich and flexible modeling environment. Using these 
architectures, it is possible to generate models that represent the analyst’ decision 
making process and SA, as well as models of the adversary. For each of these mod-
els, there is a need to define knowledge base, learning processes, and decision mak-
ing process. Furthermore, the models of the analyst and the adversary interact within 
a defined environment (i.e., the cyber world) that dictates a set of possible action 
each model can choose from. Thus, there is a need to define the possible interactions 
between multiple cognitive models. In addition to defining the possible interactions, 
there is a need to define how and what kind of feedback the models would receive 
regarding the outcomes of their combined decision making processes. Issues con-
cerning delayed feedback and incomplete or imperfect feedback are highly relevant 
when modeling studying decision making and learning in dynamic systems. 
Therefore, a comprehensive formal representation that can bring together the analyst, 
the adversary, and the environment in which they interact is needed. Game theory has 
been successfully used to capture the essence of complex and dynamic situations that 
involves two or more agents that interact within a well- defined environment. We 
posit that combining game theoretical perspective and cognitive modeling can 
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provide a controllable, but still ecological valid, representation of interactions in the 
cyber world and serve as a potent framework for studying cyber SA.

Game theory has been popularized as a potent approach to characterize and ana-
lyze decisions in situations that involve social dilemmas and conflict situations. 
Stackelberg games have been used to model and capture the strategies of defenders 
and attackers in airport security, as well as for optimizing resources allocation in 
sensitive settings (Pita et al. 2008). Similarly, game theory has been used for deci-
sion making in cyber security (Alpcan and Baar 2011; Grossklags et al. 2008; Lye 
and Wing 2005; Manshaei et al. 2013; Roy et al. 2010). However, most game- 
theoretic approaches to security hold some limitations and assume either static 
game models or games with perfect or complete information (Roy et al. 2010). To 
some extent, these assumptions misrepresent the reality of the network security con-
text where situations are highly dynamic and the decision maker must rely on 
imperfect and incomplete information. To overcome this, recent studies that apply 
game theory to security attempt to account for the bounded rationality of human 
actors, especially human adversaries (Pita et al. 2012). However, this and other 
game-theoretic approaches still do not fully address the cognitive mechanisms like 
memory and learning that drive the human decision making processes and can pro-
vide a first-principled predictive account of human performance, including both 
capabilities and suboptimal biases.

Behavioral Game Theory relaxes some of the constraints of Game Theory with 
the study of human decision makers and how they interact in strategic situations 
involving more than one decision maker (Camerer 2003). Using Behavioral Game 
Theory, it is possible to address some of the limitations imposed by game-theoretic 
approaches and examine how learning from experience and adaptation to the envi-
ronment influences decision making and risk taking in cyber security (Gonzalez 
2013).

As discussed earlier, ACT-R and IBLT have proven to be highly beneficial to 
studying the interplay between learning and decision making processes of an indi-
vidual. One ongoing effort aims at scaling up cognitive models to study interactions 
between two or more decision makers in social conflicts like the Prisoner’s Dilemma 
(Gonzalez et al. 2014) and the Chicken Game (Oltramari et al. 2013). However, 
scaling up models of human cognition and SA to cyber worlds with more than two 
agents involved is still a challenge (Gonzalez 2013). An important issue for all lev-
els of SA is the availability of information regarding the other entities. Recently, 
cognitive models have been extended to study how the availability of information 
and the source of the information influence decision making and learning.

Recent studies examine how the availability of descriptive and experiential infor-
mation influences interactions in social dilemmas (Martin et al. 2013; Oltramari 
et al. 2013). The key findings of these studies suggest that information is needed for 
cooperation, and the lack of information fostered situations in which one decision 
maker tended to exploit the other. Another relevant finding is related to trust and its 
role in cooperative behavior, indicating that decision makers dynamically weigh the 
partner's information based on surprise (i.e., the gap between expectations or pro-
jections and the observed outcome). Learning models that incorporate surprise into 
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the decision process and combine both descriptive and experiential information can 
capture the complex dynamics of iterated interaction between two decision makers 
in conflict situations (Gonzalez et al. 2014; Ben-Asher et al. 2013). Overall, these 
finding emphasize the interplay between information and cognitive processes in 
order to achieve SA and finally making a decision.

6.5  The Network Gap: Addressing Complex Networks 
and Cyber Warfare

Cyber warfare is the extension of the traditional attacker-defender concept that 
involves multiple units (individual, state-sponsored organizations, or even nations) 
simultaneously executing offensive and defensive operations through networks of 
computers. In a cyber war, units can execute attacks against targets in a cooperative 
and simultaneous manner. Any defending unit can also be attacked by multiple 
enemies, eventually acting as both attacker and defender at the same time.

The dynamics of a cyber war, which are driven by multiple decision makers mak-
ing simultaneous decisions, are hard to predict. Achieving and maintaining SA in 
such an environment is crucial and at the same time challenging. The fact that mul-
tiple units operate simultaneously in the environment might imply that a decision 
maker has to maintain SA in different levels. The decision maker has to perceive, 
comprehend, and make projections regarding interactions in which the unit itself is 
involved directly, interactions between other units which do not involve the decision 
maker directly, and the overall aggregated SA at the environment level. Scaling up 
cognitive models of SA from the dyad perspective (an analyst and an adversary) to 
the SA needed in an environment where large networks of units can interact simul-
taneously requires careful consideration and examination of environmental attri-
butes and their relation to SA. For example, the topology of the network that 
connects units involved in a cyber conflict has an extensive impact on the availabil-
ity of information, trust in information, and information propagation.

To support SA and decision making in large scale cyber conflicts, simulations 
using multiple cognitive models connected in a network can provide predictions and 
answer what-if questions. Similarly, simulations that combine multiple cognitive 
models and human decision makers can train humans to acquire and maintain SA in 
cyber conflicts. Recently, there has been an increasing interest in N-Player models 
of social conflict that share some similarities with cyber warfare (Kennedy et al. 
2010; Hazon et al. 2011). In parallel, there are attempts to study cyber attacks and 
cyber warfare through multi agent-based modeling (e.g., Kotenko 2005, 2007). 
However, many of these models use strategic agents and not cognitive models. Such 
strategic agents are designed to execute an optimal strategy, rather than learn the 
maximizing strategies from experience; and thus not only fail to replicate SA, 
human learning, and decision making mechanisms but are fundamentally incapable 
of coping with fluid, dynamic situations commonly encountered in cyber warfare.
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The CyberWar Game (Ben-Asher and Gonzalez 2014) is a multi-player frame-
work that aims to capture some of the characteristics and the dynamics of the envi-
ronment in cyber warfare and aspects of the decision maker. It is inspired by Hazon 
et al.’s (2011) N-Player model. Considering important aspects of cyber warfare and 
conflicts in general, the CyberWar Game introduces two relevant concepts that char-
acterize a player: power and assets. In the context of cyber warfare, power repre-
sents the ability to successfully accomplish a goal, which for a defender is to block 
an attack and for an attacker is to accomplish a malicious goal. Power can be seen 
as a representation of the robustness of cyber security infrastructure and is likely to 
be a function of investment in cyber security. An asset is an abstraction of what the 
defender is trying to protect and what the attacker wants to gain. In general, assets 
are the motivation for building both defense system and attack systems, and selfish 
assets maximization is the shared goal of all the decision makers in this environ-
ment. Power represents the potential of these systems to achieve this goal.

In this paradigm, as illustrated in Fig. 3, several players simultaneously attack 
each other or defend themselves from attacks. Thus, a player is not assigned to be an 
attacker or a defender in this game, but it is the players’ decision what role they play. 
Furthermore, this resembles distributed attacks over the network and also incorpo-
rates the idea that power can be distributed between multiple goals. A player needs 
SA and learning processes to identify who might try to attack and who can be a 
valuable target to attack. For example in Fig. 3, Player 1 and Player 3 are likely to 
attack Player 2 as she is the weakest player. However, if Player 1 invests all her 
power in the attacking without defending from Player 3, Player 3 can take advantage 
and attack only Player 1, who has the highest asset’s value. The decision of whether 

Fig. 3 General description of a CyberWar game
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or not to attack an opponent is not straightforward, as the player has to incorporate 
additional aspects like the cost of attack, the cost of defense, the attack severity (i.e., 
what percentage of opponent assets it is possible to gain when winning an attack), 
and the effectiveness of defense. Frameworks like the CyberWar Game allow us to 
examine the role of SA at the operational level (who to attack and from whom to 
defend), as well as at the tactical and strategic levels (which coalition to join).

7  Summary

Human cognition is central to our understanding of the challenges of the cyber 
world. Cyber security is an extremely complex domain that stretches and challenges 
many of our theories and concepts of situation awareness and decision making. 
Current theories of SA have been developed for the physical world, and research is 
needed to determine whether and how much of what we currently know is applica-
ble or useful for cyber security. The process of detection (protecting networks 
against illegal intrusions) illustrates the challenges involved in cyber security and 
the need for integration of information technology and computational representa-
tions of human situation awareness. Cognitive models are dynamic and adaptable 
computational representations of the cognitive structures and mechanisms involved 
in developing SA and processing information for decision making. Cognitive mod-
els differ from purely statistical approaches, such as machine learning, that are often 
capable of evaluating only stable, long-term sequential dependencies from existing 
data but fail to account for the dynamics of human cognition, including learning 
processes. An important technology that helps support cyber SA and human deci-
sion making is the Intrusion Detection System (IDS). Other assistance tools are 
targeted at network analysts with the common function of correlating cyber events 
within a network topology and facilitating the interpretation of low-level events. 
The aim of most existing visualizations tools is to make the data more accessible to 
the analyst and alleviate some of the effort of the perception phase. Such tools pro-
vide less support to the comprehension and projection phases of cyber SA. Machine 
Learning (ML) methods can provide a means to instantiate IDS processes and are 
often divided in two large groups, namely “classification” and “clustering.” 
Eventually, the analyst is provided with a recommendation without the ability to 
understand the details of the processes that generated that recommendation. Without 
the ability to acquire the appropriate level of SA, this can expose the analysts to vari-
ous biases related to trust in automation and eventually harm the comprehension and 
projection levels of SA. In order to create adaptable technology that accounts for the 
analyst’s mode of thinking, the analyst’s cognitive processes and limitations must be 
represented in a cognitive model. Cognitive models are often built within a cognitive 
architecture. Cognitive architectures are computational representations of unified 
theories of cognition and the ACT-R architecture is an example. IBLT is a theory of 
decisions from experience in dynamic tasks; the strength of IBLT is the explanations 
of decision making in complex dynamic situations, such as cyber security.
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An IBL model to study cyber SA represented the cognitive processes of a 
 cyber- security analyst who needs to monitor a computer network and detect mali-
cious network events that constitute a simple island-hopping cyber attack. When 
making a decision about whether a new network event is part of a malicious network 
activity or not, the model retrieved similar instances from memory according to the 
cognitive judgment mechanisms. The model illustrates how both the risk tolerance 
level and the past experiences of the analyst affect the analyst’s cyber SA. The cur-
rent knowledge gaps in our understanding of cognitive demands in the cyber world 
are: the cognitive gap, namely defining a theoretical model of cyber SA within a 
cognitive architecture; the decision gap, representing learning, experience and 
dynamic decision making in the cyberspace; the semantic gap, addressing the con-
struction of a common language and a set of basic concepts about which the security 
community can develop a shared understanding; the adversarial gap, developing 
ways to represent adversarial behavior; and the network gap, scaling up models of 
human behavior to complex networks and cyber conflict representations. Together, 
the descriptions of these gaps present a roadmap for new research and development 
of cognitive- aware technologies that would support the analyst’s cyber SA and 
 decision making process.
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      Cognitive Process 
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1            Introduction 

 The previous chapter showed that our understanding about the cognitive reasoning 
process of cyber analysts is rather limited. Here, we focus on ways to close this 
knowledge gap. This chapter starts by summarizing the current understanding about 
the cognitive processes of cyber analysts based on the results of previous cognitive 
task analyses. It also discusses the challenges and the importance to capture “fi ne- 
grained” cognitive reasoning processes. The chapter then illustrates approaches to 
overcoming these challenges by presenting a framework for non-intrusive capturing 
and systematic analysis of the cognitive reasoning process of cyber analysts. The 
framework includes a conceptual model and practical means for the non-intrusive 
capturing of a cognitive trace of cyber analysts, and extracting the reasoning process 
of cyber analysts by analyzing the cognitive trace. The framework can be used to 
conduct experiments for extracting cognitive reasoning processes from professional 
network analysts. When cognitive traces are available, their characteristics can be 
analyzed and compared with the performance of the analysts. 

 Detecting complex multi-step cyber attacks are challenging for cyber analysts 
for several reasons. First, the alerts received by cyber analysts include false posi-
tives. This requires the analyst to fi lter out false positive alerts in a timely fashion. 
The false positive alert may mislead the analysts such that their time is wasted on 
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false alarms, delaying their attention to the alerts related to actual attacks. Second, 
an alert related to the attack may be missing (i.e., false negative) due to an unknown 
vulnerability or a new way of exploiting a known vulnerability. Due to missing 
alerts, analysts may not be able to identify certain attack steps in an attack chain, 
and hence delay the time to detect the multi-step attack. 

 One way to deal with false positive alerts and missing alerts is to leverage previ-
ous experience (both successful and failure experience) of cyber analysts in han-
dling similar situations. For example, a failure experience associated with a previous 
false alarm can prevent an analyst from pursuing a similar false alarm. Similarly, a 
successful experience associated with a previous missing alert can help the analyst 
to adapt the experience to deal with a similar missing alert in a new cyber attack. A 
senior analyst, with years of rich experience in cyber analysis, accumulates many 
experiences of different types. If the cognitive process of these experiences can be 
effectively captured and analyzed such that they can be aggregated and effectively 
reused by other analysts, it will provide several important benefi ts. 

 Previous Cognitive Task Analyses (CTAs) about cyber defense have provided 
valuable insights about the high-level cognitive processes of cyber analysts in the 
real world. Biros and Eppich ( 2001 ) identifi ed four cognitive capabilities. D’Amico 
and Whitley ( 2008 ) generated six analysis roles of cyber analysts:  triage analysis , 
 escalation analysis, correlation analysis, threat analysis, incident response , and 
 forensic analysis . We will elaborate on these roles and their relationship with other 
related cognitive processes. Erbacher et al. ( 2010a, b ) extended the scope of the CTA 
further to include  vulnerability assessment  and a “big picture” component to high-
light the interaction between the tactical-level cyber analysis (e.g., analyzing attacks 
within an enterprise’s regional network) and strategic-level cyber analysis (e.g., 
detecting attacks involving multiple regions or multiple countries around the globe). 

 Based on the results of these CTA’s, we synthesized and summarized the high- level 
cognitive processes of cyber analysts and their dependency relationships in Fig.  1 . 
The ovals in the fi gure represent processes, and the rectangles in the fi gure represent 
Data or Information. Because some of the processes are performed by human analysts 
while some are performed by machine, we distinguish them using solid ovals for 
cognitive processes of cyber analysts, and white ovals for processes automated by 
software. For example, “IDS” refers to “intrusion detection system” such as SNORT.  

 A cyber analysis process transforms a huge amount of raw data in the network 
(e.g., network packets) and in each computer in the network (e.g., record of system 
calls such as authentication of a user’s password) into decisions about “incident” 
(which represents a cyber attack that needs to be responded), which lead to response 
actions (e.g., shutting down a compromised machine) and further actions to mitigate 
the impact of the incident. This is the tactical level cyber analysis. Cyber analysts also 
need to correlate related incidents (which may be detected in different regions, differ-
ent countries, or even possibly far in time) that are parts of a larger attack scheme. 
This is referred to as the strategic level cyber analysis (D’Amico and Whitley  2008 ). 

 The tactical-level cyber analysis also includes vulnerability scanning (typically 
performed by machine, but can be initiated and scheduled by a human analyst), which 
perform vulnerability assessment based on known vulnerabilities. Vulnerability of 
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machines often plays a key role for an analyst to confi rm an incident. After an inci-
dent is detected, a formal report is generated by the analyst and disseminated for four 
types of further analyses at the tactical level: (1) incident response (for minimizing 
damage and expedited repairs), (2) impact analysis and mitigation plan (e.g., impacts 
to the current mission of war fi ghters), (3) identify and track attackers through threat 
analysis (i.e., intelligence gathering, analysis, and fusion for identifying the sponsor 
and the intent of the attack), and (4) forensic and malware analysis to obtain further 
details about the incident. The fourth step is especially important for a zero-day attack 
(e.g., an attack exploiting an unknown vulnerability), because they are crucial to 
identify the “signature” of the attack so that they can be incorporated into IDS for 
detecting future attacks of the same type. 

 D’Amico and Whitley ( 2008 ) identifi ed six analysis roles that accounted for all 
the cognitive work performed by cyber analysts: (1) triage analysis, (2) escalation 
analysis, (3) correlation analysis, (4) threat analysis, (5) incident response, and (6) 
forensic analysis. While the role of the latter three has been explicitly represented in 
Fig.  1 , the fi rst three cognitive roles are part of Incident Detection and other func-
tions performed by the analysts. Triage analysis fi lters the large amount of data 
(e.g., IDS alerts, network or system log) to identify “suspicious activity”, which 
feed to escalation analysis to investigate, interpret, and assemble data from multiple 
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  Fig. 1    The tactical-level cognitive processes of cyber analysts       
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sources over a time period longer than that of triage analysis. Correlation analysis 
searches for patterns and trends in current or historic data. D’Amico and Whitley 
( 2008 ) also described the workfl ow involving these three roles as an iterative pro-
cess. Some of the details of these processes are still not well understood. For exam-
ple, D’Amico and Whitley pointed out that analysts look for unexplained patterns 
during correlation analysis:

  An analyst might not know what patterns they are looking for in advance; instead, the ana-
lyst might “know it when they see it”. When they encounter a pattern that they cannot 
explain, they form hypotheses about potential malicious intent, which they try to confi rm or 
contradict via additional investigation. 

   How do cyber analysts actually perform this and other cognitive roles? What are 
the cognitive processes that tie these analysis roles together? To answer these ques-
tions, we need to capture and analyze the fi ne-grained cognitive reasoning processes 
of cyber analysts. In the following section, we describe the state-of-the-art in cap-
turing fi ne-grained cognitive reasoning processes and the diffi culties for applying it 
to the tasks performed by cyber analysts. 

1.1      Fine-Grained Cognitive Reasoning Process Capture 
and Analysis 

 We use the term “fi ne-grained cognitive reasoning process” to refer to the detailed 
cognitive process that describes individual actions and reasoning steps performed 
by an analyst and the relationships between these actions and reasoning steps. For 
example, one or more hypotheses can be formulated by the analyst at a particular 
point of the reasoning process based on the observations the analyst has made up to 
that point. These hypotheses can be later refi ned, rejected, or confi rmed by the ana-
lyst during his/her reasoning process. For cyber analysts, such detailed cognitive 
reasoning process can complement the “high-level cognitive processes” described 
in the previous section in four important ways. First, it will improve our understand-
ing about the difference in the cognitive reasoning processes of the experts and 
less-experienced analysts. Such an understanding is critically important to facilitate 
the design of better training tools for cyber analysts. Second, the fi ne-grained cogni-
tive reasoning process of cyber analysts can provide a unique basis for identifying 
the opportunities to improve the visualization support for cyber analysts (Erbacher 
et al.  2010a, b ). Third, the analysis of fi ne-grained cognitive reasoning process can 
lead to the design of automated cognitive aid tools by reusing and/or aggregating the 
processes of analysts to enhance the performance of analysts. Finally, the automated 
capture of the fi ne-grained cognitive reasoning process of cyber analysts can facili-
tate the sharing of relevant information and knowledge between cyber analysts, 
whether they are in different work shifts or in different geographic locations. 

 Existing methods for capturing fi ne-grained cognitive reasoning process include 
(1) talk-aloud protocol, (2) think-aloud protocol, (3) retrospective reports protocol, 
(4) observational case study, and (5) behavior trace capture. The fi rst three methods 
are also referred to as types of “verbal protocol analysis” (Ericsson and Simon  1980 , 
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 1993 ). In a verbal protocol analysis, a subject performs a given task while being 
monitored by experimenters and being recorded (audio or video). In a talk-aloud 
protocol, the subject is asked to verbally articulate anything that comes to their mind 
in performing a given mental task. In a think-aloud protocol, the subject is asked to 
verbally describe anything that comes to their mind as they think to solve a problem. 
In a retrospective reports protocol, the subject is asked to refl ect and articulate their 
thinking after they solve the problem. Retrospective reports can be combined with 
one of the fi rst two protocols to validate their completeness (Ericsson and Simon 
 1993 ). Protocol analysis is the basis for knowledge acquisition methods, which 
elicit expert knowledge and encode them in an artifi cial intelligence system (often 
referred to as “expert systems”, “knowledge-based systems”, or “intelligent agents”) 
through interviews and case studies. Due to the complexity of these tasks, the verbal 
protocol analysis needs to be augmented with an “interviewer” (typically referred to 
as a “knowledge engineer” due to their familiarity of the target representation lan-
guage to be used to encode the expertise), who guides the thinking aloud protocol 
by asking probing questions, and by providing information to simulate the outcome 
of an action (e.g., test result of a diagnostic task) performed by the subject (Durkin 
 1994 ). While this elicitation method is feasible for tasks whose actions generate a 
limited number of outcomes (e.g., result of a test is positive or negative), it is diffi -
cult to apply the method to cyber analysis task whose actions (e.g., fi lter alerts for a 
particular port number) can lead to a wide range of possible outcomes. 

 The fourth method for acquiring fi ne-grained cognitive reasoning process is 
observational case study, which observes the subject in performing a task (Bell and 
Hardiman  1989 ). This method can be combined with think aloud protocol and/or 
retrospective report protocol. A case or a scenario is used in observational study to 
provide a context and relevant information in response to the actions of the subject. 

 The fi fth method for obtaining fi ne-grained cognitive reasoning process is behav-
ior trace, which transforms the observational data gathered from the subject into a 
“behavior trace”. Tools (such as MacSHAPA) have been developed to facilitate the 
generation of such behavior trace from observational data (Sanderson et al.  1994 ). 
For example, a knowledge/cognitive engineer can use MacSHAPA to encode actions 
and/or communications captured in the observational data as template or predicate. 
While this type of tool is useful, it cannot extract the cognitive process that the sub-
ject did not explicitly articulate in the think-aloud protocol. 

 In the rest of this chapter, we fi rst provide a literature review about research 
related to capturing cognitive process. This is followed by a framework for non- 
intrusive capturing and analysis of fi ne-grained reasoning cognitive processes, 
which includes (1) the Action-Observation-Hypothesis (AOH) conceptual model, 
(2) the non-intrusive capturing of a cognitive trace of cyber analysts containing a 
temporal sequence of AOH objects and relationships, and (3) extracting the reason-
ing process of cyber analysts by analyzing the cognitive trace. Section  4  presents a 
case study of applying the framework to systematic capturing of the cognitive rea-
soning process from professional network analysts and the initial results of analyz-
ing the cognitive traces. Finally, we summarize the key contributions of systematic 
capturing of the cognitive reasoning process of cyber analysts and its critical 
enabling role toward a more agile cyber defense.   
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2     Literature Reviews 

2.1     Cognitive Task Analysis 

 A cognitive task analysis (CTA) (Crandall et al.  2006 ) derives the required tasks for 
highly analytical (cognitive) activities such as decision-making; network analyst deter-
mination of network event relevance, importance, and characterization is of particular 
relevance. More specifi cally, a CTA attempts to determine what tasks are required to 
be performed and how the target experts perform said tasks. A cognitive task analysis 
is critical for developing correct tools and capabilities to improve the effectiveness of 
the network analyst, such as advanced displays, recommender systems, etc. Three 
CTAs are particularly relevant to network analysis from existing literature.

•    The fi rst CTA ( Foresti and Agutter n.d. ) examined the tools used by network 
experts at the time of the CTA as well as the advanced displays that had been 
developed for use by network experts. The focus of the CTA was to acquire the 
fundamentals necessary for the development of advanced displays geared 
towards improving network administrator effi ciency. Additionally, results of the 
CTA identifi ed the temporal organization of decisions and event prioritization 
through semi-structured interviews.  

•   The second CTA (D’Amico et al.  2005 , D’Amico and Whitley  2008 ) had three 
goals. First was to study the set of analyst goals. Second was to identify the 
needed analyst expertise and their depth. Third was to identify the viability of 
visual representations and how such visual representations might be used. This 
study was performed through subject interviews of seven different 
organizations.  

•   The third study (Erbacher et al.  2010a ,  b ) performed interviews of individuals 
with different levels of decision-making responsibility within network opera-
tions at Pacifi c Northwest National Laboratory. In addition to a wide range of 
requirements, this study generated a cyber command and control task fl ow dia-
gram with primary tasks including assessment, detailed assessment, response, 
audit, and big picture, which is shown in Fig.  2 .      

2.2     Case-Based Reasoning 

 The reuse of cyber analysts’ analytical reasoning results has been investigated using 
case-based reasoning (CBR). Given a problem, a CBR system retrieves a similar 
problem from a case library (also referred to as case base or knowledge base), modi-
fi es its solution for the given problem, and retains the new problem and solution in 
the case library (Stahl  2004 ). The original concept of CBR derives from a cognitive 
model of dynamic memory by Schank ( 1982 ), which led to computer-based CBR 
systems (Kolodner  1983 ; Lebowitz  1983 ). The process model of CBR developed by 
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Aamodt and Plaza ( 1994 ), consists of four components: retrieve, reuse, revise, and 
retain. The model has driven the majority of research and application development 
in CBR research. Research into each of the four component areas has been exten-
sive resulting in numerous reviews and surveys (De Mantaras et al.  2005 ). An exten-
sion of CBR model, shown in Fig.  3 , explicitly includes the generation of incident 
reports by analysts (Erbacher and Hutchinson  2012 ).  

 In operations, a new scenario is matched against the existing scenarios to fi nd the 
most relevant match, which is then mapped, using a similarity metric, to the new 
scenario providing an updated solution. Such case-based reasoning has been applied 
to a wide range of domains including:

•    Breathalyzers (Doyle  2005 )  
•   Bronchiolitis (Doyle  2005 )  
•   E-Clinic (Doyle  2005 )  
•   Intelligent tutoring systems (Soh and Blank  2008 )  
•   Help desk systems, i.e. diagnosis (Stahl  2004 )  
•   Electronic commerce product recommendation systems (Stahl  2004 )  
•   Classifi cation, i.e., class membership (Stahl  2004 )    

 The retrieval component of CBR requires a similarity metric between cases. A 
survey/taxonomy of similarity metrics can be found in Cunningham ( 2008 ). 
Examples of research in retrieval mechanisms include:

•    Information theory approaches (Ranganathan and Ronen  2010 ). This research 
provides for the identifi cation of similarities between instances in an ontology.  

•   User defi ned functions (Sterling and Ericson  2006 ). The associated patent also 
covers the representative database issues.  

  Fig. 2    A cyber command and control task fl ow (Erbacher et al.  2010a ,  b )       
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•   Abduction versus deduction (Sun et al.  2005 ).  
•   Fuzzy similarity (Sun et al.  2005 ).  
•   Contextual probability (Wang and Dubitzky  2005 ). This metric integrates prob-

ability with distance-based neighborhood weighting and works for both ordinal 
and nominal data.  

•   Adaptive similarity (Long et al.  2004 ). This paradigm allows for specifi cation of 
new similarity metrics and identifi cation of the similarity metric to be applied in 
particular scenarios without the need for reprogramming.  

•   Semantic vs. syntactical similarities (Aamodt and Plaza  1994 ).  
•   Models of similarity (Osborne and Bridge  1997 ). The goal of this work was to 

identify the primary classes of similarity including absolute and relative similar-
ity metrics.    

 Specifi c similarity metrics for categorical data include overlap, eskin, IOF, OF, 
Lin, Lin1, Goodall1, Goodall2, Goodall3, Goodall4, Smirnov, Burnaby, Anderberg, 
and Neighborhood Counting Metric (Boriah et al.  2008 ; Wang and Dubitzky  2005 ). 

 Case-based reasoning has been applied to support the reuse of an analyst’s 
“report” that summarizes the analyst’s analytical reasoning results regarding previ-
ous cyber-attacks so that the efforts of generating reports for a newly detected attack 
can be reduced signifi cantly (Erbacher and Hutchinson  2012 ). However, CBR has 
not been used to capture and reuse the process of the analyst’s analytical reasoning 
process. One of the challenges in applying CBR to retrieving and reusing analytical 
reasoning processes is a lack of non-intrusive way to capture them.   

  Fig. 3    An extended case-based reasoning process model       
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3     A Systematic Cognitive Reasoning Process Capture 
and Analysis Framework 

 To address the challenges of capturing a detailed cognitive process of a cyber ana-
lyst, we have developed a framework and associated cognitive trace tool for captur-
ing the cognitive reasoning process of a cyber analyst. The framework not only 
integrates observational study and behavior trace methods described in Sect.  1.1 , 
but also extends the previous approaches by enabling analysts to record their think-
ing (as “hypotheses”), and linking them to observations of interests during the 
observational study. In a way, the framework transforms “think aloud” to “type 
aloud”— instead of verbally articulating their thinking, analysts record each step of 
their cognitive reasoning process in a naturalistic way (not necessarily monitored) 
in the context of solving a given case involving cyber-attacks. 

 In the rest of this section, we fi rst describe the conceptual model of the framework, 
which we will refer to as the A-O-H model, named after the three main objects in the 
framework:  Actions  performed by a subject,  Observations  of interest to the subject, 
and  Hypothesis  generated by the subject based on the observations. We then intro-
duce the relationship between these objects that forms the analytical reasoning pro-
cess of cyber analysts. Section  3.3  describes the AOH objects and relationship captured 
in a non-intrusive way. Finally, we discuss how the reasoning process can be extracted 
from the cognitive trace to provide the basis for systematic analysis of the cognitive 
reasoning processes at the individual level as well as across multiple analysts. 

3.1     The A-O-H Conceptual Model of an Analytical 
Reasoning Process 

 A conceptual model of the analytical process of cyber analysis is informed by 
cognitive science theories including sense making theory and naturalistic decision 
making. The sense making theory builds on three key cognitive constructs: 
 Action ,  Observation , and  Hypothesis . Actions refer to analysts’ evidence 

  Fig. 4    The iterative 
analytical reasoning process 
involving action, observation 
and hypothesis (A-O-H 
Model) (Zhong et al.  2013 )       
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exploration activities; Observations refer to the observed data/alerts considered 
relevant by the analysts; Hypotheses represent the analysts’ awareness and 
assumptions in a certain situation. These three constructs iterate and form reason-
ing cycles. Actions can lead to new or updated observations, which result in new 
or updated hypotheses, and later subsequent Actions. Not surprisingly, these three 
constructs, being part of the general sense making theory, naturally map to cogni-
tive activities of cyber analysts. While Actions and Observations in cyber analysis 
are obvious, Hypotheses are not explicit (i.e., they are “tacit” knowledge) and 
cannot be fully anticipated due to new attack behaviors (hence needs to be entered 
by the analyst in a semi-formal representation). Often, a Hypothesis is not known 
for certain until further evidence (e.g., presence of relevant vulnerability on a 
node) is gathered to confi rm or disconfi rm. All the Hypotheses maintained by an 
analyst are called “ Working Hypotheses ”. We call the instances of Action, 
Observation and Hypothesis as “ AOH Objects ”.   

3.2     The AOH Objects and Their Relationships Can Represent 
the Analytical Reasoning Processes 

 In the iterative cycles of analytical reasoning processes, Hypotheses in different sense 
making cycles be related in important ways. One set of Actions and Observations can 
lead to a set of disjunctive hypotheses. Therefore, the AOH Objects are connected to 
each other in an analytical reasoning process. This is illustrated in Fig.  5 . Since an 
Action always results in an Observation, we put Action and Observation in a unit, 
called “ AO ”. The Hypotheses (“ H ”s) being the children of an AO indicates these 
Hypotheses are generated based on the AO. An AO being a child of an H indicates 
that this AO is triggered by the H. We can also consider the Hypotheses only. If an  H   1   
has an AO unit as its child and another H  H   2   is a child of AO, we say that  H   2   is a child 

  Fig. 5    An analytical reasoning process represented by the AOH objects       
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hypothesis of  H   1 .  A parent H is connected to its immediate children H showing a 
conjunctive AND relationship (i.e., refi ned sub- hypotheses). If an H  H   1   and an  H   2   
have the same AO as their parent, we say that  H   2   is a sibling hypothesis of  H   1 .  The 
sibling Hypotheses have disjunctive OR relationships (i.e., alternative hypotheses). 
Therefore, the AOH Objects in an analytical reasoning process are interconnected.   

3.3      Capturing the Analytical Reasoning Processes 

3.3.1     The Representation Indicates What Should Be Captured 

 We have proposed a model of analytical reasoning processes, which includes the 
AOH Objects and their relationships. The proposed model supports both a semi- 
structured representation of interconnected sense making constructs: Actions, 
Observations, and Hypothesis as well as an AND-OR organization of the Hypothesis. 
Actions and Observations can be captured in a structured representation, because 
the analysts’ data exploration behaviors and the selected data can be automatically 
recorded. The Hypothesis constructs can be recorded in free text, which enables a 
fl exible and analyst-friendly representation of analysts’ thoughts. 

 An analyst could conduct various operations on the AOH Objects: the operations 
on Action could include fi ltering, searching, inquiring and data selecting; the opera-
tions on Observation could be selecting data entries and linking the data; the opera-
tions on Hypothesis could be creating a new Hypothesis, modifying an existing 
Hypothesis, switching the context and confi rming/denying an existing Hypothesis. 
We will describe the operations in detail in Sect.  4 . Therefore, we should also record 
the sequence of an analyst’s operations on the AOH Objects in a temporal order.  

3.3.2     Non-intrusive Capture 

 Regarding the importance of tacit knowledge and expertise, we capture the analyti-
cal reasoning processes of cyber analysis in a non-intrusive way. A monitoring sys-
tem is developed to support the construction of AOH Objects, investigation and 
refi nement of Hypotheses. This system audits the analysts’ behaviors (e.g. data 
manipulation, hypothesis creation and refi nement) and records them in traces, called 
“Cognitive Traces”. This system would never interrupt the analysts. The Actions 
and related Observation are automatically tracked as the analysts selected data 
sources and specifi c entries of interest from each data source. When the analyst 
wishes to create a Hypothesis, the previously tracked Observations are automati-
cally included in an initial list to be included as AO (i.e., the action-observation 
unit). The analyst can choose to modify the list to exclude data entries he/she looked 
at, but not relevant to the created Hypothesis. After the analyst confi rms the cap-
tured AO to be associated with a Hypothesis, she/he is presented with a GUI inter-
face to enter a short free-text description of the Hypothesis. Once the analyst 
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completes the entering of Hypothesis description, the newly created AO and 
Hypothesis and their relationships are recorded to capture the analytic process of 
the cyber analyst. When the analyst wants to confi rm a Hypothesis, he/she can mark 
the Hypothesis as “True”. Alternatively, the analyst can reject a Hypothesis by 
marking it as “False”.   

3.4     Reasoning Processes in AOH Representation Can 
Be Extracted from the Cognitive Traces 

 Using the proposed representation, an analytical reasoning process is a process of 
evolving construction of AOH Objects, investigation and refi nement of Hypotheses. 
Since the monitoring system has recorded the analysts’ behaviors of construction of 
AOH Objects, investigation and refi nement of the Hypotheses, we can extract the 
analytical reasoning processes given the captured cognitive traces. 

 Figure  6  shows the framework of the proposed cognitive tracing analysis. The 
conceptual AOH model lays the cognitive foundation of our representation of ana-
lytical reasoning processes. This representation helps us to capture the analytical 
reasoning processes in a non-intrusive way. We can then extract the reasoning pro-
cesses by analyzing the cognitive traces.  

 By analyzing the cognitive traces, which are generated by cyber analysts and gath-
ered in a non-intrusive way, we can identify gaps and opportunities that lay the foun-
dation for the next generation of cyber defense training, education, and development. 
More specifi cally, the results of analyzing analytical reasoning traces of cyber ana-
lysts will provide key insights about the differences of analytical reasoning between 
highly experienced analysts and less-experienced analysts so that opportunities to 
improve the training of analysts can be identifi ed. Furthermore, the results of the 
trace analysis will demonstrate the feasibility and the opportunities about leveraging 
the experience of experienced analysts to support the analytical reasoning of less-
experienced analysts. Another important benefi t of the results of trace analysis is to 

  Fig. 6    The framework of the cognitive tracing analysis       
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demonstrate the opportunities to improve the sharing and  communication of 
 knowledge regarding cyber attacks to the decision makers through a systematic con-
struction of “story telling” using the traces. Finally, the results of the trace analysis 
involving multi-step attacks will identify opportunities for multiple analysts to col-
laborate and share forensic-sound information to facilitate near real- time cyber 
forensics to support “fi ght through” under an asymmetric information environment.   

4       A Case Study about Professional Network Analysts 

4.1     A Tool for Capturing the Cognitive Traces 

 We developed ARSCA (Analytical Reasoning Support Tool for Cyber Analysis) 
toolkit to track the traces of analysts’ analytical reasoning processes while they are 
doing cyber analysis tasks. Figure  7  shows the architecture of ARSCA. ARSCA 
provides analysts with two main views: Data View and Analysis View. Data View 
integrates the monitoring data sources, for example, network topology, IDS alerts 
and fi rewall logs in this case. The Analysis View enables analysts to create instances 
of Action, Observation and Hypothesis (i.e. AOH Objects).  

 Figure  8  shows the interfaces of ARSCA. While an analyst is exploring the mon-
itoring data, the tool automatically captures the activities of data manipulation (for 
example, searching and fi ltering) in an emerging Action instance, and also captures 
the selected data and other information resulting from the previous activities in the 
emerging Observation instance. ARSCA also enables an analyst to write down their 
thoughts as a Hypothesis instance and relate it to its corresponding Actions and 
Observations (Zhong et al.  2013 ).   

  Fig. 7    The architecture of a cognitive trace capture tool       
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4.2     Conducting Human Studies for Collecting Cognitive 
Traces from Professional Network Analysts 

 We conducted human studies with professional cyber analysts to gather their cogni-
tive traces of the analytical reasoning processes. First of all, we needed to prepare 
the network monitoring data and the attack scenarios. We adopted the cyber analysis 
data of VAST 2012 Challenge Mini-challenge 2 (VAST Challenge  2012 ), including 
about 35,000 IDS alerts and 26,000,000 Firewall logs. Figure  9  shows the network 

  Fig. 8    The interface of ARSCA (Zhong et al.  2013 ) ( a ) Data view ( b )Analysis view       
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topology of the VAST 2012. This dataset implies a multi-step attack that took place 
over two days (about 40 h). Considering the fact that it is impossible for humans to 
process such large amounts of data without the help of external data analysis tools 
in a limited time, we cut out four pieces of the dataset which includes some key 
attack events and made four tasks using each of them. We made the tasks containing 
the same number of key attack events occurring in a similar amount of time, and 
containing a similar amount of network data. Table  1  shows the detailed information 
about the time period and dataset size of each task. Therefore, we can assume the 
tasks are at the same level of diffi culty. 

   In collaboration with the U.S. Army Research Laboratory (ARL), the study 
recruited participants from professional network analysts working at ARL. In each 
task, analysts were asked to analyze the prepared network monitoring data with the 
goal of detecting the attack events. We also requested that the analyst use this tool 
to accomplish the analysis. Therefore, the tool would capture their analytical rea-
soning traces while they were doing the tasks. 

  Fig. 9    The network topology of VAST 2012 Mini Challenge 2 (VAST 2012)       

 Task  Time period  Raw data size 

 1  4/5 20:18–20:30 (12 min)  IDS: 214 
 Firewall: 123,133 

 2  4/5 22:15–22:26 
 (11 min) 

 IDS: 239 
 Firewall: 115,524 

 3  4/6 0:00–0:10 
 (10 min) 

 IDS: 296 
 Firewall: 112, 766 

 4  4/6 18:01–18:15 
 (14 min) 

 IDS: 252 
 Firewall: 85,463 

  Table 1    Time period and 
size of dataset of the tasks  
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 Since the analysts are asked to use our tool, we provided a training session before 
each task and designed a quiz to test an analyst’s profi ciency of working with 
ARSCA. Each subject had to pass the quiz before he/she performs the task. 

 As a part of the experiment, we also ask subjects to respond to a pre-task ques-
tionnaire and a post-task questionnaire. The pre-task questionnaire contains ques-
tions about the demographic of the analyst, reasoning style, and the level of 
knowledge and skills regarding cyber analysis. The post-task questionnaire includes 
the analyst’s retrospective summarization of the key fi ndings and conclusions, as 
well as their assessment about the usefulness of the tool.  

4.3     The Cognitive Traces 

4.3.1     What Is in a Cognitive Trace? 

 Once an analyst completes his/her task, ARSCA generates the analyst’s cognitive 
trace. In the rest of the chapter, we will use one of the subjects, S1, as an example to 
demonstrate in further detail the cognitive trace captured by ARSCA. 

 Figure  10  shows the AOH Objects created by subject S1 and their relationships. 
The ovals are the AO units and the rectangles are Hs. The text in an oval or a rect-
angle is the ID number for the AOH Object. We refer to the set of Hypotheses that 
are linked to the same AO (i.e. Action-Observation unit) as Alternative Hypotheses. 
For example, the Hypotheses in the dotted box in Fig.  10  are Alternative Hypotheses.  

 The operations on the AOH Objects are recorded in the cognitive trace in the 
temporal order they were performed by the analyst. Each item in a trace contains a 
timestamp and an operation on the AOH Objects. These operations can be grouped 
into three categories: (1) the operations related to Action (i.e. “AOP_Inquring”, 
“AOP_Filtering”, “AOP_Searching”, and “AOP_Selecting”), (2) the operations 

  Fig. 10    The AOH objects and their relationships in S1’s cognitive trace       
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related to Observation (i.e. “OOP_Selected” and “OOP_Linking”), and (3) the 
operations related to Hypothesis (i.e. “HOP_Confi rm/Deny”, “HOP_Modify”, 
“HOP_SwitchContext”, “HOP_Add_Sibling”, and “HOP_New”). Table  2  summa-
rizes these operations.

   Figure  11  shows a portion of the fi le that records the cognitive trace generated by 
subject S1. Each item in the trace includes a timestamp and an operation. The opera-
tions in the trace items shown in Fig.  11  can be explained as follows. 

•    “FILTERING” (AOP_Filtering): Filtering the data source “Task2IDS” by the 
condition “SourcePort=6667”.  

•   “SELECTING” (AOP_Selecting): Selecting the data entries in the fi ltered 
data set.  

•   “SELECTED” (OOP_Selected): The selected data entries. Such kind of opera-
tions always come in pairs with AOP_Selecting operations.  

•   “NEW” (HOP_NEW): Creating a new Hypothesis.     

4.3.2     Cognitive Trace Analysis 

 We have conducted a preliminary analysis about the basic features of the collected 
cognitive traces from ten subjects, denoted by “S1”, “S2”, “S3”, “S4”, “S5”, “S6”, 
“S7”, “S8”, “S9”, and “S10”. Figure  12  shows the number of Action-Observation 
units and the number of hypotheses in the cognitive traces of these analysts, and the 
time they took to complete the cyber analysis task (based on VAST 2012). There is 
a signifi cant differences among the analysts in terms of these three characteristics of 
their cognitive traces.  

 We further compared the number and the types of operations for the ten subjects 
in this case study. As shown in Fig.  13 , there is a signifi cant difference among 
the analysts both in terms of the number of operations and the type of operations 

    Table 2    The description of operations   

 Operation  Description 

 Operation 
on action 

 AOP_Filtering  Filter a data source 
 AOP_Searching  Search a keyword in a data source 
 AOP_Selecting  Select some data entries in a data source 
 AOP_Inquiring  Inquire about a port or a term 

 Operation on 
observation 

 OOP_Selected  Generate an observation based on the selected data 
 OOP_Linking  Link the selected data 

 Operation on 
hypothesis 

 HOP_New  Create a new hypothesis 
 HOP_Add_Sibling  Add an alternative hypothesis 
 HOP_SwitchContext  Switch the current focus of attention from one 

hypothesis to another hypothesis 
 HOP_Modify  Modify the content of a hypothesis 
 HOP_Confi rm/Deny  Confi rm/deny a hypothesis 
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  Fig. 11    An example output fi le of S1’s cognitive trace       
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  Fig. 12    The number of AOH’s in the traces and task completion time       
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they performed. This “heterogeneity” of the cognitive trace motivates us to further 
investigate to see whether there is any possible relationship between characteristics 
of cognitive traces and the performance of analysts. We will return to this point in 
the next section.  

 To gain a deeper understanding about the reasoning process of analysts, further 
analyses about the temporal ordering of these operations are also important. For 
example, switching context is an interesting aspect for trace analysis, because it may 
reveal the rationale and associated reasoning that enables the analyst to change 
focus of attention at a particular time in his/her reasoning process. We will use the 
trace of S1 to illustrate this: S1 switched context twice (shown in Fig.  14 ). The rel-
evant trace segments are shown on the left of Fig.  14 , and the AOH Objects (i.e. AOs 
and Hs) and their connections in S1’s trace are shown on the right. In the fi rst case 
of context switching, S1 jumped from Hypothesis “H39431008” (labelled “1”) to 
“H46131157” (labelled “2”). Following this operation, S1 created a new Hypothesis 
“H666431551” (labelled “3”) as a sibling Hypothesis of “H46131157”. In the sec-
ond case, S1 jumped from “H89931527” to “H58331044”, and then change the truth 

  Fig. 14    Two cases of switching to previous hypothesis in S1’s trace       
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value of “H58331044” from “Unknown” to “False” (i.e. rejecting it). Even though 
the analyst S1 switched contexts in both cases, the rationales are quite different. In 
the fi rst case, S1 went back to a previous hypothesis to create an alternative hypoth-
esis. In the latter case, he/she recalled a previous hypothesis to reject it. This exam-
ple illustrates the importance in analyzing the temporal sequence of operations to 
obtain a richer understanding about the reasoning process of the analyst.    

4.4     What Are the Characteristics of Cognitive Traces 
for Different Levels of Performance? 

 Since the pursuit of our research is to improve the analysts’ performance in cyber 
analysis, we are interested in the analysts’ performance in our tasks and the charac-
teristics of cognitive traces for different levels of performance. 

 The ground truth of our tasks is known, which is the attack scenario of the VAST 
2012 Challenge Mini Challenge 2. Therefore, we can evaluate the analyst’s perfor-
mance in a task based on how accurate his/her fi ndings and conclusions are com-
pared to the known ground truth. We conducted two rounds of evaluation to decide 
a fi nal performance score for each subject, on a scale of 0–5 (with 5 being the best 
performance). Figure  15  shows the performance score of the ten subjects. Three 
analysts were rated highest (5 points), four analysts received 4 points, and three 
analysts were rated lowest (3 points).  
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  Fig. 15    The performance score of the ten subjects       

 

Cognitive Process



140

 Next, we categorize the cognitive traces into three groups according to the per-
formance score (that is, the traces with 3 points, 4 points and 5 points respectively), 
and investigate the characteristics of these traces in each group. 

 We fi rst compare the completion time and the number of AO units and hypotheses 
for analysts with different levels of performance (i.e. 3 points, 4 points, and 5 points). 
Figure  16  shows that traces in the lowest performance group have, on average, the 
smallest number of AO units and hypotheses in their traces. The task completion 
time for the group with the best performance is also larger, on the average, than the 
completion time of those from the other two groups. While we are not able to arrive 
at conclusions about the relationship between analyst performance and the charac-
teristics of their traces due to the small sample size of the analysts, these preliminary 
fi ndings do suggest that further studies are warranted to further investigate potential 
relationships between analyst performance and the characteristics of their traces.  

 Using a similar strategy, we want to investigate whether the number of operations 
for each operation type is related to analyst performance in some way. Figure  17  
shows the result of this comparison. The group of high performance analysts, on the 
average, uses more fi ltering operations (AOP) than the two other groups. They also 
tend to do more context switching (HOP SwitchContext) than the others. Finally, the 
high performance group performs more linking operations among selected observa-
tions (OOPLinking). As we mentioned before, more samples and further studies are 
needed to investigate whether these detailed trace characteristics are correlated with 
analyst performance in a statistical signifi cant way. These preliminary results, how-
ever, do suggest that comparing the characteristics of cognitive traces of analysts 
with their performance is a promising direction of future research.    
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  Fig. 16    The completion time and the number of A-O-H objects in the three groups of cognitive 
traces with different levels of performance scores       
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5     Summary 

 As computing devices connected to the internet explode for personal health moni-
toring and management, environment and physical security surveillance, smart 
home appliances, smart vehicles, smart energy grid, and ubiquitous computing 
(e.g., Google Glass), the complexity and the frequency of cyber-attacks faced by 
cyber defense analysts of governments and business enterprises continue to increase 
at a rapid speed. The ultimate goal of cyber defense is to increase its agility even 
for zero-day attacks (e.g., attacks leveraging vulnerabilities that are not known by 
the cyber defenders), so that the time from detection of attacks to creating auto-
mated support tool to enable early and effective detection of future similar attacks is 
as close to real-time as possible. A critical obstacle on the path to achieving this 
vision is lacking a systematic framework and supporting methods/tools for captur-
ing the analytical reasoning process of professional cyber defense analysts. 

 In this chapter, we have described the current understanding about the high-level 
cognitive process of cyber analysts, based on Cognitive Task Analysis (CTA) con-
ducted previously with professional cyber defense analysts, and the diffi culty of 
capturing fi ne-grained cognitive reasoning process of analysts using existing meth-
ods. To address this diffi culty in a way that is well-founded theoretically (for high 
generality) and, in the same time, practically feasible for being embedded into the 
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work environment of analysts in a “non-intrusive” way, we present a paradigm, we 
believe, that has a potential to create transformational impacts toward a much more 
agile cyber defense in the near future. We summarize below the key features of the 
framework and how they can contribute to enhancing the agility of cyber defense. 

 First, the sense making cognitive theory foundation of the A-O-H conceptual 
model enables the framework to be general and broadly applicable to a wide range 
of tasks and domains. The notion of actions, observations, and hypotheses naturally 
map to the observable actions performed by the analysts, observations from immense 
data presented to the analysts, and their hypothesized attack step, sequence, and/or 
plan. Because the framework is built on the A-O-H model, it can be applied not only 
to intrusion detection at the tactical level as demonstrated in the case study, but also 
to other types of tactical cyber analysis tasks (e.g., forensics) as well as to cyber 
defense tasks at the strategic level. In fact, the framework can also be applied to 
other domains such as intelligence analysis. 

 Second, the non-intrusive nature of the framework enables the capturing of the 
cognitive process to be embedded in the work environment of the professional ana-
lysts. The system audits the analysts’ behaviors (e.g. data manipulation, hypothesis 
creation and refi nement) and records them in “Cognitive Traces” without interrupt-
ing the analysts. The Actions and related Observation are automatically tracked as 
the analysts selected data sources and specifi c entries of interest from each data 
source. When the analyst wishes to create a Hypothesis, the previously tracked 
Observations are automatically included in an initial list to be included as AO (i.e., 
the action-observation unit). The non-intrusive capturing of cognitive trace is a key 
enabler toward a more agile defense because it enables the cognitive trace to be 
captured at the earliest possible time, and signifi cantly reduce the time and the cost 
(e.g., due to extra efforts the analysts need to make) it may take to extract reasoning 
process from the analysts otherwise. 

 Third, the cognitive traces captured in non-intrusive way, as demonstrated by the 
case study, provide, for the fi rst time, important characteristics of the reasoning 
process of analysts and their potential relationship to the performance of analysts. 
These characteristics and relationship offers promising indication that the analysis 
of the reasoning process (both at the individual level and at the aggregate level) can 
be benefi cial to the design of training programs and cognitive aids for enhancing the 
performance of analysts (Zhong et al,  2014 ). 

 In summary, this book chapter presents a theoretically well-founded and practi-
cal non-intrusive framework for capturing and analyzing the cognitive reasoning 
processes of professional cyber analysts. It provides important basis for further 
studies regarding collaboration among analysts (e.g., in two adjacent work shifts), 
visualization needs and design for supporting analysts, cognitive aids, and training 
procedures that leverage the reasoning processes captured to assist analysts to per-
form the cyber defense analysis at hand with higher quality and more effi ciency.     
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Visualizations and Analysts

Christopher G. Healey, Lihua Hao, and Steve E. Hutchinson

1  Introduction

The challenges of CSA discussed in previous chapters call for ways to provide 
assistance to analysts and decision-makers. In many fields, analyses of complex 
systems and activities benefit from visualization of data and analytical products. 
Analysts use images in order to engage their visual perception in identifying fea-
tures in the data, and to apply the analysts’ domain knowledge. One would expect 
the same to be true in the practice of cyber analysts as they try to form situational 
awareness of complex networks. Earlier, the Cognition and Technology chapter 
introduced the topic of visualization: its criticality to the users, e.g., cyber analysts, 
as well as its pitfalls and limitations. Now, this chapter takes a close look at visual-
ization for Cyber Situational Awareness. We begin with a basic overview of scien-
tific and information visualization, and of recent visualization systems for cyber 
situation awareness. Then, we outline a set of requirements, derived largely from 
discussions with expert cyber analysts, for a candidate visualization system.

We conclude with a case study of a web-based tool that supports our requirements 
through the use of charts as a core representation framework. A JavaScript charting 
library is extended to provide interface flexibility and correlation capabilities to the 
analysts as they explore different hypotheses about potential cyber attacks. We describe 
key elements of the design, explain how an analyst’s intent is used to generate different 
visualizations that provide situation assessment to improve the analyst’s situation 
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awareness, and show how the system allows an analyst to quickly produce a sequence 
of visualizations to explore specific details about a potential attack as they arise.

Data visualization converts raw data into images that allow a viewer to “see” data 
values and the relationships they form. The motivation is that images allow viewers to 
use their visual perception to identify features in the data, to manage ambiguity, and 
to apply domain knowledge in ways that would be difficult to do algorithmically.

Visualization has a long and rich history, starting with the use of maps and graphs 
to represent information. In one famous example, John Snow constructed a dot map 
to identify clusters of victims during a cholera outbreak in central London in 1854. 
Based on the location of the clusters, Snow hypothesized that contaminated drink-
ing water was the cause of the disease. Disabling a public water pump in the area 
confirmed this conclusion. Another example occurred during the Crimean War 
(1853–1856). Florence Nightingale, volunteering as a nurse, observed very poor 
living conditions for wounded soldiers. This led her to create a multidimensional 
pie chart, known a Rose or a Coxcomb chart, to document the causes of deaths dur-
ing the war. She used her charts to highlight that deaths from preventable disease far 
outnumbered deaths from injury and other non-preventable causes.

Work in visualization continued to expand on these earlier uses. In the area of 
statistics Bertin presented a theory of graphical symbols used to visually represent 
information (Bertin 1967). Chernoff proposed the use of facial expression proper-
ties (Chernoff faces) to visualize multivariate data (Chernoff 1973). In 1987 the 
National Science Foundation sponsored a Workshop on Visualization in Scientific 
Computing. Results were presented to the research community as a foundation for 
computer-based visualization (DeFanti and Brown 1987). The initial focus was on 
scientific visualization techniques for data with known spatial embeddings: volume 
visualization of reconstructed CT or MRI data, terrain visualization of geospatial 
data, or flow visualization of vector fields representing flow data. Later, the field 
expanded to include information visualization approaches for more abstract data: 
text visualization for documents or web pages, level-of-detail visualization for data 
with hierarchical structures, or multivariate visualizations made up of glyphs that 
vary their visual appearance to represent multi-valued datasets.

Although scientific and information visualization are seen as two sub-areas, sig-
nificant overlap exists between them. For example, issues of human perception—
how our visual system perceives basic properties of colour, texture, and motion, and 
how we can use this knowledge to build effective visual representations—apply to 
both areas. Multivariate data—data elements that encode multiple data attribute 
 values—must be considered in both scientific and information visualization.

The field of visualization has matured significantly since the original NSF work-
shop. The area of visual analytics was proposed in 2005 to explicitly combine data 
analytics and visualization for iterative data exploration and hypothesis testing 
(Thomas and Cook 2005). New research continues in many different directions. 
Johnson, director of the Scientific Computing and Imaging (SCI) Institute at the 
University of Utah, published a list of “Top Scientific Visualization Research 
Problems” (Johnson 2004). Examples include integrating science into visualization, 
representing error and uncertainty, integrating perception into visualization, taking 
advantage of novel hardware, and improving human-computer interaction in 
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 visualization systems. A more recent report sponsored by the NIH and the NSF on 
visualization research challenges echoed these suggestions (Johnson et al. 2006). 
Although nearly 10 years have passed since Johnson’s original list, many of these 
areas continue to generate new research results.

2  Formalizing Visualization Design

Numerous researchers have proposed ways to structure or describe a visualization 
design, for example, by the data being visualized, by the visual properties being 
used, or by the tasks the visualization supports.

We present a formalization that describes how data is mapped to visual proper-
ties like luminance, hue, size, orientation, and so on. Data passed through this data- 
feature mapping generates a visual representation—a visualization—that displays 
individual data values and the patterns they form.

An input dataset D is made up of one or more data attributes A A An= ¼{ , , }1 . 
Each data element ei stored in D contains a value for each data attribute, 
e a ai i i n= ¼{ , }, ,1 . In order to visualize D, a set of n visual features V V Vn= ¼{ , , }1  are 
selected, one for every data attribute in A. Finally, mappings M M Mn= ¼{ , , }1  are 
defined to map the domain of Ai to the range of Vi.

As a simple example, we return to the well-known technique of visualizing data on 
a map. Consider a temperature map similar to those shown on any weather site. Here, 
D is made up of three attribute: A A A A= { : : : }1 2 3longitude latitude, , temperature . 
The visual features V V x V y V= { : , : , : }1 2 3 colour  are used to convert temperature 
readings throughout the world, stored as data elements ei ∈ D, into a visual represen-
tation. M1 and M2 map ei’s longitude and latitude to an absolute x and y location. 
These can be used to position the map within the visualization window, and to 
change its size and aspect ratio. M3 maps temperature values to different colours, 
often over a discretized rainbow colour scale that mirrors the range of colours seen 
in a rainbow: violet–indigo–blue–green–yellow–orange–red. This represents cold 
temperatures with purple and blue, hot temperatures with orange and red, and mod-
erate temperatures with green and yellow, exactly as seen in many temperature maps.

More complicated datasets have more data attributes. For example, suppose we 
expanded the weather dataset to include not only temperature, but also pressure, 
humidity, radiation, and precipitation. This requires a visualization design that uses 
more visual features and data-feature mappings. It quickly becomes difficulty to 
choose features and mappings in ways that work effectively together. We could also 
increase the number of weather readings we collect. Even on a high definition dis-
play, once the number of data elements exceeds 2.2 million, there are not enough 
pixels in the display to visualize each element. Introducing additional positional 
attributes like elevation and time further complicates the visualization’s design 
requirements. Non-numeric data attributes may also exist. Suppose D included an 
attribute “A4: forecast” that provides a text description of the current weather 
 conditions, in the context of average and extreme conditions for the given location 
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and time of year. Choosing a visual feature and a mapping to convert text forecasts 
into visual representations is itself a challenging problem. Researchers in visualiza-
tion are studying new techniques that are designed to address exactly these types of 
issues.

Based on this overview, it seems clear that visualization offers the potential for 
important contributions to cyber situation awareness. Indeed, many existing situa-
tion awareness tools use visualization techniques like charts, maps, and flow dia-
grams to present information to an analyst. It is critical, however, to study how best 
to integrate visualization techniques into a cyber situation awareness domain. For 
example, which techniques are best suited to the data and tasks common to this 
domain? What is the best way to integrate these techniques into an analyst’s existing 
workflow and mental models? How can problems in cyber situation awareness 
motivate new and novel research in visualization?

3  Visualization for Cyber Situation Awareness

The visualization community has focused recent attention on the areas of cyber 
security and cyber situation awareness. Early visual analysis of cyber security data 
often relied on text-based approaches that present data in text tables or lists. 
Unfortunately, these approaches do not scale well, and they cannot fully represent 
important patterns and relationships in complex network or security data. Follow-on 
work applied more sophisticated visualization approaches like node-link graphs, 
parallel coordinates, and treemaps to highlight different security properties, patterns 
in network traffic, and hierarchical data relationships. Because the amount of data 
generated can be overwhelming, many tools adopt a well-known information visu-
alization approach: overview, zoom and filter, and details on demand. This approach 
starts by presenting an overview of the data. This allows an analyst to filter and 
zoom to focus on a subset of the data, then request additional details about the sub-
set as needed. Current security visualization systems often consist of multiple visu-
alizations, each designed to investigate different aspects of a system’s security state 
from different perspectives and at different levels of detail.

3.1  Security Visualization Surveys

Visualization for cyber environments has matured to a point where survey papers on 
the area are available. These papers provide useful overviews, and also propose 
ways to organize or categorize techniques along different dimensions.

Shiravi et al. presented a survey of visualization techniques for network security 
(Shiravi et al. 2012). In addition to providing a useful overview of current visual-
ization systems, they define a number of broad categories for data sources and 
visualization techniques. One axis subdivides techniques by data source: network 
traces, security events, user and asset context (e.g., vulnerability scans or identity 
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management), network activity, network events, and logs. A second axis considers 
use cases: host/server monitoring, internal/external monitoring, port activity, attack 
patterns, and routing behaviour. Numerous techniques are described as examples of 
different data sources and use cases. The authors specifically address the issue of 
situation awareness in their future work, noting that many visualization systems try 
to prioritize important situations and project critical events as ways to summarize 
the massive amounts of data generated within a network. They distinguish between 
situation awareness, which they define as “a state of knowledge”, and situation 
assessment, defined as “the process of attaining situation awareness.” Converting 
raw data into visual forms is one method of situation assessment, meant to present 
information to an analyst to enhance their situation awareness.

Dang and Dang also surveyed security visualization techniques, focusing on 
web-based environments (Dang and Dang 2013). Dang chose to classify systems 
based on where they run: client-side, server-side, or web application. Client-side 
systems are normally simple, focusing on defending web users from attacks like 
phising. Server-side visualizations are designed for system administrators or cyber 
security analysts with an assumed level of technical knowledge. These visualiza-
tions are usually larger and more complex, focusing on multivariate displays that 
present multiple properties of a network to the analyst. Most network security visu-
alization tools fall into the server-side category. A final class of system is security 
for web applications. This is a complicated problem, since it can involve web devel-
opers, administrators, security analysts, and end users. Dang also subdivided server- 
side visualizations by main goal: network management, monitoring, analysis, and 
intrusion detection; by visualization algorithm: pixel, chart, graph, and 3D; and by 
data source: network packet, NetFlows, and application-generated data. Various 
techniques exist at the intersection of each category.

New security and cyber situation visualization systems are constantly being pro-
posed. We present a number of recent techniques, subdivided by visualization type. 
This offers an introduction to different visualization methods, in the context of the 
security and situation awareness domains.

3.2  Charts and Maps

As discussed in the overview, charts and maps are two of the most common visual-
ization techniques. Well-known approaches improve a tool’s accessibility by reduc-
ing the effort needed for analysts to “learn” the visualizations. It is common to 
present summarizes of data as bar charts, pie charts, scatterplots, or maps. Abstract 
data like network traffic or intrusion alerts need to be spatially positioned as part of 
the visualization design. Embedding the data using a chart’s axes—for example, a 
scatterplot that maps IP addresses, A A A= { : : }1 2source IP destination IP ,  , to the 
horizontal and vertical axes, V V x V y= { : , : }1 2 —or assigning a geographic location 
to each data element—for example, estimating an IP address’s longitude and lati-
tude, then converting A A A= { : : }1 2longitude latitude,  to V V x V y= { : , : }1 2 —are 
common approaches to positioning data elements.
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Roberts et al. proposed the StatVis system, built on stacked bar graphs and 
 geographic heatmaps, to visualize network health over time (Roberts et al. 2012). 
The graphs and heatmaps are used to present overviews of machine status in differ-
ent geographic regions. A separate reticle visualization is used to present details 
about individual machines. The result is a combination of overview and details-on-
demand for obtaining real-time situation awareness of a computer network’s status.

A similar system called VIAssist visualizes network security data by linking 
between different charts to present the data from multiple perspectives (Goodall and 
Sowul 2009). When data elements are selected (or brushed) in one visualization, the 
same elements are highlighted (or linked) in the others. This identifies how data 
elements correlate between the visualizations. An overview uses bar and pie charts 
to visualize the most frequent elements for any data attribute. Coordinated views 
use various charts and maps to present visualizations that are correlated with one 
another. This allows analysts to assess different parts of a computer system using 
different visualization techniques.

3.3  Node-Link Graphs

Another common visualization technique is a node-link graph, where nodes and 
links correspond to data elements and relationships between the elements. For 
example, nodes can represent machine clusters and edges network connections 
between the clusters. Node-link graphs also support the application of graph algo-
rithms to analyze the structure of a network, or the pattern of traffic within the 
network.

The NetFlow Visualizer uses node-link graphs to display communication as ori-
ented edges between network devices, represented by graph nodes, at different lev-
els of aggregation (Minarik and Dymacek 2008). This allows analysts to build up a 
situation awareness of the ongoing state of their networks, and to focus on individ-
ual flows of interest. The graph visualization is correlated with a spreadsheet con-
taining specific values for individual network properties. Analysts can assign 
different attributes to control the size and color of the nodes and edges.

3.4  Timelines

Since changes over time are often critical to understanding a dataset, timelines 
are another common method of visualization for cyber situation awareness. 
Although timelines are similar to charts—for example, a line chart with 
A A A= { : : }1 2time frequency,  mapped to V V x V y= { : , : }1 2 —their specific function 
is to highlight temporal patterns and relationships in a dataset.

Isis, a system designed by Phan et al. provides two visualizations—timelines and 
event plots—that are linked together to support iterative investigation of network 
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intrusions (Phan et al. 2007). Isis’s timeline presents an overview of temporal 
sequences of network flows in a histogram chart. The event plot allows an analyst to 
drill down over a subset of data to reveal patterns in individual events, using a scat-
terplot with A A A= { : : }1 2time IP address,   mapped to V V x V y= { : , : }1 2 . Markers 
in the scatterplot represent individual NetFlows. The markers can vary their shape, 
size, and colour to visualize NetFlow properties.

PortVis also uses a timeline to visualize port-based security events  
(McPherson et al. 2004). The timeline is ideal for summarizing events over a 
wide time window (e.g., hundreds of hours). It uses a scatterplot to visualize 
A A A= { : : }1 2port number time ,  mapped to the horizontal and vertical axes, 
V V x V y= { : , : }1 2 . More detailed visualizations are also available for situation 
assessment over shorter time windows: a main visualization to investigate activity 
on individual ports, and a detailed visualization that uses a bar chart to present val-
ues for different port attributes.

3.5  Parallel Coordinates

Parallel coordinates (PCs) are a technique for visualizing multivariate data using a 
set of n vertical axes, one per data attribute in a dataset. Each axis covers the domain 
of its attribute, from the smallest value at the bottom to the largest value at the top. 
A data element is represented as positions on each axis defined by the element’s 
attribute values. Positions on neighbouring axes are connected with line segments, 
visualizing the element as a polyline. An important advantage of PCs is their flexi-
bility in the number and type of data attributes they can represent.

As an example, consider Fisher’s Iris dataset, which contains 450  
measurements for three species of irises, A = {A1 : type, A2 : petal width,  
A A A3 4 5: : : }petal length sepal width sepal length ,  ,   Plotting the data using 
V V V= -{ : : }1 2 5colour PC axis,   produces the visualization in Fig. 1. Numerous  
relationships are visible, for example petal length and width are correlated 

Fig. 1 A parallel coordinates visualization of data from Fisher’s Iris dataset
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across all three species, as are sepal length and width. Virginica and versicolor 
irises have similar length and width patterns, but virginica irises have larger petals. 
Both species have petals that are about the same size as their sepals. Setosa irises, 
on the other hand, have sepals that are larger than their petals.

Parallel coordinates are used in PicViz to visualize network data (Tricaud et al. 
2011). PCs are useful for this type of data, since they can accommodate numbers, 
times, strings, enumerations, IP addresses, and so on. PicViz is built to investigate 
correlations across multiple properties of Snort log data. The effectiveness and read-
ability of PCs is often influenced by the ordering of its axes. PicViz supports rapid 
axis reorganization to determine the best axis sequence for a given investigation. As 
in Fig. 1, colour is overlaid on an element’s polyline to represent an additional user- 
chosen attribute. This allows for a closer examination of properties of anomalies as 
they are identified.

A second system, Sol, also uses parallel coordinates, but with horizontal axes 
(Bradshaw et al. 2012). Sol’s Flow Capacitor visualizes NetFlows between two PC 
axes that represent a flow’s source at the top and its destination at the bottom. 
Common data attributes assigned to the source and destination axes include IP 
address or geographic location. Small “darts” are shown flowing from the source 
plane to the destination plane, to visualize the amount of NetFlow activity over a 
user-defined time window. Users can also insert intermediate axes to visualize addi-
tional data properties. This causes the NetFlow darts to pass through multiple states, 
one per additional data attribute, on their way from source to destination.

3.6  Treemaps

Data with hierarchical structures can be visualized as a treemap, a visualization that 
recursively subdivides rectangular regions based on the frequency of different data 
attribute values. Intuitively, a treemap visualizes a multi-level tree as a 2D “map” by 
embedding leaf nodes within their parent node region.

Consider Fig. 2, which subdivides a dataset with A={A1 : region, A2 : parent, A3 : 
revenue, A4 : profit}. The parent Global rectangle is subdivided into three  
continents: North America, Europe, and Africa, with the size of each continent 
 subregion defined by its global profit. The continents are further divided by states 
and countries, producing a hierarchical decomposition by geography. Visually, 
V V V V V= { : : : :1 2 3 4text label spatial location size chromatici ,  , , tty}. The size of 
each subregion visualizes its revenue, and its combined colour and saturation—or 
chromaticity—visualize its profit using a double-ended colour scale: green for posi-
tive, red for negative, and a stronger hue for more extreme values.

Kan et al. use treemaps in NetVis, a tool for monitoring network security (Kan 
et al. 2010). A network within a company is subdivided, first by department, and 
then by host within department. Colour is used to identify whether a host has expe-
rienced Snort alerts during an analyst-defined time window. For nodes with alerts, 
brightness visualizes the number of alerts: brighter for more alerts.
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Mansmann et al. compared treemaps to node-link graphs for network monitoring 
and intrusion detection (Mansmann et al. 2009). Mansmann’s treemap consists of a 
set of analyst-selected local hosts currently under attack, organized hierarchically 
by IP address. Attacking hosts are arrayed around the boundary of the treemap, with 
links from attacker to target identifying where attacks are occurring. The size and 
colour of each treemap node can be assigned to different variables, including flow 
counts, packet counts, or bytes transferred. The authors identified numerous advan-
tages and disadvantages of treemaps versus standard node-link graphs, for example, 
treemaps better emphasize the relationships between external attackers and internal 
hosts by subnet structure, but edges between attackers and local hosts can obscure 
the treemap nodes, hiding the information they visualize.

3.7  Hierarchical Visualization

In many cases a dataset can be structured into multiple levels of detail. For example, 
IPv4 addresses can be represented as an overview by aggregating individual 
addresses based on their network identifier, and within this as a detail view by 
including the host identifier. Other common examples include summaries by geo-
graphic location, by type of attack, and so on. The ability to visualize this type of 
contextual structure is useful for a number of reasons. First, overviews can be used 
to present an intuitive summary of a dataset. Second, a hierarchical visualization 
helps an analyst to choose subsets of the data that are logically related based on the 
hierarchy. This fits well with the approach in information visualization of overview, 
zoom and filter, then details on demand.

Information visualization has studied two related approaches to visualizing large 
hierarchies: overview+detail and focus+context (Cockburn et al. 2008). 
Overview+detail combines an overview of a dataset with internal details. Treemaps 

Fig. 2 A treemap of revenue for states and counties in three continents
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are an example of this technique. Focus+context presents an overview of a  
dataset—the context—and allows a user to request additional details at specific 
locations—the focus. A well-known focus+context approach initially presents an 
overview of a dataset, then allows an analyst to position a zoom lens within the 
overview. Data underneath the lens is “zoomed in” to show internal detail.

NVisionIP visualizes NetFlow data at three different levels of detail: an overview 
of the network state, summaries of groups of suspicious machines, and details on an 
individual machine (Lakkaraju et al. 2004). A galaxy view provides an overview of 
the current network state as a scatterplot, with A A A= { : : }1 2subnet host,  mapped 
to V V x V y= { : , : }1 2 . Each marker in the scatterplot identifies an IP address partici-
pating in a flow. Analysts can select a set of hosts that show signs of abnormal traffic 
patterns and zoom in to compare traffic across hosts with two histograms: one rep-
resenting traffic on a number of well-known ports, and the other representing traffic 
on all other ports. Finally, a detailed machine view visualizes a machine’s byte and 
flow counts for different protocols and different ports for all network traffic over an 
analyst-chosen time window.

Although these security visualization systems aim to support more flexible user 
interactivity and to correlate various data sources, many of them still force an ana-
lyst to choose from a fairly limited set of static representations. For example, Phan 
et al. use charts, but with fixed attributes on the x and y-axes. General purpose com-
mercial visualization systems like Tableau or ArcSight offer a more flexible collec-
tion of visualizations, but they do not include visualization and human perception 
guidelines, however, so representing data effectively requires visualization exper-
tise on the part of the analyst. Finally, many systems lack a scalable data manage-
ment architecture. This means an entire dataset must be loaded into memory prior 
to filtering, projecting, and visualizing, increasing data transfer cost and limiting 
dataset size.

4  Visualization Design Philosophy

Our design philosophy is based on discussions with cyber security analysts at vari-
ous research institutions and government agencies. The analysts overwhelming 
agreed that, intuitively, visualizations should be very useful. In practice, however, 
they had rarely realized significant improvements by integrating visualizations into 
their workflow. A common comment was: “Researchers come to us and say, Here’s 
a visualization tool, let’s fit your problem to this tool. But what we really need is a 
tool built to fit our problem.” This is not unique to the security domain, but it sug-
gests that security analysts may be more sensitive to deviations from their current 
analysis strategies, and therefore less receptive to general-purpose visualization 
tools and techniques.

This is not to say, however, that visualization researchers should simply provide 
what the security analysts ask for. Our analysts have high-level suggestions about 
how they want to visualize their data, but they do not have the visualization 
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 experience or expertise to design and evaluate specific solutions to meet their needs. 
To address these, we initiated a collaboration with colleagues at a major government 
research laboratory to build visualizations that: (1) meet the needs of the analysts, 
but also (2) harness the knowledge and best practices that exist in the visualization 
community.

Again, this approach is not unique, but it offers an opportunity to study its 
strengths and weaknesses in the context of a cyber security domain. In particular, 
we were curious to see which general techniques (if any) we could start with, and 
how significantly these techniques needed to be modified before they would be use-
ful for an analyst. Seen this way, our approach does not focus explicitly on network 
security data, but rather on network security analysts. By supporting the analysts’ 
situation awareness needs, we are implicitly addressing a goal of effectively visual-
izing their data.

From our discussions, we defined an initial set of requirements for a successful 
visualization tool. Interestingly, these do not inform explicit design decisions. For 
example, they do not define which data attributes we should visualize and how those 
attributes should be represented. Instead, they implicitly constrain a visualization’s 
design through a high-level set of suggestions about what a real analyst is (and is 
not) likely to use. We summarized these comments into six general categories:

• Mental Models. A visualization must “fit” the mental models the analysts use to 
investigate problems. Analysts are unlikely to change how they attack a problem 
in order to use a visualization tool.

• Working Environment. The visualization must integrate into the analyst’s cur-
rent working environment. For example, many analysts use a web browser to 
view data stored in formats defined by their network monitoring tools.

• Configurability. Static, pre-defined presentations of the data are typically not 
useful. Analysts need to look at the data from different perspectives that are 
driven by the data they are currently investigating.

• Accessibility. The visualizations should be familiar to an analyst. Complex rep-
resentations with a steep learning curve are unlikely to be used, except in very 
specific situations where a significant cost-benefit advantage can be found.

• Scalability. The visualizations must support query and retrieval from multiple 
data sources, each of which may contain very large numbers of records.

• Integration. Analysts will not replace their current problem-solving strategies 
with new visualization tools. Instead, the visualizations must augment these 
strategies with useful support.

5  Case Study: Managing Network Alerts

A common task for network security analysts is active monitoring for network alerts 
within a system. Normally, sets of alerts are categorized by severity—low, medium, 
and high—annotated with a short text summaries (e.g., a Snort rule), and presented 
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within a web browser every few minutes. The analysts are responsible for quickly 
deciding which alerts, if any, require additional investigation. When suspicious 
alerts are identified, additional data sources are queried to search for context and 
supporting evidence to decide whether the alert should be escalated. Normally, each 
data source is managed independently. This means results must be correlated manu-
ally by the analysts, usually by coordinating multiple findings in their working 
memory. We were asked to design a system that would support the analysts by: (1) 
allowing them to identify context more effectively and more efficiently; (2) integrat-
ing results from multiple data sources into a single, unified summary; (3) choosing 
visualization techniques that are best suited to the analysts’ data and tasks; but also 
(4) providing an analyst the ability to control exactly which data to display, and how 
to present it, as needed.

The analysts’ requirements meant that we could not follow a common strategy of 
defining the analysts’ data and tasks, designing a visualization to best represent this 
data, then modifying the design based on analyst feedback. Working environment, 
accessibility, and integration constraints, as well as comments from analysts, sug-
gested that a novel visualization with unfamiliar visual representations would not be 
appropriate. Since no existing tools satisfied all of the analysts’ needs, we decided 
to design a framework of basic, familiar visualizations—charts—that runs in the 
analysts’ web-based environment. We applied a series of modifications to this 
framework to meet each of the analysts’ requirements. Viewed in isolation, each 
improvement often seemed moderate in scope. However, we felt, and the analysts 
agreed, that the modifications were the difference between the system possibly 
being used by the analysts versus never being used. In the end, the modifications 
afforded a surprising level of expressiveness and flexibility, suggesting that some 
parts of the design could be useful outside the network security domain.

The configurability, accessibility, scalability, and integration requirements of our 
design demand flexible user interaction that combines and visualizes multiple large 
data sources. The working environment requirement further dictates that this hap-
pen within the analyst’s current workflow. To achieve this, the system combines 
MySQL, PHP, HTML5, and JavaScript to produce a web-based network security 
visualization system that uses combinations of user-configurable charts to analyze 
suspicious network activity.

We adopt Shiravi’s definition of situation awareness, “a state of knowledge”, and 
situation assessment, “the process of attaining situation awareness.” In this context, 
the visualization tool is designed to support situation assessment. The expectation is 
that providing effective situation assessment will lead to an enhanced situation 
awareness.

5.1  Web-Based Visualization

The visualizations run as a web application using HTML5’s canvas element. This 
works well, since it requires no external plugins and runs in any modern web 
browser. Network data is visualized using 2D charts (Heyes 2014). Basic charts are 
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one of the most well known and widely used visualization techniques. This supports 
the accessibility requirement, because: (1) charts are common in other security visu-
alization systems that analysts have seen, and (2) charts are an effective visualiza-
tion method for presenting the values, trends, patterns, and relationships that 
analysts want to explore.

5.2  Interactive Visualization

To realize analyst-driven charts, the system provides a user interface with event 
handling on the canvas element and the jQueryUI JavaScript library for higher-level 
UI widgets and operations. This design allows for full control over the data attri-
butes assigned to a chart’s axes. This capability turns out to be fairly expressive, and 
can be used by an analyst to generate an interesting range of charts and chart types. 
Analysts can also attach additional data attributes to control the appearance of the 
glyphs representing data elements within a chart. For example, a glyph’s colour, 
size, and shape can all be used to visualize secondary attribute values.

5.3  Analyst-Driven Charts

In a general information visualization tool, the viewer normally defines exactly the 
visualization they want. The current visualization system automatically chooses an 
initial chart type based on: (1) knowledge about the strengths, limitations, and uses 
of different types of charts, and (2) the data the analyst asks to visualize. For exam-
ple, if the analyst asks to see the distribution of a single data attribute, the system 
recommends a pie chart or bar chart. If the analyst asks to see the relationship across 
two data attributes, the system recommends a scatterplot or a Gantt chart.

The axes of the charts are initialized based on properties of the data attributes, for 
example, a categorical attribute on a bar chart’s x-axis and an aggregated count on 
the y-axis. If two categorical attributes like A A A= { : : }1 2source IP destination IP ,   
are selected, the attributes are mapped to a scatterplot’s axes as V V x V y= { : , : }1 2 , 
with markers shown for flows between pairs of addresses (Fig. 3c).

If the attributes were A A A= { : : }1 2time destination IP,  , a scatterplot with 
V V x V y= { : , : }1 2  would again be used (Fig. 4a). Visualizing netflow properties like 
A A A A= { : : : }1 2 3time destination IP duration,  ,  initially produces a Gantt chart 
with rectangular range glyphs mapped to V V x V y V= { : , : , : }1 2 3 width , representing 
different flows (Fig. 4b). Data elements sharing the same x and y values are grouped 
together and displayed as a count using additional visual properties. For example, in 
a scatterplot of traffic between source and destination IPs, the size of each marker 
indicates the number of connections between two addresses. In a Gantt chart, the 
opacity of each range bar indicates the number of flows that occurred over the time 
range for a particular destination IP.
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Fig. 3 Charts classified by use case: (a) pie and bar chart, analysis of proportion; (b) bar chart, 
value comparison along one dimension; (c) scatterplot, correlation analysis
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More importantly, the analyst is free to change any of these initial choices. The 
system will interpret their modifications similar to the processing we perform for 
automatically chosen attributes. This allows the analyst to automatically start with 
the most appropriate chart type (pie, bar, scatterplot, or Gantt) based on their analy-
sis task, the properties of the attributes they assign to a chart’s axes, and on any 
secondary information they ask to visualize at each data point.

5.4  Overview+Detail

The visualization system allows an analyst to focus on a subset of the data, either by 
filtering the input, or by interactively selecting a subregion in an existing chart to 
zoom in on. In either case the chart is redrawn to include only the selected elements. 
For example, consider a scatterplot created by an analyst, where the size of each tick 
mark encodes the number of flows for a corresponding source and destination IP 
(plotted on the chart’s x and y-axes). Figure 5b is the result of zooming in on the 
sub-region selected in Fig. 5a. In the original scatterplot the difference between the 
flow counts for the selected region cannot be easily distinguished. After zooming, 
the size of the tick marks is re-scaled for the currently visible elements, highlighting 
differences in the number of flows, particularly for destination IP 172.16.79.132 in 
the bottom row. The same type of zooming can be applied to Gantt charts (Fig. 5c, d). 
After zooming into a selected area, the flows that occlude one another in the original 
chart are separated, helping the analyst differentiate timestamps.

5.5  Correlated Views

Analysts normally conduct a sequence of investigations, pursuing new findings by 
correlating multiple data sources and exploring the data at multiple levels of detail. 
This necessitates visualizations with multiple views and flexible user interaction. 

Fig. 4 Scatterplot and Gantt charts: (a) connection counts over time by destination IP; (b) time 
ranges for flows by source IP
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The system correlates multiple data sources by generating correlated SQL queries 
and extending the RGraph library to support dependencies between different charts.

As an analyst examines a chart, their situation awareness may change, producing 
new hypothesis about the cause or effect of activity in the network. Correlated charts 
allow the analyst to immediately generate new visualizations from the current view 
to explore these hypotheses. In this way, the system allows an analyst to conduct a 
series of analysis steps, each one building on previous findings, with new visualiza-
tions being generated on demand to support the current investigations.

Similar to zooming, analysts can create correlated charts for regions of interest 
by selecting the region and requesting a sub-canvas. The system generates a con-
straint to extract the data of interest in a separate window. The analyst can then 
select new attributes to include or new tables and constraints to add to the new chart.

Fig. 5 Chart zooming: (a) original scatterplot with zoom region selected; (b) zoom result; (c) 
original Gantt chart with zoom region selected; (d) zoom results
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5.6  Example Analysis Session

To demonstrate the system, we describe a scenario where it is used to explore trap 
data being captured by network security colleagues at NCSU. The data was designed 
to act as input for automated intrusion detection algorithms. This provided a real- 
world test environment, and also offered the possibility of comparing results from 
an automated system to a human analyst’s performance, both with and without visu-
alization support. Four different datasets were available for visualization: a Netflow 
dataset, an alert dataset, an IP header dataset, and a TCP header dataset.

An NCSU security expert served as the analyst in this example scenario. 
Visualization starts at an abstract level with an overview that the analyst uses to 
form an initial situation awareness. This is followed by explorations of different 
hypotheses that highlight and zoom into subregions of interest. The analyst gener-
ates correlated charts to drill down and analyze data at a more detailed level, and 
imports additional supporting data into the visualization, all with the goal of improv-
ing their situation awareness of specific subsets of the network. Including a new 
flow dataset extends the analysis of a subset of interest to a larger set of data sources. 
The visualization system supports the analyst by generating different types of charts 
on demand, based on the analyst’s current interest and needs. This leads the analyst 
to identify a specific NetFlow that contains numerous alerts. This NetFlow is flagged 
for further investigation.

The analyst starts by building an overview visualization of the number of alerts 
for each destination IP, A A A= { : : }1 2destination IP alert count ,   and using A1 as 
the “aggregate for” attribute. Choosing “Draw Charts” displays the aggregated 
results as pie and bar charts (i.e., using V V V= { : : }1 2start angle arc length ,   for the 
pie chart or V V x V y= { : , : }1 2 -height  for the bar chart, Fig. 6). This provides an ini-
tial situation awareness of how many alerts are occurring within the network, and 
how those alerts are distributed among different hosts. Pie charts highlight the rela-
tive number of alerts for different destination IPs, while bar charts facilitate a more 
effective comparison of the absolute number of alerts by destination IP. The charts 
are linked: highlighting a bar in the bar chart will highlight the corresponding sec-
tion in the pie chart, and vice-versa.

The pie and bar charts indicate that the majority of the alerts (910) happen for 
destination IP 172.16.79.134. To further analyze alerts associated with this destina-
tion IP, the analyst chooses “Sub Canvas” to open a new window with the initial 
query information (the datasets, data attributes, and constraints) predefined. The 
filter destination IP = 172.16.79.134 is added to restrict the query for further analysis 
over this target address. This demonstrates how an analyst can continue to add new 
constraints or data sources to the query as he requests follow-on visualizations to 
continue his analysis.

Next, the analyst chooses to visualize alerts from different source IPs attached to 
the target destination IP. He uses destination port to analyze the correlation 
between source and destination through the use of a scatterplot with 
A A A A= { : : : }1 2 3source IP port number alert count ,  ,   and V V x V y V= { : , : , : }1 2 3 size . 
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The scatterplot shows there is only one source IP with alerts related to the target 
destination IP, and that most alerts are sent to port 21. This provides more detailed 
situation awareness about a specific (source IP, destination IP) pair and port number 
that the analyst considers suspicious.

The analyst looks more closely at all traffic related to the target destination  
IP on port 21 by visualizing NetFlows and their associated alerts in a  
Gantt chart. Here, A A A A= { : : : }1 2 3start time duration alert times , , [  ]  and 
V V x V V= { : , : : }1 2 3size texture hashes,  . Collections of flows are drawn in red with 
endpoints at the flow set’s start and end times. Alerts appear as black vertical bars 
overlaid on top of the flows at the time the alert was detected. Figure 7a shows most 

Fig. 6 Aggregated results visualized as a pie chart and horizontal and vertical bar charts
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of the flows are distributed over two time ranges. This further augments the analyst’s 
situation awareness, by point to potential times when attacks may have occurred. By 
zooming in on each flow separately (Fig. 7b, c), the analyst realizes that the vast 
majority of the alerts occur in the left flow (Fig. 7b). The alerts in this flow are con-
sidered suspicious, and are flagged for more detailed investigation. Later discussion 
with the author of the datasets confirmed that this set of alerts were meant to simu-
late an unknown intrusion into the system.

This example demonstrates how the system allows an analyst to follow a 
sequence of steps based on their own strategies and preferences to investigate alerts. 
The system supports situation assessment based on the analyst’s hypotheses about 
potential attacks within a system. Effective assessment leads to more and more 
detailed situation awareness, allowing the analyst to confirm or refute the possibility 
of an intrusion into the system.

6  Summary

Data visualization converts raw data into images that allow a viewer to “see” data 
values and the relationships they form. The images allow viewers to use their visual 
perception to identify features in the data, to manage ambiguity, and to apply domain 
knowledge in ways that would be difficult to do algorithmically. Visualization can 
be formalized as mapping: data passed through a data-feature mapping generates a 
visual representation—a visualization—that displays individual data values and the 
patterns they form. Many existing situation awareness tools use visualization tech-
niques like charts, maps, and flow diagrams to present information to an analyst. 
The challenge is to determine how best to integrate visualization techniques into a 
cyber situation awareness domain. Many tools adopt a well-known information 

Fig. 7 Gantt chart with alerts for network flows at the destination IP and port of interest: (a) two 
flows; (b) zoom on the left flow, showing numerous alerts; (c) zoom on the right flow, showing 
one alert
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visualization approach: overview, zoom and filter, and details on demand. Techniques 
utilized recently for the security and situation awareness domains include: Charts 
and Maps, Node-Link Graphs, Timelines, Parallel Coordinates, Treemaps and 
Hierarchical Visualization. We identified an initial set of requirements for a success-
ful visualization tool. These do not define which data attributes we should visualize 
and how those attributes should be represented. Instead, they implicitly constrain a 
visualization’s design through a high-level set of suggestions about what a real ana-
lyst is (and is not) likely to use: a visualization must “fit” the mental models the 
analysts use to investigate problems; must integrate into the analyst’s current work-
ing environment; pre-defined presentations of the data are typically not useful; visu-
alizations should be familiar to an analyst; must support query and retrieval from 
multiple data sources; the visualizations must integrate into existing strategies with 
useful support.We demonstrate a prototype system for analyzing network alerts 
based on these guidelines.
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      Inference and Ontologies 

             Brian     E.     Ulicny     ,     Jakub     J.     Moskal     ,     Mieczyslaw     M.     Kokar     , 
    Keith     Abe     , and     John     Kei Smith    

1             Introduction 

 The importance of visualization—discussed in the previous chapter—does not 
diminish the critical role that algorithmic analysis plays in achieving CSA. Algorithms 
reason about the voluminous observations and data about the network and infer 
important features of the situation that help analysts and decision-makers form their 
situational awareness. In order to perform this inference, and to make its output use-
ful to other algorithms and human users, an algorithm needs to have its inputs and 
outputs represented in a consistent vocabulary of well-specifi ed terms and their rela-
tions, i.e., it needs an ontology with a clear semantics and a standard. This topic is 
the focus of the present chapter. We already touched on the importance of semantics 
in the Cognition and Technology chapter. Now we discuss in detail how, in cyber 
operations, inference based on ontology can be used to determine the threat actor, 
the target and purpose in order to determine potential courses of action and future 
impact. Since a comprehensive ontology for cyber security does not exist, we show 
how such an ontology can be developed by taking advantage of existing cyber secu-
rity related standards and markup languages. 
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 The common feature of cyber-security systems is that they need to react very quickly 
to a dynamic environment that changes its state independently of whether the human or 
computer agents act on it. The agents want to act on the environment so that its evolu-
tion, at least in the area of interest to the agents, leads to the satisfaction of their goals 
or, more likely, in the case of computer networks the avoidance of certain undesired 
states: e.g. infi ltration, network compromise, and so on. Towards this end, the agents 
need to collect information about the environment (usually from many different 
sources), make decisions based on the collected information and their knowledge, act 
according to their decisions, collect feedback from the environment in response to the 
actions, and update their knowledge in order to make decisions in the future. 

 We use the term awareness as described in Kokar et al. ( 2009 ), i.e., in order to 
be aware

  … one needs to have data pertinent to the objects of interest, some background knowledge 
that allows one to interpret the collected object data and fi nally a capability for drawing 
inferences. 

 The requirement for the capability of inference comes from such common-sense 
sources as the Webster’s Dictionary: “ awareness implies vigilance in observing or 
alertness in drawing inferences from what one experiences .” 

 In cyber systems, where the processing loops (Boyd  1987 ) are very fast, much of 
inference must be performed by computers. In other words, automatic inference 
engines must perform the inference, which in turn requires that the information (facts) 
to be acted upon by such engines needs to be represented in a language with formal 
semantics. Inference engines take such facts as input and produce new information. 

 In the following, we fi rst introduce a malware infection scenario and discuss how 
a human analyst would deal with the malware detection problem. Then we discuss 
how an approach that mimics the analyst’s process is implemented using ontologies 
and an inference engine.  

2     Scenario 

 In this chapter we consider a case of malware related to cyber espionage. The fol-
lowing describes signifi cant events in the order of occurrence:

•    On 1/1/2012 at 10 am an email message is sent to a particular user account, 
where the user is associated with a particular laptop (HP-laptop1), via yahoo 
with a PDF fi le attached containing malware that exploits a known vulnerabil-
ity, CVE-2009-0658. This vulnerability causes a buffer overfl ow in Adobe 
Reader 9.0 and earlier. It allows remote attackers to execute arbitrary code via 
a crafted PDF document, related to a non-JavaScript function call and possibly 
an embedded JBIG2 image stream. This event is captured by Snort - an open 
source network intrusion prevention and detection system (IDS/IPS) devel-
oped by Sourcefi re.  

•   On 1/1/2012 at 11 am a second email message is sent via yahoo with a PDF fi le 
attached containing malware that exploits the same vulnerability; the target is the 

B.E. Ulicny et al.



169

same HP-laptop1. This event is also captured by Snort. Subsequently the user on 
HP-laptop1 opens the PDF fi le and the laptop gets infected.  

•   On 2/1/2012 the malware now installed on HP-laptop1 sends out a message via 
getPlunk.com to get the address of the Command and Control (C&C) server—a 
machine that can support the malware with the attack. GetPlunk.com is an inter-
mediary micro-blogging service. This request is captured by Snort, which 
 provides signature inspection, ID, and network event information.  

•   On 2/1/2012 the malware then uses the new C&C address to receive commands 
and exfi ltrate data of interest to the attacker. This is captured by Snort based on 
the signature, ID and network event information.     

3     Human Analysis of the Scenario 

 A human cyber analyst would need to examine network log fi les in order to detect a 
malware-supported botnet attack like the one described. In such a situation, a human 
analyst would need to:

•    Detect the events mentioned among the network traffi c logs. For example, some-
how determine that one of many PDF email attachments that a particular laptop 
received contained malware.  

•   Determine that the laptop that opened the infected email attachment had a vul-
nerability that could be exploited on the basis of the installed software.  

•   Detect the exchange of messages between the infected laptop and the micro- 
blogging service that contains the address of the command-and-control computer 
address.  

•   Or, barring that, somehow detect an unusual amount or pattern of traffi c between 
the infected laptop and the command-and-control server, despite the fact that 
every computer on the network interacts with multiple legitimate servers on a 
potentially regular basis.   

The human analyst could make use of lists of known suspicious domains and IP 
addresses determined through looking up IP addresses in retracing the laptop’s 
activity once it is discovered that the computer has become infected, by checking 
every incoming email with a PDF attachment over some period prior to the detec-
tion of the infection. 

 Without tool support, a human analyst would fi nd it very tedious and time- 
consuming to trace back how a particular laptop came to be infected by malware that 
allowed the computer to be controlled by an external command-and-control server, if 
the analyst even became aware that the laptop was being controlled externally at all.  

4     An Outline of the Use of Ontologies for Cyber Security 

 In this section we give a brief introduction to ontologies and automatic inference. 
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4.1     Ontologies 

 As used in the knowledge representation domain, the term “ontology” stands for an 
explicit, formal, machine-readable semantic model that defi nes the classes, instances 
of the classes, inter-class relations and data properties relevant to a problem domain 
( Gruber 2009 ). 

 In order for ontologies to be amenable to automatic processing by computers, they 
need to be represented in a language that has both formal syntax and formal seman-
tics. The syntax must be defi ned so that computers can recognize whether ontological 
statements (sentences) are grammatically correct. A formalized semantics means that 
a machine can judge whether two statements are consistent or not and imply one 
another or not. A vocabulary without a formalized semantics has at most a syntax: 
rules constraining what combination or strings of words in that vocabulary are part 
of that language. This is the case with most of the languages or protocols for exchange 
of information about the states of networks currently. They are purely syntactic. 

 For a vocabulary to have a formalized semantics, it must be possible for a com-
putational machine to understand when a statement is true in that vocabulary (model 
theory), what can be inferred from a set of statements in that vocabulary (inference), 
and when it is impossible for a set of statements to be jointly true (consistency). An 
ontology is thus a logical description of a conceptual domain in a vocabulary 
expressed in a language with both a formal syntax and a formal semantics. 

 The W3C’s (World Wide Web Consortium) Semantic Web activity provides 
today’s most extensive deployment of interoperable vocabularies with semantics in 
the form of ontologies encoded as OWL (Web Ontology Language) Ontologies. 
OWL (W3C  2009 ) is the most commonly used language for expressing ontologies 
today and has by far the largest developer base. Therefore, we will focus exclusively 
on OWL ontologies in this discussion. 

 For our purposes, OWL represents individuals (e.g. elements of the network such 
as a particular router or a particular user), classes of individuals (e.g. “Router”, 
“Printer”, “Authorized User”), properties (“hasIPAddress”, “hasPassword”, “last-
Accessed”) that relate individuals either to other individuals (“object properties”) or 
to datatype individuals (e.g. some date expressed as an xsd:dateTime). 

 The semantics of OWL is based on Description Logics (DL) (Baader et al.  2010 ), 
a family of Knowledge Representation (KR) formalisms equipped with a formal, 
model-based semantics. The architecture of a system based on DL allows for setting 
up a knowledgebase (KB) and for reasoning about its content. The KB consists of 
two components, known as the TBox and ABox. In the context of OWL, the TBox 
introduces axioms defi ning the ontology classes and properties and their relation-
ship. For example, the TBox asserts relationships between classes. These can be 
simple class hierarchies (e.g. that every CiscoRouter is a Router) or arbitrary com-
plex logical expressions (e.g. if a single send operation transmits a packet to multi-
ple destinations, then it is a multicast operation). The TBox also enables the ontology 
to specify the domain and range of properties, cardinality restrictions on properties, 
property types (symmetric, transitive), property hierarchies, datatype range 
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restrictions, and so on. We cannot provide a complete tutorial on OWL here, but 
its expressiveness is extremely powerful although not as powerful as that of 
fi rst-order logic. 

 The ABox contains assertions about specifi c named individuals—instances of 
classes and properties that have been defi ned in the TBox. In the context of cyber 
situational awareness, the TBox consists of axioms about the network domain, 
shared by all instances and states of the network. The ABox, on the other hand, 
represents facts pertaining to a particular network at particular times. 

 The logical defi nitions of the TBox combined with the assertions about particu-
lars in the ABox allow an inference engine to identify new instances of a class by 
means of the properties it exhibits. Disjointness axioms about classes similarly 
allow the system to identify inconsistencies according to the ontology. For example, 
if only users of a certain class are allowed to access certain data, and a particular 
user is asserted as belonging to a class disjoint with the permitted class, yet there is 
an assertion that this user accessed that data, then an inconsistency will be detected 
in the ontology, and OWL inference will halt. A knowledge base must be consistent 
at all times, since anything can be inferred from an inconsistency. 

 OWL 2, the most recent version of the standard, defi nes three subsets, called 
 language profi les , which are expressive and tractable, but tailored to specifi c needs:

•     OWL 2 EL —terminological/schema reasoning, focused on terminological 
expressivity used for light-weight ontologies;  

•    OWL 2 QL —query answering via database engines, uses OWL concepts as light- 
weight queries, allows query answering using rewriting in SQL on top of rela-
tional DBs;  

•    OWL 2 RL —reasoning that can be implemented by standard rule engines.   

OWL 2 RL, one of the most widely implemented profi les, is a collection of 75 
implication and consistency rules. It has desirable characteristics: the set of entailed 
triples is fi nite and in PSPACE, and the runtime complexity is in PTIME. 

 In order to store and exchange OWL ontologies among applications, one of its 
concrete syntaxes is used. The primary exchange syntax for OWL is RDF/XML, 
which stems from the fact that the underlying model of OWL is RDF. Since OWL 
semantics can also be defi ned in terms of the semantics of RDF ( Resource 
Description Framework ), the serialization of OWL is a combination of the serializa-
tion of RDF and the additional concepts that are built out of RDF. 

 RDF’s statements (sentences) consist of three elements—subject, predicate and 
object, collectively called triples. The predicate represents a relation, the subject is 
an element from the domain of the relation and the object is from the range of the 
relation. Thus conceptually OWL can also be viewed as a collection of triples. 

 Other concrete syntaxes, not based on XML, are often used as well, most notably 
Turtle, OWL XML, and Manchester Syntax (Wang et al.  2007 ). RDF/XML is the 
only required syntax to be supported by every OWL compliant tool. 

 While it may seem that OWL is just another XML language, because it can be 
expressed in XML, it is important to note that XML is just one of the syntaxes, 
while OWL has a formal semantics. Semantically equivalent documents in OWL 
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can be expressed in multiple ways, using different syntaxes. Furthermore, because 
OWL is based on RDF, OWL knowledgebase can be queried with SPARQL, the 
query language for RDF. 

 Ontologies can be evaluated for their quality. Various evaluative dimensions are 
outlined in Brank et al. ( 2005 ), Obrst et al. ( 2007 ), Shen et al. ( 2006 ), Vrandečić 
( 2009 ). In Ye et al. ( 2007 ), the following criteria are proposed:

•    Clarity: Concepts in an ontology should be uniquely identifi ed and distinguished from 
other terms through necessary and suffi cient conditions specifi ed in the ontology.  

•   Coherence: Concepts in an ontology should be defi ned consistently.  
•   Ontological commitment: An ontology should be general enough to be usable by 

any application in that domain. It is advantageous that classes, associated properties, 
and involved constraints should serve for all of the general problems in the domain.  

•   Orthogonality: The defi ned concepts should be mutually exclusive from each 
other, which makes it easier to share and reuse ontologies.  

•   Encoding bias: General ontologies should be independent of specifi c symbol- 
level encoding. That is, the names of concepts should not favor proprietary- or 
vendor-specifi c naming schemes.  

•   Extensibility: Ontologies should be extensible to allow them to be reused easily 
by other applications in a specifi c domain.   

As cyber situation awareness ontologies emerge, they can be evaluated and com-
pared along these dimensions.  

4.2     Ontology Based Inference 

 Automatic inference on ontologies expressed in OWL is performed by  inference 
engines , or  semantic reasoners . An inference engine takes a set of facts about a spe-
cifi c domain of interest asserted in OWL and derives other facts using axioms and 
inference rules. In other words, an inference engine makes explicit the facts that are 
only implicit in the explicitly represented facts. The derived facts are logical conse-
quences of the facts in a given fact base and ontology that is used to express the facts. 
Instantiations to any variables that were used in the derivation are also provided. 

 For instance, if the inference system knows that (in the context of a communica-
tion network) a device that routesPackets is a Router and that CiscoRouter routes-
Packets, then the system can infer that CiscoRouter is a sub-class of Router. While 
on the surface such an inference is simple and obvious, it is not obvious (although 
simple) for computers. Also, the derivation of such a fact may have far reaching 
consequences since now everything that was attributed to Router can be attributed 
to CiscoRouter as well. Other inferences can derive properties of sub-classes based 
on the properties of their super-classes (mentioned above), inferring that an indi-
vidual is an instance of a specifi c class, and more. All kinds of inference types may 
be relevant to the case study discussed in this chapter, although the type of inference 
directly addressed will be the derivation of whether the agent’s knowledge entails 
that a specifi c situation (malware intrusion) occurs. 
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 OWL’s semantics is such that inference is expected to be computationally trac-
table. OWL inference engines can therefore be guaranteed to make all inferences in 
a tractable amount of time. Thus, semantic scalability and interoperability can be 
achieved. The time for processing an OWL ontology depends on the size and the 
complexity of the axioms in the ontology. However, OWL’s semantics guarantees 
that only valid inferences are drawn, i.e., inference engines are  sound . At least some 
OWL profi les are such that  all  inferences can be made (such engines are  complete ) 
in polynomial time with respect to the ontology size. So the power of formal lan-
guages lies in the fact that they are equipped with a formal semantics, which guaran-
tees that inference is sound, possibly complete, and in the case of OWL, tractable. 

 Several commercial inference engines for making inferences with OWL ontolo-
gies (ABox and TBox) are available ( OWL/Implementations ). Inference engines 
built to implement the OWL standard will infer all and only the same facts from the 
same set of given facts. In our project we used the BaseVISor inference engine 
(Matheus et al.  2006 ), which is free for research purposes. It allows for including 
additional inference rules.  

4.3     Rules 

 The expressive power of OWL is relatively high—equivalent to a decidable frag-
ment of complete First Order Logic. The designers of OWL intentionally kept its 
expressiveness at that level in order to avoid the high computational complexity of 
inference. However, in many cases more expressive power than can be achieved 
with OWL is necessary. In such cases OWL can be supplemented with rules. 

 As an example, consider defi ning the class of routers that send the same packets. 
To achieve this, one would need to defi ne this class as a set of pairs of routers, where 
one of them sends the same packet as the other. While OWL provides capabilities for 
linking, in this case, packets with routers, e.g., via a sendsPacket property, OWL will 
not allow to distinguish between the two routers and the two packets that are associ-
ated with the routers via this property. To achieve such a goal, variables are needed, 
a feature that OWL lacks. (For any two specifi c routers, OWL can be used to express 
that one router sends all and only the same packets as the second, however.) 

 The desired result can be easily achieved using rules, however. One can defi ne a 
rule that would imply that whenever sendsPacket(?R1, ?P1) and sendsSamePacket(?R1, 
?R2) then sendsPacket(?R2, ?P1). 

 Issues with the expressive power of OWL versus rule languages have been long 
recognized and extensively discussed in the literature (cf. Horrocks and Sattler 
 2003 ). In particular, it has been recognized that OWL has serious limitations with 
handling complex role inclusions. For example, it is not possible to propagate the 
“ownership” role from an aggregate to its parts (sender of a frame is also the sender 
of all the packets in that frame). In our approach, we use rules whenever we encoun-
ter problems with the expressiveness of OWL alone. It should also be noted that just 
the use of rules per se does not guarantee the correctness of the solution; one needs 
to be aware of various pitfalls associated with the use of automatic inference and 
ensure that the implementation of the rules avoids such problems.   
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5     Case Study 

 The fi rst requirement for this study was an ontology for the cyber security domain. 
Unfortunately, a comprehensive ontology for this domain does not exist. In this sec-
tion we describe our approach to developing such an ontology. The ontology had to 
be supplemented with rules, which will be presented next. To demonstrate the use-
fulness of the ontology based approach to cyber security, a testing environment had 
to be set up, data collected and then used by an inference engine to infer whether a 
situation of a specifi c type of cyber threat is taking place or not. 

5.1     Cyber Security Ontologies 

 An ontology for cyber situational awareness should be expressive enough to capture 
the classes and properties of individuals involved (e.g. networked devices, the per-
sons or organizations who own, control, or use them), how these classes and proper-
ties are related to one another (including membership conditions, property domains 
and range restrictions, and disjointness axioms), and what elements are networked 
at particular times and the activities in which they are involved (e.g. message M was 
sent from element X to element Y at time T). On the basis of this representation of 
the network in a logical framework, a cyber situational awareness engine needs to 
characterize the situation as either operating normally or as being under a stage of 
attack or some otherwise undesirable condition. 

 Unfortunately, there have been relatively few attempts to develop an ontology to 
comprehensively encode cyber situation information as an OWL ontology (Swimmer 
 2008 ; Parmelee  2010 ; Obrst et al.  2012 ; Singhal and Wijesekera  2010 ), and no com-
prehensive ontologies have been published. Some design patterns have been published 
for modeling important network concepts, such as the mereotopology patterns outlined 
in Dumontier ( 2013 ), however. 

 In our project, various cyber security standards from MITRE ( CCE ), ( CPE ), 
( OVAL ), ( STIX ), NIST ( SCAP ) and IETF ( IODEF ) were investigated in representing 
the various aspects of cyber security. Figure  1  shows the major categories and the 
standards found in each category. To construct a working ontology for cyber situa-
tional awareness, these various standards were converted into OWL versions, in 
whole or in part. That is, the terms from the various XML-based vocabularies were 
integrated into an OWL ontology, thus providing them with a computer-processable 
semantics. Figure  1  lists the standards considered in the project and indicates whether 
or not they were converted to OWL as part of this effort.  

 The most relevant standard is a relatively new effort supported by various orga-
nizations and managed by MITRE called Structured Threat Information eXpression 
( STIX ). STIX is the most comprehensive effort to unify cyber security information 
sharing. It is described as “a Structured Language for Cyber Threat Intelligence 
Information”, and it incorporates vocabulary from several other standards. The 
overall structure is show in Fig.  2 . STIX is meant to allow for information sharing 
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on cyber threat intelligence. An XML schema for STIX 0.3 was available and used 
to construct the initial ontology.  

 STIX captures concepts such as those listed below and provides a high level 
framework to hold the various cyber intelligence components together. These 
include:

•    Observable and Indicators  
•   Incident  
•   Tactics, techniques and procedures of attackers (TTP)  
•   Exploit Targets  
•   Courses Of Action  
•   Campaigns and Threat Actors   

The STIX standard helps to glue together the lower level concepts such as events, 
device and the various other MITRE standards.  

5.2     An Overview of XML-Based Standards 

 In order to reason over statements expressed in all of these vocabularies, we converted 
the following XML-based cyber standards into OWL ontologies, in whole or part. 

  Fig. 1    Security standards       
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5.2.1     Structured Threat Information eXpression (STIX) 

    STIX™  is a collaborative community-driven effort to defi ne and develop a standardized 
language to represent structured cyber threat information. The STIX Language intends to 
convey the full range of potential cyber threat information and strives to be fully expressive, 
fl exible, extensible, automatable, and as human-readable as possible. 

 STIX is sponsored by the offi ce of Cybersecurity and Communications at the 
U.S. Department of Homeland Security.  

5.2.2     Common Attack Pattern Enumeration and Classifi cation (CAPEC) 

    CAPEC™  is international in scope and free for public use. It is a publicly available, 
community- developed list of common attack patterns along with a comprehensive schema 
and classifi cation taxonomy. Attack patterns are descriptions of common methods for 
exploiting software systems. They derive from the concept of design patterns applied in a 
destructive rather than constructive context and are generated from in-depth analysis of 
specifi c real-world exploit examples. 

 CAPEC is co-sponsored by MITRE Corporation and the offi ce of Cybersecurity 
and Communications at the U.S. Department of Homeland Security.  

5.2.3     Common Vulnerabilities and Exposures (CVE) 

    CVE  is a dictionary of publicly known information security vulnerabilities and exposures. 
CVE’s common identifi ers enable data exchange between security products and provide a 
baseline index point for evaluating coverage of tools and services. 

5.2.4        Cyber Observables eXpression (CybOX) 

 The Cyber Observable eXpression ( CybOX ) is a standardized schema for the specifi -
cation, capture, characterization and communication of events or stateful properties 
that are observable in the operational domain. A wide variety of high-level cyber secu-
rity use cases rely on such information including: event management/logging, mal-
ware characterization, intrusion detection, incident response/management, attack 
pattern characterization, etc. CybOX provides a common mechanism (structure and 
content) for addressing cyber observables across and among this full range of use cases 
improving consistency, effi ciency, interoperability and overall situational awareness.  

5.2.5     Malware Attribute Enumeration and Characterization (MAEC) 

    MAEC  is a standardized language for encoding and communicating high-fi delity informa-
tion about malware based upon attributes such as behaviors, artifacts, and attack patterns. 
By eliminating the ambiguity and inaccuracy that currently exists in malware descriptions 
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and by reducing reliance on signatures, MAEC aims to improve human-to-human, human-
to- tool, tool-to-tool, and tool-to-human communication about malware; reduce potential 
duplication of malware analysis efforts by researchers; and allow for the faster development 
of countermeasures by enabling the ability to leverage responses to previously observed 
malware instances. 

5.2.6        Common Weakness Enumeration (CWE) 

  CWE   (  http://cwe.mitre.org    ) provides a unifi ed, measurable set of software weak-
nesses that is enabling more effective discussion, description, selection   , and use of 
software security tools and services that can fi nd these weaknesses in source code 
and operational systems as well as better understanding and management of soft-
ware weaknesses related to architecture and design.  

5.2.7     Whois and Additional Ontologies 

 Several additional ontologies were used to represent organizations, whois informa-
tion, and other data. Whois is a query and response protocol used for querying 
databases that store the registered users or assignees of Internet resources - domain 
names, IP address blocks, or autonomous systems. The protocol stores and delivers 
database content in a human-readable format.   

5.3     Lifting Cyber Security XML into OWL 

 XML schemas merely mandate how information should be structured in conveying 
a pre-specifi ed set of XML elements from one agent to another. What the various 
XML elements mean is implicit or, at most, only represented in the XML schema 
documentation, and implemented in code that inputs and outputs data in that 
schema, in a manner that is consistent or inconsistent with data encoded by other 
implementers. That is, following the distinctions outlined in the previous sections, 
the various XML schemas used to communicate cyber situations currently provide 
a set of concept names, with distinct URIs, and syntax (message format) but no 
formal semantics. Hence, they fall short of being ontology and cannot be subject to 
automatic inference. 

 The process of transforming XML data to semantic representation (RDF or 
OWL) is called  lifting . This process can be largely automated, but with some cave-
ats because not all XML schema constructs have a direct counterpart in OWL. A 
plethora of research has been conducted in this area (   Bedini et al.  2011a ;  Bikakis 
et al. ; Anagnostopoulos et al.  2013 ; Ferdinand et al.  2004 ; Bohring and Auer  2005 ; 
Rodrigues et al.  2006 ). 
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 In converting the XML-based schemas to OWL, we faced the following choices:

•    Use a generic XSLT Translation: Since both XSD and OWL are XML-based 
formats, XSLT can be used to transform XSD to OWL.  

•   Write a custom XSLT script: This approach requires writing a tailored XSLT 
script per XSD allowing the resulting OWL to more accurately represent the 
schema.  

•   Write custom application: This is a more heavy-duty solution that involves writ-
ing a procedural code (Java, C++, etc.) that loads the specifi c XSD document 
into memory and generates OWL (possibly using an OWL library).  

•   Use an external tool: Use one of the tools available on the market, like TopBraid 
Composer.  

•   Manual: Manually create the ontology based on the XSD data model using an 
ontology editor such as Protégé.   

The STIX XML Schema is quite complex. It uses many advanced features, like 
xsd:choice, xs:restriction, xs:extension, xs:enumeration, which often cannot be eas-
ily transformed into OWL. Moreover, the model is partitioned into multiple fi les 
that not only import each other, but also import additional external schemas. Not 
surprisingly, the automatic translation offered by generic XSLT scripts or by the 
third party applications did not yield satisfactory results. The resulting ontology was 
inconsistent, messy and effectively very hard to use. Enumerations were improperly 
converted, namespaces were improperly defi ned, and countless classes and proper-
ties that were generated were practically useless, acting as placeholders. Numerous 
classes and properties were redefi ned across multiple generated OWL fi les, which 
produced inconsistencies. Moreover, the translation did not handle datatypes cor-
rectly and generated object properties when it was not necessary, or correct, 
 effectively defi ning primitive data types as OWL classes, such as String. 

 In general, since XML Schema is concerned only with message structure, not mes-
sage meaning, datatype properties such as strings are used to encode entities, making 
OWL inference impossible over them, since they do not represent entities (i.e. some-
thing denoted by a URI/IRI) but only a piece of data. For example, if the country 
associated with an IP address is represented as a string in OWL (e.g. “Republic of 
Ireland”), then it is impossible to do geospatial reasoning with this element using an 
ontology of places and their relations ( GeoNames Ontology ). In order to reason about 
something like a region, the entity must be a fi rst-class individual with associated 
properties (latitude-longitude coordinates, etc.), denoted by an IRI/URI. 

 Automated translation methods were not yet satisfactory for use in converting 
the STIX model to OWL. Techniques for such automatic translation in general are 
still subject of an ongoing research (Bedini    et al.  2011b ). In general, automated 
XSD to OWL methods fail because they cannot:

•    Distinguish container elements (e.g. Contacts) from singular classes to which a 
parent class might be related one-to-many (e.g. Contact).  

•   Distinguish datatype and object-type properties.  
•   Generate useful object property relation identifi ers.  
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•   Produce useful property restrictions between classes (except for cardinality 
restrictions, which were often accurate).  

•   Generate domain and range restrictions.  
•   Generate useful class hierarchies.   

Our second approach was to write custom XSLT scripts. However, due to the com-
plexities of the STIX model described above, the result was also far from satisfac-
tory, and we decided to create the STIX ontology by hand, using the XSD model as 
a guideline. During the manual process we were able to leverage some OWL- 
specifi c mechanisms and create an ontology that maintained the intention of the 
schema, but used slightly different constructs to express it. For instance, in order to 
associate an indicator with a sequence of observables in XSD, authors of the STIX 
model created a type stix:ObservablesType, which is a complex type with an 
unbounded sequence of stix:ObservableType. To represent the same in OWL, only 
one class is needed, e.g. stix:Observable, whose instances can then be related to 
instances of a class stix:Indicator using an object property “stix:observable”. If we 
wanted to restrict this relationship, e.g., say that a single Indicator can have only one 
Observable, we would simply defi ne the “stix:observable” property as a functional 
property. 

 Nearly all relationships between XSD elements were expressed as OWL restric-
tions on classes that represented one of the elements. For instance, in order to 
express the fact that an instance of stix:Indicator can have a relationship with mul-
tiple instances of stix:Observable, we defi ned a restriction on class stix:Indicator: 

 <owl:Class rdf:about="http://stix.mitre.org/STIX#Indicator"> 
 <rdfs:subClassOf> 
 <owl:Restriction> 
 <owl:onProperty rdf:resource="http://stix.mitre.org/STIX#observable"/> 
 <owl:allValuesFrom rdf:resource="http://stix.mitre.org/STIX#Observable"/> 
 </owl:Restriction> 
 </rdfs:subClassOf> 
 </owl:Class> 

 In the end, the resulting ontology refl ects the relationships expressed in the origi-
nal model, yet it is clean, logically consistent and easy to use when writing SPARQL 
queries or declarative rules.  

5.4     STIX Ontology 

 The resulting STIX OWL ontology that we created on the basis of the STIX XML 
Schema (XSD) document has the following characteristics (Fig.  3 )   :  

 The STIX ontology imports the following ontologies, in addition to the multiple 
STIX ontology fi les (Fig.  4 ):     
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 A high-level overview of the STIX ontology that was produced in this project, is 
depicted in Fig.  5 . The central class is TTP (Tactic, Techniques and Procedure), the 
instances of which are cyber security exploits. These TTPs may have a variety of 
subclasses. TTPs are related to instances of AttackPattern, Exploit, ExploitTarget, 
InformationSource, Infrastructure, Intent, KillChain, KillChainPhase, Identity (of 
target) and ToolInformation via object properties that further individuate the 
instances of that class. TTP has subclasses ObservedTTP, RelatedTTP, and 
LeveragedTTP. Indicators are related to TTP by means of the indicatedTTP object 
property. Restrictions on the object properties are used to structure the instances of 
this class, and other classes.  

  Fig. 3    STIX 0.3 ontology metrics       

  Fig. 4    STIX ontology imports       
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5.4.1     Populating Vulnerabilities Using the NVDClient 

 The NVDClient is a tool we have developed that uses the National Vulnerability 
Database (available from  NIST ) to fetch data about a particular cyber vulnerability 
in the CVE (Common Vulnerabilities and Exposures) registry ( CVE ). The data 
includes information about the CVE’s impact [ Common Vulnerability Scoring 
System (CVSS-SIG) ], references to advisories, solutions and tools and a relation-
ship to  CWEs . Because they were so numerous, we did not want to fi rst incorporate 
all the vulnerabilities into an ontology that we would use in inference, since there 
would be too much information that was not necessary. The information in the 
CAPEC ontology relates attack patterns to classes of vulnerabilities. 

 NIST does not provide any web service access to its data; instead, it publishes a 
data feed, which is regularly updated. The feed is formatted in XML and is rather 
large (16 MB). Downloading and processing the entire feed is impractical if one is 
interested in getting information about only a few CVEs at a time. To address this 
issue, we developed a Java program that scrapes the CVE information directly from 
its corresponding web page. All CVEs are described on single pages accessible 
under an HTTP address of the following format:

     http://web.nvd.nist.gov/view/vuln/detail?vulnId =  <CVE ID>        

Consequently, the tool downloads the HTML code of the web page describing a 
particular CVE of interest by supplying appropriate  CVE ID . Next, using the jsoup 
library ( jsoup ), it scrapes useful information about the CVE using a CSS-like syntax 
to access particular HTML elements on the page. 

 Once the CVE information is stored in memory, the tool creates a new ontology 
model in  Apache Jena  and generates an OWL document representing the CVE. Tools 
like TopBraid Composer or BaseVISor inference engine can then process the result-
ing OWL document, which are imported at inference time.   

5.5     Other Ontologies 

5.5.1     Persons, Groups and Organizations 

 We used the Friend of a Friend (FOAF) ontology ( The Friend of a Friend ) to repre-
sent persons, groups, and organizations. Additionally, we developed an ontology for 
WhoIs Internet registration information ( WhoIs ) in order to associate IP addresses 
of devices with human agents and organizations. We used a service called whoisx-
mlapi.com to provide WhoIs information for IP addresses we encountered. This 
requires two lookups. The fi rst lookup identifi ed a contact email based on the IP 
address supplied. We then did a DNS lookup on the contact email domain (assum-
ing they would be the same) to get the domain name and other information for the 
domain that controls that IP address. Similarly, we could look up the registrar name. 
If the registrar is suspicious, knowing this fact about an IP address is useful for our 
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purposes. Unfortunately, the XML produced by the whoisxmlapi.com service was 
less useful for foreign IP addresses, because it failed to contain structured informa-
tion. Relevant information was contained in the record, but it was enclosed just as 
text strings, often in a foreign language, which would require additional parsing to 
populate the XML fi elds and then lifted to OWL. We did not implement a custom 
parser for accomplishing this.  

5.5.2     Threat Representation 

 For threat representation, the NIST CAPEC classifi cation was used and represented in 
an ontology. The CAPEC classifi cation provides ways to classify the attacks and used 
with detected cyber events to understand the CVE vulnerabilities, which were associ-
ated with an exploit using a particular CAPEC attack mechanism. This was then used 
to infer potential effects on the target and future actions the malware may perform. 

 The MAEC schema was not used as it is typically used to represent the actual 
malware and this type of data is usually not accessible at various security sites, 
unless through a paid subscription. CVE and vulnerability information is typically 
available but not the actual malware data.  

5.5.3     Weakness and Risk Representation 

 The CWE representation that classifi es the various types of weaknesses was entirely rep-
resented in the ontology with the referenced CAPEC information. CVE vulnerability 
information was not represented in the ontology, as it is usually part of the signature used 
in detecting security events. Typically a Snort signature would identify a specifi c CVE, 
which would then be used to identify associated CWE and the CAPEC information. 

 The CWE provides the various weaknesses that may be exploited by malware 
and can be used to understand the attack and also determine the impact and malware 
behavior. Figure  6  depicts a portion of the CWE structure; the red boxes represent 
the CWEs that are being used by the National Vulnerability Database.   

5.5.4    Asset and Target Representation 

 MITRE standards such as CPE, CCE and CVSS were used to represent the target 
and asset being targeted by malware. The  CPE  and  CCE  tend to be more for end 
host representation of the confi guration, operating system and applications but are 
not used in the ontology, as those concepts already exist. The CVSS information on 
the vulnerability score will be used for specifi c attacks to understand the potential 
impact and severity of the attacks. 

 Other ontologies that were developed include an ontology of Snort events and 
similar events, an ontology of part-whole relations, that were used to represent IP 
domains and sub-domains, and a watchlist ontology. The prototype system was 
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capable of processing events from various sources and converting them into the 
ontology. For Snort IDS events, the system queried the Snort database and pro-
cessed the various events. The key Snort fi eld was the classifi cation of the type of 
event and for known signatures, the CVE code of the exploited vulnerability. 

 For associating users with entities on the network, an LDAP directory was queried 
as to domain login and logoff information, which were converted into ontology events. 

 Netfl ow events were obtained from an existing netfl ow collector; since the sys-
tem was not producing a high level of netfl ow data, occasional processing of the 
fl ow to ontology was done. Performance data of the network was obtained from a 
network management capability that polled SNMP related statistics and converted 
it into OWL form.  

5.5.5    Kill Chain 

 Next, we discuss issues related to the modeling of events and situations in an ontol-
ogy, representing and reasoning about the participation of entities in events and situ-
ations as well as mereological, causal, temporal and geospatial relationships 

  Fig. 6    Portion of the structure of the common weakness enumeration ( CWE ) (  http://nvd.nist.gov/
cwe.cfm       )       
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between events. An ontology of events or situations treats these entities as individu-
als that occur or happen. They are considered to be perduring entities that unfold 
over time, i.e., they have temporal parts. In contrast, material objects such as stones 
and chairs are said to exist, and all of the parts that they have exist at each point in 
time; they are called endurants. There are several ontologies for events (Wang et al. 
 2007 ; Raimond and Abdallah  2007 ; IPTC  2008 ; Doerr et al.  2007 ; Mueller  2008 ; 
Francois et al.  2005 ; Westermann and Jain  2007 ; Scherp et al.  2009 ) and models for 
situation-awareness that have a close relation to events (Chen and Joshi  2004 ; Wang 
et al.  2004 ; Yau and Liu  2006 ; Lin  2008 ), some of which are based on Barwise and 
Perry’s Situation Theory (Barwise and Perry  1983 ; Matheus et al.  2003 ,  2005 ; 
Kokar et al.  2009 ) that can be used to represent occurrences within a network. 

 In our system, an Event class based on the MITRE Common Event Expression 
(CEE) was used to capture the low level events data that is captured in typical log 
data. The base ontology uses some of those concepts including time (Hobbs and Pan 
 2004 ), priority and other common attributes found in CEE. The ontology was fur-
ther enhanced to  capture the following event subclasses:

•    Security Events  
•   Identity Events  
•   Reputation Events  
•   Network Flow  
•   Network Performance Events   

Figure  7  shows the ontology class structure from the ontology tool.  
 One of the key cyber situational concepts from STIX is the idea of the kill chain, 

which is a particular type of situation, in which several events of particular types 
must occur in a specifi ed order. Kill chains as they are related to Advanced Persistent 
Threats are described in detail in Hutchins et al. ( 2011 ). The kill chain model of 
Advanced Persistent Threats is used to describe the various phases that an adversary 
would perform as listed below and shown in Fig.  8 :   

•    Reconnaissance  
•   Weaponization  
•   Delivery  
•   Exploitation  
•   Installation  
•   C2  
•   Actions on Objectives   

The kill chain referenced in STIX is slightly different than described in the Hutchins 
paper but similar concepts are expressed. An Intrusion Kill Chain, in our ontology, 
is a subclass of Kill Chain that contains various associated phases for that type of 
kill chain (here, Intrusion), which are related to one another by a transitive ‘pre-
cedes’ object property.     
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  Fig. 7    Event ontology structure       

  Fig. 8    Kill chain model ( Security Intelligence )       
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6     APT Test Use Case 

 For testing purposes, an APT type example was selected using a recent incident that 
was described in Stewart ( 2013 ). An “Advanced Persistent Threat” (APT) refers to 
cyber-espionage activity carried out against governments, activists, and industry. 
The entities involved could be anything that provides a point of information—mal-
ware, command and control (C2) domains, hostnames, IP addresses, actors, exploits, 
targets, tools, tactics, and so on. The “advanced” aspect is that sophisticated tech-
niques using malware are used to exploit vulnerabilities in systems. For example, 
APTs may use sophisticated “ransomware” like the CryptoLocker exploit that 
attack a computer by means of an email attachment which then encrypts the data on 
the machine and demands that the user pay a ransom to unencrypt it (US-CERT 
 2013 ). The “persistent” aspect is that an external command and control system is 
continuously monitoring and extracting data from a specifi c target. The “threat” 
aspect refers to adversarial human involvement in orchestrating the attack. 

 An APT event contains various events that happen over a period of time that 
encompass various portions of the kill chain. The number of entities to keep track 
of is huge: there are hundreds of unique families of custom malware involved in 
APT cyber-espionage campaigns, using thousands of domain names and tens of 
thousands of subdomains for hosting malware or spearphishing. 

 At the most basic event level, reasoning about an APT using a cybersituational 
ontology requires detecting low-level network events, consisting primarily of Snort 
and Netfl ow events. In our scenario, these events were used to infer high-level con-
cepts using the inference and rules in the ontology to generate individuals such as 
observables related to the events, which then become indicators and are represented 
as incidents in the ontology. 

 Mid-level entities were then asserted for correlation to higher-level concepts such 
as, campaign, TTP, threat actor and targets by means of inference using the ontology 
and custom inference rules that cannot be expressed in the ontology directly. 

 The rules that were developed were used to infer the various STIX classes and 
how they were related. The rules would be used to infer the kill chain, kill chain 
phases, TTP, threat actor and target. Inferences were made associating various 
detected events with kill chain stages. 

6.1     Test Network 

 Testing was done on a test network with actual attacks. The network consisted of a 
hub site connecting to three spoke sites (Fig.  9 ). There are three potential paths to 
the spoke sites with various IDS, fi rewall, router and switches. Various attacks were 
performed on the network and event information captured and analyzed by the pro-
totype system. The ontology and rules were then used to infer information about the 
attack and its impacts on the test network. The inference of facts triggered by low- 
level Snort events to the identifi cation of kill chain elements to the identifi cation of 
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perpetrators, was done using VIStology’s BaseVISor OWL 2 RL forward-chaining 
inference engine, incorporating the cyber situational ontology produced from the 
various standards described here.  

 The inference and rule development consisted primarily of (1) creating the high 
level STIX incidents from various low level network events, and (2) inferring infor-
mation as to the state of the network and its paths and potential impacts. 

 The STIX representation requires development of rules that build out a model of 
the cyber security state from the network devices, topology, assets with dynamic 
event information from IDS, NetFlow, network metrics and other event data. 

 The STIX representation creates STIX incidents, campaign and other high level 
classes based on individual events. Individual interrelated events such as the CVE 
Snort based event and the Snort class type were then pieced together to understand 
the attack type. The IP address from the Snort event was used to infer the identity of 
the APT threat actor. 

6.1.1    Kill Chain 

 The various low level incidents were correlated as part of a larger kill chain. Looking 
at the user and target, and correlating the order of various incidents, was used to 
determine that these events were part of a similar campaign by the same threat actor. 
The temporal order of the events was then used to classify the nature of the situa-
tion. For example, if C2 beaconing occurs before an infected fi le is downloaded, 
then this is reversed from the kill chain sequence, so then these two incidents are not 
stages of the same kill chain, although they may be separate elements of attempts to 
inject an infected fi le.  

  Fig. 9    Test network diagram. Some details are redacted       
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6.1.2    Target Information 

 The IP address from the Snort sensor was used to understand the targeted devices 
and user identity from the identity events by means of WhoIs information. 
Observations about domain registrants were used to associate various cyber events 
with the same user. As target, information represented in the ontology about a user’s 
role and place in an enterprise can be used to infer actual and potential attack types 
and vulnerabilities exploited.  

6.1.3    Threat Actor 

 In our ontology, a threat actor reputation list was built based on the reputation list 
but also from external linkage to WhoIs and domain information sites. Eventually 
other external incident reports will help to correlate threat actors to larger cam-
paigns that target multiple organizations. It may be possible to infer the threat actor 
type (e.g. state sponsored, criminal or individual hacker) based on TTP, target and 
sophistication of attack methods. 

 Reputation events were researched in conjunction with the Collective Intelligence 
Framework (CIF) project as a potential source of external IP- and URL-based repu-
tation information. CIF uses data from sites such as the Malware Domain Blocklist, 
Shadowserver, Spamhaus, and several others, to store and correlate data. For our 
purposes, we just used Spamhaus (spamhaus.org) reputation lists directly. In the 
future, the interface to the CIF could be used to get additional information.  

6.1.4    Impact Analysis 

 Rules were developed to infer information about the state of the network and the 
paths within the network based on the current attacks with respect to impact and 
mitigation. 

 In general, our ontology was augmented with some rules used to help infer the 
more complex APT concepts and to create instances of the STIX representation of 
the potential attacks. The rules were written in VIStology BaseVISor language and 
run with the BaseVISor inference engine. The inference engine runs all the rules to 
infer from the low level events to STIX observables, indicators and incidents in 
addition to standard OWL 2 RL inference rules for generic inferences about classes 
and relations. From these low level indicators, a kill chain with a kill chain phase 
was inferred based on the potential threat actor and target. 

 SPARQL queries were also used for analysis of impact based on various Snort, 
reputation and identity events. The Snort events that had a CVE reference were cor-
related to the CWE and CAPEC associations in the ontology to infer additional 
network impact scores.   
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6.2     Rules 

 In addition to the ontology, a set of rules was developed in order to make the follow-
ing inferences:

•    Tie Snort events to CVEs  
•   Create an Observable for each Snort or Netfl ow Event  
•   Create an Indicator for each Observable  
•   Extract Kill Chain phase from Snort events to Indicators  
•   Combine Indicators with the same related CVE  
•   Combine Indicators with the same signature IDs and source IP  
•   Combine Indicators with Snort events and NetFlow events of the same source/

destination IP and detect time  
•   Combine indicators with NetFlowEvents matching source/destination but not 

having a corresponding SnortEvent  
•   Assert kill chain phase for NetFlow-based Indicators missing a kill chain phase  
•   Create Incidents for Indicators  
•   Extract CVSS Base score  
•   Identify ExploitTarget (destination of Snort event in the user’s domain)  
•   Create a TTP and ThreatActor based on existing ExploitTarget  
•   Extract AttackPattern from ExploitTarget's CWE to ThreatActor's CAPEC  
•   Store IP addresses of ThreatActor based on events from ExploitTarget  
•   Assign indicators as KillChainPhase   

These rules were implemented in BaseVISor rule language as Horn clause rules that 
enable patterns of triples to be expressed using both constants and variables in the 
body of the rules. The values of variables that are bound to a set of facts that matches 
the pattern in the body of the rule can then be used to assert new triples in the head 
of the rule. Additionally, these values can be used as inputs to procedural attach-
ments in the rule head. Such procedural attachments might, for example, call exter-
nal services to convert a domain name to an IP address or compute the distance 
between two geospatial points expressed as latitude/longitude pairs. 

 When security events are found by Snort, if the signature has a CVE associated 
with it, that information is used as a key to get additional information about the 
particular vulnerability from the NIST site. The NIST site provides html based data 
on the CVE but also the association to the CWE, CAPEC and additional informa-
tion such as CVSS base score, access vector, and so on. 

 At a basic level, the detected Snort and Netfl ow events contain CVE signature, host 
and destination IP address and host information. The events are collected together as 
observables, which are mapped to indicators by means of the ontology and rules and 
are then aggregated as Incidents. Snort events with CVE were used to infer which part 
of the kill chain an event may be characterized as by mapping Snort event classes to 
kill chain phases in the ontology. Snort events without an associated CVE are corre-
lated with Netfl ow events to represent their relation. For example command and con-
trol traffi c may show up as a suspicious event in Snort but with no associated CVE. 
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Such events can then be correlated with Netfl ow events on the basis of source and 
destination information, in order to infer matches to a particular target and threat 
actors. These mid-level Incidents are then associated with higher- level concepts of a 
campaign, TTP, threat actor and targets by means of the ontology and rules.  

6.3     Inference Based Threat Detection 

 Rules were used to associate domains or IP addresses with incidents. Multiple 
events with the same source could then be detected. If the event was characterized 
as malevolent or part of a kill chain, the domain or IP address could be associated 
with entries in the reputation ontology derived from the Spamhaus.org entries 
described previously. In addition, ontology individuals corresponding to countries, 
organization and Internet registrars allowed the system to characterize domains and 
IP addresses as more or less suspicious, based on prior activities. Countries can be 
characterized by their reputation for hosting cyber aggressors, for example. IP 
addresses can be related to countries by means of WhoIs and DNS lookups, as 
described previously, as well. Thus, suspicious traffi c originating from a known 
suspicious country would be inferred to be even more suspicious in nature.   

7     Other Ontology-Related Efforts for Cyber Security 

 A number of research papers were found reporting on the use of ontologies in cyber 
security. First of all there are a number of papers that argue for the need to use ontolo-
gies in solving cyber security problems. For instance, in an ARO workshop presenta-
tion, Sheth ( 2007 ) argued for the use of the Semantic Web techniques and ontologies 
for cyber situational awareness. Caton ( 2012 ) argued for putting the issue of cyber 
security in a wider context of a more general theory of confl ict—going beyond the 
models of the current situation—to models that include the capabilities of accom-
modating future developments in the cyberspace warfare. Clearly, this view is in line 
with the Endsley’s model of situation awareness (Endsley  1995 ) in which the process 
includes projection in the future. Atkinson et al. ( 2012 ) put the problem of cyber 
security in a wider perspective of social networks and argued for an approach in 
which the problem is considered as a problem of establishing a cyber-ecology in 
which means exist for encouraging good behaviors and deterring bad. Their ontologi-
cal framework includes both the social trust and technological rules and controls. 

 Ontologies for cyber security go back to the early days of the Semantic Web. For 
instance, the 2003 paper (Undercoffer et al.  2003 ) discussed the use of the DAML 
language (the precursor of OWL) for representing an ontology for the domain of 
intrusion detection. It compared DAML vs. XML and discussed the inadequacies of 
the latter. The ontology includes 23 classes and 190 properties/attributes. The 2005 
paper (Kim et al.  2005 ) presented some plans to use ontologies for modeling depen-
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dencies between cyber related infrastructures, although no details of the resulting 
ontology were given. More et al. ( 2012 ) describe an experimental system for intru-
sion detection that uses ontologies and inference. Their ontology is an extension of 
the one developed by Undercoffer et al. ( 2003 ). Okolica et al. ( 2009 ) develop a 
framework for understanding situational awareness in the cyber security domain. 
They also refer to the ontology developed by Undercoffer et al. ( 2003 ). 

 A large number of papers reported on the use of ontologies for cyber security and 
situational awareness. However, since the details of the ontologies used are not 
shown, it was impossible for us to reuse these results. For instance, the paper 
(Khairkar et al.  2013 ) mentions a number of research efforts where ontologies were 
used. It claims that ontologies will resolve many problems with the Intrusion 
Detection Systems, in particular by classifying malicious activities detected in the 
logs of network activity, however, it does not show any details of such an approach. 
The paper (Kang and Liang  2013 ) discusses an attempt to use an ontology that links 
security issues to the software development process based on Model Driven 
Architecture (MDA). In particular, an ontology (which is presented as a collection 
of the various meta-models) is attributed with the generation of the various MDA 
models. Unfortunately, the paper does not show any details of how this is achieved. 
Strassner et al. ( 2010 ) discuss an architecture of a system for network monitoring in 
which ontologies are used. The paper stresses the ability of ontologies to infer facts 
that are not explicitly represented. But no details of the ontology are shown. 
Bradshaw and his colleagues ( 2012 ) discuss the use of policies and an agent based 
architecture for the tasks of cyber situational awareness focusing on the human- 
computer interoperation. Oltramari et al. ( 2013 ) discuss the use of ontologies for 
decision support in cyber operations, however no specifi c ontology is provided. The 
paper focuses on the architecture and conceptual justifi cation for the use of cogni-
tive architectures that should include ontologies. The authors of de Barros Barreto 
et al. ( 2013 ) describe a system that uses ontologies. They don’t show a new ontol-
ogy, but rather reuse other existing ontologies. 

 A number of papers show a (usually graphical) representation of the used ontol-
ogy. The paper (D’Amico et al.  2010 ) reports on a workshop in which participants 
worked on an ontology for capturing relationships between missions and cyber 
resources. This work is part of the Camus project (cyber assets, missions and users) 
(Goodall et al.  2009 ). In Strasburg et al. ( 2013 ) a project is described in which an 
ontology, expressed in OWL, was used to represent the domain of intrusion detec-
tion and response. The paper shows only the top level of the ontology. The paper 
(Bouet and Israel  2011 ) discusses a system in which an ontology for describing 
assets and their security information is used. The system works off-line—auditing 
long fi les. The paper shows only the top level of the ontology. 

 By contrast, Fenza et al. ( 2010 ) used the Situation Theory Ontology (STO) 
(Kokar et al.  2009 ) (which is publicly available) for identifying security issues in the 
domain of airport security. 

 Some papers focus on the process of developing ontologies for the cyber security 
domain. These were of special interest to us since we had to undertake such a task, 
too. For instance, Wali et al. ( 2013 ) describes an approach to developing a cyber 
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security ontology from a cyber security textbook index and an existing ontology 
(Herzog et al.  2007 ). The Software Engineering Institute’s report (Mundie and 
McIntire  2013 ) describes the Malware Analysis Lexicon (MAL)—an initiative 
infl uenced by the JASON report (McMorrow  2010 ). 

 We close our literature survey with a relatively recent report from MITRE 
(McMorrow  2010 ). JASON, an independent scientifi c advisory group that provided 
consulting services to the U.S. government on matters of defense science and tech-
nology, published a very infl uential report (McMorrow  2010 ) in 2010 whose objec-
tive was to examine and assess the theory and practice of cyber-security. One of the 
most important conclusions of this report was:

  The most important attributes would be the construction of a common language and a set of 
basic concepts about which the security community can develop a shared understanding. 
Since cyber-security is science in the presence of adversaries, these objects will change 
over time, but a common language and agreed-upon experimental protocols will facilitate 
the testing of hypotheses and validation of concepts. 

8        Lessons and Future Work 

 Given the complexity of the current XML-based standards and the state of the art in 
automatically converting XSD to OWL, the semantic representation of cyber threat 
information in an interoperable format that can be reasoned over (such as OWL) is 
diffi cult. Keeping up with changing and additional standards requires a great deal of 
manual knowledge representation effort. 

 In the test scenario described here, the ability of ontologies to represent informa-
tion and infer additional information was used to identify an advanced persistent 
threat (APT) whose operation consisted of multiple steps, represented in our ontol-
ogy as sequential steps in a kill chain. Inference with the ontology was used to 
understand the threat actor, the target and purpose, which helped to determine 
potential course of action and future impact. 

 In general, our experience with using existing terms and concepts implicit in 
XML-based cyber standards to create an OWL ontology with rules for inferring 
cyber situational awareness led us to the following conclusions:

•    Ontology based analysis is useful for providing cyber situational awareness due 
to its ability to fi nd patterns and infer new information by integrating information 
from a number of sources expressed in different standards.  

•   The ability to tie different event types to infer incident information is promising 
and could be used to add additional event types in the future.  

•   Automatically generated ontologies from XML schemas require a lot of massag-
ing to be useful and create a lot of complexity that is diffi cult to fi x.  

•   The MITRE security standards are helpful in representing concepts in cyber 
security but are more tailored for XML and must be adapted for ontology use.  

•   Snort based event information in context with NetFlow information can be used 
to understand the timing, duration and network characteristics of attacks.   
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Creating an ontology from real networks is non-trivial. However, ontologies and infer-
ence can provide additional insightful information beyond path-based analysis about 
the network. Ontologies provided an easier framework for incorporating new informa-
tion and rules compared to traditional Rete based rule engines such as Drools. However, 
the use of ontologies does require domain knowledge, ontology and software develop-
ment skills to be successful that are not commonly part of network administration. 

 The cyber ontologies developed here leveraged various standards developed by 
MITRE, NIST, USCERT and other organizations. Many of the standards were rep-
resented as XML, which was found during the research to be very diffi cult to 
 automatically convert to an ontology using XML translation rules. The lack of OWL 
ontologies corresponding to the MITRE standards and other cyber situational stan-
dards hinder interoperability and situational awareness because the XML schemas 
do not have a formal semantics. Thus, information in those standards cannot be 
combined and used to infer new knowledge. The STIX based ontology developed in 
this project could be used as a starting point by various organizations that are cur-
rently in the process of defi ning the STIX standards using XML as well as other 
research organizations. Lessons learned on the conversion process of the MITRE 
and STIX XML would help others to avoid pitfalls. The STIX ontology could also 
aid in inter agency and department cyber information sharing as it would help add 
semantic meaning, but due to the XML usage it may be diffi cult to get an ontology 
version that can be kept up to date. 

 The STIX community has expressed interest in an eventual OWL encoding of its 
work, but this task is non-trivial. Serious efforts need to begin on constructing 
interoperable ontologies for cyber situational awareness so that inferences based on 
shared information can be made in standard, transparent, uniform ways. Since so 
much valuable work has already gone into developing existing XML-based stan-
dards, and each of these has an existing community of users, it makes sense to invest 
serious effort into developing adequate techniques for lifting XML schemas into 
OWL ontologies so that machines can share not only common vocabularies, but 
common meanings for representing and inferring the state of networks.  

9     Summary 

 In cyber systems, where the processing loops are very fast, much of inference must 
be performed by computers. In other words, automatic inference engines must per-
form the inference, which in turn requires that the information (facts) to be acted 
upon by such engines needs to be represented in a language with formal semantics. 
The term “ontology” stands for an explicit, formal, machine-readable semantic 
model that defi nes the classes, instances of the classes, inter-class relations and data 
properties relevant to a problem domain. In order for ontologies to be amenable to 
automatic processing by computers, they need to be represented in a language that 
has both formal syntax and formal semantics. OWL is the most commonly used 
language for expressing ontologies today and has by far the largest developer base. 
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Automatic inference on ontologies expressed in OWL is performed by inference 
engines, or semantic reasoners. An inference engine takes a set of facts about a 
specifi c domain of interest asserted in OWL and derives other facts using axioms 
and inference rules. OWL’s semantics is such that inference is expected to be com-
putationally tractable. Several commercial inference engines for making inferences 
with OWL ontologies are available. The expressive power of OWL is relatively 
high—equivalent to a decidable fragment of complete First Order Logic. In addi-
tion, OWL can be supplemented with rules. There have been relatively few attempts 
to develop ontology to comprehensively encode cyber situation information as 
OWL ontology, and no comprehensive ontologies have been published. The most 
relevant standard is a relatively new effort supported by various organizations and 
managed by MITRE called Structured Threat Information eXpression (STIX). 
Other relevant XML schemas exists, however, they merely mandate how informa-
tion should be structured in conveying a pre-specifi ed set of XML elements from 
one agent to another. They fall short of being ontology and cannot be subject to 
automatic inference. Automatic reasoning based on ontologies can support situa-
tional awareness in the cyber security domain. An approach that mimics the ana-
lyst’s process can be implemented using ontologies and an inference engine. A 
comprehensive ontology for cyber security can be developed by taking advantage of 
existing cyber security related standards and markup languages.     
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      Learning and Semantics 

                Richard     Harang    

1            Introduction 

 This chapter further elaborates on a topic of the previous chapter—inference—by 
focusing on a particular class of algorithms important for processing of cyber 
 information—machine learning. The chapter also continues the thread of ontology 
and semantics as it explores the tradeoffs between the effectiveness of an algorithm 
and the semantic clarity of its products. It is often diffi cult to extract meaningful 
contextual information from a machine learning algorithm, because those algo-
rithms that provide high accuracy also tend to use representations less comprehen-
sible to humans. On the other hand, those algorithms that use more human-accessible 
vocabulary can be less accurate—they produce more false alerts (false positives), 
which confuse analysts. A related tradeoff is between the internal semantics of the 
algorithm versus the external semantics of its output. We illustrate this tradeoff with 
two case studies. Developers of CSA systems must be aware of such tradeoffs, and 
seek ways to mitigate them. 

 Most models of situational awareness (e.g. the widely-cited Endsley  1995 ) 
describe the fi rst level of situational awareness (SA) as “perception”, defi ned as the 
“[perception of] the status, attributes, and dynamics of  relevant  elements in then 
environment” (emphasis added). While the adaptation of conventional SA models 
to cyber situational awareness (CSA) is ongoing, it is apparent that this perceptive 
step, particularly as it pertains to relevance, is made signifi cantly more complex by 
the overwhelming quantities of benign data fl owing across network boundaries. For 
this reason, current approaches to CSA (see, e.g. D’Amico et al.  2005 ; Barford et al. 
 2010a    ) place greater emphasis on the “detection” or “recognition” of an ongoing 
incident or attack. The work of D’Amico et al. ( 2005 ) presents a cognitive task 
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analysis of intrusion detection analyst workfl ows, and divides the process into six 
tasks, the fi rst of which they term “triage” analysis, the act of weeding out false 
positives and escalating suspicious activity for further analysis; again emphasizing 
the role of identifying relevant information. Later stages of analysis rely on and fuse 
these escalated reports into more complex causal relationships, eventually develop-
ing a complete CSA assessment. In a similar vein, the work of Barford et al. ( 2010a ) 
identifi es several key aspect of cyber situational awareness (CSA), the fi rst of which 
they term “situation recognition,” or the realization that an attack is in fact occur-
ring. As with the triage and escalation process in D’Amico et al. ( 2005 ), situation 
recognition is a prerequisite to any additional tactical CSA analysis, such as attribu-
tion, impact assessment, and forensic analysis, as well as forming a major compo-
nent of more strategic CSA analysis such as adversarial activity and prediction. 

 In both cases, the key input to both situation recognition and triage is not the 
‘raw’ network data—which is generally not amenable to direct human analysis due 
to both volume and the huge range of protocols, formats, etc.—but the output of 
network intrusion detection system (NIDS) tools such as Snort (Roesch  1999 ) or 
Bro (Paxson  1999 ), which are generally intended to detect malicious activity and 
direct the attention of analysts to that activity for further analysis. Such tools typi-
cally present analysts with tables of “alerts” which may indicate anything from the 
presence of exploit signatures in a particular packet of network traffi c, to connection 
abnormalities that could suggest post-compromise activity, to simple statistical 
summaries of network traffi c with outliers along some dimension highlighted. 
However, as the authors of Barford et al. ( 2010a ) note, despite most NIDS tools 
ostensibly being designed to detect intrusions, they currently are more accurately 
understood as serving the role as pre-fi lters to the vast volume of traffi c that fl ows 
through a network, attempting to highlight and bring to the attention of human ana-
lysts those data that are most likely to be related to an ongoing event, thus assisting 
in but not removing the need for the ‘triage’ operation of D’Amico et al. ( 2005 ). The 
actual work of CSA takes place at a human level, fusing the reports from various 
NIDS tools in a manual process and at human time scales in order to build a com-
prehensive picture of current situation. Properly facilitating this triage operation is 
therefore critical; tools that provide suffi cient ancillary information to enable rapid 
triage will allow for more rapid escalation or elimination of alerts, while those that 
provide little or no ancillary information demand the expenditure of analyst 
resources to interpret the output of the tool before triage can occur. 

 The demands placed on such tools will only increase over time due to the expo-
nential increase in total traffi c volume year over year. An analysis by Cisco 
Corporation ( 2013 ) concludes that internet traffi c is growing with at an annual com-
pound rate of approximately 23 % (doubling roughly every 3.5 years). Increasing 
the number of NIDS analysts at a comparable rate to keep up with traffi c is clearly 
not sustainable in the long term, leading to the conclusion that CSA synthesis and 
analysis must be both increasingly tool-facilitated and automated, leaving humans 
responsible for more and more abstract and high-level tasks centering on verifi ca-
tion of the results of the NIDS analysis. Unfortunately, as discussed below, the cur-
rent generation of NIDS tools are not well-suited to this; either they lack suffi cient 
ability to generalize to novel attacks (or even novel variations on existing attacks), 
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they do not produce information of suffi cient reliability to be incorporated into 
 automated analysis, or the transformations that they perform to attain both general-
ization and reliability are too complex for easy human comprehension and analysis 
(they suffer from a large semantic gap). 

 Other automated and semi-automated approaches to enhancing CSA have been 
proposed. Many efforts completely avoid the question of detection and contextual-
ization of malicious activity, and instead focus facilitating the ability of human ana-
lysts to detect malicious behaviors through more natural representations of the 
available data, usually displaying selected aspects of the entirety of the data in some 
graphical format, while allowing human operators to manually fi lter it to compo-
nents of interest (e.g., Lakkaraju et al.  2004 ; Yin et al.  2004 ). While these approaches 
are promising in the short term, the current rate of growth of internet traffi c, as dis-
cussed above, suggests that their reliance on humans as the core functional compo-
nent of the classifi cation engine is not sustainable. Other proposals such as 
Yegneswaran et al. ( 2005 ) (see also closely related work in Barford et al.  2010b    ) 
have suggested the use of honeynets to collect data in support of CSA efforts, and 
reported that such data—particularly in the case of automated activity such as bot-
net infestations or worm outbreaks—provide useful higher level information of 
value to CSA analysis. The authors do note that signifi cant analysis was required to 
render it useful, and focused primarily on and mass-exploitation approaches (scans 
for misconfi gurations, botnet probes, and worms), rendering it more applicable to 
high level strategic CSA, rather than the more tactical level we consider here. 

 The remainder of this chapter is organized as follows. We fi rst present a high- 
level discussion of NIDS tools and machine learning counterparts. Next we discuss 
the semantics of both the outputs of machine learning tools, as well as their ‘inter-
nal’ semantics: how data is used within machine learning tools to generate decisions 
or classifi cations. We provide two concrete examples of machine learning approaches 
and discuss their output and internal semantics in detail, with emphasis on how to 
render them useful to human analysts. The fi nal section concludes with recommen-
dations for integrating machine learning tools into the generation of useful cyber 
situational awareness information.  

2     NIDS Machine Learning Tool Taxonomy 

 NIDS tools are often broadly divided into two broad groups; signature-based intru-
sion detection systems (often referred to as “misuse” detection) which identify 
malicious traffi c based on matching known examples of malicious traffi c, and 
anomaly-based intrusion detection systems that attempt to characterize normal 
behavior, and then fl ag for analysis all abnormal traffi c (Sommer and Paxson  2010 ; 
Laskov et al.  2005 ). Signature-based intrusion detection typically focuses on 
known attacks or malicious behaviors with fairly clearly defi ned characteristics, 
either by matching traffi c content (Roesch  1999 ) or behavioral markers (Paxson 
 1999 ), while anomaly based intrusion detection systems cast a much broader net, 
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and attempt to characterize “normal” behavior in some fashion, and then fl ag for 
inspection any behavior that does not meet that characterization (see Ertoz et al. 
 2004 ; Lakhina et al.  2004 ,  2005 ; Abe et al.  2006 ; Zhang et al.  2008 ; Depren et al. 
 2005 ; or Xu et al.  2005 ), among many others, for examples of the wide range of 
approaches in this area). Both approaches have their advantages and disadvantages; 
while signature- based methods perform acceptably on well-known and well-char-
acterized attacks (although rule sets that are not well adapted to the target deploy-
ment environment can result in signifi cant errors, see e.g. Brugger and Chow  2007 ), 
they fail in the face of novel, uncharacterized, or polymorphic attacks (Song et al. 
 2009 ). Anomaly detection methods have the advantage of being able—at least in 
principle—to detect novel attacks (Wang and Stolfo  2004 ), however the character-
ization of ‘normal’ network traffi c and detecting signifi cant novelty has proved to 
be a signifi cant challenge (Yegneswaran et al.  2005 ), resulting in extremely high 
false positive rates (see, e.g., discussion in Sommer and Paxson  2010 ; Rehak et al. 
 2008 ; or Molina et al.  2012 ). 

 While the number of cyber attacks continues to grow year over year, this growth 
is being rapidly outstripped by the total growth of network traffi c. The Government 
Accountability Offi ce analysis of attacks reported to the United States Computer 
Emergency Readiness Team from 2006 to 2012 shows a roughly linear growth in 
the number of cyberattacks of approximately 7,180 attacks year over year (Wilshusen 
 2013 ), with 48,562 reported in 2012; while as noted above, with the total volume of 
network traffi c has a projected compound annual growth rate of 23 % (Cisco 
Corporation  2013 ). Taken in combination, this suggests that the proportion of mali-
cious traffi c as a fraction of total traffi c received (the “ground truth” positive rate) is 
low, and will likely fall signifi cantly over the coming years. This extremely low rate 
renders the usability of a NIDS tool almost entirely dependent on the false positive 
rate of the system, as discussed in detail by Axelsson ( 2000 ). While signature-based 
NIDS tools typically have a lower false positive rate, and thus may be anticipated 
perform better in realistic network environments, they do so at the cost of their abil-
ity to generalize. Anomaly-based NIDS tools are notoriously susceptible to false 
positives, which has severely constrained their use in practice. While various 
attempts to lower the false positive rate of such tools have been made, for example 
via agent-based fusion of such tools in the CAMNEP project (Rehak et al.  2008 ), 
there remain few examples of operationally deployed anomaly-based NIDS tools 
available in the literature (although see Molina et al.  2012  for a case study involving 
several anomaly detection tools in a backbone environment). 

 The primary challenge faced by NIDS tools is then how to achieve some balance 
between the ability to generalize so that a tool can at least detect variants of known 
attacks, if not novel attacks, and a usable error rate (dominated by the false positive 
rate). Various machine learning approaches have been proposed to fi ll in this gap, 
with varying degrees of success, however these introduce their own complications 
for CSA, as we discuss below.  
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3     Output Versus Internal Semantics in Machine Learning 

 The use of machine learning in NIDS tools brings with it its own challenges. As 
noted above, to produce useful CSA, it is necessary that a NIDS tool not only pro-
duce alerts when potentially hostile activity is detected, but also provide enough 
contextual information in some format to allow for the “recognition” or “triage” 
phase of the situational awareness process to occur. A highly accurate machine 
learning algorithm that provides little or no contextual information to the user there-
fore does not enable CSA, regardless of its accuracy, while a less accurate tool that 
provides a large amount of contextual information may in fact be of signifi cant 
value in enabling CSA. To examine this concept in more detail, we fi rst provide a 
brief nontechnical overview of machine learning, and then defi ne and discuss the 
concepts of “internal” and “output” semantics of a machine learning algorithm. 

 Machine learning—loosely speaking—concerns the design and analysis of auto-
matic systems that learn from data. While numerous variations exist (see any mod-
ern reference such as, e.g., Murphy  2012  for elaboration), the most common 
approach is to provide the system with a set of “training data,” in the form of labeled 
examples, from which it must learn rules that associate input data to output labels. 
The aim is to produce a rule that is both accurate in the sense that the output pro-
duced by the algorithm reliably matches the desired output, and general in the sense 
that the algorithm remains accurate even on input data that it has not previously 
seen. For example, given some set of images of handwritten digits paired with the 
number they represent, a machine learning algorithm might be expected to deter-
mine general rules for labeling never-before-seen images of the same digits (the 
website at LeCun et al.  2014  maintains state-of-the-art results on this precise prob-
lem as of the time of this writing; also see Goodfellow et al.  2013  for a more modern 
version involving recognizing addresses from street view images). 

 A wide range of methods can be used to solve this general problem of learning 
associations based on data; for example, a method as simple as converting the inputs 
(such as pixel color values) into numbers and then fi tting a straight line to those 
numbers (a ‘linear classifi er’) may produce acceptable results (LeCun et al.  1999 ). 
More complex methods, such as building a decision tree from a series of yes-or- no 
questions, or constructing an artifi cial neural network consisting of many layers and 
specialized modules (Goodfellow et al.  2013 ) may also be used, each with their own 
time and accuracy tradeoffs. Regardless of the details of the algorithm, however, the 
data presented to the algorithm must always be converted into some standardized 
form that the algorithm can process (often referred to as a ‘feature vector’), and 
some useful representation of the output must be selected. 

 This division between the internal representation and processing of the data and 
the output format of the data leads to a useful distinction in semantic groupings in 
machine learning tools. By “output semantics” we refer to the information that is 
obtainable directly and entirely from the combination of the output of a classifi er or 
decision making tool as well as the question being asked. Even when the output of 
a classifi er contains little information in an absolute sense, such as binary classifi er 
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which output a single bit of information at a time, the combination of the output 
with the problem space (e.g., “is this a picture of a white cat?”) can provide signifi -
cantly more detailed information. By “internal semantics” we refer to the mecha-
nism (or, informally, ‘reasoning’) by which a classifi cation or decision is arrived at. 
In the case of linear classifi ers, this refers to a point in some topological space resid-
ing on one side or the other of a separating hyperplane; for rule-based systems, it 
indicates which rules were or were not satisfi ed. For unsupervised learning tools, 
this typically refers to some measure of quality across clusters, combined with a 
measure of similarity between the point in question and the remainder of the points. 

 While traditionally complex pattern recognition tasks have been dominated by 
humans, machine learning approaches for some tasks, particularly static image 
analysis tasks such as digit recognition or traffi c sign classifi cation, can often meet 
or exceed human standards of performance (Ciresan et al.  2012 ), suggesting that the 
problem of classifying the more complex and heterogeneous temporal data that is 
associated with network intrusion detection may soon be within reach of machine 
learning systems. However, to remain useful for CSA, these tools must produce a 
semantic representation, either internally in or their output, that is suffi ciently clear 
that a human analyst can effectively triage an alert when it is produced by such a 
tool. The output semantics of such “deep learning” classifi ers can be adjusted by 
using suffi ciently detailed classifi cation questions, these models are often expensive 
to train, and the existence of signature-based tools such as Snort that already pro-
vide—in effect—binary classifi ers with very clear output semantics makes them 
less attractive for such purposes. With respect to internal semantics, in order to 
obtain their best-in-class performances, many machine learning approaches make 
use of ‘black box’ models such as deep/convolutional neural networks, that fi t tens 
of thousands to tens of millions of parameters simultaneously, often in manners that 
defy conventional interpretation. Even signifi cantly simpler machine learning 
approaches such as support vector machines (Cortes and Vapnik  1995 ) rely on pro-
jection of the observed data into a potentially infi nite-dimensional space that can 
then be (approximately) separated by linear functions defi ned on that space. When 
textual or categorical data is involved—or when the dimensionality of the underly-
ing data is extremely high—many approaches (Li and König  2010 ; Weinberger 
et al.  2011 ) rely heavily on various pseudo-random projections, often via hash func-
tions—that are functionally impossible to revert to the original domain. 

 While the success of machine learning in classifi cation is undeniable, when apply-
ing it to a situation in which we wish to obtain some degree of CSA, we must also 
contend with the need to triage, in order to separate false positives and true positives. 
In this case, it is not suffi cient for a tool to simply report that, e.g., a given connection 
represents a potential threat; in order for an analyst to effi ciently triage such a report, 
some notion of the reasoning behind that classifi cation must be available. If focus is 
placed on output semantics, then the more detailed either the classifi cation or the 
reasoning supporting it are, the more rapidly it can be verifi ed by an analyst. 

 If the output semantics of a tool are not clear, then the use of internal semantics 
is required, which (as noted above) is often a much more diffi cult proposition. 
Leaving aside the problem of transforming cybersecurity-relevant data (often 
 categorical or textual) into some metric space which can then be measured (see Harang 
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 2014  for more discussion on this point), an analyst who wishes to triage a particular 
alert based on the internal semantics of a tool must then also contend with whatever 
transformation the machine learning algorithm required in order to produce its 
results. When these transformations cannot be easily related back to the original 
space, or the rationale behind the classifi cation cannot be explained by the algo-
rithm to the analyst in terms of standard attributes that analysts are familiar with, the 
triage process becomes signifi cantly more diffi cult, requiring in effect a ‘blind’ 
investigation into the potential reasons for the classifi er producing such an alert. 

 When the output semantics of the alert are not clear, triaging a false positive is a 
particular challenge as it essentially requires one to prove a negative. Without a nar-
row and readily falsifi able claim made by the machine learning tool (i.e., clear out-
put semantics), or a method by which the machine learning algorithm can explain 
the reasoning process by which it arrived at the alert to the analyst (i.e., clear inter-
nal semantics), the analyst is faced with the unenviable task of asserting that there 
is no possible threat that could be represented by the datum in question. Note that, 
when the triage problem is then combined with the base rate fallacy—which dem-
onstrates that the overwhelming majority of errors produced by a classifi er in a 
highly class-imbalanced environment such as cyber security will in fact be false 
positives—the overall impact can be tremendous.  

4     Case Studies: ELIDe and Hamming Aggregation 

 We present two examples of machine learning approaches to intrusion detection 
with signifi cantly different internal and output semantics, and examine how their 
semantics may infl uence their role in CSA. We fi rst present ELIDe (Extremely 
Lightweight Intrusion Detection), which acts as a payload-based intrusion detection 
engine which operates on a high-dimensional transformation of n-grams in packet 
data, and might be considered the signature-based counterpart to the PAY-L anom-
aly detection system (Wang and Stolfo  2004 ). As a binary classifi er ELIDe pro-
duces an output with (potentially) very clear semantics that can be used for rapid 
triage, however the internal semantics are essentially intractable to human analysis. 
On the other extreme we discuss variable Hamming distance alert aggregation, 
which can be used as an anomaly detection method with extremely clear internal 
semantics, represented entirely in the terms of the original set of data. Hamming 
distance alert aggregation, however, when used in an anomaly detection mode, has 
(like all anomaly detection methods) extremely poor output semantics, and provides 
no inherent detection capabilities beyond indicating that a subset of the data pre-
sented to it appears to be outliers to the rest of the data. These two examples help 
illustrate some of the tradeoffs and considerations to be made when incorporating 
machine learning techniques into a CSA process, particularly when considering the 
effect of semantics on the triage step. 
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4.1     ELIDe 

 ELIDe is a linear classifi er for intrusion detection that uses histograms of n-grams 
as features, in an attempt to approximate the capabilities of more complex classifi -
ers with reduced resource requirements. In contrast to earlier n-gram based efforts 
(such as PAY-L (Wang and Stolfo  2004 )), ELIDe can use n-grams with nearly arbi-
trary lengths due to the use of a “hash kernel” (Shi et al.  2009 ; Weinberger et al. 
 2011 ) (see also Alon et al.  1999 ) for an earlier appearance of the same idea, there 
labeled the “tug-of-war” sketch, in a different application domain) which maps the 
(often intractably large) feature space that large n-grams require into a much smaller 
one, while approximately preserving inner products. It operates in a supervised 
learning mode, by training against the output of a reference classifi er, such as Snort 
(Roesch  1999 ), and updating the weights of the linear classifi er through a standard 
stochastic gradient descent process (Bottou  2010 ). This combination of longer 
n-grams with a hash kernel allows for ELIDe to approximate the classifi cation accu-
racy obtained by working in a high dimensional space, without the excessive cost in 
both time and memory (exponential in n) incurred by doing computations in that 
high-dimensional space. 

 The use of n-grams effectively projects the network packet into a space with 
highly elevated dimensionality (256 n  possible n-grams) where performing linear 
classifi cation to separate “good” packet data from “suspicious” packet data is rea-
sonably straightforward, at least from a computational point of view. Note, however, 
that the internal semantics of even this straightforward projection are diffi cult to 
interpret, and the computational requirements are prohibitive even for computers, as 
operating directly on this high-dimensional space requires space (and hence time) 
exponential in n. N-gram methods that operate directly on byte representations of 
fi les (Li et al.  2005 ) and network packets (Wang and Stolfo  2004 ) typically use 
modest values of n, such as 1, where the number of possible distinct n-grams is 
modest, and perhaps tractable with respect to internal semantics. Even small values 
of n, however, rapidly render the problem intractable; n = 3, for instance, would 
require approximately 17 million memory locations to store a complete histogram, 
while large values such as 10 would require roughly 10 28  memory locations. 

 However, given the typical maximum transmissible unit limitation of approxi-
mately 1500 bytes, in practice the n-gram features in this high-dimensional space 
will be extremely sparse. While this sparsity does not improve the internal seman-
tics signifi cantly, it does allow for a computational shortcut. The application of a 
hash kernel allows us to avoid storing the native n-grams in their 256 n  space, and 
instead indexes them by the lower-order bits of their respective hash digests. This 
effectively re-lowers the dimensionality of the problem space down to the only the 
size required to represent the truncated hash digests (for example, 2 10  dimensions 
for 10-bit hash outputs). The length of the n-gram hash digest output becomes a 
tuning factor that allows for adjustment of the tradeoff between resource consump-
tion and accuracy. Longer digest sizes allow for more accurate representation of the 
space and a more complex classifi er that will generally have better performance 
characteristics, while shorter digests allow for lower memory requirements and 
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faster computations. There is also suggestive evidence for the proposition that a 
reduced hash length, with corresponding loss of total fi delity to the original classi-
fi er, will in fact improve the generalization performance of the classifi er, allowing it 
a better chance of classifying variants on existing signatures that a pure signature- 
matching classifi er would miss. Note however that to allow for computational trac-
tability, we have further obscured the (already complex) internal semantics; we have 
progressed from a high-dimensional representation of the data that is itself diffi cult 
to conceptualize in human terms to a pseudo-random projection of the data that—
while preserving some mathematical structure—has obliterated any internal seman-
tic content by its randomness. 

 The effect of the hash size on the speed and accuracy of ELIDe can be visualized 
in Figs.  1  and  2 ; an insuffi ciently high setting for the number of bits results in a test-
ing accuracy that is unacceptably low, while at the same time, raising the length of 
the hash past roughly 11 bits results in a rapid increase of computation time. 
However, in the region of 8 to 10 bits, the accuracy approaches 100 % on the train-
ing data, while the computation time remains low. We selected 10 bit hash lengths 
for our fi nal implementation due to the monotonically nondecreasing accuracy with 
respect to hash length, and the acceptably fast performance at 10 bits. This effec-
tively produces a random projection of our 2 80  dimensional space onto a 2 10  dimen-
sional space. While the reduction in dimensionality is signifi cant, visualization and 
conceptualization of 2 10  dimensions remains beyond the grasp of most humans, thus 
rendering the internal semantics of ELIDe of little use in CSA.   

  Fig. 1    The effect of low-order bits retained on testing time       
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 Despite the complexity of the internal semantics of ELIDe, notice that—as a 
binary classifi er—the output semantics of ELIDe are potentially straightforward, 
and (for correctly selected parameters) the false positive rate is not noticeably worse 
than the underlying signature-based intrusion detection tool. An alert emitted by 
ELIDe indicates that with high probability, the tool that was used to train it would 
also have produced an alert. In the case of a narrowly targeted training set, this is 
often suffi cient to effectively triage the alert with limited additional examination. 
If, for example, the training set consisted only of rules that related to attacks target-
ing a specifi c service, it is straightforward for an analyst to use that information to 
examine the system identifi ed as the victim, and determine if it is in fact offering 
that service and hence potentially at risk. 

 If, on the other hand, the training set is extremely broad or not well-defi ned, this 
transfers to the output semantics of ELIDe, reducing their value, and forcing an 
analyst to rely on the internal semantics. As described above, these internal seman-
tics are diffi cult to interpret regardless of the training set, and hence would not 
enable effi cient progression through the CSA process.  

4.2     Hamming Distance Aggregation 

 Hamming distance aggregation for intrusion detection alerts (Harang and Guarino 
 2012 ) (expanded on signifi cantly in Mell and Harang  2014 ) attempts to fi nd a high- 
quality clustering of alerts at some user-defi ned Hamming distance  d , where the 

  Fig. 2    ELIDe classifi cation results as a function of retained low-order bits       
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Hamming distance between two alerts is given by the number of fi elds that do not 
match. Each cluster constitutes a single meta-alert representing a cluster of alerts all 
of which are identical on all but  d  fi elds; in the event that an alert varies on more 
than  d  fi elds from every other alert in the set, it may be merged with itself to create 
a meta-alert that covers only that single alert, which we term a “singleton”. As the 
Hamming distance of aggregation increases, these outliers become increasingly sig-
nifi cant, and suggest potential targets for further investigation. The output semantics 
associated with a singleton are somewhat diffi cult to parse; the fact that an alert does 
not match any other alert on more than  d  fi elds does not immediately suggest a rea-
son why it might not have matched (compare to e.g. ELIDe, where an alert is imme-
diately associated with a policy violation or threat in the training set), however the 
internal semantics as described below are straightforward. 

 Table  1  provides a simple example. Notice that alert 5 could either be aggregated 
to alert 2 (with which it disagrees on column 2) or to alerts 3 and 4 (with which it 
disagrees on column 3). If we attempt to fi nd a minimum set of meta-alerts covering 
the largest number of alerts (the clear similarity to the set cover problem is dis-
cussed in greater detail in Mell and Harang  2014 ) then we group alerts 3, 4, and 5 
together, and alerts 1 and 2 each form their own meta-alerts. Despite the fact that 
alert 2 would appear to be an outlier in this case, it was rendered into a single- 
element meta-alert due to an optimization choice, and so would not be considered a 
singleton or outlier. By contrast, alert 1 differs on at least 2 columns from all other 
alerts, and so could not be aggregated with any of them at a Hamming distance of 1; 
this renders it an outlier of interest, which we may examine in more detail.

   While we omit details for space, the work of Mell and Harang ( 2014 ) and Mell 
( 2013    ) presents an effi cient hypergraph based algorithm for extracting meta-alerts 
in  O ( n  log  n ) time. If attention is restricted entirely to the construction of the hyper-
graph and singleton identifi cation, the entire operation can be executed in strictly 
 O ( n ) time, where  n  is the number of alerts. 

 Although Hamming distance aggregation applies well to any NIDS tool that pro-
duces a reasonably standardized output (further explored in Mell and Harang  2014 ), 
we focused evaluation on a list of Snort alerts containing the following fi elds: sensor 
identifi er, alert identifi er, source/destination Internet Protocol (IP) addresses, receiv-
ing/sending ports, associated autonomous system numbers (ASN), and alert date/
time stamp. We examine data collected from a mid-size production network using 
Snort confi gured with a combination of the Snort ET and VRT rule for several days 
in February of 2012, aggregated over hours in Table  2 , and a single 24 hour period 
in Table  3 . Note that using the algorithm provided in Harang and Guarino ( 2012 ), 

   Table 1    Example alert data   

 Alert Number  Column 1  Column 2  Column 3 

 1  A  C  G 
 2  B  D  K 
 3  B  F  I 
 4  B  F  J 
 5  B  F  K 
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analyzing a complete 24 hours was found to be impractical; later work (Mell and 
Harang  2014 ) shows that the algorithm in Harang and Guarino ( 2012 ) in addition to 
having high time complexity, is also in a certain sense suboptimal. We therefore use 
the later hypergraph-based algorithm to produce the results in Table  3 . All alerts 
have been anonymized with respect to sensitive data.

    Some example meta-alerts (fi rst presented in Harang and Guarino  2012 ) are 
given in Table  2 . Columns 1 and 2 give two examples for aggregation against a 
single Snort rule; the example in column 1 is from one hour which displayed over 
60,000 individual alerts. The aggregation immediately suggests a common root 
cause (a network scan), and brief inspection into the values for Destination IP are 
suffi cient to clarify that an entire class B subnet generated this alert with a few 
missed IP addresses. The second column of Table  2  shows a less common alert from 

       Table 2    Example meta-alerts at hamming distance 1   

 64502 alerts  2 alerts  4 alerts 

 RuleID  408  402  # 4 distinct values 
 Ruleset  snort_rules_vrt  snort_rules_vrt  snort_rules_vrt 
 Rule message  ICMP Echo Reply  ICMP Destination 

Unreachable Port 
Unreachable 

 # 4 distinct values 

 Sensor  sensor-001  sensor-002  sensor-003 
 Timestamp  # 366 distinct values  # 2 distinct values  # 24 distinct values 
 Source IP  10.0.0.1  10.0.0.2  10.0.0.4 
 Destination IP  # 64502 distinct values  # 2 distinct values  10.0.0.5 
 Source ASN  0001  0003  0004 
 Destination ASN  0002  0003  0005 
 Source country code  A  C  E 
 Destination country code  B  C  D 

     Table 3    Example outliers at a hamming distance of 6   

 Singleton 1  Singleton 2 

 RuleID  2406705  2500547 
 Ruleset  snort_rules_et  snort_rules_et 
 Rule message  ET RBN Known 

Russian Business 
Network IP UDP (353) 

 ET COMPROMISED Known 
Compromised or Hostile Host 
Traffi c UDP (274) 

 Sensor  sensor-003  sensor-002 
 Timestamp  2012-02-19  2012-02-19 
 Source IP  10.0.0.7  10.0.0.9 
 Destination IP  10.0.0.6  10.0.0.11 
 Source ASN  0004  0003 
 Destination ASN  0005  0003 
 Source country code  E  C 
 Destination country code  D  C 
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the same time period; note here that, despite the fact that the meta-alert covers only 
2 alerts, it is not possible (without additional work) to determine whether it is in a 
grouping of 2 because of its intrinsic rarity, or because other potential candidates for 
that meta-alert were instead grouped with other meta-alerts. The fi nal meta-alert in 
Table  2  shows a case where a single IP address was subjected to several repetitions 
of a set of three alerts. While we do not discuss this possibility in detail, it is clear 
that this could be used as a building block to determine common attack patterns, 
and—if the underlying alerts are clear—offers itself to an immediate and straight-
forward semantic interpretation. 

 Singletons, by contrast, have clearer semantics for their classifi cation as single-
tons, even as their output semantics are often less clear due to not being correlated 
to other alerts. If an alert at Hamming distance  d  is classifi ed as a singleton, then by 
construction it must differ from every other alert in the entire data set by at least 
 d  + 1 fi elds. Moreover, as  d  increases, the likelihood that such a result could be ran-
domly obtained reduces sharply. In Table  3  we display the 2 singletons obtained 
from a complete 24-hour period at a Hamming distance of 6. Note that both rules in 
this case relate to an observed contact from external IP addresses that were black-
listed by the maintainers of the ET ruleset, and in contrast to the bulk scanning or 
sequential attack activities noted in Table  2 , represents potentially more subtle 
activity that may have been lost in the comparatively large volume of alerts. In addi-
tion, as (in this case) the rules are clearly written, further triage of these alerts is 
straightforward, however they are heavily reliant on the semantics of the underlying 
alerts to be aggregated. 

 The relationship for the day under consideration between the number of singletons 
that could be investigated as anomalous and the Hamming distance is given in Fig.  3 .  

 If singletons are treated as alerts within a CSA context, then while the output seman-
tics are not clear—in that there is no direct indication that a singleton is inherently 

  Fig. 3    Non-aggregatable singletons as a function of hamming distance       
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more alarming or related to a specifi c attack than a non-singleton—the internal 
 semantics are straightforward: the alert was produced precisely because it differed on 
at least some clearly defi ned number of features from any other record produced in the 
given period of time. This mechanism of raising ‘anomalous’ records to analyst visi-
bility while at the same time making it clear and immediately understandable why that 
record was highlighted enables the analyst to make a rapid decision about the signifi -
cance of the singleton, and thus triage it effi ciently, supporting the CSA process.   

5     Summary 

 The fi rst step of building cyber situational awareness has been defi ned as ‘triage’ or 
‘perception’: taking network security data and determining which items indicate 
attacks and which items are safe and can be ignored. The high volume of network 
traffi c means that automated machine learning methods for handling the output of 
current front-line NIDS tools are of increasing importance to facilitating the job of 
network security analysts, allowing them to fi nd proverbial needles in an exponen-
tially growing haystack. However this high class asymmetry (very few attacks in a 
very large amount of benign traffi c) results in false positive results being the pre-
dominant error that analysts must cope with, which—in the absence of additional 
information—places an unrealistic burden on them when performing the triage and 
perception operation that is the foundation of the CSA process. 

 In order to adequately support the development of full cyber situational aware-
ness, machine learning based NIDS tools must therefore be designed and imple-
mented to provide the required additional information for triage, taking into account 
the diffi cult problem posed by high number of false positives. This additional infor-
mation may be understood in the form of clear semantics, either in the output of the 
tool or in the internal representation of the tool decision process. However, extract-
ing the needed contextual information from machine learning algorithms is often 
made diffi cult by the elaborate high-dimensional transforms or the extremely com-
plex processing that many such techniques rely upon in order to obtain their high 
classifi cation accuracy. In most scenarios, they must be treated simply as black 
boxes, producing some form of classifi cation or label based on inputs, and very little 
further introspection into the process is possible. While this may be an acceptable 
limitation in other settings, the triage process for cyber security and the high cost of 
a false negative renders this a signifi cant problem. 

 Two straightforward methods for generating suffi ciently clear semantics to 
enable CSA present themselves: fi rst, as discussed in the presentation of ELIDe, the 
target of the classifi er may be specifi c enough that the analyst may independently 
verify the result with no further need to consult the classifi er itself. This is the 
approach most commonly followed by signature-based intrusion detection tools 
(and machine learning tools derived from them), and is currently the most widely 
accepted approach. This use of extremely clear and specifi c output semantics allows 
for the analyst to safely reject many false alarms at minimal cost. 
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 The other method, as discussed in our presentation of Hamming distance 
 aggregation, is to explore classifi ers that are capable of producing some form of 
reasoning or explanation for their decision in terms accessible to human analysts, 
i.e. ones that have extremely clear internal semantics, typically performing simple 
operations on untransformed versions of the data. Rule-based systems (see discus-
sion and references in Harang  2014 ) are one example of this approach; however 
they have not yet achieved the same level of success as signature-based systems. 
Various visualization techniques and data exploration systems may be viewed as an 
extreme case of this latter approach, forgoing the generation of alerts altogether, in 
favor of supporting broad introspection into the entire body of data collected by the 
network sensors. 

 Notably, outside of niche applications such as scan detection tools, in which the 
focused nature of the tool both completely determines and narrows the semantics of 
the output, the vast majority of anomaly detection methods do not possess clear 
semantics of either form. They take full advantage of the high dimensional transfor-
mations and projections that have been developed to support modern machine learn-
ing, obscuring internal semantics, and then attempt to broadly divide traffi c into the 
extremely broad binary categories of ‘anomalous’ and ‘normal’, with little clarity in 
the output semantics. Alerts from such tools cannot be effi ciently triaged to deter-
mine if they are false positives, and thus the CSA process stalls. 

 An ideal machine learning approach to network intrusion detection in support of 
cyber situational awareness would provide both internal and output semantics that 
were clear and relatively unambiguous: identifying potentially hostile traffi c as well 
as producing a compelling and human-comprehensible defense of its classifi cation. 
Such a system would allow for immediate triage of alerts, rapidly moving to the 
next stage of cyber situational awareness as a result. However, such capabilities 
appear at present to be beyond the reach of machine learning approaches. In the 
absence of such a system, the careful analysis and construction of internal or output 
semantics must be considered when designing machine learning NIDS tools to sup-
port cyber situational awareness.     
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      Impact Assessment 

                Jared     Holsopple     ,     Moises     Sudit     , and     Shanchieh     Jay     Yang    

1            Introduction 

 As the Foundations and Challenges chapter explained, the second level of SA is 
called comprehension and deals with determining the signifi cance and relations of 
various elements of the situation to other elements and to the overall goals of the 
network. It is also often called situation understanding and involves the “so what” 
of the information that has been perceived. Previous chapters of this book have not 
focused on this level of SA. Therefore, this chapter elaborates specifi cally on the 
comprehension level of CSA. The chapter explains that an effective way to compre-
hend signifi cant relations between the disparate elements of the situation is to con-
centrate on how these elements impact the mission of the network. This involves 
asking and answering questions of how various suspected attacks relate to each 
other, how they relate to remaining capabilities of the network’s components, and 
how the resulting disruptions or degradation of services impact elements of the mis-
sion and the mission’s overall goals. 
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1.1     Motivation for Advanced Threat and Impact Assessment 

 As the need for cyber defense tools has increased, so have the proposed solutions to 
fi ll these technology gaps. Today’s cyber defense technology typically analyzes net-
work traffi c to identify certain possible malicious or anomalous events. Such tools, 
which we will generally refer to as “sensors” are intrusion detection sensors, intrusion 
prevention sensors, fi rewall logs, or software logs. The outputs of these sensors are 
typically presented in a tabular format (for signature-based approaches) (Snort  2013 ; 
Enterasys – Products – Advanced Security Applications  2013 ) or a graphical format 
(for statistical-based approaches) (Valdes and Skinner  2001 ; HP Network Management 
Center  2013 ). Enterprise-level cyber defense tools, such as Arcsight (HP Network 
Management Center  2013 ), are able to aggregate the outputs of these tools together so 
that they can be presented in a cohesive manner. At this point, the analysts can then 
look at the events and determine whether or not they need to be acted upon. 

 However, this approach can still yield a very large number of events, many of 
which are false positives. So even with these potential attack indicators, the amount 
of data analysts need to deal with can still be unwieldy and error prone. As such, 
research eventually shifted to the problem of alert correlation (Ning et al.  2002 ; 
Valdes and Skinner  2001 ; Bass  2000 ; Noel et al.  2004 ; Sudit et al.  2007 ), where 
these singleton events were correlated together into “tracks” indicating causal and/
or temporal relationships between events. The goal of these alert correlation tech-
niques is to defi ne one or more tracks representing a single attacker or a group of 
attackers while ignoring the false positives. 

 Although cyber sensors and alert correlators are still actively evolving today, 
research has started to shift some of the focus onto threat and impact assessment 
approaches attempting to identify the impact to mission and tasks resulting from 
cyber attacks. The design objective of these tools is to allow the analysts making 
timely decisions on which impacts, and, thus, attack tracks to address fi rst. 

 While this has been a logical progression of technology, impact assessment was 
generally not considered when designing alert correlators. Alert correlators were 
generally not considered when designing sensors. Alert correlators were designed 
based on information available from sensors. Impact assessment tools were 
designed based on information available from alert correlation and knowledge of 
the mission at hand. As such, there are no common or standard protocols in place 
for the tools to talk to each other, nor is there a formal set of required, or at least 
expect, inputs or outputs for each tool. In addition, there are no standard ways to 
represent a computer network in a data structure useful for alert correlation or 
impact assessment, so vendor-specifi c models are being created to model the com-
puter network. In addition, those network models need to be populated by some 
means, also requiring vendor-specifi c ways of populating the necessary data struc-
tures. Finally, impact assessment techniques can be severely hampered by the cur-
rent lack of mission modeling capability, which again leads to vendor-specifi c 
models being implemented. 
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 Though no formal design approach was taken in this progression of technology, 
one can argue that the tools were designed using a “bottom-up” approach such that 
technologies are built to expand or improve upon existing technologies with the 
ultimate goal of minimizing the response time of analysts to cyber attacks. However, 
a limiting factor to this approach is that many of the new technologies require more 
data or information that is not readily available from cyber defense tools. We will 
therefore explore an alternative “top-down” approach that will allow us to identify 
existing technology gaps that need to be addressed to allow us to provide more 
comprehensive cyber defense tools enabling a faster response time. 

 In attempting to build upon existing detection and alert correlation technologies, 
some of the research has shifted towards mission impact assessment (Holsopple and    
Yang  2008 ; D’Amico et al.  2010 ; Jakobsen  2011 ; Argauer and Yang  2008 ; Grimalia 
et al.  2008 ). Grimaila et al. ( 2008 ) has motivated the need for mission impact assess-
ment and has identifi ed many of the hurdles such techniques need to address for 
effective deployment of such tools. As we will see, many of these hurdles are a 
result of the lack of standardization of data outputs and lack of understanding the 
information needed by mission impact assessment. As a result, some technology 
gaps exist preventing the deployment and evaluation of such techniques. 

 This chapter will consider Holsopple and Yang’s top-down information fusion 
design (Holsopple and Yang  2009 ) and apply it to the problem of cyber security. As 
the design process progresses, existing capabilities to fulfi ll the design requirements 
as well as technology gaps will be discussed.  

1.2     Existing Alert Correlation Research 

 Bass ( 2000 ) is among the fi rst who motivates the research on alert correlation. Up 
to that point, the focus on cyber defense had been on the development of Intrusion 
Detection Sensors (IDSs) that try to identify individual exploits or attack events on 
a computer network. Since cyber attacks rarely are comprised of a single event, 
Bass motivated the use of information fusion to correlate alerts together to represent 
unique attacks (i.e. a collection of events) instead of unique events. 

 In subsequent years, various alert correlation techniques have been proposed. 
The approach that arguably has generated the most amount of research has been on 
attack graphs (Noel et al.  2004 ). Attack graphs are directed graphs that represent 
logical progressions of a cyber attack through the network. Attack graphs are cre-
ated based on the topology and vulnerabilities on the targeted computer network, 
which can be discovered using various network discovery and vulnerability assess-
ment tools. Attack graphs are defi ned by a list of exploits and security conditions. 
Each exploit is a triple (vul, src, dest), of a vulnerability, vul, on a host, dest, con-
nected to another host, src. In the case of a local exploit, the src and dest are the 
same host. Security conditions must be satisfi ed before an exploit is possible. 
Intrusion detection alerts typically map directly to the vulnerabilities, so this struc-
ture easily allows intrusion alerts to map to the attack graph. 
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 Other alert correlation techniques focus on Bayesian approaches (Phillips and 
Swiler  1998 ) that use probabilities to determine the likelihood of exploits occurring. 
While the Bayesian approaches lend themselves naturally to alert correlated, it is 
unclear of the best or most effective way to determine the probabilities. Logically, the 
probabilities will likely vary greatly based on the network topology, attacker ability, 
and even the importance of the host. This can create a wide variance of probabilities 
across different networks, making it diffi cult to fi nd an accurate set of probabilities. 

 Information Fusion for Real-Time Decision-Making (INFERD) (Yang et al. 
 2009 ) is a fl exible alert correlation tool that can be defi ned to refl ect varying levels 
of granularity and facilitate a creation of attack tracks and a resolution of ambigui-
ties. Many alert correlation tools require a specifi c level of granularity in the defi ni-
tion of the models. While this can create a very effective tool for certain situations 
with few false positives, the model may be overly restrictive and miss other situa-
tions. INFERD attempts to resolve that by using alert categorization and a fl exible 
constraint defi nition to allow the models to be varied and tweaked to maximize the 
detection of a multitude of possible attacks using a single model (at the possible 
expense of higher false positive rate) or focus on a very specifi c type of situation (at 
the possible expense of missing more different types of attacks). 

 Figure  1  illustrates the INFERD architecture. INFERD receives information 
from a repository of sensor data and processes it in real-time to output a set of attack 
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tracks, which are sequences of events hypothesized to be part of the same attacker. 
The creation and update of attack tracks is performed using four processes:

    (1)    Data Alignment—INFERD is able to ingest inputs from different types of sen-
sors, so it needs to align all data into a common format. It should be noted that 
if a common alert reporting format was widely adopted and consistently used 
(such as IDMEF or CEF), that this process would not be necessary.   

   (2)    Connotation Elicitation—This process determines the type of event the given 
observable is. This for example tries to classify the event into categories such as 
“Recon Scanning”, “Intrusion Root”, or “DoS”. This classifi cation occurs 
through a set of constraints defi ned by the model.   

   (3)    Data Association—This process determines whether or not the given event is 
part of a new track or an existing track. The data association is driven by the 
constraints defi ned on the edges of a model.   

   (4)    Track Update and Reporting—Once the data association is performed, the 
applicable track updates are made and sent as outputs.    

There are also some additional background processes that INFERD performs.

    (1)    Track archival keeps INFERD as a scalable process so as to only keep the rel-
evant tracks available for processing.   

   (2)    Ambiguity Detection and Resolution tries to address any ambiguous data by 
performing additional processing. It is very possible that the constraints used by 
the model are insuffi cient to uniquely correlate an event to an attack track, so 
this process applies a stronger set of constraints on the events to try to resolve 
any ambiguities.      

 Figure  2  shows a simplifi ed INFERD model. The blue circles are known as 
Template Nodes, which correspond to a high-level concept such as “Recon Scan” 
(event that scans the network) or “Intrusion Root Internal” (event that gives an 
attacker root-level access to a computer). Between the template nodes are arcs 
defi ning possible transitions. The idea of an INFERD model is that the template 
nodes and arcs defi ne the level of granularity the alert correlation occurs on. In the 
example model, the purple box defi ned for each arc contains a constraint saying that 
a transition could occur when the target IP address of an event matches either the 
source or target IP of another connecting event. So if a Recon Scan DMZ occurs on 
a given host and is followed by a Recon Footprint DMZ on the same host, those two 
events will be added to the same attack track. It should be noted that in this simple 
example, IP address is only used for the arcs, so such a model would be subject to 
errors in the event of IP spoofi ng. In addition, the model does not take the actual 
network defi nition into account. So it is possible that fi rewalls or intrusion preven-
tion sensors could realistically have thwarted an attack track identifi ed by this 
model. However, the introduction of such constraints into INFERD could have the 
unfortunate effect of poor performance. So careful consideration must be taken into 
how detailed one wishes to make an INFERD model. An INFERD model subject to 
a large number of false positives could be benefi cial if it is able to detect otherwise 
obscure attacks. In such a case, post-processing of the attack track by another 
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 process to determine its accuracy (such as the processes discussed regarding the 
VT) may be able to fi lter out most of the false positives.  

 Each template node contains a list of features that ultimately map to a single pos-
sible observable with a set of constraints. In the example model, the Recon Scan 
DMZ has a feature defi ned for ICMP Ping NMAP and FTP Satan Scan from a Snort 
sensor including a specifi c range of IP addresses. Again, this is where the granular-
ity of the model is important. Recall that the hosts on a VT contain services, which 
ultimately determines the vulnerabilities on a host. The feature constraints in the 
INFERD model could also utilize these mappings to only classify alerts that a host 
is vulnerable to. However, this, too, can have a possible negative impact on perfor-
mance, so it may be benefi cial to leave simpler constraints on the INFERD model 
and use post-processing to resolve the false positives.  
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1.3     Existing Mission Impact Assessment Research 

 In the past decade or so, research has focused on modeling the mission dependen-
cies to help facilitate computer-assisted analysis of current missions. D’Amico 
et al. ( 2010 ) focused their research specifi cally towards computer networks by cre-
ating an ontology of the mission dependencies. Their Cyber Assets to Missions and 
Users (CAMUs) approach assumes that a user uses a cyber capability, whereas a 
cyber asset provides a cyber capability. This cyber capability in turn supports a mis-
sion. Their approach mines existing logs and confi gurations, such as those from 
LDAP, NetFlow, FTP, and Unix to create these mission-asset mappings. CAMUs 
provides a graphical display of the potential missions and capabilities affected by a 
given cyber alert. 

 Jakobsen ( 2011 ) proposed the use of dependency graphs for cyber impact assess-
ment and a hierarchical time-based approach to mission modeling and assessment. 
Missions are traditionally thought of as relatively static. However, various aspects 
of the mission are often important at different times. So it is therefore important for 
a mission model to be able to incorporate time. The Impact Dependency Graph 
addresses that by allowing for the mission dependencies to change over time. Their 
approach is largely focused on assets supporting services, which support missions 
and tasks. Each of these dependencies can be modeled based on an AND/OR rela-
tionship to indicate whether the child components are required for mission success 
or are redundant of each other. Mission impact scores are driven by the individual 
asset impacts that are calculated using a logical constraint graph that is tied to the 
known asset vulnerabilities. 

 Holsopple and Yang ( 2013 ) utilize a tree-based approach to calculate the impact 
of missions. Their mission tree is a tree-structure that utilizes Yager’s aggregators 
(Yager  2004 ) to intelligently “roll up” the damage of assets to calculate the impact 
of each individual mission. This perspective-based approach provides a quick indi-
cator of which missions might need to be addressed by the analysts. The tree struc-
ture enables the analyst to “drill down” the tree to determine which assets or 
missions are causing the impacts. The intent is that the assets will also contain 
information regarding which events impacted it. 

 Figure  3  shows the basic structure of the mission tree at a specifi c point in time. 
A Mission Tree consists of three different types of nodes—assets, aggregations, and 
missions. Asset nodes must always be leaf nodes. An aggregation node is a node 
that performs a mathematical function to calculate the combined impact of all of the 
children nodes. Finally, the third node type is a mission node. A mission node rep-
resents any type of task that needs to be executed either as the primary mission (the 
root node) or in support of another set of missions.  

 An asset node is defi ned by a 3-tuple  (i,e,c)  for a role  r  where  i  ∈ [0, 1] is the dam-
age score for asset  e  in support of the parent mission with a criticality  c . The damage 
score can be calculated by a lower level situation estimation process and the process 
by which the score is calculated is not important so long as the damage score pro-
vides a value between 0 (indicating no damage to the asset) and 1 (indicating that 
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the asset’s functionality has been completely hampered). The criticality is used to 
describe the importance of a given node to the parent mission. An asset node must 
always be a leaf node and have an aggregation node as a parent. 

 A mission node is also defi ned by a 3-tuple  (i,e,c)  such that  i  is the impact score 
for mission  e  in support of the parent mission with a weight  c . The weight is used to 
describe the criticality or importance of a given node to the parent mission. Every 
mission node must contain a single parent (except for the root) and a single child 
aggregation node. For a mission node,  i = i(child aggregation node) . 

 An aggregation node calculates the combined impact of all children nodes and is 
defi ned by a 3-tuple  (i,e,c)  where  e  is an aggregation function with criticality  c  and 
 i = f(e) . Every aggregation node must contain a parent that is either a mission node 
or an aggregation node. While an aggregation function can be any type of function, 
we adopt Yager’s aggregation functions (Yager  2004 ) due to their fl exibility in 
defi ning various logical and mathematical relationships. 

 Yager’s aggregation functions (Yager  2004 ) use a weighting vector multiplied 
with a  sorted  vector to perform various mathematical functions, such as maximum, 
average, and minimum. Due to their fl exibility in function defi nition, they were 
chosen as the primary calculation means for the aggregation functions. 

 Each aggregation node is defi ned by a vector of weights,  w , and a sorted vector, 
 v   s  , for Yager’s aggregation calculations. The sorted vector is a vector sorted in 
descending order of all  i*c  (impact multiplied by criticality) values defi ned by each 
child. The dot-product of each vector yields the impact score,  i , for the node. 
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 The following aggregation functions are supported by the mission tree to enable 
the modeling of various mission relationships:

    (1)    And—all children nodes must be functional for the parent mission to be func-
tional. This is represented by a maximum function.   

   (2)    Or—only one of the children nodes needs to be function for the parent mission 
to be functional (i.e. the perform redundant functions). This is represented by a 
minimum function.   

   (3)    AtLeastN—at least N of the children nodes need to be functional for the parent 
mission to be functional. This can be represented by a Yager aggregator.   

   (4)    Threshold—the children are able to exhibit some level of damage before they 
affect the parent mission. Any damage or impact score below the given thresh-
old will be saturated to 0.    

The mission tree is also able to utilize “triggers” to allow the mission tree to dynam-
ically change over time. Various changes to a mission tree include the addition or 
removal of a mission, a change to criticality, or the re-assignment of an asset. These 
changes can be triggered in one of three ways:

    (1)     Functional Trigger —These are one-time changes to the mission tree. As busi-
ness or a particular task evolves, new missions may need to be created or exist-
ing missions are deemed unnecessary. These triggers are typically manual 
changes that must be made in order to accommodate changes that did not have 
a predictable time at which they became effective.   

   (2)     Absolute Temporal Trigger —These are one-time changes that are triggered 
by a single point in time. These changes typically represent a predictable change 
to the mission tree, such as a deadline for a given mission. When deadlines for 
missions have occurred, the mission is permanently removed from the mission 
tree. In addition, known or planned tasks in support of a mission can be created 
at the given point in time.   

   (3)     Cyclical Trigger —These changes are characterized by a predictable and cycli-
cal change in the mission defi nition. These changes are typically caused by a 
business cycle, where certain assets may be more critical during normal busi-
ness hours. In addition, due to resource availability, assets may only be avail-
able within certain timeframe, so there are only specifi c periods of time at 
which the assets are able to affect the mission. These changes result in a cyclic 
change of the mission tree.    

1.4       Computer Network Modeling 

 Philips and Swiler ( 1998 ) proposed the use of attack graphs to determine asset 
vulnerabilities. This approach utilized acyclic graphs to represent the possible 
attacks on a network. However, the acyclic restriction of their model meant that 
there was an exponential increase in attack graphs due to bi-directional 
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communication between computers allowing for vulnerabilities to be executed in 
different directions. Vidalis et al. ( 2003 ) proposed the use of vulnerability trees for    
the purposes of threat assessment. However, the tree structure also makes it diffi cult 
to model bi-directional communication leading to the exponential increase of the 
number of trees needed to model vulnerabilities in a computer network. 

 While there are a number of vulnerability and network scanning tools, many of 
them do not provide a comprehensive mapping of the computer network. ArcSight 
(HP Network Management Center  2013 ) uses its own tools to scan the network, but 
it is also a cost-prohibitive tool for many organizations. Such scanners, however, 
can be useful as tools used to populate a model such as the Virtual Terrain (Holsopple  
et al.  2008    ). 

 The Virtual Terrain (VT) is a security-based representation of a computer net-
work. Its intent is to work towards an open standard for defi ning a computer net-
work containing the level of information necessary to perform network and impact 
assessment. Recall from the Mission Modeling section that the developed tech-
niques needed to implement their own methods of scanning for vulnerabilities and 
network connections. The mission tree was defi ned independent of the environment 
model used, but still required inputs regarding the damage to the assets. Defi ning a 
common standard for a computer network will not only help to improve all research 
in cyber network defense, but will also pave the way for public data sets that could 
be used for the evaluation of more advanced cyber network defense tools.   

2     Top-Down Design 

 Cyber defense systems were built as incremental improvements to existing tech-
nologies or analysis approaches. This is a logical way for technology to progress 
since the lower-level processes (such as attack identifi cation and alert correlation) 
provide the building blocks for the higher-level processes (such as threat and impact 
assessment). Since even the lower-level processes are proving to be non-trivial and 
constantly evolving, the focus has not signifi cantly shifted to the higher-level pro-
cesses. However, without a coherent architecture in place to design towards, this can 
lead to fragmented solutions, which can cause more diffi cult integration tasks 
between seemingly complementary technologies. 

 Built upon the exiting works summarized earlier, this section describes a top- 
down design process to build an architecture for a cyber defense system that mini-
mizes the effort of analysts tracking down and prioritizing malicious threats. This 
“top-down” design approach is similar to the process discussed by Holsopple and 
Yang ( 2009 ), which focuses on designing an ideal system without assuming any 
particular technological limitations. With this approach, technology gaps can easily 
be identifi ed and trigger the development of approaches to address those gaps. 
However, this approach may identify so many technology gaps that it would be very 
diffi cult to develop a complete, coherent system in a reasonable timeframe. 
Nonetheless, such an approach will identify the ultimate goal for the research and 
commercial communities to strive towards. 
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 Figure  4  shows Holsopple and Yang’s top-down design process (Holsopple and 
Yang  2009 ), which is applied to the area of cyber security. The process is segmented 
into four major components:

    (1)    Model Design   
   (2)    Human-Computer-Interface (HCI) Design   
   (3)    Contextual Design   
   (4)    Observables Design    

While each of these components is defi ned individually, as with any design process, 
the components can complement each other and changes to a component may trigger 
changes in a different component. This is typical of a waterfall design where the 
individual pieces are continuously refi ned until the requirements have been fulfi lled.  

 In this chapter we will explore the model design, alert correlation, and how to 
determine mission impact as a means to demonstrate the top-down design. The next 
chapter will discuss in detail how to project cyber situations using the design dis-
cussed here. 

2.1     Model Design—Mission Defi nition 

 We fi rst start with the Model Design component. The Model Design component 
focuses on defi ning the data that will be needed to be stored or calculated by the 
system. The ultimate goal of cyber analysts is to identify threats and mitigate them, 
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so an analyst is trying to react to the attacks that have the highest current (or 
 potential) impact to the capability or trustworthiness of the network. An estimate of 
the impact of an attack fundamentally boils down to how it affects the missions the 
network is trying to execute. 

 The actual defi nition of the missions can vary greatly depending on the use of the 
network. In the case of a military network, it could be to fi ght a battle and protect 
the integrity of the data links. In a commercial network, it could be to protect 
company- sensitive or personal information about the employees. Regardless of the 
application, however, the missions will (for the most part) follow a certain structure 
such that missions will support other missions. In addition, these missions will be 
supported by assets such as specifi c servers, computers, services, or even users. It is 
therefore important to be able to map assets to missions. To this end, a quantitative 
impact to an asset will enable us to utilize this mission-asset mapping and, thus, the 
calculation of mission impacts. Once analysts are armed with mission impact infor-
mation that will allow them to quickly prioritize which missions are being impacted. 
The goal of this prioritization is that the analyst will then be able to “drill down” 
into the impacts to understand which assets are causing that impact and which 
events are affecting those assets. 

 Grimaila et al. ( 2008 ) have discussed how technology is lacking for fulfi lling the 
requirements for Cyber Mission Impact Assessment (CMIA). Determining the 
impact of an attack to missions can have different meanings:

    (1)    Ability to perform mission activities   
   (2)    Capabilities of the mission system in general   
   (3)    Achieving specifi c mission objectives   
   (4)    Information about specifi c mission instances   
   (5)    Prediction of how mission impact might vary over time   
   (6)    Prediction of how affected resources not currently in use may cause future 

impact   
   (7)    Prediction of how affected resources may cause impact on future mission 

instances    

Therefore, developing a common language for the effects of a cyber attack is imper-
ative to determining the impact of a cyber attack to one or more missions. 

 There is currently no existing standard for modeling missions, and those tech-
nologies that do exist are more “diagrammatic than computable” (Grimalia et al. 
 2008 ). These modeling technologies generally also ignore time, meaning that the 
importance of assets is assumed to be constant over time, when in reality, the impor-
tance should be changing. In addition, existing cyber risk assessment tools are gen-
erally offl ine approaches, meaning that they lack the ability to process data fast 
enough to provide a timely estimate of current impact – although they are useful for 
understanding how a network can be affected by future threats. Grimaila et al. 
( 2008 ) also argues that while there is an abundance of tools that identify the (poten-
tially malicious) activities on a network, none of them attempt to model the  effects  
of the cyber attacks, which is necessary for impact assessment. 
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 There are open problems with mission modeling. The problems can be attributed 
to at least one of the following three issues:

    (1)    Formal mission modeling for calculating impact, especially for cyber defense, 
is a very immature fi eld. So all of the known techniques have “holes” prevent-
ing them from becoming a complete integrated solution.   

   (2)    Some tools necessary to provide inputs to the mission modeling techniques to 
calculate impact assessment are not available because they were not necessary 
prior to considering the problem of impact assessment. This is one of the con-
sequences of the unintentional “bottom-up” design approach that has been 
taken by cyber defense.   

   (3)    Mission impact assessment is diffi cult, if not impossible, due to the nature of 
the problem itself. Providing quantitative evaluations of such tools will be error 
prone.    

CAMUs (D’Amico et al.  2010 ) uses an ontological structure to model mission 
information, including cyber capabilities and users. While this approach provides 
for fl exible mission models, this fl exibility comes at the cost of not being able to 
provide impact estimates. As such, the analyst is still tasked with sifting through 
individual cyber alerts to decide if they are malicious or not. In addition, as we will 
see with other impact assessment approaches, support for “lower level” cyber 
defense tools is limited. 

 The Mission Tree (Holsopple and Yang  2013 ) approach does not  directly  rely on 
IDS or System log observables to support their impact calculations; however it does 
require some sort of pre-processing of observables to provide estimates of damage 
to the assets. Such pre-processing would need to be implemented for this approach 
to be viable. The Mission Tree approach, along with the Mission Impact Dependency 
graph (Jakobsen  2011 ), also offer no (or very limited) support to actually generate 
the mission models. Not having an intuitive GUI or integration with certain network 
discovery tools can lead to error-prone models. 

 At the time of publication, all of the mentioned techniques were only integrated 
with a limited set of cyber defense tools, which is due to the immaturity of cyber 
mission impact assessment research. As these (or future) tools progress, a more 
complete integration with other cyber defense tools will allow the benefi ts of these 
approaches to come to light. 

 Due to the lack of data to populate the mission impact models, that there are cur-
rently no common datasets that can be used to evaluate the effectiveness of such 
approaches against each other. In addition, none of the listed approaches have been 
able to reach a high enough maturity to be evaluated in real-time on existing com-
puter networks. So while the utility for mission modeling and impact assessment can 
be seen at the conceptual level, there is currently no way to determine how  heavily 
it would actually be able to improve the decision-making ability of a cyber analyst. 

 Even if common data structures are agreed upon by the cyber defense commu-
nity for mission impact assessment, it will still be challenging to evaluate the effec-
tiveness of mission impact assessment approaches. This is not necessarily just due 
to the lack of technological innovation or data, but rather the actual problem itself. 
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As mentioned previously by Grimaila’s research (Grimalia et al.  2008 ), the concept 
of “impact” can take on different meanings. Therefore, some technologies may 
focus their assessment on different impact meanings and therefore cannot be ade-
quately compared. Also, any quantitative measurements of impact cannot be known 
even with a detailed ground truth (e.g., even if a standard impact defi nition is agreed 
upon, how can one determine that the actual impact to an asset at a given time is 0.7 
instead of 0.65?). Therefore, distance-based comparisons cannot be accurately com-
puted. Another option for evaluating impact accuracy is to “rank” the scores against 
each other, so only the relative impact scores are important for analysis. However, 
this gets even more complex, because, the level of impact actually depends on the 
evaluator’s perspective of the situation. 

 So the “ground truth” impact to an asset must account for:

    (1)    Who is interested in this assessment and how are they related to the mission(s) 
being assessed?   

   (2)    Which impact defi nition(s) is(are) being used for the assessments?   
   (3)    Which parts of the network are being impacted?   
   (4)    When is this assessment valid for?   
   (5)    Which events contributed to this impact?    

Being able to account for all of these requirements in ground truth is going to be a 
subjective process leading to a potential bias in the results. It is therefore, infeasible 
to try to compare results of impact assessment techniques against a ground truth. 
The evaluation of such techniques can truly only be done based on the personal util-
ity found by an analyst in using a given tool.  

2.2     Model Design—Environment Modeling 

 Recall that the mission modeling techniques described in the previous section all 
ultimately relied upon damage estimates to the individual assets. These damage 
scores can be calculated using the following key pieces of information:

    (1)    What are the asset vulnerabilities   
   (2)    How the asset is used on the network   
   (3)    How the asset can be access on the network   
   (4)    Which events are potentially targeting the asset    

The fi rst three pieces of information can be determined based on knowledge of the 
computer network, whereas the fourth piece relies on the events that can be detected 
or correlated on the network. So we will fi rst focus our attention on the fi rst three 
pieces since the fourth will be addressed as we work our way to the bottom of the 
design process. 

 Over the years, various models and tools have been proposed and even imple-
mented to model certain aspects of a computer network. The problem with most of 
these approaches is that they either do not provide a comprehensive set of data 
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 relevant for impact assessment or alert correlation or do not provide automated or 
convenient ways to populate the model. 

 The Virtual Terrain (Holsopple et al.  2008 ) is an XML-based representation 
using a graph structure that is comprised of the data necessary for impact assess-
ment and other advanced cyber network defense tools. The VT is comprised of 
multiple components:

    (1)     Computer Network —This contains information about the assets and physical/
virtual connectivity of the network.   

   (2)     Service-Vulnerability Mapping— This utilizes the Common Platform 
Enumeration (CPE) and Common Vulnerabilities and Exposures (CVE) stan-
dards to map services to their potential vulnerabilities. Since the CPE and CVE 
database does not fully support all possible vulnerabilities, there are general-
ized mappings included to capture more generic events such as pings and port 
scans.   

   (3)     Vulnerability-Observable Mapping— This mapping is dependent on the sen-
sors/loggers being used as inputs. Sensors such as Snort provide a reference to 
a CVE and other vulnerability databases which can be used to populate this 
mapping.    

The VT is capable of modeling the following aspects of a computer network:

    (1)     Hosts, Servers, Clusters, Subnets, etc.— These are the physical processing 
components in a computer network that are typically targeted by attackers. The 
VT generically models all of these components as either a host (a single work-
station or server), clusters (multiple hosts of nearly identical confi guration), or 
subnets (a collection of hosts or clusters with identical connectivity). Each of 
these components contain:

    a.     IP Address, Host name, Domain, etc. —A set of metadata commonly used 
to defi ne hosts.   

   b.     Service References —One or more references to services.    

      (2)     Routers, Switches, Firewalls, Access Points, etc.— These components all 
affect the connectivity of a network. These fundamentally all control how traffi c 
is routed or where it is fi ltered.   

   (3)     Sensors— The location and type of sensor is extremely important to being able 
to fi lter out false positives and identify true positive alerts. Network-based IDSs 
typically just process all traffi c without much knowledge of the underlying net-
work, which can lead to false positives. For example, a network-based IDS 
placed outside of a fi rewall may trigger a number of observables, however, the 
fi rewall actually fi lters out most of that traffi c, so those events are not really 
threats. On the other hand, an observable from a host-based IDS could be treated 
as more important due to the fact that those hosts are actually receiving the 
malicious traffi c. It is therefore important to know the types and locations of 
sensors on the network so that asset damage can accurately be estimated.   
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   (4)     Users— Knowing users and their associated privileges is also important to be 
able to determine who can access what. Such information could be used to 
determine users trying to access data they are not supposed to, which is an indi-
cator of an attack.    

The intent of breaking down the VT into these three components is to enable the 
“drill-down” from hosts to services to vulnerabilities to possible observables. This 
also enables the ability to “roll up” from observables to vulnerabilities to services to 
hosts, which ultimately is what is needed for advanced cyber network defense. 
Being able to roll up this information allows for estimates of asset damage to quickly 
be obtained. For example, if an observable is received indicating a possible Remote 
Desktop Vulnerability was attempted on a given host, this information can be cross- 
referenced to quickly see if the targeted host was actually vulnerable to that attack. 
If the host is vulnerable to the attack, the network connectivity can be checked, 
along with the sensor types locations, to determine if this detected event damaged 
the target. 

 The VT was developed to encompass all necessary information for advanced 
cyber network defense, but there are some open issues that still need to be addressed:

    (1)    Integration with existing scanning tools and network components such as fi re-
walls is needed to provide a comprehensive population of information. If a 
model like the VT were to become a standard, vendors would be able to write 
their own integration strategies to populate a VT.   

   (2)    An analysis of scalability of the VT. While the concept of host clusters is 
intended to provide the ability to model hundreds of hosts into a single node, 
there are still thousands of vulnerabilities and services that need to be mapped. 
In order to adequately support impact assessment tools, accessing information 
from the VT must be very fast, so the VT must be evaluated and possibly 
tweaked for scalability.   

   (3)    The fact that a VT contains a signifi cant amount of information about a com-
puter network is very helpful, but could also be very harmful if it is obtained by 
an attacker. It is therefore imperative that one or more security protocols be 
available to encrypt or intelligently distribute the information across the net-
work such that the entire VT is only accessible with the correct security 
permissions.      

2.3     Observables Design 

 The observables design component focuses on the detection and correlation of 
events. The topic of cyber detection has been extensively researched and existing 
commercial, proprietary, and open-source tools are being continuously refi ned. In 
this section, we will therefore explore the concept of alert correlation. 

 Cyber alert correlators generally utilize outputs from intrusion detection sensors 
and/or system logs to group events through causal and/or temporal relationships 
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into “tracks”. Knowledge of the actions taken by a single attack is imperative in 
understanding the potential or current impact to the missions. An individual event 
may not cause a signifi cant impact, but the combination of multiple events could 
create a signifi cant impact. 

 For example, if it is known that an event has compromised a particular worksta-
tion, the impact may be minimal since the threat could be isolated and mitigated 
easily. However, if it is known that the event was only a small part of a larger attack, 
a more complex and involved mitigation strategy may need to take place. With 
respect to asset damage, the meta data for each event in a given track can be used to 
determine asset damage. The collective set of asset damages for that track will then 
allow for the collection mission impact to be calculated. 

 Even though alert correlation is more highly researched that mission impact 
assessment, it also still suffers the same problem that many of the tools are only 
integrated with a limited subset of IDSs and other cyber defense tools. 

 Unlike impact assessment, alert correlation tools are less subjective in their abil-
ity to correlate alerts, enabling the use of common data sets to evaluate the perfor-
mance of the techniques. Salerno has proposed a set of measures of performance to 
assess cyber alert correlation tools against each other (Salerno  2008 ). Assuming that 
a ground truth of activities (tracks) are known for a given data set, They proposed 
three measures of confi dence:
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These three metrics can be used to determine the accuracy of the correlations. Recall 
calculates how many activities were not detected (higher is better). Precision deter-
mines how well each of the detected activities mapped back to their ground truth 
activity (higher is better). While fragmentation captures how many activities were 
detected for a single ground truth activity (lower is better). 

 While the detection accuracy is important, being able to identify the most 
 important activities (i.e. the malicious ones) is even more important. If an alert cor-
relation tool identifi es hundreds of different activities, it is infeasible for the analyst 
to iterate through all of them in a reasonable amount of time. It is therefore neces-
sary for the alert correlation to also rank the activities against each other. Salerno 
also proposes the Activities of Interest (AOI) score which tries to determine how 
highly ranked the most important activities were. 

 One thing these metrics will allow us to evaluate between alert correlation tools 
is how easily they can detect a diverse array of cyber attacks. Recall that some of the 
alert correlation approaches require the use of an acyclic directed graph. This is 
limiting in the sense that this can require a potentially large number of graphs to 
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capture minor variations to the same attack. It is therefore possible that such 
approaches that model a very specifi c type of attack will do very well in detecting 
that type of attack, but perform poorly in variations of that attack and of course other 
attack types not modeled at all. On the other hand, an alert correlation tool like 
INFERD (Sudit et al.  2007 ) is designed to be fl exible to detect a wide variance of 
attacks with a single model. However, this can potentially come at the expense of a 
large number of false positives. This makes a tool like INFERD very dependent on 
the rankings of such identifi ed attacks to be a useful tool for cyber defense analysts 
to use.   

3     Summary 

 Effective mission impact assessment requires a holistic design of intelligent cyber 
defense systems to effi ciently assess or even anticipate the effect of critical attacks 
to network operations and missions. Such a mission impact assessment system will 
be a critical component to enable a viable and resilient day-to-day technology 
enabling cyber situational awareness. Most of current tools were designed using a 
“bottom-up” approach such that technologies are built to expand or improve upon 
existing technologies with the ultimate goal of minimizing the response time of 
analysts to cyber attacks. However, a limiting factor to this approach is that many of 
the new technologies require more data or information that is not readily available 
from cyber defense tools. Since cyber attacks rarely are comprised of a single event, 
information fusion in necessary to correlate alerts together to represent unique 
attacks (i.e. a collection of events) instead of unique events. Information Fusion for 
Real-Time Decision-Making (INFERD) is a fl exible alert correlation tool that can 
be defi ned to refl ect varying levels of granularity and facilitate a creation of attack 
tracks and a resolution of ambiguities. INFERD receives information from a reposi-
tory of sensor data and processes it in real-time to output a set of attack tracks, 
which are sequences of events hypothesized to be part of the same attacker. In 
attempting to build upon existing detection and alert correlation technologies, some 
of the research has shifted towards mission impact assessment. In the past decade or 
so, research has focused on modeling the mission dependencies to help facilitate 
computer-assisted analysis of current missions. Cyber Assets to Missions and Users 
(CAMUs) approach assumes that a user uses a cyber capability, whereas a cyber 
asset provides a cyber capability. This cyber capability in turn supports a mission. 
Computer Network Modeling can benefi t from use of attack graphs to determine 
asset vulnerabilities. ArcSight’s tools scan the network and can be useful as tools 
used to populate a model such as the Virtual Terrain. The Virtual Terrain (VT) is a 
security-based representation of a computer network. The top-down design process 
described in this chapter builds architecture for a cyber defense system that 
 minimizes the effort of analysts tracking down and prioritizing malicious threats. 
The top-down design process is segmented into four major components: Model 
Design; Human-Computer-Interface (HCI) Design; Contextual Design; Observables 
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Design. Mission modeling is critical because an estimate of the impact of an attack 
fundamentally boils down to how it affects the missions the network is trying to 
execute. However, technology is lacking for fulfi lling the requirements for Cyber 
Mission Impact Assessment (CMIA). E.g., determining the impact of an attack to 
missions can have different meanings, such as ability to perform mission activities; 
capabilities of the mission system in general; achieving specifi c mission objectives, 
and other. There is currently no existing standard for modeling missions, and those 
technologies that do exist are not computable. Even if common data structures are 
agreed upon by the cyber defense community for mission impact assessment, it will 
still be challenging to evaluate the effectiveness of mission impact assessment 
approaches. Environment Modeling is important because the mission modeling 
techniques all ultimately rely upon damage estimates to the individual assets. Much 
of the assets information can be determined based on knowledge of the computer 
network. Various models and tools have been proposed and implemented to model 
certain aspects of a computer network. The Virtual Terrain is an XML-based repre-
sentation using a graph structure that is comprised of the data necessary for impact 
assessment and other advanced cyber network defense tools. The observables 
design focuses on the detection and correlation of events. Cyber alert correlators 
generally utilize outputs from intrusion detection sensors and/or system logs to 
group events through causal and/or temporal relationships into “tracks”. A process 
that combines Mission Defi nition, Environment Modeling, and Observables Design 
leads to technology architecture supportive of mission impact assessment.     
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Attack Projection

Shanchieh Jay Yang, Haitao Du, Jared Holsopple, and Moises Sudit

1  Introduction

Having dedicated the previous chapter to the second level of SA, we now proceed 
to the third level. The highest level of SA—projection—involves envisioning how 
the current situation may evolve into the future situation and the anticipation of the 
future elements of the situation. In the context of CSA, particularly important is the 
projection of future cyber attacks, or future phases of an ongoing cyber attack. 
Attacks often take a long time and involve multitudes of reconnaissance, exploita-
tions, and obfuscation activities to achieve the goal of cyber espionage or sabotage. 
The anticipation of future attack actions is generally derived from the presently 
observed malicious activities. This chapter reviews the existing state-of-the-art 
techniques for network attack projection, and then explains how the estimates of 
ongoing attack strategies can then be used to provide a prediction of likely upcom-
ing threats to critical assets of the network. Such projections require analyzing 
potential attack paths based on network and system vulnerabilities, knowledge of 
the attacker’s behavior patterns, continuous learning or new patterns and the ability 
to see through the attacker’s obfuscations and deceptions.

Cyber attacks to enterprise networks or cyber warfare have moved into an era 
where both attackers and security analysts utilize complex strategies to confuse and 
mislead one another. Critical attacks often take multitudes of reconnaissance, 
exploitations, and obfuscation techniques to achieve the goal of cyber espionage 
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and/or sabotage. The discovery and detection of new exploits, though needing con-
tinuous efforts, is no longer sufficient. Imagine a system that can process large vol-
ume of sensor observables, some inaccurate, and automatically synthesize relevant 
events into known or unknown attack strategies; the estimates of ongoing attack 
strategies can then be used to provide a prediction of immediate threats on critical 
assets, enabling a Predictive Cyber Situational Awareness (SA). This chapter dis-
cusses the current works and opening problems in the area of network attack 
prediction.

Predicting or projecting multistage network attacks requires the modeling of how
an attack might transpire over time. This modeling is broader than the traditional 
definition of intrusion detection, where the focus is on understanding system vul-
nerabilities and exploits. In late 1990s, Cohen (1997) provided one of the pioneer-
ing network attack modeling frameworks. They used cause-and-effect models to 
deduce 37 threat profiles (behaviors), 94 attacks (physical and cyber), and 140 
defense mechanisms, and reported a set of simulation results (Cohen 1999). Their 
work, along with several others (Howard and Longstaff 1998; Debar
et al. 1999; Chakrabarti and Manimaran 2002) in late 1990s and early 2000s, have 
provided a comprehensive understanding of the different cyber attack types and 
their effect to networked systems.

The early works on attack modeling, or more precisely, attack taxonomy, led to 
the research on alert correlation or attack plan recognition, e.g., (Ning et al. 2002, 
2004; Cheung et al. 2003; Valeur et al. 2004; Noel et al. 2004; King et al. 2005; Wang 
et al. 2006; Stotz and Sudit 2007; Yang et al. 2009). Figure 1 shows an example 
network with a small set of observed malicious events, some could be unreliable 
due to obfuscation. This example shows 12 events within ∼ 4 min time frame, and 
imagine a large number ( > 10,000) of such events intertwined as a result of many 
simultaneous attack activities deploying different strategies. Sensor outputs corre-
lated to the same multistage attack can be considered as tracked footprints of an 
attacker. These footprints and their sequential and causal relationships can be mod-
eled and represented as hypothesized attack strategies, helping analysts to compre-
hend and manage the situation from overwhelming alerts. The hypothesized attack 
strategies, as represented in mathematical models, can then be used to project future 
actions of ongoing attacks.

Fig. 1 An example network (right) with a small set of observed malicious events (left)
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This chapter considers a tracked multistage cyber attack X = < X1, X2, ⋯ , Xn > as 
an ordered sequence of observed events where the random variable Xk ∈ Ω,   
k ∈ {1, 2, 3, ⋯ , N} is defined as the kth action in the sequence. Theoretically, Xk 
should be defined as a vector with multiple attributes describing the observed event. 
For ease of illustration within the scope of this chapter, Xk is considered as a random 
variable unless otherwise noted. In many cases, an attack strategy will be repre-
sented as a Lth order Markov model C where 
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 The P(X1, ⋯ , XL) is the initial distribution of the attack model C, and f   C gives the 
transition matrix for Lth order model, i.e., P X X Xn n n L( | , , )- -1 � . The use of an 
finite order Markov model is one example of how to represent a hypothesized attack
strategy; some of the works reviewed in this chapter use this model while others do 
not.

Network attack prediction takes many forms, ranging from analyzing potential
attack paths based on network and system vulnerabilities (knowledge-of-us) to ana-
lyzing the attack behavior patterns (knowledge-of-them). Prediction based on net-
work vulnerabilities gives the advantage of focusing on critical assets and allows an 
explicit assessment of active defense to prevent further penetration into the network. 
However, it requires a reasonably up-to-date knowledge of the network, which is 
challenging in practice. Prediction based on attack behavior patterns does not rely
on the knowledge of network and system configurations, but it could mis-predict 
critical actions due to decoy or obfuscated attacks. The common challenges for 
these approaches include: 

• The network configuration, user accessibility, and system vulnerabilities may not 
be known accurately or completely a priori at the enterprise network level or 
higher, not to mention the needs to capture changes and updates in a timely man-
ner. The attack prediction approaches need to be robust to incomplete network 
information.

• There will be uncertainty due to sensor errors, imperfection on alert correlation, 
and attack obfuscation. The attack prediction approaches need to be resilient to 
such uncertainties, or provide an understanding of how they will perform under 
such uncertainties. As such, it is also beneficial for attack prediction to provide 
one or more hypothesis for future attacks so that analysts can proactively prepare 
for a reasonable and manageable set of possible attacks.

• Network attack strategies can be diverse and evolve over time. Attack prediction
approaches need to be adaptive and be able to treat unknown attack strategies, 
preferably in an online manner.

The next section will review and discuss the benefits and limitations of the vari-
ous current works on network attack prediction, most of which address some of the 
challenges but not all. Section 3 will discuss the open problems and the preliminary 
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works that provides a better understanding towards an integrated solution that uti-
lizes both the knowledge-of-us and the knowledge-of-them. Finally, Sect.4 con-
cludes this chapter with a brief summary of the current state-of-the-art and the 
outlook of Predictive Cyber SA.

2  Network Attack Modeling for Threat Projection

2.1  Attack Graph and Attack Plan Based Approaches

The first set of approaches (Qin and Lee 2004; Wang et al. 2006; Noel and
Jajodia 2009) expands from alert correlation. The general idea is that alert correla-
tion creates the hypothesized attack models, also called attack graphs (Wang 
et al. 2006) or attack plans (Wang et al. 2006; Noel and Jajodia 2009), and predic-
tion can be done by forward analysis using these attack models. A comprehensive 
review of alert correlation is beyond the scope of this chapter; the following will 
concentrate on discussing how two predictive analyses expand from their corre-
sponding alert correlation systems, respectively.

Wang et al. (2006) discussed the use of attack graphs to correlate, hypothesize, 
and predict intrusion alerts. The main idea of the attack graph is to provide an effi-
cient representation and algorithmic tools to identify the possible cases system vul-
nerabilities can be exploited in a network. The approach relies significantly on a 
reasonably complete and accurate knowledge of the system vulnerabilities and fire-
wall rules in the network. While, ideally, various scanning tools can be used to 
obtain such information, it is a daunting task for a large-scale enterprise network 
where multiple system administrators manage different parts of the network. Note
that the notion of representing vulnerabilities in a network has also been discussed 
by others in late 1990s and early 2000s, e.g., (Phillips and Swiler 1998; Tidwell 
et al. 2001; Daley et al. 2002; Vidalis and Jones 2003). Most of these works revealed
the scalability problem when modeling all possible vulnerable paths in a network. 
The attack graph approach described by Wang et al. (2006) and Noel and Jajodia
(2009) has shown ways to alleviate this scalability problem.

Wang et al. (2006) suggested to use Breadth-First Search on the attack graph
beginning from the recently received alerts. The search goes forward from the new 
alerts to find paths satisfying of both security conditions and exploits, without rea-
soning about the disjunctive and conjunctive relationships between exploits. 
Essentially, the approach finds all possible next attacks from the attack graph. While 
they discussed the computational and memory usage performance, Wang et al. 
(2006) did not provide a comprehensive analysis for the prediction performance.

An alternative to the use of attack graph is the use of Dynamic Bayesian 
Network (DBN). Qin and Lee (2004) were among the first to propose a high-level 
attack projection scheme. They expanded the use of their alert correlation system, 
designed to fit sensor observables to pre-defined high level attack structures using 
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DBNs. This approach allows the definition of causal relationship between observed
events, and, more importantly, dynamic learning of transition probabilities through 
sufficient volume of data. Once learned, the transition probabilities can be used to 
predict potential future attack actions.

A distinction between the works by Wang et al. (2006) and Qin and Lee (2004) is 
that the attack graph is more rule-based and the DBN approach is more data-driven
and probability-based. Because attack graph is rule-based, it enables specific model-
ing and analysis of the vulnerabilities and exploits in the network. On the other hand, 
the use of DBN to model high level attack plans requires a mapping between specific
alerts to attack categories, but it allows probability inference and helps reduce from 
all possible future attack actions to a differentiable list of likely future attacks.

While seemingly promising, The DBN approach discussed by Qin and Lee
(2004) is not without limitations. First of all, the high level attack plans need to cre-
ated a priori by domain experts. It is unclear how a variety of attack plans can be 
created and updated realistically. It is also not clear how many and how detailed 
these plans need to be for reasonably good correlation or prediction performance.1 
Second, the transition probabilities need to be learned through a reasonably large 
amount of data. This means that, for each attack plan, one will need to see suffi-
ciently large number of attack sequences in order to do prediction with high fidelity. 
This may not be likely in reality because network attack strategies are diverse and 
evolving in a fast pace. Section 2.3 will discuss a set of approaches that inferences 
future attack actions without requiring pre-defined attack plans, and, thus, elimi-
nates the need for large volume of data for each attack plan.

2.2  Attack Projection by Estimating Attacker Capability, 
Opportunity, and Intent

The use of network configurations and vulnerabilities for threat projection can also 
be applied to the concept of estimating adversary Capability, Opportunity, and 
Intent (COI), which has been used widely in military and intelligence community 
for threat assessment (Steinberg 2007). Within the context of computational tech-
niques for Cyber SA, this section extends the works by Holsopple et al. (2010) and 
Du et al. (2010) and presents the following conceptual definition for cyber adver-
sary capability, opportunity, and intent.

Capability Given how difficult it has been to identify the true source of a cyber 
attack as well as the wide-ranging abilities of attackers, it is challenging to even 
estimate the set of tools and abilities that can effectively be used by the attacker 
without a priori knowledge or a learning process. A practical approach is to adopt a 
probabilistic learning process to infer the set of services each attacker is likely to 

1 A discussion of how to assess the similarity/difference between attack models will be presented 
in Sect. 3.1.
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exploit given what he/she has successfully exploited before. Note that we suggest to
assess the capability at the service level, e.g., using the Common Platform
Enumeration (CPE), as the attackers typically know various exploits for the same
service. The probabilistic learning process should account for the skill level required 
for specific exploits, if such information is available, and the breadth of exploit 
types across CPE’s and Common Weakness Enumerations (CWE’s).

Opportunity Assessing cyber attack opportunity can be interpreted as the set of 
“exposed” systems to each ongoing attack given its current progress in the network. 
Certainly, if an attacker has insider information of the network configuration or if the 
network is managed poorly with minimal safeguard, technically or policy-wise, the 
opportunity assessment will have much less value. Here we assume the network in 
question is reasonably secured with firewall rules, permission and banned lists, ser-
vice configurations, etc. to segregate the access domains. The process then is to 
dynamically identify the reachable next targets from the already exploited or scanned 
machines or accounts. In a way, the attack graph approach discussed in Sect. 2.1 finds 
the opportunities for each ongoing observed attack sequence. To differentiate the dif-
ferent exposed targets, a probability-based or weighted approach can be used.

Intent A true adversary intent analysis will require the study of attacker motivation 
and social influence—a substantial departure from the focus of this chapter. From
the technical perspective, one way to infer “worst-case” intent is by assessing the 
possible impact of next actions, in terms of how the actions may step closer to the 
critical assets and data in the network. The first step of such analysis is an efficient 
way to determine the criticality of network assets to the various missions they sup-
port, for which one may refer to the impact assessment discussed in the earlier 
chapter, titled “Top-down Driven Cyber Impact Assessment.” From there, one can
aggregate the effect of each action over the reachable set of next targets from that 
action and determine the worst-case intent scenario.

The estimations via Capability, Opportunity and Intent (COI) analysis need to be 
examined holistically, either through human analytics as traditionally done in mili-
tary and intelligence communities, or combined via theoretical fusion algorithms, 
such as Dempster-Shafer combination (Shafer 1976) or Transferable Belief Model
(TBM) (Smets 1990).

Very little has been done to show the quantitative benefits of COI analysis. Du
et al. (2010) developed an ensemble prediction algorithm that combines capability 
and opportunity assessments using TBM. They analyzed the performance of the algo-
rithm on two networks, each attacked by 15 attack sequences. Network 1 has four
subnets and each subnet has access to two dedicated servers and four shared central-
ized servers. This is to represent networks with segmented departments. Network 2
has three subnets, each of which can access only one dedicated server but share most 
others. The subnets in Network 2 are hidden behind layers of tightly controlled fire-
walls and include a server farm of 10. Table 1 shows the results for the experiment.

The average compromising score (AvgCS) shown in Table 1 is the average threat 
score of entities that are about to be compromised next. Intuitively, a good projection 
scheme will give high threat score to entities just before they are compromised. 
Therefore, the higher the AvgCS, the better the projection accuracy. Reasonably good

S.J. Yang et al.



245

AvgCS is shown for both networks. Network 1 sees a lower AvgCS because the hosts 
and servers in each subnet are all one server away from the Internet and, thus, are eas-
ily susceptible to attacks. This makes it harder to differentiate between more and less 
severely threatened entities. Network 2, on the other hand, sees close to 90% AvgCS. 
This exceptional performance is primarily due to the tightly configured server and 
subnet access of Network 2; only few vulnerable paths are available to attack internal
hosts and servers, and the paths can be quite different from one target to another.

The average asset reduction (AvgAR) in Table 1 shows the opposite trend as 
AvgCS does. The metric AvgAR represents the average percentage of entities the 
system has reduced for the analysts to focus on. The implemented system only 
shows analysts the entities that have a threat score no less than 0.5. In other words, 
for experiments done on Network 1, the analysts only need to focus on 13.8% of the
entities he would have to examine without the proposed system. Network 2 sees a
relatively less reduction of 52.7%. Network 1 sees a better reduction because the
subnets are segmented only one server away from the Internet; so the reduction of 
assessed assets is already high even at the very early stage of an attack.

Network attack projection via COI analysis is at its early stage and much needs
to be done to provide a robust system. Particularly, a thorough study is needed to
determine how to optimally integrate the estimations from all three aspects of 
COI. Generally speaking, COI analysis is more effective when applying to tightly 
secured networks. This approach does not project well for attacks that constantly 
change the strategy and ignore the exposed systems; such shortcoming can be 
potentially compensated by assessing the attack behaviors, which will be described 
in the next section.

2.3  Prediction by Learning Attack Behaviors/Patterns

The network attack prediction approaches discussed in the previous sections assume 
a good knowledge on either the attack strategies or the network vulnerabilities. In 
practice, neither of the information can be easily obtained and maintained. In fact, 
network attack strategies can be diverse and evolving, and so are the network and 
system configurations. In such cases, network attack prediction will need to dynam-
ically learn about the attack behavior. A few works (Fava et al. 2008; Du and
Yang 2011a; Cipriano et al. 2011; Cheng et al. 2011; Soldo et al. 2011) were devel-
oped to learn and predict attack behaviors without relying on pre-defined attack 
plans or detailed network information.

Table 1 Attack projection performance by combining capability and opportunity assessment 
[reproduced from Du et al. (2010)]

#Servers #Subnets AvgCS AvgAR

Network 1 12 4 71.5% 86.2%
Network 2 19 3 89.6% 52.7%
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2.3.1  Variable Length Markov Model (VLMM) Attack Prediction

Recognizing the needs to learn and predict ongoing network attacks in an online
manner, Daniel et al. (2008) developed an adaptive learning and prediction system 
using the Variable Length Markov Model (VLMM). While similar machine learn-
ing and modeling approaches have been used for anomaly and intrusion detection, 
e.g., (Lee et al. 1997; Lane and Brodley 1999; Ye et al. 2004), the work by Daniel
et al. (2008) was the first that examined the use of VLMM for network attack pre-
diction. The VLMM prediction is a branch of Universal Predictor (Jacquet
et al. 2002; Shalizi and Shalizi 2004), originally developed for other applications 
such as text compression (Bell et al. 1990). VLMM fits well as an online learning
system because of its superior computational efficiency over Hidden Markov Model
(HMM) and the flexibility over finite (or fixed) order Markov model. The following
provides a brief illustration of how VLMM captures attack behavior and its perfor-
mance in predicting attack actions.

Using the notation defined in Sect. 1, consider an observed attack sequence X 
with a length l. This sequence will contribute to the building of oth order models for 
0 ≤ o ≤ l. More specifically, this attack sequence will provide one sample to the lth 
order model, two samples to the (l − 1)th order model, …, l − 1 samples to the 1st 
order model, and l samples to the 0th order model. One can use a suffix tree or other 
data structure to store the statistics from these samples from all attack sequences. If 
a suffix tree is used, it takes O(l2) time to find the probabilities of next action being 
Xl+1 with respect to all models, P X o lo l( ),+ "- £ £1 1 , where the − 1th order model 
assigns 1 ∕  | Ω | to all symbols in the action space Ω to prevent the zero frequency 
problem (Bell et al. 1990). We can then combine the various probabilities to provide 
a blended probability P(X) as follows. 
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cj is the number of times the specific pattern has occurred.
A key element in adopting VLMM for attack prediction is the definition of the

action space with special symbols to represent new symbols that were not seen 
before—recall that this is an online attack prediction system. Figure 2 shows the 
average prediction accuracies achieved by using VLMM as attack events are observed
over time. A total of 10,425 attack events from 1,482 attack sources are interleaved, 
and distinctive attack scenarios with new exploits and target sets are intro-
duced around alerts #3000 and #8000 for a VMWare network. This example shows
VLMM prediction performance with respect to two attributes: attack exploits
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(Description) and attack effects (Category). The results demonstrate that VLMM
not only predicts well but also quickly adapts to new attack scenarios.

The VLMM framework allows us to discover and combine patterns within attack
sequences without explicitly defining attack scenarios. In fact, it combines the prob-
abilities associated with all matched patterns in various orders and produce a best 
guess. An attacker executing few decoy attack sequences should have little impact 
to dilute the model. In addition, the current work filters back-to-back actions that are 
identical to explicitly capture the attack transitions, which are often keys to network 
attack strategies.

A preliminary study was conducted to examine how the location and the occur-
rence of missing observations will affect the performance of VLMM prediction.
The results suggest that, given the same number of missing alerts, spreading the 
noise throughout the sequences will have a slightly bigger impact to the perfor-
mance. More importantly, missing events that rarely occur will have a significant
impact to VLMM. A comprehensive sensitivity analysis of VLMM with respect to
noise or obfuscation will provide a complete understanding of the benefits and limi-
tation of using VLMM for network attack prediction. From there, one may design a
resilient VLMM system by combining not only the oth order models but also the 
potential variations due to the probabilistic noise model.

2.3.2  Other Attack Behavior Learning Approaches

Cipriano et al. (2011) developed a statistical learning system called Nexat. The
approach groups intrusion alerts into attack sessions based purely on the source and 
destination IP addresses recorded in the alerts. Then, statistics are recorded to deter-
mine which types of attack actions are more likely to be in the same session. 
Prediction of future attack actions are, thus, chosen based on the overall statistics

Fig. 2 Average prediction accuracy as alerts are injected to VLMM [reproduced from Fava et al.
(2008)]
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given recently captured alerts. Nexat was evaluated using the International Catch-
the-Flag (iCTF) competition dataset (Vigna et al. 2013) and has show reasonably 
good prediction performance. However, it is unclear whether the simplistic defini-
tion of the attack session and the statistics can be generalized and applicable for 
large-scale networks with diverse attack goals.

Soldo et al. (2011) adopted recommendation systems, typically used for movie 
ranking and shopping sites, to predict victim networks based on similarly behaving 
malicious source IP. While theoretical sound and performing well against the
DShield dataset (DSheild 2013), the recommendation system approach does not 
provide insights on how the attack actions happen sequentially or causally. Note that
DSheild data reports attack incidents on the Internet for blacklisting purposes, but
does not really contain sophisticated multistage attack strategies. It serves for a dif-
ferent purpose of predicting victim networks from blacklisted source IP, but not
predicting next attack actions among ongoing attacks in enterprise networks.

Cheng et al. (2011) developed a system that measures similarity between attack 
progressions and project into future actions based on most similar portions of the 
progressions seen in other attack sequences. The approach is based upon the solu-
tion for the classical Longest Common Subsequence problem, and a key novelty lies
in the definition of the attack progression as a time-series of three-digit numbers: the 
first digit indicates the zone distance between the source and destination IP,
the second digit stands for the network protocol used, and the third digit reflects the 
distance between port clusters. From there, an attack sequence becomes a trajectory
moving in this three-digit space. While the idea is interesting and unique, the authors 
evaluated their system against the DARPA Intrusion Detection Dataset (MIT
Lincoln Laboratory 2013), which is limited in terms of attack sophistication and 
certainly not sufficient to demonstrate predictive Cyber SA.

3  Open Problems and Preliminary Studies

The existing works on predicting network attacks have shown some promises, but 
are still insufficient to provide a resilient solution due to sensor inaccuracy, attack 
obfuscation, evolving network strategies, and incomplete network information. The 
following sections will discuss some of the open problems and preliminary works 
to address these uncertainties, including a brief highlight of the lack of data to vali-
date and assess performance of network attack prediction approaches.

3.1  Impact of Obfuscation on Attack Modeling

Fitting observed attack sequences to attack models is the basis for many attack pre-
diction approaches. These observations, however, are likely to contain noise or obfus-
cated actions. Little work has been done to systematically analyze the effect of the
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various obfuscation techniques, e.g., inserting noise, removing traces, altering alerts, 
on network attack modeling. Du and Yang (2014) have studied the effect of attack 
obfuscation on classifying attack sequences to attack models. This section expands 
from that study and discusses how it relates to multistage network attack prediction.

To classify a given attack sequence X among different models, CÎC , one will 
need to find 
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Computing the optimal classification rate for a set of attack models C  requires 
consideration of all possible X’s, which is in the order of O N(| |•| | )C W  if using a 
brute-force approach, where Ω is the set of attack actions and N is the observed 
sequence length.

Now, consider an obfuscated sequence Y, which can be modeled as a transfor-
mation of X given the probabilistic obfuscation model P(Y | X). The obfuscation 
model can be as simple as a random change between any possible symbols in Ω, or 
as complex as changing Yk depending on all previous actions {X1, ⋯ , Xk}. Figures 3 
and 4 show two example models that represent attack progressions with noise injec-
tion and trace removal, respectively.

Similar to those shown in Figs. 3 and 4, a variety of obfuscation techniques can 
be modeled using the general Dynamic Bayesian Networks (DBNs), also called
Statistical Graph Models. From there, one can analyze the impact of matching an
obfuscated sequence Y to the attack model C. Using the Bayesian framework, the
optimal classification performance over all possible cases is expressed as follows. 
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X1 X2 · · · XN/2

Y 1 Y 2 Y 3 Y 4 · · · · · · Y N−1 Y N

 Fig. 3 Attack progression models with noise injection

· · · · · ·

· · ·

X1 X2 X3 X4

Y 1 Y 2 Y N/2

Y N−1 XN

Fig. 4 Attack progression models with trace removal
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Computing Eq. (4) directly is expansive; but it can be divided into two sub- 
problems: (1) calculate the probability of obfuscated sequence for a given attack 
model P(Y | C), and (2) given P(Y | C), calculate max

C
Y
å P(Y | C) P(C). For the first

sub-problem, 
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where | |Y X- =H M  reflects the number of noise elements that alters from X to Y. 
By leveraging the model structure exhibited in DBN, (5) can be solved efficiently 
with recursion rules similar to those used in Dynamic Programming.

Knowing how to determine P(Y | C), computing max
C

Y
å  P(Y | C)  P(C) can be

efficiently achieved using Monte-Carlo method. Examining all possible Y requires 
O( | Ω | N) iterations. By randomly sampling sufficient number of Y’s, one can con-
tain the errors based on Hoeffding’s bound (Serfling 1974). In the scenarios studied 
by Du and Yang (2014), only 1,000 samples is required to achieve less than 1%
error regardless of | Ω | or N.

Combining the recursive algorithm and the Monte-Carlo sampling, Du and Yang
(2014) developed an efficient algorithm to compute the success rate of which obfus-
cated sequences are matched to their corresponding attack model. This rate is 
referred to as the optimal classification rate. Du and Yang’s algorithm has been
shown to achieve a computational complexity of Θ(N ⋅ M ⋅ | Ω | L+1), where L is the 
order of the finite Markov attack model. Note that L is typically small (L ≤ 3) as 
suggested by Fava et al. (2008); when L is small and considered as a constant, the 
algorithm runs in polynomial time with respect to the attack sequence lengths and 
the size of the action space.

Figure 5 shows a set of results on the optimal classification rate for a set of dis-
tinct attack models, when the observation length N and the obfuscation level 
increases, respectively. Here the obfuscation level is shown as the ratio of M ∕ N. The 
classification performance for three scenarios are plotted. Clean means no obfusca-
tion is introduced to the observed sequences and the classification is direct based on 
how X transitions; this scenario represent the best one can ever achieve even with no 
obfuscation and full knowledge of the attack model. Noise means that obfuscation 
is included but the classification is done without the knowledge of the obfuscation 
model. The third is a set of experiments when the classification is done for the 
obfuscated sequences knowing the obfuscation model. The third set consists of five 
cases, where the estimated obfuscation level equals to the true obfuscation level, 
10% more, 20% more, 10% less, and 20% less.

Figure 5 exhibits the significant effect obfuscation can have on the classification 
performance even though the attack models are quite distinct—the Clean scenario 
shows mostly 90% or higher classification rate but it drops to mostly 70% without
knowing how obfuscation is done. This performance can be brought back to around 
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80% when the obfuscation model is known. Note that imprecise estimation of the
obfuscation level does not cause much difference in classification performance. 
Overall, as expected, the classification performance increases as the observation length 
increases and when the obfuscation level is lower. The performance improvement is 
more significant when the observation length is small and when the noise level is high.

The overall framework described above provides a means to systematically and 
quantitatively assess the impact of obfuscation to attack modeling. Specifically, it 
assesses:

 1. how distinct a set of attack models are with respect to each other,
 2. the effect of specific obfuscation techniques and obfuscation level on attack clas-

sification, and
 3. the effect of observation window length and other operational parameters on 

attack classification.

Fundamentally, this study offers a theoretical analysis that measures the best one
can recover from attack obfuscation or noise, which is inherent in network attack 
modeling and prediction. Extension of this work includes integrating the obfusca-
tion models directly with the prediction model, and perform similar analytical anal-
ysis as the above to estimate the prediction accuracy. At a very minimal, a network 
prediction solution must be evaluated by taking into account the potentially signifi-
cant errors in choosing the model for prediction.

3.2  Asset Centric Attack Model Generation

As shown in the last section, there will always be mis-calculation in correlating 
observables to attack models. In fact, aiming at fitting observables to known models 
may not be necessarily the best approach, since the dangerous attacks are the ones 

Fig. 5 Optimal classification rate vs. observation length (left) and obfuscation level (right)
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likely to employ attack strategies deviating from the commonly known ones. 
Alternatively, one may want to dynamically learn the attack strategies based on the 
collective evidence that are “relevant” to critical assets in the network. In a way, this 
approach combines the “knowledge-of-us” and the “knowledge-of-them” without 
aiming at recovering who did what. In other words, the focus is no longer on deter-
mining which observables belong to the same attacker or attacker group and use that 
to fit or build models for prediction; instead, it is to concentrate on grouping the 
collective evidence that can lead to the compromise of each critical asset, and simul-
taneously generate attack behavior models based on the collective evidence. In its 
ultimate form, this approach shall integrate the benefits of the different attack pre-
diction approaches discussed in Sect. 2.

Strapp and Yang (2014) have developed an online semi-supervised learning 
framework that aims at simultaneously identifying relevant observables for critical 
assets and generating attack models based on the collective behaviors exhibited by 
these observables, even in the presence of IP spoofing. This section will highlight
the findings from Strapp and Yang (2014) and discuss how it relates to network 
attack prediction. Achieving this asset centric attack model generation requires: (1) 
an appropriate definition of “relevance” in the presence of IP spoofing, and (2) a
method to determine whether to match observed events to previously found model 
or to use them to generate a new model.

To assess the relevance of large-scale malicious events, we first expand the defi-
nition of Attack Social Graph (ASG) (Du and Yang 2011b, 2013; Xu et al. 2011), 
which represents the source-target pairs of cyber attacks in a directed graph.

Definition 1 (Attack Social Graph (ASG)). An ASG Gτ(Vτ, Eτ) is a directed graph 
representing the malicious events observed within a time interval τ. A vertex v ∈ Vτ 
is a host, and an edge e(u, v) ∈ Eτ exists if at least one attack event is observed from u 
to v during τ. The edge weight, Z(u, v, τ), represents the features of attack activities 
and is a function of the amount and types of observed events from u to v during τ.

Direct use of ASG would implicitly assume the host IP observations are accurate,
which is not the case. In fact, multiple attackers may spoof a single IP to perform
independent and irrelevant attacks. The proposed method will be able to segment 
the ASG so that a single attack source IP can exhibit multiple attack behaviors. The
only assumption made is that each Z(u, v, τ) will represent a single attack behavior 
for a reasonable τ, because it is unlikely that an IP is spoofed by multiple attackers
to perform independent and irrelevant attacks on the same target machine during the 
same time frame. Such assumption could be relaxed, especially for dormant attacks, 
to extend from the current work.

Figure 6 shows a small example ASG evolving over time, revealing two attack 
behaviors exhibited by the same source IP. This is an example extracted from the
dataset collected via the Network Telescope project conducted by CAIDA (Aben
et al. 2013). The directed edges represent whether the malicious events observed on 
each source-target pair belong to any model (dashed and solid lines), or not assigned 
to the incident at the time (dotted lines).
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In Fig. 6, Node 6 is in the center of two clusters of attack events; it is unclear
whether Node 6 serves a critical role for both, or it is just a result of IP spoofing and
the two attack groups should be considered separately. Also notice Nodes 8, 10 and
11. As time goes on, the graph structure suggests this trio is involved in seemingly 
collaborative attacks for Nodes 7, 9 and 12. While the graph properties signify the
relevance of attack sources to one or more incidents, it also requires an examination 
of how the malicious events occur over time to determine which edges should 
belong to which incident. To achieve this integrated approach, the Bayesian
Classifier is adopted to dynamically create models specified in a feature space, and 
determine the optimal model M∗ for which the events occurring on each edge should 
best fit. Let Z represent the features exhibited by the events observed on an edge, 
and we have 

 M P M P M P M
M M

* = =argmax ( | ) argmax ( | ) ( )Z Z  (6)

P(Z | M) serves to examine the likelihood of each model containing the attack fea-
tures exhibited by the events on each edge, and P(M) represent the prior signifying 
the relevance of the model with respect to the graph centered around each critical 
asset. The following discusses the definition of the relevance prior based on the 
ASG structure, the attack features, and the use of a generic model to enable the 
creation of new models in an online manner.

The graph-based prior, P(M), is proposed to signify a departure from the fre-
quentist prior in routine Naïve Bayes classification. It utilizes macroscopic informa-
tion about ASG to determine whether a collective set of evidences is spatially 
cohesive to infer an attack behavior. The formulation extends the measure of Graph 
Efficiency defined by Latora and Marchiori (2001), and is similar to the concept of 
Closeness Centrality (Newman 2001) with an extrapolation to measure the entire 
graph. The intuition is that a set of observed events is relevant if it is close to the 
critical asset within the ASG or have a similar behavior to those incident to the 
asset. From there, a model is more likely to occur if all evidences associated with
the model are all cohesively relevant.

Consider a model M and the corresponding subgraph GM in the overall ASG. For
a given node i, its “position” is determined by the inverse harmonic mean of 

Fig. 6 An example ASG evolving over time
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distances, di, j, between node i to all other nodes j MÎG . Let Pi j,
 be the path from 

nodes i to j and Pi j
k
,  be the kth edge along the path. The distance di, j is defined as

1

P M i j
k

k i j
( | ),,

PPÎ
å  to reflect the probability the edges along the path between i and j

within G M . The efficiency E M( )G  is thus determined by the inverse of the distances 
between all pairs of nodes in G M , and further weighted by the probability that both 
the start and terminal edges between the pairs belong to G M , as shown in (7). 

 

E P M P M
dM

i j
i j i j

i jM

( ) ( | ) ( | ), ,
,

G P P
G

=
¹ Î

-å 0 1 1

 

(7)

The prior probability of each attack model, P(M), is then derived by normalizing 
over the set of all current attack models. Letting Mall be the current set of attack 
models, the prior probability of each attack model is given by (8). 
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The attack behavior model is defined as a collection of feature probability distri-
butions. The probability P(Z(u, v, τ) | M) can be viewed as the likelihood of Model M 
exhibiting the attack features Z(u, v, τ) shown on the edge e(u, v) during the time inter-
val τ. The following temporal and spatial features are candidates to be incorporated 
into the overall framework.

Attack Intensity This is a continuous feature showing changes in the attack inten-
sity over time. Time-invariant kernels may be used to define attack intensity as a 
function of the volume and types of malicious events. This feature can be used to 
differentiate the overall dynamics of attack activity.

Port Selection Entropy UDP and TCP port numbers reflect the service being or
intended to be exploited. The number of feasible port numbers is significant, and focus-
ing on specific port selections may not be necessarily useful in differentiating attack 
behaviors. Thus, we propose to examine the deterministic versus stochastic behavior of 
port selection exhibited through observed events. If the set of observed events indicate 
a certain port is being targeted, i.e., deterministic port selection, the port values can 
directly be compared to gauge the similarity of attack behavior. On the other hand, a 
variety of stochastic behaviors (Treurniet 2011; Zseby 2012; Shannon and Moore 2013) 
may be less obvious to treat: a malicious source may perform a “vertical” scan over 
many different destination ports; some attacks may randomly select source ports to 
obscure the behavior profile; “Backscatter” traffic generated from DDoS attacks may
also give the appearance of random port selecting. In the case of stochastic port selec-
tion, a comparison of the actual port values is unlikely to be meaningful.

Let P  be the random variable on taking a specific port number, P(D) the prob-
ability of making a deterministic port selection, and P(S) the probability of making 
a stochastic port selection. P(D) and P(S) are estimated separately for the source 
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and destination ports, and together fill the hypothesis space for a feature called port 
selection entropy as shown in (9). The formulation is driven by the intuition that the 
actual value of P  is not important if the port is chosen stochastically. 

 P X P S P X D P D( ) ( ) ( | ) ( )P P= = + =  (9)

Graph Position The graph position feature represents the relevance of the mali-
cious activity shown on e(u, v) with respect to each critical asset and the models 
already identified relevant to the asset. This is the same concept as the relevance 
defined for P(M) but now for a single edge instead of assessing the entire subgraph 
associated with a model.

Attack Progression One of the most important features of network attack strategy 
is how it progresses and utilizes different types of exploits (e.g., CWE) over time.
One can adopt the attack models illustrated earlier, e.g., DBN and VLMM, to repre-
sent this feature. The challenge is to ensure an efficient computation of P(Z | M). 
The algorithm discussed earlier in Sect. 3.1 is a likely candidate to be extended for 
the purpose here.

With the aforementioned spatial priori and attack features, we now turn to the 
attention on how to introduce new attack models. Bayesian classifier requires a set
of hypotheses for the new evidences to be optimally matched to. A requirement here 
is to be able to recognize and introduce new attack behavior models as new events 
are observed. A novel Generic Attack Model is introduced as a hypothesis to com-
pete against all empirically constructed models during the classification phase. This 
generic hypothesis intends to fit all behaviors with some modest probability, but not 
as well as a tailored empirical model. When new events are observed, the generic 
model is evaluated as a possible class. A higher posterior probability with the generic 
model suggests that none of the existing empirical models provide a probable expla-
nation, and a new model should be introduced. This also applies to the initial start-up 
phase whereas the first events observed must be classified to the generic model, and 
will be used to create a new empirical model. Certainly, if one of the empirical mod-
els maximizes the posterior, the new events will be incorporated to update the cor-
responding empirical model. In effect, the result of unsupervised learning, creating 
clusters of behaviors based on observed data, has been reproduced with an online 
supervised approach, resulting in a semi-supervised learning framework.

The work presented by Strapp and Yang (2014) adopts the Generic Attack Model,
the Spatial Prior, and the Port Selection Entropy and the Graph Position attack fea-
tures, along with a few other network protocol oriented features. Figure 7 shows 
how well the observed events match to the models they are assigned, using a pre-
liminary algorithm called ASMG that realizes part of the aforementioned online
semi-supervised learning framework. The performance is plotted for various selec-
tions of targets in the CAIDA dataset (Aben et al. 2013). The results show that the 
framework outperforms a naïve 4-hop method that includes all traffic within a 4-hop
perimeter from each target of interest. While this is not surprising, the fact that, in 
most cases, the observed events match with high 90 % likelihood to the empirically
generated models demonstrates the great potential of the framework.
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A primary use of the aforementioned attack model generation framework is to 
reveal immediate threats to the network, based on the collective behaviors exhibited 
from the relevant events. The synthesized behavior models from the framework are 
expected to enhance existing threat prediction algorithms because the attack behav-
ior is based on the relevant events leading to and surrounding the critical assets; this 
shift from an attacker-centric model generation to an asset-centric model generation 
is expected to reduce the likelihood that the predictions will be diluted by noise or 
obfuscated malicious activities. An extension of the current work by Strapp and 
Yang (2014) is to investigate an ensemble prediction based on the empirical models 
built upon probabilistic measures, including the temporal dynamics in attack inten-
sity (when next batch of attack actions might happen), services targeted (port selec-
tion), and types of exploits (attack progression).

3.3  The Need of Data to Evaluate Network  
Attack Prediction Systems

Network attack prediction, or more generally, predictive Cyber SA is in great need
of data that can be used to evaluate the different prediction systems. Existing data
sets, including DARPA Intrusion Detection dataset (MIT Lincoln Laboratory 2013), 
CAIDA Network Telescope dataset (Aben et al. 2013), the International Catch-the- 
Flag (iCTF) competition datasets (Vigna et al. 2013), and the DSheild Internet
Storm Center data (DSheild 2013) are not suitable for comprehensive assessment of 
predictive Cyber SA capabilities. Without deviating much from the scope of this 
chapter, the following lists the requirements for data that can be used to evaluate 
attack prediction approaches. 

• The data should cover a wide variety of attack strategies that employs multitudes 
of scanning and exploitations for different services.

• The data should reflect up-to-date vulnerabilities in a timely manner.

Fig. 7 Performance of ASMG Processing over many targets of interest [reproduced from Strapp
and Yang (2014)]
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• The data should reflect a variety of network configurations and scales.
• The data should reflect a wide range of attacker skill set, including the use of 

various obfuscation techniques and zero-day attacks.

It is clearly not an easy task to produce and maintain real-world data sets that 
satisfy the above requirements. One solution is to develop a simulation framework 
that is capable of producing synthetic data based on up-to-date system vulnerabili-
ties, and allows users to specify a spectrum of network configurations, attack behav-
iors, and skill sets. Limited works on cyber attack simulation were conducted by
Cohen (1999), Park et al. (2001), and Kotenko and Man’kov (2003) between late 
1990s and early 2000s. It was, however, not until 2007 when Kuhl et al. (2007) 
proposed a simulation framework for the purpose of generating data for Cyber SA 
systems. Extending from Kuhl et al. (2007), Moskal et al. (2013, 2014) developed a 
more completed simulator that consists of an algorithmic core and four context 
models: Virtual Terrain version 2 (VT.2), Vulnerability Hierarchy (VH), Scenario 
Guiding Template (SGT), and Attack Behavior Model (ABM). This simulator
simultaneously generates multiple attack sequences with user specified network 
configurations, attack scenarios, and parameterized hacking behaviors. Each attack
sequence may contain one or many attack actions, each of which is reported with 
both the ground truth and sensor reports. One attack action can be associated with 
zero, one, or multiple observed events, depending on the sensor placement and 
capabilities, as well as whether the action reflects zero-day attacks. Figure 8 shows 
the architectural view of the simulator developed by Moskal et al. (2013, 2014).

It is also important to note the difficulty of evaluating prediction algorithms even 
with a common set of data. Due to the inherent uncertainty in predicting one or more

Fig. 8 Architecture of the network attack simulator [reproduced from Moskal et al. (2014)]
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future events, the failure to predict a specific event in a single scenario is not neces-
sarily an indicator of poor performance. In addition, an event that actually occurs in 
the scenario may not necessarily be the most likely to happen either. Therefore, it 
may be of particular interest to use mission impact assessment techniques in con-
junction with the attack prediction algorithms to identify not only the most likely 
events to occur, but also plausible future events that may have a significant impact.

Additional research is still needed before a fully tested simulator can be used to 
produce reliable data for evaluating network attack prediction. Nevertheless, simu-
lated/synthetic data seems to be the only viable solution to produce sustainable 
data year after year to match the fast-pace change of system vulnerabilities and 
attack strategies.

4  Summary

Cyber Situational Awareness requires anticipation of future attack actions projected 
from the observed malicious activities. Critical attacks often take multitudes of 
reconnaissance, exploitations, and obfuscation techniques to achieve the goal of 
cyber espionage and/or sabotage. The estimates of ongoing attack strategies can be 
used to provide a prediction of immediate threats on critical assets, enabling a 
Predictive Cyber Situational Awareness (SA). Network attack prediction takes
many forms, ranging from analyzing potential attack paths based on network and 
system vulnerabilities (knowledge-of-us) to analyzing the attack behavior patterns 
(knowledge-of-them). Attack graphs can be used to correlate, hypothesize, and pre-
dict intrusion alerts. Dynamic Bayesian Network (DBN) allows the definition of
causal relationship between observed events, and, more importantly, dynamic learn-
ing of transition probabilities through sufficient volume of data. Approaches based 
on estimating adversary Capability, Opportunity, and Intent (COI) have been used 
widely in military and intelligence community for threat assessment. Because net-
work attack strategies and network configurations can be diverse and evolving, 
attack prediction needs to dynamically learn about the attack behavior. Also needed 
are approaches that help systematically analyze the effect of the various obfuscation 
techniques, e.g., inserting noise, removing traces, altering alerts, on network attack 
modeling. An online semi-supervised learning framework has been proposed that 
aims at simultaneously identifying relevant observables for critical assets and gen-
erating attack models based on the collective behaviors exhibited by these observ-
ables, even in the presence of IP spoofing. Network attack prediction, or more
generally, predictive Cyber SA is in great need of data that can be used to evaluate 
the different prediction systems. Existing data sets are not suitable for comprehen-
sive assessment of predictive Cyber SA capabilities. As the Cyber SA community 
moves towards a resilient network defense, an integrated approach is needed to 
dynamically learn and create attack strategy and behavior models, i.e., estimating 
the knowledge-of-them, based on potentially obfuscated and noisy data leading to 
and surrounding critical assets in the network, i.e., limited knowledge-of-us.

S.J. Yang et al.



259

References

Aben, E. et al. The CAIDA UCSD Network Telescope Two Days in November 2008 Dataset.
(Access Date: Dec. 2013).

Bell, T. C., Cleary, J. G., and Witten, I. H. Text Compression. Prentice Hall, 1990.
Chakrabarti, A., and Manimaran, G. Internet infrastructure security: a taxonomy. IEEE Network, 

16(6):13–21, Nov/Dec 2002.
Cheng, B.-C., Liao, G.-T., Huang, C.-C., and Yu, M.-T. A novel probabilistic matching algorithm

for multi-stage attack forecasts. IEEE Transactions on Selected Areas in Communications, 
29(7):1438–1448, 2011.

Cheung, S., Lindqvist, U., and Fong, M. W. Modeling multistep cyber attacks for scenario recogni-
tion. In Proceedings of DARPA Information Survivability Conference and Exposition, vol-
ume 1, pages 284–292, April 2003.

Cipriano, C., Zand, A., Houmansadr, A., Kruegel, C., and Vigna, G. Nexat: A history-based
approach to predict attacker actions. In Proceedings of the 27th Annual Computer Security 
Applications Conference, pages 383–392. ACM, 2011.

Cohen, F. Information system defences: A preliminary classification scheme. Computers & 
Security, 16(2):94–114, 1997.

Cohen, F. Simulating cyber attacks, defences, and consequences. Computers & Security, 
18(6):479–518, 1999.

Daley, K., Larson, R., and Dawkins, J. A structural framework for modeling multi-stage network
attacks. In Proceedings of International Conference on Parallel Processing, pages 5–10, 2002.

Debar, H., Dacier, M., and Wespi, A. Towards a taxonomy of intrusion-detection systems.
Computer Networks, 31(8):805–822, 1999.

DSheild. Internet Storm Center. http://www.dshield.org/. (Access Date: Dec. 2013).
Du, H., and Yang, S. J. Characterizing transition behaviors in internet attack sequences. In

Proceedings of the 20th International Conference on Computer Communications and Networks 
(ICCCN), Maui HI, USA, August 1–4 2011.

Du, H., and Yang, S. J. Discovering collaborative cyber attack patterns using social network analysis.
In Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling 
and Prediction, pages 129–136, College Park MD, USA, March 29–21 2011. Springer.

Du, H., and Yang, S. J. Temporal and spatial analyses for large-scale cyber attacks. In
V.S. Subrahmanian, editor, Handbook of Computational Approaches to Counterterrorism, 
pages 559–578. Springer New York, 2013.

Du, H., and Yang, S. J. Probabilistic inference for obfuscated network attack sequences. In
Proceedings of IEEE/ISIF International Conference on Dependable Systems and Networks, 
Atlanta, GA, June 23–26 2014.

Du, H., Liu, D. F., Holsopple, J., and Yang, S. J. Toward Ensemble Characterization and Projection
of Multistage Cyber Attacks. In Proceedings of the 19th International Conference on Computer 
Communications and Networks (ICCCN), Zurich, Switzerland, August 2–5 2010. IEEE.

Fava, D. S., Byers, S. R., and Yang, S. J. Projecting cyberattacks through variable-length markov mod-
els. IEEE Transactions on Information Forensics and Security, 3(3):359–369, September 2008.

Holsopple, J., Sudit, M., Nusinov, M., Liu, D., Du, H., and Yang, S. Enhancing Situation Awareness via
Automated Situation Assessment. IEEE Communications Magazine, pages 146–152, March 2010.

Howard, J., and Longstaff, T. A common language for computer security incidents. Technical
report, Sandia National Laboratories, 1998.

Jacquet, P., Szpankowski, W., and Apostol, I. A universal predictor based on pattern matching.
IEEE Transactions on Information Theory, 48(6):1462–1472, June 2002.

King, S. T., Mao, Z. M., Lucchetti, D. G., and Chen, P. M. Enriching intrusion alerts through multi-
host causality. In Proceedings of the 2005 Network and Distributed System Security Symposium 
(NDSS’05), Washington D.C., February 2005.

Kotenko, I., and Man’kov, E. Experiments with simulation of attacks against computer networks.
In Vladimir Gorodetsky, Leonard Popyack, and Victor Skormin, editors, Computer Network 

Attack Projection

http://www.dshield.org/


260

Security, volume 2776 of Lecture Notes in Computer Science, pages 183–194. Springer Berlin
Heidelberg, 2003.

Kuhl, M. E., Kistner, J., Costantini, K., and Sudit, M. Cyber attack modeling and simulation for
network security analysis. In Proceedings of the 39th Conference on Winter Simulation, 
pages 1180–1188. IEEE Press, 2007.

Lane, T., and Brodley, C. Temporal sequence learning and data reduction for anomaly detection.
ACM Transactions on Information and System Security, 2:295–331, 1999.

Latora, V., and Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett., 
87:198701, Oct 2001.

Lee, W., Stolfo, S. J., and Chan, P. K. Learning patterns from Unix process execution traces for
intrusion detection. In Proceedings of the workshop on AI Approaches to Fraud Detection and 
Risk Management, pages 50–56, 1997.

MIT Lincoln Laboratory. DARPA intrusion detection data set (1998, 1999, 2000). http://www.
ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/. (Access Date: Dec. 2013).

Moskal, S., Kreider, D., Hays, L., Wheeler, B., Yang, S. J., and Kuhl, M. Simulating attack behav-
iors in enterprise networks. In Proceedings of IEEE Communications and Network Security, 
Washington, DC, 2013.

Moskal, S., Wheeler, B., Kreider, D., and Kuhl, M., and Yang, S. J. Context model fusion for mul-
tistage network attack simulation. In Proceedings of IEEE MILCOM, Baltimore, MD, 2014.

Newman, M. E. J. Scientific collaboration networks. I. network construction and fundamental
results. Phys Rev E, 64(1), July 2001.

Ning, P., Cui, Y., and Reeves, D. S. Analyzing intensive intrusion alerts via correlation. In Lecture 
notes in computer science, pages 74–94. Springer, 2002.

Ning, P., Xu, D., Healey, C. G., and Amant, R. S. Building attack scenarios through integration of
complementary alert correlation methods. In Proceedings of the 11th Annual Network and 
Distributed System Security Symposium (NDSS’04), pages 97–111, 2004.

Noel, S., and Jajodia, S. Advanced vulnerability analysis and intrusion detection through predic-
tive attack graphs. Critical Issues in C4I, Armed Forces Communications and Electronics 
Association (AFCEA) Solutions Series. International Journal of Command and Control, 2009.

Noel, S., Robertson, E., and Jajodia, S. Correlating intrusion events and building attack scenarios
through attack graph distances. In Proceedings of 20th Annual Computer Security Applications 
Conference, December 2004.

Park, J. S., Lee, J.-S., Kim, H. K., Jeong, J.-R., Yeom, D.-B., and Chi, S.-D. Secusim: A tool for
the cyber-attack simulation. In Information and Communications Security, pages 471–475. 
Springer, 2001.

Phillips, C., and Swiler, L. P. A graph-based system for network-vulnerability analysis. In
Proceedings of the 1998 workshop on New security paradigms, pages 71–79, Charlottesville, 
Virginia, United States, 1998.

Qin, X., and Lee, W. Attack plan recognition and prediction using causal networks. In Proceedings 
of 20th Annual Computer Security Applications Conference, pages 370–379. IEEE, December
2004.

Serfling, R.J. Probability inequalities for the sum in sampling without replacement. The Annals of 
Statistics, 2(1):39–48, 1974.

Shafer, G., editor. A Mathematical Theory of Evidence. Princeton University Press, 1976.
Shalizi, C. R., and Shalizi, K. L. Blind construction of optimal nonlinear recursive predictors for

discrete sequences. In Proceedings of the 20thConference on Uncertainty in Artificial 
Intelligence, pages 504–511, 2004.

Shannon, C., and Moore, D. Network Telescopes: Remote Monitoring of Internet Worms and
Denial-of-Service Attacks. Technical report, The Cooperative Association for Internet Data
Analysis (CAIDA), 2004. (Technical Presentation - Access Date: Dec. 2013).

Smets, P. The combination of evidence in the transferable belief model. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 12(5):447–458, May 1990.

Soldo, F., Le, A., and Markopoulou, A. Blacklisting Recommendation System: Using Spatio-
Temporal Patterns to Predict Future Attacks. IEEE Journal on Selected Areas in 
Communications, 29(7):1423–1437, August 2011.

S.J. Yang et al.

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/


261

Steinberg, A. Open interaction network model for recognizing and predicting threat events. In 
Proceedings of Information, Decision and Control (IDC) ’07, pages 285–290, Febuary 2007.

Stotz, A., and Sudit, M. INformation fusion engine for real-time decision-making (INFERD): A
perceptual system for cyber attack tracking. In Proceedings of 10th International Conference 
on Information Fusion, July 2007.

Strapp, S., and Yang, S. J. Segmentating large-scale cyber attacks for online behavior model gen-
eration. In Proceedings of International Conference on Social Computing, Behavioral-Cultural 
Modeling, and Prediction, Washington, DC, April 1–4 2014.

Tidwell, T., Larson, R., Fitch, K., and Hale, J. Modeling internet attacks. In Proceedings of the 
2001 IEEE Workshop on Information Assurance and Security, volume 59, 2001.

Treurniet, J. A Network Activity Classification Schema and Its Application to Scan Detection.
IEEE/ACM Tran. on Networking, 19(5):1396–1404, October 2011.

Valeur, F., Vigna, G., Kruegel, C., and Kemmerer, R.A. A comprehensive approach to intrusion
detection alert correlation. IEEE Transactions on dependable and secure computing, 1(3):146–
169, 2004.

Vidalis, S., and Jones, A. Using vulnerability trees for decision making in threat assessment.
Technical Report CS-03-2, University of Glamorgan, School of Computing, June 2003.

Vigna, G. et al. The iCTF Datasets from 2002 to 2010. http://ictf.cs.ucsb.edu/data.php. (Access 
Date: Dec. 2013).

Wang, L., Liu, A., and Jajodia, S. Using attack graphs for correlating, hypothesizing, and predict-
ing intrusion alerts. Computer Communications, 29(15):2917–2933, 2006.

Xu, K., Wang, F., and Gu, L. Network-aware behavior clustering of Internet end hosts. In
Proceedings IEEE INFOCOM’11, pages 2078–2086. IEEE, April 2011.

Yang, S. J., Stotz, A., Holsopple, J., Sudit, M., and Kuhl, M. High level information fusion for
tracking and projection of multistage cyber attacks. Elsevier International Journal on 
Information Fusion, 10(1):107–121, 2009.

Ye, N., Zhang, Y., and Borror, C. M. Robustness of the markov-chain model for cyber-attack
 detection. IEEE Transactions on Reliability, 53:116–123, 2004.

Zseby, T. Comparable Metrics for IP Darkspace Analysis. In Proceedings of 1st International 
Workshop on Darkspace and UnSolicited Traffic Analysis, May 2012.

Attack Projection

http://ictf.cs.ucsb.edu/data.php


263© Springer International Publishing Switzerland 2014  
A. Kott et al. (eds.), Cyber Defense and Situational Awareness,  
Advances in Information Security 62, DOI 10.1007/978-3-319-11391-3_13

Metrics of Security

Yi Cheng, Julia Deng, Jason Li, Scott A. DeLoach, Anoop Singhal, 
and Xinming Ou

1  Introduction

Discussion of challenges and ways of improving Cyber Situational Awareness 
 dominated our previous chapters. However, we have not yet touched on how to 
quantify any improvement we might achieve. Indeed, to get an accurate assessment 
of network security and provide sufficient Cyber Situational Awareness (CSA), 
simple but meaningful metrics—the focus of the Metrics of Security chapter—are 
necessary. The adage, “what can’t be measured can’t be effectively managed,” 
applies here. Without good metrics and the corresponding evaluation methods, 
security analysts and network operators cannot accurately evaluate and measure the 
security status of their networks and the success of their operations. In particular, 
this chapter explores two distinct issues: (i) how to define and use metrics as quan-
titative characteristics to represent the security state of a network, and (ii) how to 
define and use metrics to measure CSA from a defender’s point of view.
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To provide sufficient CSA and ensure mission success in enterprise network 
environments, security analysts need to continuously monitor network operations 
and user activities, quickly identify suspicious behaviors and recognize malicious 
activities, and mitigate potential cyber impacts in a timely manner. However, most 
existing security analysis tools and approaches focus on system and/or application 
level. The massive amounts of security-related data make these approaches not only 
labor intensive, but also prone to error while providing users a “big picture” of their 
current mission operations, network status, and the overall cyber situation. Security 
analysts need more sophisticated and systematic methods to quantitatively evaluate 
network vulnerabilities, predict attack risk and potential impacts, assess proper 
actions to minimize business damages, and ensure mission success in a hostile envi-
ronment. As a natural descendant of this requirement, security metrics are—very 
important for CSA, coordinated network defense, and mission assurance analysis. 
They can provide a better understanding of the adequacy of security controls, and 
help security analysts effectively identify which critical assets to focus their limited 
resources on in order to ensure mission success.

For CSA and mission assurance analysis, security metrics need to be aligned not 
only with the industry standards for computer and network security management, 
but also with the overall organizational and business goals in enterprise environ-
ments. This chapter discusses the methodology to effectively identify, define, and 
apply simple but meaningful metrics for comprehensive network security and mis-
sion assurance analysis. Focusing on enterprise networks, we will explore security 
tools and metrics that have been developed, or need to be developed, to provide 
security and mission analysts the required capabilities to better understand current 
(and near future) cyber situation and security status of their network and operations. 
For instance, is there any vulnerability on the system? Is there any (ongoing) attack 
in the network? What (system/application/service) has been compromised? How 
can the (potential) risk be measured? What is the most likely consequence of the 
attack? Can we prevent it? How much (storage/communication/operational) capac-
ity will be lost due to the attack? Is the overall (or a major portion of) mission/task/
operation still accomplished? Good defined metrics can help users answer these 
questions quickly and quantitatively. Users can then focus on the higher-level view 
of cyber situations, make informed decisions to select the best course of action, 
effectively mitigate the potential threats, and ensure mission success even in a hos-
tile environment.

2  Security Metrics for Cyber Situational Awareness

2.1  Security Metrics: the What, Why, and How

2.1.1  What Is a “Security Metric”?

As defined by the National Institute of Standards and Technology (NIST), metrics are 
tools that are designed to facilitate decision-making and improve performance and 
accountability through collection, analysis, and reporting of relevant 
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performance-related data. Security metrics can be considered as a standard (or sys-
tem) used for quantitatively measuring an organization’s security posture. Security 
metrics are essential to comprehensive network security and CSA management. 
Without good metrics, analysts cannot answer many security related questions. Some 
examples of such questions include “Is our network more secure today than it was 
yesterday?” or “Have the changes of network configurations improved our security 
posture?”

The ultimate aim of security metrics is to ensure business continuity (or mission 
success) and minimize business damage by preventing or minimizing the potential 
impact of cyber incidents. To achieve this goal, organizations need to take into con-
sideration all information security dimensions, and provide stakeholders detailed 
information about their network security management and risk treatment processes.

2.1.2  Why Security Metrics for CSA?

We cannot effectively manage or improve CSA if we cannot accurately measure it. 
Traditional network security management practices mainly focus on the informa-
tion level and treat all network components equally. Although valuable, these 
approaches lack meaningful metrics and risk assessment capabilities when applied 
to comprehensive CSA and mission assurance analysis. Specifically, they cannot 
quantitatively evaluate or determine the exact impacts of security incidents on the 
attainment of critical mission objectives. When an attack happens, it is diffi cult 
for current solutions to answer mission assurance related security questions such as: 
“Is there any impact on mission X if host A was compromised?”, “Can some portion
of mission X still be accomplished?”, “What is the probability of successful comple-
tion for mission X currently?”, or “What can we do to ensure mission X’s success?”

To answer these questions, security metrics and advanced mission-to-asset map-
ping, modeling and evaluation technologies are required. The literature contains sev-
eral recently proposed metrics for information and network security measurement, 
such as the number of vulnerabilities or detected cyber incidents in a network, the 
average response time to a security event, etc. Although these metrics can evaluate 
network security from certain aspects, they cannot provide sufficient network vul-
nerability assessment, attack risk analysis and prediction, mission impact  mitigation, 
and quantitative situational awareness, in terms of mission assurance. We argue that 
to ensure mission survival in a hostile environment, security  metrics should be 
adjusted and tuned to fit a specific organization or situation. In other words, good 
metrics must be meaningful to specific organizational goals and key performance 
indicators. Security analysts not only review metrics currently in place, but also need 
to ensure they are aligned with the specific organizational and business goals.

2.1.3  How to Measure and Model Network Security?

To determine the general security level of an analyzed network, a common pro-
cess needs to be realized: First, security experts identify what should be mea-
sured. Then they organize the involved variables in a manageable and meaningful 
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way. After that, repeatable formulas should be built to illustrate the snapshot sta-
tus of security and how it changes over time. For network and/or system security 
measurement, most existing approaches are based on risk analysis, in which secu-
rity risk is expressed as a function of threats, vulnerabilities, and potential impacts 
(or expected loss).

 Risk Threat Vu erability= × ×ln Impact  (1)

Equation 1 is an informal way of stating that security risk is a function of threats, 
vulnerabilities, and potential impact. It is often used in the literature for expressing 
the necessity and purpose of network security evaluation. When applied to solving 
a real problem, it is still hard to quantify each variable in Eq. 1 with meaningful 
values. For example, how should one numerically express a threat? What is the cost of a 
vulnerability? How should one calculate the impact or expected loss? When we multi-
ply these three variables, how should risk be denoted in a way that can be translated 
into an action item?

In order to quantify different portions of Eq. 1, Lindstrom (2005) further intro-
duced a number of underlying elements required for general security (risk) analy-
sis. Although they may not completely solve all the problems, these underlying 
elements still provide security analysts a better understanding and insight to 
develop meaningful metrics and practical solutions for general network security 
measurements. Some of the useful elements introduced by Lindstrom (2005) are 
listed below:

• Calculation of Asset Value: Based on the values of different assets (e.g., hard-
ware, software and data), enterprises can focus on their real security needs and 
allocate adequate resources. As enterprises routinely place values on their infor-
mation assets, the value of an asset could be defined as the amount of IT spending 
over a time period (e.g., operations and maintenance) plus the depreciation or 
amortization value of the assets (hardware and software). For asset value calcula-
tion, quantifiable values need to be assigned to each asset for objective evaluation 
and comparison.

• Calculation of Potential Loss: Asset value is linked, but not tied directly to the 
loss. We need to consider the type of compromise when evaluating the potential 
losses. Generally there are five distinct types of compromise: confidentiality 
breaches, integrity breaches, availability breaches, productivity breaches, and 
liability breaches (Lindstrom 2005). Note that asset value may not be the only 
thing that can be lost. Other potential losses, such as the incident costs should
also be carefully considered.

• Measurement of Security Spending: Although measuring enterprise-wide 
security spending is difficult, it is important for security management. Security 
spending is often divided among various business units and departments, as well 
as being lumped in with network and infrastructure spending. Finding security 
spending and separating it from other budget items is a daunting task.
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• Attack Risk Analysis: Defining and modeling risk for an enterprise is another 
difficult but important task. Lindstrom (2005) lists three common forms of 
risks: manifest risk (the ratio of malicious events to total events), inherent risk 
(the likelihood that system configurations will contribute to a compromise), 
and contributory risk (a measure of process errors or mistakes made during the 
operations).

None of the above elements is designed to completely answer questions related to 
security metrics and measurements, but the methodologies outlined here give us a 
foundation for gathering useful data and applying it to our specific goals and 
 expectations. Based on this basic knowledge, researchers can further define more 
accurate and complete security metrics, assign proper values to their security for-
mulas, and develop practical evaluation models to quantitatively analyze and mea-
sure the security status of their computer network and systems.

2.2  Security Measurement for Situational Awareness 
in Cyberspace

Generally speaking, security measurement for CSA needs to carefully consider two 
distinct possible issues: (i) How to define and use metrics as quantitative 
 characteristics to represent the security state of a computer system or network, and 
(ii) How to define and use metrics to measure CSA from a defender’s point of view. 
This section will briefly review state-of-the-art security metrics and discuss the 
challenges to define and apply good metrics for comprehensive CSA and mission 
assurance analysis.

2.2.1  Quantification and Measurement of Traditional  
Situational Awareness

A general definition of Situational Awareness (SA) is given by Endsley (1988): “SA 
is the perception of the elements of the environment within a volume of time and 
space, the comprehension of their meaning, and the projection of their status in the 
near future.” Due to its multivariate nature, a considerable challenge is posed for SA 
quantification and measurement. Traditional SA measurement techniques can be 
generally considered either based on “product-oriented” direct measurement (e.g., 
objective real-time probes or subjective questionnaires assessing perceived SA), or 
the “process-oriented” inference of operator behavior or performance (Fracker 
1991a; b).
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According to Bolstad and Cuevas (2010), existing SA measurement approaches 
can be further classified into the following categories:

• Objective Measures: Comparing an individual’s perceptions of the situation 
or environment to some “ground truth” reality (Jones and Endsley 2000). This 
type of assessment provides a direct measure of SA and does not require oper-
ators or observers to make judgments about situational knowledge on the basis 
of incomplete information. Generally, objective measures can be gathered in 
three ways: (i) in real-time as the task is completed, (ii) during an interruption 
in task performance, or (iii) post-test following completion of the task (Endsley 
1995).

• Subjective Measures: Asking individuals to rate their own or the observed SA 
of individuals on an anchored scale (Strater et al. 2001). Subjective measures of 
SA are relatively straightforward and easy to administer, but they also suffer 
from several limitations. For example, individuals are often unaware of informa-
tion they do not know, and they cannot fully exploit the multivariate nature of SA 
to provide detailed diagnostics (Taylor 1989).

• Performance Measures: Assuming that better performance usually indicates 
better SA, performance measures infer SA from performance outcomes. Bolstad 
and Cuevas (2010) list a set of commonly used performance metrics, including 
the quantity of output or productivity level, time to perform the task or respond 
to an event, the accuracy of the response, and the number of errors committed. 
In addition, good SA does not always lead to good performance, and poor SA 
does not always lead to poor performance (Endsley 1990). Performance mea-
sures should be used in conjunction with other measures for more accurate 
assessment.

• Behavioral Measures: Based on the assumption that good actions usually fol-
low from good SA and vice-versa, behavioral measures infer SA from individu-
als’ actions. Behavioral measures are subjective in nature, as they primarily rely 
on observer ratings. To reduce this limitation, observers need to make judgments 
based on good SA indicators that are more readily observable (Strater et al. 2001; 
Matthews et al. 2000).

Note that the multivariate nature of SA significantly complicates its quantification 
and measurement. A particular metric may only tap into one aspect of the operator’s 
SA. Durso et al. (1995), Endsley et al. (1998), and Vidulich (2000) also found that 
different types of SA measures do not always correlate strongly with each other. In 
this case, multi-faceted approaches that combine distinct but highly related mea-
sures should be used for comprehensive SA measurement, as they can take advan-
tage of the strengths of each measure while minimizing the inherent limitations 
(Harwood et al. 1988).
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2.2.2  State-of-the-Art Security Measurement Techniques

Researchers have made many attempts to measure SA in cyberspace over the last 
few years. NIST provided an overview of existing metrics for network security and 
SA measurement in Jansen (2009). Hecker (2008) distinguished the lower level 
metrics (based on well-ordered low-level quantitative system parameters) from the 
higher level metrics (e.g., conformity distance, attack graph or attack surface based 
estimations). Meland and Jensen (2008) presented a Security-Oriented Software
Development Framework (SODA) to adapt security techniques and filter informa-
tion. Heyman et al. (2008) also presented their work on using security patterns to 
combine security metrics.

To define software security metrics, Wang et al. (2009) proposed a new approach 
based on vulnerabilities in the software systems and their impacts on software 
 quality. They used Common Vulnerabilities and Exposures (CVE) (http://cve. 
mitre.org/cve/) and Common Vulnerability Scoring System (CVSS) (http://www.
first.org/cvss/) in their metric definition and calculation. An attack surface based 
metric was further proposed by Manadhata and Wing (2011) to measure software 
security. They formalized the notion of a system’s attack surface, and used it as an 
indicator of the system’s security. By measuring and reducing attack surfaces, soft-
ware developers can effectively mitigate their software’s security risks.

Petri nets (PN) have also been discussed as a useful formalism for network secu-
rity evaluation in literature. The idea of using PN for attack analysis was first intro-
duced by McDermott (2000). Several papers consider the use of Colored PN (CPN) 
for attack modeling. Zhou et al. (2003) discussed the advantages of CPNs and 
described a process for mapping an attack tree to a CPN. Dahl (2005) provided a 
more detailed discussion of the advantages of CPN when it was applied to model 
concurrency and attack progress.

For CSA and risk assessment in enterprise networks, an ontology-based Cyber 
Assets to Missions and Users (CAMUS) mechanism was proposed by Goodall 
(2009). It can automatically discover the relationship between cyber assets, missions 
and users to facilitate cyber incident mission impact assessment. The basic idea of 
CAMUS came from the Air Force Situation Awareness Model (AFSAM) (Salerno 
2008; Salerno et al. 2005), which described how data is taken to become information 
and consumed by analysts to further improve the situation management. Tadda et al. 
(2006) refined the general AFSAM and applied it directly to the cyber domain, 
resulting in the CSA model. Within the CSA model, the knowledge required for situ-
ation management is an accurate understanding of how operations are impacted 
when there are degradations and compromises in the cyber infrastructure. Grounded 
in the CSA model, Holsopple et al. (2008) developed a Virtual Terrain that models 
the network by manually taking mission context into account.

Grimaila et al. (2008) shifted their focus to information asset situation manage-
ment. They proposed a Cyber Damage Assessment Framework that requires the 
manual definition and prioritization of both operational processes and information 
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assets. Gomez et al. (2008) proposed an approach for automated assignment of 
intelligence, surveillance and reconnaissance (ISR) assets to specific military mis-
sions. Their Missions and Means Framework (MMF) ontology includes similar 
concepts in CAMUS, such as missions, operations, tasks, capabilities and systems. 
Lewis et al. (2008) also proposed a mission reference model to tackle the mapping 
of cyber assets to missions, based on a mathematical constraint satisfaction 
approach.

To support enterprise level security risk analysis, Singhal et al. (2010) provided 
a security ontology framework as a portable and easy-to-share knowledge base. 
Based on this framework, analysts will know which threats endanger which assets 
and what countermeasures can lower the probability of the occurrence of an attack. 
Alberts et al. (2005) proposed a risk-based assessment protocol, called Mission 
Assurance Analysis Protocol (MAAP), to qualitatively evaluate current conditions 
and determine whether a project or process is on track for success. MAAP can pro-
duce a rich, in-depth view of current conditions and circumstances affecting a proj-
ect’s potential success, but its risk assessment is a complex and time-consuming 
process. Watters et al. (2009) proposed a Risk-to-Mission Assessment Process 
(RiskMAP) to connect business objectives to network nodes. RiskMAP first models 
key features of a corporation (from business objectives, operational tasks, informa-
tion assets, to network nodes that store, send and make the information available), 
and then uses the same model to map network level risks to the upper level business 
objectives for risk analysis and impact mitigation.

Musman et al. (2010) gave an outline of the technical roadmap for mission 
impact assessment in a MITRE report. They focused on cyber mission impact 
assessment (CMIA) and tried to link network and information technology (IT) 
capabilities to an organization’s business processes (missions). Grimaila et al. 
(2009) discussed general design concepts of a system that provides the decision 
makers with notifications on cyber incidents and their potential impacts on mis-
sions. Several approaches based on attack graphs were also investigated for auto-
mated attack detection and risk analysis (Noel et al. 2004; Qin and Lee 2004; 
Cheung et al. 2003).

Jakobson (2011) further proposed a logical and computational attack model for 
cyber impact assessment. In his framework, a multi-level information structure, 
called “cyber-terrain,” was introduced to represent cyber assets, services, and 
their inter-dependencies. The dependencies between the cyber terrain and mis-
sions are represented by an impact dependency graph. Using these graphical mod-
els, both direct impacts and the propogation of cyber impacts on missions through 
the inter- connected assets and services can be calculated. In Kotenko et al. (2006), 
the authors proposed a new approach for network security evaluation, based on 
comprehensive simulation of malefactors’ actions, construction of attack graphs, 
and computation of different security metrics. A software tool was offered for 
 vulnerability analysis and security assessment at various stages of a life cycle of 
computer networks.
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2.2.3  Security Measurement for Enterprise CSA: Challenges  
& Potential Solutions

State-of-the-art technologies provide useful descriptive information on security 
analysis, mission modeling, and situation management. While they are quite valu-
able for security measurement in various situations, existing approaches still face 
several challenges when applied to CSA and mission assurance assessment in enter-
prise network environments, due to the lack of meaningful security metrics and 
efficient evaluation methods.

Briefly speaking, existing methods have suffered from the following limitations 
that reduce their usefulness and effectiveness for CSA and mission assurance 
analysis:

• Lack of real-time CSA
• Lack of understanding of impacts of cyber events on high level mission

operations
• Lack of quantitative metrics and measures for comprehensive security

assessment
• Lack of incorporating human (analyst) cognition into cyber-physical situational

awareness
• Lack of mission assurance policy

Table 1 compares current technologies and systems developed for mission asset 
mapping and modeling, cyber-attack and intrusion detection, risk analysis and pre-
diction, as well as for damage assessment and mission impact mitigation. Each 
method has its own strength and limitations. When applied for enterprise network 
CSA, mission assurance assessment and coordinated network defense, advance 
technologies, mathematical models and evaluation algorithms are still required to 
answer the following questions:

• How to identify and represent mission composition and dependency 
relationships?

• How to derive the dependency relationships between mission elements and cyber 
assets?

• As a single vulnerability may enable widespread compromises in an enterprise, 
how to quickly identify the start point of an attack and predict its potential attack 
path?

• How to assess the direct impact and propagation of cyber incidents on high level 
mission elements and operations?

• How to systematically represent and model the identified inter- and intra- depen-
dency relationships between major elements or components involved in cyber 
mission assurance?

• How to define and develop quantitative metrics and measures for meaningful 
cyber situational awareness, enterprise security management and mission assur-
ance analysis?

Metrics of Security



272

To address these challenges, key technologies such as quantitative and meaningful 
security metrics, efficient mission-to-asset mapping and modeling methods, and the 
corresponding risk assessment and impact mitigation mechanisms, need to be fur-
ther investigated and developed. In this chapter, we will introduce some potential 
solutions and results of our initial study that leverages and extends recent advances 
in CSA, mission assurance, common vulnerability assessment, and enterprise secu-
rity management. As a starting point, our study focuses on developing an integrated 
framework for real-time CSA and mission assurance analysis in enterprise environ-
ments. To achieve this objective, a group of simple but meaningful metrics and cor-
responding evaluation methods were investigated for three specific use cases: (i) 
network vulnerability and attack risk assessment, (ii) cyber impact and mission rel-
evance analysis, and (iii) asset criticality analysis and prioritization.

Table 2 lists a set of security and performance metrics, mainly focusing on net-
work vulnerability assessment, attack risk evaluation, and mission impact analysis. 
Each metric defined in Table 2 attempts to answer a specific question related to 
computer/network security, system performance, or mission assurance. For instance, 
the Vulnerable Host Percentage (VHP) metric tries to answer how many hosts could 
be compromised in the worst case. The Average Length of Attack Paths (ALAP) 
metric attempts to answer the typical effort required for an attacker to violate a 
security policy. Obviously, each metric has shortcomings if only used by itself for
network security analysis. For example, the Shortest Attack Path (SAP) metric 
ignores the number of ways an attacker may violate a security policy; the ALAP 

Table 1 State-of-the-art approaches for CSA

Approach Technology Strength Developer Limitations

CAMUS Ontology fusion based
cyber assets to missions 
and users mapping

Applied 
Visions, Inc.

Centralized approach
Lack of cyber impact assessment
Lack of mission asset prioritization

MAAP Mission assurance and 
operational risk analysis in 
complex work processes

Carnegie 
Mellon 
University

Centralized approach
Focus on operational risk analysis
Lack of mission asset dependencies

RiskMAP Risk-to-mission 
assessment at network and 
business objectives levels

MITRE Centralized approach
Lack of mission asset
dependencies

Ranked  
Attack Graph

Identifying critical assets 
based on page rank and 
reachability analysis on 
attack graphs

Carnegie 
Mellon 
University

Lack of mission models
Cannot analyze cyber impacts on 
high level missions

CMIA Cyber mission impact 
assessment based on 
military mission models

MITRE Centralized approach
Lack of cyber impact analysis
Lack of mission asset prioritization
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Table 2 Common security and performance metrics for CSA

Metric Acronym Description Score/Value

Asset capacity AC The (remained) capacity of a cyber 
asset (after being attacked or 
compromised)

[0, 1]: 0 means not 
operational; 1 means 
fully operational

Average length  
of attack paths

ALAP The average effort to penetrate a 
network, or compromise a system/
service; evaluated by attack graphs

n: the average length of 
potential attack paths

Compromised  
host percentage

CHP The percentage of compromised hosts 
in a network at time t

[0, 1]: 0 means no 
compromise; 1 means 
all compromised

Exploit 
probability

EP How easy (or hard) to exploit a 
vulnerability? Could be measured by 
CVSS exploitability sub-score

[0, 1]: 0 means hard to 
exploit; 1 means easy 
to be exploited

Impact factor IF The impact level of a vulnerability 
after being exploited, could be 
measured by CVSS impact sub-score

[0, 1]: 0 means no 
impact; 1 means totally 
destroyed

Number  
of attack paths

NAP The number of potential attack paths 
in a network, could be evaluated 
based on attack graphs

n: the number of 
potential attack paths

Network 
preparedness

NP Is a network ready to carry out a 
mission? E.g., all required services 
are supported by available cyber 
assets

[0, 1]: 0 means not 
ready; 1 means fully 
ready

Network  
zresilience

NR The percentage of compromised 
systems/services that can be replaced/
recovered by backup/alternative 
systems/services

[0, 1]: 0 means cannot 
recover; 1 means can 
be fully recovered

Operational
capacity

OC The (remained) operational capacity 
of a system/service  
(after being affected by a direct attack 
or indirect impact)

[0, 1]: 0 means not 
operational;
1 means fully 
operational

Resource 
redundancy

RR Is there any redundant (backup) 
resources assigned or allocated  
for a critical task/operation?

0 or 1: 0 means no 
backup system; 1 
means at least 1 
backup system

Service  
availability

SA The availability of a required service 
to support a particular mission, task, 
or operation

0 or 1: 0 means not 
available; 1 means 
service is available

Shortest attack 
path

SAP The minimal effort to penetrate a 
network, or compromise a system or 
service, evaluated by attack graphs

n: the shortest length 
of potential attack 
paths

Severity score SS The severity/risk of a vulnerability if 
it was successfully exploited, could be 
measured based on CVSS score

[0, 1]: 0 means no risk; 
1 means extremely 
high risk

Vulnerable host 
percentage

VHP The percentage of vulnerable hosts in 
a network

[0, 1]: 0 means no 
vulnerable host; 1 
means all hosts are 
vulnerable
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metric fails to adequately account for the number of ways an attacker may violate a 
security policy; while the Number of Attack Paths (NAP) metric ignores the effort 
associated with violating a security policy. Therefore, multiple security metrics 
must be used together to provide users with a comprehensive view and understand-
ing of cyber situational awareness and mission assurance.

Note that the security and performance metrics, as well as the corresponding 
evaluation mechanisms, introduced in this chapter are not trying to completely solve 
enterprise CSA quantification and measurement problems. The objective here is to 
help security analysts to have a better understanding and insight to further develop 
their own good and meaningful metrics, as well as practical solutions, for their spe-
cific questions related to CSA, mission assurance, or enterprise network security 
defense.

3  Network Vulnerability and Attack Risk Assessment

Although the ultimate goal for enterprise network security is to identify and 
remove all network and host vulnerabilities, it is infeasible to achieve this goal in 
practice. For instance, if an organization leverages Commercial-Off-the-Shelf
(COTS) software to operate its network, it will expose itself to the vulnerabilities
that the software possesses. Issues such as slow and unstable released patches may 
cause the organization to operate its network with known vulnerabilities. Through 
these vulnerabilities, attackers may successfully compromise a particular system 
via a single attack action, or penetrate a network via a series of attack actions. 
Therefore, network vulnerability and attack risk assessment is the first step for 
enterprise security management and cyber situational awareness.

3.1  Security Metrics for Vulnerability Assessment

3.1.1  Common Vulnerability Assessment on Computer System

In literature, the Common Vulnerability Scoring System (CVSS) (http://www.first.
org/cvss/) has been widely adopted as the primary method for assessing the severity 
of computer system security vulnerabilities. As an industry standard, CVSS ensures 
repeatable accurate measurement. It also enables users to see the underlying vulner-
ability characteristics that were used in its quantitative models to generate the 
scores. CVSS attempts to establish a measure of how much concern a vulnerability 
warrants compared to other vulnerabilities. It is composed of three metric groups: 
Base, Temporal, and Environmental. Each group consists of a set of metrics, as 
shown in Fig. 1.

In particular, base metrics define criticality of the vulnerability, temporal metrics 
represent urgency of the vulnerability that changes over time, and environmental 
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metrics represent the characteristics of a vulnerability that are relevant and unique 
to a particular user’s environment. Each group produces a numeric score (ranging 
from 0 to 10) and a compressed textual representation that reflects the values used 
to derive the score. The CVSS complete guide (http://www.first.org/cvss/cvss- 
guide) gives the detailed descriptions of these metric groups:

• Base: representing “intrinsic and fundamental characteristics of a vulnerability 
that are constant over time and user environments,”

• Temporal: representing “characteristics of a vulnerability that change over time 
but not among user environments,” and

• Environmental: representing “characteristics of a vulnerability that are relevant 
and unique to a particular user’s environment.”

Basically, for each metric group, a particular equation is used to weigh the corre-
sponding metrics and produce a score (ranged from 0 to 10) based on a series of 
measurements and assessments by security experts, with the score 10 representing 
the most severe vulnerability. Specifically, when the base metrics are assigned val-
ues, the base equation calculates a score ranging from 0 to 10, and creates a vector. 
This vector is a text string that contains the values assigned to each metric, and 
facilitates the “open” nature of the framework. Users can understand how the score 
was derived and, if desired, confirm the validity of each metric. More details on 
base, temporal and environmental equations, as well as the calculation methods, can 
be found in the CVSS complete guide (http://www.first.org/cvss/cvss-guide).

3.1.2  General Metrics for Network Vulnerability Assessment

The National Vulnerability Database (NVD) (http://nvd.nist.gov/) provides CVSS 
scores for almost all known vulnerabilities. Various open source or commercial 
 vulnerability scanners, such as the Nessus Security Scanner (http://www.tenable.com/
products/nessus), the Open Vulnerability Assessment System (OpenVAS) (http://www.
openvas.org/), and the Microsoft Baseline Security Analyzer (MBSA) (http://www.
microsoft.com/en-us/download/details.aspx?id=7558), can be used to feasibly 
 identify vulnerabilities in a network. Regularly and periodically performing vul-
nerability scan and assessment is critical for enterprise security management, as it 

Fig. 1 CVSS metric groups (http://www.first.org/cvss/cvss-guide)
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can easily locate which systems are vulnerable, identify what services/components 
are vulnerable, and suggest the best method for repairing the vulnerabilities before 
attackers find and exploit them. To evaluate the general security of an enterprise 
network based on vulnerability assessment, we use three security metrics: the 
 vulnerable host percentage (VHP), CVSS severity score, and compromised host 
percentage (CHP).

 (1) The Vulnerable Host Percentage (VHP)
This metric represents the overall security level of a network. The number of 
vulnerable hosts can be obtained by periodically scanning a network via vulner-
ability scanning tools such as Nessus. The equation for this metric is given 
below, where G represents an intended network, V is the set of vulnerable hosts, 
and H is the set of all hosts in the network.

 

VHP G

v

h
v V H

h H

( ) = × ∈ ⊆

∈

∑
∑

100

 
(2)

 (2) Severity Score of a single vulnerability i (SSi)
After identifying vulnerabilities that exist in a network, we need to know the 
severity score of each identified vulnerability based on CVSS. As shown in 
Table 3, this metric indicates the severity of a certain vulnerability, and how to 
handle it accordingly.

 (3) Compromised Host Percentage (CHP)
This metric indicates the percentage of hosts that have been compromised in a 
 network. Here, a host compromise is defined as the attacker having obtained 
user- or administrator- level privilege on the intended host. A higher CHP value 
means more hosts are compromised. Our general goal is to minimize the CHP
metric. For instance, an organization should have stricter firewall rules and user 
access policies so that it is hard to exploit the vulnerabilities (from both outside 
and inside). The equation for this metric is given below, where C is the set of 
compromised hosts.

 

CHP G

c

h
c C H

h H

( ) = × ∈ ⊆

∈

∑
∑

100

 (3)

Table 3 Severity levels of vulnerabilities

CVSS score Severity level Guidance

7.0 through 10.0 High severity Must be corrected with the highest priority
4.0 through 6.9 Medium severity Must be corrected with high priority
0.0 through 3.9 Low severity Encouraged, but not required, to correct 

these vulnerabilities
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3.1.3 Attack Graph Based Network Vulnerability Assessment

In cyberspace, attackers may successfully compromise a particular system via a 
single attack action or penetrate a network via a series of attack actions. A series of 
attack actions is usually referred to as a multi-step attack or chained exploit.  
A multi-step attack leverages the interdependencies among multiple vulnerabilities 
to violate a network’s security policy. In the literature, the multi-step attack can be 
feasibly represented and modeled via various attack graph models (Ou et al. 2006; 
Sheyner et al. 2002; Ammann et al. 2002). Attack graphs is a widely adopted tech-
nology in analyzing the causal relationships between cyber-attack events in which 
each node represents a particular state of a cyber asset in a network and each edge 
represents a possible state transition. In our framework, attack graph based metrics 
are also defined for network-level vulnerability assessment.

 (1) The Number of Attack Paths (NAP)
This metric indicates how many ways an attacker can penetrate the network or 
compromise a critical system. The equation for this metric is given below, 
where AG represents network attack graphsand P is the set of all potential attack 
paths in the corresponding attack graph.

 

NAP AG p
p P AG

( ) =
∈ ⊆
∑

 (4)

(2) The Average Length of Attack Paths (ALAP)
This metric represents the average amount of effort that an attacker needs to take 
in order to penetrate the network or compromise a critical system. The equation 
for this metric is given below, where L(p) represents the length of attack path p.

 

ALAP AG

L p

p
p P AG

p P AG

( ) =
( )

∈ ⊆

∈ ⊆

∑

∑
 

(5)

 (3) The Shortest Attack Path (SAP)
This metric indicates the least amount of effort that an attacker can take to pen-
etrate the network or compromise a critical system. The metric is given below.

 
SAP AG L p p P AG( ) = ( ) ∈ ⊆{ }min |

 (6)

3.2  Modeling and Measurement of Attack Risk

3.2.1 Attack Risk Prediction

To quantitatively evaluate cyber impacts on high level missions, mission related ele-
ments such as cyber assets, hardware devices, and mission tasks should be added to 
the risk analysis model. Leveraging the basic analysis method and evaluation
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process proposed by Jakobson (2011), we extend our attack risk prediction model 
with cyber assets, hardware devices, and mission elements in our initial study. We 
believe this model can be used to quantitatively evaluate the severity of an identified 
vulnerability and analyze the consequence if a mission critical asset was attacked or 
compromised. Using our initial study as the starting point, more complete and con-
crete analysis models can be further developed.

Our initial study focused on modeling (i) the logical relations that allow us to
model the propagation of the impacts through the network and (ii) the computa-
tional relations that allow us to calculate the level of those impacts. The conceptual 
structure of the extended attack model is illustrated by Fig. 2. It contains eight con-
ceptual nodes: Cyber Attack, Hardware Device, Cyber Asset, (Asset) Vulnerability, 
Operational Task, Asset Capacity, Exploit Probability and Impact Factor (of 
Vulnerability), as well as the corresponding relations among them.

As pointed by Jakobson (2011), the Exploit Probability (EP) and Impact Factor 
(IF) of the vulnerability, as well as the Asset Capacity (AC) of the asset, are impor-
tant parameters in our attack risk analysis model. Specifically, EP is a measure 
defined in an interval [0, 1], which indicates to what degree the vulnerability can be 
exploited to compromise the attacked asset. For instance, EP = 0 means that this 
vulnerability is effectively impossible to exploit, and so the attack has no impact on 
the target asset. Conversely, EP = 1 means that it is easy to exploit the vulnerability 
to compromise the intended asset. The Impact Factor (IF), on the other hand, indi-
cates how much damage can be caused by an attack. It is also a measure defined in 
an interval [0, 1]. IF = 0 means that the attack has no impact on an asset, while IF = 1 
means that an asset can be totally destroyed (i.e., lose all of its capacity).

Fig. 2 Attack risk prediction model for mission impact analysis

Y. Cheng et al.



279

3.2.2 Damage Assessment

The Asset Capacity (AC) is another important measure to characterize the opera-
tional capacity of a cyber asset. It indicates how much capacity an asset can still 
provide to fulfill its function after being attacked. In our model, AC can be measured 
in an interval [0, 1]. Value 0 means the asset is not operational at all; while value 1 
means that the asset is fully operational. Note that the computational relation 
between EP, IF and AC allows us to calculate and measure how the capacity of an 
asset could be affected by an attack, which further enables the quantitative analysis 
of the mission impacts caused by the attack.

According to Jakobson (2011), the general calculation of mission impacts should 
contain the following steps:

 (1) Attack Start Point Detection: The first step is to identify the start point of an 
attack. Currently, we use leaf nodes in our attack graphs as the start points.

 (2) Direct Impact Assessment: The next step is to determine the direct impact of 
an attack on the targeted asset. We follow the extended attack model in Fig. 2 
and calculate the direct impact based on CVSS.

 (3) Propagation of Cyber Impacts Through the Network: In this step, we calcu-
late the potential impacts on cyber capacities of all mission-related assets along 
the attack paths derived from our attack graphs.

 (4) Mission Impact Assessment: After knowing the current capacities of all assets 
involved in a mission, we can further calculate the potential impacts on the high 
level missions based on mission asset dependency relationships derived by our 
logical mission models.

It should be noted that figuring out how to assign the proper value to EP and IF 
could be a critical task that requires analysis of historical attack data as well as con-
sultation with cyber security experts. In our initial study, the Exploitability Score 
(ES) and Impact Score (IS) in CVSS have been used as our starting point to calculate 
EP and IF. As both ES and IS range from 0 to 10 in CVSS, we calculate these two 
parameters by: EP = ES/10, and IF = IS/10.

4  Cyber Impact and Mission Relevance Analysis

Impact assessment is important for mission assurance analysis in cyberspace, where 
critical mission elements must rely on the support of the underlying cyber network 
and compromised assets may have significant impacts on a mission’s accomplish-
ment. As described in previous sections, for cyber mission assurance assessment, we 
need practical analysis models to effectively represent a complex mission and the 
dependency relationship between high level mission elements and the underlying 
cyber assets. We also need to build a mission impact propagation model to investigate 
the direct and indirect consequences caused by malicious cyber incidents on high 
level mission elements and tasks. In addition, quantitative metrics and measures are 
required for meaningful mission assurance and cyber situational awareness analysis.
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4.1  Mission to Asset Mapping and Modeling

To efficiently represent and model the dependency relationships between high level 
mission elements and the underlying computer network and cyber assets, a Logical
Mission Model (LMM) is developed in our framework. Essentially, the LMM is a
hierarchical graphical model for mission planning, decomposition, modeling, and 
asset mapping, which is further composed of a Value-based Goal Model (VGM) and 
a Logical Role Model (LRM). The VGM captures the composition, temporal, and
dependency relationships among different tasks/subtasks in a complex mission, as 
well as their relative importance to the overall mission. The LRM, on the other
hand, is used to capture the physical or cyber functions required to achieve a par-
ticular goal (or successfully carry out a task). Based on this comprehensive LMM,
users can feasibly model a complex mission, identify the criticality of each task/
subtask, and evaluate the cyber resilience during the mission planning phase.

Value-Based Goal Model Each node in VGM represents a task or goal that has to 
be achieved or maintained to ensure that the entire mission is accomplished. A higher 
level task (or goal) is represented as the parent node of multiple lower level subtasks 
(or sub-goals). Each node has a number of attributes to represent its current status as 
shown in Fig. 3. For example, each task is associated with a pre-assigned Target 
Value that represents its contribution to the overall accomplishment of its parent 
node, and the Priority/Weight attribute indicates the relative importance (criticality) 

Fig. 3 VGM node attributes
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of this node to its parent node. In our model, two other important attributes are 
Accomplishment Status and Progress Status. During the mission execution phase, 
these two attributes are periodically measured to evaluate the progress status of a 
mission task.

In our initial study, we identified three main entities for our VGM model: goals, 
events, and parameters. Specifically, a goal is an observable desired state of a mis-
sion/task, while an event is an observable phenomenon that occurs during the execu-
tion. Parameters of a goal or event provide the detailed information about the goal 
or the specific event. In our VGM, a complex mission is first decomposed into a set 
of simplified explicit tasks and the corresponding sub-tasks, and then represented by 
a hierarchical goal tree.

As illustrated in Fig. 4, upper level goals (parent nodes) can be decomposed into 
(also need to be supported by) a number of lower level sub-goals (child nodes). 
Each node (i.e., goal) has a pre-assigned value to represent its contribution to the 
overall mission. In addition, each parent goal’s accomplishment relies on the 
accomplishment of its child nodes’ goals, following the rules specified by mission 
commanders or Subject Matter Experts (SMEs). In our initial study, the achieve-
ment conditions for a parent node include conjunctive, disjunctive, and composition 
conditions. As shown in Fig. 4, the achievement condition and the value of a goal 
are represented via «and», «or», «composition», and «value» decorations of a node 
respectively.

As a starting point, we initially focused on modeling three temporal relationships 
between goals in the VGM, including precedes, triggers, and subgoal relationship. 
According to the ORD-Horn subclass defined in (Nebel et al. (1995), the formal 

Fig. 4 An example of VGM
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definitions and appropriate timing constraints of these three temporal relationships 
are listed in Table 4.

Table 5 lists the various types and relationships between different goals and how 
to calculate their values in our VGM. Specifically, each node in VGM is a value 
goal. The root goal, g0, represents the overall value of a mission. The root value 
goal can be further decomposed into a set of Composition, Conjunctive, Disjunctive 
goals (as shown in Table 5), or Leaf goals. Each goal (i.e., node) has a pre-assigned 
“maxValue” to represent the expected value it can achieve if the corresponding task 
can be accomplished successfully. In our model, leaf goals have no subgoals. They 
directly contribute to the overall goal based on their parent’s type. Additionally, in 
VGM, only leaf goals are actively maintained by the system and need to be sup-
ported by the underlying cyber assets. As the leaf goal maintains (or fails), the 
overall value of a mission is aggregated based on the parent goals’ type, until the 
final goal is achieved (or aborted).

Logical Role Model The LRM is designed to effectively capture corresponding
cyber capabilities or functionalities required to achieve (or maintain) a particular 
task or goal. Working as an intermediate layer, our LRM maps the higher level logi-
cal mission elements onto the underlying network and cyber assets. By combining 
LRM with VGM, analysts will have a complete overview of the goals being pur-
sued, the logical roles being performed to achieve those goals, and the  corresponding 
network resources being used to carry out those roles. In our model, the logical 
dependency relationships are maintained at both mission planning and execution 
phases; not only for mission impact analysis, but also to improve the system’s resil-
ience (e.g., alternative goals or redundant resources could be suggested or pre- 
assigned for critical tasks or mission elements, so that mission success can still be 
achieved even in the worst cases).

When modeling roles, the objective is to identify all the roles in the system as 
well as their interactions with each other. Given a valid VGM, we follow the follow-
ing major steps to generate the corresponding LRM:

 (1) Create a role for each leaf-level goal in the goal model
 (2) If there are multiple ways to achieve a single goal, create a separate role  

for each approach and quantify the “goodness” of each approach (ranging from 
0 to 1).

 (3) Identify information flows between the various roles

Table 4 Temporal relationships between goals

Condition Informal Constraint Formal Constraint in ORD-Horn

(a, b) ∈ precedes a must be achieved before  
b can begin

(a+ ≤ b−) ∧ (a+ ≠ b−)

(a, b) ∈ triggers a must start before b; b must begin 
before a ends

(a− ≤ b−) ∧ (a− ≠ b−) ∧ (b− ≤ a+) ∧ (b− ≠ a+)

(a, b) ∈ subgoal b cannot start before a starts or end 
before a ends

(a− ≤ b−) ∧ (b+ ≤ a+)

Y. Cheng et al.
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 (4) If two roles are tightly coupled, consider to combine them into a single role
 (5) Define the capabilities required to carry out each role
 (6) Determine the appropriate timing values associated with each role

Generally, to create a valid LRM, the first step is to create a single role for each leaf
goal in the VGM. However, if we provide multiple ways to achieve a goal, the over-
all system resilience will increase. Documentation of the alternative approaches for 
each critical goal hence becomes very beneficial to mission assurance.

Once the roles have been identified, cyber capabilities required to carry out those
roles can be further specified. In our model, cyber capabilities can be defined in 
terms of processing power, communication bandwidth, software and/or hardware 
specifications or requirements. The information flows between different roles can be 
used to implicitly define the communication capabilities for the logical roles. For 
example, if role A has to communicate with role B, the asset assigned for role A must 
be able to send/receive information to/from the asset assigned to role B. After assign-
ing proper assets, specific communication and routing equipment can be further 
identified for the logical roles to provide the required communication capabilities.

Note that to maintain and update information about currently available capabili-
ties for supporting logical roles, real-time network monitoring and asset criticality 
analysis are required. In our framework, a cyber capability model (CCM) is designed 
to maintain the available capabilities of each cyber asset in a network, such as the 
current status (e.g., available, occupied, reserved), asset value, and dependency rela-
tionships. Other important information that should be maintained in the CCM
includes host dependency, service map, and network topology. This knowledge can 
be directly derived by parsing the outputs of network monitoring and protocol anal-
ysis tools, such as Nmap (http://nmap.org/) and Wireshark (http://www.wireshark.
org/), or leveraging state-of-the-art automated service discovery mechanisms devel-
oped by Tu et al. (2009) and Natarajan et al. (2012) into our framework.

4.2  Cyber Impact Analysis on Mission

After deriving the complete mission-to-asset dependency relationships via our logical 
mission models, the next step is to evaluate the potential impact of the lower level 
cyber incidents on the higher level mission elements. Following the same analysis 
method proposed by Jakobson (2011), the mission impact assessment process includes 
three major steps: (i) direct impact analysis of cyber incidents, (ii) cyber impact prop-
agation analysis, and (iii) impact assessment on high level mission elements.

4.2.1 Direct Impact of Cyber Incidents

The direct impact can be defined as the loss of the Asset Capacity (AC) of an asset 
that is a direct target of an attack. As an internal feature of an asset, AC stays 
unchanged for the asset until its value is further reduced by another direct attack, or 
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adjusted by external (human) operations (e.g., network operators may reset AC to 1 
by recovering the damaged system). In our basic model, only software assets can be 
targets of direct attacks, and the initial value of AC is 1 (i.e., we assume that each 
asset is fully operational before it was attacked).

Particularly, if asset A does not depend on any other assets, then after it was 
directly attacked by attack X, its asset capacity can be expressed as follows:

 
AC t Max AC t EP t IF tA A A X

* * * ,( ) = ( ) − ( )× ( )



0  (7)

In Eq. 7, ACA(t) is the capacity of asset A at time t, EPA(t*) is the exploit probability 
of the corresponding vulnerability on asset A at time t*, IFX(t*) is the impact factor 
of attack X at time t*, and ACA(t*) is the remained capacity of asset A at time t*, 
given t* > t.

Note that in a network environment, an asset could also be affected by the other 
assets it depends on. In this case, its AC will be determined by the combined effect 
of the other assets and the direct attack on it. For instance, if asset A depends on asset 
B and was a direct target of attack X, after being attacked its asset capacity should be:

 
AC t Min Max AC t EP t IF AC tA A A X B

* * * *, ,( ) = ( ) − ( )× ( )



 ( )



t 0

 (8)

In Eq. 8, ACA(t) is the capacity of asset A at time t, EPA(t*) is the exploit probability 
of the corresponding vulnerability on asset A at time t*, IFX(t*) is the impact factor 
of attack X at time t*, ACB(t*) is the capacity of asset B at time t*, and ACA(t*) is the 
remained capacity of asset A at time t*, given t* > t.

4.2.2 Propagation of Cyber Impact

In order to calculate the propagation of a direct impact through a network via the 
derived dependency relationships, we follow the same analysis method proposed by 
Jakobson (2011) and consider each asset as a generic node in a dependency graph, 
along with two kinds of specific “AND” and “OR” nodes to represent the logical 
dependency relationships between different elements. In this propagation model, 
the “AND” node defines that a parent node needs to depend on all of its children 
nodes, while the “OR” node defines that a parent node depends on the presence of 
at least one child node. Note that the “OR” dependency in our model is introduced 
to achieve better resilience, by providing redundant system, alternative functionality 
or performance to support a critical mission, task or operation. During the propaga-
tion of an attack, the capacities of all generic nodes in the attack path could be 
affected, either by a direct attack on it, or from a compromised child node it 
depends on.

To characterize the operational quality of each component or element at differ-
ent levels in a mission-to-asset dependency graph, we further introduce the 
Operational Capacity (OC) as a universal measure in our model. The Asset Capacity 
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(AC) presented previously is a specific form of the operational capacity provided by 
cyber assets. Similar to AC, OC is also measured in an interval [0, 1]. It indicates 
how much operational capacity that a cyber asset, service, task, or mission element 
can still provide after it was compromised or affected by an attack (directly or indi-
rectly). Value 0 means that a component was totally destroyed (e.g., not opera-
tional), while value 1 means that it is still fully operational.

In our basic propagation model, the operational capacities of the “AND” and 
“OR” nodes are calculated as follows:

 
OC t OC t OC t OC t OC t i nOR i i n n( ) = ( ) ( ) ( ) … ( ) ≤ ≤( )ω ω ω ω* | * , * , , *1 1 2 2 1

 (9)

 
OC t Min OC t OC t OC t i nAND n n( ) = ( ) ( ) … ( )( ) ≤ ≤( )ω ω ω1 1 2 2 1* , * , , *

 (10)

In Eqs. 9 and 10, OCOR(t) is the operational capacity for an “OR” node at time t, 
OCAND(t) is the operational capacity for an “AND” node at time t. OC1(t), OC2(t), …, 
OCn(t) are operational capacities of the child nodes for the intended “OR” or “AND” 
nodes. ωi is the pre-defined weight for each child node, based on its criticality to the 
parent node. Recursively applying Eqs. 9 and 10 for all the nodes involved in the 
attack path, analysts can identify not only which asset could be affected, but also 
how much capacity will be lost due to the attack.

4.2.3 Impact Assessment on High Level Mission Elements

According to Jakobson (2011), during the mission execution stage, the real-time 
mission impact assessment depends on two major factors: (i) the impact that can be 
caused by the attacks, and (ii) in which state (e.g., planned, ongoing, or completed) 
of a mission or task.

For example, suppose that an attack X happened at time t* (as shown in Fig. 5), 
and it could impact assets and services that support Tasks A through E. If those tasks 
have already been completed at time t*, then those impacts should be irrelevant to 
the intended mission. If Task F is currently being executed, it can be affected if it 
relies on assets or services that can be impacted by attack X. Obviously, any other
planned tasks that have not started yet but will depend on assets and services that 
could be impacted by attack X will probably be affected if no further countermea-
sures were taken.

Note that the planned tasks, such as Task G in Fig. 5, need to be analyzed  carefully. 
As they have not yet been undertaken, their OC will not be accounted in the calcula-
tion of the overall OC of the intended mission. However, based on the (planned) 
mission asset mapping during the mission planning stage, we can calculate the poten-
tial impacts on those mission tasks, which could happen if we stick to the original 
asset mapping and network/system configurations. One advantage of our approach is
that based on this real-time mission impact analysis, we can either reconfigure the 
corresponding network and systems, or replace a planned task with an alternative 
task to prevent or avoid the coming impacts and ensure a mission’s success.
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In this mission impact analysis model, the execution of a mission is a process that 
unfolds step-by-step as time progresses. The initial operational capacity value of a 
mission or task is set as OC = 1. This value could be steadily decreasing depending 
on the operational capacities of its executed stages and whether the corresponding 
assets and services were impacted by cyber attacks.

The calculation of the overall operational capacity of a mission will be calculated 
using Eqs. 7–10 accordingly for each potential attack path in our mission asset map, 
considering both dependency and temporal relationships. To achieve mission resil-
ience, in the mission planning stage, we need to evaluate and compare different mis-
sion asset mapping and network configurations. For each mission asset mapping and 
network configuration, we calculate the operational capacity for both overall mis-
sion and the critical tasks. In this manner, we can find the best mapping and configu-
ration to achieve the optimum value. In addition, to achieve better mission resilience, 
we can intentionally allocate/reserve redundant resources for critical leaf tasks and 
make critical task nodes as “OR” nodes (by adding alternative or backup tasks).

5  Asset Criticality Analysis and Prioritization

To identify the most critical cyber assets in supporting a critical task or operation, 
an effective measurement method is required for asset criticality ranking and priori-
tization. In our initial study, we prioritize asset criticality based on the cyber impact, 
mission relevance, and asset value analysis. In particular, the cyber impact and mis-
sion relevance can be evaluated by our attack risk prediction and impact propaga-
tion models described in Sects. 3 and 4. The asset value, in general, can be estimated 

Fig. 5 Temporal relations between mission tasks
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by experienced network administrators, based on the amount of IT spending and the 
depreciation or amortization value of the assets (hardware and software).

Various decision making methods can be applied in our framework for mission 
asset criticality analysis and prioritization. As a starting point, we selected the stan-
dard Analytic Hierarchy Process (AHP) and Decision Matrix Analysis (DMA) 
methods in our initial study. Both of them can effectively prevent subjective judg-
ment errors to increase the reliability and consistence of our analysis results.

5.1  AHP Based Criticality Analysis

We first used AHP and pair-wise comparison matrix to calculate the relative value 
and importance of each mission related cyber asset. The general procedure for asset 
criticality analysis includes the following steps:

 (1) Modeling the problem as a hierarchy containing the decision goal, the alterna-
tives for reaching it, and the criteria for evaluating the alternatives.

 (2) Establishing priorities among the elements of the hierarchy by making a series 
of judgments based on pair-wise comparisons of the elements. For example, 
when comparing asset value, network administrators might prefer database 
server over web server, and web server over desktop.

 (3) Synthesizing these judgments to yield a set of overall priorities for the hierar-
chy. This would combine network administrators’ judgments about different 
factors (such as asset value, potential loss, attack risk, and vulnerability sever-
ity) for different alternatives (e.g., Desktop A, Router H, Database P, etc.) into 
overall priorities for each asset.

 (4) Checking the consistency of the judgments.
 (5) Coming to a final decision based on the results of this process.

Figure 6 shows a simple example of this process, in which three assets (i.e., desktop 
A, Router H and Database P) need to be prioritized based on three factors: mission 
relevance, cyber impact and asset value. In this example, we assume that cyber 
impact and mission relevance are both two times as important as asset value, and 
use a pair-wise comparison matrix to decide the proper weights for each factor.

As illustrated in Fig. 6, the weights of cyber impact and mission relevance are 
both 0.4, and the weight of asset value is 0.2. Additionally, each asset has a value 
vector to specify its relative value corresponding to the three factors, which will be 
used to calculate the asset’s criticality (priority) based on the three weighted factors. 
Fig. 6 shows the prioritizing result of the three assets, in which Database P was the 
preferred entity, with a priority of 0.715. It was ten times as strong as Desktop A, 
whose priority was 0.07. Router H fell somewhere in between. Therefore, Database 
P is the most critical asset in this example, and it has to be well-protected from 
potential cyber attacks to assure mission success.
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5.2  Grid Analysis Based Prioritization

Grid analysis, also known as Decision Matrix Analysis, is another useful technique 
for making a decision among several options while taking many different factors 
into account. As the simplest form of Multiple Criteria Decision Analysis (MCDA) 
(http://en.wikipedia.org/wiki/Multi-criteria_decision_analysis), grid analysis is 
particularly powerful where users have a number of good alternatives to choose 
from and many different factors to take into account. To use grid analysis technique 
for decision making, first we need to list all the available options (alternatives) as 
rows on a table, and the factors (criteria) need to be considered as columns in the 
table. Then, we score each option/factor combination, weight the score, and add 
these scores up to give an overall score for each option in the table.

The step-by-step process of grid analysis technique can be illustrated as 
follows:

(1) List all of the available options (alternatives) as the row labels on a table, and 
list the factors (criteria) as the column headings in the table.

 (2) Specify the relative importance of each factor, ranging from 0 (absolutely unim-
portant) to 5 (extremely important).

 (3) For each column, score each option/factor combination from 0 (poor) to 5 (very 
good), based on how well it possesses the corresponding factor.

 (4) Then, multiply each score from step 3) by the relative importance derived from 
step 2). This will give users weighted scores for each option/factor combination.

(5) Finally, add up the corresponding weighted scores for each option. Options
with higher scores are more important than the options with lower scores.

In our study, we initially considered the following factors to help security analysts 
decide which cyber asset or network service is more important than others:

• Asset Value: How important are the files and data stored in a host or server?
• Cyber Severity: What is the severity of a vulnerable service? This value can be 

derived from the CVSS score.

Fig. 6 Prioritization of cyber assets with AHP
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• Mission/Task Dependency: How important is the cyber asset or network  service 
regarding to a critical mission and/or task?

• Vulnerable Descendants: How many descendants of this host could be poten-
tially affected in the near future?

Additionally, the weight of each factor and the score of each option/factor combina-
tion are specified by the following rules:

• Based on its relative importance, each option service for each factor is scored 
from 0 to 5.

• The weight of each factor is normalized from 0 (not important) to 5 (extremely 
important).

Table 6 shows a simple example of grid analysis, in which a number of cyber assets 
and network services are listed. Specific weights have been assigned for four factors 
(Asset Value, Cyber Severity, Mission/Task Dependency, and Vulnerable 
Descendants). Each option/factor combination is assigned a particular value based 
on its relative importance decided by security analysts or domain experts.

The total score for each option is calculated and listed in the last column of Table 
6. The “Desktop_B” (which is currently running “LICQ” service) has the highest
score, which means it is the most important asset in supporting an intended mission. 
To protect “Desktop_B” from potential attacks, sufficient security resources or 
countermeasures should be applied. For instance, network administrators may shut 
down the vulnerable “LICQ” service to prevent the potential attacks. Note that we
can virtually “shut down” a vulnerable service to demonstrate the corresponding 
consequences on the high level mission elements based on our logical mission mod-
els. If there is no big impact on the intended mission, or we can mitigate impact by 
reallocating alternative resource or goals, cyber resilience can be achieved to ensure 
mission assurance.

6  Future Work

Further investigation and research are still required, especially in the flowing fields:

• Efficient analytical models for mission-to-asset mapping (e.g., how to decom-
pose a complex mission into a set of explicit tasks, identify mission-to-asset 
dependency, and allocate reliable cyber assets for critical tasks or mission 
elements.)

• Accurate network vulnerability and attack risk analysis models (e.g., how to con-
figure/reconfigure a network to reduce aggregated network vulnerabilities; how 
to quickly detect and/or predict attack and attack path.)

• Practical mission impact assessment models (e.g., how to accurately model the 
direct impact of a cyber incident on a mission element; how to calculate the 
effect of a compromised cyber asset or failed mission element on the accom-
plishment of other mission elements.)

Y. Cheng et al.
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• Multi-layer graphical models (or a common operational picture) to effectively 
represent and display various inter- and intra- dependency relationships between 
different elements and components involved in CSA assessment

• Simple but meaningful metrics and corresponding evaluation algorithms or 
mechanisms for specific or general network security analysis

Note that the achievement of CSA rests in the ability to judiciously balance the 
above capabilities to handle the complexities of defensive operations. An integrated 
framework or software tool that leverages well-defined and developed technologies 
can significantly improve CSA and network security modeling, analysis, measure-
ment, and visualization capabilities for security and mission analysts in enterprise 
network environments.

7  Summary

Without meaningful metrics, we cannot quantitatively evaluate and measure the 
operational effectiveness and system performance of our network. This chapter dis-
cussed how to effectively identify good metrics and evaluation methods for enter-
prise network situational awareness (SA) quantification and measurement. Metrics 
are tools that are designed to facilitate decision-making and improve performance 
and accountability through collection, analysis, and reporting of relevant 
performance- related data. Security measurement for CSA needs to carefully con-
sider two distinct possible relationships: (i) How to define and use metrics as quan-
titative characteristics to represent the security state of a computer system or network, 
and (ii) How to define and use metrics to measure CSA from a defender’s point of 
view. The multivariate nature of SA significantly complicates its quantification and 
measurement. State-of-the-art technologies provide useful descriptive information 
on security analysis, mission modeling, and situation management. The Common 
Vulnerability Scoring System has been widely adopted as the primary method for 
assessing the severity of computer system security vulnerabilities. The National 
Vulnerability Database provides CVSS scores for almost all known vulnerabilities. 
To evaluate the general security of an enterprise network based on vulnerability 
assessment, three security metrics are proposed: the vulnerable host percentage 
(VHP), CVSS severity score, and compromised host percentage (CHP). Attack graph 
based metrics can also be defined for network-level vulnerability assessment, such as 
the Number of Attack Paths, the Average Length of Attack Paths, and the Shortest
Attack Path. Useful metrics can also be based on modeling (i) the logical relations 
that allow us to model the propagation of the impacts through the network, and (ii) 
the computational relations that allow us to calculate the level of those impacts. 
Users can feasibly model a complex mission, identify the criticality of each task/
subtask, and evaluate the cyber resilience during the mission planning phase. After 
deriving the complete mission-to-asset dependency relationships via our logical mis-
sion models, the next step is to evaluate the potential impact of the lower level cyber 
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incidents on the higher level mission elements. Using the real- time mission impact 
analysis, network operators can either reconfigure the corresponding network and 
systems, or replace a planned task with an alternative task to prevent or avoid the 
coming impacts and ensure a mission’s success. AHP and pair- wise comparison 
matrix can help calculate the relative value and importance of each mission related 
cyber asset. Effectively identifying the right metrics to measure security prepared-
ness and awareness within an organization is a hard and complicated problem. To be 
valuable, security metrics must be meaningful to organizational goals or key perfor-
mance indicators. Security analysts should review their specific metrics currently in 
place and ensure they are aligned with the overall industry standards and their par-
ticular organizational and business goals.
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Mission Resilience

Gabriel Jakobson

1  Introduction

As we come to the end of the book, we look at the end-goals of achieving CSA. In 
this chapter we explain that the ultimate objective of CSA is to enable situation 
management, i.e., continuous adjustments of both the network and the mission that 
the network supports, in order to ensure that the mission continues to achieve its 
objectives. Indeed, several previous chapters stressed that CSA exists in the context 
of a particular mission, and serves the purposes of the mission. A mission that is 
able to absorb the attacks and keep returning to an acceptable level of execution is 
called a resilient mission. It can be said that the purpose of CSA is to maintain mis-
sion resiliency. This chapter explains that mission-centric resilient cyber defense 
should be based on collective and adaptive behavior of two interacting dynamic 
processes, cyber situation management in the cyber space, and mission situation 
management in the physical space. It discusses architecture and enabling technolo-
gies of such mutually adaptive processes that keep the mission persisting even if the 
network that supports the mission may be compromised by a cyber attack.

Human activities, organized as space and time bound processes, are usually 
referred to as business processes in civilian applications, and missions in military, 
security, and exploratory applications.1  As business processes and missions proceed 
with their operational goals they rely on information technology (IT) assets as their 
operational recourse. Protection of IT assets from cyber attacks has been a constant 
goal of IT-centric cyber defense, which traditionally boils down to three operational 
goals: confidentiality, integrity and availability of IT assets (Aceituno 2005). Under 

1 Within the scope of issues discussed in this paper the notions business process and mission are 
handled as semantically equivalent concepts, and they will be collectively referred as missions, 
business or military ones.
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the umbrella of IT-centric cyber security, several different cyber defense paradigms 
were proposed, including perimeter bound cyber defense (Buecker et al. 2009), 
intrusion tolerant data (Fraga and Powell 1985), critical infrastructure protection 
(US GAO 2011), net-centric cyber security (US DoD 2012; Kerner and Shokri 
2012), and resilient infrastructure systems (Mostashari 2010). Regardless of the dif-
ferent approaches to achieve cyber security, the IT-centric methods, in principal, 
looked on protection of IT assets as the primary goal of cyber defense. At the same 
time, everyday practice of cyber defense has revealed that often it is technically 
unconceivable or financially prohibitive to protect each and every IT component, 
especially while dealing with large IT infrastructures, or where the IT assets are 
used in dynamic and unpredictable operational environments. In order to address 
the above-mentioned issues, in recent years research has focussed on assessing the 
impact of cyber attacks directly on missions (Musman et al. 2010; Jakobson 2011b; 
Jajodia 2012). This move in cyber defense towards mission operational assuranse in 
compromised cyber environment lead to the notion of a cyber attack resilient mis-
sion (Goldman 2010; Peake and Williams 2014; Jakobson 2013).

Motivated by the resilient behavior in nature, the resilient systems are designed 
to resist the disruptive events happening in their operational environment, survive 
the impact of the disruptive events, and recover from those impacts. Our interest is 
on a specific class of resilient systems, namely resilient missions, where the success 
of cyber defense is measured by the trusted level of mission continuity achieved 
under cyber attacks. In this chapter, which is based on our work in resilient cyber 
defense (Jakobson 2013) and uses the framework of situation management 
(Jakobson et al. 2006), we describe a method how mission-centric resilient cyber 
defense can be achieved using the model of cyber-physical situation awareness. The 
focus of the chapter will be on architecture and enabling technologies of mission- 
centric resilient cyber defense, including:

 (a) The use of models of cyber-physical situation awareness to sense, perceive, 
comprehend, project and reason about situations happening in the cyber- 
physical world.

 (b) Collective and adaptive behavior of two interacting dynamic processes, cyber 
situation management in the cyber space, and mission situation management in 
the physical space; this collective and adaptive behavior assures mission con-
tinuation with an acceptable level of trust, even if the IT infrastructure that sup-
ports the missions may be compromised, while being under a cyber attack.

 (c) The proposed framework is in principal cognitive, i.e. while modeling the enti-
ties, relations, situations, events and actions we are interested mostly in the 
meaning of those objects.

The chapter is organized in the following way. Section 2 discusses how the notion 
of resilience is understood in different disciplines, provides a definition of a 
mission- centric resilient cyber defense, and reviews related work. Section 3 
describes the cyber-physical situation awareness based approach and the basic 
architectural framework of mission-centric resilient cyber defense. Section 4 
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reviews the models of the basic conceptual elements of the proposed approach, 
including missions, cyber terrain, and cyber attacks. Section 5 presents a method of 
real-time cyber situation awareness and how it is applied to resilient cyber defense. 
Section 6 describes resilient cyber defense that is achieved through assessment of 
plausible future cyber situations and their impact on future planned missions. 
Section 7 describes a method of achieving mission resilience through adaptation of 
mission behavior. Section 8 draws conclusions and refers to some future research 
directions.

2  Overview: Resilient Cyber Defense

2.1  On Resilient Behavior in Complex Systems

Resilience is a fundamental behavioral feature of complex dynamic systems, being 
natural or artificial ones. It has been studied extensively in several scientific and 
engineering disciplines. In psychology and behavioral neuroscience, resilience is an 
individual’s ability to adapt successfully in the face of stress and adversity. This 
coping may result in the individual "bouncing back" to a previous state of normal 
functioning, or simply not showing negative effects (Wu et al. 2013). Similarly, in 
social science, resilience is understood as an ability of individuals and groups to 
overcome challenges, like trauma, tragedy, crises, and isolation, and to bounce back 
stronger, wiser, and more socially powerful (Cacioppo et al. 2011). Recent studies 
in molecular genetics have shown that the mechanisms of resilience in biological 
systems are mediated by adaptive changes in neural circuits (Feder et al. 2009). In 
engineering disciplines, especially those ones that are dealing with complex distrib-
uted systems, the system resilience is designed to anticipate and avoid disruptive 
incidents, survive, and recover from natural disruptions, system faults or adversary 
actions (Westrum 2006). In business enterprise management domain research on 
resilient behavior is conducted under the term of business continuity planning 
(Davenport 1993).

Despite the diversity in the physical nature of complex systems that exhibit 
resilient behavior, the defining feature of them is to resist the disruptive events 
happening in the environment, survive the impact of the disruptive events, and 
recover from those impacts. The resilient system has a strong “motivation” to sur-
vive, even if not all individual components of the system are functional or are 
surviving. In other words, the system resilience is achieved through emergent col-
lective and adaptive behavior of all components of the system. Similar viewpoint, 
applied to cyber defense systems, was expressed recently in King (2011), where a 
research plan was proposed to achieve resilience in a complex system that contains 
brittle components by introducing the mechanisms of system adaptation and 
self-organization.
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2.2  Understanding of Misson-Centric Resilient Cyber Defense

The defining features of resilient systems, mentioned in the previous section, are 
also true for mission-centric resilient cyber defense systems. We will further clas-
sify the different acts of resilient behavior by mapping them to a timeline, and 
examine how a system behaves before, during and after the disruptive event. We 
will refer to the corresponding list of time-dependent resilient behaviors as the 
Baseline Resilience Model (BRM):

 – Before the disruptive event, which might or might not happen, the resilience 
relates to a vigilant behavior of detecting current or predicting future disruptive 
situations, detecting and minimizing existing system vulnerabilities, or under-
taking deceptive or any other behaviors that disorient potential adversaries.

 – During the disruptive event, the resilient behavior concerns how to reorganize 
and adapt to new operational situations in order to maintain the required system’s 
functionalities within an acceptable level of trust, and how to assess the inflicted 
impact of the disruptive events.

 – After the disruptive event, the resilient behavior focuses on restoration, recon-
figuration and damage control, back-track reasoning and forensics, as well on 
planned organizational and technical advancements.

While talking about resilient missions and cyber defense we assume the existence 
of a combined cyber-physical operational space, which contains two interacting 
processes: the mission operations control and command process in the physical 
operational space, and the mission cyber defense management process in the cyber 
space. Mission-centric resilient cyber defense is a combined behavioral capability 
of these two processes that interacting together to assure effective mission continu-
ation in reaching mission goals, even if mission operations may be embedded into 
a compromised cyber infrastructure environment.

2.3  Review of Related Work

A general problem statement and outline of the technical roadmap to cyber attack 
impact assessment on missions was given in Musman et al. (2010), which focuses on 
cyber mission impact assessment framework and maps the enterprise network and 
information technology assets to the enterprise businesses processes (missions). 
Paper Grimaila et al. (2009) discusses general design concepts of a system that pro-
vides the decision makers with notifications on cyber incidents and their potential 
impacts on missions. Assessment of cyber attack impact on missions requires model-
ing of the topology of the networks and cyber assets, as well as mapping from cyber 
assets to missions within vulnerability constrains specific to cyber assets. The notion 
of a virtual terrain was introduced in Argauer and Young (2008), which was used to 
model physical topology of a network, network services, and vulnerabilities of the 
network objects. The paper described a method on how to assess cyber attack impact 
on networks, services and users, based on an algorithm of overlaying correlated 
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cyber attack tracks on virtual terrain. Several efforts have been made in research of 
attack graphs and in generation of cyber attack scenarios for automatic detection of 
cyber attacks (Cheung et al. 2003a; Noel et al. 2004; Qin and Lee 2004a).

A method for deploying mission tasks in a distributed computing environment 
that minimizes mission exposure to cyber asset vulnerabilities by taking into account 
dependencies between missions and cyber assets was presented in Albanese et al. 
(2013a). The proposed solution is based on the A* algorithm for optimal allocation 
of mission tasks into potentially vulnerable distributesd cyber infrastructures. In 
D’Amico et al. (2010) scenarios and ontology are described to express relationships 
between cyber assets, missions and users. A direct mapping from missions to cyber 
services was used in the Cauldron system (Albanese et al. 2013b).

One of the promising paradigms of resilient cyber defense is the act of cyber 
maneuver, also known as moving target defense (Moving Target Defense: An 
Asymmetric Approach to Cyber Security 2011). Similar to the concept of radio fre-
quency hopping, the moving target cyber defense utilizes the randomization algo-
rithms to diversify hardware platforms, operating systems, network segments, software 
applications, and services. The Net Maneuver Commander presented in Beraud et al. 
(2011) is a research prototype cyber command and control system, which constantly 
maneuvers across network and cyber assets to deceive potential cyber attackers.

In June 2011, The Defense Advanced Research Projects Agency (DARPA) 
announced a project called Mission Oriented Resilient Clouds, which aims to build 
resilience into existing cloud networks to preserve mission effectiveness during a 
cyber attack (Mission-Oriented Resilient Clouds 2011). The project defined an 
ensemble of interconnected hosts acting in concert. Loss of individual hosts and tasks 
within the ensemble is allowable as long as mission effectiveness is preserved. A 
model of increasing mission survivability based on reinforcement learning was pro-
posed in Carvalho (2009). The paper defines the measure of mission survivability as 
a ratio between the successfully completed workflows of the mission to the total num-
ber of the workflows. The paper examines two core capabilities of increasing mission 
survivability: redistribution of the network resources to ensure mission continuity, and 
learning of the attack patterns to estimate the level of vulnerability of other nodes. 
Both of these capabilities dealt with the network resource management, while adapta-
tion of the mission was not addressed. A model of adaptation of mission operations to 
achieve resilient behavior under a cyber attack was presented in Jakobson (2012).

3  Cyber Situation Awareness Based Approach  
to Resilient Cyber Defense

3.1  A General Situation Awareness and Decision 
Support Model

As mentioned in the Introduction, we are interested in two specific situation aware-
ness processes, the mission situation awareness in the physical mission operational 
space, and the mission cyber situation awareness in the cyber space. We will show 
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that interactions between these two situation awareness processes serve as a basis 
for mission assurance. In this section, we will describe a general model of situation 
management that will be used for describing the processes of mission and cyber 
situation awareness.

A widely used model of situation awareness (SA) was proposed by Endsley 
(1995). The model defines SA as “the perception of the elements in the environment 
within a volume of time and space, the comprehension of their meaning and the 
projection of their status in the near future. Endsley considered SA as the main pre-
cursor to decision-making, however, not always as a guarantee for effective decision- 
making. Advancement of the SA model towards capturing the specifics of cyber 
defense has been the focus of an increasing number of research activities (Tadda and 
Salerno 2010; Barford et al. 2010; Jakobson 2011a).

In our model of situation management (SM) (Jakobson et al. 2006), we follow the 
same point made by Endsley, and consider SA and Decision Support (DS) as two 
separate, but closely interacting processes. Schematically, a general SM process is 
depicted in Fig. 1. Time-wise, the overall SM process is mapped into three main 
sub-processes, the Situation Control process that is performed at the current time of 
attention, the Past Situation Awareness process, and the Future Situation Awareness 
process. The Situation Control process is essentially a real-time process that aims to 
bring the Reality World into a goal state, and is driven by the difference between the 
current and goal states of the Reality World. As shown in Fig. 1, the Situation 
Control process forms a loop through the current state of the Reality World and the 
corresponding state of the current Situation Model. Situation Model is a subjective 
reflection of the objective reality in the mind of an agent (or multiple agents) that is 
responsible for the overall situation management process. The Situation Control 
loop is further broken down into the current Situation Awareness and the Decision 
Support processes.

The current Situation Awareness process includes three consequent stages: situ-
ation sensing, perception and comprehension. Situation sensing is the stage of 
instrumentation of the entities in the Reality World in their spatial and temporal 
settings, and transformation of the obtained measures into a stream of data, possibly 
locally analyzed, unified and fused. The sequence of the processes of information 
sensing, perception and comprehension are characterized by an increasing level of 
abstraction of the processed information. It is also a process where the data of the 
objective reality is transformed step-by-step into a subjective reality depending on 
the interpretation power possessed by the agents involved in the sensing, perception 
and comprehension processes. During the Decision Support process that involves 
the steps of reasoning, plan generation and execution of the actions defined in the 
plan, we see the similar changes in the generality and objectivity of the processed 
information, but only moving from a declarative specification of the intended tasks 
to the executable procedures that affect the state of the Reality World. This com-
pletes the Situation Control loop, and a new sensing stage can start, upon which the 
control loop moves into a new cycle.

The Past Situation Awareness process deals with the analysis to determine the 
reasons and give explanations why the system is in the current state, while the 
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Future Situation Awareness process deals with prediction of future plausible situa-
tions that the system may end up in. The Past, Current and Future Situation 
Awareness processes comprise the overall Situation Awareness process present in 
the SM model.

3.2  Integrated Cyber-Physical Situation Management 
Architecture

The overall system architecture of a synergistic mission operations and mission 
cyber defense situation management is given in Fig. 2. It is modeled using the gen-
eral SM process described in the previous section and contains two main interacting 
closed-loop situation management processes: cyber situation management (CSM) 
process in a cyber operational space, and mission situation management (MSM) in 
a physical operational space. The CSM and MSM processes act collectively in one 
combined cyber-physical operational space. The processes interact through a com-
mon object of interest—the Mission Model. As mission progresses in time, CSM 
receives IT service requests from the mission and provides the requested services 
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Fig. 1 Situation management process—a schematic view
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back to the mission. Concurrently to this process, MSM proceeds with the tasks of 
mission situation awareness, undertakes mission decision support functions, and 
transitions the mission into a new state. The new mission state might require 
renewed IT support services from CSM. In order to achieve resilience to withstand 
the impact of cyber attacks, the above-described interaction between CSM and 
MSM requires mutual adaptation of the cyber terrain and the mission, e.g. recon-
figuration of dependencies among the cyber assets and services, replacing or 
upgrading certain assets, changing the logical or temporal order of mission tasks, or 
proceeding with a graceful degradation of the mission goals.

MSM acts according to the mission model, and mission control policies and 
rules. The MSM includes two sub-processes, the Mission Situation Awareness 
(MSA) and the Mission Decision Support (MDS) processes. MSA and MDS them-
selves are fairly complex operations: MSA performs the tasks of (a) sensing and 
pre-processing of real-time data coming from sensors and human reports; (b) per-
ception of the collected data and construction of the tactical situation model; (c) 
current mission impact assessment caused by the actions and forces in the physical 
operational space; and (d) assessment of the future mission impacts caused by 
adversary actions, natural forces and external disruptions in the physical operational 
space. MDS performs the tasks of mission operations planning, mission adaptation 
and resource allocation, selection of mission execution agents, and mission execu-
tion and monitoring.

Like the MSM process, the closed-loop CSM process contains two major sub- 
processes, cyber situation awareness (CSA) and cyber decision support (CDS) 
processes. The CSA process includes the following sub-processes: (a) real-time 
cyber situation sensing, (b) cyber situation perception, (c) cyber situation 
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 comprehension, and (d) plausible future cyber situation assessment. The CDS 
 process contains the following sub-processes: (a) CT vulnerability scanning and 
preventive maintenance, (b) CT adaptation as response to the cyber attacks and as 
reaction to IT service requests from the missions, and (c) CT recovery and restora-
tion actions. For performing of the above-mentioned sub-processes, the CSA and 
CDS processes need a variety of data and knowledge sources, including the mod-
els of cyber terrain, the mission models and the cyber attack model that will be 
discussed in Sect. 4.

The diagram of mission operations and mission cyber defense situation manage-
ment shown in Fig. 2, gives a fairly wide and multi-faceted picture of the processes 
happening in mission and mission cyber defense operations. Not all of those pro-
cesses will be covered in equal detail here due to the specific focus of this chapter 
on mission-centric resilient cyber defense, and also due to space limitations. As a 
result, we will pay more attention to the issues of cyber situation awareness and 
mission adaptation process, which is a part of mission decision support process.

4  Modeling Missions, Cyber Infrastructure  
and Cyber Attacks

4.1  Mission Modeling

We will treat missions and business processes as conceptually equivalent terms, and 
informally define them as a goal-directed structured order of space and time-bound 
actions to resolve operational situations in favor of the agent that is conducting the 
mission or the business process. In order to proceed with its goal, a mission has to 
be supported (consumes) physical, human and/or IT (cyber) resources. Mission is a 
time-dependent dynamic process, it has its start-time and end-time, it is controlled 
by a mission agent, its goal is usually given by a higher-level controlling agent, and 
it takes place in some operational space. Mission possesses a certain amount of 
operational capacity, and its importance to a more high-level mission is measured 
by mission criticality. Mission operational capacity can be reduced by the impact of 
an attack. Structurally, a mission can be a fairly complex embedded flow containing 
mission steps, and other missions. The content of the actions executed at a mission 
step is defined by a mission task.

The missions are modeled as sequential or parallel flows of mission steps that are 
controlled by AND/OR logic and by temporal operators that are based on James 
F. Allen’s interval algebra (Allen 1983). In addition to Allen’s operators, a relation 
UNDEFINED is introduced that does not require any specific temporal order to be 
placed among the mission steps. The relation UNDEFINED is used in a flow 
“cloud”, where all nodes are tied with AND-logic, however, the temporal order of 
execution of those nodes could be arbitrary.
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Figure 3 illustrates a Mission A that has two main parallel flows that are forked 
by an AND-node. The first branch contains a sequential flow, while the second flow 
contains an OR-forked parallel flow, and a “cloud”.

Grouping steps into flows or sub-missions, and defining logical and temporal 
relations between mission flows is a mission design task that is out of the scope of 
this chapter. There is difference in organizing steps into flows or missions: usually 
flows are smaller scale processes tied with the same operational environment, simi-
lar goals, and comparable time-frame. Contrarily, a sub-mission of a mission could 
take place in a different operational environment, has its own goals, and usually 
refers to larger-scale actions. For example, in Fig. 3, Mission B is designed as a 
submission of Mission A.

The existence of temporal order between missions and mission steps, and the 
options to change the order, e.g. advance or delay the order of execution of mission 
flows, opens an opportunity to adapt the mission in order to minimize the cyber 
attack impact on missions. Such methods of mission adaptation will be discussed in 
Sect. 6. As the embedded structure of missions unfolds during the mission execution 
process, all mission steps will be ultimately turned into executable mission tasks. 
Knowing the current and the unfolding future mission states, we can adjust the 
future mission steps so that only such branches are taken or modified that will 
reduce the impact of a cyber attack on the overall mission. A more detailed descrip-
tion of the mission model described above is given in Jakobson (2011a).

a1
a2

a3

d1 d2 d3

x1

x
c1 c2 c3

c4

b1 b2 b3

AND-node

OR-node

Sequential Flow

Mission A

“Cloud”

Mission B

Parallel OR Flow

Fig. 3 Mission task flows

G. Jakobson



307

4.2  Cyber Terrain

Network topology was probably first looked at from the cyber security viewpoint in 
Argauer and Young (2008), where the notion of virtual terrain was introduced to 
model the physical topology of a network, network element configurations, and 
vulnerabilities of the network objects. The notion of cyber terrain was introduced in 
Jakobson (2011b) as a multi-level IT infrastructure that models cyber assets and 
services, their inter-dependencies, vulnerabilities and operational capacities. CT 
contains three sub-terrains: network infrastructure (NI), software (SW) assets, and 
IT services sub-terrains.

The NI sub-terrain is a collection of interconnected network hardware compo-
nents like routers, servers, switches, firewalls, communication lines, terminal 
devices, sensors, cameras, printers, etc. All the dependencies between the compo-
nents, like connectivity, containment, location, and other relations, represent the 
physical/logical topology of the NI sub-terrain. The SW sub-terrain describes dif-
ferent software components such as operating systems, middleware, applications, 
etc., and defines dependencies between the components, e.g., application software 
might contain several sub-components, or an operating system supports an applica-
tion. The service sub-terrain presents all the services and their intra-dependencies. 
The most common dependencies among services include: enabling of one service 
by other, and containment of one or multiple services within a package of services. 
CT also defines dependencies between the sub-terrains: a NI sub-terrain component 
may “house” one or more SW sub-terrain components, and a SW sub-terrain com-
ponent may enable some services in the services sub-terrain.

While supporting the missions, the CT possesses a certain “operational capac-
ity”, i.e. the ability to provide resources and services to the missions with a certain 
level of quantity, quality, effectiveness, and cost to the missions. The overall opera-
tional capacity of the CT is an aggregate of the operational capacities of each of its 
components. Operational capacity (OC) is considered as a relative measure of the 
current operational capacity against its maximum value, and is measured in an inter-
val [0, 1], which indicates to what level the component of CT was compromised by 
a cyber attack. The value OC = 0 means that the component is totally compromised, 
and OC = 1 means that the component is fully operational.

In a general attack situation, a software asset can be either directly hit by a cyber 
attack causing permanent damage to it, or the asset may be indirectly impacted by a 
remote attack via inter-asset dependencies. The permanent damage caused to the 
asset is measured by the asset’s permanent operational capacity (POC). POC is an 
internal feature of a software asset only. It stays unchanged until either its value is 
reduced by the next direct cyber attack, or it can be changed by a human, usually by 
resetting POC = 1.

A sequence of direct attacks might reduce the operational capacity of an asset, 
or totally destroy the asset bringing its operational capacity to 0. Contrary to the 
effect of the direct attack, an indirect cyber attack does not cause permanent   
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damage to the cyber asset. There is nothing inherently wrong with the asset that is 
under an indirect attack. However, its operational capacity might be reduced 
because of its dependency on other assets that either suffer from direct attacks or 
are also indirectly impacted.

4.3  Impact-Oriented Cyber Attack Modeling

A cyber attack is a sequence of deliberate actions using malicious code carried out 
by individual or organized attackers to gain access to protected IT assets, alter/com-
promise computer code and data, and ultimately disrupt or destroy systems, busi-
ness processes and missions whose operations are supported by attacked IT assets. 
Cyber attack modeling is a central task in many cyber security solutions. Depending 
on the goals set for these solutions, e.g., multi-step attack detection, insider attacks, 
attacker motivation, etc., different aspects of a cyber attack are captured by these 
models. In our work, we limit our interest to aspects that are related to the attack 
impact on cyber assets, services, and missions. Doing so, we are interested in two 
types of relations concerning the cyber attack: the logical relations that allow us to 
model the processes of detection and propagation of an attack impact, and compu-
tational relations that allow us to calculate the level of those impacts. The cyber 
attack model (see Fig. 4), which is an impact-oriented model, contains four con-
cepts (rectangles): Attack, Hardware Platform, Asset, and Vulnerability, and 5 con-
ceptual relations (ovals):

R1: Targets (Attack, Hardware-Platform)—attack targets a hardware platform, usu-
ally identified by an IP address

R2: Exploits (Attack, Vulnerability)—attack exploits a vulnerability
R3: Houses (Hardware-Platform, Asset)—hardware platform houses a software asset
R4: Has-Vulnerability (Asset, Vulnerability)—software asset possesses a 

vulnerability
R5: Impacts (Attack, Asset)—attact impacts asset

The model on Fig. 4 follows the notion of conceptual graph introduced by John 
Sowa (2000). However, in addition to the Sowa’s model, the conceptual graph 
shown on Fig. 4 illustrates two extensions: first, the concepts can be parameterized, 
and second, it is allowed to use computational relations between the parameters. For 
example, the model has parameter Impact Factor (IF) for the concept Attack, and 
parameter Permanent Operational Capacity (POC) for the concept Asset. Second, 
computational relations can be defined among parameters, e.g., relation POC 
Calculator between the parameters IF and POC. In Sect. 5.2, we will will show how 
POC will be calculated. The computational relations are depicted in conceptual 
graphs as small circles.

In the proposed model, the impact factor (IF) of an attack is a measure defined 
on an interval [0, 1]. Impact factor indicates a level of how much the attack is 
capable of compromising the attacked asset. IF = 0 means that the attack has no 
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impact on the asset, and IF = 1, means that the attack is totally destroying the asset 
by bringing its permanent operational capacity to 0. Assigning values for impact 
factor of cyber attacks is an important knowledge acquisition task, which requires 
analysis of historic attack data as well as consultation with cyber security experts. 
In this work, we use the asset vulnerability scores from the Open SourceVulnerability 
Database (OSVDB 2010) to calculate the attack impact factors as it is shown in 
Jakobson (2011b). If a vulnerability score is not available from this or any other 
similar software vulnerability database, an attack impact factor can be computed 
from the alert severity (priority) data, which is a common data field in all intrusion 
detection systems.

5  Cyber Situation Awareness and Resilient Cyber Defense

5.1  Cyber Situation Awareness Process

A general view of the cyber situation awareness (CSA) process was already pre-
sented in Sect. 3.2. Within the context of cyber defense, the sub-processes of CSA, 
Cyber Situation Sensing, Cyber Situation Perception, Cyber Situation 
Comprehension, and Plausible Future Cyber Situation Assessment sub-processes, 
have very specific content that reflects the nature of the domain of cyber defense, 
and will be correspondingly referred as Cyber Terrain Monitoring, Target SW 
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Fig. 4 Impact-oriented cyber attack model
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Impact Assessment, Mission Impact Assessment, and Plausible Future Mission 
Impact assessment (Fig. 5). Cyber Terrain Monitoring process includes the tasks of 
monitoring and analysis of cyber alert data that is coming from different hardware 
and software components of the cyber terrain. Target SW Impact Assessment pro-
cess includes the tasks of (a) cyber event correlation that it is used for detecting 
cyber attack patterns in the stream of incoming cyber events, (b) the task of attack 
point detection that determines what primary SW asset was targeted and on what 
HW platform, and (c) the task of assessment of the impact on that primary software 
asset that was caused by the cyber attack. Mission Impact Assessment process con-
tains tasks of attack impact propagation, and assessment of the impact of the cyber 
attacks on the currently ongoing mission steps. Finally, the Plausible Future Mission 
Impact Assessment process contains the tasks of plausible target SW asset impact 
assessment, propagation of the plausible attack impact through the cyber terrain, 
and assessment of the plausible impact on missions.

Several critical components of the described method of building mission-centric 
resilient cyber defense system, including cyber attack impact propagation, plausible 
future cyber attack impact assessment, situation-aware BDI multi-agent system 
architecture have been implemented and tested in SAIA (Situation Awareness and 
Impact Assessment)—an experimental prototype system developed at Altusys in 
2008–2010 under a contract with AFRL, Rome.

5.2  Target Software Impact Assessment

Target SW Impact Assessment (Fig. 5) starts with the task of cyber event correla-
tion, with the goal of recognition of cyber attacks. In this work, we are using our 
previous results on model-based temporal event correlation and intrusion detection 
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(Jakobson et al. 2000; Jakaobson 2003). An event correlation agent possesses beliefs 
(facts) about the structure of a particular application, i.e. all the entities and inter-
entity relations in the cyber terrain, and beliefs about the signature and anomalies of 
cyber attack situations. Corresponding models are built and maintained in the 
agent’s knowledge bases, such as Domain Ontology (classes of cyber terrain entities 
and relations), Situation Ontology (classes of cyber attack signatures and anoma-
lies), and Domain Constraints (constraints representing the semantics of the entities, 
relations, and entity parameters). Situations occurring in the world are recognized 
by applying a situation recognition rule. During the event correlation process, sev-
eral time-dependent functions are performed, including: (a) time-dependent count-
ing of event occurrences; (b) monitoring the duration of the situations and lifespan 
of the entities; (c) monitoring the correlation time window; (d) scheduling the time 
dependent actions; and (e) managing temporal relations between events.

The next step in Target SW Impact Assessment is the task of cyber attack point 
detection, i.e. determining whether the targeted asset is vulnerable to the attack. Not 
every cyber attack succeeds in attacking a SW asset, e.g., there may be situations where 
the attack is targeting a SW asset does not have vulnerabilities, which can be exploited 
by the attack. An attack might succeed if the following logical constraints hold:

IF (Attack C targets hardware platform H)
AND (Hardware platform H houses software asset A)
AND (Asset A has vulnerability V)
AND (Attack C exploits vulnerability V)
THEN (Attack C succeeds in impacting the asset A)

There are several known algorithms of logical constraint resolution (Dechter 2003). 
A specific method based on fast database search and match was implemented in 
Jakobson (2011b).

The final step of Target SW Impact Assessment is assessment of the impact on 
the primary software target. The impact is measured by the OC of the asset that is 
the result of combination of two factors: the reduction of the permanent operational 
capacity of the asset due to the direct cyber attack and indirect impact due to the 
dependency of this asset from other assets. Lets suppose that an asset A that depends 
also on asset B was a direct target of a cyber attack X. The combined operational 
capacity of asset A can be calculated as follows:

 
OC t Min Max POC t IF t OC tA A X B: , ,( ) = ( ) ( )( ) ( )( )- 0

 

where

POCA (t) is the current permanent operational capacity of an asset A at time t
IFX (t’) is the impact factor of an attack X at time t’ > t
OCB (t’) is the operational capacity of the asset B at t’
OCA (t’) is the operational capacity of the asset A at t’.

In the case where asset A is a terminal node in the cyber terrain, i.e. it does not depend 
on any other software assets, the above-given expression can be simplified:
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OC t Max POC t IF tA A X: ,( ) = ( ) ( )( )- 0

 

We should say that in the above-mentioned case, POCA(t ’) = OCA(t ’), since the 
asset A is a terminal node.

Since only software assets can be targets of direct cyber attacks, they can only be 
characterized by POC: no service, mission step, or mission has POC. Usually, the 
initial value of POC for all software assets is set to 1, i.e. the asset is claimed to be 
in a full operational order at the beginning of the mission.

5.3  Mission Impact Assessment

Mission Impact Assessment includes two main tasks: the task of cyber attack impact 
propagation and the task of mission impact assessment. As a cyber attack hits a SW 
asset in the cyber terrain, the impact of that attack starts to propagate through the 
cyber terrain via the links between the SW assets and IT services, reaches the mis-
sions, and continues propagation through the links between mission steps and mis-
sions until the top-level missions are affected. The cyber attack impact propagation 
process is formally described by the impact dependency graph (Jakobson 2011b). 
The impact dependency graph (IDG) is a mathematical abstraction of assets, ser-
vices, mission steps and missions and all of their inter-dependencies as they were 
initially described in the cyber terrain and in the mission model (see Fig. 6). In addi-
tion to the nodes of assets, services, mission steps and missions, IDG has two spe-
cial nodes: logical AND and OR-nodes. The AND-node defines that the parent node 
depends on all of its children nodes, while the OR dependency defines the required 
presence of at least one child node. The OR dependency is introduced in order to 
capture possible options to reconfigure cyber terrain or missions.

During the attack propagation from the attacked nodes (e.g. the red-colored node 
in Fig. 6), the operational capacities of all dependent nodes will be calculated. The 
node that is in the linear path in the IDG gets the operational capacity from its child 
node, while the operational capacities of the AND and OR nodes are calculated as 
follows:

 
OC t AVE OC t OC t OC tOR n( ) = ( ) ( ) ¼ ( )( )1 2, , ,

 

 
OC t MIN OC t OC t OC tAND n( ) = ( ) ( ) ¼ ( )( )1 2, , , ,

 

where

OCOR (t) is the operational capacity for an OR-node
OCAND (t) is the operational capacity for an AND-node
OC1(t), OC2(t), …, OCn (t) are the operational capacities of the child nodes for the 

OR and AND nodes.
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The mission part of the IDG is illustrated in Fig. 6 by Mission X, which has three 
sequential steps Step 1, Step 2 and Step 3 that are logically connected by the AND3 
node. IDG explicitly represents the temporal relations between mission components 
as it was discussed in Sect. 4.1. For example, the Mission X has two AFTER rela-
tions between the shown mission steps.

While calculating the operational capacities for missions we need to take into 
account the particular operational state of a mission. During real-time mission mon-
itoring, the impact of a cyber attack on a mission depends on two major factors: (1) 
what impact the attack has on steps of the mission, and (2) what operational state—
planned, ongoing, or completed state, the mission steps are in. For example, lets 
suppose that a cyber attack happened when the Mission X was already executing 
Step 2. In this case, the impact of the cyber attack on those assets that support Step 1 
could be considered irrelevant, since Step 1 was already completed. Contrarily, the 
ongoing Step 2 will be affected by the attack. The case for Step 3 that is planned for 
execution at the moment when the cyber attack is happening needs a special analy-
sis. First, since Step 3 has not yet been undertaken, its operational situation will not 
be accounted for in the calculation of the operational situation of the overall mis-
sion. However, we are able to calculate a potential impact on Step 3, which could 
happen. One practical action would be to reconfigure the cyber terrain or the mis-
sion. Since mission is a process that unfolds step-by-step as time progresses, its 
operational capacity is getting its starting value OC = 1, and then it is steadily 
decreasing depending on the operational capacities of its executed steps.

S2 S4

Mission X

S1
S6 S7

OR1

OR

AND3

S2 S3

A3

S5

S1

A1 A2

A4 AND1

OR2

Missions

IT Services

SW Assets

Step 1 Step2 Step 3

Agent Pool

OC12

OC16

OC1

OC4

OC3

OC5

OC8

OC7

OC13 OC15
OC14

AND2

OC10

OC2

OC9OC11

OC20 OC17 OC18

OC21

OC19

OC6

IT Service-to-Mission 
Dependencies

Intra -IT -Service
Dependencies

Intra –SW-Asset
Dependencies

SW Asset-to-IT Service
Dependencies

Intra -Mission
Dependencies

After1 After2

Fig. 6 Impact dependency graph

Mission Resilience



314

6  Plausible Future Mission Impact Assessment

6.1  The Principle of Plausible Future Cyber Situations

In recent years several approaches have emerged in detecting and predicting future 
attacks, including probabilistic reasoning (Valdes and Skinner 2001; Goldman et al. 
2001), statistical alert analysis (Qin and Lee 2004b), clustering algorithms (Debar 
and Wespi 2001), methods based on causal network analysis (Qin and Lee 2004c), 
and cyber attack condition matching (Cheung et al. 2003b). An approach presented 
in this chapter is based on assessment of plausibility of future cyber security situa-
tions rather than on probability of future cyber attacks. We will give a general over-
view of the approach, while a more detailed description of the approach is given in 
Jakobson (2011a).

The central notion of the approach is the principle of Plausible Future Situation 
(PFS). PFS is defined as a situation that with some degree of likelihood could hap-
pen at some point in time in the future. Our premise is that if some cyber security 
situation happened once, e.g., a certain asset was compromised due to a cyber 
attack then the detected cyber security situations could happen in the future with 
another asset that to some degree of likelihood is “similar” to the already attacked 
cyber asset.

6.1.1  The Principle of Plausible Future Cyber Situations

For any assets a, b ∈ A
Compromised (a(t), OCa(t)) & Similar ((a(t), b(t)), q(a, b))            
Plausible (Compromised (b(t’), OCb(t ’) = OCa(t)), p = q(a, b)), t ’ > t

The PFS principle states that if at some time moment t an asset a is compromised 
to the level of OCa(t) and the strength of similarity between the assets a and b is 
equal to q(a, b), then the plausibility that the asset b could be compromised at a 
future time t’ > t to the same level that the asset a was compromised at moment t, i.e. 
OCb(t ’) = OCa(t), is equal to the level (to the strength) of similarity between the 
assets a and b.

Example: Let’s assume that at some time t a database was hit by a cyber attack 
with an impact factor 0.3, which, by exploiting a vulnerability of the database 
reduced its operational capacity from the original value of 1.0 to 1.0 - 0.3 = 0.7. It is 
known that in the targeted network, in some other host, resides the same database, 
however, with a different release. Let’s assume that due to the difference in releases, 
the similarity level of the databases is 0.85. Application of the PFS allows us to 
come up with a conclusion that some time in the future (not exactly when) it is 
plausible with certainty 0.85 that the other database could lose its operational capac-
ity to the level of 0.7.

As was stated already, the crucial factor in calculating the plausible future 
cyber security situations is to identify the methods and algorithms for assessing the 
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similarity between the assets. For this purpose, we are introducing several specific 
asset similarity relations:

 1. Vulnerability-Similarity—similarity of assets is based on the set of their com-
mon vulnerabilities, like type, criticality, and the number of common vulnerabil-
ities of the assets.

 2. Configuration-Similarity—the similarity measure depends on the software prod-
uct type, version, release, manufacturer, and other structural characteristics of 
the product.

 3. Location-Similarity—the similarity measure depends on the location of the asset 
in the network, e.g. are the assets in the same subnet or LAN, geographic loca-
tion of the servers, etc.

 4. Functional-Similarity—the similarity measure depends on a set of common 
functions provided by the assets.

 5. Temporal-Similarity—calculates the similarity measure depending on the close-
ness of the time-dependent correlation of the activities performed by the assets.

 6. Mission-Similarity—calculates the similarity measure depending on the number 
of common missions supported by the assets.

 7. Usage-Similarity—calculates the similarity measure depending on common 
traffic patterns, where the assets are involved.

Construction of the functions for calculating the different similarity measures 
requires focused knowledge acquisition efforts, including interviewing IT experts 
and mission management experts, analysis of historical statistical data, and using 
the automatic algorithms of data mining.

Example: For illustration purposes, let’s discuss the asset similarity relation that is 
based on common vulnerabilities. We will use the asset vulnerabilities listed in the 
Open Source Vulnerability Database (OSVDB) (Feder et al. 2009). For a given 
 vulnerability, the OSVDB records identify the versions of a vendor/product that share 
the same vulnerability. For example, vulnerability # 22919 "Oracle Database XML 
Database DBMS_XMLSCHEMA_INT Multiple Procedure Remote Overflow" affects 
the product/versions from the vendor "Oracle Corporation" as it is shown in Table 1.

Table 1 Common vulnerability table

Product Product # Release Version

Database 10 g 2 10.2.0.1
Database 10 g 1 10.1.0.3

10.1.0.4
10.1.0.5
10.1.0.4.2

Database 9i 2 9.2.0.6
9.2.0.7

Database 8i 3 8.1.7.4
Database 9i 1 9.0.1.4

9.0.1.5
9.0.1.5

Database 8 8.0.6 8.0.6.3
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Table 2 contains practically feasible combinations of similarities (measured by 
binary 1) and dissimilarities (binary 0) between two software assets along Product, 
Product #, Release, and Version coordinates as shown below. In consultation with IT 
personnel, an asset vulnerability-based similarity function pvs was constructed as 
shown in the last column in Table 2.

In general, two assets might be related with multiple similarity relations. In this 
case, an asset similarity index is introduced that calculates a combined effect of them.

6.2  Plausible Future Mission Impact Assessment Process

Plausible Future Mission Impact Assessment process (see Sect. 5.1) contains three 
tasks, the tasks of plausible target SW impact assessment, propagation of the plausi-
ble attack impact through the cyber terrain, and assessment of the plausible impact 
on missions. Below we will give a brief description of the process:

 1. During the first task, those plausible target SW assets are determined that based 
on application of the Principle of Plausible Future Cyber Situations have a high 
level similarity to already compromised SW assets. Let’s call those assets high 
plausibility target SW assets.

 2. During the second step, the method of cyber attack impact propagation through 
the IDG (that was described in Sect. 5.3) will be applied to all assets in the set of 
high plausibility target SW assets.

 3. During the third step, the plausible cyber attack impact propagation process will 
be carried over to the mission portion of the IDG, and plausible impacts to mis-
sion will be assessed.

7  Mission Resilience Through Adaptation

7.1  Adaptation in Federated Multi-Agent Systems

The resilient cyber defense system has to adapt to the changes in the operational 
environment, adversary activities, and available system resources. It is assumed that 
an adaptable system should exhibit autonomous run-time behavior without outside 
intervention, including the following types of adaptation:

Table 2 Asset similarity function

Similarity class Product Product # Release Version qvs

1 1 1 1 1 1.0
2 1 1 1 0 0.9
3 1 1 0 0 0.75
4 1 0 0 0 0.5
5 0 0 0 0 0.0
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 – Structural adaptation—adaptation to the internal structural changes, e.g., loss of 
inter-node connectivity in the cyber terrain, or loss of agents capable of imple-
menting mission tasks.

 – Functional adaptation—adaptation to the changes in the functional role of sys-
tem components, e. g. changes in the tasks performed by the mission nodes or 
cyber services.

 – Resource adaptation—adaptation to the changes in the physical, cyber and 
human resources made available to the system, e.g. changes in the volume, qual-
ity and availability of cyber assets and services that support missions.

All three types of adaptations are useful in adaptation of the cyber terrain and mis-
sions to achieve mission resilience under a cyber attack. As we discussed in Sect. 4.1, 
missions are modeled as flows of mission steps, where a mission step could be 
another mission, another flow, or an executable mission task. From a mission execu-
tion viewpoint each mission task is implemented by an agent that is assigned to the 
task. Such an approach to modeling of mission tasks by an agent allows us to repre-
sent all mission tasks collectively as a multi-agent system (MAS). MAS is widely 
used for modeling complex distributed systems due to such features as a capability 
to act independently in a persistent manner, rational reasoning, interaction with the 
world, and mobility (Wooldridge 2002). One of the most popular formal models of 
MAS is the Belief-Desire-Intension (BDI) model. It was conceived as a relatively 
simple rational model of human cognition (Norling 2004). It operates with three 
main mental attitudes: beliefs, desires and intentions. Rao and Georgeff (1995) 
replaced the declarative notion of intentions with a procedural specification of 
instantiated and executable plans. Our approach of constructing the internal struc-
ture and behavior of a mission agent is based on the model of adaptable situation 
aware Belief Desire Intension (BDI) agent (Jakobson et al. 2008).

7.2  Mission Resiliency Preserving Adaptation Policies

Mission adaptation policies are rules that are used by an agent to modify the mission, 
its components and inter-dependencies between the mission components. As we talk 
about missions as objects of adaptation, two important aspects should be considered:

 (a) Single Entity Level Adaptation. Each entity, e.g. a mission, a mission task, or an 
agent that implements the mission task, can be modified. For example, one can 
change the criticality index of a mission or a task, or operational capacity of a 
task or an agent. An important adaptation function is the selection of an agent 
from a pool of pre-defined agents to implement a particular mission task. For 
example, IDG on Fig. 6 shows that an agent pool containing three agents is 
assigned as potential alternative implementers to mission Step 3.

 (b) Inter-Entity Relations Level Adaptation. The inter-entity relations adaptation 
covers the functions of changing or modifying the structural, temporal, logical, 
and domain-specific relations between the entities. For example, adding or 
deleting a mission task, changing the AND-nodes and OR-nodes in a mission 
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flow, changing the temporal order of tasks in a mission flow, delaying or 
 speeding up the start or end time of a mission or its components.

Below we will present a sample list of Mission Adaptation Policies that are divided 
into two sets, those that are designed for currently ongoing missions, and for those 
missions that are planned for future execution.

Adaptation policies for ongoing mission tasks that are under execution at the 
time of a cyber attack:

 A1.  For every currently active mission task, select an agent from a corresponding 
agent pool that has the highest operational capacity, which is equal to or 
greater than the required operational capacity specified in the mission task. If 
no agent is found, use Policy A2.

 A2. Reduce, incrementally, the value of the task’s required operational capacity 
from the current value to the lowest trusted level. For each incremental 
required operational capacity value perform the Policy A1. If no agent is found 
that matches Policy A1, use Policy A3.

 A3.  Modify the mission task flow so that the tasks with no matching agent are 
moved to a later time of execution. Issue a CT reconfiguration order to replace/
or repair the CT node with low operational capacity.

 A4.  Stop execution of those mission tasks, where (a) the stop task execution per-
mission is granted, and (b) no agent could be found with operational capacity 
that is at least equal to the required operational capacity of the task.

 A5. Select from the alternative mission flows (mission flows that are in OR condi-
tion among themselves) a flow where all tasks have the matching agents, 
whose operational capacities are greater than the required operational capaci-
ties in the corresponding tasks.

 A6. First select those tasks from the “Cloud” in the mission flow that satisfy the 
required operational capacity condition. For the rest of the tasks issue CT 
reconfiguration orders.

Adaptation policies for future tasks that are planned for execution:

 B1. Issue a request to Mission Command and Control to modify the future part of 
the ongoing mission to satisfy the required operational capacity conditions for 
all planned tasks.

 B2. For all tasks, whose corresponding agents have operational capacities that are 
below the required ones, issue CT reconfiguration orders.

 B3. Follow policies A1 and A5.
 B4. Make all required calculations to implement policies A2, A3, A4, and A6.

8  Summary

Cyber Situational Awareness supports the situation management process that aims to 
achieve mission resiliency. The system resilience is designed to anticipate and avoid 
disruptive incidents, survive, and recover from natural disruptions, system faults or 
adversary actions—this is also true for mission-centric resilient cyber defense systems.
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The quality of cyber defense should be measured by the level of success of 
 missions that are achieving their operational goals, even if they are forced to operate 
in a compromised cyber environment. A solution to cyber defense is found in adopt-
ing a resilient mission-centric cyber defense architecture, where collective and adap-
tive operations of missions and cyber terrain resources allow mission continuation. 
A synergistic cyber-physical situation awareness system includes two interacting 
processes, the process of mission operation situation management and mission cyber 
defense situation management. The Situation Management Process involves a loop 
that includes the Current Situation Awareness process and Decision Support Process. 
Cyber terrain is a multi-level IT infrastructure that models cyber assets and services, 
their inter-dependencies, vulnerabilities and operational capacities. Cyber terrain 
contains three sub-terrains: network infrastructure, software assets, and IT services. 
Cyber attack is a sequence of deliberate actions of using malicious code carried out 
by individual or organized attackers to gain access to protected IT assets, alter/com-
promise computer code and data, and ultimately disrupt or destroy systems, business 
processes and missions whose operations are supported by attacked IT assets. The 
sub-processes of CSA include Cyber Terrain Monitoring, Target SW Impact 
Assessment, Mission Impact Assessment, and Plausible Future Mission Impact 
assessment. The Resilient cyber defense system has to adapt to the changes in the 
operational environment, adversary activities, and available system resources. An 
adaptable system should exhibit autonomous run-time behavior without outside 
intervention, including structural, functional and resource adaptation. Mission adap-
tation policies are rules that are used to modify the mission, its components and 
inter-dependencies between the mission components. Mission-centric resilient 
cyber defense is in an extensive stage of research and development. There are sev-
eral major challenges ahead. The first challenge is related to the development of a 
common “lingua franca” for specifying and modeling basic elements of mission- 
centric cyber defense: we are eager to manipulate the terms like cyber attack, cyber 
defense, cyber attacker, system resilience, adaptation, events, situations, context, 
etc. but still do not have a consensus on their meaning, and very often lack adequate 
languages and models describing them. The second major challenge is related to the 
matrices of expected quality achieved for the proposed solution of cyber defense. 
The future road from resilient cyber defense to active cyber defense and then to 
offensive cyber actions still needs conceptual, technological and legal attention.
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      Concluding Thoughts 

             Alexander     Kott     ,     Cliff         Wang     , and     Robert     F.     Erbacher    

1            Challenges 

 As we conclude this book, it is worth pointing out that although the research com-
munity has made quantum leaps in science and technology of information security, 
especially in the area of cyber situation awareness, we are far from perfect in defend-
ing our cyber systems. Challenges ahead of us are abundant. 

 Some of these challenges arise from the uncertainty about the exact nature of 
similarities and differences of SA in physical and cyber worlds, and from the unique 
characteristics of cyber operations. To what extent can we transfer our insights and 
theories of SA from largely physical or “kinetic” domains to the domains of cyber 
security? One may argue that important extensions, adaptations, and even major 
paradigm shifts could be required to accommodate the unique aspects of SA in 
cyber domains. Are the differences real, and how critical are the infl uences of these 
differences? In the following, let us consider briefl y several such aspects: 
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1.1     Human Actors in the Cyber Space 

 Cyber operations involve extensive participation of humans, as users, defenders and 
attackers. This is largely comparable to the domains of physical or “kinetic” SA in 
military or other settings where active adversaries are present. In the cyber world, 
however, one difference worth noting is the oversized role played by users. These 
legitimate and generally friendly citizens of the cyber space are responsible for 
an enormous volume of observable activities, many of which happen to be diffi cult to 
distinguish from malicious activities by adversaries. Thus, the adversary is afforded 
endless opportunities to hide within the mass of legitimate users’ activities. Unlike 
“kinetic” SA in military settings, the boundary between attackers and defenders has 
never been well defi ned. Further, our attackers also enjoy asymmetric advantages 
over us (in terms of their operation modes and visibility of such operations), as will 
be discussed in the next section. 

 The resulting complexity might be compared to SA in counter-insurgency, anti- 
terrorism, and crime fi ghting domains where the adversaries hide among innocent 
civilians. Still, the cyber world presents an important distinction: users of computer 
systems can often—mainly due to naïve or erroneous use of the systems—produce 
a large volume of suspicious looking actions that have few similarities in a physical 
domain. To put it differently, an unwitting user of a computer network has far more 
opportunities to produce malicious-looking behaviors than an innocent shopper has 
chances to appear as a dangerous terrorist. 

 For these reasons, cyber defenders not only have to build an adequate SA of our 
cyber infrastructure, but they also have to understand well the behaviors of regular 
users and their associated tasks, objectives, misconceptions and errors. In addition, 
a challenging task of the defenders is to establish SA of the adversary in the confus-
ing context of regular users’ activities: their intention, capability, objective, and 
process. The challenges of SA that differentiates adversary from an unwitting user 
in cyber environments are further multiplied by the facts that cyber adversaries can 
operate with far greater stealth than is possible in a physical environment. 

 Perception and comprehension of the adversary has been and will continue to be 
hard challenges of cyber SA. A human adversary could be highly irrational while 
intelligent, and highly disciplined yet unpredictable. They could be sponsored by a 
nation state, with dynamic capabilities and more than suffi cient resources. The 
adversaries could be great learners of our defensive capabilities and procedures as 
well. The dynamic, adaptive, and intelligent nature of today’s adversaries pose a 
great challenge to the SA process since our understanding of adversarial behaviors 
could be short lived, and our projection based on their transient state could lead us 
into a wrong direction when they evolve their techniques quickly.  
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1.2     Highly Asymmetric Nature of Cyber Attacks 

 Cyber space attacks are exceptionally asymmetric in nature, arguably even more so 
than those in the domains of terrorism and insurgency that are well known to be 
asymmetric. Defenders are charged with the mission of fi ghting with almost entirely 
unknown attackers and protecting cyber assets from zero day attacks that are by 
defi nition unknown to the defenders. Any applicable knowledge may be extremely 
limited and short lived, making it hard to predict attackers’ rapidly evolving behav-
iors, approaches, and strategies. Particularly for zero day attacks, the defenders 
must learn and understand the situation and its details swiftly. Perhaps the best 
strategy may rely on rapid learning (which, to be sure, brings its own great diffi cul-
ties), and on fast reactions based on limited and partly uncertain comprehension. 

 On the other hand, the adversary has excellent opportunities for achieving accu-
rate CSA, because today’s cyber defense systems are mostly static, and our defense 
strategies are only marginally adaptive. Our adversary benefi ts from learning from 
us, a process which could be carried out in a well planned and well timed manner, 
given that our defensive approaches are relatively stable and change only slowly. 
The adversaries could benefi t from knowing our extant processes for forming and 
utilizing our SA, in order to understand our cyber operations well and to craft new 
attacks that can exploit our related weaknesses effectively. 

 In essence, due to the static nature of our cyber systems and operating processes, 
and current passive defense strategy, the asymmetry of our current cyber defense 
tends to offer attackers great benefi ts. For this reason, it is critical for the researchers 
and practitioners of cyber defense to work towards ways to reverse the asymmetry 
to benefi t the defense side. Among the promising approaches are new techniques 
such as moving target defense.  

1.3     Complexity Mismatch Between Human Cognition 
and Cyber World 

 Following Moore’s law, computational power grows exponentially, while human 
cognitive capability remains largely unchanged. In addition, advances in machine 
intelligence have made computing much more powerful, as measured by both the 
speed of number crunching as well as by the sophistication of computational meth-
ods and processes. As a result, cyber defenders are facing future attacks that are 
highly sophisticated and that can be launched on a much larger scale. 

 Our cyber infrastructure continually increases in its complexity and in the num-
ber of critical missions that it is expected to support. In the meantime cyber sensors 
grow ever more powerful and ubiquitous, bringing in much more data than we can 
process. For example, during a large-scale coordinated denial of service attack that 
combines several attacking schemes and uses effective camoufl age to hide its true 
attack vector, a tremendous number of alerts could be generated in a very short 
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period of time and overwhelm human analysts. On the other end of the spectrum, for 
a slow and stealthy type of attack, the true attack trace could be deeply and carefully 
embedded in the high volume of normal traffi c, making it hard for an analyst to 
identify and observe. 

 In essence, cyber systems are getting bigger, tasks more complicated, and attacks 
more sophisticated—all of which lead to a tremendous growth in the amount of data 
for a human analyst to absorb—while our cognitive capabilities remain the same. In 
order for human defenders to be effective in identifying and defeating future cyber 
attacks, novel tools and models that can help fi ll the gap between cyber data and 
situation comprehension by cyber analysts are highly desired.  

1.4     Disconnect Between Cyber Operations and Mission 

 The current practice of cyber defense is often fragmented and inadequately inte-
grated with the broader goals of assuring effective mission execution. While one 
cyber analyst may focus on maintaining computer security, he or she may not 
 interact with another analyst monitoring the network status. This fragmentation of 
cyber operations is partially due to the lack of an effective mission model that ties 
all parts of a cyber operation together. A mission model is important for SA in any 
domain, not only in cyber security. However, in more physical domains, a mission 
model tends to be driven by well understood, intuitive physical causal chains, easier 
to form, and often may remain implicit. Not so in the cyber domain where it is often 
diffi cult to understand the dependencies between the physical or cyber mission, and 
the cyber effects that may negatively impact the mission. 

 A cyber mission model and CSA are mutually dependent: CSA is diffi cult to 
achieve without a mission model while at the same time the mission model—often 
rapidly evolving during an operation—is impossible without CSA. Adversarial 
information, including the possible adversarial impacts on the mission, is also 
important in forming SA and making decisions for mission operations. Well estab-
lished and insightful cyber mission models translate mission assurance require-
ments into well orchestrated cyber operations, and help turn cyber defense from 
being merely reactive to one that is proactive and focused on mission assurance.   

2     Future Research 

 Although the interactions between cyber attackers and defenders can be highly 
dynamic, and the nature of the interactions may evolve rapidly, a theoretical model 
that captures key invariants related to cyber defense can be helpful in maintaining 
CSA and in devising, optimizing and executing defensive actions. Such a model 
would focus on capturing several unique aspects of cyber operations. 
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 First, cyber situation continually evolves for both defenders and attackers. 
Our cyber assets change from time to time. Different missions start and end 
 continuously. Our adversaries may pose different threat levels, and our monitoring 
and surveillance give us continually updated information on their techniques and 
capability. The key issue is how we can form the awareness of the dynamically 
changing situation in quantifi able ways that support rational decision-making. 

 Second, the defenders’ SA and decision-making must be based on criteria that 
maximize the effectiveness of the defense. The set of criteria would capture impor-
tant considerations such as satisfying minimum necessary requirements for mission 
assurance, or minimizing the adversary’s ability to observe our cyber assets or to 
launch damaging attacks. To this end, it may be possible to leverage new concepts 
and advances in control theory and system modeling to guide CSA, and to enable 
better cyber defense and mission assurance, such that our dynamic strategy and 
proactive actions will increase the cost to the adversary for launching attacks while 
in the meantime not incurring a huge cost to the defense side. 

 Third, the cyber dynamics model would support multiple levels of abstraction, 
e.g., it would refl ect operations—and the corresponding CSA—at both strategic and 
tactical levels. The dependencies between different levels are also important to cap-
ture in the model and need to be understood well. It could be quite possible, for 
example, that in order to achieve strategic mission assurance, certain sacrifi ces at 
tactical levels may be needed, such as reducing bandwidth allocation for certain 
non-essential traffi c types, or isolating certain nodes for quarantine purposes. 

 Obviously, comprehensive modeling of cyber operations is a daunting task due 
in part to the highly complex nature of cyber systems and the dynamic missions they 
execute or support. Active human participation by both users and malicious attack-
ers further complicate the picture. Nevertheless, promising research directions exist 
that may help meet these challenges. For example, game theoretic approaches offer 
opportunities for analyzing and modeling two party and multi-party interactions, 
and help decision making to maximize defender’s returns. However, current 
approaches have limited successes in dealing with the exponential growth in com-
plexity as the game must become ever more sophisticated in order to model rapidly 
evolving sophistication of cyber operations. 

 Recent research interests have focused on advancing game theory and its appli-
cations to cyber systems. Advancement in this line of research may bring insights 
and new techniques that would help cyber defenders at two distinct levels. In macro- 
level strategy, the research would yield a set of guiding principles for cyber opera-
tion that can satisfy mission assurance requirements under resource constraint, and 
under known and assumed threats and attacker capabilities. In micro-level decision 
support, the research results may point to specifi c actions to deal with real time or 
near real time threats, in order to defeat ongoing attacks or to prevent future ones. It 
should be possible to link the two levels (or multi-level) of strategy and decision 
making. For example, while the macro-level strategy provides security guarantees 
from a long-term, security assurance perspective, the micro-level actions support 
mission assurance for both the ongoing operations and the long term assurance 
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objective. The multi-level perspective may shed new light on how to form and 
 maintain SA that simultaneously supports strategic and tactical decisions. 

 It is also critical to turn around the asymmetry of our current cyber defense oper-
ations. For far too long, this asymmetry has provided cyber attackers with signifi -
cant advantages. In particular, our current cyber systems, due to their static nature, 
allow the attackers to observe our defense for extensive periods of time, and to 
obtain highly accurate CSA before launching decisive attacks. One fundamental 
question is how to change the asymmetry around in a fundamental way. 

 Moving target defense is a new approach that suggests that defenders should 
continually and dynamically modify their systems. But how? New research is 
needed towards theoretical models that can guide the system updates in an optimal 
way. In particular, any such approach should make sure that frequent updates of the 
defenders’ systems do not produce a negative impact on the defenders’ CSA. 

 For example, it may be possible to leverage advances in control theory and to 
develop models of cyber operations where defenders and attackers have their own 
distinct sets of objectives, approaches and techniques. This would enable novel for-
mulations that seek to minimize the observability and more generally the adver-
sary’s CSA of our cyber systems by proactive and adaptive system changes, while 
maintaining maximum control, accessibility and CSA for defenders. Such 
approaches may help future defense to be much more proactive, to offer asymmetric 
advantages to the defenders, and ultimately to offer a high level of mission assur-
ance. It is anticipated that with research advancement and new capability creation, 
we will be more adaptive, more proactive, and ultimately more effective in future 
cyber defense.    
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