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Abstract. We present two new measures of retrieval effectiveness, in-
spired by Graded Average Precision (GAP), which extends Average Pre-
cision (AP) to graded relevance judgements. Starting from the random
choice of a user, we define Extended Graded Average Precision (xGAP)
and Expected Graded Average Precision (eGAP), which are more accu-
rate than GAP in the case of a small number of highly relevant documents
with high probability to be considered relevant by the users. The pro-
posed measures are then evaluated on TREC 10, TREC 14, and TREC
21 collections showing that they actually grasp a different angle from
GAP and that they are robust when it comes to incomplete judgments
and shallow pools.

1 Introduction

Average Precision (AP) [2] is a simple and popular binary measure of retrieval
effectiveness, which has been longly studied and discussed. Robertson et al. [9]
proposed Graded Average Precision (GAP), an extension of AP to graded rele-
vance together with a probabilistic interpretation of it, which allows for different
emphasis on different relevance grades according to user preferences.

When it comes to graded relevance judgements, the need to develop systems
able to better rank highly relevant documents arises but it also poses challenges
for their evaluation. Indeed, unstable results may come up due to the relatively
few highly relevant documents [10] and this may become further complicated
when you consider also a user model as the one of GAP, where varying impor-
tance can be attributed to highly relevant documents according to the user view
point.

In this paper we propose two extensions to GAP, called Extended Graded
Average Precision (xGAP) and Expected Graded Average Precision (eGAP),
which reformulate the probabilistic model behind GAP putting even more em-
phasis on the user and which are able to better cope with the case when the user
attributes high importance to few highly relevant documents. The experimental
evaluation, in terms of correlation analysis and robustness to incomplete judg-
ments, confirms that xGAP and eGAP take a different angle from GAP when
it comes to users attributing high importance to few highly relevant documents
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and that they are robust to incomplete judgments and shallow pools, thus not
requiring costly assessments. Moreover, the evaluation provides also some more
insights on GAP itself, not present in its original study [9].

The paper is organized as follows: Section 2 considers the general problem
of passing from binary to multi-graded relevance; Section 3 briefly recalls the
GAP measure and outlines some of its possible biases; Section 4 and Section 5
introduce, respectively, the xGAP and the eGAP metrics, outlining the differ-
ence with GAP; Section 6 conducts a thorough experimental evaluation of the
proposed measures; finally Section 7 draws some conclusions and provides an
outlook for future work.

2 Mapping Binary Measures into Multi-graded Ones

Given a ranked list of N documents for a given topic, we will denote by r[j]
the relevance of the document at the rank j. The relevance will be an integer
belonging to S(c) = {0, . . . , c}, where 0 denotes a not relevant document and the
higher the integer the higher the relevance. A measure of retrieval effectiveness
will be defined binary if c = 1 and multi-graded if c > 1.

The basic binary measures of retrieval effectiveness, recall and precision, can

be defined as follows Rec[n] =
∑n

i=1 r[i]

RB and Prec[n] =
∑n

i=1 r[i]

n , where n ≤ N is
the rank and RB, the recall base, is the total number of relevant documents for
the given topic. As a consequence, AP can be defined as follows

AP =
1

RB

N∑

n=1

r[n]Prec[n] = Rec[N ]
1

∑N
n=1 r[n]

N∑

n=1

r[n]Prec[n] . (1)

The last expression highlights how AP can be derived as the product of the recall
and the arithmetic mean of the precision at each relevant retrieved document.

When you have to apply these binary measures in a multi-graded context,
the typical approach is to map the multi-graded judgments into binary ones
according to a fixed threshold k ≥ 1 in the grade scale and then compute the
binary measure according to its definition. This approach actually leads to a
family of measures depending on the threshold used to map the multi-graded
relevance scale into the binary one. For example, [10] studies the effect of setting
this threshold at different levels in the grade scale.

We now show how the above mentioned approach can be directly embedded
into evaluation measures, further highlighting that it gives raise to a whole fam-
ily of measures. Indeed, instead of mapping the judgements to binary ones and
then apply a binary measures, you can make a binary measure parametric on the
mapping threshold and obtain a different version of it for each threshold. Fol-
lowing [9], we assume that any user owns a binary vision (relevant/not-relevant
document), but at a different level of relevance, which is the mapping threshold
k. Indeed, if for a given topic we denote by R(k) the total number of documents
with relevance k, their recall base is RB(k) = R(k)+R(k+1)+ . . .+R(c). Note
that k → RB(k) is a integer-valued, non negative and non increasing function
and it is useful define τ := max{k : RB(k) > 0}.
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There, a user with threshold k defines recall as Rec[n](k) =
∑n

i=1 r[i](k)

RB(k) if

k ≤ τ and 0 otherwise, precision as Prec[n](k) =
∑n

i=1 r[i](k)

n and AP as

AP (k) =
1

RB(k)

N∑

n=1

r[n](k)Prec[n](k) =
1

RB(k)

N∑

n=1

1

n

[ n∑

m=1

δm,n(k)
]

(2)

for k ≤ τ and zero otherwise, where r[n](k) = 1 if r[n] ≥ k, zero otherwise, and

δm,n(k) =

{
1 if r[m] ≥ k, r[n] ≥ k
0 otherwise .

(3)

As discussed above, this user’s oriented vision leads to a family of measures,
depending on the threshold k chosen by each user. In order to obtain a single
measure of retrieval effectiveness (and not a family), [9] assumes that the users,
and so their thresholds in the grade scale, are distributed in the total population
according to a given probability distribution. This opens the way to two alter-
native approaches to define a multi-graded measures based on user thresholds:

1. To define a new multi-graded measure whose internals are based on some
expected quantities dependent on user’s thresholds;

2. To evaluate the expectation of a binary measure at different user’s thresholds.

GAP is defined following the first approach and in the next section we will
argue that it presents some bias when few relevant documents are the only one
considered relevant by a user.

To overcome this problem, we provide two solutions corresponding to the two
alternative approaches above: in Section 4 we follow the first approach and in-
troduce xGAP which defines a new multi-graded measure from scratch adopting
a philosophy similar to GAP; in Section 5 we follow the second approach and
introduce eGAP, which provides a new multi-graded extension of AP by taking
the expectation of (2).

3 Graded Average Precision

Let Ω be the sample space of all the possible users and assume that a user
fixes a threshold k strictly positive in S(c) with probability gk. This can be
formalized defining the threshold of a user by a random variable K from Ω into
S(c) with distribution (g0, g1, . . . , gc), where g0 = 0. Using this notation, in [9]
they evaluate the expected precision with respect to g of each relevant document
in the ranked list, then sum up all these expected values and normalise the result
dividing by its maximum. Their computation leads to the following definition:

GAP =

∑N
n=1

1
n

∑n
m=1 Δm,n

∑c
k=1 R(k)

∑k
j=1 gj

, (4)

where Δm,n =
∑min {r[m],r[n]}

h=1 gh with the convention that
∑0

h=1 = 0. If ν =
min{i : gi �= 0}, the previous formula is well defined just for ν ≤ τ . Indeed, if
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ν > τ , none of the relevant documents is considered relevant by any user almost
surely and for this reason we will define GAP = 0 in this case. Furthermore, it
is easy to prove that E[RB(K)] =

∑c
k=1 RB(k)gk =

∑c
k=1 R(k)

∑k
j=1 gj, and so

GAP =
1

E[RB(K)]

N∑

n=1

E[r[n](K)Prec[n](K)].

GAP can thus be obtained substituting the expected values of the graded pre-
cision and the graded recall base in (1). Note that this is quite different from
taking E[AP (K)], where AP (K) is the composition of K with (2), since RB(K)
and Prec[n](K) are not independent and, even if they were, Jensen’s inequality
ensures that E[1/X ] < 1/E[X ] for any non trivial positive random variable X .
This confirms that, to introduce a multi-graded measures, GAP adopts the first
of the two approaches outlined in the previous section and not the second one.

[9] also defines GAP as the expectation of the following three steps random
experiment: (i) select a document that is considered relevant by a user (accord-
ingly to the user model described above) at random and let the rank of this
document be n; (ii) select a document at or above rank n, at random and let the
rank of that document be m; (iii) output 1 if the document at rank m is also
considered relevant by the user.

In the first step, to avoid problems for the possible absence of highly relevant
documents, [9] defines the slightly artificial probability to select at random the

document at rank n as
∑r[n]

j=1 gj
∑c

i=1 R(i)
∑i

j=1 gj
. This choice leads to issues exactly in

these corner cases. Indeed, consider the case where c = 2, R(1) = 10 and R(2) =
1. If the probabilities g1 and g2 are both 1/2, we get that the probability to select
one of the 10 documents of relevance 1 is equal to 1/12, while the probability to
select the only document with relevance 2 is 1/6, that appears a reasonable set
of values. However, if we increase the probability g2 up to 9/10, i.e. the unique
relevant document for nine users over ten will be that of relevance 2, we get that
the probability to select “at random” this document is just equal to 1/2.

An additional bias in the definition of GAP can be observed in the following
case. Let again c = 2 and assume that a run presents the first n documents
of relevance 1 and then a unique document of relevance 2, followed possibly by
additional non relevant documents. It is easy to prove, that for n that goes to
infinity, the value of GAP tends to 1, independently from the values of g1 and
g2. This means that, even when g2 is close to 1 and the user is interested just in
that highly relevant document appearing at the end of a (infinitely) long ranking,
GAP will evaluate the system as approaching the performance of the ideal one
instead of a very bad one.

4 Extended Graded Average Precision (xGAP)

To overcame the previous possible biases, we propose to define an extended
version of GAP by reconsidering the “user” role in the previous three steps
random experiment . So, to evaluate the probability to select at step 1 at random
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the document dn at rank n, we will assume to choose first at random a user
and then to select at random among the documents considered relevant by this
user. This new interpretation leads to the probability to select the document

dn equal to
∑r[n]

k=1
1

RB(k) gk where we take into account the different size of any

relevance class (recall that
∑0

k=1 = 0). Note that, assuming again that R(1) = 10
and R(2) = 1, for g1 = g2 = 1/2 we get here that we choose at random any
of the relevance 1 documents with probability 1/22 and the only relevance 2
document with probability 12/22, but when g2 = 9/10, the probability to select
the document of relevance 2 is now 100/110.

Following the same computation in [9] for the steps 2 and 3, we again obtain
that the probability that the document dm at rank m ≤ n is relevant when

dn is relevant, is equal to 1
n

∑n
m=1 Δm,n
∑r[n]

k=1 gk
Collecting all the previous results and

changing the order of the summation we define the Extended Graded Average
Precision (xGAP) as:

xGAP =

N∑

n=1

1

n

⎡

⎣
∑r[n]

k=1
gk

RB(k)
∑r[n]

k=1 gk

( n∑

m=1

Δm,n

)
⎤

⎦ (5)

when ν ≤ τ and 0 otherwise. Note that, in the case of a run with an increasing
number of documents with relevance 1, followed by only one document with
relevance 2, the value of xGAP as n tends to infinity converges to 1−g22, a much
more reasonable value.

5 Expected Graded Average Precision (eGAP)

Let us now apply the second approach to define a multi-graded extension of AP.
Take the function (2), compose this with the random variable K that defines
the relevance threshold of any user and take the expectation of this composed
random variable. We will obtain the following new measure that we call Expected
Graded Average Precision (eGAP)

eGAP = E[AP (K)] =

N∑

n=1

1

n

[ τ∑

k=1

gk
RB(k)

( n∑

m=1

δm,n(k)
)]

(6)

Note that eGAP can be also thought as an approximation of the mean areas
under the Precision-Recall curves at any threshold k.

eGAP itself can be obtained as the expectation of a random experiment.
The main issue will be again how to realise the random selection of a relevant
document, that we will interpret here as “select at random a user, s/he fixes
a threshold and select, at random, one document relevant for this user”. This
approach can be expressed as a four steps random experiment, whose expectation
will provide an alternative definition of eGAP: (i) select at random a user and
let k be his/her relevance threshold; (ii) select at random a document relevant
to this user. Let its rank be n, if in the ranked list, or ∞ otherwise; (iii) in the
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first case, select a document at or above rank n and let its rank be m; otherwise
let the rank of this second document be ∞ as well; (iv) output 1 if the document
at rank m, is also considered relevant by the user.

This differs from the random experiment used for defining GAP, because the
first two steps, that we already implicitly used to derive xGAP, replace the single
request to select at random a relevant document for the user. Moreover, in the
fourth step the user who still considers relevant the document at rank m is the
same user of the first step, something that was unclear in the definition in [9].

Let us now make explicit the random experiment: for simplicity, let us assume
that all relevant documents are in the ranked list, so we have not to pay attention
to the case of an ∞ rank. The first step corresponds to define the random
variable K as above which takes values in S(c). The second step consists in
choosing a second random variable X , whose law conditioned by {K = k} will
be uniform on R(k) = {j ∈ {1, . . . , N} : r[j] ≥ k}. In the third step we
define a random variable Y thanks to its conditional law given that X = n and
K = k, with Y |X = n,K = k uniformly distributed on the set {1, 2, . . . , n}.
The last step means to define the Binomial random variable Z = 1A, where
A = {the document at rank Y is considered relevant by the user}. “Taking the
expectation” of this random experiment means evaluate E[Z]. This can be done
using the smoothing property of the conditional expectation (see e.g [8], Chapter
10) and we obtain

E[Z] =

c∑

k=1

[ +∞∑

n=1

P[r[Y ] ≥ K|X = n,K = k] P[X = n|K = k] gk
]

(7)

As before, P[X = n|K = k] = 1
RB(k) 1{r[n]≥k} gk if k ≤ τ and 0 otherwise, while

P[r[Y ] ≥ K|X = n,K = k] =
1

n
· ∣∣{i ∈ {1, . . . , n} : r[i] ≥ k}∣∣ = 1

n

n∑

m=1

δm,n(k)

with δm,n(k) defined in (3). Changing the order of the summation in (7), we
obtain:

E[Z] =
N∑

n=1

1

n

[ τ∑

k=1

gk
RB(k)

( n∑

m=1

δm,n(k)
)]

which is exactly eGAP. As for xGAP the way to choose a relevant document
at the first step fix the bias in the definition of GAP when few highly relevant
documents are present in a topic, but most of the users considers only these
as relevant. Moreover, going back to the example of a run with an increasing
number n of low-relevance documents followed by a unique highly relevant one,
as n approaches ∞ the value of eGAP converges to 1− g2 = g1 which is again a
reasonable limit value for this very special situation.

6 Evaluation

Experimental Setup. We compare our proposed measures eGAP and xGAP
to GAP [9] and AP [2], which are the main focus of the paper. We also consider
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Table 1. Main features of the adopted data sets

Feature TREC 10 TREC 14 TREC 21

Track Web Robust Web
Corpus WT10g AQUAINT ClueWeb09
# Documents 1.7M 1.0M 1040.0M
# Topics (few highly rel/key) 50 (17) 50 (6) 50 (10 / 7)
# Runs (above 1Q in terms of MAP) 95 (71) 74 (55) 27 (20)
Run Length 1,000 1,000 10,000
Relevance Degrees 3 3 4
Pool Depth 100 55 25 and 30
Minimum # Relevant 2 9 6
Average # Relevant 67.26 131.22 70.46
Maximum # Relevant 372 376 253

other measures of interest: Normalized Discounted Cumulated Gain (nDCG) [5],
Rank-Biased Precision (RBP) [7], and, Binary Preference (bpref) [1].

We investigate the following aspects: (1) the correlation among measures using
Kendall’s tau [6,10]; (2) the robustness of the measures to incomplete judgements
according to the stratified random sampling method [1].

We used the following data sets: TREC 10, 2001, Web Track [4]; TREC 14,
2005 Robust Tack [11]; and, TREC 21, 2012, Web Track [3], whose features are
summarized in Table 1. For binary measures, we adopted a “lenient” mapping,
i.e. every document above not relevant is considered as binary relevant. To pre-
vent poorly performing systems from affecting the experiments, we considered
only the runs above the first (lower) quartile as measured by MAP.

We explored two distinct cases: (a) considering all the topics in the collection;
(b) considering only the topics for which R(1) ≥ 10 · R(k), k = 2, 3 and R(k) �=
0, i.e. when there are few highly relevant/key documents with respect to the
relevant ones and the bias of GAP, addressed by xGAP and eGAP, is more
pronounced.

The full source code of the software used to conduct the experiments is avail-
able for download1 in order to ease comparison and verification of the results.

Correlation Analysis. Table 2 reports the correlations among measures for
the TREC 10 and TREC 14 collections while Table 3 reports those for the TREC
21 collection. Correlations greater than 0.9 should be considered equivalent and
those “less than 0.8 generally reflect noticeable changes in rankings” [10]. GAP,
xGAP, and eGAP share the same values of g1 and g2 (and g3 in the case of TREC
21). For each measure, the n-ple τall topics/τfewHRel topics, (and also τfewKey topics

in the case of TREC 21) is reported: the first value indicates the correlation
computed considering all the topics; the second value indicates the correlation
computed only on those topics with few highly relevant documents (R(1) ≥
10 ·R(2)); and, in the case of TREC 21, the third value indicates the correlation
computed only on those topics with few key documents (R(1) ≥ 10 · R(3)).

The correlation among GAP, xGAP, and eGAP is always 1 when only one
gi = 1.00 and the others are zero, as a consequence of the fact that in these cases,

1 http://matters.dei.unipd.it/

http://matters.dei.unipd.it/
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Table 2. Kendall’s correlation analysis for TREC 10 and TREC 14

(g1, g2) TREC 10, 2001, Web TREC 14, 2005, Robust

(0.0, 1.0) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.69/0.42 0.67/0.44 0.67/0.61 0.68/0.42 1.00/1.00 0.78/0.26 0.73/0.26 0.66/0.18 0.78/0.23

xGAP 1.00/1.00 0.69/0.42 0.67/0.44 0.67/0.61 0.68/0.42 1.00/1.00 0.78/0.26 0.73/0.26 0.66/0.18 0.78/0.23
eGAP 1.00/1.00 0.69/0.42 0.67/0.44 0.67/0.61 0.68/0.42 1.00/1.00 0.78/0.26 0.73/0.26 0.66/0.18 0.78/0.23

(0.1, 0.9) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.84/0.80 0.75/0.74 0.64/0.67 0.80/0.76 1.00/1.00 0.94/0.92 0.84/0.76 0.63/0.37 0.79/0.74

xGAP 0.86/0.67 0.73/0.48 0.71/0.51 0.69/0.66 0.73/0.49 0.86/0.61 0.83/0.55 0.77/0.51 0.66/0.27 0.79/0.48
eGAP 0.85/0.64 0.72/0.45 0.70/0.47 0.68/0.64 0.72/0.45 0.85/0.54 0.82/0.49 0.76/0.47 0.67/0.27 0.79/0.43

(0.2, 0.8) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.89/0.89 0.77/0.76 0.63/0.64 0.83/0.81 1.00/1.00 0.97/0.96 0.85/0.75 0.62/0.38 0.78/0.74

xGAP 0.84/0.64 0.76/0.54 0.73/0.56 0.68/0.68 0.75/0.54 0.88/0.68 0.86/0.65 0.79/0.58 0.67/0.29 0.80/0.55
eGAP 0.84/0.60 0.75/0.49 0.72/0.51 0.68/0.67 0.74/0.50 0.86/0.61 0.84/0.59 0.78/0.54 0.66/0.26 0.79/0.48

(0.3, 0.7) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.92/0.93 0.78/0.77 0.63/0.63 0.84/0.82 1.00/1.00 0.98/0.98 0.85/0.75 0.62/0.38 0.79/0.75

xGAP 0.86/0.68 0.80/0.61 0.77/0.63 0.68/0.70 0.79/0.60 0.90/0.74 0.89/0.72 0.82/0.63 0.66/0.32 0.81/0.61
eGAP 0.84/0.61 0.78/0.54 0.74/0.54 0.68/0.69 0.76/0.54 0.89/0.68 0.87/0.67 0.81/0.60 0.66/0.29 0.80/0.53

(0.4, 0.6) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.94/0.95 0.79/0.78 0.63/0.62 0.85/0.83 1.00/1.00 0.98/0.99 0.85/0.76 0.62/0.38 0.78/0.74

xGAP 0.88/0.71 0.83/0.66 0.78/0.67 0.68/0.70 0.81/0.65 0.93/0.80 0.92/0.78 0.83/0.69 0.65/0.34 0.80/0.66
eGAP 0.86/0.65 0.81/0.61 0.76/0.59 0.68/0.71 0.79/0.60 0.91/0.76 0.90/0.75 0.83/0.65 0.67/0.32 0.81/0.59

(0.5, 0.5) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.95/0.97 0.79/0.78 0.62/0.61 0.85/0.83 1.00/1.00 0.99/0.99 0.85/0.76 0.61/0.39 0.78/0.74

xGAP 0.90/0.76 0.86/0.73 0.79/0.72 0.67/0.69 0.82/0.71 0.94/0.84 0.93/0.83 0.84/0.72 0.64/0.35 0.80/0.70
eGAP 0.88/0.70 0.84/0.67 0.77/0.64 0.67/0.70 0.81/0.65 0.92/0.81 0.92/0.81 0.84/0.69 0.65/0.35 0.81/0.64

(0.6, 0.4) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.96/0.98 0.79/0.77 0.62/0.61 0.84/0.82 1.00/1.00 0.99/0.99 0.85/0.76 0.61/0.39 0.77/0.74

xGAP 0.92/0.83 0.89/0.80 0.80/0.76 0.65/0.66 0.83/0.76 0.96/0.87 0.95/0.86 0.85/0.73 0.64/0.35 0.79/0.73
eGAP 0.91/0.77 0.88/0.74 0.79/0.70 0.66/0.69 0.83/0.71 0.94/0.87 0.94/0.86 0.86/0.73 0.65/0.38 0.80/0.69

(0.7, 0.3) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.97/0.99 0.79/0.77 0.61/0.60 0.85/0.82 1.00/1.00 1.00/1.00 0.86/0.76 0.61/0.39 0.77/0.74

xGAP 0.94/0.86 0.92/0.85 0.80/0.77 0.65/0.66 0.85/0.79 0.97/0.91 0.97/0.90 0.85/0.75 0.62/0.36 0.78/0.74
eGAP 0.93/0.83 0.90/0.82 0.80/0.74 0.65/0.67 0.83/0.77 0.97/0.90 0.97/0.90 0.86/0.76 0.63/0.38 0.79/0.71

(0.8, 0.2) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.98/0.99 0.79/0.77 0.61/0.60 0.85/0.82 1.00/1.00 1.00/1.00 0.85/0.76 0.61/0.39 0.77/0.74

xGAP 0.95/0.91 0.94/0.90 0.81/0.78 0.64/0.63 0.85/0.81 0.98/0.94 0.99/0.93 0.86/0.75 0.62/0.37 0.78/0.74
eGAP 0.94/0.90 0.93/0.89 0.79/0.76 0.64/0.65 0.84/0.80 0.98/0.95 0.98/0.95 0.86/0.77 0.62/0.39 0.78/0.73

(0.9, 0.1) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 0.99/1.00 0.79/0.77 0.61/0.60 0.85/0.82 1.00/1.00 1.00/1.00 0.86/0.76 0.61/0.39 0.77/0.74

xGAP 0.97/0.95 0.96/0.94 0.80/0.78 0.63/0.62 0.86/0.82 0.99/0.97 0.99/0.97 0.86/0.76 0.61/0.38 0.77/0.75
eGAP 0.97/0.95 0.96/0.95 0.79/0.77 0.63/0.62 0.85/0.82 1.00/0.98 1.00/0.98 0.86/0.77 0.61/0.39 0.77/0.74

(1.0, 0.0) GAP AP nDCG RBP bpref GAP AP nDCG RBP bpref
GAP 1.00/1.00 1.00/1.00 0.79/0.77 0.60/0.60 0.85/0.82 1.00/1.00 1.00/1.00 0.86/0.76 0.61/0.39 0.77/0.74

xGAP 1.00/1.00 1.00/1.00 0.79/0.77 0.60/0.60 0.85/0.82 1.00/1.00 1.00/1.00 0.86/0.76 0.61/0.39 0.77/0.74
eGAP 1.00/1.00 1.00/1.00 0.79/0.77 0.60/0.60 0.85/0.82 1.00/1.00 1.00/1.00 0.86/0.76 0.61/0.39 0.77/0.74

all the three measures conflate to the same value. Moreover, the correlation with
AP is always 1 when g1 = 1.00 and the others are zero, since this corresponds
exactly to the “lenient” strategy for mapping to binary relevance, when all these
measures are equal, confirming that GAP, xGAP, and eGAP actually extend
AP to graded relevance.

As a general behaviour, you can note that as g1 increases from zero to-
wards one (and thus the other gi decrease correspondingly) the correlation
between AP, xGAP, and eGAP increases. This is a consequence of the fact
that increasing g1 moves measures more and more toward the “lenient” map-
ping to binary relevance adopted for computing AP. For example, in TREC
10, moving from (g1, g2) = (0.1, 0.9) and to (g1, g2) = (0.3, 0.7) increases the
correlations τAP,xGAP = 0.73 and τAP,eGAP = 0.72 to τAP,xGAP = 0.80 and
τAP,eGAP = 0.78; similarly, in TREC 21, moving from (g1, g2, g3) = (0.2, 0.2, 0.6)
to (g1, g2, g3) = (0.4, 0.2, 0.4) increases the correlations τAP,xGAP = 0.62 and
τAP,eGAP = 0.61 to τAP,xGAP = 0.83 and τAP,eGAP = 0.82. In a similar fashion,
as g1 increases, also the correlation between GAP xGAP and eGAP increases,
as an effect of the flattening towards a “lenient” mapping to binary relevance.
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Table 3. Kendall’s tau correlation analysis for TREC 21

(g1, g2, g3) TREC 21, 2012, Web

(0.0, 0.0, 1.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.41/0.49/-0.15 0.25/0.36/-0.12 0.58/0.57/-0.39 0.26/0.02/-0.18

xGAP 1.00/1.00/1.00 0.41/0.49/-0.15 0.25/0.36/-0.12 0.58/0.57/-0.39 0.26/0.02/-0.18
eGAP 1.00/1.00/1.00 0.41/0.49/-0.15 0.25/0.36/-0.12 0.58/0.57/-0.39 0.26/0.02/-0.18

(0.0, 0.2, 0.8) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.49/0.53/0.13 0.19/0.35/0.09 0.81/0.59/-0.03 0.34/0.06/-0.09

xGAP 0.68/0.99/0.54 0.44/0.54/-0.04 0.22/0.36/-0.05 0.63/0.57/-0.26 0.27/0.06/-0.24
eGAP 0.65/0.99/0.51 0.44/0.54/-0.05 0.23/0.36/-0.02 0.61/0.58/-0.25 0.28/0.07/-0.23

(0.0, 0.4, 0.6) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.52/0.52/0.15 0.14/0.34/0.12 0.82/0.61/-0.07 0.34/0.04/-0.07

xGAP 0.79/0.99/0.67 0.53/0.53/-0.01 0.28/0.35/0.00 0.78/0.60/-0.23 0.36/0.06/-0.19
eGAP 0.77/0.98/0.75 0.51/0.54/0.02 0.28/0.36/0.01 0.76/0.59/-0.22 0.35/0.06/-0.18

(0.0, 0.6, 0.4) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.51/0.48/0.15 0.13/0.31/0.12 0.81/0.58/-0.07 0.33/0.01/-0.07

xGAP 0.89/0.98/0.74 0.51/0.51/0.03 0.20/0.33/0.00 0.83/0.58/-0.21 0.34/0.03/-0.17
eGAP 0.85/0.96/0.79 0.47/0.53/0.06 0.20/0.35/0.03 0.85/0.58/-0.20 0.31/0.05/-0.16

(0.0, 0.8, 0.2) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.52/0.46/0.14 0.13/0.28/0.13 0.81/0.52/-0.04 0.33/-0.01/-0.06

xGAP 0.98/0.97/0.85 0.54/0.45/0.07 0.15/0.27/0.04 0.83/0.53/-0.15 0.33/-0.02/-0.13
eGAP 0.97/0.96/0.89 0.52/0.44/0.09 0.14/0.26/0.08 0.82/0.54/-0.13 0.32/-0.03/-0.11

(0.0, 1.0, 0.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.49/0.48/0.15 0.11/0.28/0.14 0.79/0.52/-0.05 0.31/-0.01/-0.05

xGAP 1.00/1.00/1.00 0.49/0.48/0.15 0.11/0.28/0.14 0.79/0.52/-0.05 0.31/-0.01/-0.05
eGAP 1.00/1.00/1.00 0.49/0.48/0.15 0.11/0.28/0.14 0.79/0.52/-0.05 0.31/-0.01/-0.05

(0.2, 0.0, 0.8) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.96/0.89/0.98 0.59/0.63/0.80 0.41/0.57/0.61 0.75/0.36/0.69

xGAP 0.60/0.79/0.28 0.58/0.71/0.28 0.37/0.53/0.27 0.64/0.59/-0.02 0.43/0.15/0.08
eGAP 0.59/0.73/0.23 0.57/0.66/0.23 0.37/0.46/0.22 0.63/0.61/-0.05 0.40/0.08/0.03

(0.2, 0.2, 0.6) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.94/0.89/0.94 0.57/0.61/0.74 0.43/0.59/0.67 0.73/0.34/0.63

xGAP 0.64/0.79/0.27 0.62/0.72/0.34 0.38/0.54/0.33 0.68/0.58/0.05 0.45/0.16/0.14
eGAP 0.63/0.75/0.24 0.61/0.67/0.31 0.35/0.47/0.29 0.71/0.62/-0.02 0.44/0.11/0.11

(0.2, 0.4, 0.4) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.91/0.87/0.93 0.54/0.61/0.75 0.46/0.61/0.66 0.69/0.29/0.62

xGAP 0.68/0.83/0.34 0.61/0.73/0.40 0.31/0.55/0.35 0.72/0.59/0.10 0.44/0.17/0.18
eGAP 0.72/0.78/0.22 0.64/0.65/0.27 0.29/0.47/0.24 0.73/0.62/-0.03 0.47/0.16/0.05

(0.2, 0.6, 0.2) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.90/0.87/0.92 0.51/0.61/0.76 0.49/0.61/0.65 0.69/0.29/0.63

xGAP 0.66/0.87/0.33 0.56/0.77/0.37 0.23/0.59/0.34 0.77/0.55/0.11 0.37/0.21/0.17
eGAP 0.73/0.77/0.32 0.63/0.65/0.38 0.26/0.47/0.33 0.74/0.57/0.07 0.44/0.16/0.16

(0.2, 0.8, 0.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.89/0.86/0.95 0.51/0.60/0.79 0.49/0.60/0.62 0.68/0.28/0.66

xGAP 0.72/0.84/0.35 0.61/0.71/0.36 0.22/0.53/0.33 0.78/0.51/0.09 0.40/0.15/0.16
eGAP 0.73/0.69/0.34 0.62/0.58/0.35 0.23/0.38/0.32 0.77/0.51/0.11 0.41/0.08/0.15

(0.4, 0.0, 0.6) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.97/0.93/0.99 0.60/0.64/0.79 0.40/0.56/0.62 0.76/0.37/0.68

xGAP 0.79/0.87/0.59 0.78/0.82/0.60 0.58/0.64/0.55 0.46/0.54/0.27 0.63/0.26/0.38
eGAP 0.80/0.82/0.46 0.79/0.77/0.47 0.53/0.57/0.42 0.53/0.61/0.17 0.62/0.19/0.27

(0.4, 0.2, 0.4) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.97/0.94/0.96 0.60/0.63/0.76 0.40/0.57/0.65 0.76/0.36/0.65

xGAP 0.82/0.88/0.56 0.83/0.82/0.61 0.53/0.64/0.55 0.52/0.54/0.27 0.66/0.26/0.39
eGAP 0.81/0.85/0.52 0.82/0.79/0.56 0.47/0.59/0.50 0.57/0.60/0.24 0.65/0.21/0.36

(0.4, 0.4, 0.2) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.97/0.93/0.96 0.58/0.63/0.76 0.42/0.58/0.65 0.76/0.35/0.65

xGAP 0.81/0.89/0.58 0.80/0.83/0.62 0.47/0.65/0.55 0.55/0.53/0.32 0.61/0.27/0.38
eGAP 0.81/0.87/0.61 0.78/0.80/0.65 0.41/0.60/0.56 0.61/0.58/0.31 0.59/0.22/0.43

(0.4, 0.6, 0.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.97/0.93/0.96 0.58/0.62/0.76 0.42/0.58/0.65 0.76/0.35/0.65

xGAP 0.76/0.89/0.63 0.73/0.82/0.65 0.34/0.62/0.58 0.66/0.54/0.33 0.52/0.24/0.41
eGAP 0.81/0.82/0.54 0.78/0.77/0.56 0.39/0.55/0.48 0.61/0.55/0.29 0.57/0.17/0.36

(0.6, 0.0, 0.4) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.97/0.97/1.00 0.60/0.62/0.80 0.40/0.56/0.61 0.76/0.37/0.69

xGAP 0.87/0.94/0.81 0.88/0.91/0.81 0.60/0.66/0.76 0.44/0.56/0.44 0.74/0.35/0.59
eGAP 0.89/0.92/0.82 0.91/0.88/0.82 0.56/0.62/0.75 0.48/0.60/0.45 0.74/0.31/0.62

(0.6, 0.2, 0.2) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.98/0.96/0.98 0.59/0.61/0.78 0.41/0.57/0.63 0.77/0.36/0.67

xGAP 0.89/0.88/0.82 0.89/0.86/0.84 0.55/0.68/0.79 0.47/0.54/0.45 0.71/0.31/0.62
eGAP 0.91/0.91/0.84 0.91/0.86/0.86 0.56/0.60/0.77 0.48/0.62/0.47 0.74/0.28/0.64

(0.6, 0.4, 0.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.98/0.96/0.97 0.59/0.61/0.77 0.41/0.57/0.65 0.77/0.36/0.66

xGAP 0.91/0.88/0.80 0.91/0.86/0.83 0.52/0.66/0.74 0.48/0.54/0.48 0.69/0.28/0.59
eGAP 0.89/0.87/0.79 0.87/0.85/0.80 0.48/0.59/0.68 0.52/0.61/0.47 0.66/0.25/0.58

(0.8, 0.0, 0.2) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.99/0.99/1.00 0.60/0.60/0.80 0.40/0.56/0.61 0.78/0.37/0.69

xGAP 0.97/0.94/0.93 0.96/0.93/0.93 0.61/0.66/0.83 0.41/0.54/0.54 0.79/0.35/0.66
eGAP 0.98/0.93/0.96 0.97/0.92/0.96 0.62/0.63/0.82 0.42/0.59/0.56 0.80/0.34/0.69

(0.8, 0.2, 0.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 0.99/0.98/0.99 0.60/0.60/0.79 0.40/0.56/0.62 0.78/0.35/0.68

xGAP 0.97/0.91/0.94 0.96/0.91/0.95 0.57/0.64/0.81 0.43/0.56/0.56 0.75/0.33/0.66
eGAP 0.95/0.91/0.96 0.94/0.91/0.97 0.55/0.58/0.81 0.45/0.62/0.60 0.73/0.28/0.68

(1.0, 0.0, 0.0) GAP AP nDCG RBP bpref
GAP 1.00/1.00/1.00 1.00/1.00/1.00 0.61/0.59/0.80 0.41/0.57/0.61 0.79/0.36/0.69

xGAP 1.00/1.00/1.00 1.00/1.00/1.00 0.61/0.59/0.80 0.41/0.57/0.61 0.79/0.36/0.69
eGAP 1.00/1.00/1.00 1.00/1.00/1.00 0.61/0.59/0.80 0.41/0.57/0.61 0.79/0.36/0.69
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The biases introduced in GAP and discussed in Section 3 become evident by
looking at the correlation between GAP and AP. As soon as some weight is pro-
vided on g1, the correlation between GAP and AP suddenly becomes quite high,
even if it should not, since a low g1 corresponds to a “hard” mapping strategy
to binary relevance (all but highly relevant/key documents are considered not
relevant) which is the opposite from the “lenient” one adopted for computing
AP. For example, with (g1, g2) = (0.1, 0.9) we have τAP,GAP = 0.84 in TREC 10
and τAP,GAP = 0.94 in TREC 14, which are already extremely high; while with
(g1, g2, g3) = (0.2, 0.2, 0.6) we have τAP,GAP = 0.94 in TREC 21. This indicates
that GAP tends to overestimate the weight of g1 and to saturate the ranking.
On the other hand, for the same parameters, we have τAP,xGAP = 0.73 and
τAP,eGAP = 0.72 in TREC 10, τAP,xGAP = 0.83 and τAP,eGAP = 0.82 in TREC
14, and τAP,xGAP = 0.62 and τAP,eGAP = 0.61 in TREC 21, which indicate how
the weights gi assigned by the user are more correctly taken into account.

This effect is even more exacerbated when you consider the topics with few
highly relevant / key documents. For example, with (g1, g2) = (0.1, 0.9), in TREC
10 the correlation τAP,GAP = 0.84 on all topics is quite similar to the correlation
τAP,GAP = 0.80 on topics with few highly relevant documents, indicating a lack
of sensitivity of GAP to this important case and its flattening on AP. On the
other hand, the correlations for xGAP and eGAP fall from τAP,xGAP = 0.73 and
τAP,eGAP = 0.72 to τAP,xGAP = 0.48 and τAP,eGAP = 0.45, indicating that they
treat the case when the user attributes more weight (g2 high) to the few high
relevant documents quite differently from AP, which flattens out everything with
a “lenient” mapping to binary relevance. Similar behaviors can be observed also
in the case of TREC 14 and TREC 21.

The correlation with nDCG, the only other graded measure, increases as the
value of g1 increases, i.e. the more you move away from an “hard” strategy for
mapping to binary relevance. Moreover, in the case of topics with few highly
relevant / key documents and with a low g1, the correlation between GAP and
nDCG is always higher than the one between xGAP/eGAP and nDCG, indicat-
ing that both GAP and nDCG are less sensitive to this case.

Robustness to Incomplete Judgments. The stratified random sampling of
the pools allows us to investigate the behavior of the measures as relevance
judgment sets become less complete following the methodology presented in [1],
which is here adapted to the case of multi-graded relevance.

The plots in Figure 1 and 2 show the Kendall’s tau correlations between the
system rankings produced using progressively down-sampled pools from 100%
(complete pool) to 5%. Each line shows the behavior of a measure; the flatter
(and closer to 1.0) the line, the more robust the measure. In fact, a flat line
indicates that the measure continues to rank systems in the same relative or-
der with different levels of relevance judgments incompleteness. In this respect,
nDCG and bpref exhibit the best behaviour.

As an example of the main case of interest in the paper (g1 low), when all the
topics are considered (Figure 1, on the left), xGAP and eGAP behave similarly
to GAP for TREC 10 and 14, even if they improve for quite shallow pools (10%
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Fig. 1. Kendall’s rank correlation at pool reduction rates on TREC 10 (top row) and
TREC 14 (bottom row) for all topics (left) and topics with few highly relevant docu-
ments (right). GAP, xGAP, and eGAP with (g1, g2) = (0.1, 0.9).

Fig. 2.Kendall’s rank correlation at pool reduction rates on TREC 21 for all topics (top
left), topics with few highly relevant documents (top right), and topics with few key
documents (bottom center). GAP, xGAP, and eGAP with (g1, g2, g3) = (0.2, 0.2, 0.6).
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and 5% reduction rates), which are important for avoiding costly assessment.
This behaviour is even more evident when it comes to topics with few highly
relevant documents (Figure 1, on the right). In the case of TREC 21, GAP
exhibits better properties than xGAP and eGAP when all topics are considered
(Figure 2, top left), even it almost follows the behaviour of AP, thus indicating
again its tendence to overestimate the weight of g1. However, xGAP and eGAP
improve with respect to GAP when topics with few highly relevant documents
(Figure 2, top right) and topics with few key documents (Figure 2, bottom
center) are considered; in this latter case, it can be noted how GAP become
unstable for quite shallow pools (10% and 5% reduction rates).

7 Conclusions and Future Work

In this paper we have introduced the xGAP and eGAP measures which extend
GAP and are able to further push the focus on the user perception of relevance.
We have shown how they take a different angle from GAP addressing its biases
and how they are robust to incomplete judgements.

Future work will consist of a more extensive evaluation on different experi-
mental collections, taking into account also the possibility of using xGAP and
eGAP as objective metric for learning to rank algorithms, as well as exploring
their discriminative power.
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