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Abstract. Many classification problems are related to a hierarchy of
classes, that can be exploited in order to perform hierarchical classifica-
tion of test objects. The most basic way of hierarchical classification is
that of cascade classification, which greedily traverses the hierarchy from
root to the predicted leaf. In order to perform cascade classification, a
classifier must be trained for each node of the hierarchy. In large scale
problems, the number of features can be prohibitively large for the classi-
fiers in the upper levels of the hierarchy. It is therefore desirable to reduce
the dimensionality of the feature space at these levels. In this paper we
examine the computational feasibility of the most common dimensional-
ity reduction method (Principal Component Analysis) for this problem,
as well as the computational benefits that it provides for cascade clas-
sification and its effect on classification accuracy. Our experiments on
two benchmark datasets with a large hierarchy show that it is possible
to perform a certain version of PCA efficiently in such large hierarchies,
with a slight decrease in the accuracy of the classifiers. Furthermore,
we show that PCA can be used selectively at the top levels of the hi-
erarchy in order to decrease the loss in accuracy. Finally, the reduced
feature space, provided by the PCA, facilitates the use of more costly
and possibly more accurate classifiers, such as non-linear SVMs.

Keywords: Hierarchical Classification, Dimensionality Reduction,
Principal Component Analysis.

1 Introduction

In most classification problems the predefined categories are assumed to be inde-
pendent. In hierarchical classification problems, a hierarchy is also given, which
contains the relations between the categories. In the simplest case which we
study in this paper, these relations are of is-a type and the hierarchy is a tree.
We also assume that each instance belongs to only one category (single-label
classification) and that this category is always a leaf.
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Many researchers ignore the hierarchy and treat hierarchical classification of
this type using flat classifiers, while others use mildly hierarchical approaches
[1]. In most flat approaches, a binary classifier is trained for each category, using
all the instances belonging to that category as positive examples and all or
some of the other instances as negative examples (one-versus-all). The simplest
form of hierarchical classification is that of cascade classification, where a binary
classifier is trained for each node of the hierarchy, in order to separate it from
its siblings. Then each test instance is guided through the hierarchy from root
to leaf, choosing each time the most probable descendant.

In large scale hierarchical classification problems, the number of training in-
stances and features can be very high (thousands or even millions). A flat classi-
fication approach can deal with the high dimensionality by performing instance
and/or feature selection for each one-versus-all classifier. For hierarchical classi-
fication, however, feature selection is more complicated. Classifiers at the upper
levels of the hierarchy need to deal with instances of all of their numerous descen-
dant classes and any kind of intense feature selection could lead to a situation
where many test instances cannot be represented adequately by the selected fea-
tures. For example, in text classification with binary bag-of-word features (each
indicating if a particular word is present in a text or not), there may be many test
texts (belonging to very different descendant categories) that do not contain any
of the words corresponding to the selected features of the upper level classifiers.
These texts will have identical (all-zero) feature vectors and, hence, the upper
level classifiers will be unable to distinguish them. Since intense feature selection
is impossible in the upper levels of the hierarchy, classifier training can be very
computationally expensive, because both the number of training instances and
the number of features is high.

In order to facilitate hierarchical classification, we examine the use of a prin-
cipal component (PCA) transformation, reducing the dimensionality at the top
levels of the hierarchy. In this way, hierarchical classifiers can be trained on much
fewer dimensions, leading to faster training and testing and to lower memory de-
mands. At the same time, the use of a linear transformation of the initial feature
set, instead of a discrete feature selection, reduces the risk that test instances
will not be represented in the new space.

However, the use of PCA is not without difficulties. First, one needs to use
a version of PCA that can handle the scale of the data. In this paper we se-
lect one such method and show that it can be used for large scale hierarchical
classification. Additionally, we study the effect of dimensionality reduction on
the computational performance of the classifier and its classification accuracy.
In particular, we show that the combination of classifiers trained on a reduced
feature space at the top levels of the hierarchy with classifiers trained on the
original space at the lower levels provides the highest benefit for the lowest cost.
We experiment with two popular hierarchical text classification datasets in this
paper, but our approach should be useful in any hierarchical classification prob-
lem with many dimensions and sparse feature vectors.



162 A. Kosmpoulos, G. Paliouras, and I. Androutsopoulos

In Section 2, we present the proposed approach and give advice on the se-
lection of the most appropriate PCA method. Section 3 shows experimentally
the effect of our approach on the computational cost and the accuracy of the
hierarchical classifiers. Finally Section 4 concludes and points to future work.

2 Cascade Classification with PCA

In cascade classification a classifier must be trained for each node of the hierarchy.
In this paper we focus on tree hierarchies, where instances belong only to the
leaves of the hierarchy. An example of such a hierarchy is presented in Figure
1. In this example, a text classifier must be trained for each of the following
nodes: Arts, Health, Music, Dance, Fitness and Medicine. A classifier of a node
U is trained with all instances belonging to the leaf descendants of U as positive
examples and all instances belonging to the leaf descendants of the siblings of U
as negative ones. The classifier of node Arts, for example, would use instances
of Music and Dance as positive examples and instances of Fitness and Medicine
as negative ones.

Root

Arts Health

Music Dance Medicine

Fitness

Fig. 1. Tree hierarchy example

Assuming again bag-of-word features, if we do not perform any feature se-
lection the classifier of node Arts would use features for all the words of its
positive and negative instances. In large datasets, where the hierarchy is com-
posed of thousands of categories, the number of initial features can be hundreds
of thousands (or even millions in text classification, if stemming or other similar
preprocessing techniques are not used). Training a classifier for each node of the
hierarchy using all these features can be very computationally demanding. On
the other hand, an intense feature selection at the upper levels of the hierar-
chy would lead to inaccurate classifiers, since the few selected features would be
unlikely to represent the test instances adequately, as already discussed.
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Instead of feature selection, we suggest dimensionality reduction with princi-
pal component analysis (PCA) applied to each set of siblings of the hierarchy.
In Figure 1, for example, we would need to perform PCA three times:

– for the nodes Arts and Health
– for the nodes Music and Dance
– for the nodes Fitness and Medicine.

The two classifiers of nodes Arts and Health would use the same feature space,
and similarly for the siblingsMusic and Dance and Fitness andMedicine. Hence,
PCA needs to be performed only once for each set of siblings. We note that
performing PCA on all the leaves (as if we had a flat classification problem)
would require a very large number of principal components to distinguish the
leaves, drastically reducing the benefit of applying PCA.

Even applying PCA to sets of siblings, however, is not trivial at the scale that
we are considering. In regular PCA an eigen decomposition of the covariance
matrix Y Y T (p × p) must be performed, where Y is the p × n matrix of the
observed data. Most of the times a Singular Value Decomposition (SVD) of Y
is performed instead:

Y = UΣV T (1)

where U is the square (n × n) matrix whose columns contain the left singular
vectors of Y, Σ is a n × p rectangular diagonal matrix containing the singular
values and V is the square (p × p) matrix whose columns contain the right
singular vectors of Y.

The number of features (p) and instances (n) can by too large to perform a
regular PCA. In [2] an Expectation Maximization (EM) algorithm for PCA is
proposed, where the number k of principal components must be set from the
beginning. The steps of the EM are the following:

E-step: X = (CTC)−1CTY

M-step: Cnew = Y XT (XXT )−1 (2)

where X is a k × n matrix and C is p × k matrix. These quantities are much
easier to compute than those of the regular PCA, since k can be set to a much
smaller value than p. In order to compute the final eigenvectors and eigenvalues,
we only need to project the observed data Y to the orthonormal basis for the
range of matrix C (orth(C)T Y ) and perform a regular PCA in this k-dimensional
subspace.

Adopting this approach we can perform PCA in very large datasets, where
normal PCA would be very computationally demanding, especially in terms of
memory. Even with this approach, PCA remains computationally expensive, but
in practice it only needs to be performed once per dataset, greatly reducing the
time needed to perform subsequent experiments with many different classifiers.

The only disadvantage is that we need to choose the value of k (number of
principal components) prior to performing PCA. In Section 3 we present results
which show that by using only a few hundreds of principal components one can
achieve similar results as when thousands of initial features are used.
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Various linear and nonlinear dimensionality reduction approaches exist [3]. In
this paper we focus on linear approaches, because of the large scale factor. An-
other linear approach that we could use is that of Simple PCA [4], but we chose
EM since the principal components in Simple PCA are calculated approximately.

The most similar one is the extension of the Stochastic Gradient Ascent (SGA)
neural network, proposed in [5]. The disadvantage of this method compared
to EM PCA is that it requires a rate parameter to be set and also converges
less quickly. Another approach would be to use the implicitly restarted Arnoldi
method to compute the SVD of the data matrix [6]. However the EM approach
seems more straightforward. We also examined the idea of using Sparse Principal
Component Analysis [7], which was not suitable, as our focus was more on solving
computational issues, instead of computing more accurate eigenvectors. In [8],
the Fisher vector could not be directly used in large scale (but not hierarchical)
image classification; hence, three different compression techniques were proposed
to reduce the dimensionality.

3 Experimental Results

3.1 Experimental Set-Up

In order to assess the effect of combining PCA with cascade classification, we
used both the dry-run and the large datasets form Task 1 of the first Large Scale
Hierarchical Text Classification Challenge (LSHTC1).1

The dry-run dataset contains 6,323 instances (split into train and validation
files), composed of 55,765 distinct features and belonging to 1,139 categories.
An extra set of 1,858 test instances is also provided for evaluation. The large
dataset contains 93,505 instances (split into train and validation files), composed
of 381,581 distinct features and belonging to 12,294 categories. The test instances
in this dataset are 34,880.

In both datasets, every instance has to be classified in a single leaf of the
hierarchy, and the hierarchy is a tree. The systems are evaluated using the eval-
uation measures of the challenge, which are: Accuracy, Macro F-measure, Macro
Precision, Macro Recall and Tree Induced Error [9].

As statistical significance tests, we used p-test (p < 0.01) for accuracy and
S-test (p < 0.01) for macro F-measure. More information regarding these tests
can be found in [10].

In the experiments we report, we used an L2 Regularized Logistic Regression
[11], with the regularization parameter C set to 1 (usually the default value).
We also conducted experiments with other regularization methods and other
values of C, but the results were similar. We experimented with TF and TF-IDF
bag-of-word features, but we report mostly experimental results with TF-IDF
features, since led to better performance.

For each node of the hierarchy we trained two binary classifiers. One using
all the initial features and one using k principal components. R-analysis requires

1 http://lshtc.iit.demokritos.gr/node/1

http://lshtc.iit.demokritos.gr/node/1
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that k < n [12], but for computational reasons we set a much smaller value for
k. In practice, we observed that in both datasets for values of k greater than a
certain point the computational cost increased a lot, without significant gains in
terms of classification accuracy. For the dry-run dataset, we set k equal to 390,
i.e. 390 components. In cases where 390 > n we set k equal to n − 1 in order
to satisfy k < n. In Figure 2 we present accuracy at the first top level of the
hierarchy (children classes of the Root node) of the dry-run dataset, for various
numbers of principal components. The figure illustrates the decreasing gains in
accuracy as the number of components increases. Similarly for the large dataset
we set k equal to 490.
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Fig. 2. Accuracy at top level of the hierarchy of the dry-run dataset, using k Principal
Components for various values of k

3.2 Feature Selection Results

In this section we present results showing that feature selection at the top levels
of the hierarchy can heavily decrease the accuracy of the classifiers. In Tables 1
and 2 we present results in terms of accuracy and training time at the first level
of the hierarchy of the dry-run and the large dataset, using feature selection.
For each category the best features were selected according to the Chi-square
statistic χ2 [13]. These experiments were conducted using an i7 3.2 GHz CPU
(single thread).

Although the best features are selected for each binary classifier of the top
level, many instances cannot be represented adequately by the selected features
(empty feature vectors). As a result, in both datasets the accuracy falls signif-
icantly with the reduced feature sets. Since these errors at the top level will
be carried to the leaves of the hierarchy, any form of intense feature selection
will lead to inferior final results compared to keeping all the features. On the
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Table 1. Accuracy and training time at the top level of the hierarchy of the dry-run
dataset using χ2 feature selection

Number of Features Accuracy Training Time (sec)

55,765 (100%) 0.82 7
27,882 (50%) 0.76 5
5,576 (10%) 0.56 0.84
557 (1%) 0.29 0.18

Table 2. Accuracy and training time at the top level of the hierarchy of the large
dataset using χ2 feature selection

Number of Features Accuracy Training Time (sec)

381,580 (100%) 0.83 328
190,790 (50%) 0.78 182
38,158 (10%) 0.63 57
3,815 (1%) 0.33 7

other hand, the training times seem to be almost proportional to the number
of features. Therefore, we gain in terms of training times, as well as memory
requirments, since the size of the training models is correlated to the number of
features.

3.3 Results on the Dry-Run Dataset

Since feature selection is ineffective at the top levels of the hierarchy, we reduce
the number of features using PCA. In Table 3, we present the results of four
different systems on the dry-run dataset, using the five evaluation measures
of Section 3.1. The first system (Cascade) uses all features (TF-IDF) in order
to train each binary classifier. The second system (PCA Cascade) uses only
classifiers trained with PCA features in all levels of the hierarchy (with PCA
applied to sibling classes). In the system Combo Cascade, the classifiers at the
top two levels of the hierarchy are trained using PCA features, while the ones
at the lower levels are trained using the initial features. Finally we also provide
results of flat classifiers (Flat) trained using all the initial features.

The first observation is that the Cascade system performs better than all the
other systems, including the popular flat classifier. Flat classifiers perform well
enough according to the four flat evaluation measures, but they have the worst
performance according to the Tree Induced Error (lower number indicates bet-
ter performance), which is the only hierarchical evaluation measure. This means
that when the flat classifier fails to predict the exact category, its mistake is
further from the correct category compared to the hierarchical systems. This is
particularly important in hierarchical classification problems. Another disadvan-
tage of flat classification is that on large scale problems, the use of traditional
classifiers, such as SVMs or Logistic Regression, can be prohibitively expensive
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Table 3. Results using the dry-run dataset for each approach per evaluation measure,
using TF-IDF features. The best performing approach per evaluation measure appears
in bold. Since Tree Induced Error is an error rate, lower values are better. Results with
no statistically significant difference are marked with a � symbol.

Evaluation Measure Cascade PCA Cascade Combo Cascade Flat

Accuracy 0.444� 0.419� 0.436� 0.438�

Macro F-measure 0.312� 0.276 0.302� 0.304�

Macro Precision 0.284 0.250 0.275 0.284
Macro Recall 0.346 0.307 0.336 0.326
Tree Induced Error 3.588 3.754 3.673 3.976

computationally [14], since a binary classifier must be trained for each leaf using
all instances.

Comparing PCA Cascade and Cascade we see that the latter is more accurate
according to all evaluation measures. However, the difference is relatively small
and in PCA Cascade the classifier is trained with 305 features instead of a
few tens of thousands. Furthermore, we can improve the performance of PCA
Cascade by using PCA only at the top levels of the hierarchy, where training is
most expensive. As can be seen in Table 3, Combo Cascade achieves classification
performance that is less than one precedence point smaller than that of Cascade.

Therefore, the combination of PCA at the top levels with training on the
original feature space at the lower levels, provides high classification accuracy,
while making cascading scalable to large datasets. The choice of the level at
which the method should stop reducing the dimensionality of the feature space
is largely an issue of computational cost. However, it is important to assess the
effect of dimensionality reduction at each level. The results of this experiment are
presented in Table 4. At each level of the hierarchy, we assume that the preceding
(higher-level) classifiers have predicted the correct category and we measure only
the accuracy at the corresponding level. According to the results in Table 4, it
seems safe to assume that PCA affects classification accuracy similarly in all the
levels of the hierarchy.

Table 4. Accuracy for cascade classification on the dry-run dataset, using the orig-
inal and the reduced dimensions (PCA) per level of the hierarchy. Results with no
statistically significant difference are marked with a � symbol.

Level of the Hierarchy Original Features Reduced Dimensions (PCA)

1 0.820� 0.814�

2 0.819� 0.812�

3 0.820� 0.807�

4 0.856� 0.849�

5 0.840� 0.834�
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In Section 3.1 we mentioned that TF-IDF features provided better results
than TF features. In Table 5 we present the results for Cascade, PCA Cascade
and Flat using TF features. Not only Cascade and Flat systems performed worse
with TF features, but also the PCA Cascade was greatly affected. Therefore we
advise those who may use the proposed hierarchical PCA approach to perform
a TF/IDF transformation.

Table 5. Results for each approach per evaluation measure, using TF features. The
best performing approach per evaluation measure appears in bold. Since Tree Induced
Error is an error rate, lower values are better. Results with no statistically significant
difference are marked with a � symbol.

Evaluation Measure Cascade PCA Cascade Flat

Accuracy 0.388� 0.361� 0.385�

Macro F-measure 0.254� 0.221 0.248�

Macro Precision 0.232 0.201 0.235
Macro Recall 0.281 0.246 0.262
Tree Induced Error 4.065 4.356 4.625

3.4 Results on the Large Dataset

In order to examine the scalability of our approaches, in Table 6 we present
results for the large dataset using TF-IDF features. As in the dry-run data
set Cascade uses all features in order to train each binary classifier. In Combo
Cascade the classifiers at the top level of the hierarchy are trained using PCA
features, while the ones at the lower levels using the initial features. Since the
initial features are much more than the dry-run dataset (381,581 compared to
55,765), we used 100 more principal components (490) in the Combo Cascade
system. We also provide results of flat classifiers (Flat) trained using all the
initial features. Finally, we present the training times of the classifiers in each
case.

Table 6. Results using the large dataset for each approach per evaluation measure and
training time, using TF-IDF features. The best performing approach per evaluation
measure appears in bold. Since Tree Induced Error is an error rate, lower values are
better. Results with no statistically significant difference are marked with a � symbol.

Evaluation Measure Cascade Combo Cascade Flat

Accuracy 0.404� 0.385 0.405�

Macro F-measure 0.278� 0.259 0.256�

Macro Precision 0.269 0.249 0.254
Macro Recall 0.289 0.268 0.302
Tree Induced Error 3.609 3.845 3.874
Training Time 8.66 min 6.2 min 1017.63 min
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According to Accuracy and Macro Recall, Flat is somewhat more accurate
than Cascade, although the p-test detected no statistically significant difference
between them in Macro Recall. On the other hand, as in the dry-run dataset,
according to the hierarchical evaluation measure (tree induced error) Cascade
performs better. Cascade also performs better in terms of Macro Precision and
Macro F-measure, although the S-test for Macro F-measure detected no signif-
icant difference. Finally Combo Cascade, with PCA applied to the top level of
the hierarchy, performs slightly worse. In terms of training times, Flat is very
slow compared to Cascade. Between Cascade and Combo Cascade, we observe a
speed up of about 30%. Performing PCA at lower levels would only mildly affect
speed, since the initial feature vectors are already sparse enough.

Furthermore, computational cost could also affect the choice of the classifier
used. For example, an RBF SVM [15] is very expensive at the top level of the
hierarchy, if the original feature set is used. However, with PCA the use of such
a costly classifier is made possible, as the number of features is reduced from
381,581 to a few hundreds. In Table 7 we present the time in minutes required
to train L2 logistic regression and SVM with an RBF kernel using the original
and the reduced (PCA) features at the top level of the hierarchy of the large
dataset.

Table 7. Training time for L2 logistic regression and RBF SVM using the original and
the reduced dimensions (PCA) at the top level of the hierarchy of the large dataset

Original Features Reduced Dimensions (PCA) Gain

L2 Logistic Regression 5.46 min 2.84 min 48%
SVM with RBF kernel 691.2 min 124.1 min 82%

Although in both cases the training times are reduced, the gain is much larger
for the RBF SVM. In addition to the training time, complex classifiers require
more parameter tuning, which is only made possible with the Combo Cascade
method. In Table 8 we present results, using an RBF SVM classifier at the top

Table 8. Results using the large dataset for Cascade Combo with an SVM classifier at
the top level, using TF/IDF features. Cascade results are repeated for ease of reference.
The best performing approach, given each evaluation measure, appears in bold. Since
Tree Induced Error is an error rate, lower values are better. Results with no statistically
significant difference are marked with a � symbol.

Evaluation Measure Cascade
Combo Cascade
with Tuned SVM

Combo Cascade
with Default SVM

Accuracy 0.404� 0.402� 0.377
Macro F-measure 0.278� 0.274� 0.252
Macro Precision 0.269 0.264 0.243
Macro Recall 0.289 0.283 0.262
Tree Induced Error 3.609 3.616 3.952
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level of the hierarchy for the Combo Cascade method. In one case the SVM is
trained using the default parameters, while in the other the parameters have
been (non-exhaustively) tuned (c=100, g=0.01). As we can observe the tuned
SVM performs much better than the default one. The p-test and S-test detected
no statistically significant difference between Cascade and Combo Cascade with
a tuned SVM. Given the training time cost in the initial feature space, this
tuning would be much harder without the use of PCA.

4 Conclusion

In large scale hierarchical classification problems the number of features and
instances to be used for training classifiers can be very large at the upper levels
of the hierarchy. This can discourage the use of more complex, but more accurate
classifiers and cause computational issues. In this paper we examined the use of
dimensionality reduction (PCA) for hierarchical classification. This approach is
independent of the classifier used and can be applied to all or some nodes of the
hierarchy.

Even though performing PCA itself on such large scale datasets is not trivial,
there are methods that can handle the complexity. We also showed experimen-
tally that, although applying PCA to all levels of the hierarchy can decrease
accuracy to some extent, this effect can be drastically limited, if we apply PCA
only to the upper levels, which are the most computationally demanding. It
would also be interesting to adaptively select the nodes were PCA should be
used, instead of just applying it to the upper levels. We plan to examine such
an adaptive selection method in the future.

The dimensionality reduction of the PCA procedure allows the use of more
complex and possibly more accurate classifiers, such as non-linear SVMs. As
future work, we also plan to compare the presented results with that of better
tuned SVM classifiers. These classifiers are easier to train, using the reduced
feature space provided by the PCA approach. We also plan to extend the pre-
sented PCA approach to Directed Acyclic Graphs (DAG) hierarchies, where it
is unclear how the multiple inheritance of each node will affect the PCA for each
set of siblings.
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