
Discovering Similar Passages within Large

Text Documents

Demetrios Glinos

1 Computer Science, University of Central Florida, Orlando, Florida, United States
2 Advanced Text Analytics, LLC, Orlando, Florida, United States

Abstract. We present a novel general method for discovering similar
passages within large text documents based on adapting and extending
the well-known Smith-Waterman dynamic programming local sequence
alignment algorithm. We extend that algorithm for large document anal-
ysis by defining: (a) a recursive procedure for discovering multiple non-
overlapping aligned passages within a given document pair; (b) a matrix
splicing method for processing long texts; (c) a chaining method for com-
bining sequence strands; and (d) an inexact similarity measure for deter-
mining token matches. We show that an implementation of this method
is computationally efficient and produces very high precision with good
recall for several types of order-based plagiarism and that it achieves
higher overall performance than the best reported methods against the
PAN 2013 text alignment test corpus.

Keywords: passage retrieval, text alignment, plagiarism detection.

1 Introduction

The task of text alignment is to identify passages in one text document that
correspond to passages in another document according to some measure of sim-
ilarity. Text alignment is used in plagiarism detection, document deduplication,
and passage retrieval for textual entailment determination, among other uses.
Thus, depending on the context, it may be important to recognize that the pas-
sage ”This article discusses the famous Hamlet monologue of the main themes of
the game.” may be a paraphrase of the passage ”This essay discusses Hamlet’s
famous soliloquy in relation to the major themes of the play.”

It should not be surprising that finding such a pair of passages is not a trivial
task in general, even for the relatively simple case of identifying passages that
are identical in both documents. Suppose we are given two 5,000-word docu-
ments, both of which contain the second sentence above. Suppose further that
we are asked to find the common sentence but we have no information at all
about it. Thus, we do not know how many words the sentence may have, nor its
punctuation, nor even the topic of the sentence. How are we to find it?

A brute-force search to locate identical passages would involve comparing
every possible passage of every valid length in one document with all possible
passages of equal length in the other document. Moreover, since the documents

E. Kanoulas et al. (Eds.): CLEF 2014, LNCS 8685, pp. 98–109, 2014.
c© Springer International Publishing Switzerland 2014

Discovering Similar Passages within Large Text Documents 99

could be complete duplicates, all passage lengths up to and including the com-
mon document length must be included in the search. Such a search will have
a computational complexity of O(n3). Thus, for the 16-token second sentence
above, there are 4,985 possible shingles of 16 consecutive words in the first doc-
ument that will need to be compared against the same number of shingles in the
second document, resulting in a total of approximately 25 million comparisons.
A similar number of calculations would be required for each of the approximately
5,000 other valid passage lengths which, at an average number of 2,500 shingles,
will require a total of over 60 billion passage comparisons.

The problem is all the more difficult when the given documents may not
contain any similar passages at all, or where corresponding passages do exist,
they differ due to paraphrasing, reordering, additions and deletions of words or
phrases, and the use of synonyms and alternative grammatical constructions.
Considering only that the corresponding passages may be of different lengths,
computational complexity jumps to O(n4) for the brute-force search.

As a result, practical text alignment methods must employ different methods
for exploring the search space.

Current implementations typically involve layers of heuristics in a seeding-
extending-filtering approach [5]. At the first level, heuristics are used to identify
the anchor points in each document for possible corresponding passages. A sec-
ond set of heuristics is then used to extend and merge these anchor points to
form passages. A final set of heuristics filters the resulting passages to remove
overlapping alignments, short passages, and passages that do not meet certain
other criteria.

Thus, Torrejón and Ramos [9] find anchor points using a comprehensive set
of 3-grams obtained by various transformations (termed ”Contextual N-grams”,
”Surrounding Context N-grams”, and ”Odd-Even N-grams”) on three-word shin-
gles from which short and stop words have been eliminated and the remaining
words have been stemmed. Extension is performed using an algorithm that takes
into account common n-grams that appear within threshold distances from each
other in the two documents, the distance depending on document length and var-
ious tuning parameters. Final filtering is performed using a ”Granularity Filter”
that joins adjacent passages that appear in both documents.

In a similar manner, Suchomel et al. [8] use word 4-grams, but also supplement
them with stop word 8-grams to find the anchor points. This presents an ordering
problem at the extension step, since in general there is no natural ordering of
the combination of the two types of n-grams, which the authors term ”features”.
For example, a stop word 8-gram can span multiple sentences, and hence overlap
several word 4-grams. The authors resolve this using an algorithm that merges
features into non-overlapping intervals using their character offsets and then
retains intervals containing at least four features [7].

A different approach is is used by Kong et al. [3], for whom anchor points
are sentences that exceed a given cosine similarity threshold after elimination of
whitespace, punctuation, stop words, case transformation and stemming. The set
of candidate sentence pairs is further winnowed based on the relative numbers

100 D. Glinos

of similar words in each sentence. At the extension step, adjacent sentence pairs
that are within a threshold distance are merged using a ”Bilateral Alternating
Sorting” algorithm [4].

A problem closely related to the text alignment problem discussed here is the
sequence alignment problem in bioinformatics, which involves matching biolog-
ical sequences such as amino-acid chains in proteins and nucleotide sequences
in DNA strands. The sequences for comparison typically involve thousands of
bases in the query sequences and potentially millions in the database strings
to which they are compared. The problem has been well studied and current
practice is dominated by heuristically-based methods, such as BLAST (”Basic
Local Alignment Search Tool”) [1].

Prior to such heuristic methods, however, the dominant algorithm for se-
quence alignment was the Smith-Waterman algorithm [6], particularly as it was
improved for efficiency by Gotoh [2]. The Smith-Waterman algorithm is of in-
terest to us since it is a dynamic programming method, and as such, it has the
desirable feature that it is guaranteed to find a maximal length alignment. More-
over, algorithm time complexity is low-order polynomial, as it is roughly O(nm)
for comparing a sequence of length n against one of length m.

Our approach takes advantage of the fact that while typical text documents
for comparison may be long, they are considerably shorter than the biological
sequences that prompted the migration to heuristic methods in that domain. As a
result, even for long text documents, we feel that using Smith-Waterman is both
optimal and tractable, provided it is adapted to the text analysis environment.

We have therefore adapted and extended the algorithm in a number of ways.
In particular, we have extended the algorithm by defining a recursive procedure
for discovering multiple non-overlapping passages for a given document pair. We
have also defined a matrix splicing procedure for dividing the computational task
so that the method will scale with document size without exceeding memory
constraints. And we have extended the algorithm to merge adjacent sequence
strands and to cover inexact matches.

We believe our extensions and our approach are novel and have not been
reported elsewhere.

We have tested an implementation of this approach against the 2103 PAN
Workshop series text alignment test corpus [5]. PAN1 is an evaluation lab, now
in its eleventh year, for uncovering plagiarism, authorship, and social software
misuse. The 2013 text alignment test corpus is a comprehensive collection of doc-
ument pairs exhibiting different types of plagiarism, including direct copies, ran-
dom obfuscation, cyclic translations, and summarization. This corpus includes
test cases that are suitable for our algorithm, as well as non-order preserving
plagiarism cases. Document sizes within the collection vary widely, and many
large documents are included. Test results for our implementation are very en-
couraging and show that the proposed method performs well under evaluation
test conditions, and indeed overall performance tops the best reported results
from the 2013 evaluation despite addressing only a subset of the problem types.

1 http://pan.webis.de

http://pan.webis.de

Discovering Similar Passages within Large Text Documents 101

Although we have tested the method in a plagiarism detection context, the
method is sufficiently general that it can be applied in other contexts readily, as
it does not involve any plagiarism-specific tuning parameters.

In the sections that follow, we present the details of the method and the ex-
perimental results. Section 2 explains how the basic alignment algorithm works,
with baseline extensions. Section 3 describes the recursive method for discovering
multiple passages. Section 4 describes the matrix splicing procedure. Section 5
describes the corpus, measures, and results of the evaluation experiments. And
finally, Section 6 presents our conclusions.

2 Basic Alignment Algorithm

Given two text documents A and B, we first read the documents as UTF-8
bytes and tokenize them into words, retaining all punctuation as separate tokens,
except for ” ’s”, which is retained as a single token. We also convert all non-
printing ASCII characters to spaces, convert all newlines, tabs, and returns to
spaces, and finally reduce all remaining tokens to lower case. The result is two
sequences of tokens of generally different lengths, A = a0,a1,...,am and B =
b0,b1,...,bn .

We then apply the basic Smith-Waterman algorithm [8], as simplified by Go-
toh [9], to build up recursively a match matrix M, as follows2:

M(i, j) = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M(i− 1, j − 1) +match(ai, bj)

M(i− 1, j) + gap

M(i, j − 1) + gap

0

(1)

where match(ai, bj) = +2, if ai = bj ; and − 1 otherwise; and where gap = −1 is
the gap penalty.

The algorithm produces a matrix of non-negative integer values from which
the maximal alignment is obtained using a straightforward traceback procedure
that starts from the largest value in the matrix and simply reverses the matrix
generation algorithm above to recover the path that produced the maximal value.
If the alignment sequence that is produced contains at least 40 tokens of each
input sequence, it is retained as an alignment detection.

We adapt the algorithm for text alignment by extending it in two ways. First,
we provide a mechanism for joining directly adjacent subsequences. We do this
by defining a parameter chain, which is configured to some small number. This
parameter represents the number of ”jumps” that are permitted in the traceback
process, where a jump represents moving from a zero-value cell to an adjacent
nonzero-value cell according to the traceback algorithm. This feature permits
merging sequence strands in both documents that are separated by only one
token in each document string. We use a chain value of 2 for our implementation,

2 The matrix is of dimension (m+1) by (n+1) and is initialized with all zeroes in the
first row and first column. The matrix is built row by row, proceeding left to right.

102 D. Glinos

which we arrived at informally during development against the training corpus,
thus permitting two such jumps in building up our alignment sequences.

We also extend the basic algorithm by relaxing the equality requirement for a
match and using a similarity determination instead. While the similarity function
can include synonymy, we have elected for this study to use a simpler implemen-
tation in which we equate the determiners the, a, and an, and where we also
equate these twenty-five commonly occurring prepositions: of, in, to, for, with,
on, at, from, by, about, as, into, like, through, after, over, between, out, against,
during, without, before, under, around, and among.

Table 1 shows the matrix elements that are generated using our modified al-
gorithm for the two sample sentences in the introductory section. Except for the
first row and column, which are all initialized to zeroes to prime the recursion,
the rows and columns in the table correspond to the tokens in the two docu-
ments. The shaded cells in the table show the traceback path that is produced
by backtracking from the maximal element at the lower right. No jumps were in-
volved in traceback in this example. The table also includes additional elements
at the end of each token sequence to show how the operation of the algorithm
exhibits a tapering effect once past the maximal element.

Table 1. Match matrix elements for two sample sentences showing traceback defining
maximal-length alignment and tapering effect past the maximal element

T
h
is

es
sa
y

d
is
cu

ss
es

H
a
m
le
t

’s fa
m
o
u
s

so
li
lo
q
u
y

in re
la
ti
o
n

to th
e

m
a
jo
r

th
em

es

o
f

th
e

p
la
y

. te
m
p
u
s

fu
g
it

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
article 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
discusses 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
the 0 0 0 2 2 1 0 0 0 0 0 2 1 0 0 2 1 0 0 0
famous 0 0 0 1 1 1 3 2 1 0 0 1 1 0 0 1 1 0 0 0
Hamlet 0 0 0 0 3 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0
monologue 0 0 0 0 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0
of 0 0 0 0 1 1 1 0 3 2 2 1 0 0 2 1 0 0 0 0
the 0 0 0 0 0 0 0 0 2 2 1 4 3 2 1 4 3 2 1 0
main 0 0 0 0 0 0 0 0 1 1 1 3 3 2 1 3 3 2 2 0
themes 0 0 0 0 0 0 0 0 0 0 0 2 2 5 4 3 2 2 1 0
of 0 0 0 0 0 0 0 0 2 1 2 1 1 4 7 6 5 4 3 2
the 0 0 0 0 0 0 0 0 1 1 1 4 3 3 6 9 8 7 6 5
game 0 0 0 0 0 0 0 0 0 0 0 3 3 2 5 8 8 7 6 5
. 0 0 0 0 0 0 0 0 0 0 0 2 2 2 4 7 7 10 9 8
carpe 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 6 6 9 9 8
diem 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 5 8 8 8

Discovering Similar Passages within Large Text Documents 103

3 Discovering Multiple Passages

It is quite possible that two text documents may contain more than one set of
corresponding passages. Moreover, it is not generally possible to know a priori
how many there may be, if indeed there are any at all. Further, corresponding
passages may not possess the same relative ordering in one document that they
possess in the other.

We therefore define a recursive procedure for finding multiple aligned passages.
This procedure makes use of two auxiliary linear arrays corresponding to the
tokens for each document. The arrays are initialized to indicate that at the
start, all tokens in each document are available for inclusion in the next found
alignment sequence. However, as each sequence is found, the array elements for
the tokens that have been used are marked to block off those tokens from further
consideration. This ensures that there can be no overlapping alignments.

The recursive procedure is illustrated in Figure 1. The matrix sketch on the
left depicts a first maximal alignment that has been found in matrix region A.
By construction, the alignment includes all tokens in the first sequence that
run from the top row to the bottom row of region A. Similarly, the alignment
also includes all tokens from the second sequence that run from the leftmost
column to the rightmost column of region A. Because the tokens used for this
alignment may not be used again, the sketch on the left shows in white the
remaining regions of the matrix that may contain additional alignments. These
are searched in recursive fashion.

Similarly, the sketch on the right shows the situation after a second maxi-
mal alignment is found in region B. This results in blocking off from further
consideration additional tokens, as shown by the additional shaded regions.

Fig. 1. Sketch of match matrix regions showing in white the remaining regions that
may contain additional aligned passages after an alignment is first found in region A
and subsequently an alignment is found in region B

104 D. Glinos

As may be observed from Figure 1, it is the case in general that whenever an
alignment is found within a region of the matrix, four subregions remain where
additional alignments may potentially be found. These are searched in recursive
fashion, adding to the auxiliary linear arrays each time a fresh alignment is
found. The recursion ends when all regions have been searched.

4 Handling Long Documents

Because our method involves generating and processing a match matrix of a
size equal to the product of the numbers of tokens in each of the two source
documents, we recognize that there may be some text document pairs whose
matrix requirements may exceed the available memory for storing such a data
structure. Therefore, to ensure that our method scales with document size, we
have devised a procedure for processing very large matrices, and by extension,
very large documents, which we term matrix splicing.

Matrix splicing uses a system configuration parameter that represents the
largest matrix size in terms of the total number of matrix elements that will
be processed at one time. This value is system dependent and represents the
memory available on the host system for the match matrix. It does not reflect
any characteristic of the text documents themselves or the text analysis domain.
We used a value of 50 million during initial development, which was adequate
for our system, but we subsequently decreased it to 25 million to ensure that
the matrix slicing component was exercised adequately. And since the system
performed well on all test data with that value, we retained that value in the
tests described in the next section.

It should be kept in mind that the value of 25 million represents token pairs,
so that a matrix of this size will handle two 5,000-word documents, which cor-
respond roughly to two 20-page papers, without invoking the splicing method.
Nevertheless, as will be discussed in the next section, many documents much
larger than these were encountered during testing, confirming the need for the
method.

Matrix splicing proceeds as follows. First, the matrix needs for the document
pair are computed and compared to the limiting value. If the needs do not exceed
the value, all alignment processing is performed using a single matrix, which is
examined recursively as described in the previous section. If the matrix needs
exceed the limit, a first match matrix is constructed using all of the rows of the
first document and as many of the columns of the second document as ensures
that their product is within the system limit, after first reserving space in the
matrix for a carryover vector of length equal to the number of rows in the matrix.

The carryover vector is initialized to all zeroes and represents, initially, the
zeroeth column of the matrix, but it contains fields for additional information
that may be needed later to stitch together two sequence segments that cross
the boundary between two adjacent match matrices for the document pair.

Given an initialized carrover vector, the first match matrix is processed re-
cursively as described in the previous section to identify valid text alignments

Discovering Similar Passages within Large Text Documents 105

within its boundaries. All detected alignments that do not begin at the rightmost
boundary of the matrix are treated as strictly internal and are saved to be re-
ported as a group with all other alignments for the document pair. However, all
sequences, however short, that begin on the rightmost boundary of the current
matrix are preserved in the carryover vector since they may be the beginnings of
alignments that are completed in the next match matrix for the pair. It should
be noted that only the matrix value and the row and column indices of the head
of each such subsequence are needed to fully specify such a sequence, as they
define the upper left corner of the bounding rectangle and the value that is used
for applying the modified Smith-Waterman algorithm in the next match matrix.

Thus, after the first match matrix is processed, any fully internal alignments
will be saved to be reported later, and any sequences that begin on the right
boundary will be preserved in the corresponding entries of the carryover vector,
which will also have zero values for all other entries. The next match matrix is
then generated. However, this time, instead of all zeroes in the leftmost column,
as in the simplest case, any nonzero values specified by the carryover vector
will be used for values in the leftmost column in the matrix algorithm. During
traceback, any alignment sequences that reach the leftmost column of the match
matrix are then augmented by the information stored in the carryover vector at
the boundary location. In this manner, alignment sequences are spliced together
to form the combined sequences that would have been produced had the two
documents been processed using a single match matrix. This process then repeats
for however many match matrices as are needed to process the matrix needs for
the two documents.

5 Experiments and Results

5.1 Test Corpus

To evaluate the performance of the method and algorithms described in the pre-
ceding sections, we selected the PAN Workshop 2013 test corpus. As described
in [5], the corpus consists of document pairs on 145 topics that were processed
both automatically and manually to produce document pairs that involve the
following types of plagiarism: (i) no plagiarism; (ii) no obfuscation; (iii) random
obfuscation; (iv) cyclic translation obfuscation; and (v) summary obfuscation.
The corpus includes both order-preserving plagiarism problems suitable for test-
ing our algorithm, as well as plagiarism problems (such as summarization) that
our algorithm does not address.

Full details of the construction of the corpus are contained in [5]. Briefly, how-
ever, the document categories are described as follows: The no plagiarism cat-
egory is self-explanatory. The no-obfuscation category represents cut-and-paste
copying, although some differences in whitespace and line breaks are introduced.
The random obfuscation category includes some amount of random text oper-
ations, such as word shuffling, adding or deleting words or phrases, and word
replacement using synonyms. Cyclic translation involves translations of a docu-
ment using automated translation services into two successive languages other

106 D. Glinos

than English, and then back into English. Finally, the summary category includes
documents obtained from the Document Understanding Conference (DUC) 2006
corpus that have been processed to introduce noisy areas in addition to the sum-
maries in the test documents.

The actual 2013 PAN text alignment test corpus comprises 5,185 document
pairs from 3,169 source documents and 1,826 documents that contain suspected
plagiarism. The test corpus includes 1,185 document pairs from the summary
category and 1,000 from each of the other categories. The basic characteristics
of the corpus are summarized in Table 2. The word counts in the table were
obtained in each case by dividing the number of characters observed by five,
which is the average word length for English.

Table 2. PAN 2013 Text Analysis Test Corpus basic characteristics

PAN 2013 Test Corpus Chars Words

Suspect Documents

Min length 657 131

Max length 101,484 20,297

Mean length 14,650 2,930

Source Documents

Min length 520 104

Max length 61,385 12,277

Mean length 4,570 914

5.2 Performance Measures

Full details for evaluating plagiarism detection performance are contained in [1].
We summarize them here.

The traditional measures of precision and recall for information retrieval sys-
tems are retained, but are adapted to the plagiarism detection context so that
both measures reflect how well a detected alignment corresponds to the gold
standard character offsets and lengths for both source and suspected documents.

The measures involve plagiarism cases and detections, which are defined as
follows. A plagiarism case is a 4-tuple s = 〈 roff , rlen, soff , slen 〉 that repre-
sents the gold standard offsets and lengths for the corresponding passages in the
suspect document (”r”) and the source document (”s”), respectively. Similarly,
a detection is represented by the 4-tuple r = 〈 r′off , r′len, s′off , s′len 〉 . All
offsets and lengths are represented in characters.

Now, if both the suspect and source intervals of the detection have nonempty
intersections with the corresponding intervals of the gold standard case, then we
say that the case has been detected by the reported detection.

If we further define S to be the union of all gold standard cases and R to be
the union of all reported detections, then we can define precision and recall as
follows:

Discovering Similar Passages within Large Text Documents 107

precision(S,R) =
1

|R|
∑

⋃
(s � r)

|r| and recall(S,R) =
1

|S|
∑

⋃
(s � r)

|s| (2)

where s � r =

{
s ∩ r, if r detects s

∅, otherwise (3)

An additional measure called granularity is also used to reflect that it is
undesirable for a detector to report multiple detections where there should be
only one, thus:

granularity(S,R) =
1

|SR|
∑

|RS | (4)

where SR ⊆ S are the subset of cases that are detected and RS are the subset
of reported detections that detect cases.

Finally, all of the above measures are combined in a composite measure called
the plagiarism detection score, as follows:

plagdet(S,R) =
F1

log2(1 + granularity(S,R))
(5)

where F1 is the balanced harmonic mean of precision and recall.

5.3 Experimental Results

Our system implementation was run first against the the entire PAN 2013 text
alignment test corpus in a test in which the source and suspect document pla-
giarism database categories were not known. Subsequent runs were then made
against the document pairs for each of the individual categories. Table 3 be-
low summarizes aggregate performance for the test runs. Table 4 presents the
corresponding raw detection and plagiarism case information.

We examine first the runtime performance of the system. Overall, the system
processed the 5,185 document pairs in approximately 23.5 minutes, correspond-
ing to an average of 0.2590 seconds per document pair. This is quite respectable
performance for a natural language processing system, although not real time.
Our code was written in Java and was executed in a Linux virtual machine
environment on a dual-core 2.66 GHz machine with 4 GB RAM. We antici-
pate that improved runtime performance can be obtained from migrating to a
compiled language and better hardware. Runtime performance against the indi-
vidual category types varied, with approximately equal time consumed for the
three categories for which substantial numbers of alignments were detected.

Next, we turn to the functional performance of the system. Overall, the 0.8404
composite plagiarism detection score achieved by the system was 1.8% higher
than the best reported result against the test corpus [5] despite poor performance
against the summary obfuscation category. Nevertheless, overall precision was
0.9690, which exceeded the best reported by 7.4%. Overall recall, however, was
dragged down by performance against the summary category and falls within
the middle of the pack for reported results (see [5]).

108 D. Glinos

Table 3. Aggregate performance against PAN 2013 test corpus

Target Corpus PlagDet Recall Precision Granularity Runtime

No plagiarism undefined undefined 0.0000 undefined 1:41.2013

No obfuscation 0.9624 0.9603 0.9644 1.0000 6:47.717

Random obfuscation 0.7958 0.7073 0.9732 1.0413 5:09.562

Cyclic obfuscation 0.8441 0.7506 0.9730 1.0056 6:55.170

Summary obfuscation 0.0984 0.0560 0.9794 1.1099 2:52.770

Overall 0.8404 0.7588 0.9690 1.0177 22:23.481

Table 4. Case and detection counts for test runs against PAN 2013 test corpus

Target Corpus Document Pairs Reports Detections Cases Cases Detected

No plagiarism 1,000 5 0 0 0

No obfuscation 1,000 1,160 1,159 1,206 1,159

Random 1,000 1,114 1,109 1,292 1,065

Cyclic 1,000 1,093 1,084 1,308 1,078

Summary 1,185 103 101 236 91

Overall 5,185 3,475 3,453 4,042 3,393

The anomalous performance against pairs in the summary obfuscation cate-
gory is explained easily given the nature of our method and the type of obfusca-
tion involved. Our method is for the detection of aligned texts. The key feature
for any alignment is, by definition, that order is preserved. Summarization, by
contrast, has an entirely different character. It is the nature of summarization
that terms and concepts are taken from various locations within the source doc-
ument, and there is no requirement that such terms and concepts appear in the
summary in any particular order. Accordingly, summarization is inherently non-
order preserving, and as such, an alignment method such as ours will generally
fail to find an alignment. Nevertheless, we observe that the system did in fact
detect 91 out of 236 summarization cases, and a manual examination of a num-
ber of these detections revealed source passages that appeared to us to indicate
that perhaps some summaries were prepared by essentially paraphrasing coher-
ent sections of the source text. While true summarization in context may be
considered plagiarism, it does not present in our view a text alignment problem.
Some of the random obfuscation and cyclic translation cases also exhibited these
characteristics, although we did not have the opportunity to quantify the extent
in this initial effort.

Overall, the test results show that our method performs best against the no-
obfuscation category, where order is necessarily preserved, and that performance
remains high and degrades only somewhat for the cyclic and random categories,
which involve some measure of reordering of terms and concepts.

Discovering Similar Passages within Large Text Documents 109

6 Conclusions

We have presented a general method for detecting text alignments across docu-
ments and have shown that it possesses both adequate runtime performance and
is robust against alignment problems of varying difficulty. The method is capable
of finding multiple algnments within a given document pair. The method is also
scalable to handle very long documents. Based on our investigations, we believe
that the method can serve as a component of a full plagiarism detection system,
and can also be applied in a variety of other document processing contexts.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipmanl, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(2), 403–410 (1990)

2. Gotoh, O.: An Improved Algorithm for Matching Biological Sequences. Journal of
Molecular Biology 162, 705–708 (1981)

3. Kong, L., Qi, H., Wang, S., Du, C., Wang, S., Han, Y.: Approaches for Can-
didate Document Retrieval and Detailed Comparison of Plagiarism Detection.
In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.) CLEF (Online Working
Notes/Labs/Workshop) (2012)

4. Kong, L., Qu, H., Du, C., Wang, M., Han, Z.: Approaches for Source Retrieval
and Text Alignment of Plagiarism Detection–Notebook for PAN at CLEF 2013. In:
Forner, P., Navigli, R., Tufis, D. (eds.) Working Notes Papers of the CLEF 2013
Evaluation Labs (September 2013)

5. Potthast, M., Gollub, T., Hagen, M., Tippmann, M., Kiesel, J., Rosso, P.,
Stamatatos, E., Stein, B.: Overview of the 5th International Competition on Pla-
giarism Detection. In: Forner, P., Navigli, R., Tufis, D. (eds.) Working Notes Papers
of the CLEF 2013 Evaluation Labs (September 2013)

6. Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal
of Molecular Biology 147(1), 195–197 (1981)

7. Suchomel, S., Kasprzak, J., Brandejs, M.: Three Way Search Engine Queries
with Multi-feature Document Comparison for Plagiarism Detection. In: Forner, P.,
Karlgren, J., Womser-Hacker, C. (eds.) CLEF (Online Working Notes/Labs/
Workshop) (2012)

8. Suchomel, Š., Kasprzak, J., Brandejs, M.: Diverse Queries and Feature Type Se-
lection for Plagiarism Discovery–Notebook for PAN at CLEF 2013. In: Forner, P.,
Navigli, R., Tufis, D. (eds.) Working Notes Papers of the CLEF 2013 Evaluation
Labs (September 2013)

9. Torrejón, D., Ramos, J.: Text Alignment Module in CoReMo 2.1 Plagiarism
Detector–Notebook for PAN at CLEF 2013. In: Forner, P., Navigli, R., Tufis, D.
(eds.) Working Notes Papers of the CLEF 2013 Evaluation Labs (September 2013)

	Discovering Similar Passages Within Large Text Documents
	1
Introduction
	2
Basic Alignment Algorithm
	3
Discovering Multiple Passages
	4
Handling Long Documents
	5
Experiments and Results
	5.1
Test Corpus
	5.2
Performance Measures
	5.3
Experimental Results

	6
Conclusions

