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Abstract. The security of deployed and actively used systems is a mov-
ing target, influenced by factors not captured in the existing security
metrics. For example, the count and severity of vulnerabilities in source
code, as well as the corresponding attack surface, are commonly used as
measures of a software product’s security. But these measures do not pro-
vide a full picture. For instance, some vulnerabilities are never exploited
in the wild, partly due to security technologies that make exploiting
them difficult. As for attack surface, its effectiveness has not been vali-
dated empirically in the deployment environment. We introduce several
security metrics derived from field data that help to complete the picture.
They include the count of vulnerabilities exploited and the size of the at-
tack surface actually exercised in real-world attacks. By evaluating these
metrics on nearly 300 million reports of intrusion-protection telemetry,
collected on more than six million hosts, we conduct an empirical study
of security in the deployment environment. We find that none of the
products in our study have more than 35% of their disclosed vulnerabil-
ities exploited in the wild. Furthermore, the exploitation ratio and the
exercised attack surface tend to decrease with newer product releases.
We also find that hosts that quickly upgrade to newer product versions
tend to have reduced exercised attack-surfaces. The metrics proposed
enable a more complete assessment of the security posture of enterprise
infrastructure. Additionally, they open up new research directions for
improving security by focusing on the vulnerabilities and attacks that
have the highest impact in practice.

1 Introduction

In order to improve the security of our software systems, we need to be able to
measure how they are impacted by the various defensive techniques we intro-
duce to protect them. Measuring security, however, is challenging. Many security
metrics have been proposed, including the total count of vulnerabilities in source
code, the severity of these vulnerabilities, the size of the attack surface and the
time window between the vulnerability disclosure and the release of a patch. Sys-
tem administrators and security analysts often rely on these metrics to assess
risk and to prioritize some patches over others, while developers use them as
guidelines for improving software security. Practical experience, however, sug-
gests that the existing security metrics exhibit a low level of correlation with
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vulnerabilities and attacks, and they do not provide an adequate assessment of
security [1, 2].

A vulnerability is a programming error that can be exploited by an attacker
to subvert the functionality of the vulnerable software by feeding it malformed
inputs (e.g., network packets or web form submissions that evade the program’s
error checks, allowing the attacker to execute arbitrary code on the host). For ex-
ample, the vulnerability identified by CVE-2007-1748 [3] corresponds to a buffer
overflow in the RPC interface for the DNS server included in several versions of
Windows server. It allows remote attackers to execute arbitrary code by sending
specially crafted network packets to the vulnerable host. The total number of
vulnerabilities discovered in source code is commonly used as a measure of the
system’s security [1, 2]. However, this metric does not account for the fact that
cyber attackers never make use of some of the discovered vulnerabilities, which
may be hard to successfully exploit in the presence of security technologies such
as data execution prevention (DEP) and address space layout randomization
(ASLR). For example, CVE-2007-1748 was exploited in the wild, but there is no
evidence of cyber attacks exploiting CVE-2007-1749.

Another popular metric is based on the observation that attacks can suc-
ceed only if the vulnerable software accepts input from potential attackers. For
this reason, system administrators have long advocated turning off unnecessary
system services to avoid exposure to exploits of unpatched or unknown vul-
nerabilities. For example, network-based attacks exploiting CVE-2007-1748 are
unsuccessful—even if the vulnerability was not yet patched—if the DNS server
is not running. This idea is formalized in the concept of attack surface [4, 5],
which quantifies the number and severity of potential attack vectors that a sys-
tem exposes by using a formula that takes into account the open sockets and
RPC endpoints, the running services and their privilege level, the active Web
handlers, the accounts enabled, etc. Reducing the attack surface, however, does
not always improve security; for example, including security mechanisms in the
OS may increase the attack surface, but renders the system more secure. Fur-
thermore, the attack surface of software products changes after they are deployed
in the field, as users install new applications and modify system configuration.
To the best of our knowledge, the size and variability of attack surfaces has not
been evaluated empirically in the field. It is, therefore, difficult to determine the
effectiveness of this metric in capturing real-world conditions.

These examples illustrate that our ability to assess the security of systems
that are deployed and actively utilized is currently limited by the metrics being
used. In particular, the developers and the users may employ different security
metrics. For example, one way of estimating the vulnerability density and the
attack surface is to use existing tools that measure these properties by directly
analyzing the code and the configuration of the system in question [6,7]. However,
these measurements are conducted in lab conditions, and do not reflect the real-
world security of systems that are deployed and actively used in the field.

For these reasons, users are ultimately interested in metrics that help them
assess the effectiveness of these techniques in the field. Figure 1 illustrates this



428 K. Nayak et al.

(a) All vulnerabilities disclosed publicly
(from NVD [8]).

(b) Vulnerabilities exploited in the wild
(cf. Section 4.2).

Fig. 1. Number of vulnerabilities disclosed and exploited for Microsoft Windows over
11 years of releases, with linear-regression trend lines

problem. The number of vulnerability exploits is not proportional to the total
number of vulnerabilities discovered in Windows OSes, and the two metrics
follow different trends (as suggested by the trend lines in Figure 1). Additionally,
there is no apparent correlation between the number of vulnerabilities discovered,
and the size of the OS code.1 This suggests the existence of deployment-specific
factors, yet to be characterized systematically, that influence the security of
systems in active use.

Our goal in this paper is to propose new metrics that better reflect security in
the real world and to employ these metrics for evaluating the security of popular
software. Rather than measuring security in lab conditions, we derive metrics
from field-gathered data and we study the trends for vulnerabilities and attack
surfaces exercised in attacks observed in the real world. While the vulnerability
count and the attack surface are metrics that capture the opportunities available
to attackers, we instead focus on attempted, though not necessarily successful,
attacks in the field. This new understanding, potentially combined with existing
metrics, will enable a more accurate assessment of the risk of cyber attacks,
by taking into account the vulnerabilities and attacks that are known to have
an impact in the real world. For instance, although it is very important that
all vulnerabilities be addressed, system administrators might find it useful to
understand if some vulnerabilities are more critical than others, as a criterion
for risk assessment and for prioritizing patch deployment.

A meta-goal of our study is to illustrate how this analysis can be conducted us-
ing data that is available to the research community for further studies, allowing
other researchers to verify and to build on our results.

1 Approximate lines of code, in millions: Windows 2000 � 30, Windows XP � 45,
Windows Server 2003 � 50, Windows Vista, Windows 7 > 50 [9–11].
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We make two contributions in this paper:
1. We propose field-measurable security metrics to identify which vulnerabili-

ties are exploited (count of exploited vulnerabilities and exploitation ratio),
quantify how often they are exploited (attack volume and exercised attack
surface) and study when they are exploited.

2. We perform a systematic study of the exploited vulnerabilities and the ex-
ercised attack surfaces on 6,346,104 hosts. Our empirical findings include:
– Few vulnerabilities are exploited in the real world: For Microsoft Win-
dows, Adobe Reader, Microsoft Office and Microsoft Internet Explorer,
fewer than 35% of the disclosed vulnerabilities are ever exploited. When
the vulnerabilities for all these products are considered together, only
15% are exploited. Moreover, this exploitation ratio tends to decrease
with newer product releases.

– The exploitation ratio varies between products, implying that the num-
ber of vulnerabilities may not be a reliable indicator of real-world exploits
and the security of a product.

– The average exercised attack surface for Windows and IE has decreased
with each new major release, and the latest versions of Reader have a
far smaller exercised attack surface than earlier versions.

– A significant portion of the average exercised attack surface of a host is
due to products installed on the system and not the OS.

– A few vulnerabilities (e.g. CVE-2008-4250 and CVE-2009-4324) account
for a disproportionate number of attacks and influence our metrics.

– Quicker upgrades to newer product versions are correlated with reduced
exercised attack surfaces.

– More than 93% of Windows and IE users are expected to remain
unattacked at the end of four years. In contrast, only 50% Reader users
are expected to remain unattacked for the same time period.

The rest of the paper is organized as follows. In Section 2 we review the related
work on security metrics. In Section 3 we introduce our field-based metrics, and
in Section 4 we describe how we measure them. Section 5 presents our empirical
findings, and Section 6 discusses their implications.

2 Related Work

The total number of known vulnerabilities present in source code and their sever-
ity, as represented by the Common Vulnerability Scoring System (CVSS), are
commonly used security metrics. For example, Rescorla [12] analyzes the num-
ber of vulnerabilities disclosed for 4 operating systems in order to determine
whether the practice of vulnerability disclosures leads to reliability growth over
time. Ozment et al. [13] study the rate of vulnerability finding in the foun-
dational code of OpenBSD and fit the data to a vulnerability growth model
in order to estimate the number of vulnerabilities left undiscovered. Clark et
al. [14] examine the challenge of finding vulnerabilities in new code and show
that the time to discover the first vulnerability is usually longer than the time
to discover the second one (a phenomenon they call the “honeymoon effect”).
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Several studies employ vulnerability counts as an implicit measure of security.
Shin et al. [1] evaluate code complexity, code churn and the developer activity to
determine the vulnerable code locations in Linux. Bozorgi et al. [15] propose a
machine learning approach for predicting which vulnerabilities will be exploited
based on their CVSS scores. In consequence, the National Institute of Standards
and Technology (NIST) recommends CVSS scores as the reference assessment
method for software security [16]. Based on an empirical analysis, Ransbotham
et al. suggest that vulnerabilities in open source software have an increased risk
of exploitation, diffuse sooner and have a larger volume of exploitation attempts
than closed source software [17].

Because programming errors are thought to be inevitable, reducing the at-
tack surface was proposed a decade ago as an alternative approach to securing
software systems [4]. In order to exploit a vulnerability, an attacker must have
an opportunity to exercise the vulnerable code, for instance by sending a mes-
sage to a service listening on a network port. Such an opportunity is known as
an attack vector. Attack surface reduction works by decreasing the number and
severity of potential attack vectors exposed by the OS and its applications. Like
the vulnerability metrics, attack surface is typically measured by analyzing the
source code or the configuration of the system. Howard [4] defines an attack
surface metric as a weighted combination of targets, enablers, communication
channels, protocols and access rights. The Microsoft Attack Surface Analyzer
tool [6] estimates the attack surface from the system configuration and monitors
changes over time. Manadhata et al. [5] define attack surface as a triple, where
each element represents the sum of the damage potential-effort ratio for (i) entry
and exit points, (ii) channels and (iii) untrusted data items. Kurmus et al. [18]
define attack surface as a function of the call graph, a set of entry functions, and
a set of barrier functions.

2.1 Problems with the Existing Security Metrics

Measurability. Some security metrics are difficult to assess. Code-based metrics
have been shown to exhibit statistically significant, but small, correlations with
security vulnerabilities [1,2]. Evaluating attack-surface metrics can require access
to both the source code of the product and to the composition of its deployment
environments [5]. In contrast, the metrics we propose can be computed from
the typical telemetry collected by security products (e.g. anti-virus, intrusion-
protection system) running on end-hosts around the world.

Representativeness. The existing metrics do not reflect security in the field. The
CVSS “exploitability” subscore is not a good predictor for which vulnerabilities
are exploited in the real world (though, most exploited vulnerabilities do have
high exploitability) [19], and the CVSS-based risk evaluation does not fit the
real attack data, as observed in the wild [20]. The attack surface metrics have
not been validated empirically, in the deployment environment. In particular,
the impact of user behavior (e.g. installing new software) on attack surfaces is
unknown. In contrast, we focus on alternative metrics that better reflect the risk
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Table 1. Summary of notations

Measurement subjects

p A software product.
h A host.
v A vulnerability.
m A calendar month.

Sets of subjects

Vp(t) The set of vulnerabilities disclosed for a product p up to time t.
V ex
p (t) The set of vulnerabilities known to be exploited for a product p up to time t.

V prog,ex
p (t) The set of progressive vulnerabilities known to be exploited for a product p up to

time t.
Hp,m The set of hosts that have product p installed during month m.
Av

h,m The set of attacks against host h during month m attempting to exploit vulnerability
v.

Vulnerability-based metrics

ERp(t) Exploitation ratio for vulnerabilities of product p until time t.
ERp

Prog(t) Exploitation ratio for progressive vulnerabilities of product p until time t.

Attack-based metrics

EPp Exploitation prevalence, the proportion of hosts with p installed that ever experience
an attack exploiting p.

AVp Attack volume, the average number of attacks per machine-month for a product p.
EASh(m) Exercised attack surface of a host h for month m.
EASp

h(m) Exercised attack surface of a host h for month m w.r.t. p.
AEASp Average exercised attack surface w.r.t p over all machine-months p was installed.
AEAS(m) Average exercised attack surface over all hosts for all products during month m.
AEASp

h Average exercised attack surface over all months p was installed on host h w.r.t p’s
vulnerabilities.

for end-users. These metrics include the number of vulnerabilities exploited and
the size of the attack surface exercised in real-world cyber attacks. We also assess
how the exercised attack surface varies from one host to another.

3 Proposed Metrics

In this section we introduce our proposed security metrics which, in contrast
to existing metrics, are measured in the deployment environment. We consider
this distinction important since security is a moving target once a system is
deployed; attackers exploit new vulnerabilities (to subvert the system’s func-
tionality), vendors distribute software updates (to patch vulnerabilities and to
improve security) and users reconfigure the system (to add functionality). Since
our new metrics are derived from field-gathered data, they capture the state
of system security as experienced by the end users. Table 1 summarizes the
notations we employ.

The following metrics capture the notion of whether disclosed vulnerabilities
get exploited.

1. Count of vulnerabilities exploited in the wild. For a product p, we consider
the number of vulnerabilities known to have been exploited in the wild,
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∣
∣V ex

p

∣
∣, to be an important metric. We combine information from NVD [8]

and Symantec’s databases of attack signatures [21, 22] to obtain the subset
of a product’s disclosed vulnerabilities that have been exploited. (These data
sources are described in more detail in Section 4.1.) V ex

p is the subset of the
vulnerabilities listed in NVD that affect product p and which have at least
one Symantec signature referencing the vulnerability’s CVE identifier. Prior
research has suggested that these signatures represent the best indicator for
which vulnerabilities are exploited in real-world attacks [19].

2. Exploitation ratio. The exploitation ratio is the proportion of disclosed vul-
nerabilities for product p that have been exploited up until time t. It captures
the likelihood that a vulnerability will be exploited.

ERp(t) =

∣
∣V ex

p (t)
∣
∣

|Vp(t)|
We also propose the following metrics that capture how often vulnerabilities

are exploited on hosts in the wild.

1. Attack Volume. The attack volume is a measure that captures how frequently
a product p is attacked. Intuitively, it is the average number of attacks ex-
perienced by a machine in a month due to product p being installed. It is
defined as:

AVp =

∑

m

∑

h∈Hp,m

∑

v∈V ex
p

∣
∣
∣Av

h,m

∣
∣
∣

∑

m
|Hp,m|

That is, the number of attacks that exploit a vulnerability of p against hosts
with p installed, normalized by the total number of machine-months during
which p was installed.

2. Exercised Attack Surface. We also define the exercised attack surface,
EASh(m), which captures the portion of the theoretical attack surface of a
host that is targeted in a particular month. Intuitively, the exercised attack
surface is the number of distinct vulnerabilities that are exploited on a host
h in a given month m. We compute the exercised attack surface attributable
to a particular product using the following formula:

EASp
h(m) =

∣
∣
{

v ∈ V ex
p | ∣

∣Av
h,m

∣
∣ > 0 ∧ h ∈ Hp,m

}∣
∣

That is, the cardinality of the set of p’s vulnerabilities used in attacks against
h in month m, or 0 if p is not installed on h during month m. We can now
define the exercised attack surface for a host over all installed products as:

EASh(m) =
∑

p

EASp
h(m)

We can then average these per host, per month metrics in various ways as
listed in Table 1. In particular we can calculate an average exercised attack
surface metric for a product p as follows:
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AEASp =

∑

m

∑

h∈Hp,m

EASp
h(m)

∑

m
|Hp,m|

Intuitively, AEASp represents the average number of vulnerabilities that are
exploited for product p during one month on one machine. So, while AVp

captures the volumes of attacks against a product, AEASp captures the
diversity of those attacks.

4 Experimental Methods

4.1 Data Sets

Public vulnerability databases. The National Vulnerability Database (NVD) [3]
is a database of software vulnerabilities which is widely accepted for vulnera-
bility research. For each vulnerability, NVD assigns a unique identifier called
CVE-ID. Additionally, we employ the Open-Sourced Vulnerability Database
(OSVDB) [23] to determine the dates when proof-of-concept exploits are pub-
lished for the NVD vulnerabilities.

Symantec signatures. Symantec security products include an extensive database
of signatures.Attack signatures are described on a publicly-accessibleweb site [24],
and they are employed by Symantec’s intrusion-prevention systems (IPS) for iden-
tifying attacks in network streams—including attempts to exploit knownOS or ap-
plication vulnerabilities. Symantec also maintains descriptions of anti-virus (AV)
signatures, used by anti-virus products to scan files for known threats [21]. For
threats that involve exploits, these data sets indicate the CVE-ID of the vulnera-
bility exploited. Prior research has suggested that these signatures represent the
best indicator for which vulnerabilities are exploited in real-world attacks [19].

Worldwide Intelligence Network Environment (WINE). In order to analyze the
attacks happening on different hosts running different products, we use WINE
[25], which contains records of which signatures are triggered in the field and
when. The binary reputation dataset within WINE provides information about
all the binaries detected on end-user hosts by Symantec products such as Norton
Antivirus. Each binary reputation record contains the filename, its version, a file
hash, machine ID, and a timestamp for the detection event.

The intrusion-prevention telemetry dataset within WINE provides informa-
tion about network based attacks detected by Symantec products.We define a
network-based attack against a host as a series of network packets that: 1) carry
malicious code, and 2) have not been prevented by other existing defenses (e.g.
network or OS firewall). Each IPS entry contains the signature ID for the threat
detected, a machine ID, a platform string and a timestamp for the event. Our
study involves 298,851,312 IPS entries corresponding to 6,346,104 hosts over a
period of 4 years. The average duration for which a host is present in our study
is approximately 13 months.
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4.2 Data Analysis Approach

The primary requirement for our analysis is to detect an attempt to attack a host
running a vulnerable product. IPS telemetry does not indicate whether the vul-
nerabilities had been patched at the time of the attack. Moreover, these reports
indicate attacks that were blocked by the IPS product, rather than successful
infections. We exclude attacks against products that are not installed on a host,
as they would not result in a successful infection.

Finding signatures used to exploit products. Using NVD, we first collect the
disclosure dates and the vulnerable software list for all vulnerabilities—including
vendor, product and version—and manually remedy any naming inconsistencies.
We join this information with Symantec’s attack signatures containing CVE
numbers, so as to obtain entries of the form 〈CV E,Prod, Sign〉.

Selecting the hosts used in the study. We analyze Symantec’s binary reputation
reports in order to determine, for each host, what products are installed and
the period of time during which they remained installed. We manually map
the binaries to the corresponding product versions using externally available
information. For instance, iexplore.exe corresponds to IE, and file version
8.0.6001.18702 corresponds to IE 8 [26]. Due to users enabling different features
of their Symantec product at different times, the time period for which we have
binary reputation data for a host may be different from the time period for
which we have IPS telemetry reports (attack detections). Our metrics require
both product presence and attack information, so we include hosts in our study
only during the times when they are submitting both kinds of data.

Identifying an attack against a host. By joining the binary reputation and IPS
dataset for all the hosts identified, we are able to discover all the products
installed on a host and all the signatures triggered on the machine. We derive
the operating system installed on a host from the platform string included in IPS
telemetry submissions. If a vulnerable product is present when the corresponding
signature is detected, we have an attack on the host. Of the 298,851,312 telemetry
records, 40,954,812 correspond to one of the vulnerabilities that we study, and
of these, 20,915,168 occur on a host with the vulnerable product installed.

4.3 Products Analyzed

At the time of this writing, NVD includes 61,387 vulnerabilities reported across
all products. There are Symantec signatures corresponding to 1,406 of these vul-
nerabilities. We focus our study on Windows operating systems and on several
applications that run on this platform because (i) they have been the primary
target for cyber attacks over the past 10 years, and (ii) the platform has evolved
in these 10 years and the versions we investigate incorporate considerable di-
versity, as many technical changes have been implemented between Windows
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XP and Windows 7 SP1.2 In particular, in this paper, we study the following
software products:

– Microsoft Windows: XP (original, SP1, SP2, SP3), Vista (original, SP1,
SP2), and 7 (original, SP1)

– Microsoft Office (referred to as Office) - Versions: 2000, 2003, 2007, 2010

– Internet Explorer (referred to as IE) - Versions: 5, 6, 7, 8

– Adobe Reader (referred to as Reader) - Versions: 5, 6, 7, 8, 9, 10, 11

There are 860 vulnerabilities in NVD for all the Windows operating systems
we consider. Out of these, 132 vulnerabilities have seen exploits in the wild,
according to Symantec’s attack signatures. We exclude the 64-bit version of XP
from our study as it belongs to the same product line as Windows Server 2003.
There are 759 vulnerabilities reported for the versions of IE we consider. 108
of these vulnerabilities have seen exploits in the wild. For Office, 50 of the 163
vulnerabilities reported have been exploited. Finally, there are 337 vulnerabilities
for the versions of Reader we analyze, out of which 44 vulnerabilities have seen
exploits in the wild.

4.4 Threats to Validity

The biggest threat to the validity of our results is selection bias. The two
databases we employ to characterize vulnerabilities and exploits, NVD and
Symantec’s attack signatures, respectively, may be incomplete. These databases
include only the vulnerabilities and exploits that are known to the security
community. Moreover, as WINE does not include telemetry from hosts with-
out Symantec’s anti-virus products, our field-data based measurements may not
be representative of the general population of platforms in the world. In particu-
lar, users who install anti-virus software might be more careful with the security
of their computers and, therefore, might be less exposed to attacks.

Although we cannot rule out the possibility of selection bias, we note that the
NVD is generally accepted as the authoritative reference on vulnerabilities, and
it is widely employed in vulnerability studies, and prior work found Symantec’s
signatures to be the best indicator for which vulnerabilities are exploited in
real-world attacks [19]. Moreover, the large size of the population in our study
(six million hosts) and the diversity of platforms suggest that our results have
a broad applicability. However, we caution the reader not to assume that all
systems will react in the same manner to malware attacks.

2 While we do not know the amount of code these OSes have in common, it is widely ac-
cepted that a large amount of new code was introduced in Windows Vista, including
security technologies such as software data execution prevention (DEP/SafeSEH),
address space layout randomization (ASLR), driver signing improvements, user ac-
count control (UAC), or the Windows filtering platform.
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5 Analysis of Exploited Vulnerabilities and Exercised
Attack Surfaces

In this section, we evaluate the metrics introduced in Section 3 and discuss their
implications. In particular, we focus on the following questions: “How many
of the disclosed vulnerabilities get exploited?” (§5.1), “How often do they get
exploited?” (§5.2), and “When do they get exploited?” (§5.3). The first ques-
tion evaluates our vulnerability-based metrics under real-world conditions, while
the second and third questions investigate our attack-based metrics and the
deployment-specific factors that affect them.

5.1 How Many Vulnerabilities Get Exploited?

Exploitation Ratio. Table 2 shows the number of exploited vulnerabilities and
the exploitation ratio for all OSes and products in our study. The exploita-
tion ratios shown include vulnerabilities disclosed and exploited as of the end
of the product’s support period, or as of 2014 if the product is presently sup-
ported. We account for progressive and regressive vulnerabilities [14] separately.
A progressive vulnerability is a vulnerability discovered in version N that does
not affect version N − 1 or previous versions, while a regressive vulnerability
is one found in version N that affects at least one of the previous versions.
The progressive-regressive distinction is important for evaluating the software
development process and for understanding the security of the new code added
in each version—even though, from the users’ point of view, it is important to
study all the vulnerabilities that affect a product version. The table also includes
the exploitation prevalence, EP p, which helps to illuminate how likely a host is
to experience an attack if a given product is installed. EP p is defined as the pro-
portion of the hosts with product p installed that experienced at least one attack
targeting one of p’s vulnerabilities. Note that this metric captures information
not revealed by the exploitation ratio or the number of exploited vulnerabilities.
For instance, Reader 9 has the same number of exploited vulnerabilities as IE 8,
but its exploitation prevalence is far higher.

In aggregate, over all the software products we analyzed, about 15% of the
known vulnerabilities have been exploited in real-world attacks. Note, however,
that the exploitation ratio varies greatly across products and between versions
of a product. This highlights the pitfall of employing the number and severity
of vulnerabilities as a measure of security: a product with many high-impact
vulnerabilities in NVD would be considered insecure, even if its exploitation
ratio is lower than for other products. To further investigate whether the total
count of vulnerabilities models the security of a software product, we compare the
distributions of the disclosed and exploited vulnerabilities for each product using
the Kolmogorov-Smirnov test [27]. The results suggest that we cannot reject the
null hypothesis that the number of vulnerabilities and the number of exploits are
drawn from the same distribution, at the p = 0.05 significance level, for any of
the products studied. However, some differences stand out. For example, IE 5 has
nearly three times as many reported vulnerabilities as Office 2000. Nevertheless,
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Table 2. Exploitation ratio and exploitation prevalence of products. ER(yr): exploita-
tion ratio of the product for all vulnerabilities up to the year yr. EPP : the ratio of
machines experiencing an attack over the number of machines having the product
installed. NA indicates that no machines in WINE had the product installed.

yr Product ERp(yr) ERp
Prog(yr)

∣
∣
∣V ex

p

∣
∣
∣

∣
∣
∣V prog,ex

p

∣
∣
∣ EPp

2006 IE 5 0.12 0.14 27 25 NA
2010 IE 6 0.17 0.16 73 33 0.035
2013 IE 7 0.13 0.07 36 4 0.002
2013 IE 8 0.13 0.15 29 10 0.0004
2009 Office 2000 0.32 0.32 27 27 NA
2013 Office 2003 0.35 0.36 43 21 0.0002
2013 Office 2007 0.27 0.18 18 2 0
2013 Office 2010 0.25 0 5 0 0
2009 Windows XP 0.21 0.15 39 8 NA
2006 Windows XP SP1 0.28 0.31 41 11 0.026
2010 Windows XP SP2 0.23 0.27 73 16 0.011
2014 Windows XP SP3 0.13 0.07 58 12 0.047
2012 Windows Vista 0.21 0.09 39 5 0.005
2011 Windows Vista SP1 0.16 0.06 40 6 0.004
2014 Windows Vista SP2 0.11 0.06 39 2 0.011
2014 Windows 7 0.07 0.25 20 2 0
2014 Windows 7 SP1 0.07 0 15 0 0.004
2008 Adobe Reader 5 0.18 0.2 4 1 NA
2008 Adobe Reader 6 0.22 0.17 5 1 NA
2009 Adobe Reader 7 0.17 0.09 11 4 0.177
2011 Adobe Reader 8 0.16 0.15 29 18 0.180
2013 Adobe Reader 9 0.11 0.10 29 10 0.242
2014 Adobe Reader 10 0.08 0.04 13 1 0.0002
2014 Adobe Reader 11 0.06 0 5 0 0

both have a similar number of exploited vulnerabilities. This is reflected in the
much higher exploitation ratio for Office. This is one example of how field-
gathered data which reflects the deployment environment can complement more
traditional security metrics.

Another trend visible in Table 2 is that the latest versions of each product
have a lower absolute number of exploited vulnerabilities than earlier versions
(except in the case of IE). For instance, Windows 7 has fewer exploited vulner-
abilities than Windows Vista, and Reader versions 10 and 11 have fewer than
versions 8 and 9. One factor that has likely contributed to this decrease is the
introduction of security technologies by Microsoft and Adobe that make exploits
less likely to succeed, even in the presence of vulnerabilities (e.g., address space
layout randomization and sandboxing). Another likely contributing factor is the
commoditization of the underground malware industry, which has led to the
marketing of exploit kits that bundle a small number of effective attacks for
wide-spread reuse.

Time-to-exploit. The decrease in the number of exploited vulnerabilities over
time could be caused by the fact that cyber attackers have had less time to find
ways to exploit newer products. To investigate the influence of this confounding
factor, we estimate the typical time that attackers need to exploit vulnerabil-
ities in Windows after they are publicly disclosed. While the mention of these
vulnerabilities in Symantec’s AV and IPS signatures is an indication that an
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(a) Average exercised attack surface. (b) Attack volume.

Fig. 2. Exercised attack surface and attack volume for Windows operating systems

(a) Average exercised attack surface. (b) Attack volume.

Fig. 3. Exercised attack surface and attack volume for Windows applications

exploit was, at some point, used in the real world, it is challenging to estimate
the time that elapses between the vulnerability disclosure and the release of the
exploit. We estimate the time-to-exploit using a combination of three methods:
(i) the “exploit published” date from OSVDB; (ii) the “discovery date” from the
anti-virus signature descriptions; (iii) the date when a signature is first recorded
in the field data from WINE. We observe that 90% of exploits from anti-virus
signatures and from attack signatures are created within 94 and 58 days after
disclosure, respectively. Our observation is consistent with the prior work on this
topic, which found that the exploits for 42% of vulnerabilities that are eventually
exploited appear in the wild within 30 days after the disclosure date [28,29]. This
shows that if a vulnerability is to be exploited, an attack will likely be observed
soon after its disclosure.

5.2 How Often Do Vulnerabilities Get Exploited?

Average exercised attack surface. Figure 2 shows that the average exercised at-
tack surface (AEASp) and the attack volume (AVp) for OS vulnerabilities tend
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App
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(a) Combined AEAS over time. (b) Variation of combined AEAS for ma-
chines running different OSes.

Fig. 4. Average exercised attack surface (AEAS) due to OS and installed applications
combined

to increase across minor releases of Windows (except XP), but they decrease con-
siderably with each new major release. This could be explained by the fact that,
over time, attackers become more familiar with the code and the mechanisms of
an OS and they are more effective in finding and exploiting vulnerabilities [14].
However, major releases refactor the code and introduce new security technolo-
gies that make it more difficult to create exploits. For example, Windows Vista
introduced address space layout randomization (ASLR) and data execution pre-
vention (DEP), which render exploits less likely to succeed even if a vulnerability
is present.

Figure 3 shows the average exercised attack surface (AEASp) and attack vol-
ume metrics (AVp) for IE, Reader and Office. For IE, these values decrease with
newer releases. Note the precipitous drop in exercised attack surface between
Reader 9 and Reader 10 (three orders of magnitude). This can likely be at-
tributed to protected mode, an enhancement that Adobe introduced in Reader 10
specifically to mitigate and prevent security vulnerabilities [30]. We also observe
that the exercised attack surface values of Reader (except version 10) are about
an order of magnitude higher than those of IE. This is somewhat surprising, since
Table 2 shows that the various versions of IE have nearly as many or, in the case
of IE 6, far more exploited vulnerabilities than any of the versions of Reader.
Taken together, these observations suggest that vulnerabilities in Reader (prior
to version 10) have proven easier for cyber criminals to successfully exploit.

We also note that some vulnerabilities affect the volume of attacks dispropor-
tionately. For OS vulnerabilities, the number of attacks due to CVE-2008-4250
(the vulnerability exploited by the Conficker worm) is three orders of magnitude
higher than the number of attacks due to the next most targeted vulnerability.
For product vulnerabilities, the number of attacks due to CVE-2009-4324 (a
vulnerability in Adobe Reader) is almost 20× as high the number of attacks due
to the next most targeted vulnerability.
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Table 3. Average exercised attack surface in the presence of products

Reader no no no no yes yes yes yes
IE no no yes yes no no yes yes

Office no yes no yes no yes no yes

Average attack surface 0.00000 0.00002 0.00125 0.00068 0.02823 0.03130 0.03009 0.03195

Variation of exercised attack surface. Figure 4a shows the variation of the av-
erage exercised attack surface (AEAS(m)) over time. Notice that application
vulnerabilities contribute to most of the attack surface, which suggests that the
OS vulnerabilities are more difficult to exploit. Also, we see two spikes in the
2011-2012 time frame and another spike towards the end of 2012. These spikes
are correlated with the attacks exploiting CVE-2009-4324, which account for
the higher exercised attack surface measurement at those times. This illustrates
the fact that, even against a background of diverse attacks, a single vulnerabil-
ity that is attacked heavily can increase the average attack surface by reaching
more hosts. Figure 4b shows the variation of exercised attack surface across
hosts running the same operating system. We note that, in this case, both OS
and application vulnerabilities contribute to the exercised attack surface. Thus,
even if some hosts are running the same operating system, their exercised attack
surface varies considerably based on the products installed on the system.

Impact of vulnerabilities on attack surface. Each host may have one or more
products installed. Moreover this may change over time. Although it is hard to
quantify the impact of specific vulnerabilities on a particular host, we can calcu-
late the average exercised attacked surface for hosts with different combinations
of the products in question. Table 3 shows the average exercised attack surface
for hosts in the presence of IE, Reader, and Office. When none of the products
in question is present, the average exercised attack surface is 0, since we have
eliminated the effect of OS vulnerabilities, thus measuring only the impact of the
products on the calculated attack surface. Furthermore, the calculation of each
average attack surface value only considers hosts that have the exact product
combination installed, and these hosts are not reconsidered for the calculation
of any of the remaining values. We observe that the vulnerabilities present in
each of the products have different impact on the average exercised attack sur-
face. For instance, the telemetry data at our disposal suggest that the presence
of Reader has a higher impact on the average attack surface of hosts than the
presence of IE or Office.

How much can we reduce the attack surface? The overwhelming prevalence of
attacks using CVE-2008-4250 and CVE-2009-4324, and the variability in the
size of the exercised attack surface among the hosts in our study, prompt the
question of whether attack surface reduction methods could be used to reduce
the overall risk. In the case of application vulnerabilities, a user may reduce
the attack surface by uninstalling the vulnerable product. For OS vulnerabil-
ities, the user would have to disable the vulnerable component. We manually
inspect the NVD entries for the top-10 OS vulnerabilities so as to determine if
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Table 4. Most attacked OS vulnerabilities

# of # of Affected Can be NIST
CVE Attacks Hosts Operating Systems turned off? severity
2008-4250 17915163 66408 XP SP2/SP3/SP2 64 bit, Vista Original/SP/SP1, no 10

Server 2003 SP1/SP2
2006-3439 55998 2577 XP SP1/SP2/SP2 64 bit yes 10
2011-3402 40598 21717 XP SP3, Vista SP2, Windows 7 SP1, no 9.3

Server 2003 SP2
2010-1885 36984 22337 XP SP3/SP2 64 bit yes 9.3
2010-0806 25280 15539 XP SP3, Vista Original SP/SP1/SP2 no 9.3
2009-2532 20343 756 Vista Original/SP1/SP2, Server 2008 SP2 yes 10
2009-3103 20343 756 Vista Original/SP1/SP2, Server 2008 SP2 yes 10
2008-0015 6105 3897 XP SP2/SP3 yes 9.3
2010-2568 2182 360 XP SP3/SP2 64 bit, Vista SP1/SP2 no 9.3
2012-0003 93 71 XP SP2/SP3, Server 2003 SP2, yes 9.3

Vista SP2, Server 2008 SP2

Windows 7 SP1

XP SP2
Windows 7

XP SP3 Vista SP2

XP SP1 Vista Vista SP1

(a) Windows.

Reader 9
Reader 8

Reader 7

Reader 10Reader 11

(b) Reader.

IE 6

IE 7IE 8 IE 9

(c) IE.

Fig. 5. Time from installation to first attack

the vulnerable component can be disabled, while keeping the host operational.
As seen in Table 4, 6 out of 10 of the intrusion vectors correspond to vulnerable
services or components that could be disabled (assuming that the relevant ser-
vice/functionality is not necessary), suggesting that there is potential for further
reduction of the OS attack surface. Notice, however, that in certain cases the
components that would need to be disabled or removed may severely affect the
functionality of the system. To better understand the potential to improve secu-
rity by disabling vulnerable components, we consider the volume of attacks for
each vulnerability in Table 4. If we exclude the skew introduced by Conficker,
we observe that the number of remaining attacks could be reduced by 67.3%,
thus significantly reducing the size of the exercised attack surface.

5.3 When Do Vulnerabilities Get Exploited?

In this section we explore several time-related aspects of attacks. We presented
the exploitation prevalence EP p, which indicates how many of the hosts that
install a product experience at least one attack due to that product, in Table 2.
We now explore when that attack happens with respect to the installation of
the product. Figure 5 plots the estimated survival probability versus the number
of months since installation, where survival means not having experienced any
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Fig. 6. Effect of product upgrade lag on a host’s exercised attack surface (AEASp
h)

attack targeting one of the product’s vulnerabilities. Our data set is right cen-
sored, meaning that some hosts leave our study (stop sending telemetry) without
having experienced an attack; in this case, we know the period when these hosts
were attack-free, but we don’t know when they will experience their first at-
tack. In statistical terms, these data points are right-censored. We estimate the
survival probability using the Kaplan-Meier estimator [27], which accounts for
censoring. The survival probability for most versions of Windows is nearly one
even after four years of installation. Windows XP SP3 experiences more exploits,
and so its survival probability drops with a fairly smooth slope down to about
0.96 after four years. The smooth slope seems to indicate that installation age
is not strongly correlated with the likelihood of experiencing your first attack.
Reader versions 7 through 9 also show a fairly smooth, though much steeper,
drop in survival probability. Again, this indicates that a user has a similar prob-
ability of experiencing a first attack against Reader whether it’s been installed
for one month or ten months, though the slope does tend to decrease slightly
as we move beyond twenty months. Hosts with IE 6 installed appear to have a
higher probability of experiencing their first attack within the first ten months,
after which the survival probability levels out with an estimated 94% of hosts
experiencing no attack after four years. The plot for Office is not shown since
all versions maintain over 99.9% survival for the entire period.

We now explore another time-related question: Does the length of time a user
waits to upgrade after a new version comes out have an impact on exercised
attack surface? To help answer this, we introduce the upgrade lag metric. In
order to measure a user’s upgrade lag with respect to a product version, we
look at how long a user continues to use the version after a new version of the
product is released. The user’s upgrade lag for the product line is calculated as
the maximum upgrade lag over all versions of the product. Note that even if
only a single version of a product is ever installed on a machine, the upgrade
lag is still defined. If a machine has only Reader 9 installed, and it is present
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for a period of time entirely before Reader 10 is released, the machine’s upgrade
lag for Reader is 0. If a machine has only Reader 9 installed, and it is present
from one month after Reader 10 is released until six months after Reader 10 is
released, then the upgrade lag would be six months.

In Figure 6a, we plot the upgrade lag in days versus the cumulative average
exercised attack surface (that is, the average AEASp

h for all hosts with a lag
less than or equal to a given lag) for each of the product lines. So, for instance,
if you consider all hosts that have a maximum upgrade lag for Reader that is
less than or equal to 500 days, on average their AEAS with respect to Reader is
about 0.015 vulnerabilities per machine per month. The steady increase in the
curve for Reader from zero upgrade lag until 1000 days of upgrade lag is a strong
indication that machines that wait longer to upgrade Reader tend to experience
more attacks. In Figure 6b, we zoom in to show the detail for IE and Office.
For both IE and Office, we see a modest increase in exercised attack surface as
upgrade lag increases. The sharp increase in the slope of the IE curve after 1000
days can be explained by the fact that roughly 6% of hosts with IE installed
have the most vulnerable version, IE 6, installed long after IE 7 was released.
These hosts, which account for over 90% of attacks against IE, cause the rapid
increase after 1000 days. These results suggest that the upgrade lag is one factor
that affects the attack surface in the deployment environment.

6 Discussion

In this paper, we propose several metrics for assessing the security of software
products in their deployment environments. For example, we observe that, for
most products, the exploitation ratio and/or the number of exploited vulnerabili-
ties decrease with newer versions. Interestingly, anecdotal evidence suggests that
cyber criminals are starting to feel the effects of this scarcity of exploits. While
zero-day exploits have traditionally been employed in targeted attacks [28], in
2013 the author of the Blackhole exploit kit advertised a $100,000 budget for
purchasing zero-day exploits [31]. The zero-day exploit for CVE-2013-3906 was
nicknamed the “dual-use exploit” after being employed both for targeted attacks
and for delivering botnet-based malware [32].

Qualitative analysis. While the coexistence of several security mechanisms in
a product prevents us from measuring the individual impact of each of these
mechanisms, it is interesting to note that improvements in our metrics are often
associated with the introduction of system security technologies. Improved secu-
rity was a primary design goal for Windows Vista and we find a decrease in the
number of progressive exploited vulnerabilities in Windows Vista and Windows
7. This seems to be associated with the introduction of security technologies like
ASLR, DEP, User Account Control and the concept of integrity levels. Among
products, there is a notable decrease in the exploitation ratio and number of
exploited vulnerabilities in IE 7 and Reader 10. Both these products started
running the application in a sandbox, which adds an additional layer of defense
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by containing malicious code and by preventing elevated privilege execution on
the user’s system [30]. IE 7 also removed support for older technologies like
DirectAnimation, XBM, DHTML editing control in an attempt to reduce the
surface area for attacks [33].

Operational utility of the proposed metrics. Our product-based metrics can be
integrated in security automation frameworks, such as SCAP [16]. For example,
knowing which vulnerabilities are exploited in the wild will allow system ad-
ministrators to prioritize patching based on empirical data, rather than relying
exclusively on the CVSS scores for this task. The exploitation ratios of different
products can be incorporated in quantitative assessments of the risk of cyber at-
tacks against enterprise infrastructures. The ability to determine whether a few
exploits are responsible for most of the recorded attacks (as in the case of Con-
ficker) will allow security vendors to focus on these vulnerabilities for reducing
the volume of attacks against critical infrastructures in an efficient manner.

Our host-based metrics would be useful in infrastructures where not all hosts
can be centrally managed, such as in enterprises that have bring-your-own-device
(BYOD) policies. For example, the exercised attack surface metric captures the
diversity of attacks against a host. This metric varies considerably from host to
host, depending on the software installed and on the user behaviors; in particular,
the exercised attack surface is correlated with a host’s product upgrade lag.
This information will allow administrators to subject the hosts more likely to be
attacked to a higher level of scrutiny.

Agenda for future research. Our results illustrate the fact that, in the deployment
environment, security is affected by factors that cannot be accounted for in
the lab. Further research is needed to explore the opportunities for deriving
security metrics from field data. For example, it is difficult to assess whether a
single, potentially successful, attack exploiting vulnerability X is more or less
devastating than a large number of attacks exploiting vulnerabilities other than
X . As another example, the exercised attack surface metric cannot adequately
capture the effects of a single powerful attack on a long-lived host H , since
the effect of the attack on ESH will be diluted by the amount of time H is
under observation. To address this problem, we could define an attack watermark
metric, which would represent the average number of unique vulnerabilities of a
product P that are attacked on hosts running P during our observation period.

7 Conclusions

We believe that our ability to improve system security rests on our understanding
of how to measure and assess security under real-world conditions. In this paper
we analyze a large data set of security telemetry, available to the research com-
munity, to 1) expose trends in the exploitation of vulnerabilities, and 2) propose
new field-measurable security metrics, capable of capturing the security of sys-
tems in their deployment environments, rather than in lab conditions. We focus
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on nine versions of the Windows operating system, and multiple versions of three
popular applications. Our findings reveal that, combining all of the products we
study, only 15% of disclosed vulnerabilities are ever exploited in the wild. None
of the studied products have more than 35% of their vulnerabilities exploited
in the wild, and most of these are exploited within 58 days after disclosure. We
show that the number of vulnerabilities in a product is not a reliable indicator of
the product’s security, and that certain vulnerabilities may be significantly more
impactful than others. Furthermore, we observe that, even though the security
of newer versions of Windows appears to have improved, the overall exposure
to threats can be significantly impacted by “post-deployment” factors that can
only be observed in the field, such as the products installed on a system, the
frequency of upgrades, and the behavior of attackers. The impact of such factors
cannot be captured by existing security metrics, such as a product’s vulnerabil-
ity count, or its theoretical attack surface. To address this, we introduce new,
field-measurable security metrics. The count of vulnerabilities exploited in the
wild and the exploitation ratio aim to capture whether a vulnerability gets ex-
ploited. The attack volume and exercised attack surface metrics aim to measure
the extent to which hosts are attacked. Finally, the calculated survival prob-
abilities and our study of the impact of software upgrades to security aim to
reveal real-world temporal properties of attacks. These metrics can be incorpo-
rated in quantitative assessments of the risk of cyber attacks against enterprise
infrastructure, and they can inform the design of future security technologies.
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