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Preface

Welcome to the proceedings of the 17th International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID 2014). This year, RAID received an
unusually large number of 113 submissions out of which the Program Committee
selected 22 high-quality papers for inclusion in the proceedings and presentation
at the conference in Gothenburg. In our opinion, an acceptance rate of 19% is
healthy. In addition, we accepted 10 posters from 24 submissions. The acceptance
rate and quality of submissions clearly shows that RAID is a competitive, high-
quality conference, but avoids the insanely low probabilities of acceptance that
sometimes reduce security conferences to glorified lotteries.

Running a well-established conference with many strong submissions makes
the job of the program chairs relatively easy. Moreover, the chair / co-chair setup
(where the co-chair of the previous year becomes the chair of the next), and the
conference’s active Steering Committee both ensure continuity. In our opinion,
it has helped RAID to become and to remain a quality venue.

One thing we did consciously try to change in this year’s edition is the com-
position of the Program Committee. Specifically, we believe that it is important
to infuse new blood into our conferences’ Program Committees – both to pre-
pare the next generation of Program Committee members, and to avoid the
incestuous community where the same small circle of senior researchers rotates
from Program Committee to Program Committee. From the outset, we there-
fore aimed for a Program Committee that consisted of researchers who had not
served on the RAID PC more than once in the past few years, but with a proven
track record in terms of top publications. In addition, we wanted to introduce a
healthy number of younger researchers and/or researchers from slightly different
fields.

It may sound like all this would be hard to find, but it was surprisingly easy.
There is a lot of talent in our community! With a good mix of seniority, back-
ground, and expertise, we were very happy with the great and very conscientious
Program Committee we had this year (as well as with the external reviewers).
Specifically, we made sure that all valid submissions received at least three re-
views, and in case of diverging reviews, we added one or two more. As a result,
the load of the Program Committee this year may have been higher than in pre-
vious years, but we are happy with the result and thank all reviewers for their
hard work.

We are also grateful to the organizers, headed by the general chair Magnus
Almgren and supported by Erland Jonsson (local arrangements), Georgios Por-
tokalidis (publications), Vincenzo Gulisano and Christian Rossow (publicity),
Bosse Norrhem (sponsoring), and all local volunteers at Chalmers. We know
from experience how much work it is to organize a conference like RAID and
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that a general chair especially gets most of the complaints and too little of the
credit. Not this year: hats off to Magnus for a great job!

Finally, none of this would be possible without the generous support by
our sponsors: Symantec, Ericsson, Swedish Research Council, and the City of
Gothenburg. We greatly appreciate their help and their continued commitment
to a healthy research community in security.

We hope you enjoy the program and the conference.

July 2014 Angelos Stavrou
Herbert Bos
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Paint It Black: Evaluating the Effectiveness

of Malware Blacklists

Marc Kührer, Christian Rossow, and Thorsten Holz

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{firstname.lastname}@ruhr-uni-bochum.de

Abstract. Blacklists are commonly used to protect computer systems
against the tremendous number of malware threats. These lists include
abusive hosts such as malware sites or botnet Command & Control and
dropzone servers to raise alerts if suspicious hosts are contacted. Up to
now, though, little is known about the effectiveness of malware blacklists.

In this paper, we empirically analyze 15 public malware blacklists and
4 blacklists operated by antivirus (AV) vendors. We aim to categorize the
blacklist content to understand the nature of the listed domains and IP
addresses. First, we propose a mechanism to identify parked domains in
blacklists, which we find to constitute a substantial number of blacklist
entries. Second, we develop a graph-based approach to identify sinkholes
in the blacklists, i.e., servers that host malicious domains which are con-
trolled by security organizations. In a thorough evaluation of blacklist
effectiveness, we show to what extent real-world malware domains are
actually covered by blacklists. We find that the union of all 15 public
blacklists includes less than 20% of the malicious domains for a major-
ity of prevalent malware families and most AV vendor blacklists fail to
protect against malware that utilizes Domain Generation Algorithms.

Keywords: Blacklist Evaluation, Sinkholing Servers, Parking Domains.

1 Introduction

The security community needs to deal with an increasing number of malware
samples that infect computer systems world-wide. Many countermeasures have
been proposed to combat the ubiquitous presence of malware [1–4]. Most notably,
researchers progressively explored network-based detection methods to comple-
ment existing host-based malware protection systems. One prominent example
are endpoint reputation systems. The typical approach is to assemble a blacklist
of endpoints that have been observed to be involved in malicious operations. For
example, blacklists can contain domains of Command & Control (C&C) servers
of botnets, dropzone servers, and malware download sites [5]. Such blacklists can
then be queried by an intrusion detection system (IDS) to determine if a previ-
ously unknown endpoint (such as a domain) is known for suspicious behavior.

Up to now, though, little is known about the effectiveness of malware black-
lists. To the best of our knowledge, the completeness and accuracy of malware

A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 1–21, 2014.
c© Springer International Publishing Switzerland 2014



2 M. Kührer, C. Rossow, and T. Holz

blacklists was never examined in detail. Completeness is important as users oth-
erwise risk to miss notifications about malicious but unlisted hosts. Similarly,
blacklists may become outdated if entries are not frequently revisited by the
providers. While an endpoint may have had a bad reputation in the past, this
might change in the future (e.g., due to shared hosting).

In this paper, we analyze the effectiveness of 15 public and 4 anti-virus (AV)
vendor malware blacklists. That is, we aim to categorize the blacklist content
to understand the nature of the listed entries. Our analysis consists of multiple
steps. First, we propose a mechanism to identify parked domains, which we find
to constitute a substantial number of blacklist entries. Second, we develop a
graph-based approach to identify sinkholed entries, i.e., malicious domains that
are mitigated and now controlled by security organizations. Last, we show to
what extent real-world malware domains are actually covered by the blacklists.

In the analyzed blacklist data we identified 106 previously unknown sinkhole
servers, revealing 27 sinkholing organizations. In addition, we found between
40 - 85% of the blacklisted domains to be unregistered for more than half of the
analyzed blacklists and up to 10.9% of the blacklist entries to be parked. The
results of analyzing the remaining blacklist entries show that the coverage and
completeness of most blacklists is insufficient. For example, we find public black-
lists to be impractical when it comes to protecting against prevalent malware
families as they fail to include domains for the variety of families or list malicious
endpoints with reaction times of 30 days or higher.

Fortunately, the performance of three AV vendor blacklists is significantly
better. However, we also identify shortcomings of these lists: only a single black-
list sufficiently protects against malware using Domain Generation Algorithms
(DGAs) [3], while the other AV vendor blacklists include a negligible number
of DGA-based domains only. Our thorough evaluation can help to improve the
effectiveness of malware blacklists in the future.

To summarize, our contributions are as follows:
– We propose a method to identify parked domains by training an SVM clas-

sifier on seven inherent features we identified for parked web sites.
– We introduce a mechanism based on blacklist content and graph analysis to

effectively identify malware sinkholes without a priori knowledge.
– We evaluate the effectiveness of 19 malware blacklists and show that most

public blacklists have an insufficient coverage of malicious domains for a ma-
jority of popular malware families, leaving the end hosts fairly unprotected.
While we find blacklists operated by AV vendors to have a significantly higher
coverage, up to 26.5% of the domains were still missed for the majority of the
malware families, revealing severe deficiencies of current reputation systems.

2 Overview of Malware Blacklists

Various malware blacklists operated by security organizations can be used to
identify malicious activities. These blacklists include domains and IP addresses,
which have been observed in a suspicious context, i.e., hosts of a particular
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Table 1. Observed content of the analyzed malware blacklists (‡ denotes C&C blacklists)

Domains (in #)
Observ.
(days)Blacklist Current Historical

AMaDa [8]‡ 0 1,494 267

Citadel [7]‡ 4,634 0 66

Cybercrime [9]‡ 1,070 0 121
Exposure [4] 0 107,183 559
Malc0de [10] 2,121 20,135 832
MDL Hosts [11] 1,653 11,996 832

MDL ZeuS [11]‡ 12 1,675 829
MW-Domains [12] 23,396 37,490 832

Domains (in #)
Observ.
(days)Blacklist Current Historical

Palevo Tracker [8]‡ 35 147 542

Shadowserver [13]‡ 0 0 832
Shallalist [14] 20,677 48 320

SpyEye Tracker [8]‡ 123 956 832
UrlBlacklist [15] 127,745 281 824
Virustracker [16] 12,066 56,269 196

ZeuS Tracker [8]‡ 759 8,042 832

type such as C&C servers or—less restrictive—endpoints associated to malware
in general. Table 1 introduces the 15 public malware blacklists that we have
monitored for the past two years [6]. For the majority of blacklists, we repeatedly
obtained a copy every 3 hours (if permitted). The columns Current state the
number of entries that were listed at the end of our monitoring period. The
columns Historical summarize the entries that were once listed in a blacklist,
but became delisted during our monitoring period. For reasons of brevity, we
have omitted the number of listed IP addresses per blacklist, as we mainly focus
on the blacklisted domains in our analyses. For all listed domains, we resolved
the IP addresses and stored the name server (NS) DNS records. If blacklists
contained URLs, we used the domain part of the URLs for our analysis.

Four blacklists are provided by Abuse.ch, of which three specifically list hosts
related to the Palevo worm and the banking trojans SpyEye and ZeuS. The
Virustracker project lists domains generated by DGAs, and the Citadel list in-
cludes domains utilized by the Citadel malware (that was seized by Microsoft in
2013 [7]). UrlBlacklist combines user submissions and other blacklists, covering
domains and IPs of various categories, whereas we focus on the malware-related
content. The Exposure [4] blacklist included domains that were flagged as mali-
cious by employing passive DNS (pDNS) analysis. The Abuse.ch AMaDa and the
Exposure lists were discontinued, yet we leverage the collected historical data.

Besides these public blacklists, we have requested information from four anti-
virus (AV) vendors, namely Bitdefender TrafficLight [17], Browserdefender [18],
McAfee Siteadvisor [19], and Norton SafeWeb [20]. These blacklists cannot be
downloaded, but we can query if a domain is listed. We thus do not know the
overall size of these blacklists and omit the numbers in Table 1.

Datasets. We divide the 15 public blacklists into three overlapping datasets.
The first dataset, referred to as SC&C , consists of domains taken from the sources
primarily listing endpoints associated to C&C servers, denoted by ‡ in Table 1.
We extend SC&C with the IP addresses to which any of these domains at some
point resolved to. The second, coarse-grained dataset SMal includes the domains
that were at any time listed in any of the 15 blacklists (including SC&C) and
the resolved IPs. Last, we generate a third dataset SIPs, covering all currently
listed IP addresses by any of the 15 public blacklists (i.e., 196,173 IPs in total).
This dataset will help us to verify if blacklists contain IPs of sinkholing servers.

Abuse.ch
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Paper Outline. Motivated by the fact that blacklists contain thousands of do-
mains, we aim to understand the nature of these listings. We group the entries in
four main categories: domains are either i) unregistered, ii) controlled by park-
ing providers, iii) assigned to sinkholes, or iv) serve actual content. Unregistered
domains can easily be identified using DNS. However, it is non-trivial to detect
parked or sinkholed domains. We thus propose detection mechanisms for these
two types in Section 3 (parking domains) and Section 4 (sinkholed domains). In
Section 5, we classify the blacklist content and analyze to what extent blacklists
help to protect against real malware. Note that a longer version of this paper
with more technical details is available as a technical report [21].

3 Parking Domains

Parking domains make up the first prominent class of blacklist entries. They are
mainly registered for the purpose of displaying web advertisements, so called
ads. Typically no other, real content is placed on these domains. As domains
associated with malicious activities tend to be parked to monetize the malicious
traffic [22], we expect parked domains to constitute a substantial number of
blacklist entries. Unfortunately, parking services have diverging page templates
to present the sponsored ads. As such, it is not straightforward to identify these
sites, e.g., with pattern-matching algorithms. In order to identify parking do-
mains in the blacklists, we thus introduce a generic method to detect parked
domains that can cope with the diversity of parking providers.

3.1 Datasets

We first assemble a labeled dataset by manually creating patterns and apply-
ing pattern-matching algorithms [23, 24]. Note that these patterns are far from
complete due to the high diversity of page templates. We leverage the resulting
dataset as ground truth to evaluate our generic detection model for parked do-
main names later on. We generate the labels based on Li et al.’s [22] observation
that parking providers either modify the authoritative NS sections of a domain
to point to dedicated parking NS or employ web-based (i.e., HTTP-, HTML-,
or JavaScript-based) redirections to forward users to the final parking content.

Based on our recorded DNS information, we first label domains following the
DNS-based type of redirection. That is, we analyze the 233,772 distinct name
servers aggregated while processing the blacklist data. We split the NS hostnames
into tokens and searched for terms indicating parking such as park, sell, and
expired and labeled NS whose hostnames match one of these terms as potential
parking name servers. We monitored a fraction of parked domains that switched
their authoritative NS to a different parking provider. As a result, we extracted
the domains that used the parking NS identified in the previous step from the
aggregated DNS data, requested latest NS records for each domain, and inspected
the most frequently used NS. In addition, we consulted the DNS DB [25], a pas-
sive DNS (pDNS) database. That is, for each identified parking NS, we requested
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50,000 randomly selected domains the NS was authoritative for, obtained cur-
rent NS records for each domain, and again checked the NS hostnames against
terms indicating parking behavior. Overall, using these techniques and manual
inspection, we identified 204 NS operated by 53 parking providers.

A minority of parking services employ web-based techniques to redirect users
to the actual parking content. The DNS-based methods discussed so far did not
detect these providers. However, we identified parked domains that are often
transferred between providers, thus we assume that some domains found in pDNS
data of the previously identified parking NS at some point have relocated to
providers utilizing web-based redirection techniques. To identify these services,
we extracted 10,000 randomly chosen domains from the pDNS data of each
parking NS, analyzed the domain redirection chains, and identified 14 patterns of
landing pages [21] to which users are redirected to when visiting parked domains.
These landing pages belong to parking, domain, and hosting providers.

Finally, we use the parking NS and landing pages to manually extract 47
descriptive strings, in the following referred to as identifiers (IDs) [21]. These
IDs can be found in the HTTP responses of many parked domains (e.g., <frame
src="http://ww[0-9]{1,2} and landingparent). We use these IDs to create
the parked domains dataset P that consists of 5,000 randomly chosen domains
from the pDNS database we find to utilize a verified parking NS or include at
least one identifier. We further create a dataset B of benign (i.e., non-parked) do-
mains. We utilize the Top 5,000 domains taken from the Alexa Top Ranking [26]
and verify that none of these domains trigger a landing page or ID match.

3.2 Feature Selection and Classification

Pattern matching allowed us to identify a subset of all parking services. How-
ever, we seek to identify intrinsic characteristics of parking websites that are
more generic than the manually assembled classification described above. We
thus studied subsets of our benign and parked domain sets and identified two,
respectively, five generic features based on HTTP and HTML behavior.

The first HTTP-based feature is determined by the redirection behavior when
domains are directly accessed without specifying any subdomains. For benign
domains, automated redirection to the common www subdomain is often enforced.
Parked domains, in contrast, typically do not exhibit similar behavior.

Our second feature is based on the observation that parked domains deliver
similar content on random subdomains and the domains itself while benign do-
mains tend to serve differing content for arbitrary subdomains (if at all). We
measure the normalized Levenshtein ratio [27] between the HTML content gath-
ered by accessing the domain and a randomly generated subdomain. If the HTTP
request for the subdomain failed (e.g., due to DNS resolution), the feature is set
to -1, otherwise the value is in the range from 0 (no similarity) to 1 (equal).

The first HTML-based feature is derived from the observation that many
parked domains display sponsored ads while the textual content is negligible.
Contrary, most benign domains deliver a substantial amount of human-readable
content in the form of coherent text fragments. Our third feature thus defines
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the ratio of human-readable text in relative to the overall length in returned web
content after removing HTML tags, JavaScript codes, and whitespaces.

Next, we outline three features to express the techniques that landing pages
utilize to embed parking content. That is, we account for the observation that
most parked domains use JavaScript or frames to display sponsored ads. In the
fourth feature, we measure the ratio of JavaScript code. In the fifth feature, we
count the number of <frame> tags on landing pages. As many page templates
utilizing frames contain only the basic HTML structure and the frameset, the
frame count is particularly powerful in combination with the ratio of human-
readable text (feature 3). A fraction of parked domains, however, do not rely on
JavaScript or frames and directly embed the referral links into the HTML code.
We observed many of these parking providers to specify rather long attributes
in the referral <anchor> tags (e.g., multiple mutual IDs in the href attribute).
As parked domains tend to serve numerous referral links, the average length of
<anchor> tags is expected to be considerably higher than in content served by
the majority of benign domains, as expressed in the sixth feature.

The seventh feature is defined by the robots value specified in the <meta> tag.
Parked domains in our dataset either did not specify a robots value (thus us-
ing the default index+ follow) or defined one of the values index + nofollow,
index+ follow, or index + follow+ all. Parking providers monetize the do-
mains and are interested in promoting their domains, thus permitting index-
ing by search engines. In contrast, benign sites often customize the indexing
policies—we identified 31 different robots values. As the robots value is a con-
catenation of tokens, we mapped all possible single tokens to non-overlapping
bitmasks and use the numerical value of the bit-wise OR of all tokens as feature.

Most parking services rely on JavaScript to display referral links and adver-
tisements. The HTML-based features (3 - 7) thus require JavaScript execution
when aggregating the feature values. As the initially served content before ex-
ecuting JavaScript and the final content after executing JavaScript both are
characteristic for parked domains (and might be entirely different, e.g., when
JavaScript is used for redirection), we obtain two feature values for each of the
HTML-based features accordingly, resulting in 12 feature values per domain.

We use these 12 feature values to classify domains as either parked or benign
(i.e., non-parking). We evaluated our approach for different types of machine-
learning algorithms using RapidMiner [21, 28] and achieved the best results for
support vector machines (SVMs) using the Anova kernel [29].

3.3 Evaluation

Cross-Fold Validation. We evaluate the feature set with a 10-fold cross val-
idation using all domains in our benign B and parking P sets and achieve an
average detection rate of 99.85% correctly classified domains while the false pos-
itive (FP) rate is at 0.11% and the false negative (FN) rate at 0.04%.

Individual Dataset. To evaluate our approach on an individual dataset and
discuss false positives and negatives as suggested by Rossow et al. [30], we split
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the 10,000 labeled benign and parked domains into a training set STrain consist-
ing of 1,000 benign and 1,000 parked domains and a test set STest that includes
the remaining 8,000 domains. The resulting detection model correctly classifies
7,969 domains in STest (99.6%) as benign or parked, resulting in 5 FPs (0.1%)
and 26 FNs (0.3%). When investigating the FPs, we find each domain to have a
ratio of less than 20% for human-readable text (feature 3) in combination with a
high average length of <anchor> tags (feature 6). Further, all domains respond
to random subdomain requests and serve similar web content (i.e., the normal-
ized Levenshtein ratio ≥ 0.9). When analyzing the 26 FNs, we find domains that
either switched between redirecting to parking and benign content or delivered
parking content on the second visit. As we visited each domain only once during
feature attribution, we did not observe parking behavior for these domains.

Real-World Data. Finally, we verify our approach on real-world data con-
taining significantly more unlabeled domains. We obtained the Top 1M domains
from the Alexa Ranking 12 weeks after the Top 5k domains were gathered for
the benign set B. We expect only a few parked domains in this dataset, thus
we mainly are interested if our approach can handle the diverse page structures
of benign web pages without high FP rates. We could aggregate feature values
for 891,185 domains while the remaining domains either did not resolve to IP
addresses or provide web content within a time frame of 15 seconds, respectively,
replied with blank content or HTTP error codes. We further remove 957 domains
already covered by STrain, thus the resulting set SAlexa is defined by 890,228
domains. We then match the content of each domain against the IDs and landing
pages introduced in Section 3.1 to estimate a lower bound of FPs and FNs. We
cannot ensure the correctness of the IDs, hence might erroneously flag benign
domains as parked. We thus manually verify potential false classifications.

Table 2. Results of SAlexa and SCurrent (Parked = Domains
flagged as parked by IDs or classifier (CL), INT = Intersection of do-
mains flagged as parked by IDs and CL, FI = Domains falsely flagged as
parked by IDs, New = Domains detected by CL but not found by IDs)

Parked (#) Rates (%)

Subset Size ID CL INT #FI #New CD FP FN

SAlexa 890,228 5,208 8,709 4,596 71 626 99.5 0.4 0.1
SCurrent 33,121 3,747 5,623 3,027 28 2,336 (98.7) 0.8 (0.5)

As shown in Ta-
ble 2, we achieve
a correct detection
rate (CD; the sum
of true positive and
true negative rate)
of 99.5%, a FP rate
of 0.4%, and a FN
rate of 0.1%. The
IDs flag 5,208 do-

mains as parked, yet we find 71 of the domains to be incorrectly flagged. The
classifier marks 8,709 domains as parked of which 4,596 domains are verified by
the IDs. Of the remaining domains we find 626 to be parked that are not detected
by the IDs, resulting in 5,222 parked domains detected by the classifier. These
results indicate that 0.6% of the Alexa 1M domains, i.e., more than 1/200 of
the most popular domains, are parked. More specifically, we identify 36 parked
domains in the Alexa Top 10k while 432, respectively, 1,170 domains are parked
in the Top 100k and Top 250k, showing that the majority of parked domains
are not ranked in the Top 250k Alexa. During the manual verification process,
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we find the vast majority of parked domains to be associated to domain resellers
such as Above, GoDaddy, and Sedo [21].

We now turn back to our original goal, i.e., classifying the content of blacklists.
We thus extracted currently blacklisted domains from our blacklist set SMal

twelve weeks after generating the benign B and parking P sets used for STrain.
We name this dataset SCurrent and again remove domains already included in
STrain. Of the 158,648 currently listed domains, we obtained feature values for
33,121 domains. The remaining domains either were unregistered or replied with
HTTP error codes. The classifier defines 5,623 domains as parked, of which 3,027
domains are verified by the IDs. When manually investigating the remaining
2,596 domains flagged by the classifier, we identify 2,336 parked domains not
detected by the IDs and 260 FPs (0.8%). The FPs are mostly caused by adult
content and web directory sites with similar characteristics as parked domains.
When taking a closer look at the initial high number of 692 FNs, we find 538
domains not serving parking content at all (i.e., referral links). More precisely,
one domain reseller causes most of the FNs, as we identify 506 domains (73.1% of
all FNs) redirecting to hugedomains.com, providing web content not exhibiting
common parking behavior. To evaluate if our approach fails to detect domains
associated with this reseller due to missing training data, we adjusted STrain

to cover a partition of these domains and find the detection model to correctly
classify these domains as parked, reducing the FN rate to 0.5%.

4 Sinkholes

Next to parking domains, also so called sinkholing servers (sinkholes) are promi-
nent types of blacklist entries. Sinkholes are operated by security organizations
to redirect malicious traffic to trusted hosts to monitor and mitigate malware in-
fections. In order to track sinkholes in our blacklist data, we first identify intrinsic
characteristics of these servers. We thus obtained an incomplete list of sinkhole
IPs and domains by manual research and through collaboration with partners. In
pDNS, we then observed that domains associated with sinkholes tend to resolve
to the corresponding IPs for a longer period of time, thus the monitored DNS
A records are persistent. Contrary, malicious domains tend to switch to various
IPs and Autonomous Systems (AS) within a short time frame to distribute their
activities to different providers [5]. We also found sinkholed domains switching
to other sinkholes provided by the same organization or located in the same AS,
and discovered domains that were relocated to other sinkhole providers.

Sinkhole operators often use their resources to monitor as many domains of
a malware family as possible. We thus find sinkhole IP addresses to be typically
assigned to numerous (up to thousands of) domains. In the majority of cases,
the domains resolving to a specific sinkhole IP shared the same NS such as
torpig-sinkhole.org or shadowserver.org. We thus argue that if multiple
domains resolve to the same IP address but do not utilize the same NS, the
probability that this IP is associated with a sinkhole is considered to be low.

hugedomains.com
torpig-sinkhole.org
shadowserver.org
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Another observation is the content sinkholes serve upon HTTP requests.
When requesting content from randomly chosen sinkholed domains using GET /

HTTP/1.1, we find sinkholes to either not transfer any HTML data (i.e., closed
HTTP port or web servers responding with 4xx HTTP codes) or serve the same
content for all domains as monitored for zinkhole.org. We thus assume that do-
mains resolving to the same set of IP addresses but serving differing content do
not belong to sinkholes and are rather linked to services such as shared hosting.

4.1 Sinkhole Identification

Based on these insights we introduce our approach to identify sinkholes in the
blacklist datasets SC&C and SMal. The datasets consist of currently listed and
historical domains and the IPs to which any of the domains resolved to. For each
domain, we aggregate current DNS records and web content while we obtain
reverse DNS records, AS and online status details, and web content for all IPs.

Filtering Phase. In a first step, we aim to filter IP addresses sharing simi-
lar behavior as sinkholes to eliminate potential FPs. We thus remove the IPs
associated with parking providers using the detection mechanism introduced in
Section 3. To identify IPs of potential shared hosting providers serving benign
or malicious content, we analyze the aggregated HTTP data. We define IPs to
be associated with shared hosting when we obtain varying web content (i.e.,
normalized Levenshtein ratio ≤ 0.9) for the domains resolving to the same set
of IPs. Furthermore, we expect sinkholes to be configured properly, thus we do
not consider web servers as sinkholes that delivered content such as it works.

As our datasets might include erroneously blacklisted benign domains, we
filter likely benign IPs such as hosting companies and Content Delivery Networks
with the following heuristic: we do not expect the Alexa Top 25k domains to
be associated to sinkholing servers. We thus obtained the HTTP content of
each domain, extracted further domains specified in the content, and requested
DNS A records for all domains. The resulting dataset SBenign includes 105,549
presumably benign IPs. We acknowledge that this list does not remove all false
listings in the blacklist datasets, however, this heuristic improves our data basis.

To further reduce the size of the datasets, we eliminate IPs associated to Fast
Flux with the following heuristic: we define an IP to be associated with Fast Flux
when at least 50% of the blacklisted domains currently resolving to this IP are
found to be Fast Flux domains, whereas we define a Fast Flux domain as follows:
i) the domain resolved to more than 5 distinct IPs during our observation time
and ii) at least half of these IPs were seen within two weeks. As we expect the
ratio of fast flux domains associated to individual sinkhole IP addresses to be
rather low, we assume to not remove any sinkholing servers.

Graph Exploration. The actual sinkhole identification follows the intuition
that IPs of sinkholes mostly succeed malicious IPs in the chain of resolved IPs
for a high number of domains and are persistent for a longer period of time. For
each dataset SC&C and SMal, we map this assumption onto a separate directed

zinkhole.org
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graph G = (V,E), whereas the domains and IPs in the datasets are represented
as vertices v ∈ V . The edges e ∈ E are determined by the relationship between
the domains and IPs. We define u ∈ V to be a parent node of v when there
exists a directed edge e = (u, v) and define w ∈ V to be a child node of v when
there exists a directed edge e = (v, w). The edges e ∈ E are defined as follows:
(i) For each domain v ∈ V , we add a directed edge e = (v, w) if domain v at

some point resolved to IP w ∈ V .
(ii) For each domain v ∈ V , we add an edge e = (wo, wn) if v resolved to IP

wo ∈ V , switched to a new IP wn ∈ V , and never switched back to IP wo.
In step (i), we assign the resolved IPs to each domain in our datasets. In step

(ii), we add a domain’s history of A records (i.e., resolved IPs) to the graph.
We name deg−(v) the in-degree of node v, resembling the number of parent

nodes. In our graph model, the in-degree represents the number of domains that
currently are or were once resolving to node v and the number of IPs preceding
v in the resolver chain. For sinkholes, the in-degree is considerably higher than
the average in-degree as sinkholes usually succeed malicious IPs in the chain of
resolved IPs and a single sinkhole IP is often used to sinkhole multiple domains.

We further refer to deg+(v) as the out-degree of node v, resembling the number
of child nodes, e.g., IP addresses that followed node v in the resolver chain. We
find the out-degree of sinkhole IPs to be significantly lower than the average
out-degree because sinkhole IPs are persistent for a longer period of time. As a

result, the ratio R = deg−(v)
deg+(v) is expected to be high for sinkholes.

We use the resulting graph to create a list of potential sinkholes Spot by adding
all IP addresses v ∈ V which meet these requirements:
(i) The IP address must respond to ICMP Echo or HTTP requests.
(ii) At least D domains are currently resolving to this IP, whereas the value D

is defined by the average number of active domains per IP in our set.
(iii) The ratio R exceeds a threshold T , whereas T is defined as the average

ratio of all IP addresses v ∈ V .
(iv) All domains associated with a single IP address utilize the same NS.
We then manually verify each IP in Spot whether it is a FP or associated with

a sinkhole by analyzing the utilized NS, served web content, reverse DNS record,
and AS details, and also employ a service provided by one of our collaboration
partners listing known sinkhole IPs. Verified sinkholes are added to the set Sver .

We chose these rather hard requirements as most sinkhole operators have little
incentive to disguise the existence of their sinkholes. We thus hypothesize that
this list of requirements will even hold once our sinkhole detection technique
is known. However, as we might have missed sinkhole IPs due to the strict
requirements for Spot, we explore the neighboring IP addresses of Sver in the
second phase of the sinkhole identification. Before doing so, we extract the NS
of the domains resolving to the IPs in Sver , manually check whether the NS are
specifically used in conjunction with sinkholed domains and if so, we add the
NS to a trusted set SNS . Further on, to also detect inactive sinkholes at a later
stage, we create a mapping of trusted NS and the AS the corresponding sinkhole
s ∈ Sver is located in, defined by SNS AS = {(nss, ASs) | nss ∈ SNS}.
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Sinkhole operators might relocate domains to different sinkholes in the same
organization and AS, thus we explore the parent and child nodes of each sinkhole
to identify yet unknown sinkholes. For each ip ∈ V , we check whether ip is a
parent or child node of a known sinkhole s ∈ Sver , whereas we only consider
IPs abiding ASip = ASs. If ip is found to be a neighboring node of at least two
sinkholes, we define ip to be a potential sinkhole and add it to Spot. Further, ip
is added to Spot when it is a parent or child node of at least one sinkhole in the
same AS and the domains resolving to both IP addresses share the same NS.

To identify sinkholes which cannot be found by exploring parent and child
nodes, we leverage the trusted name servers ns ∈ SNS . As we defined these NS
to be exclusively used for sinkholed domains, we check if the authoritative NS
of the domains currently resolving to each IP ip ∈ V can be found in SNS .

The previous exploration mechanisms traced active sinkholes only as we re-
quire domains to resolve to the IPs of potential sinkholes. Our blacklist dataset
also includes historical data, thus we are interested in obtaining a list of sink-
holes which were active in the past. Inactive sinkholes presumably do not have
domains currently resolving to them, hence we cannot leverage the NS data as
conducted in the previous step. Instead, we examine the domains which once
resolved to each ip ∈ V in our dataset, obtain the currently most utilized name
server ns, and check if ns is covered by SNS. If ns ∈ SNS is true, the ip is either
of malicious character and the domains once resolving to ip are now sinkholed or
we identified an inactive sinkhole and the domains were relocated to other sink-
holes. To distinguish between malicious and sinkhole IP we check if (nsip, ASip)
is listed in SNS AS . If this is true, we add ip to Spot as we assume that malicious
IPs are not located in the same AS in which we found verified sinkholes.

4.2 Evaluation

We now evaluate our method on the datasets SC&C and SMal. On SC&C , the
filtering step removed 1,144 IPs listed in SBenign or associated with parking
providers or Fast Flux. The resulting graph consists of 41,269 nodes and 371,187
edges. In the first phase of the graph exploration our approach adds 20 IPs to
Spot, which we manually verified to be associated with sinkholes. In the second
phase, we identify 6 sinkholes by exploring the parent and child nodes of the
already verified sinkholes, 11 sinkholes by analyzing the actively used NS, and 8
sinkholes by exploring the NS of historically seen domains. Table 3 outlines the
operators of the verified sinkholes and the number of distinct AS. The sinkholes
listed as Others are associated with organizations such as Abuse.ch and Echo-
Source. In total, we discovered 45 sinkholes in SC&C without any false positives.

On the larger and more distributed dataset SMal, we filter 7,349 IPs, resulting
in a graph of 277,315 nodes and 4,690,369 edges. The first phase of the graph
exploration identifies 80 IPs to be potential sinkholes. We are able to verify
59 of these IPs to be associated with sinkholes and find 10 IPs to serve 403
(Forbidden) and 404 (Not Found) HTTP error codes or empty HTTP responses
for all associated domains. Another 7 IPs do not accept HTTP requests due to
the HTTP port being closed. We assume that these 17 IPs are either associated
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with sinkholes or hosting companies, which deactivated misbehaving accounts or
servers. The remaining 4 IPs in Spot are considered to be FPs as two IPs serve
benign content (i.e., related to adult content and the DNS provider noip.com),
one IP replies with a single string for all known domains, and the last IP is still
distributing malicious content. Based on the 59 verified sinkholes, we perform the
second phase and detect 14 sinkholes by exploring the parent and child nodes, 19
sinkholes by monitoring the actively utilized NS, and 14 sinkholes by exploring
the NS of previously seen domains. In Others, we summarize operators such as
Fitsec, Dr.Web, and the U.S. Office of Criminal Investigations.

Table 3. Sinkhole IPs identified in SC&C and SMal

SC&C SMal

Organization #AS Active Inactive Active Inactive

Anubis Networks 1 1 0 4 0
Cert.pl 1 4 0 4 0
GeorgiaTech/SinkDNS 5 0 0 8 1
Microsoft 3 7 2 11 2
Others 17 4 1 18 4
PublicDomainRegistry 7 10 7 20 11
Shadowserver 1 0 0 5 0
Torpig-Sinkhole 2 4 1 8 2
Zinkhole 1 4 0 7 1

Our detection technique
identified 106 IP addresses,
which we verified to be asso-
ciated with sinkholes, 17 IP
addresses of potential sink-
holes, and 4 IP addresses,
which are falsely added to
Spot in the first exploration
phase. The second phase does
not cause any FPs but dou-
bles the number of sinkholes.

5 Blacklist Evaluation

Based on the findings in the previous sections, we now proceed to analyze the
content of the monitored malware blacklists in regards to multiple characteristics.

5.1 Classification of Blacklist Entries

We introduced detection mechanisms for parked domains and sinkholing servers,
which are covered by blacklists. Table 4 outlines how many of the currently listed
domains (SCurrent) and IPs (SIPs) can be assigned to one of these categories.

Table 4. Classification of SCurrent and SIPs

(in %) Sinkholed

Blacklist Unreg. Parked Domains (%/#) # IPs

Citadel 23.6 0.2 70.4 3,263 n/a
Cybercrime 40.1 1.6 4.2 45 0
Malc0de 12.0 1.5 0.0 0 0
MDL Hosts 18.0 3.0 0.4 6 n/a
MDL ZeuS 41.6 0.0 8.3 1 0
MW-Domains 52.1 2.4 2.8 659 n/a
Palevo Tracker 0.0 0.0 2.9 1 1
Shallalist 45.7 10.9 0.9 190 1
Shadowserver n/a n/a n/a n/a 4
SpyEye Tracker 47.2 0.0 19.5 24 2
UrlBlacklist 72.3 3.1 1.7 2,211 3
Virustracker 85.1 8.7 3.5 426 n/a
ZeuS Tracker 52.0 0.3 0.1 1 0

The Abuse.ch blacklists as
well as MDL ZeuS include a
low number of parked domains.
In contrast, we observe a high
number of parked domains for
blacklists that have only a few
historical entries (cf. Table 1 in
Section 2). Particularly for Shal-
lalist and UrlBlacklist, we as-
sume that the listed domains
are not reviewed periodically
as more than 57%, respectively,
77% of all domains are either

non-existent, parked, or associated to sinkholes while the number of historical
entries is almost negligible. When taking a look at Virustracker, we find 8.7% of

noip.com
Abuse.ch
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the currently listed domains to be parked. Virustracker consists of DGA-based
domains next to a partition of hard-coded malware domains that are valid and
blacklisted for a longer period of time. The classification results indicate that
the hard-coded domains are parked significantly more often than the DGA-based
domains, i.e., when inspecting a random subset of 25 DGA-based and 25 hard-
coded domains, only a single DGA-based domain was parked while more than
40% of the hard-coded domains were associated to parking. We thus assume that
many of the persistent domains are parked to monetize the malicious traffic.

5.2 Blacklist Completeness

Next, we aim to answer how complete the blacklists are, i.e., we measure if they
cover all domains for popular malware families. We thus turn from analyzing
what is listed to evaluating what is not blacklisted. To the best of our knowledge,
we are the first to analyze the completeness of malware blacklists. Estimating
the completeness is challenging as it requires to obtain a ground truth first, i.e., a
set of domains used by each malware family. To aggregate a dataset of malicious
domains we leverage analysis reports of our dynamic malware analysis platform
Sandnet [31]. We inspect the network traffic of more than 300,000 malware
samples that we analyzed since Mar. 2012 and identify characteristic patterns
for the C&C communication and egg download channels of 13 popular malware
families. Our dataset includes banking trojans, droppers (e.g., Gamarue), ran-
somware (e.g., FakeRean), and DDoS bots (e.g., Dirtjumper), thus represents a
diverse set of malware families. Per malware family, we manually identify typical
communication patterns and extract the domains for all TCP/UDP connections
that match these patterns. Next to regular expressions, we use traffic analy-
sis [32] and identify encrypted C&C streams using probabilistic models [33] to
classify the malware communication. We ensured that these fingerprints cap-
ture generic characteristics per malware family, guaranteeing that the number
of false negatives is negligible (see [32] and [33] for details). We manually veri-
fied a subset of the suspicious communication streams and did not identify any
false classifications. Admittedly, our dataset is limited to a small subset of the
overall malware population only. Given the subset of malware samples, the set
of extracted domains is thus by no means complete. However, our dataset serves
as an independent statistical sample. In addition, polymorphism creates tens
of thousands new malware samples daily, whereas the number of new malware
variants (e.g., using different C&C domains) is much lower [30]—indicating that
our dataset achieves reasonable coverage, as also indicated in the experiments.

We evaluate the completeness of the blacklists by computing the ratio of the
malware domains observed in Sandnet that are also blacklisted. Table 5 out-
lines our evaluation results per family. The second column shows the number of
domains we obtained from Sandnet per family. The remaining columns repre-
sent the results for particular blacklist datasets as introduced in Section 2, while
SAV is defined by the union of all four AV vendor blacklists. Our analysis shows
that the public blacklists detect less than 10% of the malicious domains for eight
(SC&C) and five (SMal) malware families, respectively. As a result, the detection
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capabilities of an IDS or AV software using these blacklists is insufficient, even
when combining multiple blacklists that employ different listing strategies. The
public blacklists do achieve detection rates higher than 50% for particular fam-
ilies because of highly specialized listing policies such as in the Abuse.ch track-
ers and Microsoft’s list of Citadel domains, yet they fail to detect the other
families—even though families such as Sality are known since 2003.

Table 5. Coverage of malware domains

Public (%) AV Vendors (%)

Family #Dom. SC&C SMal SAV SBD SMA

Citadel 225 87.6 89.3 96.0 57.3 79.1
Dirtjumper 47 2.1 2.1 80.9 63.8 40.4
FakeRean 34 0.0 17.7 73.5 50.0 58.8
Gamarue 127 6.3 18.9 86.6 62.2 47.2
Gbot 321 0.0 0.0 100.0 77.3 100.0
Palevo 58 51.7 58.6 93.1 63.8 89.7
Ponyloader 210 4.3 21.0 95.7 71.4 65.7
Pushdo 42 0.0 9.5 92.9 64.3 78.6
Rodecap 9 11.1 11.1 100.0 66.7 44.4
Sality 417 0.0 1.2 82.3 73.4 27.3
SpyEye 145 56.6 57.9 83.4 26.9 61.4
Tedroo 7 0.0 0.0 85.7 57.1 28.6
ZeuS 47 51.1 53.2 95.7 51.1 61.7

Three of the blacklists op-
erated by AV vendors perform
significantly better. Looking at
the union of the blacklists, at
least 70% of the domains per
family are detected. More than
90% of the domains were listed
for seven of the 13 families. We
also look at the breakdown of
SAV , i.e., how well the indi-
vidual blacklists perform. Ta-
ble 5 includes the two blacklists
that perform best: SBD is oper-
ated by Bitdefender and SMA

by McAfee. Surprisingly, these
blacklists have a non-negligible separation—combining them significantly in-
creases the overall coverage for many families. We do not list the remaining two
blacklists due to space constraints, however, note that Norton performs similar
to Bitdefender and McAfee while Browserdefender fails to detect any domain
for the majority of families and covers only 2 - 7% of the domains for the other
malware families.

5.3 Reaction Time

For the domains seen in Sandnet which are also covered by SMal, we addi-
tionally estimate the reaction time of the blacklists. That is, we measure how
long it takes to blacklist the domains once they were seen in Sandnet. As
the domains could have been performing malicious activities before we observed
them in Sandnet, the presented reaction times are lower bounds. We therefore
obtained pDNS records and VirusTotal [34] analysis results to investigate the
history of each domain. In total, we could aggregate pDNS records for 81.3% of
all domains and obtained information from VirusTotal for 98% of the domains.

We determined the reaction times for each combination of public blacklist and
malware family. Yet, for reasons of brevity we focus on a few interesting com-
binations only. Figure 1 illustrates a CDF of the reaction times of four black-
lists, respectively, blacklist combinations. The y-axis shows the reaction time
per blacklist entry in days and the x-axis depicts the ratio of domains with this
reaction time. Negative y-values indicate that the domain was first seen in the
blacklists and then observed in Sandnet, pDNS, or VirusTotal. Positive y-values

Abuse.ch


Paint It Black: Evaluating the Effectiveness of Malware Blacklists 15

denote that a blacklist lagged behind. The y-values of blacklisted domains that
are not found in pDNS or VirusTotal are set to the negative infinity.

The black solid line represents the reaction time of the blacklists provided by
Abuse.ch (Palevo, SpyEye, and ZeuS ) and the corresponding domains as seen in
Sandnet. About 23.3% of the domains were listed by the blacklists before they
appeared in Sandnet, respectively, 76.7% of the domains were seen in Sand-
net first. As depicted by the black dotted line, we find 37.9% of the domains
to be blacklisted before appearing in VirusTotal. Approximately 64.7% of the
domains were seen in Sandnet and added to the blacklists on the same day. The
reaction time of Abuse.ch was less than a week for 80.2% of the Sandnet do-
mains and the blacklists included already 96.6% of the domains within 30 days.
The results show an adequate reaction time for the Abuse.ch blacklists, although
the completeness is not ideal (cf. Section 5.2). The black dashed line illustrates
the results obtained for the Abuse.ch blacklists and pDNS. We could not obtain
pDNS records for 27.6% of the domains, i.e., these domains, although monitored
in multiple sandbox environments, were never seen in the DNS DB database.
Another 3.4% of the domains were blacklisted before the domains appeared in
pDNS, while 10.4% of the domains were blacklisted and seen in pDNS on the
same day. The remaining 58.6% of the domains were seen in pDNS on average
334 days before appearing in the blacklists. These domains either performed ma-
licious activities before becoming blacklisted or—more likely—performed benign
actions before turning malicious.
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Fig. 1. Reaction times of selected blacklists

We observe dif-
ferent results for the
reaction times of the
other three black-
lists shown in the
graph. The reaction
time of UrlBlacklist
was higher than a
month for 53.5% of
the domains. Sim-
ilarly, the blacklist
MW-Domains has a
reaction time of at
least 30 days for
39.7% of the do-
mains. After four
months, the cover-
age of all three blacklists was still below 90%. In general, the low number of
domains that appeared in Sandnet after they were blacklisted (negative y-
values) indicates that our ground truth dataset is up-to-date.

Abuse.ch
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5.4 DGA-Based Domains

Malware that employs DGAs to dynamically create domains—typically derived
from the current date—imposes additional difficulties to blacklist operators.
First, DGA-based domains are valid for a limited time span, thus often change.
Ideally, blacklists would include these domains before they become valid. Second,
most of the domains are never registered or seen active, e.g., when dynamically
analyzing malware samples. Yet, DGA-based malware is on the rise [3], hence
networks protected by blacklists would benefit from DGA-based listings.

We evaluate the coverage of DGA-based domains in the blacklists for five
prevalent malware families. We implemented the DGAs for these families after
obtaining the algorithms from partners or using reverse engineering. Four fami-
lies generate domains every day, whereas the ZeuS P2P domains are valid for 7
days. We again measure the completeness and determine the reaction time for
each family, i.e., how many days it takes to blacklist a domain once it becomes
valid. We further estimate the rate of registered domains in SMal by leveraging
the recorded DNS data (i.e., we check if the domains resolved to IP addresses at
the time the domains were valid). As the dataset SMal contains all the domains
that were listed by any of the 15 public blacklists at some point in time since
2012, it should also include DGA-based domains that were valid in the past.

Table 6. Coverage of DGA-based domains

SMal SAV

Ratio (%) Ratio (%)

Family #Domains Listed Reg. tReact #Domains Listed Reg.

Bamital 84,136 21.9 11.7 -1 104 75.0 50.0
Conficker 7,354,415 1.6 0.2 1 50,500 94.3 4.8
Flashback 4,045 18.0 15.3 71 5 0.0 100.0
Virut 8,089,752 0.2 0.004 13 10,000 97.9 1.7
ZeuS P2P 131,000 28.9 0.2 1 1,000 99.5 4.5

Table 6 illustrates
the listing behavior
we monitored in the
period Jan. 2012 to
Mar. 2014 for the
public blacklists (first
major column) and
on a typical week-
day in Mar. 2014 for
the AV vendor black-
lists (second major

column). In total, less than 1.2% of all domains were listed by the public black-
lists. On the positive side, blacklists have a low reaction time for three families
(if they blacklist a domain). On the downside, 82.1% of the matches are found
in the blacklist Virustracker only. When removing Virustracker from SMal, the
reaction times increase significantly for most families (i.e., Bamital : 12 days,
Conficker : 12 days, Flashback : 381 days, Virut : -271 days, and ZeuS P2P : 16
days). Before removing Virustracker from SMal, we find 0.2% of the Virut do-
mains to be blacklisted. After removingVirustracker, we find merely 167 domains
(0.002%) to be listed. Due to the generic structure of Virut domains, we assume
that these domains are not listed to protect against Virut in particular but
rather because they were related to other malicious activities. The reaction time
confirms our assumption as it is not reasonable to blacklist domains 271 days
before they become active for a single day.

We also determine the coverage of the AV vendor blacklists regarding DGA-
based domains. To avoid requesting millions of domain names, we divide our
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analysis into two steps. To measure if the blacklists protect against threats of
DGA-based domains that are currently active, we request listing information
and DNS A records for all the domains that are valid on the day we perform this
experiment (i.e., 03/24/2014). Second, we analyze if blacklists include domain
names which become active in the future. We thus also request a sample of DGA-
based domain names (i.e., a random selection of at most 10 domains per day
and malware family, respectively, type for Conficker) that will be valid between
03/25/2014 and 04/24/2014, i.e., up to 31 days ahead of the day of requesting.

For the domains valid on the day of performing our experiment, we find 76.1%,
respectively, 28.9% of the ZeuS P2P domains to be blacklisted by McAfee and
Bitdefender and observe the best coverage for Norton as most of the results
in Table 6 are caused by this blacklist—with a single exception. Norton lists
95.5% of the ZeuS P2P domains while the union of all AV vendor blacklists
increases the coverage up to 99.5%. For the remaining blacklists and malware
families, we find a negligible number of listed domains (if domains are listed at
all). When taking a closer look at the registered domains that day, we find half of
the Bamital domains and most of the domains for Conficker B/C and Flashback
to be sinkholed. Further on, four domains of ZeuS P2P are sinkholed while the
168 registered Virut domains are associated to parking providers and benign
web pages. In conclusion, a partition of valid domains is sinkholed by security
researchers, yet the remaining domains could be used for malicious activities.
We thus recommend to blacklist each DGA-based domain for security reasons
(i.e., to trigger alerts). For the domains getting active in the near future, we
again find the blacklist provider Norton to perform best. Except for Flashback
(no listed domain) and Bamital (coverage of 46.5%), we find Norton to include
at least 94.5% of the domains for each of the remaining families. For the other
families and blacklists, we again observe a negligible number of listed domains.

Our analysis shows that as of today, only one blacklist can reasonably protect
against any of the five DGAs used in our experiments. This is surprising to us,
given the fact that—once the DGA is known—the DGA-based domains can be
accurately predicted unless there are external dependencies (e.g., DGAs utilizing
lists of popular feeds from social network web pages). One of the reasons could
be that DGAs are often used as a C&C backup mechanism only. For example,
Zeus P2P uses a DGA only if its peer-to-peer communication fails [35]. Another
reason could be that DGA-based domains may, by coincidence, collide with
benign domains. Still, as these issues can be overcome, the potential of including
DGA-based domains is unused in most of the nowadays blacklists.

6 Discussion and Future Work

We showed that our parking detection approach can effectively distinguish parked
and benign domains. As our features depend on the content delivered by park-
ing services such as sponsored ads, domain resellers serving benign content and
parked domains exhibiting parking behavior different from the expected however
cannot be effectively identified by our detection model. This is particularly prob-
lematic when parking providers block us, e.g., for sending too many requests.
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Parking services employ different types of blocking (e.g., provide error messages,
benign content, or the parking page template without any referral links). To
avoid getting blocked, we could distribute the requests to several proxy servers
or rate-limit our requests. Further, domains might perform cloaking [36], i.e.,
provide malicious content for real users while serving parking content for auto-
mated systems. We leave a detection of cloaking domains for future work and
acknowledge that a large number of parked domains alone does not necessarily
imply that a blacklist is not well-managed. We also have to keep in mind that the
parking IDs might be biased in respect to the language of the blacklist content,
as we obtained the IDs by leveraging the NS used by the blacklisted domains.
However, our dataset does not include any national blacklists, which primarily
list domains of a specific country or language. While performing the manual
verification for the real-world datasets in Section 3.3, we monitored many do-
mains providing content in foreign languages that were flagged as parked by the
classifier. This shows that our approach is largely language-independent.

The proposed sinkhole detection method relies on the blacklists to observe
behavior that can be attributed to sinkholes. As such, our detection capabilities
are limited to sinkholes that are blacklisted. We could use the identified sinkhole
dataset as ground truth and leverage techniques such as passive DNS analysis to
identify further potential sinkholes [37]. Additionally, the quality of our approach
depends on the accuracy of the blacklists. If blacklists contain too many benign
domains that cannot be filtered, e.g., by removing Alexa Top 25k, parking, and
shared hosting IPs, we might flag benign IP addresses as potential sinkholes.

Our evaluation on the completeness of blacklists is limited to estimating lower
bounds as Sandnet only covers a random subset of all samples of the active
malware families. Consequently, we may have missed malicious domains in Sand-
net. We aim to scale up malware execution to achieve a higher coverage.

We classified the blacklist content as parked, sinkholed, or unregistered and
analyzed the completeness of the blacklists in regards to domains of various
malware families. Yet, the blacklists also include domains we could not classify
accordingly, leaving 23.7% of the currently blacklisted domains to be unspeci-
fied. These domains might also include potential false listings, e.g., caused by
erroneous setups of analysis back-ends or insufficient verification of domains that
are flagged to be potentially malicious. False listings, however, are hard to iden-
tify as each blacklist applies its own listing strategy and might include domains
of malware families that are not present in Sandnet and the DGA-based do-
main dataset. Analysis techniques to identify potential false listings thus require
a thorough evaluation of correctness. We leave the categorization of the so far
unclassified domains for future work.

7 Related Work

The effectiveness of malware blacklists is still largely unstudied. In prior work, we
proposed a system to track blacklists and presented first details regarding black-
list sizes [6]. With this paper, we extend our work and evaluate malware blacklist
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effectiveness—motivated by promising results others reported with blacklists in a
different context. For example, Thomas et al. [38] looked at blacklists in Twitter.
Similarly, Sinha et al. [39], Rossow et al. [40], and Dietrich et al. [41] evaluated
the strength of blacklists in the context of email spam, while Sheng et al. [42]
analyzed phishing blacklists.

Concurrent to our sinkhole identification work, Rahbarinia et al. developed a
system called SinkMiner [37] to identify sinkhole IPs. They leverage pDNS data
and a priori information about sinkholes to extrapolate to other sinkholes. Our
approach does not rely on an initially-known set of sinkholes and, in its simple
form, works without pDNS. In addition, we found sinkholes which were not linked
to other sinkholes—many of which SinkMiner would miss. Nevertheless, a com-
bination of SinkMiner and our graph-based approach could identify yet unknown
sinkholes, as SinkMiner analyzes the global history of domains using pDNS while
we are limited to the history of blacklisted domains. We further proposed a more
advanced mechanism to identify parking providers. Rahbarinia et al. filter for NS
that include the term park in their hostnames. Yet, of the 204 parking NS iden-
tified in Section 3.1 we find 59 NS to not specify this term in their hostnames.
Halvorson et al. [23,24] identify parked domains by applying regular expressions
to the aggregated web content. Instead, we introduced characteristic features for
parking behavior and—to the best of our knowledge—are the first to propose a
generic mechanism to identify parked domains.

Orthogonal to our work, a number of proposals aim to increase the quality of
existing blacklists. Neugschwandtner et al. [43] proposed Squeeze, a multi-path
exploration technique in dynamic malware analysis to increase the coverage of
C&C blacklists. Stone-Gross et al. [44] proposed FIRE, a system to identify
organizations that demonstrate malicious behavior by monitoring botnet com-
munication. Our findings show that usage of such systems should be fostered.

8 Conclusion

We have shown that blacklists have to be employed with care as the nature of
the listings is diverse. First, one needs to keep in mind that also sinkholes may
be blacklisted. Second, many parking providers re-use popular malware domains.
This is crucial to know, e.g., when blacklists raise false positives or one aims to
attribute a reputation to certain providers based on blacklist data. In addition,
our evaluation of blacklist coverage indicates how blacklists can be improved
in the future as none of the public blacklists is sufficiently complete to protect
against the variety of malware threats we face nowadays. We further have shown
that most blacklists operated by AV vendors do not cover DGA-based malware
to effectively protect users, although integration would be straight-forward. We
are confident that our analyses will help to improve blacklists in the future.
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Abstract. A critical challenge when combating malware threat is how to effi-
ciently and effectively identify the targeted victim’s environment, given an un-
known malware sample. Unfortunately, existing malware analysis techniques ei-
ther use a limited, fixed set of analysis environments (not effective) or employ ex-
pensive, time-consuming multi-path exploration (not efficient), making them not
well-suited to solve this challenge. As such, this paper proposes a new dynamic
analysis scheme to deal with this problem by applying the concept of speculative
execution in this new context. Specifically, by providing multiple dynamically
created, parallel, and virtual environment spaces, we speculatively execute a mal-
ware sample and adaptively switch to the right environment during the analysis.
Interestingly, while our approach appears to trade space for speed, we show that it
can actually use less memory space and achieve much higher speed than existing
schemes. We have implemented a prototype system, GOLDENEYE, and evalu-
ated it with a large real-world malware dataset. The experimental results show
that GOLDENEYE outperforms existing solutions and can effectively and effi-
ciently expose malware’s targeted environment, thereby speeding up the analysis
in the critical battle against the emerging targeted malware threat.

Keywords: Dynamic Malware Analysis, Speculative Execution.

1 Introduction

In the past few years, we have witnessed a new evolution of malware attacks from
blindly or randomly attacking all of the Internet machines to targeting only specific
systems, with a great deal of diversity among the victims, including government, mil-
itary, business, education, and civil society networks [17,24]. Through querying the
victim environment, such as the version of the operating system, the keyboard layout,
or the existence of vulnerable software, malware can precisely determine whether it
infects the targeted machine or not. Such query-then-infect pattern has been widely em-
ployed by emerging malware attacks. As one representative example, advanced persis-
tent threats (APT), a unique category of targeted attacks that sets its goal at a particular
individual or organization, are consistently increasing and they have caused massive
damage [15]. According to an annual report from Symantec Inc, in 2011 targeted mal-
ware has a steady uptrend of over 70% increasing since 2010 [15], such overgrowth
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has never been slow down, especially for the growth of malware binaries involved in
targeted attacks in 2012 [14].

To defeat such massive intrusions, one critical challenge for malware analysis is how
to effectively and efficiently expose these environment-sensitive behaviors and in fur-
ther derive the specification of environments, especially when we have to handle a large
volume of malware corpus everyday. Moreover, in the context of defeating targeted at-
tacks, deriving the malware targeted environment is an indispensable analysis step. If
we can derive the environment conditions that trigger malware’s malicious behavior,
we can promptly send out alerts or patches to the systems that satisfy these conditions.

In this paper, we focus on environment-targeted malware, i.e., malware that con-
tains query-then-infect features. To analyze such malware and extract the specification
of their targeted environment, we have to refactor our existing malware analysis infras-
tructure, especially for dynamic malware analysis. Because of the limitation of static
analysis [38], dynamic malware analysis is recognized as one of the most effective so-
lutions for exposing malicious behaviors [38,37]. However, existing dynamic analysis
techniques are not effective and efficient enough, and, as mentioned, we are facing two
new challenges: First, we need highly efficient techniques to handle a great number
of environment-targeted malware samples collected every day. Second, we require the
analysis environment to be more adaptive to each individual sample since malware may
only exhibit its malicious intent in its targeted environment. (More details are explained
in Section 2.)

As such, in this paper we attempt to fill the aforementioned gaps. Specifically, we
present a novel dynamic analysis scheme, GOLDENEYE, for agile and effective mal-
ware targeted environment analysis. To serve as an efficient tool for malware analysts,
GOLDENEYE is able to proactively capture malware’s environment-sensitive behaviors
in progressive running, dynamically determine the malware’s possible targeted environ-
ments, and online switch its system environment adaptively for further analysis.

The key idea is that by providing several dynamic, parallel, virtual environment
spaces during a single malware execution, GOLDENEYE proactively determines what
the malware’s targeted environment is through a specially designed speculative execu-
tion engine to observe malware behaviors under alternative environments. Moreover,
GOLDENEYE dynamically, adaptively switches the analysis environment and lets mal-
ware itself expose its target-environment-dependent behaviors. Although GOLDENEYE

trades space for speed, interestingly our experimental results show that GOLDENEYE

could actually use less memory space while achieving much higher speed than existing
multi-path exploration techniques.

In summary, this paper makes the following contributions:
– We present a new scheme for environment-targeted malware analysis that provides

a better trade-off between effectiveness and efficiency, an important and highly de-
manded step beyond existing solutions. As a preliminary effort towards systematic
analysis of targeted malware, we hope it will inspire more future research in tar-
geted and advanced persistent threat defense.

– We design and implement GOLDENEYE, a new lightweight dynamic analysis tool
for discovering malware’s targeted environment by applying novel speculative ex-
ecution in dynamic, parallel, virtual environment spaces. The proposed approach
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can facilitate the analysis on new emerging targeted threats to reveal malware’s
possible high-value targets. Meanwhile, it also facilitates conducting large volumes
of malware analysis in a realtime fashion.

– We provide an in-depth evaluation of GOLDENEYE on real-world malware datasets
and show that GOLDENEYE can successfully expose malware’s environment-
sensitive behaviors with much less time or fewer resources, clearly outperforming
existing approaches. We also show that GOLDENEYE can automatically identify
and provide correct running environment for tested well-known targeted malware
families. To further improve the accuracy and efficiency, we also propose a dis-
tributed deployment scheme to achieve better parallelization of our analysis.

2 Background and Related Work

2.1 Objectives

The focal point of this paper is on a set of malware families, namely environment-
targeted malware. In our context, we adopt the same definition of environment in related
work [36], i.e., we define an environment as a system configuration, such as the version
of operating system, system language, and the existence of certain system objects, such
as file, registry and devices.

Environment-targeted malware families commonly contain some customized envi-
ronment check logic to identify their targeted victims. Such logic can thus naturally lead
us to find out the malware’s targeted running environment. For instance, Stuxnet [13], an
infamous targeted malware family, embeds a PLC device detection logic to infect ma-
chines that connect to PLC control devices. Banking Trojans, such as Zeus [21], only
steal information from users who have designated bank accounts. Other well-known
examples include Flame [6], Conficker [43] and Duqu [4].

As a result, different from the traditional malware analysis, which mainly focuses on
malware’s behaviors, environment-targeted malware analysis has to answer the follow-
ing two questions: (1) Given a random malware binary, can we tell whether this sample
is used for environment-targeted attacks? (2) If so, what is its targeted victim or targeted
running environment?

Consequently, the goal of our work is to design techniques that can (1) identify pos-
sible targeted malware; (2) unveil targeted malware’s environment sensitive behaviors;
and (3) provide environment information to describe malware’s targeted victims.

2.2 Related Work
Research on Enforced/Multi-path Exploration. Exposing malicious behaviors is
a research topic that has been extensively discussed in existing research
[33,30,27,23,36,47,46].

One brute-forced path exploration scheme, forced execution, was proposed in [46].
Instead of providing semantics information for a path’s trigger condition, the technique
was designed for brute-force exhausting path space only. Most recently, X-Force [42]
has made this approach further by designing a crash-free engine. To provide the seman-
tics of the trigger, Brumley et al. [25] proposed an approach that applies taint analysis
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and symbolic execution to derive the condition of malware’s hidden behavior. In [34],
Hasten was proposed as an automatic tool to identify malware’s stalling code and de-
viate the execution from it. In [35], Kolbitsch et al. proposed a multipath execution
scheme for Java-script-based malware. Other research [29,46] proposed techniques to
enforce execution of different malware functionalities.

One important work in this domain [37] introduced a snapshot based approach which
could be applied to expose malware’s environment-sensitive behaviors. However, this
approach is not efficient for large-scale analysis of environment-targeted malware: it
is typically very expensive and it may provide too much unwanted information, thus
leaving truly valuable information buried. This approach essentially requires to run the
malware multiple times to explore different paths. After each path exploration, we need
to rewind to a previous point (e.g., a saved snapshot), deduce the trigger condition of
branches and explore unobserved paths by providing a different set of input, or some-
times enforce the executing of branches in a brute-force way. Obviously this kind of
frequent forward execution and then rolling back is very resource-consuming, thus mak-
ing it not very scalable to be applied for analyzing a large volume of malware samples
collected each day. Moreover, this scheme is a typical sequential model which makes
the analysis hard for parallel or distributed deployment, e.g., in a cloud computing set-
ting. Last but not least, the possible path explosion problem [37] is another important
concern for this approach.
Research on Malware’s Environment-Sensitive Behaviors. Another line of research
[27,23,28,36,44,40] discusses malware environment-sensitive behaviors. These studies
fall into three categories: (1) Analyzing malware’s anti-debugging and anti-virtualization
logic [23,28]; (2) Discovering malware’s different behaviors in different system config-
urations [36]; (3) Discovering behaviors in network-contained environment [32]. The
main idea in these studies is to provide possible target environments before applying the
traditional dynamic analysis. The possible target environment could be a running en-
vironment without debuggers [28], introspection tools [23], or patched vulnerabilities
involved.

In a recent representative study [36], the authors provided several statically-configured
environments to detect malware’s environment sensitive behaviors. While efficient (not
carrying the overhead of multi-path exploration), this approach is not effective, i.e., the
limitation is: we cannot predict and enumerate all possible target environments in ad-
vance. In particular, in the case of targeted malware, we often are not able to predict
malware’s targeted environments before the attack/analysis.

Table 1. Summary of Existing Techniques

Approach Category I II
Representative Work [25,37,46] [36,23]

Completeness High Low
Flexibility High Low

Prerequisites Low High
Resource Consumption High Low

Analysis Speed Slow Fast
Assisting Techniques Symbolic Execution, Trace Comparison

Tainted Analysis,
Execution Snapshot

Deployment Model Sequential Sequential/Parallel

Summary. We summarize the
pros and cons of previous re-
search in Table 1. We analyze
these techniques from several
aspects: Completeness, Flexi-
bility, Prerequisites, Resource
Consumption, Analysis Speed,
Assisting Techniques, and De-
ployment Model.
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As illustrated, the first category of solution, such as [37,25], has theoretically full-
completeness but with high resource consumption. It requires the execution to period-
ically store execution context and roll back analysis after one-round exploration, thus
very slow. Meanwhile, it requires some assisting techniques, such as symbolic execu-
tion which is slow and has some inherent limitations [22]. Last but not least, it is not
designed for parallel deployment, making it not able to leverage modern computing
resources such as clouds.

For the second category, such as [23,36], these approaches support both sequential
and parallel deployment. Meanwhile it has less resource consumption and fast analysis
speed. However, all the environments require manual expertise knowledge and need to
be configured statically beforehand. Hence, it is not flexible nor adaptive. More impor-
tantly, it is incomplete, limited to these limited number of preconfigured environments,
and has a low analysis coverage.

3 Overview of GOLDENEYE

An overview of our approach is presented in Figure 1. As illustrated, our scheme con-
sists of three phases. In phase I, we screen malware corpus and identify the possible
targeted malware samples. In phase II, we employ dynamic environment analysis to it-
eratively unveil the malware candidates’ targeted running environments. In phase III, we
summarize the analysis result with detailed reports. The reports contain the information
about malware’s sensitive environments and their corresponding behavior differences.
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Fig. 1. Overview of GOLDENEYE

In this section we briefly overview the basic idea of our key novel design in GOLD-
ENEYE, i.e., progressive speculative execution in parallel spaces, and leave the rest
system details to Section 4.
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The first key design of GOLDENEYE is to dynamically construct parallel spaces to
expose malicious behaviors. To overcome the limitation of previous work [36], which
statically specifies multiple analysis environments beforehand, our design is to dynam-
ically construct multiple environments based on malware’s behaviors, the call of en-
vironment query APIs. In particular, through labeling these APIs beforehand, we can
understand all possible return values of each environment query. For each possible re-
turn value, we construct one environment for that. For example, if we find the malware
queries system call GetKeyboardLayout, we can prepare multiple return values
such as 0x0004 for Chinese and 0x0409 for United States, and simulate two parallel
running environment with Chinese and English keyboards for analyzing malware be-
haviors. As shown in Figure 2, the parallel environments is constructed alongside with
malware’s execution, therefore, it prevents running the same sample by multiple times.
As long as our API labeling (introduced in Section 4) can cover the environment query,
we believe GOLDENEYE can automatically detect/expose all environment-sensitive be-
haviors of samples.

Our second novel design is to apply speculative execution in these parallel environ-
ments. Observing the limitation of existing work [37], which consumes a huge amount
of time and memory on rolling back the analysis on alternative paths, we apply the con-
cept of speculative execution [31], which refers to the situation when a computer system
performs some task that may not be actually needed but to trade off some other opti-
mize needs. The merit of applying speculative execution in our context is to keep the
execution forward as far as possible. Thus, we consider to construct multiple possible
environments online and speculatively execute malware in each environment instance.
Through determining the most possible malicious execution path, we can also deter-
mine what the running environment is in order to reach certain path.

To embrace speculative execution in our new problem domain, we need to solve new
technical challenges. First, since the executed instructions in each environment vary,
it is practically infeasible to predict the execution in an online dynamic fashion. We
solve this challenge by progressively performing the speculative execution at the basic
block level. In particular, we execute each basic block in all alternative environment
settings. Since there is no branch instruction inside each basic block, the instructions
are the same for all environments. When we reach the branch instruction at the end of
a block, we apply several heuristics to determine which is the possible malicious path.
Consequently, we reduce the space by only keeping the settings that most likely lead to
the desired path.

Second, speculative execution is essentially a trade-off scheme between speed and
space (i.e., trading more memory consumption for speedup) [31]. In our design, we also
try to reduce the memory consumption by two novel designs: (1) We only speculatively
execute the instructions that generate different results for different environments. We
choose to employ taint analysis to narrow down the scope to the instructions which
operate on environment-related data. (2) We monitor the memory usage to prevent the
explosion of alternative environments.

In general, we introduce the following speculative execution engine: We conduct
speculative execution at the granularity of code block to emulate the malware’s execu-
tion in multiple parallel environment spaces. We first prefetch a block of instructions.
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Fig. 2. Illustration of Differences between GOLDENEYE (right) and Multi-path Exploration [37]
(left)

Next, we apply taint analysis on the pre-fetched instructions and taint each byte of
the API/instruction output (environment element) as the tainted source. The reason to
use taint analysis is to filter those instructions that are not related to the environment,
which can reduce the overhead of full speculative execution. We propagate tainted la-
bels and when we hit one instruction with the tainted operands, we accordingly update
the execution context in all alternative environments. We continue such propagation
until we reach the end of the block, which is a branch instruction. For the branch in-
struction, we determine whether it could be affected by the tainted bytes or not. If it is
an environment-sensitive branch, we continue to the next step, i.e., branch selection and
update. If not, speculative execution will start a new pre-fetch operation.

For environment-sensitive branches, we attempt to prevent the overhead caused by
roll-back operation in [37]. We design our scheme to proactively select the branches
based on the information provided in the speculative execution. The intuition is: if we can
tell which branch is more likely the malware author’s intended branch, we can dynam-
ically adjust the environment to enforce the malware to only execute some designated
branch. In principle, whenever we find a branch that belongs to a possible malicious
path, we will re-examine the alternative environments and only select the environment
that could be used to enforce the desired branch. Our solution to find the possible ma-
licious branch is to apply similar techniques as branch evaluation [47] to predict the
possible malicious branches. The detail will be presented in Section 4.2.

To differentiate GOLDENEYE with other approaches, we illustrate the high-level idea
of GOLDENEYE in Figure 2 by comparing with an existing multi-path exploration ap-
proach [37]. For the multi-path exploration approach (the left part in Figure 2), the
redundant overhead comes from exploring all the possible paths by depth-first execu-
tion and storing roll-back snapshots for all deviation branches. GOLDENEYE works in
a different way. It applies branch prediction that follows a breath-first execution scheme
to quickly locate possible malicious paths, which saves the effort of exploring all possi-
ble paths. Second, it enumerates all the possible alternative environments, e.g., ABCD
in Figure 2, dynamically. It ensures the analysis continuously keep forward and saves
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the roll-back operations. Thus, it is not necessary to store snapshots for every branch.
Lastly, we use taint analysis to skip many non-environment-sensitivebranches to further
save the exploration overhead.

Meanwhile, from the figure we can also notice how the speculative execution tech-
nique is performed in parallel environments. Essentially, our speculative execution is
periodically progressing for each code block. We need to iterate all the environments
and synchronize their running results for each instruction in the code block. At the end
of a basic block, the parallel space will be curtailed and GOLDENEYE clears all the
environments settings that unlikely lead to targeted paths.

4 Detailed Design

4.1 Phase I: Pre-selection of Malware Corpus

The first phase of GOLDENEYE is to quickly obtain the malware samples which are
candidates of environment-targeted malware. As defined in Section 2.1, our criteria for
the pre-processing is to find any malware that is sensitive to its running environment.

Our scheme of pre-selection is achieved by tainting the return values of certain envi-
ronment query API/instructions and tracking whether the tainted bytes affect the deci-
sion on some branch instructions, such as changing CFlag register. If the tested sample
is sensitive to its environment querying, we keep the sample for further steps.
API Labeling. The most common way for malware to query its running environment
is through certain system APIs/instructions. To capture malware’s environment queries,
we need to hook these APIs/instructions. Furthermore, it is important to derive all pos-
sible return values of these APIs/instructions because these return values are used to
define parallel denvironments. In GOLDENEYE, we label three categories of environ-
ment queries:

– Hook system-level environment query APIs. The operating system provides a large
set of system APIs to allow programmers query the running environment. They
have also been commonly used by malware to achieve the similar goal.

– Hook environment-related instructions. Some X86 instructions such as CPUID can
also be thought as a way to query environment information.

– Hook APIs with environment-related parameter(s). Some system files/registries can
be used to store environment configuration. Thus, we also hook file/registry opera-
tion APIs and examine their parameters. If the parameters contain some keywords,
such as version, we also treat as a query attempt.

For each labeled API/instruction, we examine its return value as the reference to ini-
tialize parallel environments. In general, we construct one speculative execution context
for each possible return value. To narrow down the alternative choices of the environ-
ment, we define the following four basic sets of return values.

– BSET(n) defines a two-choice (binary) set. One example for NtOpenFile is
BSET(0) for the return value NTSTATUS, which accepts 0 (success) or other value
(failure).

– SET([...]) defines a normal enumeration of values, such as enumeration forLANGID
in the default system language.

– RANGE(A, B) set contains a range of possible return values.
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Based on these three sets, we construct the parallel contexts. For example, we simply
construct two parallel contexts for BSET(n) element. Note that a large amount of system
objects, whose querying API returns -1 as non-existence and random value as the object
handle, belong to this type. We consider all these objects as BSET(n) element.

For SET([...]) with n different values, we accordingly initialize n parallel settings
based on the context.

For RANGE(A, B) set, we examine whether the range set can be divided into some
semantically independent sub-ranges. For example, the different range of native call
NtQuerySystemInformation’s return specifies different type of the system in-
formation. For these cases, we construct one context for each semantically-independent
sub-range. Otherwise, we initially construct one context for each possible value.

One current limitation of our labeling is that we cannot provide parallel environ-
ments for API functions whose return values are not enumerable. For example, some
malware logic may depend on the content of certain file. However, it is not possible
for us to construct all possible (correct) file contents in advance. One possible solution
is to combine symbolic execution [22] in the analysis step at the cost of extra analysis
overhead. However, to achieve better balance between efficiency and effectiveness, we
do not adopt such solution at the moment.

4.2 Phase II: Dynamic Environment Analysis

Dynamic environment analysis is the main component of GOLDENEYE. In this section,
we present its detailed design. We use Conficker [43] worm’s logic as a working exam-
ple. As illustrated in Figure 3, in this example, Conficker worm queries the existence of
specific mutex and the version of the running operating system. The malicious logic is
triggered only after the check succeeds.
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Initialization of Malware Environment Analysis. After the preprocessing, we first
initialize the analysis by constructing parallel environments when we find malware’s en-
vironment query. We define a running environment with a set of
environment elements as

env = {e1, ..., ei, ...en}
For each ei, it is defined as a tuple:

< identifier, API, type, value >

where identifier uniquely denotes the name of each environment element, such as
the mutex name or the title of GUI windows; API is the invoked API to query the
element; type specifies the type of element, such as system setting (system language,
os version, etc.) or system objects (the existence of files, registries, etc.); and value
states what are possible values of each element, such as true/false or a set of hex values.
Context Maintenance of Speculative Execution. After GOLDENEYE captures mal-
ware’s environment query, a set of initialized environment contexts are maintained
by our speculative execution engine. The main overhead of our speculative execution
comes from continuously maintaining those parallel contexts.

To save space, the key design for context maintenance is based on our progressive
execution scheme. Since the execution in parallel can be naturally synchronized by each
instruction (it follows the same code block(s)), we choose to only record the modifica-
tion of parallel contexts. As illustrated in Figure 3 Step A and B, we have no need
to maintain the full execution context, such as all general registers value and execu-
tion stack, in each parallel space. We only track the different data, which is EAX and
ESI in the example. We maintain such alternative contexts using a linked list. When
an environment update operation starts, we only update the dirty bytes that have been
modified since the previous block(s). In further, we organize each progressive context
using linked-list to track the modified bytes.
Taint-assisted Speculative Execution. Another key design to prevent redundant over-
head is to applying taint tracking on environment-sensitive data. In particular, we taint
each byte of the environment query’s return and propagate the tainted labels by each
instruction. When we encounter an instruction without tainted operation, we continue
with concrete execution. Otherwise, when we encounter an instruction with the tainted
operands, we accordingly update the execution context in all alternative environments.
We continue such propagation until we reach the end of a basic block. For the branch
instruction, we also determine whether it could be affected by the tainted bytes or not
(whether CFlag has been tainted or not). If it is an environment-sensitive branch, we
continue the branch selection and environment update. If not, speculative execution
starts a new pre-fetch operation to continue analyzing a new code block.

The advantage of using taint analysis is to efficiently assist the analysis in three ways:
(1) Our speculative execution is only conducted on the instructions whose operands
have been tainted. It allows us to skip (majority) untainted instruction for speculative
execution to save analysis effort. (2) Tainted propagation can help us to determine the
environment-sensitive branches. Our environment prediction/selection is based on the
correct identification of these sensitive branches. (3) Tracking the status of the tainted
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label helps us to maintain parallel environment spaces and delete/merge untracked
environments.
Heuristics for Branch Selection. Next, we present how we evaluate the branches and
determine which branch is more possible in the targeted environment. In GOLDEN-
EYE, we apply three heuristics to determine what is a possible branch in the targeted
environment:

– If a branch contains a function call that calls some exit or sleep functions, such as
ExitProcess, ExitThread, and sleep, it means this branch may terminate
the program’s execution. We treat another branch as the possible targeted branch.

– If a branch contains function calls that create a new process or thread, such as
CreateProcess and CreateThread, or start network communication, such
as socket and connect, we treat this branch as the possible targeted branch.
Similar function calls could be some representative malicious calls, such as func-
tions for process injection, auto-booting, and kernel hijacking [45].

– If a branch directly interacts with the environment, we treat this branch as the pos-
sible targeted branch. For example, if malware creates a file before the branch, we
treat the branch that directly operates on the created file as the targeted branch. Es-
sentially, if one branch contains instructions intensively operating on tainted data,
we consider it as the targeted branch.

After examining these three heuristics, if we still cannot decide the possible targeted
branch in a given time window or we find some conflicts among different heuristics,
inspired by the multi-path exploration work [37], we will save the snapshot at the branch
point and conduct the concrete execution for both branches. While this may lead to more
overhead (as in [37]), our experimental result shows that such cases are very rare (less
than 5% cases require rolling back).
Determining Targeted Branch. Our scheme of branch evaluation is to foresee k (e.g.,
k = 50) instructions and find whether any of them contains code of our interest. The
foreseeing operation is conducted by statically disassemble the code in the blocks after
the addresses of two branches. It is gradually processed until we have collected enough
evidence for predicting the branch.

In particular, we start with disassembling one code block at a time. We also need
to disassemble all the possible branches after each code block. Then we scan each
instruction to check whether it (1) has a CALL instruction or (2) operates on some
tainted data.

For the first case, we need to examine the destination address of CALL. Beforehand,
we need to maintain two API address lists: the first records the address of possible ma-
licious functions such as CreateProcess and socket, and the second records the
dormant/termination functions such as sleep and ExitProcess. Thus, if CALL’s
destination address belongs to either of the lists, we set the corresponding preference to
the explored branch.

For the second case, we examine each instruction along two alternative paths to
see whether any instruction operates on the tainted data or not. We achieve that by
examining the source operands of each instruction. If the source operand is tainted
before, we consider the instruction operates on tainted data. Then we deduce the path
that contains more instructions using tainted data.
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If we cannot make a decision after we examine k instructions, we apply enforced
execution [46] to explore both branches. In this case, we need an extra round of analysis
for each branch (which is very rare in practice, as shown in our evaluation).

In Figure 3 Step C, we illustrate our strategy by evaluating two branches after the JZ
instruction. As shown in the left branch, the execution may direct to leave and retn
while the right branch exhibits possible malicious logic, such as CreateThread.
Then, we choose the right branch and identify the alternative context as our preferred
execution context.
Environment Update. The result of target branch prediction is to decide whether to re-
main in the current running environment or to switch to another alternative environment.
If the environment switching is needed, there are three basic environment switching op-
erations: (1) Creation, (2) Removal, (3) Substitution.

The key requirement of our design is to update the environment online. Hence, our
environment update step is performed directly after the speculative execution engine
has committed its execution context.

Creating an element is a common case for an environment update. Especially when
malware tries to query the existence of certain system object, we would thus create such
an object to ensure that the following malware operation on this object will succeed. To
this end, we create a dummy object in the system, such as creating a blank file with
certain file name or creating a new registry entry. Accordingly, deleting the element is
the opposite operation and we can simply achieve that by deleting the corresponding
existing system object. While the dummy objects may not always work because fun-
damentally we may not have the exact same knowledge as malware and its targeted
environment to fill the actual content, this scheme works quite well in our evaluation.
And we leave a full discussion of GOLDENEYE limitations in Section 7.

The substitution operation usually occurs when malware requires different system
configuration from the current running environment. A main approach to find out the
correct environment setting is through the result of the speculative execution. Since the
speculative execution tells us the condition to ensure the selected branch, we can con-
cretely set up the value to satisfy this requirement. For example, we can modify some
registry entries to modify certain software version. As a more generic solution, we de-
sign an API manipulation scheme. When a substitution occurs, we hook the previously
captured APIs or instructions, and return a manipulated value to malware for every
query.

The environment update for our working example is illustrated in Figure 3 Step D.
The first step is to update the base execution context as the selected context. In the
example, we first update the ESI and ZF register. Secondly, since EAX is the object
handle of the mutex object, we need to create the mutex for current context and bind
EAX to the mutex handle. In our implementation, we do not concretely create the
mutex. Instead, we record the handle value and when any system call operates on the
handle, we enforce the SUCCESS to emulate the existence of the object.
Handling Space Explosion. As one notable problem for parallel space maintenance
in the speculative execution engine, explosion of parallel spaces could dramatically in-
crease the overhead of GOLDENEYE, especially when the combination of multiple en-
vironment elements happens (Cartesian Effect). We solve the problem by periodically
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pruning the parallel spaces. More specially, we enforce the space adjustment when cur-
rent memory occupation exceeds some predefined threshold, ρh. During the analysis,
we associate a timestamp T with each environment element. The time stamp denotes
the last instruction that accesses the corresponding taint label of the element. When the
current memory usage overflows ρh, the speculative execution engine fetches the en-
vironment element with the oldest time stamp. Then, the update operation merges all
the parallel spaces which have different values for the pruned elements. This process
is recursively performed till the current memory capacity is below a predefined lower
bound, ρl. In practice, among all of our test cases, the average number of concurrent
parallel spaces is below 200. It means that, with minor memory overhead (below 500B)
for each space, the space pruning rarely occurs in the practical analysis task.

5 Distributed Deployment of GOLDENEYE

While the above scheme works very well in practice (as shown in our experiment),
there are still some concerns: (1) To prevent rolling-back, we adopt branch evaluation
to select the most likely malicious branch, which might not always be accurate. (2) Our
environment update step is conducted online. Thus, some analysis is possibly conducted
on a set of inconsistent environments. (3) The possible environment explosion may
overburden one analysis instance.

To further improve the accuracy and efficiency, we propose a distributed deployment
scheme of GOLDENEYE. The scheme is essentially taking advantage of parallel en-
vironments created by the speculative engine and distributing them to a set of worker
machines for further analysis.

In detail, when the speculative engine detects an environment-sensitive branch, it
can choose to push a request R into a shared task queue and allow an idle worker
(virtual) machine to handle the further exploration. The worker machine monitoring
(WMM) tool pulls each request and updates the environment settings before analyzing
a malware sample. After the booting of a malware sample, the WMM tool will monitor
the execution status and enable the speculative execution if some unobserved malicious
logic has occurred.

There are two tasks for each WMM: (1) Updating analysis environment, which is a
set of operations to update its environment before analaysis, such as create/delete en-
vironment element or modify current environment value. After that, we create one cus-
tomized environment for each analysis task. (2) Starting speculative execution, which is
to conduct a series of EIP and basic context registers comparison before restarting the
speculative execution. By skipping the instructions which have been analyzed before,
we can focus on exploring new malicious behaviors.

The merits of our design are twofold. First, the analysis environment is dynamically
changed and the setting is dynamically generated based on the malware execution and
analysis progress. It is essentially different from the parallel/distributed deployment of
existing analysis techniques [36,23] because their settings are statically preconfigured.
Second, it saves a huge amount of system resources including memory and storage.
Snapshot-based schemes such as [33,37] are mainly used as sequential execution. If
one attempts to parallelize its deployment, a great deal of resources need to be used to
store/transmit/restore the snapshots. In our design, each worker machine just maintains
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one initial snapshot locally and consumes little memory to transmit the environment
request. In this sense, our scheme achieves a better balance between effectiveness and
efficiency.

6 Evaluation

We have implemented GOLDENEYE, which consists of over 4,000 lines mixed C and
python code. Our monitoring tool, taint tracking tool, and speculative execution en-
gine are implemented based on the open-source binary instrumentation framework,
DynamoRIO [5] by first translating the X86 instructions into an intermediate language
BIL [26], then performing data and control flow analysis afterwards. We write our se-
mantic rule module as an independent C library, which receives the output of the mon-
itoring tool and parses each instruction. Our environment selector is based on an open
source disassembly library, distorm[3]. We also implement a lightweight emulated ex-
ecution engine inside the module to perform branch evaluation. In addition, our envi-
ronment update module is implemented as an API hook tool based on DynamoRIO and
a set of dummy object creation/deletion scripts, which can be directly invoked by our
environment update module. In this section, we present our evaluation results.

6.1 Experiment Dataset

Our test dataset consists of 1, 439 malware samples, collected from multiple online
malware repositories such as Anubis [1] and other sources [10]. This dataset is ran-
domly collected without any pre-selection involved. We analyze these 1, 439 malware
using a free virus classification tool [20] and classify them into 417 distinct malware
families. Analyzing the classification result, we further categorize these 417 malware
families into four classes: Trojan, Worm, Spyware/Adware, and Downloader. The statis-
tics about our dataset is listed in Table 2. Meanwhile, we also collect a small dataset
that includes some well-known malware samples which are environment-targeted, such
as Conficker [43], Duqu [4], Sality [12], and Zeus [21]. For each malware family, we
collected several variant samples.

Table 2. Malware’s Classification from VirusTotal

Category # Malware Samples Percent Distinct Families

Trojan 627 43.57% 263
Adware/Spyware 284 19.73% 59

Worm/Virus 185 12.85% 27
Downloader 343 23.83% 68

Total 1, 439 100% 417

6.2 Experiment Setup

In our experiment setting, we manually labeled 112 system/library APIs with 122 output
parameters, and hooked them in our analysis. All our experiments are conducted in a
machine with Intel Core Duo 2.53GHz processor and 4GB memory.
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6.3 Experiments on General Malware Corpus

We conduct the following experiments to evaluate GOLDENEYE on the larger malware
dataset with 1, 439 samples.

Measurement of Effectiveness. First, we study the effectiveness of our approach in
terms of the code coverage in analysis. To measure that, we first collect a baseline trace
by naturally running each malware sample in our virtual environment for 5 minutes.
Then we apply GOLDENEYE to collect a new trace in the adaptively-changing envi-
ronment(s). In our evaluation, we measure the relative increase in the number of native
system calls between the base run and analysis run. The distribution of increased APIs
among all malware samples is shown in Figure 4. As seen in Figure 4, over 500 malware
samples exhibit over 50% more APIs in the new run. It shows that our system can ex-
pose more malware’s environment-sensitive behaviors. From the result, we also find that
over 10% Adware/Spyware exhibits 100% more behaviors. It may imply that Spyware
is more sensitive to the running environment compared with other malware categories.
This is reasonable because Spyware normally exhibits its malicious behavior after it col-
lects enough information about the infected user. This further proves the usefulness of
our system. Examining the quantitative results of other categories, it is evident that our
system can efficiently discover malware’s environment-sensitive functionalities.
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Fig. 5. Analysis Time Comparison

Comparison with Related Work. The last set of our experiment is to compare the ef-
fectiveness and efficiency of GOLDENEYE with other approaches. To this end, we first
implemented the approach presented in the related work [37] (labeled as Related Work
I), which needs to explore multiple possible paths of environment-sensitive branches.
Secondly, we configure four virtual environments according to the descriptions in re-
lated work [36] (labeled as Related Work II). We test malware samples in all four envi-
ronments and choose the best one as the result. Then we randomly select 100 malware
samples from each category of malware and collect the traces generated by GOLDEN-
EYE, Related Work I, and II, respectively. When collecting each execution path trace,
we terminate the analysis if no further system calls are observed for 30 seconds (e.g.,
sample terminates or sleeps), or if it reaches maximum analysis time which we set as
300 seconds (5 minutes) for GOLDENEYE and Related Work II. For Related Work I,
since it needs to explore all possible paths, we have to let it run for a much longer
time. However, it could possibly take forever. Hence, in this experiment we limit its
maximum analysis time to 12 hours.
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Table 3. Performance comparison with two representative existing approaches

Approach Malware Percent of Increased APIs # of Rolling Back Memory/Disk Usage
<10% 10%-50% 50%-100% >100% <50 50-500 >500 <1MB 1MB-5MB >5MB

GOLDENEYE Trojan 31% 36% 27% 6% 74% 26% 0% 67% 33% 0%
Adware/Spyware 29% 34% 28% 9% 86% 14% 0% 56% 44% 0%

Worm 39% 47% 11% 3% 84% 16% 0% 24% 76% 0%
Downloader 43% 29% 24% 4% 69% 31% 0% 32% 68% 0%

Related Work I[37] Trojan 21% 34% 29% 16% 0% 2% 98% 0% 0% 100%
Adware/Spyware 16% 32% 33% 19% 0% 1% 99% 0% 0% 100%

Worm 27% 28% 37% 8% 0% 0% 100% 0% 0% 100%
Downloader 19% 41% 23% 17% 0% 2% 98% 0% 0% 100%

Related Work II[36] Trojan 94% 5% 1% 0% - - - - - -
Adware/Spyware 99% 0% 1% 0% - - - - - -

Worm 96% 4% 0% 0% - - - - - -
Downloader 98% 2% 0% 0% - - - - - -

The result is presented in Table 3. We use the following metrics for the comparison:
– Increased APIs. For each of three approaches, we pick the longest trace during

any single run to compare with the normal run. For each approach, we record the
percentage of malware samples whose increased APIs belonging to 0− 10%, 10−
50%, 50−100%, or 100% and above. From the result, we can see that Related Work
I performs the best among all approaches, which is obvious because this approach
blindly explores all possible paths and we select the path with most APIs in the
comparison. Meanwhile, in our test, pre-configured environment (Related Work II)
can seldom expose malware’s hidden behaviors; on average it only increase 5%
more APIs. Thus, even though pre-configured environment has no extra overhead
for the analysis, it cannot effectively analyze targeted malware. It further confirms
that it is impractical to predict malware’s targeted environment beforehand. Our
approach clearly performs significantly better than Related Work II, and very close
to Related Work I.

– Number of Rolling Backs, which is a key factor to slow down analysis. For explor-
ing both branches, Related Work I has to roll back the execution. In theory, for each
environment-sensitive branch, it requires one roll back operation. From the result,
we can see that most of the samples have to roll back over 500 times to finish the
analysis. However, our GOLDENEYE can efficiently control the number of rolling
back because it only occurs when branch prediction cannot determine the right path
to select. The largest number of rolling back in our test is 126 and median number
is 39. It means that we can save more than 90% overhead when compared with
multi-path exploration.

– Memory Usage. According to the description in [37], average snapshot for rolling
back consumes around 3.5MB memory. Considering their approach needs to re-
cursively maintain the context for branches and sub-branches, the memory/disk
overhead should be over 5MB. However, the highest memory/disk usage of GOLD-
ENEYE is only around 1-2MB, which is much less than half of the memory over-
head in Related Work I. Hence, for memory usage, our system also outperforms the
compared solution.

Finally, we also compare the total time to complete analysis for GOLDENEYE and
Related Work I. For each malware, both GOLDENEYE and Related Work I may generate
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multiple traces and we sum up all the time as the total time to complete the analysis of
the malware. The result is summarized in Figure 5. As we can see, for GOLDENEYE,
the average analysis time per malware is around 44 minutes, while the average time
for Related Work I is 394 minutes, which is around 9 times slower. Furthermore, the
worst case for GOLDENEYE never exceeds 175 minutes while there are 12% of tested
malware takes longer than 12 hours for Related Work I (note that if we do not set the 12
hour limit, the average for Related Work I will be much longer). This clearly indicates
that GOLDENEYE is much more efficient.

In summary, it is evident that our approach has better performance regarding the
trade-off of effectiveness and efficiency. We believe the main reason that other solu-
tions have a higher overhead or lower effectiveness is because they are not designed to
analyze malware’s targeted environment. In other words, our approach is more proac-
tive and dynamic to achieve the goal of targeted malware analysis.

6.4 Experiment on Known Environment-Targeted Malware Dataset

In this experiment, we aim to verify that our system can extract known targeted environ-
ments for malware samples. We began our experiment from collecting the ground truth
of some malware set. We look up multiple online resources, such as [43], for the doc-
umentation about our collected malware samples. In particular, we first verified that all
of them are environment-targeted malware, which means they all need to check some
environments and then expose their real malicious intention. Secondly, we manually
examine their analysis report and summarize their interested environment elements. We
group them into five categories: System Information, Network Status, Hardware, Cus-
tomized Objects, and Library/Process. For instance, if one sample’s malicious logic de-
pends on some system-wide mutex, we consider it as sensitive to Customized Objects.
We record our manual findings about our test dataset in Table 4(a).

Table 4. Test on Targeted Malware

System Network Hardware Customized
Object

Library
Process

Conficker[43]
√ √ √ √

Zeus[21]
√ √ √ √ √

Sality[12]
√ √

Bifrost[2]
√ √ √ √

iBank[7]
√ √ √ √ √

nuclearRAT[9]
√ √ √ √ √

Duqu[4]
√ √ √ √ √

Nitro[16]
√ √ √

Qakbot[11]
√ √ √

System Network Hardware Customized
Object

Library
Process

Conficker
√ √ ◦ √

Zeus
√ √ √ √ ◦

Sality
√ √

Bifrost
√ √ √ ◦

iBank
√ √ × × √

nuclearRAT
√ × √ ◦ ◦

Duqu ◦ √ √ √ √
Nitro ◦ √ ◦
Qakbot ◦ √ √

(a) Ground Truth (b) GOLDENEYE Environment Extraction Result√
: Correctly Extracted, ◦: Similar Element

×: Not Extracted

There are several caveats in the test. First, if the documentation does not clearly men-
tion the sample’s MD5 or the sample with the specific MD5 cannot be found online,
it may bring some inaccurate measurement for the result. One example is the Trojan
iBank [7] case. We analyze some of its variants and they may not exhibit the same be-
haviors as the documented states. Second, we conclude the extraction result in three
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types: (a) Correctly Extracted means GOLDENEYE can extract the exact same environ-
ment element. (b) Similar Element means GOLDENEYE finds some element that acts
the similar functionality as mentioned in the document, but such element may have
different name as the document described. We suspect it is probably because the ele-
ment name is dynamically generated based on different information. For this type, we
consider GOLDENEYE successfully extracts the environment information, because the
correct element name could be derived through further manual examination or auto-
matic symbolic execution [22]. (c) Not Extracted means GOLDENEYE fails to extract
the environment element.

From the result, we can see that our GOLDENEYE can correctly detect most of the
targeted environment elements (41 out of 44) within the 5-min analysis time limit. How-
ever, our system fails to extract 3 elements out of 44 cases. After we manually unpack
the code and check the reason of the failures, we find there are two main reasons: (1)
Some hardware query functions are not in our labeled API list (e.g., in the case of
iBank). This could be solved if we improve our labeled API list. (2) Some element
check only occurs after the malware successfully interacts with a remote (C&C) server
(e.g., in the case of nuclearRAT). However, these servers may not be alive during our
test thus we fail to observe such checks.

6.5 Case Studies

Next, we study some cases in our analysis. We list several environment targets which
may trigger malware’s activities.
Targeted Location. For Conficker A, GOLDENEYE successful captures the system call
GetKeyboardLayout and automatically extracts malware’s intention of not infect-
ing the system with Ukrainian keyboard [43]. For some variants of Bifrost[2], GOLDEN-
EYE finds they query the system language to check whether the running OS is Chinese
system or not, which is their targeted victim environment. For these cases, GOLDEN-
EYE can intelligently change the query result of APIs, such as GetKeyboardLayout,
to make malware believe they are running in their targeted machine/location.
User Credentials. We found several malware samples target at user credentials to
conduct their malicious activities. For example, we found that Neloweg[19] will ac-
cess registry at Microsoft/Internet Account Manager/Accounts key,
which stores users’ outlook credentials. Similar examples also include Koobface[8],
which targets at user’s facebook credentials. GOLDENEYE successfully captures these
malicious intentions by providing fake credentials/file/registry to malware and allowing
the malware to continue execution. While the malware’s further execution may fail be-
cause GOLDENEYE may not provide the exact correct content of the credential, GOLD-
ENEYE can still provide enough targeted environment information to malware analysts.
System Invariants. In our test, GOLDENEYE extracted one mutex from Sality [12]
whose name is uxJLpe1m. In the report, we found that the existence of such mutex
may disable Sality’s execution. This turns out to be some common logic for a set of
malware to prevent multiple infections. Similar logic has also been found in Zeus [21]
and Conficker [43]. For these cases, even though the clean environment, which does not
contain the mutex, is the ideal environment for analysis, we can still see that GOLDEN-
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EYE’s extracted information is useful, potentially for malware prevention, as discussed
in [48].
Displayed Windows and Installed Library. iBank [7] Trojan is one example that is
sensitive to certain displayed windows and installed library. In particular, GOLDENEYE

detects that IBank tries to find the window " AVP.Root", which belongs to Kasperky
software. Meanwhile, it also detects that IBank accesses avipc.dll in the home path
of Avira Anti-virus software. Our GOLDENEYE further detects if such library or win-
dow exists, the malware exhibits more behaviors by calling the function AvIpcCall
in the library to kill the AV-tools. IBank samples tell us that if our analysis is performed
in an environment without AV tools installed, we will miss these anti-AV behaviors.
Hence, as a side effect, GOLDENEYE could be a good automatic tools for analysts to
detect malware’s anti-AV behaviors.
Others. Last but not least, we always assume exposing more malicious behaviors is bet-
ter. However, detecting some path with less malicious behaviors may be also interesting.
One example we find in our dataset is Qakbot [11]. The malware exhibits some behav-
iors related to some registry entry. This malware tries to write qbothome qbotinj.
exe into a common start up registry key CurrentVersion\Run. The further logic
for Qakbot needs to check the existence of such registry entry and if it fails, malware
goes to sleep routine without directly exhibiting some malicious behaviors. This case
is interesting for us because we find that by changing environment setting, we could
even observe some hidden dormant functionality. Discovering such hidden dormant
functionality may help defenders to make some schemes for slowing down the fast-
spreading of certain malware.

6.6 Experiment on Distributed Deployment of GOLDENEYE

Finally, we evaluate the performance overhead of our distributed deployment of GOLD-
ENEYE. In this experiment, we measure three cases:

– Case I: Generate a parallel task for all environment-sensitive branches.
– Case II: Generate a parallel task only when the branch evaluation cannot decide a

branch after measuring the branch selection heuristics.
– Case III: Do not generate a parallel task and do not conduct rolling back, i.e., using

a single machine instead of distributed deployment (for undetermined paths, we
select the default environment as desired).

We use additional four worker (virtual) machines for this measurement (Case I and
II). Each virtual machine installs original unpatched Windows XP SP1 operating sys-
tem. We randomly select 100 malware samples and run each sample for at most 300
seconds in each configuration. We compare performance with the baseline case, which
is running each malware in the default environment.

The result is summarized in Figure 6. As seen in the figure, we study the effectiveness
by measuring the increased ratio of native APIs. As expected, Case I and II expose
over 30% more behaviors than Case III. However, the standard deviation of Case I is
higher than Case II. It shows that, with the same analysis time, the first approach may
not outperform the second case because exploring all environment-sensitive paths is
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not efficient enough. We also measure the utilization ratio of the analysis machine(s),
which is defined as the percentage of time for an analysis machine to run the analysis
task within the given 300 seconds. The average utilization ratio from VMs in Case I
is over 90%, which is much higher than Case II. In short, we conclude that Case II
configuration of GOLDENEYE, i.e., combining the branch selection scheme with the
distributed deployment, seems to achieve the best balance between effectiveness and
resource consumption among the three cases.

7 Discussion

Exposing malicious behaviors of environment-targeted malware is a challenging re-
search task for the whole malware defense community. As a new step towards system-
atic environment-targeted malware analysis, our solution is not perfect and not targeting
to completely solve the problem. We now discuss limitations/evasions below.
Correctness of Path Selection/Prediction. One limitation of our approach is that the
correctness of our branch evaluation depends on whether malware’s behavior fits our
heuristics. One solution for this problem is to explore all possible branches by multi-
round snapshot-and-recover analysis, as in [37]. However, this scheme may cause much
higher overhead because of the path explosion problem. Hence, to trade off the per-
formance, we choose to apply snapshot-and-recover only when we cannot apply the
heuristics. Other dynamic analysis approaches such as previous work [39,41] can also
be applied to make the analysis more efficient.
Possible Problems of Taint Analysis. In our scheme, we apply taint analysis at the
stages of preprocessing and speculative execution. For preprocessing, taint analysis can
help us filter out the malware which are not sensitive to the environment. For specula-
tive execution, taint analysis helps to save execution overhead from multiple aspects.
However, as discussed in related work [22], taint analysis could have limitations of
over-tainting and under-tainting. Even though it may cause the problem of imprecise
results, for our cases, the limitation can seldom affect our analysis. This is because: (1)
Even though over-tainting costs more overhead for speculative execution, our scheme
is still more lightweight than existing approaches. (2) The under-tainting problem may
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mislead our branch prediction. However, by using stricter branch selection criteria, we
could avoid such wrong branch. Meanwhile, conducting more roll-backing operations
on some critical branches can also improve the overall accuracy. (3) Our analysis can be
independently conducted even without taint analysis. In this case, our speculative execu-
tion engine has to be executed at all branches to truncate undesired environments. Even
though it may cause more overhead, we believe it still outperforms other approaches
because it prevents unnecessary rolling-back.
Evasion through Misleading the Analysis. The implementation GOLDENEYE is built
upon on binary instrumentation, and because of the similar limitation as VMM-based
approaches[28], it is possible for malware to detect the existence of GOLDENEYE.

By knowing our heuristics for branch selection, the attacker could mislead our analy-
sis through injecting some certain APIs in the branches. However, some heuristics (e.g.,
environment interaction, process termination) are relatively hard to be evaded because
otherwise they will be against the malware’s execution intention. We note that even in
the worst case (we have to rewind to explore another branch, similar to existing multi-
path solutions), our solution is still better than a blind multi-path exploration scheme.

Another way to evade the analysis is to query environment information and process
it at a very later time. To handle this issue, we could increase the capacity of parallel
spaces and track the tainted environment elements throughout the whole analysis by
paying a little more analysis overhead.

Malware can insert some dormant functions such as sleep because GOLDENEYE

may not prefer to choose branches in which malware could enter a dormant status.
To handle such cases, GOLDENEYE can examine more code blocks in the foreseeing
operation in order to make a more accurate branch selection or could simply generate a
parallel task for another worker machine.

Last but not least, current implementation of GOLDENEYE does not handle implicit
control flow, a common issue to many dynamic analysis systems. Hence, malware au-
thors may evade the analysis by including implicit control flow. However, this issue
could be partially solved by conducting symbolic execution on indirect branches. We
leave it as our future work.
Environment-Uniqueness Malware. A recent study [27] discussed a novel anti-analysis
technique, which applies environment primitives as the decryption key for the malware
binary. In the real world, flashback [18] malware has exhibited similar interesting at-
tributes. To the best of our knowledge, there is no research or tool can automatically
analyze such kind of malware. Even though our approach cannot provide correct analy-
sis environment for the captured sample, we believe our analysis can still discover more
information than traditional automatic analysis techniques. For example, our approach
can detect malware’s query for system environment and deduce what are likely environ-
ment elements that compose the decryption key. We leave the analysis of such malware
to our future work.

8 Conclusion

In this paper, we have presented a new dynamic analysis system, GOLDENEYE, to fa-
cilitate targeted malware analysis by efficiently and effectively exposing its targeted
environments. To achieve our goal, we design several new dynamic analysis techniques
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based on speculative execution, such as parallel environment spaces construction and
branch evaluation, to solve the technical challenges faced by targeted malware analysis.
To further improve the accuracy and efficiency, we deploy GOLDENEYE onto a dis-
tributed computing model. In the evaluation, we show that our scheme can work on a
large real-world malware corpus and achieve a better performance trade-off compared
with existing approaches. While not perfect, we believe this is a right step towards an
interesting new topic, i.e., targeted threat analysis and defense, which needs further
research from the community.
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Abstract. Security analytics is a catchall term for vulnerability assessment and
intrusion detection leveraging security logs from a wide array of Security Analyt-
ics Sources (SASs), which include firewalls, VPNs, and endpoint instrumentation.
Today, nearly all security analytics systems suffer from a lack of even basic data
protections. An adversary can eavesdrop on SAS outputs and advanced malware
can undetectably suppress or tamper with SAS messages to conceal attacks.

We introduce PillarBox, a tool that enforces integrity for SAS data even when
such data is buffered on a compromised host within an adversarially controlled
network. Additionally, PillarBox (optionally) offers stealth, concealing SAS data
and potentially even alerting rules on a compromised host. Using data from a
large enterprise and on-host performance measurements, we show experimentally
that PillarBox has minimal overhead and is practical for real-world systems.

Keywords: Security analytics, forward-secure logging, log integrity and secrecy,
self-protecting alerting, secure chain of custody.

1 Introduction

Big data security analytics is a popular term for the growing practice of organizations to
gather and analyze massive amounts of security data to detect systemic vulnerabilities
and intrusions, both in real-time and retrospectively. 44% of enterprise organizations
today identify their security operations as including big data security analytics [17].
To obtain data for such systems, organizations instrument a variety of hosts with a
range of Security Analytics Sources (SASs) (pronounced “sass”). By SAS here, we
mean generically a system that generates messages or alerts and transmits them to a
trusted server for analysis and action.

On a host, for instance, a SAS can be a Host-based Intrusion Detection System
(HIDS), an anti-virus engine, any software facility that writes to syslog, or generally
any eventing interface that reports events to a remote service, e.g., a Security and Infor-
mation Event Monitoring (SIEM) system. Further afield, a SAS could be a dedicated
Network Intrusion Detection System, or, in an embedded device, a feature that reports
physical tampering. A SAS could also be the reporting facility in a firewall or proxy.
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SASs play a central role in broad IT defense strategies based on security analytics,
furnishing the data to detect systemic vulnerabilities and intrusions. But a big data se-
curity analytics system is only as good as the SAS data it relies on. Worryingly, current-
generation SASs lack two key protections against a local attacker.

First, an attacker can undetectably suppress or tamper with SAS messages. Today’s
approach to securing SAS messages is to transmit them immediately to a trusted server.
By disrupting such transmissions, an attacker can create false alarms or prevent real
alarms from being received. Even a SAS with a secure host-to-server channel (such
as SSL/TLS) is vulnerable: An attacker can undetectably blackhole/suppress transmis-
sions until it fully compromises the host, and then break off SAS communications. (We
demonstrate the feasibility of such an attack in Section 5.) And logged or buffered SAS
messages are generally vulnerable to deletion or modification after host compromise.

Consider, for instance, a rootkit Trojan that exploits a host vulnerability to achieve
privilege escalation on an enterprise host. A HIDS or anti-virus engine might immedi-
ately detect the suspicious privilege escalation and log an alert, “Privilege Escalation.”
An attacker can block transmission of this message and, once installed, the rootkit can
modify or remove critical logs stored locally (as many rootkits do today, e.g., ZeroAc-
cess, Infostealer.Shiz, Android.Bmaster).1 Because any buffered alert can be deleted,
and any transmission easily blocked, an enterprise server receiving the host’s logs will
fail to observe the alert and detect the rootkit.

A second problem with today’s SASs is that an attacker can discover intelligence
about their configuration and outputs. By observing host emissions on a network prior
to compromise, an attacker can determine if and when a SAS is transmitting alerts and
potentially infer alert-generation rules. After host compromise, an attacker can observe
host instrumentation, e.g., HIDS rule sets, logs, buffered alerts, etc., to determine the
likelihood that its activities have been observed and learn how to evade future detection.

For enterprises facing sophisticated adversaries, e.g., Advanced Persistent Threats
(APTs) (e.g., Aurora, Stuxnet and Duqu) such shortcomings are critical. Threat-vector
intelligence is widely known to play a key role in defense of such attacks, and its leakage
to cause serious setbacks [15].

Thus an attacker’s ability to suppress alerts undetectably and obtain leaked alert in-
telligence in today’s SAS systems is a fundamental vulnerability in the host-to-server
chain of custody and a considerable flaw in big data security analytics architectures.

PillarBox. As a solution to these challenges, we introduce a tool called PillarBox.2

PillarBox securely relays alerts from any SAS to a trusted analytics server. It creates a
secure host-to-server chain of custody with two key properties:

1. Integrity: PillarBox protects a host’s SAS messages against attacker tampering
or suppression. It guarantees that the server receives all messages generated prior
to host compromise (or detects a malicious system failure). PillarBox also aims to
secure real-time alert messages during host compromise faster than the attacker can

1 Many rootkits remove or obfuscate logs by modifying the binary of the logging facility itself.
2 A pillar box is a Royal Mail (U.K.) mailbox in the form of a red metal pillar. It provides a

secure and stealthy chain of custody, with integrity (only postal workers can open it), message
hiding (it’s opaque), and delivery assurance (if you trust the Royal Mail).
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intercept them. After host compromise, PillarBox protects already generated SAS
messages, even if an attacker can suppress new ones.

2. Stealth: Optionally, PillarBox conceals when and whether a SAS has generated
alerts, helping prevent leakage of intelligence about SAS instrumentation. It does
so against an attacker that sniffs network traffic before compromise and learns all
host state after compromise. Stealth can also involve making SAS alert-generation
rules vanish (be erased) during compromise.

Counterintuitively, PillarBox buffers SAS messages on the (vulnerable) host. As we
show, this strategy is better than pushing alerts instantly to the server for safekeeping:
It is equally fast, more robust to message suppression, and important for stealth.

Challenges. While PillarBox is useful for any type of SAS, the most stringent case is
that of self-protection, which means that the SAS messages to be protected regard the
very host producing the messages, potentially while the host is being compromised (as
with, e.g., a HIDS). Thus, integrity has two facets. First, a host’s buffered alerts must
receive ongoing integrity protection even after host compromise. Second, alerts must
be secured quickly—before an attacker can suppress or tamper with them as it com-
promises the host. We show experimentally that even in the most challenging case of
self-protection, PillarBox secures SAS alerts before a fast attacker can suppress them—
and even if the attacker has full knowledge of and explicitly targets PillarBox.

Stealth (optional in PillarBox) requires that the host’s internal data structures be in-
variant to SAS message generation, so that they reveal no information to an attacker
after host compromise. Message buffers must therefore be of fixed size, making the
threat of overwriting by an attacker an important technical challenge. Additionally, to
protect against an adversary that controls the network, stealth requires that PillarBox
transmissions resist traffic analysis, e.g., do not reveal message logging times. A final
challenge in achieving stealth is the fact that an attacker that compromises a host learns
the host’s current PillarBox encryption keys.

Contributions. In this paper we highlight and demonstrate the transmission vulnera-
bility in security analytics systems and propose a solution, which we call PillarBox. In
designing PillarBox, we also specify the properties of integrity and stealth, which are
general and fundamental to the architecture of any security analytics system. We show
how to combine standard forward-secure logging and activity-concealment techniques
to simultaneously achieve both properties in the self-protection SAS mode of operation.

We present an architecture for PillarBox and a prototype end-to-end integration of
the tool with syslog, a common SAS. We show experimentally that PillarBox can se-
cure alerts in the challenging self-protection case before an attacker can suppress them
by killing PillarBox processes. Since the majority of host compromises involve priv-
ilege escalation, we also show that for a common attack (the “Full-Nelson” privilege
escalation attack), an alerter can be configured to detect the attack and the resulting
SAS message can be secured before the attacker can shut down PillarBox. Addition-
ally, we use alert-generation data from a large enterprise to confirm that PillarBox can
be parameterized practically, with low performance overhead on hosts.

We emphasize that we do not address the design of SASs in this paper. How SAS
messages are generated and the content of messages are outside the scope of this paper.
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PillarBox is a practical, general tool to harden the host-to-server chain of custody for
any SAS, providing a secure foundation for security analytics systems.

Organization. Section 2 introduces PillarBox’s threat model and design principles,
while Section 3 describes its architecture and integration with a SAS. Section 4 gives
technical details on buffer construction and supporting protocols. Section 5 demon-
strates a simple attack on existing SAS systems and presents an experimental evalua-
tion of PillarBox. We review related work in Section 6 and conclude in Section 7. More
technical details, which have been omitted from this version due to space constraints,
can be found in the full version of this paper [4].

2 Modeling and Design Principles

We first describe the threat model within which PillarBox operates. We then explain
how host-side buffering serves to secure SAS alerts within this model and follow with
details on the technical approaches in PillarBox to achieving integrity and stealth.

2.1 Threat Model

Our threat model considers three entities, the SAS or the host, the attacker, and the
server, which itself is a trusted entity, not vulnerable to attack. We model the attacker to
be the strongest possible adversary, one attacking a host in the self-protecting setting.
(Achieving security against this strong adversary ensures security against weaker ones,
e.g., those attacking only the network or a firewall whose SAS only reports on network
events.) Recall that in the self-protecting case, a SAS reports alerts about the host itself:
While the compromise is taking place, the SAS generates one or more alert messages
relevant to the ongoing attack and attempts to relay them to the server.

The adversary controls the network in the standard Dolev-Yao sense [6], i.e., the
attacker can intercept, modify, and delay messages at will. When its intrusion is com-
plete, the attacker achieves what we call a complete compromise of the host: It learns the
host’s complete state, including all memory contents—cryptographic keys, alert mes-
sages, etc.—and fully controls the host’s future behavior, including its SAS activity.

To violate integrity, the attacker’s goal is to compromise the host without: (1) any
unmodified alerts reaching the server and (2) the server learning of any modification
or suppression of alerts by the attacker. The SAS can only start generating meaning-
ful alerts, of course, once the intrusion is in progress. After the attacker has achieved
complete compromise, it can shut down the SAS or tamper with its outputs. So a SAS
produces valid and trustworthy alerts only after intrusion initiation but prior to complete
compromise. We call the intervening time interval the critical window of an attack, as
illustrated in Figure 1. This is the interval of time when intrusions are detectable and
alerts can be secured (e.g., buffered in PillarBox) before the attacker intercepts them.

Conceptually, and in our experiments, we assume that the attacker has full knowledge
of the workings of the SAS, including any mechanisms protecting alerts en route to the
server, e.g., PillarBox. It fully exploits this knowledge to suppress or modify alerts. The
attacker doesn’t, however, know host state, e.g., cryptographic keys, prior to complete
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Fig. 1. Event timeline of host compromise

compromise nor does it know the detection rules (behavioral signatures) used by the
SAS, i.e., the precise conditions leading to alert generation.

To violate stealth, the attacker tries to learn information about SAS rules and actions,
e.g., if the SAS has issued alerts during an attack, by making adaptive use of the network
and of post-compromise host state, e.g., PillarBox’s buffer. SAS detection rules can also
be used to infer behavior, but are outside the scope of PillarBox. Vanishing rules (rules
that are deleted if they ever trigger an alert) can be used to protect against adversarial
rule discovery in the SAS. By analogy with cryptographic privacy definitions, a concise
definition of stealth is possible: An attacker violates stealth if, for any SAS detection
rule, it can distinguish between PillarBox instantiations with and without the rule.

2.2 Secure Alert Relaying via Buffering

A key element in our design is the use of a host-side PillarBox buffer, for brevity called
the PBB, where alerts are secured. The objective is to secure alerts in the PBB during the
critical window, as shown in Figure 2. Once in the PBB, alert messages are protected
in two senses: They are both integrity-protected and “invisible” to the attacker, i.e.,
they support systemic stealth. (Informally, the PBB serves as a “lockbox.”) Also, as we
explain, either alerts reliably reach the server, or the server learns of a delivery failure.

Host Host Host 

Fig. 2. PillarBox across compromise phases: (A) The host has not yet been attacked. (B) The SAS
detects in-progress compromise and places an alert in PBB. (C) The host is under the attacker’s
full control, but PBB securely stores and transmits the alert.

We first explain why buffering is important to secure the SAS chain of custody in
PillarBox and then how we address the technical challenges it introduces.

Why Buffering Is Necessary. The approach of most SAS systems today, e.g., syslog
and HIDSs, is to push alerts to a remote server in real time, and thus secure them at the
server during the critical window. But there are many important cases, both adversarial
and benign, in which SAS messages cannot be pushed reliably, for two main reasons:

– Imperfect connectivity: Many host SAS systems lack continuous connectivity to the
server (e.g., laptops shuttling between an office and home have limited connection
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with corporate security servers but are open to infection in the home). Lightweight
embedded devices often cannot ensure or even verify delivery of transmitted mes-
sages (e.g., wireless sensor networks often experience transmission failures).

– Network attacks: An attacker can actively suppress on-the-fly SAS transmissions
by causing malicious network failures. It can selectively disrupt network traffic,
via, e.g., ARP stack smashing (e.g., see CVE-2007-1531 and CVE-2010-2979), or
flood target hosts to achieve denial-of-service (DoS) during a compromise, causing
message delay or suppression. The result is complete occlusion of server visibility
into the critical window—potentially appearing to be a benign network failure. (We
describe our own implementation of such an alert-suppression attack below.)

But even if reliable, immediate SAS message-pushing were generally feasible, it
would still have an undesirable effect:

– SAS intelligence leakage: If a host pushes alerts instantaneously, then its outbound
traffic reveals SAS activity to an attacker monitoring its output. An attacker can then
probe a host to learn SAS detection rules and/or determine after the fact whether its
intrusion into a host was detected. Note that encryption does not solve this problem:
Traffic analysis alone can reveal SAS rule-triggering. (As noted above, PillarBox
overcomes this problem via regular alert-buffer transmission.)

Thus, message buffering, as opposed to on-the-fly event-triggered transmission, is
of key importance in a SAS chain of custody and the cornerstone of PillarBox. Such
buffering, though, poses new security challenges. If an attacker completely compro-
mises a host, there is no way of course to prevent it from disabling a SAS or tampering
with its future outputs. But there is a separate problem after host compromise: Inad-
equately protected buffered SAS messages are vulnerable to modification/suppression
and intelligence leakage. We next elaborate on how PillarBox solves these problems.

Achieving Integrity. A main challenge in creating a secure chain of custody in PillarBox
is the need to secure alert messages after compromise, while they are still buffered and
exposed to an attacker. Log-scrubbing malware can attempt to modify buffered alerts
(e.g., replace the strong alert “Privilege Escalation” with the more benign “Port Scan
Observed”) or just purge alerts. Post-compromise integrity protection for buffered SAS
messages is thus crucial in PillarBox—but at first glance, this might seem unachievable.

Indeed, a digital signature or message authentication code (MAC) alone, as pro-
posed, e.g., for syslog [12], does not protect against tampering: After host compromise
an attacker learns the signing key and can forge messages. Message encryption simi-
larly does not protect messages against deletion, nor does tagging them with sequence
numbers, as an attacker with control of a host can forge its own sequence numbers.

Fortunately, post-compromise alert integrity is achievable using the well-known
cryptographic technique of forward-secure integrity protection. The main idea is to
generate new (signing) keys on the host after every alert generation and delete keys
immediately after use. This technique is commonly used for forward-secure logging
(e.g., [14, 19, 25, 26]),3 an application closely related to SAS protection. Similarly,

3 Such systems are designed mainly for forensic purposes rather than detection (e.g., to protect
against administrator tampering after the fact), thus they often “close” logs only periodically.
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PillarBox uses forward-secure pseudorandom number generation (FS-PRNG) to create
MAC keys. Each key is used to secure a single message and then deleted. An FS-PRNG
has the property that past keys cannot be inferred from a current key, preventing tam-
pering of messages that have already been secured. The server runs this FS-PRNG to
compute the (same) shared keys with the host, allowing it to detect tampering or erasure.

What is new in the use of forward security in PillarBox is primarily its application for
self-protecting alerting: Indeed, the main aspect of integrity here is securing alerts in the
PBB as fast as possible during a compromise, i.e., in the critical window. Effectively,
PillarBox engages in a race to secure alerts before the attacker intercepts them, and
winning this race is not a matter of cryptography, but of system design, including the
design choice of host-side buffering! An important contribution of our work is an ex-
perimental validation (in Section 5) that winning this race, and thus the whole PillarBox
approach to securing alerts, is feasible. This is shown to hold even against a fast, local,
PillarBox-aware attacker that kills PillarBox processes as quickly as possible.

Achieving Stealth. Stealth, as we define it, requires concealment of the entire alert-
ing behavior of a SAS, including detection rules, alert message contents, alert genera-
tion times, and alert message existence in compromised hosts. Stealth is a key defense
against sophisticated attackers. (One example: Host contact with “hot” IP addresses can
help flag an APT, but an attacker that learns these addresses can just avoid them [15].)

Straightforward encryption alone does not achieve stealth: If buffer alerts are en-
crypted on a host, an attacker can infer alert generation simply by counting buffer ci-
phertexts upon host compromise. Similarly, encrypted host-to-server traffic leaks infor-
mation: An attacker can determine via traffic analysis when a host has triggered an alert
or even perform black-box probing against a host to test attacks and infer which are or
are not detectable. Instead, stealth in PillarBox requires a combination of several ideas.

In particular, PillarBox employs a buffer size T , and buffer transmission-time in-
terval μ, that are fixed, i.e., invariant. Each message is also of fixed size (or padded
to that size). When PillarBox transmits, it re-encrypts and sends the entire fixed-size
buffer, not just fresh (encrypted) alerts. Such fixed-length transmissions prevent an at-
tacker from determining when new alerts have accumulated in the host buffer, while its
fixed communication patterns defeat traffic analysis. As the host buffer is of fixed size
T , PillarBox writes messages to it in a round-robin fashion. Thus, messages persist in
the buffer until overwritten.4 This feature creates a need for careful parameterization:
T must be large enough to hold all alert messages generated under benign conditions
within a time interval μ; this condition ensures that if round-robin overwriting occurs,
PillarBox implicitly signals to the server a “buffer-stuffing” attempt by an attacker.5

PillarBox generates encryption keys in a forward-secure way to protect against de-
cryption attacks after an attacker compromises a host’s keys. To protect against an at-
tacker that controls the network and eventually the host as well, encryption is applied in
two layers: (1) To buffered messages, to ensure confidentiality after host compromise,
and (2) to host-to-server buffer transmissions to ensure against discovery of alert data

4 Thus messages may be transmitted multiple times. Such persistent transmission consumes
bandwidth but it may allow temporarily suppressed messages to eventually reach the server.

5 Below we develop a framework for parameterization of T and μ and then explore practical
settings by analyzing real-world alert transmission patterns in a large enterprise.
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from buffer ciphertext changes.6 Finally, as these two encryption layers ensure confi-
dentiality in the buffer and over the network, but not in the SAS alerting engine itself, a
key complement to stealth in PillarBox is concealment of detection rules in hosts: Our
experiments show the viability of instrumenting the SAS with vanishing rules.

Complete stealth in PillarBox carries an unavoidable cost: Periodic rather than im-
mediate transmissions can delay server detection of intrusions. But we note that stealth
is an optional feature in PillarBox: It can be removed or weakened for limited attackers.

3 Architecture

We next describe PillarBox’s general architecture, main software components and oper-
ating configuration, used to secure the host-to-server chain of custody in a SAS system.

3.1 Interface with SAS

Being agnostic to message content, PillarBox works with any SAS. It can serve as the
main channel for SAS alerts or can deliver SAS alerts selectively and work in parallel
with an existing transport layer. Exactly how SAS messages are produced at the host or
consumed at the receiving server depends on SAS instrumentation and alert-consuming
processes. (As such, it’s outside the scope of our work.) Similarly, our architecture ab-
stracts away the communication path between the host and server, which can be com-
plicated in practice. In modern enterprises, networks carry many SAS-based security
controls that alert upon malfeasance. Typically, alerts are sent via unprotected TCP/IP
transmission mechanisms, such as the syslog protocol (which actually uses UDP by
default), the Simple Network Messaging Protocol (SNMP), or the Internet Control and
Messaging Protocol (ICMP). These alerts are typically generated by endpoint software
on host systems (such as anti-virus, anti-malware, or HIDS) or by networked security
control devices. These devices are commonly managed by a SIEM system, which may
be monitored by human operators. For the purposes of our architecture, though, we
simply consider a generic SAS-instrumented host communicating with a server.

Alerter. We refer generically to the SAS component that generates alert messages as
an alerter module.7 This module monitors the host environment to identify events that
match one of a set of specified alert rules. When an event triggers a rule, the alerter
outputs a distinct alert message. An alert template may either be static (predefined at
some setup time for the host) or dynamic (updated regularly or on-demand through
communication with the server). Rules may take any form. They may test individual
state variables (specified as what is generally called a signature) or they may correlate
more than one event via a complicated predicate or classifier. As mentioned before, the
SAS may tag select rules as “vanishing.” When such a rule is triggered, it is erased from
the current rule set to further enhance the stealth properties provided by PillarBox.

6 Buffer encryption alone is insufficient: If identical buffer ciphertexts leave a host twice, the
attacker learns that no new alert has been generated in between. Semantically secure public-
key encryption would enable use of just one layer, but with impractically high cost overheads.

7 Of course, a SAS includes other components, e.g., a transport layer, update functionality, etc.
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Fig. 3. PillarBox architecture and data flow. Shaded areas show the PillarBox components; striped
ones comprise PillarBox’s crypto-assisted core reliable channel.

In our basic architecture, the alerter’s interface with PillarBox is unidirectional. The
alerter outputs alert messages, and PillarBox consumes them. Although many archi-
tectures are possible, given PillarBox’s emphasis on critical alerts, in our canonical
operational setting, the SAS may send only high severity messages (e.g., those that
seem to indicate impending compromise) to PillarBox, and relay regular logs through
its ordinary low-priority transport layer.

3.2 PillarBox Components

The general message flow in PillarBox is fairly simple. Most of the complexity is hidden
by the PBB “lockbox.” PillarBox consists of five modules, shown in Figure 3.

Bufferer. This module controls the core message buffer, the PBB (which is detailed in
Section 4). It accepts two calls: A Write call from the alerter to insert a message into
the PBB (in encrypted form) and a Wrap call from the transmitter—described below—
requesting export of the current buffer contents (also in a securely encapsulated form).
This module is also responsible for maintaining the secret state of the PBB and up-
dating the cryptographic (MAC and encryption) keys, which are effectively used to
securely label messages and buffers with sequence numbers. The bufferer does not dis-
card messages from the buffer when they are transmitted: A message is encapsulated
and transmitted until overwritten, offering the extra feature of persistence.8

Transmitter. This module schedules and executes buffer transmissions from the host
to the server. Transmissions may be scheduled every μ seconds, for parameter μ, like a
“heartbeat.” The module sends Wrap requests to the bufferer and transmits encapsulated
buffers to the server over the network using any suitable protocol.

Receiver. This module receives encapsulated-buffer transmissions on the server from
the host-based transmitter over the network. When it receives a transmission pushed
from the host, it relays it with a Read instruction to the decrypter.

Decrypter. In response to a Read request from the receiver, the decrypter decrypts and
processes an encapsulated buffer. It verifies the buffer’s integrity and outputs either its
constituent messages, or else a ⊥ symbol indicating a buffer corruption. It also labels
the buffer and its messages with their corresponding (verified) sequence numbers.

Gap-checker. The gap-checker’s main task is to look for lost messages in the SAS
message stream, which cause it to output an alert that we call a gap alert. These may
be caused by one of two things: (1) A flood of alerts on the host (typically signalling an
intrusion) or (2) Overwriting of alerts in the buffer by malicious buffer-stuffing on the

8 This byproduct of stealth can be leveraged to accommodate lossy networks, as explained later.
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compromised host (see also Section 4). As messages are labeled with verified sequence
numbers, gap checking requires verification that no sequence numbers go missing in
the message stream. Because messages continue to be transmitted until overwritten,
note that in normal operation sequence numbers will generally overlap between buffers.
The gap-checker can optionally filter out redundant messages. To detect an attacker that
suppresses buffer transmission completely, the gap-checker also issues an alert if buffers
have stopped arriving for an extended period of time, as we discuss below.

3.3 Parameterizing PillarBox

The gap-checker always detects when a true gap occurs, i.e., there are no false-negatives
in its gap-alert output. To ensure a low false-positive rate, i.e., to prevent spurious de-
tection of maliciously created gaps, it is important to calibrate PillarBox appropriately.

The size T of the PBB dictates a tradeoff between the speed at which alerts can be
written to the buffer and the rate at which they must be sent to the server. Let τ denote
an estimate of the maximum number of alerts written by the host per second under
normal (non-adversarial) conditions. Then provided that the encapsulation interval μ
(the time between “snapshots” of buffers sent by the host) is at most T/τ seconds, a
normal host will not trigger a false gap alert. We characterize τ , the maximum SAS
message-generation rate of normal hosts, in Section 5. Using a moderate buffer size
T we are able to achieve extremely low false-positive gap-alert rate in most cases. In
networks vulnerable to message loss, the persistence feature of PillarBox can be useful:
The larger T , the more repeated transmissions of every message.

Also, if an attacker suppresses buffer transmission completely, the gap-checker will
cease to receive buffers. The gap-checker issues a transmission-failure alert if more than
β seconds have elapsed without the receipt of a buffer, for parameter setting β > T/τ .

PillarBox cannot itself distinguish benign from adversarial transmission failures (al-
though network liveness checks can help). While there are many possible policies for
transmission-failure alerts, in reliable networks, PillarBox is best coupled with an ac-
cess policy in which a host that triggers a transmission-failure alert after β seconds is
disconnected from network services other than PillarBox. Any disconnected services
are restored only when PillarBox’s decrypter again receives a buffer from the host and
can detect alerts. In a benign network outage, this policy will not adversely affect hosts:
They will lack network service anyway. An adversary that suppresses PillarBox buffer
transmission, though, will cut itself off from the network until PillarBox can analyze
any relevant alerts. Such interfacing of PillarBox with network-access policies limits
the attackers ability to perform online actions while remaining undetected.

4 PillarBox Buffer and Protocols

We now present the main component of PillarBox, the PBB, and its protocols (run by
the bufferer and decrypter), which realize a reliable messaging channel, as well as the
functionality exported to the alerter and gap-checker to secure the SAS chain of custody.

Ideal “Lockbox” Security Model. Conceptually, the PBB serves as a “lockbox” for
message transport: It’s a buffer of T fixed-size slots that supports two basic operations:
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1. write: The sender S (the client in PillarBox) inserts individual messages into the
buffer via write in a round-robin fashion. Given currently available position I ∈
{0, . . . , T−1} (initially set at random), a new message is written in slot I (replacing
the oldest message), and I is incremented by 1 (mod T ).

2. read: The receiver R (the server in PillarBox) invokes read, which outputs the
(monotonically increasing) sequence numbers j of the buffer and sj of the last
inserted message, along with the T messages in the buffer starting at position I ,
with wraparound.

Messages buffered in this ideal “lockbox” can only be read via the read interface
and can only be modified (authentically) via the write interface. When read by R, a
message mi stored at slot i is guaranteed to be either the most recent message written
to slot i (the empty symbol ∅ if no message was ever written), or a special corruption
symbol ⊥ that indelibly replaces all the buffer’s contents if the buffer was tampered
with or modified otherwise than by write.

The goal of an attacker on compromising a host is to learn SAS actions and suppress
alerts buffered during the critical window. The ideal read interface of the “lockbox”
buffer protects against violations of stealth (the attacker cannot observe when R reads
the buffer). Given the write interface, the attacker can only violate buffer integrity in
the post-compromise period in one of four ways:

1. Buffer modification/destruction: The attacker can tamper with the contents of the
buffer to suppress critical-window alerts. As noted above, this will cause decryption
errors indicated by the special symbol ⊥.

2. Buffer overwriting: The attacker can exploit buffer wraparound by writing T rela-
tively benign messages into it to overwrite and thereby destroy messages generated
during the critical window.

3. Buffer dropping: The attacker can simply drop buffers or delay their transmission.9

4. Transmission stoppage: The attacker can break the PBB completely, causing no
buffer transmission for an extended period of time, or indefinitely.

During the critical window, the attacker can alternatively try to attack so quickly that
the critical window is nearly zero. In this case, there is not sufficient time for PillarBox
to take in a SAS alert message and put it in the PBB. Our experiments in Section 5 show
in some settings of interest that this attack is unlikely.

Adversarial buffer modification or destruction, as explained above, is an easily de-
tectable attack. It causes the server to receive a symbol ⊥, indicating a cryptographic
integrity-check failure. The gap-checker in PillarBox detects both buffer overwriting
attacks and buffer dropping attacks by the same means: It looks for lost messages, as
indicated by a gap in message sequence numbers.10 Figure 4 depicts a normal buffer
transmission and one, ostensibly during an attack, in which messages have been lost
to an alert flood or to buffer overwriting. A transmission stoppage is detectable simply

9 The attacker can also potentially cause buffers to drop by means of a network attack during
the critical window, but the effect is much the same as a post-compromise attack.

10 I.e., a gap alert is issued when the sequence numbers sj and sj′ of (of the last inserted messages
in) two successively received buffers j and j′ are such that sj′ − sj ≥ T .
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Fig. 4. Gap rule example on successively received buffers C1, C2, indexed by sequence numbers
j, j′ and T = 10: (A) Normal message overlap between buffers; (B) A detectable gap: Messages
with sequence numbers sj + 1 and sj + 2 have been lost

when the server has received no buffers for an extended period of time, producing a
transmission-failure alert, as noted above.

Security Definitions. Our implementation of this ideal “lockbox” consists of the PBB
and three operations: (i) The sender S runs Write to insert a message into the PBB
and (ii) Wrap to encapsulate the PBB for transmission, and (iii) The receiver R runs
Read to extract all messages from a received, encapsulated PBB. We denote by C the
contents of the PBB after a series of Write operations by S, and by Ĉ a cryptographic
encapsulation transmitted to R. We require two security properties, immutability, and
stealth and two non-cryptographic ones, persistence and correctness.

Informally, correctness dictates that under normal operation any sequence of mes-
sages of size at most T added to C by S can be correctly read by R in an order-
preserving way; in particular, the T most recent messages of C and their exact order
can be determined by R. Persistence means that by encapsulating the buffer C repeat-
edly, it is possible to produce a given message in C more than once.

For our two cryptographic properties, we consider a powerful adaptive adversary A
that operates in two phases: (1) Prior to compromise, A fully controls the network, and
may arbitrarily modify, delete, inject, and re-order transmissions between S and R; A
may also determine when S encapsulates and sends the PBB, and may also choose its
time of compromise; (2) On compromising S, A corrupts S, learns its secret state, and
fully controls it from then on.

Immutability means, informally, that pre-compromise messages in C are either re-
ceived unaltered by R in the order they were written, or are marked as invalid; i.e.,
even after compromising S, A cannot undetectably drop, alter or re-order messages
in C. Stealth means, informally, that A cannot learn any information about messages
buffered prior to compromise. It is stronger than confidentiality. Not only cannot A
learn the contents of messages, it also cannot learn the number of buffered messages—
or if any were buffered at all. This holds even after A has compromised S.

Detailed Construction. Our construction employs (and we assume basic familiarity
with) a forward-secure pseudorandom number generator FS-PRNG (e.g., [10]) that
exports two operations GenKey and Next to compute the next pseudorandom num-
bers, as well as an authenticated encryption scheme (e.g., [2]) that exports operations
AEKeyGen, AuthEnc and AuthDec to encrypt messages m of size k to ciphertexts of
size g(k) ≥ k.
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Operation Write

Input: secret key (ri, r
′
j , i, j), message m ∈ {0, 1}�, buffer C

Output: new secret key (ri+1, r
′
j , i+ 1, j), updated buffer C

1. C[C[T ]] = (AuthEncri(m), i)
2. C[T ] = C[T ] + 1 mod T
3. (ri+1, r

′
j , i+ 1, j) ← KEvolve(ri, r

′
j , i, j, 1,low)

4. delete ri
5. return [(ri+1, r

′
j , i+ 1, j), C]

Operation Wrap
Input: secret key (ri, r

′
j , i, j), buffer C

Output: new secret key (ri, r
′
j+1, i, j + 1), encaps. buffer Ĉ

1. Ĉ = (AuthEncr′
j
(C), j)

2. (ri, r
′
j+1, i, j + 1) ← KEvolve(ri, r

′
j , i, j, 1,high)

3. delete r′j
4. return [(ri, r

′
j+1, i, j + 1), Ĉ]

Operation Read

Input: secret key (ri, r
′
j , i, j), encapsulated buffer Ĉ

Output: new secret key (rl, r
′
j′ , l, j

′), (m0, . . . ,mT−1)
1. if j′ ≤ j then return [(ri, r

′
j , i, j),⊥]

2. (ri, r
′
j′ , i, j

′) ← KEvolve(ri, r
′
j , i, j, j

′ − j, high)
3. (C[0], . . . , C[T ]) = C ← AuthDecr′

j′
(c′); I = C[T ]

4. if C = ⊥ then return [(ri, r
′
j , i, j),⊥]

5. for 0 ≤ k < T do
(a) (c, l) = C[k + I mod T ]
(b) if k = 0 ∧ l ≤ i then return [(ri, r

′
j , i, j),⊥]

(c) if k 
= 0 ∧ l 
= LAST + 1 then return [(ri, r
′
j , i, j),⊥]

(d) (rl, r
′
j′ , l, j

′) ← KEvolve(ri, r
′
j′ , i, j

′, l − i, low)
(e) mk ← AuthDecrl(c); LAST = l

6. return [(rl−T+1, r
′
j′ , l − T + 1, j′), (m0, . . . ,mT−1)]

Fig. 5. Operations Write, Wrap and Read

In particular, the sender S maintains the following data structure:

1. a secret key σ (also kept by the receiver R);
2. a buffer C, C = (C[0], C[1], . . . , C[T − 1]), initially filled with random data, that

takes the form of an array of size T + 1, where C[i], 0 ≤ i ≤ T , denotes the
ith position in C; we set the size of each slot C[i] to be s = g(�), where � is an
appropriate given message length (defining message space {0, 1}�).11

3. a current index I , initialized at a random position in C, and itself stored at C[T ].

Key management operates as follows. Given a security parameter κ, algorithm KGen
first initiates an authenticated encryption scheme as well as two FS-PRNGs, one low-
layer to generate sequence r0, r1, . . . (for message encryption) and one high-layer to
generate sequence r′0, r′1, . . . (for buffer encryption). It then initializes the secret states
of S and R, which take the (simplified) form (ri, r

′
j , i, j), denoting the most recent

11 In our EAX encryption implementation: � = 1004 and g(�) = 1024.
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forward-secure pseudorandom numbers for the low and high layers, along with their
sequence numbers. Also, given the current secret state (ri, r

′
j , i, j), an integer t and a

control string b ∈ {low,high}, algorithm KEvolve creates the corresponding low- or
high-layer t-th next forward-secure pseudorandom number.

Then our main protocols operate as shown in Figure 5. First, given secret writing
key (ri, r

′
j , i, j), message m and buffer C, Write securely encodes m, adds it in C and

updates the secret key. Then, given secret writing key (ri, r
′
j , i, j) and a buffer C, Wrap

securely encapsulates C to Ĉ and updates the secret key. Finally, given secret reading
key (ri, r

′
j , i, j) and an encapsulated buffer Ĉ, Read decrypts the buffer and all of its

contents returning a set of T messages and updates the secret key.
For simplicity, we here consider a fixed-size PBB that holds fixed-size messages

(parameters T and g(�) respectively). Note that PillarBox can be easily extended to
handle variable-length messages and to dynamically enlarge the PBB buffer, as needed,
in order to prevent loss of alert messages (due to overwriting) during prolonged PBB-
transmission failures; we omit these extensions due to space limitations.

5 Experimental Evaluation

We developed a prototype of PillarBox in C++. To implement authenticated encryption
we utilize an open-source version of EAX-mode encryption. We also implemented a
custom FS-PRNG as a hash chain for generating the necessary cryptographic keys (for
both low- and high-layer secure processing of messages and buffers).

We next experimentally validate the effectiveness of PillarBox in securing alerts dur-
ing the critical window. We first demonstrate the merits of our alert-buffering approach
via a generic attack against alert-pushing methods. We then show that PillarBox is fast
enough to win the race condition against an attacker trying to disrupt the securing of
alert messages. Surprisingly, even when an attacker already has the privilege necessary
to kill PillarBox, the execution of the kill command itself can be secured in the PillarBox
buffer before the application dies. Finally, we validate the feasibility of PillarBox as a
practical alert-relaying tool.

5.1 Demonstrating Direct-Send Vulnerability

We motivate the need for securing the chain of custody in SASs and justify our design
choice of host-side buffering, rather than immediately putting alerts on the wire, by
showing the feasibility of an attacker intercepting on-the-wire host alert transmissions
silently (without sender/receiver detection) in a rather simple setting.

Using the Ettercap tool [1] we inserted an attack machine (attacker) as a man-in-
the-middle between our client and server communicating over a switch. The attacker
performed ARP spoofing against the switch, to which most non-military-grade hubs and
switches are vulnerable. Because it attacked the switch, neither endpoint observed the
attack. Once inserted between the two machines, our attacker was able to drop or rewrite
undesired packets on the fly. Even if the client and server had been communicating over
a secured channel (a rarity in current practice), alert messages could still easily have
been dropped, preventing any indication of the attack from reaching the server.
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If executed within a subnet, the attack described here would rarely be detected, even
by a forensic tool performing network packet capture, as these tools are typically de-
ployed to monitor only inbound/outbound traffic, or at best across subnets.

Given the ease with which we were able to not only prevent communication between
a client and server, but moreover modify what the server received, without detection, it
should be clear just how important chain-of-custody is in SASs. If the messages being
transmitted are of any value, then they need to be protected. Otherwise an attacker can
simply block or modify all SAS communication while attacking a host, after which he
can turn off or otherwise modify what the SAS sends from the client side. Attacking in
such a way makes it impossible for the server to detect anything has gone wrong and
motivates our desire to provide a better way to secure log messages.

5.2 Race-Condition Experiments

We now show that it is feasible for a SAS combined with PillarBox to detect an attack in
progress and secure an alert before an attacker can disrupt PillarBox operation (i.e., that
the critical window is non-zero in size). PillarBox depends on both an alerter (in our
case, syslog), and a named pipe used to communicate from the alerter to the bufferer.
Both of these components, as well as PillarBox itself, can be attacked, creating a race
condition with the attacker. If any of the components can be shut down fast enough
during an attack, alerts may not be secured in the PBB. Surprisingly, we show that even
an attacker with the necessary (root) privilege rarely wins this race (≈ 1% of the time).

To bias our experiments in favor of an attacker, we assume the attacker has gained
access to a privileged account that already has the necessary permissions to kill any of
the components. We record time required for the attacker to issue a single command to
kill the process and show that the command itself gets secured by PillarBox before the
targeted component is terminated. Our tests were performed on an 2.5GHz Intel Core 2
Duo T9300 processor with 4 GB of memory and Ubuntu 12.04 as the operating system.

Killing PillarBox. PillarBox is a simple application that is easily terminated by an at-
tacker, although it can be run as root to provide some protection. To be secured, alerts
must be generated, routed by syslog to the named pipe, and then picked up by PillarBox,
encrypted and added to the buffer. An attacker’s best bet at disrupting the securing of
alerts is to try and shutdown PillarBox itself. If run as root, PillarBox can be terminated
by invoking root privilege and issuing a kill command.12 Calling kill with the −9 signal
immediately terminates any program, unless it is in the process of making a system
call; it then terminates when the system call returns. Using sudo runs the command as
root, but also generates an alert message which syslog picks up. The full one-line com-
mand sudo kill − 9 < PillarBox pid > immediately terminates PillarBox, but usually
not before a log event is created, routed by syslog through the named pipe, and secured.

As Table 1 shows, in the majority of runs the alert message is locked away in ≈
4ms.13 Alert messages are, on average, secured in PillarBox before it is killed with

12 kill or pkill could be used to terminate the process: pkill takes in the process name, while kill
takes a process id; otherwise they operate the same.

13 PillarBox accounts for only a minuscule fraction of this total time.
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Table 1. Average time from the start of a command until log is secured in PillarBox and total
time for command completion

Secured Std. Dev. Disrupted Std. Dev. Command
Syslog (typical) 4.09ms 0.30ms 8.86ms 2.43ms sudo kill − 9 < syslog pid >

Syslog (worst)14 32.33ms 5.38ms 9.32ms 2.81ms sudo kill − 9 < syslog pid >
Named pipe 6.36ms 3.02ms 8.99ms 3.30ms sudo rm named pipe

PillarBox 4.01ms 0.19ms 6.95ms 0.37ms sudo kill − 9 < PillarBox pid >

almost 3ms to spare.14 However, in about 1% of our experiments, PillarBox was killed
before receiving the alert message and encrypting it. All of the commands in Table 1
were run 100 times with averages and standard deviations shown.

Impacts of System Load. To further test the ability of the attacker to beat PillarBox,
we also ran tests under varying amounts of disk, memory, and CPU load. Disk load
appeared to have little to no effect on either the success of PillarBox, or the timing
measurements. As expected, load on the system memory slowed everything down—
lengthening both the time to secure, but also the time until the kill completes—but did
not appear to impact the success of PillarBox winning the race condition. For unex-
plained reasons, CPU load did seem to impact PillarBox on our test machine. Oddly,
PillarBox did well (0% failure) at near 100% load, but relatively poorly (< 4% failure)
at 20% load. These tests were run 1000 times to further reduce noise. Additionally, we
re-ran our tests on a 2.13 GHz Intel Xeon E5506 Quad Core processor with 3GB of
RAM running Red Hat Enterprise Linux WS v5.3 x86 64. On that machine we again
noticed ≈ 1% of tests failing, but did not find a correlation between load and failure
rate. We expect CPU scheduling to be at fault but leave a more thorough investigation
of the effects of load as well as the impact of virtualization or greater numbers of cores
as future work. If CPU scheduling is indeed the cause, running PillarBox with higher
priority should further lower the probability of an attacker winning the race condition.

Killing the Named Pipe. We also considered attacks against the other components (sys-
log and the named pipe). We use a named pipe to pass alerts from syslog to PillarBox.
A named pipe is a permanent pipe created in the filesystem which can be read from and
written to by any process. To destroy a named pipe created by root an attacker would
need to run sudo rm named pipe. Again, the invocation of sudo (or otherwise transi-
tioning to root privilege) generates a log event. As Table 1 shows, the log messages
created pass through the pipe before it is closed. There were no failures in these tests.

Killing Syslog. The alerter (syslog) is the first to handle the log message, and can be
shutdown or killed by running sudo kill − 9 < syslog pid >.15 Table 1 shows that the
log message is sent by syslog before it is killed. However, presumably due to process
scheduling, in several runs the kill command returns before the alert message is secured

14 Due to presumed OS scheduling interruptions, in about 1/3 of the runs the kill command
returns before the message is successfully secured in PillarBox. These results show the timings
observed in those cases.

15 The alerter could be more integrated into the kernel itself, making it even harder to intercept
and/or kill. In our case, syslog channels log messages generated by the kernel and doesn’t
actually generate them itself.
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Table 2. Timeline of events related to the execution of the attacker’s command
sudo cp /etc/rsyslog.d/vanish.conf /home/vanish.copy

Event Start Message Secured Rule Deleted Copy Fails
Avg. Time (ms) 0.00 4.00ms 4.04ms 7.21ms
Std. Dev. N/A 0.44ms 0.44ms 0.81ms

in the PBB. Because the message always arrives in the PBB (again, there were no
failures), we assume these represent runs where the alert is passed to the named pipe
before syslog terminates and then read from the pipe when the PillarBox process is later
scheduled by the OS. This issue is diminished in the tests against the named pipe and
PillarBox, explaining their perceived lower average timings (and standard deviations).

Vanishing Rules. When PillarBox provides stealth, it is best combined with vanishing
SAS rules to prevent critical information leakage. Recall that if an attacker cannot pre-
vent PillarBox from securing events in the critical window, the attacker benefits from at
least learning how the system is instrumented and what alerts were likely to have been
generated. In our test setup, the vanishing alerts generate an alert whenever a root user
logs in. To test the race condition, we instrumented PillarBox to delete the vanishing
alerts configuration file after securing the alert message. The attacker attempts to create
a copy of the sensitive alerter configuration file. As it is shown by the relative timing of
events over 100 test runs in Table 2, after securing the alert message, PillarBox always
successfully deletes the configuration file at least 2.72 ms. before the attempted copy.

Privilege Escalation. Having shown that PillarBox can win the race conditions related
to securing alerts and causing them to vanish, even in the pessimistic case where the
attacker starts with the necessary permissions, we now consider the issue of privilege
escalation. The concern is that if the attacker exploits vulnerabilities the transition to
root privilege may not get logged. We assume that most privilege escalations could be
detected given the proper instrumentation and that disrupting any of the necessary com-
ponents in our system (e.g. corrupting its memory address space) without root privilege
is infeasible given current architectures (e.g., Address Space Randomization [21], etc.).

As an example of a common privilege escalation, we consider the “Full Nelson”
attack, which exploits CVE-2010-4258, CVE-2010-3849, and CVE-2010-3850 to gain
root access. We find that this attack generates kernel messages that syslog can pick up
and pass through the named pipe and into the PBB before the exploit completes and the
attacker terminates essential SAS or PillarBox components or reads the configuration
file. In fact, the attack includes a necessary sleep command that further benefits timely
securing of alerts in PillarBox. Even in the most pessimistic case, in which the exploit
code uses the kill system call before ever launching a shell, and the sleep command is
removed (causing the exploit to fail), the log messages are still locked away in PBB
before the exploit program tries to disrupt PillarBox. Since the system must be restored
after the privilege escalation, we were not able to run 100 instances, but we repeatedly
demonstrated that the kernel log messages can be secured in PBB before being killed.

While the “Full Nelson” attack is representative of other local privilege escalation
attacks, this by no means guarantees that faster or quieter privilege escalations don’t
exist. What it does demonstrate is that the event signaling the end of the critical window
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(the elevation of privilege giving the attacker full control) can itself often be detected
and secured in PillarBox before such privilege enables disruption of the PillarBox tool.

Asynchronous logging. We have also tested PillarBox in a more asynchronous setting
using Snort as our alert generator to detect a remote SSH exploit. Once the attacker has
shell access it escalates privilege and then shuts down PillarBox. Table 3 shows that in
the average case all of the defenders actions (detecting the attack, securing the log in
PillarBox and deleting the stealthy rule) complete a whole second before the attacker
even gains shell access. The high standard deviation (measured over 100 runs) indicates
that the attacker may be able to learn detection rules on rare occasion (this was never
observed in our experiments), but cannot prevent the securing of the log messages.

Table 3. Race condition timings (measured from the launch of the attack)

Defender Event Attack detected Log secured Rule deleted
Average 1,645.441ms 1,645.609ms 1,645.772ms
Std. Dev. 1,069.843ms 1,069.842ms 1,069.840ms
Attacker Event Remote shell Privilege escalation Rules copied Log file deleted
Average 2,692.536ms 2,693.474ms 2,696.524ms 2,696.590ms
Std. Dev. 1,324.419ms 1,324.432ms 1,324.919ms 1,324.990ms

5.3 Observed Alerting Frequencies

We performed an analysis of a large enterprise (>50,000 users) dataset across a pe-
riod of 7 hours. This dataset contains all collectable logs from this network, including
servers, laptops, network devices, security appliances, and many more. The goal was to
derive information about the typical alert frequency across a representative work day.

It is critical to note that only certain messages pertaining to, e.g., indicators of com-
promise, will be selected for inclusion in the PillarBox protected queue. As such, the
data found here represents an overloaded maximum: It is unlikely that most networks
will generate such volumes of alerts, and most alerts will not be applicable to PillarBox.

Figure 6 shows the distribution of alerts coming from hosts within the enterprise.
The x-axis is in log scale, showing that the majority of machines send very few alert
messages, while a small subset send the majority. Over a 7-hour window, the busiest
machine generated 8603 alerts, but the average across all machines (59,034 in total)
was only 18.3 alerts. Clearly, therefore, if we design the system to handle a throughput
of one alert per second (3600 alerts an hour) our system will be able to handle even the
busiest of alerters. The maximum observed rate in our dataset was 1707 alerts / hour.
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5.4 Throughput Experiments

We now show that PillarBox can process events at a practical rate. Given a constant
stream of events, the host-based application was able to process nearly 100,000 mes-
sages per second, higher than any rate recorded in our dataset. The speed with which
PillarBox can encode messages naturally depends on a number of factors, e.g., message
size, the cost of computing FS-PRNGs, PBB’s size, and the frequency μ with which the
buffer is re-encrypted and sent. Obviously the larger the messages, the longer they take
to encrypt. The standard log messages generated on our Linux system were typically
a few hundred characters long. We note that our hash-chain FS-PRNG required one
computation per produced number, thus minimizing key-generation overhead.

Figure 7 explores tradeoffs between buffer size and send frequency in terms of their
impact on maximum throughput. Some combinations of buffer size and send rate led
to buffer overflows, and were removed. Performance seems to increase as buffer size
increases and send frequency decreases, as expected. A large buffer that is rarely re-
encrypted for sending can process events more quickly that a small, frequently sent
buffer. As Figure 7 shows, throughput seems to top out just shy of 100 messages / ms,
further evidence of the minimal overhead of PillarBox.

6 Related Work

PillarBox uses host-side buffering to secure alerts for transmission to a remote server.
An alternative is a trusted receiver within a protected environment on the host itself. A
hypervisor, or virtual machine monitor (VMM), for instance, has higher privilege than
a guest OS, isolating it from OS-level exploits. Thus, as an alternative to PillarBox,
messages could be sent from a SAS to a same-host hypervisor. Hypervisor-based mes-
saging can be blended with even stronger security functionality in which the hypervi-
sor protects a SAS (or other monitoring software) itself against corruption as in, e.g.,
[22], and/or is itself protected by trusted hardware, as in Terra [7]. Where available, a
hypervisor-based approach is an excellent alternative or complement to PillarBox.

Hypervisor-based approaches, however, have several notable limitations. Many hosts
and devices today are not virtualized and some, e.g., embedded devices, probably will
not be for a long time. Operating constraints often limit security administrators’ access
to hypervisors. For instance, IT administrators may be able to require that personal
devices in the workplace (e.g., laptops, tablets, and smartphones) contain an enterprise-
specific VMM or application, but they are unlikely to obtain full privileges on such
devices. Finally, hypervisors themselves are vulnerable to compromise: Some works
have noted that the code sizes, privilege levels, and OS-independence of modern VMMs
belie common assertions of superior security over traditional OSes [24, 11].

PillarBox builds in part on funkspiel schemes, introduced by Håstad et al. [9]. A
funkspiel scheme creates a special host-to-server channel whose existence may be known
to an adversary; but an adversary cannot tell if or when the channel has been used, a prop-
erty similar to stealth in PillarBox. (By implication, an adversary cannot recover message
information from the channel either.) As in our work, a funkspiel scheme resists adver-
saries that see all traffic on the channel and ultimately corrupt the sender.
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Funkspiel schemes, though, are designed for a specific use case: Authentication to-
kens. The transmitter either uses its initialized authentication key or swaps in a new,
random one to indicate an alert condition. A funkspiel scheme thus transmits only a
single, one-bit message (“swap” or “no swap”), and is not practical for the arbitrarily
long messages on high-bandwidth channels in PillarBox.

Another closely related technique is forward-secure logging (also called tamper-
evident logging), which protects the integrity of log messages on a host after com-
promise by an adversary (see, e.g., [5, 3, 14, 23, 19, 25, 26, 13, 20, 16]). As already
discussed, while these systems use forward-secure integrity protection like PillarBox,
they are not designed for self-protecting settings like PillarBox. They aim instead for
forensic protection, e.g., to protect against retroactive log modification by an admin-
istrator. Some schemes, e.g., [3, 19, 13, 20], are designed to “close” a log, i.e., create
forward security for new events, only periodically, not continuously. Additionally, ex-
isting forward-secure logging systems do not aim, like PillarBox, to achieve stealth.

Finally, in a different context than ours, the Adeona system [18] uses forward-secure
host-side buffering in order to achieve privacy-preserving location tracking of lost or
stolen devices. Adeona uses cryptographic techniques much like those in PillarBox to
cache and periodically upload location information to a peer-to-peer network. Adeona
does not offer integrity protection like PillarBox, nor does it address the complications
of high throughput, buffer wraparound, and transmission failures in our setting.

7 Conclusion

Today’s big data security analytics systems rely on untrustworthy data: They collect and
analyze messages from Security Analytics Sources (SASs) with inadequate integrity
protection and are vulnerable to adversarial corruption. By compromising a host and its
SAS, a strong attacker can suppress key SAS messages and alerts. An attacker can also
gather intelligence about sensitive SAS instrumentation and actions (potentially even
just via traffic analysis).

We have introduced PillarBox, a new tool that provides key, missing protections for
security analytics systems by securing the messages generated by SASs. Using the ap-
proach of host-side buffering, PillarBox provides the two properties of integrity and
stealth. PillarBox achieves integrity protection on alert messages even in the worst
case: hostile, self-protecting environments where a host records alerts about an attack
in progress while an attacker tries to suppress them. Stealth, an optional property in
PillarBox, ensures that at rest or in transit, a SAS message is invisible to even a strong
adversary with network and eventually host control.

Our experiments with PillarBox validate its practicality and protective value. We
show, e.g., that PillarBox can “win the race” against an adversary mounting a local
privilege escalation attack and disabling PillarBox as fast as possible: PillarBox secures
alert messages about the attack before the attacker can intervene. Our study of alerting
rates in a large (50,000+ host) environment and of local host performance confirms
the low overhead and real-world deployability of PillarBox. We posit that PillarBox
can offer practical, strong protection for many big data security analytics systems in a
world of ever bigger data and more sophisticated adversaries.
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[9] Håstad, J., Jonsson, J., Juels, A., Yung, M.: Funkspiel schemes: An alternative to conven-
tional tamper resistance. In: CCS, pp. 125–133 (2000)

[10] Itkis, G.: Handbook of Inf. Security, Forward Security: Adaptive Cryptography—Time
Evolution. John Wiley & Sons (2006)

[11] Karger, P.A.: Securing virtual machine monitors: what is needed? In: ASIACCS, pp. 1–2
(2009)

[12] Kelsey, J., Callas, J., Clemm, A.: RFC 5848: Signed syslog messages (2010)
[13] Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access to cryptographically pro-

tected audit logs. In: RAID, p. 9 (1999)
[14] Ma, D., Tsudik, G.: A new approach to secure logging. Trans. Storage 5(1), 2:1–2:21 (2009)
[15] Mandiant. M-trends: The advanced persistent threat (2010),

http://www.mandiant.com
[16] Marson, G.A., Poettering, B.: Practical secure logging: Seekable sequential key genera-

tors. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
111–128. Springer, Heidelberg (2013)

[17] Oltsik, J.: Defining big data security analytics. Networkworld, 1 (April 2013)
[18] Ristenpart, T., Maganis, G., Krishnamurthy, A., Kohno, T.: Privacy-preserving location

tracking of lost or stolen devices: Cryptographic techniques and replacing trusted third
parties with DHTs. In: USENIX Sec., pp. 275–290 (2008)

[19] Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted machines. In:
USENIX Sec., p. 4 (1998)

[20] Schneier, B., Kelsey, J.: Tamperproof audit logs as a forensics tool for intrusion detection
systems. Comp. Networks and ISDN Systems (1999)

[21] Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the Effectiveness
of Address-Space Randomization. In: CCS, pp. 298–307 (2004)

[22] Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware virtu-
alization. In: CCS, pp. 477–487 (2009)

http://ettercap.sourceforge.net/
http://www.mandiant.com


PillarBox: Combating Next-Generation Malware 67

[23] Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and search-
able audit log. In: NDSS (2004)

[24] Chen, Y., Chen, Y., Paxson, V., Katz, R.: What’s new about cloud computing security?
Technical Report UCB/EECS-2010-5, UC Berkeley (2010)

[25] Yavuz, A.A., Ning, P.: BAF: An efficient publicly verifiable secure audit logging scheme
for distributed systems. In: ACSAC, pp. 219–228 (2009)

[26] Yavuz, A.A., Ning, P., Reiter, M.K.: Efficient, compromise resilient and append-only cryp-
tographic schemes for secure audit logging. In: Keromytis, A.D. (ed.) FC 2012. LNCS,
vol. 7397, pp. 148–163. Springer, Heidelberg (2012)



Dynamic Reconstruction of Relocation

Information for Stripped Binaries

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

Columbia University
{vpappas,mikepo,angelos}@cs.columbia.edu

Abstract. Address Space Layout Randomization (ASLR) is a widely
used technique for the prevention of code reuse attacks. The basic con-
cept of ASLR is to randomize the base address of executable modules at
load time. Changing the load address of modules is also often needed for
resolving conflicts among shared libraries with the same preferred base
address. In Windows, loading a module at an arbitrary address depends
on compiler-generated relocation information, which specifies the abso-
lute code or data addresses in the module that must be adjusted due
to the module’s relocation at a non-preferred base address. Relocation
information, however, is often stripped from production builds of legacy
software, making it more susceptible to code-reuse attacks, as ASLR is
not an option.

In this paper, we introduce a technique to enable ASLR for executa-
bles with stripped relocation information by incrementally adjusting stale
absolute addresses at runtime. The technique relies on runtime monitor-
ing of memory accesses and control flow transfers to the original location
of a relocated module using page table manipulation techniques. De-
pending on the instruction and memory access type, the system identifies
stale offsets, reconstructs their relocation information, and adjusts them
so that subsequent accesses to the same locations proceed directly, with-
out any intervention. To improve performance further, the reconstructed
relocation information is preserved across subsequent runs of the same
program. We have implemented a prototype of the proposed technique for
Windows XP, which is transparently applicable to third-party stripped
binaries, and have experimentally evaluated its performance and effec-
tiveness. Our results demonstrate that incremental runtime relocation
patching is practical, incurs modest runtime overhead for initial runs of
protected programs, and has negligible overhead on subsequent runs.

1 Introduction

Keeping systems up-to-date with the latest patches, updates, and operating sys-
tem versions, is a good practice for eliminating the threat of exploits that rely
on previously disclosed vulnerabilities. Major updates or newer versions of oper-
ating systems and applications also typically come with additional or improved
security protection and exploit mitigation technologies, such as the stack buffer
overrun detection (/GS), data execution prevention (DEP), address space layout
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randomization (ASLR), and many other protections of Windows [27], which help
in defending against future exploits.

At the same time, however, updates and patches often result in compatibility
issues, reliability problems, and rising deployment costs. Administrators are usu-
ally reluctant to roll out new patches and updates before conducting extensive
testing and cost-benefit analysis [34], while old, legacy applications may simply
not be compatible with newer OS versions. It is indicative that although Win-
dows XP SP3 went out of support on April 8th, 2014 [7], many home users,
organizations, and systems still rely on it, including the majority of ATMs [1].
In fact, the UK and Dutch governments we forced to negotiate support for Win-
dows XP past the cutoff date, to allow public-sector organizations to continue
receiving critical security updates for one more year [6].

As a step towards enhancing the security of legacy programs and operating
systems that do not support the most recent exploit mitigation technologies,
application hardening tools such as Microsoft’s EMET (Enhanced Mitigation
Experience Toolkit) [25] can be used to retrofit these and even newer (sometimes
more experimental) protections on third-party legacy applications. An important
such protection is address space layout randomization, which aims to defend
against exploitation techniques based on code reuse, such as return-to-libc [15]
and return-oriented programming (ROP) [36].

ASLR randomizes the load address of executables and DLLs to prevent at-
tackers from using data or code residing at predictable locations. In Windows,
though, this is only possible for binaries that have been compiled with relocation
information. In contrast to Linux shared libraries and PIC executables, which
contain position-independent code and can be easily loaded at arbitrary loca-
tions, Windows portable executable (PE) files contain absolute addresses, e.g.,
immediate instruction operands or initialized data pointers, that are valid only
if an executable has been loaded at its preferred base address. If the actual load
address is different, e.g., because another DLL is already loaded at the preferred
address or due to ASLR, the loader adjusts all fixed addresses appropriately
based on the relocation information included in the binary.

Unfortunately, PE files that do not carry relocation information cannot be
loaded at any address other than their preferred base address, which is speci-
fied at link time. Relocation information is often stripped from release builds,
especially in legacy applications, to save space or hinder reverse engineering.
Furthermore, in 32-bit Windows, it is not mandatory for EXE files to carry
relocation information, as they are loaded first, and thus their preferred base
address is always available in the virtual address space of the newly created
process. For these reasons, tools like EMET unavoidably fail to enforce ASLR
for executables with stripped relocation information. Consequently, applications
with stripped relocation information may remain vulnerable to code reuse at-
tacks, as DEP alone can protect only against code injection attacks. Further-
more, recently proposed protection mechanisms for Windows applications rely
on accurate code disassembly, which depends on the availability of relocation
information, to apply control flow integrity [45] or code randomization [28].
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In this work, we present a technique for reconstructing the missing relocation
information from stripped binaries, and enabling safe address space layout ran-
domization for executables which are currently incompatible with forced ASLR.
The technique is based on discovering at runtime any stale absolute addresses
that need to be modified according to the newly chosen load address, and apply-
ing the necessary fixups, replicating in essence the work that the loader would
perform if relocation information were present. As transparency is a key require-
ment for the practical applicability of protections tailored to third-party appli-
cations, the proposed approach relies only on existing operating system facilities
(mainly page table manipulation) to monitor and intercept memory accesses to
locations that need fixup.

We have evaluated the performance and effectiveness of our prototype imple-
mentation using the SPEC benchmark suite, as well as several Windows applica-
tions. Based on our results, incremental runtime relocation patching is practical,
incurs modest runtime overhead for initial runs of protected programs, and has
negligible overhead on subsequent runs, as the reconstructed relocation informa-
tion is preserved. Besides forced ASLR, the proposed technique can also be used
to resolve conflicts between stripped binaries with overlapping load addresses,
a problem that occasionally occurs when running legacy applications, and to
significantly improve code disassembly.

The main contributions of this work are:

– We present a technique for dynamically reconstructing missing relocation in-
formation from stripped binaries. Our technique can be used to enable forced
ASLR or or resolve base address conflicts for third-party non-relocatable bi-
naries.

– We have implemented the proposed approach as a self-contained software
hardening tool for Windows applications, and describe in detail its design
and implementation.

– We have experimentally evaluated the performance and correctness of our
approach using standard benchmarks and popular applications, and demon-
strate its effectiveness.

2 Background

The wide support for non-executable memory page protections [27,30] in recent
operating systems and processors has given rise to code reuse attacks, such as
return-to-libc [15] and return-oriented programming (ROP) [36], which allow
the exploitation of memory corruption vulnerabilities by transferring control to
code that already exists in the address space of the vulnerable process. Return-
oriented programming, in particular, has become the primary exploitation tech-
nique for achieving arbitrary code execution against Windows applications. In
contrast to return-to-libc, the reused code in ROP exploits consists of small
instruction sequences, called gadgets, scattered throughout the executable seg-
ments of the targeted process.
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To reuse code that already exists in the address space of a vulnerable pro-
cess, an attacker needs to rely on a priori knowledge of its exact location (al-
though in some cases the location of code can be inferred dynamically dur-
ing exploitation [8, 10, 20, 23, 35, 42, 43]). Address space layout randomization
(ASLR) [11, 27, 29] protects against code reuse attacks by randomizing the lo-
cation of loaded executable modules, breaking the assumptions of the attacker
about the location of any code of interest. Besides address space randomization,
process diversity [13, 16] can also be increased by randomizing the code of ex-
ecutable segments, e.g., by permuting the order of functions [2, 11, 12, 22] and
basic blocks [3, 5], or by randomizing the code itself [19, 28, 44].

In Windows, which is the main focus of this work, ASLR support was in-
troduced in Windows Vista. By default, it is enabled only for core operating
system binaries and programs that have been configured to use it through the
/DYNAMICBASE linker switch. For legacy applications, not compiled with ASLR
support and other protection features, Microsoft has released the Enhanced Mit-
igation Experience Toolkit (EMET) [25], which can be used to retrofit ASLR
and other exploit mitigation technologies on third-party applications. A core
feature of EMET is Mandatory ASLR, which randomizes the load address of
modules even if they have not been compiled with the /DYNAMICBASE switch,
but do include relocation information. This is particularly important for appli-
cations that even though have opted for ASLR, may include some DLLs that
remain in static locations, which are often enough for mounting code reuse at-
tacks [17, 21, 47]. EMET’s ASLR implementation also provides higher random-
ization entropy through additional small memory allocations at the beginning of
a module’s base address. Many of the advanced ASLR features of EMET have
been incorporated as native functionality in Windows 8, including forced ASLR.

The above recent developments, however, are not always applicable on legacy
executables. Typically, when creating a PE file, the linker assumes that it will
be loaded to a specific memory location, known as its preferred base address.
To support loading of modules at addresses other than their preferred base ad-
dress, PE files may contain a special .reloc section, which contains a list of
offsets (relative to each PE section) known as “fixups” [38]. The .reloc section
contains a fixup for each absolute addresses at which a delta value needs to be
added to maintain the correctness of the code in case the actual load address is
different [32]. Although DLLs typically contain relocation information, release
builds of legacy applications often strip .reloc sections to save space or hinder
reverse engineering. This can be achieved by providing the /FIXED switch at
link time. Furthermore, in older versions of Visual Studio, the linker by default
omits relocation information for EXEs when performing release builds, as the
main executable is the first module to be loaded into the virtual address space,
and thus its preferred base address is always expected to be available.

As modules (either EXEs or DLLs) with stripped relocation information can-
not be loaded at arbitrary addresses, the OS or tools like EMET cannot protect
them using ASLR. Legacy applications may also occasionally encounter address
conflicts due to different modules that attempt to use the same preferred base
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address. Our system aims to enable the randomization of the load address of
modules with stripped relocation information by incrementally adjusting stale
absolute addresses at runtime.

3 Approach

Our approach to the problem of relocating stripped binaries relies on recon-
structing the missing relocation info by discovering such relocatable offsets at
runtime. We note here that a static approach, i.e., using disassembly to find all
the relocatable offsets, would be much more difficult, if not infeasible in many
cases—the reason being that stripped binaries also lack debugging symbols, so
complete disassembly coverage would be impossible in most cases.

3.1 Overview

The basic idea of our approach is to load the stripped binary at a random location
and monitor any data accesses or control transfers to its original location. Any
such access to the original location is either a result of using a relocatable offset
or an attack attempt (the attacker might try to reuse parts of the original code,
not knowing that the binary was relocated). The next step is to identify the
source of the access by checking whether it was indeed caused by a relocatable
offset. In this case, the offset it located, its value is fixed to the new random
base, and the relocation info is reconstructed so as next time the same program
is executed a fixup for that address can be automatically applied.

Although there are a few different ways to monitor memory access and con-
trol transfers at runtime, we followed an approach that minimizes its effects
and dependencies on third-party components. For instance, instruction-level dy-
namic binary instrumentation was not considered for this reason, as it requires
the installation of third-party dynamic binary instrumentation frameworks (and
typically incurs a prohibitively high runtime overhead). Our monitoring facility
is built around basic operating system functionality, mostly memory protection
mechanisms. More precisely, after a binary is loaded to a random location, we
change the permissions of its original location to inaccessible, so as each time
a memory access or control transfer happens to one of the original locations, a
memory violation exception is raised. This type of exception usually contains
the location of the instruction that caused it, the faulting address (can be the
same as the instruction location), and the type of access (read or write).

The main challenge of our approach now becomes to identify whether an access
to the original binary location is caused by a relocatable offset and how to trace
it back to that offset. To better explain this issue, consider the following example.
Assume that an instruction updates the contents of a global variable using its
absolute address (e.g., 0x1000). When the instruction is executed from the new,
randomly chosen location of the binary, an exception will be raised. At this point,
we know the location of the instruction and the faulting address (0x1000). After
analyzing the faulting instruction, we see that one of its operands is actually the
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faulting address. In this case, we have to fix the operand by adjusting it to the
new random base, and also reconstruct the relocation info of this offset.

The example above is the most straightforward case of identifying a relocat-
able offset. In practice, in most cases the relocatable offset is not part of the
faulting instruction. For example, consider the case of dereferencing a global
pointer. There is an instruction to load the value of the pointer, probably in a
register, and another instruction to read the contents of the memory location
stored in the register. In this case, the faulting address is not directly related
with the faulting instruction. Even worse, there are cases in which the relocat-
able offset has been changed before it is used. For example, accessing a field from
a structure in a global array would only require a single relocatable address (the
location of the array) and would result in many runtime accesses within the
range of the array. It is very difficult to trace such an access reliably back to its
source relocatable offset.

However, code-reuse attacks rely solely on the knowledge of the code’s loca-
tion, regardless of the location of data. Based on this observation, and due to
the problematic nature of data pointer tracing, we focus on randomizing the
load address of code segments only. Code pointers are usually guaranteed not
to support any arithmetic—it would be difficult to imagine code that depends
on expressions such as adding a few bytes to the location of a function start,
at least for compiler-generated code. An exception to this is jump tables that
contain relative offsets, but this is a case that can be easily covered, as we will
see later on. This simplifies the overall approach, without sacrificing any of the
security guarantees.

Figure 1 shows a high-level overview of our approach. When a stripped binary
is loaded for execution (left side), its code segment is moved to a random location,
while the original location becomes inaccessible (right side). Then, whenever
there is a memory access or control transfer to the original location (solid arrow),
the faulting address along with the instruction that caused it are analyzed. Based
on this analysis, the source relocatable offset is pinpointed, gets fixed, and its
relocation information is reconstructed. In the following, we describe in more
detail how this analysis is being performed.

3.2 Access Analysis

The series of steps performed after a memory access violation exception is raised
due to a memory access in the original code location is depicted in Figure 2.
Broadly speaking, access violations are grouped into two categories based on
their root cause: (i) reading the contents of the original code segment, and (ii)
control transfers to the original code segment. To distinguish between the two,
the system checks whether the value of the instruction pointer is within the
original code segment.

In practice, the first case corresponds mostly to indirect jump instructions
that read their target from the code segment. These are typically part of jump
tables, which are used for the implementation of switch statements in C. In the
second case, control is transfered to the original code segment because a code
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Fig. 1. High-level overview of runtime relocation fixup. The code segment of a stripped
binary is loaded to a randomly chosen location, and its original memory area is marked
as inaccessible. Memory accesses and control transfers to any of the original locations
are trapped. Relocation information is then reconstructed by analyzing the faulting
instruction.

pointer that has not been relocated is used. This could be a simple function
pointer, part of a C++ virtual table (vtable), or a static one, represented as an
immediate value in an instruction. In the following subsections we describe in
detail how each of these cases is handled.

When control is transferred to locations in the original code segments for
which there is no code pointer, or when we can not verify it as a legitimate code
pointer, these transfers are flagged as code-reuse attempts (see Fig. 2). This
effectively allows attackers to reuse code paths for which there are legitimate
code pointers (e.g., function entries or jump table targets), given that they have
not been reconstructed yet. Arguably, this leaves a very limited set of gadgets
for the attacker, which quickly shrinks further as relocatable code pointers are
identified.

3.3 Jump Tables

A jump table is an array of code targets that is usually accessed through an
indirect jump. The following is an example of such a jump table in x86 assembly
(taken from gcc’s binary):

.text:004D5CCE jmp ds:off_4D6864[eax*4] ; switch jump

...
; DATA XREF: _main+2CE ; jump table for switch statement
.text:004D6864 off_4D6864 dd offset loc_4D5D53
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.text:004D6868 dd offset loc_4D5D63

.text:004D686C dd offset loc_4D5D93

.text:004D6870 dd offset loc_4D5D8B

When the jmp instruction is executed from the new random location, an excep-
tion is going to be raised, with the faulting address being (0x4D6864 + eax

* 4). This is handled as follows: i) starting from the location pointed to by
the faulting address, we scan the bytes before and after that location for more
addresses and fix them, and ii) we also fix the relocatable offset in the address
operand of the indirect jump instruction. In case of jump tables with relative
offsets, we just skip the first step.
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Fig. 2. Flow graph of the procedure followed after a memory access exception (trap)
is generated. If the instruction pointer (EIP register) at the time of the exception is
within the original code segment, the system performs pointer verification, otherwise
the faulting instruction is fixed.

3.4 Pointer Verification

After jump tables are covered, we only expect to see control flow transfers to
the locations of the original code. In these cases, the location of the faulting
instruction is also the faulting address—there is no information about the source
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instruction. Given a faulting address, the whole code segment and initialized data
are scanned for all its occurrences. If there is a single occurrence, we assume
that it is a relocatable offset, which is handled appropriately. Otherwise, for
each occurrence in the code segment, we verify that it is indeed part of a valid
instruction—more precisely, an immediate operand.

Occurrences found in the initialized data segments are a bit more complicate
to cover. Usually, for such a hit to be indeed a relocatable offset, it has to be a
variable holding a function pointer, so there should be a way of accessing that
variable. To verify this, we just need to find a data reference to that variable. In
addition, function pointers can be parts of structures, arrays, or a combination of
both. In general, we verify that an occurrence of the faulting address in the data
segment is a relocatable offset that needs to be fixed if we can find a reference
to or near its location (given as a parameter).

The following example illustrates the function pointer verification process.
Assume there is a global variable that is statically initialized with the address
of a function. Also, there is an indirect call instruction that reads the value of
the global variable and transfers control to its value. At runtime, the value is
going to be read (because the data segment is not relocated) and an exception is
going to be raised when control is transfered to the function. Both the faulting
address and the faulting instruction will correspond the beginning of the target
function. At this point, we find an occurrence in the code segment and verify
that it belongs to an instruction—which is the indirect call in this case.

Another use of function pointers is in C++ virtual tables, which is how dy-
namic class methods are represented. These pointers are handled a bit differently
than simple function pointers, and, for this reason, we have introduced special
checking rules. We first verify that there is a move instruction that copies the
head of the table to a newly created class instance, by finding a move instruction
that references a memory location close to the place where the code pointer was
found. We then also verify that the control was transferred by an indirect call
through a register, by reading the current value at the top of the runtime stack
(return address) and disassembling the instruction right before the location it
points to. Bellow is a real example taken from the eon binary of the SPEC
benchmarks suite:

;; function call
.text:004017F9 mov eax, [ecx] ; ecx is this ptr
.text:004017FB mov eax, [eax+24h]
.text:004017FE push edx
.text:004017FF mov edx, [ebp+arg_4]
.text:00401802 push edx
.text:00401803 mov edx, [ebp+arg_0]
.text:00401806 push edx
.text:00401807 call eax
.....
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;; vtable (the static part)
; DATA XREF: sub_409B40+8o ; sub_40B0E0+2Fo
.rdata:00461D24 off_461D24 dd offset sub_40AAD0
.rdata:00461D28 dd offset sub_409BB0
.rdata:00461D2C dd offset sub_409BC0
.....
;; copying the head of the table
.text:0040B10C lea ecx, [esi+4] ; this
.text:0040B10F mov dword ptr [esi], offset off_461D24

The top part of the example shows the code that loads the function pointer from
the vtable to the eax register and then transfers control there by calling it. The
call instruction at the end will actually going to raise an exception. While han-
dling the exception, we check (i) the table that contains the faulting address at
0x461D24 (middle part) is referenced by a move instruction at 0x40B10F (bot-
tom part), and (ii) the instruction before the return address is a call instruction
with a register operand (at 0x401807).

3.5 Dynamic Data

Although in order to reconstruct the missing relocation information we need
to locate relocatable offsets within the image of the executable module, copies
of such values also appear in dynamic data (e.g., in the stack or heap). This
is the result, for example, of a global pointer being copied in a structure field
that was dynamically allocated. In this case, an exception is going to be raised
when the copy of the pointer (in the structure) is used. As described before,
our technique is going to trace the original relocatable offset. This is sufficient
for reconstructing the relocation information for this pointer, and avoid dealing
with the same problem next time the same program is executed. However, we
do not take any further actions to deal with copies in dynamic data. Thus, we
might have to handle more than one exceptions for the same relocatable value
during the same run in which it was first discovered. This, of course, does not
affect the correctness and robustness of the technique in any way, but can affect
overall performance.

To avoid the performance penalty under some cases, while not weakening
our original approach, we added a simple optimization for global pointers. Each
time a relocatable offset is fixed, and it is found to be the source operand of an
instruction that copies it over to a global data location, we check whether the
destination memory location contains the same value and relocate that copy,
too. Below is an example of a few such instructions (taken from gcc’s binary):

.text:004D5A69 mov dword_550968, offset loc_4D1F10

.text:004D5A73 mov dword_550AAC, offset loc_4D1C20

.text:004D5A7D mov dword_5509C4, offset nullsub_1

The first mov instruction in the above example copies the (relocatable) offset
loc 4D1F10 to the global data memory location 0x550968. At the time an



78 V. Pappas, M. Polychronakis, and A.D. Keromytis

exception is raised because control was transfered to address 0x4D1F10, the
source operand of the first mov instruction will be fixed, and, if the same value
is found at address 0x550968, that will be fixed as well. In this way, future
copies of the relocatable offset will point to the new code location, and no more
exceptions will be raised for this instance.

In general, when this optimization is not applicable and there are many copies
of relocatable offsets being repeatedly used, we have the option to set an access
threshold, beyond which the system can inform the user that restarting the
program would greatly increase its performance. Still, we believe that this is a
minor issue, as it might occur only in the first few times a program is executed.
After that, the relocation information of the majority of the relocatable offsets
will have been reconstructed.

4 Implementation

We built a prototype of the described technique for the Windows platform. Most
of the development of the tool was done on Windows XP. However, as the APIs
we use have not changed in more recent versions of the operating system, our
prototype supports even the latest version, which is Windows 8.1 at the time of
writing.

The most significant part of the implementation is built on top of the Windows
Debugging API [26], with the addition of some other standard functions (e.g.,
CreateProcess). This API is designed to work between two processes: the
parent process is responsible for spawning a child process, and then capture and
analyze any debug events the child generates. Debug events include memory
access violation exceptions, process/thread startup/termination, and so on. Our
implementation is bundled as a single application (about 1.5 KLOC) which can
be executed from the command prompt, and receives the path of the target
program to be protected as a command-line argument.

At a higher level, there are two phases of operation: initialization and runtime.
We discuss both in sufficient detail in the rest of this section.

4.1 Initialization

The first step during the initialization phase is to spawn the process, while
passing the appropriate arguments in order to enable debugging. The very first
debug event generated by the child process is a process creation event, which
is handled by the parent by performing the following tasks before resuming the
execution of the child process. Initially, the Portable Executable (PE) headers
are parsed. These headers include information such as the boundaries of each
section (data, code, etc.) and the entry point of the code. Given that information,
we proceed by copying the code section to a new, randomly chosen location using
the ReadProcessMemory and WriteProcessMemory API functions, while
changing the memory protections of the original code segment to inaccessible
using VirtualProtectEx.
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In order to improve the performance of certain runtime operations, a hash
table of all possible code pointer values is built. This is done by scanning all
sections and inserting any four-byte values (assuming 32-bit processes) that fall
into the address range of the original code segment. Finally, we check whether
there is a file that contains relocation information that was discovered as part
of previous runs, and apply them.

4.2 Runtime

After initialization is completed and control is given back to the child process,
the parent blocks while waiting for the next debugging event. Usually, we expect
memory access violation exceptions to be generated after this stage. New DLL
loaded events might happen as well, but rarely. Whenever a new DLL is loaded
in the address space of the child process, the system checks whether it contains
relocations. In case it does not, the same initialization steps that were previously
described are performed.

As described in Section 3, the core of our technique is implemented as part of
the handling mechanism of memory access violation exceptions. Each exception
record contains information about the location of the instruction that caused
it, along with the faulting address. Based on this information, we distinguish
between two main cases: i) the instruction pointer falls within the address range
of the original (inaccessible) code segment (instruction address and faulting ad-
dress are the same), and ii) an illegal memory access was made by an instruction
located in the relocated code segment (instruction address and faulting address
are different).

If the instruction pointer after a memory exception is received falls within the
original code segment, this means that the control flow was transfered there and
the program failed when it tried to execute the next instruction. In this case, the
faulting address corresponds to the location of the instruction in the exception
record. The exception is handled by first looking up the faulting address in the
hash table—which is constructed during the initialization phase. A single hit is
the simplest case, because it means that this is the source of the exception. If
there are more than one hits, each one is verified using the rules described in
Section 3 for immediate values or function pointers.

Alternatively, if the faulting instruction belongs to the relocated code segment,
this means that one of its operands caused the fault. This happens under two
circumstances: the instruction is an indirect jump, reading a jump table target
from the original code location, or an instruction that uses a copy of a relocatable
value from dynamic data.

5 Evaluation

In this section we present the results of the experimental evaluation of our pro-
totype in terms of correctness and performance overhead. For the largest part of
our evaluation, we used benchmarks from SPEC CPU2006 [4], as well as some



80 V. Pappas, M. Polychronakis, and A.D. Keromytis

real-world applications, such as Internet Explorer and Adobe Reader. All the ex-
periments were performed on a computer with the following specifications: Intel
Core i7 2.00GHz CPU, 8GB RAM, 256GB SSD with 64-bit Windows 8.1 Pro.

5.1 Statistics

We started our evaluation with the goal of getting a better feeling on the differ-
ences of applying our technique to programs with distinct characteristics. First,
we selected all the test programs in the integer suite that come with the SPEC
benchmark and stripped the relocation information from the compiled binaries.
Out of the twelve programs in that set, only libquantum had to be left out be-
cause it uses some C99 features that are not supported by Visual C++ (as noted
in the SPEC configuration file Example-windows-ia32-visualstudio.cfg).Then, we
executed each one using our prototype and gathered some valuable statistics that
provide insights about the runtime behaviour of our technique. At the same time,
we checked that the output of the benchmark test runs was correct, which in turn
verified the correctness of our implementation under these cases.

Table 1 shows the results of this run. The first column contains the name
of each SPEC test program, followed by the number of possible pointers that
we identified for each during the initialization phase. The next three columns
show the number of identified jump tables and the number of verified pointers
along with the percentage of them that had a single hit in the possible pointers
set. Next, we have the number of times that an already fixed relocatable offset
reappeared at runtime because of copies of it in dynamic data, followed by the
number of global pointer copies that we were able to apply the optimization
described in the last part of Section 3. Finally, the number of actual relocatable
offsets that we were able to reconstruct their relocation information in shown in
the last column.

Table 1. Statistics from running the SPEC benchmarks using the reference input data
(largest dataset)

Possible Jump Verified Single Dynamic Global Reconst.
Program Pointers Tables Pointers Hit Data Opt. Reloc.

perlbench 31,260 118 633 83.0% 43M 41 2,614
bzip2 2,147 4 11 84.6% 25 4 76
gcc 98,955 510 1,008 65.2% 73M 269 7,849
mcf 1,875 1 13 100.0% 19 - 22
gobmk 69,852 21 968 63.5% 4M 54 1,270
hmmer 4,798 15 17 94.4% 42 2 152
sjeng 8,460 12 17 100.0% 18 - 135
h264ref 17,526 17 27 71.0% 320K 61 209
omnetpp 24,861 13 1,509 90.6% 269K 8 1,669
astar 2,690 2 20 100.0% 31 - 42
xalancbmk 141,246 54 4,402 84.2% 9M 24 5,392
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Fig. 3. Normalized slowdown compared to normal execution (no relocation). Dark-
colored bars show the slowdown during the first run, where most of the relocations
are discovered and there are still copies of them in dynamic data. Light-colored bars
show the slowdown during the second run (and any subsequent runs) where most of
the relocations have already been discovered.

An interesting observation is that most of the times we have a single hit during
the verification of a code pointer, which simplifies the overall procedure. Another
interesting thing to note is that there is a very high variation in the number of
times that a copy of an already fixed relocatable offset in dynamic data is used.
This ranges from a few tens to tens of millions using these test cases. At the
same time, we note that there does not seem to be any significant correlation of
this number and the actual number of the reconstructed relocatable offsets.

5.2 Performance Overhead

Next, we focus on evaluating the performance overhead. As already mentioned,
the only case where we expect our technique to affect the performance of a target
application is during the first (or, few first) times we execute it, where most of
the relocations are being discovered. Any consecutive execution should have a
minimal runtime overhead impact.

Figure 3 shows the normalized slowdown for the first execution of the SPEC
programs under our prototype (Discovery run) and another execution after the
relocations have been discovered (Second run). In both cases, the slowdown is
compared to a normal execution without relocating the program (baseline). Also,
the input data used for this experiment was the reference dataset (i.e., the largest
dataset), where the average completion time for each test program is a couple
of minutes. As expected, we see that the overhead of the second run is mini-
mal (less than 5% on average) and mostly attributed to the unoptimized way
of applying the discovered relocation information. Currently, in our prototype
implementation we relocate every offset separately. For each of them, we read its
value, change the memory permissions, update its value and restore the memory
permissions. The unusually high performance overhead that we observed when
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Fig. 4. Avoiding the performance hit during the dynamic relocation discovery phase
(first run) by gradually increasing the input size on each execution. The overall time in
this case is much less compared to running a program using large input the first time.

executing gcc is due to the fact that it contains a high number of relocatable
offset copies in dynamic data (see Table 1). Although, that overhead does dis-
appear in any consecutive execution, there is not much we can do at this point,
except asking the user to restart the execution of the program in order to take
advantage of the already discovered relocatable offsets. An alternative strategy
is to ask the user to start with a very small input and progressively increase the
workload of the program during the first few executions, until the majority of
the relocations are discovered.

To demonstrate the effectiveness of that strategy, we applied it on the SPEC
CPU2006 benchmarks. These test programs come with three different inputs: a
very small test dataset used for verifying the functionality of the programs, a
medium-sized train set used for feedback-directed optimizations and the refer-
ence dataset, which is much larger that the other two. For all the results up to
this point, we have used the reference dataset. Figure 4 shows the normalized
slowdown of applying our technique to the same SPEC programs, but while in-
creasing the workload (from test, to train and reference) this time. Also, during
each execution, we allow our prototype to use any reconstructed relocation infor-
mation that has been discovered from previous executions. The slowdown of the
reference dataset is much less compared to the one reported in Figure 3. More-
over, the overall discovery phase (which is now broken down to three executions)
is much quicker compared to Figure 3, in absolute numbers. Even though gcc
seems to have a larger slowdown with the test dataset than before, this accounts
for 22 seconds, plus a few minutes for the next two executions, compared to 48
minutes when using the large reference dataset during the first execution.

5.3 Use Cases

The final part of our evaluation focuses on the feasibility of applying our tech-
nique on popular, real-world applications. For this purpose, we installed older
versions of both Internet Explorer and Adobe Reader, where the relocation info
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of their EXE files was stripped. The exact versions we used were 6.0.2900.5512
and 8.1.2, respectively. In both cases, the code size of the non-relocatable EXE
was relative small, approximately 10KB. Using our prototype implementation of
our technique we were able to successfully relocate the code segments to a new
and random location, while not breaking the functionality of the applications.
The number of relocatable offsets for which we reconstructed their relocation
information was 18 for Internet Explorer and 3 for Adobe Reader. Although it
is just a small number of relocations, reconstructing this information is crucial
in protecting these applications.

6 Related Work

We divide the related work into two parts. First, we review work that is related
to address space layout randomization. Reconstructing relocation information
enables or improves the accuracy of these proposals. Second, we review work
from the field of dynamic data structure excavation, where similar techniques to
ours are used.

6.1 Code Randomization and Disassembly

As code-reuse attacks require precise knowledge of the structure and location
of the code to be reused, diversifying the execution environment or even the
program code itself is a core concept in preventing code-reuse exploits [13, 16].
Address space layout randomization [27, 29] is probably one of the most widely
deployed countermeasures against code-reuse attacks. The problem of randomiz-
ing non-relocatable executable files was identified early on, with the first ASLR
implementations for Linux by the PaX project, and an approach based on the
interception of page faults to the original locations was proposed [31]. Our work
is based on the same core idea, but our implementation focuses on Windows
executables, we extend it with patching support to reduce runtime overhead,
and experimentally evaluate it.

In practice, however, the effectiveness of ASLR is hindered by code segments
left in static locations [17,21,47], while, depending on the randomization entropy,
it might be possible to circumvent it using brute-force guessing [37]. Even if all
the code segments of a process are fully randomized, vulnerabilities that allow
the leakage of memory contents can enable the calculation of the base address
of a DLL at runtime [8, 10, 20, 23, 35, 42, 43].

To overcome the limitations of the original design, more fine-grained forms of
randomization [19,28,44] have been proposed. These can be statically applied on
stripped binaries and randomize code at the instruction level (instead of random-
izing the base address only). Their accuracy and correctness, however, heavily
depends on the accuracy of disassembly and control flow graph extraction, which
is improved when relocation information is available.

Control flow integrity [9] is another protection scheme that confines program
execution within the bounds of a precomputed profile of allowed control flow
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paths. Although its original implementation depends on debug symbols for the
complete extraction of the control flow graph, recent proposals have demon-
strated how more relaxed forms of the same technique can be applied on stripped
binaries [45, 46]. Again, for legacy applications, these techniques would benefit
from the improved control flow extraction based on the availability of relocations.

Finally, although binary rewriting is still possible in the absence of relocation
information, it relies on dynamic instrumentation for indirect calls/jumps [41].
Thismakes the overall runtime overhead of the technique to depend on the number
of executed indirect calls/jumps, which are very frequent in C++ applications.

6.2 Dynamic Data Structure Excavation

Another body of work that uses related techniques to ours is dynamic data
structure excavation [14, 18, 24, 39, 40]. By looking at memory access patters
dynamically at runtime, these techniques are able to infer the type of binary
data, such as data structures and arrays.

Laika [14] employs Bayesian unsupervised learning to detect data structures.
Possible object positions and sizes are identified by using potential pointers in
the process’ memory image. Although sufficient for cases like evaluating the
similarity between malware samples, Laika’s output is not precise enough for
debugging or reverse engineering. Similar to Laika, Rewards [24] reconstructs
type information dynamically, based on abstract structure identification [33]. A
fundamental limitation of this approach is that it is not capable of identifying
data structures that are internal to a module. Howard [40] improves on the pre-
cision of data structure excavation by applying a set of specific rules to identify
data structures dynamically. Arrays, structure fields, etc. are recognized based
on runtime memory access patterns.

7 Conclusion

Address Space Layout Randomization (ASLR) has proven to be a very effec-
tive mitigation against code reuse attacks, making successful exploitation much
harder. Unfortunately, ASLR depends on some information that is often stripped
from executable files.

As a step towards addressing this limitation, we designed and implemented a
technique to dynamically reconstruct this missing information, which effectively
enables ASLR even on programs that are otherwise incompatible. The results
of our experimental evaluation focusing on performance measurements and use
cases with real-world applications clearly show the practicality of the proposed
approach.
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Abstract. Recently, many defenses against the offensive technique of
return-oriented programming (ROP) have been developed. Prominently
among them are kBouncer, ROPecker, and ROPGuard which all target
legacy binary software while requiring no or only minimal binary code
rewriting.

In this paper, we evaluate the effectiveness of these Anti-ROP de-
fenses. Our basic insight is that all three only analyze a limited number
of recent (and upcoming) branches in an application’s control flow on
certain events. As a consequence, an adversary can perform dummy op-
erations to bypass all employed heuristics. We show that it is possible to
generically bypass kBouncer, ROPecker, and ROPGuard with little extra
effort in practice. In the cases of kBouncer and ROPGuard on Windows,
we show that all required code sequences can already be found in the ex-
ecutable module of a minimal 32-bit C/C++ application with an empty
main() function. To demonstrate the viability of our attack approaches,
we implemented several proof-of-concept exploits for recent vulnerabili-
ties in popular applications; e. g., Internet Explorer 10 on Windows 8.

Keywords: ROP, Exploit Mitigation, Memory Corruptions.

1 Introduction

Defensive measures against memory corruption and control flow hijacking at-
tacks have been considerably improved recently, especially on the software side.
Widely deployed techniques such as address space layout randomization (ASLR)
and data execution prevention (DEP) often greatly hamper successful exploita-
tion of a given vulnerability or even succeed in preventing the attack at all. In
many cases, however, an advanced and dedicated attacker is still able to ulti-
mately bypass these defenses and achieve reliable exploitation [1, 7, 16, 27].

An offensive technique that is used in many of today’s successful attacks
is called return-oriented programming (ROP) [17, 28]. With this technique, an
attacker does not inject her own shellcode as part of the attack payload, but she
reuses existing code and chains small code fragments (so called gadgets) together
that perform malicious computations. Due to the effectiveness of this approach,
it comes as no surprise that in the last few years many defensive mechanisms
specifically targeting ROP have been proposed. Three recent representatives of
such methods are kBouncer [25], ROPecker [8], and ROPGuard [10].
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In this paper, we evaluate the effectiveness of these proposed methods and
demonstrate their limitations. We first analyze kBouncer, a defensive mecha-
nism that aims at detecting and preventing ROP-based attacks against user
mode applications on the Windows operating system. kBouncer leverages the
last branch recording (LBR) feature incorporated in current AMD and Intel x86-
64 CPUs [3, 15] to check for suspicious control flows. kBouncer received broad
attention not only from the research community when its first version [24] was
announced as the $200,000 winner of the Microsoft BlueHat Prize [2]. We show
that kBouncer’s latest version [25] can be circumvented in virtually all realistic
32-bit and 64-bit attack scenarios with little extra effort. More specifically, we
demonstrate how three recent ROP-based exploits—e. g., for Microsoft Internet
Explorer on Windows 8—can be modified to bypass kBouncer. Furthermore,
we show that even the .text section of a minimal 32-bit C/C++ application
compiled with Microsoft’s Visual Studio contains all necessary gadgets required
to bypass kBouncer. We demonstrate how successful attacks against kBouncer
in practice often also circumvent ROPGuard. This method placed second at
the BlueHat Prize and has since been incorporated into Microsoft’s Enhanced
Mitigation Experience Toolkit (EMET).

The third defensive measure we examine is ROPecker [8]. This approach was
presented in 2014 and it also leverages the LBR feature to protect applications
on Linux from ROP-based attacks. We show that ROPecker suffers from con-
ceptual weaknesses similar to kBouncer. In its published form, ROPecker can be
circumvented in a generic way by an adversary. We empirically verify our attack
and demonstrate a successful low-overhead bypass for a recent vulnerability of
the popular web server software Nginx.

In summary, the contributions of this paper are as follows:

– We discuss several kinds of commonly available 32-bit and 64-bit gadgets
that an attacker can utilize to perform malicious computations in a way
resembling benign control flow.

– We demonstrate that ROP defenses based on analyzing a limited number of
branches can be bypassed by an attacker in a generic way and that such a
bypass requires little extra effort.

– We empirically verify our proposed approaches and present successful attacks
against the three recent ROP defenses kBouncer, ROPecker, and ROPGuard.

– We assess the practical susceptibility of kBouncer and ROPecker to false
positive detections of attacks using independently implemented emulators.
We discover for both schemes that false positives are not unlikely to occur
for at least certain popular applications.

2 Technical Background

We briefly review the basic concepts behind return-oriented programming and
last branch recording that are fundamental to understand the rest of the paper.
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2.1 Return-Oriented Programming

Generally speaking, an attacker’s goal is the execution of certain code (referred to
as shellcode) of her choice in the context of a vulnerable application. Typically, an
attacker initially exploits some kind of software bug (e.g., a memory corruption
vulnerability or a dangling pointer) to hijack an application’s control flow.

As DEP has become prevalent, adversaries often resort to reusing (native)
code already present in an application instead of directly injecting new shellcode,
for example via exploitation techniques such as return-to-libc [23] or return-
oriented programming (ROP) [17,28]. With ROP, small code fragments—called
gadgets—ending in a return instruction are consecutively executed: an attacker
can “program” the desired semantics by writing a chain of addresses of gadgets
to the stack of one of the target application’s threads in such a way that each
gadget “returns” to its successor. This chain of gadgets is often referred to as
ROP chain. On x86-64 platforms, gadgets can be aligned as well as unaligned
with the original instruction stream produced by the compiler, as instructions
may start at any offset into a code page. Typically, suitable gadgets for ROP
attacks exist in sufficient quantities in most non-trivial applications [9,13]. There
are also ROP-compilers [14, 31, 32] that can for example automatically convert
a given shellcode into an application-specific ROP chain. Advanced techniques
closely related to ROP have been presented that leverage gadgets not ending in
return instructions but typically some kind of indirect jumps [4,6]. Accordingly,
these techniques are also known as jump-oriented programming (JOP). In the
following, we use the term ROP inclusively for JOP.

One widely deployed generic countermeasure against ROP is ASLR: modules
are loaded at pseudo-random base addresses resulting in the whereabouts of
gadgets being hard to predict. If not stated otherwise, we assume in the following
discussions that the attacker has ways to gain knowledge on the base address of at
least one executable module of sufficient size. We stress that this is no ambitious
assumption as it is generally fulfilled for real-world ROP-based exploits [1,7,16].

2.2 Last Branch Recording

kBouncer and ROPecker rely on the Last Branch Recording (LBR) feature of
contemporary AMD and Intel processors [3,15] to examine an application’s past
control flow on certain events.

The LBR can only be enabled and accessed from kernel mode. It can be
configured to only track certain types of branches. Both kBouncer and ROPecker
utilize this feature and they limit the LBR to indirect branches in user mode.
For each recorded branch, an entry containing the start and destination address
is written to the corresponding CPU core’s LBR stack. In Intel’s latest Haswell
architecture, an LBR stack is limited to only 16 entries. For each newly recorded
branch, the oldest entry in an LBR stack is overwritten. At any given time, an
LBR stack may not only contain entries from a single process/thread, but from
multiple ones running on the same core [8]. In the following, we do not consider
this effect, though, it might in practice facilitate attacks. Instead, for simplicity,
we assume that the LBR stack is always saved/restored on context switches.
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3 Security Assessment of kBouncer

The latest version of the kBouncer runtime ROP exploit mitigation approach was
presented by Pappas et al. in 2013 [25]. kBouncer checks for suspicious branch se-
quences hinting at a ROP exploit whenever a Windows API (WinAPI) [29] func-
tion considered as possibly harmful is invoked in a monitored process. kBouncer’s
authors list 52 WinAPI functions which they consider as possibly harmful.
Among these functions are for example VirtualAlloc() and VirtualProtect()

that are notoriously abused by attackers. Pappas et al. acknowledge that the list
is possibly not complete and could be extended in the future.

kBouncer is composed of a user mode component and a kernel driver. The user
mode component hooks all to-be-protected WinAPI functions in a monitored
process. Whenever the control flow reaches one of these hooks, the kernel driver
is informed via the WinAPI function DeviceIoControl(). Subsequently, the
driver examines the LBR stack for traces of a ROP chain. Since kBouncer’s user
mode component uses two indirect branches to inform the driver, only 14 of
the LBR stack’s 16 entries are of value to the driver’s ROP detection logic [25].
In case no attack is detected, the driver saves a corresponding “checkpoint” in
kernel memory for the respective thread. Whenever a system call corresponding
to a hooked WinAPI function is invoked, the driver consumes the matching
checkpoint; if none is found, an attack is reported. According to Pappas et al.,
the purpose of the checkpoint system is to prevent exploit code from simply
skipping over the top-level WinAPI functions and calling similar lower level
functions (e. g., NtCreateFile() instead of CreateFileW()). The reason for
kBouncer not monitoring system calls directly is the observation that between
WinAPI functions’ and their corresponding system call often many legitimate
indirect branches are executed that would often overwrite traces of ROP chains
in the LBR stack [25].

In order to evaluate kBouncer’s practical applicability and defensive strength,
we created a standalone emulator for kBouncer based on certain pieces of source
code generously provided to us by Pappas et al. The emulator uses the Pin [18]
dynamic analysis framework to instrument monitored applications at runtime.
To the best of our judgment, the emulator accurately captures all of kBouncer’s
core concepts as described by Pappas et al. [25].

3.1 Examination of Indirect Branch Sequences

When examining the LBR stack corresponding to the invocation of a WinAPI
function, kBouncer’s kernel driver assumes an attack if at least one of the fol-
lowing is encountered: (i) a return to an instruction not preceded by a call

instruction or (ii) a chain of a certain number of gadgets ending in the latest
LBR stack entry. For kBouncer, gadgets are up to 20 instructions long and may
contain conditional or unconditional relative jumps [25]. In the following, we re-
fer to gadgets under this definition as k-gadgets. Gadgets outside this definition
are conversely denoted as non-k-gadgets.
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Listing 1.1. Simple recursive C function
calculating the factorial of an integer

int f a c t o r i a l ( int n)
{
i f (n <= 1) return 1 ;
return f a c t o r i a l (n−1)∗n ;

}

Listing 1.2. Disassembly of epilogue
of function factorial()

[ . . . ]
lea ecx , [ edi−1]
ca l l f a c t o r i a l
mul edi
pop edi
re tn

Gadget Chain Detection Threshold. The maximum gadget chain length
kBouncer can identify is 13. This is due to only 14 LBR stack entries being of
value to kBouncer’s detection logic and the latest effective entry always corre-
sponding to a branch to a WinAPI function [25].

In order to determine a suitable detection threshold for the length of gadget
chains, Pappas et al. examined a set of popular Windows applications (e. g., Mi-
crosoftWord and Internet Explorer) at runtime while executing certain tasks [25].
They report on having found the LBR stack to contain chains of at most five
k-gadgets on entry to any of the 52 possibly harmful WinAPI functions across
their experiments. As a result, Pappas et al. defined kBouncer to consider chains
of eight or more k-gadgets as harmful, leaving a security margin of three against
false positives.

However, longer chains of k-gadgets can easily occur in practice in benign
and unsuspicious control flows. Consider for example a simple recursive function
calculating the factorial of an integer as shown in Listing 1.1 and Listing 1.2.
After the termination of factorial(n), the LBR stack contains a legitimate
chain of n − 1 k-gadgets of the form mul edi; pop edi; retn;, making the
control flow appear to contain a ROP chain under the kBouncer definition.
Many other possible scenarios exists where legitimate control flow resembles a
ROP chain under the kBouncer definition as well.

In fact, our kBouncer emulator detected k-gadget chains longer than the given
detection threshold for all non-trivial applications we executed on Windows 7
SP1 64-bit while monitoring the discussed 52 WinApi functions. For example,
saving a text file using the popular editor Notepad++ 5.9.8 (32-bit) reliably
resulted in one detected chain of the maximum length 13. The chain is de-
picted in Figure 1: the chain starts towards the end of the destructor of the class
CAsyncParser in comdlg32.dll and spans over ole32.dll and shell32.dll before
ending in the protected WinAPI function CloseHandle(). The characteristic of
the chain is that several short functions are invoked in a nested manner using
indirect calls only.

Note that the discrepancy in quality and quantity of false positives detected
by our emulator and the original kBouncer could have many reasons. Possibly,
the dynamic disassembly provided by Pin to our emulator is more comprehen-
sive than the static disassembly available to kBouncer’s offline gadget extraction
toolkit. It is also very well possible that kBouncer employs certain additional
filtering techniques in practice. Of course we can also not entirely rule out inac-
curate assumptions on our side.
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[…]
push    dword ptr [esi+58h] 
call    edi 
push    dword ptr [esi+26Ch]
call    ebx 
push    dword ptr [esi+270h] 
call    edi 
pop     edi
mov     ecx, esi
pop     esi
pop     ebx
nop
nop
nop
nop
nop
mov     dword ptr [ecx], vtable_parent 
mov     ecx, [ecx+14h]
test    ecx, ecx
jz      DllRelease() ; not taken
push    ecx             
xxx
[…]
retn 8

Comdlg32.dll
CAsyncParser::~CAsyncParser()

call    edi

call    ebx

call    edi

call    ds:__imp__CloseHandle

mov     edi, edi
push    ebp
mov     ebp, esp
mov     eax, g_pMalloc 
push    [ebp+8]
mov     ecx, [eax]
push    eax
call    dword ptr [ecx+14h]
pop     ebp
retn    4

Ole32.dll
CoTaskMemFree()

call    dword ptr [ecx+14h]

retn 4

mov     edi, edi
push    ebp
mov     ebp, esp
cmp     [ebp+8], 0
jz      loc_A ; always taken
[...]
loc_A:
pop     ebp
retn    8

Ole32.dll
CRetailMalloc_Free()

retn 8

mov     edi, edi
push    ebp
mov     ebp, esp
pop     ebp
jmp     __imp__CoTaskMemFree

Shell32.dll
ILFree()

jmp     ds:__imp__CoTaskMemFree

Kernell32.dll
CloseHandle()

kBouncer

5

6

2, 7, 11

3, 8, 12

4

9

1

10

13

(14)

Fig. 1. Exemplary false positive chain of 13 k-gadgets as detected by our kBouncer
emulator for the “Save File As” dialogue in Notepad++ 5.9.8 (32-bit) on Windows
7 64-bit. Taken indirect branches are highlighted in light gray. Branches are labeled
according to the order they are executed.

3.2 Circumventing kBouncer

We now explore ways an aware attacker can follow to circumvent kBouncer.
We consider kBouncer as bypassed when it is possible (with respect to the ac-
tual limits imposed by a vulnerability) to reliably and repeatedly conduct the
following two consecutive steps without kBouncer noticing:

S1 execution of arbitrary ROP chain
S2 successful invocation of a WinAPI function protected by kBouncer

Obviously kBouncer can be safely bypassed if the last 14 indirect branches
leading to a protected WinAPI function cannot be distinguished from benign
control flow; regardless of the actually deployed gadget chain detection policy.
This is due to kBouncer’s driver being effectively only able to look at most 14
LBR stack entries into the past.

In view of this fact, Pappas et al. discuss the possibility of an attack based on
a seemingly legitimate gadget chain (returns leading to call-preceded locations
only and at least every eighth gadget being a non-k-gadget). They allude that
such an attack would be difficult and state that “if evasion becomes an issue,
longer gadgets could be considered during the gadget chaining analysis of an
LBR snapshot” [25]. Furthermore, they also discuss the possibility of an attacker
looking “[...] for a long-enough execution path that leads to the desired API call
as part of the applications logic”. They expect this kind of attack to be “[...] quite
challenging, as in many cases the desired function might not be imported at all,
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and the path should end up with the appropriate register values and arguments
to properly invoke the function”.

We find that an attacker could instead also employ a simpler third method: the
code executed between a ROP chain (step S1) and a protected WinAPI function
(step S2) does not necessarily need to be meaningful ; not in the context of the
ROP chain and neither in the context of the attacked application. Hence, an
attacker can simply execute arbitrary meaningless code between both steps in
order to flush the LBR stack prior to the inspection through kBouncer’s driver.
The only requirements such LBR-flushing code has to fulfill are:

– Sufficiently many (e. g., 14) unsuspicious indirect branches must be executed.
– The arguments to the to-be-invoked WinAPI function must not be altered.
– Other WinAPI functions protected by kBouncer must not be invoked.
– The execution environment must not be rendered uncontrollable; e. g., by

access violation exceptions or manipulation of the ROP chain on the stack.

In the following we (i) discuss suitable LBR-flushing code sequences and (ii)
explain how attackers can generically circumvent kBouncer by incorporating
them into ROP chains. Attacks for 32-bit and 64-bit environments are discussed
separately as they require slightly different approaches due to divergent default
calling conventions: in 32-bit applications, arguments to WinAPI functions are
passed over the stack (stdcall calling convention), whereas the first four argu-
ments are passed in registers in 64-bit applications (fastcall calling conven-
tion) [20].

We limit ourselves to gadgets/code sequences that are likely to be present in
almost every process on Windows. In fact, all required gadgets/code sequences
can be found in standard Windows libraries and, at least for 32-bit, in every
C/C++ program created with default/common compiler and linker settings (at
least Release or Debug configuration; /Od, /O1, or /O2 optimization) using Mi-
crosoft Visual Studio versions 2010, 2012, or 2013. This is even valid for the
minimal C/C++ program with an empty main() whose .text section typi-
cally has an effective size of under 1 KB. We refer to this executable (Release,
/O2) as minpe-32 and minpe-64, respectively. All code that is present in minpe-
32/minpe-64 should also be present in virtually every other program compiled
and linked with default settings using Visual Studio.

3.3 Circumvention for 32-Bit Applications

LBR-Flushing Code Sequences. For 32-bit programs, finding suitable LBR-
flushing code sequences is easy: basically most functions that make a certain
amount of sub-calls (each sub-call terminates in an indirect branch) and do not
much depend on or interfere with the global state of a program comply with the
listed requirements. In the following, we refer to a function with these properties
as LBR-flushing function (lbr-ff). We found for example lstrcmpiW()1 in ker-
nel32.dll to be such a function. When supplied with two identical pointers to (al-
most) arbitrary data as arguments, we found that it reliably executed more than

1 lstrcmpiW() compares two Unicode strings in a case-insensitive manner.
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B
retn

call <anything>

jmp ({ESI, EDI, EBX, EBP})
A

call <anything>
A

call ({ESI, EDI, EBX, EBP})

i-jump-gadget i-call-gadget

Fig. 2. Formats of the 32-bit invocation gadget types i-jump-gadget (left) and i-call-
gadget (right); blocks labeled A and B may be empty or contain any sequence of
instructions not rendering the execution context uncontrollable

20 unsuspicious indirect branches. The fact that the function expects two argu-
ments is of course disadvantageous for an attacker, as this wastes precious space
on the (fake) stack. In practice, an attacker could ideally choose an lbr-ff with-
out arguments. E. g., we identified the two standard runtime library functions
pre_c_init() (statically contained in minpe-32) and EtwInitializeProcess()

(contained in ntdll.dll) as lbr-ffs with zero arguments. It should be clear that
suitable lbr-ffs are available in abundance in most real-world applications.

Invocation Gadgets. Given an lbr-ff, the attacker’s goal is to execute it be-
tween the ROP chain (step S1) and the invocation of a protected WinAPI func-
tion (step S2) in order to flush the LBR stack just before kBouncer’s detection
logic is triggered. Executing the lbr-ff itself is trivial: it can be part of the ROP
chain just like any other gadget. Obviously though, the lbr-ff cannot simply
“return” in ROP-manner to the entry point of a protected WinAPI function;
kBouncer would certainly detect an attack, as entry points of WinAPI functions
are never preceded by a call in the static instruction stream.

Instead, the control flow needs to transition from the lbr-ff to the protected
WinAPI function in such a way that kBouncer cannot distinguish it from legiti-
mate control flow. We found that for an attacker to achieve this, the availability
of a call-preceded and controllable jump-based or call-based invocation gadget
as depicted in Figure 2 is sufficient. In the following, we refer to gadgets of these
formats as i-jump-gadgets and i-call-gadgets, respectively.

Given an i-jump-gadget or an i-call-gadget, a protected WinAPI function
can be invoked right after an lbr-ff in such a way that the control flow appears
legitimate to kBouncer. Figure 3 schematically depicts the control flows for both
types of gadgets: 0© From the ROP chain, the control flow is transferred to the
lbr-ff of choice via a traditional retn terminated gadget. We need to make sure
that at this point the address of the instruction sequence A (see Figure 2) lies on
top of the stack. 1© This makes the lbr-ff return to A right behind the leading
dummy call instruction of the i-jump-gadget/i-call-gadget. 2© The protected
WinAPI function is then invoked via the indirect jmp/call instruction following
A. Typically, this instruction should branch relative to the registers esi, edi,
ebx, or ebp (e. g., jmp [ebx*4+edi] or call esi). These registers are premiere
choices here, because they are defined to be callee-saved in all common C/C++
calling conventions for x86 [20]. Hence, these registers can be assumed to be
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Fig. 3. Schematic control flow of the invocation of a protected WinAPI (32-bit); left:
i-jump-gadget right: i-call-gadget

unaltered by the invocation of virtually any lbr-ff. This allows the attacker to
set the registers using regular gadgets (before step 0©). 3©, 4© Depending on
the invocation gadget type, the WinAPI function either returns directly to the
ROP chain (i-jump-gadget) or a detour is taken over the instruction sequence B
(i-call-gadget).

kBouncer’s detection logic is triggered between steps 2© and 3©. At this point
kBouncer cannot detect an attack anymore, as the LBR stack exclusively con-
tains entries corresponding to branches executed after step 0©. Note that the
instruction sequence A is call-preceded. Hence, the return from the (legitimate)
lbr-ff to A is unsuspicious to kBouncer.

Passing of Arguments. Typically, the attacker would align arguments to the
WinAPI function on the stack prior to executing the lbr-ff (before step 0©). De-
pending on the nature of an invocation gadget though, arguments might also be
written to the stack by the instruction sequence A. Of course it is a require-
ment that the instruction sequence A does not alter the stack or register values
in such a way that the WinAPI function cannot be invoked as intended or the
control flow cannot properly resume afterward. For example, the i-jump-gadget
call <anything>; push 0; jmp edi; would allow to invoke a WinAPI func-
tion but would inevitably lead to the function returning to the invalid address 0.
Also, instructions triggering exceptions/interrupts must of course not be present
in A. Naturally, similar requirements apply to the trailing instruction sequence
B of the i-call-gadget.

Gadget Examples. An example for a suitable i-jump-gadget is given in Listing 1.3.
The gadget’sA sequence (lines 2–6) is composed of xor operations on general pur-
pose registers. This should be unproblematic for the attacker in almost all cases.

We implemented a Python script to statically identify this and multiple other
suitable i-jump-gadgets and i-call-gadgets in common Windows DLLs in an au-
tomated manner. We found this particular i-jump-gadget to be present in the
32-bit versions of kernel32.dll, kernelbase.dll, ntdll.dll, user32.dll, msvcr100.dll,
msvcr110.dll, msvcr120.dll, and msvcrt.dll of both Windows 7 and Windows 8.
All these DLLs are without doubt among the most frequently used ones on Win-
dows. In fact, ntdll.dll can be found in every Windows user mode process [29].
An example for an i-call-gadget is given in Listing 1.4. We discovered this gad-
get in the static runtime library function _onexit() [21] contained in minpe-32
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Listing 1.3. Aligned
i-jump-gadget in
TransferToHandler() found
in multiple Windows DLLs

1 ca l l sub 7DD9D8F5
2 xor eax , eax
3 xor ebx , ebx
4 xor ecx , ecx
5 xor edx , edx
6 xor edi , edi
7 jmp esi

Listing 1.4. Aligned i-call-gadget in
_onexit() of the standard Visual C/C++
library

1 ca l l es i
2 mov onex i tb e g in , eax
3 push dword ptr [ ebp−20h ]
4 ca l l es i
5 mov onex i tend , eax
6 mov dword ptr [ebp−4] , 0FFFFFFFEh
7 ca l l $+10h
8 mov eax , edi
9 ca l l SEH epi log4

10 re tn

(and other executables). While also allowing to generically bypass kBouncer, we
found the gadget to be slightly more complicated to handle than the i-jump-
gadget in Listing 1.3. Reasons are the presence of the push instruction in the
gadget’s A sequence (lines 2–3) and the presence of the two static calls in the
B sequence (lines 5–9).

Obviously, one of these two gadgets should be available to the attacker in most
scenarios. If not, it should in the uttermost cases be simple to find comparable
gadgets given that the i-call-gadget was found in less than 1 KB of code. Knowl-
edge of these two gadgets proved to be sufficient when we adapted high-profile
real world exploits to be undetectable by kBouncer (see § 3.5).

3.4 Circumvention for 64-Bit Applications

The described 32-bit approach for bypassing kBouncer is only to some extent
applicable to 64-bit. In the default 64-bit calling convention onWindows, the first
four arguments to a function are not passed over the stack but in the registers
rcx, rdx, r8, and r9 [20]. Accordingly, an attacker would in most cases need to
preload these registers before the invocation of the lbr-ff if the 32-bit approach
was followed here. As these four registers are explicitly not callee-saved, they are
likely to be altered by almost all lbr-ff. Hence, a different approach is needed for
64-bit systems.

Loop Invocation Gadget. We found a certain type of 64-bit gadget to be
especially suited for both the flushing of the LBR stack and the invocation
of protected WinAPI functions. A specimen contained in minpe-64 is given in
Listing 1.5. The gadget is comparable to the dispatcher gadget that was dis-
cussed as foundation for jump-oriented programming by Bletsch et al. [4]. The
gadget interprets rbx as an index into a table of code pointers. rbx is gradually
increased and all pointers are called until rbx equals rdi. The gadget allows
an attacker to execute an arbitrary number of gadgets/functions in a manner
that replicates benign control flow. Of course invoked gadgets must generally
not alter rbx or rdi. A very similar loop invocation gadget is for example also
contained in LdrpCallTlsInitializers() in the 64-bit ntdll.dll. We refer to
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Listing 1.5. Aligned i-loop-gadget in
RTC_Initialize() of the standard Vi-
sual C/C++ library

@loop :
mov rax , [ rbx ]
test rax , rax
jz @skip
ca l l rax
@skip :
add rbx , 8
cmp rbx , rd i
jb @loop
mov rbx , [ r sp+28h+arg 0 ]
add rsp , 20h
pop rd i
re tn

Loop Inv.
Gadget

ROP Chain

API

...

Dummy

Dummy

&Dummy

&Dummy
&Dummy
&Dummy
&Dummy
&Dummy
&API

rbx

rdi

&Dummy
0 9

1

2

8

Fig. 4. Schematic control of the invocation
of a WinApi function (i-loop-gadget)

this type of gadget as i-loop-gadget. An i-loop-gadget can be used to flush the
LBR stack and to invoke a protected API subsequently as depicted in Figure 4:
if a return-succeeded dummy gadget is executed at least seven times before the
invocation of a protected API, the LBR stack does not contain any traces of
the actual ROP chain when kBouncer’s detection logic is triggered (for each
dummy gadget an indirect call/return pair is executed). However, finding a suit-
able dummy gadget is not as easy as it might seem. Obviously, the dummy
gadget must be a non-k-gadget as the i-loop-gadget in Listing 1.5 already is a
k-gadget. If both are k-gadgets, then an attack is detected by kBouncer. Further-
more, the dummy gadget must neither alter the registers rbx and rdi nor the
registers rcx, rdx, r8, and r9 carrying the arguments for the WinAPI function.
Also, the dummy gadget of course must not render the program state uncontrol-
lable to the attacker. We implemented a Python script to identify appropriate
dummy gadgets in standard 64-bit Windows DLLs. We found a variety of long
and aligned math related gadgets/functions in ntdll.dll and msvcr*.dll access-
ing (almost) exclusively the specialized SSE [15] floating-point registers xmm0 to
xmm7. For example, _remainder_piby2_cw_forAsm() in msvcr120.dll contains
a gadget that does not write to memory and only touches SSE registers and rax

while executing at least 26 instructions. We also found several long sequences
(20+) of nop instructions terminated by a return in ntdll.dll. Unfortunately, we
did not find a suitable dummy gadget in the .text section of minpe-64.

In practice, the attacker might very well interleave dummy gadgets with mean-
ingful k-gadgets, which do not alter rbx or rdi, in the invocation loop. In fact,
as kBouncer per default only considers chains of more than seven k-gadgets
harmful, it would be sufficient to execute a single dummy gadget at the fourth
position (marked dark gray in Figure 4). This would enable the attacker to
use the last three gadgets before the invocation of the WinAPI function to
conveniently write arguments to the registers rcx, rdx, r8, or r9. This would
result in less constraints regarding register usage for the employed dummy gad-
get. Generically bypassing kBouncer using an i-loop-gadget is also possible for
32-bit applications. We found for example the 32-bit equivalent of the i-loop-
gadget in Listing 1.5 to be also present in minpe-32. Using the i-jump-gadgets or
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i-call-gadgets discussed in § 3.3 should though in most cases incur less overhead
in 32-bit environments. Also, we found suitable dummy gadgets to be relatively
sparse compared to lbr-ffs.

3.5 Example Exploits

To demonstrate the practicality of the described kBouncer bypasses and to assess
the resulting overhead, we developed a set of example exploits which we briefly
discuss now. As it is tradition, our exploits launch the Windows calculator via an
invocation of WinExec(). We stress that in all cases much more complicated ex-
ploits with multiple WinAPI calls would have been easily possible. No standard
Windows defensive mechanisms like ASLR and DEP were disabled or manipu-
lated. We confirmed that our exploits would indeed circumvent kBouncer using
our emulator where possible. Due to technical constraints we resorted to manual
confirmation using a debugger for Internet Explorer and Firefox.

Minimal Vulnerable Programs. We extended the discussed minimal executables
minpe-32 and minpe-64 to contain a simple buffer overflow vulnerability. We
assumed that the attacker knew the base addresses of the main module and
msvcr120.dll. In both cases we used common gadgets from msvcr120.dll like
pop eax; ret; to construct a conventional ROP chain. We then used the dis-
cussed i-call-gadget and the lbr-ff in minpe-32 to invoke WinExec(); respectively
for the 64-bit variant we leveraged the i-loop-gadget in minpe-64 and the dis-
cussed dummy gadget in msvcr120.dll. For 32-bit ten extra dwords (32-bit words)
were needed in the ROP payload to bypass kBouncer (25 dwords vs. 35 dwords);
for 64-bit 20 additional qwords (64-bit words) were required (29 qwords vs. 49
qwords). The relatively large overhead for 64-bit stems from the inclusion of the
eight qword long code pointer table.

Details on the basic and augmented ROP chains for 32-bit and 64-bit can be
found in our technical report corresponding to this paper [30].

MPlayer Lite. Pappas et al. used a stack buffer overflow vulnerability inMPlayer
Lite version r33064 for Windows [1] to evaluate the effectiveness of kBouncer.
MPlayer Lite is compiled with MinGW’s GCC version 4.5.1. We used gadgets
from the bundled avcodec-52.dll to build a conventional ROP-based exploit for the
same vulnerability. To circumvent kBouncer, we augmented the ROP chain by an
i-loop-gadget located in the static runtime library function TlsCallback_0() in
mplayer.exe. As corresponding dummy gadget we chose another one of MinGW’s
static runtime library function. Altogether, 37 additional dwords were needed for
the augmented ROP chain (21 dwords vs. 58 dwords). We found similar gadgets
also in binaries compiled with different MinGW GCC versions.

Internet Explorer 10. We modified a publicly available exploit for an integer
signedness error in Internet Explorer 10 32-bit for Windows 8 by VUPEN Secu-
rity [16]. The original exploit was a winning entry at the popular 2013 Pwn2Own
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contest. It uses JavaScript code to dynamically construct a ROP chain con-
sisting of 10 dwords to invoke WinExec(). In our modified version, four extra
dwords are used to incorporate the i-jump-gadget in Listing 1.3 (kernel32.dll)
and lstrcmpiW() as lbr-ff.

TorBrowser Bundle / Firefox 17. We modified the exploit allegedly used by the
FBI to target users of the TorBrowser Bundle [7]. The TorBrowser Bundle is
based on Firefox version 17.0.6 for Windows 7 32-bit. We use a ROP payload
of 54 dwords to invoke WinExec(). The version bypassing kBouncer includes
five additional dwords and uses the i-jump-gadget in Listing 1.3 (ntdll.dll) and
EtwInitializeProcess() (ntdll.dll) as lbr-ff.

3.6 Possible Improvements

We now briefly review three potential improvements to address our bypasses and
discuss their effectiveness.

Broadening of Gadget Definition. Pappas et al. propose that kBouncer could be
improved by considering gadgets longer than 20 instructions if evasion became
an issue [25]. We note that such an extension could not substantially tackle the
described 32-bit attacks using i-jump-gadgets or i-call-gadgets in conjunction
with lbr-ffs (see § 3.3): when kBouncer’s detection logic is triggered, the effective
LBR stack contains one entry corresponding to the invocation gadget and 13
to the lbr-ff. The lbr-ff’s LBR entries cannot reasonably be distinguished from
benign control flow, as the lbr-ff is a legit function of the attacked application
(e. g., lstrcmpiW()). A broader definition of k-gadgets could make it harder to
find dummy gadgets suitable for the (64-bit) attack approach based on i-loop-
gadgets (see § 3.4). In practice though, increasing the maximum gadget length
such that most suitable dummy gadgets are eliminated, would probably result in
unacceptable high numbers of overall false positives. Even for a maximum length
of 20, entire non-trivial functions fall already under the k-gadget definition.

Larger LBR Stack. Pappas et al. suggest that future CPU generations with larger
LBR stacks “would allow kBouncer to achieve even higher accuracy by inspecting
longer execution paths [...]” [25]. In such a case, our described approaches could
easily be adapted to create longer sequences of indirect branches resembling
benign ones. For example, the described i-loop-gadget can be used to create
such sequences of almost arbitrary length. Also, finding lbr-ffs which do so is
easy. The discussed lstrcmpiW() can for example be used to create dozens of
legit indirect branches.

Heuristic Detection of Invocation Gadgets. One could attempt to extend k-
Bouncer to heuristically check for LBR entries corresponding to the discussed
types of invocation gadgets. This could, depending on the actual implementation,
very well fend off the described attacks. However, we expect high numbers of
false positives from such a measure, as the same invocation patterns can very
well occur for benign control flows.
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4 Security Assessment of ROPGuard

ROPGuard is a runtime ROP detection approach for user mode applications
on Windows [10]. It placed 2nd to kBouncer at the BlueHat Prize and is in-
corporated into the Enhanced Mitigation Experience Toolkit (EMET) [22] that
is provided as optional security enhancement for Windows. Hence, ROPGuard
can be considered as the most widely spread advanced ROP countermeasure for
Windows applications.

Similar to kBouncer, ROPGuard hooks a set of critical WinAPI functions in
user mode processes. Whenever such a hook is triggered, ROPGuard as imple-
mented in EMET 4.1—the most recent version at the time of this writing—tries
to detect ROP-based exploits via a variety of checks. We describe the two most
relevant ones now briefly [10, 19]:

– Past and Future Control Flow Analysis : ROPGuard verifies that the return
address of a protectedWinAPI function is call-preceded. Furthermore, it sim-
ulates the control flow in a simple manner from the return address onwards
and checks for future non call-preceded returns. Simulation is performed un-
til a certain threshold number of future instructions was examined or any
call or jump instruction is encountered.

– Stack Checks : ROPGuard checks if the stack pointer points within the ex-
pected memory range for the given thread. It is common practice for attack-
ers to divert the stack pointer to a memory region (e. g., the heap) under
their control. ROPGuard also blocks attempts to make the stack executable.

Reports on how to bypass ROPGuard’s implementation in EMET have already
been published on the Internet (e. g., [26]). In fact, ROPGuard’s original author
Ivan Fratric suggests that an attacker who is aware of it “would be able to con-
struct special ROP chains that would [...] push ROPGuard off guard” [11]. We
found that our kBouncer example exploits that rely either on i-call-gadgets or
on i-loop-gadgets (both minimal vulnerable programs and MPlayer) already by-
passed ROPGuard’s implementation in EMET. In turn, ROPGuard successfully
stopped all of the three corresponding unmodified exploits. For ROPGuard, the
discussed i-call-gadgets and i-loop-gadgets invoke the protected WinExec() via
seemingly legitimate calls. These gadgets also make ROPGuard’s future con-
trol flow simulation stop early due to subsequent jumps/calls. The stack-related
checks do not apply to our example exploits.

5 Security Assessment of ROPecker

ROPecker, a runtime ROP exploit mitigation system, was presented by Cheng
et al. in 2014 [8]. ROPecker aperiodically checks for abnormal branch sequences
in an application’s control flow. For that, ROPecker combines kBouncer-like ex-
amination of the LBR stack with ROPGuard-like future control flow simulation.
Cheng et al. specifically report on a prototype implementation of ROPecker as
a kernel module for 32-bit x86 Linux systems. Hence, we also only consider this
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platform. For evaluation purposes, we implemented an experimental standalone
Pin-based emulator for ROPecker. We are confident that this emulator accu-
rately captures most of ROPecker’s aspects. All experiments we report on in the
following were conducted on either Ubuntu 12.0.4 or Debian 7.4.0 systems.

5.1 Triggering of Detection Logic

Other than comparable approaches, ROPecker does not apply any form of binary
rewriting such as API function hooking to inspect an application’s control flow.
Instead, ROPecker ensures that only a small fixed-size dynamic set of code pages
is executable at any given time within a process. ROPecker’s ROP detection
logic is invoked every time an access violation is triggered due to the target
application’s control flow reaching a new page outside the set of executable
pages. If no attack is detected, ROPecker replaces the oldest page in the set
of executable pages with the newly reached page and resumes the execution
of the corresponding thread/process. Cheng et al. refer to this technique as a
“sliding window mechanism”. They suggest using a window/set size of two to
four executable pages, corresponding to 8 to 16 KB of executable code, because
it is supposedly hard to find enough gadgets for a meaningful attack in less than
20 KB of code [8]. The pages inside the sliding window do not necessarily need
to be adjacent.

For our emulator, we use a fixed sliding window size of exactly one page to
achieve fine-granular capturing. Note that a smaller sliding window size results
in ROPecker’s detection logic being triggered more often. Hence, chances for
false negatives decrease while in turn chances for false positives increase.

5.2 Examination of Indirect Branch Sequences

Each time it is triggered, ROPecker’s detection logic tries to identify attacks by
analyzing the past and the (simulated) future control flow of a thread/process
for chains of ROP gadgets. Per default, ROPecker considers a sequence of in-
structions to be a gadget in case it meets the following criteria [8]: (i) the last
instruction is an indirect branch; (ii) no other branch (e. g., call or jnz) is
contained; (iii) it consists of at most six instructions. This limit was arbitrarily
chosen by Cheng et al. ROPecker can be configured to consider longer gadgets.
We refer to gadgets that comply with ROPecker’s definition as r-gadgets.

Analysis of Past and Future Indirect Branches. Like kBouncer, ROPecker
configures the CPU’s LBR facility to only track indirect branches in user mode.
Whenever execution reaches a page outside the sliding window, ROPecker first
examines the thread’s/process’ past indirect branches for a chain of r-gadgets via
the LBR stack: going backward from the most recent one, it is checked for each
LBR entry (which necessarily ends in an indirect branch) if its branch destina-
tion is an r-gadget. The past detection stops with the first entry not matching
this characteristic. After that, ROPecker simulates the thread’s/process’ future
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Table 1. Exemplary maxnor as determined by our ROPecker emulator

Application maxnor Activity
Nginx 1.4.0 5 delivery of small web page
Adobe Reader 9.5.5 9 opening of document
Pidgin 2.10.9 9 IRC chat
Gimp 2.8.2 9 simple drawing
VLC 2.0.8 11 playback of short OGG video
LibreOffice Calc 3.5.7.2 17 creation of simple spreadsheet

indirect branches using rather complex emulation techniques going forward from
the most recent LBR entry’s branch destination. As soon as a code sequence is
encountered that does not qualify as r-gadget, the future detection stops. If the
accumulated length of the past and the future gadget chains is above a certain
threshold, an attack is assumed.

Gadget Chain Detection Threshold. Cheng et al. suggest using a chain de-
tection threshold between 11 and 16 r-gadgets where “an ideal threshold should
be smaller than the minimum length minrop of all ROP gadget chains, and
at the same time, be larger than the maximum length maxnor of the gadget
chains identified from normal execution flows” [8]. They report that various real
world and artificial ROP chains analyzed by them consisted of 17 to 30 gad-
gets. Hence, they universally assume minrop = 17. To assess maxnor, Cheng et
al. examined a variety of applications (certain Linux coreutils, SPEC INT2006,
ffmpeg, graphics-magick, and Apache web server) during runtime. For the code
paths triggered in their experiments, they found maxnor overall to be 10 and for
Apache even only 4; values well below their empirically determined minrop = 17.

In practice, higher values formaxnor are not totally unlikely though. Consider
for example again the simple recursive function factorial() from Listing 1.1 in
§ 3 whose epilogue qualifies as r-gadget. We used our experimental emulator to
explore the range of maxnor for popular applications not covered by experiments
conducted by Cheng et al. The results are listed in Table 1. The encountered
chain of 17 r-gadgets for LibreOffice Calc resulted from a long chain of returns
from nested function calls (similar to the factorial() example). We emphasize
that our emulator with a sliding window size of only one page naturally catches
more false positives and produces higher maxnor than configurations with larger
sliding windows. However, these numbers suggest that ROPecker might not be
equally well applicable to all kinds of applications, as in certain cases maxnor

could be too high to allow for a reasonably low detection threshold minrop.

5.3 Circumvention

We now discuss methods for the generic circumvention of ROPecker. In general,
we find that the narrow definition of r-gadgets makes ROPecker only a small
hurdle for aware attackers.

Cheng et al. state that ROPecker’s “[...] payload detection algorithm is de-
signed based on the assumption that a gadget does not contain direct branch
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Fig. 5. Generic layout of a gadget chain bypassing ROPecker. Conventional gadgets
(white) are interleaved with gadgets stopping the past and future detection logic (gray).

instructions, which is also used in the many previous work [...]. Therefore, the
gadget chain detection stops when a direct branch instruction is encountered” [8].
They also acknowledge that an “[...] adversary may carefully insert long gadgets
into consecutive short gadgets to make the length of each segmented gadget
chain not exceed the gadget chain threshold [...]” to achieve the same. Note that
these statements already describe all that is necessary in order to successfully
bypass ROPecker in a generic manner. As depicted in Figure 5, attackers simply
need to take care to periodically mix in a non-r-gadget (containing a branch or
more than six instructions) into their gadget chains in order to stop ROPecker’s
past and future detection logic before the given detection threshold is reached.
In the following, we refer to such a gadget as blocker-gadget.

Cheng et al. argue that to the best of their knowledge an attack using jump-
containing gadgets “[...] has not been found in real-life.”. We note that this
observation does not necessarily imply that jump-containing (or long) gadgets
are hard to use. Instead, it is in the uttermost cases trivial for an attacker to find
and use such gadgets, as they do not need to be meaningful in any context. The
only requirement is that they do not render the program state uncontrollable
as already discussed in § 3 for kBouncer. Even entire regular functions as the
ones discussed in § 3.3 can be misused by attackers here. In our example exploit
against ROPecker (see § 5.4) we use for example the standard POSIX function
usleep() as blocker-gadget.

5.4 Example Exploit

To demonstrate the applicability of the discussed ROPecker bypassing strategy,
we created a ROP-based exploit for a stack buffer overflow vulnerability (CVE-
2013-2028) [27] in the popular web server Nginx version 1.4.0. We inserted the
function usleep() as blocker-gadget into the ROP chain after at least every sev-
enth regular gadget. The entire resulting ROP payload is 107 dwords long—92
dwords are needed without ROPecker evasion—and creates a file on the target
system using the system() function. Our ROPecker emulator detects a maxi-
mum chain length of nine for the exploit due to the epilogue of usleep() con-
taining two chained r-gadgets. As this is below the default detection threshold
of 11, the attack goes unnoticed.
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5.5 Possible Improvements

We again briefly review potential improvements to address our bypasses and
discuss their effectiveness.

Detection of Unaligned Gadgets. Cheng et al. propose that ROPecker could be
improved by considering the execution of unaligned instructions as attack [8].
They note though, that it may not always be possible to decide if a given x86
instruction sequence is aligned or not. Attackers restricted to aligned gadgets
would probably need longer gadget chains on average to achieve compromise.
Also, finding suitable gadgets in general would be more complicated. The generic
circumvention approach described in § 5.3 could though not be prevented.

Accumulation of Chain Lengths. To tackle attacks relying on blocker-gadgets,
Cheng et al. suggest an extension to ROPecker that accumulates the detected
chain lengths for multiple (e. g., three) consecutive sliding window updates. How-
ever, we find that an attacker could still generically avoid detection by using a
(meaningless) function as blocker-gadget which updates the sliding window sev-
eral times. When such a function returns to the next r-gadget, the accumulated
chain length should in the uttermost cases be well below the detection threshold.
We found for example the already mentioned usleep() to be a suitable function
for this purpose. In our experiments, the function reliably switched pages several
times before finally executing a system call.

Broadening of Gadget Definition. Lastly, Cheng et al. propose extending ROP-
ecker in such a way that instruction sequences connected by direct jumps are also
considered as gadgets, but also state that this might increase the number of false
positives. In order to evaluate the practicality of such an extension, we experimen-
tally modified our ROPecker emulator to consider kBouncer’s k-gadgets (up to 20
instructions including direct jumps) instead of r-gadgets. With this hypothetical
extension in place, we generally encountered high numbers of false positives often
corresponding to astonishingly long benign chains of k-gadgets. For example, our
emulator detected a chain of length 14 in libc for a small hello world application.
While monitoring VLC during the playback of a short OGG video, the emulator
even detected chains of lengths 77 and 82 in librsvg2 and libexpat respectively;
the first being induced by a long static sequence of indirect calls to a very short
function and the latter by a compact looped switch-case statement implemented
using a central indirect jump. This hints at ROPecker possibly not being reason-
ably extendable to consider significantly more complex gadgets.

Checking for Illegal Returns. We believe that ROPecker’s defensive strength
could indeed be increased if it would consider returns to non call-preceded loca-
tions as indicator for an attack like kBouncer and ROPGuard do. Such an exten-
sion would effectively require attackers to largely resort to call-preceded gadgets
or JOP-like concepts such as i-loop-gadgets (see § 3.4). While this would not
prevent bypasses, it could significantly raise the bar. We would expect negligible
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overhead and close to zero additional false positives from such an extension as to
the best of our knowledge returns to not call-preceded locations virtually never
occur in benign control flows.

6 Related Work

To the best of our knowledge, the discussed ROP mitigation techniques have not
been reviewed in other academic publications so far. Recently and concurrently
to our work, Göktaş et al. demonstrate ways to bypass certain control-flow-
integrity (CFI) systems for binary applications [12]. They show how certain
types of gadgets still allow for ROP-like attacks in the presence of these systems.
They mention that two of these gadget types could potentially be used to “call
a function simply for tricking kBouncer” and refer to future work. We note that
our described exploits would be prevented by these CFI systems. Our approaches
could though be combined with the one presented by Göktaş et al.

Stephen Checkoway discusses in an article on the Internet, among others,
kBouncer’s first version [24] that “does not protect against return-oriented pro-
gramming that doesn’t use returns” [5]. This variant of kBouncer was meant
to be invoked on the invocation of system calls instead of top-level WinAPI
functions. Checkoway states that long enough regular code paths leading to sys-
tem calls in an application could be used to erase traces of a ROP chain before
kBouncer’s detection logic becomes active.

The insights of both Göktaş et al. and Checkoway are similar to the foundation
of our described attack techniques.

7 Conclusions

We examined the practical effectiveness of three recent approaches that attempt
to prevent return-oriented programming. These are kBouncer [25], ROPecker [8],
and ROPGuard [10]. All of them can reliably detect and prevent legacy exploits.
We showed in turn that they can be bypassed in generic ways with little effort by
aware adversaries. The basic problem is that the three approaches only analyze
a limited number of recent (and upcoming) branches and an adversary can fool
the employed heuristics. Both kBouncer and ROPecker rely on a custom kernel
driver and employ complicated detection techniques build upon the LBR fea-
ture of modern processors. They though fall short to supply significantly higher
protection levels than the much simpler ROPGuard. Our experimental results
also hint at kBouncer and ROPecker being more prone to false positive attack
detections than ROPGuard. We conclude that LBR, a feature that was origi-
nally designed for profiling and debugging purposes, is probably not particularly
well suited for the implementation of strong defensive measures with reasonable
runtime overhead.
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Abstract. Recent works have shown promise in detecting malware pro-
grams based on their dynamic microarchitectural execution patterns.
Compared to higher-level features like OS and application observables,
these microarchitectural features are efficient to audit and harder for
adversaries to control directly in evasion attacks. These data can be
collected at low overheads using widely available hardware performance
counters (HPC) in modern processors. In this work, we advance the use of
hardware supported lower-level features to detecting malware exploita-
tion in an anomaly-based detector. This allows us to detect a wider range
of malware, even zero days. As we show empirically, the microarchitec-
tural characteristics of benign programs are noisy, and the deviations
exhibited by malware exploits are minute. We demonstrate that with
careful selection and extraction of the features combined with unsuper-
vised machine learning, we can build baseline models of benign program
execution and use these profiles to detect deviations that occur as a
result of malware exploitation. We show that detection of real-world ex-
ploitation of popular programs such as IE and Adobe PDF Reader on a
Windows/x86 platform works well in practice. We also examine the limits
and challenges in implementing this approach in face of a sophisticated
adversary attempting to evade anomaly-based detection. The proposed
detector is complementary to previously proposed signature-based de-
tectors and can be used together to improve security.

Keywords: Hardware Performance Counter, Malware Detection.

1 Introduction

Malware infections have plagued organizations and users for years, and are grow-
ing stealthier and increasing in number by the day. In response to this trend,
defenders have created commercial antivirus (AV) protections, and are actively
researching better ways to detect malware. An emerging and promising approach
to detect malware is to build detectors in hardware [3]. The idea is to use infor-
mation easily available in hardware (typically via HPC) to detect malware. It has
been argued that hardware malware schemes are desirable for two reasons: first,
unlike software malware solutions that aim to protect vulnerable software with
equally vulnerable software1, hardware systems protect vulnerable software with

1 Software AV systems roughly have the same bug defect density as regular software.

A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 109–129, 2014.
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Fig. 1. Taxonomy of malware detection approaches and some example works

robust hardware implementations that have lower bug defect density because of
their simplicity. Second, while a motivated adversary can evade either defense,
evasion is harder in a system that utilizes hardware features. The intuition is
that the attacker does not have the same degree of control over lower-level hard-
ware features as she has with software ones. For instance, it is easier to change
system calls or file names than induce cache misses or branch misprediction in
a precise way across a range of time scales while exploiting the system.

In this paper we introduce techniques to advance the use of lower-level mi-
croarchitectural features in the anomaly-based detection of malware exploits.
Existing malware detection techniques can be classified along two dimensions:
detection approach and the malware features they target, as presented in Fig-
ure 1. Detection approaches are traditionally categorized into misuse-based and
anomaly-based detection. Misuse-based detection flags malware using pre-
identified attack signatures or heuristics. It can be highly accurate against known
attacks but can be easily evaded with slight modifications that deviate from the
signatures. On the other hand, anomaly-based detection characterizes baseline
models of normalcy state and identifies attacks based on deviations from these
models. Besides known attacks, it can potentially identify novel ones. There are
a range of features that can be used for detection: until 2013, they were OS
and application-level observables such as system calls and network traffic. Since
then, lower-level features closer to hardware such as microarchitectural events
have been used for malware detection. Shown in Figure 1, we examine for the first
time, the feasibility and limits of anomaly-based malware detection using both
architectural and low-level microarchitectural features available from HPCs.

Prior misuse-based research that uses microarchitectural features such as [3]
focuses on flagging Android malicious apps by detecting payloads. A key dis-
tinction between our work and prior work is when the malware is detected.
Malware infection typically comprises two stages, exploitation and take-over. In
the exploitation stage, an adversary exercises a bug in the victim program to
hijack control of the program execution. Exploitation is then followed by more
elaborate take-over procedures to run a malicious payload such as a keylogger.
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Our work focuses on detecting malware during exploitation, as it not only gives
more lead time for mitigations but can also act as an early-threat detector to
improve the accuracy of subsequent signature-based detection of payloads.

The key intuition for the anomaly-based detection of malware exploits stems
from the observation that the malware, during exploitation, alters the original
program flow to execute peculiar non-native code in the context of the victim pro-
gram. Such unusual code execution tend to cause perturbations to the dynamic
execution characteristics of the program. If these perturbations are observable,
they can form the basis of detecting malware exploits.

In this work, we model the baseline characteristics of common vulnerable
programs – Internet Explorer 8 and Adobe PDF Reader 9 (two of the most
attacked programs) and examine if such perturbations do exist. Intuitively one
might expect the deviations caused by exploits to be fairly small and unreli-
able, especially in vulnerable programs with extremely varied use such as in the
ones we study. This intuition is validated in our measurements. On a Windows
system using Intel x86 chips, our experiments indicate that distributions of mea-
surements from the hardware performance counters are positively skewed, with
many values being clustered near zero. This implies minute deviations caused by
the exploit code cannot be effectively discerned directly. However, we show that
this problem of identifying deviations from the heavily skewed distributions can
be alleviated. We show that by using power transform to amplify small differ-
ences, together with temporal aggregation of multiple samples, we can identify
the execution of the exploit within the context of the larger program execution.
Further, in a series of experiments, we systematically evaluate the detection
efficacy of the models over a range of operational factors, events selected for
modeling and sampling granularity. For IE exploits, we can identify 100% of the
exploitation epochs with 1.1% false positives. Since exploitation typically occurs
across nearly 20 epochs, even with a slightly lower true positive rate, we can
detect exploits with high probability. These are achieved at a sampling overhead
of 1.5% slowdown using sampling rate of 512K instructions epochs.

Further we examine the resilience of our detection technique to evasion strate-
gies of a more sophisticated adversary. We model mimicry attacks that craft
malware to exhibit event characteristics that resemble normal code execution
to evade our anomaly detection models. With generously optimistic assump-
tions about attacker and system capabilities, we demonstrate that the models
are susceptible to the mimicry attack. In a worst case scenario, the detection
performance deteriorates by up to 6.5%. Due to this limitation we observe that
anomaly detectors cannot be the only defensive solution but can be valuable as
part of an ensemble of detectors that can include signature-based ones.

The rest of the paper is organized as follows. We provide a background on
modern malware exploits in Section 2. We detail our experimental setup in Sec-
tion 3. We present our approach in building models for the study in Section 4,
and describe the experimental results in Section 5. Section 6 examines evasion
strategies of an adaptive adversary and their impact on detection performance.
Section 7 discusses related work, and we conclude in Section 8.
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2 Background

Figure 2 shows a typical multi-stage malware infection process that results in a
system compromise. The necessity for its multi-stage nature will become clear
as we explain the exploit process in this section.

Triggering the Vulnerability. First the adversary crafts and delivers the
exploit to the victim to target a specific vulnerability known to the adversary
(Step 1©). The vulnerability is in general a memory corruption bug; the exploit
is typically sent to a victim from a webpage or a document attachment from
an email. When the victim accesses the exploit, two exploit sub-programs, com-
monly known as the ROP and Stage1 “shellcodes”, load into the memory of the
vulnerable program (Step 2©). The exploit then uses the vulnerability to transfer
control to the ROP shellcode (Step 3©).

Code Reuse Shellcode (ROP). To prevent untrusted data being executed
as code, modern processors provide Data Execution Prevention (DEP) to restrict
code from being run from data pages. To support JIT compilation however,
DEP can be toggled by the program itself. So the ROP -stage shellcode typically
circumvents DEP by reusing instructions in the original program binary – hence
the name Code Reuse Shellcode – to craft a call to the function that disables
DEP for the data page containing the next Stage1 shellcode. The ROP shellCode
then redirects execution to the next stage. (Step 4©) [16].

Stage1 Shellcode. This shellcode is typically a relatively small – from a few
bytes to about 300 bytes2 – code stub with exactly one purpose: to download
a larger (evil) payload which can be run more freely. To maintain stealth, it
downloads the payload in memory (Step 5©).

Stage2 Payload. The payload is the final piece of code that the adversary
wants to execute on the target to perform a specific malicious task. The range of
functionality of this payload, commonly a backdoor, keylogger, or reconnaissance
program, is unlimited. After the payload is downloaded, the Stage1 shellcode
runs this payload as an executable using reflective DLL injection (Step 6©), a

2 As observed at http://exploit-db.com

http://exploit-db.com
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stealthy library injection technique that does not require any physical files [5].
By this time, the victim system is fully compromised (Step 7©).

The Stage1 shellcode and Stage2 payload are different in size, design and
function, primarily due to the operational constraints on the Stage1 shellcode.
When delivering the initial shellcode in the exploit, exploit writers typically try
to use as little memory as possible to ensure that the program does not unin-
tentionally overwrite their exploit code in memory. To have a good probability
for success, this code needs to be small, fast and portable, and thus is written in
assembly language and uses very restrictive position-independent memory ad-
dressing style. These constraints limit the adversary’s ability to write very large
shellcodes. In contrast, the Stage2 payload does not have all these constraints
and can be developed like any regular program. This is similar to how OSes use
small assembly routines to bootstrap and then switch to compiled code.

The strategy and structure described above is representative of a large number
of malware especially those created with recent web exploit kits [25]. These
malware exploits execute completely from memory and in the process context
of the host victim program. Further, they maintain disk and process stealth by
ensuring no files are written to disk and no new processes are created, and thus
easily evade most file based malware detection techniques.

3 Experimental Setup

Do the execution of different shellcode stages exhibit observable deviations from
the baseline performance characteristics of the user programs? Can we use these
deviations, if any, to detect a malware exploit as early as possible in the infection
process? To address these questions, we conduct several feasibility experiments,
by building baseline per-program models using machine learning classifiers and
examining their detection efficacy over a range of operational factors. Here, we
describe our experimental setup and detail how we collect and label the mea-
surements attributed to different malware exploit stages.

3.1 Exploits

Unlike SPEC, there are no standard exploit benchmarks. We rely on a widely-
used penetration testing tool Metasploit (from www.metasploit.com) to gener-
ate exploits for common vulnerable programs from publicly available informa-
tion. We use exploits that target the security vulnerabilities CVE-2012-4792,
CVE-2012-1535 and CVE-2010-2883 on IE 8 and the web plug-ins, i.e., Adobe
Flash 11.3.300.257 and Adobe Reader 9.3.4 respectively. We choose to utilize
Metasploit because the exploitation techniques it employs in the exploits are
representative of multi-stage nature of real-world exploits.

Besides targeting different vulnerabilities using different ROP shellcode from
relevant library files (msvcrt.dll, icucnv36.dll, flash32.ocx), we also vary
both the Stage1 (reverse tcp, reverse http, bind tcp) shellcode and the Stage2
final payload (meterpreter, vncinject, command shell) used in the exploits.

www.metasploit.com
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Additionally, we instrument the start and end of the respective malware stages
with debug trap int3 instructions (0xCC) of one byte long, to label the exploit
measurements with the respective stages solely for evaluation purposes.

3.2 Measurement Infrastructure

Since most real-world exploits run on Windows and PDF readers, and none of
the architectural simulators can run programs of this scale, we use measurements
from production machines. We develop a Windows driver to configure the per-
formance monitoring unit on Intel i7 2.7GHz IvyBridge Processor to interrupt
once every N instructions and collect the event counts from the HPCs. We also
record the Process ID (PID) of the currently executing program so that we can
filter the measurements based on processes.

We collect the measurements from a VMware Virtual Machine (VM) environ-
ment, installed with Windows XP SP3 and running a single-core with 512MB
of memory. With the virtualized HPCs in the VM, this processor enables the
counting of two fixed events (clock cycles, instruction retired) and up to a limit
of four events simultaneously. We configure the HPCs to update the event counts
only in the user mode. To ensure experiment fidelity for the initial study, mea-
surements from the memory buffer are read and transferred via TCP network
sockets to a recording program deployed in another VM. This recording program
saves the stream of measurements in a local file that is used for our analysis.

We experiment with various sampling interval of N instructions. We choose
to begin the investigation with a sampling rate of every 512,000 instructions
since it provides a reasonable amount of measurements without incurring too
much overhead (See Section 5.4 for an evaluation of the sampling overhead).
Each sample consists of the event counts from one sampling time epoch, the
identifying PID and the exploit stage label.

3.3 Collection of Clean and Infected Measurements

To obtain clean exploit-free measurements for IE 8, we randomly browse websites
that use different popular web plugins available on IE viz., Flash, Java, PDF,
Silverlight, and Windows Media Player extensions. We visit the top 20 websites
from Alexa and include several other websites to widen the coverage of the use of
the various plug-ins. Within the browser, we introduce variability by randomizing
the order in which the websites are loaded across runs and by navigating the
websites by clicking links randomly and manually on the webpages. The dynamic
content on the websites also perturbs the browser caches. We use a maximum of
two concurrent tabs. In addition, we simulate plug-in download and installation
functions.

For Adobe PDF measurements, we download 800 random PDFs from the web,
reserving half of them randomly for training and the other half for testing. To
gather infected measurements, we browse pages with our PDF exploits with the
same IE browser that uses the PDF plug-in. We use Metasploit to generate these
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PDF exploits and ensure that both the clean and unclean PDFs have the same
distribution of file types, for instance, same amount of Javascript.

We stop gathering infected measurements when we see creation of a new pro-
cess. Usually the target process becomes unstable due to the corrupted memory
state, and the malicious code typically “migrates” itself to another new or ex-
isting process to ensure persistence after the execution of the Stage2 payload.
This is an indication that the infection is complete.

While there are factors that may affect the results of our measurements, we
take additional care to mitigate the following possible biases in our data during
the measurement collection:

(1) Between-run Contamination: After executing each exploit and col-
lecting the measurements, we restore the VM to the state before the exploit
is exercised. This ensures the measurements collected are independent across
training and testing sets, and across different clean and exploit runs.

(2) Exploitation Bias: Loading the exploits in the program in only one
way may bias the sampled measurements. To reduce this bias, we collect the
measurements while loading the exploit in different ways: (a) We launch the
program and load the URL link of the generated exploit page. (b) With an
already running program instance, we load the exploit page. (c) We save the
exploit URL in a shortcut file and launch the link shortcut with the program.

(3)NetworkConditionBias:TheVMenvironment is connected to the Inter-
net. To ensure that the different network latencies do not confound the measure-
ments, we configure the VM environment to connect to an internally-configured
Squid (from www.squid-cache.org) proxy and throttle the network bandwidth
from 0.5 to 5Mbps using Squid delay pools. We vary the bandwidth limits while
collecting measurements for both the exploit code execution and clean runs.

4 Building Models

To use HPC measurements for anomaly-based detection of malware exploits,
we need to build classification models to describe the baseline characteristics
for each program we protect. These program characteristics are relatively rich
in information and, given numerous programs, manually building the models is
nearly impossible. Instead we rely on unsupervised machine learning techniques
to dynamically learn possible hidden structure in these data. We then use this
hidden structure – aka model – to detect deviations during exploitation.

We rely on a class of unsupervised one-class machine learning techniques for
model building. The one-class approach is very useful because the classifier can
be trained solely with measurements taken from a clean environment. This re-
moves the need to gather measurements affected by exploit code, which is hard to
implement and gather in practice. Specifically, we model the characteristics with
the one-class Support VectorMachine (oc-SVM) classifier that uses the non-linear
Radial Basis Function (RBF) kernel. In this study, the collection of the labeled
measurements is purely for evaluating the effectiveness of the models in distin-
guishing the measurements taken in the presence of malware code execution.

www.squid-cache.org
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Table 1. Shortlisted candidate events to be monitored

Architectural Events

Name Event Description

Load Load instructions (ins.)

Store Store ins.

Arith Arithmetic ins.

Br Branch (br.) ins.

Call All near call ins.

Call D Direct near call ins.

Call ID Indirect near call ins.

Ret Near return ins.

a These derived events are not directly
measured, but computed with two
events measured by the HPCs. For
example, %Misp Br is computed as
Misp Br/Br.

Microarchitectural Events

Name Event Description

Llc Last level cache references

Mis Llc Last level cache misses

Misp Br Mispredicted br. ins.

Misp Ret Mispred. near return ins.

Misp Call Mispred. near call ins.

Misp Br C Mispred. conditional br.

Mis Icache iCache misses

Mis Itlb iTLB misses

Mis Dtlbl D-TLB load misses

Mis Dtlbs D-TLB store misses

Stlb Hit sTLB hits after iTLB misses

%Mis Llca % of last level cache misses

%Misp Bra % of mispred. br.

%Misp Reta % of mispred. near RET ins.

4.1 Feature Selection

While the Intel processor we use for our measurements permits hundreds of
events to be monitored using HPCs, not all of them are equally useful in charac-
terizing the execution of programs. We examine most events investigated in pre-
vious program characterization works [21,9], and various other events informed
by our understanding of malware behavior. Out of the hundreds of possible
events that can be monitored, we shortlist 19 events for this study in Table 1.
We further differentiate between the Architectural events that give an indication
of the execution mix of instructions in any running program, and the Microar-
chitectural ones that are dependent on the specific system hardware makeup.

Events with Higher Discriminative Power. The processor is limited to
monitoring up to 4 events at any given time. Even with the smaller list of short-
listed events, we have to select only a subset of events, aka features, that can most
effectively differentiate clean execution from infected execution. With the col-
lected labeled measurements, we compute the Fisher Score (F-Score) to provide
a quantitative measure of how effective a feature can discriminate measurements
in clean executions from those in infected executions. The F-Score is a widely-
used feature selection metric that measures the discriminative power of features
[4]. A feature with better discriminative power would have a larger separation
between the means and standard deviations for samples from different classes.
The F-Score measures this degree of separation. The larger the F-Score, the more
discriminative power the feature is likely to have. However, a limitation to us-
ing the F-Score is that it does not account for mutual information/dependence
between features, but it can guide our selection of a subset of “more useful”
features. Since we are trying to differentiate samples with malicious code execu-
tion from those without, we compute the corresponding F-Scores for each event.
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Table 2. Top 7 most discriminative events for different stages of exploit execution
(Each event set consists of 4 event names in Bold. E.g, monitoring event set A-0
consists of simultaneously monitoring Ret, Call D, Store and Arith event counts.)

Exploit Set Events ranked by F-scores
Stage Label 1 2 3 4 5 6 7

Architectural Events

ROP A-0 Ret Call D Store Arith Call Load Call Id

Stage1 A-1 Store Load Call ID Ret Call D Call Arith

Stage2 A-2 Store Call ID Ret Call D Call Arith Br

Microarchitectural Events

ROP M-0 Misp Br C %Misp Br Misp Br %Misp Ret Mis Itlb Mis Llc Mis Dtlbs

Stage1 M-1 Misp Ret Misp Br C %Misp Ret %Misp Br Mis Dtlbs Stlb Hit Misp Br

Stage2 M-2 Misp Ret Stlb Hit Mis Icache Mis Itlb %Misp Ret Misp Call Mis Llc

Both Architectural and Microarchitectural Events

ROP AM-0 Misp Br C %Misp Br Misp Br %Misp Ret Mis Itlb Ret Mis Llc

Stage1 AM-1 Store Load Misp Ret Call ID Ret Call D Call

Stage2 AM-2 Store Call ID Misp Ret Ret Call D Call Stlb Hit

We compute the F-Scores for the different stages of malware code execution for
each event and reduce the shortlisted events to the 7 top-ranked events for each
of the two categories, as well as for the two categories combined, as shown in
Table 2. Each row consists of the top-ranked events for an event category and
the exploit stage.

We further select top 4 events from each row to form 9 candidate event sets
that we will use to build the baseline characteristic models of the IE browser.
Each model constructed with one set of events can then be evaluated for its
effectiveness in the detection of various stages of malware code execution. For
brevity, we assign a label (such as A-0 and AM-2 ) to each set of 4 events in Table
2 and refer to each model based on this set label. We note that the derived events
such as%Misp Br are listed in the table solely for comparison. Computing them
requires monitoring two events and reduces the number of features used in the
models. Via experimentation, we find that using them in the models does not
increase the efficacy of the models. Thus, we exclude them from the event sets.

Feature Extraction. Each sample consists of simultaneous measurements
of all the four event counts in one time epoch. We convert the measurements in
each sample to the vector subspace, so that each classification vector is repre-
sented as a four-feature vector. Each vector, using this feature extraction method,
represents the measurements taken at the smallest time-slice for that sampling
granularity. These features will be used to build non-temporal models.

Since we observe that malware shellcode typically runs over several time
epochs, there may exist temporal relationships in the measurements that can
be exploited. To model any potential temporal information, we extend the di-
mensionality of each sample vector by grouping the N consecutive samples and
combining the measurements of each event to form a vector with 4N features. We
use N = 4 to create sample vectors consisting of 16 features each, so each sam-
ple vector effectively represents measurements across 4 time epochs. By grouping
samples across several time epochs, we use the synthesis of these event measure-
ments to build temporal models.
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With the granularity at which we sample the measurements, the execution
of the ROP shellcode occurs within the span of just one sample. Since we are
creating vectors with a number of samples as a group, the ROP payload will
only contribute to one small portion of a vector sample. So we leave out the
ROP shellcode for testing using this form of feature extraction.

5 Results

5.1 Anomalies Not Directly Detectable

We first investigate if we can gain insights into the distribution of the event
counts for a clean environment and one attacked by an exploit. Without assum-
ing any prior knowledge of the distributions, we use box-and-whisker3 plots of
normalized measurements for different events. These plots offer a visual gauge
of the range and variance in the measurements and an initial indication on how
distinguishable the measurements taken with the execution of different malware
code stages are from the clean measurements from an exploit-free environment.

These distribution comparisons suggest that any event anomalies manifested
by malware code execution are not trivially detectable, due to two key obser-
vations. (1) Most of the measurement distributions are very positively skewed,
with many values clustered near zero. (2) Deviations, if any, from the baseline
event characteristics due to the exploit code are not easily discerned.

5.2 Power Transform

To address this challenge, we rely on rank-preserving power transform on the
measurements to positively scale the values. In the field of statistics, the power
transform is a common data analysis tool to transform non-normally distributed
data to one that can be approximated by a normal distribution. Used in our
context, it has the value of magnifying any slight deviations that the malware
code execution may have on the baseline characteristics.

For each event type, we find the appropriate power parameter λ such that
the normalized median is roughly 0.5. For each event i, we maintain and use its
associated parameter λi to scale all its corresponding measurements throughout
the experiment. Each normalized and scaled event measurement for event i,
normalizedi, is transformed from the raw value (rawi), minimum value (mini),
maximum value (maxi) as follows:

normalizedi = (
rawi −mini

maxi
)
λi

(1)

3 The box-and-whisker plot is constructed with the bottom and top of the box rep-
resenting the first and third quartiles respectively. The red line in the box is the
median. The whiskers extend to 1.5 times the length of the box. Any outliers be-
yond the whiskers are plotted as blue + ticks.
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Fig. 3. Distribution of events (after power transform) with more discernible deviations

Using this power transform, we plot the distributions of all the events, in Fig-
ure 3. Now we observe varying deviations from baseline characteristics due to
different stages of malware code execution for various event types. Some events
(such as Misp Ret and Store) show relatively larger deviations, especially for
the Stage1 exploit shellcode. These events likely possess greater discriminative
power in indicating the presence of malware code execution. Clearly, there are
also certain events that are visually correlated. The Ret and Call exhibit simi-
lar distributions. We can also observe strong correlation between those computed
events (such as %Misp Br) and their constituent events (such as Misp Br).

5.3 Evaluation Metrics for Models

To visualize the classification performance of the models, we construct the Re-
ceiver Operating Characteristic (ROC) curves which plot the percentage of truely
identified malicious samples (True positive rate) against the percentage of clean
samples falsely classified as malicious (False positive rate). Each sample in the
non-temporal model corresponds to the set of performance counter measure-
ments in one epoch; each temporal sample spans over 4 epochs. Furthermore, to
contrast the relative performance between the models in the detection of mali-
cious samples, the area under the ROC curve for each model can be computed
and compared. This area, commonly termed as the Area Under Curve (AUC)
score, provides a quantitative measure of how well a model can distinguish be-
tween the clean and malicious samples for varying thresholds. The higher the
AUC score, the better the detection performance of the model.

5.4 Detection Performance of Models

We first build the oc-SVM models with the training data, and evaluate them
with the testing data using the non-temporal and temporal modeling on the
nine event sets. To characterize and visualize the detection rates in terms of true



120 A. Tang, S. Sethumadhavan, and S.J. Stolfo

0 0.2 0.4 0.6 0.8 1
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
s
it

iv
e
 r

a
te

ROC for Set <AM-0>

ROP

Stage1

Stage2

0 0.2 0.4 0.6 0.8 1
False positive rate

ROC for Set <AM-1>

ROP

Stage1

Stage2

0 0.2 0.4 0.6 0.8 1
False positive rate

ROC for Set <AM-2>

ROP

Stage1

Stage2

0 0.2 0.4 0.6 0.8 1
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
s
it

iv
e
 r

a
te

ROC for Set <AM-0>

Stage1

Stage2

0 0.2 0.4 0.6 0.8 1
False positive rate

ROC for Set <AM-1>

Stage1

Stage2

0 0.2 0.4 0.6 0.8 1
False positive rate

ROC for Set <AM-2>

Stage1

Stage2

Fig. 4. Top: ROC plots for Non-Temporal 4-feature models for IE. Bottom: ROC
plots for Temporal 16-feature models for IE.

and false positives over varying thresholds, we present the ROC curves of both
approaches in Figure 4. For brevity, we only present the ROC curves for models
that use both architectural and microarchitectural events. We also present the
overall detection results in terms of AUC scores in Figure 5 and highlight the
key observations that affect the detection accuracy of the models below.

Different Stages of Malware Exploits. We observe that the models, in
general, perform best in the detection of the Stage1 shellcode. These results
suggest the Stage1 shellcode exhibits the largest deviations from the baseline
architectural and microarchitectural characteristics of benign code. We achieve
a best-case detection accuracy of 99.5% for Stage1 shellcode with AM-1 models.

On the other hand, the models show mediocre detection capabilities for the
ROP shellcode. The models does not perform well in the detection of the ROP
shellcode, likely because the sampling granularity at 512k instructions is too
coarse-grained to capture the deviations from the ROP shellcode in the base-
line models. While the Stage1 and Stage2 shellcode executes within several time
epochs, we measured that the ROP shellcode takes 2182 instructions on average
to complete execution. It ranges from as few as 134 instructions (for the Flash
ROP exploit) to 6016 instructions (for the PDF ROP exploit). Since we are
keeping the sampling granularity constant, the sample that contains measure-
ments during the ROP shellcode execution will largely consist of samples from
the normal code execution.

Non-Temporal vs Temporal Modeling. We observe that the detection
accuracy of the models for all event sets improves with the use of temporal
information. By including more temporal information in each sample vector, we
reap the benefit of magnifying any deviations that are already observable in the
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Fig. 5. Detection AUC scores for different event sets using non-temporal and temporal
models for IE

non-temporal approach. For event set M-2, this temporal approach of building
the models improves the AUC score from the non-temporal one by up to 58.8%.

Architectural vs Microarchitectural Events. We quantify the detection
capabilities of our models by considering the architectural and microarchitec-
tural features separately and in combination. Models built using only architec-
tural events achieve AUC scores on average 4.1% better than those built solely
with microarchitectural events. Combining the use of microarchitectural events
with architectural ones improves the average AUC scores by 5.8% and 1.4% for
microarchitectural-only and architectural-only models respectively. It is more
advantageous to incorporate the use of both types of events in the detection
models. For instance, by selecting and modeling both the most discriminative
architectural and microarchitectural events together, we can achieve higher de-
tection rates of up to an AUC score of 99.5% for event set AM-1.

Different Sampling Granularities. While we use the sampling rate of
512K instructions for the above experiments, we also examine the impact on de-
tection efficacy for various sampling granularities. Although the hardware-based
HPCs incur a near-zero overhead in the monitoring of the event counts, a pure
software-only implementation of the detector still requires running programs to
be interrupted periodically to sample the event counts. This inadvertently leads
to a slowdown of the overall running time of programs due to this sampling
overhead. To inform the deployment of a software-only implementation of such
a detection paradigm, we evaluate the sampling performance overhead for dif-
ferent sampling rates.

To measure this overhead, we vary the sampling granularity and measure
the slowdown in the programs from the SPEC 2006 benchmark suite. We also
repeat the experiments using the event set AM-1 to study the effect of sampling
granularity has on the detection accuracy of the model. We plot the execution
time slowdown over different sampling rates with the corresponding detection
AUC scores for various malware exploit stages in Figure 6.

We observe that the detection performance generally deteriorates with coarser-
grained sampling. This illustrates a key limitation of the imprecise sampling



122 A. Tang, S. Sethumadhavan, and S.J. Stolfo

Fig. 6. Trade-off between sampling overhead for different sampling rates versus detec-
tion accuracy using set AM-1

technique used on Windows systems. For example, during the span of instruc-
tions retired in one sample, while we may label these measurements as belonging
to a specific process PID, these measurements may also contain measurements
belonging to other processes context-switched in and out during the span of this
sample. The interleaved execution of different processes creates this “noise” ef-
fect that becomes more pronounced with a coarser-grained sampling rate and
deteriorates the detection performance. Nonetheless, we note that the reduction
in sampling overhead at coarser-grained rates far proportionately outstrips the
decrease in detection performance.

Constrained Environments. To further investigate the impact of the afore-
mentioned “noise” effect, we also assess the impact on detection accuracy in the
scenario where we deploy both the online classification and the measurement
gathering in the same VM. As described in Section 3.2, we collect the measure-
ments in our study from one VM and transfer the measurements to the recorder
in another VM to be saved and processed. We term this cross-remote-VM sce-
nario where the sampling and the online classification are performed on different
VMs as R-1core.

For this experiment, we use the event model set AM-1 using two additional
local-VM scenarios utilizing both one and two cores separately. We term these
two scenarios as L-1core and L-2core respectively. We present the detection AUC
scores for the three different scenarios in Table 3 (Left).

We observe the detection performance suffers when the online classifier is
deployed locally together with the sampling driver. This may be due to possible
noise introduced to the event counts while the online detector is executing and
processing the stream of samples. This highlights a key limitation of the current
method of periodic collection of HPC measurements on Windows systems, where
we are unable to cleanly segregate the measurements on a per-process basis.
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Table 3. AUC scores for: (Left) Constrained scenarios for IE using set AM-1 and
(Right) Stand-alone Adobe PDF Reader

Scenario Non-Temporal Temporal
Label ROP Stage1 Stage2 Stage1 Stage2

L-1core 0.505 0.895 0.814 0.918 0.900

L-2core 0.496 0.890 0.807 0.907 0.813

R-1core 0.678 0.916 0.781 0.995 0.823

Set Non-Temporal Temporal
Label ROP Stage1 Stage2 Stage1 Stage2

AM-0 0.931 0.861 0.504 0.967 0.766

AM-1 0.857 0.932 0.786 0.999 0.863

AM-2 0.907 0.939 0.756 0.998 0.912

To alleviate this problem, we envision a software-only implementation on a
distributed or multi-core system in which the online detector is running sepa-
rately from the system or core being protected. Furthermore, since this detection
approach requires little more than a stream of HPC measurements, this makes it
suitable as an out-of-VM deployment in a Virtual Machine Introspection (VMI)-
based setting [30] for intrusion detection. This approach requires minimum guest
data structures, relieving the need to bridge the semantic gap, a common problem
faced by VMI works. Another potential avenue to alleviate the “noise” problem
is a pure hardware implementation using a separate and secure dedicated core
or co-processor for the execution of an online detector as proposed in [3].

5.5 Results for Adobe PDF Reader

Due to space constraints, we do not present the full results from our experiments
on the stand-alone Adobe PDF Reader. We present the AUC detection perfor-
mance of the models built with the event sets AM-0,1,2 in Table 3 (Right).
Compared to the models for IE, the detection of ROP and Stage1 shellcode
generally improves for the Adobe PDF Reader. We even achieve an AUC score
of 0.999 with the AM-1 temporal model. The improved performance of this de-
tection technique for the PDF Reader suggests that its baseline characteristics
are more stable given the less varied range of inputs it handles compared to IE.

6 Analysis of Evasion Strategies

In general, anomaly-based intrusion detection approaches, such as ours, are sus-
ceptible to mimicry attacks. To evade detection, a sophisticated adversary with
sufficient information about the anomaly detection models can modify her mal-
ware into an equivalent form that exhibits similar baseline architectural and
microarchitectural characteristics as the normal programs. In this section, we
examine the degree of freedom an adversary has in crafting a mimicry attack
and how it impacts the detection efficacy of our models.

Adversary Assumptions. We assume the adversary (a) knows all about
the target program such as the version and OS to be run on, and (b) is able to
gather similar HPC measurements for the targeted program to approximate its
baseline characteristics. (c) She also knows the way the events are modeled, but
not the exact events used. We highlight three ways the adversary can change
her attack while retaining the original attack semantics.
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Assumption (c) is realistic, given the hundreds of possible events that can be
monitored on a modern processor. While she may uncover the manner the events
are modeled, it is difficult to pinpoint the exact subset of four events used given
the numerous possible combinations of subsets. Furthermore, even if the entire
event list that can be monitored is available, there may still exist some events
(such as events monitored by the power management units) that are not publicly
available. Nonetheless, to describe attacks 1 and 2, we optimistically assume the
adversary has full knowledge of all the events that are used in the models.

Attack 1: Padding. The first approach is to pad the original shellcode code
sequences with ”no-op” (no effect) instructions with a sufficient number so that
the events manifested by the shellcode match that of the baseline execution of
the program. These no-op instructions should modify the measurements for all
the events monitored, in tandem, to a range acceptable to the models.

The adversary needs to know the events used by the model a priori, in order
to exert an influence over the relevant events. We first explore feasibility of such a
mimicry approach by analyzing the Stage1 shellcode under the detection model
of event set AM-1. After studying the true positive samples, we observe that
the event characteristics exhibited by the shellcode are due to the unusually low
counts of the four events modeled. As we re-craft the shellcode at the assembly
code level to achieve the mimicry effect, we note three difficulties.

(1)Multi-instruction No-ops: Some microarchitectural events require more
than one instruction to effect a change. For example, to raise the Misp Ret
counts, sequences of Ret code need to be crafted in a specific order. Insertion
of no-ops must be added in multi-instruction segments.

(2) Event Co-dependence: To maintain the original shellcode semantics,
certain registers need to be saved and subsequently restored. These operations
constitute Store /Load μ-operations and can inadvertently affect both Store
and Load events. Thus we are rarely able to craft no-op code segments to modify
each event independently. For instance, among the events in AM-1, only the no-
op instruction segment for Store can be crafted to affect it independently.
Event co-dependence makes adversarial control of values of individual events
challenging.

(3) No-op Insertion Position: Insertion position of the no-op instruction
segments can be critical to achieve the desired mimicry effect. We notice the
use of several loops within the shellcode. If even one no-op segment is inserted
into the loops, that results in a huge artificial increase in certain event types,
consequently making that code execution look more malicious than usual.

Next, we examine the impact of such mimicry efforts on the detection perfor-
mance.We pad the Stage1 shellcode at randompositions (avoiding the loops) with
increasing number of each crafted no-op instruction segment and repeated the de-
tection experiments. In Figure 7 (Left), we plot the box-and-whisker plots of the
anomaly scores observed from the samples with varying numbers of injected no-op
code. In general, the anomaly scores become less anomalous with the padding, un-
til after a tipping point where inserting too many no-ops reverses mimicry effect.
In the same vein, we observe in Figure 7 (Right) that the detection AUC scores
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Fig. 7. Impact of inserting no-op segments on: (Left) The anomaly scores of Stage1
shellcode and (Right) The detection efficacy of Stage1 shellcode

decrease as the samples appear more normal. For the worst case, the detection
performance suffers by up to 6.5% just by inserting only the Call Id no-ops. We
do not study combining the no-ops for different events, but we believe it should
deteriorate the detection performance further.

Attack 2: Substitution. Instead of padding no-ops into original attack code
sequences, the adversary can replace her code sequences with equivalent variants
using code obfuscation techniques, common in metamorphic malware [1]. Like
the former attack, this also requires that she knows the events used by the models
a priori. To conduct this attack, she must first craft or generate equivalent code
variants of code sequences in her exploits, and profile the event characteristics of
each variant. She can adopt a greedy strategy by iteratively substituting parts of
her attack code with the equivalent variants, measuring the HPC events of the
shellcode and ditching those variants that exhibit characteristics not acceptable
to the models. However, while this greedy approach will terminate, it warrants
further examination as to whether the resulting shellcode modifications suffice
to evade the models. We argue that this kind of shellcode re-design is hard and
will substantially raise the bar for exploit writers.

Attack 3: Grafting. This attack requires either inserting benign code from
the target program directly into the exploit code, or co-scheduling the exploit
shellcode by calling benign functions (with no-op effects) within the exploit code.
This attack somewhat grafts its malicious code execution with the benign ones
within the target program, thus relieving the need for the knowledge of the events
that are modeled. If done correctly, it can exhibit very similar characteristics as
the benign code it grafts itself to. As such this represents the most powerful
attack against our detection approach.

While we acknowledge that we have not crafted this form of attack in our study,
we believe that it is extremely challenging to craft such a grafting attack due to
the operational constraints on the exploit and shellcode, described in Section 2. (1)
Inserting sufficient benign code into the shellcode may exceed the vulnerability-
specific size limits and cause the exploit to fail. (2) To use benign functions for
the grafting attacks, these functions have to be carefully identified and inserted
so that they execute sufficiently to mimic the normal program behavior and yet
not interfere with the execution of the original shellcode. (3) The grafted code
must not unduly increase the execution time of the entire exploit.
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6.1 Defenses

Unlike past anomaly-based detection systems that detect deviations based on the
syntactic/semantic structure and code behavior of the malware shellcode, our
approach focuses on the architectural and microarchitectural side-effects mani-
fested through the code execution of the malware shellcode. While the adversary
has complete freedom in crafting her attack instruction sequences to evade the
former systems, she cannot directly modify the events exhibited by her attack
code to evade our detection approach. To conduct a mimicry attack here, she has
to carefully “massage” her attack code to manifest a combination of event be-
haviors that are accepted as benign/normal under our models. This second-order
degree of control over the event characteristics of the shellcode adds difficulty
to the adversary’s evasion efforts. On top of this, we discuss further potential
defense strategies to mitigate the impact of the mimicry attacks.

Randomization. Introducing secret randomizations into the models has been
used to strengthen robustness against mimicry attacks in anomaly-based detec-
tion systems [26]. In our context, we can randomize the events used in the models
by training multiple models using different subsets of the shortlisted events. We
can also randomize the choice of model to utilize over time. Another degree of
randomization is to change the number of consecutive time-epoch samples to use
for each sample for the temporal models. In this manner, the adversary does not
know which model is used during the execution of her attack shellcode. For her
exploit to be portable and functional on a wide range of targets, she has to mod-
ify her shellcode using the no-op padding and instruction substitution mimicry
attacks for a wider range of events (and not just the current four events).

Multiplexing. At the cost of higher sampling overhead, we can choose to
sample at a finer sampling granularity and measure more events (instead of the
current four) by multiplexing the monitoring – we can approximate the simul-
taneous monitoring of 8 events across two time epochs by monitoring 4 events
in one and another 4 in the other. This increases to the input dimensionality
used in the models, making it harder for the adversary to make all the increased
number of monitored event measurements appear non-anomalous.

Defense-in-depth. Consider a defense-in-depth approach, where this mal-
ware anomaly detector using HPC manifestations is deployed with existing
anomaly-based detectors monitoring for other features of the malware, such as
its syntactic and semantic structure [26,12,13] and its execution behavior at
system-call level [22,6,15,20] and function level [17]. In such a setting, in order
for a successful attack, an adversary is then forced to shape her attack code
to conform to normalcy for each anomaly detection model. An open area of
research remains in quantifying this multiplicative level of security afforded by
the combined use of these HPC models with existing defenses, i.e. examining
the difficulty in shaping the malware shellcode to evade detectors using statis-
tical and behavioral software features, while simultaneously not exhibiting any
anomalous HPC event characteristics during execution.
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7 Related Work

The use of low-level hardware features for malware detection (instead of soft-
ware ones) is a recent development. Demme et al. demonstrate the feasibility of
misuse-based detection of Android malware programs using microarchitectural
features [3]. While they model microarchitectural signatures of malware pro-
grams, we build baseline microarchitectural models of benign programs we are
protecting and detect deviations caused by a potentially wider range of malware
(even ones that are previously unobserved). Another key distinction is that we
are detecting malware shellcode execution of an exploit within the context of
the victim program during the act of exploitation; they target Android malware
as whole programs. After infiltrating the system via an exploit, the malware
can be made stealthier by installing into peripherals, or by infecting other be-
nign programs. Stewin et al. propose detecting the former by flagging additional
memory bus accesses made by the malware [23]. Malone et al. examine detecting
the latter form of malicious static and dynamic program modification by model-
ing the architectural characteristics of benign programs (and excluding the use
of microarchitectural events) using linear regression models [14]. Another line of
research shows that malware can be detected using side-channel power pertur-
bations they induce in medical embedded devices [2], software-defined radios [7]
and mobile phones [11]. However, Hoffman et al. show that the use of such power
consumption models can be very susceptible to noise, especially in a device with
such widely varied use as the modern smartphone [8].

Besides HPCs, several works have leveraged other hardware facilities on mod-
ern processors to monitor branch addresses efficiently to thwart classes of ex-
ploitation techniques. kBouncer uses the Last Branch Recording (LBR) facility
to monitor for runtime behavior of indirect branch instructions during the in-
vocation of Windows API for the prevention of ROP exploits [16]. To enforce
control flow integrity, CFIMon [28] and Eunomia [29] leverage the Branch Trace
Store (BTS) to obtain branch source and target addresses to check for unseen
pairs from a pre-identified database of legitimate branch pairs. Unlike our ap-
proach to detecting malware, these works are designed to prevent exploitation
in the first place, and are orthogonal to our anomaly detection approach.

8 Conclusions

This work introduces the novel use of hardware-supported lower-level microar-
chitectural features to the anomaly-based detection of malware exploits. This
represents the first work to examine the feasibility and limits of using unsu-
pervised learning on microarchitectural features from HPCs to detect malware.
We demonstrate that the dynamic execution of commonly attacked programs
can be efficiently characterized with minimal features – the stream of event
measurements easily accessible from the HPC, and used to detect lower-level
perturbations caused by malware exploits to the baseline characteristics of be-
nign programs. Unlike its misuse-based counterparts previously proposed, this
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anomaly-based detection approach can detect a wider range of malware, even
novel ones. This work can thus be used in concert with its misuse-based coun-
terparts to better security. Further, in modeling a class of potential mimicry
attacks against our detector, we show that it can be challenging for an adver-
sary to precisely control these hardware features to conduct an evasion attack.
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Abstract. With JavaScript and images at their disposal, web authors
can create content that is immediately understandable to a person, but
is beyond the direct analysis capability of computer programs, including
security tools. Conversely, information can be deceiving for humans even
if unable to fool a program.

In this paper, we explore the discrepancies between user perception
and program perception, using content obfuscation and counterfeit “seal”
images as two simple but representative case studies. In a dataset of
149,700 pages we found that benign pages rarely engage in these practices,
while uncovering hundreds of malicious pages that would be missed by
traditional malware detectors.

We envision that this type of heuristics could be a valuable addition to
existing detection systems. To show this, we have implemented a proof-
of-concept detector that, based solely on a similarity score computed on
our metrics, can already achieve a high precision (95%) and a good recall
(73%).

Keywords: Website analysis, content obfuscation, fraud detection.

1 Introduction

Web pages available on the Internet are visited by two very different kinds of
consumers: humans, surfing through their web browsers, and computer programs,
such as search engines.

These consumers have dissimilar goals and constraints, which lead to signifi-
cant differences in how they interpret and interact with web pages. For example,
a large-scale web crawler, optimized for speed, may not run JavaScript, and thus
will not capture dynamically-rendered content: To overcome this issue, search
engines have established practices [13,14,28,47] that web authors should follow
to make content accessible to their non-JavaScript-aware crawlers. In short, (at
least) two different views exist for each page, and search engines rely on web
authors to “bridge” the two worlds and make sure a human and a crawler “see”
an equivalent message.

Search engines, however, have a privileged role online: Successful web sites
need their pages to be indexed, so that people can find them easily; therefore,
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web authors are highly encouraged to tailor content so that it is easily consum-
able by these programs. On the contrary, tools that look for cybercrime activity
do not benefit from their role, as they have to face web authors that are always
looking for new ways to evade detection. However, even benign web authors can
present visual information to humans that is, intentionally or not, hard to di-
gest for crawling tools, for instance by showing text through a combination of
images and JavaScript code, a Turing-complete language. In the strictest sense,
therefore, only programs with human-like comprehension abilities would be able
to correctly “understand” even benign web pages. Whether or not this happens
in practice, however, is a different question.

In this paper, we focus on how cybercriminals exploit the differences between
humans and detection tools in executing, parsing, and interpreting a web page.
We use two signals in our investigation. The first technique we detect is textual
content obfuscation, with which web authors prevent non-JavaScript-aware ana-
lyzers from retrieving portions of the textual content of the page, and present a
different message to humans. The second technique we detect is the presence of
fake security seal images: cybercriminals place these seals on their websites in
an attempt to deceive humans (i.e., by purporting their online rouge pharmacy
is “certified” by a reputable authority), even if a program would never be fooled
by this practice.

We study how these techniques are used in a dataset of 149,700 web pages, con-
taining both benign andmalicious pages. Interestingly,we found that benign pages
also make use of content obfuscation for specific purposes, such as making the har-
vesting of e-mail addresses more difficult. However, with a few heuristics (and a
clustering step to eliminate outliers) we can find malicious pages with 94% preci-
sion and 95% recall among the samples that triggered this signal. The fake seal
heuristic, having almost no false positives, found 400 rogue pharmacy websites.

As a proof-of-concept of how these anti-deception heuristics could be a valu-
able addition to many security products, we built a “maliciousness detector”
leveraging signatures extracted exclusively from pages detected by our two heuris-
tics, using the hidden text as an additional hint. While obviously not a complete
anti-fraud or anti-malware solution, our tool automatically pinpointed several
scam campaigns that deceive humans without exploiting any technical vulner-
ability, and would therefore be out of the reach of many traditional malware
detectors, unless they had specific signatures for them.

Given the importance of scam campaigns and how large exploitation cam-
paigns were found to use content obfuscation, we estimate that our heuristics
could be a valuable addition to many security products, as our proof-of-concept
tool has a high precision (95%) and a good recall (around 73%) when used to
find any malicious page in our dataset.

To summarize, our main contributions are:

– We introduce a novel approach to detect content obfuscation, and we study
its legitimate and malicious uses in a large dataset.

– We introduce a novel approach in detecting counterfeited, or just plainly
fake (with no certification authority issuing them), certification seals.
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– We show that this type of heuristics can be helpful to general security tools,
by introducing a similarity measure and a matching system that expand
their reach.

2 Related Work

To be effective, fraud pages need to deceive twice: like any malicious site, they
need to convince automated analyzers that they are legitimate sites; moreover,
they need to convince humans into falling for the “phish,” a trait that is unique to
this cybercrime branch. To identify these sites, researchers have devised detection
systems that go after both of these deceptions.

Honeyclient Evasion. Researchers have identified malware/phishing sites
that perform server-side cloaking to prevent honeyclients from reaching the phish-
ing content: only real users get to the phish, whereas honeyclients get delivered
legitimate content. The cloaking may happen on the redirection chain leading
to them [21], or the server hosting them [42]. Other researchers have pinpointed
suspicious URLs by detecting attempts to evade honeyclients analysis, typically
through fingerprinting and obfuscation [18].

Blacklist Evasion. Cybercriminals have also mitigated the efficacy of suc-
cessful detections by churning through a large set of domains and URLs, with
domain flux and URL fluxing [11,26,38,25]. Researchers, in turn, noting that this
behavior is generally associated with malicious sites, have used it as a detection
feature [20,31]. These fluxing infrastructures are also being detected mining their
topology [17], the redirection chains leading to them [24,40,21], and the traffic
distributors’ system feeding them a stream of users to exploit [22].

Studies on Human Scamming. Another direction of research concentrates
on why humans get scammed. Sheng et al. have proposed a game [37] that teaches
people about how not to get scammed. Later, demographic studies have shown
that education is effective in reducing the efficacy of scams [36], but it does
not solve the problem alone. Wu et al. show that security toolbars do not help
the users in their assessments [45]. In 2014, Neupane et al. [29] have taken these
studies a step further, using fMRIs to analyze how the brain responds to phishing
sites and browser countermeasures.

Browser Phishing Warnings. Traditional browser solutions to help users
be aware of the phish, such as domain highlighting and phishing warnings, have
shown to be not very effective [23,29]. To better inform users, researchers have
proposed in-browser protection systems. Spoofguard [5] verifies that user sensi-
tive data is not passed to sites with similar sounding domain names and that
contain similar images. AntiPhish [19] tracks sensitive information and informs
the user whenever those are given to any untrusted website. DOMAntiPhish [33]
alerts the user whenever she visits a phishing site with a layout similar to a
trusted website. All these solutions help in preventing that the user is deceived
in trusting a site similar to a known site she used in the past, but they do not
prevent against other categories of scams, such as fake pharmacies and rogue
antiviruses [7,39]. In contrast, our system is able to track advanced, previously
unseen phishing attacks.
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Content Analysis. The idea of extracting text from images through OCR
has been investigated in the context of e-mail spam [10]. These scams use “salt-
ing” tricks to confuse analyzers while still getting the right message to humans [4].
To counter this, researchers have proposed ways to track concept drift [8], which
spammers use to thwart frequency-based content analysis. Comprehensive stud-
ies on content analysis have been proposed both for spam [30] and phishing
sites [46,50]. Google is also performing phishing detection through content anal-
ysis [44], and researchers have used the search engine’s index to identify scams
campaigns with similar content [16]. In contrast, our system aims to identify the
advanced phishing attacks that evade these content-based solutions, obfuscating
their content to be resilient to static analyzers.

Visual Analysis. Phishing pages have been identified through image shin-
gling [1], which involves fragmenting screenshots of the phishing sites into small
images, and clustering the sites according to the fraction of identical images.
This solution is attractive because it is resilient to small changes in the phishing
site, as long as the overall template is not altered. Previous solutions involve
clustering according to colors, fonts, and layout [27] to identify phishing sites
visually similar to trusted sites. Hara et al. [15] show that, given a large enough
dataset of phishing sites, it is possible to automatically infer the site they are
mimicking. These solutions are effective as long as the phishing attack is trying
to mimic the aspect of a trusted website, but they do not cover other scam cat-
egories, such as fake pharmacies, dubious online retailers, or rogue antiviruses.
In contrast, our approach uses visual analysis to identify a dead giveaway of a
scam: a fake security seal. Scammers use these seals to claim to be a legitimate
business, even though the company generating these security seals has not as-
sessed the scammers’ business (and often does not even exist). Focusing on these
seals, we can identify scamming sites that do not try to mimic a legitimate site,
but are still effective in deceiving the user.

3 Dataset

Throughout the paper, we will refer to a dataset comprising the home pages of
the 81,000 most popular websites according to the Alexa popularity ranking, as
a baseline of benign pages. We obtained the remaining 68,000 pages from the
Wepawet online analyzer [43,6].

Wepawet receives submissions from a variety of sources, including a large
volume of URLs from automated feeds, both benign and malicious. As such, it
represents a reasonable sample of pages that a security tool would be called to
examine in practice. Notice that we used Wepawet merely as a feed of active
URLs, without considering the results of its analysis.

In particular, we obtained two feeds: The first was an archive of 18,700 pages
pre-filtered (via a simple keyword search in the URL) to contain a large number
of fake antivirus (fake AV, [39,32]) pages, so that we could test our heuristics
against this type of scam, regardless of Wepawet’s ability to detect it. The sec-
ond feed consisted of 50,000 submitted URLs, received in real-time so we could
immediately perform our analysis on them.
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Table 1. Reference truth data for the 50,000 received submissions

Page type Samples Percent

Pharmacy scam campaigns 2431 ± 215 4.87± 0.43%
“Blackhole” exploit kit 140± 52 0.28± 0.10%
Updated version of the “Blackhole” exploit kit 47± 29 0.09± 0.06%
Fake video codec scam campaign 327± 80 0.65± 0.16%
Other pages with questionable content 196± 62 0.39± 0.12%

Total number of malicious or questionable samples 3075 ± 239 6.16± 0.48%
Total number of benign samples 46834 ± 241 93.79 ± 0.48%

This last subset will be the basis of our final evaluation, and, as expected for
a random selection, it contains a number of common scams, exploit kits, and
a majority (around 94%) of benign samples. We obtained truth data for this
feed through a manual review: Table 1 details our findings. For obvious time
reasons, we could not examine all 50,000 pages: we opted instead for a random
sample of 3,000 from which we extrapolate the totals on the entire set within a
reasonable margin (Wilson confidence intervals, 85% confidence). Whenever we
present these numbers, we will express them as x ± m, indicating the interval
(x−m,x+m).

We encountered several samples with suspicious characteristics, but for which
a clear benign-malicious verdict would have required a full investigation of the
service provided (i.e., a “proxy service,” found at several URLs under differ-
ent names, and without any stated policy or identification). We marked these
samples as “questionable” and have excluded them from benign and malicious
sample counts.

4 Content Obfuscation

As mentioned in the introduction, many automated systems parse web pages:
Examples include organizations performing large-scale crawling of the Internet
or online analyzers that must evaluate the benign or malicious nature of a page
within a certain time limit. These systems should view and “interpret” pages
exactly like a human would, but in practice they may have to compromise accu-
racy in order to save bandwidth (e.g., by not downloading images) or processing
time (e.g., by ignoring JavaScript, not building the actual layout of the page,
not applying style sheets, etc.).

In general, content can be considered obfuscated if it would be easily seen
and interpreted by the average computer user, but would be hard to interpret
without simulating a full browser and the interaction of a human with it.

To refine this definition, we need to consider how automated crawlers parse
pages. Details can vary a lot, but we can pick a meaningful upper bound on
automated extraction capabilities and use it to differentiate the two views of a
page. In particular, we conjecture that JavaScript will be a problematic feature
for programs to consider, and one that many will sacrifice.
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Our intuition is motivated by the consideration that analyzing a static page
can be assumed to take a time that is roughly a function of its size, while execut-
ing arbitrary code introduces an unpredictable delay in the analysis. Moreover,
since JavaScript code can interact with other elements on the page, the entire
content must be kept in memory during the analysis (as opposed to discarding
content that has already been consumed).

It is impossible to directly gauge how many web analyzers and crawlers avoid
JavaScript, although, as mentioned, many search engines do provide guidelines
for webmasters that are consistent with the necessity to expose content to spiders
that ignore JavaScript [14,28,47] and images [12,28,48], and many published
detection systems use static signature matching (e.g., [30,35,42]). The choice of
this boundary between the “human-browser” world and the “automated-parser”
world has also been indirectly confirmed by our findings presented in Section 4.3:
Many pages (both benign and malicious) use JavaScript code to hide information
they do not want exposed to automated parsers.

4.1 Heuristic

Several encapsulation and encoding schemes are used to transfer text on the
web. A banking web site might, for example, provide content encoded in UTF-8,
compressed by the server with gzip and transferred over a TLS connection. From
the point of view of the client, however, these schemes are completely transparent:
once the encoding layers are removed, a well-defined payload is reached for every
data transfer.

A key observation is that text will almost always appear as-is in the payload.
In the simplest case an HTML page will be retrieved from the network, its

content will be parsed in a tree, a layout will be constructed, and the resulting
page will be presented to the user. The browser will simply copy the content of
text nodes from the original payload, HTML entities being the only exception
to this rule.

Web pages can also use scripts to dynamically add content to the page tree. This
content may have already been present in the original payload (as a JavaScript
string literal, for example), or it may come from additional network requests. This
text does not have to be sent as-is: the script that loads the text is free to mangle
and re-code it as it sees fit. There is, however, little reason to do so, and it seems
safe to assume that legitimate websites will never engage in such practices: In
fact, by comparing the dynamically constructed page with the observed payloads,
we have been able to confirm that textual data is transferred as-is in the vast ma-
jority of cases.

There are a few fundamental reasons for this. For purely textual content (at
the sizes typically seen in web payloads), the built-in gzip compression is better,
needs no extra code transfers, and is far easier to use than custom code; in fact,
none of the JavaScript code compression tools in popular use significantly alter
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string literals. Popular data transfer formats such as JSON and XML are also
text-based. There is also a historical preference for human-readable data on the
web (the HTTP protocol itself is an example), both to help debugging and to
ease interoperability.

While we have observed some overly-cautious escaping of content, most cases
where text was not transferred as-is were due to deliberate obfuscation attempts.

One can certainly devise obfuscation systems that necessarily require human
interaction and would hide text from this and any other automated detection
attempt: For example, the sensitive content can be encrypted and the password
presented in an image that cannot be easily parsed automatically (using, for
example, the same obfuscation techniques used for CAPTCHA test images).
However, this involves asking victims to perform a task that is difficult to au-
tomate. Therefore, these techniques necessarily create significant inconvenience
for the intended targets, who may not have a particularly strong motivation to
interact with an almost-empty page (content shown before the verification is also
available to automated analyzers) if it requires effort on their part. These kinds
of expedients would also strongly differentiate the page from regular benign sites,
even in the eye of an untrained user, so they are unlikely to be used in fraudulent
pages and were not observed in our dataset.

4.2 Implementation

Based on the discussion above, we detect content obfuscation by first building
an extractor that page authors expect to face (e.g., a static text parser) and a
more powerful one (e.g., a full browser), and then observing the differences in
the extracted contents.

Our detector is based on the popular Firefox web browser, modified in order
to observe and record all network requests and the context in which they were
made. We also store the DOM tree of the page (including frames) and take a
screenshot of the website as it would be seen by a human user. Finally, the
browser has been modified to automatically confirm all file save request and
dismiss all JavaScript popups. While using a real web browser may be slower
and less safe than using an ad-hoc solution, it also makes the simulation much
more realistic and helps us avoid being fingerprinted by an attacker. The browser
visits the page in a temporary VM, and is fully automated.

The system uses two viewpoints to check for text on the web page. First, the
text present in the DOM tree is normalized by replacing HTML entities and URL-
encoded characters, removing non-alphabetic characters, and transforming all
text to lowercase. Then, the text that is present in network payloads is parsed and
decoded using information recorded from the browser (for example, unzipped),
and then normalized in the same way.

For every word in the body of the page (text of the DOM tree), an origin is
sought in the network payloads. In particular, the presence of a word is consid-
ered “justified” if it satisfies one of the following conditions:
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1. It appears as-is in the body of one of the responses from the server, including
AJAX requests, requests made from iframes, etc. This rule matches most
regular text.

2. It appears in one of the URLs (e.g., as part of the domain name, in the query
string, etc). This rule takes care of pages that display information that is
passed to them via the URL and access it via the location object.

3. It appears in one of the HTTP headers, which are readable by JavaScript
for AJAX requests.

4. It can be obtained from the previously-mentioned sources:
(a) as the concatenation of two words,
(b) as the truncation of another word.

5. It is found in a whitelist of words that can be obtained directly from the
JavaScript language interpreter, including type names like none or HTML-
ParagraphElement, date components (e.g., month names), strings from the
navigator object, etc.

These rules attempt to construct a set of benign clear-text sources that would
be easily exposed to a static signature matcher, anticipate most real-world string
operations (that any signature matching algorithm can and probably should take
into account), and consider all page components that would possibly be exposed.
Words for which an origin could not be pinpointed are considered obfuscated.
For simplicity, our heuristic operates on single words only, and leaves the exten-
sion to sequences to the signature generator (Section 6.1). Purely image-based
obfuscation approaches would also escape our textual detector and would require
image-processing techniques for detection: similarly, we left this extension to our
proof-of-concept signature matcher (Section 6.2).

The previously-described extraction rules are also applied to the domain
names of URLs present in HTML attributes. This allows us to catch cases of
pages that try to hide from programs the URL to which they will redirect a
human viewer. Notice that text from a DOM tree is analyzed considering only
network payloads that have been seen before it was retrieved, so the presence of
links in a page cannot be justified with future HTTP headers.

In principle, our algorithm would also work for scripts and style sheets, but
such analysis is out of scope for this paper: ordinary human users do not “parse”
them, nor are they aware of their existence.1

4.3 Evaluation of the Detection of Obfuscated Content

Table 2 presents the samples for which we found obfuscated content (the benign,
malicious, or questionable nature was established by manual review).

While obviously not perfect, our heuristic presented very few false positives
in the detection of obfuscated content (that is, content incorrectly marked as

1 Of course, a possible extension of our work would be to consider the two “views” of a
malware analyst and of a web browser. As an example, in this model JavaScript ob-
fuscation would be a case of content easily interpreted by a browser but cumbersome
for a human to understand.
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obfuscated, regardless of the benign or malicious nature of the page) in our
dataset. These were often caused by incorrect parsing of the network payload,
as in some cases it is difficult to replicate the exact parsing the browser will
perform: unclear specifications, buggy servers, and sloppy page coding practices
require browsers to rely on several heuristics, and previous research has shown
that different clients can even give different interpretations to the same data [2];
it should be noted, however, that the desire to increase the number of victims
can be a mitigation factor for this issue, especially for frauds: their authors have
an interest in having them functional on all major browsers.

Table 2. Samples found by the content obfuscation heuristic, grouped by source

Source Page type Samples In-Feed Pct. Global Pct.

Alexa ranking (81,000 samples) Benign 52 90% 0.06%
Questionable 3 5.2% 0.004%
Malicious 3 5.2% 0.004%
total 58 100% 0.07%

Fake AV feed (18,700 samples) Benign 1 0.93% 0.005%
Questionable 4 3.7% 0.02%
Malicious 102 95% 0.54%
total 107 100% 0.57%

Received submissions (50,000 samples) Benign 3 3.1% 0.006%
Questionable 0 0% 0%
Malicious 94 97% 0.19%
total 97 100% 0.2%

All feeds (149,700 samples) Benign 56 21% 0.037%
Questionable 7 2.7% 0.005%
Malicious 199 76% 0.13%
total 262 100% 0.18%

Manual review of the 3,000 randomly selected samples from the 50,000 sub-
missions received in real-time (Section 3), utilizing the screenshots and assisted
by Optical Character Recognition software, did not uncover any false negative
(obfuscated content not marked as such).

4.4 Observed Uses of Obfuscation

Even a simple unescape is enough to hide content from a straightforward HTML
parser, and many examples in our dataset did not go much further than that.
Code from exploit kits and fake antivirus scams, on the other hand, went to
great lengths to obfuscate both the content and the generating script.

Beside fraudulent content, the following categories of text were commonly
observed in obfuscated form:

– E-mail addresses: A precaution against address-harvesting spam bots. To
avoid these false positives, our heuristic ignores all mailto: links and strings
that look like e-mail addresses.
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– Domain names: A pharmacy scam campaign and several exploit kits pre-
sented landing pages with redirection code. The target URL was obfuscated,
presumably to slow down blacklist-building crawlers and human analysts.

– Links: Some benign websites obfuscated hyperlinks to other pages or web-
sites, including seemingly innocuous links such as those to contact infor-
mation and the terms of service. This is probably done to make sure that
search engines do not focus on pages that are perceived as not significant
by the webmaster; this particular technique may be an answer to Google’s
de-emphasizing of the nofollow attribute [9].

Our detector does not mark pages as questionably obfuscated if e-mail and
links are the sole hidden content types, as these kinds of obfuscation are also
used in benign sites.

Obfuscated target URLs, on the other hand, are definitely a strong signal of
malicious content. However, the specific URLs are highly variable, easily changed,
and not necessarily exposed to the user (who will likely only view and act on the
first URL in the redirect chain), so they have also been ignored for the purposes
of our proof-of-concept detector.

4.5 From Obfuscation Detection to Maliciousness Detection

As mentioned, our simple heuristic is, in itself, an indication that a page may
contain suspicious content, but is not entirely reliable as a maliciousness detector
in itself.

It does, however, find content that the page author wanted to hide: a good
starting point for a more punctual detection of maliciousness. In our study, we
chose to exploit the fact that cybercriminals typically run campaigns (they typ-
ically prepare many variations that implement a certain scheme) or implement
general fraud schemes (such as fake pharmacies or fake antiviruses), whereas
benign usages are much more likely to appear as outliers.

To this end, we leveraged obfuscated words as features for each page. Several
methods exist to eliminate outliers: we opted for density-based clustering (DB-
SCAN), as it performs well and can be fully automated for this purpose as long
as known-benign obfuscated samples are available.2

This step is not strictly necessary, as far as finding interesting and suspicious
pages: Without further refinement, the heuristic already pointed to 199 truly
malicious pages (and 56 benign ones), many of which were not originally found by

2 Specifically, we rely on the presence of a few samples originated from the Alexa
set for our purposes: Intuitively we want the clustering to consider them as “noise,”
so (for the purpose of this step) we classify them as “benign” and everything else
as “malicious”. With this assignment, we have a rough estimate of how good each
possible clustering is (using, for instance, the F1 score) at discriminating between
benign and malicious samples. At this point, a simple grid search can find the values
for the two DBSCAN parameters (the point neighborhood size ε and the minimum
cluster size) that maximize this estimated score. On Table 2’s data, 0.82 and 3 were
found by the grid search; the corresponding clustering is shown in Table 3.
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Table 3. Samples found by the content obfuscation heuristic, automatically grouped
by cluster and de-noised leveraging the obfuscated words that were detected

Page type Samples

Cluster 1 “Blackhole” exploit kit 41
Cluster 2 First fake-AV campaign 23
Cluster 3 “Blackhole” exploit kit 20
Cluster 4 First fake-AV campaign (minor variation) 16
Cluster 5 Second fake-AV campaign 5
Cluster 6 Third fake-AV campaign 9
Cluster 7 Updated version of the “Blackhole” exploit kit 12
Cluster 8 False positives 4
Cluster 9 Fake flash player campaign 4
Cluster 10 “Blackhole” exploit kit 12
Cluster 11 False positives 3
Cluster 12 Third fake-AV campaign (minor variation) 15
Cluster 13 Third fake-AV campaign (minor variation) 20
Cluster 14 Third fake-AV campaign (minor variation) 4
Cluster 15 Updated version of the “Blackhole” exploit kit 8
Cluster 16 False positives 3
Cluster 17 False positives 3

Samples
discarded
as noise

7 questionable, 3 fake-AV campaigns (all minor variations of
the campaigns above), 3 pharmacy scams, 1 “Blackhole” ex-
ploit kit (bugged sample), 3 “get rich quick” scams, and 43
benign

60

Wepawet’s analysis, especially among the scam campaigns that did not leverage
any browser vulnerability.3

However, we found this step very useful both for our manual analysis and for
a more punctual malicious content detection. Its results are presented in Table 3,
which also serves as a recap of the nature of the pages found by the heuristic
of this section. Confirming the validity of our intuition that most benign pages
would appear as outliers, this clustering step was able to achieve a precision of
93.56% and a recall 94.97% in finding malicious pages among the samples that
presented obfuscation.

The false positives are multiple benign sites that were obfuscating a few sim-
ilar words, usually for search engine optimization purposes. All fake antivirus
campaigns present in the dataset were identified correctly. As mentioned, pages
from two well-known exploit kits were also identified.

3 Interestingly, while reviewing the pages that were found, we even encountered several
that appeared to be generated by an exploit kit, although Wepawet had not detected
them as such. Further review revealed that these pages, generated by the “Blackhole”
exploit kit, were fingerprinting Wepawet’s JavaScript engine and disabling their ma-
licious payload to escape detection.
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As expected, campaigns tend to emerge as distinct clusters. Incidentally, we
have observed a certain number of minor variations, updates, or bugs within the
same campaign or usage of exploit kits: this tends to surface as a splitting of a
campaign in a few distinct clusters.

5 Counterfeit Certification Seals

Our second heuristic explores an attempt to confuse human consumers without
attempting to deceive automated analyzers.

In particular, we observed that in many cases scammers try to make their
pages appear more legitimate by including certification seals: small images meant
to convey that the site has passed a review by a trusted third party. These seals
are also often displayed by legitimate online sellers to reassure users about the
safety of their data. Reputable companies releasing these certifications include
Symantec, GeoTrust, McAfee and other well-known certification authorities and
vendors of security software.

No standard mandates the exact meaning of the certification. Some issuers
just claim to periodically check the website for malware, others are meant to fully
verify that the site is owned by a reputable business entity. In all cases, seals
are included to make visitors more comfortable (and presumably more likely to
spend time or money on the site). As such, their counterfeiting is attractive for
fraudsters, even if no computer program would “understand” them or consider
them in any way.

5.1 Use by Fraudsters

Unfortunately, there are also no standards on how certification seals should be
included in a page and how an end user can verify their legitimacy. Unlike
HTTPS certificates, browsers cannot check them on the user’s behalf, as the
seal is usually just another image on the page.

Issuers can mandate certain technical measures in their usage policies, such
as the requirement to include a script served from an authority’s server [41].
Typically, correctly included seals should react to clicks by opening a verification
page hosted by the issuer.

Nothing, however, prevents a malicious seller from simply copying the seal
image from a legitimate site and displaying it on a fraudulent page. Should
someone click on the seal to verify it, the scammer can simply present a locally-
hosted fake certification. Unless the end user specifically checks the certification
page origin (and knows the correct domain name of the authority that issues the
seal in question), the page will look legitimate.

Given the ease of including a copied image and the low risk of detection by
untrained users, fraud perpetrators often display copious amounts of certification
seals on their pages, especially on online shops such as rogue pharmacies. Figure 1
shows a few examples.
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Fig. 1. Examples of counterfeit certification seals found on rogue pharmacy sites

Seal images can be completely made-up and refer to no established third-party,
present alterations of logos of real certification authorities [3] or, as we most com-
monly observed, present copies of actual logos and faked certification pages.

5.2 Heuristic

For our study, we augmented the system described in Section 4.2 with a com-
ponent that calculates a perceptual hash [49] (for resilience against small al-
terations) of all images with a size comparable to the ones typically used for
certification seals, compares them with the known ones, and checks if they are
legitimate or not.

There are few legitimate seal providers: a manual review of their terms of
services and inclusion practices would allow constructing a fully reliable detector,
if desired. As expected for a deception technique exclusively directed toward
humans, we did not observe any attempt to hide its use from even a simple
analyzer. Therefore, we opted again for a fully-automated approach in our survey:
we performed optical character recognition on the 100 most common images
(as aggregated by the perceptual hashing function) and looked for keywords
expressing trust and protection such as “secured,” “approved,” “trust,” and
“license” to find seals, and check legitimacy simply by verifying if they link off-
site or not: an imperfect approach that however highlights how easy it can be
for a program to detect purely human-directed deception attempts.

While not uncovering all frauds in our dataset (not all of them use these
fake seals, nor does our heuristic cover all of these images), this simple heuristic
correctly flagged about 400 samples, with no false positives. All these samples
originated from rogue pharmacy campaigns and, as we will show in the next sec-
tion, proved to be a valuable starting point for a detector of this entire category
of scams.

6 Proof-of-concept General Detector

As we have seen, the difference between a human view and an algorithmic view
can indeed be useful in pointing out malicious pages, even with two simple
heuristics such as ours. Of particular note is its tendency to find “pure” scam
campaigns that do not involve software exploits, yet succeed due to deception.
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In this section we will show if these heuristics could be useful to a complete
maliciousness detection suite, in particular by seeing if the pages they uncover
could enable finding more. To this end, we implemented a proof-of-concept de-
tector that uses them as its only starting point, and we will show how it can
already reach significant detection rates. It is fairly standard in its construc-
tion (signature generation and matching), but we will also use it to exemplify
a similarity measure that gives a different “weight” to certain words (the ones
that were obfuscated, in our case) and is resilient to the inclusion of extraneous
text, as we have observed this happens with a certain frequency in scam pages
when they are part of a larger page (posts in hijacked forums are an example).
Incidentally, this approach would also defend against fraudsters including large
amounts of irrelevant text specifically to thwart automated analysis, even if it
was presented in such a way that humans would not pay attention to it (i.e., in
a semi-invisible color, at the end of a long page, out of view, . . . ).

6.1 Signature Generation

The clusters in Table 3, with the addition of the pages detected due to seal
counterfeiting, serve as the basis to generate signatures. In particular, our sys-
tem tries to identify contiguous regions of text that are “typical” of a cluster,
to maximize the impact of common textual elements (presumably core to the
nature of those pages), while de-emphasizing regions that are variable among the
different samples: A score is assigned to each word present in pages belonging
to the cluster. The score is initially the number of occurrences of the word in
the samples, doubled if the word was obfuscated; scores are then normalized to
have zero-average (to further reduce noise, we also exclude the 100 most com-
mon English words). All the maximal-scoring contiguous regions of text are then
found (this operation has linear-time complexity [34]) and identical regions are
aggregated to form the “signature” regions for that cluster.

As an example, for the cluster of a simple fake-AV campaign that included
a few variations, the following regions were chosen: center initializing virus

protection system, initializing virus protection system, initializing treat

protection system., whereas for a pharmacy scam regions included both the
entire common content of the typical sales page, and smaller text snippets that
were present in many, but not all pages (mainly, the type of drugs sold in specific
subpages).

6.2 Signature Matching

When presented with a sample, our proof-of-concept detector will perform a
fuzzy matching with the signature regions, to find other similar but unknown
campaigns.

Simple textual similarity measures (i.e., the Jaccard coefficient) weight the
amount of common elements versus the amount of uncommon ones. As men-
tioned, we will propose here a slightly different approach that is more resilient
to the inclusion of unrelated random words in the page, as we consider this a
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good property when faced with content that exclusively tries to deceive humans:
in those cases, a small amount of information could very well be sufficient.

In particular, when evaluating a page:

1. A candidate match mi is found for each of the n signature regions si (longest
matching subsequence in the page text).4

2. The Jaccard distance di is computed for each (mi, si) pair.
3. The distance of the page to the clusters is computed: d = min {d1 . . . dn}.
Notice that with this method only one zone of the page influences the final

result: the one that is most similar to one of the clusters. Therefore, as opposed
to inserting disturbances anywhere, an author that wished to avoid detection
would have to modify several words right in the middle of their most relevant
content, likely changing the message perceived by a potential victim.

At this point we can mark a page as benign or malicious based, using a
threshold on d. To make sure the threshold is neither too low nor too high, we
used a separate training phase to select a good value.5

To exemplify extra robustness precautions that would be included in a com-
plete detector, we added two image-based matching systems based on a page
screenshot. One recovered text through Optical Character Recognition (which
can then be used as normal HTML text), the other directly compared the page
screenshot with those of the pages found by the two heuristics.

6.3 Evaluation

We evaluate the overall performance of our proof-of-concept system on the (oth-
erwise unlabeled) 50,000 samples obtained from real-time submissions. As men-
tioned in Section3, this set includes a variety of scam sites, traditional drive-by
download exploit pages, and benign pages.

Table 4 provides a numerical overview of its performance. Overall, the system
flagged 1,833 pages as malicious. Based on manual analysis of these instances, we
confirmed 1,746 cases as true positives (first line): a significant increase from the
95 detected by the content obfuscation heuristic (Table 2) and the 400 detected
by the seal-counterfeiting one; the remaining 87 flagged pages were incorrect

4 If desired, each match mi could also be enlarged by a percentage to achieve extra
resiliency against the insertion of random “stopping” words in the middle of an
otherwise matching page section.

5 We used a procedure similar, in its principle, to the one employed in Section 4.5:
Pages from the Alexa feed were all marked as benign, then a well-scoring threshold
value was computed for each cluster. Again, those known-benign pages are used to
get a rough estimate of the amount of false positives that each given value would
cause. A linear search is then used, starting from a low threshold value and increasing
it until the false positive rate surpasses a certain percentage: 2%, in our case. We
protect from possible outliers in the Alexa feed by requiring the presence of at least
three of its samples before the search is terminated. While this procedure requires a
sizable number of benign samples, it is applicable in many cases: such samples are
easily gathered from widely-available rankings or website directories.
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detections of benign pages (second line). As anticipated in Section 3, negatives
are expressed as confidence intervals (lines three and four, and dependent scoring
values in the remaining lines).

Table 4. Performance of the proof-of-concept detector

True positives (flagged, malicious) 1, 746
False positives (flagged, benign) 87
True negatives (not flagged, benign) 47, 524 ± 192
False negatives (not flagged, malicious) 643 ± 192

Precision 95.25%
Recall 73.08 ± 5.86%
F1 score 82.69 ± 3.75%
True positive rate 73.08 ± 5.86%
False positives rate 0.18± 0.00%

True positives included pharmacy scams from several different campaigns
or sellers and many fake-AV variants, underlining how the findings from these
heuristics generalize well and improve detection (most scam campaigns, for in-
stance, were not originally marked as suspicious or malicious by Wepawet). Ex-
amples of false negatives are posts on hijacked forums that contained relatively
little malicious content, or scams that significantly differed from the samples
found by our two simple heuristics. For cases where the samples were related
(although quite different and possibly originating from different criminal opera-
tions), our system showed excellent detection.

While not enough to create a complete security system, these results confirm
our intuition that detection of this “view difference” (even in the two simple
heuristic forms we presented) can be a useful addition to many analyzers. As an
example, referring to Table 1, a honeyclient or exploit-based detector is unlikely
to catch the (otherwise very common) scam campaigns without a method such
as ours.

Finally, we note that even just removing content obfuscation and counterfeit
certifications from the fraudsters’ tool arsenal could be a desirable result in itself.
In fact, a general property of heuristic like ours is that they present attackers
with a problematic choice: from their point of view, if they choose to exploit the
difference between the two “worlds” of programs and humans they risk giving
away the nature of their operation (and possibly uncover other similar scams).
Presenting the same information to humans and programs, on the other hand,
will make it easy for security researchers to construct reliable signatures for the
malicious campaign and quickly reduce its impact.

7 Conclusions

In this paper we pointed out how the discrepancy between the understanding of
a human and a program can present both a danger (as a way for cybercriminals
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to escape analysis) and a maliciousness-detection opportunity at the same time.
We presented two heuristics that detect cases that exemplify this situation: one
directed toward textual content and one involving images, respectively counter-
ing the deception of static analyzers and of human beings.

Envisioning that these detection methods can complement existing detection
tools, we have implemented a proof-of-concept detector based exclusively on
these methods to discover online malicious pages. This tool alone was able to
achieve a 95% precision and a 73% recall in our dataset, and was able to discover
a high number of human-directed fraud pages that would otherwise be outside
the detection capabilities of most traditional malware analyzers.
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Abstract. Once a web application authenticates a user, it loosely associates all
resources owned by the user to the web session established. Consequently, any
scripts injected into the victim web session attain unfettered access to user-owned
resources, including scripts that commit malicious activities inside a web appli-
cation. In this paper, we establish the first explicit notion of user sub-origins to
defeat such attempts. Based on this notion, we propose a new solution called
USERPATH to establish an end-to-end trusted path between web application users
and web servers. To evaluate our solution, we implement a prototype in Chromium,
and retrofit it to 20 popular web applications. USERPATH reduces the size of
client-side TCB that has access to user-owned resources by 8x to 264x, with
small developer effort.

Keywords: User sub-origins, trusted path, script injection attacks.

1 Introduction

Many of the web applications today, such as DropBox, Gmail and Facebook, provide
user-oriented services, where users need to create their own accounts to use the service
tailored to them. User-oriented web applications isolate data belonging to individual
users and bind access control privileges to specific user accounts (e.g., owners or ad-
ministrators). In such web applications, the authority of a user is typically represented
by a web session, and the security mechanisms are centered on protecting the web ses-
sion state from being accessed by attackers. In such a setting, if an attacker is able to
inject scripts into the session, the scripts run with user’s full authority. In this paper, we
do not focus on mechanisms to prevent web application vulnerabilities from occurring.
Rather, we propose mechanisms to defend against post-attack malicious behavior of an
injected script, which we term as post-injection script execution (PISE) attacks. Our
proposal serves as a second line of defense when existing mechanisms of script injec-
tion prevention, such as Content Security Policy [1], fail to achieve full coverage [2].

PISE attacks are the aftermath of script-injection attacks that occur in a variety of
ways, such as mixed content (over HTTP) in HTTPS sessions [3], loading malicious
third-party scripts [4], or via XSS attacks [5]. The threat model in PISE attacks is
strong and challenging to counteract: injected scripts already run under the same ori-
gin as the web application. In this work, we focus on PISE attacks that target sensitive
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data owned by users and mimic normal user interactions within a web application. For
example, XSS worms on Facebook profiles that utilize self-XSS attacks to befriend cer-
tain users [6] or malicious extensions that stealthily steal authentication credentials and
hijack user accounts [7] are some of the real-world examples.

We observe two fundamental limitations of the present web platform. First, to defeat
PISE attacks, browsers need to have the notion of a user authority that controls access
to sensitive user-owned resources. The same-origin policy does not support such access
control. Second, there is no direct way for server-side web applications to be faithfully
informed about user’s interaction at the client-side. As a result, web servers cannot,
for example, distinguish between web requests generated in response to legitimate user
interaction versus requests generated by injected scripts, even in the presence of web
sessions protection mechanisms like HTTPS. A recent line of research has proposed
piecemeal defenses to mitigate some classes of PISE attacks via client-side channels [8,
9], server-side channels [10, 11], self-exfiltration [12], or using attacks that mimic user
interactions to legitimize dangerous information flows [13]. However, none of them
offer a comprehensive solution to prevent PISE attacks completely.
Our Solution. We propose a solution called USERPATH, which augments the present
web platform with a security primitive that explicitly represents a User authority and
establishes an end-to-end trusted Path between the user and the server. We introduce
the first explicit notion of user sub-origins1 into web applications, which are primitives
that run with the authority of web application users. Our mechanism enables user sub-
origins to isolate user’s data and privilege-separate the code operating on it from the rest
of the web origin. Thus, our mechanism tightens the authority of the web application
users from web sessions to user-suborigins. To support our end-to-end system, we build
a trusted path between human users and the web application server [15]. A trusted path
in our work is defined as a privileged channel, which allows the server to tightly and
reliably control the communication of visible content and input with the user (via the
standard DOM APIs), even in the presence of malicious application code. Although
this concept has recently been explored to develop new access control mechanisms
on mobile and traditional operating systems [15, 16], building it for the web has only
recently been investigated [9].

Our solution is easy to deploy in practice – with a small number of changes in
existing browsers and web applications, USERPATH can be set up to protect users
from PISE attacks. We reuse the existing web isolation primitives and minimize new
abstractions added. Our solution is a 475 lines of code patched on Chromium 12.
USERPATH-enabled browsers are backward-compatible with non-USERPATH-enabled
websites. From the user’s perspective, using a USERPATH-enabled website would be
largely identical to the original site, except for verifying a colored login input box when
authenticating with a password (see Section 4). As a result, USERPATH has a much
lower adoption cost as compared to another recent trusted-path proposal that requires
generation and uploading of SSL keys for every website [9]. Furthermore, our solution

1 Recently, browsers have added support for per-page sub-origins [14] that compartmentalize
contents on a web page within several sub-authorities under the same origin. The per-page
sub-origin proposal offers no guarantee to defend against PISE attacks, and we complement
per-page sub-origins with the additional notion of user authority and trusted path.
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can also be easily deployed with modest development effort. Specifically, developers
can easily retrofit web applications to use USERPATH simply by privilege-separating
sensitive data and JavaScript logic on a client-side user-suborigins called UFrame.
UFrame is an iframe-like component that isolates code under a different JavaScript
context and has the ability to render tamper-proof HTML elements. Such privilege sep-
aration of JavaScript code is straightforward for developers to use, as argued in recent
works [17, 18].

From a security standpoint, users no longer trust a website at the time of login if
script injection vulnerabilities are present in the website. Then, how does a user login
and setup an authenticated trusted path? We address this critical issue by introducing
secure UI elements [16] that protect user’s login credential from malicious client-side
code and using a PAKE protocol [19]. A PAKE protocol is a zero knowledge protocol
that lets two parties authenticate each other without revealing secret information (e.g., a
password) through the communication channel. Having authenticated the user, USER-
PATH maintains isolation of sensitive resources throughout the session by resorting to
user sub-origins and a trusted path.
Summary of Results. We deploy USERPATH on 20 popular open-source web applica-
tions. The evaluation demonstrates that our solution can protect user-owned data from
PISE attacks in these applications with modest adoption effort (in the order of days).
For each application, we label a number of data fields as sensitive, and modify the ap-
plication logic to use USERPATH abstractions. We find that USERPATH eliminates the
threats to user data from 325 historical security vulnerabilities in these applications,
and reduces the trusted computing base (TCB) size by 8x to 264x. Finally, the perfor-
mance overhead incurred by our solution is negligible for real-world applications. All
case studies and the Chromium-based implementation are available online [20], and we
release a video demonstrating the smooth user experience with a USERPATH-enabled
browser [21].
Contributions. In summary, we make the following contributions in the paper:

– End-to-end Solution. Our main contribution lies in analyzing the attack model we
term as PISE attacks, examining the various dimensions of attacks, and providing
an end-to-end solution to defeat them. We adapt and combine some known tech-
niques with our new ones to achieve a solution that is easy to deploy on the existing
web platform. To the best of our knowledge, this is the first comprehensive defense
against PISE attacks targeting user-owned resources, which is a significant subset
of self-exfiltration attacks [12].

– User Sub-Origins & Trusted Path. We propose the first explicit notion of user sub-
origins on the web. We further develop an end-to-end trusted path to eliminate PISE
attacks targeting user-owned data.

2 Problem Definition

The missing notion of user sub-origins in today’s web sessions gives rise to various
attacks threatening web applications. We summarize such attacks and elaborate how
they can occur in an existing web application.
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2.1 PISE Attacks Targeting User-owned Data

Unlike in traditional OSes (e.g., UNIX), there is no built-in notion of a user authority on
the present web, where users login into sites and authenticate themselves using custom
password-based interfaces. Authentication of subsequent HTTP requests is performed
via “bearer tokens”, such as session IDs, CSRF tokens, or cookies. In the presence of
script injection vulnerabilities, these tokens are prone to attacks, either via direct token
stealing [22], phishing attempts [23], or session riding (e.g., fake HTTP request [24]).
In this paper, we term such illegitimate accesses from malicious scripts to resources
owned by benign victim users as post-injection script execution (PISE) attacks.

Fig. 1. Example Interactions in Elgg. Solid lines illustrate benign interactions between the user,
UI elements and session data. Dashed lines illustrate the examples of PISE attacks, where an
attacker injects malicious scripts into the victim’s session, steals the victim’s CSRF token, and
performs a same-site request forgery attack to the Elgg server.

We illustrate various PISE attacks with a real-world social networking application
called Elgg2. Elgg maintains user profiles, manages private message dispatch and blog-
ging, and integrates itself with other social networking sites. Consider the following
features available to administrators:

– Add New User: This is a privileged feature that can only be accessed by administra-
tors. The administrator specifies information belonging to a particular user that is
going to be added to the system. The administrator can also mark the user as a new
administrator by identifying it on a checkbox element. Thereafter, this particular
information is sent to the server using HTML Form submit mechanism.

– Profile Management: Elgg provides profile data management to maintain particular
information for each user, similar to most social networking applications. In addi-
tion, there is a feature to set other users as administrators directly from their profile
pages. However, this feature is privileged to an administrator. The administrator
can add another user as an administrator by clicking on “Make admin” link on the
user’s profile page.

2 http://elgg.org/

http://elgg.org/
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In PISE attacks, injected scripts can access user-owned resources (e.g., the state of
“is admin” checkbox of a user) located at the client side and the server side, as shown
in Figure 1. We systematically analyze the various channels available to PISE attacks.

At the client side, we categorize three variants of PISE attacks depending on different
channels that are exposed to an attacker.

– Display Channel Attacks. An attacker can tamper with display elements of a web
application to steal sensitive information from users. Two examples of attacks that
exploit this channel are UI defacing and phishing for user credentials. In UI de-
facing attacks, an attacker alters the web content to mislead users. For instance, a
malicious extension can change the appearance of a profile page in Facebook [6].
Besides, malicious scripts can also introduce fake UI elements (such as fake login
input) to steal users’ credentials, therefore allowing them to impersonate as Alice
on a site O. Unlike traditional phishing attacks where a malicious website mimics
another benign website, in this example the malicious scripts are running within
the victim origin O. Therefore, common security indicators such as SSL lock icons
and URL bars do not help Alice in detecting the phishing attempt.

– Input Channel Attacks. In order to tamper with sensitive data, an attacker can ex-
ploit this channel by (1) intercepting or stealing user input; or (2) launching an attack
that programmatically interacts with the interface element of the web [13,16]. In the
second scenario, malicious scripts can impersonate a user by forging a user inter-
action with the DOM element on the web page (e.g., auto-clicking the “add user”
button) and mimic the user’s action. Another popular attack that exploits this chan-
nel (and the display channel) is clickjacking [25], which typically runs in a different
website than on Elgg. It can, for instance, load Elgg in a transparent overlay. Then
underneath Elgg, it can render another malicious web page to attract users to click
on the “Make admin” button in the invisible Elgg layer above. Clickjacking attacks
sabotage a user’s intention to interact with a UI element as intended by an attacker.

– Session Data Channel Attacks. Malicious scripts injected into the web page have
access to arbitrary data. It can exfiltrate sensitive data, including cookies, CSRF
tokens, capability-bearing URLs, and passwords, through two channels: directly
to an attacker-controlled website [8] or via the victim’s website itself, which is
recently discussed and termed as self-exfiltration attacks by Chen et.al. [12]. Due
to lack of input sanitization on Elgg’s “edit page” functionality [26], cookie data
can be stolen and exfiltrated using XSS attacks via a public blog entry, which is
visible to the attacker. This is a confirmed security bug and has been documented
as a CVE entry [27].

In addition to these three attack variants, the injected scripts have access to the net-
work, allowing the attacker to access server-side resources of the user.

– Network Request Channel Attacks. Malicious scripts can craft and send HTTP
requests to the server by invoking XMLHttpRequest API, or using HTML’s re-
source tag attributes, such as a src attribute in an <img> tag. Such crafted re-
quests can be used to perform specific operations on the server-side application.
Some websites implement CSRF tokens that are sent along with HTTP requests
and server-side applications verify whether the incoming requests carry expected
CSRF tokens. However, secret CSRF tokens and other existing defenses for CSRF



Enabling Trusted Paths and User Sub-origins in Web Browsers 155

attacks, such as Referer and Origin headers [28], do not suffice for preventing
requests forged by PISE attacks, as the injected scripts run in the same origin.

2.2 Insufficiency of Existing Solutions

Many existing solutions provide piecemeal defenses against PISE attacks. In Table 1,
we briefly compare existing second line of defense techniques to mitigate this class
of attacks. The comparison is categorized based on the four channels exposed to the
attackers (Section 2.1). As Table 1 summarizes, none of them provides full protection
for the four channels against malicious scripts injected into victim web sessions. We
refer readers to Section 6 for a detailed comparison with previous solutions. We propose
a user-based end-to-end trusted path that comprehensively protects all the four channels.

Table 1. Various Techniques for Mitigating PISE Attacks

I
1

II
2

III
3
IV

4
I
1

II
2

III
3
IV

4

HTML5 Privilege Separation [18]
√

WebWallet [29]
√

HTML5 Data Confinement [8]
√ √

Secure UI Toolkit [16]
√ √ √

Object-Capability Sec Model [30,31]
√

Clickjacking Defenses [32]
√ √

PathCutter [24]
√ √

Cryptons [9]
√ √

Request Triggering Attribution [13]
√ √

DOMinator [33]
√

Adsentry [34]
√

Origin Bound Certificates [22]
√

USERPATH
√ √ √ √

1
Display Channel

2
Input Channel

3
Session Data Channel

4
Network Request Channel

2.3 Threat Model and Scope

We now briefly discuss the in-scope threats of our work. We consider the attacker to be
a standard web attacker [35] that is able to exploit script injection vulnerabilities in a
web application and browser’s add-ons running as JavaScript (not binary plugins) [36].
All attacker payloads are client-side scripts, and we assume an uncompromised web
server and web browser, as well as the underlying OS. We assume that the user is be-
nign, i.e., we do not aim to prevent an attack where an authenticated user attacks the
web applications within its own user authority. An HTTP parameter tampering attack,
wherein Alice might attack Elgg for profit (e.g., randomly add users to increase number
of friends), is such an example [37]. We also assume the security of user passwords,
i.e., the users do not disclose their passwords nor use the same password for different
websites. Lastly, although our approach is applicable to non-JavaScript-based attacks
in concept, our discussion here precludes malicious Flash scripts or Java Applets em-
bedded in web pages.

3 USERPATH Design and Security Properties

To protect user-owned resources in the web application from PISE attacks, we combine
various techniques to protect the channels exposed to attackers (Section 3.2). Our solu-
tion requires minor changes to today’s web browsers and web applications, and is easy
to use for end users.
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3.1 Challenges and Key Ideas
Protection for sensitive user-owned resource should cover the entire life time of web
sessions, starting from user authentication to the teardown of the web session. We ex-
plain the challenges in doing so below.

Fig. 2. Overview of USERPATH. The unshaded boxes are the contributions of our paper. A
USERPATH-enabled platform has (1) server- and client-side PAKE modules to carry out PAKE
protocol, (2) a web primitive called UFrame, and (3) secure UI elements.

Protecting User Credentials. Malicious scripts can exploit display channels to launch
in-application phishing attacks and steal the user’s password. Note that browser’s secu-
rity indicators (e.g., SSL lock icon, URL bar) do not help users recognize such attacks.
Those security indicators operate under the assumption that a web session in an origin is
trusted. Such an assumption becomes invalid with our threat model, as the attacks take
place within the same session of the victim’s origin. To achieve a secure authentication,
our idea is to allow a web browser to render secure login elements on the web applica-
tions (Section 4). Such elements are special UI controls rendered by the browser, which
can be easily verified by the user and cannot be tampered with by untrusted JavaScript
code. Once users enter their credentials, leaking these credentials to an untrusted envi-
ronment (a script or server) is not desirable. To address this critical problem, we employ
a PAKE protocol (Figure 2 Step 1) that enables the web browser to authenticate a user
to a web origin without directly exchanging credential information with the origin O.
Establishing Notion of User. After the successful authentication, another challenge is
to securely establish a notion of user inside a web session. We term this step as secure
delegation (Section 4), in which the browser creates a user sub-authority in origin O.
This step constitutes a form of authority delegation on the web. To achieve this goal, the
key idea is to conceptually split the web session into two partitions, one web session
running under the authority of the web application origin O, the other one running
under a user sub-origin OAlice. USERPATH ties all sensitive resources belonging to user
Alice under the sub-origin OAlice, which represents the explicit notion of Alice’s sub-
authority3 (Figure 2 Step 2). Note that code running in OAlice represents the authority
of Alice in O, and is more privileged than the origin O’s code.
End-to-End Trusted Path. Fully protecting the four vulnerable channels is challenging
with any single mechanism. Instead, we safeguard each vulnerable channel by provid-
ing the corresponding secure channel: a secure channel between the UFrame and the

3 This secure delegation process is akin to executing an su - alice command in a UNIX-
like system.
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backend server, a secure channel between the UFrame and the browser kernel compo-
nents, a secure visual channel, and a secure input channel – the latter two channels are
established with the web application user (Figure 2 Step 3). This constitutes an end-to-
end trusted path between the user and the server, as further discussed in Section 3.2.

3.2 USERPATH Design

Protecting User Credentials. To initiate the authentication process, USERPATH lever-
ages the standard authentication mechanism using username and password, which can
also be extended for SSO-based authentication (see Section 3.4). The process starts with
a user Alice visiting a web page with the origin O. Alice interacts with the application
under the authority of its web origin O (Figure 5 Step A). The web application invokes
a DOM API to draw a special “credential box” (see Figure 3) for Alice to enter her
password. The origin O decides the placement and location of the credential box on the
web page and Alice needs nothing more than her usual password for this step. Unlike
prevailing password boxes where the input is directly accessible to the web page, the
data entered by Alice in the credential box will stay in the memory of the browser and
is not accessible by the application code. Therefore, it prevents attacker’s scripts from
stealing the password. The url property of the credential box element identifies the
server-side script that handles user login.

Fig. 3. A web browser displaying credential
boxes from example.com.
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Fig. 4. The PAKE Protocol. A session
key S is derived and the server-side
PAKE verifies the message M obtained
from the client.

After Alice entered her credential information, the browser then executes a PAKE
protocol between the browser and the backend server using Alice’s password as a se-
cret, without directly exchanging Alice’s password with the backend server (Figure 5
Step B). We illustrate the high-level overview of a PAKE protocol in Figure 4. In this
protocol, the server O is assumed to have gotten a verifer v which was derived from the
Alice’s predefined password P . The verifier v is not a password, and cannot be used
by Alice for authentication. After Alice enters password P , the client-side PAKE sends
Alice’s user information and, based on the user information, the server-side PAKE de-
termines the corresponding verifier v. Client-side PAKE (based on user’ password) and
server-side PAKE (based on verifier v) simultaneously derive a session key Ks, as well
as an evidence value M (for client-side PAKE) and M ′ (for server-side PAKE), accord-
ing to a set of computations defined in [38]. The message M is later sent by the client to
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and verified by the server-side PAKE, and vice versa for the message M ′. In case of a
successful authentication, the common key Ks will be used as a session key for further
communications between both parties.

To allow users to distinguish the credential input element drawn by USERPATH from
any other similar-looking elements rendered by malicious application code, the browser
displays a rectangle of color M in its chrome area and updates the color M simultane-
ously around the credential box4. The user recognizes the authentic credential elements
by a visual check. Therefore, this approach defeats any phishing attempts from mali-
cious scripts.
Establishing Notion of User. After authentication is carried out using the PAKE proto-
col, USERPATH initiates the secure delegation to establish a user sub-authority OAlice.
USERPATH creates a UFrame to run Alice’s privileged code separated from the rest of
the application code within a web origin O. Unlike the temporary origin (e.g., sand-
boxed iframe [18]) which runs in a distinct privileged environment, the UFrame runs
within the user Alice’s authority with a higher privilege than any other parts in the web
page. As a privileged entity, the UFrame has one-way access to (1) the main page’s
DOM via special DOM APIs including access to secure UI elements; (2) a direct se-
cure callback channel to the browser; and (3) a dedicated XMLHttpRequest object
to make HTTP requests to the backend server. USERPATH privilege-separates user-
owned data from being accessed by the less-privileged application code running in O’s
authority, as well as separates all code that processes user events and the associated
user-owned data.

Fig. 5. Sequence of operations in a USERPATH-enabled session

So far, USERPATH ensures that the sensitive data in UFrame-protected code is not
accessible to the less-privileged code (e.g., malicious JS code). But, how to make sure
that the UFrame code itself is not initialized with the attacker’s payload when it is
fetched from the backend server? The UFrame code from the server can be hijacked
by malicious scripts using a variety of ways, such as DOM clobbering [39] or pro-
totype hijacking of XMLHttpRequest object [40]. This lets an attacker create fake

4 The browser dynamically decides a foreground text color in the credential input element that
has high contrast with the current background color M and randomizes it every t=5 seconds.
To quantitatively measure the entropy, we set M to be randomly chosen from a palette of RGB
code colors. This gives a total entropy of 24 bits.
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UFrames or tamper with the original content of a UFrame. In order to securely dele-
gate user-owned resource to the UFrame, the backend server signs the code with Ks

and passes the code for the UFrame to the browser at the initialization step. Once the
code is received by the browser, it checks the integrity and authenticity of the code
with respect to Ks. Subsequently, the browser bootstraps the UFrame and provides a
dedicated XMLHttpRequest channel to securely communicate back to the server’s
origin. At this point, USERPATH has established a secure UFrame ↔ Server channel.
Note that we consider the server to be uncompromised in our threat model. If a web
application developer wishes to isolate users’ data better on the server side, several pre-
vious solutions such as CLAMP [10] and DIESEL [11] can be used in conjunction with
USERPATH’s abstractions.

Once a UFrame is initialized and executed during the web session, user-owned re-
sources (i.e., JavaScript heap objects of the UFrame) are isolated from the less-privileged
code. These sensitive user-owned resources include credit card information, sensitive
images, secret key information derived from the authentication process, and other sen-
sitive data tied to a user. To ensure compatibility with the existing web application, the
users should be able to interact with (e.g., view or input into) these resources. For ex-
ample, bank account number is a sensitive user-owned resource and this needs to be
displayed or entered by Alice when she checks her transaction history. USERPATH in-
troduces a set of secure DOM APIs (Table 2) to create secure input elements (e.g.,
textboxes, textareas) and secure display elements (e.g., images and styled-texts). Secure
elements are akin to standard HTML input and display elements, except that these ele-
ments are not accessible to scripts outside the UFrame on the web originO. For instance,
only event handlers (e.g., keyboard inputs and mouse clicks) inside the UFrame code can
access the secure display and input elements, and these handlers cannot be overridden by
code outside the UFrame. Therefore, USERPATH establishes a secure input and visual
channel to safeguard sensitive display and input elements.
End-to-End Trusted Path. Finally, a UFrame needs to communicate back to the server.
The main challenge is that the server needs to disambiguate HTTP requests generated
by the UFrame in response to the authentic user interaction, as opposed to fake requests
generated by malicious scripts via PISE attacks. USERPATH handles this issue by cre-
ating a dedicated network channel for the UFrame code. Inside the initialized UFrame
code, the server embeds a set of nonces S called user interaction token set (Figure 5
Step C) that can be used to generate resource access HTTP requests from client side.
These tokens can only be attached by the browser kernel as a custom HTTP header
X-UFRAME when the UFrame-dedicated XMLHttpRequest is invoked (Step D).
Teardown. As the user Alice logs out of O, the server invalidates the session key Ks,
and sets a custom HTTP header X-USERPATH:Session-destroy in HTTP re-
sponse for the log out request (Figure 5 Step E). After getting this response, the browser
destroys all user interaction tokens for the session and the session key Ks. To allow ses-
sion reconnection, similar to cookies, the browser caches the user interaction tokens and
Ks until the user logs out. The server then redirects the request to the login page if the
key and tokens expire.
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Table 2. Secure DOM APIs for UFrame

Downcall API Description Upcall API Description

createSecElement Create a secure UI element storeSecretKey
Store the key Ks that is derived from
PAKE protocol

getSecElementById
Get the secure UI element’s
object by ID

updateUFrameCont Update the UFrame code or data content

setSecElmAttr
Set the property of an object
with the corresponding value

createContext
Create a UFrame context that runs with
user privilege. It lets the UFrame access
privileged APIs

getSecElmAttrVal
Get the property’s value of an
object

removeSecretKey
Remove the secret key Ks during
teardown process

deletePAKESesKey
Delete the session key Ks from
the browser kernel

removeUIToken
Remove the interaction token T during
teardown process

3.3 Security Properties: Putting It Together
USERPATH enforces the following security semantics, which ensures resilience against
PISE attacks.

– P0: Safe Mutual Authentication & Ks Establishment. Mutual authentication be-
tween user Alice and the server is required for web servers to securely delegate user
Alice’s authorityOAlice to client-side code within its web origin’s authorityO. This
delegation is bootstrapped by Alice’s user name and password. The secure delega-
tion process must ensure that credential information does not leak outside Alice’s
authority, such as to attacker-controlled domains. After successful authentication, a
session key Ks is derived. The key Ks must remain unforgeable, unguessable, and
unique during the sessions.

– P1: Secure Delegation. A UFrame code that is passed from the backend server
needs to be signed by Ks that is derived from mutual authentication between user
and web server. Once web browser receives the content of the UFrame, it has to
check the authenticity of the code with respect to Ks.

– P2: Post-initialization Security of UFrame. All sensitive data and code must be
kept isolated inside a UFrame. The rest of the application code outside UFrame
must not be able to access this data and code whatsoever.

The properties P0, P1 and P2 serve as the basis for subsequent security properties
P3, P4, and P5 described as follows.

– P3: Secure Visual and Input Channels for Users
Visual channel. We reuse the standard secure visual channel that requires display,
intent, spatio-temporal, and pointer integrity to ensure distinguishability of secure
UI elements from the non-secure ones. Secure UI elements cannot be obstructed or
tampered with by untrusted code. Its elements should be able to display confidential
information to users and not be accessible to the non-UFrame code. This has been
explored in other research works [15, 16, 32] and is not part of our contributions.
Input Channel. All keyboard inputs to secure input elements go directly to the
browser. The confidentiality and integrity of input action should not be violated
by untrusted scripts. The browser should be able to distinguish genuine user inter-
actions from those mimicked by JavaScript code.
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– P4: Secure Browser ↔ UFrame Channel. A privileged UFrame can communi-
cate to the browser directly in order to create secure UI elements or to read contents
in DOM objects securely with no possibility of interception from untrusted code.
The confidentiality, integrity and authenticity of such communications are main-
tained by the browser.

– P5: Secure UFrame ↔ Server Channel. Web server should be able to distinguish
requests generated from the authentic user interaction, and those that are not. The
communications between the UFrame and the server are protected in their confi-
dentiality and integrity.

Due to space constraints, we give a more thorough example-by-example security
analysis in our technical report [20].

3.4 Compatibility and Usability Implications
Our mechanism can be easily extended to handle authentication via Single-Sign On
(SSO). If the serverO delegates authentication to an SSO providerS, a separate HTTPS
connection is established from the browser to S. Thereafter, the credential input element
uses the username and password to initiate the PAKE authentication with S. Upon suc-
cessful completion, the browser obtains a shared key Ks with S, which is also com-
municated by S to O in a separate channel. O can create a server-side representation
for Alice using Ks. The browser thus creates a UFrame with the authority of Alice@S,
which can isolate Alice@S from another user.
Usability Implications. First, we assume that web application users will always check
the background color of any credential-seeking elements, and only enter their passwords
if the color matches that of a rectangle displayed in the browser’s chrome area. Second,
we rely on prior research [15,16,32] to ensure the visual, temporal and pointer integrity
of a secure visual channel. Admittedly, the usability of such a scheme has not been fully
evaluated; a thorough user study on its usability merits separate research (c.f., [41,42]).

4 Implementation in Chromium

We summarize the high-level abstraction of our end-to-end solution and detail how it is
implemented in Chromium web browser.
Implementation Overview. We implemented UFrame and trusted path components
by modifying Chromium5, the open source version of Google Chrome. We patched
Chromium version 12 by adding roughly 475 lines of code spreading over 26 files inside
Chromium codebase. This does not include the logic for performing PAKE procotol,
which was implemented separately by us as a plug-in. Apart from the browser, we also
modified 20 PHP-based server-side applications which we discuss in Section 5.

We have released our patch to Chromium and the modified web applications on a
public repository [20]. We have also released a demo video showing how USERPATH

offers smooth user experience with our running example Elgg [21].
Authentication Step. As discussed in Section 3.2, once the browser identifies credential
element on the HTML code, it renders this element and applies a random color on
the element’s background. To do so, we develop an NPAPI plug-in for the browser to
render such element and update the display color in web browser’s chrome bar. As the

5 http://www.chromium.org/

http://www.chromium.org/
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credential element is rendered and called through privileged API, this is not accessible
from web application code. To make the existing authentication process be USERPATH-
compliant, developers just need to embed the plug-in into original web application’s
login page.

1 <uframe
2 src=’http://www.example.com/content.php’
3 sign=’8d4f9a3112e700437e5cd783cc621’
4 token=’qvrz-clwo-xiud-jawz’>
5
6 // phone number obtained from the server
7 var jsonData = {"type":"display","elm":"div","

id","phone-info","value":"88880000","
parentNode":"div-container"};

8 // create secure div element append it into
existing DOM element

9 var phoneElm = createSecElement(jsonData);
Internal DOM Representation

HEAD

DIV

id : div-container

DIV

id : phone-info
value : 88880000
type : secure

DIV

class : middle

DOM Type

Non-Secure

Secure

� � �

� � �

10 //-- Add a user as admin
11 var xhr = new XMLHttpRequest();
12 xhr.open(’POST’, ’http://’+URL+’/elgg/action/useradd’, true);
13 xhr.setRequestHeader(’Content-type’, ’application/x-www-form-urlencoded’);
14
15 var username = getSecElementById(’username’).getSecElmAttrVal(’value’);
16 var data = "username="+username;
17 ...
18 // secure resource access to Elgg server
19 xhr.send(data);
20 </uframe>

Listing 1.1. Trusted Code Running in a UFrame. This piece of code executes under the
user’s authority OAlice to create a secure div element into the web page and secure HTTP
request to add a user as an admin. Details elided for brevity.

Subsequently, we employ the PAKE protocol to mutually authenticate user and the
backend server by integrating TLS-SRP [43] — a PAKE-based web authentication that
operates at the transport layer — into USERPATH. On the web browser, we install a
browser level TLS-SRP module that receives input from special credential box and
carries out PAKE protocol with the specific origin O specified in url property of the
UFrame code. The module consists of 381 C++ lines of code in total, which is roughly
2.6 MB in size. At the server side, we apply a patch to the Apache web server to handle
server-side TLS-SRP authentication. This patch is available online [44].
Secure Delegation. After the authentication step finishes, the browser creates a UFrame
for executing trusted JavaScript code. In this step, the browser already has a shared
key Ks that can be used to secure communications with the server. Server-side web
application then signs the content of the UFrame using the key Ks and sends it to the
browser, embedded in a custom HTML tag named <UFRAME>. Whenever the browser
encounters the UFrame content during parsing, it checks the integrity and authenticity
of the UFrame code, and creates an iframe with a random origin OR = PRG(Ks),
where PRG(KS) is a pseudorandom generator function that takes the shared key Ks

as the seed.
We leverage existing mechanisms in the Chromium web browser to establish trusted

paths. For ease of implementation, we modify isolated worlds [36], a feature provided
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by Chromium to separate execution context between two JavaScript code. This abstrac-
tion offers similar isolation mechanism as what iframe-based isolation with random
origin provides.
Trusted Path Implementation. We use our running example in Section 2 to illus-
trate how we implement the trusted path execution inside a UFrame. As shown in List-
ing 1.1, UFrame code is purely written in JavaScript, and it has additional access to
secure DOM APIs. As an example, we label contact information as a sensitive ele-
ment to prevent them from being leaked to malicious code running on a web page.
In Listing 1.1 line 9, a secure DOM element is created by invoking a downcall API
createSecElement(). This API receives a JSON object jsonData as an in-
put, and creates a secure display element based on data from jsonData. The object
jsonData has user-owned contact information, which is sensitive data passed from
the backend server to the browser. In Listing 1.1 line 10-19, we create a POST re-
quest directly from the UFrame using dedicated XMLHttpRequest to protect the
client-side request to Elgg server. The data that is sent through the POST request
(e.g., username, password) is obtained from user input on the secure input elements
(Listing 1.1 line 15). As the XMLHttpRequest object is being called from UFrame,
the browser treats the request as secure resource access to the server and appends special
user interaction token for that request.

In our Chromium implementation, we make small changes in the following C++
classes: ScriptController, V8IsolatedContext and V8NodeCustom. We
add a new data structure called IsolatedContextMap to maintain the relation be-
tween code running on the web page or the UFrame, represented by a context identifier.
Therefore, the system can recognize the context where a JavaScript code is running by
checking the data structure. Finally, we modify Chromium to mediate access from a
JavaScript object to a DOM Node. The logic for mediating access to sensitive DOM
element is as follows: as each element of the DOM is represented by an object, we add
a special flag for every object that is created under specific privileged functions. We
then modify the logic for traversing an object in a DOM tree, so that those objects with
privileged flag will not be visible to the web application code running under origin O.

5 Evaluation

We deploy USERPATH on 20 open source web applications (as Table 4 shows) from 8
different categories (as Table 5 presents) including 3 frameworks (WordPress, Joomla,
and Drupal). These web applications are statistically popular, built using PHP, and cover
a wide range of functionalities. We evaluate our solution from four aspects – scope
of vulnerabilities USERPATH can eliminate, case study of elgg, applicability to web
applications & TCB reduction, and USERPATH’s performance.

5.1 Scope of Vulnerabilities

We study a set of vulnerabilities in the web applications that can lead to PISE attacks.
Among the 20 open source web applications that we study, there are 325 vulnerabilities
on those web applications that can be exploited to launch the attacks. Most of them
have been patched and recorded in the vulnerability database, but some of them are still
unpatched.
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Table 3. List of Vulnerabilities in 20 Open-source Web Applications. These vulnerabilities might
lead to PISE Attacks

App Name &
Version

Popularity Indicator
PHP # of

LOC
Sensitive User Data # of Relevant Vulnerabilities

Elgg
v1.8.16

>2,800,000 downloads 114735
Private profile data and admin
options (set user as admin and
add new user)

3 (CVE-2012-6561: XSS, EDB-ID
17685 and 8993: XSS)

Friendica
v3.2.1744

Forbes’s Top 3 social
network application 144555

Private contact, friend list, and
message data

1 (Bug ID 0000535: Reflected
XSS)

Roundcube
v0.9.4

>2,400,000 downloads
109663

Address book, settings and
private emails

12 (CVE-2013-5646: XSS and
CVE-2009-4077: CSRF)

OpenEMR
v4.1.2

Serving >30,000,000
patients 495987

Personal info, medical
records, and payment

2 (ZSL-2013-5129 and 103810:
XSS)

ownCloud
v5.0.13

>350,000 users
337192

Contacts, export files and user
share options

15 (CVE-2013-1942: XSS and
CVE-2012-4753: CSRF)

HotCRP
v2.61

Used by USENIX,
SIGCOMM, etc. 36333

Contact information, review
and privilege settings

3 (Bug ID 3f143d2: XSS)

OpenConf
v5.30

Used by ACSAC, IEEE,
W3C, ACM, etc. 17589

Contact info, review, edit
submission and role setting

1 (CVE-2005-0407: XSS and
CVE-2012-1002: XSS)

PrestaShop
v1.5.6.0

Powering >150,000
online stores 250660

Personal info, credit slips,
addresses and checkout info

2 (CVE-2008-6503 and
CVE-2011-4544: XSS)

OpenCart
v1.5.6

>250,000 downloads
93770

Account, address book and
checkout information

1 (CVE-2010-1610: CSRF)

AstroSpaces
v1.1.1

DZineBlog’s Top 10
open social network. 6972

Profile information, private
message and admin settings

1 (Bug ID 001: XSS)

Magento
v1.8.0.0

Used by >200,000
business 928991

Account info, address
information and checkout info

1 (CVE-2009-0541: XSS)

Zen Cart
v1.5.1

>3,000,000 downloads
95381

Account, profile and checkout
information

4 (CVE-2011-4567 and
CVE-2012-1413: XSS)

osCommerce
v2.3.3.4

>12,000 registered sites
with >270,000 members 60081

Account, profile and checkout
information

10 (CVE-2012-1792 and
CVE-2012-2935: XSS)

StoreSprite
v7.24.4.13

Incorporate 14 payment
gateways 30350

Account, profile and checkout
information

1 (CVE-2012-5798: XSS)

CubeCart
v5.2.4

Powering thousands of
online stores 11942

Account, profile and checkout
information

1 (CVE-2008-1550: XSS)

WordPress
v3.6

Used by >60,000,000
websites 135540

Account, contact and setting
information

91 (CVE-2013-5738: XSS and
CVE-2013-2205: XSS)

Joomla
v3.2.0

>35,000,000 downloads
227351

Account, contact and setting
information

45 (CVE-2013-3059 and
CVE-2013-3267: XSS)

Drupal
v7.23

>1,000,000 downloads
43835

Account, contact and setting
information

126 (CVE-2012-0826: CSRF and
CVE-2012-2339: XSS)

Piwigo
v2.5.3

Translated into 50
languages 143144

User’s management,
permission, sensitive profile

4 (CVE-2013-1468: CSRF and
CVE-2012-2209: XSS)

X2CRM
v3.5.6

>4,500 installations
across 135 countries 747261

Account, contact management
& information

1 (CVE-2013-5693: XSS)

Table 3 lists our case study and summarizes the number of vulnerabilities, along with
the CVE ID for the corresponding vulnerability6. Among those 20 web applications that
we study, all of them have at least one vulnerability to a subset of PISE attacks namely
XSS or CSRF attacks. Some of them even have more than ten vulnerabilities of the
same attack vector. To name one of them, PrestaShop has two critical vulnerabilities.
One type of vulnerability (marked by ID CVE-2008-6503) allows an attacker to inject
arbitrary web scripts to the login page. The other vulnerability (marked by ID CVE-
2011-4544) lets the attacker to exploit the file management process of an administrator
to launch an XSS attack.

6 Due to the page limit, we show the study of 8 applications from 8 different categories. For the
study on all 20 applications, please check our technical report [20].
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5.2 Case Study : Elgg and OpenCart

In this section, we detail our experience with real-world case studies to illustrate the
steps taken for retrofitting web applications with USERPATH. We evaluate USERPATH

with the following goals: (1) protecting the “add new user” feature in Elgg social net-
work, given the presence of XSS vulnerabilities and (2) protecting the “reset password”
feature in OpenCart, given a CSRF vulnerability in the web application. Based on those
vulnerabilities, we thus construct four proof-of-concept attacks that tamper with the
four channels discussed in Section 2.1. Due to space constraints, we describe the attacks
and specify the way USERPATH prevents those attacks in our technical report [20].
Code Changes. First, we made small changes in actions/login.php (Elgg) and
account/login.php (OpenCart) to let the browser render special credential boxes
and initiate a TLS-SRP-based authentication with the server at their respective origins.
Secondly, in the “add new user” page of Elgg, we privilege-separated the logic for
displaying username, email address, password, admin flag, and a form request button
into a UFrame section. Instead of creating those elements using HTML, the elements
need to be dynamically created from within a UFrame to let them be rendered as secure
elements. All the changes were made in a PHP file forms/useradd.php. Likewise,
we protect two HTML input elements for putting in new password and a confirmation
button by implementing the logic for this feature separately inside a UFrame. All these
changes were made by modifying a file account/password.php. A complete set
of technical changes is described in [20].
Result and Challenges. We successfully retrofitted USERPATH to Elgg and OpenCart
by adding 270 and 266 lines of PHP code in their application code, respectively. The
TCB size of the UFrame in the modified Elgg is 46x and 66x smaller than the size of
TCB in vanilla web applications. After implementing those changes, we successfully
protect the sensitive resources in the vulnerable applications from PISE attacks. We
demonstrate some of the attacks in Elgg and how USERPATH defends against those
through demo videos available in [21].

The main challenge of adopting USERPATH to web applications is the difficulty in
locating the functionality we need to modify, because both applications were built using
their own toolkit. After understanding the toolkit, the modification effort is straightfor-
ward. It took 2 days in total for us to enable USERPATH in Elgg and OpenCart.

5.3 Applicability to Web Applications and TCB Reduction

We successfully retrofit all 20 web applications to adopt USERPATH. Among these
applications, we manually choose several data and operations that are sensitive to users
(summarized in Table 3) and modify the PHP files where these data and operations are
processed. In addition, we demonstrate the practicality of USERPATH by summarizing
the adoption effort and TCB reduction of 20 retrofitted web applications in Table 4. We
measure the adoption effort by the following benchmarks: number of additional code,
number of modified files, and number of days spent in modifying the web application.
Besides, we also measure TCB reduction by comparing the initial TCB size (i.e., the
web page size) and the final TCB size after implementing USERPATH.

We find that USERPATH requires small changes to the existing web application code.
Given the set of sensitive user-owned data and functionalities that we want to protect
from PISE attacks, we only need to add at most 270 lines of PHP and JavaScript code
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Table 4. Adoption Effort and TCB Reduction after Implementing USERPATH in 20 Open-Source
Web Applications

App Name USERPATH

LOC
(JS+PHP)

Original TCB
(KB)

TCB after
implementing

USERPATH (KB)

TCB
Reduction

Factor

# of
Modified

Files

# of Days
Spent

Elgg 270 414.6 9.1 46x 4 2
Friendica 176 1053.8 5.3 199x 13 1

Roundcube 96 946.0 8.0 118x 4 2
OpenEMR 141 53.6 6.6 8x 7 1.5
ownCloud 106 555.2 2.9 191x 4 1.5
HotCRP 139 184.5 4.6 40x 5 1

OpenConf 151 55.9 2.4 23x 5 1
PrestaShop 111 580.3 5.8 100x 5 1
OpenCart 266 754.8 11.5 66x 6 2

AstroSpaces 119 67.3 3.5 19x 5 1
Magento 227 987.0 11.2 88x 4 1.5
Zencart 130 241.8 6.5 37x 6 1

osCommerce 122 425.8 5.9 72x 5 1
StoreSprite 133 513.8 4.6 112x 4 1
CubeCart 118 469.2 6.2 76x 5 1
WordPress 102 308.7 3.9 79x 4 1

Joomla 87 819.3 3.1 264x 3 1
Drupal 72 199.6 2.6 77x 3 1.5
Piwigo 216 673.5 7.8 86x 6 1

X2CRM 217 1380.4 6.1 226x 10 2

into the web application, with 167 lines of code added for each web application on an
average (see column “USERPATH LOC” in Table 4 for LOC of all the 20 applications).
Moreover, we empirically show that we achieve the reduction of 8x to 264x in TCB for
our case studies. We measure this reduction by comparing the size of final TCB (e.g.,
the UFrame code) with the entire web page size (see column IV in Table 4). We treat
the web page size as the initial TCB size as we need to trust the entire web page in order
to protect our sensitive data and operation.

We also find that modifying web applications according to USERPATH incurs rel-
atively small burden on the developer side. On the average, given a set of sensitive
user-owned resources to protect in Table 3, a developer needs to modify 6 files within
1.3 days for one web application to make it USERPATH-compliant.

5.4 Performance

The main performance factor that impact our solution include: PAKE-based secure del-
egation, the UFrame creation, and new secure elements introduced into DOM. As our
demo video [21] shows, in our experiments with the 20 web applications, we do not
observe any slowdown in user interactions with the applications. Since the login phase
contains all the three factors, we measure the overhead of the login time for 20 appli-
cations from 8 different categories. Table 5 summarizes the results of the login time
(averaged on 5 runs) between the click on the login button and the next page finishes
loading. We can see that USERPATH introduces the negligible performance overhead to
these applications. This confirms our speculation that the minimal performance over-
head that might incur from USERPATH would be largely masked by the timing variances
in network requests.
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Table 5. Time Taken for Login without & with USERPATH (in seconds)

Category Application Name Time without
USERPATH

Time with
USERPATH

Overhead

Social Networking Elgg 3.38 3.45 2.07%
Social Networking Friendica 4.88 5.02 2.87%
Social Networking AstroSpaces 0.397 0.406 2.27%
Email Application Roundcube 7.28 7.49 2.88%

Health Information System OpenEMR 3.238 3.338 3.09%
Conference Management System HotCRP 1.037 1.065 2.70%
Conference Management System OpenConf 0.173 0.176 1.73%

E-commerce Application OpenCart 4.26 4.40 3.29%
E-commerce Application PrestaShop 3.52 3.56 1.14%
E-commerce Application Magento 3.02 3.07 1.66%
E-commerce Application Zencart 1.16 1.2 2.83%
E-commerce Application osCommerce 7.38 7.46 1.08%
E-commerce Application StoreSprite 5.03 5.13 1.99%
E-commerce Application CubeCart 3.05 3.09 1.31%

Content Management System WordPress 3.708 3.777 1.86%
Content Management System Joomla 2.74 2.81 2.55%
Content Management System Drupal 1.56 1.62 3.44%

File Sharing System Piwigo 1.55 1.57 1.09%
File Sharing System ownCloud 5.2 5.36 3.08%

Customer Management System X2CRM 9.105 9.364 2.84%

6 Related Work

In this section, we discuss recent research works that are related to our solution.
Privilege Separation. Privilege separation reduces the potential damages of compro-
mised software components by partitioning software into different compartments. It
has been widely adopted in traditional applications [45,46], web browsers [47–49], and
web applications [18, 34]. View isolation implemented by PathCutter [24] separates
code running in different iframes (views) as well as requests coming out of different
views. Thus, it prevents unwanted access to data between views, either directly or in-
directly via sending requests to the server. Our solution in this paper applies privilege
separation using a user-centric approach. We bring in user sub-origins to the present
web, and confine user data only to code delegated by the user sub-origin.
Data Confinement. Confining data in web applications has recently received attention
in the research community. For instance, Roesner et al. propose ACG, which allows
users to directly grant access to user-owned resources by UI interaction with such gad-
gets [15]. Our solution shares the similar insight as to confine user data back to user-
sanctioned operations, although we face different challenges in protecting user data
on the web. Unlike resources on OS, the distributed nature of the web and decoupled
server-client architecture requires additional secure channels to confine user data on the
web. We address such challenges by integrating TLS-SRP into web authentication to
build an end-to-end trusted path from the client-side application code to the web server.

Several other works have been proposed to confine sensitive data on the web [8] or
cloud platform [50]. Compared to these proposals, our solution does not confine user
data according to any application-specific configuration or data propagation policies;
instead, it ensures that user data only flows within user sub-origin, both at the client and
the server side.
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Trusted Paths. Building trusted paths across untrusted components has practical
significance today. Prior works examine potential solutions for trusted paths between
user-interaction elements and software applications [41,51,52]. Similarly, Web Wallet re-
designs browser’s user interfaces to protect user credentials against phishing attacks [29].
The usability of trusted path proposals has been evaluated in real-world usage [42, 51].
Zhou et al. propose a hypervisor-based general-purpose trusted path design on commod-
ity x86 computers, and present a case study on user-oriented trusted path [53].

Our solution builds an end-to-end trusted path by utilizing the existing functionality
of the web browser and server. This trusted path connects the user at the client side to
the server, ensuring that only user-delegated sub-origins can access protected data. Such
a trusted path differs from a recent proposal on a trusted path between user keyboard in-
puts and the web server, where no explicit notion of users is established [9]. Moreover,
compared to it, our solution requires much smaller changes to web browsers; by piggy-
backing on passwords for authentication, we avoid the usability challenges in requiring
users to generate and upload SSL keys as in [9]. Dong et al. propose a solution to iden-
tify requests crafted by injected scripts from those triggered by user interactions [13].
We apply a similar mechanism in our solution as part of input channel protection. How-
ever, their work focuses on monitoring and diagnosing web application behavior, and
does not yield a solution for protecting data in web applications.
Injection Attack Prevention. As we discuss in this paper, injected scripts pose major
threats to web applications. Previous endeavors of security researchers have devised nu-
merous solutions to prevent or mitigate script injection, such as CSP [1], blueprint [54],
DSI [55], and Noncespaces [56]. Nevertheless, in practice, it is difficult to eliminate all
script injection vectors [2]. Our solution complement these solutions on script injection
prevention as a second line of defense.

7 Conclusion and Acknowledgments

In this paper, we propose new abstractions to bring in the explicit notion of user sub-
origins into the present web and establish an end-to-end trusted path between the user
and the web server. We show that our solution eliminates a large amount of PISE at-
tacks in real-world applications, and can be integrated with today’s web browsers and
applications with minimal adoption cost.
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Abstract. Defense in depth is vital as no single security product detects
all of today’s attacks. To design defense in depth organizations rely on
best practices and isolated product reviews with no way to determine the
marginal benefit of additional security products. We propose empirically
testing security products’ detection rates by linking multiple pieces of
data such as network traffic, executable files, and an email to the attack
that generated all the data. This allows us to directly compare diverse
security products and to compute the increase in total detection rate
gained by adding a security product to a defense in depth strategy not
just its stand alone detection rate. This approach provides an automated
means of evaluating risks and the security posture of alternative security
architectures. We perform an experiment implementing this approach
for real drive-by download attacks found in a real time email spam feed
and compare over 40 security products and human click-through rates
by linking email, URL, network content, and executable file attack data.

Keywords: Metrics, Defense in Depth, Drive-by Download, Measuring
Security.

1 Introduction

The modern Chief Security Officer’s (CSO) primary goal to secure an organiza-
tion in a cost effective manner is frustrated by a lack of formal empirical data
suitable for optimizing defense in depth architecture. Purchase price, mainte-
nance costs, cost of false positives on productivity, and the costs of damages
prevented by attacks blocked should all be taken into account during purchases
of security products. While all these aspects of the cost of security products are
important, in this work we focus on measurement of attacks blocked by various
products. CSOs can follow expert knowledge codified in best practices and com-
pliance standards such as HIPAA and PCI. This leads to deployment of many
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security products such as firewalls, intrusion detection systems (IDS), antivirus,
web application firewalls, patch management, and others to provide defense in
depth where a particular attack must evade many security products in order to
be successful. Intuitively the hope is that attacks that one security product might
miss will be detected by another, but such intuitive best practice assumptions
often fail or are incomplete as seen in a recent quantitative study of password
policy assumptions [1]

To illustrate the current ad hoc nature of defense in depth deployment, con-
sider the following hypothetical scenarios depicted in Figure 1. Imagine an orga-
nization with security products deployed across three layers of defense: a firewall,
an IDS/IPS, and host antivirus. Assume this organization suffers many attacks
against its hosts which could be detected by any of these three layers. In these
figures, the red squares represent attacks. For each security product consider it
capable of detecting any attacks that fall within its circle. Consider two scenarios
presented notionally in Figures 1A and 1B. Figure 1A illustrates the intuitive
hope of defense in depth where each security product is able to detect additional
attacks and few attacks are able to bypass all three. Figure 1B shows a pes-
simistic view where the security products only detect the same group of easily
detected attacks while leaving the organization vulnerable.

Fig. 1. Illustration of overlap and total cov-
erage of four defense in depth deployments.
Each square represents an attack. Each cir-
cle is a security product. Attacks in a circle
mean that those attacks will be detected by
that security product.

Additionally, consider the scenarios
in Figures 1A, 1C and 1D. In these fig-
ures, we have not only different layers
of defense but consider specific prod-
ucts. Figure 1A represents an ideal
setup, but consider an organization
whose current products are as seen
in Figure 1C. Once aware of the gap
in coverage seen here, the organiza-
tion could find a product that closes
their specific gap. This is seen in Fig-
ure 1D where the organization may
replace firewall 3 with firewall 2 to
achieve better coverage. While similar
in terms of detection rate and abso-
lute number of attacks detected, fire-
wall 2 and firewall 3 differ in terms
of which attacks they block. Current
product testing only shows per prod-
uct detection rates without indication
of what overlap might exist with other
products.

We address this issue by expanding
the standard security product detection rate testing in two ways. First, we track
not only individual security product detection rates, but also which attacks each
security product detects. This allows us to take a union of the sets of attacks an
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arbitrary group of security products detect in order to calculate the coverage or
total detection rate a set of security products have in aggregate against a set of
attacks. Second, rather than testing security products against isolated pieces of
attack data, we carefully record and link all data from a particular attack in its
various forms so that security products from multiple layers of defense can be
tested against the same attack.

This new approach to data gathering and testing could both validate the
need for a new security product and give a baseline to quantitatively measure
how much that security product improves the overall security posture of the
organization by calculating the increase in coverage (total detection rate) after
adding that product. Any inexpensive security product that is complementary
to the organizations’ current defense in depth becomes a good investment while
expensive products that add little relative improvement could be used only to
protect the most valuable of assets. Additionally, since the data sets and security
products only have to be gathered and tested by one security service provider
regardless of how many organizations make use of the data, this approach is
scalable with costs amortized across any number of benefiting organizations.

In order to demonstrate the useful knowledge that is possible to gain from our
methodology, we created a prototype system, we call Security Posture Integration
and Correlation Engine (SPICE). SPICE covers four layers of security tested in
near real time (within a few minutes in most cases) against real in the wild
drive-by download attacks originating in widespread spam emails. To prevent
biasing results by using existing known malware, we use a real time spam feed
from Abusix [2] to send links to an instance of the Cuckoo Sandbox [3] honeypot
driving full virtual machines designed to be vulnerable to common in the wild
drive-by download exploits. The files, URLs visited, and full network packet
capture are then logged and linked to the email that sent the malicious URL.
We integrate a fifth layer of security, human click-through rates, into the system
via a user study utilizing the same attack data allowing us to directly link the
believability of spam emails to detection of the attack at other layers. While
this experiment and its data collection is specific to the widespread drive-by
download attack vector, we discuss applying our methodology (linking attack
data across layers and tracking individual attack detection by security products
rather than aggregate detection rates) to other attackers and attack vectors
in Section 2. The key innovation in SPICE over existing malware collection is
that we systematically and automatically link the data captured. Knowing for
example which HTTP link led to which Windows PE file being loaded onto
a victim machine allows us to compare a domain reputation system such as
Google SafeWeb to a host or network antivirus product. We can determine that
the attack would have been blocked had either successfully identified it.

This paper provides the following contributions:

1. We describe a practical methodology for calculating the coverage (total de-
tection rate) of a group of security products deployed across many layers of
security as defense in depth as well as the marginal detection rate gained by
adding a new security product.
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2. We apply this methodology to create SPICE, a prototype system, collecting
drive-by download attacks in near real time linking emails, domain names,
network traffic, and executables to each attack.

3. With this data, we test over 40 security products across many layers of
defense. We report individual detection rates and delayed detections as well
as the correlation and total coverage of sets of security products.

4. Using this methodology and prototype we are able to compare the results of
a user study on human click through rates for actual attack emails to other
security layers.

5. The data we have gathered will be provided to the research community.
The linked attack components and detailed detection results may offer new
research opportunities for the research community.

The remainder of this paper is organized as follows. Section 2 discusses def-
initions, overall approach, and the challenges facing such comprehensive mea-
surement. Section 3 describes the SPICE system architecture. Section 4 presents
detection rate, coverage, correlation results, and user study results. Section 5
discusses related work on defense in depth, drive-by downloads, measurement
experiments, and best practices. Section 6 mentions future goals and directions
going forward. Finally, section 7 summarizes the findings and approach.

2 Methodology

2.1 Approach

The approach for measuring defense in depth consists of a series of steps.

1. Choose a particular attack vector. This paper centers on a prototype exper-
iment for drive-by downloads. Other potential attack vectors include web
server attacks, insider attacks, data exfiltration, and so forth.

2. Find security products that are capable of detecting an attack for the chosen
attack vector.

3. Set up a honeypot capable of recording all the data from the attack that each
of these security products take as input. For example, ensure the honeypot
can capture the network traffic to test a network IDS and executable files to
test antivirus or host detectors.

4. Collect attack data and normal data if possible. In the case of testing against
widespread attacks as we do with SPICE this could come from a commer-
cial spam feed or existing honeypot. Real time in the wild data is ideal for
accurately measuring existing attacks.

5. Have the honeypot record all the attacks in real time and monitor for suc-
cessful attacks. Save all the data related to successful attacks and link the
attack components.
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6. Test each security product against appropriate attack components of the
data collected and record the results. Use these results to determine which
security products detected which attacks.

7. With a set of detected attacks for each security product one can answer
questions such as what is the coverage (total detection rate) of a group of
security products, the marginal increase in detection rate by adding each
security product, and which ones detect the most difficult attacks.

This process is repeatable for each attack vector to develop a broad view of the
security posture of the defenses although additional attack vector specific data
collection methods would be required. The most difficult task is data collection,
which in turns depends on the type of attacker an organization is interested in
defending against. SPICE is as reliant as any other testing framework on good
underlying data and ground truth.

2.2 Definitions

Attack: An instance of an attacker attempting to gain unauthorized access to
a system. For this experiment, we more specifically define an attack as a single
instance of a virtual machine in a honeypot visiting a drive-by download website
and getting infected with an executable file.

Attack Cluster: A group of similar attacks presumably launched by the same at-
tacker. For SPICE, we group attacks into attack clusters based on email contents1.

Layer: In this work we use ’layer’ to refer to all the security products deployed in
a defense in depth architecture that use a particular type of data. For instance,
a defense in depth architecture with regards to the drive-by download attack
vector is made up of many layers such as security products operating on email
content, security products operating on network traffic, etc.

2.3 Linking Attack Vector Data

We link attack data so that security products from different layers can be tested
against the same attack based on whatever data that attack generates suitable
for each layer. Recording and linking this data takes different forms based on
the attack vector. For instance in the drive-by download scenario one would
capture the spam email, the initial malicious link, the network traffic as a vir-
tual machine visits the link and gets infected, and the files and processes loaded
onto the victim machine. For web application attacks, one would capture incom-
ing network packets, reassembled HTTP requests, server host data such as file
system accesses and system calls, network traffic to the database backend, and

1 We cluster emails with a similarity score greater than .8 computed between two emails’
content by taking the ratio of the sum of the lengths minus the Levenshtein distance
with weight two for character replacement and the sum of the lengths.
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database queries linking all this data together by time window and other signa-
tures such as IP address and process ID. For the insider threat attack vector, we
could track user activity logging into each server, file transfers, host data such
as file access and system calls, and outbound network traffic linking this data
together by user login and machine IP address. Each security product is tested
as to whether it can detect the attack through whichever piece(s) of this data
it is designed to process. For example, user education would be tested on the
spam email content from the attack while a network intrusion prevention system
would read the network data from the same attack.

While SPICE deals only with the initial attack vector data crossing four layers
of security, additional layers of security play an important role, especially against
more sophisticated adversaries. The stages of an attack after initial infection such
as propagation, downloading additional malicious features, and eventually data
capture and exfiltration provide the potential for many more layers of security
to accurately detect some stage of an attack. SPICE can incorporate these addi-
tional layers of data if additional data collection capabilities are added. The most
straightforward extension would be simply to leave any infected honeypots on-
line and observe future behaviors. This could capture any generic botnet traffic,
but without exposing any sensitive data. We believe that a more sophisticated
honeypot solution where attacks are run on servers with enticing but fake data
such as described in [4] could be constructed. This would allow for excellent data
collection and the ability to accurately test security products designed for data
loss prevention or multistage infections.

2.4 Discussion of Data Sets and Adversarial Capabilities

We define each class of adversary by the additional resources/capabilities they
bring to bear. While certainly not perfect, we believe that definitions along these
lines provide clear means of separation and data gathering while still giving
organizations a good idea of the level of sophistication of adversaries they are
vulnerable to. Some of these adversaries lend themselves to easy data collection
using honeypots collecting real data on the internet. Others, especially as they
grow in sophistication raise the cost of in the wild collection with sparser data and
the expense of fielding sophisticated honeypots. For many of these we propose
approximate synthetic data set generation that while not ideal could at least
provide a picture of the threat. Note that the scope of this experiment is limited
to the widespread untargeted exploit kit attackers as described below.

Widespread Untargeted Exploit Kit Attackers. One drive-by download
adversary class is what we term a widespread untargeted exploit kit attacker.
This is an adversary that not only makes general nontargeted attacks, but does
so against any email address available. A perfectly representative data set is
then easily collected from honeypot emails. The only challenge in modeling such
an adversary is sorting through the enourmous amounts of non-harmful spam to
find those spam emails that contain malicious links. These links seem to point to
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standard (and perhaps even outdated) exploit kits with well known exploits and
mostly not so subtle executable payloads. What makes this adversary dangerous
is that an organization must be prepared to deal with the attacks as they are
widespread enough that they will certainly reach the organization. This is the
adversary class that our experimental data set represents.

Targeted Exploit Kit Attackers. Another class of adversary is one we term
as targeted exploit kit user. This adversary would still lack the innovation and/or
resources to field any true zero-day exploits, but is capable of using the available
attack tools to their fullest. This adversary also is capable of making targeted at-
tacks using spear-phishing and brand new clean domains in order to compromise
higher value targets. This is the level of adversary where inexpensive security
products like domain reputation and email spam filtering start to fail. Classes
of security products such as fully patched systems, sophisticated antivirus with
whitelisting and behavioral analysis, host IDS, honey files, and data loss preven-
tion systems become important if not necessary. Modeling this adversary class
with in-the-wild data becomes difficult unless an organization has the opportu-
nities to capture such attacks with its own honeypots for later analysis. Due to
this class of adversary’s reliance on existing exploit kits and available tools, we
believe that a reasonable data set could be manufactured using those same tools.
The challenge here is to maintain up to date copies of widely available attack
tools and exploit kits especially when new exploits are added to the exploit kits
before patches are widely available.

Zero-day, Insiders, and More Sophisticated Attackers. As attackers in-
crease in sophisticated data goes from hard to collect to nearly impossible. Even
if any such data becomes available, it would likely be of a historical nature and
scarce. Even historical data could be interesting to test with as security products
could have their updates rolled back to a date before the data was sent. Any
conclusions drawn based on historical data would still be suspect as the nature
of sophisticated attacks is to be fairly unique.

3 System Architecture

The Security Posture Integration and Correlation Engine (SPICE) prototype
system, depicted in Figure 2 extends a traditional honeypot by carefully linking
attack data across different layers in a database such that security products even
from different layers of defense can all be compared. In this way, the coverage of
an organization’s defense in depth architecture can be evaluated. As an attack
hits the honeypot, pieces of it are logged and then scanned by the appropriate
security products once confirmed as malicious. As these pieces are linked, we can
determine which security products detect the attack even if they run on different
pieces of data linked to the same attack.
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Fig. 2. An overview of SPICE. We build upon a traditional honeypot by carefully
linking attack data in order to see how security products from different layers of defense
overlap or complement each other.

We use an existing spam stream from spamfeed.me by Abusix [2]. It is a real-
time spam feed that is captured through a large number of spam traps online. We
receive 1 million emails a day. Each email is individually parsed, and all URLs
from that email are then extracted and put into a database. Unfortunately,
while such a feed guarantees that the emails are spam, the distribution of spam
is highly skewed. Of the emails that even had links, the vast majority point to
pharmaceutical spam with only a fraction of a percent serving active malicious
content, handfuls per day from unique sites. We filter out links visiting only one
from each domain for any twelve hour period in order to reduce the load on the
VM clusters visiting each link.

To visit the URLs in emails, we use four clusters of virtual machines (VM),
with 40 in each cluster that run on top of VirtualBox [5] across two physical
machines. These virtual machines run off RAMdisk to minimize the impact of
disk IO towards running and reverting virtual machines. Each cluster of virtual
machine has its own configuration, with variations of browsers installed and its
plugins such as Java, Adobe Flash, Adobe Acrobat Reader. We then validate
each cluster’s setup against CANVAS [6] a white hat penetration testing tool,
making sure they are indeed vulnerable to existing exploits known to be targeted
by exploit kits. We use Cuckoo Sandbox [3] to drive these virtual machines to
visit each link logging host activity and new files created.

Each cluster has it own driver, which takes the URL feed and instructs the
browser inside each machine to visit the link. We visit each URL three times
per VM cluster, to compensate for the instability of the exploits. Sometimes
exploits fail to infect even vulnerable machines, most likely due to poor code or
nondeterministic exploit conditions. After waiting at least one minute, the VM
is reverted to a clean state.

Each time, a VM visits a link the honeypot generates a log that contains a
pcap file of the network traffic generated, and records details of the execution of
programs in the operating system as well as new files generated. SPICE scans log
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files to determine if any executable files have been generated. The appearance
of a new executable file is a strong indicator of an attack successfully occurring
and provides a high confidence of malicious behavior, with a zero false positive
rate as far as can be determined. Every successfully created new executable is
eventually identified as malicious by at least one of the antivirus products tested.
This classification is also used in other recent literature on drive-by download
attacks [7]. If a new executable is found, we flag this as an attack and store the
executable files as well as the email, pcap file, and the URLs visited during that
attack linked to the attack in a central database.

We have installed three host based antivirus software programs, which scan
the new files within a minute after the file has been logged and inserted into the
central database. The antivirus programs rescan the files every six hours to test
if new updates to the antivirus program are capable of detecting the attack. All
the antivirus software is configured to update regularly. At the same time, we
send the executable files to VirusTotal [8] once every 12 hours.

On top of scanning the executable files, we have the email and pcap file that
are associated with the attack. We run Spam Assassin [9] on the email and
Snort [10] a network IDS on the pcap file. Both of them follow the same rule
for processing the incoming data: within a minute after arrival and rescans at
6 hour intervals. Spam assassin is configured to use the most up to date rules
from the Internet automatically. Snort updates its rules daily from the Emerging
Threats [11] public rulesets.

We also test domain reputation systems. We use the domain reputation data
from four public domain blacklists to test each link that is associated with the
attack to see if the domain is flagged as malicious. Whenever there is any result
from the scanning system, they are added to the database for further analysis
and rescanned periodically.

In order to test the efficacy of security education for users in an organization,
we conducted a user study to measure the human factor in drive-by download
attacks such as performed in [12]. User education has the potential to be a
beneficial layer of defense as it complements almost all existing layers. If users
can spot suspicious links and not click on them in the first place then the attack is
thwarted. To test the likelihood of users clicking on a malicious link in the spam
emails, we took one email from each of the attack clusters. After adding a unique
identifier to and changing the malicious link to point to a benign web server with
an unaffiliated domain name, we then sent the email to 10 randomly selected
users from (anonymized) (IRB approval was received and will be cited) for each
cluster resulting in a total of 360 emails sent. We send these emails from a clean
account with an old nonmalicious domain for the links to evade reputation based
spam filters, but content based spam filters could still affect this experiment so
the results will represent more of a lower bound. If a user visited that unique
link we recorded the click through and displayed a webpage detailing the study
as well as warning of the dangers of clicking unknown links. By using the same
attack data used by the other security products for testing, we can use this user
study to see how human click-through rates overlap with other attack detection.
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In the future, one could experiment with different user education techniques
and by comparing their effectiveness directly against other security products
one could determine whether user education is more cost effective than buying
additional technical security products.

In summary, the entire list of products employed in SPICE includes:

1. One email spam detector
2. Human spam click through measurement
3. Four domain reputation systems
4. One network IDS
5. Three host antivirus programs
6. Forty antivirus engines via VirusTotal [8]

4 Results

4.1 Attack Data Collected

The 1463 virtual machines infected in the course of the five and a half week
experiment cover attacks from 730 unique emails. With an average of about two
infections per email out of the twelve times each link is visited (three per four
virtual machine setups) we note that capturing in the wild drive-by download
attacks is not reliable. The low rate of infections can be attributed to a combi-
nation of factors that make precise measurements difficult. A particular attacker
may not have an effective exploit for some versions of vulnerable software. We
mitigate this by confirming that in the wild exploits target the versions of vulner-
able software each virtual machine setup runs. An attacker may blacklist repeat
visits from the same IP or to the same unique link to thwart probing. In this
case the best we can hope for is to be infected the first time. Some exploits are
more reliable than others. Also, an exploit can fail or take longer to compromise
a virtual machine than SPICE monitors.

Associated with these attacks are 942 distinct domains visited by virtual ma-
chines during the course of the infection and 576 unique executable files. The
overlap of exactly the same files being used by attacks that started with separate
emails indicates that many of these attacks are originating from the same attack
campaign. In fact, most emails end up being a slight polymorphic variation of
each other presumably to evade basic exact match spam filters. Once we cluster
these similar emails (see Section 2.2 for details) we derive only 36 clusters. Unlike
phishing emails or pharmaceutical spam, these emails’ sole purpose is to get a
user to visit the URL, which then launches a drive-by download attack.

In reporting successful detection of an attack cluster for a security product,
we choose a pessimistic view. As launching additional attacks is inexpensive for
an attacker, if a security product fails to raise at least one alert per attack in that
cluster, then we claim that that security product does not detect the attack. We
believe that this is the most realistic scenario since as long as one of the attacks
gets through then the adversary succeeds.
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Fig. 3. Cluster detections per security product. Eventually detected attacks are ones
that the product did not detect at first scan, but did detect on a later scan.

Fig. 4. Average (mean) number of days after an attack occurs that it is detected if it
was not detected at first but eventually was

Clustering attacks based on email similarity yields a view untainted by re-
peated high volume attacks seen in Figure 3. We anonymize the commercial
products in order to avoid any apparent bias or endorsement. The graph shows
the number of attack clusters detected at first scan as well as those eventually
detected, which is discussed further below. A wide range of individual security
product effectiveness is displayed varying from products completely ineffective
upon first scan to those that detect the vast majority of attack clusters. Here
we see that while many security products still perform well, a need exists for
multiple security products to fill gaps in coverage as no single security product
detects all attacks.
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4.2 Late Detections

Host

Detected Missed

Each Slice represents an attack
Each Ring repsents one layer of defense

Fig. 5. Graphic display of the first time
each security product is tested with an at-
tack cluster. Each concentric circle is a se-
curity product and each arc is one attack
cluster. If that security product detects the
attack cluster then the intersection of the
circle and arc is dark otherwise it is light.

Although the initial detection of an
attack is most important and what is
typically measured, we also continue
to test security products over time
to see if they eventually detect at-
tacks that they initially missed. See
these eventually detected attacks in
Figure 3. For the initial test of each
attack’s appropriate data (file for an-
tivirus, PCAP for NIDS, etc) against
each security product we averaged
11.3 detected of the 36 clusters. In the
weeks following the initial infection as
we daily retested each attack that av-
erage eventually swelled to 27.3 detec-
tions of the 36 clusters per security
product. The mean time between the
attack occurring and the rescan that
successfully detected previously unde-
tected attack is 5.7 days on average
for the security products we tested.
This does vary significantly by secu-
rity product as seen in Figure 4 with some security products averaging less than
a day delay and others taking upwards of 25 days. This striking result confirms
the need for testing to be done in real time as a significant delay can radically
alter the results. The security products tested via VirusTotal may even have
inflated initial detection rates as the hours delayed between capturing a new
malicious file and their servers testing it could give vendors enough time to add
new signatures that would not have been present during a real time attack.
Based on the large number of attacks that are missed initially by security prod-
ucts on VirusTotal but eventually detected, we suspect that most vendors have
a significant lag time in updates. While the delayed detection is certainly not
ideal, this pattern of eventually detecting attacks could perhaps be leveraged
into a system that saves and rescans data for an organization in order to detect
what machines have been compromised in the past.

4.3 Correlation of Security Products

One of the key questions we set out to answer is whether and to what extent
security products or particular defensive layers overlap i.e. do security products
all tend to detect the same easy to detect attacks or do security products tend
to detect separate attacks from each other. Another way to put this question
is are the detection results of security products independent, or negatively or
positively correlated that is do two security products, which each detect 90%
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of attacks separately, together detect 99%, closer to 100%, or closer to 90% of
attacks respectively. By tracking not only the detection rates, but also which
attacks each security product detections even across different layers of security
by linking the data each attack generates, we have the data to answer these
questions for the security products tested here. We present this data in three
Figures 5, 6, 7.

Fig. 6. Histogram of Pearson correlation
coefficients of each pair of security prod-
ucts. A higher coefficient means that the
two products overlap more.

The first figure illustrating the cor-
relation or overlap of the security
products is Figure 5. In this figure, we
show data similar to Figure 3 except
that instead of each security product
being a column, each security product
is a concentric circle with its detec-
tion results lined up such that each
arc of all the circles represents the
same attack cluster. In this way rather
than showing the detection rate of
each security product, we can easily
see which security products detect the
same or different attacks. By draw-
ing a line from outside the circle to
the center, one can see which secu-
rity products detected the attack rep-
resented by that arc. In order to have
detected all attacks with at least one
security product, one would have to
choose a sufficient number of concen-
tric circles such that any line drawn
from outside the circle to its center
is detected by at least one concentric
circle. This visualization has its roots
in a common metaphor using a castle to illustrate layers of defense. Consider
each security product represented by a concentric circle as a moat or castle wall
and many armies (attacks) surrounding it each attacking its own section. A de-
tection means that the particular army (attack) is unable to breach that security
product.

Figure 6 uses the Pearson product-moment correlation coefficient to obtain
a numerical measurement that represents the linear dependence between the
attack cluster detections of a pair of security products. The coefficient is calcu-
lated for each pair of security products tested and the results are plotted as a
histogram in Figure 6. The coefficient would be 1 in the case that the detection
results are identical (completely overlap) and −1 if they were opposite (no over-
lap). On average the results show that security products tend to overlap slightly
more than independent security products would. This means that by adding an
average new security product to existing defense in depth we would expect it to



Measuring Drive-by Download Defense in Depth 185

increase the total detection rate relative to its absolute individual detection rate,
but by less than if it was randomly detecting attacks at its individual detection
rate. For example, if an existing security product detected 90% of attacks and
one added a security product with Pearson coefficient of 0.2 with regards to the
existing security product and a detection rate of 80%, one would expect slightly
less than 98% combined detection rate. While skewed slightly towards positive
correlations, these results show a number of negative correlations where two se-
curity products combined perform better than if their total detection probability
was a simple product of their detection rates. For instance in the above example
this would mean that the total detection rate would be above 98% instead.

Fig. 7. Plot of the expected value of the
overlap between each pair of security prod-
ucts if those products’ detection rates
were independent versus the actual over-
lap. Points below the line show more over-
lap than random.

Figure 7, also focused on the corre-
lation of security products, graphs the
number of attack clusters detected by
both security products for each pair of
security products versus the expected
overlap in their attack cluster detec-
tion if each security product detected
attacks at random based on its detec-
tion rate. Points above the line indi-
cate a pair of security products that
are more complementary than ran-
dom while points below the line indi-
cate a pair of products that overlap
more than random detections. This
result naturally mirrors the previous
histogram of Pearson coefficients in
indicating that on average security
products appear to be slightly more
redundant than if detections were ran-
dom based on overall detection rates.

Intuitively, most products would
use the same techniques and signa-
tures making them mostly redundant,
but we find that security products
are only slightly redundant on aver-
age with many doing as well as completely independent detection mechanisms
and some performing even better. While security products seem to vary greatly
in their detection rates, even the less effective overall seem to occasionally detect
an attack that bypasses most other security products. These results may come
from a lack of attack intelligence sharing by the security industry, a wider than
expected range of effective proprietary algorithms, or the challenge and chance
associated with trying to detect increasingly polymorphic malware [13]. The re-
sults indicate that perhaps extensive usage of what might intuitively seem to be
redundant security products could in fact significantly increase security. While
using multiple inline host sensors is impractical, the results suggest that using
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multiple domain reputation systems and network based antivirus engines could
increase the detection rate of the whole defense in depth strategy.

Host

Detected Missed

Each Slice represents an attack
Each Ring repsents one layer of defense

Fig. 8. Graph of top AV (outer ring), top
domain reputation system, Snort, Spam As-
sassin, and human click rate (red if at least
1 in 10 users clicked a link in the email)
(inner ring). Each arc is one attack cluster.
If that security product detects the attack
cluster then the intersection of the circle
and arc are dark otherwise it is light.

An advantage of SPICE is that
while being able to evaluate the weak-
nesses of a particular security archi-
tecture, the approach also provides di-
rection as to how to mitigate those
weaknesses. The ability to find com-
plementary security products is one
of the largest contributions of SPICE.
An organization rather than blindly
picking security products that appear
to be good in absolute detection rate,
may now determine additional secu-
rity products that detect attacks that
are missed. This simple but crucial
shift in evaluating security architec-
ture should help organizations close
existing security holes and allocate re-
sources more efficiently. This comple-
mentary nature of security products
is fundamental to the very idea of de-
fense in depth.

4.4 Human Factor

We ran a user study for all 36 attack
clusters sending 10 emails per cluster
for a total of 360 emails sent to sep-
arate users. See Section 3 for details.
After three days we received click throughs on 17 of the 360 unique identifiers
sent out. These hits are somewhat focused with 4 of the clusters receiving two
click throughs, 20% of the users tested for those clusters. Additional education
of those 5% of users who click through if effective could lead to a strong com-
plementary layer of security. Attack clusters with emails that users fall for seem
to be roughly as difficult to detect by other means. Compare the inner circle in
Figure 8 with security products from other layers. The average attack is detected
by about 15 security products while clusters with at least one user clicking on
the link are detected by 14 security products on average. This increases slightly
if we only take the clusters that at least two users clicked on the link for. From
this limited study and widespread spam emails leading to drive-by downloads,
we saw no significant correlation in click throughs and other security product
detection of attacks. The percentage of users clicking through is lower for the
study than other human factor studies [12] perhaps due to the fact that all
the spam emails involved here are targeted to a general population rather than
targeted to a particular organization or individual. Also note that these results
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likely represent a lower bound on the number of people who would click on the
email as any spam filters in use by the users studied could block the email before
it reached them. We took the precautions of sending from a clean source email
address and having the links point to a clean domain name in order to mitigate
this concern as much as possible, but the email content being that of real attack
data could still trigger spam filters.

4.5 Use Case

To further illustrate the usefulness of SPICE consider a hypothetical case study
based on the results. Assume a small organization with a CSO who did extensive
research and deployed an antivirus and domain reputation system with the best
stand-alone detection rates. In the experiment, the best stand alone detection
rate for an antivirus was 29/36 attack clusters and for domain reputation 22/36.
This is the current state of the art for product comparisons with both of these
being best in class at least for this data set. The natural question here is what
is the overlap of these two security products and do they together detect all
of the attack clusters. SPICE can be used to answer this question. These two
security products together managed to detect 33 of the 36 attack clusters (see
the outer two circles of Figure 8). Notice that three arcs representing attacks
are all light meaning that those three attack clusters went undetected by both
security products.

Now assume that this hypothetical CSO wants to improve his organization’s
security against such widespread attacks. Considering new security products is a
proper next step. The network IDS Snort [10] with the Emerging Threat rules [11]
detected 27 of these same 36 attack clusters, but more importantly it detects 2
of the 3 attack clusters that were missed by the antivirus and domain reputation
system. Measuring the current state of user click throughs we see users did not
respond to 23/36 attack clusters including one of the three missed by both the
antivirus and domain reputation system. Similarly, we can check Spam Assassin
[9] an email spam detection product, which as expected considering the data set
is based on widespread spam, had a strong detection rate identifying 31/36 of
the attack clusters including all three that the antivirus and domain reputation
system failed to detect. See Figure 8 for a visualization of all layers together.
In this situation installing Spam Assassin alone covers against these attacks but
also one could choose to install Snort for extra redundancy. An organization
could only look at sets that already include their existing security products in
order to find the next security product to deploy.

5 Related Work

Research on defense in depth often focuses on broad frameworks and the need
for defense in depth without providing a specific methodology suitable for exper-
imental measurement and evaluation of defense in depth. General themes such
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as the need for security products to be at least independent or multiplicative in
strength and the need for measurement are repeated in many works [14] [15] [16]
[17]. An argument for careful independence assumptions and goals of purpose-
fully choosing security products that are better at detecting different classes of
attacks in order to achieve higher coverage than independent security products
in presented in [17]. The authors in [14] suggest measuring the attacker’s cost to
bypass each security product or group of security products. This approach could
scale well with regards to sophisticated attackers were real attack data is scarce
or outdated making direct measurement of detection rates difficult although
methods of measuring such cost are still nebulous. A method for combining the
detection rates of security products from all layers is presented in [15] similar to
our methodology, but the authors assume each security products independent
whereas, we directly measure the overlap between security products without as-
sumptions of independence. While work on directly measuring defense in depth
is rare, [18] presents a method for using attack graphs to measure firewalls com-
bined with host vulnerability information to detect holes in a defense in depth
deployment.

Drive-by downloads, the attack vector we use in the SPICE prototype system
to demonstrate our methodology, is a well studied area. A number of approaches
to protecting against drive-by downloads have been presented [7] [19] [20]. We
use the same ground truth definition as one recent work [7] as well as its baseline
comparison with VirusTotal, which we use. In future work, when we test against
more sophisticated attacker data, all of these novel research approaches can be
integrated into the SPICE framework as additional layers to test. Studies of using
multiple antivirus security products as defense in depth have been conducted
such as [21] [22] all showing benefit from combining multiple antivirus engines.
These studies are limited to only one layer of defense in depth where with SPICE
we expand beyond just antivirus to analyze security products across different
layers. Human spam message click through has been studied before such as in
[12]. We use similar mechanics with the addition of being able to link the results
to other pieces of the same attack that generated the email clicked on.

Some of the most closely related work to SPICE is conducted by commercial
security product testers. For example, NSS Labs [23] conducts extensive tests of
security products ranging from home user anti-malware solutions to the newest
corporate all-inclusive network security appliances. SPICE expands on these
existing approaches. By linking the data across layers of an attack vector, we
can reason about how products which operate at different layers i.e. network and
host detectors complement each other. We have one set of attacks that we test
all layers against at once.

The Anti-Malware Testing Standards Organization (AMTSO) [24] creates and
maintains best practices for testing security products. While acknowledging the
impossibility of a perfect test and evaluation, AMTSO provides guidelines and
suggestions for achieving the most accurate results. We implement as much of
their advice as possible including one of the most important: real time testing. In
the future, we hope to implement some of their additional best practices such as
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the important false positive measure and running tests on bare metal machines
rather than the virtual test environment we use.

Recent extensive efforts to make data more available to the research commu-
nity such as Symantec’s Worldwide Intelligence Network Environment (WINE)
[25] and others are crucial to the repeatability of experiments and gaining of
new insights into attacks. The ability to access large numbers of samples and
meta data will hopefully fuel the next generation of detection algorithms. Un-
fortunately, such archival data sets do not lend themselves to evaluating current
security products. As we see in the results, security products are much better at
detecting known threats, but these threats often slip by undetected the first time
seen. The data set, which we are releasing to researchers as well while suffering
from the same issue of outdated samples as WINE, has one important advantage.
We keep track of which samples belong to the same attack chain. Hopefully this
additional metadata will help other researchers or be useful in conjunction with
larger data sets such as WINE.

6 Future Work

In future work, we are actively adding additional attack vectors starting with
web application attacks as discussed in Section 2.3. Also, we wish to measure
how security products change over time for all attack vectors. In particular we
want to see if security products that are correlated in this data set stay correlated
in the first or if such correlations occur by chance or for limited time periods.
We want to add software updates as a layer of security by performing studies
on vulnerability life times, time to patch, and zero-day attack prevalent. With
these parameters an organization could combine their patching practices with
their available security products to form a set of security controls that better
represents their defense in depth posture. We wish to add cost information such
as false positive rates and price to security products so that sets can display total
cost in addition to total detection rate. We also would like to use SPICE to test
and compare how novel full class prevention security products such as BLADE [7]
or virtualization layers might perform. If these security products perform up to
their full potential of shutting down whole attack vectors, they may justify their
high cost of user training/deployment effort. SPICE could help show how this
solutions might succeed compared to multiple commercial solutions that even
together suffer many weaknesses.

7 Conclusion

We presented SPICE, a novel method and framework, to measure how secure an
organization is by testing real security products with real attacks. By designing
additional experiments measuring all known attack vectors and security prod-
ucts an organization uses, we can measure how secure that organization really
is. To compute this for a single organization is perhaps prohibitively expensive
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considering the costs associated with procuring the appropriate attacks to rep-
resent sophisticated adversaries and testing infrastructure needed to adequately
test advanced security products. Fortunately, the cost can be amortized by a
security services provider across a number of organizations that could benefit
from the same knowledge of how their existing products complement each other
and what new products could fill specific weaknesses they may have. Being able
to cost effectively compare security products is crucial. Current tests give no
good indication of whether a security product detects the same attacks already
detected by existing products especially ones from different layers. SPICE di-
rectly measures the underlying assumption of defense in depth that security
products complement each other in detecting different attacks. We provide a
feasible empirical measurement of an organization’s security while at the same
time providing the information of which security products would most enhance
that organization’s security posture.
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Abstract. Existing model checking tools for cryptographic protocol
analysis have two drawbacks, when applied to present day web based
protocols. Firstly, they require expertise in specialized formalisms which
limits their use to a small fragment of scientific community. Secondly,
they do not support common web constructs and attacks making the
analysis both cumbersome as well as error-prone. In this paper, we pro-
pose a novel security analysis technique specialized for web protocols.
We provide explicit support for common web mechanisms and an ad-
versary capable of exploiting browser-based interaction. Our approach
has two unique aspects. It represents the only tool built using a general
purpose first-order logic based modeling language – Alloy – that can be
used to analyze security of industrial strength web protocols. The other
unique aspect is our use of an inference system that analyzes beliefs at
honest participants to simplify the protocol model. Despite its simplic-
ity, we demonstrate effectiveness of our approach through a case-study
of SAML, where we identify a previously unknown vulnerability in its
identity federation workflow.

Keywords: Security Protocols, Federated Identity, Web Security.

1 Introduction

With an increase in business transactions using resources frommultiple cloud ven-
dors, managing user identity across cloud service providers has become a common
requirement. At the core of these interactions involvingmultiple providers are a set
of web-based workflows that have emerged as de-facto standards. Identity man-
agement standards such as Security AssertionMarkup Language (SAML 2.0) [13],
OpenID [27] andOAuth [21] represent industry efforts in this direction. Analyzing
security of such web protocols is crucial for these business transactions.

Analysis of cryptographic protocols has been an active research area in the
last three decades. Analysis techniques examine a protocol’s ability to establish
agreement on certain data items between honest participants without reveal-
ing its secrets to an adversary. There are two contrasting styles that have been
used for security protocol analysis. Inference construction style approaches, first
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popularized by the Burrows, Abadi and Needham (BAN) [12] logic, attempt
to use inference in specialized logics to establish required beliefs at honest par-
ticipants. These approaches operate at a high abstraction level and result in
efficiently computable formulations. Attack construction style approaches on the
other hand, approach the problem from the adversary’s perspective. They per-
form state-spaces exploration to determine whether an undesirable state – such
as a secret value becoming available to an adversary – can be reached. The
state machine used for representing the protocol takes into account structure of
messages passing over the channel and a complex intruder model.

Both classes of approaches have their drawbacks. Despite their simplicity,
interest in inference construction approaches has diminished due to soundness
issues reported with published analyses. The abstraction process for converting
informal protocol description into formulas of the logic – termed as idealization –
is considered error-prone. Model checking approaches, apart from possible state-
space blow up can be fairly complex and error-prone in usage, even for security
researchers [17]. Finally, both classes of approaches have not been adapted well
enough for analysis of web protocols. This can make analysis of web protocols
hard as well as inaccurate.

In this paper, we describe a specialized framework for analyzing security of
such web protocols. We introduce primitives representing important web mech-
anisms such as SSL/TLS secure channels, HTTP cookies and redirection. Our
adversary model takes into account exploits specific to browser-based communi-
cation including those that employ social engineering. Unlike existing techniques,
we do not use specialized model checkers or a formalism specific to security ver-
ification. Rather, we use Alloy, a general purpose first-order logic based struc-
tural modeling language. Representing protocol models in Alloy tremendously
increases the accessibility of our methods to a larger community designing and
developing web protocols. In our approach, we further reduce complexity of mod-
eling web protocols, by using an inference system that performs a preliminary
belief analysis. We demonstrate significant reduction in complexity of protocol
modeling by using correspondence of beliefs at protocol participants. Using a
combination of inference and attack construction, allows us to simplify analysis
while avoiding common pitfalls associated with the use of belief logics.

To illustrate our method, we present analysis of identity management workflow
used by leading protocols such as SAML and OpenID. We show that while
the single sign-on flow can be considered safe, a minor variation of the flow
which is used for linking user accounts across domains is flawed even when all
communication is made to pass through SSL/TLS based secure channels. This
is a rather surprising result, considering that SAML is one of the most analyzed
web protocols. The reason for this anomaly is that existing techniques assume a
standard adversary incapable of launching certain web-based attacks.

The rest of this paper is organized as follows. Background and related work
discussion appears in section 2. In section 3, we present a simple extension of
BAN for the web and use SAML SSO for an example analysis. We discuss sound-
ness issues in belief logics and how we avoid them in our approach. In section 4,
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the generic Alloy based framework for analyzing web protocols is described. In
section 5, we present a detailed analysis of SAML based identity federation. We
conclude with a discussion about our contribution in section 6.

2 Background and Related Work

2.1 Formalisms for Analyzing Security

Adversary Model. The intruder model proposed by Dolev and Yao [18] in
which the intruder has the ability to read, alter, encrypt, decrypt, compose and
deconstruct messages is widely adopted by the cryptographic protocols com-
munity. Despite its flexibility, the Dolev-Yao model, is not ideal for the web
environment due to the following reasons:

- Web protocols typically recommend or mandate usage of secure SSL/TLS
communication. The assumption can result in substantial simplification of
analysis.

- Dolev-Yao cannot model certain types of browser-based attacks. Clicking on
a malicious link can cause an honest user to send a message to a server outside
any protocol context it is aware of. The message could contain any secrets
values known to the attacker and is possibly accompanied by valid cookies
the user’s browser has for the server’s domain. This allows the attacker to
mount session-fixation and cross-site request forgery (CSRF) attacks.

The adversary model we use for analyzing web protocols can be considered
a variation of Dolev-Yao model in which the intruder does not have access to
all messages, but at the same time has the ability to exploit browser-based
communication to forge requests, manipulate redirection endpoints etc. Modeling
such adversary capabilities is extremely important for proper verification of web
protocols, as evidenced by our analysis of identity federation in section 5.

Multiset Rewrite Formalism. The authors of [14] attempt to formalize a
standard representation of the Dolev-Yao model. The notation they use involves
facts and transitions. The state transition rules are defined to describe protocol
behavior as well as intruder capabilities. Facts contain a symbolic representa-
tion of messages transmitted in the protocol and the state transition rules are
triggered on sending or receiving of messages. Using this formalism, the authors
establish undecidability of the secrecy property for unbounded number of ses-
sions, even with bounded message sizes, and encryption depth [19].

Applied pi Calculus Formalism. The applied pi-calculus [2] is a language
for describing cryptographic protocols in terms of communication between par-
ticipant processes. An adversary itself is modeled as a process and interacts with
the protocol. A protocol preserves secrecy of a term if, no matter which adver-
sarial context it is evaluated in, it will never be part of its knowledge. ProVerif
[11], [8], [9] is a cryptographic protocol verifier, developed by Bruno Blanchet.
The input can be specified directly as a sequence of Horn clauses or as a process
in a variant of the applied pi-calculus. It is capable of evaluating reachability
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properties [1], correspondence properties [8] and observational equivalence [10].
Recently an add-on, WebSpi [7], that aims to make it easy to develop models
for web mechanisms and protocols using Proverif has been made available.

The Strand Formalism. This formalism presents an alternative to the
state space analysis by working with strand-spaces [20] which represent a graph-
theoretic interpretation of the Dolev-Yao model. Several efforts have been made
to automate analysis using this formalism. The most notable being the Athena
tool [29]. The more recent Scyther tool [16] is also based on an extension of
strand space concept.

A major drawback of above tools is that a good understanding of the protocol
being modeled is not sufficient. The user also needs to be familiar with the
underlying formalism. Protocol modeling using these tools is time-consuming,
error-prone and requires lot of skill and practice to master [17]. In contrast, we
use a general purpose modeling language such as Alloy and a generic protocol
model that can be easily extended. This makes our technique approachable for
protocol designers and application developers.

Modal Logics. Inference construction approaches attempt to use inference in
specialized logics to establish required beliefs at protocol participants. The logic
of authentication described in [12], commonly known as BAN, was one of the first
successful attempts at representing and reasoning about security properties of
protocols. [3] provides semantics of the logic and discusses its soundness. In [30]
authors attempt to consolidate good features from earlier belief logic approaches.
These logics have the advantage of being usually decidable and efficiently com-
putable. The logics can be easily automated. In [28], a transformation of BAN
logic and inference rules to first order formula is performed and theorem prover
SETHEO is used for finding proofs. In [15], the authors attempt to embed BAN
logic in EVES theorem prover. However, given that a real protocol has a limited
number of keys, principals and messages, forward chaining approaches discussed
in [23] or the model driven analysis approach in [24] are often much simpler.

2.2 Tools for Analyzing Web Protocols

Analyzing web protocols with tools having no explicit support for standard web
mechanisms and a specialized adversary model can be both cumbersome as well
as flawed. In [5], the authors use the SATMC tool [6], without significant changes,
to analyze the SAML Single Sign-on (SSO) protocol. Not only is the multiset
rewriting based formulation quite complex for a protocol of this size, use of the
standard Dolev-Yao attacker without support for session-fixation or cross-site
forgery attacks, results in a vulnerability not surfacing in their analysis. This
vulnerability is the primary source of insecurity in the SAML identity federation
protocol we analyze in section 5.

Authors of [4], model some web mechanisms using Alloy and analyze them for
multiple security properties. The model in [4] is intended to capture low level
properties of HTTP messages such as HTML forms, XML requests, authentica-
tion headers etc. In contrast, we model protocol entities and constructs such as
users, servers, keys, messages, protocol traces etc. The higher abstraction level
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allows us to analyze complex web protocols. For analyzing industrial strength
protocols, we propose a strategy in which the protocol model can be simplified
if a prior belief logic analysis of the protocol has been conducted.

In our earlier work, [25], we explored a combination of inference and attack
construction styles for security analysis. However, this preliminary work was
limited in following ways:

– The Alloy model in [25] was simplistic and did not allow principals or ad-
versary to participate in multiple sessions.

– The two styles were combined in a different way - proving of goals was
performed using belief logic, while the role of Alloy was to simply verify an
assumption made in the analysis. This resulted in a much more complex
belief logic (rules R5-R7 in [25]), leading to soundness concerns.

In contrast, in this paper, the Alloy based method has been extended so that it
no longer depends on a belief logic stage. We introduce the much needed support
for multiple sessions – without which any tool for security analysis cannot be
considered complete. Since goals are directly represented as assertions in the
model, unlike [25], we are guaranteed a counter-example (i.e. an attack trace) if
a protocol is found to be insecure. The role of the much simpler belief logic used
in our work is to optionally simplify message structures when agreement about
protocol parameters can be established using the inference system. Finally, in
this paper, we analyze and find a flaw in SAML identity linking workflow, while
in [25], security of OAuth1.0 was examined.

2.3 Overview of BAN

A formula in BAN logic [12] is constructed using operators from Table 1. P and
Q range over principals. The three statements about keys and secrets represent
atomic statements. X represents a BAN formula constructed using one or more
BAN operators. The expression 	X means that the message X is fresh and has
not been used before the current run of the protocol. This is especially true for
a nonce, a sequence number or timestamp generated with this specific purpose.

BAN defines a set of inference rules for deriving new beliefs from old ones.
We describe only the most important of these rules here. The message-origin

Table 1. Operators in BAN Logic

P |≡ X: P believes X P
K←→ Q: Shared key K

P � X: P sees X −→
K

Q: Public key K belongs to Q

P | ∼ X: P said X P
Y−⇀↽− Q: Shared secret Y

P |⇒ X: P controls X �X: Fresh X

{X}K : X encrypted by K 〈X〉Y : X combined with Y
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inference rule R1.2 states that if P knows that K is the public key belonging
to Q and it sees a message X encrypted by the corresponding private key K−1,
then P is entitled to believe that Q said X. R1.1 and R1.3 are similar rules for
shared keys and shared secrets, respectively.

P |≡ P
K←→ Q,P 
 {X}K

P |≡ Q| ∼ X
(R1.1)

P |≡�−→
K

Q,P 
 {X}K−1

P |≡ Q| ∼ X
(R1.2)

P |≡ P
Y−⇀↽− Q,P 
 〈X〉Y

P |≡ Q| ∼ X
(R1.3)

A nonce-verification rule R2 states that, in addition if the message is known
to be fresh, then P believes that Q must still believe X. Further, the jurisdiction
rule R3 states that, if in addition, P also believes that Q is an authority on the
subject of X (i.e. Q controls X ), then P is entitled to believe X itself.

P |≡ Q |∼ X,P |≡ 	X

P |≡ Q |≡ X
(R2)

P |≡ Q |≡ X,P |≡ Q |⇒ X

P |≡ X
(R3)

3 Belief Logic for the Web

A potential difficulty in analyzing browser-based web protocols is the lack of
identifying keys for a typical web user. Moreover, identities established are local
to a security domain rather than global. In the absence of identifying keys and
global identities, it is often more important to establish whether a user recently
performed an action rather than knowing its identity. In section 3.1, we describe
our belief logic for web, an extension of BAN. We use the logic to analyze SAML
SSO in section 3.2. We discuss some pitfalls in belief logic analysis and how we
avoid them in our approach in section 3.3.

3.1 Extensions to BAN

We introduce two new types of objects (sorts) to the logic: user and action. A
user is defined as the client side of a secure channel which models a unilateral
SSL/TLS session with server authentication. We use the channel identifier as a
subscript in our notation for user. The new operators are described in Table 2.
We assume Aname to range over function symbols representing types of user
actions. A user action type has a signature of the form σ1 × . . .× σn −→ action,
where σ1, . . . σn are other sorts of the logic. Signing in as principal Q, represented
as SignIn(Q), is example of an action.

We extend BAN logic through inference rules that apply to communication
over one-sided (server authentication only) SSL/TLS secure channel. R4.1 says
that if a principal P (usually server) believes that a user UC is communicating
over a secure channel C, then any actions it sees over the secure channel C can be
attributed to user UC . According to R4.2, any tokens seen over a secure channel
are assumed to be possessed by the user. R4.3 states that when the client side
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Table 2. New operators in Extended Logic

P
Δ←→ Uc: Secure channel C �X�C : X over secure channel C

X � Aname(vσ1 , . . . , vσn): X associated with action Uc � X : User Uc possesses X

Uc � Aname(vσ1 , . . . , vσn) : User Uc performs action Pname = val: Parameter,value

receives a statement X over a secure channel, it is entitled to believe that the
server principal has recently said (says) X.

P |≡ (P
Δ←→ Uc), P 
 �action�C

P |≡ (Uc  action)
(R4.1)

P |≡ (P
Δ←→ Uc), P 
 �X�C

P |≡ (Uc � X)
(R4.2)

Uc |≡ (P
Δ←→ Uc), Uc 
 �X�C

Uc |≡ (P saysX)
(R4.3)

We note that soundness of rules R4.1, R4.2 follows from integrity and confi-
dentiality properties of SSL/TLS, while R4.3 additionally uses the server authen-
tication it provides. Eliminating man-in-the-middle attacks allows us to associate
a received message with an endpoint of the secure channel, which may be a server
or a user.

3.2 Example: SAML SSO

A simple example of a web-based workflow involving multiple service providers
is the SAML web single sign-on (SSO) protocol shown in Figure 1. The workflow
involves a web user and two web based service providers, one of which acts as
the identity provider. A user requesting service S at service provider (SP) site is
redirected to Identity Provider (IdP) with SAML request. After authenticating
the user, IdP redirects user back to SP site with a signed SAML token having
the asserted identity (Q). SP validates the token and identifies the user as Q. In
the figure C1-C3 identify secure SSL/TLS channels with server authentication.

To see if agreement is reached between honest principals, C and P playing the
roles of SP and IdP respectively, we idealize messages 3 (SAML request received

SP User IDP

Request Service

Redirect with 
Authentication Request

Authentication Request

Request to Sign In

User Sign In

Authentication Token

Redirect with 
Authentication token

1

2

3

4

5

6

7

C1

C2

C3

Fig. 1. The SAML browser SSO protocol
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at IdP), 5 and 7 (SAML token received at SP) that convey information to C
and P.

Msg3 UC2 → P : �{auth req(Ncp, P ), Ncp, idp = P, sp = C, cb = urlC}K−1
c

�
C2

Msg5 UC2 → P : �SignIn(Q)�C2

Msg7 UC3 → C : �T, {Ncp, T � SignIn(Q), idp = P, sp = C}Kp−1
�
C3

(1)

The SAML authentication request (message 3) signed by C comprises of state-
ments about protocol roles using parameters sp, idp and callback URL (cb) to
be used for redirection in step 6 (Figure 1). For brevity, we omit the argument
identifying the session in our analysis and write a parameter such as sp(Ncp)
simply as sp. The nonce, Ncp represents combination of a request identifier and
a timestamp. The message is signed using the private key of service provider, C.
In the idealization, we also include the term auth req(Ncp, P ). This allows us
to additionally represent the fact that message 3 is a SAML request for P with
identifier Ncp.

Message 5 represents a sign-in action performed at P. Message 7 represents
the SAML response from identity provider containing the SAML token being
received at the service provider after user is redirected back. The message signed
by P, contains a token associated with the sign-in action and identifies the signed
in user as Q. It also associates the information with the current session identified
by Ncp and includes statements representing P ’s belief about protocol roles.

We make the following assumptions at C and P about secure channels, nonces,
public keys, protocol roles and jurisdiction over parameters and actions. The first
three assumptions are about the three secure channels C1-C3. The next two
assumptions are about the freshness of nonce Ncp. These are followed by the
two assumptions about public keys. The next assumption is about the protocol
parameters at the service provider (C). This is followed by the assumption about
C ’s belief in P ’s control over the SignIn action. The final belief is about the
identity provider (P) trusting the principal in the service provider role for the
session for the callback (cb) parameter. In addition, we also use the following
initialization rule S1 that initializes the service provider for the session as the
originator of the SAML request received by an IdP.

C |≡ C
Δ←→ UC1 P |≡ P

Δ←→ UC2

C |≡ C
Δ←→ UC3

C |≡ 	Ncp P |≡ 	Ncp

C |≡�−−→
Kp

P P |≡�−−→
Kc

C

C |≡ sp = C, idp = P, cb = urlC

C |≡ P |⇒ SignIn P |≡ sp(n) |⇒ cb(n) (A1)

P |≡ X |∼ auth req(n, P ) ∧ P |≡ 	n → P |≡ (sp(n) = X, idp(n) = P ) (S1)
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We perform a BAN type forward chaining analysis of these messages and
assumptions to evaluate beliefs at honest SP and IdP. The analysis involves
simply combining facts based on rules of the logic and is detailed in Appendix
A. The analysis can be easily automated using techniques such as [23], [24]. The
final beliefs (including assumptions) at C and P obtained from the analysis are
listed below:

C |≡ (sp = C, idp = P ) C |≡ P |≡ (sp = C, idp = P )

P |≡ (sp = C, idp = P ) P |≡ C |≡ (sp = C, idp = P )

P |≡ (cb = urlc) P |≡ UC2  SignIn(Q)

C |≡ T � SignIn(Q) C |≡ UC3 � T (2)

Both C and P are in agreement about the protocol roles in session identified
byNcp. This can be seen from the fact that their beliefs about values for variables
sp, cp at the peer are consistent with their own beliefs. Further, C believes that
the token corresponds to the action of signing in with login Q at P and also
that the token is in possession of user UC3. Are the above beliefs sufficient for
C to consider user UC3 signed-in as Q? If not, is their a possible vulnerability
in SAML SSO? These questions are answered in section 5 where we analyze a
variation of this protocol which is used for linking of identities across domains.

3.3 Soundness of Belief Logic

While belief logics are credited with finding flaws in several cryptographic pro-
tocols they have also generated a fair share of controversy. In particular, the
idealization step, which is required to convert informal protocol description to
logical formula is error-prone. Since idealization requires representing not only
what a message explicitly conveys but also what sending of the message implies
(as per peer’s state machine), it is possible to miss out an implication. This may
result in set of beliefs derived not being maximal, but not in proving an insecure
protocol correct. False positives are not the prime concern and can occur in any
approach that uses abstraction (including Proverif).

A message could also be wrongly idealized by making invalid assumptions.
This is far more serious and could lead to unsound analysis. This typically oc-
curs when confidentiality of a value initially assumed as a secret, cannot be
guaranteed when a message containing the value is received by a participant.
This is possible, since BAN and other belief logics do not prove secrecy – they
merely propagate beliefs about secrecy. A trivial case, is the Nessett example
[26], in which a principal sends out a shared key encrypted by its private key –
the shared key obviously cannot be considered a secret. While the idealization
error is obvious and avoidable in this example, it may be fairly subtle in other
cases. The Needham-Schroeder public key (NSPK) protocol is a famous example
where a secret value despite being encrypted under the public key of intended
recipient, cannot be used for soundly authenticating a principal.

To avoid unsound idealization, we follow a strategy that we term as safe
idealization. We do not consider a value secret (even if it is a secret as per a
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principal’s initial assumption), if it is communicated in a protocol message. This
completely rules out use of inference rule R1.3 which relies on a supposedly secret
value being received by a principal. It also means that if a shared key itself is
included in a protocol message – as opposed to encrypting other terms in the
message – then the assumption about it being a shared key is no longer valid and
thus inference rule R1.1 cannot be triggered. This by no means implies that we
cannot analyze protocols that exchange values (initially) assumed to be secrets.
We simply do not use the assumption to make new authentication inferences.
However, as a consequence, the restricted logic, by itself, may not be sufficient to
prove protocols correct. In our approach, belief logic by itself is rarely sufficient
to prove goals. The logic is used to establish agreement at honest principals
about parameters in a specific run of the protocol. We use this agreement to
simplify the protocol model when verifying the protocol using Alloy.

4 Generic Alloy Based Model

In this section, we describe our generic model for web protocols implemented
using Alloy [22] - a declarative language for describing structures and a tool
for exploring them. An alloy model specifies a set of constraints that apply
to objects in the domain being modeled. Alloy Analyzer is a solver that takes
constraints of a model and finds structures satisfying them using a SAT solver.
Thus technically, it is a model-finder rather than a model-checker. A signature
and a constraint on the signature are declared below:

sig S extends E {
F: one T }

fact {
all s:S | s.F in X }

It is often useful to think of Alloy as an object-oriented language, but under-
neath the covers S is a subset of E and F is a relation that maps each of S to a
single T. Fact statements represent constraints that must always hold. Quantified
expressions of the form quantifier s: S | F mean that constraint F holds for all,
no, lone (zero or one), some (at least one) or one element(s) of S. Fact expres-
sions that apply to a particular signature (as is the case above) can be directly
appended to the signature within curly brackets. Assertions (assert {. . . }) are
properties against which the specification needs to be checked. A check command
causes the analyzer to search for a counter-example to show that the assertion
does not hold. Alloy checks models of finite sizes using a specified scope which
limits the maximum size of top level signatures.

4.1 Modeling Principals

The signature Process declares a set of all principals. It is extended by signatures
Server and User which are (disjoint) subsets representing web service providers
and end users respectively. Also declared are set of all keys (Key), asymmetric
and symmetric keys (AsymKey and SymKey), instants (Time), cookies (Cookie) and
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values, (Value, CkValue, TkValue). A principal knows a set of keys (knownkeys)
and a server principal owns a private key (ownedkey). The relations uniquecookie
and uniqueval associate a Server with a unique cookie and a secret/nonce value,
respectively. Minor changes in the declarations are required to represent proto-
cols needing more than cookie, secret per server role. Constraint on uniquecookie

relation ensures that cookie points to the correct server.

Listing 1.1. Modeling service providers and users

abstract sig Process {
knownkeys: set Key ,
seentokens: set TkValue ->Time

}
sig Time { }
sig Key { deckey : one Key }
sig AsymKey extends Key { }
sig SymKey extends Key {} {deckey = this}
sig Value { }
sig TkValue extends Value { }
sig CkValue extends Value { }

sig Cookie {
value: one CkValue ,
server: one Server }

sig Server extends Process {
ownedkey: one AsymKey ,
uniqueval: one TkValue ,
uniquecookie: one Cookie

} { peer != this , uniquecookie.server = this }

sig User extends Process {
knowncookies: set Cookie ->Time

} { ... }

sig HUser extends User { }

fact {
all k: Key | k in AsymKey =>
k.deckey in (AsymKey - k) && k.deckey.deckey = k }

fact {
all s1,s2: Server|s1 != s2 =>
(s1.uniqueval != s2.uniqueval) && (s1.ownedkey !=
s2.ownedkey) && (s1.uniquecookie)!= (s2.uniquecookie)

}

seentokens associates a principal with a set of (value, time) pairs each indicat-
ing that a value was known to the principal at time. The relation knowncookies

provides a similar association for cookies known to a user. Finally, the facts
represent constraints on keys, nonces and cookies.
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4.2 Protocol Messages

The signature Sent is used to declare a set of possible protocol HTTP messages.
Each message has a sender and receiver principal and is associated with a
time when it is transmitted. The other relations on message are a set of values
(content) and a set of cookies (cookies) contained in the message. A message
may also contain a redirection URL (redirectURL), if it represents an HTTP
redirect.

We present a slightly simplified message structure which is sufficient for mod-
eling all web protocols we have analyzed – though more complex structures can
be easily modeled using Alloy. The message content is a concatenation of simple
tokens, optionally encrypted using enckey.

1 sig URL { target: one Process }
2

3 sig Sent {
4 cookies: set Cookie ,
5 sender: one Process ,
6 receiver: one Process ,
7 time: one Time ,
8 content: set TkValue ,
9 session: lone SessionID ,

10 redirectURL: lone URL ,
11 enckey: lone AsymKey
12 }{ sender in HUser =>
13 (all c: Cookie | c in cookies <=> c->time
14 in sender.knowncookies && c.server = receiver)
15 sender != receiver }
16

17 fact {
18 all p: Sent | all v: TkValue | (v in p.content
19 => (v->p.time in p.sender.seentokens) ||
20 (some q: Sent | q.receiver = p.sender && v=q.

content
21 && p.time.ord/gte[q.time] && q.encKey = p.encKey))
22

23 all p: Sent | enckey in sender.knownkeys || some
24 q: Sent | q.receiver=p.sender && p.content=q.

content
25 && p.time.ord/gte[q.time] && q.encKey=p.encKey
26 }

The constraint on Sent requires that a message sent by an honest user (HUser)
shall only contain cookies that were known to the sender at the time of sending
the message and were received earlier from the target of that message. The bi-
implication requires that all such cookies must necessarily be included in the
message. A similar restriction regarding tokens sent in a message (line 18-21)
requires that either the token must have already been seen by the principal,
otherwise it must have been forwarded. Similarly, an encryption key used on a
message must either be known to the principal sending the message, unless the
principal is forwarding a previously received message (line 23-25).
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4.3 Learning Rules

The rules for a user learning new secret values or cookies are expressed as con-
straints appended to the User signature. The utility ordering is used to order
elements of Time. The first constraint (line 3-5) implies that a pair (cookie, t)
appears in knowncookies if and only if the user has seen a message containing
cookie at a time ≤ t. The rule for seeing tokens says that the principal must have
received a message containing that token and must possess the corresponding
decryption key (line 9-11).

1 open util/ordering[Time] as ord
2 sig User extends Process { ...} {
3 all c: Cookie | all t: Time | (c->t in knowncookies
4 <=> some s: Sent | c in s.cookies
5 && s.receiver = this && t.ord/gte[s.time])
6 }
7

8 sig Process { ... } {
9 all v: TkValue | all t: Time | (v->t in seentokens

10 <=> some s: Sent | v in s.content && s.receiver=
this

11 && t.ord/gte[s.time] && s.encKey.deckey in
knownkeys)

12 }

4.4 Protocol Flow

The signature ProtoSeq represents all possible sequences ofmessages under generic
and protocol specific constraints. If p and q are possible sent messages, then p->q

appearing in the sequence implies that receiver of p is the sender of q. Also the
timestamp on q must be the next time instant following the timestamp of p (line
3-6).

1 sig ProtoSeq {
2 sequence: set Sent ->Sent
3 }{ all p,q: Sent | (p->q in sequence) =>
4 (q.sender = p.receiver)
5 all p,q: Sent | (p->q in sequence) =>
6 (q.time = ord/next[p.time])
7 all p: Sent | (p.receiver in HUser) && p.

redirectURL
8 => (some q: Sent | (p->q in sequence)
9 && (q.receiver = p.redirectURL.target)

10 && (q.content = p.content)) }

The last generic constraint describes handling of an HTTP redirect for an
honest user (HUser) (line 7-10). It specifies that if an honest user receives a
redirect message, the next message in the sequence must be a message sent
by this user to the target of the redirection URL. The message should include
any values/tokens received in the redirect. The other constraints on protocol
sequence are specific to the protocol being modeled.
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4.5 Adversary Model

The intruder is simply a User. The redirection constraint for honest user does
not apply to it. The intruder learns new values based on learning rules for tokens
and can only send seen tokens (as per constraint on Sent discussed earlier). Com-
munication from a dishonest to honest user (e.g. through a malicious hyperlink)
is modeled as a redirect message generated by the dishonest user.

In addition, we include the possibility of dishonest servers colluding with the
intruder. This is done by allowing dishonest principals to share any tokens they
obtain with the attacker. This is modeled as a message from a server process
representing a corrupted principal role to User.

5 Analyzing SAML ID Linking

Theworkflowwediscuss here corresponds to “Federation via persistent pseudonym
identifiers” described in the SAML 2.0 protocol specifications [13]. The objective
of this workflow is to allow a web user to link identities across security domains.
Despite being a widely deployed identity federation protocol, it does not appear to
be the subject of scrutiny in a prior security analysis work. The message exchange
illustrated in Figure 2 is a minor variation of the browser SSO flow discussed in
section 3.2. After the user’s browser is redirected back to SP and the SAML token
has been validated, SP requests the user to sign-in with a local identity. Once user
signs in successfully with a loginR, SP links local identityR with remote principal
nameQ. In future, when SP sees a user carrying a SAML token from IdP asserting
identity Q, it automatically signs in the user as R.

Fig. 2. Identity Federation using SAML

5.1 Mapping SAML messages to Alloy Model

The two primary protocol specific constructs to be represented are SAML request
and SAML response. We introduce two signatures SAMLRequest and SAMLToken.
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In the listing consumer and provider refer to principals playing SP and IdP role,
respectively. We use a minor variation of Alice-Bob notation to show how SAML
messages map to these signatures. The notation explicitly identifies cookies and
redirection URL in HTTP headers. The principal names (C and P) and other
parameter values are as per description of SAML SSO in section 3.2. In Figure 3,
we show mapping of SAML request in message 2 and SAML Token in message 6
of Figure 2 against protocol specific signatures SAMLRequest, SAMLToken and the
signature Sent from the generic model of section 4.

sig SAMLRequest extends TkValue {
id: one SessionID ,
consumer: one Server,
provider: one Server,
callback: one URL }

sig SAMLToken extends TkValue {
id: one SessionID ,
consumer: one Server,
provider: one Server,
principal: one User

}

We performed belief analysis of SAML SSO in section 3.2 and detailed in Ap-
pendix A. We now explore how the analysis can help us simplify our Alloy model
even further. From (2), we know that C and P are in agreement about protocol
roles and callback URL for the protocol session identified by Ncp. We represent
this agreement by moving these parameters into a new signature Session and
referring to appropriate session from SAMLRequest and SAMLToken.

C −→ UC1 : {Ncp, C, P, urlc }
K−1

c
, {urlp,−}

P −→ UC2 : {Ncp, C, P, Q }
K−1

p
, {urlc,−}

Fig. 3. Mapping to Alloy signatures

abstract sig SAMLMsg extends TkValue {
sessionid : one SessionID

}
sig SAMLRequest extends SAMLMsg { }
sig SAMLToken extends SAMLMsg {

subject: one User }
sig Session {
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id: one SessionID ,
consumer : one Server ,
provider : one Server ,
callback: lone URL

} { consumer != provider }
fact {

all s1 ,s2: Session | s1 != s2 => s1.id != s2.
id }

5.2 Specifying the Goal Constraint

The goal of ID federation is to establish at service provider that the two sign-
in actions were performed by the same user. Message 9 in the identity linking
workflow generates the following additional belief compared to the SSO protocol
analysis of Appendix A.

C |≡ UC3  SignIn(R) (A1)

This follows by combining assumption about channel C3 at C with message
9 using rule R4.1. We also have the belief that P |≡ UC2  SignIn(Q) from (2).
Also from belief analysis we have the beliefs at C and P that the sign in actions
were performed by users who sent messages 3 and 7, respectively. To establish
that they correspond to the same user, we include a field subject in the signature
SAMLToken which is set by IdP (P) as the sender of message 3 (SAML request).
The goal of SAML ID linking now equates to checking whether carrier of token
in message 7 is indeed the subject mentioned in the token:

assert isSignedIn {
all p: Sent | p.receiver in HServer && p.content
in SAMLToken => p.content.subject = p.sender }

5.3 Protocol Rules

The following constraint, requires that on receipt of a SAML request with a
session ID, the next message in the sequence must be a SAML token returned
to the sender having the same session ID as the request and with the subject

field set as the sender of the request, as discussed above in section 5.2.

all p: Sent | all s: Session | (p.receiver in
HServer)

&&(p.content in SAMLRequest)
=> some q: Sent | (p->q in sequence) && (q.

receiver
= p.sender) && (q.content in SAMLToken) &&
(q.content.sessionid=p.content.sessionid) &&
(q.content.sessionid = s.id) && (q.content.

subject
= p.sender) && (q.redirectURL.target = s.

consumer)
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We also ensure, through the following rule, that a SAML token can only be
generated by the identity provider for the session, and while it can be forwarded it
cannot be tampered with. Since this rule ensures integrity of the SAML token, we
can remove the private key encryption, without impacting security. This allows
us to use an even simpler message structure than discussed in section 4.2 and
further simplifies rules for learning new values and sending messages in section 4.

content in SAMLToken =>(some s: Session |
(content.sessionid = s.id) && (s.provider =

sender))
|| (content ->time in sender.seentokens)

5.4 Result of Alloy Analysis

We modeled SAML identity linking, with and without the simplification intro-
duced due to belief logic. In both cases only messages 2, 3, 6, 7 were considered,
since messages 4, 5, 8 and 9 establishing authentication have already been ac-
counted for while specifying the goal in section 5.2. We compared the complexity
of resulting models, to estimate reduction of modeling effort on the part of an
analyst using our tool. The model using results from belief logic contained 25
atomic statements, compared to the base model (without simplification) having
60 atomic statements, a saving of nearly 60%.

We execute the simplified model corresponding to messages 2, 3, 6 and 7 and
with message structures simplified as described above and check for the goal
assertion. Alloy generates the counter-example shown in Figure 4 in less than 3
seconds on an Intel Core i5 2.4 GHz, 4 GB system for a scope up to 10 messages
in a protocol sequence. We observe that the message sent by an honest user
(HUser) at instant time4 contains a SAMLToken with subject as User.

Fig. 4. Counter-example for SAML account linking
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A correct execution of the protocol should have exactly four messages (cor-
responding to messages 2, 3, 6, 7 in Figure 2). However, the counter-example
shows five messages where the first three messages (corresponding to messages
2, 3, 6) with timestamps Time0, Time1 and Time2 are exchanged with User. This is
followed by a message from User to the victim (modeling following of a malicious
link by HUser) and a message from HUSer to Consumer containing the SAML token
actually issued to User. This translates to the following attack on the SAML ID
federation protocol.

Attack on SAML ID Linking. An attacker having a valid account A at
IdP authenticates itself and chooses to be redirected to SP. However, instead
of following the redirect request from IdP, it extracts the request parameters
and induces the victim into clicking a link or submitting a form (depending on
whether HTTP redirect binding or POST binding is used for the exchange).
Following the link takes the victim to the SP site, unwittingly carrying the
SAML token issued to the attacker. The victim has an account (say V ) at the
SP site and is requested to sign-in. On signing in, SP links local identity V with
attacker’s identity A at IdP. In future, attacker can sign-in at IdP, get redirected
to SP and automatically get access to the victim’s account at SP.

6 Conclusion

We propose a new method for formalizing and analyzing security of web-based
protocols. The method provides native support for common web mechanisms and
employs a specialized adversary model for the web environment. In this frame-
work, web mechanisms and protocol rules are directly represented in first order
logic based Alloy analyzer. To simplify analysis of medium to high complex-
ity protocols, we propose a simplification strategy that utilizes correspondence
about protocol parameters established using belief logic. We illustrate for an
industrial strength protocol, that this reduces the complexity of the protocol
model by 60%. We apply our methods to analyze security of the SAML account
linking workflow and identify a previously unreported vulnerability.

Specialized formalisms for security verification were proposed when general
purpose approaches were not up to the task. Our experience with using Alloy
for security protocol modeling and analysis suggests that general purpose ap-
proaches may now be ready for the challenge. We believe that our lightweight
framework could play a role in making security verification more mainstream
with the eventual objective of its uptake from industry and standard bodies.
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Abstract. Content Security Policy (CSP) has been proposed as a prin-
cipled and robust browser security mechanism against content injection
attacks such as XSS. When configured correctly, CSP renders malicious
code injection and data exfiltration exceedingly difficult for attackers.
However, despite the promise of these security benefits and being imple-
mented in almost all major browsers, CSP adoption is minuscule—our
measurements show that CSP is deployed in enforcement mode on only
1% of the Alexa Top 100.

In this paper, we present the results of a long-term study to deter-
mine challenges in CSP deployments that can prevent wide adoption.
We performed weekly crawls of the Alexa Top 1M to measure adoption
of web security headers, and find that CSP both significantly lags other
security headers, and that the policies in use are often ineffective at
actually preventing content injection. In addition, we evaluate the fea-
sibility of deploying CSP from the perspective of a security-conscious
website operator. We used an incremental deployment approach through
CSP’s report-only mode on four websites, collecting over 10M reports.
Furthermore, we used semi-automated policy generation through web
application crawling on a set of popular websites. We found both that
automated methods do not suffice and that significant barriers exist to
producing accurate results.

Finally, based on our observations, we suggest several improvements
to CSP that could help to ease its adoption by the web community.

Keywords: Content Security Policy, Cross-Site Scripting, Web Security.

1 Introduction

The web as a platform for application development and distribution has evolved
faster than it could be secured. Consequently, it has been plagued by numerous
classes of security issues, but perhaps none are as serious as content injection
attacks. Content injection, of which cross-site scripting (XSS) is the most well-
known form, allows attackers to execute malicious code that appears to belong
to trusted origins, to subvert the intended structure of documents, to exfiltrate
sensitive user information, and to perform unauthorized actions on behalf of
victims. In response, many client- and server-side defenses against content injec-
tion have been proposed, ranging from language-based auto-sanitization [17] to
sandboxing of untrusted content [12] to whitelists of trusted content [11].
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Content Security Policy (CSP) is an especially promising browser-based secu-
rity framework for refining the same-origin policy (SOP), the basis of traditional
web security. CSP allows developers or administrators to explicitly define, using a
declarative policy language, the origins from which different classes of content can
be included into a document. Policies are sent by the server in a special security
header, and a browser supporting the standard is then responsible for enforcing
the policy on the client. CSP provides a principled and robust mechanism for pre-
venting the inclusion of malicious content in security-sensitive web applications.
However, despite its promise and implementation in almost all major browsers,
CSP is not widely used in practice—in fact, according to our measurements, it is
deployed in enforcement mode by only 1% of the Alexa Top 100.

In this paper, we present the results of a long-term study to determine why this
is the case. In particular, we repeatedly crawled the Alexa Top 1M to measure
adoption of web security headers, and find that CSP significantly lags behind
other, more narrowly-focused headers in adoption. We also find that for the small
fraction of sites that have adopted CSP, it is often deployed in a manner that
does not leverage the full defensive power of CSP.

In addition to our Internet-scale study, we also quantify the feasibility of
incrementally deploying CSP from the perspective of a security-conscious ad-
ministrator using its report-only mode at four websites. Although this is an oft-
recommended practice, we find significant barriers to this approach in practice
due to interactions with browser extensions and the evolution of web application
structure over time.

Finally, we evaluate the feasibility of automatically generating CSP rules for
web applications, again from the perspective of an administrator.We find that for
websites that are well-structured and do not change significantly over time, rules
can indeed by generated in a black-box fashion. However, for more complex sites
such as those that make use of third-party advertising libraries in their proper
site context, policy generation is significantly more difficult.

To summarize, the contributions of this paper are the following:

– We perform the first long-term analysis of CSP adoption in the wild, per-
forming repeated crawls of the Alexa Top 1M over a 16 month period.

– We investigate challenges in adopting CSP, and why it is not deployed to its
full extent even when it has been adopted.

– We evaluate the feasibility of both report-only incremental deployment and
crawler-based rule generation, and show that each approach has fundamental
problems.

– We suggest several avenues for enhancing CSP to ease its adoption.
– We release an open source CSP parsing and manipulation library. 1

2 Content Security Policy

The goal of CSP is to mitigate content injection attacks against web applications
directly within the browser [6, 19]. In the following, we describe CSP as it is

1 https://github.com/tlauinger/csp-utils

https://github.com/tlauinger/csp-utils
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Table 1. The types of directives supported in the current W3C standard CSP 1.0

Directive Content Sources

default-src All types, if not otherwise explicitly specified
script-src JavaScript, XSLT
object-src Plugins, such as Flash players
style-src Styles, such as CSS
img-src Images
media-src Video and audio (HTML5)
frame-src Pages displayed inside frames
font-src Font files
connect-src Targets of XMLHttpRequest, WebSockets

currently implemented, and briefly discuss both future extensions and the classes
of attacks it is intended to prevent.

2.1 Overview of CSP

Content Security Policy is fundamentally a specification for defining policies
to control where content can be loaded from, granting significant power to de-
velopers to refine the default SOP. Developers or administrators can configure
web servers to include Content-Security-Policy headers as part of the HTTP
responses issued to browsers. CSP-enabled browsers are then responsible for en-
forcing the policies associated with each resource.

A content security policy consists of a set of directives. Each directive corre-
sponds to a specific type of resource, and specifies the set of origins from which
resources of that type may be loaded. Table 1 explains the directive types sup-
ported in the current W3C standard CSP 1.0.2 The scheme and port in source
expressions are optional.

CSP also supports wildcards (*) for subdomains and the port, and has ad-
ditional special keywords: ‘self’ represents the origin of the resource, while
‘none’ represents an empty resource list and prevents any resource of the re-
spective type from being loaded. The script-src and style-src directives
additionally support the ‘unsafe-inline’ keyword, which allows inline script
or CSS to be included in the HTML document rather than being loaded from an
external resource. Finally, ‘unsafe-eval’ allows JavaScript to use string evalu-
ation methods such as eval() and setTimeout(). If not explicitly whitelisted,
CSP disables these special source types because their use is considered to be par-
ticularly unsafe. However, changing websites to remove all inline scripts can be a
burden on developers, and increase page load latency by introducing additional
external resources.

2 The directive script-src http://seclab.nu:80, for instance, allows a protected
website to load scripts from the host seclab.nu via HTTP on port 80, but blocks
all scripts from other sources



Why Is CSP Failing? Trends and Challenges in CSP Adoption 215

CSP can operate in one of two modes: enforcement or report-only. In en-
forcement mode, compatible browsers block resources that violate a policy. In
report-only mode, however, browsers do not enforce policies, but rather report
violations that would be blocked on the developer console. Additionally, a special
CSP directive (report-uri) can be used to instruct browsers to send violation
reports to the given URI. This feature can be used to learn policies before en-
abling enforcement, or to monitor for unforeseen changes or attacks against a
website. In this paper, we make extensive use of the report-only mode and vio-
lation reports to explore various ways to (semi-)automatically generate policies
for websites.

CSP has been widely adopted by the browser manufacturers. It is supported
by the current versions of almost all major browsers, including some mobile
browsers. It is, however, only partially supported by Internet Explorer.

2.2 Deploying CSP

To prevent XSS attacks, disallowing inline scripts and eval is the core require-
ment to benefit from CSP. Inline scripts should be disabled to prevent the
browser from inadvertently executing scripts that have been injected into the
site. Eval-constructs, often abused to parse JSON strings, can be used directly
by an attacker to execute arbitrary code if she controls the data source. While
the unsafe-inline and unsafe-eval options allow this behavior to be enabled,
their presence marginalizes the benefit of CSP.

Therefore, for version 1.0 of CSP, inline scripts should be moved to files
and eval replaced with a safe equivalent for the corresponding task, such as
JSON.parse() to parse JSON. Furthermore, JavaScript should be hosted on
a domain that only serves static files instead of user content. This separation
makes it harder for attackers to execute code in the browser. Also, external
scripts should be moved to a server controlled by the website owner, reducing
trust in third-party servers. The number of whitelisted sources should be kept
to a minimum to increase the difficulty of data exfiltration for attackers.

In the current draft version 1.1, additional features have been introduced to
safely support inline scripts as well as functionally replace the X-Frame-Options
header. As these features are subject to change, we do not address them in this
work.

2.3 Attacks Outside the Scope of CSP

CSP can prevent general content injection attacks, and in draft version 1.1 sub-
sumes previous mechanisms such as the X-XSS-Protection header, which serves
the narrow purpose of enabling browser XSS filters. However, it is not intended
to address other web attacks such as cross-site request forgery (CSRF). More
fundamentally, CSP describes which content can be loaded by source, but the
order of inclusion is out of scope. Hence, even with strict rules and perfect en-
forcement, out-of-order inclusion can lead to undesired side effects in JavaScript
applications [8]. JSONP (JSON with padding) is a mechanism to bypass SOP
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restrictions by including a script tag from a remote server and specifying a func-
tion to be executed once a result becomes available. Hence, whitelisted JSONP
sources can be used for calls to arbitrary functions—or, if input for the callback
function is not filtered, arbitrary code execution.

3 HTTP Security Headers

In this section, we describe our data collection of HTTP response headers. We
collected this data in an effort to understand the landscape of security headers
in the wild, particularly in regards to CSP.

3.1 Methodology

To acquire a long-term overview of CSP adoption, we performed weekly crawls of
the web starting in December 2012. We crawled the front page of each site in the
Alexa Top 1M most frequently visited websites. For every site x, we connected
to http://x, https://x, http://www.x and https://www.x. We counted a site
as using a particular header if any of the four responses served that header.
However, our crawler only visited the front page of each Alexa entry. Therefore,
sites that employ CSP only on subdomains or areas other than the front page
were not detected in the crawl.3 Furthermore, if the CSP rules are generated
based on user agent discrimination, the collected data does not hold for all types
of browsers visiting the site. We used a Firefox user agent string, updating version
information over time.

Description of HTTP Security Headers

To discuss CSP in context, we provide a brief overview of the other security
relevant HTTP response headers. Details about them can be found at IETF,
W3C, or in the browser specifications.

Platform for Privacy Preferences (P3P) [2].Websites can use this header
to describe their privacy policy. However, it is not supported by major browsers
and has not been actively developed for several years. The header is still in use
as Internet Explorer blocks third-party cookies by default if no policy is present.
P3P is legally binding and has been used in litigation in the past.

DNS Prefetch Control [1]. DNS prefetching is a technique for browsers
to reduce latency by resolving referenced hostnames before a user follows a link.
This header allows websites to override the default behavior of the browser.

XSS Protection [3]. This header can be used to enable or disable client-side
heuristic XSS filtering. The reflected-xss directive of CSP 1.1 is functionally
equivalent.

Content Type Options [4]. As the Content-Type header is often not set
correctly, MIME type sniffing can be used to detect the actual response content

3 One example is Twitter, which uses CSP for parts of their site, but not the front
page.

http://x
https://x
http://www.x
https://www.x
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type. The nosniff directive is the only option available for this header and
disables MIME type sniffing, preventing possible type confusion.

Frame Options [9]. This header allows a website to restrict iframing to
prevent UI redressing attacks. CSP draft 1.1 includes these features under the
frame-ancestors directive, and may replace this header.

HTTP Strict Transport Security (HSTS) [5]. By using HSTS, websites
can specify that in the future, the browser should only connect to them via a
secure connection, thereby preventing SSL stripping.

Cross-Origin Resource Sharing (CORS) [7]. SOP has proven to be an
obstacle for modern web applications, and has been worked around by various
methods such as JSONP. CORS allows websites to operate outside the limita-
tions of SOP by extending it, while not completely side-stepping it.

3.2 Adoption of HTTP Security Headers

To measure the popularity of CSP in contrast to other security headers, we
looked at the HTTP response headers in our weekly crawls, as well as a static
snapshot from the end of March 2014. For the static snapshot, we used the entire
Alexa Top 1M, breaking down websites by popularity. We used a snapshot of
the Top 10K to track the evolution of response headers back to December 2012.

To compare the adoption of security-related headers between different levels
of site popularity, we split Table 2 into brackets. From the data, it is apparent
that websites that are less popular use CSP less frequently. For instance, among
the 100 most popular sites, only two used CSP (2%), while CSP was enabled for
only 775 among the 900,000 least popular sites (0.00086%).

Hence, websites that are less popular use CSP less frequently. In contrast, for
CORS, header usage was more evenly spread out, with all brackets between 0.7%
and 2.6%.

During our crawls, we noticed that Google enabled CSP headers only occa-
sionally. We performed an additional test of google.com with 1,000 requests,
finding that 0.8% of the responses included CSP headers. While Google had 18
sites in the top 100, none of them issued CSP headers in the crawl of Table 2.

In Figure 1, we track the evolution of security-related headers of the Alexa Top
10K from March 2014 backwards in time to December 2012. P3P was particularly
popular; however, the P3P policies served were often invalid, providing only an
explanation for why the website did not support it. We observe that CSP is
only slowly gaining traction over time. The main contributing factor for the
fluctuation of CSP headers in the data is due to Google.

For the hosts in the Top 10K of this crawl, we identified all servers that had
sent CSP rules at any point in time during our study. We found 140 sites that
did so; 110 of those belonged to Google (79%).

3.3 Detailed Analysis of CSP Headers

In this part, we describe in detail how websites use CSP, whether they use CSP’s
reporting feature to learn policies, whether they actively enforce policies, and
how effective those policies are in mitigating attacks.

google.com
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Table 2. Number of websites with security-related HTTP response headers, grouped
by intervals of site popularity, for the Alexa Top 1M ranking

Header / Alexa Rank [1− 102] (102 − 103] (103 − 104] (104 − 105] (105 − 106]

P3P 47 176 849 6,315 79,600
DNS Prefetch Control 1 0 3 40 461
XSS Protection 26 77 269 2,336 43,045
Content Type Options 10 27 172 1,995 42,150
Frame Options 43 165 581 2,747 21,746
HSTS 5 16 83 476 2,475
CORS 1 26 217 1,228 7,149
CSP 2 2 15 57 775

Any security header 66 304 1,623 11,491 132,347
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Fig. 1. Popularity of security headers in the Alexa Top 10K

Enforcement vs. Report-Only. During our crawl at the end of March, we
found 815 sites in enforcement mode, 35 sites in report-only mode, and no sites
that sent both types of headers. Out of the websites in enforcement mode, only
23 collected violation reports.

In the Top 10K, we observed only one site in report-only mode that later
switched to enforcement. The Norwegian financial services site dnb.no started
collecting reports in June 2013, and enabled enforcement in February 2014. Their
enforced default-src directive consists of 74 sources, including the schemes
chrome-extension, chromeinvoke, and chromeinvokeimmediate. Furthermore,
unsafe-inline and unsafe-eval are both enabled. Therefore, this policy ap-
pears to provide little benefit over not using CSP at all.

We noticed that several websites use CSP to test for mixed content. Mixed
content is the inclusion of unencrypted content into HTTPS sessions, which re-
duces the benefit of encryption. Google’s sampling uses the following report-only
policy: default-src https: data:; options eval-script inline-script;

report-uri /gen 204?atyp=csp. Etsy also samples for mixed content; we found

dnb.no
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CSP headers in nine out of 2,000 (0.45%) responses. Similarly, hootsuite.com
tested for mixed content from April 2013 to March 2014 for all responses, but
we observed no CSP headers after that.

Types of Sites Using CSP. To further understand the types of websites that
use CSP, we looked for similarities in website titles. The largest portion of sites
supporting CSP, 417, is due to phpMyAdmin, a PHP-based web application used
to manage MySQL databases. phpMyAdmin ships with CSP enabled by default,
which allows inline scripts, eval, and restricts sources to ‘self’. While this
policy does not prevent XSS, data exfiltration is more difficult. These rules can
be deployed as the software is fairly static. However, when conducting a search
for phpMyAdmin and CSP, we found users having trouble including images when
modifying their installations. The general solution offered was to disable CSP in
the configuration rather than updating the default policy.

Ironically, on the vendors’ demo site http://demo.phpmyadmin.net/master/,
the operators tried to include Google analytics. While the Google analytics do-
main is whitelisted using default-src, it is not in the script-src source list.
As specific directives override the default-src directive, the script is uninten-
tionally blocked.

We also found 170 OwnCloud instances, which uses CSP by default from
version 5.

Prevalence of Unsafe Policies. We identified several patterns in CSP policies
that violate deployment best practices as described in Section 2.2. In Table 3,
we summarize the observed rules in enforcement over the Alexa Top 1M from
March 24th. We split at the 10K rank to discriminate between more popular
websites and lower ranking ones. ‘*’ represents either the literal asterisk, or the
entire HTTP(S) scheme is whitelisted in one or more of the source lists.

On the majority of sites, eval and inline is enabled: eight out of 13 and 11 out
of 13 in the Top 10K bracket, 700 out of 802 and 728 out of 802 in the remaining
990,000 sites. This configuration strongly reduces the benefits of CSP for XSS
mitigation. Configuring asterisk or a whole scheme as a source in a directive
enables data leakage to any host. Six out of 13 and 230 out of 802 websites
respectively served such directives. 10 out of 13 sites in the Top 10K bracket had
no report-uri to collect violation reports. This is surprising as CSP could be
used as a warning system.

While CSP in theory can effectively mitigate XSS and data exfiltration, in
practice CSP is not deployed in a way that provides these benefits.

3.4 Conclusions

While some sites use CSP as an additional layer of protection against content
injection, CSP is not yet widely adopted. Furthermore, the rules observed in the
wild do not leverage the full benefits of CSP. The majority of CSP-enabled web-
sites were installations of phpMyAdmin, which ships with a weak default policy.
Other recent security headers have gained far more traction than CSP, presum-
ably due to their relative ease of deployment. That only one site in the Alexa

hootsuite.com
http://demo.phpmyadmin.net/master/
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Table 3. Overview of enforced policies

Feature / Alexa Rank [1− 104] (104 − 106]

unsafe-eval 8 700
unsafe-inline 11 728
script-src ‘self ’ 12 789
no report-uri 10 782
#script-src > 10 2 33
* as source 6 230
Median #directives 6 4
Median #script sources 4 1
# CSP Policies 13 802

Top 10K switched from report-only mode to enforcement during our measure-
ment suggests that CSP rules cannot be easily derived from collected reports. It
could potentially help adoption if policies could be generated in an automated,
or semi-automated, fashion.

4 CSP Violation Reports

Web browsers compatible with CSP can be configured to report back to the
website whenever an activity, whether carried out or blocked, violates the site’s
policy. This is meant as a debugging mechanism for web operators, both to
develop policies from scratch, and to be informed when an existing policy needs
to be updated. Starting with a “deny all” policy in report-only mode, operators
can collect information about all resources that need to be whitelisted in order
for the site to function, compile a corresponding policy, and eventually switch to
enforcement mode. We applied this approach to four websites and analyzed the
reports that we received, gaining unexpected insights into the web ecosystem.

4.1 Background

CSP includes an optional report-uri directive that allows website operators to
specify a sink for violation reports. It is supported in both report-only and en-
forcement mode of CSP. As an illustration, consider the following policy: img-src
‘none’; report-uri/sink.cgi.When a user visits the URL http://seclab.nu/
test.html and that page includes the image resource http://seclab.nu/pic.gif,
the browser would send a report similar to the following one: {"blocked-uri":
"http://seclab.nu/pic.gif", "violated-directive": "img-src ‘none’",

"document-uri": "http://seclab.nu/test.html", ...}. From this report, the
developer can infer that the policy entry img-src http://seclab.nu should be
added to the policy.

http://seclab.nu/test.html
http://seclab.nu/test.html
http://seclab.nu/pic.gif
http://seclab.nu/pic.gif
http://seclab.nu/test.html
http://seclab.nu


Why Is CSP Failing? Trends and Challenges in CSP Adoption 221

4.2 Methodology

We deployed CSP on four of our own websites: two personal pages, an institutional
page, and a popular analysis service. The policies we used specified empty resource
lists for all supported directive types—that is, any browser activity covered by
CSP was explicitly forbidden and should generate a report. We deployed the poli-
cies in report-only mode to not interfere with the normal operation of the site.
Besides the additional CSP headers, the sites were not modified in any way.

During our analysis, we observed that the formats of reports sent by differ-
ent browser versions varied slightly. Older Firefox versions, for instance, explic-
itly stated when a violation was due to the special cases ‘unsafe-inline’ or
‘unsafe-eval’ for script and style directives, as opposed to violations based on
a resource URI. All recent versions of browsers, however, reported only an empty
blocked-uri instead. Unfortunately, this format did not allow us to distinguish
between ‘unsafe-inline’ and ‘unsafe-eval’ script violations.

In order to work around this issue, we leveraged the fact that recent browser
versions supported multiple CSP headers in parallel. That is, in addition to the
regular policy discussed above that captured any CSP event, we added two more
policies that caused reports only for eval and inline violations, respectively:

default-src *; script-src * ’unsafe-inline’;

style-src * ’unsafe-inline’; report-uri /sink.cgi?type=eval

default-src *; script-src * ’unsafe-eval’;

style-src *; report-uri /sink.cgi?type=inline

We deployed all three policies and distinguished the reports we received using
the type parameter in the report URI. We removed duplicate eval and inline
violations that were reported for the regular policy (30% on site D). Furthermore
we removed some violations reported for the eval and inline policies that were in
fact no eval or inline violations (1.8% on site D). Those were triggered by a bug in
older Firefox versions that did not properly execute multiple policies in parallel.
Since newer Firefox versions were not affected, the user agent distributions of
the original and the filtered data set were very similar. Table 4 shows the number
of reports retained in the filtered data set, which is the basis for the following
discussion.

From each report, we derive a policy entry that whitelists the respective vi-
olation. We extract the type, such as img-src, from the violated-directive.
For regular violations, we append the scheme, host name and port from the
blocked-uri, such as http://seclab.nu. For inline or eval violations, we ap-
pend ‘unsafe-inline’ or ‘unsafe-eval’. We generate a single policy per site
by combining all entries and set default-src ‘none’ to block everything else.

Our approach is to generate one single policy that is general enough to cover
the entire protected site. Such a site-wide policy is easier to generate than in-
dividual policies, since any similarity between pages on the same site reduces
the number of violation reports necessary to generate a policy. Furthermore,
site-wide policies are easier to configure; a site-wide reverse proxy could insert a
static policy into HTTP responses without the need to change application code.

http://seclab.nu
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Table 4. Overview of the CSP violation report data sets received from our websites
in early 2014, after removing inconsistent reports

Site A B C D

Type personal personal institutional service

# Reports 1.1K 21.8K 48.0K 7.1M
Median Reports/Day 9 671 2.1K 348.5 K

# IP Addresses 78 1.6K 1.2K 14.4K
Median Reports/Addr. 7 7 28 85

% Reports/Browser
Chrome (mobile, derivatives) 46.6 (+5.4) 59.3 (+8.3) 54.3 (+3.7) 61.0 (+2.3)
Firefox (mobile, derivatives) 23.8 (+0.5) 22.2 (+0.6) 30.1 (+0.5) 30.3 (+0.2)
Safari (mobile) 5.7 (+2.3) 2.3 (+3.5) 4.1 (+3.7) 1.5 (+0.5)
Opera 0.5 0.3 0.6 1.9
Googlebot 15.1 3.1 2.0 2.1

4.3 Results

Table 5 summarizes the policies we generated for each of our sites.We verifiedman-
ually each entry in the policies and found that many of the whitelisted resources
were not actually intended to be included in the websites. The policy generated
for site A, for instance, is default-src ‘none’; frame-src https://srv.mzcdn.
com; img-src ‘self’ data: http://1.2.3.11; object-src http://www.

ajaxcdn.org; script-src ‘unsafe-eval’ ‘unsafe-inline’ http://ajax.

googleapis.com http://f.ssfiles.com http://i.bestoffersjs.info

http://srv.mzcdn.comhttp://www.superfish.comhttps://www.superfish.

com; style-src ‘unsafe-inline’.Yet, site A was entirely static and did not con-
tain any script at all. The correct policy for site A would have been default-src

‘none’; img-src ‘self’ data:; style-src ‘unsafe-inline’. In other words,
only 21% of the policy entries generated from the received reports were legitimate.

On site D, only 2% of the policy entries were legitimate. Furthermore, many
of the legitimate entries simply enumerated all the alternative domain names
of the same site (e.g., with or without the www subdomain), or they were due
to the same resource being loaded over HTTP or HTTPS. When disregarding
these details to allow for a fairer comparison, as noted in brackets in the table,
the percentage of legitimate policy entries drops to only 0.8% on site D.

Reasons for Invalid Policy Entries. We identified a number of reasons why
web browsers sent CSP violation reports for resources that did not exist in the
original websites. Many of these reports appeared to be caused by browser exten-
sions that modified the DOM of the page by injecting additional resources such
as scripts or images. We observed extensions for blocking advertisements, exten-
sions injecting advertisements, price comparison toolbars, an anti-virus scanner,
a notetaking plugin, and even a BitTorrent browser extension. We could auto-
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Table 5. Length of policies when whitelisting all violations from the report data set (a),
and with an additional filter for URL schemes of browser extensions (b). Most of the
policy entries correspond to injected resources; only few are intended to be included. (In
brackets, the number of unique policy entries when disregarding the protocol HTTP(S)
or alternative domains, such as the www subdomain.)

Site A B C D

# Entries (a) 14 221 226 1,113
# Entries, extension filter (b) 14 212 215 1,090
Correct Subset 3 (3) 14 (9) 38 (13) 22 (9)

Table 6. Most frequent Chrome extensions observed at site D

Name # Reports

AdBlock 38K
AdBlock Plus 29K
Grooveshark Downloader 9.5K
ScriptSafe 8.8K
DoNotTrackMe 8.2K

matically identify some browser extensions based on violation reports because
they attempted to load resource URIs that contained the chrome-extension or
safari-extension schemes followed by the unique identifier of the extension.
AdBlock and AdBlock Plus were the most frequent extensions for the Chrome
browser (Table 6), while the most frequent Safari extension was Evernote. Yet,
automatically removing these reports (and a few other unexpected schemes, such
as about and view-source) accounted for fewer than 5% of all incorrect policy
entries, as shown in the second row of Table 5. The remaining browser extensions
exhibited no such uniquely distinguishing features, often injecting libraries that
are used not only in browser extensions but also in many websites, such as Ajax
tools, Google Analytics, and resources from large content distribution networks.

When browsers send violation reports for modifications due to browser exten-
sions, the reverse conclusion is that websites enforcing CSP can cause browser ex-
tensions to stop functioning. Some browser extensions thus intercept CSP headers
and modify them in order to whitelist their own resources or disable CSP. We ob-
served reports caused by one such extension, which were sent because themodifica-
tion resulted in a semantic error.We cannot quantify how often suchmodifications
were successful as they are not observable with our methodology.

In addition to browser extensions, “in-flight” modification of pages by ISPs or
web applications such as anonymity proxies can also cause violation reports. The
image loaded from 1.2.3.11 in the example above appeared to be injected by
a mobile Internet provider. These examples illustrate that even when CSP vio-
lations due to browser extensions were filtered (or not reported by the browsers),
other non-attack scenarios can still cause websites to receive spurious reports.
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Fig. 2. Fraction of new policy entries dis-
covered over time on site B (measurement
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Fig. 3. Frequency of legitimate and in-
valid violations being reported on site D.
Some injected resources occurred orders
of magnitude more often than legitimate
resources.

Administrators who plan to generate a policy from reports submitted by their visi-
tors’ web browsers may need to manually verify a large number of policy entries in
order to avoid accidentally whitelisting resources injected by browser extensions
or ISPs (let alone attackers).

Time Delay Until a Policy can be Generated. On site B, it took around
two weeks to receive at least one report for each valid policy entry. The last
resource that was discovered was an embedded YouTube video. Another resource
that was discovered relatively late was an image loaded over HTTPS instead of
HTTP; all other valid policy entries could be generated within the first two days
of the measurement. For the other sites, the durations were similar. In practice
we expect these numbers to vary, thus website operators will need some prior
knowledge about the resources used on their website so that they can decide
when it is safe to switch from report-only to enforcement mode without causing
any disruption. Operators could therefore be tempted to run the observation
period for as long as possible in order to minimize the risk of not receiving
reports for legitimate resources. However, as Figure 2 shows, the rate of newly
observed, invalid policy entries remained relatively constant over time, suggesting
that longer measurement periods can significantly increase the number of policy
entries an operator needs to verify manually.

Report Frequency as a (Poor) Distinguishing Feature. Only about 4% of
all reports received on site D during our measurement resulted in an invalid policy
entry. Hence, onemight attempt to use the frequency of a report as an indicator for
its validity. However, this approachwould be problematic for two reasons. First, an
attacker can easily influence the frequency distribution observed by the website
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by submitting forged reports. Second, even in the absence of attacks, resources
injected into websites can be so popular that they cause reports more often than
some legitimate, but infrequently accessed, resources.

Figure 3 visualizes this phenomenon. The most frequently injected resource
(a script loaded from superfish.com for price comparison) was reported more
than 22,000 times. In contrast, connect-src ‘self’, which is used by a progress
meter on the site, was reported only 9,000 times, and reports corresponding to
alternative domain names of site D were received even less frequently.

4.4 Conclusions

Websites small and large observe CSP violation reports for injected resources.
Even in the absence of ostensibly malicious activity, which we did not observe, the
high number of injected resources complicates the process of generating a viable
policy from the received reports. At the moment, this task is mostly a tedious
and, from our own experience, error-prone manual process. As a semi-automated
approach to filtering reports, it might be possible to generate signatures for the
most common browser extensions, either manually or by leveraging the fact
that an installed browser extension usually causes several violations to co-occur
(based on time, IP address, and user agent signature). These signatures could be
shared with the community and could be used to reduce the number of reports
that need to be verified manually.

5 Semi-automated Policy Generation

An alternative approach to generating a policy from appropriately filtered and
verified reports submitted by visitors is to make use of trustworthy reports only.
In order to explore this approach further, we developed a proof-of-concept web
crawler that generates violation reports in a controlled environment.

5.1 Methodology

Our crawler is implemented as an extension for the Chromium browser based
on Site Spider, Mark II. The crawler follows at most 500 internal links on the
main domain of the crawled site in a non-randomized breadth-first search. Af-
ter navigating to a page, the crawler pauses for 2.5 s to load all resources of a
document such as images, scripts, and external pages displayed in frames. The
browser accesses the web through an instance of the Squid web proxy with an
ICAP module. The proxy inserts the CSP report-only headers described in Sec-
tion 4.2 and collects the resulting reports. The proxy also intercepts encrypted
SSL traffic.

After crawling a site, we discarded all reports that did not match the site’s
main domain. These reports referred to external documents loaded in a frame
and were not necessary to generate a policy for the main document. (In CSP, a
document’s policy does not transitively apply to nested documents loaded inside
a frame.) From the remaining reports, we generated a policy as in Section 4.2.

superfish.com
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The crawler should be considered a proof-of-concept to explore the feasibil-
ity of automatically generating policies for websites. By following only hyper-
text links, the crawler cannot detect violations that conditionally occur after
load-time, such as clicking the “play” button in a Flash movie, or triggering
JavaScript-related events. We leave ways to increase the crawler’s coverage to
future work.

As a potentially more targeted alternative to automated crawling, we also
manually browsed websites in a fresh browser instance and used the proxy to
collect reports. This process included no feedback. The goal was to cover all areas
of the site and trigger as many different violations as possible by specifically
exercising functionality implemented in JavaScript or browser plugins.

5.2 Evaluation

The question of whether semi-automated policy generation for websites is a
suitable approach—without requiring modifications to the sites—depends on
two opposing goals. First, the generated policy must not break the site. A policy
generation mechanism must discover all resources being included by a site, or a
superset thereof. Second, the generated policy should be as narrow as possible
in order to provide the maximum safety gain. Unnecessary resources should not
be allowed by the policy, and unsafe mechanisms should not be used. In the
first part of this evaluation, we compare methods of collecting reports for policy
generation on sites where we know that a sound policy exists. In the second part,
we explore how well different site architectures work with CSP; that is, whether
a sensible policy can be deployed without changing the sites.

Crawling and Manual Browsing of Our Own Sites. From the reports
submitted by visitors’ web browsers in Section 4.3, we know that stable policies
exist for our own four sites. Indeed, the sets of policy entries generated by crawl-
ing and manual browsing as shown in the upper part of Table 7 overlap, and
only a few entries were found by only one method. Especially when disregarding
differences due to alternative domain names and HTTP(S), both methods per-
formed similarly. However, neither method was perfect. The crawler discovered
resources in a rather hidden portion of site B that manual browsing did not
uncover. On site D, in turn, manual browsing discovered a resource inclusion
that the crawler was not able to find, which was due to exercising JavaScript
code when submitting content to the site. The policy entries generated from
valid user-submitted reports were always a strict superset of those derived from
crawling and browsing (as shown in the lower two-thirds of the table), except
for site B where we found that a technical mistake had prevented CSP headers
from being sent to users in a small portion of the site. We conclude that the
crawler and manual browsing techniques need more refinement before they can
fully replace user-submitted reports. Since both techniques are complementary,
combining them could prove useful to increase coverage.
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Table 7. Overlap between the sets of policy entries generated by the crawler, through
manual browsing and from user-submitted reports. (In brackets, the number of com-
mon/different policy entries when disregarding alternative domain names or HTTP(S).)
No method was fully reliable.

Site A B C D

crawler only 0 (0) 8 (8) 0 (0) 0 (0)
both 3 (3) 12 (9) 12 (10) 8 (7)
manual only 0 (0) 2 (0) 1 (0) 9 (2)

crawler only 0 (0) 9 (9) 0 (0) 0 (0)
both 3 (3) 11 (8) 12 (10) 8 (7)
valid user reports only 0 (0) 3 (1) 26 (3) 14 (2)

manual only 0 (0) 3 (2) 0 (0) 2 (0)
both 3 (3) 11 (7) 13 (10) 15 (9)
valid user reports only 0 (0) 3 (2) 25 (3) 7 (0)

Crawling and Manual Browsing of CSP-enabled Sites. In order to com-
pare our crawler-generated policies to real-world policies, we generated policies
for large public websites that deployed CSP in enforcement mode. As a case
study, we provide more detail for Facebook and GitHub.

Our crawl included the public portion of Facebook as well as authenticated
sessions. The policy generated by the crawler was a subset of Facebook’s ac-
tual policy. It listed the specific subdomains of Content Distribution Networks
(CDNs) observed during the crawl, whereas Facebook whitelisted all CDN sub-
domains with a wildcard. Furthermore, while Facebook’s policy restricted only
script-src and connect-src, the crawler also generated entries for img-src,
for instance. Both issues could cause unobserved (but legitimate) behavior to be
blocked and illustrate that automatically generated policies are likely to require
fine-tuning using domain knowledge before they can be deployed.

On GitHub, the crawler discovered all whitelisted resources of the original pol-
icy (which did not use any wildcards, and restricted only script-src, style-src,
and object-src). The crawler generated additional entries that were not part of
GitHub’s policy. Uponmanual verification, we found that some resources included
in GitHub’s blog were not loaded due to missing policy entries. This finding illus-
trates the importance of monitoring enforced policies when websites evolve; regu-
lar crawls of a website could be a useful tool to help detect such changes.

Influence of Design Choices on CSP. Architectural features of a site can
influence whether it is possible to deploy a meaningful policy without changing
the site. Our crawls of Twitter, for instance, found a small, stable set of policy
entries, while additional manual browsing discovered only one additional policy
entry. Most of the resources were internal. Multimedia content included in tweets,
for instance, was loaded from internal subdomains with constant names. Such an
architecture makes it relatively convenient to deploy CSP without major changes.
Indeed, Twitter used CSP in some subdirectories and subdomains.
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Other sites such as Amazon, Google, and YouTube dynamically used explic-
itly named subdomains of CDNs such as mt{2,3}.google.com, similarly to Face-
book. These subdomains appeared to be used for load balancing and could there-
fore be considered equivalent from a security point of view. Our crawler was not
able to enumerate all these subdomains, but post-processing of the policy such
as using a wildcard *.google.com could address the issue. A drawback of this
approach is that sites such as Amazon that use external CDNs would also be
whitelisting other customers’ subdomains. A cleaner approach would be to use
static domain names at the web application layer and address load balancing
transparently at lower layers, as appears to be done by Twitter.

In the examples above, it was possible to compensate for some degree of
variability in the sites by broadening the generated policy because the variability
was systematic. On certain types of sites such as blogs where users are allowed to
include externally hosted content, this may not be possible. The policy used by
GitHub shows a possible compromise in such situations: the site allowed images
to be loaded from any source and restricted only more sensitive resource types
such as scripts and plugins.

Stability of Policies. A requirement to successfully deploy an enforceable
policy is to predict at policy generation time the external resources that will be
included when a page is rendered in a browser. A particularly unpredictable type
of external content is advertising. The exact advertisement shown to a user is
typically determined dynamically while the page is loading. Dynamic advertising
can involve techniques such as Real-Time Bidding (RTB), where the opportunity
to display an advertisement to a visitor is auctioned off in real-time, and further
dynamic activity such as cookie matching between the host website and the
winner of the auction. There are routinely tens to hundreds of potential bidders
in RTB [16], each of whom represent a large number of actual advertisers.

In order to better understand how this dynamic activity can be reconciled with
the more static requirements of CSP, we performed repeated crawls of two large
websites with dynamic advertisements and counted how many new policy entries
we discovered in each subsequent crawl (Table 8). Twitter, which we crawled as
a control data point, remained stable and resulted in exactly the same policy in
all crawls. On the BBC, the crawler discovered between 13 and 61 new policy
entries in each of the follow-up crawls; the vast majority of them were scripts or
other content related to advertising. On CNN, the follow-up crawls discovered
only between one and four new policy entries, and only one was unambiguously
related to advertising. Since both sites displayed comparable types and amounts
of advertisements, the differences must be due to the way advertising was imple-
mented. Indeed, the BBC loaded all advertisement-related resources, including
RTB scripts, tracking code, and the final image being displayed, directly into
the body of the main document. It would be very challenging to deploy CSP in
such a scenario because it seems unfeasible to proactively determine any resource
that could potentially be loaded. In contrast, CNN isolated advertisements from
the main document by loading them as a separate document displayed inside an
embedded frame.
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Table 8. Additional policy entries discovered in repeated crawls. The high variability
due to advertising on the BBC precludes CSP from being used effectively. CNN’s way
of including advertisement results in a relatively stable (and enforceable) policy.

Crawl number 1 2 3 4 5

BBC 285 +34 +61 +13 +53
CNN 116 +4 +2 + 1 +1
Twitter 20 +0 +0

This decoupling significantly eases the deployment of CSP because the main
document’s policy does not transitively apply to the document inside the frame.
In such a deployment, it would be possible to enforce a rather strict policy
for the main document and a much more permissive policy for the embedded
advertisement document (or none at all). The SOP as well as the HTML5 frame
sandboxing mechanism can be used to ensure that untrustworthy scripts in the
frame cannot access or modify the main document.

Safety of Policies. To assess whether policies generated for a site represent
any significant reduction in exposure to attacks, we checked whether the policies
included “unsafe” CSP features—that is, inline script or style and calls to eval.
Among our own sites that included JavaScript, only site B did not require eval
privileges. Amazon, the BBC, CNN, Facebook, Google, the Huffington Post, and
YouTube required all three privileges; Twitter needed inline script and style, and
GitHub only inline style. These requirements may be due to code on the sites
or in external libraries they include. Even though allowing inline script and
eval reduces the effectiveness of CSP against XSS attacks, by restricting where
external resources may be loaded from, CSP could still make it more difficult for
attackers to include custom content such as images or to exfiltrate stolen data.

5.3 Conclusions

Neither näıve crawling nor manual browsing alone are sufficient methods to gen-
erate a content security policy for a website. In our approach, a certain amount
of fine-tuning of generated policies is required for all but the simplest sites. Ad-
vanced crawling, or applying machine learning to the generated policies, could
reduce the importance of manual tweaks. More complex sites may be able to use
only a subset of CSP unless they adjust their architecture. Once a policy has
been deployed, an additional challenge is to ensure that it is always up to date.

6 Discussion

We saw that only few websites use CSP, and those that do use it do not leverage
its full benefits. For this section, we reached out to security engineers behind
larger CSP deployments and summarize key points. Furthermore, we suggest
several ways in which CSP adoption could be improved.
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6.1 Discussions with Security Engineers

To understand implementation decisions behind real-world CSP deployments,
we talked to security engineers responsible for three of the measured websites.
Out of these sites, two were in the Alexa Top 200, and one in the Top 5,000. The
websites used CSP in enforcement mode or report-only for testing. We summarize
the key observations in an anonymized fashion.

Websites Prefer Not to Remove Inline Script. While inline script can
be completely removed from websites, this represents significant effort and can
lead to more roundtrips when loading the page. Engineers hope to address this
issue with the nonce and hash features of CSP draft version 1.1. Hash might be
more promising because documents can be distributed over CDNs more easily,
whereas for nonce a new document would need to be generated for each response.

Risk of Breaking Functionality. This was manifested by disabling CSP for
browser versions with problematic CSP implementations, including Chrome and
Firefox. A website that is secure but not usable can harm business more than
occasional XSS. For the future, reliable implementations of CSP in browsers are
anticipated.

Enforcement over Extensions is Considered a Bug. CSP rule enforce-
ment can break the functionality of browser extensions. A workaround is to
whitelist popular sources. However, extensions could still be unintentionally re-
stricted. A modification of browser implementations or the standard to not en-
force rules over extensions could solve this.

6.2 Suggested Improvements

We briefly summarize approaches that could help the adoption of CSP and in-
crease its security benefits when deployed.

Ads should be Integrated into iframes instead of the Main Site.
Instead of whitelisting all possible ad networks or developing a mechanism for
recursive policy adoption, ads should be moved into sandboxed iframes. This
allows the main site to be protected with an effective policy, while the iframe can
be more permissive, but isolated. Conflating both the site proper and ads in the
same context is not necessary, since information required by ads can be passed via
postMessage cross-window communication. However, while not widely available,
alternatives such as Security Style Sheets [14] have been proposed that would
allow for such separation without moving content to iframes.

More Web Applications and Frameworks should Adopt CSP. Intro-
ducing CSP to programs that are deployed widely can have a higher impact on
the overall security of the web as compared to individual websites adopting CSP.
As examples, phpMyAdmin and OwnCloud have adopted CSP, and Django can
be configured with CSP. Most desirable would be the introduction of CSP to web
frameworks, which could drastically improve adoption of CSP and the safety of
the web.

Browsers Should not Enforce CSP on Extensions. As discussed in
Section 4, enforcing policies on browser extensions generates many unexpected
reports for websites. Websites should not be forced to whitelist extensions since
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the number of extensions and third-party resources included by those extensions
is theoretically unbounded and cannot be predicted by application developers.
Furthermore, CSP in its current form is not an adequate mechanism for websites
to block potentially undesired extensions and should not be used as such.

7 Related Work

CSP was proposed by Stamm et al. [19], who provided the first implementa-
tion in the Firefox browser. Subsequently, CSP became a W3C standard [6] and
was adopted by most major browsers. Other publications have addressed limi-
tations of CSP and suggested extensions or modifications to the standard. For
instance, Soel et al. [18] proposed an extension of CSP to address shortcomings
in postMessage origin handling.

CSP was the first widely deployed browser policy framework to mitigate con-
tent injection attacks. However, it was not the first one to be suggested. SOMA
(Same OriginMutual Approval) [15] reduces the impact of XSS and CSRF by con-
trolling information flows. Website operators need to approve content sources in
a manifest file, as well as content providers need to approve websites to include
their content. BEEP [11] can prevent XSS attacks with a whitelist approach
for JavaScript and a DOM sandbox for possibly malicious user content. Script
tags are whitelisted by hash, a feature that is also proposed in the 1.1 draft
of CSP. BLUEPRINT [20] enforces restrictions on the document parse tree
in the browser. Web application server components make parsing decisions and
transport the DOM structure to the client. By enforcing a consistent document
structure, misuse of browser rendering quirks is eliminated. CONSCRIPT [12]
supports a variety of policies for JavaScript enforcement, which can be generated
automatically. Static policy generation is supported for Script#, a Microsoft tool
that generates JavaScript from C# code, as well as a dynamic training mode for
other platforms. Weinberger et al. [21] performed an evaluation of browser-side
policy enforcement systems. They concluded that security policies for HTML
should be a central mechanism for preventing content injection attacks, but
need more research to become effective. We performed the first study on CSP
adoption in the wild, analyzing how usage has evolved in the past year on the
most popular websites. Also, we investigate how report-only mode can be used
to devise policies, and whether those are effective.

Currently, inline scripts are as popular with websites as they are bad for the
effectiveness of CSP to prevent XSS. Bugzilla and HotCRP required substantial
changes to support CSP [21], while addons.mozilla.org required an effort of
several hours [19]. Previous work performed automatic rewriting of .NET ap-
plications to better support CSP [10]. Recent changes to the CSP draft, such
as nonce and hash whitelisting of scripts, represent an approach that relieves
developers of removing inline scripts while allowing for control over code. Trust
relationships in external script sources have been analyzed by Nikiforakis et
al. [13]. 88% of the Alexa Top 10K most visited websites included scripts from
remote sources, and the most popular single library was included from 68% of
the sites. An outlook on the possible future of web vulnerabilities has been sum-
marized by Zalewski [8]. While CSP addresses a wide range of vulnerabilities,

addons.mozilla.org
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it can not prevent out-of-order execution of scripts, code reuse through JSONP
interfaces, and others.

8 Conclusion

In this paper, we have presented the results of a long-term study on CSP as it is
deployed on the web. We have found that CSP adoption significantly lags other
web security mechanisms, and that even when it has been adopted by a site, it
is often deployed in a way that negates its theoretical benefits for preventing
content injection and data exfiltration attacks.

In addition, by enabling CSP at four sites, we observed that it is difficult for
third parties to deploy CSP, either through incremental deployment using report-
only mode or through web application crawling to semi-automatically generate
policies.

CSP clearly holds great promise as a web security standard, but we can only
conclude that it is difficult for most sites to deploy it to its full potential in its
current form. It is our hope that the improvements we suggest here, as well as up-
coming features of the 1.1 draft, will allow site operators and developers to make
effective use of content security policies and result in a safer web ecosystem.

Acknowledgements. This work was supported by the Office of Naval Research
(ONR) under grant N00014-12-1-0165.We would like to thank our shepherd Anil
Somayaji and the anonymous reviewers for their helpful comments. Furthermore,
we thank Collin Mulliner and Clemens Kolbitsch for their help in data collection.

References

1. DNS Prefetching - The Chromium Projects, http://www.chromium.org/
developers/design-documents/dns-prefetching

2. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification (2002), http://
www.w3.org/TR/P3P/

3. IE8 Security Part IV: The XSS Filter (2008), http://blogs.msdn.com/b/ie/
archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx

4. IE8 Security Part V: Comprehensive Protection (2008), http://blogs.msdn.com/
b/ie/archive/2008/07/02/ie8-security-part-v-comprehensive-protection.
aspx

5. RFC 6797 - HTTP Strict Transport Security, HSTS (2012), http://tools.ietf.
org/html/rfc6797

6. Content Security Policy 1.1 (2013),
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/
csp-specification.dev.html

7. Cross-Origin Resource Sharing, W3C Candidate Recommendation (January 29,
2013), http://www.w3.org/TR/cors/

8. Postcards from the post-XSS world (2013), http://lcamtuf.coredump.cx/
postxss/

9. RFC 7034 - HTTP Header Field X-Frame-Options (2013), http://tools.ietf.
org/html/rfc7034

http://www.chromium.org/developers/design-documents/dns-prefetching
http://www.chromium.org/developers/design-documents/dns-prefetching
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-v-comprehensive-protection.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-v-comprehensive-protection.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-v-comprehensive-protection.aspx
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/rfc6797
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://www.w3.org/TR/cors/
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/
http://tools.ietf.org/html/rfc7034
http://tools.ietf.org/html/rfc7034


Why Is CSP Failing? Trends and Challenges in CSP Adoption 233
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Abstract. Measuring security controls across multiple layers of defense
requires realistic data sets and repeatable experiments. However, data sets
that are collected from real users often cannot be freely exchanged due to
privacy and regulatory concerns. Synthetic datasets, which can be shared,
have in the past had critical flaws or at best been one time collections of
data focusing on a single layer or type of data. We present a framework for
generating synthetic datasets with normal and attack data for web appli-
cations across multiple layers simultaneously. The framework is modular
and designed for data to be easily recreated in order to vary parameters
and allow for inline testing. We build a prototype data generator using
the framework to generate nine datasets with data logged on four layers:
network, file accesses, system calls, and database simultaneously. We then
test nineteen security controls spanning all four layers to determine their
sensitivity to dataset changes, compare performance even across layers,
compare synthetic data to real production data, and calculate combined
defense in depth performance of sets of controls.

Keywords: Metrics, Defense in Depth, Web Application Attacks, Mea-
suring Security.

1 Introduction

To develop a science of security, at a minimum researchers need a convenient
means to run repeatedable scientific experiments. To design a defense in depth
security architecture, system security enginners benefit from a useful workbench
to compare and place different security controls. In this work, we use security
control as a broad label to include anything that hinders an attacker, including
any security product, network, host, or database sensor, as well as more emphe-
merial controls such as user security training or corporate policies. Both goals
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require tools to mearure security properties. Measuring and comparing effective-
ness of security controls is a difficult task the security research community faces.
Researchers usually want to repeat other experiments, so they can compute on
the same dataset and verify the accuracy of the analysis to ensure that security
controls are compared fairly. For experiments to be repeatable, datasets and
algorithms used must be made available to others. However, legal, privacy and
logistic issues often prevent data sharing. The present solution is to acquire as
many security controls as possible locally, so one could test them against datasets
she has access to in order to measure and compare their effectiveness. Since no
single dataset could contain all the security problems to be assessed, as we learn
from now famous TLS Bug1, this approach at best provides only a partial view
into the effectiveness of these security controls.

In order to gain a fuller picture of these security controls, we need quality
shareable datasets. Unfortunately, anonymizing real user data is not a trivial
matter[1][2].So we have to look for the alternative–Synthetic Data, data gen-
erated through using existing user models. It offers advantages besides being
shareable. The forms of these data will be close, if not identical to those from
real users. Less realism is traded for more precise control of different param-
eters, e.g. content length. By adjusting these parameters, we can find exactly
what changes each security control is sensitive to. In addition, by controlling
when and what attacks are introduced, we have a clear view of ground truth,
whereas in real user data, attacks are hard to identify, resulting in additional
unknown false negatives. In fact, even in real user data, synthetic attack data is
often injected for testing, as labeling the datasets with often sparse attacks is a
cumbersome and potentially inaccurate process.

In this paper, we propose a modular synthetic dataset generation framework
for web applications, and a monitoring infrastructure that is capable of record-
ing data from multiple layers, including TCP packets on the network, database
queries, and even host system calls, so that security controls at different layers
can be compared to each other. We call this system Wind Tunnel. By limiting
the scope of Wind Tunnel to one important attack vector, remote attacks on
web applications, we can better model the content and measure security con-
trols designed to defend against it. In order to incorporate more realism in the
synthetic dataset, we use publicly available content, such as known usernames,
passwords, English text, and images as the fundamental data sources in Wind
Tunnel. For a particular web application, we first create use cases and then drive
multiple instances of Firefox via Selenium [3] based on these use cases to sim-
ulate users. Each dataset has configurable distributions for each parameter and
has all the network traffic, system calls, and database queries recorded. For at-
tack data, we write scripts using Metasploit [4], launch the attacks, and execute
post-compromise data exfiltration.

With a modular design and focus on the ease of data generation, one can
easily change a parameter or substitute different user content to determine how
that change affects all the security controls tested. Collecting data from multiple

1 http://heartbleed.com/

http://heartbleed.com/
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layers at the same time allows us to compare security controls operating at dif-
ferent layers directly to one another. For instance, we can determine if a web
content anomaly detector and a file access sensor each detect the same attack.
In later sections, we describe Wind Tunnel and how we use it to generate nine
datasets representing three separate web applications, varieties of user content,
changes in length parameters, and two different servers. We then test nineteen se-
curity controls at four different layers, using the results to discover what changes
affect different types of security controls. We illustrate how we can compare se-
curity controls from different layers including web content anomaly detectors,
database sensors, file access sensors, and more with this multilayer dataset, as
well as perform analysis on how such security controls could be optimized in a
defense in depth architecture by showing their overlap. Furthermore, we com-
pare our generated data to that of a production web server dataset and another
synthetic dataset published previously [5].

The remainder of the paper is layed out as follows. In Section 2, we describe
our board approach. Section 3 details our implementation. All results are pre-
sented in Section 4. In Section 5, we discuss related work. Finally, we remark on
future goals and conclusions in Sections 6 and 7.

2 Data Generator Framework

The goals of Wind Tunnel is to generate realistic synthetic data across multiple
layers in a modular, repeatable, and automated manner. We want the synthetic
data to be realistic enough that measurements of security control performance
are predictive of at least relative performance of security controls on real produc-
tion data. We focus on modeling web application content rather than network
connection information, source reputation, volumetrics, or fine grain timing. In
the future, with the modular nature of Wind Tunnel, we can integrate more so-
phisticated models of user behavior. By generating multiple layers of data, we can
test security controls that protect against a particular attack vector regardless of
the layer at which they operate. A modular framework allows individual compo-
nents such as new sources of user content, new web applications, or new attacks
to be quickly integrated. Rather than just generating data once, Wind Tunnel is
designed to repeatedly create a dataset either for use with inline defenses that
cannot be tested against a static dataset or to adjust various parameters in order
to explore what effect certain changes have on various security controls.

Wind Tunnel consists of seven steps any of which can be reconfigured or ex-
panded without having to build a whole dataset from scratch. A visual overview
can be seen in Figure 1.

– Set up a web application server
– Program use cases with Selenium [3]
– Choose existing or create additional raw content data sets for user submitted

content
– Create attacks and define permutations
– Start recording on server and start clients
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– Launch attacks
– Test security controls against data
– Process, analyze and visualize results
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Fig. 1. Wind Tunnel System Overview

2.1 Normal Traffic Generation

Use cases in Wind Tunnel are Java code that use the Selenium library to drive
a Firefox web browser to perform actions on and submit to the chosen web
application that simulate a user completing some typical use of the website.
These can range from simply visiting the home page to performing a complex
series of actions such as logging in, page navigation, filling out and submitting
a form, and uploading a file. Similar to using such tools as a testing framework,
we want a variety of use cases that cover all the major functionality of the web
application, especially vulnerable ones. Anytime a choice has to be made in
the course of executing use cases, such as what content and how much or which
image to upload, a configurable parameter is provided to the security researcher.
Each use case has access to a set of usernames, image files, English text, etc.
The use case can be configured to use a particular distribution of content such
as using a Zipf distribution when choosing from available usernames or a normal
distribution with a specific mean for choosing the number of English sentences
to post in a form field. These types of distributions and their parameters can all
be reconfigured. For instance, it would be important to know during evaluation
if even minor changes in the average length of blog posts affects the false positive
rate of a content-based anomaly detector.
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We focus on modeling user submitted content as this is where web applications
are typically vulnerable. Content anomaly detectors in particular are sensitive
to normal data as that is what their models are built on and if that data is
unrealistically regular they can have unrealistically high performance. To bring
the messiness of real user data to Wind Tunnel, we reuse existing real user data
from public sources. To add realism, the data should be as closely related to
what the web application is expecting. For instance, any English text could also
be used for usernames and password fields, but gathering samples from real
world usernames and passwords and using those should add realism as character
distributions are likely drastically different from standard English text.

2.2 Launching Attacks

For attack data, we leverage the Metasploit Framework [4] to use existing at-
tacks, evasions, and payloads as well as the ability to add new attacks, evasions,
and payloads as needed without having to recreate each piece of an attack chain
from scratch. We take a set of attacks, evasions, and post compromise exfiltra-
tion actions and generate a Metasploit script for each permutation. Attacks can
vary from already known vulnerabilities, induced zero-days where we modify a
web application to be vulnerable, to actual zero-day attacks against the web
application. Attacks can be chosen from common web application attacks such
as SQL injection, file upload attacks, code inclusion, etc. Evasions can include
simple encoding schemes, advanced polymorphic code rewrites, padding attacks
and others. Post compromise data exfiltration actions can be modeled as well.

2.3 Labeling the Data

After sufficient normal data is sent to the web application server, attacks are
all launched in sequence while collecting their start and end times in order to
label the data. At the network layer simply launching attacks from distinct IP
addresses gives an easy labeling mechanism as in this attack vector we are not
modeling source IP address patterns. We take a sliding window approach and
treat the system call security controls as a warning system so any alert during
an attack time windows counts as a true positive while alerts during only normal
traffic count as false positives. File accesses are much rarer events, and since we
know what the attacks are scripted to do, compromises are much easier to label.
Malicious database queries launched as part of the attacks can be labeled based
on timing when launched.

3 Prototype Implementation

3.1 Dataset Generation

Web Applications. We generate data for three PHP based web applications:
Wordpress, Tikiwiki, and Testlink. All of the web applications run PHP 5.3.3,
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and both the web application version and PHP version were selected intentionally
since known vulnerabilities exist in these versions.Wordpress is a widely used plat-
form for running personal websites or blogs. We run Wordpress 3.3 with plugins
Buddypress 1.5.4 and Foxypress 0.4.2.1. Buddypress is a plugin for social network-
ing, and Foxypress is an ecommerce plugin. Tikiwiki is an open sourced ‘all in one’
content management system. We use Tikiwiki version 8.3 for these experiments.
Testlink version 1.9.3 is a management system for tracking software quality.

Data Sources. In general, there were five different types of data that the use
cases require: text, username, password, images, and files. We use three English
text corpora the nonredundant Usenet corpus [6], the Wikipedia corpus from
WetburyLab [7] and post data from Stackoverflow [8]. The text data is used to
fill in titles, descriptions, posts, among other text data that users send to servers.
The benefits of these publicly available data sets is that the text is actual data
generated by real users. This has the following implications: 1) Text that is close
by tends to be contextual and related 2) the text is representative of user text
in online contexts 3) data from a particular site could have different properties.

The usernames and passwords that we use during experiments are from a
Stack Exchange Data Explorer [9] query for 20 thousand usernames and the
Rockyou password leak file containing millions of unencrypted passwords [10].
These two data sets provided actual examples of usernames and passwords that
were used historically on public websites, and provide us with representative
data of both.

Images were used in file uploads and incorporated into the user generated data
for many applications. Images were taken from Wiki Commons public domain
images [11]. This image source provides us with a freely usable and distributable
repository of images.

Some applications expect to have text files uploaded as part of a description.
In general, we seed these text files with data from Stackoverflow [8]. Steps were
taken to ensure that the data used in the files did not overlap with the data
that was used in the user submitted text since that could result in duplication
of POST data to the server.

A variety of use cases composing typical normal user behavior are created.
Care is taken to ensure that any function of the application targeted by an
exploit in the attack dataset has a corresponding normal use case so that an
anomaly detector does not simply detect the attack because user behavior was
incorrectly modeled. In the configuration file, each use case had an associated
weight. When running a use case, Wind Tunnel chooses one at random with

probability
weight of use case

sum of all use case weights
.

Data Volume. For each dataset generated we capture enough HTTP requests
with user submitted parameters to be able to train the network content anomaly
detection sensors, which as described in Section 3.2, require 100,000 such re-
quests to build their models. In order to have sufficient variety of data for testing
false positives, we generate data until we have at least 25% more requests with
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arguments. Many more HTTP requests without user arguments are sent, of-
ten three to six times as many, in the synthetic datasets depending on the web
application. Each dataset generates full packet content on the order of tens of gi-
gabytes of uncompressed PCAP files, tens of gigabytes of compressed system call
logs, and gigabytes of uncompressed SQL query logs. Such data generation takes
between ten and twenty-four hours to complete in our laboratory environment.

Attack Data. For attack exploits, we use four known vulnerabilities and edit
the applications to add two additional vulnerabilities. We utilize a correspond-
ing Metasploit module for three of them and build new Metasploit modules for
the three that did not already have one. For TikiWiki, we use CVE-2012-0911
which is a vulnerable PHP unserialize() allowing arbitrary code execution. For
Testlink, we use OSVDB 85446 [12] an arbitrary file upload vulnerability which
is then called to execute arbitrary code. For Wordpress we use two vulnerabili-
ties in the add-ons FoxyPress and BuddyPress. For FoxyPress, we use OSVDB
82652 [13] that is another arbitrary file upload vulnerability leading to arbitrary
code execution. In BuddyPress we use CVE-2012-2109 a SQL injection vulner-
ability that we use to gain arbitrary code execution. For TikiWiki and Testlink,
we add an additional SQL injection vulnerability to the login page and exploit
it. We provide Metasploit modules for these last three SQL injection exploits.

We add two basic evasion techniques to these base exploits, PHP base64
encoding and normal data padding. PHP base64 encoding transform the bulk of
the payload code into alphanumeric text to obscure any alerts based on strange
characters or naive code patterns. Normal data padding is where we take a
sample of normal traffic to the website and extract typical user submitted data
to concatenate to the malicious HTTP POST data in order to fool content
anomaly detection models using a straightforward mimicry attack.

Once the attack establishes a shell connection to the server, we create two
scenarios of data exfiltration. Both read the web application database configu-
ration file to obtain the database login credentials. The first simply exfiltrates
the user tables with usernames and passwords while the second scenario queries
the entire database table by table to represent a more noisy attacker. Metasploit
establishes a reverse shell on a separate port for these later attack stages so not
all of the attack is exposed to the network security controls operating on HTTP
requests. Each attack script is run in its own time window.

Real Web Server Data. In order to compare the synthetic data to production
user data, under institutional review board approval, we acquire network traffic
to a department web server for just over six days time. In the period, we collected
156GB of HTTP traffic representing of over 1.5 million HTTP requests. A main
advantage of this data is that we can calculate realistic “in the wild” false positive
rates. Unfortunately this web server is not the best analogy to the individual web
applications as it runsmanywebapplications on the same server forcing the content
anomaly detectors tomodel themall at once.While significant attack traffic is seen,
most (hopefully all) of those attacks fail to compromise the server so only the initial
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attack request is seen whereas in the synthetic datasets all the attacks consist of
multiple requests lasting over the initial compromise and data exfiltration.

Labeling Ground Truth. For the production data server, which is exposed to
the internet, all manner of attack data can be mixed in so establishing ground
truth becomes a difficult task. We use the same method as used in prior work [14]
to label the attack data as best we can via clustering and manual inspection.
Some unknown number of false negatives may certainly be present. For the
synthetic data as we have control of the attacks, we are able to better label
ground truth. As discussed in Section 2, as different layers will see different
aspects of the attacks, we label attack data at the network layer by determining
whether it came from the attack machine IP address or not. For determining
whether a security control detects an attack we check for any alerts during the
attack time period. This is useful as no security control can see all the aspects of
the attack at different layers and even without detecting all parts of the attack
at a certain layer, by alerting, a security control brings attention to the attack.

3.2 Security Controls

We acquired and installed 19 sensors across the network, file access, system
call, and database layers to test against the datasets. All of the sensors in this
prototype are run in offline mode testing on the data after it has been collected;
however, the sensors are designed for and capable of running in real time.

Network Layer. We run six content anomaly detection (CAD) sensors operat-
ing on user submitted argument strings in HTTP GET and POST requests that
they extract from reassembled TCP streams from raw network traffic. For POST
requests this is all the content after the HTTP header and for GET requests this
is the string following the ? in the URI and is typically made up of attribute
value pairs. For instance, in a GET request like GET /index.php?username=alice
HTTP/1.1, username=alice is the content modeled by the CAD systems. The six
CADs used for network layer detection are Spectrogram [15], Anagram [16], and
four models previously developed by Kruegel and Vigna [17] attribute length,
attribute existence, attribute character distribution, and attribute tokens. All of
these are implemented on top of STAND [18] a data sanitization framework to
build sanitized AD models from a sliding windows of 25 submodels built on time
slices of content. STAND is configured to use the content normalization devel-
oped for Spectrogram [15]. For our synthetic data sets each detection model is
computed on 100,000 HTTP requests with user arguments before testing starts.
For the production web server data, we use the calibrator feature of STAND
described in [19] that is time aware and ended up building its models on about
3 days worth of data.

Database Layer. We run six sensors on MySQL queries captured during the
data generation process. We implement five content anomaly detection sensors
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operating on user specified inputs in those queries using a similar approach dis-
cussed in related work [20]. For each MySQL query, we extract all user specified
inputs and insert them into a list in the order they appeared in the query. Then
we replace each occurrence of user input in the original query with an empty
placeholder token to generate a query skeleton. Similar to the web layer detec-
tion, we use five CADs including Spectrogram, Anagram, and three models from
related work [20] attribute length, attribute character distribution, and attribute
tokens. For all the attribute-based sensors, models are built separately for each
type of query skeleton. Attribute existence sensor is ineffective for MySQL in-
puts because any given query skeleton pre-defines a list of user specified inputs
as well as the relative order of them.

Besides the five CAD security controls, we also implement an offline sensor on
top of an open source version of GreenSQL [21], a well-known unified solution for
detecting database layer intrusions. We use the source code from an open source
version (1.3.0) for these experiments. While the methodology to use greensql is
to integrate it along with the running database, we have extracted the part that
does the rule based pattern matching on the sql commands issued in order to
generate alerts. This provides us with a mechanism to compare the efficiency of
an open source sensor using the same datasets, on an offline basis. We use the
default rule set and compute the anomaly scores based on the number of rules
being fired for each MySQL query.

File Accesses Layer. We implement a anomaly detector that monitors file
system calls to detect anomalous accesses based on prior work [22]. We use
Auditd [23], the default Linux auditing system, to audit file system accesses,
and an unsupervised machine learning system to compute normal models for
those accesses. The anomaly detection engine utilizes the Probability Anomaly
Detection (PAD) algorithm [24] and trains the normal models on a selected set
of features associated with each file access, namely, UID, WD (current working
directory), CMD (command being executed), Syscall Number, File Name, and
Frequency. PAD calculates first order and second order probability for each of
the 6 features giving a total of 36 probability values for each file access entry.
An alert score is then computed using a multinomial model with a hierarchical
prior based on dirichlet distribution, and log probabilities are used at each step
to avoid underflows [22].

System Calls Layer. We run six sensors on system calls collected during the
data generation process. Due to the negative impact on system performance
when training an extreme large volume of system calls, we carefully select a
subset of system calls that are audited by Snare’s audit facility [25,26] to train
the CAD sensors. Those system calls cover the most suspicious activities at
the system call level when a large set of intrusions are observed. We therefore
implement five content anomaly detectors operating on system call parameter
and value pairs, including Spectrogram, Anagram, attribute length, attribute
character distribution, and attribute token. Similarly, the attribute existence
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sensor is omitted as the presence of system call arguments are predefined. For
those attribute-based sensors, normal models are built separately for each unique
system call.

We also experiment with an anomaly detector called Stide on system call
sequences that studies the short-range correlations in system calls for each pro-
cess [27,28]. The algorithm builds the normal model using short sequences of
system calls of length N for each process, and store the model information in
a tree structure for efficient access. Thus an intrusion is detected when unseen
sequences are observed for that process within certain locality window. In these
experiments, we run the detector against the entire set of collected system calls
with system call length of 6 and locality window of length 20 [27,28].

4 Experiments and Results

The goals of our experiments are fourfold. We want to determine the sensitivity of
each security control to various dataset changes, compare security control stand
alone performance across layers, determine whether performance on synthetic
datasets predicts performance on a production dataset, and analyze how total
performance of security controls scales when combined together. To this end, we
useWind Tunnel to generate nine synthetic datasets with normal and attack data
using various parameters described below in addition to the real user production
web server dataset described in Section 3.1.

4.1 Datasets

We experiment with four changes that security controls could be sensitive to in
the underlying data. First, we test the natural variance between data generation
with the same configuration both on the same server and then when changing to
another host machine. Second, we look at the effect of content source by running
the same configuration but changing from the USENET corpus [6] to aWikipedia
corpus [7] of English text or forum post data from Stackoverflow [8]. Third, we
vary the length of user content inputs by changing the distribution of the length

Table 1. Comparison of the nine generated datasets

Dataset Name Application Content Length Run

wp usenet base Wordpress USENET Normal host machine A

wp usenet base2 Wordpress USENET Normal repeated on host A

wp usenet base3 Wordpress USENET Normal repeated on host B

wp wiki Wordpress Wikipedia Normal host machine A

wp stack Wordpress Stackoverflow Normal host machine A

wp usenet short Wordpress USENET Halved host machine A

wp usenet long Wordpress USENET Doubled host machine A

tiki usenet TikiWiki USENET Normal host machine A

tk usenet Testlink USENET Normal host machine A
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of English text submitted by doubling it for one dataset and halving it for another
dataset. Fourth, we generate datasets with three different web applications thus
changing all the use cases as well. See Table 1 for a summarized comparison of the
datasets. To compare these changes in datasets, we start with a baseline dataset
using the Wordpress web application with the USENET corpus of English text.
Data sources and use case distribution parameters are described in Section 3.1.

In addition to the datasets generated with this prototype, we add two addi-
tional web layer only datasets in order to compare results, a private dataset from
the Columbia University Computer Science (CUCS) department web server and
the publicly available ISCX 2012 Intrusion Detection Dataset [5]. The CUCS
web server dataset consists of over 1.5 million HTTP requests, 60 thousand of
which contain user argument strings which are processed by the web layer sen-
sors. In manually labeling the resulting alerts, 1257 attack requests are seen.
From the ISCX 2012 dataset, we use only the HTTP traffic destined to the web
server that is attacked with web application attacks. This leaves us with over 3
million HTTP requests, 18 thousand of which contain user argument strings pro-
cessed by the web layer sensors. Of these 18 thousand, 77 are labeled malicious
constituting various web application attacks.

4.2 Comparison Experiments

With 19 sensors being tested across eleven different datasets, concise summation
of data is key. In Table 2, we present the area under the curve (AUC) of each re-
ceiver operating characteristic (ROC) curve for each sensor and dataset pair. Note
that for the department web server dataset CUCS and the ISCX dataset that only
network traffic is available so file access, host, and database sensors are not tested.
Note that the low scores for database sensors are in large part due to the fact that
for the Wordpress and TikiWiki attacks only one of the two exploits leaves traces
in the database layer after the preprocessing normalization. This makes the max-
imum AUC that a database sensor can achieve for a Wordpress dataset 0.5 and
0.33 for TikiWiki. The TikiWiki SQL exploit does not function without the PHP
base64 encoding leaving twice as many instances of the other exploit.

The metric AUC gives a good general first impression of the performance of
a sensor in terms of its detection rate and false positive rate trade off; however,
deeper analysis is often needed to fully understand a sensor’s performance. At
first glance, many of the host sensors appear to dramatically outperform ev-
erything else. While this is the case in terms of false positive rate, one must
remember that the raw count of system calls is high compared to the number of
web requests with user parameters or database queries. In practice, this means
that even for a false positive rate that rounds off to zero when computing the
AUC, the host sensors can still have tens of thousands of individual alerts per
dataset. This turns out to be the case here for all host sensors. These high raw
counts of alerts may or may not translate to high costs for running the sensors
depending on what sort of alert triage approaches are deployed. See Section 4.5
for further discussion of approaches for reducing the costs of false positives.
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Table 2. Area under the curve (AUC) of the receiver operating characteristic (ROC)
curve for each security control and dataset pair
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webAnagram 1.00 0.84 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00

webSpectrogram 0.96 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00

webAttCharDist 1.00 0.76 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.96 0.96 0.97 0.98 1.00

webAttExistence 1.00 0.76 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.00 0.60

webAttLength 0.98 0.81 0.32 0.51 0.39 0.32 0.40 0.45 0.32 0.38 0.41 0.32 0.99 0.97

webAttToken 1.00 0.77 0.30 0.39 0.34 0.30 0.53 0.51 0.30 0.50 0.49 0.30 0.82 0.99

mysqlAnagram 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.33 1.00

mysqlSpectrogram 0.49 0.49 0.50 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.33 1.00

mysqlAttCharDist 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.33 1.00

mysqlAttLength 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.33 0.99

mysqlAttToken 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.31 0.97

mysqlGreensql 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.33 0.70

hostAnagram 0.95 0.96 0.94 0.95 0.97 0.96 0.95 0.95 0.97 0.95 0.99 0.97

hostSpectrogram 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

hostAttCharDist 0.99 0.91 1.00 0.99 0.97 1.00 0.99 0.95 0.91 0.99 1.00 1.00

hostAttLength 0.97 1.00 1.00 0.97 0.96 1.00 0.97 1.00 1.00 0.97 1.00 1.00

hostAttToken 0.84 0.83 0.77 0.84 0.82 0.79 0.84 0.84 0.83 0.84 0.93 0.89

hostFileAccess 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98

hostSyscallSeq 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sensor performance on the real world production dataset differs substantially
from the synthetic datasets. Some significant portion of this difference could be
due to the nature of the CUCS dataset. The CUCS server hosts many different
web applications at once, whereas the synthetic datasets all model one web
application. The CUCS dataset has requests for many more different individual
pages instead of the handful of specific use cases we see in the synthetic datasets.
Further research into different categories of real world web application servers
is needed. If this noise turns out to typical, the use cases should be adapted to
produce such additional variance. With Wind Tunnel, such modifications can
be integrated seamlessly into the data generation process as more data becomes
available describing typical usage of web applications.

Experiment with Natural Variation. For the first experiment, we generate
two separate datasets against the same server with the same configuration. For
these baselines we use the USENET corpus as the source of English text and gen-
erate traffic against theWordpress web application. Additionally, we run the same
configuration against a separate server running the same Wordpress application.
For the most part, AUC scores of the sensors stay fairly stable across these three
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datasets. The host layer character distribution sensor does fluctuate due to a large
amount of normal data scoring just below the scores the sensor gives to the SQL
exploit attack variations. For this reason a slight change in attack scores signifi-
cantly affects the number of false positives thus changing the AUC.

Experiment with Varying Content Source. To test the sensitivity of sen-
sors to changes in the distribution of English text, we conduct a second experi-
ment reusing the same baseline of the Wordpress application with USENET data
compared to the same configuration but with Wikipedia text and StackOverflow
text respectively. This change in data source seems to have little overall impact
on the sensors. The most apparent effect comes in the web layer character distri-
bution sensor which has a reduction in its AUC for the StackOverflow dataset.
Rather than just a small change in attack scores raising false positives, Figure 2
suggests that the general distribution of normal data score differs for the Stack-
Overflow dataset for this sensor. As the sensor models the portion of characters
often used and rarely used perhaps the StackOverflow text has higher variance
in such text patterns with its often technical forum posts referencing code.
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Fig. 2. CDF for the scores of normal data
for web layer attribute character distribu-
tion sensor for three web applications

Experiment with Varying Con-
tent Length. In the third exper-
iment, we vary the content length
when sending English text data as ti-
tles, paragraphs, posts, etc.. We halve
the mean of the length distribution for
short texts and double it to make the
long text configuration. Any impact
this change had if any is within the
natural variance between data gener-
ation. Only the host layer Anagram
sensor increases its AUC from short
to normal to long lengths. It is corre-
lated only to one other sensor and the
only negative correlation increasing AUC from long to short is the host layer
attribute token sensor, which only shows change between long and normal.

Experiment with Varying Applications. Next we generate data against
different web applications. We generate datasets for TikiWiki and Testlink in
addition to the Wordpress baseline. As one might expect, changing the web
application makes the largest impact on sensor performance out of the variations
we show. As noted above, the Testlink attacks all have database level components
so the database layer sensors are able to detect all attacks. The largest outlier
we see occurs in this experiment in the web layer where the attribute existence
sensor scores all the TikiWiki attacks as perfectly normal achieving 0 AUC. This
is due to the simplistic nature of the sensor which checks whether it has seen
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dataset

all the variable name attributes in a request before. The TikiWiki exploits both
only use attributes that are also used in normal operation so the sensor correctly
performs just with a flawed detection mechanism. We also see a large increase in
the performance of the web layer length and token sensors compared with their
Wordpress performance.

Synthetic and Production Dataset Comparison. In order to visualize the
differences in datasets, we graph the performance in detail of the web layer Ana-
gram sensor for each separate web application that is the Wordpress, TikiWiki
and Testlink datasets, the ISCX 2012 dataset, and the CUCS department web
server dataset. In Figure 3, we plot the cumulative distribution of the Anagram
anomaly scores for the legitimate data. For any given score (x-axis), the percent-
age of the normal data that scores at or below that score is given (y-axis). Note
that a higher score means that Anagram describes that data as more abnormal
with 100 meaning that no ngrams from the data are present in the Anagram
model. This graph gives a visual representation of the distribution of the scores
of the nonattack data. The CUCS department web server dataset, while sharing
the pattern of a large portion of data being completely normal at score zero,
has a large spike at score 100 meaning that many legitimate requests are never
before seen by the Anagram model. Many of these are short searches with unique
enough terms that they score high. Another large component of these score 100
legitimate requests are rarely used application features. With the model sanitiza-
tion phase of STAND, requests seen only rarely in the training set are discarded
to reduce model poisoning from widespread but low volume attacks.

We also plot the receiver operator characteristic (ROC) curve for Anagram
across these five datasets in Figure 4. This plots the detection rate against the
false positive rate for Anagram run on each dataset. Again the CUCS web server
dataset is distinct as with so many legitimate requests receiving a score of 100
the false positive rate is correspondingly high. Additional use cases could be
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created from this insight to model a server where some features are rarely ac-
cessed to the point where sensors have trouble modeling them. More high scor-
ing use cases such as image uploads or short random searches could also be
added. Further research into the typical use cases in production datasets from
web servers with only a single web application server is needed to determine
whether these patterns of high scoring alerts are typical or an artifact of the one
production dataset we have.

4.3 Sensor Performance

In addition to Table 2, we present a brief sample of the results visually as ROC
curves for the wp usenet base dataset with all 19 sensors tested as well as the
web layer sensors for the CUCS web server in Figures 5, 6, 7, and 8. Note that
each graph has different x-axis scales. In Figure 5, the web layer attribute length
and attribute token sensors experience a large false positive rate. In Figure 6,
we see plainly the effect of one of the Wordpress exploits leaving no trace in the



Synthetic Data Generation and Defense in Depth Measurement 249

database layer bounding all the sensors at 50% detection rate. The CUCS web
server data shown in Figure 8 shows a clear winner in the Spectrogram sensor,
which achieves the same detection rate at less than half of the false positive rates
of the closest contender.

4.4 Correlation and Overlap between Sensors

The main advantage of Wind Tunnel is to generate, link, and test data across
different layers. Rather than independent evaluation and detection rates, we can
identify which sensors detect the same or different attacks regardless of layer.

Fig. 9. Concentric circles represent each of
the 19 sensors in the same order as Table 2.
Each arc represents one attack permutation
for the Wordpress synthetic data set. Green
indicates that the attack is detected by the
sensor at a false positive rate of at most 1%
on the wp usenet base dataset.

We can also compute a total detection
rate for any set of sensors, overlapping
detections, and find sensors that add
the largest marginal increase in total
detection rate to a set of existing sen-
sors. Figure 9 visually illustrates this
ability. Each ring or concentric cir-
cle presents a particular sensor. Each
arc represents an attack, which in this
case is a particular exploit possibly
permuted with various evasion tech-
niques. Think of the circles as many
walls surrounding a castle. Each at-
tack then starts outside the walls and
attacks each wall in turn proceeding
directly to the center of the castle.
All walls ‘destroyed’ are in red. Those
walls that still stand (detecting the
attack) are in green. The goal of the
defender would be to have walls (sen-
sors) such that no single attack knocks
them all down (all red along a single
arc), which would mean that each at-
tack is detected by at least one sensor.
In this figure, the bottom half shows
attacks using the SQL injection ex-
ploit with the top half showing attacks
using the file upload exploit. At this false positive rate some sensors detect all
of the attacks. Also observe how certain sensors detect half and especially that
some of those detect a different half than others such that those two sensors each
with a 50% detection rate together would detect all the attacks. Access to this
type of data instead of only a raw detection rate with little insight into how a
set of sensors overlap is important for architecting defense in depth.
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4.5 False Positive Analysis

In the experiments, content anomaly detectors perform quite well on user posts
containing large amounts of previously unseen English text implying that these
anomaly detectors are able to learn English well enough to label new English
text as fairly normal. To verify that this is indeed the case, we run a stand alone
version of Anagram on the raw English text sources used. The anomaly detector
builds a Bloom Filter from a training set using sliding n-grams of the HTTP
request (ie, if n = 5, then the first two sliding 5-grams of “abcdef” are “abcde”
and “bcdef”). In Wind Tunnel, Anagram running on STAND uses n = 5. We
then built a training set of posts to train the anomaly detector, and then tested
it on a set of 10000 posts to see how it performed. The results are shown in
Figure 10.

Fig. 10. Anagram training on usenet
raw text data directly to test learning
of English with a small sample of text

The graph has the number of posts that
the anomaly detector is trained on for the
x-axis and the average percentage of new
n-grams seen in the test set on the y-axis.
Since the anomaly detectors use a thresh-
old on the percentage of new n-grams as
its measure of whether or not the request
is an anomaly, this tests should accurately
predict how the anomaly detector will re-
act to each data set. The graph has expo-
nentially decaying curves with respect to
the training size and more new n-grams as
the number n increases as expected. After
a short amount of training, the dataset
shows relatively low anomaly scores dur-
ing the testing phase showing that content
anomaly detectors are flexible enough es-
pecially at small sliding window sizes to roughly learn English.

To make sure we model data that is content anomaly detectors have trouble
with, we add image upload use cases. Any compressed, random, or encrypted
data is difficult for these sensors to model unlike English text. A large portion
of the false positives from Anagram and Spectrogram come from such image
uploads. Other common false positives we see include short high entropy strings
such as session identifiers and to a lesser amount usernames and passwords.

False positive rates and counts in general best serve as a relative metric be-
tween sensors on the same dataset. Much more external data is needed in order
to evaluate whether a sensor is useable at a certain false positive rate or raw
false positive count. The strategy of managing false positives has a large impact
on the actual cost incurred. For instance, automated methods of filtering false
positives such as a shadow server [16] will have drastically lower costs than re-
lying on a human analyst. Correlation between cooperating organizations can
further filter out alerts to only require a human analyst for a small portion as
previously demonstrated [14]. Even if a human analyst is required, many false
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positives or at least types of false positives repeat over time so an initial effort
of labeling and creating filtering rules could drastically change the consequential
costs. The data generated by Wind Tunnel and tested by sensors can be further
filtered by any of these methods in order to provide organizations with a better
idea of what costs would be incurred by any set of security controls tested.

4.6 Attack Evasion

In addition to testing the effect of variations in normal data generation, we have
evasion mechanisms applied to attack data. The most targeted of these is the
padding attack, which aims to bypass content anomaly detectors by appending
normal data to attack content in order to reduce the score of the overall re-
quest. All the Wordpress datasets had padding attacks launched as one of their
attack permutations. The effect is most seen in the two sensors Anagram and
Spectrogram, which look at the full stream of user submitted data for each re-
quest without breaking it down into attribute value pairs as the other web layer
sensors do. The score given to attacks with padding is significantly lower. For
example Anagram goes from scoring the attacks at over 90 to scoring them in
the mid 40s. Despite this, the AUC of each of these sensors suffers only by a few
hundredths at most when looking at only padding attacks compared to attacks
without padding. This is due to the large majority of the normal data being
scored by both sensors at such low scores that lowering the threshold to still
detect padding attacks does not induce too many more false positives.

5 Related Work

There have been a number of efforts to generate quality synthetic data in the
past. Arguably the most famous, the 1999 DARPA dataset contained serious
flaws [29]. A more recent data set from ISCX [5] attempts to address those flaws
by collecting all traffic including attack traffic at once and using more recent
multistage application level attacks in addition brute force and denial of service.
Our focus differs in that we focus on one attack vector, web application attacks,
and try to model user content whereas the ISCX data represents a broad array
of attack data at only the network level and focuses on modeling volumetrics and
other connection level details. The DETER testbed [30] [31] provides a secure
and scalable remote test environment. The goals of the DETER project to push
the state of the art of experiments in computer security are similar to ours.
DETER focuses on network scaling and containment of dangerous experiments
in a remotely accessible testbed. Wind Tunnel is complementary to DETER
as we focus on modeling content with multilayer data collection. Wind Tunnel
could be deployed in a large scale network environment such as DETER to model
larger scale systems such as large cloud environments with realistic content.

Others have addressed aspects of comparing sensors and measuring defense in
depth. In related work [32], the authors compare a variety of anomaly detectors
against a set of real user data while injecting synthetic attack data. Such effort
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illustrated the need for better comparison and tests against baseline datasets.
We use similar sensors in Wind Tunnel, but expand to additional layers and
focus on creating shareable datasets. Others [33] suggest an empirical approach
to measuring defense in depth assuming each layer is independent and combining
detection rates to infer total security. A more direct measurement approach is
suggested for defense in depth in prior work [34] without assuming independence
between layers by linking attack data directly. This is the type of approach we
utilize here, by linking attack data across layers since we have the ground truth
of when attacks begin and end.

6 Future Work

The modularity of Wind Tunnel lends itself to many useful future endeavors. We
hope to add more Selenium use cases, attacks, and security controls to grow the
usefulness of Wind Tunnel. We plan to leverage this modularity to generate new
datasets to model different usage scenarios and test various hypothesis without
having to construct such experiments from scratch. In particular we wish to test
inline security controls such as various server side taint tracking techniques. To
support inline sensors, which will require the same dataset to be generated once
for each inline security control as well as once for all the out of band security
controls, we plan to add significant determinism to regenerating data sets. In
order to make Wind Tunnel more usable, we plan to create a web front-end
with a fully automated dataset generation process for any new use cases, web
application servers, and attacks are created. The goal would be for anyone with
an experiment idea to be able to add any components not currently included and
then generate a dataset from that configuration. Over time this could evolve into
a repository of interchangeable experiment components saving significant time
and opening up more rigorous evaluation of new security controls.

7 Conclusion

We present Wind Tunnel, a framework and working prototype for generating
synthetic datasets across multiple layers suitable for testing security controls
defending against web application attacks regardless of the layer of data they
operate on. We provide the ability to evaluate security controls not against ones
of the same type, but also against security controls operating at entirely different
layers. In addition, by tracking which individual attacks or attack permutations
each security control detects at a certain false positive rate, we are able to
compute a total detection rate for any arbitrary set of security controls. Instead of
making assumptions of independence about how security control overlap, we can
directly measure the overlap. The modularity of Wind Tunnel will allow future
research to perform performance evaluation and comparison of new security
controls against a wide array of previous research and either generate or reuse
synthetic datasets, which can be widely shared. This reduces the effort required
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to independently setup each security control or undertake the task of generating
or acquiring datasets. Our synthetic datasets, source code, and instructions for
others to be able to use and expand this syetem are available for all researchers
(http://ids.cs.columbia.edu/content/windtunnel).
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Abstract. Implicit authentication (IA) schemes use behavioural bio-
metrics to continuously and transparently authenticate mobile device
users. Several IA schemes have been proposed by researchers which em-
ploy different behavioural features and provide reasonable detection
accuracy. While these schemes work in principle, it is difficult to com-
prehend from these individual efforts which schemes work best (in terms
of detection accuracy, detection delay and processing complexity) under
different operating conditions (in terms of attack scenarios and avail-
ability of training and classification data). Furthermore, it is critical to
evaluate these schemes on unbiased, real-world datasets to determine
their efficacy in realistic operating conditions. In this paper, we evalu-
ate six diverse IA schemes on four independently collected datasets from
over 300 participants. We first evaluate these schemes in terms of: ac-
curacy; training time and delay on real-world datasets; detection delay;
processing and memory complexity for feature extraction, training and
classification operations; vulnerability to mimicry attacks; and deploy-
ment issues on mobile platforms. We also leverage our real-world device
usage traces to determine the proportion of time these schemes are able
to afford protection to device owners. Based on our evaluations, we iden-
tify: 1) promising IA schemes with high detection accuracy, low perfor-
mance overhead, and near real-time detection delays, 2) common pitfalls
in contemporary IA evaluation methodology, and 3) open challenges for
IA research. Finally, we provide an open source implementation of the
IA schemes evaluated in this work that can be used for performance
benchmarking by future IA research.

1 Introduction

Smartphones are strongly tied to their owners’ identity and contain personal
data. In order to protect this data from unauthorized access, smartphones are
equipped with authentication mechanisms including PINs, pass-locks, and facial
and fingerprint recognition systems. These authentication mechanisms provide
traditional all-or-nothing access control. However, smartphone use is character-
ized by short and frequent sessions, and PIN entry for every short session is
inconvenient for users [18]. Furthermore, the all-or-nothing access approach is
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unsuitable for smartphones where 40% of frequently accessed apps do not con-
tain personal data [18]. Due to these usability issues, 50% of smartphone owners
do not configure a pass-lock on their devices [29]. In addition to usability issues,
pass-locks have been subject to shoulder surfing attacks and operating system
flaws [40]. The facial and fingerprint recognition systems on modern high-end
devices have also been shown to be vulnerable [1,30]. These security and usabil-
ity limitations of primary authentication mechanisms have prompted researchers
to develop behaviour-based methods of recognizing and validating the identity
of smartphone users. These behaviour-based authentication methods are known
as implicit authentication (IA) schemes, which authenticate a user by using dis-
tinctive, measurable patterns of device use that are gathered from the device
user without requiring deliberate actions [9]. IA schemes can be used as a sec-
ondary line of defense in multiple scenarios. For example, they might be used
by enterprise or banking apps to ensure that a user’s password has not been
compromised. Alternatively, they provide a middle ground for the smartphone
owners who do not employ pass-locks on their devices due to usability issues.

To provide IA support on smartphones, a variety of behaviour-based classifiers
have been proposed [8,10,11,12,13,15,24,26,34,35,42]. Many of these behavioural
classifiers have reasonably high accuracy rates, low performance overhead and rea-
sonable detection delay. While these results appear to stand on their own, it is of-
ten difficult to compare different proposals. For example, some IA schemes based
on touchscreen input behaviour [11,42] provide exceptional accuracies when they
are evaluated on datasets collected by those individual efforts. However, Feng et
al. [12] showed that on data collected in an uncontrolled environment, the accu-
racy of these approaches reduces significantly. Similarly, due to the unavailability
of real-world datasets, it is not possible for these individual research efforts to ac-
curately report the training and detection delay in an uncontrolled environment.
Finally, a majority of existing IA proposals fall short of providing performance
benchmarks (in terms of CPU and memory overhead) on smartphones. Conse-
quently, it is difficult to understand the impact on user experience due to overhead
on power-constrained smartphones by these schemes.

In addition to unreported performance numbers (in terms of detection delay
and computational cost), many IA schemes use behavioural features, for which
it is non-trivial to estimate the frequency or availability of such data. For exam-
ple, characterizing a device owner’s gait may be a useful discriminative tool for
authentication, but is not useful if the device owner is stationary most of the
time. Therefore, there is a need not only for datasets that allow IA schemes’ eval-
uation in realistic scenarios, but an analysis of real-world behavioural patterns
that may influence the appropriateness of deploying one scheme over another.

In this paper, we evaluate and compare six IA schemes using four indepen-
dently collected datasets from multiple geographic locations, comprising over
300 participants. The objectives of this study are: 1) to quantify and compare
the accuracies of these IA schemes on independently collected datasets from
uncontrolled environments, 2) to use real-world traces to measure training and
detection delays for these IA schemes, 3) to determine the performance overhead
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of these IA schemes on mobile devices, 4) to determine the frequency of data
availability for different behavioural features employed by these IA schemes, 5)
to identify key research challenges in IA research, and 6) to release open source
implementations of these IA schemes for performance benchmarking.

The IA schemes evaluated in this work use diverse behavioural biometrics
including touchscreen input behaviour, keystroke patterns, gait patterns, call
and text patterns, browser history, and location patterns. Some also combine
touchscreen input behaviour with a device’s micro-movements as a reaction to
touch input and context information, respectively. Some of these IA schemes em-
ploy machine learning while others employ statistical measures for classification
purposes. This diversity allows us to better scrutinize different aspects of these
individual IA schemes and determine research challenges and best practices.

We evaluate these IA schemes on eight criteria: 1) accuracy, 2) data avail-
ability, 3) training delay, 4) detection delay, 5) CPU and memory overhead, 6)
uniqueness of behavioural features, 7) vulnerability to mimicry attacks, and 8)
deployment issues on mobile platforms. Our results show that while the ma-
jority of IA schemes provide reasonable accuracy with low detection delay, IA
schemes based on touchscreen input behaviour outperform others by provid-
ing near real-time misuse detection with high accuracy. We find that some IA
schemes perform well in terms of detection accuracy but frequently do not have
enough data available for classification. We recommend choosing complemen-
tary sources of features to mitigate this problem and also to aid in preventing
mimicry attacks. Finally, we release1 our open source implementations of the six
IA schemes evaluated in this paper.

2 Related Work and Background

In this section, we discuss related work and provide a brief description of the six
IA schemes evaluated in this paper.

2.1 Related Work

Various IA schemes have been proposed as secondary authentication mecha-
nisms to complement primary authentication mechanisms (such as PINs and
passlocks). These schemes employ a variety of behavioural features including a
user’s location patterns [38], call/text patterns [35], keystroke patterns [8,13,26],
proximity to known devices [21], gait patterns [14,17,27,28], and touchscreen
input behaviour [10,11,12,15,24,34,42]. Furthermore, some authors have pro-
posed combining behavioural features and contextual information from multiple
sources [4,29,35]. While these research efforts demonstrate that these IA schemes
and behavioural features work in principle, we provide a comparative evaluation
of these schemes on independently collected datasets across a more comprehen-
sive evaluation criteria than the original papers.

1 https://crysp.uwaterloo.ca/software/ia/

https://crysp.uwaterloo.ca/software/ia/
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To the best of our knowledge, a comparative evaluation of different IA schemes
has not been performed yet. Serwadda et al. [33] perform a benchmark evaluation
of three touch-based IA schemes using ten classification algorithms to evaluate
which classifiers work best. While their analysis provides interesting insights, we
aim to provide a comparative evaluation of IA schemes that employ different be-
havioural features. Furthermore, except [12] and [34], none of the other authors
have provided a comparison with other schemes. We believe this is due to the
effort required to implement another scheme and to collect data to perform em-
pirical evaluations. Therefore, in addition to providing a comparative evaluation
of IA schemes, by making the implementation and datasets publicly available,
we will enable future researchers to quantify the efficacy of their approach with
other related schemes. Finally, our findings will also provide better insights to
researchers who are designing generic IA frameworks [7,9].

2.2 Implicit Authentication Schemes

For comparative evaluation, our goal is to compare IA schemes that rely on
different behavioural features. To this end, we chose an IA scheme based on
call/text/URL history and location [35], an IA scheme based on gait patterns [14],
an IA scheme based on touch input behaviour [15], an IA scheme based on
keystroke behaviour [13], an IA scheme based on touch and micro-movement be-
haviour [4], and an IA scheme based on touch behaviour and user context [12].

Before describing these IA schemes, we define some terms that are used
throughout this paper. A true accept (TA) is when an access attempt by a
legitimate user is granted; a false reject (FR) is when an access attempt by a
legitimate user is rejected by the IA scheme. A true reject (TR) is when an ac-
cess attempt by an adversary is rejected; a false accept (FA) is when an access
attempt by an adversary is granted by the IA scheme. Equal Error Rate (EER)
is the operating point where the rate of true accepts is equal to the rate of true
rejects. In this work, accuracy is defined as TA+TR

TA+FA+TR+FR . We now provide a
brief description of the IA schemes evaluated in this paper; interested readers
are referred to the original papers for full descriptions of the respective methods.

Shi et al. IA Scheme (Shi-IA) [35]. Shi et al. [35] propose an IA scheme
that uses good and bad events to determine an authentication score for a user.
Good/habitual behaviour is determined by a phone call/text to a known number,
a visit to a familiar website, and presence at habitual locations around a certain
time-of-day. Similarly, bad behaviour is a phone call/text to an unknown number,
a visit to an unfamiliar website, and presence at previously unseen locations.
Passage of time since the last good event is also treated as a negative event and
results in gradual decay of the authentication score. For empirical evaluations,
the authors used data gathered from 50 participants, trained on 2 weeks of their
usage data and evaluated on the remaining data. Their results indicate that
95% of the time an adversary can be detected using 16 or fewer usages of the
devices with negligible false rejects (1 in 165). We choose Shi-IA for empirical
evaluations because of the unique feature set it employs for IA.
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Gait Pattern for User Identification (Gait-IA) [14]. Various authors have
proposed using gait patterns for user identification on smartphones [14,17,27,28].
We chose Frank et al. [14] for empirical evaluations as the authors have made
their implementation and dataset publicly available, making it easier to repro-
duce their results for verification purposes. Furthermore, they report significantly
higher accuracy than other gait pattern based schemes. We also note that Frank
et al. only propose employing gait patterns for user identification and not for
IA; nevertheless, we evaluate whether gait behaviour can be used to effectively
implicitly authenticate a user.

Frank et al. propose a time-delay embedding approach to gait recognition.
Time-delay embedding is employed to reconstruct the state of an unknown
dynamical system from observations of that system taken over time. The au-
thors first extract features using time-delay embeddings and then perform noise-
reduction over those features using principal component analysis (PCA) [20]
on a short embedding of training data. PCA produces a projection from the
time-delay embedding space to a lower dimension model space. These resulting
features are then employed in an ANN classifier [2]. Empirical evaluation on
walking data from 25 individuals (with the device in the front trouser pocket)
resulted in 100% detection accuracy.

Touchalytics [15]. Touchscreen input behaviour has been widely investigated
for IA [10,11,15,24,34,42]. For our empirical evaluations, we choose Touchalytics
as the authors have made their implementation and dataset publicly available.
Touchalytics, is an IA scheme that relies on the finger movement patterns of users
on the touchscreen of their smartphone. Touchalytics uses data generated as a
result of a user’s normal interaction with the touchscreen and does not require
him to perform special gestures. It operates by first recording the raw touch data
and then extracting 31 features from the raw data. These features capture the
user behaviour in terms of the touch location on the screen, the length, direction
and duration of a swipe, the velocity and acceleration of a swipe, and the finger
pressure and the area covered by a swipe. The extracted features are then used
to classify a user using an SVM or kNN classifier. The authors evaluate their
approach on a dataset of 41 participants and show that their approach is able
to provide an EER of ≤ 3% by using a window size of 13 swipes.

Keystroke Behaviour-Based IA Scheme (Keystroke-IA) [13]. Various
classifiers have been proposed that use keystroke behaviour to implicitly au-
thenticate the device owners [8,13,26]. Some keystroke classifiers [8,26] use two
features — inter-stroke delay and key holding time (time elapsed between a key
press and the corresponding key release event). Furthermore, these classifiers
have been tested on multiplexed numeric keypads. In a recent paper [13], the
authors employ an additional feature – touch pressure – to provide IA for virtual
keypads on modern smartphones. Empirical evaluations on data collected from
40 users and a window size of 15 keystrokes provide an EER of ≤ 10%, ≤ 20%
and ≤ 5% for J48, Random Forrest and Bayesian classifiers, respectively.
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SilentSense [4]. We choose SilentSense as a candidate IA scheme for our eval-
uations because of the unique feature set that it uses and because of its high
detection accuracy (∼ 100%). The authors of SilentSense [4] observe that a
combination of the touch input behaviour and the corresponding reaction of a
smartphone (micro-movement) can be used to create a more robust model of
a user’s behaviour. SilentSense operates by combining interacting features from
touch behaviour (such as pressure, area, duration, and position) for different
touch actions (including fling, scroll, and tap) with the reaction of device fea-
tures (like acceleration and rotation) to model user behaviour. For the scenarios
where the user is walking, the micro-movement patterns are perturbed, since the
sensory data generated during walking will skew the sensory data generated due
to the reaction of the device to touchscreen interactions. To deal with the walking
scenario, the authors extract four features including: (1) vertical displacement of
each step; (2) current step frequency; (3) mean horizontal acceleration for each
step; and (4) standard deviation of vertical acceleration for each step. They eval-
uate their approach on a dataset containing data from 10 users and 90 guests.
Their evaluations show that by using an SVM classifier, they are able to achieve
an EER of ≤ 1% by using a window of three touch strokes.

Context-Aware Touch Behaviour-Based IA Scheme (TIPS) [12]. Feng
et al. [12] demonstrate that the EER of a classifier based on touch screen input
behaviour reaches up to 40% when it is evaluated on data from multiple appli-
cations in an uncontrolled environment. The authors argue that this accuracy
degradation is due to variations in usage behaviour. For example, data generated
for the same user for different device holding patterns (left hand vs. right hand);
for different mobility patterns (stationary vs. walking); and for different applica-
tions (maps vs. browser) is different enough to cause accuracy degradation. To
mitigate this degradation, the authors propose a multi-stage filtering hierarchy
consisting of four levels: (1) foreground application; (2) direction of swipe; (3)
swipe length; and (4) swipe curvature. During the one week training period,
the prototype of their scheme collected 2000 gestures from 23 smartphone users.
After generating the templates by performing multi-stage filtering, the authors
were able to achieve an EER of ≤ 10% using a window of eight swipes. Despite
the fact that TIPS uses similar features to Touchalytics [15], we choose TIPS
for performance evaluation in order to evaluate the impact of intelligent use of
contextual information to increase the accuracy of existing IA schemes.

3 Evaluation Datasets

For the empirical evaluation of the IA schemes, we use real-world and unbi-
ased datasets that capture the natural behaviour of the participants. We use
two real-world data sets that broadly capture data from devices while users
are using them (e.g., location, wireless connections including network, bluetooth
and WiFi, contacts, battery status, call logs, text logs, phone orientation, gyro-
scope and accelerometer readings, and running apps). These datasets are used
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Fig. 1. Distribution of URL, text, call and GPS records collected from different partic-
ipants in the Netsense and WatApp datasets, sorted by fraction of GPS data. Percent-
ages are derived from the number of discrete events collected from each participant.

to evaluate Shi-IA and Gait-IA. However, these datasets do not include touch or
keystroke data. We therefore use a third real-world dataset that captures swipe
data and use it for evaluating Touchalytics, SilentSense and TIPS. Ideally we
would gather day-to-day freehand keyboard input from participants. For privacy
reasons, however, we cannot use a user’s real-world communications for keystroke
data. We therefore have users type predefined email and SMS strings to evalu-
ate Keystroke-IA. In this section, we provide data collection goals, experimental
design, and the process used for collecting the four evaluation datasets.

3.1 Netsense Dataset [37]

University of Notre Dame researchers created the Netsense dataset by providing
200 first-year Notre Dame students with Android smartphones. These devices
were modified to log many events including contacts, texts, voice calls, Wi-
Fi scanning results and current access point, Bluetooth scanning results and
connections, browser history, running apps, battery status, location, email, and
port traffic. While the purpose of their study was to understand social ties, many
of these features overlap with the features used by researchers for IA [35].

Data Statistics. We contacted Striegel et al. [37] to request a chunk of their
dataset. They provided us with data that they logged between 2012-11-01 09:34:35
and 2012-11-30 12:49:50. This chunk of the dataset contained data belonging to
158 participants. For our study, we extract the location, call history, text history
and browser history data. For these users, we extract 125846, 15003, 244627 and
4817 location events, call events, text events and webpage access events, respec-
tively. The data distribution across participants is plotted in Fig. 1(a). We note
that this dataset is not labeled (i.e., there is no way to label the data for instances
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when the device was voluntarily given to someone for use by the owner or when
it was deliberately misused by a non-owner).

3.2 WatApp Dataset

While the Netsense dataset is useful for our study, we also want to collect la-
beled data. Therefore, we instrument WatApp2 (an Android App widely used
by University of Waterloo students to get information about current weather,
searchable maps, class schedules, and events) to log events on participants’ de-
vices. In addition to logging the same data as Netsense, WatApp logs gyroscope
readings and accelerometer readings. The sensitive fields are one-way hashed to
preserve the privacy of participants. Furthermore, to establish the ground truth,
we ask participants to label the intervals for which they are absolutely certain
that the device was in their possession.

To advertise for participants, we used our university-wide mailing list to ad-
vertise for people who would be interested in a study on“Mobile Misuse Detec-
tion”. Participants were expected to install WatApp on their smartphones for
ten weeks. Participants had the option to opt-out any time they wanted by dis-
abling the data collection mode. Furthermore, if they wanted WatApp to not log
data, they were provided with the option to pause data collection for an indefi-
nite amount of time. We paid the participants $5 for each week of participation
(up to $50 in total for ten weeks of participation).

Data Statistics. Our application was downloaded and installed by 74 partic-
ipants and 42 of those participants completed the study. In total, we logged
1371908 events over ten weeks. For 42 users, we extracted 121525, 15962, 28958
and 36178 location events, call events, text events and webpage access events,
respectively. Data distribution across participants is plotted in Fig. 1(b).

3.3 Touchscreen Input Dataset

Our goal is to collect a dataset that captures the natural behaviour of the partic-
ipants when they use the touchscreens of their smartphones. We do not want the
participants to perform predefined tasks. We also want to study touchscreen in-
put behaviour across a diverse set of applications. Therefore, to capture data that
satisfies our data collection goals, we instrument four Android apps: a browser
app3, a maps/ navigation app4, a launcher app5 and a comic viewer app6. The
apps that we choose belong to diverse categories and help us in understand-
ing user behaviour across different apps. To advertise for participants, we used
our university-wide mailing list for people who would be interested in a study
on smartphones apps. Participants were expected to install these apps on their

2 http://play.google.com/store/apps/details?id=watapp.main
3 http://code.google.com/p/zirco-browser/
4 http://code.google.com/p/osmand/
5 http://code.google.com/p/android-launcher-plus/
6 http://code.google.com/p/andcomics/

http://play.google.com/store/apps/details?id=watapp.main
http://code.google.com/p/zirco-browser/
http://code.google.com/p/osmand/
http://code.google.com/p/android-launcher-plus/
http://code.google.com/p/andcomics/
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Table 1. Statistics of touch points dataset

App.
Num. of

touchpoints
Num. of
Swipes

Sessions
Mean (Median)

swipes per session

Launcher 642442 19740 4417 4.46 (2)
Browser 1164011 20139 826 24.3 (16)
Maps 236878 4664 365 12.7 (8)
Comics 445538 8928 272 32.8 (16)

Total 2488869 53471 5880 9.09

smartphones for ten weeks. We did not ask the participants to explicitly perform
any tasks and participants were to use these apps as per their needs. This allowed
us to capture participants’ in the wild behaviour. We paid the participants $5
for each week of participation (up to $50 in total for ten weeks of participation).

For data collection, every time a participant interacts with the touchscreen
on one of the provided applications, we record: 1) time stamp in milliseconds; 2)
x and y co-ordinates of the touch point, 3) finger pressure on the screen; 4) area
covered by the finger on the screen; 5) values from the accelerometer sensor; 6)
finger orientation; 7) screen’s orientation; 8) smartphone’s orientation sensor’s
value (roll, pitch and azimuth); and 9) accelerometer sensor values. These values
are temporarily stored on the participant’s device and then batch transmitted to
a server. Before every data transmission, we establish the ground truth (only the
participant used the applications) by asking the participants to label the intervals
for which they are absolutely certain that the device was in their possession.

Data Statistics. Our applications were downloaded and used by 61 partici-
pants. In total, we logged about 2.49 million touch points comprising over 53,000
swipes in ten weeks. The details of swipes, their distribution across applications
and distribution across user sessions is provided in Table 1.

3.4 Keystroke Dataset

We want to collect keystrokes of participants during their normal usage sessions;
however, this is difficult in a privacy preserving manner. Therefore we present
users with text strings that are used in everyday communication. To this end,
we choose text strings from existing publicly available SMS [6] and email cor-
pora [23]. We develop an Android app that presents a participant with each
string of data that they are expected to input using the virtual keypad on their
smartphone. Once a user inputs all the strings, the logged keystroke data is
transmitted to our server. To advertise for participants, we used our university-
wide mailing list for people who would be interested in a study on “The need
for Auto-complete and Auto-correct on Smartphones”. To avoid any bias, we do
not tell participants about the real purpose of this study before the conclusion
of the study. Finally, we do not restrict the participants to complete the study
in a limited number of sessions nor ask them to complete it in a lab. We paid
$10 to each participant for completing this study.
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Data Statistics. We presented participants with 13 strings. These strings con-
tained 43 words and 268 characters in total. We required every participant to
input each string four times to collect 1072 keystrokes from each participant.
Our application was installed and used by 40 participants. The mean time taken
to complete the study was eight minutes.

4 Comparative Evaluation

In this section, we first discuss our experimental setup and then provide the
results of our evaluations.

4.1 Evaluation Setup

While most of the evaluation metrics that we use are independent of the un-
derlying implementation language, we wish to measure processing complexity
on real Android devices. By using Java as our implementation platform, we are
able to measure these statistics easily. Therefore, despite the availability of Mat-
lab source code for Touchalytics [15], we re-implement it in Java.We re-use the
publicly available C++ implementation of Gait-IA [14] via the Android Native
Development Kit. We note that evaluating the Gait-IA scheme as a native app
will result in relatively better results for processing overhead metrics. For the
evaluation of other metrics, we used automated scripts on a desktop machine

For our evaluations, we use the recommended parameter values of IA schemes
from their original papers. If a paper does not specify a recommended value
(e.g., the decay parameter for Shi-IA), we first evaluate the proposed scheme
while keeping the classifier threshold to a constant value to determine the best
operating point of the tuning parameter for which a recommended value is not
provided. To evaluate Shi-IA, we use the Netsense and WatApp datasets. For
Gait-IA, we use sensor readings from the WatApp dataset. Keystroke-IA uses the
Keystroke dataset for training and classification purposes. Finally, the Toucha-
lytics, SilentSense and TIPS schemes all use the Touchscreen Input dataset.

We construct non-overlapping training and test sets for each of the partici-
pants, using negative instances from other users. In practice, it is recommended
that IA classifiers come prepackaged with such data to be used as negative in-
stances, allowing robust classifiers to be trained on-device. In our work, the
negative training sets of a user for the Keystroke and Touch datasets are con-
structed by employing usage data from 20 other users. For the Netsense and
WatApp datasets, we use one day of data from 14 other users to construct two
weeks of negative test data. Frank et al. [14] recommend using a continuous block
for training their classifier; consequently, we employ the largest single block of
continuous data for training. For Touchalytics, Keystroke-IA, and SilentSense,
we use half of the data for training, and the remaining data for testing. In
the case of TIPS, we use a 30/70 ratio for training and testing, respectively.
This variation in partition ratios is due to us following the convention estab-
lished in the respective original papers, and due to the heterogeneity of the
different types of data used by the different schemes in this work.
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Fig. 2. Accuracy evaluation of the six IA schemes evaluated in this work

4.2 Evaluation Results

Accuracy Evaluation. The accuracy of an IA scheme is its most critical eval-
uation metric. Ideally, the scheme should have no false rejects (for a seamless
user experience of the device owner) and 100% true reject rate (to detect and
prevent misuse by an adversary). To understand the accuracy of these classifiers,
we plot the ROC curve using the True Accept Rate (TAR) and the False Accept
Rate (FAR). To understand the trade-off between TAR and FAR, we threshold
the authentication score. Thresholding of Shi-IA is performed over the computed
authentication score. Gait-IA and Touchalytics, which use ANN [2] and k-NN
for classification, are thresholded over the distance function score and over k, re-
spectively. Keystroke-IA implementation uses a Bayesian Network classifier [16]
and is thresholded over the p score. Our implementation of SilentSense uses LIB-
SVM [5] with a gaussian radial-basis function (rbf) as kernel. For thresholding,
we tune the γ and C parameters to rbf. TIPS uses Dynamic Time Warping [3]
to compute a similarity score and we threshold the similarity score. The results
of the accuracy evaluation, averaged across all users, for the six classifiers are
provided in Fig. 2.

As shown, the TIPS scheme outperforms the others in almost all cases. In
particular, it is able to achieve a TAR of 79% with a FAR of only 0.43%. TIPS
and SilentSense together Pareto dominate all other schemes when the FAR is
under 25%. Shi-IA generally underperforms the other schemes, although it has
the distinction of being the only IA scheme to achieve a TAR of 100% with a FAR
of less then 100% (specifically, 71%). Empirically, this may be due to the fact that
Shi-IA uses location information as a discriminator, while the datasets are mostly
taken from students living in tightly grouped geographic areas. Consequently,
these results may be different for other types of users (e.g., people who travel
often). This phenomenon is discussed further in Section 5.



266 H. Khan, A. Atwater, and U. Hengartner

Data Availability. If an IA scheme employs data from a behavioural source
that does not have enough data available to make a classification decision for a
significant number of usage sessions, the IA scheme would be ineffective despite
its high detection accuracy. For example, while Gait-IA outperforms Keystroke-
IA in terms of accuracy (see Fig. 2), Gait-IA will not be useful if the device user
is stationary and is not generating enough data for classification purposes. We
leverage our real-world traces to determine the availability of data for these IA
schemes. To compute the data availability we assume that IA is to be performed
only once during a session (and not performed repeatedly after a predefined in-
terval of time). We note that an IA scheme may save past authentication scores
and re-use them in case data is unavailable (e.g., Gait-IA may compute authen-
tication score prior to the device usage when accelerometer data is available and
then reuse this score to authenticate future sessions). However, for a fair com-
parison, to compute the data availability we only consider data that has been
generated during a device usage session.

From the Netsense and WatApp datasets, we calculate the total number of
usage sessions (delimited by screen-on events) and the sessions in which enough
behavioural features are available to perform a classification decision for Shi-
IA, Gait-IA and Keystroke-IA. For keystroke availability, exact keystroke data
is not available and so we assume enough data is available whenever the key-
board is displayed on the screen during the session; note that this will lead to
some overreporting of keystroke data availability for insufficient data. Since the
Netsense and Watapp datasets do not log touchscreen interactions, for Toucha-
lytics, SilentSense and TIPS, we report data availability against the four apps
used in the touchscreen input dataset. This will also result in some overreporting
of data availability; however, since touchscreen interaction is the primary input
mechanism on modern devices, we expect our results to hold for other apps.

As seen in Fig. 3, data derived from touchscreen interaction is almost always
available, so IA schemes making use of it are thus most likely to be usable.
SilentSense additionally makes use of accelerometer data; when the device is
resting on a stable surface this data will not be as meaningful as when the device
is being held, but it is still available for training and classification. Availability
of data for Shi-IA is highly dependent upon the users’ context and is discussed
further in Section 5. Gait information was generally the most difficult to find,
with enough information available in only 13.1% of sessions.

Training Delay. An IA scheme that could employ data from a few sessions to
robustly train itself would be highly desirable. While the IA scheme may explic-
itly request a user to provide training data (for example, a keystroke classifier
asks a user to input a set of strings), most of the existing schemes rely on col-
lecting data during normal usage for training purposes. We utilize the datasets
as described in Section 4.1 to determine the training delay for each of the six
schemes evaluated in this work. To measure training delay, we set all the tuning
parameters including the classification threshold to a constant value and then
train the classifier by incrementally increasing the size of training data to the
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Fig. 3. Data availability on real-world datasets

classifier. For IA schemes that employ classifiers that require negative training
instances (e.g., Touchalytics, SilentSense), we use equal amounts of out-of-class
training instances from 20 out-of-class sources. For every training session, we
measure the accuracy of the classifier by running it on the test dataset. Using
this process, we find the minimum number of events and the amount of time
required to collect these events to obtain an accuracy of ≥ 70%, ≥ 80%, and
≥ 90%. These results are provided in Table 2.

Training delays are closely correlatedwith data availability rates.When gait in-
formation is available—which is frequently not the case, as discussed previously—
Gait-IA takes the least amount of time to accumulate enough information to train
a model with high accuracy. Touchalytics and SilentSense take only a few minutes
extra, as touch input is a frequent event. Keystroke-IA data takes longer as high
accuracy requires the user to type strings that cover a fair amount of the bigram
space (as the training data is derived from interstroke timings). The TIPS scheme,
despite having the best TAR and FAR overall, requires approximately one hour of
data collection to achieve≥ 90% accuracy. Shi-IA requires several weeks’ worth of
data, as it relies on user behaviour patterns repeating over large periods of time.

DetectionDelay. While the data availabilitymetric determines whether enough
data is available across sessions, we evaluate detection delay for these IA schemes
to measure the sensitivity of these schemes to misuse attempts. Ideally, we would
like the detection delay to be as low as possible to prevent the adversary from
accessing confidential data on the device. We measure detection delay in terms
of time elapsed from the start of misuse to the time when the IA scheme detects
the misuse. For detection delay evaluation, we play back negative instances and
look for those that are correctly classified as true rejects by the IA scheme (i.e.,
we ignore data that results in false accepts).
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Table 2. Minimum training delay to achieve accuracy rates of ≥ 70%, ≥ 80%, ≥ 90%.
95% confidence intervals are provided in parentheses. Note that Shi-IA uses the contents
of logs as a whole and as such has no concept of an “event”.

Accuracy ≥ 70% Accuracy ≥ 80% Accuracy ≥ 90%

Events
Time
(sec)

Events
Time
(sec)

Events
Time
(sec)

Shi-IA N/A 1.7 weeks N/A 3.2 weeks N/A N/A

Gait-IA 1434 159 (32) 1832 205 (47) 2338 287 (59)

Touchalytics 67 106 (9.96) 165 280 (30) 275 464 (49)

Keystroke-IA 1352 594 (55) 2028 839 (108) 3380 1101 (360)

SilentSense 86 139 (14) 204 346 (36) 272 460 (49)

TIPS 738 1391 (224) 1295 2443 (378) 1611 3034 (445)
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The detection delay results are shown in Fig. 4. SilentSense generally detects
non-owners the fastest, in the range of 2-11 seconds. Other schemes generally
detect non-owners in less than 30 seconds, with the exception of Shi-IA. Shi-IA
takes more than 15 minutes on average before enough data is available for it to
reject a non-owner from the device. This result is significantly longer than the
average session length, and a malicious user would likely be able to export data
from the device before even realizing that an IA scheme is in use.

Processing Complexity. Since the target for these IA schemes is mobile plat-
forms, it is critical for the IA schemes to have low processing complexity. For com-
plexity evaluations, we measure the performance overhead in terms of elapsed
CPU time and heap size of the IA scheme for feature collection, training and
classification operations. We divide the performance overhead into these opera-
tions to distinguish the one-time (training) and run-time (feature collection and
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Table 3. Performance evaluation of the IA schemes evaluated in this work. 95% con-
fidence intervals are provided in parentheses. N1: Nexus 1 and N4: Nexus 4.

CPU (ms) Heap(kB)

Init.
Feat. Ex-
traction

Training
Classi-
fication

Runtime

N1

Keystroke-IA 21 (2.08) <1 (�0) <1 (�0) 0.2 (�0) 3.2 (0.19)
Touchalytics 5 (0.27) 0.27 (�0) 65 (2.16) 1.7 (�0) 59.1 (1.43)
SilentSense 1162 (81) 0.75 (�0) 10384 (91) 0.12 (�0) 18.3 (1.14)

Shi-IA 677 (26) 1758 (31) 13053 (87) 58 (4) 790 (6)
Gait-IA 5 (0.15) 7 (0.24) 764 (42) 93 (7) 9532 (81)
TIPS 5 (0.18) 0.23 (�0) 35 (�1.4) 1.12 (�0) 92 (2.2)

N4

Keystroke-IA 12 (0.95) <1 (�0) <1 (�0) 0.05 (�0) 2.9 (0.13)
Touchalytics 3 (0.27) 0.05 (�0) 15 (0.5) 1.08 (�0) 67 (5.59)
SilentSense 972 (67) 0.55 (�0) 5937 (329) 0.07 (�0) 21 (0.68)

Shi-IA 575 (24) 1406 (22) 10964 (74) 51 (3) 817 (5)
Gait-IA 4 (0.1) 5 (0.13) 522 (31) 75 (6.8) 9775 (94)
TIPS 3 (0.18) 0.03 (�0) 8.2 (�0.86) 0.73 (�0) 96.4 (2.5)

classification) costs. An efficient IA scheme would have a reasonable one-time
cost and minimal run-time cost.

For execution time calculation, we choose an HTC Nexus 1 and an LG Nexus 4.
The Nexus 1 has Android OS v2.1 on a 1GHz processor with 512MB of RAM.
The Nexus 4 has Android OS v4.2 on a Quad-core 1.5GHz processor with 2GB
of RAM. Execution time results for both devices are provided in Table 3.

The Nexus 4 generally performs operations faster than the Nexus 1, but with
marginally higher memory overhead. In our experience, these small differences
are generally due to changes in the Android API. SilentSense initialization and
training take several seconds due to the SVM classifier used; it also loads negative
instances from disk at initializaton. Shi-IA takes 1-2 seconds to extract features
from data as it must make a GPS request and also filter call, SMS, and browser
logs. All schemes are able to perform classification in tens of milliseconds in the
worst case.

Uniqueness of Behavioural Features. Jain et al. [19] list distinctiveness
as one of the key properties of a biometric-based authentication system, which
requires any two persons to be sufficiently different in terms of the characteristics
measured. While the presence of false accepts in Fig. 2 indicates that none of
the behavioural features employed in the IA schemes evaluated in this work are
distinct, nevertheless they should provide sufficient discriminatory information
among a sufficiently large set of users to provide an acceptable FAR. To gain
insight into this, we simulate N non-owners attempting to access a protected
device, and measure the rate at which someone is able to successfully bypass IA.
By varying the number N , we gain some sense of the device owner’s uniqueness
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in a crowd of that size. For each value of N , this simulation is run using 4-fold
cross-validation for each user and the results are averaged.

Fig. 5 shows the results from this simulation. All of the IA schemes tested
appear to exhibit similar growth patterns in IA bypass rate as the number
of users increases. While TIPS and Shi-IA exhibit the most uniqueness over-
all, SilentSense is also quite resilient when faced with 10 or fewer adversaries.
Keystroke-IA does not appear to be distinctive even in scenarios with few non-
owners present, suggesting that it would be wise to pair these features with
other, non-keystroke-derived attributes when creating IA schemes.

Vulnerability to Mimicry Attacks. While a detailed analysis of vulnerability
to mimicry attacks is beyond the scope of this paper, in this section we consider
the informed adversary threat scenario. An uninformed adversary may be a curi-
ous stranger/thief who found/stole a device, while an informed adversary might
be an inquisitive friend, co-worker, or family member. The difference between
these two types of adversary is that the latter may have additional knowledge
about the behaviour of the victim (for example, he may know that the victim
always uses his right hand for swiping). Based on the informed adversary sce-
nario, we consider how effortlessly such an adversary can defeat an IA scheme.
Interested readers are referred to [31,32] on advanced automated mimicry attack
scenarios for touch- and keystroke-based IA schemes.

We argue that in accordance with Kerckhoffs’s principle, the IA mechanism
(including its features and computation of anomaly score) is public knowledge
but feature values for individual users are secret. Consequently, if an adversary
can estimate the feature values for an IA scheme easily and mimic those feature
values, he can steal data from the device. From the approaches that we evaluate,
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Shi-IA is the most vulnerable to mimicry attacks. Even an uninformed adversary
can scan the device for call/text logs and browser history and then mimic it to
ensure that the device does not lock him out. An informed adversary would
attempt to stay in the same vicinity as the device owner to get an even better
authentication score.

Other IA schemes evaluated in this work are more difficult to mimic. Some of
the schemes rely on features that may be estimated by an informed adversary.
For example, in Touchalytics, an adversary may be able to approximate the start
and end co-ordinates for swipes. Similarly, for SilentSense, the adversary may be
able to coarsely estimate the amount of action force by looking at the reaction
of the device. While the aforementioned features for their respective IA schemes
are relatively easy to estimate by an informed adversary, most of the features
used by these schemes are hidden (not measurable by a naked eye). For example,
the touch width of a swipe is hidden to a surveilling adversary. Similarly, the key
release time for keystroke classifier are difficult to approximate without special
equipment.

A more serious attack surface for these IA schemes exists in that many of
the features employed by these schemes can be collected by any app without
requiring any special Android permissions (except Shi-IA, which requires the
permissions mentioned in § 4.2). Consequently, an adversary might persuade the
victim to install a Trojan app on his device in order to log his behaviour. The
adversary can then train himself to mimic the victim. Tey et al. [39] mounted
this attack on a keystroke-based authentication scheme for traditional keyboards.
They demonstrated that by using a carefully designed user interface, they were
able to train participants of their study to achieve an average FAR of 63%. It is
possible that similar active attacks could be mounted on touch-, keystroke- and
gait-based IA schemes, which is an area that needs further study.

Ease of Deployment on Mobile Platform. Finally, we look at the deploy-
ment related issues for these IA schemes on the popular iOS and Android plat-
forms. We understand that sufficient changes might be introduced by the OS
providers in future versions to mitigate the deployment limitations of these IA
schemes; nevertheless, we provide an overview of the deployment issues on con-
temporary mobile platforms.

The features used by Gait-IA can be collected without requiring any permis-
sions. Features employed by Shi-IA can be collected using non-root permissions.
More specifically, on Android five permissions including ACCESS FINE LOCATION,
READ SMS, READ CALL LOG, READ HISTORY BOOKMARKS and READ CONTACTS can be
used to implement Shi-IA. Feature extraction for touch- and keystroke-based clas-
sifiers is more complicated. Due to security and privacy concerns, iOS andAndroid
only allows a foreground app to receive input events (touch and keystroke events).
Therefore, IA schemes that employ these features including [4,12,13,15] can only
be deployed either on rooted devices or deployed per app instance [22].
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5 Discussion and Open Challenges

This section discusses guidelines for creating implicit authentication schemes
that we derive from the data collection process, the results in Section 4, and our
experience in implementing the schemes on Android devices.

Practical Implicit Authentication Is Possible with Low Overhead and
in Near-real-time. Our results on Nexus 1 and Nexus 4 devices given in Ta-
ble 3 show there are IA schemes that can run feature extraction and classifica-
tion in only milliseconds. Even the worst case training scenarios take only ten
seconds, which is performed one-time only and can be done in a background
thread. In terms of accuracy, touch behaviour-based approaches provide ≥ 90%
true accepts with ≤ 10% false accepts and are a good candidate for secondary
authentication. Finally, in case of misuse by non-owner, the majority of these
implicit authentication schemes are able to detect misuse in under 30 seconds.

Features Should be Chosen in a Complementary and Context-aware
Manner. Sources for behavioural features must be chosen carefully, and take the
intended deployment context into account. Touch-based data is almost always
available (Fig. 3) but should be augmented with a secondary source (such as
keystrokes) for better coverage. Taking into account user context information –
e.g. whether the user is walking or stationary, which app the user is interacting
with – is important for classifying data from onboard sensors (TIPS), but does
not necessarily make a good discriminator by itself (Shi-IA). No individual source
of behavioural data provides a silver bullet for IA.

Devices May Not Need to Be Rooted to Make Use of IA. Android
does not allow background applications to gather input events (touch and key
input events) due to security concerns. Therefore, IA schemes that rely on in-
put events (e.g. touch- and keystroke-based schemes) require root privileges on
the device in order to collect data. On the other hand, Shi-IA and Gait-IA do
not require root privileges and only require Android permissions. Input event
data can be collected by individual apps without any additional permissions,
which opens the door for IA protection at the app level instead of at the device
level [22]. For example, enterprises can bundle IA schemes within their apps to
protect confidentiality of their corporate data. While providing IA at the app
level mitigates the restrictions imposed by Android, it also imposes significant
development overhead. All of these are open questions that should be considered
when proposing any new IA scheme.

Using a Realistic Threat Model and Evaluating in an Uncontrolled
Environment Is Necessary When Evaluating an IA Scheme. Some IA
proposals are accompanied by unrealistic evaluations, by having users perform
a repeated task in a lab setting to generate data. When these schemes are then
applied in real-world settings, the assumptions made in the lab may prove false
and the scheme’s performance will suffer accordingly. Feng et al. [12] demon-
strate that on real-world datasets, many existing touch-based IA schemes have
significantly higher EER than reported in the original papers. Our findings are
similar for the IA schemes that had their datasets publicly available [14,15].
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Furthermore, a recent Symantec study finds that 68% of non-owners who at-
tempted to access private data on an unguarded smartphone did so on the spot,
which would make location filtering an unhelpful IA feature [41]. A similar study
by Lookout-Sprint [25] found that 44% of users were primarily concerned with
their devices being accessed by family and friends, as opposed to strangers. Since
such adversaries may have multiple overlapping features (e.g., location and con-
tacts), IA schemes that rely in such features will not be very effective. Therefore,
it is critical to provide protection against a realistic threat model that captures
these security and privacy concerns of smartphone users.

Mimicry Attacks On IA Schemes Are Possible. In addition to the nat-
ural collisions of behaviour we showed in Fig. 5, some researchers have shown
deliberately trained attacks on swipes and keystroke input [31,32]. We argue
that implicit authentication (i) should be used as a secondary authentication
mechanism complementing primary authentication mechanisms, and (ii) should
use behavioural features from multiple sources. Using multiple types of charac-
teristics greatly increases the difficulty of building devices that mimic natural
human behaviour, and adds dimensions to the complexity of training users to
fool behavioural models [36].

6 Conclusion

In this paper we provided a comparative evaluation of six IA schemes that em-
ploy different behavioural features. Our empirical evaluations show that IA can
be performed with reasonable accuracy and low complexity with acceptable de-
tection delay on contemporary mobile devices. More specifically, our evaluations
show that in addition to adequate data availability for training and classification,
touch behaviour-based IA schemes outperform other schemes in terms of accu-
racy and detection delay. We also analyzed real-world traces to show that while
keystroke- and gait-based IA schemes provide reasonable performance, there
was not enough data available for a significant proportion of sessions to make a
classification decision. In terms of evaluation of IA schemes by the research com-
munity, our findings emphasize the need for evaluation on uncontrolled datasets
and a more realistic threat model. We have made our implementations publicly
available to further research in the IA domain.
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Abstract. Web-based single sign-on describes a class of protocols where
a user signs into a web site with the authentication provided as a ser-
vice by a third party. In exchange for the increased complexity of the
authentication procedure, SSO makes it convenient for users to authen-
ticate themselves to many different web sites (relying parties), using just
a single account at an identity provider such as Facebook or Google.

Single sign-on (SSO) protocols, however, are not immune to vulnera-
bilities. Recent research introduced several attacks against existing SSO
protocols, and further work showed that these problems are prevalent:
6.5% of the investigated relying parties were vulnerable to impersonation
attacks, which can lead to account compromises and privacy breaches.
Prior work used formal verification methods to identify vulnerabilities
in SSO protocols or leveraged invariances of SSO interaction traces to
identify logic flaws. No prior work, however, systematically studied the
actual root cause of impersonation attacks against the relying party.

In this paper, we systematically examine existing SSO protocols and
determine the root cause of the aforementioned vulnerabilities: the design
of the communication channel between the relying party and the identity
provider, which, depending on the protocol and implementation, suffers
from being a one-way communication protocol, or from a lack of au-
thentication. We (a) systematically study the weakness responsible for
the vulnerabilities in existing protocols that allow impersonation attacks
against the relying party, (b) introduce a dedicated, authenticated, bi-
directional, secure channel that does not suffer from those shortcomings,
(c) formally verify the authentication property of this channel using a
well-known cryptographic protocol verifier (ProVerif), and (d) evaluate
the practicality of a prototype implementation of our protocol.

Ultimately, to support a smooth and painless transition from existing
SSO protocols, we introduce a proxy setup in which our channel can
be used to secure existing SSO protocols from impersonation attacks.
Furthermore, to demonstrate the flexibility of our approach, we design
two different SSO protocols: an OAuth-like and an OpenID-like protocol.
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1 Introduction
The proliferation of web applications on the Internet has led to a sharp increase
in the number of accounts (and corresponding credentials) that a web user has
to create and remember. Inconveniences stemming from having to keep track of
the accounts, and the tendency of web sites to suffer from security breaches, in
which user credentials are exposed, has resulted in a recent push to adopt single
sign-on (SSO) systems more widely1. As the name implies, these systems help
reduce the large amount of account credentials a web user has to keep track of, by
replacing these credentials with a single identity with which she can authenticate
herself at many different web sites.

SSO systems allow users to sign into a web site (the Relying Party, or RP),
such as StackOverflow, with authentication provided by a third party (the Iden-
tity Provider, or IdP), like Facebook or Google. While this greatly increases the
convenience for both the users and the web site operators, it also brings new
opportunities for attackers. A recent analysis of web-based SSO protocols by
Wang et al. [33] identified five vulnerabilities in which a malicious attacker can
impersonate a benign RP or intercept the communication between a benign RP
and the IdP, leading to a compromise of the user’s account’s security. In fact,
further research by Sun et al. [28] shows that 6.5% of RPs2 are vulnerable to
such impersonation attacks.

To understand SSO vulnerabilities better, formal security analysis has been
carried out for existing SSO protocols. For example, AuthScan by Bai et al. [13]
extracts the protocol specification from a SSO implementation and verifies the
retrieved specification using formal analysis. On the other hand, ExplicatingSDK
by Wang et al. [34] leverages formal analysis combined with a semantic model
to identify hidden assumptions in the designs of the software development kits
that are the foundation of many SSO implementations. Similarly, InteGuard
by Xing et al. [35] correlates program invariants, to identify and mitigate logic
flaws in SSO specifications, through a proxy situated between the user and the
IdP. However, none of these prior approaches identified the actual root cause for
vulnerabilities in SSO protocols that allow impersonation attacks, i.e., why these
flaws exist in the current protocols in the first place. In this paper, we examined
the design of existing SSO protocols and determined that the root cause of the
aforementioned vulnerabilities lies in the broken design of the communication
channel between the RP and the IdP. Depending on the protocol implementation,
this channel either suffers from being a one-way communication protocol, or from
a lack of authentication. This untrustworthy channel, in turn, makes existing
protocols prone to impersonation attacks. Therefore, we propose to use a secure,
authenticated, bi-directional channel between the RP and the IdP to prevent
these attacks, by eliminating the root cause.

It is important to realize that the attacks discussed in this paper are not just
theoretical. In fact, the vulnerabilities present in these protocols are currently

1 Clearly, using the same credentials on multiple web sites is not viable solution if
data might leaked or a privacy breach might occur.

2 The original text states “we also found that 13% of RPs use a proxy service from
Gigya, and half of them are vulnerable to an impersonation attack.”
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being used by attackers to subvert authentication via SSO. Real-world, high-
profile attacks have been carried out in the past on extremely popular web sites.
One such example is last year’s attack on the SSO communication between
the web site of the New York Times (the 38th most popular web site in the US;
henceforth NYTimes), acting as the RP, and Facebook, acting as the IdP [33]. In
this case, attackers exploited weaknesses in the design of current web-based SSO
protocols that allowed them to access a victim’s account with the same privileges
that the victim had given to the NYTimes, including access to private user data
and, in some cases, the ability to post messages on the user’s behalf. Similar
attacks have also been carried out against the communication between Facebook
and Zoho.com, the JanRain wrapping layer over Google’s SSO implementation,
and other web sites that rely on SSO protocols [33].

This makes the solutions presented in this paper not just theoretically inter-
esting, but actually practically relevant in solving a pressing problem in the area
of user authentication, privacy, and web security.

Additionally, to support a smooth transition from existing systems, i.e., to give
time for our design to be adopted, we introduce a proxy that can be deployed
by web sites’ operators (RPs in the current model) to secure existing, insecure
SSO protocols. We are confident that our proxy design will ease the adoption of
our secure SSO protocol and mitigate current vulnerabilities.
In this paper, we make the following technical contributions:

– Dedicated, Bi-directional, Authenticated, Secure Channel. Utilizing an existing
in-browser communication channel, we establish a dedicated, bi-directional,
authenticated, secure channel between the RP and the IdP. Leveraging public-
key cryptography, an RP and an IdP authenticate each other and share a
common secret, i.e., the session key. All further communication between the
RP and the IdP is then encrypted with the session key and is kept secret from
eavesdroppers.

– Flexible SSO Protocol over the Secure Channel. The aforementioned secure
channel provides flexibility for SSO protocol designers. Specifically, our chan-
nel design provides a secure platform for customization by protocol architects.
We discuss possible implementations of the most popular SSO protocol de-
signs: an OAuth-like and an OpenID-like protocol, both build upon our chan-
nel design. In contrast, existing, verified protocols, such as the Secure Elec-
tronic Transaction (SET) [8] protocol, do not allow any further customization
and require customers and users to strictly follow the protocol specification
at hand.

– Formal Verification of the Channel. We formally verify the correctness and
the security properties of our channel design with the cryptographic protocol
verifier ProVerif by Blanchet [6] to ensure that the security guarantees hold
in our respective threat model.

– Performance Evaluation. We evaluate a prototype implementation of our se-
cure channel design. In our evaluation (Section 6), we show that the overhead
our approach introduces is only about 650ms of initial latency (given a net-
work delay of 50ms to reflect the latency observed at standard, residential
Internet connections), i.e., a one-time authentication overhead of 650ms in-
curred at the beginning of each authentication session, which we believe is
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acceptable for the security guarantees it provides. In addition, we provide a
detailed breakdown of the latency of each step of our SSO protocol imple-
mentation.

– Gradual Deployment. Apart from our clean-slate design, which must be de-
ployed by the IdP, we introduce a proxy that acts as a “fourth-party” IdP.
This proxy accommodates and protects existing SSO protocols and, thus, al-
lows for a smooth and painless transition from existing SSO protocols to our
more secure one. Aiming for broad adoption and a general solution, we de-
signed our proxy so that it can be deployed by a legacy RP or a legacy IdP.
From the viewpoint of a legacy IdP, our proxy acts as an RP retrieving users’
information in a controlled, secure environment; from the viewpoint of the
legacy RP, it acts an IdP relaying the users’ information it retrieved from
the real IdP. To guarantee the various security properties that must hold to
ensure protection against impersonation attacks with respect to the threat
model, we formally verify the design of our proxy with ProVerif.

2 Threat Model
In this section, we introduce several key concepts relating to web-based SSO
protocols and present several known attacks against current protocols and their
implementations. For completeness, and to provide a better understanding of
the threat model, we discuss attacks that are in the scope of this paper, as well
as attacks that are out of scope.

2.1 Concepts

Generally, three entities are involved in an instance of a SSO protocol. The three
participating parties are:

– Identity Provider (IdP). The identity provider serves as a centralized iden-
tification service for its users. Some examples of such identity parties are
OpenID [5], Facebook Connect [19], and Google’s single sign-on implemen-
tation. Additionally, there also exist aggregation services, such as JanRain
Engage [2], which handle SSO services for a set of multiple IdPs. Special to
the latter case, both JanRain Engage and the original IdP act as IdPs.

– Relying Party (RP). The relying party is a web site that uses the services an
IdP provides to authenticate its users. The way users are authenticated differs
between protocols: for an OpenID-like service, the RP acquires the user’s
identity with the IdP’s signature; alternatively, for an OAuth-like service, the
RP acquires a token or key from the user (who interacts with the IdP), which
can then be used to fetch additional information from the IdP (e.g., to verify
personal information or the identity of the user).

– User. The user is a client of both the IdP and the RP. The user maintains a
SSO identity on the IdP’s web site (e.g., an account with the IdP) and uses
this identity to authenticate to different RPs. It is important to note that in
our threat model, users are benign; in other words, we do not consider attacks
initiated from the user’s browser, and we require that the same-origin policy
is enforced in the user’s web browser.
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Listing 1.1. Example of a HTTP request from the RP to the IdP. Here, a malicious
RP can initiate the communication by using a benign RP’s app id or intercept the
communication by changing the redirection url or next url parameter.

GET https : //www. idp . com/ l o g i n ? app id=∗∗∗∗
&r e d i r e c t i o n u r l=https : //www. idp . com/ grante r ?
n ex t u r l=https : //www. rp . com/ l o g i n

Host : www. idp . com
Re fe r e r : https : //www. rp . com/ l o g i n
Cookie : ∗∗∗∗

2.2 In-scope Attacks

Recent research by Wang et al. [33] identified many vulnerabilities allowing iden-
tity impersonation attacks in SSO protocols, i.e., attacks where an adversary
manages to spoof the identity of parties involved in the execution of the SSO
protocol. In our threat model, we only consider the case where an attacker is
able to impersonate the RP in an attempt to obtain a user’s private informa-
tion. In fact, these attacks account for five of the eight confirmed attacks on SSO
protocols identified by Wang et al. [33] and are the most critical. The remaining
three cases are out-of-scope, and we discuss the reason for this decision in more
detail later on (Section 2.3). The five attacks that are in-scope can be classified
into two categories:

– A malicious RP initiates the attack. In this case, as in the vulnerability be-
tween the New York Times (NYTimes) and Facebook, a malicious web site
pretends to be the NYTimes and initiates the SSO process, i.e., an attacker
simply sends a request using the application ID of the NYTimes (app id in
Listing 1.1) to spoof the identity of the NYTimes.

– A benign RP initiates the request, but a malicious RP receives the re-
sponse. Here, as in a vulnerability found in the interaction between Zoho.com
and Facebook, Zoho.com initiates the communication to Facebook, but a ma-
licious party receives the response from Facebook, i.e., an attacker can change
the redirection url or the next url in Listing 1.1 to receive the response
that contains the token to access the user’s information.

2.3 Out-of-scope Attacks

Since SSO protocols are a very broad topic, some categories of attacks are out-
of-scope for this paper. Here, we list the attacks that we deem out-of-scope, and
we argue why we decided to not take them into account. Generally, many of the
attacks listed can already be mitigated leveraging prior work and we list them
simply for completeness.

– Social engineering, e.g. phishing. We consider social-engineering attacks, such
as the phishing of a user’s credentials, to be out-of-scope because, in our
opinion, the prevention of social-engineering attacks is more of an educational
or user-interface issue than it is a protocol issue.

– Compromised or vulnerable RP. Bhargavan et al. [15] consider that an RP
might be compromised and propose defensive JavaScript techniques to prevent
untrusted browser origins. On the contrary, in our threat model, we assume
that a benign RP remains integral and uncompromised. The communication
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channel between the benign RP and the IdP on the other hand is vulnerable
as to that a malicious RP can control the channel fully. We exclude vulner-
abilities related to such a compromised or vulnerable RP from our threat
model because the user’s information can already be obtained at the RP, and
because we argue it is more of a secure deployment rather than protocol issue.

– Malicious browser. Some of the discovered attacks occur inside of the at-
tacker’s browser. For example, in an attack involving Google ID [33], the
adversary is able to log into a user’s account from his own machine because
the RP does not check whether the email field is signed by the IdP. Those
attacks cannot be prevented on a protocol level, and, therefore, they are out
of scope.

– Implementation issues. Some of the discovered attacks exist because the RP
and the IdP interpret the protocol or its specification differently. For example,
in a vulnerability involving PayPal [33], the RP (PayPal) and IdP (Google)
treat a data type differently.

– Privacy leaks. Uruena et al. [32] identify possible privacy leaks to third party
providers (such as advertisers and corresponding industries) in the OpenID
protocol.

Generally, we consider these attacks as out-of-scope because they are due to a
user error, an implementation error (specific to improperly-implemented RPs
or IdPs; potentially the result of poor documentation), or do not involve any
communication between the RP and the IdP. In this paper, we solely focus on
protocol level attacks.

3 Revisiting Existing SSO Designs and Attacks
To identify the root cause of the identity impersonation attacks, as defined by
Wang et al. [33], it is critical to understand some main aspects of existing SSO
protocol designs, especially the communication protocol between the RP and
the IdP. Wang et al. [33] abstracted this communication by introducing the con-
cept of a browser-relayed message (BRM), which describes a request from an
IdP or an RP, to the RP or the IdP respectively, together with the resulting
response. While this abstraction is already helpful for identifying vulnerabili-
ties, it does not capture the root cause of many vulnerabilities in existing SSO
protocol designs and leaves the communication unnecessarily complex. Instead,
we abstract the protocol differently: the RP simply communicates with the IdP
through an established channel. In this context, only two questions remain: (i)
what is the identity of the parties involved (authenticity), and (ii) how do these
parties communicate to achieve confidentiality and integrity?

3.1 Identity

As said, three parties are involved in a SSO instance. Understanding how each
party is identified by the other parties is a prerequisite to analyze the root cause
of impersonation attacks.

– IdP. The IdP is generally identifiedby itsweborigin, i.e.,<scheme,host, port>.
– User. The user is identified by a unique identifier, such as their username or

email address. While the identification of users can cause some confusion in an
SSO protocol, attacks resulting from this confusion are out-of-scope because
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they are implementation or documentation errors. In this paper, we assume
that there exists a correct and unique identifier for each user.

– RP. The identity of an RP can vary according to protocols imposed by
different IdPs, but is a unique identifier nonetheless. For example, Facebook
Connect uses the identifier “app id” to identify an RP, while JanRain chose
to adopt “AppName” and “settingsHandle” as the RP’s identifier [33].

Recent attacks show that the identity of a benign RP might be easily forgeable
by a malicious RP. For instance, in the example involving Facebook and the NY-
Times [33], the malicious RP spoofed/forged the identifier of the NYTimes. Be-
cause of this, we require an unforgeable identifier to represent the identity of an
RP. In the same spirit as for the IdP, one can use the web origin as tracked by the
client browser. Since web origin tracking is already a basic security property that
is enforced by all modern browsers, it is very hard for a malicious RP to forge it3.

3.2 Communication between the RP and the IdP

Simply equipping the RP with an unforgeable identifier, however, does not miti-
gate existing vulnerabilities. During the execution of an SSO protocol, one must
verify the identity of the RP at every step. To detail the problems caused by
this, we carefully re-examine the communication between the RP and the IdP
via a client’s browser in existing protocols. We classify those interactions into
two main categories: HTTP(s) requests to a third-party server and an in-browser
communication channel.

HTTP(s) Requests to a Third-Party Server. In the first category, com-
prising of OpenID, Security Assertion Markup Language (SAML) [9], and
AAuth [31], the RP and the IdP communicate with each other via HTTP(s)
requests. The process of an RP trying to connect to an IdP is as follows. First,
the RP’s JavaScript code -running in the client’s browser- sends a request to
the RP. The RP sends a response containing an HTTP 3xx redirection (or,
alternatively, some kind of other redirection, for instance, via automatic form
submission) to the client. Based on this redirection, the RP’s code in the client
browser sends a request to the IdP. Finally, the browser communicates with the
IdP and completes the authentication process.
The problem: The interaction via third-party HTTP(s) requests is a one-way
channel, i.e., after an RP talks to an IdP, the IdP cannot send a response back. In
order to actually receive a response, the RP needs to tell the IdP where to forward
the client’s browser upon authentication. Generally, this is done by utilizing a
parameter in the request, such as the next url parameter in Listing 1.1. The
issue here is that this parameter can be modified by an attacker, and, in turn,
can lead to an identity impersonation attack. To mitigate this vulnerability, a
bi-directional communication channel is necessary.

In-browser Communication Channel. The second category describes proto-
cols that communicate via an in-browser communication channel. This includes

3 Impossible to forge, if web origin and its tracking is correctly implemented by the
browser and configured properly by the web site operator, i.e., according to RFC6454
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Facebook Connect4 [19] and other protocols in which the RP and the IdP use
JavaScript in the client’s browser to communicate with each other. The different
parties might communicate with each other through a number of mechanisms,
such as postMessage [14], URI fragments [14], or even Flash objects [33].
The problem: Two issues remain with this approach. First, the in-browser com-
munication channel is an undedicated, bi-directional channel without proper au-
thentication. For each message exchanged between the RP and the IdP, the origin
needs to be verified independently. Recent work has established that this verifica-
tion step is frequently forgotten by developers [21, 27]. The omission of this crucial
verification step can make the protocol vulnerable to impersonation attacks. For
instance, Hanna et al. [21] determined that two prominent SSO protocols, Face-
book Connect and Google Friend Connect, exhibit this problem. Further, Son et
al. [27] identified 85 popular web sites that were using the postMessage API in-
correctly. This demonstrates the requirement for a dedicated channel with built-
in authentication for the RP-IdP communication. Second, the in-browser com-
munication channel is insecure. In the vulnerability between Facebook and NY-
Times [33], attackers exploited this fact to eavesdrop on the in-browser communi-
cation between the IdP and the RP and intercept users’ access tokens while the au-
thentication was taking place. Once the attacker obtains this access token, he can
successfully impersonate the NYTimes to Facebook. Here, the channel’s insecurity
was introduced by the use of Flash objects. However, even if the communication
channel would be changed from Flash objects to postMessage, the vulnerability
would remain, as demonstrated by Barth et al. [14] and Yang et al. [36]. Further-
more, Cao et al. [17] show that the postMessage vulnerability originally proposed
by Barth et al. still exists in modern browsers for requests from the same domain,
such as different blogs or applications hosted under that same domain.

To mitigate all these threats, a dedicated, bi-directional, secure channel with
authentication is required. In the next section, we discuss the steps involved in
establishing such a channel.

4 Design
In the previous section, we argued for the necessity of a new, dedicated, bi-
directional, secure channel between the IdP and the RP, along with a new ap-
proach to verify the identity of the RP. Following, we discuss the design of our
SSO protocol, which addresses the shortcomings of prior protocol designs. We
introduce two solutions: a clean-slate redesign and a legacy-compatible proxy.
The clean-slate design (Section 4.1) must be deployed by the IdP as a new SSO
service; the proxy design (Section 4.2) serves as a “fourth-party” IdP and is
designed to be deployed by an RP that wants to protect its users from RP im-
personation attacks on legacy SSO services, while still supporting authentication
through existing, but insecure services.

4.1 IdP Deployment – Clean-slate Design

The core requirements of our clean-slate design of SSO are (i) the use of the
web origin as an RP and IdP identifier, and (ii) the use of a dedicated, secure,

4 Facebook Connect mixes the usage of HTTPS requests to a third-party server and
an in-browser communication channel.
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bi-directional channel with authentication for all communication between the
RP and the IdP (Section 3).

Identity Design. In our protocol, the identity of the RP is its web origin.
There are two alternatives for choosing this identity:

– Web Origin is defined by the RP. If the RP has its own web origin, such as the
NYTimes, the RP can simply define a sub-domain for its SSO communication.
For example, the NYTimes could make use of facebookconnect.nytimes.com for
all communication with Facebook Connect to authenticate users through SSO.

– Web Origin is provided by the IdP. If the RP does not have a web origin,
such as in the case of an application designed by a third-party web devel-
oper, the RP can adopt a sub-domain origin of the IdP (for example, applica-
tion1.connect.facebook.com) as its identity for communication with Facebook
during the authentication of users through SSO.

In both cases, the RP can leverage the sandbox tag defined in HTML5 to ensure
proper isolation of the web origin.

Communication Channel. Next, we will detail the life-cycle of a bi-
directional, authenticated, secure communication channel over the following
three steps: (i) establishing the channel, (ii) using the channel to communicate
securely, and (iii) destroying the channel.

Establishing the Channel: Handshake Protocol. To establish a secure commu-
nication channel between the RP and the IdP, JavaScript first creates a secure
socket that listens to connections from a given web origin (for example, the web
origin belonging to the RP), optionally specifying a target window (such as par-
ent), as shown in Listing 1.2. When the RP’s web page is loaded, its JavaScript
connects to the socket created by the IdP by specifying the target window (e.g.,
a reference to an inline frame) and the target origin (i.e., the IdP’s web origin),
c.f., Listing 1.2, line 11-14).

Listing 1.2. JavaScript Primitive for the Channel

1 parameters = {
2 mWindow : parent , // optional when listening

3 mOrigin : IdP/RP Origin ,
4 onMessage : function (m) { /* receiving message callback */ }
5 onConnect : function ( ) { /* creating channel callback */ }
6 onDestroy : function ( ) { /* destroying channel callback */ }
7 }
8 // Listening to a channel

9 var socket = new SecureSocket ( ) ;
10 socket . l i s t e n ( parameters )
11 // Creating a channel

12 var i f rame = document . getElementById("myid" ) ;
13 var socket = new SecureSocket ( ) ;
14 socket . connect ( parameters )

The handshake protocol establishes the secure channel between the RP and the
IdP, by exchanging their keys. The process includes the following five steps:
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1. The RP verifies the identity of the IdP and sends its public key (PK RP) to
the IdP.

2. Upon receipt of the public key from the RP, the IdP verifies the identity (web
origin) of the RP.

3. The IdP generates a session key (SK), encrypts it with the public key from
the RP, and sends the encrypted session key and an encrypted partial channel
number (PK RP(N IdP)) to the RP.

4. The RP decrypts the session key and partial channel number using its own pri-
vate key and responds with an encrypted partial channel number (SK(N RP)).
This channel number, and the channel number generated by the IdP in (3)
are then stored by the browser as an index to look up the session key.

5. With both parts of the channel number, the RP and the IdP can communicate
with each other. Both N IdP and N RP are needed to send a message, and
each message consists of a ControlByte (later used to determine the status of
the channel) and the message content, encrypted with the session key.

In the aforementioned steps, N IdP and N RP are used to look up the session
key by both the RP and the IdP, and the ControlByte is used to determine the
status of the current channel, such as whether it has been destroyed. During
the negotiation period, both partial channel numbers (N IdP and N RP) are
encrypted and protected. Later on, N IdP and N RP are not encrypted, and thus
easily modifiable. If an attacker modifies N IdP or N RP, however, a different
session key and message handler will be used to process the message, and, in
turn, it will result in the message being delivered to an incorrect channel. In the
absence of the correct keys, an entity listening on this channel will be unable to
decrypt the message and fail.
Use of the Channel: Sending Messages (Figure 1). After the channel is created,
messages can be sent. When either side wants to send a message, it calls the
JavaScript primitive socket.sendMessage(msg), which divides the input message
into small chunks (to fit the key size), appends the control byte to indicate the
status of current channel, encrypts all the divided chunks with the shared session
key, and appends N IdP+N RP to the result. This message is then sent via the
in-browser communication channel, which ensures the delivery of the message.

Fig. 1. Sending a message to the channel
between the client-side RP and the client-
side IdP

Fig. 2. Receiving a message from the
channel between the client-side RP and
the client-side IdP

Use of the Channel: Receiving Messages (Figure 2). When a message is sent
by one of the parties, the system first uses the N IdP and N RP to retrieve the
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session key and socket from the browser. The session key is used to decrypt the
encrypted message chunks and the ControlByte. These chunks are then stitched
back together accordingly and delivered to the processing function on the other
end of the corresponding socket.

Destroying a Channel: Releasing Resources. In the process of destroying a chan-
nel, socket.close() is called. When either the IdP or RP calls the close method,
the other side is notified and must close the channel as well.

For example, if the RP wants to close the channel during the communication,
it sends a message with the ControlByte set to 0. When the IdP receives this
message, it sends an equivalent response (with the ControlByte of 0) and releases
resources such as the channel number, session key, and socket. After the RP
receives the response message, it also releases its resources. This is a process
analogous to the closing handshake of a TCP network socket.

SSO Protocol over the Channel. Our secure communication channel be-
tween the RP and IdP can now be used in the design of a secure SSO protocol.
Traditionally, SSO is classified into two categories: OAuth-like protocols for au-
thorization and OpenID-like protocols for authentication. In the former, the RP
asks the IdP for an access token to fetch a user’s information from the IdP; in
the latter, the RP asks the IdP to verify the identity of a user. We describe both
paradigms in the context of our secure channel.

OAuth-like Protocol:

1. Client-side JavaScript code served by the RP initiates a connection with the
JavaScript code served by the IdP by establishing the secure channel.

2. The RP JavaScript requests a token, which can be used to access a user’s
data, from the IdP JavaScript.

3. The IdP authenticates the user, usually by having them log into the IdP’s
service.

4. When the user authenticates successfully, the IdP asks the user for permission
to allow the RP to access their information.

5. If permission is granted, the IdP then sends the token to the IdP JavaScript,
which forwards the token to the RP JavaScript.

6. The RP JavaScript sends the token to the RP server, which then uses that
token to request the user’s information from the IdP service.

OpenID-like Protocol:

1. JavaScript served by the RP establishes a secure channel to JavaScript served
by the IdP through our protocol.

2. The RP JavaScript asks the IdP JavaScript to authenticate the user.

3. The IdP server authenticates the user, usually by having them log into the
IdP service.

4. Upon successful authentication, the IdP server sends an authentication proof
(typically a token encrypted or signed with the IdP’s private key) to the IdP
JavaScript.

5. The IdP JavaScript relays the authentication proof to the RP JavaScript.
6. The RP JavaScript relays the authentication proof to the RP server.
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4.2 RP Deployment – Proxy Design

Many existing, unprotected protocol SSO implementations are currently de-
ployed, and migrating them to our secure design will take time since it requires
manual development effort. To assist in securing these legacy implementations,
we introduce a proxy that integrates them into our design, and allows for a
seamless transition.

The proxy mediates the communication between an RP and the IdP (Fig-
ure 3). It acts as a legacy RP to the legacy IdP, authenticating against it like
any other currently deployed RP, but with sufficient isolation to protect it from
identity impersonation attacks. Additionally, this proxy acts as a secure IdP to
the RP using our secure protocol.

Fig. 3. Overview of the proxy design. The secure RP is talking to our proxy through
the secure channel, and our proxy is talking to the legacy IdP using a legacy SSO
protocol, but contained in a secure, controlled environment.

Communication with the Legacy IdP. To communicate with the legacy
IdP, the proxy needs to act as a legacy RP. For the IdPs of most existing SSO
implementations (for example, Facebook Connect), we must register an appli-
cation for each user, and keep the application ID secret from attackers to avoid
any impersonation attacks. Specifically, only the legacy IdP and our proxy must
know the application ID.

After registering an application with the IdP, the proxy authenticates nor-
mally with the IdP and acquires the access token (for an OAuth-like protocol)
or proof of authentication (for an OpenID-like protocol). Since these tokens in-
corporate the privileges that an RP has over the authenticating user’s account,
and since some subset of these privileges will be ultimately used by the secure
RPs that communicate through our proxy, the proxy must request the total set
of permissions that will be needed by all the secure RPs. To accommodate dif-
ferent privileges levels, the proxy stores this confidential information inside its
own database on the proxy server side.

Since the communication with the legacy IdP takes place using an insecure
SSO implementation, the process should ideally be done in private browsing
mode on a secure machine with no other web sites open. This is to prevent
details such as the application ID of the proxy from being leaked to potential
attackers.

Communication with the Secure RP. After the initial setup, the secure RP
communicates only with our proxy, instead of the legacy IdP. Communication
between the RP and our proxy is done over the secure channel (Section 4.1).
We first authenticate the user, and then, for OAuth-like protocols, generate our
own token for the RP with a corresponding subset of the privileges granted to
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us by the legacy IdP. For OpenID-like protocols, the proxy can simply forward
the authentication proof directly to the RP.

Fetching the User’s Information. In an OAuth-like protocol, when the RP
asks for the user’s information using the token issued by us, the proxy sends
a request for this information to the legacy IdP with the token issued by that
legacy IdP. When the legacy IdP returns the requested information, the proxy
forwards the information to the RP.

5 Implementation
In this section, we present the implementation details of our system. First, we
introduce the implementation of our clean-slate design (Section 5.1). We im-
plemented the authenticated, bi-directional, secure channel as a layer on top of
the existing postMessage channel available in modern browsers, and then lever-
aged this channel to implement our SSO protocol. Next, we discuss a prototype
implementation of our proxy design (Section 5.2).

5.1 IdP Deployment

Our implementation of the clean-slate design is very lightweight: it consists of
only 252 lines of JavaScript code (excluding external libraries), 264 lines of
HTML code, and 243 lines of PHP code. The bi-directional secure channel with
authentication is implemented exclusively in JavaScript; the RP-side and IdP-
side code is implemented in HTML and PHP.

Our JavaScript implementation of the secure channel uses two external li-
braries, the JavaScript Cryptography Toolkit [3] and the Stanford JavaScript
Crypto Library [10], both for cryptographic purposes. The former is used for
public and private key generation and asymmetric encryption and decryption;
the latter is used for session key generation and symmetric encryption and de-
cryption. The public and private keys in the implementation are 512 bits, and
the session key is 128 bits. However, these are implementation details, and can
be modified to address different security requirements. As mentioned before, we
implemented the protocol by adding our security layer on top of the postMessage
functionality available in modern browsers, which provides a reliable, but inse-
cure, communication channel that guarantees in-order delivery of messages.

We use a socket pool for session tracking. For each incoming message, the
system looks in the socket pool for a channel with the corresponding N IdP and
N RP and, if one is found, fetches the socket and session key. Otherwise, a new
socket is created (Section 4.1), and kept track of in the socket pool.

To evaluate the practicality of our design, we created reference IdP and RP
implementations. A login interface for the IdP prompts the user to input his
username and password. The IdP’s server-side code looks up the credentials in a
database and, if the username and password match, it generates an access token
and transfers the token to the IdP JavaScript. Since the authentication process
involves multiple server-side pages, we load an iframe to embed the authentica-
tion process and communicate with the RP. This iframe talks to the IdP iframe,
which is responsible for authentication through another secure channel.
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5.2 Proxy RP Deployment

To demonstrate the feasibility of our proxy design, we implemented a prototype
RP that authenticates against Facebook through our proxy. The proxy process
works as follows: first, a user who wants to authenticate via SSO through our
proxy needs to register on our site. We enable the Facebook developer account
for that user and let the user register a Facebook application under his account.
This process is manual since it involves solving a simple captcha and acknowl-
edging the terms of service, but could theoretically be automated if endorsed
by Facebook. The user then provides the proxy’s application’s ID and secret
key, so that the proxy can act as the application. While technically not nec-
essary, we use the user’s account to register an application because it lets the
user maintain full control over the application, and the overall security is tied
to the user’s account. The whole process is done only once per user, as would
happen when installing a normal application. A similar system can be imple-
mented for Google’s SSO implementation, which also adopts a user application
key and secret to authenticate an application. In the OAuth case, the user will
then grant the proxy permissions to access his/her user data. As mentioned pre-
viously, these permissions are a superset of those that the proxy can provide to
an RP.

Afterwards, when a user visits an RP supported by our proxy, the SSO process
will be the same as with the clean-slate design in the IdP deployment. We use
Facebook’s SDK [1], safely isolated from the RP, on the server-side to fetch the
user’s data and forward them to the RP.

There are, however, some implementation concerns unique to the proxy de-
ployment:

Secrecy of the Legacy IdP Application ID. To guarantee the security of the
proxy design, the application ID used by the proxy to identify itself at the legacy
IdP must remain secret. In the case of the legacy IdP being Facebook Connect,
we take two measures to ensure this secrecy. First, we register a unique Facebook
application ID for each user. This is done so that an attacker cannot learn the
application ID by using the proxy service himself. Second, certain legacy IdPs,
such as Facebook, provide a sandbox mode [7] for developer use. This sandbox
mode isolates the application from all users except for the developer. In our case,
the “developer” is the user of the proxy implementation, and this functionality
allows us to keep the application ID secret.

Legacy IdP Terms of Service. When implementing the proxy design, care
must be taken to avoid violating the legacy IdP’s terms of service. We have
reviewed Facebook’s terms of service and determined that encouraging every
user to enable Facebook Developer Mode is acceptable. Additionally, we made
the legacy IdP portion of the proxy as lightweight as possible to avoid putting
any significant load on Facebook’s infrastructure.

Legacy IdP Access Token Expiration. Tokens acquired from legacy IdPs,
such as Facebook Connect, have an expiration time past which they cease grant-
ing access to a user’s data. For Facebook Connect, this expiration is 60 days from
the token’s issuance time. After these 60 days, a reacquisition of the token by
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our proxy has to occur. This requires the user to repeat the initial setup process,
which should be done in a private browsing mode to guarantee security. Tokens
granted by the proxy to the RP do not expire in the current implementation,
but introducing the functionality is straight-forwarding and requires only some
engineering effort.

6 Evaluation
To evaluate our design, we first formally verify the channel (Section 6.1). Fol-
lowing, we empirically examine existing vulnerabilities (Section 6.2). Finally, we
study the performance of our implementation to show that our protocol incurs
only a reasonable overhead for the security guarantees it provides (Section 6.3).

6.1 Formal Protocol Verification

We verify the correctness of our protocol with ProVerif [6, 16], an automatic
cryptographic protocol verifier based on the Dolev-Yao model [18]. ProVerif can
prove properties including secrecy, authentication, strong secrecy, and equiva-
lences of a protocol. For our formal verification, we require only the former two
properties.

Channel Verification. We model the channel and the attacker, and then verify
the channel using the attacker model.
Channel Model. Using ProVerif, we model our secure channel by using two
processes and one free channel according to our threat model (Section 2). These
two processes model the client-side and the server-side. The free channel, exposed
to the attacker by definition, is used to communicate between the client and the
server.

First, the RP sends its public key to the IdP. Second, the server verifies the
web origin (defined as a bitstring transmitted together with the public key in
the first step). This happens because browsers always send the web origin as
part of a message via the postMessage functionality. If the origin matches, we
generate a symmetric session key. Following, on the IdP side, the session key and
partial channel number N IdP are generated and encrypted. After receiving the
encrypted session key, the RP decrypts the message. It then encrypts its own,
generated partial channel number N RP with the session key. In the end, the
IdP can send messages securely by encrypting messages with the session key and
appending N IdP and N RP.
Attacker Model. In ProVerif, an attacker in the context of a secure channel
is an active and passive adversary who is capable of sending messages to either
party and also capable of eavesdropping on messages sent across the channel.
Results. After modeling the channel and attacker, ProVerif determined that
an attacker would be unable to obtain the plaintext of an encrypted message
sent over the secure channel. To further validate this assessment, we introduced
an intentional vulnerability into the protocol and verified that ProVerif was able
to produce a valid attack scenario in which the adversary was able to read the
message in the clear.

For this vulnerability, we simply removed the origin check, of the RP, that
is performed by the IdP. Once removed, ProVerif produced a counterexample
showing the attack scenario. The produced attack works as follows: a malicious
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RP directly sends its own PK RP to the IdP, and, in turn, acquires the session
key SK and channel number N IdP. Since the IdP does not verify the RP’s
identity, the malicious RP can impersonate the legitimate RP and talk to the
IdP as if it is the legitimate RP.

SSO Protocol Verification. We model the SSO protocol and the attacker in
ProVerif, and we verify its security guarantees in respect to our threat model.
SSO Protocol Model. We model the SSO protocol with two secure channels
and three processes. The three processes represent the client-side RP, the client-
side IdP and the server-side IdP. The client-side RP and the client-side IdP
communicate with each other over the secure channel (Section 6.1). The client-
side IdP and the server-side IdP communicate through HTTPS, a well-known
secure channel.
Attacker Model. In respect to our threat-model, attackers are either network
attackers or web attackers, as defined by Akhawe et al [11]. A network attacker
is a passive adversary capable of eavesdropping on the network traffic, while a
web attacker can also control malicious web sites and clients.
Results. Both channels are verified as secure with properly authenticated peers.
Because of this, an attacker cannot acquire any useful information from either
channel. ProVerif confirms this result.

Proxy Design Verification. To validate our proxy design, we model and verify
the proxy in ProVerif.
Proxy Design Model. We model the proxy design with one secure channel, one
insecure channel, and three processes. These three processes correspond to the
RP, our proxy (the new, secure, fourth-party IdP), and the real, legacy IdP. The
channel between the RP and our proxy is secure (as established in Section 6.1),
and the channel between our proxy and the legacy IdP is insecure.
Attacker Model. The attacker model follows the attacker model definition from
the Channel Verification (Section 6.1).
Results. Since all communication of our proxy and the real IdP occurs over
insecure channel, a malicious RP can intercept any ongoing communication.
Unsurprisingly, ProVerif yields that the information transmitted over the channel
between our proxy and the real IdP can be obtained by an attacker. Thus, as
discussed in Section 4.2, it is crucial that we need to keep the identity of our proxy
at the real IdP confidential (to prevent impersonation attacks on the proxy) and
that the initial setup, during which communication between the proxy and the
real IdP occurs, is performed in a secure environment, such as in private browsing
mode with no other web sites open to which information of the proxy might leak.

6.2 Security Analysis

Following, we study several existing RP impersonation vulnerabilities [33] and
show how our design mitigates such vulnerabilities effectively.

Facebook and NYTimes. The first vulnerability we discuss was found in the
interaction between the NYTimes as the RP and Facebook as the IdP. In this
vulnerability, a malicious RP impersonates the NYTimes by spoofing its app id.
In turn, Facebook continues to authenticate the user and generate an access
token that is supposed to be delivered to the NYTimes. However, due to nature
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of cross-domain communication in Adobe Flash, i.e., its “unpredictability” [4],
the in-browser channel can be eavesdropped on and the access token is being
leaked to the malicious RP, the actual initiator of the authentication request.
Mitigation. The vulnerability has two major components: a malicious RP im-
personating the NYTimes and the insecure communication channel between the
NYTimes and Facebook. Both vulnerabilities are mitigated in our protocol by
design. First, we leverage web origins to verify the identity of the RP, thus a mali-
cious RP cannot impersonate the NYTimes. Second, the communication channel
between the NYTimes and Facebook is over a secure channel with authentica-
tion, therefore, even if a malicious RP would acquire the messages transmitted,
it cannot easily decrypt and retrieve the clear message.

JanRain Wrapping GoogleID. A second interesting vulnerability was found
in how JanRain wraps GoogleID [33]. Here, a malicious RP registers itself with
JanRain. Initially, the malicious RP initiates the communication. Then, once
JanRain redirects the communication to Google, the malicious RP impersonates
the victim RP and sets the return URL to its own URL. Since Google is using
the HTTP redirection method (c.f., Section 3.2) to communicate with the RP,
confidential information will be leaked to the malicious RP.
Mitigation. In our design, when the RP talks to the IdP, all communication
occurs over a bi-directional secure channel. As such, when the real RP talks to
the IdP, the IdP will respond to the original, legitimate RP rather than to a
different, malicious RP. Thus, the vulnerability is mitigated by design.

Facebook and Zoho. Similar to the vulnerability found in how JanRain wraps
GoogleID, a vulnerability in the use of HTTP redirection was discovered between
Facebook and Zoho.com [33]. To exploit this vulnerability, after receiving the
authorization code from the redirect url of Zoho, the attacker sends a request
to Zoho and sets the service url to a malicious URL. Zoho fails the SSO, but
still redirects the user to the malicious URL.
Mitigation. The root cause of this vulnerability is very similar to 2). Since our
protocol leverages a bi-directional secure channel, a return URL is not required
in our design, thus preventing this vulnerability by design.

JanRain Wrapping Facebook. In this vulnerability, JanRain wraps Facebook
as the IdP [33]. Here, sears.com incorrectly set its whitelist to *.sears.com rather
than to the more restrictive rp.sears.com, thus exposing it to an attack similar
to the document.domain attack by Singh et al. [26].
Mitigation. Since our design specifically uses web origins as the identity of the
RP, the concept of a whitelist is irrelevant, thus preventing the misconfiguration
of any such whitelist by design.

Facebook Legacy Canvas Auth. Lastly, a third vulnerability that allows IdP
impersonation rather than RP impersonation was discovered in how Facebook
is being used as the IdP. In this case, the vulnerability lies in in the fact that,
for Facebook’s legacy canvas authentication [33], the generated signature is not
properly verified by a Facebook app (specifically, FarmVille.com). Because of
this, the RP renders itself vulnerable to IdP impersonation attacks, leading to
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arbitrary user impersonation attacks and resulting leaks of private or confidential
user data.
Mitigation. Since we transmit every message in an established secure channel
that provides authentication, it is not necessary for the RP to verify any signa-
ture itself. For this reason, it reduces the risk of missing or omitted signature
verification steps and preventing the impersonation attacks that might arise.

6.3 Performance Analysis

Environment and Methodology. Our client-side experiment was performed
on a 2.67GHz Intel(R) i7 CPU with four physical cores and 8GB of memory
running Ubuntu 13.04 64-bit. The browser at the client-side was Firefox 22.0
in the 32-bit version. The RP server was deployed on a CentOS 64-bit server
with a 2.50GHz Intel(R) Xeon(R) CPU with eight physical cores and 16GB
memory. The IdP server was deployed on a CentOS 64-bit server with a 2.80GHz
Intel(R) Xeon(R) CPU with four cores and 16GB memory. The average round-
trip network latency between the client and the two servers was measured to be
about 50ms.

To measure the delay of each step of the secure channel and an instantiation
of our SSO protocol, we make use of the JavaScript primitive Date() and sub-
tract the monitored value at start and end points to calculate the delay. Each
experiment was repeated ten times to calculate the average delay and to account
for outliers and deviations.

Table 1. Breakdownof the authentication performance of our prototype implementation

Operation Delay

(1) Creating the Channel between RP and IdP 164±11ms

(2) Creating IdP Iframe 57±3ms

(3) Sending the First Message from RP to IdP 32±2ms

(4) Creating IdP Iframe for Authentication 57±3ms

(5) Creating the Second Channel inside IdP 165±11ms

(6) Authenticating the User 56±4ms

(7) Getting the User’s Permission 57±3ms

(8) Sending the Token inside IdP Iframe 32±2ms

(9) Sending the Token to RP 33±2ms

Total 653±21ms

Note: Step (2), (4), (6) and (7) are extremely depended on the network latency.

Performance of SSO Implementation. We measure the performance of our
prototype implementation of our SSO protocol. The results are shown in Table 1
and they are divided into three categories: channel creation, network delay, and
message passing. (1) and (5) correspond to channel creation, which takes about
164ms. (2), (4), (6) and (7) are almost exclusively driven by the network delay. (2)
and (4) are to fetch content from the IdP, and (6) and (7) are used to communicate
with the IdP. In the end, (3), (8), and (9) are used to communicate between iframes
within the browser through our established secure channel, which is about 32ms.
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Overall, the total overhead of our prototype implementation is only 653ms, i.e.,
acceptable from a user’s perspective given the strong security guarantees of our
SSO protocol.

7 Related Work
We present related work that looks for vulnerabilities in existing SSO protocol
designs and work investigating protection mechanisms for existing SSO protocols.

7.1 Vulnerability Identification

Much research has been carried out to identify vulnerabilities in existing SSO
protocols. The work falls into three types: manual to mostly manual analysis,
automatic analysis, and user studies.

Table 2. Comparison and positioning of our work with related work

Preventing Proactive

Deployment at Protecting Impersonation Deployment

Attacks

InteGuard [35] IdP and Gateway
IdP users and

✓ ✗
in-network devices

AUTHSCAN [13] IdP IdP users ✓ ✗

Explicating SDKs [34] IdP IdP users ✓ ✗

Defensive JavaScript [15] IdP and RP IdP and RP users ✗ ✓

Our Work IdP and RP IdP and RP users ✓ ✓

– Manual analysis to mostly manual analysis.Wang et al. [33] propose a browser
relay message analyzer and identify eight vulnerabilities in protocol imple-
mentations through by manually analyzing them. Sun et al. [28] perform
an empirical study to identify vulnerabilities in three major OAuth identity
providers (IdP) (Facebook, Microsoft, and Google). Uruena et al. [32] man-
ually identify privacy leaks in SSO protocols, which are beyond the scope of
the paper, and they propose short-term and long-term solutions. Pfitzmann et
al. [25] empirically analyze SSO protocols and identify several vulnerabilities.

– Automatic Analysis. Bai et al. [13] introduce AUTHSCAN, a tool that au-
tomatically extracts a specification from SSO implementation and identifies
vulnerabilities from the extracted specification through formal analysis. Sim-
ilarly, Explicating SDKs by Wang et al. [34] extracts the underlying assump-
tions of SSO protocols from their respective SDKs and detects corresponding
vulnerability patterns. On the other hand, Armando et al. [12] formally ana-
lyze the SAML 2.0 protocol and identify vulnerabilities in the protocol. Lastly,
much work based on formal analysis [20, 22–24] has been carried out focusing
on the Facebook Connect protocol, SAML, and OAuth respectively.

– User Studies. A different categories of vulnerabilities, namely denial of service,
such as single point-of-failure related issues, have been highlighted by Sun et
al. [30] in an empirical user study to gauge the reaction and opinion on SSO
protocols by its respective users. Overall, their study shows that 26% of users
express concerns about denial of service attacks on the identity provider, i.e.,
concerns about attacks preventing them from authenticating to the RP.
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7.2 Defense Mechanism

InteGuard [35] describes a proxy in between the client’s browser and the IdP.
InteGuard extracts a set of invariant relations among HTTP messages it observes
and deduces their relation to the security of the protocol. Due to its nature,
InteGuard is deployed at the server-side together with a server’s load balancer
or as process at client’s browser. Defensive JavaScript [15] on the other hand is a
subset of the JavaScript language that guarantees that scripts integrity is being
kept even in an adversarial environment. Alternatively, an OpenIDemail enabled
browser [29] modifies the client browser to support OpenID natively and hides
the OpenID identifiers from users by using their existing email accounts.

Prior work compares to our protocol as follows:

– Deployment by the IdP. All existing approaches can be deployed by the IdP.
However, except for Defensive JavaScript [15], they reactively identify and
mitigate vulnerabilities in existing and deployed SSO implementations. In-
stead, our framework proactively mitigates those vulnerabilities from the start
by addressing the root cause (analogously to how memory-safe languages ad-
dress the root cause of memory corruption vulnerabilities). It is important
to note that Defensive JavaScript [15] is complementary to our approach.
First, it uses a different threat model than we do, i.e., a benign RP might be
compromised. In our threat model, however, a benign RP must remain un-
compromised. Second, while the communication is secured in our protocol, in
the case of Defensive JavaScript the communication between the RP and the
IdP remains vulnerable. Thus, a malicious party can sniff or modify messages,
as in the case of the NYTimes and Facebook [33] attack.

– Deployment by non-IdP. InteGuard [35] can also be deployed by the other enti-
ties, essentially acting as a gateway or firewall, thus protecting a set of physical
machines with different users behind it. For example, if InteGuard would be
deployed at a university, it protects all machines at the university, but a stu-
dent connecting to a RP from home would not be protected. In contrast, our
protocol protects users regardless of where they are connecting from.
Alternatively, in the case of OpenIDemail, a compatible browser [29] must
be used by the user, which is generally considered an impractical burden to
the user, and hard to enforce on a large scale. Our design, regardless of its
actual deployment scenario, does not require any such modification to the
user’s browser.

8 Conclusion
In this paper, rather than identifying individual vulnerabilities in SSO protocols,
we determined the root cause of why RP impersonation attacks exist: an unded-
icated, insecure, one-way channel between the RP and the IdP. Based on our
findings, we propose to abandon simple HTTP redirection or the raw in-browser
communication channel currently used when designing SSO protocols. Instead,
a dedicated bi-directional secure channel is needed that can be built on top of
existing, in-browser communication channels.

We introduced a technique to establish such a channel securely, proposed a
SSO protocol that uses a channel established with our method, and verified
the correctness of our protocol formally with ProVerif [6], which was unable
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to create an attack scenarios in respect to our threat model. Additionally, we
provide an example of a vulnerability introduced into the protocol deliberately,
for which ProVerif identified the vulnerability correctly and generated a valid
attack scenario.

In addition to our clean-slate and secure SSO protocol design, we detailed a
proxy that allows and supports a smooth transition from existing SSO protocols
to our new and secure protocol. The design of this proxy is formally verified in
respect to our threat model.

Finally, we evaluated the performance and overhead of our SSO protocol im-
plementation. With an overall small latency overhead of about 650ms, and a
clear bottleneck in our prototype implementation in the generation of the pri-
vate and public key that can be remedied with some engineering effort, our
new SSO protocol proves to have a clearly acceptable overhead given its strong
security guarantees.
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Abstract. In cloud computing, efficiencies are reaped by resource shar-
ing such as co-location of computation and deduplication of data. This
work exploits resource sharing in virtualization software to build a pow-
erful cache-based attack on AES. We demonstrate the vulnerability by
mounting Cross-VM Flush+Reload cache attacks in VMware VMs to
recover the keys of an AES implementation of OpenSSL 1.0.1 running
inside the victim VM. Furthermore, the attack works in a realistic set-
ting where different VMs are located on separate cores. The modified
flush+reload attack we present, takes only in the order of seconds to min-
utes to succeed in a cross-VM setting. Therefore long term co-location, as
required by other fine grain attacks in the literature, are not needed. The
results of this study show that there is a great security risk to OpenSSL

AES implementation running on VMware cloud services when the dedu-
plication is not disabled.

Keywords: Cross-VM, memory deduplication, flush+reload, cache
attacks.

1 Introduction

In recent years we witnessed mass adoption of cloud based storage and compute
systems such as Dropbox, Amazon EC2 and Microsoft Azure. Rather than ac-
quiring and maintaining expensive workstations, clusters or servers, businesses
can simply rent them from cloud service providers at the time of need. However,
as with any new technology, cloud systems also come with problems of their
own, namely co-residency data leakage problems. The data leakage problem is
an indirect outcome of cloud’s temperament. By definition a cloud system allows
multiple users to share the same physical machine rather than assigning a dedi-
cated machine to every user. Co-residency keeps the number of physical machines
needed and the operating costs such as maintenance, electricity and cooling low
but at a price. In cloud systems, different users run their virtual machines (VM)
on the same physical machine separated only by a virtualization layer provided
by a virtual machine manager (VMM) and supervised by a hypervisor. In theory
sandboxing enforced by the VMM should suffice to completely isolate VMs from
each other, but as elegantly stated many times: “In theory there is no difference
between theory and practice. But in practice, there is.”

A serious security problem that threatens VM isolation, stems from the fact
that people are using software libraries that are designed to run on single-user
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servers and not on shared cloud hardwares and VM stacks. For privacy critical
data, especially cryptographic data, this gives rise to a blind spot where things
may go wrong. Even though classical implementation attacks targeting cryp-
tosystems featuring RSA and AES have been studied extensively, so far there
has been little discussion about safe implementation of cryptosystems on cloud
systems. For instance, implementation attacks on AES implementations, as pro-
posed by Bernstein [8] and later [9,13], use the timing difference of cache accesses
to recover the secret key. A more recent study by Gullasch et.al [13] applies
Flush+Reload attack between AES memory accesses. The attack recovers the
key with as less as 100 encryptions. Even though these aforementioned methods
have been implemented and the vulnerabilities are public, most cryptographic
libraries still use vulnerable and unpatched implementations. Considering the
level of access an adversary will have on a virtual machine, any of these attacks
and many novel attacks can and will be realized on the cloud.

Another feature that can break process isolation or VM isolation is dedupli-
cation. Its exploitability has been shown in several studies. In 2011, Suzaki et
al. [24] exploited an OS-optimization, namely Kernel Samepage Merging (KSM),
to recover user data and subsequently identify a user from a co-located VM in a
Linux Kernel-based Virtual Machine (KVM) [2] setting. In this study, authors
were able to exploit the side-channel leakage to establish a covert communication
channel between VMs and used this channel to detect co-residency with a target
VM. Also in 2011 Suzaki et al. [23] exploited the same memory deduplication
feature to detect processes like sshd, apache2, IE6 and Firefox running on
co-resident VM. The significance of this study is that not only it is possible to
exploit the memory deduplication to detect the existence of a VM, but one can
also detect the processes running on the target VM. This leads to cipher specific
attacks and information thefts, as demonstrated by Suzaki et al. in [22]. In this
latest study, the authors were able to detect security precautions such as anti-
virus software running on the co-resident target VM. Even though these studies
paved the way for cross-VM process detection and shed light on vulnerabilities
enabled by memory deduplication, a concrete attack recovering cryptographic
keys has yet to be shown.

In [31] Weiß et al. for the first time presented a traditional cache timing attack
on AES running inside a L4Re VM on an ARM Cortex-A8 single-core CPU with
a Fiasco.OC microkernel. The attack is realized using Bernstein’s correlation
attack and targets several popular AES implementations including the one in
OpenSSL [26]. The significance of this work is that it showed the possibility of
extracting even finer grain information (AES vs. ElGamal keys in [34]) from a
co-located VM. Recently, Irazoqui et al. [15] used Bernstein’s attack to partially
recover an AES key from a cross-VM attack running in XEN and VMware.
While that work is the first one to show that fine-grain side-channel attacks can
be mounted in cloud-like environments, the present attack is more efficient since
it needs much less encryptions.
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Our Contribution

In this work, we show a novel cache-based side-channel attack on AES that—by
employing the Flush+Reload technique—enables, for the first time, a practical
full key recovery attack across virtual machine boundaries in a realistic cloud-like
server setting. The attack takes advantage of deduplication mechanism called the
Transparent Page Sharing which is employed by VMware virtualization engine
and is the focus of this work. The attack works well across cores, i.e. it works
well in a high-end server with multiple cores scenario that is commonly found in
cloud systems. The attack is, compared to [13], minimally invasive, significantly
reducing requirements on the adversary: memory accesses are minimal and the
accesses do not need to interrupt the victim process’ execution. This also means
that the attack is hardly detectable by the victim. Last but not least, the attack
is lightning fast: we show that, when running in a realistic scenario where an
encryption server is attacked, the whole key is recovered in less than 10 seconds
in non-virtualized setting (i.e. using a spy process) even across cores, and in less
than a minute in virtualized setting across VM boundaries.
In summary, this work

– shows for the first time that deduplication enables fine grain cross-VM at-
tacks;

– introduces a new Flush+Reload -based attack that does not require inter-
rupting the victim after each encryption round;

– presents the first practical cross-VM attack on AES; the attack is generic
and can be adapted to any table-based block ciphers.

Since the presented attack is minimally invasive, it is very hard to detect. Finally,
we also show that these attacks can be prevented without too much overhead.

After reviewing additional related work in Section 2 we detail on existing
cache-based side-channel attacks in Section 3 and on memory deduplication in
Section 4. The proposed attack is introduced in Section 5. Results are presented
in Section 6. Before concluding in Section 8 we discuss possible countermeasures
in Section 7.

2 Related Work

The first consideration of cache memory as a covert channel to extract sensitive
information was mentioned by Hu [14]. Later in 1998 Kesley et al. [16] mentioned
the possiblity of applying the cache as a resource to perform attacks based on
cache hit ratio. One theoretical example of cache attacks was studied later in 2002
by Page [20]. One year later, Tsunoo et al. [27] investigated timing side channel
attacks due to internal table look up operations in the cipher that affect the
cache behavior. Over the last decade, a great number of research has been done
in the field of cache-based side-channel attacks. One of the studies is the time
driven attack that was done by Bernstein when he observed that non-constant
time implementations of cryptographic algorithms leak sensitive information in
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terms of time which can be used to extract the secret key [8]. His target was
the OpenSSL implementation of the cryptographic algorithm AES. Neve further
analyzes Bernstein’s attack and the causes for observed timing variations in his
PhD thesis [17]. Bonneau and Mironov’s study [9] shows how to exploit cache
collisions in AES as a source for time leakage.

Trace driven attacks were investigated by Osvik et al. [19] where they tried the
prime and probe attack on AES. In the aforementioned study, a spy process fills the
cache with attacker’s own data and then waits for the victim to run the encryp-
tion. When the encryption is finished, the attacker tries to access her own data
and measures the access time to see which cache lines have been evicted from the
cache. Then, comparing the access times with the reference ones, attacker discov-
ers which cache lines were used. In the same study, authors also analyze evict+time
method that consists of triggering two encryptions of the same plaintext and ac-
cessing some cache lines after the first encryption to see which lines are again
loaded by the second encryption. In the same line, Acıiçmez and Koç [5] inves-
tigated a collision timing attack in the first and the second round of AES. Also,
in another study done by Gullasch et al. [13] flush+reload is used to attack AES
encryption by blocking the execution of AES after each memory access.

Even though AES is a popular target for side-channel cache attacks, it is not
the only target. Acıiçmez in [4] was the first one discovering that the instruction
cache as well as the data cache leaked information when performing RSA encryp-
tion. Brumley and Boneh performed a practical attack against RSA in [10]. Later
Chen et al. developed the trace driven instruction cache attacks on RSA. Finally
Yarom et al. were the first ones proposing a flush+reload attack on RSA using
the instruction cache [33]. Finally, again Yarom et al. used the Flush+Reload
technique to recover the secret key from a ECDSA signature algorithm [32].

In a cloud environment, several studies have been conducted with the aim of
breaking the isolation between co-located VMs to perform side-channel attacks.
In 2009, Ristenpart et al. [21] demonstrated that it is possible to solve the co-
location problem in the cloud environment and extract sensitive data from a
targeted VM. In the study, Amazon’s EC2 servers were targeted and using their
IP addresses provided by Amazon, VMs were mapped to various types of cloud
instances. Using a large set of IP-instance type matches and some network delay
timing measurements, they were able to identify where a particular target VM is
likely to reside, and then instantiate new VMs until one becomes co-resident with
the target VM. Along with the placement information, they exploited Amazon
EC2’s sequential placement policy and were able to co-locate two VMs on a
single physical machine with 8% probability. Even further, the authors show
how cache contention between co-located Xen VMs may be exploited to deduce
keystrokes with high success probability. By solving the co-location problem,
this initial result fueled further research in Cross-VM side-channel attacks.

After solving the co-location problem, stealing fine grain secret information
from a target turns into an ordinary side-channel cache attack. In 2012, Zhang
et al. [34] presented an access-driven side-channel attack implemented across
Xen VMs that manages to extract fine-grain information from a victim VM.
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In the study, authors managed to recover an ElGamal decryption key from a
victim VM using a cache timing attack. The significance of this work, is that
for the first time the authors were able to extract fine grain information across
VMs—in contrast to the earlier work of Ristenpart et al. [21] who managed to
extract keystroke patterns. Later, Yarom et al. in [33] suggested that their attack
could be used in a virtualized environment but they never tried it in a real cloud
environment. Again, for the AES case, Weiss et al. used Bernstein’s attack on
an ARM system in a virtualized environment to extract information about AES
encryption keys [31].

Finally in 2014 Irazoqui et al. [15] implemented Bernstein’s attack for the first
time in a virtualized environment where Xen and VMware VMMs with cross-
VM setting were used. In the study, authors were able to recover AES secret
key from co-resident VM running AES encryption using the timing difference
between cache line accesses. The downside of the attack was that average of 229

encryption samples were needed for the attack to work which takes about 4-5
hours on a modern Core i5 platform.

3 Cache-Based Side-Channel Attacks

In this work we demonstrate a fine-grain cross-VM attack that one might use
in the real world. We not only want the attack to allow us to recover fine-grain
information, but also work in a reasonable amount of time, with assumptions one
can fulfill rather easily on cloud systems. Since Bernstein’s attack [8] numerous
trace-driven, access-driven and time-driven attacks have been introduced mainly
targeting AES implementations. We will employ a new variant: the flush and
reload attack on AES. In what follows we explain the basics of cache side-
channel attacks, and briefly review the many cache side-channel attacks that
have been used to attack AES.

Cache Architecture. The cache architecture consists of a hierarchy of memory
components located between the CPU cores and the RAM. The purpose of the
cache is to reduce the average access time to the main memory by exploiting
locality principles. When the CPU needs to fetch data from memory, it queries
the cache memory first to check if the data is in the cache. If it is, then it can
be accessed with much smaller delay and in this case it is said that a cache hit
has occurred. When the data is not present in the cache, it needs to be fetched
from a higher-level cache or even from main memory. This results in greater
delays. This case is referred to as a cache miss. When a cache miss occurs, the
CPU retrieves the data from the memory and a copy is stored in the cache.
The CPU loads bigger blocks of data, including data in nearby locations, to
take advantage of spatial locality. Loading the whole block of data improves the
execution performance because values stored in nearby locations to the originally
accessed data are likely to be accessed.

The cache is organized into fixed sized cache lines, e.g of l bytes each. A cache
line represents the partitions of the data that can be retrieved or written at
a time when accessing the cache. When an entry of a table stored in memory
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is accessed for the first time, the memory line containing the retrieved data
is loaded into the cache. If the process tries to access to the same data from
the same memory line again, the access time will be significantly lower, i.e. a
cache hit occurs. Therefore—for a cryptographic process—the encryption time
depends directly on the accessed table positions, which in turn depend on the
secret internal state of the cipher. This timing information can be exploited
to gain information about the secret key that is being used in the encryption.
Also, in case that there are no empty (invalid) cache lines available, one of the
data bearing lines gets reallocated to open up space for the the incoming line.
Therefore, cache lines that are not recently accessed are evicted from cache.

Exploiting Cache Timing Information. Up until this point, we established
that a cache miss takes more time to be processed than a cache hit. Using the
resulting state-dependent timing information, an attacker can obtain sensitive in-
formation from an encryption process and use this information to recover infor-
mation about the secret key, eventually resulting in a full key recovery. The run-
time of a fast software implementation of a cipher like AES [18] often heavily de-
pends on the speed at which table look ups are performed. A popular implemen-
tation style for the AES is the T table implementation of AES [11] which com-
bines the SubBytes, ShiftRows and MixColumns operations into one single table
look up per state byte, along with XOR operations. This operation is called the
TableLookUp operation. The advantage of this implementation style is that it al-
lows the computation of one round using only table look-ups and XOR operations
which is much faster than performing the actual finite-field arithmetic and logic
operations. Compared to using standard S-boxes, T table based implementations
use more memory, but the encryption time is significantly reduced, especially on
32-bit CPUs. For this reason, almost all of the current software implementations
of the AES encryption for high-performance CPUs are T table implementations.

Note that the index of the loaded table entry is determined by a byte of the
cipher state. Hence, information on which table values have been loaded into
cache can reveal information about the secret state of AES. Such information
can be retrieved by monitoring the cache directly, as done in trace-driven cache
attacks. Similar information can also be learned by observing the timing behavior
of multiple AES executions over time, as done in time-driven cache attacks.
Finally, there are access driven cache attacks, which require the attacker to
learn which cache lines have been accessed (like trace-driven attacks), but (like
timing-driven attacks) do not require detailed knowledge on when and in what
order the data was accessed. So the difference between these classes of attacks
is the attacker’s access capabilities:

– Time driven attacks are the least restrictive type with the only assumption
that the attacker can observe the aggregated timing profile of a full execution
of a target cipher.

– Trace driven attacks assume the attacker has access to the cache profile
when the targeted program is running.

– Access driven attacks assume only to know which sets of the cache have
been accessed during the execution of a program.
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The attacks presented in this paper belong to a sub-class of access-driven cache
attacks, which we discuss next.

3.1 The Flush+Reload Technique

The Flush+Reload attack is a powerful cache-based side-channel attack tech-
nique first proposed in [13], but was first named in [33]. It can be classified as
an access driven cache attack. It usually employs a spy process to ascertain if
specific cache lines have been accessed or not by the code under attack. Gul-
lasch et al. [13] first used this spy process on AES, although the authors did not
brand their attack as Flush+Reload at the time. Here we briefly explain how
Flush+Reload works. The attack is carried out by a spy process which works in
3 stages:

Flushing stage: In this stage, the attacker uses the clflush command to flush
the desired memory lines from the cache hence make sure that they have to
be retrieved from the main memory next time they need to be accessed.
We have to remark here that the clflush command does not only flush the
memory line from the cache hierarchy of the corresponding working core, but
it flushes from all the caches of all the cores in the PC. This is an important
point: if it only flushed the corresponding core’s caches, the attack would
only work if the attacker and victim’s processes were co-residing on the
same core. This would have required a much stronger assumption than just
being in the same physical machine.

Target accessing stage: In this stage the attacker waits until the target runs
a fragment of code, which might use the memory lines that have been flushed
in the first stage.

Reloading stage: In this stage the attacker reloads again the previously flushed
memory lines and measures the time it takes to reload. Depending on the
reloading time, the attacker decides whether the victim accessed the memory
line in which case the memory line would be present in the cache or if the vic-
tim did not access the corresponding memory line in which case the memory
line will not be present in the cache. The timing difference between a cache
hit and a cache miss makes the aforementioned access easily detectable by
the attacker.

The fact that the attacker and the victim processes do not reside on the same
core is not a problem for the Flush+Reload attack because even though there
can exist some isolation at various levels of the cache, in most systems there is
some level shared between all the cores present in the physical machine. There-
fore, through this shared level of cache (typically the L3 cache), one can still
distinguish between accesses to the main memory.

4 Memory Deduplication

Memory deduplication is an optimization technique that was originally intro-
duced to improve the memory utilization of VMMs. It later found its way into
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common non-virtualized OSs as well. Deduplication works by recognizing pro-
cesses (or VMs) that place the same data in memory. This frequently happens
when two processes use the same shared libraries. The deduplication feature elim-
inates multiple copies from memory and allows the data to be shared between
users and processes. This method is especially effective in virtual machine envi-
ronments where multiple guest OSs co-reside on the same physical machine and
share the physical memory. Consequently, variations of memory deduplication
technology are now implemented in both the VMware [28,29] and the KVM [3]
VMMs. Since KVM converts linux kernel into a hypervisor, it directly uses KSM
as page sharing technique, whereas VMware uses what is called Transparent Page
Sharing(TPS). Although they have different names, their mechanism is very sim-
ilar; the hypervisor looks for identical pages between VMs and when it finds a
collision, it merges them into one single page.

Even though the deduplication optimization method saves memory and thus
allows more virtual machines to run on the host system, it also opens door to
side-channel attacks. While the data in the cache cannot be modified or cor-
rupted by an adversary, parallel access rights can be exploited to reveal secret
information about processes executing in the target VM. Also, an adversary can
prime the cache and wait for the victim to access some of this primed data. The
accessed/replaced cache data reveals information about the victims behavior. In
this study, we will focus on the Linux implementation of Kernel Samepage Merg-
ing (KSM) memory deduplication feature and on TPS mechanism implemented
by VMware.

4.1 KSM (Kernel Same-page Merging)

KSM is the Linux memory deduplication feature implementation that first ap-
peared in Linux kernel version 2.6.32 [3]. In this implementation, KSM kernel
daemon ksmd, scans the user memory for potential pages to be shared among
users [7]. Also, since it would be CPU intensive and time consuming, instead of
scanning the whole memory continuously, KSM scans only the potential candi-
dates and creates signatures for these pages. These signatures are kept in the
deduplication table. When two or more pages with the same signature are found,
they are cross-checked completely to determine if they are identical. To create
signatures, the KSM scans the memory at 20 msec intervals and at best only
scans the 25% of the potential memory pages at a time. This is why any mem-
ory disclosure attack, including ours, has to wait for a certain time before the
deduplication takes effect upon which the attack can be performed. During the
memory search, the KSM analyzes three types of memory pages [25];

– Volatile Pages: Where the contents of the memory change frequently and
should not be considered as a candidate for memory sharing.

– Unshared Pages: Candidate pages for deduplication where are the areas
that the madvise system call advises to the ksmd to be likely candidates for
merging.

– Shared Pages: Deduplicated pages that are shared between users or pro-
cesses.
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Fig. 1. Memory Deduplication Feature

When a duplicate page signature is found among candidates and the contents are
cross-checked, ksmd automatically tags one of the duplicate pages with copy-on-
write (COW) tag and shares it between the processes/users while the other copy
is eliminated. Experimental implementations [3] show that using this method, it
is possible to run over 50 Windows XP VMs with 1GB of RAM each on a physical
machine with just 16GB of RAM. As a result of this, the power consumption
and system cost is significantly reduced for systems with multiple users.

5 CFS-free Flush+Reload Attack on AES

In this section we will describe the principles of our Flush+Reload attack on
the C-implementation of AES in OpenSSL. In [13] Gullasch et al. described a
Flush+Reload attack on AES implementation of the OpenSSL library. However
in this study, we are going to use the Flush+Reload method with some modi-
fications that from our point of view, have clear advantages over [13]. Prior to
the comparison with other cache side channel attacks, a detailed explanation of
our Flush+Reload spy process is given along with the attack steps. We consider
two scenarios: the attack as a spy process running in the same OS instance as
the victim (as done in [13]), and the attack running as a cross-VM attack in a
virtualized environment.
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5.1 Description of the Attack

As in prior Flush+Reload attacks, we assume that the adversary can monitor
accesses to a given cache line. However, unlike the attack in [13], this attack

– only requires the monitoring of a single memory line; and
– flushing can be done before encryption, reloading after encryption, i.e. the
adversary does not need to interfere with or interrupt the attacked process.

More concretely, the Linux kernel features a completely fair scheduler which
tries to evenly distribute CPU time to processes. Gullasch et al. [13] exploited
Completely Fair Scheduler (CFS) [1], by overloading the CPU while a victim
AES encryption process is running. They managed to gain control over the CPU
and suspend the AES process thereby gaining an opportunity to monitor cache
accesses of the victim process. Our attack is agnostic to CFS and does not require
time consuming overloading steps to gain access to the cache.

We assume the adversary monitors accesses to a single line of one of the
T tables of an AES implementation, preferably a T table that is used in the last
round of AES. Without loss of generality, let’s assume the adversary monitors
the memory line corresponding to the first positions of table T , where T is the
lookup table applied to the targeted state byte si, where si is the i-th byte
of the AES state before the last round. Let’s also assume that a memory line
can hold n T table values, e.g, the first n T table positions for our case. If si
is equal to one of the indices of the monitored T table entries in the memory
line (i.e. si ∈ {0, . . . , n} if the memory line contains the first n T table entries)
then the monitored memory line will with very high probability be present in
the cache (since it has been accessed by the encryption process). However, if
si takes different values, the monitored memory line is not loaded in this step.
Nevertheless, since each T table is accessed l times (for AES-128 in OpenSSL,
l = 40 per Tj), there is still a probability that the memory line was loaded
by any of the other accesses. In both cases, all that happens after the T table
lookup is a possible reordering of bytes (due to AES’s Shift Rows), followed by
the last round key addition. Since the last round key is always the same for si,
the n values are mapped to n specific and constant ciphertext byte values. This
means that for n out of 256 ciphertext values, the monitored memory line will
always have been loaded by the AES operation, while for the remaining 256−n
values the probability of having been reloaded is smaller. In fact, the probability
that the specific T table memory line i has not been accessed by the encryption
process is given as:

Pr [no access to T [i]] =

(
1− t

256

)l

Here, l is the number of accesses to the specific T table. For OpenSSL 1.0.1

AES-128 we have l = 40. If we assume that each memory line can hold t = 8
entries per cache line, we have Pr [no access to T [i]] = 28%. Therefore it is easily
distinguishable whether the memory line is accessed or not. Indeed, this turns
out to be the case as confirmed by our experiments.
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Algorithm 1. Recovery algorithm for key byte k0
Input : X0 //Reload vector for ciphertext byte 0

Output: k0 //Correct key byte 0

forall xj ∈ X0 do
//Threshold for values with low reload counter.

if xj < Low counter threshold then
for s = 0 to n do

//xor with each value of the targeted T table memory line

K0[j ⊕ T [s]]++;

end
end

end
return argmaxk(K0[k]);

In order to distinguish the two cases, all that is necessary is to measure the
timing for the reload of the targeted memory line. If the line was accessed by
the AES encryption, the reload is quick; else it takes more time. Based on a
threshold that we will empirically choose from our measurements, we expect
to distinguish main memory accesses from L3 cache accesses. For each possible
value of the ciphertext byte ci we count how often either case occurs. Now, for
n ciphertext values (the ones corresponding to the monitored T table memory
line) the memory line has always been reloaded by AES, i.e. the reload counter
is (close to) zero. These n ciphertext values are related to the state as follows:

ci = ki ⊕ T
[
s[i]

]
(1)

where the s[i] can take n consecutive values. Note that Eq. (1) describes the
last round of AES. The brackets in the index of the state byte s[i] indicate the
reordering due to the Shift Rows operation. For the other values of ci, the reload
counter is significantly higher. Given the n values of ci with a low reload counter,
we can solve Eq. (1) for the key byte ki, since the indices s[i] as well as the table

output values T
[
s[i]

]
are known for the monitored memory line. In fact, we get

n possible key candidates for each ci with a zero reload counter. The correct key
is the only one that all n valid values for ci have in common.

A general description of the key recovery algorithm is given in Algorithm 1,
where key byte number 0 is recovered from the ciphertext values corresponding
to n low reload counter values that were recovered from the measurements.
Again, n is the number of T table positions that a memory line holds. The
reload vector Xi = [x(0), x(1), . . . , x(255)] holds the reload counter values x(j)
for each ciphertext value ci = j. Finally K0 is the vector that, for each key byte
candidate k, tracks the number of appearances in the key recovery step.

Example Assume that the memory line can hold n = 4 T table values and we
want to recover key byte k0. There are four ciphertext values detected with a
low reload counter. Assume further that each c0 has been xored with the T table
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values of the monitored memory line (the first 4 if we are working with the first

positions), giving k
(i)
0 = ci0⊕T

[
s[0]

]
. For each of the four possibilities of c0, there

are n = 4 possible solutions for k0. If the results are the following:

k
(0)
0

⎧⎪⎪⎨
⎪⎪⎩
43
ba
91
17

k
(1)
0

⎧⎪⎪⎨
⎪⎪⎩
8b
91
f3
66

k
(2)
0

⎧⎪⎪⎨
⎪⎪⎩
91
45
22
af

k
(3)
0

⎧⎪⎪⎨
⎪⎪⎩
cd
02
51
91

And since there is only one common solution between all of them, which is 91, we
deduce that the correct key value is k0 = 91. This also means that K0[91] = 4,
since k = 91 appeared four times as possible key candidate in the key recovery
step.

Note that this is a generic attack that would apply virtually to any table-
based block cipher implementation. That is, our attack can easily be adapted to
other block ciphers as long as their last round consists of a table look-up with a
subsequent key addition.

5.2 Recovering the Full Key

To recover the full key, the attack is expanded to all tables used in the last round,
e.g. the 4 T tables of AES in OpenSSL 1.0.1. For each ciphertext byte it is known
which T table is used in the final round of the encryption. This means that the
above attack can be repeated on each byte, by simply analyzing the collecting
ciphertexts and their timings for each of the ciphertext bytes individually. As
before, the timings are profiled according to the value that each ciphertext byte
ci takes in each of the encryptions, and are stored in a ciphertext byte vector. The
attack process is described in Algorithm 2. In a nutshell, the algorithm monitors
the first T table memory line of all used tables and hence stores four reload
values per observed ciphertext. Note that, this is a known ciphertext attack and
therefore all that is needed is a flush of one memory line before one encryption.
There is no need for the attacker to gain access to plaintexts.

Finally the attacker should apply Algorithm 1 to each of the obtained cipher-
text reload vectors. Recall that each ciphertext reload vector uses a different
T table, so the right corresponding T table should be applied in the key recov-
ery algorithm.

Performing the Attack. In the following we provide the details about the
process followed during the attack.

Step 1: Acquire information about the offset of T tables. The attacker
has to know the offset of the T tables with respect to the beginning of
the library. With that information, the attacker can refer and point to any
memory line that holds T table values even when the ASLR is activated.
This means that some reverse engineering work has to be done prior to the
attack. This can be done in a debugging step where the offset of the addresses
of the four T tables are recovered.
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Algorithm 2. Flush and reload algorithm extended to 16 ciphertext bytes

Input : T00, T10, T20, T30 //Addresses of each T table

Output: X0, X1, ...X15 //Reload vectors for ciphertext bytes

//Each Xk holds 256 counter values

while iteration < total number of measurements do
clflush(T00, T10, T20, T30); //Flush data to the main memory

ciphertext=Encryption(plaintext); //No need to store plaintext!

for i ← T00 to T30 do
time=Reload(i);
if time > AccessThreshold then

Addcounter(Ti,Xi); //Increase counter of Xi using Ti

end
end

end
return X0, X1, . . . , X15

Step 2: Collect Measurements. In this step, the attacker requests encryp-
tions and applies Flush+Reload between each encryption. The information
gained, i.e. T i0 was accessed or not, is stored together with the observed
ciphertext. The attacker needs to observe several encryptions to get rid of
the noise and to be able to recover the key. Note that, while the reload step
must be performed and timed by the attacker, the flush might be performed
by other processes running in the victim OS.

Step 3: Key recovery. In this final step, the attacker uses the collected mea-
surements and his knowledge about the public T tables to recover the key.
From this information, the attacker applies the steps detailed in Section 5.1
to recover the individual bytes of the key.

5.3 Attack Scenario 1: Spy Process

In this first scenario we will attack an encryption server running in the same OS
as the spy process. The encryption server just receives encryption requests, en-
crypts a plaintext and sends the ciphertext back to the client. The server and the
client are running on different cores. Thus, the attack consists in distinguishing
accesses from the last level of cache, i.e. L3 cache, which is shared across cores.
and the main memory. Clearly, if the attacker is able to distinguish accesses be-
tween last level of cache and main memory, it will be able to distinguish between
L1 and main memory accesses whenever server and client co-reside in the same
core. In this scenario, both the attacker and victim are using the same shared
library. The KSM is responsible for merging those pages into one unified shared
page. Therefore, the victim and attacker processes are linked through the KSM
deduplication feature.

Our attack works as described in the previous section. First the attacker dis-
covers the offset of the addresses of the T tables with respect to the begining
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of the library. Next, it issues encryption requests to the server, and receives the
corresponding ciphertext. After each encryption, the attacker checks with the
Flush+Reload technique whether the chosen T table values have been accessed.
Once enough measurements have been acquired, the key recovery step is per-
formed. As we will see in our results section, the whole process takes less than
half a minute.

Our attack significantly improves on previous cache side-channel attacks such
as evict + time or prime and probe [19]. Both attacks were based on spy processes
targeting the L1 cache. A clear advantage of our attack is that —since it is
targeting the last shared level cache— it works across cores. Of course both
evict + time or prime and probe attacks can be applied to the last level of cache,
but their performance would be significantly reduced in cross-core setting, due
to the large number of evictions/probings that are needed for a successful attack.

A more realistic attack scenario was proposed earlier by Bernstein [8] where
the attacker targets an encryption server. Our attack similarly works under a
realistic scenario. However. unlike Bernstein’s attack [8], our attack does not
require a profiling phase that involves access to an identical implementation
with a known-key. Finally, with respect to the previous Flush+Reload attack in
AES, our attack does not need to interrupt the AES execution of the encryption
server. We will compare different attacks according to the number of encryptions
needed in Section 6.1.

5.4 Attack Scenario 2: Cross-VM Attack

In our second scenario the victim process is running in one virtual machine and
the attacker in another one but on the same machine possibly on different cores.
For the purposes of this study it is assumed that the co-location problem has
been solved using the methods proposed in [21], ensuring the attacker and the
victim are running on the same physical machine. The attack exploits memory
overcommitment features that some VMMs such as VMware provide. In partic-
ular, we focus in memory deduplication. The VMM will search periodically for
identical pages across VMs to merge both pages into a single page in the mem-
ory. Once this is done (without the intervention of the attacker) both the victim
and the attacker will access the same portion of the physical memory enabling
the attack. The attack process is the same as in Scenario 1. Moreover, we later
show that the key is recovered in less than a minute, which makes the attack
quite practical.

We discussed the improvements of our attack over previous proposals in the pre-
vious scenario except the most important one: We believe that the evict+time,
prime and probe and time collision attacks will be rather difficult to carry out
in real cloud environment. The first two are targeting the L1 cache, which is not
shared across cores. The attacker would have to be in the same core as the victim,
which is a much stronger assumption than being just in the same physical ma-
chine. Both evict+time and prime and probe could be applied to work with the
L3 cache, but the noise and the amount of measurements would need to be drasti-
cally increased. Even further, due the increasing amount of source noises present
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in a cloud scenario (more layers, network latency) both evict+time and time col-
lision attacks would be hard to perform. Finally, targeting the CFS [13] to evict
the victim process, requires for the attacker’s code to run in the same OS, which
will certainly not be possible in a virtualized environment.

6 Experiment Setup and Results

We present results for both a spy process within the native machine as well as
the cross-VM scenario. The target process is executed in Ubuntu 12.04 64bits,
kernel version 3.4, using the C-implementation of AES in OpenSSL 1.0.1f for
encryption. This is used when OpenSSL is configured with no-asm and no-hw

option. We want to remark that this is not the default option in the installation of
OpenSSL in most of the products. All experiments were performed on a machine
featuring an Intel i5-3320M four core clocked at 3.2GHz. The Core i5 has a
three-level cache architecture: The L1 cache is 8-way associative, with 215 bytes
of size and a cache line size of 64 bytes. The level-2 cache is 8-way associative as
well, with a cache line width of 64 bytes and a total size of 218 bytes. The level-3
cache is 12-way associative with a total size of 222 bytes and 64 bytes cache line
size. It is important to note that each core has private L1 and L2 caches, but the
L3 cache is shared among all cores. Together with the deduplication performed
by the VMM, the shared L3 cache allows the adversary to learn about data
accesses by the victim process.

The attack scenario is as follows: the victim process is an encryption server
handling encryption requests through a socket connection and sends back the
ciphertext, similar to Bernstein’s setup in [8]. But unlike Bernstein’s attack,
where packages of at least 400 bytes were sent to deal with the noise, our server
only receives packages of 16 bytes (the plaintext). The encryption key used by
the the server is unknown to the attacker. The attack process sends encryption
queries to the victim process. All measurements such as timing measurements of
the reload step are done on the attacker side. The server uses OpenSSL 1.0.1f for
the AES encryption. In our setup, each cache line holds 16 T table values, which
results in a 7.6% probability for not accessing a memory line per encryption.
All given attack results target only the first cache line of each T table, i.e. the
first 16 values of each T table for flush and reload. Note that in the attack any
memory line of the T table would work equally well. Both native and cross-VM
attacks establish the threshold for selecting the correct ciphertext candidates
for the working T table line by selecting those values which are below half of
the average of overall timings for each ciphertext value. This is an empirical
threshold that we set up after running some experiments as follows

threshold =

256∑
i=0

ti
2 · 256 .

Spy Process Attack Setup: The attack process runs in the same OS as the
victim process. The communication between the processes is carried out via
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Fig. 2. Number of correct key bytes guessed of the AES-128 bit key vs. number of
encryption requests. Even 50.000 encryptions (i.e. less than 5 seconds of interaction)
result in significant security degradation in both the native machine as well as the
cross-VM attack scenario.

localhost connection and measures timing using Read Time-Stamp Counters
(rdtsc). The attack is set up to work across cores; the encryption server is
running in a different core than the attacker. We believe that distinguishing
between L3 and main memory accesses will be more susceptible to noise than
distinguishing between L1 cache accesses and main memory accesses. Therefore
while working with the L3 cache gives us a more realistic setting, it also makes
the attack more challenging.

Cross-VM Attack Setup: In this attack we use VMware ESXI 5.5.0 build
number 1623387 running Ubuntu 12.04 64-bits guest OSs. We know that VMware
implements TPS with large pages (2MB) or small pages (4KB). We decided to
use the later one, since it seems to be the default for most systems. Furthermore,
as stated in [28], even if the large page sharing is selected, the VMM will still look
for identical small pages to share. For the attack we used two virtual machines,
one for the victim and one for the attacker. The communication between them
is carried out over the local IP connection.

The results are presented in Figure 2 which plots the number of correctly
recovered key bytes over the number of timed encryptions. The dash-dotted line
shows that the spy-process scenario completely recovers the key after only 217

encryptions. Prior to moving to the cross-VM scenario, a single VM scenario was
performed to gauge the impact of using VMs. The dotted line shows that due to
the noise introduced by virtualization we need to nearly double the number of



Wait a Minute! A fast, Cross-VM Attack on AES 315

encryptions to match the key recovery performance of the native case. The solid
line gives the result for the cross-VM attack: 219 observations are sufficient for
stable full key recovery. The difference might be due to cpuid like instructions
which are emulated by the hipervisor, therefore introducing more noise to the
attack. In the worst case, both the native spy process and the single VM attack
took around 25 seconds (for 400.000 encryptions). We believe that this is due to
communication via the localhost connection. However when we perform a cross-
VM attack it takes roughly twice as much time as in the previous cases. In this
case we are performing the communication via local IPs that have to reach the
router, which is believed to add the additional delay. This means that all of the
described attacks —even in the cross VM scenario— completely recover the key
in less than one minute!

6.1 Comparison to other Attacks

Next we compare the most commonly implemented cache-based side-channel
attacks to the proposed attack. Results are shown in Table 1. It is difficult to
compare the attacks, since most of them have been run on different platforms.
Many of the prior attacks target OpenSSL’s 0.9.8 version of AES. Most of
these attacks exploit the fact that AES has a separate T Table for the last
round, significantly reducing the noise introduced by cache miss accesses. Hence,
attacks on OpenSSL0.9.8’sAES usually succeed much faster, a trend confirmed
by our attack results. Note that our attack, together with [6] and [15] are the
only ones that have been run on a 64 bit processor. Moreover, we assume that
due to undocumented internal states and advanced features such as hardware
prefetchers, implementation on a 64bit processor will add more noise than older
platforms running the attack. With respect to the number of encryptions, we
observe that the proposed attack has significant improvements over most of the
previous attacks.

Spy Process in Native OS: Even though our attack runs in a noisier en-
vironment than Bernstein’s attack, evict and time, and cache timing collision
attacks, it shows better performance. Only prime and probe and Flush+Reload
using CFS show either comparable or better performance. The proposed attack
has better performance than prime and probe even though their measurements
were performed with the attack and the encryption being run as one unique pro-
cess. The Flush+Reload attack in [13] exploits a much stronger leakage, which
requires that attacker to interrupt the target AES between rounds (an
unrealistic assumption). Furthermore, Flush+Reload with CFS needs to monitor
the entire T tables, while our attack only needs to monitor a single line of the
cache, making the attack much more lightweight and subtle.

Cross-VMAttack: So far there is only one publication that has analyzed cache-
based leakage across VMs for AES [15]. Our proposed attack shows dramatic
improvements over [15], which needs 229 encryptions (hours of run time) for a
partial recovery of the key. Our attack only needs 219 encryptions to recover the
full key. Thus, while the attack presented in [15] needs to interact with the target
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Table 1. Comparison of cache side-channel attack techniques against AES

Attack Platform Methodology OpenSSL Traces

Spy-Process based Attacks:
Collision timing [9] Pentium 4E Time measurement 0.9.8a 300.000
Prime+probe [19] Pentium 4E L1 cache prime-probing 0.9.8a 16.000
Evict+time [19] Athlon 64 L1 cache evicting 0.9.8a 500.000
Flush+reload (CFS) [13] Pentium M Flush+reload w/CFS 0.9.8m 100
Our attack i5-3320M L3 cache Flush+reload 0.9.8a 8.000
Bernstein [6] Core2Duo Time measurement 1.0.1c 222

Our attack i5-3320M L3 cache Flush+reload 1.0.1f 100.000

Cross-VM Attacks:
Bernstein [15]1 i5-3320M Time measurement 1.0.1f 230

Our attack(VMware) i5-3320M L3 cache Flush+reload 1.0.1f2 400.000

1 Only parts of the key were recovered, not the whole key.
2 The AES implementation was not updated for the recently released OpenSSL

1.0.1g and 1.0.2 beta versions. So the results for those libraries are identical.

for several hours, our attack succeeds in under a minute and recovers the entire
key. Note that, the CFS enabled Flush+Reload attack in [13] will not work in
the cross-VM setting, since the attacker has no control over victim OS’s CFS.

7 Countermeasures

AES-NI: Using AES-NI instructions solves the cache-access leakage for AES.
In this case the AES encryption does not use the memory but it uses specific
hardware instructions, avoiding the possibility of implementing a cache-based
side-channel attack completely. However, AES is not the only symmetric cipher
in use nowadays: the problem remains for other encryption algorithms for which
hardware acceleration is not provided.

Cache Prefetching: Prefetching the T tables (or other table-based look-ups
for other ciphers) prior to each AES round execution can mitigate the problem
of using them as a source for side-channel attacks. An attacker cannot observe
differences between access times if all T table values reside in the cache before
the execution. However, since T tables have a total size of 4KB, this would
require to fill a large portion of the cache. The prefetching also takes time, and
this would increase the encryption time for AES. OpenSSL provides an assembly
version of AES that uses this technique (among others like bit slicing and vector
permutation) to avoid having cache leakage due to T table accesses.

Cache Flushing: Flushing each of the T table values after the AES execution
will have the similar consequences as prefetching them before the execution [15].
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When the attacker wants to decide whether a line has been accessed, he will
find that the T tables are in the memory and therefore, he will not see any time
differences. Again this implies a higher execution time. With such a counter-
measure the only possibility left to the attacker is to block the AES execution
during some of its rounds (as done in [13]). Hence, this would mitigate cross-VM
attacks and require a more advanced attacker than we considered for our attack.

Restricting the Deduplication: Disabling the deduplication would make the
attack impossible in the cloud however memory deduplication is highly per-
formance beneficial, especially in cloud where multiple users share the same
hardware. This is why we believe that the system designers should restrict the
deduplication mechanism rather then completely disabling it. The madvise [12]
system call that manages the deduplication process scans only selected portions
of the memory. One can exploit this feature and limit the resource sharing be-
tween VMs. This limitation can either be on hardware or software level. As
suggested by Wang and Lee [30] the OS can enforce a smart process scheduling
method to protect critical processes with sensitive data and make sure that they
are never shared between VMs.

8 Conclusion

Flush+Reload in AES: A New Fine Grain Attack: Our experiments show
that if applied in a clever way, Flush+Reload is a fine grain attack on AES
and can recover the whole key. Furthermore, the attack can be applied to any
block cipher that uses a T table based implementation. The attack has to take
advantage of deduplication so that victim and attacker share the same memory.

Making The Attack Feasible in The Cloud: We not only performed the
attack in native machine, but also in a cloud-like cross-VM scenario. Although
there is more noise in the latter scenario, the attack recovers the key with just
400.000 encryptions. In this case, the attacker has to take advantage of some
memory sharing mechanism (such as TPS in VMware).

Lightning-Fast Attack: Even in the worst case scenario (cross-VM) the attack
succeeds in less than a minute. To the best of our knowledge, no faster attack
has been implemented against AES in a realistic cloud-like setting. This also
means that just one minute of co-location with the encryption server suffices to
recover the key.

Acknowledgments. This work is supported by the National Science Founda-
tion, under grant CNS-1318919 and CNS-1314770. We would like to thank the
anonymous reviewers of RAID 2014 for their helpful comments, in particular for
pointing out that disabling the ASLR on the attacker’s side is not needed. We
would like to thank Dan Bernstein for his helpful comments on the related work
and history of cache attacks as well as Huzaifa Sidhpurwala for pointing out the
partially protected assembly implementations of AES in OpenSSL.



318 G. Irazoqui et al.

References

1. CFS Scheduler (April 2014), https://www.kernel.org/doc/Documentation/

scheduler/sched-design-CFS.txt

2. Kernel Based Virtual Machine (April 2014), http://www.linux-kvm.org/page/
Main_Page

3. Kernel Samepage Merging (April 2014), http://kernelnewbies.org/Linux_2_6_
32#head-d3f32e41df508090810388a57efce73f52660ccb/
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Abstract. Summary statistics represent a key primitive for profiling
and protecting operational networks. Many network operators routinely
measure properties such as throughput, traffic mix, and heavy hitters.
Likewise, security monitoring often deploys statistical anomaly detectors
that trigger, e.g., when a source scans the local IP address range, or
exceeds a threshold of failed login attempts. Traditionally, a diverse set
of tools is used for such computations, each typically hard-coding either
the features it operates on or the specific calculations it performs, or both.
In this work we present a novel framework for calculating a wide array of
summary statistics in real-time, independent of the underlying data, and
potentially aggregated from independent monitoring points. We focus on
providing a transparent, extensible, easy-to-use interface and implement
our design on top of an open-source network monitoring system. We
demonstrate a set of example applications for profiling and statistical
anomaly detection that would traditionally require significant effort and
different tools to compute. We have released our implementation under
BSD license and report experiences from real-world deployments in large-
scale network environments.

1 Introduction

Researchers and operators alike routinely measure statistical properties of net-
work traffic, such as throughput, traffic mix, and “heavy hitters”; both for traffic
profiling and control, as well as for specific security purposes when aiming to
spot activity that “doesn’t look right”. For the latter, statistical anomaly detec-
tion proves particularly valuable by reporting activity that exceeds levels one
would normally expect so see, such as during port and address scans, login
brute-forcing, and application-layer vulnerability probing. Traditionally, we find
a diverse set of approaches in use for implementing such monitoring, typically
limited to traffic features readily available in existing data sets such as NetFlow
records, SNMP counters, IDS output, or system logs; and often implemented in
the form of ad-hoc shell scripts processing files offline in batches. While concep-
tually most profiling and anomaly detection tasks leverage just a rather small
set of statistical primitives, existing approaches tend to hard-code either the fea-
ture set they operate on or the specific computation they perform; and regularly
both. Consequently, sites find it challenging to later adapt a setup to changes in
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requirements, miss out on opportunities for reuse in different settings, and see
little incentive to optimize an implementation for performance.

In this work we present a novel summary statistics framework that facilitates
a wide array of typical profiling tasks and security applications. Our system
processes high-volume packet streams in real-time, operates transparently on
arbitrary features extracted from all levels of the protocol stack, and aggregates
results across independent monitoring points distributed across a network. We
focus on providing a transparent, easy-to-use user interface that, in particular,
hides the communication in distributed setups behind a simple, intent-based
API. We target operational deployment in large-scale network environments,
with link capacities of 10 GE and beyond; and we implement our design on top of
an existing open-source network monitoring system that is regularly deployed in
such settings. Our implementation includes a set of probabilistic data structures
to support memory-efficient operation, as well as a plugin interface that allows
users to extend the supplied range of statistical primitives. We demonstrate a
number of real-world example security applications, including computation of
traffic matrices, detection of IP scans and SQL injection, and real-time “top-k”
measurements to determine, e.g., the most frequent hosts, HTTP destinations,
or DNS requests. We furthermore interface the latter to a browser-based visual-
ization library that renders the current “heavy hitters” in real-time for immediate
inspection. We evaluate our system in terms of the overhead it imposes on the
underlying network monitor with regards to CPU, memory, and inter-node com-
munication; and we find it to scale well in realistic settings. We have released
our implementation as open-source software under a BSD-license as part of the
recent release of the underlying network monitor. It is in deployment now at a
broad range of sites, where it helps operations to protect their networks.

We structure the remainder of this paper as follows. §2 presents the moti-
vation and design of the summary statistics framework, and §3 describes our
implementation. §4 demonstrates a number of real-world example applications,
along with experiences from operational deployments. In §5 we asses performance
characteristics. §6 discusses related work, and we conclude in §7.

2 Design

Our work introduces a novel summary statistics framework that offers a flexible
platform to compute a wide variety of summary statistics in large-scale opera-
tional network environments. In the following we first review the underlying mo-
tivation and then walk through a number of design aspects for the framework.

2.1 Motivation

While summary statistics constitute a crucial ingredient for many operational
network monitoring tasks, existing implementations generally cater to a specific
application or setting (see §6). Our framework instead aims to enable users to
define their own statistics, with no limitation on what input or computation to
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use. The challenge with this approach lies in designing a system that provides
such flexibility while also offering the efficiency required to accommodate large-
scale deployment in high-performance settings.

To illustrate our motivation, consider the task of counting. Researchers and
operators alike tend to ask questions about their networks such as “How many
local IP addresses do we see?”, “What system produces the most traffic?”, “What
are the prevalent application protocols?”, and “Is there any host unsuccessfully
querying a large number of DNS names?”. Traditionally, answering such ques-
tions requires using a variety of different tools. While conceptually these ques-
tions all come down to counting features, they process conceptually quite dif-
ferent information, from packet-level information like IP addresses to complex
application-layer attributes such as rejected DNS requests. Our goal is to unify
the computing of such results within a single system that decouples feature ex-
traction from the statistical infrastructure, providing users with a platform for
answering a wide range of their questions.

From experience with research and operations, we identify two overall types
of applications that network-based statistics tend to support: (i) network profil-
ing aims to answer questions as sketched above for characterizing ongoing activ-
ity; and (ii) statistical anomaly detection identifies situations where observed fea-
tures exceed an expected range, potentially leading to a security incident. Regard-
ing the former, while the range of possible profiling tasks is large, most consist of
a rather small set of computational primitives, such as summation and aggrega-
tion of values, standard set operations, computing simple measures such as maxi-
mum and average, and also sorting. Turning to statistical anomaly detection, one
typically finds conceptually simple measures deployed operationally; often just
straight-forward threshold schemes that trigger when activity exceeds a predeter-
mined value or ratio. The most common application is scan detection, which finds
hosts probing the local network by spotting an excessive number of failed attempts.
While traditionally scan detection refers to IP address or TCP/UDP port probing,
the concept extends to application-layer features as well, including probing web
servers with requests, email servers with destination addresses, DNS servers with
lookups, and also probing for vulnerable systems by trying application-layer ex-
ploits. While many monitoring systems support profiling and/or statistical
anomaly detection, their implementations typically hardcode either the feature
set they operate on or the specific calculation they perform.

2.2 Objectives

We identify the following objectives for our summary statistics framework.
Simple, Yet Flexible User Interface. The interface that the framework

exposes to the user should be easy to understand and use, yet sufficiently flexible
to support computation of a wide range of target statistics.

Data Agnostic. The framework should be data agnostic and avoid imposing
any constraints on the features it operates on.

Extensibility. The available statistical functionality should be adaptable and
extensible to computations not supported out-of-the-box.
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Real-Time Operation. The framework should process input in real-time
and provide results, including alarms, as quickly as possible.

Scalability. The framework needs to scale to large networks, including sup-
port for multiple traffic sources for either distributed monitoring or load-balancing
purposes.

Statistical
FrameworkObservationObservationObservation

Summary 
Statistics

Trigger

Reducer

Fig. 1. Basic Architecture

2.3 Architecture

Figure 1 summarizes the summary statistics framework’s high-level architecture.
It observes a stream of tuples (key, value) in which in general both key and value
represent features derived in real-time from the incoming network traffic. As it
processes the stream, the summary statistics framework continuously reduces
each key’s values to an aggregate result. The framework also continuously eval-
uates a predicate on these aggregates to flag specific situations by executing
corresponding triggers. Finally, at the end of a measurement interval, the frame-
work reports the final summary statistics to the user in the form of (key, agg)
pairs where agg is the final aggregate value for that key.

As one application example consider a simple TCP scan detector. Observa-
tions might take the form of tuples (s, d) representing failed connection attempts
from a source address s to a destination address d. A reducer Unique would
compute the number of unique destinations d for each source s, and a predicate
Threshold would flag if that exceeds a specified limit by executing a ScanAlarm
trigger that reports an alarm. As another example, if one wanted to compute the
most popular DNS names overall, the observation values would be query names
extracted from DNS traffic. One would then aggregate all values into a single
global result by fixing the observation key to a static value, and deploy a “top-k”
reducer that computes the k most frequently seen values among its inputs.

The summary statistics framework supports deployment in settings where the
traffic is not just monitored by a single process, yet with sets of physically sepa-
rated monitors, as long as the instances see disjunct packet streams. This could
be at different ingress points of a large network, or in a cluster setting where
a load-balancer splits up the overall traffic to sent individual slices to separate
monitoring backends (as, e.g., in [25]). In such a setting the summary statistics
framework computes results transparently for the overall traffic aggregate, sim-
ilar to what a single instance would produce if it were seeing all the traffic at
one location. To accommodate such settings, we extend the basic architecture
into a distributed setup in which independent sensors reduce values locally first,
and then at the end of a measurement interval forward their results to a master
server that merges them into global aggregates. That server then also evaluates
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the predicates and executes the trigger. Figure 2 illustrates the distributed set-
ting. As the reduced intermediary results will typically be small in volume, the
architecture scales well with increasing numbers of sensors.

As one additional ingredient to the distributed operation, we add result polling
that allows the server to request intermediary results from the sensors on de-
mand. Normally, the server would evaluate predicates only at the end of a mea-
surement interval once it has received all the local results. As that however might
introduce a potentially significant delay until triggers execute, we introduce two
additional optimizations. First, we allow the server to poll sensors for their cur-
rent values on demand, even before the end of the measurement interval. It can
then already evaluate the predicate on the received intermediate values. Polling
alone however would not reduce trigger latencies sufficiently without also causing
significant communication overhead. Hence, we furthermore provide the sensors
with a notification mechanism to signal that their intermediate local values have
changed sufficiently to warrant requesting an update. For example, for a thresh-
old computation a sensor could notify the server once it has observed 20% of the
specified limit locally, with the assumption that other sensors are likely seeing
similar activity and, hence, globally the threshold might have been crossed. Upon
receiving the notification, the server polls all the sensors, executes the predicate,
and runs the trigger if applicable.

2.4 Reducers

We conclude this section by examining the properties of reducers in more detail,
as they have to satisfy a number of requirements to fit with the framework’s
operation. Recall that a reducer processes (key, value) pairs, aggregating them
into outputs (key, agg) where agg is an aggregate of all of key’s value as deter-
mined by the reducer’s computation. In the following we first look at constraints
we impose on reducers, and then present a set of examples that satisfy these
requirements and all come with our implementation.
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Composable Results. As a crucial property for reducers in the distributed
setting, we require composability, i.e., support for aggregating the sensor’s local
results at the server-side. As a simple example, a reducer adding up numeri-
cal observations is trivially composable: the global sum is the total of the local
results. This constraint can however be challenging to satisfy for other opera-
tions, even if conceptually simple. For instance, when sampling input randomly,
deciding which samples to choose during merging without biasing the result is
non-trivial.

Constant Memory Size. When processing observations reducers typically
have to keep internal state during the measurement interval (e.g., the sum of
all values so far). However, to reliably support computing statistics on arbitrary
input volumes we require a constant bound on the amount of memory a reducer
maintains. Due to this restriction, our framework can, e.g., not compute the
median across observations.

Meaningful Intermediary Results. To support arbitrary measurement
intervals as well as continuous predicate evaluation, a reducer’s intermediary
values must be meaningful on their own at any time. This is again obviously the
case for a sum, which always reflects the current total; but less so for some of
the more complex data structures.

Summation, Average, Deviation, Variance, Maximum, Minimum.
These standard statistical measures are frequently used for traffic measurement
tasks. They all support a stream-based calculation model where the reducer
holds just the current result reflecting all observations seen so far, updating it
when a new observation comes in.

Unique. Determining the number of unique observations proves highly use-
ful for many network-oriented measurement tasks. However, a naive set-based
implementation would have a memory requirement of O(n) with n represent-
ing the number of observations, rendering it infeasible to use. Instead, we use
a probabilistic version based on the HyperLogLog data structure (HLL; [10]).
HLL provides approximate results with well-defined error margins. It uses O(1)
memory, is composable, and provides meaningful intermediary results.

Top-k. Finding the top-k “heavy hitters” represents another common task.
However, similar to Unique, a naive implementation requires O(n) memory, with
n the number of observations. We thus likewise choose a probabilistic version
instead: Metwally et al’s algorithm [17], which in addition also provides estimates
on the number of times specific elements were seen. Just as HLL, the algorithm
satisfies all our constraints, including composability (see [5]).

Sampler. For many applications it is not only interesting to know the fi-
nal result itself yet also to receive with it a sample of individual contributing
values (e.g., when seeing an unusually high number of DNS requests from a sin-
gle source, seeing a few example requests can prove illuminating). We support
that by providing a “Sample” reducer that maintains a fixed number of k uni-
formly distributed samples taken out of the complete observation stream. By
using reservoir sampling [26], we are able to satisfy all our constraints.
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2.5 Comparison with MapReduce

It is no accident that our model, and terminology, shares similarities with
MapReduce [6]. They both operate in similar phases. The “Map” step of MapRe-
duce corresponds to taking observations in our model; in either approach, input
data maps to a key and a value. The “Reduce” step of MapReduce is equiva-
lent to our server-side merging of results computed locally at the sensors. What
we call a “reducer” indeed corresponds to a “combiner” in a refinement of the
MapReduce model: combiner functions merge partial results before data gets
forwarded [6]. The underlying reason for this naming difference is that in our
design the main part of the data reduction does indeed occur already on the
sensor nodes.

One difference between the two models concerns the input side. While either
approach assumes suitably pre-split sets of input, MapReduce does not tie them
to a specific compute node. In our model, by tapping disjunct packet sources
yet not further dividing up their inputs, we implicitly link each source with one
specific sensor that processes it. While this remains less flexible, it provides a
significant performance advantage by effectively leveraging the network itself
for partitioning input appropriately, either indirectly by virtue of its structure
(in the case of tapping different physical locations), or directly via a front-end
load-balancer (in the case of a cluster setup [25]). In either case we avoid the—
potentially prohibitive—performance penalty of redistributing traffic within the
summary statistics framework.

Overall, we emphasize that the two approaches share significant similarities.
As such, we do not consider our framework’s abstract computational model the
primary contribution of this work, yet rather its integration into an efficient,
deployable system that provides a transparent, simple-to-use API to the user.

3 Implementation

We implement our design of the summary statistics framework on top of the
Bro network monitoring platform [3,19]. Bro aligns well with our objectives as it
(i) provides the user with the necessary flexibility through its Turing-complete
scripting language; (ii) extracts a wide range of features from network traffic
to measure; and (iii) supports distributed operation in cluster setups. We im-
plement the summary statistics framework completely within Bro’s scripting
language, with no changes to the system’s C++ core for the general functionality.
As the only extension to Bro’s internals, we add support for the probabilistic
data structures that some of the reducers deploy. Our implementation comes
with pre-written analysis scripts that leverage its capabilities for detection of,
e.g., host and port scans, traceroutes, and SQL injection attacks. In the follow-
ing, we discuss our implementation in terms of its user interface (§3.1), cluster
integration (§3.2), and computation plugins (§3.3) that reducers can leverage.
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3.1 User Interface

The user interface of the summary statistics framework exposes a set of public
functions in Bro’s scripting language. In the following, we briefly sketch the main
functionality available to users. As a simple example we assume the setting of a
small network site that aims to track the number of connections that each local
host initiates to external destinations, recording them into a log file on a hourly
basis.

Measuring. Setting up the analysis requires two steps: (i) feeding all out-
going connections into the summary statistics framework as observations, and
(ii) defining a corresponding summary statistic that aggregates connections by
their originator addresses. For the former, the framework provides the observe()
function, which injects a key/value pair into an observation stream. The frame-
work supports an arbitrary number of independent streams and identifies them
by user-chosen names. For the example application we hook into Bro’s connec-
tion processing and pass on every connection attempt originating from a local
host:1

event connection_attempt(c: connection) {
[... return if connection does not originate from the local network ... ]
SumStats::observe(

stream = "host-conn-attempts"; # Name of observation stream
key = c.originator; # Observation key (IP address)
value = 1; # Observation value ("one attempt")

);
}

For the second step we first define a reducer that adds up connection attempts:

local r1: SumStats::Reducer = [
stream = "host-conn-attempts"; # Name of observation stream
apply = SumStats::SUM; # Reducer plugin to use
];

Here, we link the reducer to the observation stream to process, host-conn-
attempts, and specify Summation as the statistical operation to apply to the
incoming values. For a list of currently supported operations, see §2.4; users can
add further ones by supplying custom plugins (see §3.3).

Next,wedefine the actual summary statistic by calling the framework’screate()
function. In its simplest form, the function takes just four parameters:

SumStats::create(
name = "local-origins"; # Name of the summary statistic
epoch = 1 hour; # Measurement interval (epoch)
reducers = set(r1); # Set of reducers to deploy
epoch_result = epoch_func; # End of epoch callback function

);

1 In this and later examples we simplify Bro’s syntax for better readability.
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With that, the summary statistic configuration is complete. During runtime,
Bro will now call the epoch_result function each hour and provide it with the
number of outgoing connections per local host. The function can process the
data arbitrarily, such as by logging the information into a file.

Thresholding. We now extend the previous example to report hosts that
exceed a predefined threshold of connection attempts. Here, our implementation
deviates slightly from the discussion in §2. While the design provides for a generic
predicate to check for arbitrary conditions while a computation is in progress,
our implementation currently hardcodes threshold checks as the only available
option. In our experience, thresholding represents the dominant application. By
specifically targeting it, we can simplify both the interface (making it more intu-
itive for users) and the implementation (reducing complexity in the distributed
setting). However, there’s no conceptual limitation that would prevent us from
adding the more general case in the future.

Adding a threshold check to the previous example involves passing three more
parameters to the create() call: a function that retrieves the current measure-
ment value for a key, a numerical threshold to compare that value with, and the
trigger function to execute when the value exceeds the threshold:

SumStats::create(
[...]
threshold = 10000.0; # Threshold value
threshold_val = val_func; # Retrieve current value
threshold_crossed = crossed_func; # Alarm.

);

The val_func receives a key and the current intermediate reducer values for
this key. It uses them to return the value to be checked against the threshold.

function val_func(key, val) : double {
return val["host-conn-attempts"].sum;

}

In this example, val_func simply returns the current number of connection
attempts for a host.2 However, the function could be more complex than that.
In our application, one could for example instead implement a threshold relative
to the number of successful connections. For that one would add a second obser-
vation stream, say host-conn-successes, along with a corresponding reducer
r2 added to the create() call. This modified val_func would then calculate
percentages:

function val_func(key, val) : double {
return val["host-conn-attempts"].sum / val["host-conn-successes"].sum;

}

2 As the code suggests, the state is maintained in a number of nested table struc-
tures (hash maps) indexed by the measurements.
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For completeness, we conclude the example by showing the trigger function
that turns an exceeded threshold into an alarm via Bro’s provided NOTICE func-
tion:

function crossed_func(key, val) {
NOTICE("Host %s exceeded conn threshold: %d conn attempts", key, val);

}

3.2 Cluster Integration

As discussed in §2.3, the summary statistics framework targets deployment in
distributed settings where a set of local vantage points contribute to a global
measurement. Bro supports distributed setups through clustering [25]. In a Bro
cluster, a set of worker nodes examines independent traffic streams and share
their results through a central manager node. Each node might either monitor a
physically separate point in a network or, more commonly, contribute to analyz-
ing a single high-speed link by analyzing a smaller traffic slice that a front-end
load-balancer assigns to it. Typically such load-balancing operates on a per-
flow basis and, hence, satisfies our design constraint of requiring disjunct input
streams in distributed summary statistics framework deployments.

Our Bro implementation closely follows the distributed design presented in
§2.3, including the optimized notification/polling scheme for timely trigger ex-
ecution. We put particular emphasis on hiding the increased complexity of the
distributed setting from the user: the framework uses the same API for both
single-instance and distributed setups; user-supplied script code works transpar-
ently in either setting. In particular, users do not need to specify which parts of
their code executes where; the summary statistics framework automatically runs
the respective functionality on the correct nodes (i.e., extracting observations
and processing reducers on the workers; executing aggregation, thresholding,
and triggers on the manager).

3.3 Computation Plugins

The framework includes support for a number of computations for reducers to
deploy. Their implementations use a generic plugin interface that also allows
users to add further schemes of their own. Each computation plugin implements
two functions: one for adding a new observation, and one for merging computa-
tion state from different nodes; either function has also access to the time range
that a observation stream spans and may include that into its calculations.
As an example, we show the implementation of the Minimum3:

3 The actual implementation is slightly more verbose to deal with corner cases like
undefined values. We also again simplify the syntax to match previous examples.
Finally, we omit the definition of the state’s min attribute, which extends a predefined
data type to add plugin-specific storage that maintains the current value.
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# Update current minimum.
function add(key, val, state) {

if ( val < state.min )
state.min = val;

}

# Aggregate two values by taking the smaller.
function aggregate(out, in1, in2) {

out.min = (in1.min < in2.min) ? in1.min : in2.min;
}

In addition to Minimum, our implementation also provides plugins for Max-
imum, Sum, Average, Standard Deviation and Variance, Top-k), Unique, and
Sampling (see §2.4).

4 Applications and Deployment

In this section we demonstrate the summary statistics framework’s capabilities
with a set of example applications. The first four (scan detector in §4.1, brute-
force login detector in §4.2, SQL injection detector in §4.3, traceroute detector
in §4.4) ship with Bro since version 2.2, and many network sites use them opera-
tionally now. We furthermore discuss three measurement tasks (traffic matrix in
§4.6, top-k in §4.5, visualization in §4.7) that we ran experimentally in produc-
tion environments. For these we make the corresponding (short) implementation
scripts available in a separate repository [2].

Note that these are only example applications demonstrating the capabilities
of the framework. In practice, operators will evaluate the suitability of the sum-
mary statistics framework for their tasks and implement their own scripts as
appropiate.

4.1 Scan Detection

Detecting port and address scans constitutes an important capability for security
operations. We implemented a corresponding scan detector as a Bro script on top
of the summary statistics framework. The script tracks the number of unique
ports and destination addresses that each source IP attempts to connect to,
generating alarms when they exceed, by default, 15 or 25 attempts within a 5
minute interval, respectively. Users can easily adjust either threshold, as well as
the time interval. The script is about 160 lines long, with the bulk representing
logic for connection processing and customization functionality. The core of the
script consists of just two pairs of function calls setting up the summary statistics
and feeding in observations. In particular, there is no need for code to deal with
distributed Bro setups. For comparison, older Bro versions used to ship with a
manually written, complex scan detection script that consisted of over 600 lines
of script code, with most of that focusing on maintaining the necessary counters
inside nested hash tables.
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Indiana University (IU) has been running versions of our new scan detector
script for more than 9 months on their 49-node Bro cluster, monitoring the site’s
10 GE upstream link. Their total traffic (incoming and outgoing) peaks at about
13 Gb/s on workdays and generally averages at about 5 Gb/s. Figures 3 and 4
show the number of incoming scans to different destination addresses by time
and by weekday, respectively, for subinterval of that time, as identified by our
detector. At peak times, there are more than 290 unique external IP addresses
conducting scans of the network each hour. In total, IU encountered 33,452
scanners from 2014-02-19 to 2014-03-20. The network operators use the script’s
output to automatically block external scanners at the border router in near-
real time. Note that due to this automated blocking, with blocks often being
triggered before the end of a monitoring interval, the numbers in this section
represent a lower bound.
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Fig. 4. Aggregate count of incoming addr.
scans from 2014-02-19 to 2014-03-20 at IU.

4.2 Brute-force Login Detection

A common type of attack concerns brute-forcing accounts by trying a large num-
ber of username and password combinations. We implemented scripts to detect
such attacks for the FTP and SSH protocols. For FTP, the script counts the
number of failed FTP authentication attempts and generates an alarm when it
sees more than, by default, 20 attempts from a specific source to a particular
destination host within 15 minutes. For SSH, Bro provides a heuristic that de-
termines if a login succeeded or failed, based on the volume of data exchanged
as well as the number of packets seen during the session. Our script counts the
number of times this heuristic reports a successful login and triggers an alarm
when that number exceeds 30 in a 30 minute interval. A number of sites, includ-
ing Indiana University, are currently running the brute-force detection scripts in
their production setups.
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4.3 SQL Injection Detection

We also created script for detecting automated SQL injection attacks, using a
similar thresholding approach as above. When targeting a web server, attackers
often iterate through a large library of canned injection URIs within a short time
frame. To detect this kind of attack, we first wrote a regular expression that
matches typical injection URIs (e.g., /site.php?site=5’ and 1=1 and ”=’).4
We then set up two summary statistic instances. Both count the number of times
the regular expression matches. For the first instance, the key is the source IP
address while for the second we use the destination address. In other words, the
first identifies attack sources (independent of how many victims each targets),
and the second reports servers under attack (independent of the number of their
attackers). In addition, both summary statistic instances also apply an additional
Sample reducer, which keeps 5 URIs that have matched the regular expression.
Once one of the instances hits a configured threshold of matching requests (50
in 5 minutes by default), the detector triggers an alert email that summarizes
the detected SQL injection attack, including the 5 URIs as additional context.

4.4 Traceroute detection

Traceroute detection constitutes another use-case for the summary statistics
framework. While a traceroute does usually not pose a direct security threat, it
may indicate reconnaissance preceding an attack. Traceroutes are however chal-
lenging to identify in clustered monitoring setups where traffic is load-balanced
across different monitoring systems according to its 5-tuple of addresses, ports,
and protocol. As the ICMP packets belonging to one execution will often arrive
at different nodes, no single node can spot it by itself.

For our detector, we use a single summary statistic instance with two reducers.
One of them counts the number of packets per host pair with TTLs lower than
10. The second counts the number of ICMP Time Exceeded messages relating
to the same hosts.

We consider a traceroute to be in progress if we see at least one low-TTL
packet between a pair of hosts along with at least three matching ICMP Time
Exceeded messages. Leveraging the summary statistics framework allows to de-
fine such a logic at a semantic level with a single if-statement, without needing
to consider the underlying traffic splitting any further. We validated this scheme
by running it on the Bro cluster of the National Center for Supercomputing
Applications at the University of Illinois, manually executing traceroutes and
sampling the corresponding reports during normal operation. Ignoring our own
activity, the large number of otherwise incoming traceroutes we saw (more than
2,000 a day) surprised us. Many of them turned out to be targeting a local
content management system.
4 This turns out harder than it sounds: We have developed, and continuously refined,

this regular expression for more than 5 years now by regularly evaluating network
traffic and adding new cases as we discovered them. The expression has a size of
more than 1,500 characters today.
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4.5 Top-k

As examples of “top-k” measurements, we wrote a script that tracks (i) the top-10
source and destination hosts exhibiting the most established TCP connections;
(ii) the top-10 second-level domains in DNS queries; and (iii) the top-10 Host
header values present in HTTP requests.5 We consider only outgoing traffic and
calculate rankings over both 10-minute and 1-hour intervals.

Table 1. Top-10 outgoing DNS 2nd-level lookups and HTTP Host values (19-3-2014,
15:15–16:15)

DNS domain Upper bound ε HTTP host Upper bound ε

.akamai.net 276,592 0 b.scorecardresearch.com 123,293 0

.akamaiedge.net 185,150 0 www.google-analytics.com 111,760 0

.berkeley.edu 158,938 0 pagead2.googlesyndication.com 87,539 0

.amazonaws.com 148,584 0 ib.adnxs.com 77,521 0

.google.com 137,474 0 ad.doubleclick.net 72,156 0

.akadns.net 135,519 0 pixel.quantserve.com 70,284 0

.yuerengu.com.cn 92,210 0 www.google.com 62,996 0

.cloudfront.net 60,234 0 i1.ytimg.com 59,607 0

.spameatingmonkey.net 57,089 142 googleads.g.doubleclick.net 56,673 0

.ustiming.org 38,108 719 setiboincdata.ssl.berkeley.edu 56,513 0

Total DNS req. (exact) 4,220,837 Total HTTP requests (exact) 10,985,712

For demonstration purposes we ran this script on a 28-node Bro research clus-
ter operating at the University of California, Berkeley; monitoring the campus’
2x10 GE uplink connections [25]. Daytime volume averages between 3-4 Gb/s to-
tal. Table 1 shows a snapshot of the 1-hour DNS/HTTP statistics from an early
Monday afternoon. Recall that the top-k calculation uses a probabilistic data
structure and, hence, the results represent estimates. The table includes what
the algorithm reported as upper bounds for the number of times it encountered
each value. In addition, the table also shows the corresponding uncertainty ε;
subtracting ε from the upper bound gives the lower bound. This means that,
e.g., a DNS request for .ustiming.org was encountered between 37,389 and
38,108 times. We see that generally the error rates remain very low, consider-
ing the large amount of traffic with high numbers of unique DNS domains and
HTTP hosts (154,859 and 100,269, respectively, during the shown time interval;
calculated independently from logs). For these measurements, we configured the
probabilistic algorithm to keep at most 1,000 different values in memory for each
summary statistic at any point of time.

5 The Host headers provides an application-level view of popular web sites, vs. just
looking at IP addresses. Web site addresses have become quite meaningless today
with many services running on generic cloud infrastructure.
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4.6 Traffic Matrix

The summary statistics framework can also be used to compute traffic matrices,
such as for breaking down overall volume by subnets. To demonstrate this, we
created a small Bro script which sets up a single summary statistics framework
instance using two reducers tracking the volume of incoming and outgoing traffic
by source, respectively. Additionally, the reducers define a key normalization
function, which maps the source address of each individual observation to the
containing /24 network in which the host resides. We deployed the top-k script
on the Berkeley research cluster discussed in §4.5. Table 2 shows the output for
the 5 (anonymized) subnets with the largest amount of total traffic during the
observed one-hour period, out of 502 unique local subnets encountered.

4.7 Real-Time Visualization

As our final application, we extended the previous “top-k” setup to visualize the
results in real-time. See Fig. 5 for a screenshot. Internally, the extended Bro
script uses the intermediate value update mechanism of the summary statistics
framework to get current values every 15 seconds. It then sends the aggregated
valued to Bro’s logging framework, which supports a number of different out-
put formats including TSV files and databases. For this application, we added
support for Apache’s ActiveMQ message queuing framework so that Bro can
send the values directly to an ActiveMQ server. We created an HTML page that
uses JavaScript for visualizing the values via a persistent WebSocket connection.
After each update, the value changes are immediately reflected in the browser
window.

Bytes

Subnet In Out Total

UCB Subnet A 124G 56.0G 180G
UCB Subnet B 123G 22.7G 146G
UCB Subnet C 39.7G 48.1G 87.9G
UCB Subnet D 23.3G 2.15G 25.5G
UCB Subnet E 18.6G 1.19G 19.8G

Table 2. UCB Top-5 local subnets
by total traffic (28-3-2014, 11:41–
12:41)

Fig. 5. Screenshot top-10 HTTP hosts (by
headers) live visualization (4-4-2014, 9:28)

5 Evaluation

In this section we evaluate the overhead introduced by the summary statistics
framework in terms of computation, memory, and communication. Our objective
concerns ensuring that the implementation provides the performance necessary
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to operate in large-scale distributed environments. We focus on two applica-
tions: Top-k (§4.5), as the most resource-intensive application; and scan detec-
tion (§4.1), which stresses the inter-node communication the most.

5.1 Correctness

We first briefly double-check correctness of the summary statistics framework’s
calculations. While not directly an issue for the simpler calculations, the proba-
bilistic data structures by design introduce errors into their results, along with
worst-case bounds derived from their mathematical foundation. In Table 1, we
show top-k results along with their error margins for a 1-hour measurement pe-
riod in a large-scale cluster setup (see §4.5). We cross-check the reported num-
bers by calculating the actual top-k lists offline out of the log files that the
Bro cluster produced during the same execution. We find that despite using the
memory-efficient probabilistic data structure: (i) the summary statistics frame-
work correctly identifies all entries in the right order in all but two cases, and
(ii) all the actual values indeed fall within the given error margin. Regarding
the former, the two exceptions concern the top sources. During our measurement
the counts for 8 of the top 10 IP addresses were very close to each other. In both
cases, the reported uncertainty ε (see §4.5) was greater than the difference to
the next values. Hence, a user can indeed conclude from the numbers that while
the reported ordering might not be fully correct, it must be closely matching the
actual activity.

5.2 Computational Overhead

Internally, the summary statistics framework is a complex module consisting of
several hundred lines of Bro script code for the basic framework, separate scripts
for the plugins, and low-level core support for the probabilistic data structures.
For evaluating the computational overhead that this extension introduces, we
captured a packet trace of about 20-minutes at the Internet uplink of UC Berke-
ley (see §4.6). To keep the volume manageable we recorded just a subset of the
total traffic, corresponding to what one node of the Bro research cluster pro-
cesses (i.e., 1

28 of all flows).6 The resulting trace includes 19.8 M packets and
516 K flows, at a total volume of about 15 GB.

We measure CPU load with three different configurations: (i) Bro’s default
setup with the summary statistics framework disabled; (ii) enabling the scan
detector from §4.1; and (iii) enabling the top-k script from §4.5; For each config-
uration, we measure CPU utilization per 1 sec trace interval. The trace is replayed
using the pseudo-realtime mode [23] of Bro, which was created to facilitate the
realistic playback of packet-traces.
6 In other words, we assess the performance overhead for one worker node. We do

not examine the CPU overhead of the manager node merging the data structures as
that system is typically not CPU-bound and has sufficient head-room for additional
operations.
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Figure 6 shows a corresponding probability density for the three configura-
tions.7 We see that while using the summary statistics framework imposes over-
head, it remains small for scan detection (0.4 percentage points more). The
difference with the top-k script (1.6 percentage points more) is more noticeable
due to the increased cost per observation that the more expensive maintenance
of the probabilistic data structure entails. In either case, we deem the overhead
low, relative to the input volume.

5.3 Memory Overhead

We next analyze the memory overhead introduced by the summary statistics
framework. For this we follow the same approach as for CPU, measuring memory
usage while running Bro repeatedly on the same input trace with the same
three configurations. In all cases, we find the memory overhead imposed by the
summary statistics framework reasonable. Even there the mean overhead is only
about 6.7% (max. 179MB) in comparison to the baseline of a standard Bro setup.

5.4 Communication Overhead

Finally, we examine the communication overhead the summary statistics frame-
work incurs in cluster operation. We add a script to the Bro manager node that logs
all incoming and outgoing messages triggered by the summary statistics frame-
work. For each message we output its timestamp and further meta-information
for identifying its origin (e.g., the name of the reducer and the exact type of the
message). We ran this measurement live for 24 hours on a 57-node Bro cluster of a

7 The measurement was done in a single-system Bro setup. However, we repeated it
in cluster setup with a separate manager process, with similar results.
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medium-sized research organization that we have access to. The cluster monitors
uplink traffic averaging at about 1 Gb/s during day-time hours. The setup used the
full set of standard summary statistic scripts that come with a standard Bro in-
stallation, including detecting scans, traceroutes, SQL injection attacks, and SSH
bruteforcing; as well as using two custom scripts to measure MIME statistics and
traffic volume to several large sites (Google, Facebook, etc.).

Figure 7 shows a breakdown of the different summary statistics and the mes-
sage overhead each caused. We find the scan detector responsible for most of
the exchanged messages, due to the large number of incoming connections that
it needs to classify. In total, the nodes exchanged 1,930,564,662 messages, with
about half of them going from the manager to the worker nodes. This is due to
the manager always initiating the exchange of values (i.e., even after a worker’s
notification, it is the manager that then polls for updates). This means that
each node sends about 399.03 messages per second each way. Messages relat-
ing to the intermediary updates constitute 0.40% of the overall communication.
69,810 times a worker node notifies the manager that it should request updates.
In 27,704, or 39.68%, of these cases, the manager chooses to ignore that re-
quest (an optimization that our implementation applies to limit simultaneously
outstanding key updates for the case where a set of keys triggers many notifica-
tions in short succession; by default, the framework limits the number of simul-
taneously running updates to 10 per summary statistic). In 15.98% of the cases
that the request is accepted by the manager, the target threshold has indeed
been crossed, and hence the manager alarms after aggregating the individual
values.

Overall, we deem the level of communication realistic for such large-scale,
high-volume settings; and clearly within what Bro’s communication system is
able to handle [23]. This conclusion is supported by the Indiana University setup,
which is running the scan detector in operations (§4.1). We note that scan de-
tection represents pretty much the worst case for a distributed monitoring setup
as one needs to continuously correlate activity about many addresses across all
nodes in a timely manner. While we have not yet performed a more system-
atic sensitivity analysis, we expect that we could further reduce the messages
exchanged by tuning the specifics of the update mechanism.

6 Related Work

Our design and implementation represent a generic framework that supports a
wide spectrum of network-based summary statistics. We are not aware of any
system that provides similar flexibility with an easy-to-use interface, suitable for
real-time processing in distributed deployments.

Summary statistics are widely used throughout the networking and security
communities, both in research and operations. To give just a few examples of re-
search efforts presenting applications and/or corresponding data structures, the
literature includes work on finding port scanners in backbones [24], efficiently
counting the number of network flows in high-speed environments [16,9], de-
tecting attacks against routers [1], computing real-time traffic summaries [15],
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or identifying elephant flows [8]. However, all of these efforts remain specific to
their particular target application, while our work provides a framework on top
of which one can implement such analyses.

In operations, appliances from companies like SonicWall and Palo Alto Net-
works compute traffic summaries and break-downs, however they hardwire the
analysis performed. Several open-source utilities can apply statistical computa-
tions to network traffic, in particular NetFlow-based toolsets like SILK [22] and
flow-tools [11]. However, they remain restricted to the abstractions their input
format provides, are intended mainly for offline/batch usage, and do not pro-
vide the flexibility of performing arbitrary computations. Splunk can compute
top-k-style statistics flexibly on different features, yet its input remains limited
to externally produced log files.

For intrusion detection, Denning pioneered statistical monitoring in her semi-
nal work on the host-based IDES system [7]. Today, scan detectors come with vir-
tually any IDS, including open-source systems such as Snort [21]. Older versions
of Bro [19] used to come with four fully separate scan detector implementations,
all targeting different traffic features and/or threshold schemes. Our summary
statistics framework supports all four directly within its unified API. We refer
to, e.g., [18,12] for a broader overview of statistical anomaly detection (as well
as other approaches). We note that while we limit our summary statistics frame-
work implementation to threshold-based schemes for now, conceptually it could
support further statistical approaches as well.

Cohen et al. [4] present an abstract framework for weighted sampling in dis-
tributed settings. It is similar in intent to our work, however, it only considers
the case of sampling, and evaluates optimal algorithms for this setting. Peng et
al. [20] uses a cumulative sum algorithm to collect statistics at nodes and share
information using a machine learning algorithm. In contrast to our work, their
usage scenario is limited to cumulative sums and their evaluation focuses on
optimizing detection delays and bandwidth, not on providing a generally usable
framework for distributed summary statistics.

We use a set of probabilistic data structures to efficiently compute statistics
that traditionally would be very resource intensive to maintain on large inputs.
We choose data structures that satisfy our constraints (see §2.4), yet note that
there are further candidates. For example, there are extensions available for the
HyperLogLog algorithm that we use [10]: Kane et al. [14] propose an algorithm
with an even lower memory overhead; it however remains complex and seems
impractical to implement [13]. Heule et al. likewise propose a series of improve-
ments to HyperLogLog [13]. As our main contributions concerns the framework
itself—not individual computations—we do not further explore such alternatives,
though may do so in the future if the current implementation ever turned out
to represent a bottleneck.

7 Conclusion

In this work, we present the design and implementation of a novel summary statis-
tics framework for network monitoring. As one of its key features, the framework
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supports computing statistics on arbitrary keys, such as IP addresses, DNS labels,
or HTTP server names. Furthermore, our design specifically targets distributed
deployment, and can thus be used in environments where sensors are either scat-
tered over independent tapping points, or jointly process a high-volume link in a
load-balancing setup. We assess the feasibility of our approach by implementing
the summary statistics framework on top of the open-source Bro network monitor,
and showcase a set of example applications in realistic large-scale settings.

Overall, we consider the summary statistics framework an extensible platform
that enables research and operators to measure and quantify characteristics of
their network traffic, with much less effort than they would traditionally require
in particular in the distributed setup. Using the summary statistics framework,
users can implement powerful statistical measurements in just a handful lines of
code, and immediately deploy them for real-time processing.
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Abstract. The only part of the Long Term Evolution (LTE) security
standard that has been formally analyzed is the Authentication and Key
Agreement (AKA) procedure. It is not clear how well existing security
related verification tools can handle other types of procedures. In this
work, we use ProVerif to analyze the procedures related to session man-
agement and mobility. Our analysis has shown that most of the secrecy
and agreement properties hold which was expected. However, we had
difficulties proving stronger injective agreement properties.

Keywords: Formal verification, Telecom, LTE, security.

1 Introduction

Background. Long Term Evolution (LTE), a 4th Generation (4G) mobile com-
munication system, is the most recent standard developed by the 3rd Genera-
tion Partnership Project (3GPP) [1]. Among the objectives of LTE is to provide
higher data rates, enhanced quality of service and equal or better security com-
pared to previous generations [1] (TS 22.278). One such improvement is that
LTE introduces very granular key separation. LTE mandates the use of different
session keys for specific protocols and purposes between the terminal and the
nodes in the network. Those keys are organized in a hierarchy (see Fig. 1b). At
the root of the hierarchy is a key that is shared between the Home Subscriber
Server (HSS) (see Fig. 1a) and the terminal, or User Equipment (UE) in the
3GPP specifications, where it is securely kept in a smartcard. During initial
attachment of the UE to the network, mutual authentication between them is
achieved by running the Authentication and Key Agreement protocol (AKA) [1]
(TS 33.401). The authentication is based on the root key. The other keys are
subsequently derived from keys that are closer to the root in the hierarchy than
themselves.

Each key in the hierarchy is shared between the UE and a particular node in
the network. For example the KASME key is shared with the Mobility Manage-
ment Entity (MME); the KeNB key is shared with the Evolved Node B (eNB).
The LTE standard defines specific procedures for the establishment of each key.
For instance, the KASME key is established by the AKA protocol which runs
between the UE and the HSS, and then provisioned to the target MME node.

A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 341–361, 2014.
c© Springer International Publishing Switzerland 2014
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The KeNB is initially established by a combination of procedures involving the
MME, eNB, and the UE. The UE and MME use the KASME to agree on a KeNB.
The MME then provides this key to the eNB which finally activates the security
between the UE and the eNB based on the KeNB. Key establishment procedures
like these typically have to satisfy at least the following security properties: agree-
ment, secrecy and freshness. Agreement is the property that guarantees that the
involved parties obtain the same key at the end of the run; otherwise, the key
would be useless. Secrecy guarantees that no one, other that the involved parties
(who are assumed to not leak the key to outsiders), has the key. If secrecy is
not guaranteed, confidentiality protection, among other cryptographically based
services, is not achievable. The last property of freshness prevents key re-use
and thus, for example, situations were a plain text is encrypted twice using the
same key.

X2
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eNB eNB

MME

User plane
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Trust domain
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(a) Simplified architecture of LTE
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(b) Key hierarchy in LTE

Fig. 1. LTE overview

In a running system, the key establishment procedures and procedures making
use of the keys can be interleaved, repeated and run simultaneously by several
UEs and network nodes. They can as well be used as building blocks in more
complex compound procedures such as the ones handling mobility. The secu-
rity procedures are dependent on each other. For instance, the establishment
of a KeNB key requires the existence of a KASME key and thus any procedure
using the KeNB cannot be executed in a pure LTE system unless an AKA run
has taken place earlier. The procedures might also rely on other type of con-
text information, such as message counters and global parameters of the system.
State-based formal verification tools like SPIN [18] can model this context infor-
mation and capture the effect of reruns and interleaving. However state-based
approaches are not effective to model cryptographic functions that usually rely
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on advanced computations. Other symbolic approaches that abstract away the
implementation details of cryptographic primitives have been more effective. In
general, formal analysis of security protocols is usually done against the symbolic
Dolev-Yao intruder (or attacker) model [16]. In this model, the attacker has full
control of the communication medium. In addition, cryptography is assumed
perfect so that the attacker cannot decrypt messages unless he has the required
key, hash functions are collision free, etc.

Contribution. In this paper, we present our work with ProVerif [8] which we
used to model and verify security properties of different key establishment pro-
cedures in LTE. This work is part of a feasibility study whose aim is to bring
and put to use tools like ProVerif in an industrial context such as that of the
3GPP standardization process. Our main contribution consists in providing for-
mal models of the LTE protocols in the input language of the ProVerif. Our
implementation preserves the trust model of 3GPP. Furthermore, to the best of
our knowledge, the security procedures related to mobility and session manage-
ment have not been previously subject to formal analysis. Another contribution
consists in showing how to model and verify different security properties. Our
analysis results confirm all secrecy and most of the weak agreement properties.
However, stronger agreement properties are more challenging to prove, for several
reasons that we later discuss and explain. Our analysis approach using ProVerif
is simple and generic and thus can be easily adapted to other case studies.

Related Work. Although LTE security has received much scrutiny during the
design process, it has been less studied in the research community. In particular,
the research community has mainly focused on analyzing AKA [29,28,17,30],
which is largely the same authentication and key agreement protocol used for
Wideband Code Division Multiplex Access (WCDMA), a 3G access. AKA as
used in WCDMA was formally analyzed using BAN logic in [1] (TS 33.902).
AKA is re-used exactly as is in LTE to boot strap the key hierarchy. Therefore,
all analysis results on AKA as used in WCDMA carries over to LTE. A study
of privacy aspects of WCDMA is presented in [5]. Although it does not study
LTE, it looks at other procedures than AKA, namely the paging procedure. The
study in [24] contains an analysis of a proposed, but not standardized, system for
handovers between different types of radio access systems. It does not provide
any analysis of LTE itself.

Research on formal verification of security protocols has been ongoing for
two decades. Current state of the art tools like Scyther [13] and ProVerif can
verify protocols for unbounded number of sessions and agents. Case studies by
Scyther include the analysis of the Naxos protocol [14] and the IPsec exchange
protocols IKEv1 and IKEv2 [15]. Other applications include the analysis of the
privacy and key management protocol [27] and the handover schemes [26] in
WiMAX networks. Case studies by ProVerif include the analysis the Bluetooth
device pairing protocol [19], the just-fast-keying protocol [3], a secure file sharing
protocol [9], authentication in 3G where both GSM and WCDMA access is
used [28], and the privacy study on WCDMA mentioned earlier [5]. We note
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that [28] does not contain any analysis of mobility between radio access networks,
but rather considers the case of authentication over the GSM/EDGE access
network, when used to access a 3G network. There is a long list of similar tools
from which we cite the following ones: The Tamarin tool [23] has been used for
the verification of group key agreement protocols [25]. The AVISPA [6] has been
used for the analysis of key management in hierarchical group protocols [12].
Other relevant tools are NRL [22], LySa [11] and Casper [21].

Outline. In the next section, we give an overview of the LTE architecture to put
in context the protocol models we provide. In Section 3, we describe ProVerif
and use AKA as an example illustrating our modeling approach. In Section 4,
we describe the security procedures related to session management, provide the
corresponding formal models and discuss the verification results. In Section 5, we
present our work on security procedures in mobility events. Finally in Section 6,
we conclude by a summary discussions and future work. For shortage of space,
the full versions of the models that can be used to reproduce our results are
not included. They are available on demand. In the description of the LTE
procedures, many aspects not related to security have been omitted and thus we
refer to [1] for the detailed specifications.

2 Overview of LTE

LTE provides 4G mobile broadband access service to terminals. More precisely,
the service consists of providing a terminal with IP connectivity using a stable
IP address, while the terminal moves throughout the LTE network.

2.1 Architecture

LTE [1] (TS 23.401) consists of a Radio Access Network (RAN) and a core net-
work (see Fig. 1a). The radio access network consists of a set of base stations,
the eNBs. The terminals connect to the eNB via the radio air interface. The
eNB is connected to two nodes in the core network: the MME and the Serv-
ing Gateway (S-GW). The first node (MME) handles the control plane traffic
for mobile terminals connected to the eNB. The control plane for a terminal is
used to manage the terminal sessions, mobility and security. The second node
(S-GW) handles the user plane traffic to and from the internet, and other opera-
tor services. Subscriber information such as authentication credentials, location,
subscription preferences, etc. is kept in the HSS.

2.2 Trust Model

During the security design in 3GPP a trust model for the network is assumed.
More precisely, the network is divided into two main types of trust domains:
the core network trust domain, and the RAN one. The standards have a more
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granular concept of trust domains, but these two are sufficient for the proto-
cols considered in this paper. The data traffic flows between nodes in different
domains over an IP transport network.

The core network domain, which contains nodes like the HSS, MME, S-GW,
etc. is assumed to be a physically secure one. This means that attackers do not
have access to nodes in this domain other than what can be obtained remotely
via the network interfaces of the nodes.

The RAN trust domain contains only the eNBs. Since such nodes may be
deployed in physically insecure locations, such as on the wall of a shopping
mall, or in a hotel corridor, etc. the security model in LTE is built to handle the
situation where the eNBs are deployed in untrusted locations. In the standard [1]
(TS 33.401), it is required that each eNB implements its security processing
inside a secure environment. The purpose is to prevent attackers to gain access
to any data in the eNB by physically tampering with the device. Furthermore,
the IP transport network that connects nodes across different domains is to be
protected using IPsec [1] (TS 33.210) unless it can be trusted.

2.3 Session and Mobility Management

The terminal maintains two control connections with the network, one with the
MME managed by the Non Access Stratum (NAS) protocol, and one with the
eNB managed using the Radio Resource Control (RRC) protocol. The MME
keeps track of the terminal location even when it is idle, i.e., it is not exchanging
user plane data. The location is defined by an area served by possibly several
eNBs. The terminal keeps the MME updated of any area changes as it moves.

In case of incoming data, the MME pages the terminal on all eNBs in its last
known area. In response to the paging, the terminal requests a user plane data
connection from the MME. It is only then that the eNB, which the terminal uses
to access the network, becomes aware of the terminal presence. The MME pro-
vides the eNB with initial state information to communicate with the terminal.
The terminal can then become active sending and receiving data. Afterwards, it
can become idle again. In such case, the serving eNB releases all the associated
resources and is no longer aware of the terminal’s presence.

2.4 Key Hierarchy

Once security is activated, the NAS protocol between the terminal and the MME
becomes both integrity protected and encrypted. The same holds for the RRC
protocol between the terminal and the eNB. The user plane traffic is encrypted
in two hops. First the radio link between the terminal and the eNB is encrypted.
The eNB terminates the encryption of uplink traffic inside its secure environment
and forwards it to the S-GW through an IPsec tunnel. Downlink traffic is handled
in a similar manner.

Security for NAS, RRC and user plane traffic relies on separate encryption
and integrity session keys (see Fig. 1b). The keys for protecting RRC and user
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plane traffic are derived from the KeNB which in turn, is derived from the KASME.
The keys for the NAS protocol are also derived from the KASME key.

2.5 Initial Key Establishment

At start up, the terminal needs to register with the network. This is achieved by
the attach procedure. In connection to the attach procedure, the terminal and
network also run an AKA procedure. The outcome of AKA is the establishment
of the KASME session key between the terminal and the serving MME.

Figure 2 contains a simplified chart of the message exchange related to AKA
and that we briefly explain as follows: First, the UE sends its identifier IMSI and
security capabilities to the MME in an attach request. The MME then stores the
capabilities and forwards the IMSI to the HSS. The HSS uses the identifier to
retrieve the secret subscriber key K, generates a nonce RAND and computes the
KASME key together with other authentication parameters. The authentication
data is then sent to the MME which uses it to authenticate the UE.

UE MME HSSeNB

ATT: IMSI,UEalgs ADQ: IMSI

ADR: RAND,XRES,KASME,AUTNACH: RAND,AUTN

ARE: RES

[NSM: eksi,UEalgs,NASalgs]

{[NSC]}
{[NSR]}

ISC: UEalgs,KeNB[RSM: RRCalgs]

{[RSC]} CSC

ATT: Attach Request

ADQ: Authentication Data Request

ADR: Authentication Data Response

ACH: Authentication Challenge

ARE: Authentication Response

NSM: NAS Security Mode Command

NSC: NAS Security Mode Complete

NSR: NAS Service Request

ICS: Initial Context Setup

RSM: RRC Security Mode Command

RSC: RRC Security Mode Complete

CSC: Context Setup Complete

[ ] Integrity protected

{} Encrypted

N
A
S

S
C
P

A
K
A

N
A
S

S
R
P

Fig. 2. AKA, NAS security control and service request procedures
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3 ProVerif Overview

Before we present our work with the security procedures, we first describe
ProVerif, the tool we use. We will be using AKA as a supporting example to
show how protocols can be modeled and analyzed with it.

3.1 ProVerif

The tool takes formal models of the protocols together with a set of security
properties as input. The input language is a typed variant of the applied pi
calculus [4]. In this language, messages are modeled as terms. Relationships
between cryptographic primitives are captured by rewrite rules or an equational
theory. The complete specification can be found in the user manual [10].

ProVerif can prove reachability properties and correspondence assertions [7].
Reachability properties allow checking which information is in the possession of
the attacker, i.e. secrecy. Correspondence properties are of the form “if some
event is executed, then another event has previously been executed”, and can
be used for checking various types of authentication [20].

3.2 Input Language

Figure 3 shows an AKA model in the ProVerif language. In general, a protocol
model can be divided in three parts: the declarations (lines 1-9), the process
macros (10-31) and the main process (32). The declarations include the user
types, the functions that describe the cryptographic primitives, and the secu-
rity properties. The process macros consist of sub-process definitions. Each sub-
process is a sequence of events. Finally, the main process is defined using those
macros. In this particular example, it is defined as the parallel composition (de-
noted by |) of the unbounded replication (denoted by !) of three process macros
representing a UE (line 10), an MME (18) and an HSS (24) node.

Declarations. Besides the built-in types: channel, bitstring and bool; addi-
tional user types can be declared as in line 2. Free names are introduced as in
line 1 where two channels with names pubch and secch are declared. Free names
are by default accessible to the attacker unless qualified by [secret]. In the ex-
ample, the private channel is used for secure communication such as within a
trusted domain or over an IPsec tunnel.

Constructors are functions used to build terms. They are declared by spec-
ifying their names, the types of the arguments and the return value (see lines
4-7). By default, functions are one-way; that is, the attacker cannot derive the
arguments from the return value, unless qualified by [data] . Destructors (line
8) are special functions that are used to manipulate terms. Combined together,
constructors and destructors are used to capture the relationship between cryp-
tographic primitives. In the model of Fig. 3, the first three declared functions are
used to derive the authentication parameters in the HSS process (lines 28-30).
The last two are used to model a shared key encryption and decryption scheme.
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1 f r e e pubch : channe l . f r e e s ecch : channe l [ p r i v a t e ] .
2 type key . type i d . type msgheader .
3 const ATT, ADR, ADQ, ACH, ARE: msgheader .
4 fun kd f ( b i t s t r i n g , key ) : key .
5 fun autn ( b i t s t r i n g , key ) : b i t s t r i n g .
6 fun r e s ( b i t s t r i n g , key ) : b i t s t r i n g .
7 fun senc ( b i t s t r i n g , key ) : b i t s t r i n g .
8 reduc f o r a l l x : b i t s t r i n g , y : key ; sdec ( senc ( x , y ) , y ) = x .
9 t a b l e db ( id , key ) .

10 l e t UE( ) =
11 new im s i : i d ; new k : key ; (∗ key p r o v i s i o n n i n g ∗)
12 i n s e r t db ( ims i , k ) ; (∗ key a c t i v a t i o n ∗)
13 out ( pubch , (ATT, im s i ) ) ; (∗ a t t a ch r e q u e s t ∗)
14 i n ( pubch , (=ACH, r : b i t s t r i n g , a : b i t s t r i n g ) ) ;
15 i f a = autn ( r , k ) then
16 l e t kasme : key = kdf ( r , k ) i n
17 out ( pubch , (ARE, r e s ( r , k ) ) ) . (∗ a u t h e n t i c a t i o n r e s pon s e ∗)
18 l e t MME() =
19 i n ( pubch , (=ATT, im s i : i d ) ) ;
20 out ( secch , (ADQ, im s i ) ) ; (∗ a u t h e n t i c a t i o n data r e q u e s t ∗)
21 i n ( secch , (=ADR, kasme : key , a : b i t s t r i n g , x r : b i t s t r i n g , n : b i t s t r i n g ) ) ;
22 out ( pubch , (ACH, n , a ) ) ; (∗ a u t h e n t i c a t i o n r e q u e s t ∗)
23 i n ( pubch , (=ARE, =x r ) ) .
24 l e t HSS( ) =
25 i n ( secch , (=ADQ, im s i : i d ) ) ; (∗ a u t h e n t i c a t i o n data r e q u e s t ∗)
26 new n : b i t s t r i n g ;
27 get db(= ims i , k : key ) i n
28 l e t kasme : key = kdf (n , k ) i n
29 l e t a : b i t s t r i n g = autn (n , k ) i n
30 l e t r : b i t s t r i n g = r e s (n , k ) i n
31 out ( secch , (ADR, kasme , a , r , n ) ) . (∗ a u t h e n t i c a t i o n data r e s pon s e ∗)
32 p roce s s ( ( !UE( ) ) | ( !MME( ) ) | ( ! HSS( ) ) )

Fig. 3. AKA model

Constants (line 3) are 0-arity functions that together with types can be used
to improve the clarity of the model and can help reducing the number of valid
traces during the analysis. This is also common behavior of implementations,
i.e., a protocol implementation typically reject messages of unexpected types. In
addition, we use the constants to identify the different exchanged messages so
that they can be easily mapped in the corresponding chart (Fig. 2).

The language provides support for tables for persistent storage. In line 9, a
table modeling the subscriber database is declared. Lines 11-12 model the process
of registering a new subscriber; and line 27 models the process of retrieving the
pre-shared secret key of a subscriber (variable k) given its identity (imsi).

Process Macros. Messages are represented by terms. A term can be a name,
a variable, a tuple of terms, a constructor or destructor application. In addition,
the language has support for some common Boolean functions (=,&&, ||, <>)
that use the infix notation. Pattern matching is used for term evaluation of
message inputs. The pattern x : t matches any term of type t and binds it to
x. For a term M , the pattern =M matches any term N such that M = N . A
pattern tuple (T1, T2, . . . , Tn) matches any term tuple (M1,M2, . . . ,Mn) where
pattern matching is applyed recursively to each term Mi against pattern Ti. For
example, the pattern (= ATT, imsi : id) in line 19 matches any term pair where
the first one is the constant ATT and the second one is of type id.
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Processes are defined as sequences of events. The name restriction event (line
26) creates a fresh name of a specific type and binds it inside the following events.
The communication event out(M,N);P (13), sends the term N on channel
M and continue as the process P . The communication event in(M,T );P (25),
awaits a message matching pattern T on channel M and continues as P . The
conditional if M else P then Q (15) continues as the process P if the term M
evaluates to true, continues as the process Q if M evaluates to another value,
or stops if M evaluation fails. The statement let T = M in P else Q (28) tries
to match the term M with pattern T , continues as the process P if there is a
match, or continues as the process Q otherwise.

3.3 Security Properties

Security properties are declared with the keyword query. In our example of
AKA, one of the goals is to establish the shared session key KASME between the
MME and the UE. In order to check this, we consider the following properties.

1 event ueReachab le ( ) . event mmeReachable ( ) . event hs sReachab l e ( ) .
2 query event (mmeReachable ( ) ) ; event ( h s sReachab l e ( ) ) ; event ( ueReachab le ( ) ) .
3 f r e e s e c r e t : b i t s t r i n g [ p r i v a t e ] .
4 query a t t a ck e r ( s e c r e t ) .
5 event ueRunning ( key ) . event ueCommit ( key ) . event mmeRunning ( key ) . event

mmeCommit ( key ) .
6 query k : key ; event ( ueCommit ( k ) ) ==> event (mmeRunning ( k ) ) .
7 query k : key ; event (mmeCommit ( k ) ) ==> event ( ueRunning ( k ) ) .
8 query k : key ; i n j−event ( ueCommit ( k ) ) ==> i n j−event (mmeRunning ( k ) ) .
9 query k : key ; i n j−event (mmeCommit ( k ) ) ==> i n j−event ( ueRunning ( k ) ) .

The first two declarations are used for sanity checks. The “reachability” events
of line 1 are intended to be executed each at the end of the corresponding process
macro. Events are special extension to the process grammar that do neither affect
the attacker knowledge, nor the execution of the processes. When analyzing the
query of line 2, ProVerif attempts to falsify its claims by generating traces that
reach those events. This is useful to check that the processes can be fully executed
and that there are no blocking events for example due to a constantly failing
pattern matching. The declarations in lines 3-4 are used to check secrecy of the
established key. The attacker (line 4) is a built-in predicate that can be used
to check which terms are compromised.

The last declarations are correspondence assertions used for checking mutual
agreement between the UE and the MME on the key. The syntax to query a
basic correspondence assertion uses the event keyword (lines 5-7). Correspon-
dence assertions where a one-to-one mapping is required between events, use the
inj-event keyword instead. In our case, we recall Lowe’s definitions of weak and
injective agreement [20] and use the special “running” and “commit” events de-
clared in line 5 together with the correspondence assertions of lines 6-7 to check
for agreement on the established key between the MME and UE processes. In
general, a commit event is added in the end of each “responder” process, to which
another “initiator” process is trying to authenticate. Then for each commit, a
running event is added in the “initiator” process before the last send operation.
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3.4 Analysis and Discussion

ProVerif is able to solve all the properties except one of the reachability queries
of line 2 and the injective correspondence assertion query of line 9. The remaining
queries are solved as expected. More precisely, the correspondence and secrecy
ones are proved to hold and the reachability queries are falsified.

The unresolved reachability query can be solved by restricting the attacker
model. This is can be done by a special feature of ProVerif for setting internal
configuration parameters. One of those parameters representing the attacker
capability can be set to either passive or active directly in the model. Setting
the attacker to passive has the effect of reducing the number of traces (improving
the chances for termination) but the analysis is no longer sound. This is not a
problem for reachability because a trace that reaches the target event in the
restricted model is also valid in the non restricted one. ProVerif is then able
to solve the unanswered reachability claim. Another way for achieving the same
effect consists in declaring all communication channels as private. Intuitively, the
goal is to check whether the protocol can be run at all in a secure environment
by honest agents.

For the unresolved correspondence assertion, while further experimenting with
the model we observed the following. When strengthening the claim by including
an additional id parameter (see below), executing the corresponding commit and
running events with the additional argument set to the imsi, and setting the
attacker model to passive, then ProVerif is able to find an attack trace even for
the corresponding non-injective assertion.

query i : i d , k : key ; event (mmeCommit ( i , k ) ) ==> event ( ueRunning ( i , k ) ) .

The attack trace is due to the ProVerif approximation [8]. In the following
we describe intuitively the effects of this approximation. First, a send operation
on private channels is never blocking even in case of none matching operation.
This does not correctly model communication in the real system as it might
be reliable (for example transport over TCP). Second, the private channel is a
shared broadcast one. In our case, this is problematic as what is really needed
is a tunnel-like model of communication that simulates peer-to-peer (secure)
channels. The model provided by ProVerif is too broad allowing even honest
agents to read and use messages not destined to them. Therefore, false attack
traces sometimes appear.

4 Session Management

We consider now the procedures that take place after the terminal and MME
have established the KASME by AKA (see Fig. 2). Observe that the terminal has
also informed the MME about which security capabilities it supports (the ATT

message). The security capabilities include lists of encryption and integrity pro-
tection algorithms that the terminal supports. As a consequence, when analyzed
separately, some initialization steps are needed in the protocol models in order
to set up the required security context assumed to be established by AKA.



Formal Analysis of Security Procedures in LTE - A Feasibility Study 351

4.1 NAS Security

NAS security is enabled by a simple request-response procedure [1] (TS 24.301)
that we refer to as the NAS Security Control Procedure NAS SCP (see Fig. 2).
The procedure is initiated by the MME sending a security mode command mes-
sage (NSM) to the terminal. This message indicates the security algorithms cho-
sen by the MME. The message includes a special identifier eksi indicating which
KASME to use as the basis for the key derivation. For various reasons there may
be more than one KASME known simultaneously to the terminal and network [1]
(TS 33.401). The message also contains the list of security capabilities provided
earlier by the terminal.

In response, the terminal verifies that the received security capabilities are
consistent with what the terminal supports. If the verification fails, the terminal
rejects the command thus preventing bidding-down attacks. If the verification
succeeds, the terminal sends an encrypted and integrity protected completion
message (NSC). All NAS messages are protected from replay attacks by inclusion
of a sequence number (omitted in our models).

Model Description. Figure 4 shows a ProVerif model of the NAS SCP proto-
col. Compared to the AKA model, the novelty in the declaration part consists
in the use of predicates and clauses to model capability sets (lines 6-9). Predi-
cates are declared like constructors and clauses are needed in order to define the
meaning of the predicates. In our case, we declare a capability set constructor
together with a constant representing the empty set in line 6. Then we use the
predicate of line 7 to model the set membership test function which is defined
below in the clauses of lines 8-9.

Furthermore, the functions used for the shared encryption scheme (lines 4-
5) have been modified in order to take into account an additional parameter
representing the algorithm to be used.

The main process executes some initialization events then expands and forks
in parallel unbounded number of sessions of two process macros representing
a UE (line 13) and an MME (20). The initialization steps consist in creating
a capability set of two arbitrary algorithms (lines 31-32), disclosing it to the
attacker (33), and finally creating a secret KASME key (34). The key is supposed
to have been created earlier during an AKA run, while the capabilities should
have been sent by the UE at startup in an attach request. Both parameters are
used as input arguments to the process macros.

The use of predicates is illustrated in line 23. This particular event binds the
variable a : alg to a value that satisfies the predicate mem(a, uecaps) in the rest
of the process. Intuitively, this models the MME choosing an algorithm among
the ones supported by the UE. During the analysis ProVerif considers all possible
choices.

Analysis and Discussion. The goal of NAS SCP is to establish the encryp-
tion and integrity keys, KNASenc and KNASint, that are to be used for the NAS
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1 f r e e pubch : channe l . f r e e s ecch : channe l [ p r i v a t e ] .
2 type key . type a l g . type caps . type i d . type msgheader .
3 const NSM, NSC : msgheader . const NASINT , NASENC: b i t s t r i n g .
4 fun psenc ( a lg , b i t s t r i n g , key ) : b i t s t r i n g .
5 reduc f o r a l l a : a lg , x : b i t s t r i n g , y : key ; psdec ( a , psenc ( a , x , y ) , y ) = x .
6 fun c on s s e t ( a lg , caps ) : caps [ data ] . const emptyset : caps .
7 pred mem( a lg , caps ) .
8 c l a u s e s f o r a l l x : a lg , y : caps ; mem( x , c o n s s e t ( x , y ) ) ;
9 f o r a l l x : a lg , y : caps , z : a l g ; mem( x , y ) −> mem( x , c o n s s e t ( z , y ) ) .

10 fun kd f ( b i t s t r i n g , key ) : key . fun k s i ( key ) : i d .
11 fun pmac ( a lg , b i t s t r i n g , key ) : b i t s t r i n g .
12 f r e e s e c r e t : b i t s t r i n g [ p r i v a t e ] .
13 l e t UE( uecaps : caps , kasme : key ) =
14 i n ( pubch , (=NSM, =k s i ( kasme ) , =uecaps , a : a lg , nasmac : b i t s t r i n g ) ) ;
15 l e t k n a s i n t : key = kdf (NASINT , kasme ) i n
16 i f mem(a , uecaps ) && nasmac = pmac ( a , (NSM, k s i ( kasme ) , uecaps , a ) ,

k n a s i n t ) then
17 l e t knasenc : key = kdf (NASENC, kasme ) i n
18 l e t msg : b i t s t r i n g = ( s e c r e t , pmac ( a , (NSC, s e c r e t ) , k n a s i n t ) ) i n
19 out ( pubch , (NSC, psenc ( a , msg , knasenc ) ) ) . (∗ s e c u r i t y mode comple te ∗)
20 l e t MME( uecaps : caps , kasme : key ) =
21 l e t e k s i : i d = k s i ( kasme ) i n
22 l e t k n a s i n t : key = kdf (NASINT , kasme ) i n (∗ i n t e g r i t y p r o t e c t i o n ∗)
23 l e t a : a l g suchthat mem(a , uecaps ) i n
24 l e t nasmac : b i t s t r i n g = pmac ( a , (NSM, ek s i , uecaps , a ) , k n a s i n t ) i n
25 out ( pubch , (NSM, ek s i , uecaps , a , nasmac ) ) ; (∗ s e c u r i t y mode command ∗)
26 i n ( pubch , (=NSC, pay load : b i t s t r i n g ) ) ;
27 l e t knasenc : key = kdf (NASENC, kasme ) i n (∗ c o n f i d e n t i a l i t y ∗)
28 l e t (= s e c r e t , nasmacr : b i t s t r i n g ) = psdec ( a , pay load , knasenc ) i n
29 i f nasmacr = pmac ( a , (NSC, s e c r e t ) , k n a s i n t ) then 0 .
30 p roce s s
31 new a1 : a l g ; new a2 : a l g ;
32 l e t uecaps = con s s e t ( a1 , c o n s s e t ( a2 , emptyset ) ) i n
33 out ( pubch , uecaps ) ;
34 new kasme : key ;
35 ( ( !UE( uecaps , kasme ) ) | ( !MME( uecaps , kasme ) ) )

Fig. 4. NAS security establishment model

protocol between the UE and the MME. In addition to the secrecy and sanity
queries, we consider the following correspondence assertions in order to check
agreement on the established keys and the chosen algorithm.

event ueRunning ( a lg , key , key ) . event ueCommit ( a lg , key , key ) .
event mmeRunning ( a lg , key , key ) . event mmeCommit ( a lg , key , key ) .
query a : a lg , k1 : key , k2 : key ;

event (mmeCommit ( a , k1 , k2 ) ) ==> event ( ueRunning ( a , k1 , k2 ) ) .
query a : a lg , k1 : key , k2 : key ;

i n j−event (mmeCommit ( a , k1 , k2 ) ) ==> i n j−event ( ueRunning ( a , k1 , k2 ) ) .
query a : a lg , k1 : key , k2 : key ;

event ( ueCommit ( a , k1 , k2 ) ) ==> event (mmeRunning ( a , k1 , k2 ) ) .
query a : a lg , k1 : key , k2 : key ;

i n j−event ( ueCommit ( a , k1 , k2 ) ) ==> i n j−event (mmeRunning ( a , k1 , k2 ) ) .

ProVerif is able to solve all the properties. The reachability queries are all
falsified. The secrecy query and the basic correspondence assertions are proven
to hold. However ProVerif reports attack traces on the injective assertions. This
is not surprising as there is nothing in the protocol model that binds the runs
to unique names (no creation of fresh names within the replicated processes). In
fact the traces show that the attacker can falsify injection simply by duplicating
and dropping messages to obtain a run between multiple parallel instances of
MMEs against a single session of a UE and viceversa.
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Modifying the model by moving the KASME key creation within the UE pro-
cess and making the MME process read the key from a table leads to ProVerif
proving that one of the direction holds. Intuitively, in the new model each run
of the UE process is bound to a unique fresh key. Observe that this is a different
system model since each replication of UE represents a new device rather than
just a rerun of the same one. Furthermore, ProVerif is still able to report an
attack trace for the other direction. This is expected as the modifications can-
not prevent running in parallel multiple instances of MMEs that use the same
KASME key and that can be matched against a single UE session. Since the
KASME can only be present in one MME at a time, namely the one in which the
UE is registered, it is not possible that two well behaved MMEs would be run-
ning NAS SCP procedures simultaneously. Neither would a well behaved MME
run two NAS SCP procedures simultaneously by itself.

In fact well behaved agents would run the procedures sequentially. This we
could not express in ProVerif. Even if we can express this sequential behavior, the
injective agreement property will not hold. More precisely, assume the MME has
sent two security mode command messages in separate sequential sessions, then
it will not be able to distinguish to which session a reply belongs. This is because
there is no information in the messages that tie them together, like for example
a transaction identifier. It should be pointed out, that if an MME sends the
same information repeatedly in different sessions, then regardless of which reply
reaches the MME, the outcome of the whole procedure (algorithm negotiation
and necessary key derivation) will be the same. From this perspective, injective
agreement may not be necessary for this particular procedure.

4.2 RRC Security

Establishment of RRC security is achieved as follows: First, in order to send or
receive data, the terminal needs to establish bearers to carry it. This is achieved
by running a NAS Service Request Procedure with the network [1] (TS 24.301)
and to which we refer by NAS SRP (see Fig. 2). The terminal initiates the
procedure by sending a service request (NSR) to the MME via the eNB. The
radio channel between the UE and the eNB is not secured at this point, but this
is not a problem since the NAS protocol provides its own security.

Upon reception of the request, the MME derives a KeNB from the currently ac-
tive KASME and the message sequence number associated with the NAS message.
The latter parameter ensures that a fresh key is generated every time the pro-
cedure is run. This is necessary to prevent key stream re-use and replay attacks
against the RRC protocol. The MME transfers the KeNB together with the termi-
nal’s security capabilities to the eNB. The eNB sends a command message (RSM)
to the terminal. This command includes the chosen algorithms and is integrity
protected to prevent modification of the algorithm selection [1](TS 36.331).When
the terminal receives the command, it derives the necessary keys and replies to the
eNB with an encrypted and integrity protected completion message (RSC). From
this point on, all RRC messages are integrity protected and encrypted, and all
user plane traffic is encrypted.
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Model and Analysis. A ProVerif model of the NAS SRP is provided in Fig. 5.
The declaration part has been removed as it is identical to that of the NAS SCP
model (see Fig. 4) except for some of the message headers and the constants
used in the key derivation function, easily found in the model.

1 l e t UE( uecaps : caps , kasme : key ) =
2 new na su l c oun t : b i t s t r i n g ; out ( pubch , na su l c oun t ) ;
3 out ( secch , (NSR, na su l c oun t ) ) ; (∗ i n i t i a l s e r v i c e r e q u e s t ∗)
4 i n ( pubch , (=RSM, a : a lg , r rcmac : b i t s t r i n g ) ) ;
5 l e t kenb : key = kdf ( na su l count , kasme ) i n
6 l e t k r r c i n t : key = kdf (RRCINT , kenb ) i n
7 i f mem(a , uecaps ) && rrcmac = pmac ( a , (RSM, a ) , k r r c i n t ) then
8 l e t k r r c e n c : key = kdf (RRCENC, kenb ) i n
9 out ( pubch , (RSC , psenc ( a , ( s e c r e t , pmac ( a , (RSC , s e c r e t ) , k r r c i n t ) ) ,

k r r c e n c ) ) ) .
10 l e t MME( uecaps : caps , kasme : key ) =
11 i n ( secch , (=NSR, na su l c oun t ) ) ;
12 l e t kenb : key = kdf ( na su l count , kasme ) i n
13 out ( secch , ( ISC , uecaps , kenb ) ) ; (∗ i n i t i a l c on t e x t s e tup ∗)
14 i n ( secch , =CSC) .
15 l e t eNodeB ( ) =
16 i n ( secch , (=ISC , uecaps : caps , kenb : key ) ) ;
17 l e t k r r c i n t : key = kdf (RRCINT , kenb ) i n (∗ i n t e g r i t y p r o t e c t i o n ∗)
18 l e t a : a l g suchthat mem(a , uecaps ) i n
19 l e t r rcmac : b i t s t r i n g = pmac ( a , (RSM, a ) , k r r c i n t ) i n
20 out ( pubch , (RSM, a , r rcmac ) ) ; (∗ s e c u r i t y mode command ∗)
21 l e t k r r c e n c : key = kdf (RRCENC, kenb ) i n (∗ c o n f i d e n t i a l i t y ∗)
22 i n ( pubch , (=RSC , pay load : b i t s t r i n g ) ) ; (∗ s e c u r i t y mode comple te ∗)
23 l e t (= s e c r e t , r r cmac r : b i t s t r i n g ) = psdec ( a , pay load , k r r c e n c ) i n
24 i f r r cmac r = pmac ( a , (RSC , s e c r e t ) , k r r c i n t ) then
25 out ( secch , CSC) . (∗ i n i t i a l c on t e x t s e tup r e s pon s e ∗)
26 p roce s s
27 . . .
28 ( ( !UE( uecaps , kasme ) ) | ( ! eNodeB ( ) ) | ( !MME( uecaps , kasme ) ) )

Fig. 5. RRC security establishment model

The main process (line 26) executes some initialization steps then forks in
parallel an unbounded number of sessions of three processes representing an UE
(1), an MME (10) and an eNB (15) node. The initialization steps (omitted in
the figure) are required to set up the parameters established earlier which are
the user capabilities and the KASME key in a similar manner to how it is done
in the model of Fig. 4. The additional in the model parameter denoted by
nasulcount represents the NAS protocol message counter. This counter is used
for deriving the KeNB key (lines 5 and 12) that is to be provisioned to the eNB
(13 and 16). It is incremented for each message exchange between the UE and
MME. For example, this would be the effect of the send and matching receive
operations of lines 3 and 11.

We model the counter by a fresh variable that we disclose (line 2) and make
sure that it is synchronized by including it in the first NAS message (line 11). Ac-
cording to the specification [1](TS 33.401), when the counter, which is bounded,
is about to wrap around then a new AKA run can be triggered in order to
generate a new KASME key and thus preventing a KeNB key reuse.
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For the security properties, we consider the secrecy and sanity queries in a
similar manner to the previous models. For the correspondence assertions, we
focus on the agreement on the established KeNB key and the chosen algorithm
between the UE and the eNB. ProVerif solves all the queries as expected except
one of the injective correspondence assertions (see Table 1).

5 Mobility Management

An eNB may detect that another eNB is better suited to serve an active ter-
minal, for example because of better radio conditions. The source or serving
eNB (denoted by S-eNB) hands over the terminal to the target eNB (denoted
by T-eNB). There are two compound procedures to perform a handover. The
first is a core network assisted handover that is called S1 handover (HO S1).
The second is a handover without core network assistance called X2 handover
(HO X2). The names come from the primary network interfaces used during the
execution of the handovers.

5.1 X2 Handover

Handovers can be performed after the terminal has completed all necessary pro-
cedures so that RRC and NAS security has been activated. The X2 handover
(Fig. 6) is initiated by the S-eNB calculating a K∗

eNB key from the currently
active KeNB and sending it together with the terminal security capabilities to
the T-eNB in a handover request message (REQ). The T-eNB replies with the
required configuration information for the terminal connection. This information
includes the chosen algorithms that the T-eNB and the terminal shall use (CMD).
The S-eNB then forwards the reply to the terminal, which confirms the handover
with a completion message (CPL). In the last step, the T-eNB retrieves a new
key called the Next Hop key (NH) from the MME. The NH which is derived
from the KASME is to be used as a basis for the K∗

eNB calculation in the next
handover event [1] (TS 33.401).

5.2 S1 Handover

In an S1 handover (Fig. 7), the S-eNB and target T-eNB are not directly con-
nected. Instead, the S-eNB sends a handover required message (RQD) to the MME
containing the security capabilities of the terminal. The MME then derives the
NH key and sends it to the target node, together with the UE capabilities. The
T-eNB uses the NH key to derive the KeNB for communication with the termi-
nal, and sends a handover command (CMD) containing the chosen algorithms to
the source node. Finally, the S-eNB forwards the message to the terminal which
replies to the T-eNB by a handover completed message (CPL).



356 N.B. Henda and K. Norrman

UE MMES-eNB T-eNB

REQ: K∗
eNB,UEalgs

CMD: RRCalgsCMD: RRCalgs

{[CPL]} PSR

ACK: NH2

REQ: Handover Request

CMD: Handover Command

CPL: Handover Complete

PSR: Path Switch Request

ACK: Path Switch Acknowledge

[ ] Integrity protected

{} Encrypted

Fig. 6. X2 handover
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RQD: Handover Required

REQ: Handover Request

CMD: Handover Command

CPL: Handover Complete

PSR: Path Switch Request

ACK: Path Switch Acknowledge

[ ] Integrity protected
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Fig. 7. S1 handover

5.3 Formal Models and Analysis

Both handover procedures involve four agents: a UE, a source S-eNB, a target
T-eNB and an MME. The procedures are very similar but provide slightly dif-
ferent security guarantees. The ProVerif models of the protocols are provided
in Fig. 8 and Fig. 9. The declaration parts have been omitted as they are very
similar to previous models except for some types and constants.

In the model of X2 handover (Fig. 8), the main process performs the required
initialization steps and forks unbounded sessions of the processes defined in
lines 1, 6, 9 and 12 representing respectively a UE, an MME, a S-eNB and a
T-eNB. The initialization steps include defining the UE capabilities (lines 22-
24), the KASME key shared between the UE and the MME (25), and the KeNB
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1 l e t UE( uecaps : caps , kenb : key , c e l l i d : b i t s t r i n g ) =
2 i n ( secch , (=CMD, a : a l g ) ) ;
3 i f mem(a , uecaps ) then
4 l e t k enb s t a r : key = kdf ( c e l l i d , kenb ) i n
5 out ( pubch , (CPL , senc ( ( a , mac ( (CPL , a ) , k enb s t a r ) ) , k enb s t a r ) ) ) .
6 l e t MME( nh 2 : key ) =
7 i n ( secch , =PSR) ;
8 out ( secch , (ACK, nh 2 ) ) .
9 l e t SeNodeB ( uecaps : caps , kenb : key , c e l l i d : b i t s t r i n g ) =

10 l e t k enb s t a r : key = kdf ( c e l l i d , kenb ) i n
11 out ( secch , (REQ, kenbs ta r , uecaps ) ) .
12 l e t TeNodeB ( ) =
13 i n ( secch , (=REQ, k enb s t a r : key , uecaps : caps ) ) ;
14 l e t a : a l g suchthat mem(a , uecaps ) i n
15 out ( secch , (CMD, a ) ) ;
16 i n ( pubch , (=CPL , msg : b i t s t r i n g ) ) ;
17 l e t (=a , r rcmac : b i t s t r i n g ) = sdec (msg , k enb s t a r ) i n
18 i f r rcmac = mac ( (CPL , a ) , k enb s t a r ) then
19 out ( secch , PSR) ;
20 i n ( secch , (=ACK, nh 2 : key ) ) .
21 p roce s s
22 new a1 : a l g ; new a2 : a l g ;
23 l e t uecaps = con s s e t ( a1 , c o n s s e t ( a2 , emptyset ) ) i n
24 out ( pubch , uecaps ) ;
25 new kasme : key ; new na su l c oun t : b i t s t r i n g ; out ( pubch , na su l c oun t ) ;
26 l e t kenb : key = kdf ( na su l count , kasme ) i n
27 l e t nh 1 : key = kdf ( t o b i t s t r i n g ( kenb ) , kasme ) i n
28 l e t nh 2 : key = kdf ( t o b i t s t r i n g ( nh 1 ) , kasme ) i n
29 new c e l l i d : b i t s t r i n g ; out ( pubch , c e l l i d ) ;
30 ( ( !UE( uecaps , kenb , c e l l i d ) ) | ( ! SeNodeB ( uecaps , kenb , c e l l i d ) ) |
31 ( ! TeNodeB ( ) ) | ( !MME( nh 2 ) ) )

Fig. 8. X2 handover model

shared between the UE and the S-eNB (26). The remaining additional steps are
needed to establish some parameters required for deriving the current and future
handover keys such as the next hop key (27-28) and the cell identifier for the
T-eNB (29).

The model of S1 handover (Fig. 9) requires almost the same initialization
steps (omitted here) except that the additional cell identifier cellid parameter
of HO X2 is no longer needed. The main difference between the models is in
the MME role. In HO S1, it is the MME that computes the key to be used in
the T-eNB which is NH2. However, in HO X2 it is the S-eNB that computes the
target’s key which is the K∗

eNB. In addition, the MME provides its key (NH2) in
the last steps of the protocols (lines 7-8 and 20-21) for use in the next handover.

In both handover models, we consider the same type of sanity queries in order
to check correctness. Recall that such queries are for special reachability events
executed at each end of the process macros. ProVerif is not able to prove all of
them. Nevertheless, the attack traces of the queries that ProVerif was able to
falsify, show that the reachability events for the unresolved queries are executed
as well. For the correspondence assertions, the aim is to prove agreement on the
received handover key (K∗

eNB or NH2) and the chosen algorithm between the UE
and the T-eNB. ProVerif is able to prove all the assertions for the HO X2 model
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1 l e t UE( uecaps : caps , nh 2 : key ) =
2 i n ( secch , (=CMD, a : a l g ) ) ;
3 i f mem(a , uecaps ) then
4 out ( pubch , (CPL , senc ( ( a , mac ( (CPL , a ) , nh 2 ) ) , nh 2 ) ) ) .
5 l e t MME( uecaps : caps , nh 2 : key ) =
6 i n ( secch , =RQD) ;
7 out ( secch , (ACK, nh 2 , uecaps ) ) .
8 l e t SeNodeB ( kenb : key ) =
9 out ( secch , RQD) .

10 l e t TeNodeB ( ) =
11 i n ( secch , (=ACK, nh 2 : key , uecaps : caps ) ) ;
12 l e t a : a l g suchthat mem(a , uecaps ) i n
13 out ( secch , (CMD, a ) ) ;
14 i n ( pubch , (=CPL , msg : b i t s t r i n g ) ) ;
15 l e t (=a , r rcmac : b i t s t r i n g ) = sdec (msg , nh 2 ) i n
16 i f r rcmac = mac ( (CPL , a ) , nh 2 ) then 0 .
17 p roce s s
18 . . .
19 ( ( !UE( uecaps , nh 2 ) ) | ( ! SeNodeB ( kenb ) ) |
20 ( ! TeNodeB ( ) ) | ( !MME( uecaps , nh 2 ) ) )

Fig. 9. S1 handover model

Table 1. Analysis Results

Property AKA NAS SCP NAS SRP HO X2 HO S1

secrecy true true true true true
weak-agree UE =⇒ . . . true true true true true
weak-agree . . . =⇒ UE true true true true true
inj-agree UE =⇒ . . . true false true true unresolved
inj-agree . . . =⇒ UE unresolved false unresolved unresolved unresolved

except one (see Table 1). For the HO S1 model, ProVerif is unable to prove the
injective assertions, but proves the basic ones.

6 Conclusion

We have presented our work on security protocols in LTE. We have used ProVerif
to formalize and verify the protocols. Our analysis has shown that all the secrecy
and weak agreement properties hold which was expected. However, we had dif-
ficulties proving stronger agreement properties. All our results are summarized
in Table 1. To the best of our knowledge, the security command procedures and
handover procedures have not been previously analyzed in this manner. During
the modeling process, our aim was to remain as faithful as possible to the 3GPP
specifications [1] of the protocols and their trust model. One important aspect
that is lacking in ProVerif is the support for modeling local state information.
As we explain later, support for that would relieve protocol designers from the
common and tedious tasks of ensuring uniqueness of inputs to key derivations
functions.
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ProVerif verifies the models in the order of seconds on a regular laptop and
the runtime is hence adequate for practical use. The concepts of the ProVerif
input language matches the concepts used in the 3GPP specifications. Therefore,
constructing the models does not take any significant time assuming familiarity
with ProVerif and the system under study.

Future Work. We have been experimenting with other formal verification tools.
For this first work, we thought that ProVerif offers a good compromise for ease
of use and expressiveness of the input language. Nevertheless, we are planning
to conduct a more thorough evaluation and comparison of similar tools. Fur-
thermore, we believe that in an industrial context, such as for proposals to
standardization processes, several tools should be used in combination in order
to overcome their shortcomings. This does not necessarily mean that a process
as defined by a standardization organization must formally mandate the use of
such tools. In fact, as we explain below, there are few aspects in the protocols
that we could not handle properly with ProVerif.

In general, freshness is achieved by guaranteeing uniqueness of the derived
keys in each session. This can be implemented by using nonces, like in AKA for
the derivation of the KASME key. However, all the derivation of lower level keys
rely on other protocol parameters such as counters, cell identifiers, etc. Counters
are part of the protocol state that is continuously being updated. We believe
that any issue in the considered protocols would be most likely related to this
aspect, especially when different protocols are interleaved and used arbitrarily
in other more complex compound procedures. State-based formal verification
tools can be better suited to model check such features. However in order to
improve efficiency of such (usually exhaustive) state search, one can assume a
weaker attacker model. As a future work, we are investigating to which extent
the attacker model can be simplified and still be able to find attacks.

Other continuations of this work include performing similar analysis of the
protocols for inter-operability between LTE and other types of radio access net-
works (GSM and WCDMA), and updating our models to handle different sce-
narios. For example, in the AKA model of Fig. 3, each run of the UE process
represents a new device because in every run, a new fresh pair of IMSI,K is cre-
ated and used. The model can be changed by adding another similar UE process
which instead, gets the pair from the table being filled by the original process.
This is how one can model arbitrary reruns of AKA by the same UE. In addition,
the mobility models can be enhanced to include multi hop handovers. This can
be used to verify further security properties, e.g. two hop forward security.
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Abstract. Wireless local area networks (WLANs) can adopt channel
hopping technologies in order to avoid unintentional interferences such as
radars or microwaves, which function as proactive jamming signals. Even
though channel hopping technologies are effective against proactive types
of jamming, it has been reported that reactive jammers could attack the
targets through scanning busy channels. In this paper, we demonstrate
that reactive jamming is only effective against channel hopping Wi-Fi de-
vices in non-dense networks and that it is not effective in dense networks.
Then, we propose a new jamming attack called “persistent jamming”,
which is a modified reactive jamming that is effective in dense networks.
The proposed persistent jamming attack can track a device that switches
channels using the following two features, and it can attack the specific
target or a target group of devices. The first feature is that the proposed
attack can use the partial association ID (PAID), which is included for
power saving in the IEEE 802.11ac/af/ah frame headers, to track and jam
the targets. The second feature is that it is possible to attack persistently
based on device fingerprints in IEEE 802.11a/b/g/n legacy devices. Our
evaluation results demonstrate that the proposed persistent jamming can
improve the attack efficiency by approximately 80% in dense networks
compared with the reactive jamming scheme, and it can also shut down
the communication link of the target nodes using 20 dBm of jamming
power and a 125 ms response time.

Keywords: WLAN, jamming, channel hopping, device tracking, ID, fin-
gerprint, security.

1 Introduction

Wireless local area network (WLAN) technologies are an essential feature of
everyday life because they are used in home networking, smart mobile devices,
network infrastructure, and much more. These applications require very high
throughput and long service coverage. In order to meet these demands of the
users, WLAN technologies have been evolving to use wider channel bandwidths
for IEEE 802.11n/ac [2,4] in the 2.4/5 GHz industry science and medical (ISM)
band, and they support lower receiver sensitivity for a wider range of up to
approximately 1 km for IEEE 802.11af/ah in the TV white space or sub-1 GHz
frequencies [5,6]. As more and more wireless devices are connected and wireless
access points (APs) are densely deployed in the scarce frequency spectrum and

A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 362–383, 2014.
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in the limited region, the failure probability of packet transmissions is expected
to increase due to interference from other devices and jammers. Because the
2.4 GHz band is already congested and the 5 GHz band will be congested soon
[15], the wireless environment may suffer severe interference from unintentional
jammers and intentional jammers [9, 17].

Recent studies have demonstrated that various proactive jamming methods
such as constant, random, and deceptive jamming can be launched easily in wire-
less networks [10,26]. Meanwhile, in order to manage jamming attacks, wireless
nodes can adopt a channel hopping scheme through which nodes can switch their
channel frequencies as required in order to improve the link quality [10, 28, 29].
If a certain channel is not available due to jamming signals, the wireless nodes
switch channels to another idle channel according to the channel hopping pro-
tocol; consequently, the wireless nodes can avoid proactive jamming attacks. In
the literature, several studies have proposed a smart jamming scheme called
“reactive jamming” for efficient jamming attacks [10,26]. The reactive jammer,
which is the most popularly discussed method for disturbing channel hopping
nodes, investigates a busy channel in order to identify a channel-hopped node
and begins emitting a jamming signal as soon as it senses activity on that chan-
nel because the shared nature of the wireless medium allows adversaries to easily
monitor the communications between wireless devices. Therefore, even though
the target nodes have switched to another channel due to the jamming signal, the
jammer can switch to the target node’s new channel and attack again. However,
the reactive jamming schemes assume that attackers can locate a channel-hopped
target because the network is not dense [10, 26, 28, 29]. If there are multiple de-
vices using different channels, the challenging question to the adversary is how
to determine which channel is being used by the target device.
Our contribution In this paper, we first demonstrate that the existing jamming
attacks are not effective against channel hopping devices in dense networks. Be-
cause there are multiple nodes in the channel in dense networks, a conventional
jammer cannot identify the target node’s channel among the multiple candidates
due to the lack of channel awareness and device information. In this situation, the
only way to disturb a specific node’s communication is to emit a jamming signal
to all busy channels and, consequently, the detection possibility of the jamming
attack increases and the jamming efficacy decreases in terms of the attacker’s
cost and attacking damage. For this reason, a jamming attack in a dense network
is considered extremely difficult. Despite the limitations, in order to stop this,
in this paper we propose a new jamming method called “persistent jamming”,
which is a novel attack in the form of modified reactive jamming. Moreover, we
demonstrate that identifying a channel hopping device and launching a jamming
attack in a dense network are feasible. Based on the observation that the partial
association identification (PAID) and device fingerprints can be used to identify
channel hopping devices in dense networks, the attacker can persistently track
and jam target devices. Our evaluation results demonstrate that persistent jam-
ming using the PAID and device fingerprint detection can improve the attack
efficiency by approximately 80% in dense networks compared with the reactive
jamming scheme, and it can continuously degrade the throughput to close to
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zero against channel hopping target devices in order that the communication
link is disconnected with a 20 dBm jamming power and 125 ms response time.

Our work provides the following three key contributions.
– This is the first investigation of the limitations of the unprotected PHY

header that is identified using PAID and fingerprints extracted from the
frame header in order to track a target device or a target group of devices,
and to examine the feasibility of persistent jamming.

– Persistent jamming is experimentally evaluated in a field programmable gate
array (FPGA) prototype that was designed and verified for commercializa-
tion as an IEEE 802.11n/ac Wi-Fi chipset.

– The proposed attack is also implemented and evaluated in a cycle true and
bit true emulation platform in order to demonstrate its feasibility and per-
formance in a dense network.

The remainder of the paper is organized as follows. In Section 2, we present
the related work on the jamming attack and mitigation. In Section 3, we overview
the WLAN frame format to discuss the security implications of frame headers,
and propose the persistent jamming attack based on the security limitations of
frame headers. In Section 4, we present the experimental setup and demonstrate
the evaluation results. In Section 5, we recommend security remedies. The paper
is concluded in Section 6.

2 Related Work

In this section, we present the related literature on jamming attack andmitigation.

2.1 Jamming Attack

Wireless LAN networks are highly sensitive to incidental and intentional in-
terferences because they use a carrier sense multiple access with collision avoid-
ance (CSMA/CA) mechanism and an orthogonal frequency division multiplexing
(OFDM) modulation. IEEE 802.11-based WLAN devices defer access to a chan-
nel if the channel is busy at the transmitter or if it cannot decode the distorted
OFDM modulated symbols at the receiver when the interference exceeds a spec-
ified tolerance level. Interference occurs when a node transmits a signal without
verifying whether another node is accessing the same channel through increas-
ing the clear channel assessment (CCA) threshold. In this way, the malicious
node achieves its goal by degrading the signal quality at legitimate receivers
or by disabling channel access at legitimate transmitters to disrupt the com-
munication link or shut down legitimate devices. Thus, the availability of the
wireless network is subverted easily through jamming attacks, which easily al-
low an attacker to disturb the wireless devices’communications through emitting
electromagnetic signals in the wireless medium. Recently, increasing jamming
attacks have been reported because attackers can easily disrupt wireless com-
munications networks using commercial jamming devices and easily modified
commercial products [8, 10, 17, 26].

There are two types of jammers: proactive jammers and reactive jammers.
The proactive jammers have three forms: constant, random, and deceptive [10].
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As their names imply, the constant jammer and random jammer emit a constant
jamming signal continuously and jamming signals at random times, respectively,
while the deceptive jammer injects decodable packets into the channel. Proactive
jammers are the most prevalent jamming form due to their easy implementa-
tion that attempts to emit jamming signals irrespective of the traffic pattern
in the channel, but they are inefficient in terms of attacking damage, detection
probability, and energy efficiency due to the lack of channel awareness. In con-
trast, reactive jammers only emit a jamming signal if the channel is busy. If
there is no traffic in the current channel, the reactive jammer waits and senses
the channel for a predetermined time, and then switches to a busy channel and
continues to jam. It is a more effective jamming attack even though the imple-
mentation is relatively complicated. This channel awareness allows for efficient
jamming because it must transmit short jamming signals in a timely manner.
The authors of [26] developed a software-defined reactive jammer prototype and
demonstrated that a real-time reactive jammer is feasible and a serious threat
to WLAN services. However, previous studies on the reactive jammer assuming
non-dense networks [10, 17, 26] are limited because it has a low attack success
rate when the target device switches to a different channel in a dense network
because conventional jammers cannot differentiate a specific device or target
group of devices from multiple candidates. In this paper, we focus on a realis-
tic environment, i.e. a dense network, in which there are multiple devices using
different channels and, in Section 5, we experimentally demonstrate that the
existing reactive jamming is not effective in dense networks.

2.2 Jamming Mitigation

Traditionally, channel hopping and link adaptation techniques have been devel-
oped as solutions that mitigate the effect of jamming [1, 14, 16, 19, 22, 23, 31].
Channel hopping techniques attempt to avoid jammed channels through chang-
ing the channel among the orthogonally available channel bands. There are three
types of channel hopping schemes: proactive, reactive, and passive. A pair of
nodes using proactive channel hopping has a hopping sequence that periodically
changes [14]. In a reactive channel hopping scheme, a node only switches to a
different channel if it detects the presence of jamming signal [1, 16, 19, 23]. If a
coordinator or pair of nodes decides to switch channels, all other nodes in the
network switch channels as well. Consequently, the proactive channel hopping
schemes are fast, but they are not used in WLANs due to their inefficiency and
complexity, whereas reactive channel hopping schemes are slow but are used in
WLAN products. In some commercial devices, passive-type channel hopping us-
ing firmware enables users to switch channels [24], and users can switch channels
manually if the link is disconnected. However, passive channel hopping schemes
require much longer to avoid interference and could worsen the situation. In
addition, the IEEE 802.11h standard defines the dynamic frequency selection
(DFS) mechanism in order to avoid interference from radars and other WLAN
devices [3]. The DFS mechanism allows an AP and its associated stations to
dynamically switch to another channel in order to avoid interference.
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Link adaptation techniques can be used to improve link quality in order to
compete with dynamically varying interference [22, 24, 31]. A node can miti-
gate the jamming effect in order to cause the link to be more robust using link
adaptation schemes such as transmit power control (TPC), modulation and cod-
ing scheme (MCS) control, and CCA threshold control. Link adaptation schemes
can be effective against jammers that follow the equivalent isotropically radiated
power (EIRP) regulations determined by the Federal Communications Commis-
sion (FCC), but a malicious jammer may transmit signals without considering
the transmit power limitations and emit radio interference with external power
amplifiers even if the output is saturated. Therefore, typical legitimate nodes
first attempt to adapt the link through controlling the system parameters, and
then they switch channels if the error rate or link quality does not meet the
system requirements.

In order to mitigate jamming attacks, the authors in [10] and [28] proposed
a series of basic detection methods based on the PHY layer. The basic concept
of detecting the jamming attacks was simple: the presence of jamming radio
signals at the receiver can affect the received signal strength. In addition, there
have been several studies on jamming effect analyses and interference mitigation
methods [16,23,24]. The authors analyzed the jamming effects onWLAN systems
and presented the TPC and rate control as competition against jammers. In
order to achieve this, they presented a smart jammer model that scans the
entire spectrum of channels, locates a busy channel, and attacks again. However,
in highly dense networks and congested spectra, the attacker cannot identify
specific target nodes or a target group because there are numerous candidates,
and the busy state does not guarantee that the target devices will be in the
channel. Thus, the attacker cannot continue to attack the target devices in dense
networks.

3 Our Persistent Jamming Attack

This section introduces the tracking approaches of PHY PAID and device fin-
gerprint to trace the channel hopping target nodes that hop channels while
communicating with the AP in order to avoid jamming attacks. We review the
frame format and depict the limitations from a security perspective in Section
3.1. In Sections 3.2 and 3.3, we describe the persistent jamming attack mecha-
nism that includes the tracking and jamming techniques using PAID and device
fingerprints such as SNR and timing offset.

3.1 Security Limitations

As shown in Figure 1, even though a target node switches to another channel
in order to avoid jamming attacks, a persistent jammer can identify the target
node’s channel frequency based on the frame header information: the ID infor-
mation in the signal field and the device fingerprint from the preamble. Then,
the attacker can use this information to attack more effectively in ways such
as tracking and jamming target devices, or jamming at a specific time or fre-
quency. Therefore, through capturing a single packet and examining its header,
an adversary can determine the existence of the target in a channel.
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The frame header information is becoming more important because modern
wireless communication systems have been designed to support advanced trans-
mission techniques for high throughput, high energy efficiency, and quality of
service (QoS). Therefore, frame headers include more information for wireless
connectivity in the evolving Wi-Fi standards. Frame headers are transmitted
using binary phase shift keying (BPSK) modulation and the lowest rate trans-
mission mode (6 Mbps) in order to ensure reliable reception. However, frame
headers do not have protection mechanisms, but the data payload is protected
by security protocols and encryption techniques. The encrypted data payload
uses cryptography to protect the data against eavesdropping, tampering, forg-
ing, and other security attacks. Even if the frame is intercepted, the encryption
causes the data payload to be unusable. However, the unencrypted header that
contains the PAID and device fingerprint is not protected: if the channel fre-
quency of a transmitted packet is tracked, an adversary can easily jam the link
to prevent communication. This is a significant threat to wireless device users be-
cause the channel frequency usage is important privacy information in a wireless
network, and this data can be tracked and jammed by an attacker.

Figure 1 presents the frame structure of the IEEE 802.11ac standard spec-
ified in [4]. A frame contains a header, payload, frame check sequence (FCS),
and padding/tails. The frame header consists of a preamble, signal fields, ser-
vice field, and medium access control (MAC) header. The PHY frame header
is used in the signal detection, timing acquisition, and signal decoding informa-
tion, and the MAC frame header includes the address information and control
signals. The frame body field contains variable length data information which
can be encrypted. The L-STF is used for carrier sensing, gain control, and coarse
frequency acquisition; the L-LTF is used for fine frequency acquisition and chan-
nel estimation. The signal fields convey information about the rate, length, and
transmission mode for the receiver to decode the remainder of the received frame.
The VHT-STF is used for fine gain control, and the VHT-LTF is used for chan-
nel estimation of the VHT frames. The VHT-SIG-B is used for user-specific
information in multi-user transmissions. The service field is originally used to
initialize the descrambler. In the data fields, the receiver decodes the incoming
symbols and tracks phase errors using pilots. Any receiver can detect the PAID
included in the VHT-SIG-A or extract the device fingerprint from the STFs and
LTFs because the frame header is not protected. In the IEEE 802.11ac/ah/af
standard, the PAID in the physical (PHY) layer header is adopted in order to
improve the power efficiency for a specific user’s device. The PAID information is
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Fig. 1. IEEE 802.11ac WLAN frame structure and persistent jamming attack
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a good indicator for identifying a specific node, but there is no PAID information
in legacy frames such as IEEE 802.11a/b/g/n. Therefore, we use both PAID and
fingerprint detection for our persistent jamming in this paper. Through utilizing
the PAID information in the frame header, a persistent jammer is able to detect
the changed channel if it has captured the PAID information in previously at-
tacked channels. If there is no device that supports power saving using PAID, an
attacker can track and jam a specific target or a group of target devices through
analyzing the physical characteristics from the frame header information and
using the device fingerprints.

3.2 ID Detection

Because WLAN devices use a contention-based channel access scheme, the
preamble and signal field should be detected and decoded by all nodes in the net-
work in order to appropriately defer access to a channel. Based on the CSMA/CA
protocol, each device must listen to the channel in order to determine whether
it should decode the incoming packet. Although several MAC level power saving
schemes exist, they are not designed for the awake mode and they improve power
efficiency through increasing the sleep period. In many consumer electronics, it
is expected that an active mode device has fewer changes in the sleep mode
in order to maintain an awake state that supports QoS. Therefore, the IEEE
802.11ac/af/ah standard defines the physical layer header information in order
to determine whether or not to listen and decode an incoming data packet. The
physical layer header information for power saving is called PAID, and it is used
to identify the intended receiver so that non-intended receivers can avoid unnec-
essary signal processing for the remainder of the packet and to allow micro-sleeps
for physical layer power saving. In order that devices in the same or overlapped
basic service sets (BSSs) can avoid having the same PAID and to maximize
the power saving efficiency, the PAID is determined by the device’s PAID using
an offset based on the AP’s BSSID with which the device is associated. The
additional offset minimizes the probability of the same ID use among OBSSs.
Therefore, the PAID in the signal field can be used to identify the destination
of the packet for any node in the wireless network. If the frame includes the
ID information, it is much easier to identify the target node than the device
fingerprint detection because the false positive detection rate of the ID is as
low as the error rate of signal field, which is modulated using the BPSK and
1/2 code rate, as described in Section 4.1. As an alternative approach, MAC
IDs such as address or SSID can be utilized. The PHY signal field has its own
cyclic redundancy check (CRC) so that the receiver can use it reliably at the
beginning of the frame, while the data field including MAC ID requires long
latency because CRC is attached at the end of the frame even if the MAC ID
is not encrypted. Furthermore, PHY header is always modulated by the most
robust modulation and coding scheme, but the MAC header can be modulated
by higher modulation and coding scheme, which is more susceptible to channel
noise and interference.
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3.3 Fingerprint Detection

Wireless fingerprinting techniques have typically been investigated for device
localization [11, 12, 32]. Location fingerprinting uses deterministic and proba-
bilistic methods for static estimation in order to determine the position using
the device’s physical characteristics such as the received signal strength indicator
(RSSI) and clock jitter. The wireless fingerprinting techniques can be applied in
location-based services or to improve the system security level. However, mali-
cious uses of device fingerprints have not been investigated, particularly regard-
ing jamming attacks. In this paper, we first demonstrate that a wireless device
can be tracked and attacked persistently if an adversary can extract fingerprints
from any frames in the wireless channel. The attacker can track the target de-
vice based on the device fingerprints generated using a unique circuit design. An
electronic fingerprint or radio channel fingerprint enables the identification of a
wireless device using its unique characteristics. An attacker is able to extract
and analyze the physical characteristics from the PHY header, such as timing
offset, RSSI, signal-to-noise ratio (SNR), and error vector magnitude (EVM);
then, it can track and jam a target device using the fingerprints. In this paper,
we describe how to extract the SNR and timing offset from these fingerprints in
order to demonstrate the feasibility of device tracking. Although any fingerprints
can be used for persistent jamming, we demonstrate the feasibility of the attack
using the SNR adjusted by the EVM or timing offset assisted by both preamble
and pilots due to high accuracy of estimation and reusability of the existing
circuits in WLAN devices. Furthermore, in order to improve the uniqueness, we
combine two different physical fingerprints, and evaluate them in Section 4.1. In
a highly dense network, if higher uniqueness of physical fingerprints is required,
we can combine a set of physical fingerprints.

SNR Estimation. As a signal quality indicator in a typical WLAN indoor
wireless channel, the SNR can be an important factor in link adaptation based
on the transmission signal quality and channel propagation loss in the received
signal. An attacker can also use the measured SNR with the captured frame to
determine whether a specific device uses the channel frequency in a typical indoor
channel. The long training field is 8 μs in length and is composed of two identical
3.2 μs symbols. As a result of the symbol repetition, this long training field can
be used to estimate the SNR [30]. The receiver extracts the two long training
samples before the fast Fourier transform (FFT) processing in order to estimate
the received signal quality including the transmitter/receiver impairments and
channel propagation loss. In order to calculate the noise power, the samples from
the first long training symbol are subtracted from the samples of the second
symbol. Moreover, the two symbols are averaged in order to calculate the signal
power. With the noise and signal powers, the receiver can calculate the SNR for
the received frame.

The EVM is an error vector magnitude, which is a measurement to calculate
distance between the received sample points and the ideal locations. The EVM
can be calculated in the frequency domain using a more complicated calculation
after estimating the channel response and decoding the signal field, while the
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SNR can be calculated in the time domain using a simple calculation with two
long training symbols [2,4,18]. The SNR typically has a linear relationship with
the EVM [21]. In addition, the EVM allows the receiver to further analyze the
characteristics through observing noise patterns in the frequency and time do-
mains as a different form of SNR representation. The EVM is more useful in
analyzing digitally modulated signals because the receiver can use the long data
payload or pilot subcarriers to measure the signal quality, even though it re-
quires more multipliers and adders to calculate the values of higher modulations.
The EVM is a good indicator for relating the analog impairment to the device
fingerprints. Through calculating the average EVM for every symbol over the
subcarrier indexes of a signal field or the pilot subcarriers during one packet,
the attacker can identify the device using the fingerprints. Consequently, the
attacker can adjust the SNR calculated at the preamble using the pilots’ EVM
until the end of the frame.

Timing Offset Estimation. The sampling timing offset results from the oscil-
lator difference between the transmitter and receiver. In the frequency domain,
the phase rotation increases as time passes and the amount of phase rotation
increases as the frequency increases, which is the same as in the sampling phase
error. The IEEE 802.11 standard limits the timing offset to less than +/-20 ppm
for WLAN devices. According to the Fourier transform properties, the time
shift of the time domain signal has a phase rotation in the frequency domain
representation of the signal, where the amount of phase rotation increases as
the frequency increases. Thus, the timing offset estimator is derived using the
least square rule [20]. In the derivation, the amount of sampling phase error is
assumed to be small in order that the exponential term can be approximated
using the linear function of the phase error. The accuracy of the estimator can
be improved through using more subcarriers in multiple symbols.

Furthermore, because the carrier frequency and sampling frequency in wire-
less communications systems are driven by a common clock source, the frequency
offset estimation result can be used to estimate the timing offset in order to im-
prove the estimation accuracy [13]. The carrier frequency offset (CFO) is the
carrier frequency difference between the transmitter and receiver. The phase ro-
tation between two samples in repetitive training symbols separated by a time
delay allows the receiver to calculate an accurate estimate of the carrier fre-
quency offset. In WLAN systems, two preamble structures are supported, i.e.
short and long preambles. The short preamble consists of 10 repetitions of the
same symbol with a duration of 0.8 μs. The long preamble has two repeated
symbols with a symbol period of 3.2 μs. Because the symbols are repeated, the
phase rotation between two successive symbols can be estimated without know-
ing the channel response. The CFO is estimated twice using the short and long
preambles. The initial coarse CFO is estimated using the short training field,
and then the residual fine CFO is estimated using the long training field. The
initial value in the timing offset estimator can be appropriately assigned using
the CFO estimation, which is calculated using the preamble in advance. Then,
the timing offset is adjusted using the phase offsets of the pilot tones in the data.
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4 Implementation and Evaluation of Our Proposed
Attack

In this section, we describe the experimental setup for the prototype and emula-
tion for our proposed attack. The prototype is used for realistic experiments in
the laboratory, and the emulation environment is used for multiple BSSs. Then,
we present the experimental results and discuss their implications.

4.1 Real World Experiment

Experimental Setup. As shown in Figure 2, the experimental setup consisted
of two WLAN prototypes, a commercial AP, a vector signal generator (VSG), a
vector signal analyzer (VSA), and a spectrum analyzer. The FPGA prototypes
satisfy the functionalities and performance requirements of the IEEE 802.11ac
standard. One prototype is an attacker that performs a programmed jamming
attack using a software controller, and the other prototype is a target node that
communicates with the commercial AP. The performances and functionalities
can be observed through monitoring software and a chip scope. The target node
and AP communicate on channel 44. If the packet error count is larger than
a predetermined threshold due to interference, they switch to channel 60. The
VSG functions as a neighbor node that sends IEEE 802.11ac compliant frames
in channel 52. A spectrum analyzer is used to monitor the full span spectrum in
the ISM bands, and the VSA is used to analyze the signal characteristics and its
effect. The image in the right of Figure 2 also illustrates the developed WLAN
prototype, which consists of (1) MAX2829 RF IC, (2) analog device AD9780
digital-to-analog converter (DAC), Texas Instruments ADS4249 ADC, (3) four
Xilinx Virtex6 FPGAs, and (4) an ARM Cortex-A5 processor. The four FPGAs
are programmed for functionalities in the IEEE 802.11n/ac system, which has
been verified with commercial products to meet the Wi-Fi certification require-
ments. The developed WLAN prototype can be utilized for a persistent jamming
attack, and if the hardware of the other WLAN products supports functionalities
for IEEE 802.11ac, such hardware can be used for the proposed attack. In order
to reduce development cost, an universal software radio peripheral (USRP) can
be used to develop the WLAN prototype as an alternative to the FPGAs.

This prototype was developed in order to verify the functionality and perfor-
mance of the digital baseband PHY/MAC system before taping for silicon. The
circuits targeted in the prototype were designed to support IEEE 802.11a/g/n/ac
with a single antenna and to support a high data rate of up to 433 Mbps in the
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Fig. 3. Experimental setup: (a) overall test configuration and (b) jammer

2.4 GHz and 5 GHz ISM bands. The RF IC is connected to the digital baseband
through the ADC and DAC ICs operating at a 160 MHz sampling rate. The dig-
ital baseband controls the RF transceiver, which changes the system parameters
including the TX/RX mode, gain, channel frequency, and filter mode through
external pins or a serial-to-parallel interface (SPI).

Fig. 4. Wired test: standard deviation
of device fingerprints

Evaluation Results. All test results
were measured in a laboratory environ-
ment. The experimental setup consisted
of two FPGA boards: one was an attacker
and the other was a target node. Figure
3 illustrates the experimental setup for
the throughput measurement at the tar-
get node when the attacker used different
jamming schemes: reactive and persistent
jamming. Figure 3(a) illustrates the con-
figuration of the jammer, neighbor node,
target node, and access point, and Fig-
ure 3(b) illustrates the FPGA prototype
(jammer) and vector signal generator (neighbor node). There is a target node
and an AP that communicate in channel 44 or channel 60 using channel hopping
in order to avoid jamming signals. They control the transmission rate using link
adaptation to mitigate channel variations and jamming effects. In channel 52, a
neighbor node periodically sends packets, which are generated by a vector signal
generator. The jammer is implemented on the FPGA prototype through setting
a high level CCA threshold in order to ignore other nodes’transmissions, and the
jammer generates a jamming signal based on a jamming strategy: a reactive or
a persistent jamming scheme.

Figure 4 presents the standard deviation of the measured fingerprints in the
wired tests. When the input power was larger than 60 dBm, the standard de-
viation was less than 0.6 dB or 0.6 ppm for short distances. Small incoming
signals from 60 dBm to 90 dBm had an accuracy of less than 1.6 dB or 1 ppm
over long distances. Therefore, the digital baseband could estimate the SNR and
timing offset as accurately as 1.6 dB and 1 ppm using preambles in the physical
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Fig. 5. Wireless test: (a) wireless measurement conditions and (b) detection success
ratio vs. location

layer header for the full dynamic range. The SNR-based fingerprinting method
is particularly effective for indoor channels because it is not significantly affected
by multipath propagation. Furthermore, the accuracy is generally adequate for
most indoor wireless applications but could be reduced through temporary phys-
ical obstructions or deviations in the radiation pattern of the target device. In
low input power regions, the timing offset-based fingerprinting method has the
potential to achieve higher accuracy than the SNR-based fingerprint method
because the SNR and EVM are influenced more by various noise sources at the
receiver in low input power regions.

Figure 5(a) depicts the experimental setup used to measure the detection suc-
cess ratio of the PAID and fingerprints in wireless conditions. We measured the
standard deviation of the SNR and timing offset in wired and wireless conditions.
First, we tested the standard deviation in wired conditions using RF coaxial ca-
bles and RF attenuators. The VSG transmitted signals with an 8 ppm timing
offset and various power levels from the vector signal generator, and the jammer
measured the timing offset and SNR based on the received preambles. A Lite-
point IQxel vector signal generator was used to create all packets, which were
modulated and coded using MCS0 (BPSK and R = 1/2) and were transmitted
in the 40 MHz bandwidth. The wired test enabled full control of the channel
conditions and precise control while monitoring the results. Then, we performed
a wireless test at different locations. We measured the detection success ratio in
five different locations in order to include various wireless indoor channel and
interference effects. The proposed jammer was located where the packet delivery
ratio (PDR) and detection success ratio (DSR) of the PAID and device finger-
prints on the SNR and timing offset could be measured. Locations 1 and 2 had
line-of-sight (LOS) conditions, while Locations 3, 4, and 5 had non-line-of-sight
(NLOS) conditions. The fingerprints were measured in root mean square (RMS)
values and the standard deviation of over 100 packets.

As shown in Figure 5(b), we also measured the detection success ratio of the
transmitted packet from different wireless conditions. The results demonstrated
that the ID detection success ratio was higher than 90% for all locations, and
the fingerprint detection success ratio was higher than 80% for all locations. The
fingerprint detection performance was also related to the detection threshold.
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(a) (b)

Fig. 6. (a) A throughput measurement at target node for jamming attack reactive
jammr (upper), and persistent jammer (lower), and (b) jamming efficacy: throughput
vs. speed and power

Two thresholds were used: Threshold 1 (TR1) had a 2 dB SNR and 1 ppm
timing offset threshold, and Threshold 2 (TR2) had a 4 dB SNR and 2 ppm
timing offset threshold. We observed that there was a trade-off related to the
threshold between the detection success ratio and false positive detection ratio.
If the threshold was large, the persistent jammer’s detection was more frequent.
However, the false positive detection probability also increased. In contrast, if
the threshold was small, the misdetection probability was higher. The TR1 and
TR2 were selected as optimal threshold sets for accurate detection and fast
detection in order to cover the full dynamic range of the WLAN, respectively. A
fundamental limitation of the accuracy that could be attained when measuring
fingerprints resulted from the random noise and fading effects. However, if the
distorted packet was filtered and adjusted by EVM and timing offset from pilots
at the receiver, the SNR and timing offset measurement directly reflect the signal
quality determined using a unique device. Furthermore, the PHY-based ID and
fingerprint detection was faster than MAC-based schemes.

We compared the jamming effectiveness of the persistent jamming attack with
a reactive jamming attack through observing the throughput at the target node.
As shown in Figure 6(a), the reactive jammer succeeded in its first attack on
the target node within approximately 65 seconds (above) and 45 seconds (be-
low). After the target node switched to a different channel, the reactive jammer
could not attack it because the reactive jammer attacked channel 52 rather than
channel 60. In contrast, the persistent jammer switched to the target device’s
channels. As a result, the measured throughput was continuously degraded even
though the target node switched channels. In order to evaluate the efficacy of
the jamming schemes over the attacker’s capability, different response times and
transmit powers were used as described in Table 1. In this table, (x,y) refers to
the condition with x second response time (RT ) and y dBm transmit power (TP ).
The reactive jammer used only the fastest response time and largest transmit
power in order to obtain the best performance, while the persistent jammer had
various response times and transmit powers for comparison with the reactive
jammer.
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Figure 6(b) presents the effective throughput over the condition index from
Table 1, as a function of the jamming speed and transmission power for reactive
and persistent jammers. The results indicate that reactive jamming is signifi-
cantly less effective than persistent jamming, which can significantly reduce the
throughput of the target node in dense network conditions. The reactive jammer
could not improve the jamming efficacy in the communication link even though
it had the fastest response time and highest transmit power, while the persistent
jammer could improve as the speed and power increased. As we presented in Sec-
tion 2.1, due to the inefficiency and complexity, Wi-Fi devices use the reactive
channel hopping schemes or passive-type channel switching scheme instead of the
proactive channel hopping schemes. Therefore, in the current WLAN technolo-
gies, the target nodes change their channel frequencies slowly when link quality
is degraded statistically. If we assume that target Wi-Fi devices can switch the
channel very fast, channel scanning speed is important for persistent jamming
attack. The jamming speed including channel scanning time and detection pro-
cessing time is related to the jamming efficacy. The test results indicate that
jamming efficacy could be improved as jamming speed is faster. Regarding the
channel scanning time, there are three orthogonal channels in 2.4 GHz ISM and
19 channels in 5 GHz ISM band in 20 MHz channel unit. Therefore, it is possible
to detect the target node when the attacker switches at most 5 times for full
channel scanning because IEEE 802.11ac supports 80 MHz band operation.

Table 1. Experiment conditions

Condition index Jamming type Speed Power Speed+Power

1 Reactive (0.125,0) (2,20) (0.125,20)
2 Persistent (2,0) (2,0) (2,0)
3 Persistent (1,0) (2,5) (1,5)
4 Persistent (0.5,0) (2,10) (0.5,1.0)
5 Persistent (0.25,0) (2,15) (0.25,15)
6 Persistent (0.125,0) (2,20) (0.125,20)

4.2 Large-scale Emulation

Experimental Setup. In the developed prototype, it is difficult to evaluate
the system in dense network conditions because it is necessary to have numer-
ous hardware and software resources or expensive equipment. In order to over-
come such problems, a software-based emulation environment can reduce the
evaluation cost and experimental setup time. Therefore, the hardware behavior
and performance can be emulated in the developed emulator. The hardware is
manufactured using a hardware description language (HDL) in order to perform
synthesis, place, and routing with various tools. Our FPGA prototype system
was initially developed to be verified using a hardware-like C emulator. The em-
ulator has been described with hardware architecture, and it has a cycle-true
and bit-true description. That is, the emulator is programmed like a register
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transistor level (RTL) description model, and it has timing and bit widths for
all signals. This emulator was verified using a bit-matching process between the
RTL and C model. The emulation performance curves are the same as the per-
formance measurement results on the RTL targeted FPGA prototype system.
In this way, we developed an emulation model that evaluates attack methods in
dense networks.

Figure 7 presents the emulation model used to analyze the jamming effect in
dense network conditions. The emulation model consisted of two Wi-Fi models
for the sender and receiver, a channel model, a jammer model, and a dynamic
spectrum congestion model. The Wi-Fi model had the same function and perfor-
mance as the developed commercial hardware design. The channel model was de-
veloped with the IEEE 802.11 recommended channel model including RF/analog
impairments. The dynamic spectrum congestion model randomly generated traf-
fic from multiple nodes in the network. The jamming model could support one
jamming strategy among the random, reactive, and persistent strategies. The
target Wi-Fi model could mitigate the jamming effect and channel variation
using channel hopping and link adaptation. This emulation model enabled the
investigation of the jamming impact in dense network conditions.

There were three models in the simulation model: two Wi-Fi models for one
AP and one station, and an interferer model for adjacent channel interference
(ACI) or co-channel interference (CCI), which is generated using a jamming
model and dynamic spectrum congestion model. The impairments that are ana-
lyzed include the multipath channel, mismatch between the in-phase and quadra-
ture phase, carrier phase noise, carrier frequency offset, sampling phase noise,
sampling frequency offset, signal amplitude variation, and adjacent channel inter-
ference variation. The channel models were modeled to have realistic RF/analog
and wireless channel impairments. We applied a 50 ns root mean square (RMS)
delay spread channel model. The channel model included a RAPP power ampli-
fier with a 10 dB backoff. The phase noise was 104 dBc/Hz at 100 kHz, which
was generated using the pole-zero model. The impairment model had a residual
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frequency error that is caused by oscillators with 8 ppm stability at the legiti-
mate transmitter and receiver. Because the RF PLL and ADC clock use the same
oscillator, the timing offset introduced by the ADC was 8 ppm. For simplicity of
jamming efficacy comparison, we assumed that the packet size was 1,000 bytes
and the packet interval was 16 μs. The SNR and signal-to-interference ratio
varied randomly for every packet.

Figure 7 also presents the MAC model, which consists of a TX, RX, error
counter, scheduler, power control unit (PCU), and link controller. In order to
simulate the proposed scheme in a dynamically varying channel, a link adapta-
tion scheme should be considered. The link adaptation algorithms are grouped
into two classes: auto rate fallback (ARF) and SNR-based rate control [22, 31].
The ARF is a statistic-based scheme that has a slow response but simple imple-
mentation, whereas the SNR-based rate control is fast and uses the SNR as a
good link quality indicator. However, the optimal rate and SNR are not corre-
lated in certain link conditions. In this emulation, the combined scheme of ARF
and SNR-based link adaptation was used as the jamming schemes. The link
adaptation scheme is operated as an SNR-guided rate adaptation scheme [31] in
order to manage the high fluctuations of the SNR, and it adjusts the transmis-
sion rate adaptively to the varying channel conditions according to the adaptive
ARF. This type of combined rate control is effective in improving the link quality
under dynamically interfered varying channel conditions.

Fig. 8. Jamming efficacy: throughput vs.
number of BSSs

Evaluation Results. We developed
an emulation environment in order
to evaluate the efficiency of the pro-
posed attack strategy and conven-
tional attack strategies in a dense
network. The jammer can transmit
packets using random jamming, re-
active jamming, and persistent jam-
ming strategies. In the emulation
model, there are multiple BSSs with
8 access points. Each AP uses 8 dif-
ferent channels in the 5 GHz ISM
band. There is one target node, one
malicious node, and other legitimate
nodes in multiple BSSs. There are up
to eight legitimate nodes in the net-
work. The access point transmits 2,000 packets with a 1,000 byte length to the
target node. The target node experiences varying channels in terms of SNR and
interference levels.

Figure 8 presents the degraded throughput for the jamming schemes versus the
number of BSSs. Increasing the number of BSSs causes more co-channel and ad-
jacent channel interference in the target device when the jammer is transmitted
at a small transmission power (0 dBm). As a result, if there is no malicious jam-
mer, the target node is only affected by interference from other legitimate nodes in
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multiple BSSs. The random jammer has the worst performance. It is interesting
that the reactive jammer is only effective if there are no other nodes, except the
target node. However, the persistent jammer significantly degrades the through-
put performance of a target node in dense network conditions. If the jammer trans-
mits 15 dB higher jamming power, which is equivalent to 15 dBm transmission
power at the output port of the RF amplifier, the measured throughput was close
to zero for persistent jamming. This indicates that the effective throughput can
be made zero through corrupting every packet being transmitted. In contrast,
other jamming schemes were not significantly improved compared with the “w/o
jammer” case. The evaluation results demonstrate that persistent jamming can
improve the attack efficiency by approximately 80% in dense networks compared
with reactive jamming schemes, and it can disconnect the link of the target node
with a 20 dBm jamming power and 125 ms response time.

5 Defenses

In this section, we recommend four security defenses against the proposed per-
sistent jamming attacks. In order to protect the ID information in the PHY
header, we propose including a non-cryptographic device authentication and
dynamic ID allocation mechanism during the standardization process for the
next generation of WLANs. In addition, as potential countermeasures against
the device fingerprint tracking, we recommend digital predistortion and friendly
jamming techniques from an implementation perspective.

5.1 ID Protection

Non-cryptographic Device Authentication. In the current WLAN stan-
dards, the signal information in the physical layer header is not protected; thus,
the ID in the signal field can be tracked by attackers. A complete solution would
be to use a cryptographic mechanism that uses a shared key in the MAC layer in
order to achieve authenticity, integrity, and confidentiality. However, the conven-
tional cryptographic mechanisms require key management to distribute, refresh,
and revoke the keys. Due to the inefficiency in terms of complexity and overhead,
a non-cryptographic scheme in the PHY layer is required for device identifica-
tion. For example, in a typical indoor wireless channel, the channel response
decorrelates rapidly in space [27]. In addition, the channel reciprocity property
between a transmitter and receiver can allow legitimate users to use the chan-
nel response as a shared key because an attacker, who is located in a different
location to the legitimate users, has different channel frequency responses. The
legitimate receivers can reliably extract the ID information based on the channel
frequency responses of the received frame if the legitimate transmitter sends the
ID information encoded using channel frequency responses.

However, the primary drawback of non-cryptographic device authentication
using channel reciprocity is that the channel and nodes should be stationary.
Thus, it is only applicable to typical indoor environments. Furthermore, from
an implementation perspective, in order to fulfill the reciprocity principle at the
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RF and analog transceivers that have different circuitry components, both trans-
mission and reception paths should be calibrated for similarity in the transfer
functions of the forward and reverse links. In order to achieve link equivalence,
calibration schemes using additional circuitries and protocol or signal processing
algorithms are required in the system design.

Dynamic ID Allocation. In the cellular network, temporary mobile sub-
scriber identity (TMSI) can be tracked by eavesdroppers on the radio interface.
Therefore, the cellular network can change the TMSI regularly in order to avoid
the mobile node from being tracked [7]. However, in the latest WLAN standard
such as IEEE 802.11ac/af/ah, there have not been considered the security is-
sue of the unprotected frame header during the design of frame structure. The
PAID is allocated to a station using an AP when the station associates with the
AP, and the PAID is maintained until the station is deassociated. This static
ID allocation allows an attacker to reliably snoop and capture the ID informa-
tion in the wireless channel. However, if the ID is changed periodically based
on a synchronized timestamp between the station and AP, it is difficult for the
attacker to track the target. From an implementation perspective, dynamic ID
allocation is feasible using the time synchronization function (TSF). An 802.11
station maintains a TSF, which is a timer with a modulus 264 counting in mi-
croseconds, and it synchronizes their TSF through transmitting and receiving
beacons. Each beacon contains the timestamp value of a TSF at the AP, and all
stations adjust their TSF considering the propagation and processing delay. As
the timestamp value changes over time, if the AP allocates an ID periodically
based on the synchronized timer, the stations can update their ID when they
receive beacon frames. Furthermore, if the node or group of nodes updates the
ID when it switches channels, it is more difficult to track the targets from the
previous channel.

The primary drawback of dynamic ID allocation is that an adversary can still
intercept the ID information during the same ID period. If the adversary can
locate the ID update pattern through tracking the device based on an alternative
scheme such as device fingerprints, it can analyze the ID update pattern. In order
to reduce the duration of the same ID, the beacon interval should be shortened.
However, a reduced beacon interval degrades the network efficiency due to the
increased frame overhead and increases the number of wake-ups of power saving
stations. Alternatively, in order to reduce the ID update interval, stations must
update the ID based on their local timer. In this case, the TSF should be very
accurate during a beacon interval because the IDs are determined based on the
local timer value at the stations. Even though the dynamic ID allocation scheme
is not a complete solution for persistent jamming, it can mitigate the success
rate of attacks.

5.2 Fingerprint Protection

Digital Predistortion. The WLAN standards define the tolerance levels for
impairments at the receiver. In order to support high data rates and QoS, all
digital receivers are required to include compensation circuits for RF/analog
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and channel impairments. Specifically, WLAN receivers include compensating
circuitries such as IQ mismatch correction, DC cancellation, carrier frequency
offset correction, symbol synchronization, and sampling time/frequency phase
tracking. Thus, if a legitimate transmitter predistorted the transmission signals
using a specified amount of offsets for every packet that can be compensated at
the legitimate receiver, it is difficult for an attacker to track the device finger-
prints because the periodically changed offsets due to the digital predistortion
scheme are hidden from others. For example, if the legitimate node randomly
changes SNR and timing offset in the range of the tolerance level for every
frame, the attacker cannot track the fingerprints due to the randomness while
the legimitate receiver can reliably decode the frame.

The primary drawback of digital predistortion against malicious fingerprint
detection is that it may degrade a legitimate node that has a residual estimation
error and compensation error due to the finite hardware resolution. Therefore,
we recommend adaptively using the digital predistortion scheme in frame trans-
mission when the node switches channels due to persistent jamming attacks.

Friendly Jamming. The authors of [25] proposed that friendly jamming could
not provide strong confidentiality because data can be extracted from the cor-
related signals in certain conditions. According to [25], it is only true for simple
modulation systems in narrow bandwidths and low radio frequencies. However,
because the efficiency of the jamming signal cancellation is inversely proportional
to the bandwidth and radio frequencies, it is difficult for an attacker to extract
the device fingerprints from friendly jammed signals in WLAN systems that use
OFDM modulation in wide bandwidths and high radio frequencies, if the tar-
get node transmits friendly jamming signals during the unprotected PHY header
transmission. In an implementation viewpoint, WLAN systems which adopt mul-
tiple antennas for multiple input multiple output (MIMO) or non-contiguous
carrier aggregation techniques can easily support the friendly jamming utilizing
the existing hardware resources for transmitting independent spatial streams.

The primary drawback of friendly jamming is that the wireless devices must
have extra hardware circuitries in order to generate the jamming signals and,
consequently, they consume more energy and cost. This scheme may be only
applicable for APs and not for mobile devices because the energy consumption
is an important criterion when evaluating portable devices and sensors due to
the impact on battery life. In addition, friendly jamming on the frame header
field leads to degradation in the signal detection performance at the receiver
side of the legitimate node. In order to mitigate this problem, the transmitter
may localize the jamming attack [10] and send a friendly jamming signal using
a transmit power control or beamforming transmission technique [4].

6 Conclusions

In this paper, we examined the limitations of the existing jamming schemes
against channel hopping Wi-Fi devices in dense networks. Even though it is nat-
ural for malicious jammers to attempt to identify target nodes in dense networks,
it has not been investigated in jamming attack scenarios thus far. Therefore,
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we proposed and developed a persistent jamming attack to track and jam the
target devices based on the PAID and device fingerprints in the frame header.
Furthermore, we evaluated the effectiveness of the jamming schemes through em-
pirical experiments and demonstrated that persistent jamming can attack target
nodes in dense networks even though they adapt the channel frequency to avoid
jamming signals. The evaluation results confirm the superior efficiency of the
persistent jamming strategy in a dense network environment in dense network
conditions. Finally, we recommended four security remedies to protect the PAID
and device fingerprints.

Almost all modern wireless communication systems have the same security
limitation in the frame formats which have the unprotected frame header. For
low latency and high efficiency, the frame headers are not encrypted in typical
wireless systems. Thus, any device can decode the signal information and de-
tect the device fingerprints. However, the frame headers of the modern wireless
communication systems include more information for advanced wireless connec-
tivity. If the frame header is not protected, a persistent jammer can track and
jam, or an eavesdropper can track and overhear the communication. As future
work, this study will be expanded in order to improve the detection success rate
of device fingerprints in various channel conditions, and we will implement and
evaluate the defense schemes against the persistent jamming attack.
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Abstract. Emulation-based network intrusion detection systems have
been devised to detect the presence of shellcode in network traffic by
trying to execute (portions of) the network packet payloads in an in-
strumented environment and checking the execution traces for signs of
shellcode activity. Emulation-based network intrusion detection systems
are regarded as a significant step forward with regards to traditional
signature-based systems, as they allow detecting polymorphic (i.e., en-
crypted) shellcode. In this paper we investigate and test the actual effec-
tiveness of emulation-based detection and show that the detection can
be circumvented by employing a wide range of evasion techniques, ex-
ploiting weakness that are present at all three levels in the detection
process. We draw the conclusion that current emulation-based systems
have limitations that allow attackers to craft generic shellcode encoders
able to circumvent their detection mechanisms.

Keywords: Emulation, IDS, Shellcode, Evasion, Polymorphism.

1 Introduction

Emulation-based Network Intrusion Detection Systems (EBNIDS) where intro-
duced by Polychronakis et al.[1] to identify the presence of (possibly polymor-
phic) shellcode in network communication. The original motivation for introduc-
ing a new kind of NIDS was to overcome the limits of signature-based NIDS,
which by definition can only identify known shellcodes, and are easily circum-
ventable, e.g., by using polymorphism.

The main idea behind EBNIDSes is to check whether a given payload is ac-
tually malicious by trying to execute it in an instrumented environment, and
checking whether the execution is possible and shows signs of being malicious.
EBNIDSes work by turning the payload of a suspected network flow into a se-
quence of instructions and by simulating these instructions to determine what
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they actually do. The resulting behavior is then analyzed with the help of specific
heuristics.

After their introduction, we have seen a growing interest in this field, with
a number of new proposals being introduced in a relatively short time-span [2–
4, 6, 5, 7].

The goal of this paper is to investigate the actual practical effectiveness of
EBNIDSes. In particular, in this paper

– we illustrate how EBNIDSes work by introducing three abstraction layers
that allow us to describe all the approaches proposed so far,

– we investigate and question the actual effectiveness of EBNIDS, by providing
evidence that present EBNIDSes have intrinsic limitations that make them
evadable using standard coding techniques.

To substantiate the second point, we introduce simple coding techniques exploit-
ing the implementation and/or design limitations of EBNIDSes, and show that
they allow attackers to completely evade state-of-the-art EBNIDSes. Finally, we
prove that it is possible to write a shellcode that evades EBNIDSes even in pres-
ence of a (theoretical) more complete implementation of the pre-processor and
the emulator. In particular, we show it is still possible to evade both the emula-
tion phase and the heuristics engine of EBNIDSes. These evasion techniques do
not leverage implementation bugs of EBNIDSes (e.g., instruction set support)
but exploit limitations in the concept of emulation and in the design of heuristics
detection patterns.

Here we want to stress that we do not include in the research those intrusion
detection systems relying on a precise memory image of the target, like Argos
[7], because they are intrinsically different from EBNIDSes; indeed they are
considered host-based (rather than network-based) NIDSes.

2 Detecting Shellcode on Emulation Based NIDS

In general, EBNIDSes detect encrypted shellcodes based on the following three
steps: (1) pre-processing, (2) emulation and (3) heuristic-based detection (see
Figure 1). We will now detail each of these steps.

2.1 Pre-processing

The main motivation for a pre-processing step is related to performance: emula-
tion is resource consuming and it would not be feasible to emulate in real-time
all the possible sequences of bytes extracted from the network. Therefore, the
pre-processing step consists of inspecting network traffic, extracting the sub-
set of traffic to be further investigated and transform (disassemble) it into an
emulate-able sequence of bytes. Disassembly refers to a technique which ma-
chine instructions being extracted from the network streams. Zhang et. al. [8]
propose a technique to identify which subset(s) of a network flow may contain
shellcode by using static analysis. The proposed technique works by scanning
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Fig. 1. Overview of Emulation Based Intrusion Detection System functionalities

network traffic for the presence of a decryption routine, which is part of any
polymorphic shellcode. The authors assume that any shellcode, at some point,
must use some form of GetPC instruction (such as CALL or FNSTENV) in or-
der to discover its location in memory. There is only a limited amount of ways
to obtain the value of the program counter, and by means of static analysis the
seeding instructions for the GetPC code (e.g., CALL or FNSTENV instructions)
are identified and flagged as the start of a possible shellcode. Although some of
the early EBNIDSes (e.g., the approach proposed by Polychronakis et. al. [1])
do not implement the pre-processing step, follow-up extensions all include some
form of pre-processing.

2.2 Emulation

The emulation step consists of running potential shellcode in an emulated and
instrumented CPU or operating system environment. Instrumentation allows
tracking the behavior of the emulated CPU during execution. In order to allow
inspecting traffic in real-time, emulation is constrained by execution time, which
imposes compromises on the implementation of emulators. Software-based emu-
lators generally only support a subset of all hardware supported instructions for
a restricted amount of hardware architectures. As an example, the approaches
proposed by Polychronakis et. al. in [1, 9] support a subset of x86 instructions,
which do not include floating point (FPU), MMX, and SSE instructions which
are commonly available in modern CPUs or GPUs. In addition, the emulator
does not know about the execution environment of the potential target of the
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shellcode (i.e., the machine on which the shellcode could run). For these rea-
sons, it is not always possible to reliably emulate all shellcodes. To overcome
this problem Polychronakis et. al. propose to employ a generic memory im-
age [3]. By means of the generic memory image the emulator can read and jump
to generic data structures and system calls, but still without guarantee that the
values present at certain locations in memory will correspond to the values in
the target memory.

2.3 Heuristic-Based Detection

The heuristic-based detection step consists of examining the execution trace
produced by the emulator searching for known patterns of shellcode execution.
If such patterns are found, the suspected network data is flagged as a shellcode
and an alert can be raised by the EBNIDS. Three basic heuristics have been
proposed over time to identify patterns of polymorphic shellcode in execution
traces (see[1, 9]):

1. GetPC code: any shellcode must at some point obtain its own address
in memory to read its own body and get environmental information, since
such information can not be known prior to execution. This procedure is
known as GetPC code. In its simplest form, the GetPC code consists of
invoking CALL or FSTENV instructions. A heuristic to detect shellcode
using GetPC code is built by searching for the GetPC seeding instructions
and then ensuring that the execution trace of the code emulated starting
from the GetPC instructions terminates.

2. Payload read: the decryption routine of polymorphic shellcode needs a
large amount of memory accesses to read the encrypted payload. On the
other hand, non-malicious code shows a limited frequency of unique memory
reads. A heuristic to detect polymorphic shellcode is built by observing in
an execution trace some form of GetPC code followed by a number of unique
memory reads exceeding a so-called Payload Reads Threshold (PRT ).

3. WX instructions: the decryption routine of polymorphic shellcode needs
to write the decrypted instructions to memory. Executed instructions re-
siding at memory addresses that were previously written are called WX
instructions (write-execute instructions). A decrypted shellcode consists of
such WX instructions, which may be allocated in a memory area different
from the encrypted shellcode. A heuristic to detect polymorphic shellcode
based on these observations consists of checking if, at the end of an execu-
tion trace, the emulator has performed W unique writes and has executed X
WX instructions. In which case the payload is flagged as a non-self-contained
polymorphic shellcode.

An extended set of heuristics is proposed in [3] to identify the presence of
shellcode in arbitrary data streams. These runtime heuristics (which only cover
Windows shellcodes) are based on “fundamental machine-level operations that
are inescapably performed by different shellcode types” and are implemented in
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a prototype called Gene. Each runtime-heuristic in Gene is composed of several
conditions which should all be satisfied in the specified order during the execution
of the code for the heuristic to yield true.

1. Kernel32.dll base address resolution: most shellcodes require interact-
ing with the OS through the system call interface or user-level API. In order
to call an API function, the shellcode must first find its absolute address in
the address space of the process. Kernel32.dll provides two functions (Load-
Library and GetProcAddress) for this. Thus, a common fundamental op-
eration in all above cases is that the shellcode has to first locate the base
address of Kernel32.dll. Gene has heuristics recognizing two methods (us-
ing the Process Environment Block or Backwards Searching) of obtaining
the Kernel32.dll base address. This particular heuristics focus on behavior
specific to Windows shellcode.

2. SEH-based GetPC code: when an exception occurs, the system gener-
ates an exception record that contains the necessary information for handling
it. In particular, the exception record contains the Program Counter (PC)
value at the time the exception was triggered. This information is stored
on the stack. A shellcode can register a custom exception handler, trigger
an exception, and then extract the absolute memory address of the fault-
ing instruction. Gene has a heuristic that detects any shellcode installing a
custom exception handler, including polymorphic shellcode that uses SEH-
based GetPC code.

3. Process memory scanning: some software vulnerabilities allow injecting
only a limited amount of code, usually not enough for a fully functional shell-
code. In most cases though, the attacker has the ability to deploy a second,
much larger payload which will be stored at a random memory location (e.g.,
in a buffer allocated in the heap). The (first-stage) shellcode then needs to
scan the address space of the process and search for the second-stage shell-
code (also known as the egg), which can be identified by a long-enough char-
acteristic byte sequence. This type of first-stage payload is known as egg-hunt
shellcode. Blindly searching the memory of a process in a reliable way re-
quires some method of determining whether a given memory address is valid
and readable. Gene has a heuristic that recognizes shellcode attempting at
retrieving information about paged memory through Structured Exception
Handler (SEH) and syscall-based scanning methods.

3 Evading EBNIDSes

In this section we present a number of evasion techniques that can be applied to
ensure that polymorphic shellcodes are not detected by state-of-the-art EBNID-
Ses. We present the evasion techniques based on the type of weakness in the
EBNIDS that we exploit to avoid detection. We identify two types of weak-
nesses: (1) implementation limitations and (2) intrinsic limitations. While we
acknowledge that the first type of weakness could be mitigated by investing
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more time and resources in the implementation of the EBNIDS (e.g. by a major
security vendor), we think intrinsic limitations cannot be permanently fixed with
the current design of EBNIDSes: There will always be an emulation gap that
can be exploited to avoid detection. Given a target system T and an emulator E
(integrated into the EBNIDS) seeking to emulate T, the emulation fidelity is de-
termined by E’s capacity to a) behave as T (e.g., by ensuring CPU instructions
behave in the same way, or the same API calls are available) and b) have the
same context as T at any given moment (e.g., the same memory image, CPU
state, user-dependent information, etc.). We call emulation gap the behavior or
information present in T but not in E. An attacker who is aware of this gap can
use it to construct shellcode (e.g., an encoder) integrating this information in
such a way that the shellcode will run correctly on T but not on E, thus avoiding
detection.

We conduct a series of practical tests, consisting of implementing the differ-
ent evasion techniques1 and testing if state-of-the-art EBNIDSes are capable of
detection. These tests will also give indications of the feasibility of implement-
ing the different evasion techniques. We select Libemu and Nemu as our test
EBNIDSes because they are broadly used as detection mechanisms as part of
large honeynet projects [10, 11].

Libemu [12] is a library which offers basic x86 emulation and shellcode detec-
tion using GetPC heuristics. It is designed to be used within network intrusion
prevention/ detections and honeypots. The detection algorithm of Libemu is im-
plemented by iteratively executing the pre-processing, emulation and heuristic-
based detection steps for each instruction, starting from an entry point iden-
tified by GetPC code seeding instructions. This process resembles the typical
fetch-decode-execute cycle of real CPUs. Instruction decoding is handled by the
libdasm disassembly library, while the emulation and heuristic-based detection
steps are the core of the library implementation. We use Libemu in its default
configuration, in which shellcodes are detected only by means of the GetPC code
heuristic described in Section 2. We download Libemu (version 0.2.0) from the
official project website, and use the pylibemu wrapper to feed our shellcodes to
the EBNIDS.

Nemu is a stand-alone detector with the built-in capability of processing net-
work traces both online and offline (e.g., from PCAP traces) as well as raw
binary data to detect shellcode. Similarly to Libemu, the detection algorithm
of Nemu is implemented iteratively by applying pre-processing, emulation and
heuristic-based detection for each instruction. Also in this case, instruction de-
coding is handled by the libdasm disassembly library, while the emulation and
heuristic-based detection steps are the core of the tool implementation. We re-
ceive Nemu from the author in 2014. When carrying out our tests we notice
that the version of Nemu we received includes all the heuristics described in
Section 2, except the one for detecting WX instructions, but including the addi-
tional heuristics related to resolving Kernel32.dll address and SEH-based GetPC
code introduced in Gene [3]. The author confirms our finding. In more detail, a

1 The authors plan to release all the implemented techniques as Metasploit plugins.
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GetPC code heuristic is first used to determine the entry point of the shellcode.
During emulation, eight individual heuristics detect Kernel32.dll base address
resolution (seven targeting the Process Environment Block resolution method
and one targeting the Backward Searching resolution method) and one heuristic
detects self-modifying code using the Payload Read Threshold. Finally, a com-
bination of the Process memory scanning and SEH-based GetPC heuristics is
used after detection as a second-stage mechanism to reduce the amount of false
positives.

To verify our evasion techniques, we first collect a set of samples that trig-
ger the detection of both Libemu and Nemu. For Libemu, we create a simple
shellcode consisting of GetPC instructions followed by a number of NOP in-
structions. For Nemu, we use eight shellcodes provided by the author as sanity
tests, each triggering one of the Kernel32.dll heuristics. In addition, we write a
simple self-modifying shellcode to trigger the Payload Read heuristic. To do this
we encode a plain shellcode by XORing it with a random key and prepending
a decoder which first performs a GetPC and then extracts the encoded payload
on the stack and executes it. We then verify that both Libemu and Nemu can
detect the shellcodes we created.

3.1 Evasions Exploiting Implementation Limitations

Limitations of the Pre-processor Implementation
In most EBNIDSes, static analysis is applied in the pre-processing step to de-
termine which sequences of bytes should be emulated [2, 4, 8]. This makes these
EBNIDSes susceptible to anti-disassembly techniques aimed at preventing the
pre-processor to correctly decode the shellcode instructions.

For example, the EBNIDS presented in [8] proposes a hybrid approach which
first uses static techniques to detect a form of GetPC code and then applies
two-way traversal and backward data-flow analysis to pinpoint likely decryption
routines which are then passed on to an emulator. Based on this approach, dis-
assembly starts from the GetPC seeding instruction and, upon encountering an
instruction that could indicate conditional branching or memory-writing behav-
iors, backward data-flow analysis is applied to obtain an instruction chain that
fills-in all required variables. Conditional branching, self-modifying code and in-
direct addressing (using runtime-generated values) can be used to prevent this
process to succeed.

Although the authors state that self-modifying code or indirect addressing is
unlikely to appear before the GetPC code (since this would require a base-address
for referencing) we argue that this is not the case. First, it is possible for an
attacker to construct the shellcode on the stack in a dynamic fashion, including
the GetPC code. Secondly, the attacker can avoid GetPC seeding instructions
altogether and construct the entire shellcode on the stack. This would require
a full emulation for detection, since it would be unfeasible to detect GetPC
seeding instructions contained in a self-modifying code statically, especially if
instructions are encoded using a randomized key. In the absence of the capacity
to detect seeding instructions, subsequent analysis will fail as well.
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Based on these observations, we create a shellcode encoder which consists of
XORing the shellcode with a random key and prepending a decoder armored
with anti-disassembly GetPC code. To build the anti-disassembly GetPC code
we adapt four existing techniques proposed by Branco et. al. [13] and Sikorski
et. al. [14] for preventing malware analysis:

1. Use of garbage bytes and opaque predicates : the insertion of garbage bytes af-
ter so-called opaque predicate instructions confuses some disassemblers into
taking the bytes immediately after such an instruction as the starting point
of a next instruction. Opaque predicates are logical tautologies or contradic-
tions which are constructed in such a way that this can not be easily deter-
mined without evaluating them. For example, (GetUserID() xor 0x0A0A)
is opaque for any instance evaluating it that does not know beforehand the
result of GetUserID(), while an attacker can construct this when targeting
user with id 0x0A0A specifically.

2. Flow redirection to the middle of an instruction: certain instructions are
crafted to contain other instructions in the middle of their opcodes. During
execution, the code flow is redirected to the middle of instructions to execute
those “hidden” inside. This requires full emulation for proper disassembly.

3. Push/pop-math stack-constructed shellcode: instead of executing instructions
directly, the opcodes are XORed with a static value, pushed onto the stack
and control is transferred to the stack. This way, full emulation is required
to obtain the instructions.

4. Code transposition: a piece of code is split into separate parts and re-arranged
in a random order, tied together with several jumps. In addition, instead of
returning to the original destination of a call operation (a characteristic of
GetPC code), the destination pushed on the stack by the call operation is
modified by the appropriate offset.

We evaluate these anti-disassembly techniques against Nemu and Libemu by
encoding our test shellcodes with the anti-disassembly encoder described above.
If the anti-disassembly encoder works, the pre-processor cannot correctly identify
the GetPC code and the shellcode analysis will stop without raising alerts.

Table 1. Anti-disassembly techniques detection rate

Garbage Byte Flow Redirect Push/Pop
Math

Code Trans-
position

Nemu 9/9 9/9 8/9 8/9

Libemu 0/1 1/1 0/1 1/1

Table 1 shows the results of the tests. While we could bypass Libemu using
Garbage bytes and Push/Pop math techniques, Nemu has better detection in
most cases with the only successful evasion technique being Code Transposition
and Push/pop math in one case. We believe this is due to the fact that Nemu
did not properly disassemble all the instructions of our armored decoder. This
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impacts the emulation of such instructions, eventually preventing the correct
execution of the decoding routine. As a result, the decoded shellcode cannot
be completely emulated and this causes the failure of heuristics requiring the
observation of a large number of instructions to trigger. However, we consider this
is an exceptional case, while in general we conclude that the evasion techniques
were ineffective against Nemu.

Limitations of the Emulator Implementation

Unsupported Instructions. Most EBNIDSes do not provide full emulation
capabilities and only emulate a subset of the full instruction set. For example, the
approaches presented by Polychronakis et. al. in [1, 9] use libdasm as disassembler
and implement a subset of the IA-32 instruction set, including most general
purpose instructions but no FPU, MMX or SSE instructions.

It is possible for an attacker to construct a shellcode which incorporates in-
structions not covered by the limited emulators, therefore causing emulation
to stop when such instructions are encountered, and therefore preventing the
heuristic-based detection. Additionally, it is possible to use the results of non-
emulated instructions as an integral part of a self-modifying routine.

In addition to emulating only a subset of the IA-32 instruction set, all emula-
tors provide only a subset of the complete system functionality, including syscall
emulation, virtual memory and the presence of process images. These limitations
in the implementation of system functionality emulation can be abused by an
attacker in order to thwart successful emulation and thus detection.

Based on these observations, we create a shellcode encoder which consists of
XORing the shellcode with a random key and prepending a decoder made with
instructions which are not supported by some types of emulators. In more detail,
we create five versions of the decoder, each using different types of instructions:

1. FPU instructions (using FNSTENV).
2. FPU instructions (using FNSAVE).
3. MMX instructions.
4. SSE instructions.
5. Instructions considered obsolete or undocumented by some disassemblers

and emulators such as salc or xlatb instructions.

We evaluate these anti-disassembly techniques against Nemu and Libemu by
encoding our test shellcodes with the anti-disassembly encoder described above.
If the encoder works, the emulator cannot correctly execute the GetPC code and
the shellcode analysis will stop without raising alerts.

Table 2 summarizes the test results. With the only exception of the FNSTENV
FPU instruction, all other instruction sets prevented the emulator to successfully
emulate the decoder and detect the shellcodes.

Emulator Detection. Emulator detection refers to a class of techniques which
shellcodes can use to detect if they are run within an emulator. This approach
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relies on certain behavioral quirks present in all available emulators. A good
example of these quirks is the method proposed in [9], in which the emulator
initializes all its eight general purpose registers to hold the absolute address of
the fist instruction of each execution chain. This introduces a detection vector,
since this situation is highly unlikely to arise in a real-world scenario. While set-
ting the stack pointer to point to the beginning of the shellcode most certainly
does not affect its correct execution, shellcode could include emulation detection
tricks which check the stack data preceding the shellcode (using the ESP as the
base). The preceding data could be checked for valid stack frames or, better yet,
data known to reside on the stack of the vulnerable program. This can be done
through hardcoded addressing or through egg-hunting. The emulator would have
to construct a legitimate program stack and mirror the vulnerable program in
order to avoid being detected. A final limitation is that in various exploitation
scenarios, including casual stack overflows, the EBP registers get overwritten
with the 4 bytes preceding the new instruction pointer, yet the emulator initial-
izes EBP to hold the shellcode base address. In this way an attacker could include
4 bytes crucial to successful execution of the shellcode before the new instruction
pointer which the emulator would not properly handle. Research about emulator
detection [15, 16] has shown that even mature, well-developed and maintained
system emulators often provide only a subset of the functionality of the emulated
platform or display behaviors that allow attackers to detect their presence. The
examples we provided in our paper are specific to the tested EBNIDS emulators
but the general principle remains: any difference of the emulated environment
with regard to the target environment offers an attacker opportunities for eva-
sion. Since we are dealing with network-based IDS especially the context part
of the target environment will be infeasible and unscalable to completely mirror
by the emulator for scalability reasons.

We propose three techniques to detect that the shellcode is being executed
in Libemu or Nemu. In the case of Libemu all general purpose registers are ini-
tialized to the same value, something that virtually never occurs in a genuine
exploited process. In the case of Nemu all general purpose registers are initial-
ized to static values, even though the author mentions they are initialized to
the address of the execution trace [3]. Also, for Nemu the CPUID instruction
is decoded but not emulated. Usually, the CPUID instruction returns a CPU
vendor string in certain registers when called. Nemu does not set these regis-
ters, hence providing a reliable way for detection. The third technique against
all types of emulators is a timing attack. Since emulators perform slower than
the actual CPU they seek to emulate, we can measure the timing difference for

Table 2. Unsupported instructions evasion detection rate

FPU FN-
STENV

FPU FN-
SAVE

MMX SSE OBSOL

Nemu 9/9 0/9 0/9 0/9 0/9

Libemu 1/1 0/1 0/1 0/1 0/1
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Table 3. Difference in actual running time (in milliseconds) between Nemu, Libemu
and native CPU

Opaque instructions Intensive loop Integrated loop RDA

Nemu 6.80 9.08 37.81 52.90

Libemu 44.07 75.20 173.49 177.56

native 0.148 2.10 0.30 0.68

executing a series of instructions. We implement a timing attack using relative
performance (instead of absolute performance which is very hardware dependent
as well), executing two series of instructions (a NOP loop vs. a more intensive
arithmetic loop) and take their ratio as a measure. On emulated environments
the ratio will be far higher than on non-emulated environments. Table 3 shows
an example of the running time difference between Nemu, Libemu and a native
CPU when executing four different types of operations (see Section 3.2 for a
description of the operations).

We create a shellcode encoder which consists of XORing the shellcode with a
random key and prepending a decoder armored with emulator detection code.
In more detail, the value of the decryption key is determined by the emulator
detection code: in case the shellcode is being emulated, the key will be incorrect
and the decoding will fail. Both Libemu and Nemu are unable to detect the
modified shellcodes.

Limitations of Existing Heuristics

Evasion of Kernel32.dll Base Address Resolution Heuristics. We design
two techniques tobypass theKernel32.dll base address resolutionheuristics ofNemu.
An attacker only needs to use one of the following techniques to bypass Nemu.

The first technique consists of walking the Safe Exception Handler (SEH) chain
until a pointer to ntdll.dll is found (see Figure 2). We scan the entire stack until
we find a frame with value 0xFFFFFFFF, which precedes the pointer to the OS
SEH record lying in ntdll.dll. To make sure a valid OS SEH pointer is found (and
not some random 0xFFFFFFFF value) we compare the pointer value against the
frame located 16 bytes away from it, which is always the return address of the top
stack frame. Depending on the windows version, this address points either into nt-
dll.dll or kernel32.dll. Once we find an address in ntdll.dll, we do a backward scan
from the discovered location until we encounter the PE header structure. We rec-
ognize this structure because its starting bytes are 0x4D, 0x5A (MZ in ASCII).
The address of the PE header structure is the base address of any mapped library.
Therefore, we now have a pointer to the base address of ntdll.dll. By using this
information we can call the LdrLoadDLL function inside ntdll.dll. We use the Ldr-
LoadDLL function to load Kernel32.dll and from there calling the LoadLibraryA
function inside Kernel32.dll. It is worth mentioning that within different versions
of the Windows OS, the distance between functions is static (even in existence of
enabled ASLR, and that holds for all global return addresses).
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Fig. 2. SEH scanning technique for resolving the base address of Kernel32.dll

The second technique works in a more reliable way. In the x86 architecture
the EBP register points to the current stack frame. Each stack frame starts
with a pointer to the previous stack frame, all the way to the top stack frame.
In Windows processes are created by the operating system using the NtCre-
ateProcess API, which stores on the top stack frame as return address a pointer
to ntdll.dll. Therefore, by walking the stack frames from the current stack frame
to the top stack frame we have a pointer to ntdll.dll. We use this information in
the same way described for the previous technique.

We use these two techniques to create two shellcodes that call the LoadLibrary
function inside kernel32.dll and get the kernel32.dll base address. We then feed
these shellcodes to Nemu, which does not trigger any alert. The reason why Nemu
fails in the detection is that none of the eight different Kernel32.dll base address
resolution heuristics in Nemu trigger on the operations we carry out. In more
detail, we do not access any of the FS addresses (which are Nemu triggers), we
do not perform memory reads on kernel32.dll (which is also a trigger for Nemu)
and we do not access or modify any of the SEH handlers. Finally, we also notice
that Nemu does not even seem to properly implement stack frames. In fact, EBP
always points to unreadable memory.

Evasion of GetPC Code Heuristics. Both Libemu and Nemu use the GetPC
code heuristic to identify a shellcode. Both Libemu and Nemu approach GetPC
code detection in the same way, by checking whether the program counter is
somehow stored in a memory location by means of a so-called seeding instruction
subsequently read from that memory location. In practice, this means scanning
for seeding instructions (for both systems only CALL and FSTENV/FSAVE are
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considered seeding instructions), emulating the trace and seeing if the stored
address is somehow read and used.

We implement two different techniques to get the start address of the shell-
code without triggering these GetPC heuristics. Our first technique, called stack
scanner, only works with exploits where the shellcode ends up on the stack
(and therefore is limited in scope). It works by scanning upwards from the stack
pointer (into used stack space) until a randomized marker is recognized. When
the randomized marker is recognized, its address is saved and serves as the
start address of the shellcode. The second technique, called stack constructor,
works in all exploit scenarios and involves converting any given payload to a
stack-constructed payload. The payload is divided in blocks of 4 bytes which are
pushed onto the stack in reverse order before a jump is taken to the ESP register
(thus executing the instructions pushed on the stack). Since the shellcode is now
located on the stack, this means that the ESP register (which points to the top
of the stack) also is the current EIP, hence we know the shellcode starting ad-
dress without resorting to any seeding instruction or reading a pushed/modified
address from a memory location. We use these two techniques to create two shell-
codes capable of performing a GetPC operation. We then feed these shellcodes
to both Libemu and Nemu. As expected, none of them triggers any alert.

Evasion of Payload Read Heuristics. Nemu includes a heuristic for detect-
ing self-modifying code called Payload Read Threshold (PRT). The heuristic
consist of imposing a threshold on the number of unique read operations exe-
cuted by the payload, combined with the presence of GetPC code. To circumvent
this heuristic [17] proposes to use syscalls to execute read operations instead of
reading directly in the payload shellcode. We implement a shellcode using this
approach and notice that despite the fact that the technique has been public
since 2009, the Nemu heuristic has not been updated to detect this technique.
Note that Nemu has another heuristic, which imposes a threshold on the number
of syscalls and could in principle trigger when this kind of evasion is used. How-
ever, the heuristic was designed to detect egg hunting, and as such the threshold
imposed on the number of syscalls is way higher than the number of syscalls
needed in the evasion payload. For this reason, even this second heuristic is
ineffective against our implementation.

Evasion of WX Instructions Heuristics. A threshold of WX instructions
is proposed as a heuristic in [9]. When a given piece of suspect input exceeds
this threshold, a heuristic-flag is triggered. As stated by Skape in [18], Virtual
Mapping can be used as a method to circumvent this heuristic. It involves map-
ping the same physical address to two different virtual addresses, using one for
writing operations whilst using the other for execution thus disqualifying the
code as being composed of WX instructions. In order to be able to do virtual
mapping, the shellcode needs to invoke OS APIs, and this step could trigger the
Kernel32.dll heuristic. However, an attacker can combine this technique with the
technique to resolve the Kernel32.dll base address proposed above, which avoids
triggering the corresponding heuristic.
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Evasion of Process Memory Scanning Heuristics. An attacker could scan
for a known fragment of instructions from the target code. Linn et. al. in [19]
already introduced an attack which scans for a 17-byte sequence which forms
the first basic block of the execve system call. Also, an attacker could generate
a hash and then iterate through the suitable code-region and check the retrieved
data against the hash. In this way, an emulator would have to brute-force the
hash in order to determine what code fragment to prepare, something that can-
not be done in a reasonable amount of time. Additionally, an attacker could
construct (part of) the decryption key from code fragments obtained through
hash-based searching.

3.2 Evasions Exploiting on Intrinsic Limitations

Limitations of the Emulator

Fragmentation. So-called Swarm or fragmentation attacks [20] are a class of
attacks in which an attacker can create the shellcode decoder in the target pro-
cess memory space using multiple instances of the attack, with each instance
writing a small segment of the decoder at a designated location. After building
the decoder in this fashion, the last attack instance hijacks the control of the
attacked process to start the execution of the decoder while simultaneously in-
cluding the shellcode cipher text. As such, swarm attacks could be considered
a form of fragmented egg-hunting attacks. Swarm attacks can defeat all three
components of EBNIDSes. It will be a severely complicated task to do static
analysis for part of the decoder, in the pre-processor stage. Additionally, due
to the fact that there is no fully valid shellcode present in any of the attack
instances, the emulator is never capable of emulating the decoder and hence no
heuristics are triggered. Attackers should take care, though, to keep the attack
instances small and/or polymorphic enough to avoid triggering signature match-
ing. Swarm attacks present a challenge to EBNIDSes but have the downside of
being applicable only in specific exploitation scenarios (e.g., the application must
keep all the different pieces of the shellcode in memory until the last piece of the
shellcode is sent). Because of this we could not easily build a test to evaluate
this evasion technique.

Limitations of faithful emulation

Non-self-contained Shellcode. It is possible for a shellcode to use code or
data of the target system as execution instructions, and hence become dependent
upon the state of the target machine. Such code is called non-self-contained and
can involve the absence of classic heuristic triggers such as GetPC code or Pay-
load Reads. Such code poses a problem for EBNIDSes which lack knowledge of
the target machine state. Code depending on a particular machine state for suc-
cessful execution not only requires full emulation of instructions, but also access
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to a potentially unknown amount of host-based information. While this might be
relatively easy to implement on host-based IDSes, for EBNIDSes it is unscalable
to keep up-to-date information about all possible target hosts in a network. The
approaches in [1, 9, 8, 2–4] are all susceptible to armoring techniques involving
some form of non-self-contained shellcode.

In addition, it is possible to generalize the principle of non-self-contained
shellcode to the idea of Return-Oriented-Programming (ROP). ROP involves
the re-using instructions or data in the memory of the target application in a
way to compose an instruction sequence which performs the operations required
by the attacker. Program data or code preceding a RET instruction is often
chained to execute the desired behavior. As such, an attacker can seek out a
sequence of instructions terminated by a RET instruction and note down their
addresses. The actual shellcode would then consist of a series of PUSH operations
pushing these addresses on the stack, followed by a final RET transferring control
to the first ROP-chain segment. Thus, the actual shellcode transferred of the
network would not contain any of the malicious instructions the attacker intends
to execute.

The increasing proliferation of randomization techniques complicates mat-
ters and potentially renders non-self-contained shellcode fragile, something men-
tioned in [8]. An example of these techniques are Address-Space Layout Ran-
domization (ASLR), which randomize the base address of loaded libraries and
Position Independent Executables (PIE), which are compiled to be executable
regardless of the base address they are loaded at and thus have a randomized
image base. ASLR is enabled by default in modern operating systems. This how-
ever presents no problem when the ROP code is located in a program loaded at
a static image base.

Even the latest efforts to address code reuse techniques in EBNIDSes [9] intro-
duced in Nemu are unable to fully cope with non-self-contained shellcode. Nemu
is outfitted with the program image of a real, albeit arbitrary, windows process
in order to enable more faithful emulation. However, this only partially miti-
gates the problem, since attackers can craft shellcodes targeting only a specific
OS version (and e.g., language pack) or a specific application.

In order to test the performance of Libemu and Nemu in detecting non-self-
contained shellcode we modify our test shellcodes by dynamically building the
entire GetPC code and the shellcode decoder out of ROP gadgets. Since these
gadgets are only present at the target addresses on particular versions of a sys-
tem (e.g. they vary from OS versions, service packs and language packs) any
emulator that does not supply the correct image should not be able to execute
this code. The fact that addresses vary between versions does not constitute a
problem as addresses are static within each version. An attacker could build a
database of addresses with the desired gadgets for each target platform much
like Metasploit modules often do. Since ASLR is enabled in most operating sys-
tems for many libraries which are compiled with ASLR-compatible support, we
ensure shellcode stability by leveraging the fact that ASLR varies the base ad-
dresses but not offsets of instructions from the base address. We therefore build a
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database of offsets, instead of addresses, and have the shellcode resolve the base
address of the target library first. We gather the gadgets from ntdll.dll on x86
under Windows 7 and resolve the base address through the stackframe-walking
technique explained in Section 3.1 to avoid triggering heuristics. We gather these
gadgets using the RP++ tool [21]. It should be noted that our shellcode does
not fully consist of ROP gadgets (only the GetPC and decoder stub) and as
such the shellcode is still faced with traditional difficulties when dealing with an
ASLR+DEP protected system. However, though most major applications and
system libraries are compiled with ASLR support this is not always the case
and often an attacker can still rely on static addresses from either the non-
ASLR enabled target application image itself or from libraries compiled without
ASLR support loaded by the target application. In order to bypass ASLR/DEP
our shellcode would need to be modified by having the address-resolving stub
consist of ROP-gadgets located in a non-ASLR-enabled image or library and
subsequent ROP-gadgets derived from offsets to the resolved base address, or by
resolving the library base address by using the SEH walk technique described in
Section 3.1 . Neither Libemu nor Nemu we found capable of detecting our non-
self-contained shellcode. In principle, recent approaches proposed for detecting
ROP-based shellcode [23] could be more effective than Nemu and Libemu in de-
tecting our bypasses. However we are still left with the open question of verifying
the effectiveness of such new approach.

Execution Threshold. Real-time intrusion detection imposes the need to eval-
uate whether input is malicious or not within a reasonable amount of time. Shell-
codes which take a large amount of time to be emulated pose a problem. Long
loops have been used as an anti-debugging technique for a long time, and some
of the detection techniques [1, 3, 4] use infinite loop detection and smashing or
pruning to reduce the impact of execution threshold exceeding code. However,
it is possible to employ techniques which force any emulator to spend a certain
amount of time before being able to execute the actual shellcode.

One such technique is the use of Random Decryption Algorithms (RDAs) as
described by Kharn [24]. RDAs essentially consist of employing encryption rou-
tines without supplying the decryption key and forcing the self-decrypting code
to perform a brute-force attack on itself, thus creating a time-consuming decryp-
tion loop. An attacker could employ strong cryptographic algorithms and use a
reduced key-space which can be brute forced in a timeframe which is acceptable
for execution but not for detection. A more sophisticated approach, albeit more
complex and implementationally limited, is the use of Time Lock Puzzles (TLPs)
[25, 26]. TLPs, are cryptographic problems consisting of a cipher-text encrypted
using a strong cipher and a puzzle, which requires a series of sequential, non
parallelizable operations in order to retrieve the key. The authors of EBNIDS
approaches almost invariably state that if attackers would start to employ eva-
sion techniques aimed at exceeding execution thresholds, their method would
still be useful as a first-stage anomaly detector since the appearance of loops
exceeding the threshold in random code is rare. However, even if all streams
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exceeding execution thresholds would be passed on to a second-stage analysis
engine, the problem of having to perform unacceptably time-consuming opera-
tions remains, forbidding analysis by second-stage engines as well, and leaving
the malicious nature of the examined code undecided.

We modify our test shellcodes to evade EBNIDSes by exceeding their execu-
tion thresholds based on four techniques:

1. Opaque loops: we generate a loop that takes a long time to perform seem-
ingly necessary operations (such as the calculation of certain values for code-
branching operations used later on) while in reality the checks and calcu-
lation it performs are so-called opaque predicates (i.e. they always result
in the same value and code-flow). Preceding the GetPC stub and decoder
with such a loop lets ’linear’ emulators timeout before they can get to the
triggering code.

2. Intensive loops: similar to the opaque loops, intensive loops employ in-
structions (e.g.. FPU or MMX instructions) which are costly to emulate,
taking a longer amount of time to execute in an emulated environment than
on the target host. Again, this loop is prepended to the actual payload.

3. Integrated loops: as opposed to the opaque and intensive loops, the be-
havior of this stalling code is actually required for proper execution of the
payload. The encoder key and the instructions of the GetPC code are split
up in a loop-based calculation which takes a long amount of time. The shell-
code will have to execute this code in order to obtain the key for proper
decryption of the payload as well as the instructions of the GetPC code.

4. Random Decryption Algorithm: in this technique the payload is en-
crypted with a random key. The shellcode attempts to bruteforce the key
and, after each attempt, checks the decrypted body against a hash value.
The original RDA implementation [24] still needed plaintext GetPC code to
know the address of the encrypted payload body. In our implementation we
generate a second RDA key, XOR the GetPC instructions with the key and
modify the decoder to first decrypt the GetPC as well.

Table 4 shows the results of our tests. Libemu cannot detect any of the mod-
ified shellcodes. On the other hand, the shellcodes modified with the first two
techniques (opaque and intensive loops) could all be detected by Nemu. This is
expected and is due to the fact that Nemu searches for potential shellcode entry
points at every byte position within a payload and the execution of the stalling
code is not required for execution of the shellcodes. However, by examining the
source code, we observe that also Libemu should apply the same technique, and
therefore should in principle be able to detect the same shellcodes. We believe
the failure in the detection has to do with some implementation issue which is
unrelated to the concept of execution threshold. None of the shellcodes modified
with the integrated loops and RDAs techniques are detected, since the proper
execution of the shellcode depends on the results of the execution of the stalling
code.
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Table 4. Detection of execution threshold evasion techniques against Libemu and
Nemu

Opaque
loop

Intensive
loop

Integrated
loop

RDA

Nemu 9/9 9/9 0/9 0/9

Libemu0/1 0/1 0/1 0/1

Context-keying. Information about the target host can be used as a cryp-
tographic key to encrypt and decrypt the shellcode. This technique is known
as Context-Keyed Payload Encoding (CKPE) armoring and has been proposed
by Aycock et. al. to prevent the analysis of malware [27]. EBNIDS approaches
[1, 9, 3, 8, 2, 4] are susceptible to evasion through CKPE armoring. The benefit
of CKPE, compared to non-self-contained shellcode is greater stability, lower
complexity and less effort on the side of the attacker.

Proper use of CKPE prohibits successful emulation of the shellcode by the
EBNIDS and as such reduces the problem of evasion to ensure that the CKPE
routine remains undetected. Strong CKPE armoring would involve producing
a polymorphic key generator stub and decoder as well as avoiding the use of
traditional hallmarks of self-decoding shellcode such as GetPC code or WX
instructions. A context-based payload encoder is available in the Metasploit
framework. Unfortunately, the Metasploit CKPE encoder can be detected by
EBNIDSes since it includes GetPC code in the generated shellcode.

We improve the Metasploit CKPE encoder by adding a non-cryptographically
secure hashing function that generates a hash based on the key and XORs 4 bytes
of GetPC code with it before pushing it to the stack and transferring control
to it. This way, the GetPC code is only executed if the key extracted by the
system (which depends on context) hashes to the right value. We use CPUID
information, values present at static memory addresses, system time and file
information for context-dependent key generation in our tests as keys with which
we encode our test shellcodes. Both Libemu and Nemu are not capable to detect
any of the modified shellcodes.

Hash-armoring. A special case of CKPE is hash-armoring [28]. Hash-armoring
uses a cryptographic hash function with a context-based key to hash an (arbi-
trary) salt. The technique consists of checking whether the resultant hash value
for a given salt contains the instructions to be armored (called the run). Given
a run, the armoring routine brute-forces all possible salts until a suitable hash
is found, returning the positions between which the run is located in the hash
together with the salt, forming a triple. This is repeated for the entire malicious
body resulting in a collection of such triples. The unarmoring routine simply ob-
tains the context-based key (in the correct environment) and concatenates the
salt, generating the hash and extracting the run. The process is repeated this
for all triples, thus (re)generating the original shellcode.
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We implement this technique by creating a modified version of the Con-
text CPUID Metasploit key generator stub with modified GetPC code, similar
to our CKPE implementation. The unarmoring routine consists of extracting the
runs from the hashes obtained from combining the extracted context key with
the information in the triples. Similarly to what we did for context-keying, we
use CPUID information, values present at static memory addresses, system time
and file information as context keys with which we armor our test shellcodes.
Both Libemu and Nemu are not capable to detect any of the modified shellcodes.

4 Conclusions and Future Works

In this paper, we have shown how EBNIDSes work and we have pointed out that
they suffer of important limitations. In particular, we have shown that all three
steps of emulation-based detection (namely, pre-processing, emulation, and the
heuristic-based detection) have limitations that make it relatively simple for an
attacker to circumvent the detection. We tested two common EBNIDSes for a
proof of concept and it showed us that it is possible to evade both systems in all
the detection steps.

From the foundational viewpoint, we believe that the most interesting limi-
tations are those regarding emulation and the heuristic-based detection. Indeed,
we have demonstrated that even assuming a bug-free pre-processor and emula-
tor, emulation can still be hindered and heuristic-based detection can be easily
bypassed by a skilled attacker. We have shown that it is possible to write generic
shellcode encoders which are able to completely bypass EBNIDSes by targeting
their intrinsic limitations.

From the practical viewpoint, we think that the weaknesses resulting from
the discrepancy between the emulated environment and the intended target of
the shellcode is actually the easiest one to exploit for an attacker. Given that
outfitting EBNIDSes with full host-based information would make the system
completely unscalable, we believe it is unfeasible that EBNIDSes alone will ever
be capable of bridging this particular gap either.

Finally, in addition to the structural problems faced by network-level emula-
tors, the proposed pre-processing components often rely purely on static analysis
techniques leaving them vulnerable to armoring methods.

Our results show that a sufficiently skilled attacker could armor his shellcode
to bypass all investigated approaches or, even worse, develop an easy-to-use
library to lower the barrier for armoring and provide other attackers with such
an addition to their arsenal.

It is not in the scope of this paper to investigate how to mitigate these prob-
lems. We believe that promising avenues of research are those dealing with alge-
braic specification, hidden Markov-Models and neural networks. Regarding the
limitations related to the incompleteness of the emulation environment but there
has been research into the detection of ROP attacks such as [29–31] which would
be crucial for any network intrusion detection system to implement.
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Abstract. Cyber defenses based on dynamic platform techniques have been pro-
posed as a way to make systems more resilient to attacks. These defenses change
the properties of the platforms in order to make attacks more complicated. Un-
fortunately, little work has been done on measuring the effectiveness of these
defenses. In this work, we first measure the protection provided by a dynamic
platform technique on a testbed. The counter-intuitive results obtained from the
testbed guide us in identifying and quantifying the major effects contributing to
the protection in such a system. Based on the abstract effects, we develop a gen-
eralized model of dynamic platform techniques which can be used to quantify
their effectiveness. To verify and validate our results, we simulate the general-
ized model and show that the testbed measurements and the simulations match
with small amount of error. Finally, we enumerate a number of lessons learned
in our work which can be applied to quantitative evaluation of other defensive
techniques.

Keywords: Dynamic platforms, platform diversity, quantitative evaluation, met-
rics, intrusion tolerance, moving target.

1 Introduction

Developing secure systems is difficult and costly. The high cost of effectively mitigating
all vulnerabilities and the far lesser cost of exploiting a single one creates an environ-
ment which advantages cyber attackers. New active cyber defense paradigms have been
proposed to re-balance the landscape and create uncertainty for the attackers [1]. One
such paradigm is active defenses based on dynamic platform techniques.

Dynamic platform techniques (or simply, dynamic platforms) dynamically change
the properties of a computing platform in order to complicate attacks. Platform prop-
erties refer to hardware and operating system (OS) attributes such as instruction set
architecture (ISA), stack direction, calling convention, kernel version, OS distribution,
and machine instance. Various dynamic platform techniques have been proposed in the
literature. Emulation-based techniques change the calling sequence and instruction set
presented to an application [2]; multivariant execution techniques change properties
such as stack direction or machine description using compiler generated diversity and
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virtualization [3–6]; migration-based techniques change the hardware and operating
system of an application using containers and compiler-based checkpointing [7]; server
diversification techniques rotate a server across multiple platforms and software stacks
using network proxies [8]; self cleansing techniques change the machine instance by
continuously rotating across many virtual machines and re-imaging the inactive ones
[9–11].

Unfortunately, little work has been done on understanding and quantifying the im-
pact of dynamic platforms on the security of a system. The impact of such techniques
is often assumed to be intuitive and straight forward. Moreover, one cannot compare
different features provided by different dynamic platforms in a quantitative way. For
example, is it more effective to support multiple platforms that are running simultane-
ously and voting on the result (a.k.a. multi-instance), or to have one active platform, but
support cleansing of the inactive ones (a.k.a. cleanup)?

In this work, we first identify the four major features proposed by different dynamic
platforms in the literature. We then perform a set of experiments on a testbed with one
such technique that is augmented to support these features in order to quantify its pro-
tection. The results from our testbed experiments are, in fact, counter-intuitive and com-
plex. The complexity of the results suggest that various underlying effects contribute to
such a system.

Based on our observations and the mathematical principles involved, we enumerate
and analyze the various underlying effects in an abstract analysis of a dynamic platform
system. To evaluate the completeness of our enumerated list of abstract effects, we
develop a generalized model of dynamic platforms based on these effects and verify
and validate the model by simulating the same experiments as the ones we performed
on the testbed. The matching results and the small amounts of error validate our model
and verify that we have at least correctly captured the main effects contributing to the
protection provided by a dynamic platform. Finally, we enumerate a number of lessons
learned that can be applied to the quantitative evaluation of other defensive techniques.

Our contributions are as follows:

– To the best of our knowledge, we perform the first quantitative evaluation of dy-
namic platforms as a defensive mechanism and illustrate the complexities and the
counter-intuitive effects contributing to such a system. Moreover, we enumerate the
major effects and their impacts.

– We develop a generalized model of dynamic platforms and simulate the results. We
verify and validate the model by comparing the simulated results with the testbed
experiments and show that they match closely.

– We demonstrate how testbed experiments, abstract analysis, and modeling and sim-
ulation can be used together to quantify the impact of defensive techniques. In our
work, testbed experiments are used to uncover the complexities, abstract analysis is
used to enumerate and describe such complexities, and modeling and simulation is
used to check the completeness of the abstract analysis and to validate the results.
We enumerate a number of lessons learned which can guide future evaluations of
the defenses.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of dynamic platform techniques. Section 3 describes the threat model used throughout
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the paper. Section 4 discusses our testbed experiments and measurements performed
on a real system. Section 5 discusses our abstract analysis approach and its results.
Section 6 describes our generalized model of dynamic platforms. Section 7 presents
the simulation results from the generalized model. Section 8 enumerates a number of
lessons learned and discusses our findings. We discuss the related work in Section 9
before concluding the paper in Section 10.

2 Dynamic Platform Background

We briefly describe the defensive techniques based on dynamic platforms. We provide
enough background for understanding the rest of the paper. More details about each
technique can be found in its original publication.

Dynamic platform techniques change platform properties in order to make attacks
more complicated [12]. They often rely on temporal changes (e.g. VM rotation), di-
versity (e.g. multivariant execution), or both (e.g. migration-based techniques) to pro-
tect a system. These techniques are often implemented using machine-level or operat-
ing system-level virtualization, compiler-based code diversification, emulation layers,
checkpoint/restore techniques, or a combination thereof. Emulation-based techniques
such as Genesis [2] often use an application-level virtual machines such as Strata [13] or
Valgrind [14] to implement instruction set diversity. In some cases, multiple instances
are executed and a monitor compares their results. Multivariant execution techniques
such as Reverse stack [15] (also called N-variant systems [16]) use compiler-based
techniques to create diverse application code by replacing sets of instructions with se-
mantically equivalent ones. Migration-based techniques such as Talent [7] use operating
system-level virtualization (containers) to move an application across diverse architec-
tures and operating systems. A dynamic platform can also be achieved at a higher ab-
straction level by switching between different implementations of servers [8]. These
techniques either do not preserve the state (e.g. a web server) or they preserve it using
high level configuration files (e.g. DNS server). Finally, self-cleansing techniques such
as SCIT [9] only change the current instance of the platform without diversifying it.
The main goal, in this case, is bringing the platform to its pristine state and removing
persistence of attacks.

We have identified four features that determine the protection provided by dynamic
platform techniques. Later in our analysis, we show that these features can result in very
different defensive benefits for each technique. The four features are:

Diversity. A dynamic platform technique provides diversity if it changes the properties
of the platform used for running the application. For example, the Reversed Stack
[15] technique provides diversity because it changes the direction of stack growth
whereas SCIT [9] does not because it rotates the service among homogeneous vir-
tual machines.

Multi-Instance. A technique is multi-instance if more that one platform instance is
used to serve a transaction simultaneously. For example, multivariant execution [3]
is a multi-instance technique because it runs a transaction on multiple different in-
stances of the platform and compares the results, whereas Talent [7] is not, because
it uses one instance at a time.
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Table 1. Features of some of the dynamic platform techniques

Technique Diversity Multi-Instance Limited Duration Cleanup

SCIT [9] �
GA-Based Configuration [17] � �

MAS [18] � �
Multivariant Execution [3] � �

Reversed Stack [15] � �
Talent [17] � �

Machine desc. diversity [6] � �
N-Variant System [16] � �

Intrusion Tolerance for MCS [19] � �
Intrusion Tolerant WS [8] � �

Limited Duration. A technique has limited duration if the instance of the platform can
change while processing a single transaction. Otherwise, we call it extended dura-
tion which means that the technique must finish processing a transaction before it
can change the instance of the platform. For example, using genetic algorithms to
change platform configurations [17] has limited duration because the the configura-
tion can change while processing a transaction whereas moving attack surfaces [18]
completes each transaction on the same instance on which it started (i.e. extended
duration).

Cleanup. A technique supports cleanup if each instance is wiped and imaged into
a pristine state before it is used again. For example, SCIT [9] supports cleanup
whereas multivariant execution does not.

Table 1 shows a list of representative dynamic platform techniques and their features.
We use one of the above techniques, Talent, to quantitatively analyze the effective-

ness of dynamic platforms. Although Talent does not natively support multi-instance
and cleanup, we augment it with these features to understand their impact. The main
reason for using Talent was its code availability, but we show that our analysis can be
generalized based on the features of the techniques.

In this work, our goal is not to provide arguments for merits or demerits of any of
the proposed dynamic platform techniques. Rather, we strive to quantitatively evaluate
dynamic platforms as a cyber defense mechanism and study various features that can
significantly change their impact.

2.1 Talent

Talent [7] is a technique that allows live migration of applications across diverse plat-
forms. It uses operating-system-level virtualization (OpenVZ [20]) to sandbox an ap-
plication and migrate the environment. For internal process state migration, Talent uses
a portable checkpoint compiler (CPPC [21]) to insert checkpointing instructions into
a code. At the time of migration, it pauses a process, checkpoints its state, moves the
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state to the next platform, and resumes the execution. Some portions of the code are
re-executed in order to construct the entire state.

Since it allows an application to run on different operating systems and architecture,
Talent provides diversity. Also, it is a limited duration technique, because it can pause a
process and resume it on a different platform. However, it does not natively support multi-
instance since one platform is active at a time; it does not implement cleanup either.

Talent has been implemented on Intel Xeon 32-bit, Intel Core 2 Quad 64-bit, and
AMD Opteron 64-bit processors. It has also been tested with Gentoo, Fedora (9, 10, 11,
12, and 17), CentOS (4, 5, and 6.3), Debian (4, 5, and 6), Ubuntu (8 and 9), SUSE (10
and 11), and FreeBSD 9 operating systems.

3 Threat Model

We discuss multiple threat models in this paper but analysis shows that they share com-
mon features. To make the analysis more precise, we explicitly describe the core threat
model in this section. Variations upon the core threat model are described in the other
sections as appropriate.

In our model, the defender has a number of different platforms to run a critical ap-
plication. The attacker has a set of exploits (attacks) that are applicable against some of
these platforms, but not the others. We call the platforms for which the attacker has an
exploit “vulnerable” and the others “invulnerable.” In a strict systems security terminol-
ogy, vulnerable does not imply exploitable; without loss of generality, we only consider
exploitable vulnerabilities. An alternative interpretation of this threat model is that the
vulnerabilities are exploitable on some platforms, but not on the other ones.

The defender does not know which platforms are vulnerable and which are invulner-
able, nor does she have detection capabilities for the deployed exploits. This scenario,
for example, describes the use of zero-day exploits by attackers, for which no detection
mechanism exists by definition.

Since there is little attempt to isolate the inactive platforms in dynamic platform
systems, we assume that all platforms are accessible by the attacker, and the attacker
attempts to exploit each one.

The attacker’s goal is what creates the variations in our threat model. For example,
one success criteria may be for the attacker to compromise the system for a given pe-
riod of time to cause irreversible damage (e.g. crash a satellite), while a different success
criteria gives the attacker gradual gain the longer the system is compromised (e.g. ex-
filtration of information). Different techniques with different features provide varying
protections against these goals which we study in the subsequent sections.

4 Experiments

4.1 Experiment Setup

To understand the protection provided by dynamic platforms, we start by performing
simple experiments with Talent and two real-world exploits. We observe that contrary
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to the naïve view, even these simple experiments result in very complex results which
highlight a number of subtleties about dynamic platforms.

To perform the experiments, a notional application with C back-end and GUI front-
end has been ported to Talent. The application’s back-end performs attestation of ma-
chines within a local network and its front-end displays the result. However, the details
of the application are unimportant for the evaluations done in this work, so for the sake
of brevity we do not discuss them here.

On the testbed, we have a pool of five different platforms: Fedora on x86, Gentoo on
x86, Debian on x86_64, FreeBSD on x86, and CentOS on x86. The application runs for
a random amount of time on a platform before migrating to a different one (i.e. platform
duration).

The attacker’s goal in the experiments is to control the active platform for some time
T . Since in a real scenario the vulnerability of the platform is unknown, we may con-
secutively migrate to multiple vulnerable platforms, in which case the attacker wins.
To implement this scenario on the testbed, we launch two real exploits against Talent.
The first is the TCP MAXSEG exploit which triggers a divide by zero vulnerability in
net/ ipv4/tcp.c (CVE-2010-4165) to perform a DoS attack on the platform. Only
the Gentoo platform is vulnerable to this attack. The second attack is the Socket Pairs
exploit which triggers a garbage collection vulnerability in net/unix/
garbage.c (CVE-2010-4249) to saturates the CPU usage and file descriptors. The Fe-
dora and CentOS platforms are vulnerable to this attack. Our Debian and FreeBSD
platforms are not vulnerable to these exploits.

In each configuration, we select N ∈ (1, 5) platforms. For each trial, the application
randomly migrates across those N platforms without immediate repeat. In the case
of N = 1 (baseline), the application remains on the same platform during the entire
trial. Without loss of generality, the duration on each platform (d) is chosen randomly
and uniformly from 40− 60 seconds. Although we have no reason to believe that these
are the appropriate values for a real-world application, we will show later that the actual
values of the duration (d) and attacker’s goal (T ) are inconsequential to our experiments
and can be parametrized.

One or both exploits become available to the attacker at random times during each
trial. As a result, zero to three platforms can be compromised (zero when the exploit is
not effective against the set of platforms and three when both exploits are available and
Fedora, CentOS, and Gentoo are in the pool of platforms). When the exploit is launched,
its payload reaches all of the platforms in the selected set at once (not one after another).
This approach tries to model the behavior of network-based exploits that propagate to all
machines within a network very rapidly. Each trial runs for 15 minutes. We collect 300
trials for each configuration. We also collect a central log which includes a timestamp,
the status of each platform (up or down), and the active platform and a local log (for
verification purposes) which also includes finer-grained CPU load for each platform.

Fig. 1 illustrates one trial with 3 platforms. The red arrows show when exploits are
launched. In this case, platforms 2 and 5 are vulnerable to exploits 1 and 2 respectively.
A shaded rectangle shows a compromised platform while a white rectangle shows an
uncompromised one (vulnerable or invulnerable).
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Exploit 1 Exploit 2 

P2 P5 P2 P2 P1 P1 P5 

time 

Uncompromised 

Compromised 

Fig. 1. A 3-platform trial

4.2 Experiment Results

We calculate the value of the metric, which is the percentage of time that the attacker is
in control for longer than T and present these results in Fig. 2.

The results are completely perplexing. In fact, the results are so counter-intuitive that
we initially thought that some mistakes have been made in collecting them. We can at
least observe the following peculiarities in the results.

– The 1-platform result is very different than the others and seems to estimate a
straight line for T > 100 sec.

– More platforms does not always result in lower chance of attacker success. Specifi-
cally for 60 < T < 120, more platforms result in higher chance of success for the
attacker.

– There are several downward steps in the curves for more than one platform at T =
60, 120, 180, ....

– For T > 120, more platforms result in lower chance of attacker success and that
remains the case for larger values of T .

The complexity of the results suggest that various effects should be in play which we
explain one by one in the next section.
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Fig. 2. Testbed measurements of the impact of dynamic platform on attacker success
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5 Abstract Analysis

Much of the analysis of one system using dynamic platforms as a defense applies to any
such system. First, we explain the effects that contribute to our experiment results and
then we generalize our analysis to any dynamic platform technique.

5.1 Limited Duration Effect

The first effect contributing to the results is the limited duration effect. Let d be the
duration of the transaction on a platform, T be the period that the attacker must be
present, and s the start time of attack. If T > d, the attacker can never win. For T < d,
the attacker can only win if she starts early enough during the d−T interval. As a result,
the probability of winning for the attacker is a decreasing linear function of T .

d 

T 

s 

Attacker 
Wins 

Attacker 
Loses 

Fig. 3. Window of opportunity for the attacker
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Fig. 4. The limited duration effect

Then the probability that the attack succeeds is given by

Prsuccess = min

(
1,max

(
0,

d− T

s

))
This explains the general decreasing trend for the probability of success as a function

of attacker’s goal in Fig. 2.
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Counter-intuitively, this effect also explains the straight-line result for the 1-platform
experiment in Fig. 2. Although in the 1-platform case, the platform never changes, the
probability of success decreases linearly with time because the entire trial has a limited
duration. The attacker cannot possibly win if she starts late even if that single platform
is vulnerable. This explains the similarity of the 1-platform result in Fig. 2 and Fig. 4.

5.2 Diversity Effect

Informally speaking, the intuition behind the concept of diversity is that it is harder for
an attacker to compromise different platforms than it is to compromise homogeneous
ones. Since we assume that the platforms are all available and no separation exists
between them, in the case of homogeneous platforms, they can all be compromised by
an exploit that works against one of them. On the other hand, if the platforms are diverse
(which is the case in our experiments), an exploit can work against some of them, but
not the other ones.

In practice, diversity creates an effect which occurs when the required attacker goal
T passes between various multiples of the duration of each platform d. For example, if
the attacker goal passes from being a bit less than a single platform duration to a bit
more, then instead of a single vulnerable platform, two need to be used consecutively.
The same effect happens as we transition from two to three and so on. The result is
downward steps in the curve when the required attacker goal passes multiples of the
platform duration. Fig. 5 illustrates this impact when three out of five platforms are vul-
nerable. The first platform is trivially vulnerable with 3

5 probability. Since we do not
have immediate repeats, the subsequent platforms are chosen from the four remaining
ones of which two are vulnerable, so the probability that the second platform is vulnera-
ble if the first one is vulnerable is 2

4 . As a result, both the first and the second platforms
are vulnerable with probability 3

5 × 2
4 . If we extend the analysis, the first, second, and

third platforms are vulnerable with probability 3
5 × (24 )

2 , and so on (see Fig. 5).
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5.3 Multi-instance Effect

In the multi-instance case, the system is compromised if the majority of platforms are
compromised. Although Talent does not natively support multi-instance, we augment it
with a simple voting mechanism to analyze the impact of running multiple platforms si-
multaneously. With the same experiment setup as described in section 4 we analyze the
probability of success when the application runs on multiple platforms and the majority
of the platforms are compromised.

When the system is multi-instance, if there is no platform change, the case becomes
trivial; that is, if the majority of the platforms are not vulnerable, the system as a whole
is never compromised and the attacker never wins. On the other hand, if the majority of
the platforms are vulnerable, the attacker wins as soon as the exploits are launched and
remains in control indefinitely. As a result, we only show the effect when the platform
change happens. Moreover, the 1-platform and 5-platform cases are also trivial, so we
only show the results for a 3-platform setup. In this setup, the application runs on three
platforms simultaneously. For each platform, the application migrates to a new platform
uniformly randomly after spending 40-60 seconds. Thus, the migrations may be out-of-
sync, but at each instance of time the application is running on three diverse platforms.

The multi-instance effect is shown in Fig. 6. The single instance result is the same as
the 3-platform setup in Fig. 2.

Counter-intuitively, the multi-instance setup is less secure for small values of T . This
arises from a combinatorial effect. Since three of the five platforms are vulnerable, there
are three configurations in which the majority is not vulnerable (the two invulnerable
platforms selected with one other vulnerable platform) which is expressed by C (3, 1)
where C (x, y) = x!

y!(x−y)! is the combinatorial choice function. The total number of
choices is C (5, 3) = 10. As a result, the defender wins with the probability of 30% and
thus, the attacker wins with the probability of 70%. This is why the multi-instance case
starts from 0.7. With the single instance case this probability is smaller because there
is a higher probability of a combination with an invulnerable platform. In other words,
when the majority of the platforms are vulnerable (3 out of 5 in this case), there is a
higher probability that if we choose three platforms, two or more of them are vulnerable
(1 − C (3, 1)) than if we choose just one platform and that is vulnerable ( 35 ). We will
explain this effect in more details in Section 6.1.

5.4 Cleanup Effect

A dynamic platform system supports cleanup if every inactive platform in restored into
its pristine state. Talent does not natively support cleanup either, but we augment it
with a cleanup capability to evaluate its impact. As discussed earlier, techniques such
as SCIT [9] and MAS [18] implement cleanup.

The impact of cleanup is trivial if the exploit is only launched once and never re-
peated; the attacker may compromise the active platform for the remainder of the time
on that platform, but when the platform changes, the system becomes pristine and the at-
tacker never wins again. This is because the inactive platforms are being cleaned while
the attacker attacks the active one. Consequently, in the case of a non-repeating exploit,
the portion of time the attacker is in control amortizes with the duration of the trial.
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Fig. 6. The multi-instance effect
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Here, we evaluate the non-trivial case where the exploit is repeated frequently. We
re-launch the exploit with mean time between attacks (MTBA) set at 20, 40, and 60
seconds. Fig. 7 illustrates the impact of cleanup. As can be observed, for any attacker
goal of greater than 60 seconds, the chance of success for the attacker drops to zero.
This makes sense because the inactive platforms are restored to their pristine state, so
the application can never migrate to an already compromised platform. As a result, the
attacker can only win if her goal is shorter than the maximum duration of time on a
single platform, which is 60 seconds.

As the results suggest, cleanup can greatly improve the protection offered by dy-
namic platform techniques since it significantly reduce the window of opportunity for
an attacker. It is advisable that all dynamic platform techniques should support cleanup.
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5.5 Smoothing Effects

A few effects contribute to the smoothness of the edges of the curves depicted in Fig. 2.
For example, the downward steps are not sharp transitions (similar to a step function).
Rather, they are smoother curvatures. For the sake of completeness, we explain a few
factors that contribute to this smoothness.

First, the time spent on a platform is not fixed; rather, it is a random variable uni-
formly selected between 40 and 60 seconds. This is an important smoothing factor
because it makes the time on a platform non-deterministic and as a result, it makes the
threshold for passing between multiples of the platforms also smooth.

Second, the exploits are also launched at random times instead of the beginning of
the trial. This factor is not crucial in evaluating dynamic platforms and its only tangible
impact is making the curves smoother.

Third, we assumed that as soon as the exploit is launched the vulnerable platforms
are compromised. In reality, the time it takes for the exploit to successfully compromise
a platform after reaching it is non-zero which also makes the results smoother. For
example, the Socket Pairs exploit used in the experiments takes a few seconds to saturate
the file descriptors.

Fourth, networking, OS scheduling, and various other delays also make the results
smoother and in some cases noisier.

6 Generalized Model of Dynamic Platform Techniques

In this section, we use the knowledge of our experiments and the effects that we ex-
plained in the previous section to develop a generalized model of the dynamic platform
techniques.

We can categorize the problem space according to a number of properties:

– The attackers control requirement can either be aggregate or continuous. In the
aggregate case, any period of time during which the attacker controls a platform
counts and aggregates towards the payoff. Data exfiltration attacks are an example
of attacks that require aggregate control. In the continuous case, only the time since
the most recent compromise during which the attacker has continuous control of
the platform counts towards the payoff. For example, attacks that leak crypto keys
through remote side channel attacks require continuous control since that key may
only be valid for the most recent session.

– The attackers payoff can be either fractional or binary (all or nothing). In the frac-
tional case, the attacker is rewarded more, the longer she controls the platform.
Data exfiltration attacks are an example of fractional payoff. In the binary case, the
attacker is not rewarded before a known period of control, and then she is fully re-
warded at once. Attacks on critical infrastructure systems to cause a physical impact
(e.g. to cause a blackout) are an example of binary payoff.

– The platform change model can include random with repeat, random without repeat,
and periodic permutation.

We will define the abstract model of a dynamic platform system P as a system that
migrates through a finite fixed collection of platforms {pi}. Each platform either has or
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Table 2. Notation describing dynamic platform system

α Number of vulnerable platforms
β Number of invulnerable platforms
pk Platform at migration step k
v
(
pk
)

Platform at migration step k is vulnerable
¬v (pk) Platform at migration step k is not vulnerable
Pr

(
v
(
pk
))

Probability that v
(
pk
)

Prvv P
(
v
(
pk+1

) |v (pk))
Prii P

(¬v (pk+1
) |¬v (pk))

does not have a property exploitable by the attacker which we call vulnerable. In the
first approximation to the model we assume that the platforms are fully independent.
We will use the notation presented in Table 2.

6.1 Attacker Aggregate Control

When the attacker requires only aggregate control, there are two main subcategories
according to the attacker’s payoff. The fractional case is trivially determined by the ra-
tio of α and β. In the binary case, wherein the attacker wins by controlling a specified
fraction of the vulnerable time, the defender may optimize via an initial subselection of
platforms in a process reminiscent of gerrymandering. For example, if α = 3 and β = 2
and the attacker wants to control greater than 50% of the time, then the defender should
simply expect to lose should all platforms be utilized. By contrast if the defender ran-
domly subselects two platforms then the defender can reduce the attacker’s expectation
of winning to

C (3, 2)

C (5, 2)
=

3

10
= 30%,

where C (x, y) = x!
y!(x−y)! is the combinatorial choice function. Here the value of 2 as

the number of platforms chosen.
Generally, if t is the percentage of time that the attacker requires for success and we

subselect j platforms from the total α+ β, then the probability of attacker success is

Prsuccess =

min(α, j)∑
i=�t·j�

C (α, i) · C (β, j − i)

C (α+ β, j)
,

in the steady-state model.

6.2 Attacker Continuous Control

When the attacker requires continuous control, the defender can use the subselection
strategy as above as well as leveraging conditional probabilities. These conditional prob-
abilities are given in Table 3.
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Table 3. Conditional Probabilities

Repeat Vuln¬VulnPr
(
v
(
pk+1

))
Pr

(
v
(
pk+1

) |v (pk))Pr
(
v
(
pk+j

) |v (pk+j−1
)
& . . .&v

(
pk

))

Without α β α
α+β

α−1
α+β−1

α−j
α+β−j

With α β α
α+β

α
α+β

α
α+β

Here, we observe that α
α+β > α−j

α+β−j so long as β and j are both greater than
zero. As such, migrating without immediate repeat, while not influencing the fraction of
vulnerable platforms selected, tends to reduce successful sequences for the attacker. We
note that the influence is greater when a smaller number of platforms is used. Our later
experiment will use 3 vulnerable and 2 invulnerable platforms which is a sufficiently
small number to have a strong influence upon the conditional probabilities.

This reduces to the Markov chain:

V Prvv��

1−Prvv

��

start

Prv

���������������

Prk=1−Prv ����
���

���
���

��

I Prii��

1−Prii

��

6.3 Attacker Fractional Payoff Model

The steady state of attacker control of the system can be modeled using Markov chains
with states I and V referring to invulnerable and vulnerable respectively. While the
simple Markov model describing the transitions {I, V } −→ {I, V } describes the base
behavior of the system, it does not naturally capture the notion of repeated vulnerable
states. We can adapt this chain to one with a richer collection of states

{
I, IV, IV 2, . . . , IV n−1, V n

} −→ {
I, IV, IV 2, . . . , IV n−1, V n

}

which support runs of length n. The probability of invulnerable to invulnerable transi-
tion is given by

Prii = Pr
(¬v (pk+1

) |¬v (pk)) = β − 1

α+ β − 1

and the probability of vulnerable to vulnerable transition is given by

Prvv = Pr
(
v
(
pk+1

) |v (pk)) = α− 1

α+ β − 1

The Markov model looks like
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IV

1−Prvv

��

Prvv 		 IV 2

1−Prvv 


I

1−Pr¬v

��

Prii

�� IV n−11−Prvv

Prvv����
��
��
��
�

V n

1−Prv

Prvv

��

which has the (n+ 1)× (n+ 1) Markov transition matrix is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Prii 1− Prvv
1− Prvv Prvv
1− Prvv Prvv
1− Prvv Prvv

1− Prvv
. . .

1− Prvv Prvv
1− Prvv Prvv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This transition matrix has the steady state eigen-vector
[

β
α+β

av · Prvv av · Pr2vv · · · av · Prn−1
vv av ·∑∞

i=n Privv
]

where

av =
α

α+ β
·
(
1− Prvv
Prvv

)
.

This can be used to compute the steady state behavior of the system. If the attacker
success begins after n steps then the steady state is given by the right most term in the
eigen vector av ·

∑∞
i=n P i

v = α
α+β − av ·

∑n−1
i=0 P i

v. If the attacker success includes the
steps leading to a run of n steps then we must also include vulnerable states weighted by
the probability that they will become a run of n vulnerable states and the contribution to
the run: the probability that IV n−1 will become V nis PrV , the probability that IV n−2

will become V nis 2·Pr2V and so forth. Reducing that equation, we find that the expected
period of attacker control L(n) is

L(n) = 1− (1− Pr¬v)
−1

+ (1− Prv)
∑n−1

i=0 i · Pri−1
v

(1− Pr¬v)
−1

+ (1− Prv)
−1

which is one minus the percentage of time that the defender is in control.

6.4 Attacker Binary Payoff Model

In the binary payoff model with random selection (with or without immediate repeats),
the attacker will eventually win so long as it is combinatorially possible in the same
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manner that a person flipping a coin will eventually observe a sequence of ten, or ninety-
two, heads in a row. Here metrics might reasonably be based in the mean time until
attacker victory. These can be analyzed in a fashion similar to the steady state model:

I{1···∞}
1−Prn−1

vv

����
���

���
���

�

Prn−1
vv

��

start
Pr∗ 		

PrvPrn−1
vv

��

1−Prv

��

V {1···n−1}I{1···∞}

Pr(n−1)
vv�����

���
���

���
�

1−Prn−1
vv

��

V n

1

��
end

where Pr∗ = Prv
(
1− Prn−1

vv

)
. We can use this to evaluate the expected time L′(n)

to attack compromise as the probabilistically weighted sum of all path lengths

L′(n) =n+
1− Prv
1− Prii

+(
Pr1−n

vv − 1
) ·(

1− n · Prn−1
vv + (n− 1) · Prnvv(

1− Prn−1
vv

) · (1− Prvv)
+

1

1− Prii

). (1)

Hence, in scenarios such as ‘crash the satellite’, Eq. (1) computes the expected time
before the adversary is able to take down the service.

7 Simulation Results

In order to verify that we have captured the major effects in our analysis and that our
generalized model of dynamic platforms is valid, we simulate the Markov chain that
corresponds to our testbed experiments. Our testbed experiments assumed migration
with no immediate repeat, continuous control, and fractional payoff which is modeled
using the Markov chain in section 6.3. We run a Monte Carlo simulation on that model
with the same parameters as our testbed experiments: 40 − 60 second time of each
platform, three vulnerable platforms out of five total, exploits launched at random times
during each trial, and each trial runs for 15 minutes. The results are presented in Fig. 8.
In the figure, the testbed measurements are also overlaid on the simulated results using
dotted lines for comparison.

As can be observed, the simulation results match the testbed measurements very
closely. This validates the fact that we have indeed captured at least the major ef-
fects that contribute to the effectiveness of dynamic platform techniques. Note that the
smoothing effects (e.g. random duration on a platform and random exploit launch times)
are captured in the simulation results since we have captured them in the model. How-
ever, various jitters and delays (e.g. networking, OS scheduling, etc.) are not in the
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Fig. 8. Simulation results from the generalized model. The testbed measurements are also shown
in dotted lines.

model which can explain the small amount of discrepancy between the simulated and
measured results. Table 4 shows the mean squared error (MSE) of the simulation results
compared to the testbed measurements.

7.1 Discussion

One important observation to be made for both the simulated and measured results is
that for small attacker goals (T ), fewer platforms actually perform better. This is due
to the fact that in situations where the attacker wins quickly, more platforms present a
larger attack surface. As a result, the attacker wins if she can compromise any of the
platforms. In other words,

T
d → 0 : Attacker wins iff any platform is vulnerable

The value of dynamic platforms can only be observed for attacker goals that are large
with respect to the duration of each platform (T � d). This is an important parameter
when deploying dynamic platform systems; the duration of each platform must be se-
lected short enough based on the service requirements of the system. For example, if
the system has to survive and provide service within 5 minutes (i.e. the attacker goal is
disrupting service longer than T = 5 minutes), the platform duration must be d << 5
min. In other words,

T
d → ∞ : Attacker wins iff all platforms are vulnerable

Note that there may be practical considerations when choosing small platform dura-
tion. If the platform changes too rapidly (i.e. very small d), it can disrupt the normal
mission of the system.
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Table 4. Mean squared error of the simulated model compared to the testbed measurements

Number of Platforms Mean Squared Error

2 Platforms 634× 10−6

3 Platforms 329× 10−6

4 Platforms 322× 10−6

5 Platforms 257× 10−6

8 Lessons Learned

Our work in analyzing dynamic platform techniques has provided five main lessons.
The first is that many effects contribute to a dynamic platform system. Although

these systems have been proposed in many different forms in the literature, little work
has been done to identify and quantify these effects which can be very counter-intuitive.
On the other hand, when these effects are studied and understood, even first-order mod-
els can closely estimate the system behavior.

The second is that experiments such as ours using real-world technologies on a
testbed can shed light on some of the complex dynamics of active systems and can be
used as a way to identify and quantify the major contributing effects of such systems.

The third is that threat models are crucial in understanding the protection provided by
a defensive technique and they are also instrumental in quantitatively measuring such
protections. As can be observed in our results, while a technique can provide significant
protection against one type of threat (e.g. long-duration attacks that can have fractional
gain for the attacker such as slow data exfiltration), it may actually degrade the secu-
rity of the system for another one (e.g. short duration attacks causing an irreversible
impact). In fact, threat models should be an integral part of metrics and measurements
of effectiveness [22].

The fourth is that testbed experiments, abstract analysis, and modeling and simula-
tion can be used together to perform quantitative evaluation of defensive techniques in
general. These different approaches can identify subtle effects and dynamics. Moreover,
they can provide the verification and validation necessary to ensure that the results are
indeed correct.

The final lesson is that some features of the proposed techniques, such as cleanup,
can significantly reduce the likelihood of success for attacks. When designing new tech-
niques, quantitative evaluations such as what we have done in this paper can be used to
decide the important features to support in order to provide the most protection with the
least performance overhead.

9 Related Work

Various dynamic platform techniques have been proposed in the literature. As men-
tioned earlier, The Self-Cleansing Intrusion Tolerance (SCIT) project rotates virtual
machines to reduce the exposure time. SCIT-web server [23] and SCIT-DNS [24] pre-
serve the session information and DNS master file and keys, respectively, but not the
internal state of the application. The Resilient Web Service (RWS) Project [25] uses a
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virtualization-based web server system that detects intrusions and periodically restores
them to a pristine state. Certain forms of server rotation have been proposed by Black-
mon and Nguyen [26] and by Rabbat et al. [27] in an attempt to achieve high availability
servers.

High-level forms of temporal platform changes have been proposed by Petkac and
Badger [28] and Min and Choic [19] to build intrusion tolerant systems although the
diversification strategy is not as detailed in these efforts. Compiler-based multivariant
[3–5, 15, 29] and N-variant systems [16] propose another way of achieving platform
diversity. Holland et al. propose diversifying machine descriptions using a virtualiza-
tion layer [6]. A similar approach with more specific diversification strategy based on
instruction sets and calling sequences has been proposed by Williams et al. [2]. Wong
and Lee [30] use randomization in the processor to combat side-channel attacks on
caches.

On the evaluation side, Manadhata and Wind [31] propose a formal model for mea-
suring a system’s attack surface that can be used to compare different platforms. Evans
et al. [32] develop models to measure the effectiveness of diversity-based moving tar-
get technique. They evaluate the probability of attack success given the time duration
of attack probing, construction, and launch cycles and the entropy of randomness in the
target system. They evaluate the impact of various attacks on moving target systems in-
cluding circumvention, deputy, brute force, entropy reduction, probing, and incremental
attacks.

There has been numerous modeling attempts in the literature for diversity systems
or N-version programming such as those done by Popov and Mladenov [33], or Arlat
et al. [34]. However, they focus on accidental faults, not malicious attacks.

10 Conclusion

In this paper, we have quantitatively studied cyber defenses based on dynamic platform
techniques. We used testbed experiments to collect results from an actual technique. The
unexpected and complex results motivated us to perform an abstract analysis to explain
the various effects that contribute to the protection. We extended our analyses to the
main features provided by the dynamic platforms proposed in the literature. Based on
these effects, we then developed a generalized model of dynamic platforms. In order to
ensure that we have captured the major effects, and to verify the model and validate our
testbed results, we simulated the same sets of experiments using the generalized model.
The closely matching results enhance the confidence in the results and validate the fact
that we have at least captured the main effects.

Our results suggest that while dynamic platforms are useful for mitigating some
attacks, it is of critical importance to understand the threat model one aims to defend
against. While dynamic platforms can be effective against long-period attacks with grad-
ual gains (e.g. data exfiltration), they can be detrimental for short-period attacks with
instantaneous gains (e.g. a malware causing an irreversible impact in a control system).

The future work in this domain will focus on performing more experiments with
such systems, extending the analysis to other dynamic platform techniques and other
randomization and diversity approaches, and analyzing the second order behavior such
as adaptive adversaries who change tactics based on the deployed defenses.
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Abstract. The security of deployed and actively used systems is a mov-
ing target, influenced by factors not captured in the existing security
metrics. For example, the count and severity of vulnerabilities in source
code, as well as the corresponding attack surface, are commonly used as
measures of a software product’s security. But these measures do not pro-
vide a full picture. For instance, some vulnerabilities are never exploited
in the wild, partly due to security technologies that make exploiting
them difficult. As for attack surface, its effectiveness has not been vali-
dated empirically in the deployment environment. We introduce several
security metrics derived from field data that help to complete the picture.
They include the count of vulnerabilities exploited and the size of the at-
tack surface actually exercised in real-world attacks. By evaluating these
metrics on nearly 300 million reports of intrusion-protection telemetry,
collected on more than six million hosts, we conduct an empirical study
of security in the deployment environment. We find that none of the
products in our study have more than 35% of their disclosed vulnerabil-
ities exploited in the wild. Furthermore, the exploitation ratio and the
exercised attack surface tend to decrease with newer product releases.
We also find that hosts that quickly upgrade to newer product versions
tend to have reduced exercised attack-surfaces. The metrics proposed
enable a more complete assessment of the security posture of enterprise
infrastructure. Additionally, they open up new research directions for
improving security by focusing on the vulnerabilities and attacks that
have the highest impact in practice.

1 Introduction

In order to improve the security of our software systems, we need to be able to
measure how they are impacted by the various defensive techniques we intro-
duce to protect them. Measuring security, however, is challenging. Many security
metrics have been proposed, including the total count of vulnerabilities in source
code, the severity of these vulnerabilities, the size of the attack surface and the
time window between the vulnerability disclosure and the release of a patch. Sys-
tem administrators and security analysts often rely on these metrics to assess
risk and to prioritize some patches over others, while developers use them as
guidelines for improving software security. Practical experience, however, sug-
gests that the existing security metrics exhibit a low level of correlation with
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vulnerabilities and attacks, and they do not provide an adequate assessment of
security [1, 2].

A vulnerability is a programming error that can be exploited by an attacker
to subvert the functionality of the vulnerable software by feeding it malformed
inputs (e.g., network packets or web form submissions that evade the program’s
error checks, allowing the attacker to execute arbitrary code on the host). For ex-
ample, the vulnerability identified by CVE-2007-1748 [3] corresponds to a buffer
overflow in the RPC interface for the DNS server included in several versions of
Windows server. It allows remote attackers to execute arbitrary code by sending
specially crafted network packets to the vulnerable host. The total number of
vulnerabilities discovered in source code is commonly used as a measure of the
system’s security [1, 2]. However, this metric does not account for the fact that
cyber attackers never make use of some of the discovered vulnerabilities, which
may be hard to successfully exploit in the presence of security technologies such
as data execution prevention (DEP) and address space layout randomization
(ASLR). For example, CVE-2007-1748 was exploited in the wild, but there is no
evidence of cyber attacks exploiting CVE-2007-1749.

Another popular metric is based on the observation that attacks can suc-
ceed only if the vulnerable software accepts input from potential attackers. For
this reason, system administrators have long advocated turning off unnecessary
system services to avoid exposure to exploits of unpatched or unknown vul-
nerabilities. For example, network-based attacks exploiting CVE-2007-1748 are
unsuccessful—even if the vulnerability was not yet patched—if the DNS server
is not running. This idea is formalized in the concept of attack surface [4, 5],
which quantifies the number and severity of potential attack vectors that a sys-
tem exposes by using a formula that takes into account the open sockets and
RPC endpoints, the running services and their privilege level, the active Web
handlers, the accounts enabled, etc. Reducing the attack surface, however, does
not always improve security; for example, including security mechanisms in the
OS may increase the attack surface, but renders the system more secure. Fur-
thermore, the attack surface of software products changes after they are deployed
in the field, as users install new applications and modify system configuration.
To the best of our knowledge, the size and variability of attack surfaces has not
been evaluated empirically in the field. It is, therefore, difficult to determine the
effectiveness of this metric in capturing real-world conditions.

These examples illustrate that our ability to assess the security of systems
that are deployed and actively utilized is currently limited by the metrics being
used. In particular, the developers and the users may employ different security
metrics. For example, one way of estimating the vulnerability density and the
attack surface is to use existing tools that measure these properties by directly
analyzing the code and the configuration of the system in question [6,7]. However,
these measurements are conducted in lab conditions, and do not reflect the real-
world security of systems that are deployed and actively used in the field.

For these reasons, users are ultimately interested in metrics that help them
assess the effectiveness of these techniques in the field. Figure 1 illustrates this
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(a) All vulnerabilities disclosed publicly
(from NVD [8]).

(b) Vulnerabilities exploited in the wild
(cf. Section 4.2).

Fig. 1. Number of vulnerabilities disclosed and exploited for Microsoft Windows over
11 years of releases, with linear-regression trend lines

problem. The number of vulnerability exploits is not proportional to the total
number of vulnerabilities discovered in Windows OSes, and the two metrics
follow different trends (as suggested by the trend lines in Figure 1). Additionally,
there is no apparent correlation between the number of vulnerabilities discovered,
and the size of the OS code.1 This suggests the existence of deployment-specific
factors, yet to be characterized systematically, that influence the security of
systems in active use.

Our goal in this paper is to propose new metrics that better reflect security in
the real world and to employ these metrics for evaluating the security of popular
software. Rather than measuring security in lab conditions, we derive metrics
from field-gathered data and we study the trends for vulnerabilities and attack
surfaces exercised in attacks observed in the real world. While the vulnerability
count and the attack surface are metrics that capture the opportunities available
to attackers, we instead focus on attempted, though not necessarily successful,
attacks in the field. This new understanding, potentially combined with existing
metrics, will enable a more accurate assessment of the risk of cyber attacks,
by taking into account the vulnerabilities and attacks that are known to have
an impact in the real world. For instance, although it is very important that
all vulnerabilities be addressed, system administrators might find it useful to
understand if some vulnerabilities are more critical than others, as a criterion
for risk assessment and for prioritizing patch deployment.

A meta-goal of our study is to illustrate how this analysis can be conducted us-
ing data that is available to the research community for further studies, allowing
other researchers to verify and to build on our results.

1 Approximate lines of code, in millions: Windows 2000 � 30, Windows XP � 45,
Windows Server 2003 � 50, Windows Vista, Windows 7 > 50 [9–11].
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We make two contributions in this paper:
1. We propose field-measurable security metrics to identify which vulnerabili-

ties are exploited (count of exploited vulnerabilities and exploitation ratio),
quantify how often they are exploited (attack volume and exercised attack
surface) and study when they are exploited.

2. We perform a systematic study of the exploited vulnerabilities and the ex-
ercised attack surfaces on 6,346,104 hosts. Our empirical findings include:
– Few vulnerabilities are exploited in the real world: For Microsoft Win-
dows, Adobe Reader, Microsoft Office and Microsoft Internet Explorer,
fewer than 35% of the disclosed vulnerabilities are ever exploited. When
the vulnerabilities for all these products are considered together, only
15% are exploited. Moreover, this exploitation ratio tends to decrease
with newer product releases.

– The exploitation ratio varies between products, implying that the num-
ber of vulnerabilities may not be a reliable indicator of real-world exploits
and the security of a product.

– The average exercised attack surface for Windows and IE has decreased
with each new major release, and the latest versions of Reader have a
far smaller exercised attack surface than earlier versions.

– A significant portion of the average exercised attack surface of a host is
due to products installed on the system and not the OS.

– A few vulnerabilities (e.g. CVE-2008-4250 and CVE-2009-4324) account
for a disproportionate number of attacks and influence our metrics.

– Quicker upgrades to newer product versions are correlated with reduced
exercised attack surfaces.

– More than 93% of Windows and IE users are expected to remain
unattacked at the end of four years. In contrast, only 50% Reader users
are expected to remain unattacked for the same time period.

The rest of the paper is organized as follows. In Section 2 we review the related
work on security metrics. In Section 3 we introduce our field-based metrics, and
in Section 4 we describe how we measure them. Section 5 presents our empirical
findings, and Section 6 discusses their implications.

2 Related Work

The total number of known vulnerabilities present in source code and their sever-
ity, as represented by the Common Vulnerability Scoring System (CVSS), are
commonly used security metrics. For example, Rescorla [12] analyzes the num-
ber of vulnerabilities disclosed for 4 operating systems in order to determine
whether the practice of vulnerability disclosures leads to reliability growth over
time. Ozment et al. [13] study the rate of vulnerability finding in the foun-
dational code of OpenBSD and fit the data to a vulnerability growth model
in order to estimate the number of vulnerabilities left undiscovered. Clark et
al. [14] examine the challenge of finding vulnerabilities in new code and show
that the time to discover the first vulnerability is usually longer than the time
to discover the second one (a phenomenon they call the “honeymoon effect”).



430 K. Nayak et al.

Several studies employ vulnerability counts as an implicit measure of security.
Shin et al. [1] evaluate code complexity, code churn and the developer activity to
determine the vulnerable code locations in Linux. Bozorgi et al. [15] propose a
machine learning approach for predicting which vulnerabilities will be exploited
based on their CVSS scores. In consequence, the National Institute of Standards
and Technology (NIST) recommends CVSS scores as the reference assessment
method for software security [16]. Based on an empirical analysis, Ransbotham
et al. suggest that vulnerabilities in open source software have an increased risk
of exploitation, diffuse sooner and have a larger volume of exploitation attempts
than closed source software [17].

Because programming errors are thought to be inevitable, reducing the at-
tack surface was proposed a decade ago as an alternative approach to securing
software systems [4]. In order to exploit a vulnerability, an attacker must have
an opportunity to exercise the vulnerable code, for instance by sending a mes-
sage to a service listening on a network port. Such an opportunity is known as
an attack vector. Attack surface reduction works by decreasing the number and
severity of potential attack vectors exposed by the OS and its applications. Like
the vulnerability metrics, attack surface is typically measured by analyzing the
source code or the configuration of the system. Howard [4] defines an attack
surface metric as a weighted combination of targets, enablers, communication
channels, protocols and access rights. The Microsoft Attack Surface Analyzer
tool [6] estimates the attack surface from the system configuration and monitors
changes over time. Manadhata et al. [5] define attack surface as a triple, where
each element represents the sum of the damage potential-effort ratio for (i) entry
and exit points, (ii) channels and (iii) untrusted data items. Kurmus et al. [18]
define attack surface as a function of the call graph, a set of entry functions, and
a set of barrier functions.

2.1 Problems with the Existing Security Metrics

Measurability. Some security metrics are difficult to assess. Code-based metrics
have been shown to exhibit statistically significant, but small, correlations with
security vulnerabilities [1,2]. Evaluating attack-surface metrics can require access
to both the source code of the product and to the composition of its deployment
environments [5]. In contrast, the metrics we propose can be computed from
the typical telemetry collected by security products (e.g. anti-virus, intrusion-
protection system) running on end-hosts around the world.

Representativeness. The existing metrics do not reflect security in the field. The
CVSS “exploitability” subscore is not a good predictor for which vulnerabilities
are exploited in the real world (though, most exploited vulnerabilities do have
high exploitability) [19], and the CVSS-based risk evaluation does not fit the
real attack data, as observed in the wild [20]. The attack surface metrics have
not been validated empirically, in the deployment environment. In particular,
the impact of user behavior (e.g. installing new software) on attack surfaces is
unknown. In contrast, we focus on alternative metrics that better reflect the risk
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Table 1. Summary of notations

Measurement subjects

p A software product.
h A host.
v A vulnerability.
m A calendar month.

Sets of subjects

Vp(t) The set of vulnerabilities disclosed for a product p up to time t.
V ex
p (t) The set of vulnerabilities known to be exploited for a product p up to time t.

V prog,ex
p (t) The set of progressive vulnerabilities known to be exploited for a product p up to

time t.
Hp,m The set of hosts that have product p installed during month m.
Av

h,m The set of attacks against host h during month m attempting to exploit vulnerability
v.

Vulnerability-based metrics

ERp(t) Exploitation ratio for vulnerabilities of product p until time t.
ERp

Prog(t) Exploitation ratio for progressive vulnerabilities of product p until time t.

Attack-based metrics

EPp Exploitation prevalence, the proportion of hosts with p installed that ever experience
an attack exploiting p.

AVp Attack volume, the average number of attacks per machine-month for a product p.
EASh(m) Exercised attack surface of a host h for month m.
EASp

h(m) Exercised attack surface of a host h for month m w.r.t. p.
AEASp Average exercised attack surface w.r.t p over all machine-months p was installed.
AEAS(m) Average exercised attack surface over all hosts for all products during month m.
AEASp

h Average exercised attack surface over all months p was installed on host h w.r.t p’s
vulnerabilities.

for end-users. These metrics include the number of vulnerabilities exploited and
the size of the attack surface exercised in real-world cyber attacks. We also assess
how the exercised attack surface varies from one host to another.

3 Proposed Metrics

In this section we introduce our proposed security metrics which, in contrast
to existing metrics, are measured in the deployment environment. We consider
this distinction important since security is a moving target once a system is
deployed; attackers exploit new vulnerabilities (to subvert the system’s func-
tionality), vendors distribute software updates (to patch vulnerabilities and to
improve security) and users reconfigure the system (to add functionality). Since
our new metrics are derived from field-gathered data, they capture the state
of system security as experienced by the end users. Table 1 summarizes the
notations we employ.

The following metrics capture the notion of whether disclosed vulnerabilities
get exploited.

1. Count of vulnerabilities exploited in the wild. For a product p, we consider
the number of vulnerabilities known to have been exploited in the wild,
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∣∣V ex
p

∣∣, to be an important metric. We combine information from NVD [8]
and Symantec’s databases of attack signatures [21, 22] to obtain the subset
of a product’s disclosed vulnerabilities that have been exploited. (These data
sources are described in more detail in Section 4.1.) V ex

p is the subset of the
vulnerabilities listed in NVD that affect product p and which have at least
one Symantec signature referencing the vulnerability’s CVE identifier. Prior
research has suggested that these signatures represent the best indicator for
which vulnerabilities are exploited in real-world attacks [19].

2. Exploitation ratio. The exploitation ratio is the proportion of disclosed vul-
nerabilities for product p that have been exploited up until time t. It captures
the likelihood that a vulnerability will be exploited.

ERp(t) =

∣∣V ex
p (t)

∣∣
|Vp(t)|

We also propose the following metrics that capture how often vulnerabilities
are exploited on hosts in the wild.

1. Attack Volume. The attack volume is a measure that captures how frequently
a product p is attacked. Intuitively, it is the average number of attacks ex-
perienced by a machine in a month due to product p being installed. It is
defined as:

AVp =

∑
m

∑
h∈Hp,m

∑
v∈V ex

p

∣∣∣Av
h,m

∣∣∣
∑
m

|Hp,m|
That is, the number of attacks that exploit a vulnerability of p against hosts
with p installed, normalized by the total number of machine-months during
which p was installed.

2. Exercised Attack Surface. We also define the exercised attack surface,
EASh(m), which captures the portion of the theoretical attack surface of a
host that is targeted in a particular month. Intuitively, the exercised attack
surface is the number of distinct vulnerabilities that are exploited on a host
h in a given month m. We compute the exercised attack surface attributable
to a particular product using the following formula:

EASp
h(m) =

∣∣{v ∈ V ex
p | ∣∣Av

h,m

∣∣ > 0 ∧ h ∈ Hp,m

}∣∣
That is, the cardinality of the set of p’s vulnerabilities used in attacks against
h in month m, or 0 if p is not installed on h during month m. We can now
define the exercised attack surface for a host over all installed products as:

EASh(m) =
∑
p

EASp
h(m)

We can then average these per host, per month metrics in various ways as
listed in Table 1. In particular we can calculate an average exercised attack
surface metric for a product p as follows:
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AEASp =

∑
m

∑
h∈Hp,m

EASp
h(m)

∑
m

|Hp,m|
Intuitively, AEASp represents the average number of vulnerabilities that are
exploited for product p during one month on one machine. So, while AVp

captures the volumes of attacks against a product, AEASp captures the
diversity of those attacks.

4 Experimental Methods

4.1 Data Sets

Public vulnerability databases. The National Vulnerability Database (NVD) [3]
is a database of software vulnerabilities which is widely accepted for vulnera-
bility research. For each vulnerability, NVD assigns a unique identifier called
CVE-ID. Additionally, we employ the Open-Sourced Vulnerability Database
(OSVDB) [23] to determine the dates when proof-of-concept exploits are pub-
lished for the NVD vulnerabilities.

Symantec signatures. Symantec security products include an extensive database
of signatures.Attack signatures are described on a publicly-accessibleweb site [24],
and they are employed by Symantec’s intrusion-prevention systems (IPS) for iden-
tifying attacks in network streams—including attempts to exploit knownOS or ap-
plication vulnerabilities. Symantec also maintains descriptions of anti-virus (AV)
signatures, used by anti-virus products to scan files for known threats [21]. For
threats that involve exploits, these data sets indicate the CVE-ID of the vulnera-
bility exploited. Prior research has suggested that these signatures represent the
best indicator for which vulnerabilities are exploited in real-world attacks [19].

Worldwide Intelligence Network Environment (WINE). In order to analyze the
attacks happening on different hosts running different products, we use WINE
[25], which contains records of which signatures are triggered in the field and
when. The binary reputation dataset within WINE provides information about
all the binaries detected on end-user hosts by Symantec products such as Norton
Antivirus. Each binary reputation record contains the filename, its version, a file
hash, machine ID, and a timestamp for the detection event.

The intrusion-prevention telemetry dataset within WINE provides informa-
tion about network based attacks detected by Symantec products.We define a
network-based attack against a host as a series of network packets that: 1) carry
malicious code, and 2) have not been prevented by other existing defenses (e.g.
network or OS firewall). Each IPS entry contains the signature ID for the threat
detected, a machine ID, a platform string and a timestamp for the event. Our
study involves 298,851,312 IPS entries corresponding to 6,346,104 hosts over a
period of 4 years. The average duration for which a host is present in our study
is approximately 13 months.
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4.2 Data Analysis Approach

The primary requirement for our analysis is to detect an attempt to attack a host
running a vulnerable product. IPS telemetry does not indicate whether the vul-
nerabilities had been patched at the time of the attack. Moreover, these reports
indicate attacks that were blocked by the IPS product, rather than successful
infections. We exclude attacks against products that are not installed on a host,
as they would not result in a successful infection.

Finding signatures used to exploit products. Using NVD, we first collect the
disclosure dates and the vulnerable software list for all vulnerabilities—including
vendor, product and version—and manually remedy any naming inconsistencies.
We join this information with Symantec’s attack signatures containing CVE
numbers, so as to obtain entries of the form 〈CV E,Prod, Sign〉.

Selecting the hosts used in the study. We analyze Symantec’s binary reputation
reports in order to determine, for each host, what products are installed and
the period of time during which they remained installed. We manually map
the binaries to the corresponding product versions using externally available
information. For instance, iexplore.exe corresponds to IE, and file version
8.0.6001.18702 corresponds to IE 8 [26]. Due to users enabling different features
of their Symantec product at different times, the time period for which we have
binary reputation data for a host may be different from the time period for
which we have IPS telemetry reports (attack detections). Our metrics require
both product presence and attack information, so we include hosts in our study
only during the times when they are submitting both kinds of data.

Identifying an attack against a host. By joining the binary reputation and IPS
dataset for all the hosts identified, we are able to discover all the products
installed on a host and all the signatures triggered on the machine. We derive
the operating system installed on a host from the platform string included in IPS
telemetry submissions. If a vulnerable product is present when the corresponding
signature is detected, we have an attack on the host. Of the 298,851,312 telemetry
records, 40,954,812 correspond to one of the vulnerabilities that we study, and
of these, 20,915,168 occur on a host with the vulnerable product installed.

4.3 Products Analyzed

At the time of this writing, NVD includes 61,387 vulnerabilities reported across
all products. There are Symantec signatures corresponding to 1,406 of these vul-
nerabilities. We focus our study on Windows operating systems and on several
applications that run on this platform because (i) they have been the primary
target for cyber attacks over the past 10 years, and (ii) the platform has evolved
in these 10 years and the versions we investigate incorporate considerable di-
versity, as many technical changes have been implemented between Windows
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XP and Windows 7 SP1.2 In particular, in this paper, we study the following
software products:

– Microsoft Windows: XP (original, SP1, SP2, SP3), Vista (original, SP1,
SP2), and 7 (original, SP1)

– Microsoft Office (referred to as Office) - Versions: 2000, 2003, 2007, 2010

– Internet Explorer (referred to as IE) - Versions: 5, 6, 7, 8

– Adobe Reader (referred to as Reader) - Versions: 5, 6, 7, 8, 9, 10, 11

There are 860 vulnerabilities in NVD for all the Windows operating systems
we consider. Out of these, 132 vulnerabilities have seen exploits in the wild,
according to Symantec’s attack signatures. We exclude the 64-bit version of XP
from our study as it belongs to the same product line as Windows Server 2003.
There are 759 vulnerabilities reported for the versions of IE we consider. 108
of these vulnerabilities have seen exploits in the wild. For Office, 50 of the 163
vulnerabilities reported have been exploited. Finally, there are 337 vulnerabilities
for the versions of Reader we analyze, out of which 44 vulnerabilities have seen
exploits in the wild.

4.4 Threats to Validity

The biggest threat to the validity of our results is selection bias. The two
databases we employ to characterize vulnerabilities and exploits, NVD and
Symantec’s attack signatures, respectively, may be incomplete. These databases
include only the vulnerabilities and exploits that are known to the security
community. Moreover, as WINE does not include telemetry from hosts with-
out Symantec’s anti-virus products, our field-data based measurements may not
be representative of the general population of platforms in the world. In particu-
lar, users who install anti-virus software might be more careful with the security
of their computers and, therefore, might be less exposed to attacks.

Although we cannot rule out the possibility of selection bias, we note that the
NVD is generally accepted as the authoritative reference on vulnerabilities, and
it is widely employed in vulnerability studies, and prior work found Symantec’s
signatures to be the best indicator for which vulnerabilities are exploited in
real-world attacks [19]. Moreover, the large size of the population in our study
(six million hosts) and the diversity of platforms suggest that our results have
a broad applicability. However, we caution the reader not to assume that all
systems will react in the same manner to malware attacks.

2 While we do not know the amount of code these OSes have in common, it is widely ac-
cepted that a large amount of new code was introduced in Windows Vista, including
security technologies such as software data execution prevention (DEP/SafeSEH),
address space layout randomization (ASLR), driver signing improvements, user ac-
count control (UAC), or the Windows filtering platform.
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5 Analysis of Exploited Vulnerabilities and Exercised
Attack Surfaces

In this section, we evaluate the metrics introduced in Section 3 and discuss their
implications. In particular, we focus on the following questions: “How many
of the disclosed vulnerabilities get exploited?” (§5.1), “How often do they get
exploited?” (§5.2), and “When do they get exploited?” (§5.3). The first ques-
tion evaluates our vulnerability-based metrics under real-world conditions, while
the second and third questions investigate our attack-based metrics and the
deployment-specific factors that affect them.

5.1 How Many Vulnerabilities Get Exploited?

Exploitation Ratio. Table 2 shows the number of exploited vulnerabilities and
the exploitation ratio for all OSes and products in our study. The exploita-
tion ratios shown include vulnerabilities disclosed and exploited as of the end
of the product’s support period, or as of 2014 if the product is presently sup-
ported. We account for progressive and regressive vulnerabilities [14] separately.
A progressive vulnerability is a vulnerability discovered in version N that does
not affect version N − 1 or previous versions, while a regressive vulnerability
is one found in version N that affects at least one of the previous versions.
The progressive-regressive distinction is important for evaluating the software
development process and for understanding the security of the new code added
in each version—even though, from the users’ point of view, it is important to
study all the vulnerabilities that affect a product version. The table also includes
the exploitation prevalence, EP p, which helps to illuminate how likely a host is
to experience an attack if a given product is installed. EP p is defined as the pro-
portion of the hosts with product p installed that experienced at least one attack
targeting one of p’s vulnerabilities. Note that this metric captures information
not revealed by the exploitation ratio or the number of exploited vulnerabilities.
For instance, Reader 9 has the same number of exploited vulnerabilities as IE 8,
but its exploitation prevalence is far higher.

In aggregate, over all the software products we analyzed, about 15% of the
known vulnerabilities have been exploited in real-world attacks. Note, however,
that the exploitation ratio varies greatly across products and between versions
of a product. This highlights the pitfall of employing the number and severity
of vulnerabilities as a measure of security: a product with many high-impact
vulnerabilities in NVD would be considered insecure, even if its exploitation
ratio is lower than for other products. To further investigate whether the total
count of vulnerabilities models the security of a software product, we compare the
distributions of the disclosed and exploited vulnerabilities for each product using
the Kolmogorov-Smirnov test [27]. The results suggest that we cannot reject the
null hypothesis that the number of vulnerabilities and the number of exploits are
drawn from the same distribution, at the p = 0.05 significance level, for any of
the products studied. However, some differences stand out. For example, IE 5 has
nearly three times as many reported vulnerabilities as Office 2000. Nevertheless,
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Table 2. Exploitation ratio and exploitation prevalence of products. ER(yr): exploita-
tion ratio of the product for all vulnerabilities up to the year yr. EPP : the ratio of
machines experiencing an attack over the number of machines having the product
installed. NA indicates that no machines in WINE had the product installed.

yr Product ERp(yr) ERp
Prog(yr)

∣
∣
∣V ex

p

∣
∣
∣

∣
∣
∣V prog,ex

p

∣
∣
∣ EPp

2006 IE 5 0.12 0.14 27 25 NA
2010 IE 6 0.17 0.16 73 33 0.035
2013 IE 7 0.13 0.07 36 4 0.002
2013 IE 8 0.13 0.15 29 10 0.0004
2009 Office 2000 0.32 0.32 27 27 NA
2013 Office 2003 0.35 0.36 43 21 0.0002
2013 Office 2007 0.27 0.18 18 2 0
2013 Office 2010 0.25 0 5 0 0
2009 Windows XP 0.21 0.15 39 8 NA
2006 Windows XP SP1 0.28 0.31 41 11 0.026
2010 Windows XP SP2 0.23 0.27 73 16 0.011
2014 Windows XP SP3 0.13 0.07 58 12 0.047
2012 Windows Vista 0.21 0.09 39 5 0.005
2011 Windows Vista SP1 0.16 0.06 40 6 0.004
2014 Windows Vista SP2 0.11 0.06 39 2 0.011
2014 Windows 7 0.07 0.25 20 2 0
2014 Windows 7 SP1 0.07 0 15 0 0.004
2008 Adobe Reader 5 0.18 0.2 4 1 NA
2008 Adobe Reader 6 0.22 0.17 5 1 NA
2009 Adobe Reader 7 0.17 0.09 11 4 0.177
2011 Adobe Reader 8 0.16 0.15 29 18 0.180
2013 Adobe Reader 9 0.11 0.10 29 10 0.242
2014 Adobe Reader 10 0.08 0.04 13 1 0.0002
2014 Adobe Reader 11 0.06 0 5 0 0

both have a similar number of exploited vulnerabilities. This is reflected in the
much higher exploitation ratio for Office. This is one example of how field-
gathered data which reflects the deployment environment can complement more
traditional security metrics.

Another trend visible in Table 2 is that the latest versions of each product
have a lower absolute number of exploited vulnerabilities than earlier versions
(except in the case of IE). For instance, Windows 7 has fewer exploited vulner-
abilities than Windows Vista, and Reader versions 10 and 11 have fewer than
versions 8 and 9. One factor that has likely contributed to this decrease is the
introduction of security technologies by Microsoft and Adobe that make exploits
less likely to succeed, even in the presence of vulnerabilities (e.g., address space
layout randomization and sandboxing). Another likely contributing factor is the
commoditization of the underground malware industry, which has led to the
marketing of exploit kits that bundle a small number of effective attacks for
wide-spread reuse.

Time-to-exploit. The decrease in the number of exploited vulnerabilities over
time could be caused by the fact that cyber attackers have had less time to find
ways to exploit newer products. To investigate the influence of this confounding
factor, we estimate the typical time that attackers need to exploit vulnerabil-
ities in Windows after they are publicly disclosed. While the mention of these
vulnerabilities in Symantec’s AV and IPS signatures is an indication that an
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(a) Average exercised attack surface. (b) Attack volume.

Fig. 2. Exercised attack surface and attack volume for Windows operating systems

(a) Average exercised attack surface. (b) Attack volume.

Fig. 3. Exercised attack surface and attack volume for Windows applications

exploit was, at some point, used in the real world, it is challenging to estimate
the time that elapses between the vulnerability disclosure and the release of the
exploit. We estimate the time-to-exploit using a combination of three methods:
(i) the “exploit published” date from OSVDB; (ii) the “discovery date” from the
anti-virus signature descriptions; (iii) the date when a signature is first recorded
in the field data from WINE. We observe that 90% of exploits from anti-virus
signatures and from attack signatures are created within 94 and 58 days after
disclosure, respectively. Our observation is consistent with the prior work on this
topic, which found that the exploits for 42% of vulnerabilities that are eventually
exploited appear in the wild within 30 days after the disclosure date [28,29]. This
shows that if a vulnerability is to be exploited, an attack will likely be observed
soon after its disclosure.

5.2 How Often Do Vulnerabilities Get Exploited?

Average exercised attack surface. Figure 2 shows that the average exercised at-
tack surface (AEASp) and the attack volume (AVp) for OS vulnerabilities tend
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Total

App

OS

(a) Combined AEAS over time. (b) Variation of combined AEAS for ma-
chines running different OSes.

Fig. 4. Average exercised attack surface (AEAS) due to OS and installed applications
combined

to increase across minor releases of Windows (except XP), but they decrease con-
siderably with each new major release. This could be explained by the fact that,
over time, attackers become more familiar with the code and the mechanisms of
an OS and they are more effective in finding and exploiting vulnerabilities [14].
However, major releases refactor the code and introduce new security technolo-
gies that make it more difficult to create exploits. For example, Windows Vista
introduced address space layout randomization (ASLR) and data execution pre-
vention (DEP), which render exploits less likely to succeed even if a vulnerability
is present.

Figure 3 shows the average exercised attack surface (AEASp) and attack vol-
ume metrics (AVp) for IE, Reader and Office. For IE, these values decrease with
newer releases. Note the precipitous drop in exercised attack surface between
Reader 9 and Reader 10 (three orders of magnitude). This can likely be at-
tributed to protected mode, an enhancement that Adobe introduced in Reader 10
specifically to mitigate and prevent security vulnerabilities [30]. We also observe
that the exercised attack surface values of Reader (except version 10) are about
an order of magnitude higher than those of IE. This is somewhat surprising, since
Table 2 shows that the various versions of IE have nearly as many or, in the case
of IE 6, far more exploited vulnerabilities than any of the versions of Reader.
Taken together, these observations suggest that vulnerabilities in Reader (prior
to version 10) have proven easier for cyber criminals to successfully exploit.

We also note that some vulnerabilities affect the volume of attacks dispropor-
tionately. For OS vulnerabilities, the number of attacks due to CVE-2008-4250
(the vulnerability exploited by the Conficker worm) is three orders of magnitude
higher than the number of attacks due to the next most targeted vulnerability.
For product vulnerabilities, the number of attacks due to CVE-2009-4324 (a
vulnerability in Adobe Reader) is almost 20× as high the number of attacks due
to the next most targeted vulnerability.
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Table 3. Average exercised attack surface in the presence of products

Reader no no no no yes yes yes yes
IE no no yes yes no no yes yes

Office no yes no yes no yes no yes

Average attack surface 0.00000 0.00002 0.00125 0.00068 0.02823 0.03130 0.03009 0.03195

Variation of exercised attack surface. Figure 4a shows the variation of the av-
erage exercised attack surface (AEAS(m)) over time. Notice that application
vulnerabilities contribute to most of the attack surface, which suggests that the
OS vulnerabilities are more difficult to exploit. Also, we see two spikes in the
2011-2012 time frame and another spike towards the end of 2012. These spikes
are correlated with the attacks exploiting CVE-2009-4324, which account for
the higher exercised attack surface measurement at those times. This illustrates
the fact that, even against a background of diverse attacks, a single vulnerabil-
ity that is attacked heavily can increase the average attack surface by reaching
more hosts. Figure 4b shows the variation of exercised attack surface across
hosts running the same operating system. We note that, in this case, both OS
and application vulnerabilities contribute to the exercised attack surface. Thus,
even if some hosts are running the same operating system, their exercised attack
surface varies considerably based on the products installed on the system.

Impact of vulnerabilities on attack surface. Each host may have one or more
products installed. Moreover this may change over time. Although it is hard to
quantify the impact of specific vulnerabilities on a particular host, we can calcu-
late the average exercised attacked surface for hosts with different combinations
of the products in question. Table 3 shows the average exercised attack surface
for hosts in the presence of IE, Reader, and Office. When none of the products
in question is present, the average exercised attack surface is 0, since we have
eliminated the effect of OS vulnerabilities, thus measuring only the impact of the
products on the calculated attack surface. Furthermore, the calculation of each
average attack surface value only considers hosts that have the exact product
combination installed, and these hosts are not reconsidered for the calculation
of any of the remaining values. We observe that the vulnerabilities present in
each of the products have different impact on the average exercised attack sur-
face. For instance, the telemetry data at our disposal suggest that the presence
of Reader has a higher impact on the average attack surface of hosts than the
presence of IE or Office.

How much can we reduce the attack surface? The overwhelming prevalence of
attacks using CVE-2008-4250 and CVE-2009-4324, and the variability in the
size of the exercised attack surface among the hosts in our study, prompt the
question of whether attack surface reduction methods could be used to reduce
the overall risk. In the case of application vulnerabilities, a user may reduce
the attack surface by uninstalling the vulnerable product. For OS vulnerabil-
ities, the user would have to disable the vulnerable component. We manually
inspect the NVD entries for the top-10 OS vulnerabilities so as to determine if
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Table 4. Most attacked OS vulnerabilities

# of # of Affected Can be NIST
CVE Attacks Hosts Operating Systems turned off? severity
2008-4250 17915163 66408 XP SP2/SP3/SP2 64 bit, Vista Original/SP/SP1, no 10

Server 2003 SP1/SP2
2006-3439 55998 2577 XP SP1/SP2/SP2 64 bit yes 10
2011-3402 40598 21717 XP SP3, Vista SP2, Windows 7 SP1, no 9.3

Server 2003 SP2
2010-1885 36984 22337 XP SP3/SP2 64 bit yes 9.3
2010-0806 25280 15539 XP SP3, Vista Original SP/SP1/SP2 no 9.3
2009-2532 20343 756 Vista Original/SP1/SP2, Server 2008 SP2 yes 10
2009-3103 20343 756 Vista Original/SP1/SP2, Server 2008 SP2 yes 10
2008-0015 6105 3897 XP SP2/SP3 yes 9.3
2010-2568 2182 360 XP SP3/SP2 64 bit, Vista SP1/SP2 no 9.3
2012-0003 93 71 XP SP2/SP3, Server 2003 SP2, yes 9.3

Vista SP2, Server 2008 SP2

Windows 7 SP1

XP SP2
Windows 7

XP SP3 Vista SP2

XP SP1 Vista Vista SP1

(a) Windows.

Reader 9
Reader 8

Reader 7

Reader 10Reader 11

(b) Reader.

IE 6

IE 7IE 8 IE 9

(c) IE.

Fig. 5. Time from installation to first attack

the vulnerable component can be disabled, while keeping the host operational.
As seen in Table 4, 6 out of 10 of the intrusion vectors correspond to vulnerable
services or components that could be disabled (assuming that the relevant ser-
vice/functionality is not necessary), suggesting that there is potential for further
reduction of the OS attack surface. Notice, however, that in certain cases the
components that would need to be disabled or removed may severely affect the
functionality of the system. To better understand the potential to improve secu-
rity by disabling vulnerable components, we consider the volume of attacks for
each vulnerability in Table 4. If we exclude the skew introduced by Conficker,
we observe that the number of remaining attacks could be reduced by 67.3%,
thus significantly reducing the size of the exercised attack surface.

5.3 When Do Vulnerabilities Get Exploited?

In this section we explore several time-related aspects of attacks. We presented
the exploitation prevalence EP p, which indicates how many of the hosts that
install a product experience at least one attack due to that product, in Table 2.
We now explore when that attack happens with respect to the installation of
the product. Figure 5 plots the estimated survival probability versus the number
of months since installation, where survival means not having experienced any
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Fig. 6. Effect of product upgrade lag on a host’s exercised attack surface (AEASp
h)

attack targeting one of the product’s vulnerabilities. Our data set is right cen-
sored, meaning that some hosts leave our study (stop sending telemetry) without
having experienced an attack; in this case, we know the period when these hosts
were attack-free, but we don’t know when they will experience their first at-
tack. In statistical terms, these data points are right-censored. We estimate the
survival probability using the Kaplan-Meier estimator [27], which accounts for
censoring. The survival probability for most versions of Windows is nearly one
even after four years of installation. Windows XP SP3 experiences more exploits,
and so its survival probability drops with a fairly smooth slope down to about
0.96 after four years. The smooth slope seems to indicate that installation age
is not strongly correlated with the likelihood of experiencing your first attack.
Reader versions 7 through 9 also show a fairly smooth, though much steeper,
drop in survival probability. Again, this indicates that a user has a similar prob-
ability of experiencing a first attack against Reader whether it’s been installed
for one month or ten months, though the slope does tend to decrease slightly
as we move beyond twenty months. Hosts with IE 6 installed appear to have a
higher probability of experiencing their first attack within the first ten months,
after which the survival probability levels out with an estimated 94% of hosts
experiencing no attack after four years. The plot for Office is not shown since
all versions maintain over 99.9% survival for the entire period.

We now explore another time-related question: Does the length of time a user
waits to upgrade after a new version comes out have an impact on exercised
attack surface? To help answer this, we introduce the upgrade lag metric. In
order to measure a user’s upgrade lag with respect to a product version, we
look at how long a user continues to use the version after a new version of the
product is released. The user’s upgrade lag for the product line is calculated as
the maximum upgrade lag over all versions of the product. Note that even if
only a single version of a product is ever installed on a machine, the upgrade
lag is still defined. If a machine has only Reader 9 installed, and it is present
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for a period of time entirely before Reader 10 is released, the machine’s upgrade
lag for Reader is 0. If a machine has only Reader 9 installed, and it is present
from one month after Reader 10 is released until six months after Reader 10 is
released, then the upgrade lag would be six months.

In Figure 6a, we plot the upgrade lag in days versus the cumulative average
exercised attack surface (that is, the average AEASp

h for all hosts with a lag
less than or equal to a given lag) for each of the product lines. So, for instance,
if you consider all hosts that have a maximum upgrade lag for Reader that is
less than or equal to 500 days, on average their AEAS with respect to Reader is
about 0.015 vulnerabilities per machine per month. The steady increase in the
curve for Reader from zero upgrade lag until 1000 days of upgrade lag is a strong
indication that machines that wait longer to upgrade Reader tend to experience
more attacks. In Figure 6b, we zoom in to show the detail for IE and Office.
For both IE and Office, we see a modest increase in exercised attack surface as
upgrade lag increases. The sharp increase in the slope of the IE curve after 1000
days can be explained by the fact that roughly 6% of hosts with IE installed
have the most vulnerable version, IE 6, installed long after IE 7 was released.
These hosts, which account for over 90% of attacks against IE, cause the rapid
increase after 1000 days. These results suggest that the upgrade lag is one factor
that affects the attack surface in the deployment environment.

6 Discussion

In this paper, we propose several metrics for assessing the security of software
products in their deployment environments. For example, we observe that, for
most products, the exploitation ratio and/or the number of exploited vulnerabili-
ties decrease with newer versions. Interestingly, anecdotal evidence suggests that
cyber criminals are starting to feel the effects of this scarcity of exploits. While
zero-day exploits have traditionally been employed in targeted attacks [28], in
2013 the author of the Blackhole exploit kit advertised a $100,000 budget for
purchasing zero-day exploits [31]. The zero-day exploit for CVE-2013-3906 was
nicknamed the “dual-use exploit” after being employed both for targeted attacks
and for delivering botnet-based malware [32].

Qualitative analysis. While the coexistence of several security mechanisms in
a product prevents us from measuring the individual impact of each of these
mechanisms, it is interesting to note that improvements in our metrics are often
associated with the introduction of system security technologies. Improved secu-
rity was a primary design goal for Windows Vista and we find a decrease in the
number of progressive exploited vulnerabilities in Windows Vista and Windows
7. This seems to be associated with the introduction of security technologies like
ASLR, DEP, User Account Control and the concept of integrity levels. Among
products, there is a notable decrease in the exploitation ratio and number of
exploited vulnerabilities in IE 7 and Reader 10. Both these products started
running the application in a sandbox, which adds an additional layer of defense
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by containing malicious code and by preventing elevated privilege execution on
the user’s system [30]. IE 7 also removed support for older technologies like
DirectAnimation, XBM, DHTML editing control in an attempt to reduce the
surface area for attacks [33].

Operational utility of the proposed metrics. Our product-based metrics can be
integrated in security automation frameworks, such as SCAP [16]. For example,
knowing which vulnerabilities are exploited in the wild will allow system ad-
ministrators to prioritize patching based on empirical data, rather than relying
exclusively on the CVSS scores for this task. The exploitation ratios of different
products can be incorporated in quantitative assessments of the risk of cyber at-
tacks against enterprise infrastructures. The ability to determine whether a few
exploits are responsible for most of the recorded attacks (as in the case of Con-
ficker) will allow security vendors to focus on these vulnerabilities for reducing
the volume of attacks against critical infrastructures in an efficient manner.

Our host-based metrics would be useful in infrastructures where not all hosts
can be centrally managed, such as in enterprises that have bring-your-own-device
(BYOD) policies. For example, the exercised attack surface metric captures the
diversity of attacks against a host. This metric varies considerably from host to
host, depending on the software installed and on the user behaviors; in particular,
the exercised attack surface is correlated with a host’s product upgrade lag.
This information will allow administrators to subject the hosts more likely to be
attacked to a higher level of scrutiny.

Agenda for future research. Our results illustrate the fact that, in the deployment
environment, security is affected by factors that cannot be accounted for in
the lab. Further research is needed to explore the opportunities for deriving
security metrics from field data. For example, it is difficult to assess whether a
single, potentially successful, attack exploiting vulnerability X is more or less
devastating than a large number of attacks exploiting vulnerabilities other than
X . As another example, the exercised attack surface metric cannot adequately
capture the effects of a single powerful attack on a long-lived host H , since
the effect of the attack on ESH will be diluted by the amount of time H is
under observation. To address this problem, we could define an attack watermark
metric, which would represent the average number of unique vulnerabilities of a
product P that are attacked on hosts running P during our observation period.

7 Conclusions

We believe that our ability to improve system security rests on our understanding
of how to measure and assess security under real-world conditions. In this paper
we analyze a large data set of security telemetry, available to the research com-
munity, to 1) expose trends in the exploitation of vulnerabilities, and 2) propose
new field-measurable security metrics, capable of capturing the security of sys-
tems in their deployment environments, rather than in lab conditions. We focus
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on nine versions of the Windows operating system, and multiple versions of three
popular applications. Our findings reveal that, combining all of the products we
study, only 15% of disclosed vulnerabilities are ever exploited in the wild. None
of the studied products have more than 35% of their vulnerabilities exploited
in the wild, and most of these are exploited within 58 days after disclosure. We
show that the number of vulnerabilities in a product is not a reliable indicator of
the product’s security, and that certain vulnerabilities may be significantly more
impactful than others. Furthermore, we observe that, even though the security
of newer versions of Windows appears to have improved, the overall exposure
to threats can be significantly impacted by “post-deployment” factors that can
only be observed in the field, such as the products installed on a system, the
frequency of upgrades, and the behavior of attackers. The impact of such factors
cannot be captured by existing security metrics, such as a product’s vulnerabil-
ity count, or its theoretical attack surface. To address this, we introduce new,
field-measurable security metrics. The count of vulnerabilities exploited in the
wild and the exploitation ratio aim to capture whether a vulnerability gets ex-
ploited. The attack volume and exercised attack surface metrics aim to measure
the extent to which hosts are attacked. Finally, the calculated survival prob-
abilities and our study of the impact of software upgrades to security aim to
reveal real-world temporal properties of attacks. These metrics can be incorpo-
rated in quantitative assessments of the risk of cyber attacks against enterprise
infrastructure, and they can inform the design of future security technologies.
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28. Bilge, L., Dumitraş, T.: Before we knew it: An empirical study of zero-day attacks

in the real world. In: ACM Conference on Computer and Communications Security,
Raleigh, NC, pp. 833–844 (October 2012)

29. Microsoft security intelligence report, vol. 16, http://download.microsoft.

com/download/7/2/B/72B5DE91-04F4-42F4-A587-9D08C55E0734/Microsoft_

Security_Intelligence_Report_Volume_16_English.pdf
30. Adobe Reader Protected Mode, http://helpx.adobe.com/acrobat/kb/

protected-mode-troubleshooting-reader.html
31. Krebs, B.: Crimeware author funds exploit buying spree (2013), http://bit.ly/

1mYwlUY
32. FireEye: The Dual Use Exploit: CVE-2013-3906 Used in Both Targeted Attacks

and Crimeware Campaigns (2013), http://bit.ly/R3XQQ4
33. A Note about the DHTML Editing Control in IE7+, http://blogs.msdn.com/b/

ie/archive/2006/06/27/648850.aspx

http://bit.ly/5LkKx
http://tek.io/g3rBrB
http://bit.ly/11G7JE5
http://bit.ly/xQaOQr
http://www.osvdb.org
http://bit.ly/1hCw1TL
http://bit.ly/1oNMA97
http://www.itl.nist.gov/div898/handbook/index.htm
http://download.microsoft.com/download/7/2/B/72B5DE91-04F4-42F4-A587-9D08C55E0734/Microsoft_Security_Intelligence_Report_Volume_16_English.pdf
http://download.microsoft.com/download/7/2/B/72B5DE91-04F4-42F4-A587-9D08C55E0734/Microsoft_Security_Intelligence_Report_Volume_16_English.pdf
http://download.microsoft.com/download/7/2/B/72B5DE91-04F4-42F4-A587-9D08C55E0734/Microsoft_Security_Intelligence_Report_Volume_16_English.pdf
http://helpx.adobe.com/acrobat/kb/protected-mode-troubleshooting-reader.html
http://helpx.adobe.com/acrobat/kb/protected-mode-troubleshooting-reader.html
http://bit.ly/1mYwlUY
http://bit.ly/1mYwlUY
http://bit.ly/R3XQQ4
http://blogs.msdn.com/b/ie/archive/2006/06/27/648850.aspx
http://blogs.msdn.com/b/ie/archive/2006/06/27/648850.aspx


Towards a Masquerade Detection System

Based on User’s Tasks

J. Benito Camiña, Jorge Rodŕıguez, and Raúl Monroy
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Abstract. Nowadays, computers store critical information, prompting
the development of mechanisms aimed to timely detect any kind of intru-
sion. Some of such mechanisms, called masquerade detectors, are often
designed to signal an alarm whenever they detect an anomaly in sys-
tem behavior. Usually, the profile of ordinary system behavior is built
out of a history of command execution. However, in [1,2], we suggested
that it is not a command, but the object upon which it is carried out
what may distinguish a masquerade from user participation; also, we
hypothesized that this approach provides a means for building masquer-
ade detectors that work at a higher-level of abstraction. In this paper,
we report on a successful step towards this hypothesis validation. The
crux of our abstraction stems from that a directory often holds closely
related objects, resembling a user task ; thus, we do not have to account
for the accesses to individual objects; instead, we simply take it to be an
access to some ancestor directory of it, the user task. Indeed, we shall
prove that by looking into the access to only a few such user tasks, we
can build a masquerade detector, just as powerful as if we looked into
the access to every single file system object. The advantages of this ab-
straction are paramount: it eases the construction and maintenance of
a masquerade detection mechanism, as it yields much shorter models.
Using the WUIL dataset [2], we have conducted two experiments for dis-
tinguishing the performance of two one-class classifiers, namely: Näıve
Bayes and Markov chains, considering single objects and our abstraction
to user tasks. We shall see that in both cases, the task-based masquerader
detector outperforms the individual object-based one.

1 Introduction

Information is an extremely important asset. However, due to an increase in
storage capacity, lots of critical information move around inside personal com-
puter devices everyday. This makes information more vulnerable to be accessed
by an unintended, third party. Several kinds of mechanisms have been proposed
to get around from this threat, the one being of interest to this paper is known
as a Masquerade Detection System (MDS). A MDS is especially designed to
send an alarm whenever it detects an anomaly in the use of a computer device,
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thus deducing that the device has come to somebody else’s possession (presum-
ably an intruder).

Due to the seminal work of Schonlau et al. [3], first MDS’s profiled ordinary
device usage considering the history of the commands executed by the owner
user, thus the term user behavior. However, masquerade detection based on
command usage has proven not to be powerful enough [4], driving research into
looking for new opportunities of a source that can be used for user profiling.
Example approaches for profiling user behavior in this vein are the use of I/O
devices, such as the mouse or the keyboard [5,6], the use of specific applications,
such as a document management system [7], and the characterization of certain
kinds of user activities, such as search [8].

In [1,2], we introduced a new approach to masquerade detection. This ap-
proach claims that it is not the command or the activity carried out, but the
object upon which it is performed what may separate a masquerade from gen-
uine user participation. To support this claim, we have developed a masquerade
dataset, called WUIL, which contains logs of the activity of a number of users,
working on ordinary conditions; more importantly, WUIL also contains logs of
simulated attacks, conducted on the actual user machines, and thus are more
faithful than others reported on in the literature, e.g. [3,8].

In [2], we argued that our approach provides a richer means for building
MDS’s that could work at a higher-level of abstraction. In this paper, we further
support such claim. We will introduce a MDS that is based on an abstraction of
a user task, taken to be a directory holding a number of (allegedly) related file
system objects. Thus, while using objects in a given user directory, we take the
user to be working on the same task, and model the behavior of a user in terms
of task activity, including task frequency and task transition.

Using the WUIL dataset [2], we have conducted two experiments for distin-
guishing the performance of two one-class classifiers, namely: Näıve Bayes and
Markov chains. Each classifier was used as a MDS, considering both single ob-
jects and our abstraction to user tasks.

We have successfully validated that, even though it looks into the activity of
only a few user tasks, our proposed MDS is just as powerful than the one that
looks into each access to every single file system object underneath. The advan-
tages of our task-based abstraction are paramount: it eases both the construction
and the maintenance of the associated MDS, because it yields much simpler and
shorter models. Further, notice that this kind of level of abstraction can hardly
be achieved in other approaches, which either group command sequences into
scripts, e.g. as in [9], or turn actual commands into generic ones, such as edit,
compile, etc., e.g. as in [8]. Our results also show that our task-based abstraction
can also be exploited in other masquerade detection approaches that also include
file system usage, e.g. [8].

Overview of Paper. The remainder of this paper is organized as follows. First,
in §2, we shall show the different approaches that have been studied for masquer-
ade detection. Then, in §3 we will give an overview of the WUIL masquerade
dataset, as well as our previous efforts on developing a masquerade detection
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mechanism based on user’s File System (FS) navigation. There, we shall also
introduce our abstraction of a user task, and how WUIL logs are transformed
from FS object usage to task activities. Then, in §4, we shall show the experi-
ment that we have designed to validate this paper’s working hypothesis. Next,
in §5, we shall present the results we have obtained through our experimenta-
tion. Finally, in §6, we report on the conclusions drawn from this experiment
and provide guidelines for further work.

2 User Profile for Masquerade Detection

In terms of the approach used to profile user behavior, most existing MDS have
made use of the history of commands that a user executes while working in
an UNIX session [3]; some analyze the way a user drives an I/O device, like
the mouse [5,10,11] or the keyboard [6,12]; and some study user search behav-
ior [8,13]. In what follows, we provide an overview of these approaches to profile
user behavior.

2.1 NIDES

(N)IDES [14], one of the earliest attempts at masquerade detection, is an expert-
system that aims to detect a masquerade (and other types of intrusion) using
a statistical behavior profile built from a diverse set of audit data from UNIX
Systems. Audit data includes command usage, accesses to password protected
directories, session information, CPU usage, the use of certain categories of ap-
plications like compilers or editors, and many others. Interestingly, NIDES con-
siders grouping actions together into a sequence, and both the corresponding
subject executing an action and the object upon which it is performed. NIDES
has served as an inspiration by having profiles of normal usage and trying to
discern between an intruder and a user by differences in behavior.

2.2 UNIX Commands

The most prominent approach to profile user behavior is that of Schonlau et al.,
who suggested considering the commands that the user executes while working
on an UNIX session. In order to validate this hypothesis, Schonlau et al. de-
veloped a masquerade dataset, known as SEA [15], which consists of a number
of user logs, each of which is a sequence of commands, having got rid of any
arguments.

SEA contains activity logs of 70 users. Each user log consists of a sequence of
15, 000 commands, and has been separated into 150 sessions with 100-command
each. Masquerades are simulated by replacing a user’s legitimate session with
somebody else’s. To this purpose, 50 users were designated to be honest, and the
remaining 20 to be masqueraders. SEA identifies which user sessions are ordinary
and which contaminated. Assessing the performance of a given MDS amounts to
first building the MDS model using only ordinary user sessions (50), and then
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measuring how well the MDS did in distinguishing masquerader’s sessions from
user’s ones (100).

Regarding the use of UNIX commands to masquerade detection, for the pur-
pose of the work reported herein, two other pieces of research are worth men-
tioning. One, [16], redefines the experiment set by Schonlau et al., and the other,
[17], considers the used of enriched command lines. Unlike [3], [16] suggests eval-
uating the performance of a given MDS for a honest user by measuring how well
it distinguishes as a masquerade every session of the remaining users. This yields
a considerably larger number of test sessions upon which we may rest the validity
of any statistical inference. For masquerade detection via enriched commands,
[17] used Greenberg’s dataset [18], which, for every user UNIX command, also
includes the associated arguments. Greenberg’s dataset contains activity logs of
168 users, divided in four categories: novice programmers, experienced program-
mers, computer scientists and non-programmers.

SEA was the first masquerade dataset that allowed a fair comparison among
different MDS’s, thus, yielding a significant amount of research (see [19,20] for
a survey). However, SEA has a severe limitation, namely: it involves unrealistic
masquerades, as they are made out of somebody else’s ordinary behavior. Inter-
estingly, even though this approach, we call One Versus The Others (OVTO),
may not yield significant results to masquerade detection, it has prevailed in
mostly datasets.

2.3 Mouse Usage

The use of I/O devices is another prolific approach to user profiling for masquer-
ade detection. Given that the use of the mouse as an I/O device is widespread, it
has attracted significant attention. For example, [5] has developed a dataset with
information gathered from 18 users working on Internet Explorer. The dataset
contains information about the coordinates of the mouse pointer after mouse
movement, and other features like distance, angle, and time to travel between
a pair of adjacent coordinates. [5]’s MDS is not one-class ; i.e. model construc-
tion involves the use of both positive and negative examples, borrowed from
somebody else’s ordinary behavior.

In a similar vein [10], Garg et al. collected mouse usage information about a
limited set of data of only three users. In particular, they measured the num-
ber of mouse clicks, the pointer distance between two consecutive clicks, mouse
speed, and mouse angle, deriving from all this information 16 different features.
Similarly, Weiss et al. [11] defined a 5x5 button matrix, and a set of button se-
quences that each participating user had to go through. They recorded activity
logs for each user, gathering information of three mouse events: move, click, and
drag, including key features such as time and coordinates.

Mouse usage to masquerade detection enables the possibility of contrasting
users one against other in terms of the use of a standard device. However, so
far, the masquerade scenarios that haven been considered are of little practical
application, as they are constrained to an specific application. Moreover, further
development on the masquerade dataset is required, as they involve only a few



Towards a Masquerade Detection System Based on User’s Tasks 451

users. More importantly, [5,10,11] all follow an OVTO approach; thus, they do
not consider faithful masquerade attempts.

2.4 Keyboard Usage

As for now, keyboards also are pretty common, and so may become a rather
standard platform for user profile construction. Keyboard dynamics for mas-
querade detection is either static- or free-text. In the static-text approach, users
are required to write the same piece of text. Killourhy & Maxion have rationally
reconstructed a number of static-text MDS’s reported on in the literature, and
then carried out a fair comparison [6]. In their experiment, each MDS attempts
to spot a masquerader looking into how a user types her password. For that pur-
pose, they developed a dataset that contains the activity logs of 51 users. For
each user, the dataset includes 8 sessions. Each session contains 50 records of
the user typing the password, which is the same for every user; the information
captured involves 31 different features of keystroke patterns.

By contrast, in the free-text approach, users type text at will. An example
work in this vein is that of Messerman et al. [12], who have developed a dataset
that contains logs of 55 users working in a web-mail application. The dataset
involves mainly key downs and time stamps.

Though easy to implement, gathering information about keyboard usage might
be intrusive. For example, in the static-text approach, a user must write the same
text a number of times, and this might drive her not to abide to a change-password
policy. While this remark is not applicable in the free-text approach, a user must
be working with a designated application, thus, making the masquerade detection
scenario unrealistic. Further, [6,12] both adopt an OVTO approach; thus, they do
not consider faithful masquerades.

2.5 Search Patterns

In a different vein, Ben-Salem & Stolfo have developed a masquerade dataset [8],
named RUU, which is used to profile a user in terms of search patterns. RUU
contains activity logs of 18 users. Each log record involves 22 different features,
some are user-level: browsing, communication, information gathering, etc., and
some system-level: registry modification, process creation/destruction, file ac-
cess, DLL usage, etc. In a follow-up paper, Song et al. [13] attempted to identify
which RUU features best represent user search patterns.

In RUU, log recording is transparent; further, RUU involves a number of
attacks. However, attacks were simulated in an external computer, not in the
users’. This makes attacks rather unfaithful, since a user search pattern, indeed
a collection of user actions, might drastically differ from one computer to other.
This is attributable to issues, such as computer architecture, file system organi-
zation, and so on.

In conclusion, even though successful, existing approaches to masquerade de-
tection all suffer from some limitations. A common problem is that MDS eval-
uation does not involve the use of faithfully simulated attacks (e.g. they adopt
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the OVTO approach). Other MDS’s are limited to the output of a single appli-
cation, overlooking the entire picture. We also stressed the relevance of making
transparent activity recording.

3 WUIL and a Task Abstraction

As discussed above, user profile for masquerade detection is usually built out of a
record of user actions (in the form of either I/O events, or running commands).
Departing from this standard approach, in [1,2], we argued that not only is
it the action, but it also is the object upon which the action is executed what
distinguishes user participation. We introduced a novel MDS based on the way a
user navigates the structure of her File System (FS). Also, we developed WUIL,
a dataset that collects FS navigation from several users, but more importantly it
collects a number of faithful masquerade attempts. This is also in contrast with
existing datasets, such as SEA, which rely on a OVTO masquerade model.

In [2], we have also stated the hypothesis for which we provide further support
in this paper, namely: our FS navigation approach to masquerade detection pro-
vides a richer means that could be made to work at a higher-level of abstraction.
We shall introduce a MDS that is based on an abstraction to FS navigation, we
call a task. Roughly, a task amounts to a FS directory holding a number of (al-
legedly) related file system objects. Thus, while using objects in that directory,
we take the user to be working on the very same task, and model user behavior
in terms of task usage, including task frequency and task transition. Apart from
the notion of task, the FS navigation approach to masquerade detection enables
further abstractions, including the principle of locality (which, roughly, states
the likelihood that an object, or some object nearby, will be used next). We shall
have more to say in §6. In what follows, we outline first WUIL, and then how
we have abstracted out user FS navigation into task activity.

3.1 The WUIL Masquerade Dataset

FS navigation is universal in that it can be studied in virtually any PC, regard-
less of the underlying Operating System (OS). For the construction of WUIL,
however, we recruited volunteers working with some version of MS Windows,
since it is the most widely used OS. In WUIL, MS Windows versions range from
XP to 7.

WUIL User Logs. Currently, WUIL contains log information about 20 differ-
ent users. Each user log contains FS usage of the two most common directories:
Desktop and My Documents. To gather these logs, we used the Windows tool
audit, which inspects FS usage on the directories it is enabled. User logs have
been preprocessed so that each entry consists of a tuple involving only a unique
identifier, access date, access time, and the FS object itself: a FS path.

WUIL contains a heterogeneous mixture of users with different backgrounds,
including students, senior managers, and departmental secretaries. We asked
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every user to fill in a survey with the aim of obtaining standard personal infor-
mation like age, gender, and level of education. However, through this survey, we
also collected subjective information, such as how skillful a user reckons herself
about OS configuration, or how tidy she considers her personal file system to
be and why. Overall, our aim is to research whether there exist certain kinds
of users who are easier to protect from being harmed than others (we will have
more to say on this later on in the text, cf. §6.)

WUIL Masquerade Logs. What makes WUIL most distinctive is that it
contains close to real masquerade attempts. This is in contrast with existing
masquerade datasets that use an OVTO approach, raising the concern as to what
a given MDS actually achieves. This is because the ‘intruder’ has no intention
to commit any intrusion, so any result is about the strength of the MDS as a
classifier, but not as to how good it is at the masquerade detection problem.

By contrast, WUIL enables the study of a very specific intrusion scenario,
namely: the access to a computer session that has been carelessly left unattended
(which, in principle, is similar to a remote connection via privilege escalation).
Accordingly, WUIL includes simulated masqueraders that are limited to be five
minute long.

For each user, WUIL includes logs taken from the simulation of three different
kinds of masqueraders: basic, intermediate, and advanced. In the basic attack,
the masquerader has an occasional opportunity of using the victim computer;
thus, he is not prepared for conducting the attack, lacking from any special
tool or auxiliary equipment. In the intermediate attack, the masquerader aims
at doing the attack, so he brings in an USB flash drive, but he has to manu-
ally gather whatever he reckons interesting, collecting everything into the USB
flash memory. Finally, in the advanced attack, not only does the (more skillful)
masquerader bring in a USB flash memory, but he also executes a script, which
automatically extracts every file baptized with an interesting name (password,
bank, personal, etc.), and attempts to take off any intrusion track. We remark
that each of these simulated attacks have all been conducted in the user PC.

The WUIL masquerade attacks are both short and specific, yielding class un-
balance (there are fewer attack sessions per user). Further, in the FS navigation
approach, it is more difficult to synthesize an attack. As a machine file sys-
tem changes, so should the masquerade detection model, yielding maintenance
workload.

Currently, WUIL is under improvement, in order to include more users, with
a focus on users running MS Windows 8 (in order to have a more up to date
MS windows version repertoire). In the next section, §3.2, we shall explain the
concept of task we are using and the way we processed WUIL to get the log’s
based on tasks accesses instead of objects accesses.

3.2 Task Abstraction

In an ideal setting, each user should define her own tasks, associating each of
which to a specific directory in her file system. In WUIL, however, user logs do
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Fig. 1. A typical directory tree structure organized into tasks and supertasks, consid-
ering a depth cut point equal to four

not come with such information. Thus, we had to find a way to emulate this user
definition. The rational behind our approach to such approximation is that we
conjecture that user tasks are all at the same depth regarding the user FS tree
directory. Thus, we only need to find out such depth, we call depth cut point.

Depth Cut Point. To approximate a depth cut point (DCP), we conducted
sort of a backwards breadth-first search analysis about user task access rate.
Our analysis makes three considerations. First, the resulting number of tasks
should not exceed 100, as it would be odd for one to have 100 different roles.
Second, the DCP should not be deeper than 10, because it would be odd for
one to work that deep in the directory tree structure. And third, when searching
upwards, we should not pass depth four, as that is the standard depth for both
FS directories Desktop and My Documents (assumed to be the user working
directories). Then, our procedure is as follows. Take a user. Set current depth
to be the median of the user depth object access; if greater than 10, set current
depth to 10. For each iteration, if current depth is greater than 4 and if the user
task rate underneath current depth is less than 70%, decrement current depth
and repeat. Otherwise, stop, yielding current depth. Set every directory above a
user’s DCP into a different task, we call a super-task, cf. Fig. 1.

Having identified a DCP, we mapped every WUIL log, both user and attack,
from object access to its corresponding task access. This resulted in two sepa-
rate sets, which were then used for both development and validation purposes.
Tables 1 and 2 respectively show the DCP for each user, and contrast the num-
ber of different objects against that of different tasks, on a per user basis. From
these tables, we observe both that the DCP often is five or six, and that the
number of tasks per user is much fewer of that of objects. Looking more closely
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Table 1. Users’ depth cut point, as found experimentally

User 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
DCP 5 5 5 5 5 6 6 6 6 5 3 5 3 5 5 6 6 5 5 5

Table 2. A comparison of the number of different objects against that of different
tasks, per user

User Number of Objects Number of Tasks
1 7886 12
2 1672 14
3 200 13
4 2555 61
5 40776 60
6 6642 69
7 9149 28
8 877 9
9 10321 49
10 655 8
11 3524 377
12 5616 31
13 151477 64
14 1809 15
15 4925 50
16 25718 39
17 7370 86
18 1385 9
19 620 9
20 1407 26

Average 14229 51

into these tables, we may notice that user 11 has a distinctively large number
of tasks, 377, and that she has a DCP of three. This is because this user has
a number of physical drive units, and, spreads her file system structure among
them all. This actually makes it more difficult to protect her. We shall more to
say on this and other limitations on our task-based abstraction below (see §5).

Below, §4, we shall describe the experiments that we have conducted to assess
our working hypothesis, namely: that the performance of a task-based MDS is
comparable to an object-based one.

4 Tasks vs Objects: An Experimental Comparison

With the aim of comparing the masquerade detection performance of a task-
based model against an object-based one, we ran an experiment using two dif-
ferent classifiers: Markov chains and Näıve Bayes. The rationale behind the se-
lection of these techniques is twofold. First, both techniques are suitable as a
one-class classifier, as required in our problem setting. Second, they are comple-
mentary in that while Näıve Bayes commonly used for a bag of words model,
where only the frequency of an event matters, Markov chain is used for an event
sequence model, where each event depends on past events, accounting for tem-
poral dependencies.
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Table 3. Outputs used for assessing classifier performance

Window type Classifier output Assessment

User User True Negative (TN)
User Masquerader False Positive (FP)

Masquerader User False Negative (FN)
Masquerader Masquerader True Positive (TP)

Rounding off, our experiment forms a 2 × 2-matrix, involving an event class
(task/object) and a classifier (Markov chain/Näıve Bayes). Each test was carried
out on a per user basis.

4.1 Experiment Design

There are some parameters that need to be set before starting an experimenta-
tion. These parameters must be similar in all the experiments in order to make
the results comparable. We explain each in turn below.

Construction and Validation Sets. For each user experiment we split the
associated WUIL logs in two different sets: construction and validation. The
construction set is composed with a certain percentage of the user log (ordinary
behavior) and is used to create and train the classifier. The validation set consists
of the remaining percentage of the user log, together with the full set of that
user masquerade attacks, and is used to yield a classification performance.

For each experiment, we split the user log using different percentages for both
sets, construction and validation, namely: 80-20, 70-30, 50-50, 30-70, and 20-80.
The rationale behind this setting decision was studying how much information
is needed to start having similar results, and how these proportions affect the
performance of each classifier. We also conducted a five-fold cross-validation for
the particular experiment that yielded the best classification result.

AWindow-BasedAnalysis. Wehave divided every user validation set,whether
task-based or object-based, using a windowing approach. We set both the window
size and the window step to be 20. Windows are not mixed; they are filled in ei-
ther with user events, or masquerader ones. Each time a window is analyzed, the
classifier emits an evaluation, which might be correct, or not, yielding different as-
sessments as shown in Table 3.

Threshold. To emit an evaluation, the classifier compares a window score
against a threshold. A window is classified as masquerade, if the window score
is greater than or equal to the threshold, and normal, otherwise. We vary the
threshold to study the performance of a classifier, thereby drawing a so-called
Receiver Operating Characteristic (ROC) curve. So, we start with a very low
threshold, getting a lax classifier; then, we increase the threshold slowly until
we get a very strict one. Doing so, we have got results from 100% False Positive
(FP) with 0% False Negative (FN), to 0% FP with 100% FN, and with this
information we identify the minimum misclassification point for each user (see
section §5).
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4.2 Markov Chains

For implementing a Markov chain-based MDS, we have followed the work of
Maxion et al. [21]. In a Markov chain, each state comprehends a sequence of
events (objects or tasks, in our case). Each event sequence is called an n-gram. N-
grams are all the same size. A Markov chain is used to assess whether a sequence
of state transitions conforms to a model (the user behavior, in our case). Notice
how a Markov chain captures both event frequency (via a state transition) and
event dependency (via the elements of an n-gram). For a correct operation, the
Markov chain parameters must be tuned. We explain each of them, and how to
fix them, below.

A User Log Is a Trace Sequence. For the construction and validation of
a Markov chain model, we require a number of event sequences, each of which
is called a trace. So, we split a user log into traces. We set a trace to include
entries recording the activity of a calendar day. Whenever a user worked after
midnight, we keep the next day events still as part of the current trace. To mark
the end and the beginning of two adjacent traces, we have specified an idle time
of at least two hours. Each masquerade attempt is an independent trace. Each
trace is either construction, or validation, but not both. Every validation trace
is divided into windows.

N-gram Size. To fix the size of the n-gram, we have used divergence [21], which
measures how different an attack and a Markov chain model are. The more they
diverge, the better the model is to detect an attack. We proceeded as follows.
First, we randomly picked five pairs: user and attack. Then, working on one pair
at a time, we initialized the n-gram size to one, and loop till 20, with increments
of size one, in order to determine the n-gram size yielding maximum divergence.
Finally, we set the n-gram size to be the average of all these values. It should
be noticed, however, that for object-based masquerade detection, our computer
(see below) was unable to handle models with n-grams greater than five, and,
so for those we put a cap on size to that value.

Penalization. Penalization, Z, is the amount of bad points added to the score
of a model, whenever that model does not involve a given state transition. In
our case, following some experimentation, we fixed the penalization to be five.

Having set these parameters, we have built every Markov chain model as
follows. Take a user trace. Create a new state; set it to be the current state and
label it with an n-gram filled in with null events. Then, inspect the trace, from
left to right, and, event by event, proceed as follows. Take the n-gram of the
current state label, then remove the first event of that n-gram and append the
current trace event. If there is not a state labeled with the resulting n-gram,
create one, and then join the current state and the new state with a transition.
Then, update the distribution probability of the state transition model, set the
current state to be the new state with the resulting n-gram, and iterate this
process as many times as the length of the current trace, creating and updating
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states and state transitions as required. This procedure is then repeated for every
user trace, using the same Markov chain model.

Also following [21], we use each Markov chain model to classify every user
validation trace using the procedure outlined below. Starting with the first state,
filled in with null events, apply the above trace inspect procedure; however,
instead of creating a state and its transitions, update X and Y , evaluation
coefficients, as follows. First, using the trace, determine the next state. Then,
there are two possible cases:

Model compliance: states current, e, and next, e′, together with the associ-
ated transition, are in the model, and so:

X = X + 1

Y = Y + (1 − Pr(e, e′))

where Pr(e, e′) is the probability, according to the model, that e′ follows e.
Model failure: e and e′, together with the associated transition, are not in the

model, and so:

X = X + 1

Y = Y + Z

Given a window, w, the classifier outputs a final evaluation, μ(w), given by
μ(w) = Y/X . For a given threshold, r, w is said to be normal, whenever μ(w) <
r, and masquerade, otherwise.

4.3 Näıve Bayes

Implementing a Näıve Bayes classifier for a particular user, u, (see, e.g. [16,17]),
amounts to estimating the probability for an event (an object or a task access, in
our case) c to have been originated from u, denoted Pru(c). Since Näıve Bayes is
frequency-based, the associated probability distribution is computed out of the
access information recorded in the training set. Thus, in symbols:

Pru(c) =
fuc+α

nu+α×K

Where fuc is the number of times user u has accessed task (respectively, object)
c, nu the length of u’s training set, and where K is the total number of distinct
tasks (respectively, objects). 0 < α � 1 to prevent Pru(c) from becoming zero;
following [16,17], we set α to 0.01.

To evaluate a test window w, in which user u has allegedly participated, the
cumulative probability of w, an access sequence of the form c1c2 . . . cn, of length
n(= 20), is given by:

Pru(w ≡ c1c2 . . . cn) = Pru(c1)× · · · × Pru(cn)

Pru(w) is then compared against a threshold: if it is above the threshold, the
session is considered normal; otherwise, it is considered a masquerade.

Having explained our methodology, and how we have set each classifier pa-
rameter, we now turn our attention to show and analyze the results obtained
throughout our experimentation.
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Fig. 2. An example ROC curve, annotated with the position of zero-FN, zero-FP, and
MMP

5 Results

5.1 A Comparison of Classification Performance

We have used ROC curves, to understand the classification performance of all
our MDS’s. In order to compare these MDS’s one another, we have used four dif-
ferent measurements: Area-Under-the-Curve (AUC), Zero-False Negative (Zero-
FN), Zero-False Positive (Zero-FP), and the Minimum Misclassification Point
(MMP). AUC denotes the area under a ROC curve. AnAUC equal to one amounts
to the perfect classifier, which correctly marks every window, as user or attack.
Conversely, an AUC equal to zero corresponds to the worst classifier ever.

Zero-FN is the least False Positive rate (FP) at which we still work with a true
positive rate of one, and, thus, masquerade windows are all classified correctly.
We have borrowed zero-FN from [22]. By contrast, zero-FP is the least False
Negative rate (FN) at which we still keep the false positive rate at zero, and,
thus, user windows are all classified correctly. MMP corresponds to those values
of FP and FN that minimize FP+FN. Fig. 2 depicts the zero-FN, zero-FP and
MMP for a given ROC curve.

Tables 4 and 5 respectively show the overall performance evaluation of Näıve
Bayes and Markov chains. Table 4(a) (respectively, Table 5(a)) shows the classifi-
cation performance of Näıve Bayes (respectively, Markov chain) applied to object
access. This applies similarly for Tables 4(b) and 5(b), but for task access.

Looking into Table 4, we may observe that the task-based Näıve Bayes clas-
sifier outperforms the object-based one. While the gain for AUC is marginal,
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that for zero-FN, zero-FP and MMP is greater than five percentage points. Re-
call that for the latter variables, the lower the measure, the better the classifier’s
performance.

Table 4. Average classification performance of Näıve Bayes in terms of AUC, zero-FN,
zero-FP, and MMP

User’s log division
AUC Zero-FN (FP%) Zero-FP (FN%)

MMP
Construction% - Validation% FP% FN%

80 - 20 0.716 92.070 93.425 22.149 26.229
70 - 30 0.710 93.043 95.562 26.192 25.256
50 - 50 0.696 91.760 99.582 30.115 22.610
30 - 70 0.710 92.003 99.343 25.869 27.560
20 - 80 0.701 91.260 99.602 32.424 23.193

80 - 20 Cross Validation 0.734 91.934 99.498 23.366 26.198
Average 0.711 92.012 97.835 26.686 25.174

(a) Näıve Bayes applied to object access

User’s log division
AUC Zero-FN (FP%) Zero-FP (FN%)

MMP
Construction% - Validation% FP% FN%

80 - 20 0.758 86.512 79.093 15.618 27.734
70 - 30 0.758 86.728 80.354 14.356 30.738
50 - 50 0.741 86.553 88.633 16.791 29.762
30 - 70 0.736 89.819 91.221 17.267 29.723
20 - 80 0.719 88.713 91.253 19.884 29.174

80 - 20 Cross Validation 0.763 87.486 94.238 20.237 26.489
Average 0.746 87.635 87.465 17.359 28.937

(b) Näıve Bayes applied to task access

Similar remarks apply to the results reported in Table 5, except that the per-
formance difference is not as drastic as for Näıve Bayes. For example, for the
80 - 20 (%) experiment, the task-based Markov chain classifier slightly outper-
forms the object-based one, except in the AUC measurement. However, as we
shorten the amount of available training, the task-based classifier shows a more
regular, stable performance behavior. Comparing the information reported in
Tables 4 and 5, we may notice that, for our problem and regardless of whether
task-based or object-based, Markov chains outperforms Näıve Bayes in all our
measurements.

Summarizing, our experiments have yielded three key observations. First,
a task-based approach to masquerade detection outperforms, though slightly,
an object-based one. Second, Markov chain masquerade detection outperforms
Näıve Bayes’s for this scenario. This might be explained by that a Markov chain
approach accounts for temporal relationships between accesses, giving more in-
formation to construct the user’s profile. Third, and contrary to our expecta-
tions, shortening the amount of available training data does not severely affect
the task-based approach to masquerade detection. This is in contrast with the
object-based approach, where AUC, zero-FN, zero-FP, and MMP average val-
ues suffer notorious increments when we used a less percentage of a user log for
training.
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Table 5. Average classification performance of Markov chains, based on area-under-
the-curve (AUC), zero-False Negative (zero-FN), zero-False Positive (zero-FP), and
Minimum Misclassification Point (MMP)

User’s log division
AUC Zero-FN (FP%) Zero-FP (FN%)

MMP
Construction% - Validation% FP% FN%

80 - 20 0.838 53.260 33.922 13.159 13.017
70 - 30 0.829 58.304 42.888 16.536 12.383
50 - 50 0.837 65.911 42.910 15.032 14.437
30 -70 0.823 65.386 40.658 16.927 14.095
20 - 80 0.849 67.809 40.005 16.054 11.355

80 - 20 Cross Validation 0.896 55.484 41.165 14.595 8.285
Average 0.845 61.026 40.258 15.384 12.262

(a) Markov chain applied using object access

User’s log division
AUC Zero-FN (FP%) Zero-FP (FN%)

MMP
Construction% - Validation% FP% FN%

80 - 20 0.856 43.844 33.655 12.724 8.730
70 - 30 0.832 45.508 46.728 16.410 8.762
50 - 50 0.814 52.559 53.331 21.821 7.205
30 -70 0.803 53.690 52.520 17.268 13.215
20 - 80 0.831 51.318 57.233 17.387 10.173

80 - 20 Cross Validation 0.874 44.460 53.616 11.814 8.492
Average 0.835 48.563 49.514 16.237 9.429

(b) Markov chain applied using task access

Spotting the Difference. A careful analysis on our results reveals that for
three users the Markov chains classifiers perform remarkably bad, in contrast
with the good results exhibited for the other users. While this is an undesired
result, it helps us understand the limitations and challenges of this approach.
After closely examination of users 10, 12 and 13 logs, the problem seems to be
that these users have a very odd file system structure. User 10 has very few file
system objects; user 12 has all her files in a single directory, namely: Desktop;
and user 13 has divided her file system into several physical or logical drive units.
These issues make some users especially difficult to protect.

Due also to these users’ odd file system structure, the automatic determina-
tion of what directories constitute a task, using the depth cut point procedure
introduced in §3.2, selects directories that are not suitable as a task, or yields
too few tasks to operate with. It is important to remark that the automatic task
selection is an artificial construction because we do not have that information
directly from the user on the WUIL dataset, suggesting the importance of a
correct mapping between directories and tasks. More importantly, they suggest
that an organization could fix and then enforce a set of policies (where to keep
files, how many different directories to keep them in, etc.) so as to nudge users
toward using reasonable file storage habits.

Benefits of a Task-Based Approach to Masquerade Detection. What
makes the use of a task-based approach relevant is the size of the associated
model, as it will always be much easier and faster to build and maintain a model
that often is two orders of magnitude smaller. While one may easily anticipate
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Table 6. Size of Markov chain models for every user at the 80 - 20% experiment

User Objects Tasks
1 88667 1674
2 14259 1406
3 3204 660
4 18440 906
5 177372 2822
6 50529 6371
7 62185 1725
8 26812 1575
9 58161 3604
10 27236 857
11 30466 10645
12 35220 3041
13 530691 4768
14 7653 1497
15 66079 3401
16 164725 8949
17 43798 4384
18 3340 592
19 8234 408
20 6650 961

Average 71186 3012

this benefit from Table 2, we list, in Table 6, the size of the Markov chain models
that resulted from using the 80 - 20% experiment.

Also, the file system of a user is in constant change with files being created
and deleted. Tasks are more resilient to change, because a user does not change
her activities with a high frequency. So, most file system changes are transparent
when using our task abstraction, making it less necessary for a constant update
of the associated model. Thus, working with our abstraction demands fewer
storage and computing resources, with a slightly better performance rate than
working with pure objects.

5.2 Mean-Windows-to-First-Alarm

Another evaluation element is how many windows takes to a classifier to start
detecting abnormal behavior. In order to analyze this, we used the concept of
Mean-Windows-to-First-Alarm (MWFA) [21], that represents the average num-
ber of windows that must pass before a window is classified as abnormal. Table 7
shows the MWFA for each type of attack. MWFA can be used to anticipate how
much information themasquerader can gain access to before theMDS detects him.
From Table 7, we notice that, as the level of attack automation increases, Markov
chains require more windows to detect an attack than Näıve Bayes. So, to quickly
detect a masquerader, it seems that Näıve Bayes is better; however, one has to
keep in mind that Markov chains detect attack windows more accurately than
Näıve Bayes. Another important aspect to observe is that, in general, task-based
classifiers detect more quickly a masquerade than the object-based ones.

Given that we work only with 20 users, we cannot guarantee that the un-
derlying classification performance distribution is normal. So, for a statistical
test, we used Wilcoxon signed rank to disprove the null hypothesis that the two
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Table 7. Mean number of windows to first alarm per attack

Attack Markov chain Näıve Bayes
type Task-based Object-based Task-based Object-based
Basic 2.4 2.1 4.02 6.03

Intermediate 18.2 58.45 2.59 5.19
Advanced 10.1 9.95 2.5 1.51

underlying distributions are related and not independent, meaning that the re-
sults between the two classifiers are statistically equivalent.

Applying the test for the AUC of task-based Markov chains against Näıve
Bayes, we have found that the null hypothesis is rejected, with a p − value
of 0.0137. However, doing so for the AUC of task-based Markov chain against
object-based Näıve Bayes, we have found that there is not enough evidence to
reject the null hypothesis. With these results, we conclude that for our exper-
iments the Markov chain classifier significantly outperforms Näıve Bayes, but
that the performance difference from using task or object accesses is not sig-
nificant. This result corroborates that the task-based approach for masquerade
detection performs as well as the object-based one, but with a more stable, easier
to maintain, and smaller representation of the user behavior.

Our experiments were all run on a HP EliteBook 6930p machine with 4GB
of RAM (of which 3.84GB usable) running a 64 bits MS Windows 7 OS with an
Intel R© CoreTM 2 Duo CPU P8400.

6 Conclusions and Further Work

We have conjectured that a file-system navigation approach to masquerade de-
tection provides a means for reasoning at a higher-level of abstraction. Taking
a step towards establishing this conjecture, we have introduced a task-based
abstraction, where each task holds different but related objects. In order to eval-
uate the usefulness of our task abstraction, we have used the WUIL dataset
and designed some experiments with two different classifiers: Markov chains and
Näıve Bayes. First, we have found that a task-based MDS is as powerful as an
object-based one. Second, we have found that Markov chains outperforms Näıve
Bayes, because it accounts for event temporal relationships.

Even though a task-based MDS does not outperform an object-based one, if
we take into account the size of a Markov chain model, the task-based approach
provides a clear advantage. Also it is important to remark that the task-based
approach provides secondary benefits: it encompasses a big part of the accesses,
and it is more resilient to file system changes, meaning that the model has to
be updated with less frequency than the object-based one. Considering all these
advantages, we conclude that it is worth using our task abstraction.

In this paper, we have worked with a single abstraction, but in order to create
a competitive MDS, other abstractions must be used. Fortunately, the file system
navigation approach is a rich source of abstractions. Ongoing work, for example,
explores using the locality memory-cache principle, which considers both time
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(temporal locality), and file location (spatial locality). Other abstractions that
are worth exploring include file usage information (hot files against cold files),
and the file system structure depth a user commonly works at.

At present, we are gathering data from new users for WUIL, especially MS
Windows 8 users. We would like to test further how our task abstraction works
with these new kinds of users. We would also like to explore any correlation
between the performance of a classifier and some users’ file system character-
istics, like tidiness and organization. We would like to investigate whether it is
possible to create some policies that a user has to follow, which could make it
easier to protect her, and which at the same time would make it harder for a
masquerader to steal critical information. Also, ongoing research is concerned
with further analyzing our results, from a user perspective, giving, for example,
the number of false alarms that may result per day, etc.

Acknowledgments. This paper has largely benefited from numerous discus-
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Poster Abstract: Forensically Extracting Encrypted 
Contents from Stego-Files Using NTFS Artefacts 

Niall McGrath  

Abstract. The research presents a method of investigating encrypted stego-files. 
The paper characterizes the encryption and steganography processes by estab-
lishing an event sequence signature based on the sequence of syscalls on the  
associated files. The syscall sequences are formally modelled and this provided 
the basis of implementing a successful search solution.  

Introduction and Scope 

Steganography with encryption is being used to commit fraud, terrorist activities and 
other illegal acts. It is has been demonstrated that there is a trend where it is used for 
the possession, storage and transmission of child pornography. Other illegal activity 
would include financial fraud, industrial espionage and communication within crimi-
nal or terrorist organizations. It is a fact that there is currently no tool or technique 
available to facilitate the investigation of stego-files with encryption. This is the  
research problem we are trying to solve here. 

This research does not identify or detect the stego-files, this is already done by  
using contemporary stego-detection and analysis techniques implemented by the tools 
available. Embedded content is extracted by using contemporary stego-analysis tech-
niques. The extraction of encrypted content in the stego-files is the focus here. 

Materials and Methods 

The stego-process was monitored to view the flow of IRPs between various applica-
tions and the NTFS driver. The file I/O events where classified into groups of event-
types and from this we were able form event sequence signatures which were modeled 
formally. A performance-measure of the methodology’s true-postive/false-positive rate 
was established which was achieved by following the Receiver Operator Characteristic 
statistical analysis method. The following tools were used in this research: Python 
2.7.5, AccessData FTK Imager 2.5.1, WinHex 16.2 3, Process Monitor and MS FSU-
TIL. 

Results and Conclusion 

From the results of the ROC analysis it can be seen that the methodology yielded an 
excellent performance measure. The Null Hypothesis is completely rejected and this 
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proves that the methodology to be more powerful than a random rule. The outcome of 
this work is a formal methodology, which has been validated, and performance tested. 
The research problem has been solved. The modeling of the initial problem and back-
tracking solution served as a basis for automating the methodology with Python. The 
methodology was proven to be compatible and interoperable with all tested types of 
encryption and steganography formats. 
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Introduction. Recently, a new form of security attack targeting Cloud-hosted web-
sites/domains has been introduced ([1], [2]). In [1] this attack has been referred to as 
Economic Denial of Sustainability (EDoS) attack, while in [2] it is termed Fraudulent 
Resource Consumption (FRC) attack. From the technical, i.e., execution, point of 
view this attack appears as a version of low-volumetric application-layer DDoS 
attack. However, unlike its DDoS counterpart, EDoS attack does not aim to exhaust 
the victim’s bandwidth or processing capability. Instead, the main goal of EDoS 
attack is to impose a significant financial burden on the victim through skillful and 
measured consumption of the victim’s metered (pay-as-you-go) bandwidth. Small and 
medium size businesses, with limited web-hosting budgets, are the primary targets of 
EDoS attacks. As demonstrated in [3], even a simple non-intentional version of EDoS 
could result in monthly costs/losses in the order of tens of thousands of dollars. 

 

Motivation. From the attacker’s perspective, the most straightforward way to conduct 
an EDoS attack is by means of a custom-built or a rented botnet capable of executing 
application-layer DDoS [4]. (Examples of such botnets include: Dirt Jumper [5], 
BlackEnergy [6], WebHive [7], etc..) However, the main disadvantage of botnet-
based EDoS/DDoS attacks – especially the ones that involve rented botnets – is the 
fact that they utilize the same family of compromised (bot-hosting) computers that 
might have been used in a number of previous attacks. For such computers, there is a 
high chance of their IP addresses already been identified as ‘malicious’ and publicly 
blacklisted. This would, in turn, result in a considerably reduced attack potential for 
the respective botnet ([8], [9]), and a considerably diminished overall payoff for the 
attacker. 

A much more challenging (i.e., difficult to detect and thwart) variant of EDoS 
attack would assume the deployment of uncompromised computers - computers not 
infected by any form of malware and thus not publicly blacklisted. In other words, 
given that EDoS attack is conducted at the application-layer utilizing HTTP-based 
attack traffic, its most potent execution would be conducted by means of web-
browsers of legitimate/trustworthy users. 
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Related Work. [10] is the first known study to discuss the possibility of deploying 
web-browsers of legitimate users for the purpose of application-layer DDoS. Namely, 
the authors of [10] propose that in order to conduct an application-layer DDoS attack, 
a set of HTML/JavaScript commands get embedded into a web-page of a high-traffic 
and otherwise legitimate web-site. The commands should not have any obvious visual 
manifestation - their sole purpose would be to instruct a browser to load objects from 
the target (victim) server. Put another way, every visitation/upload of such a site by a 
legitimate user/browser would result in one or multiple HTTP requests being sent 
towards the victim server. 

Recently, in [11], a real-world implementation of the concepts from [10] and their 
consequent practical implications have been documented. The novelty of the work 
described in [11] is in the fact that the ‘malicious’ JavaScript commands were hidden 
in a skillfully crafted Web-Ad, which was then distributed to thousands of legitimate 
users through a known Ad Network. 

 

Goal. The goal of our work is to investigate the technical feasibility of using spam-
email with Web-bugs in order to engage the browsers of legitimated users in an EDoS 
attack. (Web bugs are small, usually invisible, HTML objects embedded in a web-
page or an email, and are traditionally used for the purposes of user tracking and web 
analytics.) Note, though, that unlike the traditional Web-bugs, which cause HTTP-
GET requests to be sent towards a legitimate user-tracking server, in our work these 
requests are directed towards the server targeted by the EDoS. To our knowledge, our 
work is the first one to look at the possibility of executing an EDoS attack using 
spam-email with Web-bugs, as well as to evaluate the overall pros and cons of such 
an execution for the attacker. 

 

Method. A Web-bug embedded in a spam-email will successfully generate an HTTP-
GET request only if the following three are satisfied: 1) the (HTML-enabeled) email 
tool does not quarantine the carrier spam-email; 2) the human recipient opens the 
carrier email; 3.a) the (HTML-enabeled) email tool automatically executes the 
embedded Web-bug code or 3.b) the human recipient is tricked into manually 
activating the embedded Web-bug code (e.g., through social engineering). 

In our experimental study, we have looked at five different versions of Web-bug 
codes and five different HTML-enabled email tools (including Google, Hotmail and 
Yahoo), in order to determine the scenarios in which 1) and 3.a) successfully take 
place. Furthermore, we have employed 300 email addresses (i.e., email recipients) in 
order to determine the success rate of 2) and 3.b). The ‘test’ server targeted by our 
EDoS attack was set up on Amazon S3 Cloud. 

 

Preliminary Results. The results of our study have shown that: a) EDoS using spam-
mail with Web-bugs is a technically viable option; b) The overall attack potential of 
this approach (in terms of financial loss incurred by the victim) is in the low to 
modest range; c) Compared to the traditional execution scenarios involving botnets, 
EDoS using spam-mail with Web-bugs is financially far more affordable for the 
attacker while being increasingly more difficult to defend for the victim. 
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1 Extended Abstract

In recent years, attacks on network systems become not only increase but also
strategic. In many cases, attacks with high strategies are consist of different
attack events as port scanning, brute force attacks, injecting malicious codes
and so on. It is difficult to detect such strategical attacks with only conventional
ways. Analyzing event logs like intrusion detection system(IDS) logs give great
knowledge about adversaries’ strategies to security analysts. Those logs include
fragments of adversaries’ strategies that consist of well-known attack events.

In extracting adversaries’ strategies from a large-scale event log, the significant
relations should be picked up from all existing combinations of factors. Most
current analyses of relations are started from searching common IP addresses and
applying anomaly detection techniques. In those classical analyses, the viewpoint
is predefined and static. However, to counter the advanced attacks with high
strategies, security analysts must start their analyses from searching all available
factors worth analyzing their relations. In many cases, their work is with heuristic
ways and cumbersome.

In this paper, we propose CITRIN, a graph-based analyzing method for ex-
tracting the relations in a large-scale event log. CITRIN enables the security
analysts to grasp the multiple relations among individual attack events. By in-
troducing the graph-based techniques with visualization, security analysts can
accelerate the speed of searching available factors. In our approach, the records
in the event log are clustered into subsets of records with similar attribute val-
ues based on information theory. The subsets of the records are represented as
undirected graphs that consists of nodes and edges.

We also show the potentiality of extracting adversaries’ strategies by our
graph-based approach. We apply CITRIN to our actual IDS log from multiple
sites. From the visualized graphs, we pick up a graph with unique shape. A
graphical representation of connected records shows that host scanning is in-
cluded in the subset of records that includes a kind of stealthy and distributed
brute force attacks. As a result of our detailed analysis, we lead the basic adver-
saries’ strategy, scanning before attack.

A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 473–474, 2014.
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Our Analyzing Process 

CITRIN: Extracting Adversaries Strategies 
Hidden in a Large-Scale Event Log 
Satomi Honda, Yuki Unno, Koji Maruhashi, Masahiko Takenaka and Satoru Torii 

Introduction 
• Attacks on network systems become strategic 
• Analyzing IDS logs gives great knowledge about adversaries’ strategies 
• Security analysts must search all available factors 

Our Approach 
• A graph-based analyzing method for extracting the relations  in a large-scale event log 
• Security analysts can grasp the multiple relations among individual attack events 
• Based on information theory, the event log are clustered into subsets of records 

FUJITSU LABORATORIES LTD. 

Extracting Adversaries’ Strategies 
• The subsets of records are visualized as undirected graphs 
• From our actual IDS log, we lead the basic adversaries’ strategy, scanning before attack 

 

Secure Shell Brute Force 
(Port 22) 

Host Scanning 
(Port 22) 

A relationship between 
 host scanning and  brute force attacks! 

The visualized subset of 
a kind of distributed brute force attacks 

The IDS log 

Clustering into 
subsets based on 
information theory 

: 
: 

: 
: 

*We visualize the subsets with graph 
analyzing software, Gephi 
(http://gephi.github.io/) 

The subsets 
The visualized subsets 

Visualizing 
the subsets as 
undirected graph* 

The nodes represent 
unique records of  a 
subset

The color variation 
depends on the 
values of attributes 
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This work in progress explores security monitoring and protection technology specifi-
cally geared towards mobile network infrastructure. This includes both data correla-
tion and presentation aspects of Security Information and Event Management (SIEM), 
as well as protection functions specifically for mobile networks – in this case, a proof-
of-concept function to protect the control plane from a potential future threat of mali-
cious signaling over the air interface. A second use case scenario concerns detection 
of smartphone malware for premium service charging fraud. 

The emergence of open source baseband software [1] makes intentionally mali-
cious air interface signaling a possibility [2]. Although nodes are already engineered 
for high availability and robustness, it nevertheless raises the question of whether 
some additional layer of protection could be justified. We have developed a proof-of-
concept for the functional aspects of a flexible protection function for the GSM CS 
domain, conceptually similar to an IPS or ALG, to explore this question; and tested it 
against simulated examples of two types of DoS attacks. The first type is malformed 
or out-of-sequence signaling and the second type is flooding for resource exhaustion. 
The proof-of-concept operates on the RR and, parts of, RSL protocol layers to protect 
the BSC and is situated on the Abis interface, between the BTS and the BSC. The 
intention is to provide additional facilities for a quick response in case of an incident 
through the deployment of new protection rules.  

The second type of scenario considered concerns malware. One way of monetizing 
malware for smartphones is through premium service fraud (see e.g., [3] p. 13). Exist-
ing solutions typically either monitor charges, e.g., Fraud Management Systems 
(FMS) or try to detect the malware (device- or network-based). As a first step in stud-
ying the possibility of leveraging more information from the network towards finding 
subscriber threats, we demonstrate correlation of indications from user plane traffic 
with simulated input from an FMS.  
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Abstract. In this paper we propose an algorithm for data leakage detection. 
This algorithm works with historical data of the activities of authorized users in 
a computer system. This information gathers data of the hour of the accesses, 
duration, day of the week, operation, table that has been accessed, etc. They 
have been provided by a governmental institution at Ecuador. The procedure 
has two phases. The first one is based on the calculation of the probability of 
each activity that is carried out by each user. These activities are for instance to 
modify a file, delete, copy, etc. The different activities at different times are co-
dified by an integer or character. The Page Rank algorithm is used to calculate 
the probability of every activity. But the activities form sequences, that is, dur-
ing a session (time between the user logs in and logs out), the user carries out 
different activities, one after another. These sequences of activities may have 
different length. The probability of each sequence of activities is then calculated 
by applying the Bayes’ theorem. The minimum of these conditional probabili-
ties is obtained and set as a threshold, rmin. If a new chain of activities, si, is in-
troduced in the detection leakage system, first of all the page rank is applied and 
then the Bayes’ law, so a probability of that particular sequence of activities for 
that user is obtained, let’s say pi. This probability, pi, is compared to the thre-
shold, rmin. If it does not surpass it, a leakage warning message is generated. 
Otherwise, the sequence of activities goes to the second phase of the procedure. 
The sequence of activities that is being tested is then compared to all the  
sequences of activities of that particular user that are stored in the historical  
database. Applying the Smith and Waterman algorithm, a similarity score is  
obtained for this sentence regarding the rest of the sequences previously carried 
out by the user. This algorithm determines similar regions between two strings 
comparing segments of all possible lengths and optimizes the similarity meas-
ure. If the score is higher than a second threshold, let’ say that there are more 
than n characters (codified activities) that are the same than another sequence of 
the same user, the activity can be considered right; otherwise it may be a lea-
kage. Although this algorithm is still being developing, its main contribution is 
the way it handles different lengths of the sequences and how it works with a 
behavioral pattern of each user. 

Keywords: Data Leakage Detection, Page Rank algorithm, Bayes’ Theorem, 
Smith and Waterman algorithm, behavioral pattern. 
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Problem Description and Goal. Despite the amount of research work de-
veloped in the area of intrusion detection, some effectiveness problems persist,
either because the proposals are incapable of detecting new unidentified threats
[1], or because they generate too many false alarms to be of any usefulness [1].
These problems have somehow hampered the application of intrusion detection
systems to protect systems as those used by critical infrastructures, given their
crucial need to be protected, also, from new threats, as well as due to the sig-
nificant cost that false alarm handling might have [2].

The goal of this work is to, based on specification-based intrusion detection
techniques, provide an IDS suitable to be used to increase the protection of
critical infrastructures, featuring a negligible false-alarm rate and presenting
simple and intuitive alert information.

Solution Description. The developed intrusion detection system is based on
the description of the flow of activities carried by the monitored system’s entities,
i.e. the business processes, as well as the conditions that govern their execution,
i.e. the business rules. The system features a centralized architecture, having
multiple sensors monitoring either a given sub-network or some specific host,
where each sensor is configured accordingly to the activities being executed by
the hosts in its monitoring domain. The evidences captured from the distributed
sensors are transformed into high-level, business process-related events. These
high-level events are then analysed centrally against the specification of the
acceptable behaviour and, if do not match, an alarm is raised.

Preliminary Results. The system was tested with data captured from a real-
world mass transportation environment, as an instance of a critical infrastruc-
ture. The tests performed showed very promising results, by being able to detect
new injected attacks, and exhibiting a negligible false alarm rate.
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SOLUTION DESCRIPTION

BPMN Process 
State Information 

Informational 
Entities State 

Current State 

Event Sensor 

(a) 

BPMN Process 
State Information 

Informational 
Entities State 

Current State 

Event Sensor 

Active Sensor 

(b) 

The solution features a Specification-
based IDS that takes advantage of spec-
ifications written into Business Process
Model and Notation (BPMN). The sys-
tem is comprised by several low level
event sensors and an engine that infers
state changes in the BPMN processes by
tracking low level actions (Figure (a) to
(b)). When low-level events detected to-
gether with the BPMN process state and
information entities state do not match
any state an alarm is raised (Figure (a) to
(c)).

BPMN Process 
State Information 

Informational 
Entities State 

Alarm! 
 Transition Pattern Not Found 

Event Sensor EveEv

Active Sensor 

(c) 

MOTIVATION

Even though no major cyber attack has
been reported to date, some attacks had al-
ready targeted Mass Transportation Infras-
tructures. Two examples of such attacks are
an attack using a virus named Sobig that shut
down the train signaling systems in Florida
[1], and another attack in Poland where a boy,
aged 14, de-railed four vehicles using a mod-
ified remote control [2]. Even though these
attacks have not had severe consequences,
they show how easy it is to cause major dis-
turbances in MTIs. Moreover, the sensitive
nature of these infrastructures and the evolv-
ing complexity and automation of the sys-
tems being deployed, while maintaining a lot
of legacy systems, makes them increasingly
susceptible to cyber attacks.

PROBLEM

Intrusion detection systems have been
used for a while. It has faced effectiveness
problems due to two main aspects:

Incapability to detect new threats;

Prohibitive amount of false alarms.
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BPMN EXTENSION MODEL

Business Processes are entities comprised by
key attributes that uniquely identify each in-
stance of a business process. Informational En-
tities are used to describe a real-world object
that can be uniquely identified. BPIDS Gate-
ways are extensions of the BPMN Gateways,
with the code needed to verify the gateway
condition. BPIDS Activities extend the BPMN
Activity to extract information from it and to
specify the conditions that must be met to in-
fer the activity execution. Business Rules de-
fine the conditions that must be validated when
some informational entity attribute is updated.
Hosts entities represent the low level moni-
tored entities. Application Service is defined
as a set of operations implemented and exe-
cuted by each Host that exposes it. Activity De-
tection Sensor element specifies the properties
of the intrusion detection sensor being used.

RESULTS

In order to assess the effectiveness of the
developed intrusion detection system, we
applied it to a demonstration environ-
ment, representative of part of a real-world
mass transport infrastructure. The demon-
stration environment consisted of a multi-
modal transportation terminal, combining
a suburban railway station, a metro sta-
tion, a ferryboat station and bus stops.
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We propose an approach based on information flows to highlight how a malicious
application corrupts an Android device. Basic attacks carried on by malicious
applications often consist in leaking sensitive data to remote entities. Different
works then focused on approaches to detect such attacks by analysing function
calls or the access and the use of sensitive data (e.g [1,2]). However, there exist
an other class of attack that threatens the integrity of the system itself or data
it contains (e.g modification of the content of sensitive files or installation of
new application). Such attacks tend to be overlooked and we propose here an
approach to easily detect and highlight them.

To highlight these attacks, we first monitor how information from an applica-
tion under analysis is disseminated in the whole system thanks to an information
flow monitor named Blare [3]. Blare monitors information flow between system
objects (process, file and socket) at system level and logs observed flow. From
the log, we build a System Flow Graph [4] that describes the observed flows
in a compact format. We then filter the edges of the SFG to only keep odd
flows. As Android applications are all built in the same way, they have common
behaviours, which means that some information flows they cause are the same
(e.g information flow with the system server process). By removing from the
SFG the edges that describe information flows that are also present in SFG of
benign applications, we therefore get the suspicious flows that can characterize
an attack. We test our approach on 4 pieces of malware publicly known for cor-
rupting Android devices and show that remaining edges of their SFGs describes
the attack they are carrying.
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Goal
Discover quickly how a device was corrupted
�Monitor information flows involving data from
applications under analysis
�Filter these flows to uncover the suspicious ones

Blare an information flow monitor
�Monitors information flow between system objects
(process, file and socket) thanks to tainting
�Developed as a Linux Security Module
�Uses LSM hooks to intercept syscalls and observes
information flows
�Logs any information flow involving tainted data
(hard to analyse as its size grows quickly)

System Flow Graph
�Describes in a compact and more human readable
way the information flows logged by Blare
�Directed graph G = (V,E)
�Each node represents a system object and has 3
attributes: type, name and identifier
�Each edge e from node v1 to node v2 represents a
unique information flow between the system objects
that v1 and v2 represent

Idea
Android applications share some common behaviours
as they are built in the same way. Therefore, some
of the information flows caused by Android applica-
tions are common between them. For instance, they
all exchange data with the system server process.

Approach
�Tag the .apk of the Android application to be
analysed
�Monitor and logs how information from this
application is disseminated thanks to Blare
�Build the corresping SFG
�Filter the edges of the SFG to keep only edges that
we do not see in SFGs of benign applications

Experiments
�Malware : DroidKungFu1, DroidKungFu2,
jSMSHider and BadNews
�Benign applications : 7 applications from Google
Play

Figure : An excerpt from the filtered SFG of a Bad News sample

Contact: firstname.lastname@supelec.fr
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Poster Abstract: Improving Intrusion Detection  
on SSL/TLS Channels by Classifying Certificates* 

Zigang Cao1,2, Gang Xiong2, Zhen Li2, and Li Guo2 

1 Beijing University of Posts and Telecommunications, Beijing, China 
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

xionggang@iie.ac.cn 

Abstract. There is no doubt that SSL/TLS is playing a very important role in 
today’s Internet security. However, cyber criminals are making use of the en-
cryption merit meanwhile to evade security inspections, posing a big challenge 
to intrusion detection systems. In view of this, we present a scheme to screen 
the evil SSL/TLS channels from massive network connections into a much 
smaller set by classifying server certificates. Combined with other information 
such as certificate attributes and visit counts, malicious connections can be fur-
ther identified. Compared with the statistical methods based on packet length, 
burst bytes or packet intervals, ours is more suitable for large data sets, offering 
a new practical perspective for SSL/TLS intrusion detection. 

1 Our Work 

In our measurement, we found that among billions of SSL connections in the real 
world, only a very small number of server certificates account for most of the total 
visits. Thus, we propose to identify malicious SSL sessions by certificate classifica-
tion, through which the majority of innocent connections can be excluded firstly, so 
the evil can be further dug out of the left much smaller set. 

First, we categorize the certificates into popular certificates and normal ones, of 
which the former appear the most frequently and they are marked as good. Then, the 
normal ones are further divided into the valid and the invalid. A certificate is valid 
only if it can be verified successfully. Afterwards, the valid are further sorted by vali-
dation type into extended validation, organization validation, and domain validation 
(DV), of which the DV is not secure enough. And the invalid are classified into three 
sub classes, namely the forged, the self-signed and others, in which “forged” means 
that the signature is invalid, and “self-signed” means it is a self-made root certificate.  

After classification, evil SSL conversations can be further identified out of the valid 
DV certificates and invalid ones largely, especially the forged and the self-signed. 
Experiment results on a campus network show that our scheme is able to identify 
forged popular certificates easily without verification or any feature signatures, just 
by certificate appearing counts and subject item comparison. 
                                                           
*  Supported by the National Science and Technology Support Program (No. 2012BAH46B02, 

No. 2012BAH45B01); the National High Technology Research and Development Program 
(863 Program) of China (No. 2011AA010703). 
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Poster Abstract: Using Financial Synthetic Data

Sets for Fraud Detection Research

Edgar Alonso Lopez-Rojas and Stefan Axelsson

Blekinge Institute of Technology (BTH)
{edgar.lopez,stefan.axelsson}@bth.se

Abstract. Fraud detection research in the financial domain suffers from
a serious problem which is the lack of public available data for the test-
ing, evaluation and comparison of results using standard data sets. This
problem is mainly due to onerous regulations, policies and the sensitivity
of financial transactions that stop researchers to share and publish the
result of their work.

Our aim is to address the problem of a lack of public data sets for fraud
detection research in each of these domains, by providing a standard
synthetic data sets as well as a method to first: replicate the normal
transactional behaviour of the customers and second: to generate fraud
scenarios such as money laundering, sales fraud (based on refunds and
discounts), and credit card fraud that allows researchers to test, share
and compare their methods. Public research concerning fraud detection
in the financial domains is limited to general methods which in most
cases can not be compared or their results independently replicated. As
mentioned, one major reason for this is the secrecy and sensitivity of the
customers data that is needed to perform the research.

We present a financial simulation framework that generates synthetic
data sets of three real case studies of financial services based on real world
data: Mobile Payments, Retail Stores, and Bank transaction systems.
Our financial simulation framework consists of three social simulators for
financial transactions that we named PaySim, RetSim, and BankSim. We
used for our simulators the paradigm of multi agent-based modelling to
represent the complexity of interactions between customers/clients and
staff/merchants. Using statistics and social network analysis (SNA) on
real data we can calibrate the relations between staff, merchants and
customers, and generate verifiable realistic synthetic data sets.

These simulators enable us to generate synthetic transaction data of
normal behaviour of customers, and also interesting known fraudulent
behaviour, which can be used to further advance fraud detection research,
without leaking sensitive information about the underlying data.

The generated data represents real world scenarios that are found in
the original data with the added benefit that this data can be shared with
other researchers for testing similar detection methods without concerns
for privacy and other restrictions present when using the original data.

We used the RetSim simulator to investigate if threshold based detec-
tion could keep the risk of fraud at a predetermined set level, and while
our results are preliminary, we argue that threshold based detection could
keep the risk of fraud at a predetermined set level.

A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 485–486, 2014.
c© Springer International Publishing Switzerland 2014
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Poster Abstract：Automatic Discovery for Common 
Application Protocol Mimicry* 

Quan Bai, Gang Xiong, Yong Zhao, and Zhenzhen Li 

Institute of Information Engineering,Chinese Academy of Sciences, Beijing, China  
xionggang@iie.ac.cn 

Abstract. With the development of Intrusion Detection Systems (IDS), some 
malicious applications begin to mimic common application protocol to get rid 
of detection. In the paper, we propose that we can automatic discover these pro-
tocol mimicry behaviours by measuring common applications and finding the 
general characteristics of their message structure. We formalize models and 
those who declare as common application protocol but do not match the general 
characteristics are recognized as mimicry. 

1 Introduction 

Mimicry of common application protocol is becoming more and more popular and 
brings great challenge to application recognition. Regular IDS can’t deal with this 
case and we need a new method. In this paper, we propose a method based on mea-
surement and statistical characteristics. Our approach is that, firstly we measure the 
traffic of a certain common application protocol; and secondly we summarize general 
characteristics of its message structure; finally those who declare as common applica-
tion protocol but do not match the general characteristics are recognized as mimicry. 

2 Our Work 

In our work, we take web crawlers as an example. We measured the traffic of Google 
crawlers in real network [1]. We summarized the information of each field and the 
order of them. That is:  HTTP message structure of Google crawler is in the order of: 

GETHostConnectionAcceptFromUser-AgentAccept-Encoding 

According to these characteristics, we found bogus behaviors of crawlers. And we 
think this method is useful to discover and verify other protocol mimicry behaviors. 

                                                           
*  Supported by the National Science and Technology Support Program (No. 2012BAH46B02, No. 

2012BAH45B01); the National High Technology Research and Development Program (863 Program) 
of China (No. 2011AA010703); the Strategic Priority Research Program of the Chinese Academy of 
Sciences (No. XDA06030200) . adfa, p. 1, 2014. © Springer-Verlag Berlin Heidelberg 2014 
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