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Abstract. Process discovery aims at building process models using in-
formation retrieved from logs. Process characteristics play a significant
role in the selection of a suitable process modeling language for describ-
ing process discovery results. Business processes characterized by high
variability, in which participants have a lot of autonomy and flexibility
in executing the process, are difficult to be described with procedural
process modeling languages, since they explicitly represent in a model
every possible path. Declarative languages, like Declare, alleviate this
issue by defining a set of constraints between activities that must not be
violated during the process execution instead of describing what to do
step by step. Recently, several process discovery techniques have been
proposed for extracting a set of Declare constraints from a log. However,
no one of these techniques allows the user to exploit the time perspec-
tive often available in a log to discover “time-aware” Declare constraints.
Timed Declare has already previously been introduced to monitor met-
ric temporal constraints at runtime. In this paper, we use this semantics
for discovering a set of Timed Declare constraints from an event log.
We have implemented the proposed approach as a plug-in of the process
mining tool ProM. We have validated the approach by using our plug-in
to mine two real-life event logs.

Keywords: Process Discovery, Metric Temporal Logic, Event Correla-
tions, Timed Declare.

1 Introduction

Process discovery is one of the three branches of the family of process min-
ing techniques together with conformance checking and process enhancement.
Through process discovery, it is possible to build from scratch a process model
describing the behavior of a business process as recorded in an event log. Re-
cently, several works have investigated advantages and disadvantages of using
procedural or declarative process modeling languages to describe the results of a
process discovery technique [13,14]. The results of these studies highlighted that
the dichotomy procedural versus declarative reflects the nature of the process
under examination. Procedural models like Petri nets, BPMN, and EPCs are
more suitable to support business processes working in stable environments, in
which participants have to follow predefined procedures, since they suggest step
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by step what to do next. In contrast, declarative process modeling languages,
like Declare, provide process participants with a (preferably small) set of rules
to be followed during the process execution. In this way, process participants
have the flexibility to follow any path that does not violate these rules.

Declare is a declarative language introduced in [2] that combines a formal
semantics grounded in Linear Temporal Logic (LTL) with a graphical represen-
tation for users.1 A Declare map is a set of Declare constraints each one with its
own graphical representation and LTL semantics (see [2] for a full overview of
Declare). Recently, several process discovery techniques have been proposed for
describing with a set of Declare constraints the behavior of a process as recorded
in an event log [6,7,11,10]. However, no one of these techniques allows the user
to extract “time-aware” Declare constraints from a log.

During the execution of a business process it is often extremely important to
meet deadlines and optimize response times. To this aim, a Declare map can
also include metric temporal constraints to guarantee the correct execution of a
process in terms of latencies (related to events that cannot occur before a certain
time, or must occur after a certain time) and deadlines (related to events that
cannot occur after a certain time, or must occur before a certain time).

Timed Declare has already previously been introduced to monitor metric tem-
poral constraints at runtime [16]. In this paper, we introduce an approach for
discovering a set of Timed Declare constraints that are satisfied in a given log.
When evaluating the satisfaction of a Timed Declare constraint, one often faces
ambiguities in connecting events that “activate” the constraint (activations) and
events that “fulfill” it (target events), since the activation of a constraint may
potentially be associated to multiple target events. For example, consider traces
T1 = 〈a, b, c, b〉 and T2 = 〈a, a, b, b〉 and the response constraint G(a → Fb),
meaning that if a occurs, then eventually b follows after a. It is unclear whether
to associate the activation a of the constraint at T1(1) with the occurrence of
the target b at T1(2) or T1(4). We face similar ambiguity for the two activations
of a in T2. If we want to discover Timed Declare constraints, we need to evaluate
the time difference between the occurrence of a and its corresponding target b.
A conservative approach, where we associate an occurrence of a with the closest
occurrence of b could negatively affect the discovery results and lead to incorrect
conclusions. Our proposed technique allows the user to guide the discovery task
through event correlations to correctly evaluate the metric temporal constraints
and to improve the quality of the discovered models.

We have implemented our proposed approach in a plug-in of the process min-
ing tool ProM.2 We have validated our discovery technique by using two real-life
logs provided for the 2011 and 2012 BPI challenges [1,8] pertaining to the treat-
ment of patients diagnosed with cancer in a large Dutch academic hospital and
to a financial process in a Dutch financial institute.

The remainder of this paper is organized as follows. Section 2 presents some
preliminaries about Declare, Timed Declare and event correlations. Section 3

1 In the remainder, LTL refers to the version of LTL tailored towards finite traces.
2 www.processmining.org

www.processmining.org
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presents our algorithms for discovering Timed Declare constraints. Section 4
presents the validation of the approach. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we introduce some preliminary notions. In particular, in Sec-
tion 2.1, we give an overview of the Declare language. In Section 2.2 we intro-
duce Timed Declare. In Section 2.3, we give a categorization of the correlation
mechanisms used in this paper.

2.1 Declare

Declare is a declarative process modeling language introduced by Pesic and van
der Aalst in [2]. A Declare map consists of a set of constraints which, in turn,
are based on templates. Templates are parameterized classes of rules and con-
straints are their concrete instantiations. Here, we indicate template parameters
with capital letters (see Tables 1 and 2) and real activities in their instantiations
with lower case letters (e.g., constraint G(a → Fb)). Templates have a user-
friendly graphical representation understandable to the user and their semantics
are specified through LTL formulas. Each constraint inherits the graphical rep-
resentation and semantics from its template.

For the sake of readability, in Tables 1 and 2, we use PLTL to define the
semantics of Declare constraints, i.e., LTL augmented with past operators. The
LTL rules used in this paper are constructed from propositional atoms by ap-
plying the future temporal operators X (next), F (future), G (globally), and
U (until) in addition to the usual boolean connectives. Given a formula ϕ, Xϕ
means that the next time instant exists and ϕ is true in the next time instant
(strong next). Fϕ indicates that ϕ is true sometimes in the future. Gϕ means
that ϕ is true always in the future. ϕUψ indicates that ϕ has to hold at least
until ψ holds and ψ must hold in the current or in a future time instant.

PLTL extends LTL by introducing past operators. The past operators we use
in this work are Y (yesterday), O (once), and S (since), which correspond to the
future operators X, F, and U respectively. At any non-initial time, Yϕ is true
if and only if ϕ holds at the previous time instant. Oϕ indicates that ϕ is true
at some past time instant (including the present time). ψSϕ is true if ψ holds
somewhere in the past and ϕ is true from then up to now.

Tables 1 and 2 show the PLTL semantics of the Declare constraints used in
this paper. Consider, for example, the response constraint G(a → Fb). This
constraint indicates that if a occurs, b must eventually follow. Therefore, this
constraint is satisfied for traces such as T1 = 〈a, b, c, b〉, T2 = 〈a, a, b, b〉, and
T3 = 〈b, b, c, d〉, but not for T4 = 〈a, b, a, c〉 because, in this case, the second a
is not followed by a b. Note that, in T3, the response constraint is satisfied in
a trivial way because a never occurs. In this case, we say that the constraint
is vacuously satisfied [9]. In [5], the authors introduce the notion of behavioral
vacuity detection according to which a constraint is non-vacuously satisfied in a
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Table 1. Semantics and graphical notation for positive relation constraints

constraint untimed semantics timed semantics notation

responded existence FA → FB G(A → (O[t1,t2]B ∨ F[t1,t2]B)) A
[t1,t2]•−−−− B

response G(A → FB) G(A → F[t1,t2]B) A
[t1,t2]•−−−� B

precedence G(B → OA) G(B → O[t1,t2]A) A
[t1,t2]−−−�• B

alternate response G(A → X(¬AUB)) G(A → X(¬AU[t1,t2]B)) A
[t1,t2]•===� B

alternate precedence G(B → Y(¬BSA)) G(B → Y(¬BS[t1,t2]A)) A
[t1,t2]
===�• B

chain response G(A → XB) G(A → X[t1,t2]B) A
[t1,t2]•=−=−=−� B

chain precedence G(B → YA) G(B → Y[t1,t2]A) A
[t1,t2]
=−=−=−�• B

Table 2. Semantics and graphical notation for negative relation constraints

constraint untimed semantics timed semantics notation

not responded existence FA → ¬FB G(A → (¬O[t1,t2]B ∧ F[t1,t2]B)) A
[t1,t2]•−−−−‖ B

not response G(A → ¬(FB)) G(A → ¬(F[t1,t2]B)) A
[t1,t2]•−−−�‖ B

not precedence G(B → ¬(OA)) G(B → ¬(O[t1,t2]A)) A
[t1,t2]−−−�•‖ B

not chain response G(A → ¬(XB)) G(A → ¬(X[t1,t2]B)) A
[t1,t2]•=−=−=−�‖ B

not chain precedence G(B → ¬(YA)) G(B → ¬(Y[t1,t2]A)) A
[t1,t2]
=−=−=−�•‖ B

trace if the trace contains at least one activation of the constraint. An activation
of a constraint in a trace is an event whose occurrence imposes, because of that
constraint, some obligations on other events in the same trace. For example, a
is an activation for the response constraint G(a → Fb), because the execution
of a forces b to be executed eventually.

In [7,11,10], algorithms for the discovery of Declare maps from event logs have
been presented. In these works different notions of constraint support have been
proposed. In this paper, we assume that the support of a constraint in a log is
the percentage of traces in the given log in which the constraint is non-vacuously
satisfied.

2.2 Timed Declare

We use Metric Temporal Logic (MTL) to define the semantics of Timed Declare
constraints. We deal with a fragment of MTL where all traces are finite [15]. In
Tables 1 and 2, we use the MTL future operators X[t1,t2], F[t1,t2], and U[t1,t2].
In addition we use the MTL past operators Y[t1,t2], O[t1,t2], and S[t1,t2]. Given
a formula ϕ and the current time instant t, X[t1,t2]ϕ means that the next time
instant exists and falls into the interval [t+ t1, t+ t2], and ϕ is true in the next
time instant. F[t1,t2]ϕ indicates that ϕ is true sometimes in the future in a time
instant belonging to the interval [t+ t1, t+ t2]. ϕU[t1,t2]ψ indicates that ϕ has to
hold at least until ψ holds and ψ must hold in a time instant belonging to the
interval [t+ t1, t+ t2]. Y[t1,t2]ϕ is true if ϕ holds at the previous time instant and
this instant belongs to [t−t2, t−t1].O[t1,t2]ϕ indicates that ϕ is true at some past
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time instant (including the present time) falling into the interval [t− t2, t− t1].
ψS[t1,t2]ϕ is true if ψ holds somewhere in the past in a time instant belonging
to the interval [t− t2, t− t1] and ϕ is true from then up to now.

Tables 1 and 2 show the MTL semantics of the Timed Declare constraints used
in this paper and their graphical notation. Consider, for example, the response
constraint G(a → F[t1,t2]b). This constraint indicates that if a occurs at a time
instant t, b must eventually follow at a time instant belonging to the interval
[t+t1, t+t2]. Note that negative constraints are used to model latency constraints,
i.e., constraints stating that at least a minimum amount of time is needed to
accomplish a certain operation [12]. For example, the not response constraint
G(a→ ¬(F[0,t1]b)) indicates that if a occurs at a time instant t, it takes at least
t1 time units to execute b (b cannot be executed in the time interval [t, t+ t1]).

2.3 Event Correlations

We use the term event correlation to indicate a mechanism to link two events in
a trace. Correlations are defined over event attributes and linked through rela-
tionship operators between them. For example, two events are correlated if they
act upon common data elements of the process or if they are executed by the
same resource etc. For a categorization of correlations we refer to [3] in which
the following types of correlations are defined: (i) Property-based correlation, i.e.,
events are classified based on a function operating on their attributes. For ex-
ample, all claim applications referring to an amount greater than 1000 euros are
grouped together; (ii) Reference-based correlation, i.e., two events are correlated
if an attribute of the first event (identifier attribute) and an attribute of the sec-
ond event (reference attribute) have the same value; (iii) Moving time-window
correlation, i.e., two events are correlated if they occur within a given duration
of one another (e.g., one hour).

In this paper, we use a variation of reference-based correlation according to
which two events are correlated if there is a function connecting an attribute of
the first event with an attribute of the second event. This function can include
operators such as greater than, less than, equal to, and not equal to. For example,
an event of producing a document is correlated to an event of checking it if the
resource that produces the document is different from the one that checks it.

To correctly associate an activation and a target of a given constraint, corre-
lations can be provided by a domain expert or, alternatively, they can be auto-
matically discovered from event logs (as presented in [4]). For discovering event
correlations from a log, in [4], the authors first generate all feasible correlations
for the constraint under examination, i.e., correlations between comparable at-
tributes of activations and targets of that constraint (comparable attributes are
attributes having the same data type). The “goodness” of a (feasible) correlation
is then evaluated based on its support.

In this paper, we define the support of a correlation (for positive relation
constraints) as the ratio between the number of activations that, through the
given correlation, can be linked to at least one target and the total number of
activations. For negative relation constraints, we define the support of a cor-
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relation as the ratio between the number of activations for which there is no
correlated target and the total number of activations. In this way, for negative
relation constraints, the support of a correlation is higher if it allows us to de-
couple activations and possible targets instead of connecting them. Note that, if
we define the support of a correlation in this way, the support of a correlation
evaluated for a negative relation constraint can be derived from the support
of the same correlation evaluated for the corresponding positive relation con-
straint. For example, if supportresponse(a,b)(corr) is the support in a log of a
correlation corr for a response constraint between activities a and b, we have
that supportnot response(a,b)(corr) = 1− supportresponse(a,b)(corr).

3 Discovering Timed Declare Constraints from Logs

In this section, we describe the proposed algorithms for the discovery of Timed
Declare constraints from event logs. Each of them can be used to discover con-
straints referring to different Declare templates. Every algorithm takes as input
a log to be processed. Moreover, the presented algorithms work on a given can-
didate constraint (without time information: the time intervals to be associated
to each candidate are determined in a later stage). Therefore, they assume that
a list of candidate constraints has been created beforehand. The list of candidate
constraints can include all the possible instantiations of a template with each
possible combination of event names in the given log (see [11]). This approach
can be optimized and the number of candidate constraints can be reduced by
using a seminal Apriori algorithm as presented in [10]. Every algorithm requires
as input also a correlation to link each activation of the candidate constraint
under examination with the corresponding target.

The algorithms produce as output the percentage of traces in the log in which
each candidate constraint is non-vacuously satisfied (the support of the candidate
constraint in the log) and a vector containing the time distances between each
activation and the corresponding target. The support value is used to filter out
candidate constraints that are non-vacuously satisfied in a low percentage of log
traces (with respect to a user-defined threshold). The time distances are used to
identify the time interval [t1, t2] characterizing the discovered metric temporal
constraint (see Section 3.4).

In the following sections, we describe the algorithms we use for the discovery
of positive relation constraints. The same algorithms can be used also for the
discovery of negative relation constraints taking into account that, as explained
in Section 3.4, the mechanisms for the definition of the time intervals are different
in the two cases.

3.1 Timed Response, Precedence, and Responded Existence

The algorithm presented in this section (Algorithm 1) can be used for the discov-
ery of timed response constraints. A similar algorithm (with small modifications)
is able to discover timed precedence and timed responded existence constraints.
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Algorithm 1. Discovery algorithm for timed response.
Input: log, the event log to be processed; (a, t), activation and target of a candidate constraint; corr a

selected correlation for linking each activation with the corresponding target

1 define vector timeDistances containing the time distances between each activation and the corresponding
targets

2 validTracesNumber := 0

3 foreach trace ∈ log do
4 define vector pendingActivationstrace containing events corresponding to pending activations in trace

trace
5 activated := false
6 foreach event ∈ trace do
7 if event.name = a then
8 activated := true
9 pendingActivationstrace.add(event)

10 if event.name = t then
11 foreach p ∈ pendingActivationstrace do
12 if isValid(corr, p, event) then
13 pendingActivationstrace.remove(p)
14 timeDistances.add(|p.timestamp − event.timestamp|)

15 if pendingActivationstrace.size = 0 && activated then
16 validTracesNumber + +

17 support := validTracesNumber/log.size

Output: support, the support of the candidate constraint; timeDistances

The inputs of this algorithm are an event log log, a candidate constraint with
activation a and target t and a feasible correlation corr. The outputs of the
algorithm are vector timeDistances containing the time distances between each
activation of the candidate constraint and the corresponding targets, and the
support of the candidate constraint support, i.e., the ratio between the number
of traces in which the constraint is non-vacuously satisfied (validT racesNumber)
and the total number of traces in the event log.

For each trace trace in log, pendingActivationstrace is a vector containing the
pending activations in trace for the candidate constraint under examination, i.e.,
the activations that do not have a corresponding target. For each event event in
trace, event is a pending activation if its event name is equal to a (event is an
activation and is not associated to any target yet). In this case event is added to
pendingActivationstrace and the constraint is activated in trace (lines 8 and 9).
On the other hand, if the event name of event is equal to t, event is a possible
target corresponding to one of the pending activations in pendingActivationstrace.
In this case, if a pending activation p in pendingActivationstrace can be correlated
to event through correlation corr (the algorithm checks if this is the case through
function isV alid), then p is removed from the set of pending activations and
the time distance between p and the corresponding target event is added to
timeDistances (lines 13 and 14). The candidate constraint under examination
is non-vacuously satisfied in trace, if, when all the events in trace have been
processed, the boolean variable activated is true (trace contains at least one
activation of the candidate constraint) and all the activations in trace have a
corresponding target (i.e., if pendingActivationstrace is empty).

The algorithm for the discovery of timed precedence constraints is similar to
the one described for timed response. The difference is that, for timed precedence
constraints, we iterate each trace in the event log (line 6) from the last event
to the first one. In the algorithm for the discovery of timed responded existence
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Algorithm 2. Discovery algorithm for timed alternate response.
Input: log, the event log to be processed; (a, t), activation and target of a candidate constraint; corr a

selected correlation for linking each activation with the corresponding target

1 define vector timeDistances containing the time distances between each activation and the corresponding
targets

2 validTracesNumber := 0

3 foreach trace ∈ log do
4 define vector pendingActivationstrace containing events corresponding to pending activations in trace

trace
5 define vector possibleTargetstrace containing possible target events corresponding to a pending

activation
6 violated := false
7 activated := false
8 foreach event ∈ trace do
9 if event.name = a then

10 activated := true
11 if possibleTargetstrace.size � 1 && pendingActivationstrace.size = 1 then
12 targetF ound := false
13 previousAct := element ∈ pendingActivationstrace
14 foreach p ∈ possibleTargetstrace do
15 if isValid(corr, previousAct, p) then
16 targetF ound := true
17 timeDistances.add(|previousAct.timestamp − p.timestamp|)

18 if !targetF ound then
19 violated := true

20 if possibleTargetstrace.size = 0 && pendingActivationstrace.size = 1 then
21 violated := true

22 if possibleTargetstrace.size � 1 then
23 pendingActivationstrace.removeAll()

24 possibleTargetstrace.removeAll()
25 pendingActivationstrace.add(event)

26 if event.name = t then
27 possibleTargetstrace.add(event)

28 if possibleTargetstrace.size � 1 && pendingActivationstrace.size = 1 then
29 targetF ound := false
30 previousAct := element ∈ pendingActivationstrace
31 foreach p ∈ possibleTargetstrace do
32 if isValid(corr, previousAct, p) then
33 targetF ound := true
34 timeDistances.add(|previousAct.timestamp − p.timestamp|)

35 if !targetF ound then
36 violated := true

37 pendingActivationstrace.removeAll()

38 if pendingActivationstrace.size = 0 && activated && !violated then
39 validTracesNumber + +

40 support := validTracesNumber/log.size

Output: support, the support of the candidate constraint; timeDistances

constraints, we iterate each trace in the log in both directions so that each
activation can have zero, one, or two possible targets. If there are no possible
target, there is a violation in the trace. If there is only one possible target we
evaluate the time distance between the activation and the corresponding target.
If there are two possible targets, we consider the one with the smallest time
distance from the considered activation.

3.2 Timed Alternate Response and Alternate Precedence

The algorithm presented in this section (Algorithm 2) can be used for the dis-
covery of timed alternate response constraints. In the same way as illustrated
for timed response and timed precedence constraints, also in this case a similar
algorithm is able to discover timed alternate precedence constraints.
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The inputs of this algorithm are an event log log, a candidate constraint with
activation a and target t and a feasible correlation corr. The outputs of the
algorithm are vector timeDistances containing the time distances between each
activation of the candidate constraint and the corresponding targets, and the
support of the candidate constraint support.

For each trace trace in log, pendingActivationstrace is a vector containing the
pending activations in trace for the candidate constraint under examination.
possibleTargetstrace is a vector containing the possible targets for the last pending
activation encountered in trace and added to pendingActivationstrace. For each
event event in trace, if the event name of event is equal to a, the constraint
is activated in trace (line 10). In this case, the algorithm checks if there is one
pending activation (previousAct) in pendingActivationstrace and there is at least
one possible corresponding target in possibleTargetstrace for this activation (line
11). If this is the case, the algorithm checks if previousAct can be correlated to
one of the possible targets in possibleTargetstrace (through function isV alid). If
previousAct has a correlated target, then the time distance between previousAct
and the corresponding target is added to timeDistances (line 17), otherwise a
violation is detected (line 19).

If event is an activation, there is already one pending activation in
pendingActivationstrace and there are no possible corresponding targets for this
activation (possibleTargetstrace is empty), then a violation is detected (line 21)
since an alternate response constraint does not allow two activations to occur
one after another without any target in between (see Table 1).

Finally, if event is an activation and event is preceded by at least one possible
target, then all the elements in pendingActivationstrace are deleted (line 23). In
all cases, when event is an activation, all elements in possibleTargetstrace are
deleted and event is added to pendingActivationstrace (lines 24 and 25). If event
is a target of the candidate constraint under examination, event is added to
possibleTargetstrace (line 27).

After that the last event in trace has been processed, the algorithm checks
again if there is still one pending activation in pendingActivationstrace with at
least one possible corresponding target in possibleTargetstrace. If this is the
case, the algorithm checks if the pending activation can be correlated to one
of the possible targets. The candidate constraint is non-vacuously satisfied in
trace, if, when all the events in trace have been processed, the boolean variable
activated is true (trace contains at least one activation of the candidate con-
straint), pendingActivationstrace is empty and the boolean variable violated is
false.

3.3 Timed Chain Response and Chain Precedence

The algorithm presented in this section (Algorithm 3) can be used for the discov-
ery of timed chain response constraints. A similar algorithm is able to discover
timed chain precedence constraints.

The inputs of this algorithm are an event log log, a candidate constraint with
activation a and target t and a feasible correlation corr. The outputs of the
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Algorithm 3. Discovery algorithm for timed chain response.
Input: log, the event log to be processed; (a, t), activation and target of a candidate constraint; corr a

selected correlation for linking each activation with the corresponding target

1 define vector timeDistances containing the time distances between each activation and the corresponding
targets

2 validTracesNumber := 0

3 foreach trace ∈ log do
4 define vector pendingActivationstrace containing events corresponding to pending activations in trace

trace
5 violated := false
6 activated := false
7 foreach event ∈ trace do
8 if pendingActivationstrace.size = 1 then
9 p := element ∈ pendingActivationstrace

10 if event.name = t then
11 if isValid(corr, p, event) then
12 timeDistances.add(|p.timestamp − event.timestamp|)
13 else
14 violated := true

15 else
16 violated := true

17 pendingActivationstrace.removeAll()

18 if event.name = a then
19 pendingActivationstrace.add(event)
20 activated := true

21 if pendingActivationstrace.size = 0 && activated && !violated then
22 validTracesNumber + +

23 support := validTracesNumber/log.size

Output: support, the support of the candidate constraint; timeDistances

algorithm are vector timeDistances containing the time distances between each
activation of the candidate constraint and the corresponding targets, and the
support of the candidate constraint support.

For each trace trace in log, pendingActivationstrace is a vector containing
the pending activations in trace for the candidate constraint under examina-
tion. For each event event in trace, if event is an activation, it is added to
pendingActivationstrace and the constraint is activated in trace (lines 19 and
20). If pendingActivationstrace contains an element, and event is a target event,
then the algorithm checks if the pending activation in pendingActivationstrace
can be correlated to event through correlation corr (the algorithm checks if
this is the case through function isV alid). If the two events can be correlated,
the time distance between the pending activation and the corresponding target
event is added to timeDistances, otherwise a violation is detected (line 14). A
violation is detected also if pendingActivationstrace contains an activation and
the current event event is not a target event (line 16) since according to the
semantics of the chain response, a target should immediately follow an activa-
tion. The candidate constraint is non-vacuously satisfied in trace, if, when all
the events in trace have been processed, the boolean variable activated is true,
pendingActivationstrace is empty and the boolean variable violated is false.

3.4 Time Intervals Identification

In this section, we describe how the time distances generated by the discovery
algorithm described so far can be used to identify the time interval [t1, t2] charac-
terizing the discovered metric temporal constraint. Suppose that dmin and dmax
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are the minimum and the maximum time distances between an activation and
the corresponding target of the candidate constraint under examination. Then,
if the candidate constraint is a positive relation constraint, we simply derive that
t1 = dmin and t2 = dmax.

Also in the case of a negative relation constraint, if an activation occurs at time
t all the possible targets for that activations occur at a time point belonging to
the interval [t+dmin, t+dmax]. However, in case of a negative relation constraint,
the constraint is valid outside this interval. Therefore, we can associate two
intervals to the candidate constraint (thus discovering two constraints from it),
i.e., [0, dmin[ and ]dmax,∞[.

To deal with cases in which logs contain noise, it is also possible to choose the
boundaries of the time intervals by removing outliers from the discovered set of
time distances. This can easily be done by removing time distances that deviate
more than a given threshold from the average.

4 Validation

The discovery algorithms presented in this paper have been implemented in a
ProM plug-in. The plug-in takes an event log and a set of correlations (one for
each candidate constraint) as input and produces a Declare map consisting of a
set of Timed Declare constraints. We have conducted our validation by applying
the implemented plug-in to the real-life event logs provided for the BPI challenges
2011 and 2012. In Sections 4.1 and 4.2, we present the two case studies.

4.1 A Case Study Based on the BPI Challenge 2012

The first case study we discuss is based on the application of the proposed ap-
proach to the event log provided for the BPI challenge 2012 [8] and taken from
a Dutch financial institute. The event log pertains to an application process for
personal loans or overdrafts. It contains 262,200 events distributed across 36
event classes (i.e., each event can be associated to one of 36 different possible
event names) and includes 13,087 cases. The amount requested by the customer
is indicated in the case attribute AMOUNT REQ. In addition, the log con-
tains the standard XES attributes for events: concept:name, lifecycle:transition,
time:timestamp, and org:resource.3 The event log merges three intertwined sub
processes. Therefore, in each case, events belonging to different sub processes
can occur. These events should be correlated with each other.

Fig. 1 shows an excerpt of the table that ProM generates and that contains
the correlations discovered from the log for each candidate constraint. In the
table, for each candidate constraint (identified through its Declare template,
its activation A and its target T ), a list of correlations is specified. For each
correlation, its support and degree of disambiguation is indicated. As well as the
correlation support, the degree of disambiguation is a metric that helps the user

3 XES (eXtensible Event Stream) is an XML-based standard for event logs proposed
by the IEEE Task Force on Process Mining (www.xes-standard.org).

www.xes-standard.org
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in understanding how good a correlation is. In particular, for each correlation, its
degree of disambiguation is defined as the ratio between the number of ambiguous
activations that can be disambiguated with the considered correlation and the
total number of ambiguous activations.

In this example, for each candidate constraint, we choose the correlation
“A.org:resource = T.org:resource” because, in all cases, this correlation has a
high support and a good degree of disambiguation. Therefore, we assume that
activation and target of a candidate constraint are correlated if and only if the
corresponding activities are executed by the same resource. Then, we discovered
timed response constraints with a minimum support of 30%.4

The plug-in allows the user to choose the time granularity to express the
boundaries of the discovered time intervals. In a first attempt, we have chosen
days as time granularity. The discovered map is shown in Fig. 2. From this map
it is evident that days is not the best time granularity since, in many cases,
with this granularity, the boundaries of the discovered time intervals are equal
to 0. Therefore, we tried to choose a finer granularity (hours). In Fig. 3, we can
see the result. The granularity of hours is clearly more suitable for this exam-
ple. In the discovered map, we can see that, for example, the maximum delay
between activation W Completeren aanvraag-complete and the corresponding
target W Nabellen offertes-start is of 719.52 hours (around 1 month). In some
cases, the two activities are executed in a time span smaller than 1 hour (the
delay between the two activities can be 0).

4.2 A Case Study Based on the BPI Challenge 2011

The second case study we present here is based on the application of the proposed
approach to the BPI challenge 2011 event log [1] pertaining to the treatment of
patients diagnosed with cancer in a large Dutch academic hospital. The event
log contains 1, 143 cases and 150, 291 events distributed across 623 event classes.
Each case in this event log is related to a different patient. We suppose, in
this case, that all the events in a single case are correlated to each other and,
for this reason, we adopt a conservative approach in the discovery of Timed
Declare constraints. Our plug-in supports this when the user does not specify
any correlation for a candidate constraint.

We discovered from this log timed responded existence constraints with a min-
imum support of 60%. The discovered map is shown in Fig. 4. The time granular-
ity chosen for this map is days. The map shows that, for example, the maximum
delay between activation administrative fee - the first pol and the corresponding
target First outpatient consultation is of 1,127 days (more than 3 years). In some
cases, the two activities are executed in the same day (the delay can be 0).

5 Conclusion

The recent contributions in the context of declarative process discovery do not
take the time dimension into consideration. In this paper, we present algorithms

4 The selected support threshold is low because the average support of the timed
response constraints discovered from this log is low.
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Fig. 1. Correlations selection

Fig. 2. Discovered timed response constraints from the log provided for the BPI Chal-
lenge 2012 (time granularity: days)

for discovering Timed Declare constraints from event logs. We use correlations
to connect each activation of a constraint with the corresponding target thus
improving the reliability of the discovered metric temporal constraints. The pro-
posed algorithms can also be used for discovering negative relation constraints.
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Fig. 3. Discovered timed response constraints from the log provided for the BPI Chal-
lenge 2012 (time granularity: hours)

Fig. 4. Discovered timed responded existence constraints from the log provided for the
BPI Challenge 2011 (time granularity: days)
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To this aim, we have extended the notion of correlation support also to cover
this group of constraints. Our evaluation using real-life logs demonstrates that
the proposed approach is applicable in real-life settings.
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