
197© Controlled Release Society 2015
P.V. Devarajan, S. Jain (eds.), Targeted Drug Delivery: Concepts and Design, 
Advances in Delivery Science and Technology, DOI 10.1007/978-3-319-11355-5_6

    Chapter 6   
 Hepatic Targeting: Physiological Basis 
and Design Strategy 

             Anisha     A.     D’Souza    ,     Vishvesh     M.     Joshi    , and     Padma     V.     Devarajan    

6.1             Introduction 

    The mammalian liver plays a stalwart role in the metabolism of carbohydrates, 
fats, and proteins and detoxifi cation of organic by-products, cellular debris, drugs, 
pesticides, xenobiotics, foreign particles, etc. from the systemic circulation. It is 
also involved in anabolism of cholesterol, steroid hormones, biochemicals, and pro-
teins. Being the largest and strategically located internal organ with a plethora of 
functions, it is prone to many contaminants, injuries, and disorders. Diseases affl ict-
ing the liver continue to be the fi fth most common cause of death and are ever- 
increasing [ 1 ]. Grave hepatic disorders range from liver fi brosis or cirrhosis, 
fulminant hepatitis or viral hepatitis (A, B, C, D, E, G), primary liver cancer, hepatic 
cholangiocarcinoma, severe congenital liver failures, metabolic genetic disorders, 
and hepatocellular carcinoma (HCC). HCC has one of the lowest (1-year) survival 
rates among all cancers [ 2 ] with about 5,00,000 new cases diagnosed every year, 
especially in developed nations [ 3 ]. While surgical interventions are resorted to in 
benign cancers, chemotherapy is the preferable treatment in cancers [ 4 ]. 

 Most drugs achieve high hepatic concentration after administration. However, 
drugs for treating liver disorders have often experienced circumscribed success with a 
high relapse rate, due to limited effi cacy and poor sensitivity at conventional doses. 
Dose escalation is often hindered by patient tolerability, hepatic and off- target safety 
concerns, and high resistance due to effl ux pumps (P-glycoprotein) which limit 
their effi cacy [ 5 ]. Moreover, different hepatic conditions obligate high degree of 
specifi city and accumulation within the proper intrahepatic cells for addressing 
optimal therapeutic potential. At the receptor level, the treatment varies with varying 
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harboring sites of disorders. This has fueled an exigent need for effective, safe, yet 
affordable liver targeted drug delivery systems. 

 The past two decades have seen an increase in nanotechnology based liver tar-
geted drug delivery, which relies on altered biodistribution for enhanced therapeutic 
effi cacy. The unprecedented development relies on the unique size and surface char-
acteristics, overcoming anatomical and physiological barriers coupled with enhanced 
penetrability. Enabling early diagnosis is yet another feature [ 6 ]. Nanoparticulates in 
the size range of 50–250 nm are easily accumulated in the liver [ 7 ]. Besides, engi-
neering of these nanoparticulates for site specifi c hepatic delivery is amenable. 

 The present chapter comprehensively reviews the liver architecture, various cell 
types, and approaches for targeted drug delivery to liver. Active and passive target-
ing strategies with a focus on the hepatic receptors are detailed.  

6.2     Liver Architecture: Normal and Pathological State 

 The liver is a histologically complex organ with four types of substantial target 
cells—hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate 
cells. The histological unit of the liver is the lobule. Primarily, about 80 % of the 
liver comprises parenchymal cells (PC) or hepatocytes (Fig.  6.1 ) [ 8 ]. The hepato-
cytes and discontinuous hepatic sinusoidal endothelial cells (SEC) are physically 
demarcated by the space of Disse also known as peri-sinusoidal space containing 
dispersed fat containing lipocyte, or hepatic stellate cells (HSC). Plasma is preferen-
tially fi ltered through the sinusoids into the space of Disse, and provides body lymph. 

  Fig. 6.1    Pictorial representation of a liver lobule       
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Hence, exchange of nutrients, proteins, and wastes between hepatocytes and blood 
occurs in this microenvironment of space of Disse. In obliteration of this space as in 
alcoholic liver diseases, uptake by hepatocytes is hindered. The widened space of 
Disse increases resistance to sinusoidal blood fl ow thereby raising portal pressure 
[ 9 ]. The Kupffer cells (KC) or the resident non-parenchymal liver macrophages 
(~18 %) are located along the luminal side of the EC in the sinusoidal area with no 
specialized contacts [ 10 ]. Also located on the endothelial lining are the pit cells that 
correspond to large granular lymphocytes with natural killer activity. The RES (retic-
uloendothelial system) of liver consists of SEC and KC [ 11 ,  12 ]. The liver receives 
oxygen rich blood through the hepatic artery and hepatic portal vein (shunted capil-
laries from spleen and intestine). The space connecting the biliary ductules and hepa-
tocytes is the Canal of Hering [ 13 ]. Canal of Hering plays an important role in 
carcinogenesis [ 14 ].  

6.2.1     Reticuloendothelial System (RES) Cells of the Liver 

 Reticuloendothelial system (RES) is a part of human body defense, derived from 
bone marrow contributing to both nonspecifi c and specifi c immunity. Till recently 
the RES was considered synonymous with the mononuclear phagocytic system 
(MPS). However, it has now been established that RES constitute both wandering 
and sessile phagocytic cells, e.g., monocytes, SEC, KC, polymorphonuclear leuco-
cytes, dendritic cells, histiocytes. whereas the MPS is restricted only to macro-
phages like KC. The role of the liver RES can be summarized as follows:

•    Engulfment and ingestion (phagocytosis) of abnormal cells, pathogens and foreign 
substances.  

•   Presentation of antigens or foreign invaders to lymphocytes which secrete 
antibodies.    

6.2.1.1     Kupffer Cells (KC) 

 KC form only 6.5 % of liver volumes, but contribute to 80–90 % of tissue macro-
phages present in the human body [ 15 ]. KC are found in high number in rats over 
~20 months old [ 16 ] following partial hepatectomy, or a single intravenous injection 
of zymosan [ 17 ] and in alcohol related hepatitis and liver diseases [ 18 ]. Depletion of 
KC is seen on administration of gadolinium chloride [ 19 ], clodronate liposomes [ 20 ], 
and in HCC [ 21 ]. 

 Phagocytosis of IgG-coated erythrocytes also decreases the complement receptor 
of KC [ 22 ]. KC exhibit abundant lysosomes and pronounced phagocytosis as they are 
specialized macrophages of the reticuloendothelial system (RES). The typical macro-
phage activity of KC plays a crucial role in innate immune defense, ischemia, resec-
tion, acute and chronic responses to toxic compounds and removal of particulate, 
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damaged debris, bacterial and viral infections, endotoxins, etc. [ 23 ]. Activation of KC 
produces pro-infl ammatory mediators, e.g., nitric oxide, prostanoides, signaling 
molecules (cytokines, TNF-alpha), macrophage colony- stimulating factor, reactive 
oxygen species, other growth factors (innate immune defense) and prevents liver 
infl ammation [ 15 ]. Balance of these secretions is necessary to maintain a harmonious 
environment for the hepatic cells and the extracellular matrix. Exposure to lipopoly-
saccharide endotoxins leads to damage of hepatocytes and liver injury [ 24 ]. KC is 
responsible for pathogenesis of non- alcoholic steatohepatitis, viral hepatitis, fi brosis, 
intrahepatic cholestasis, alcoholic liver disease, rejection of liver during liver trans-
plantation, etc. [ 18 ]. Besides macrophagic activity, KC plays a key role in arresting 
circulating tumor cells and controlling metastasis [ 25 ] as well as in the clearance of 
erythrocytes by scavenger receptors [ 26 ].  

6.2.1.2     Sinusoidal Endothelial cells (SEC) 

 The roles of KC and SEC exhibit some overlap and are at times controversial [ 11 ,  12 ]. 
SEC are considered dormant of phagocytosis; however, on impairment of KC, SEC 
acquire phagocytotic competence. SEC constitutes about 40 % of hepatic cells, and 
represents a barrier between blood and hepatocytes. SEC form small fenestrations 
(50–200 nm)and are grouped together to form sieve plates permitting fi ltration, thereby 
allowing diffusion of many substances but not of chylomicron size (80–500 nm) [ 27 ]. 
Compared to KC, SEC uptake colloids of size <0.23 μm or soluble materials, while KC 
can take up larger particles up to 15 μm [ 28 ]. However, impairment of KC facilitates 
uptake of large particles by SEC [ 11 ,  12 ]. Contrary to the above, colloidal carbon is 
reported to preferentially accumulate in KC upon intravenous injection. Smaller col-
loid particles fail to reach SEC due to aggregation in plasma or adherence to platelets 
resulting in their phagocytosis by KC [ 29 ]. In non-alcoholic fatty liver disease, simple 
infi ltration of fat and chylomicrons is enhanced and accumulated in liver. Liver SEC 
exhibit huge receptor endocytotic capacity for extracellular matrix components, e.g., 
hyaluronic acid, collagen (especially in SEC not expressing Endo180) and play a major 
role in metabolism of the extracellular matrix [ 30 ,  31 ]. Damage to SEC is associated 
with graft versus host disease, veno-occlusive disease and sepsis [ 32 ]. Deposition of 
extracellular matrix leads to thickening of SEC causing defenestration of SEC fol-
lowed by fi brosis. Overall, SEC plays an important role in regulation of hemostasis, 
infl ammatory reactions, microcirculation, and immunity [ 33 ,  294 ].  

6.2.1.3     Hepatic Stellate Cells (HSC) (Ito Cells or Lipocytes) 

 HSC house 80 % of retinoid found in the entire body. Cellular retinol-binding pro-
tein, type 1 (CRBP) binds to retinol and undergoes receptor mediated endocytosis 
of the complex complex containing retinol and Retinol Binging Protein (RBP), to 
maintain plasma retinol [ 34 ]. Besides these, platelet-derived growth factors, epider-
mal and fi broblast activation protein, adhesion molecules, cytokines, vascular cell 
integrins, etc. activate HSC [ 35 ]. 

A.A. D’Souza et al.



201

 Under normal physiological conditions, HSC are in the quiescent state [ 36 ]. In the 
activated state they act as antigen presenting cell and stimulate proliferation of natural 
killer T cells [ 37 ]. HSC secrete fi bronectin and vascular endothelial growth factor 
stimulating production of nitric oxide. As a result retinol is lost from the cell and 
HSC undergo morphological change. This leads to increased proliferation and trans-
differentiation to fi brogenic myofi broblast-like cells [ 38 ] which secrete collagen scar 
tissue and fi brogenic and infl ammatory cytokines (extracellular matrix). Fibrosis and 
cirrhosis therefore result [ 39 ].  

6.2.1.4     Pit Cells/Large Granulated Lymphocytes 

 Pit cells, large granulated lymphocytes are present in lower numbers, approximately 
10 % of KC. They function as natural killer cells. These cells are 0.2–0.5 μm in 
diameter and majorly contain acid phosphatase. Pit cells possess much higher cyto-
toxic activity and higher grade of activation with diverse immune phenotypic fea-
tures. Situated in the sinusoidal lumen, their cytoplasmic processes adhere to KC 
and with microvilli of hepatocytes through the endothelial sieve. When triggered by 
biological response modifi ers, proliferation of pit cells occurs with migration 
towards the Space of Disse to exhibit viricidal activity. Interleukin-2 released during 
viral infections and neoplasms is also known to trigger such transit [ 40 ]. Pit cells 
exhibit spontaneous antitumor activity by adhering to tumor cells [ 41 ] and also kill 
hepatitis virus-infected cells [ 42 ].   

6.2.2     Non-reticuloendothelial System Cells (RES) of Liver 

6.2.2.1     Hepatocytes 

 Hepatocytes are principally involved in the metabolism of carbohydrates, fat, and 
proteins as well as in secretion of bile, clotting factors, and cholesterol and protein 
transporters. They comprise ~80 % of liver volume with distinct nucleoli, both rough 
and smooth endoplasmic reticulum, mitochondria, and Golgi apparatus [ 43 ]. These 
highly metabolic active cells break down toxic chemicals, drugs and hormones which 
are easily eliminated from circulation. This is also known as “fi rst pass effect.” 
Hepatocytes lining the bile canaliculi possess numerous Golgi vesicles. Hepatocytes 
are critical in synthesis of molecules supporting homeostasis of glucose and choles-
terol and maintaining energy levels. They are storage sites for glucose, vitamins 
(A, D, E, K, folate, B12), and minerals (Cu, Fe). Metabolic activities in the liver 
lobule although compartmentalized are highly integrated. The periportal hepato-
cytes involve themselves in gluconeogenesis and glycogenolysis, while the centrol-
obular hepatocytes are responsible for glycogen synthesis and glycolysis. The 
glutamine synthetase positive centrolobular hepatocytes are involved in metabolism 
of ammonia and the periportal hepatocytes are responsible for removal of ammonia. 
The microenvironmental signal for the differential positions is the differences in 
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oxygen gradient [ 44 ]. Hepatocytes are well differentiated with high and unlimited 
capacity of replication and longevity. The rapid growth of liver (60–70 %) after 
resection is mainly dependent on hepatocyte proliferation and hyperplasia [ 45 ]. 
Extensive proliferation of hepatocytes and cellular damage is observed in liver injury, 
hepatocellular carcinoma, chronic hepatitis, and exposure to certain chemicals [ 46 ] 
and continues till cirrhosis. Decreased hepatocyte number is seen in chronic con-
sumption of ethanol [ 47 ], decreased hepatocyte growth factor activity and impaired 
liver regeneration, ischemia–reperfusion, etc. [ 48 ].  

6.2.2.2     Biliary Cells: Cholangiocytes 

 The biliary cells are a part of hepatic cell lineage developed during embryogenesis 
along with hepatoblasts and form 1 % of the liver [ 49 ]. They exhibit heterogeneity 
in both morphological functions, extending from the liver hilum to the bile duct. 
The function and phenotype properties vary with hepatocytes though derived from 
the same lineage. The biliary epithelial cells maintain contact with the hepatoblasts 
and express markers for hepatocytes (albumin and alpha-fetoprotein) and bile duct 
epithelium (cytokeratins 7 and 19, carcinoembryonic antigen, carboanhydrase, glu-
tamyl transpeptidase) [ 14 ,  40 ]. They regulate bile formation, liver infl ammatory 
process, fi brogenesis, and angiogenesis. Bile duct cells are affected in bile duct 
cancer (cholangiocarcinoma) predominantly observed in women [ 50 ].  

6.2.2.3     Stem Cells 

 Recently, an unsettled discussion has been the detection of progenitor cells/ hepatic 
stems. The origin of these cells at the junction of the hepatic cords (Canal of Hering) 
and bile ducts has been debated as either migration from bone marrow to liver or 
being the real hepatic resident cells [ 51 ]. Stem cells are non-specialized cells with 
the abilities of self-renewable, limitless proliferation and resistance to chemother-
apy. These stem cells generate oval cells on exposure to carcinogens with dual char-
acteristic of hepatocyte and biliary cells, bipotential progenitor cells, which can 
generate hepatocytes and bile duct cells when the hepatocytes and cholangiocytes 
fail to regenerate [ 14 ]. Mutations in the stem cells are suggested to be responsible 
for growth and maintenance of cancer [ 52 – 54 ]. Research in hepatic stem cells is in 
its infancy with size and morphology yet not clear.    

6.3     Hepatic Targeting 

 Targeting to the liver can be achieved through direct intraportal, intra-tumoral, 
intra- arterial route injection. Direct administration to the site prevents unnecessary 
exposure to other non-target organs. Retrograde intrabiliary infusion for genetic 
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delivery of nanoparticulates or complexes has been one way wherein the hepato-
cytes could be specifi cally targeted easily via the biliary system [ 55 – 57 ]. The entire 
process necessitates the need for cannulation [ 58 ]. Targeting to the liver could be 
achieved by generalized organ based targeting or could be directed to one or more 
cell types detailed above. Approaches to target to the liver would essentially be 
dictated by the cells being targeted and could be achieved using two strategies, 
active or passive targeting. The practical approaches for passive and active targeting 
to the liver are detailed below. 

6.3.1      Passive Targeting 

 Passive targeting relies on the basic defense mechanism of the RES to target foreign 
invaders like bacteria, viruses, etc., and this strategy can be widely explored for 
conditions wherein the RES is the target site of action [ 59 ,  60 ]. Understanding the 
conditions that trigger such targeting provides useful information to design passive 
targeting strategies outside the RES. The processes responsible for RES uptake are 
opsonization and phagocytosis. 

6.3.1.1     Opsonization and Phagocytosis 

 Opsonization is fouling of invading particulates by deposition of plasma proteins 
mainly fi brinogens, fi bronectin, lipoproteins, etc. [ 61 ]. Once opsonized, the foreign 
object or nanoparticulates are activated, recognized, and engulfed by macrophages 
via phagocytosis [ 61 ]. Opsonization of particulates by complements (C3, C4, and C5) 
and immunoglobulins makes the particulates more recognizable by the KC. 
Phagocytosis is initiated by attachment of the foreign body with the KC, followed 
by invagination and spreading of cell membrane covering the particle to form a 
vacuole called phagosome. Phagosomes coalesce with intracellular organelles to 
mature into phagolysosomes. Phagolysosomes have an acidic environment with 
many digestive proteins which fi nally degrades the internalized material. 
Phagocytosized material is eliminated by exocytosis. In case the particulate cannot 
be digested, it remains sequestered in residual bodies within the cell. The process of 
phagocytosis can be explained as given in Fig.  6.2 .  

 Phagocytosis is a nonspecifi c uptake mechanism infl uenced by many factors 
such as shape, size, charge, rigidity, etc. [ 62 ].

    1.    Particle size 
 Size and radius of particles affect the biodistribution profi le and internalization 
by KC. Optimal phagocytosis occurs with particles of 1 and 3 μm. Smaller par-
ticles (<35 nm diameter) escape the interaction contacts with KC but are easily 
removed by the kidney and provide more easy access to hepatocytes [ 63 ]. 
Nanocarriers with a particle size limit of 80 nm have physical access to hepato-
cytes [ 64 ]. Targeting to hepatocytes necessitates design particles of less than 100 nm 
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to diminish KC uptake. Large sized rigid particulates up to a size of 20 μm or 
those with three times the volume of macrophages are removed by the RES 
system, typically liver and spleen macrophages [ 65 ,  66 ]. Excessively larger 
particles cannot be internalized easily as it requires strong and extensive cyto-
skeleton remodeling [ 67 ]. The upper size limit for phagocytosis has been deter-
mined around 20 μm in vitro or whenever the size exceeds more than three times 
than that of KC [ 68 ]. Liu et al. [ 69 ] investigated the biodistribution of different 
sized (30–400 nm) liposomes. Particles greater than 250 nm in size irrespective 
of PEGylation are rapidly removed from the RES [ 70 ]. Excessive and maximum 
stretching of KC membrane causes frustrated phagocytosis wherein the system 
is not fully engulfed [ 71 ].   

   2.    Surface charge 
 Cationic nanoparticulates with a zeta potential >25 mV amplify complement 
activation and deposition of opsonins than those below 15 mV [ 72 ,  73 ]. 

  Fig. 6.2    Different uptake mechanisms for particles (reproduced from [ 279 ])       
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Self- aggregation and opsonization of nanoparticulates with anionic serum protein 
causes passive accumulation in the RES cells. Neutral charged nanocarriers 
decrease the KC uptake [ 74 ]. Positively charged nanoparticles therefore exhibit 
a higher cell uptake than hydrophilic neutral or negatively charged particles [ 75 ]. 
Long half-life of anionic carriers could be due to less opsonin adsorption [ 76 ]. 
Intravenous administration of extracellular superoxide dismutase plasmid as 
polycationic liposome resulted in reduced peroxidation of lipids and enhanced 
levels of hepatic glutathione and serum superoxide dismutase [ 77 ]. Coatings of 
hyaluronic acid prolonged circulation times [ 78 ]. Nucleic acids have been suc-
cessfully delivered to hepatocytes through cationic and PEGylated liposomes 
(80–100 nm) with higher suppression of HBV, attributed to longer half-life of 
nucleic acids [ 79 ].   

   3.    Particle shape 
 The effect of shape on phagocytosis has been recognized and particle shape has 
been recently reported as an infl uencing factor for MPS uptake [ 80 ,  81 ]. The 
ability of irregular shaped polymer–lipid hybrid nanoparticles (LIPOMER) to 
bypass the KC and accumulate in the spleen has been demonstrated (~400 nm) 
[ 82 ]. Non-spherical shaped particles bypassed phagocytosis due to incomplete 
actin structure formation. Uptake of rod shaped particles is unachievable if they 
macrophages attack them on their major axis [ 81 ]. Likewise oblate (disk-like) 
particles effectively adhered to cell surfaces compared to spherical particles of 
comparable volume to bypass phagocytosis [ 83 ]. High aspect ratios (i.e., ratio of 
larger surface dimension over smaller surface dimension) hinder actin mem-
brane spreading and hence internalization [ 67 ]. Spherical nanoparticulates of 
sub 100 nm displayed higher uptake than rod shaped particles [ 84 ].   

   4.    Flexibility and deformability 
 The effect of fl exibility and deformability on uptake by macrophages is also 
cited [ 85 ]. Stiffness of the particles infl uences the shape of phagocytic cup 
formed after activation of actin recruitment [ 67 ]. Particles should be either small 
or deformable to be able to penetrate through sinusoidal fenestrations for hepa-
tocyte targeting. Reports of deformable nanoparticulates sized 400 nm being 
extravasated via forced extrusion mechanism bypassing KC and RES cells 
enabled localization in the hepatic parenchyma [ 86 ]. Fc-receptor mediated 
phagocytosis internalizes large rigid opsonized particles preferentially over 
softer particles. It infl uences the activation of actin recruitment to shape the 
phagocytic cup [ 87 ].   

   5.    Hydrophilicity 
 Particles with a hydrophobic surface are rapidly removed from circulation. 
PEGylation masks the particle appearing more like water body and prevent RES 
uptake [ 74 ]. Surface modifi cation with hydrophilic coatings enables particles to 
masquerade as water bodies and by pass the RES. The hepatic B virus is consid-
ered to be a best example of stealth, as it escapes the RES [ 88 ]. PEGylated 
tamoxifen nanoparticles bypassed the liver compared to non-PEGylated 
nanoparticles [ 89 ]. Hydrophilic coating recommended to enable decreased KC 
uptake with higher parenchymal uptake include dextran, phosphatidylinositol, 
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monosialoganglioside, pullulan, poloxamers, polyvinylpyrrolidone, and cellulose 
derivatives [ 90 – 92 ]. This is the popularly known “Stealth” technology. Stealth 
technology can be exploited for effective delivery of drugs to the liver in infec-
tions and infl ammations. Under such stress, increase in vascular permeability or 
increase in dimension of fenestrations enable leukocyte extravasation and accu-
mulation at the infl amed site. Thus, particulates of lower dimensions can easily 
pass through these pores which are generally inaccessible.    

6.3.2        Active Targeting 

 In active targeting, therapeutics are transported selectively and specifi cally to rele-
vant cells with the help of ligands through receptor mediated endocytosis [ 93 ] or 
through stimuli responsive nanocarriers, e.g., temperature, ultrasound, magnetic 
fi eld [ 94 ]. Ligands such as carrier proteins, metabolites, saccharides, peptides, vita-
mins, lectins, hormones, antibodies, aptamers, neurotransmitters, etc. are grafted on 
nanoparticulates and thus selectively target specifi c receptors. Addressing drug 
delivery systems can prevent non-desired accumulation in the body and exert pre-
cise effects especially on cells with low expression [ 95 ]. Designing strategies to 
target receptors thus holds intriguing promise in therapeutic interventions, bypass-
ing multidrug resistance [ 96 ]. 

 Delivery of charged molecules and genetic materials intracellularly is better facili-
tated by nanoparticulates attached with fusogenic agents or ligands for active targeting 
[ 97 ]. Besides, the higher the valency of binding, the higher the binding potential [ 98 ]. 
Readers are requested to make a note that the receptors dealt below are mostly trans-
membrane in nature rather than intracellular receptors as they would play an impor-
tant role in transportation of carriers to intracellular environment of cell.  

6.3.3     Receptor Mediated Active Targeting 

 Different receptors are present on cell membranes responsible for specifi c interac-
tion with neighboring cells. These receptors also facilitate specifi c interaction with 
carrier system. Receptor mediated endocytosis follows adsorptive pinocytosis. 
Mechanisms of binding and internalization vary from clathrin-mediated endocyto-
sis, caveolae-mediated endocytosis and clathrin- and caveolae-independent endocy-
tosis depending on the size of the endocytic vesicle, the nature of the cargo and the 
mechanisms of vesicle formation [ 99 ]. For details on these uptake mechanisms 
readers are directed to the following references [ 91 ,  100 ,  101 ]. Macropinocytosis is 
a transient process while micropinocytosis (clathrin- dependent, caveolae mediated, 
and clathrin- and caveolae-independent endocytosis) is a constitutive pathway. 
Clathrin-coated vesicles and macropinosomes fuse with endolysosomes whereas 
caveolae-coated vesicles can escape endolysosomes and lead to direct exocytosis [ 102 ]. 
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Several endocytotic mechanisms often take place simultaneously [ 91 ]. Clathrin-
mediated endocytosis is one of the best characterized and widely studied endocytosis 
pathways. The best known receptors adopting this mechanism are ASGP-R, low 
density lipoprotein receptor, epidermal growth factor receptor (tyrosine kinase 
receptor), β2-adrenergic receptors, etc. 

 Clathrin-mediated endocytosis a common pathway for the internalization of a 
variety of ligand–receptor complexes. These processes are relatively slower than 
that of phagocytosis. As for phagocytosis, binding of ligand to the receptor is also 
dependent on size, geometry of ligand, charge, density of ligands, etc. [ 103 ]. Various 
receptors found on different types of liver cells are summarized in Table  6.1 .

   Table 6.1       Receptors on hepatic cells and their ligands   

 Receptor  Ligand  References 

  Kupffer cells  
 Mannose/ N -acetylglucosamine 
receptors 

 Mannose and  N -acetylglucosamine  [ 280 ] 

 Fucose recognition receptors  Fucose  [ 105 ,  149 ,  281 ] 
 Fc receptors (FcγII-B2)  Antibodies/IgG  [ 282 ,  283 ] 
 Scavenger receptors (SR-BI, 
MARCO, dSR-C1, CD36, 95 kDa 
receptor Macrosialin) 

 Modifi ed or acetylated LDL, 
polyanionic, lipopolysaccharides 

 [ 113 ,  284 ,  285 ] 

 Cannabinoid receptors (CB2)  Endocannabinoid  [ 195 ] 
 LDL receptors  LDL  [ 179 ,  286 ] 
 Fibronectin receptors  [ 287 ] 
  Sinusoidal Endothelial cells  
 Scavenger receptors (SR-AI, AII, 
B, H) 

 Oxidized LDL, polyinosinic and 
polyguanosinic acid, polyanionic ligands 

 [ 288 ,  289 ] 

 Mannose receptors/ N -acetyl 
glucosamine receptors 

 Mannose, lysosomal enzymes, tissue 
plasminogen activator, immune complex 

 [ 11 ,  12 ,  31 ] 

 Fc receptor  Antibodies/IgG  [ 119 ,  290 ,  291 ] 
 Stabilin receptor  Hyaluronic acid, chondroitin sulfate  [ 289 ,  292 ] 
 Collagen receptor  Denatured collagens  [ 40 ] 
 Laminin receptor  Laminin/nidogen  [ 40 ] 
  Hepatic stellate cells  
 Retinol-binding protein receptor  Retinol  [ 187 ] 
 Cytokine receptors  –  [ 35 ,  293 ] 
 Transferrin receptor  Transferring  [ 294 ] 
 Growth factors—platelet-derived, 
cell–matrix interactions, 
epidermal and fi broblast 

 C*SRNLIDC* peptide, Arg-Gly- Asp 
(RGD) peptide 

 [ 299 ] 

 Tyrosine kinase receptors  –  [ 295 ,  296 ] 
 Uroplasminogen receptors  –  [ 297 ,  298 ] 
 Vasopressin receptors  [ 294 ,  299 ] 
 Integrin/complement receptors 
(CR1, CR3, CR4 C3b and C1q) 

 Opsonized components  [ 22 ,  300 ,  301 ] 

(continued)
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6.3.3.1       Kupffer Cells 

     (a)    Mannose receptors or  N -acetyl glucosamine receptor/GlucNAc R 
 Mannose/ N -acetylglucosamine receptor recognizes and clears off glycoproteins 
with mannose, glucose, and N-acetylglucosamine residues in exposed positions 
regardless of SEC and Kupffer cell. Mannose receptors are major receptor 
responsible for removal of denatured collagen from blood [ 31 ]. Mannosylated – 
human serum albumin selectively targets the KC and the EC [ 104 – 106 ]. Anti-
infl ammatory actives such as dexamethasone, immunosuppressive, enzymes like 
superoxide dismutase in chronic or acute hepatic infl ammatory disorders, alco-
hol-induced hepatitis have been actively targeted to KC through mannose recep-
tors [ 106 ,  107 ]. A drawback of targeting mannose receptors is activation of 
signaling processes sensitizing the immune system [ 108 ,  109 ]. Genetic delivery 
through mannose receptors have also been reported [ 93 ]. Though mannose 
receptor possesses eight carbohydrate recognition domains, only one is actively 
involved in binding. Mannose receptors differ from ASGP-R receptors in terms 
of binding. High mannose glycans are poor ligands for the mannose receptor. 
Liposomes possessing mannosylated ligands have exhibited enhanced target-
ing to macrophages, both in vitro and in vivo, than the non- ligand ones [ 110 ]. 
Lei Dong mentions the presence of one more macrophage lectin β-glucan receptor 
which binds glucose or glucan polymers. Hence, chitosan, a glucosamine poly-
mer has considerable affi nity for macrophages [ 111 ].   

   (b)    Fucose receptors 
 Fucose receptors are responsible for clearance of glycoproteins bearing terminal 
fucose sugar. In vitro studies revealed that fucose and mannose receptor both 

Table 6.1 (continued)

 Receptor  Ligand  References 

  Hepatocytes  
 Asialoglycoprotein receptors  Galactose terminated glycoproteins, 

arabinogalactan, pullulan, sitoG 
 [ 146 ,  302 ] 

 Glycyrrhizin(GL)/glycyrrhetinic 
acid (GA) receptors 

 Glycyrrhizin, glycyrrhetinic acid  [ 303 ] 

 HDL receptors  High density lipoprotein  [ 304 ] 
 LDL receptors  Low density lipoprotein  [ 305 – 307 ] 
 Scavenger receptors (SR-BI, 
CD36) 

 Native and modifi ed lipoproteins, 
anionic phospholipids, apoptotic cells 

 [ 308 ,  309 ] 

 Transferrin receptors  Transferrin and its derivatives  [ 310 – 312 ] 
 Insulin receptors  Insulin analogues  [ 313 ,  314 ] 
 Ionotrophic purinergic receptors 
(P2X) 

 –  [ 315 ] 

 Glucagon-like peptide-1 receptor 
(GLP-1) 

 Exendin-4  [ 202 ] 

 Cannabinoid receptors (CB1)  Endocannabinoids  [ 195 ,  316 ] 
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regulate uptake of fucosylated BSA. Nevertheless, fucosylated BSA is more 
Kupffer cell-selective because it exhibited a lower sinusoidal endothelial cell 
uptake than mannosylated BSA [ 105 ]. Fucosylation is more commonly explored 
in diagnosis than in therapeutics [ 112 ].   

   (c)    Scavenger receptors 
 Scavenger receptors on KC constitute the scavenger receptors class SR-A (type 
I, II, and MARCO) and SR-B (type I, CD36, and CD68/macrosialin) [ 113 ]. It is 
known to be downregulated in animal models of Nonalcoholic steatohepatitis 
[ 114 ]. The CD68 is partially expressed in endolysosomal compartments and also 
on also on the transmembrane of macrophages [ 115 ]. Plasma proteins are 
removed from circulation by inducing a negative charge on its surface by succi-
nylation to the lysine groups [ 26 ,  116 ]. The coated pits create a cationic surface 
charge permitting endocytosis of highly negatively charged molecules [ 117 ]. 
Particles up to 0.23 µm can be easily internalized [ 28 ]. Among the various 
receptors, scavenger receptors class A binds to varied polyanionic ligands but 
with varied affi nity [ 113 ]. Expression of SR-A varies with the presence of 
ligands; lipopolysaccharides decrease the expression while oxidized LDL 
increases the expression [ 118 ]. 

 Ligands such as fucoidan, polyinosinic acid, phosphatidylserine, oxidized 
low-density lipoprotein have a high affi nity for scavenger receptors. Scavenger 
receptors play a major role in discrimination between foreign and self [ 118 ]. 
Weak negatively charged compounds show only a small degree of hepatic 
uptake whereas strongly anionized ones, e.g., phosphatidylserine-containing 
liposomes, PLGA have been considered to be taken up by liver non- parenchymal 
cells, via scavenger receptor mediated endocytosis of KC and SEC due to the 
direct recognition of their negative charge.   

   (d)    Fc receptor 
 Fc receptors eliminate the soluble circulating immunoglobulin G immune com-
plexes by receptor mediated endocytosis. Fc receptors exhibit delayed degrada-
tion of ligands than that internalized by scavenger expressed on SEC [ 119 ]. Fc 
receptors are unaltered till the necrotic foci are infi ltrated, excessive injury with 
 D -galactosamine in chronic infl ammation. In such conditions, Fc receptors are 
minimized [ 120 ].      

6.3.3.2     Hepatic Endothelial Cells 

 HSC express similar receptors as those found on KC, e.g., mannose receptors [ 11 ,  12 ], 
scavenger receptors internalizing advanced glycation end-products-Alb, maleylated 
bovine albumin, and fucoidan [ 121 ] and Fc receptors internalizing immune complexes 
of IgG and IgA. In addition, to these receptors, SEC possesses stabilin receptors and 
receptors for removal of extracellular matrix, e.g., laminin, hyaluronic receptor. Stabilin 
receptors are responsible for regulating the extracellular concentration of the matrices 
and their concentration in blood [ 122 ].  
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6.3.3.3    Hepatic Stellate Cells 

 HSC are involved in liver fi brosis or liver cirrhosis. Targeting HSC achieves 
decreased secretion of extracellular matrix [ 123 ].

    (a)    Phosphomannosyl receptor/Mannose 6 phosphate receptors 
 Phosphomannosyl receptor receptors are intracellularly located in the mem-
branes of the endoplasmic reticulum, Golgi apparatus, and the lysosomes; only 
10 % of the receptors are identifi ed on the plasma membrane [ 124 ]. Delivery of 
newly synthesized lysosomal enzymes from the Golgi apparatus to lysosome in 
HSC requires the recognition of mannose 6-phosphate on these enzymes by a 
specifi c receptor—phosphomannosyl receptor/Mannose 6 phosphate receptors 
[ 125 ]. Targeting mannose 6 phosphate stimulates cytokines, converting growth 
factor β (TGF-β) stimulating production of collagen. Direct conjugation of 
mannose 6-phosphate with HPMA showed maximum uptake in diethyl nitrosa-
mine induced liver fi brosis [ 54 ]. Albumin modifi ed with mannose 6-phosphate 
selectively binds to hepatic stellate cells in fi brosis and accumulates up to 58 % 
of the injected dose after intravenous injection by endocytosis [ 126 ]. Inactivated 
hemagglutinating virus of Japan with a plasmid DNA tagged with luciferase 
has been targeted using liposomes decorated with albumin modifi ed mannose-
6-phosphate [ 127 ].   

   (b)    Miscellaneous receptors 
 Retinol binding protein receptors (RBP) are also found unaltered in liver disor-
ders and hence an important target in fi brosis [ 128 ]. A pro-drug Bexarotene 
(Targretin®) targets retinoic acid receptors in cancer. Cell surface integrins inte-
grate with the matrix collagen type VI protein through Arg-Gly-Asp (RGD) 
dependent interactions via αvβ3 receptor. Intravenous injection of liposomes 
encapsulating siRNA responsible and conjugated with vitamin A suppressed 
collagen secretion as well as reduced fi brosis [ 129 ]. Covalent interaction of a 
cyclic octapeptide bearing “RGD” peptide to HSA increased the selective uptake 
by HSC [ 130 ]. Similarly cyclic peptide C*SRNLIDC* is recognized by platelet 
derived growth factor receptor (PDGF). RGD labeled liposomes have effi ciently 
delivered interferon alpha-1b in fi brosis [ 131 ]. Conjugation to Human serum 
albumin incorporating an apoptotic drug led to accumulation on HSC [ 1 ].    

  Hepatitis C virus induces liver fi brosis and cirrhosis. Wang and coauthors have 
recently reported the presence of hepatitis C virus co-receptors responsible for 
promotion of liver fi brogenesis and engulfment of hepatocytes apoptotic bodies. 
In addition, many cytokine receptors, growth factor and transcription receptors, etc. 
are present on HSC, nevertheless with rare applications to liver targeting [ 39 ].  

6.3.3.4    Hepatocytes 

 Hepatocytes are active targets in hepatic cellular carcinoma, hepatitis, steatohepa-
titis, genetic disorders, and metabolic disorders [ 132 ]. Hepatocytes receive the sys-
temic circulation born substances after diffusion across the SEC separating blood 
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and hepatocytes. The particulates have foremost to pass through fenestrations of 
the sinusoid intravascular space generally of 100–200 nm [ 28 ,  133 ]. For active 
targeting in hepatocytes, introduction of steric stabilization, charge shielding 
techniques such as PEG layer reduce the opsonization and degradation in the lyso-
somes of KC.

    (a)    Asialoglycoprotein receptors (ASGP-R) or  N -acetyl galactosamine receptor/
GlcNAc–R 
 ASGP-R clears off serum desialylated glycoproteins from the systemic circula-
tion having non-reducing galactose or acetylgalactosamine residues, exposed at 
the end of their oligosaccharides, and through receptor mediated endocytosis 
[ 134 ]. The desialylated glycoproteins are subsequently processed through the 
liver lysosomes. The binding affi nity of N-acetyl galactosamine residues to 
ASGP-R is 10- to 50-fold higher than ligands with only terminal galactose resi-
dues [ 135 ,  136 ]. A higher expression and density of 500,000 ASGP-R per cell 
has been reported on the basolateral side of hepatocytes [ 137 ] and on the side 
facing the sinusoidal area [ 138 ]. The ASGP-R possesses three Ca +2  dependent 
carbohydrate recognition domains and hence exhibits strong interaction—
“cluster effect” with multivalent ligands (tri- or tetra-antennary  N -linked gly-
cans) [ 139 ]. Consequently, this results in lesser possibility of ligand escape 
towards other receptors [ 140 ,  141 ]. However, at higher surface density of galac-
tose residues complete shift in uptake from hepatocytes to KC is observed due 
to ready recognition by the galactose receptors on Kupffer [ 142 ,  143 ]. 
Expression of ASGP-R in conditions like hepatocellular carcinoma is still of 
debate with reports of overexpression [ 144 ] as well as decreased expression 
[ 145 ]. Ligands ranging from asialofetuin soybean derived sterylglucoside, sito-
 G, arabinogalactan, pullulan, lactobionic acid to synthetically synthesized 
galactosylated ligand have been widely studied as ligands for ASGP-R. D’Souza 
et al. [ 146 ] and coauthors performed an in silico screening of various ligands 
(arabinogalactan, pullulan, and kappa carrageenan) for targeting ASGP-R and 
observed good correlation with liver distribution in healthy rats on intravenous 
administration of nanocarriers anchored with the ligands. 

 KC also express galactose receptor distinct from ASGP-R [ 147 ]. Functionally, 
both the receptors have affi nity for galactose residue of lactose. However, speci-
fi city depends upon the degree of lactosylation. High substitution of lactosyl-
ated lipoprotein delivery targets the Kupffer cell (>300 lactose/LDL) despite 
being in minority, while at lower substitution (60 lactose /LDL); hepatocytes 
are targeted [ 148 ]. Lactosylated high density lipoprotein with diameter of 
10 nm showed hepatocyte-specifi c targeting [ 142 ]. Galactose particle receptor 
has a high affi nity for galactose, exposing particles with ligand size between 15 
and 20 nm [ 145 ,  149 ,  150 ]. Liposomes with a lower degree of tri-antennary 
galactoside modifi cation (5 % tri-antennary galactosides) were taken up by the 
ASGP-R on hepatocytes while those containing 50 % tri-antennary galactosides 
were taken up by KC [ 64 ,  143 ,  151 ]. Hence, an optimum balance of galactose 
density is desirable to prevent a shift in uptake from hepatocytes to galactose 
particle receptor on KC [ 142 ,  143 ].   
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   (b)    Glycyrrhizin (GL) and glycyrrhetinic acid (GA) receptors 
 Negishi et al. [ 152 ] demonstrated the presence of Glycyrrhizin and glycyr-
rhetinic acid receptors on the cellular membrane of hepatocytes. The binding 
sites for GA receptors surpass that of glycyrrhizin receptors [ 153 ]. GA is a 
metabolite of glycyrrhizin obtained from liquorice [ 154 ]. In vitro studies 
revealed 3.3-fold and 4.9-fold higher uptake for chitosan nanoparticles and 
poly(ethylene glycol)-b-poly(γ-benzyl  L -glutamate) micelles, respectively 
modifi ed with GA compared to unmodifi ed nanoparticulates [ 155 ,  162 ]). 
Chemical conjugation of GA to nanoparticles increased internalization by 
liver cancer cells [ 156 – 161 ]. Derivatives of glycyrrhizin—30-stearyl glycyr-
rhizin [ 162 ]—also increased hepatic uptake. GA conjugated to hyaluronic 
acid has been suggested as a double targeting strategy for liver cancer by 
[ 163 ]. Recently the presence of GA receptors on HSC and tumor cells have 
also been reported [ 164 ].   

   (c)    Integrin receptor 
 Vectors in Viral mediated delivery, viz   ., adenoviruses, retrovirus, hemagglutinat-
ing virus, lentiviral vectors innately are transduced through the adenoviral and 
integrin receptors [ 165 – 169 ]. The vector binds to the coxsackievirus-Ad receptor 
and is subsequently internalized by integrins. However, for hepatocyte transduc-
tion, this type of interaction between vector and CAR is not mandated [ 170 ,  171 ]. 
Uptake in KC causes degradation of genetic material. Immunogenicity and off-
target effects have been improved by designing vectors derived from human 
immunodefi ciency virus and pseudotyped with Sendai virus fusion protein F 
[ 166 ]. Though beta 1-integrin collagen receptors are reported to be present in 
hepatocytes, αVβ5 integrin receptor in KC have also been studied [ 172 ]. Integrin 
receptors are also associated with tumor blood vessels and are widely used for 
delivery of thrombolytic agents and anticancer drugs [ 173 – 175 ]. Specifi c target-
ing to hepatocytes through integrin is rare. Disruption of extracellular matrix 
related integrin signaling leads to termination of liver regeneration [ 101 ].   

   (d)    Low-density lipoprotein receptor (LDLR) 
 Low-density lipoprotein receptor is an endocytotic type I transmembrane cell sur-
face receptor and contributes to uptake of circulating cholesterol-rich LDL parti-
cles [ 176 ]. Uptake occurs via the clathrin-mediated receptor endocytosis system 
and is triggered by binding to the signaling proteins [ 177 ]. It maintains lipidic 
homeostasis as well as regulates fi brogenesis. Overexpression of LDLR is 
observed in non-alcoholic fatty liver disease and increases with advancement in 
fi brosis [ 178 ]. LDL metabolism has been associated with both hepatocytes and 
KC and follows saturation kinetics. Degradation of LDL is 18-fold higher in KC 
than in hepatocytes [ 179 ]. However, as in case of integrin receptors, LDLR are 
also known to be overexpressed in several tumors and have been widely studied 
for targeted delivery to malignant cells [ 180 ]. Hepatocyte specifi c delivery of 
disease-related genes using siRNAs has been cited [ 181 ,  182 ].   

   (e)    Miscellaneous receptors 
 Targeting of apolipoprotein E (high density lipoprotein) and apolipoprotein 
A-1for delivery of siRNA and miRNA has been demonstrated via the class B 
type I scavenger receptor (SR-B1) [ 183 ,  184 ]. CD36 receptors are found to 
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retain infl ammatory cells [ 185 ]. Lipid nanoparticles of acyclovir palmitate- 
recombinant HDL complex (~33 nm) revealed fourfold enhanced hepatic accu-
mulation on intravenous injection [ 186 ,  187 ]. Scavenger receptors also have 
their existence on KC associated [ 118 ]. Transferrin receptor increases in patients 
with alcoholic liver diseases with excessive iron accumulation [ 188 ,  189 ] and is 
expressed in all nucleated cells [ 190 ].    

  Qin He incorporated hepatocyte specifi c AFP (α-fetoprotein) promoter to recom-
binant plasmid encapsulated in PLGA nanoparticles and achieved targeted delivery 
to hepatoma cells. AFP promoter exhibited specifi c activity only in cells containing 
α-fetoprotein [ 191 ]. Other techniques for hepatocyte targeting have been by conju-
gating with bile acids which exhibit hepatotropism to specifi c transport systems on 
the sinusoidal plasma membrane of hepatocyte [ 192 ]. A ligand activated nuclear 
receptor, Farnesoid X receptor, known to regulate lipid and glucose metabolism 
exhibits affi nity to bile acids [ 193 ]. Other hepatocyte-specifi c transgene expression 
promoters are albumin, alpha 1-anti trypsin, enhanced transthyretin, etc. [ 194 ]. 
Receptors like cannabinoid receptor-1 though expressed on hepatocytes are also 
expressed in myofi broblasts, and adipose tissue and intestine bearing extrahepatic 
CB1 receptors [ 195 ]. Conditioning of KC with acetylated LDL or HDL increases 
the number of HDL receptors [ 196 ]. Recently receptors for mosquito-borne dengue 
viruses consisting of three proteins: heparan sulfate, the 37/67 kDa high-affi nity 
laminin receptor, and prion protein have been reported [ 197 ,  198 ]. An association 
between the laminin receptor, a part ofDENV (Dengue virus) receptor and prion 
proteins was observed in HepG2 cells. Readers are directed to the following refer-
ences for details [ 199 ,  200 ]. Glucagon like peptide receptors and δ opioid receptor 
have also been exploited [ 201 – 205 ]. The disposition of nanoparticulates in the liver 
is schematically depicted in Fig.  6.3  following intravenous injection.   

6.3.3.5    Stem Cells 

 Cancer stem cells are generally resistant to chemotherapeutic drugs due to the pres-
ence of active transmembrane adenosine triphosphate-binding cassette (ABC) trans-
porter family [ 206 ]. However, Wnt receptor, transmembrane Frizzled (Fzd) receptors, 
etc. are known to be stimulated on cancer stem cells [ 207 ,  208 ], while Notch and 
hedgehog signaling pathway inhibitors etc. can also serve as molecular target for 
cancer prevention by increasing the cell sensitivity to drugs and inhibiting drug effl ux 
in both tumor cells and stem cells. Targeting to cancer stem cells has been proposed to 
be more effi cient in eradicating and providing cure mainly to HCC [ 209 ,  210 ].   

6.3.4     Stimuli Responsive Active Targeting 

 Drug release at specifi c sites can be triggered by external and/or internal stimuli. 
While magnetic [ 211 ], photo-irradiation, ultrasound [ 212 ], electric fi eld, etc. are 
external stimuli [ 213 ,  214 ], internal stimuli include changes in pH [ 215 ], and 
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temperature [ 216 ,  217 ] which can occur within organs during disorders or tumors. 
Dual stimuli—thermal and pH—responsive self-assembled structures of poly( N - 
isopropylacrylamide )-b-poly( L -histidine) were designed for controlled release of 
doxorubicin in liver carcinoma [ 218 ]. Thermodox®, doxorubicin containing 
PEGylated liposomes, is a temperature sensitive nanocarrier which releases drug 
only upon externally applied heat, i.e., radiofrequency ablation at the site of the 
tumor to raise the temperature above 39.5 C, or upon EPR-mediated passive tumor 
accumulation [ 219 ].  

6.3.5     Antibody Mediated Active Targeting 

 Targeting with antibodies capable of recognizing and binding with affi nity to anti-
gens present on tumors as targeting strategy is widely explored [ 220 ,  221 ]. 
Immunoliposomes are widely exploited for delivery of anticancer agents [ 222 ]. 
ASGP-R single chain variable fragments on conjugation to immunotoxins exhibited 
an increased cytotoxicity in HepG2 and Huh7 cells compared to non-conjugated 
immunotoxin scFv fragments [ 223 ]. Interferon alpha genetically fused to a domain 

  Fig. 6.3    Physiological fate of nanoparticles following intravenous administration (schematic)       
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antibody (dAb), an asialoglycoprotein receptor specifi c antibody, increased the 
in vivo targeting to liver [ 224 ]. Four Glypican-3 antibodies—GC33, YP7, HN3, 
MCX-1414—have been developed for cancer therapy and are under investigation 
[ 225 ]. Antibody mediated targeted delivery to CD133, an important surface marker 
of liver cancer stem cells, has shown good promise in cancer therapy [ 226 ]. Human 
recombinant single chain antibody (C1-3 scAb) to synaptophysin, a HSC selective 
expression, is being explored for targeting in anti-fi brotic therapy [ 227 ,  228 ].   

6.4     Targeted Delivery Systems and Applications 

 Drugs administered orally or as injectables are effi ciently removed from systemic 
circulation by KC due to fi rst pass effect of drug causing metabolic transformation, 
detoxifi cation, and excretion of drugs [ 229 ]. Nevertheless, KC largely contributes to 
uptake of particulate matter. Thus, drugs are precluded from reaching the desired 
cell type [ 230 ]. 

 Covalent binding of therapeutically active drug to a liver targeting polymer 
improves liver targeting potential, circulation time and increases specifi city [ 231 ]. 
Many polymers such as poly-lactic acid poly-glutamic acid (PLGA) have been 
galactosylated and have shown improved biodistribution over the conventional poly-
mers [ 232 ]. Hydrolysis of drug from conjugates using enzymatic or environmental as 
triggers could also modify the drug kinetics. PEGylated conjugates are well reported 
for the success in treating various disorders including hepatitis C [ 233 ]. Protamine-
asialofetuin lipoplexes contained asialofetuin as a natural targeting ligand to ASGP-R 
[ 234 ]. Oligonucleotide poly- L  lysine polyplexes inhibited the expression of hepatitis 
B virus gene expression with increased hepatocyte uptake [ 235 ]. 

 Nanotechnology has enabled systematic and site-specifi c delivery of drugs. 
Reviews on the same are abundant. Readers are directed to recent reviews [ 236 ]. 
Nanoparticles are high engineerable with integration of different physicochemical 
functionalities such as size, shape, hydrophobicity, etc. Further modifi cation of sur-
face properties such as charge, anchoring ligands, modulating ligand density for 
achieving selectivity with desired systemic effects has been explored. Exploitation 
of active and passive targeted strategy relies on the characteristics of nanocarriers. 
Nevertheless, administered drug achieve high and nonspecifi c accumulation in liver 
due to fi rst pass effect for metabolism, while nanoparticles are effi ciently removed 
from systemic circulation by the macrophages of RES especially liver (fi rst-order 
targeting) [ 229 ] (Fig.  6.3 ). Though KC occupies only 40 % of liver cells, they are a 
major site of accumulation of nanoparticles (higher than parenchymal cells occupy-
ing 80 % and SEC occupying 6.3 %). Details of passive targeting to KC attributed 
to phagocytosis and factors contributing to phagocytic uptake are discussed earlier 
in Sect.  6.3.1 . 

 Once passive targeting to KC occurs, disorders or conditions wherein accumulation 
of nanoparticles in hepatocytes or SEC is desirable are never achieved. Nevertheless, 
tailored nanoparticulates can be designed for effi cient uptake by individual hepatic 
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cells. As mentioned in Sect.   3.2    . Different strategies based on specifi city of each 
receptor can be engineered on nanoparticles so as to achieve active targeting to dif-
ferent cells of liver. Another well-known technique is to administer a dose of blank 
particulates to saturate KC [ 67 ]. 

 The advantages of each approach need to be weighed prior to designing nanopar-
ticulates for active or passive targeting [ 237 ]. One such example in tumors and 
cancer is as follows: EPR permits inherent passive accumulation of nanoparticulates 
in tumor, thereby precluding the need for active targeting [ 238 ]. The nanoparticles 
evade the RES system either by manipulation of size, charge or by stealth coating 
and concurrently using an active targeting strategy enables specifi c cellular target-
ing. A combination of active targeting technique is also used to increase targeting 
effi ciency. Hongfen Wei et al. prepared galactosylated docetaxel nanoparticles tar-
geting hepatocytes in HCC combined with exposure to ultrasound to increase vas-
cular permeability [ 239 ]. 

 We present below the possible applications of targeted delivery to the liver for 
various liver affl ictions in Table  6.2 .

   Nanoparticles targeting to liver using either passive or active targeting have been 
frequently used in the following disorders or conditions: 

6.4.1     Hepatocellular Carcinoma or Hepatoma 

 Hepatocellular carcinoma (HCC) is a globally concerned disorder with a high mor-
tality and accounts for 85 % of primary liver cancers [ 240 ,  241 ]. Physiology of the 
liver is altered and could be exploited for passive targeting [ 242 ]. As observed in 
other tumors, HCC also exhibit leaky vasculature with discontinuous endothelial 
cell lining with pores (600–800 nm and at times up to 2 μm) [ 243 – 245 ]. 
Nanoparticulates up to 400 nm can easily extravasate through the leaky vasculature 
and result in increased drug concentration in the tumor [ 245 ,  246 ]. Macromolecules 
larger than 40 kDa and smaller than the fenestrations can easily accumulate in tumor 
tissue [ 244 ]. This condition is also a boon for active targeting using pH dependent 
release. Tumor cells show an increased glycolysis causing an acidic tumor microen-
vironment [ 247 ]. The acidic microenvironment of tumors due to increased glycoly-
sis also permits pH triggered drug release from liposomes. Active targeting of 
hepatocellular carcinoma has been achieved mainly by targeting the ASGP-R [ 248 ], 
retinoic acid receptor [ 249 ], glycyrrhetinic receptors [ 250 ], LDL receptors [ 251 ], 
etc. Most of the targeting strategies for treatment of HCC are based on binding to 
ASGP-Rs utilizing galactose as targeting agents [ 252 ]. But to date, very few nano-
carriers have been developed [ 187 ]. 

 SMANCS, a conjugate of Poly(styrene maleic acid)—SMA—and the protein 
antitumor agent neocarzinostatin—NCS—in Lipiodol—lipid contrast agent, an oily 
formulation has been selectively used in the treatment of HCC in Japan since 1993 
[ 253 ,  254 ]. It is devoid of side effects caused by conventional chemotherapeutic 
agents and suitable for X-ray computed tomography [ 255 ].  
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6.4.2     Infectious Diseases 

 The liver being home for many transport machineries and almost 80 % of the 
macrophage population, foreign bodies and large therapeutic molecules (Molecular 
weight ~50 kDa) achieve high hepatic concentration on administration [ 256 ]. Nano 
drug delivery systems also render high uptake of particulates by the macrophagic 
KC [ 246 ,  257 ]. This physiological phenomenon could be an advantage for treatment 
of macrophage related infections (Leishmaniasis, AIDS, Brucellosis, Listeriosis, 
Mycobacteria, and Salmonella infections). 

 In parasitic infections like malaria, the sporozoites of Plasmodium selectively 
infect erythrocytes and human hepatocytes. This erythrocytic stage of Plasmodium 
causes increased gametocyte production and subsequently sequestration in systemic 
circulation [ 258 ]. Though the size of sporozoites exceeds the size of fenestrations, the 
sporozoites from blood sequester hepatocytes using proteoglycans by squeezing 
through the endothelial fenestration [ 259 ]. Targeted delivery of Primaquine to the liver 
has been evaluated following intravenous administration of liposomes [ 260 ,  261 ] 
and gelatin and albumin nanoparticles [ 262 ]. Preferential delivery of Primaquine to 
the hepatocytes was achieved using an artifi cial chylomicron emulsion [ 263 ] and 
galactosylated liposomes [ 139 ]. Dendrimeric nanoparticles of PQ coated with 
galactose, a ligand for the ASGPR receptor on hepatocytes, also favored high accu-
mulation of PQ in the hepatocytes [ 264 ].  

6.4.3     Nucleic Acid Delivery 

 Chemotherapies at times cannot address issues which have caused specifi c mutations 
or alterations, and hence genetic delivery becomes mandatory. However, nucleic 
acids possesses large size, anionic charge repulsion, hydrophilic highly charged and 
possesses short half-life due to nucleases and metabolic nature of liver violating the 
Lipinski’s rule of 5 [ 265 ]. Cellular targeting of genetic material is often construed a 
herculean task. The journey begins from protection of the genetic material in sys-
temic circulation. Cationic liposomes and nanoparticles conceal the genetic mate-
rial while facilitating cellular uptake [ 72 ]. Further, cationic polymers exhibit strong 
buffering capacity between pH 5–7 causing osmotic swelling and fi nally vacuole 
disruption releasing the genetic material into cytoplasm [ 266 ]. Genetic transfer spe-
cifi cally to hepatocytes by incorporation of hepatocyte-specifi c promoters (albumin, 
alpha 1-anti trypsin, or enhanced transthyretin, α-fetoprotein, etc.) in lentiviruses 
(retroviral mediated genetic delivery) is reported. This reduces the expression on 
non-parenchymal cells [ 194 ]. High effi cient transfer of siRNA using polyconju-
gates [ 267 ], polymeric micelles [ 268 ], and self-assembled amphiphilic cationic 
copolymers [ 269 ] have been studied. Gene targeting of human Factor FVIII using 
gamma retroviral vectors to hepatocytes in hemophilia A has been prompted for 
Phase I clinical trials in patients. Synthesis of F factors occurs primarily in the liver 
and is supplied to the blood. Majority of the patients exhibited good tolerance to the 
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treatment. Targeting of these genes to antigen presenting cells increases the immu-
nity and decreases long term expression. Hence, a hepatocyte specifi c promoter is 
mandated. Micro-RNAs especially for liver diseases, infl ammation, and cirrhosis 
are under investigation [ 270 ]. 

 The inability of sinusoids to form a barrier for proteins has been long known. 
Hence, viral vector mediated gene delivery successfully exhibit its expression in 
hepatocytes rather than non-parenchymal cells. Also, the genetic material tends to 
degrade in the lysosomes of KC. Exploitation of protein for hepatocyte targeting has 
thus been widely studied. Giri explored this strategy for delivery of interferon-α 
using cationic PLGA nanoparticles with hepatitis B surface antigen (HBsAg) 
adsorbed onto its surface. The author proposed the system as an artifi cial viral vector 
[ 271 ]. Similarly, PEGylated interferon (Pegasys, PEG-Intron) has been successfully 
targeted to hepatocytes in hepatitis by passive targeting [ 272 ]. The stealth property 
imparted by PEGylation increases the circulation time thereby favoring high uptake. 
Since the uptake is not attributed to specifi c receptors, uptake in non- desired sites 
has also been observed [ 273 ]. Jung and coauthors designed core shell nanoparticles 
with a hollow core and a shell made of HBV envelope ( bio- nanocapsule) which had 
pre-S1 peptide as a ligand for hepatocytes. The bio- nanocapsule was conjugated to 
liposomes for peptide delivery [ 187 ,  274 ]. 

 Effi ciency of gene delivery can also be enhanced by temporarily depleting the KC. 
Depletion of KC can be achieved by administration of clodronate liposomes. The 
technique is however risky as the reappearance of KC would take up to 1 week 
[ 275 ]. Depressed blood fl ow, endotoxemia, and bacteremia are also associated with 
decreasing clearance activity in Kupffer cell.   

6.5     Imaging and Diagnosis 

 Over the decades, considerable advancement has evolved in diagnostic detection of 
various liver disorders. Common techniques for detection of HCC are quantifying 
the serum α fetoprotein or magnetic resonance imaging. The most common being 
the later, except in tumors less than 2 cm [ 276 ]. Radiopharmaceuticals containing 
galactose, lactose, or  N -acetyl galactosamine recognizing ASGP-R on hepatocytes 
are used as nuclear imaging radiopharmaceuticals targeting hepatocytes [ 277 ]. 

 Table  6.3  summarizes some of the major approaches for diagnosis of liver 
conditions.

6.6        Future Directions 

 Nanocarriers for targeted delivery in liver affl ictions are in clinical investigation for 
therapy and diagnosis (Table  6.4 ). Polyisohexylcyanoacrylate nanoparticles encap-
sulating doxorubicin was the fi rst nanoparticulate to enter in clinical trials for 
HCC. However, associated pulmonary adverse effects resulted in suspension of the 
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   Table 6.3    Diagnostic interventions for liver targeted delivery   

 Diagnosis  Ligand  Receptor  Reference 

 Bioimaging 
of quantum 
dots 

 Hyaluronic acid derivative  Hyaluronic acid 
receptors 

 [ 333 ] 

  D -galactose  ASGP-R  [ 334 ] 
 Fluorescence 
imaging 

 Glypican-3  Antibody mediated 
targeting specifi c for 
HCC 

 [ 335 ] 

 Radioactivity  99mTc hydrazino nicotinamide- 
galactosylated chitosan 

 ASGP-R  [ 336 ] 

 99mTc- galactosylated chitosan  ASGP-R  [ 326 ] 
 99mTc-gold nanoparticles capped with 
HYNIC-peptide/mannose 

 Mannose receptor  [ 337 ] 

 MRI  poly(propylene imine) dendrimers 
composed of Gd DTPA and cyclic NGR 

 Cyclic NGR (similar to 
RGD) binding to 
collagen type IV protein 

 [ 338 ] 

 PLA-PEG/Gd-DTPA  Passive accumulation  [ 339 ,  347 ]  
 PLA-PEG-NH2 immobilized with 
FITC through biotin–avidin system and 
anti-alpha-fetoprotein 

 Biotin avidin receptors 
on hepatocytes affected 
with cancer 

 [ 339 ] 

 LDLR-targeted amphiphilic gadolinium 
(Gd)-diethylenetriaminepentaacetic acid 
chelates 

 LDLR 

 Galactosylated manganese ferrite 
nanoparticles 

 ASGP-R  [ 340 ] 

 Mannan-coated superparamagnetic iron 
oxide nanoparticles 

 Mannose receptors  [ 341 ] 

 Gadolinium labeled LDL nanoparticles  LDL receptor  [ 342 ] 
 Gadolinium labeled cholesterol-HDL 
nanoparticles 

 HDL receptor  [ 180 ] 

   Table 6.4    Clinical trial and commercialization status of liver targeted delivery system   

 Clinical trials  Brand name  Phase in study  Reference 

 Doxorubicin loaded poly(alkyl 
cyanoacrylate) nanoparticles 

 Transdrug for 
HCC 

 Phase II and III  [ 343 ] 

 Hepatic arterial infusion of 
nanoparticle albumin- bound 
paclitaxel 

 –  Phase I  [ 344 ] 

 HPMA bearing doxorubicin 
with galactosamine (PK2) 

 Phase I  [ 145 ] 

 PEG–arginine deiminase (i.v.)  Hepacid by 
Phoenix for HCC 

 Phase I/II  [ 231 ] 

 Virosomal hepatitis vaccine 
(Liposomal IRIV) 

 Epaxal Berna 
Hepatitis A 

 Marketed by Berna Biotech 
(Bern, Switzerland) 

 [ 345 ] 

 PEG–alpha-interferon 2a  Pegasys for 
Hepatitis C 

 Nektar (San Carlos, CA, USA), 
Hoffmann-La Roche (Basel) 

 [ 345 ] 

 PEG–interferon 2b  PEG-Intron for 
Hepatitis C 

 Enzon, schering-plough  [ 345 ] 

 Iron nanoparticles for imaging 
liver tumors 

 Resovist  Schering (Berlin)  [ 345 ] 

 Iron nanoparticles for imaging 
liver tumors 

 Feridex/Endorem  Advanced magnetics 
(Cambridge, MA, USA), 
Guerbet (Roissy, France) 

 [ 345 ] 
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Phase II study. Other unexplored areas for targeting parasites invading the liver include 
amoebic liver abscesses, hydatid cyst of the liver, fl uke diseases, hemophilia, type I 
tyrosinemia, Wilson disease, etc. A recent upcoming area is the pharmacological 
modulation of the phenomenon autophagy for therapy of liver disorders. Autophagy 
is a process of lysosomal degradation of bulk cytoplasm or damaged organelles 
[ 278 ]. Improved therapeutic and diagnostic efforts have changed the status of hepatic 
cancer from dreadful to at least a treatable disease.
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