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    Chapter 3   
 Infectious Diseases: Need for Targeted 
Drug Delivery 

             Padma     V.     Devarajan     ,     Shilpa     M.     Dawre    , and     Rinku     Dutta   

3.1             Infectious Diseases in the Modern World 

 Infectious diseases are among the leading cause of death worldwide, even in the 
twenty-fi rst century. Developing nations are more susceptible due to lack of proper 
sanitation, uneducated population and increasing pollution and the booming popu-
lation explosion. Tuberculosis, HIV/AIDS, malaria are infectious diseases that have 
become epidemic in a true sense. According to a 2004 World Health Organization 
(WHO) report, infectious diseases are a major cause of morbidity in developing 
countries. A more recent report in 2012 records the death of more than 8.7 million 
people worldwide in 2008, due to infectious diseases. Diseases earlier confi ned to 
particular territories have changed face as global epidemics, due to globalisation 
and cross movement of people across geographical boundaries. A classic example 
is swine fl u which originated in Asia and rapidly spread to the west. 

3.1.1     Extracellular and Intracellular Infectious Diseases 

 Several microorganisms survive in the extracellular spaces within the body, or on 
epithelial surfaces, to cause extracellular infections. Extracellular pathogens release 
specifi c toxins or proteins which triggers the production of antibodies. On the other 
hand, intracellular infections reside within the cells of the body’s defence system 
the reticuloendothelial system (RES). The normal body response to a pathogen is 
rapid opsonisation followed by phagocytosis, which results in killing and clearing 
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of the microorganism. Intracellular infections result when the organisms cleverly evade 
destruction following phagocytosis. The intracellular location of these microorgan-
isms protects them from the host defence mechanisms, such as antibodies or com-
plement, and from the action of drugs that are unable to penetrate the cell effi ciently. 
Hence, while adequate drug concentrations are readily achieved at extracellular 
infection sites to enable effi cient therapy, intracellular infections are more diffi cult 
to treat. Some common intracellular and extracellular infectious diseases and their 
causative organisms are listed in Table  3.1 .

3.2         Reticuloendothelial System and Intracellular Infections 

 The RES also known as the mononuclear phagocytic system (MPS)/macrophage 
system is the primary defence mechanism of the human body and hence the site of 
intracellular infections. The macrophages constitute the major defence cells of the 
RES. Derived from the bone marrow the RES also contributes to both non-specifi c 
and specifi c immunity. Recognition by the RES is facilitated by opsonins, with the 
step of opsonisation being a precursor to phagocytosis. 

   Table 3.1    Infectious diseases and causative organisms   

 Intracellular diseases 

 Infectious diseases  Causative organisms 
 AIDS/HIV  Human immunodefi ciency virus 
 Cholera   Vibrio cholerae  (bacteria) 
 Dengue  Dengue (RNA) virus 
 Hepatitis A/B/C  Hepatitis A virus (HAV), Hepatitis B virus (HBV), Hepatitis C virus (HCV) 
 Infl uenza  RNA viruses (Infl uenza A/B/C viruses)(e.g. H1N1) 
 Legionellosis  Legionella 
 Leishmaniasis   Leishmania donovani  
 Listeriosis   Listeria monocytogenes  
 Malaria   Plasmodium  sp .  
 Shigellosis   Shigella  
 Tuberculosis   Mycobacterium tuberculosis  
 Typhoid   Salmonella typhi  
 Tularemia   Francisella tularensis  
 Extracellular diseases 
 African 
trypanosomiasis 

  Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense  

 Pneumonia   Streptococcus pneumonia, Haemophilus infl uenza, Chlamydophila 
pneumonia, Mycoplasma pneumonia, Staphylococcus aureus, Moraxella 
catarrhalis, Legionella pneumophila, Klebsiella pneumonia; rhinoviruses, 
coronaviruses, infl uenza virus, respiratory syncytial virus (RSV), 
adenovirus, and parainfl uenza  

 Schistosomiasis   Schistosoma mansoni, Schistosoma intercalatum, Schistosoma 
haematobium, Schistosoma japonicum, Schistosoma mekongi  
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3.2.1     Opsonisation 

    Opsonisation is the process by which bacteria are altered by opsonins so as to 
become more readily and effi ciently engulfed by phagocytosis. Opsonisation is 
mediated by the complement system: C3b, C4b, and iC3b, antibodies IgG and IgM 
and mannose-binding lectin. Mannose binding lectin initiates the formation of C3b. 
Opsonisation of particles enables recognition by the Fc receptors, complement 
receptors or specifi c receptors for phagocytosis. Opsonins are generally proteins 
which can bind to pattern-recognition receptors (PRRs) or other specifi c receptors 
expressed on the surface of macrophages. Pentraxins [C-reactive protein and serum 
amyloid P]    [ 1 ], mindin, collectins [ 2 ] and fi colins [ 3 ] are such opsonins. The func-
tion of pattern-recognition receptors (PRRs) is to recognise and enhance phagocy-
tosis of pathogen-associated molecular patterns (PAMPs), specifi c patterns present 
on microbial pathogens like lipopolysaccharide (LPS) in Gram-negative bacteria, 
lipotechoic acid (LTA) in Gram-positive bacteria and mannans in yeast. Toll-like 
receptors (TLRs) are PRRs essential for recognition of microbial components such 
as TLR4 (LPS) [ 4 – 6 ], TLR3 [double-stranded RNA] [ 7 ], TLR6 [mycoplasmal 
macrophage- activating lipopeptide—2 kDa] [ 8 ],    TLR9 [CpG bacterial DNA] [ 9 ], 
TLR5 [bacterial fl agellin] [ 10 ], and TLR2 [peptidoglycan]. However, the exact 
mechanisms of TLR recognition of microbial components remain unclear.  

3.2.2     Phagocytosis 

 Opsonisation facilitates adherence of pathogens to macrophages, and is facilitated 
by integrins. Adherence induces membrane protrusions, called pseudopodia, to 
extend around the attached material. Following fusion with the macrophage, the 
pseudopodia forms a phagosome that encloses the pathogen within a membrane, 
which then enters the endocytic process. Phagosomes coalesce with intracellular 
organelles to mature into phagolysosomes, which have an acidic environment with 
many digestive proteins which fi nally degrades the internalised material. 
Phagocytised material is eliminated by exocytosis. The process of phagocytosis is 
mediated by several proteins such as actin, dynamin and cortactin. While actin is 
connected to the lipidic membrane and responsible for invagination of the mem-
brane to form the endosome, cortactin is an actin-binding protein which stimulates 
its polymerisation. Dynamin hydrolyses guanidine triphosphate and uses the result-
ing energy for the contraction of actin and formation of endosome. Particulates that 
cannot be digested remain sequestered in residual bodies within the cell. Other cells 
such as fi broblast, endothelial and epithelial cells also exhibit phagocytic activity 
and can engulf microbes like Shigella, Listeria and Yersinia [ 11 ]. Such phagocyto-
sis is mediated by laminin and fi bronectin receptors/heparan sulfate present on the 
membrane surface [ 11 ]. However, the major cells responsible for phagocytosis are 
macrophages.  
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3.2.3     Macrophages 

 Macrophages (Greek: makros means large and phagein means eat) are cells formed 
by the differentiation of monocytes in tissues. Macrophages play an important role 
in both innate and adaptive immunity in vertebrates. These specialised phagocytic 
cells engulf and destroy infectious microbes, foreign particles and cancer cells [ 12 ]. 
The macrophages also regulate lymphocyte, granulocyte populations and important 
tumor growth modulators [ 13 ]. Macrophages act by both oxygen- dependent killing 
and oxygen independent killing mechanisms. The mediators for oxygen- dependent 
killing are reactive oxygen intermediates (ROIs) (superoxide anion, hydroxyl radi-
cals, hydrogen peroxide and hypochlorite anion), reactive nitrogen intermediates 
(RNIs) (nitric oxide, nitrogen dioxide and nitrous acid) and monochloramine, while 
the mediators for oxygen independent killing are defensins, tumor necrosis factor 
(macrophage only), lysozyme and hydrolytic enzymes. Floating macrophages pre-
dominate in the vascular system, while tissue macrophages are localised in specifi c 
tissues. Based on the tissue of residence they have specifi c nomenclature (Fig.  3.1 ).  

 Macrophages can be classifi ed mainly into two groups: (1) pro-infl ammatory or 
classically activated macrophages (M1) and (2) anti-infl ammatory or alternatively 
activated macrophages (M2). 

  Fig. 3.1    Tissue macrophages and their organs of residence       
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3.2.3.1     Activated Macrophages (M1) 

 M1 macrophages are immune effector cells that aggressively work against microbes 
and cause their destruction much more readily. M1 is mainly associated with gas-
trointestinal infections (e.g. typhoid fever and  Helicobacter pylori  gastritis) and 
active tuberculosis. M1 macrophages are stimulated by interferon (IFN)-g or lipo-
polysaccharide (LPS) to release nitric oxide (NO), important for killing intracel-
lular pathogens. Activated macrophages are characterised by expression of major 
histocompatibility molecule like MHC class II and CD86 and their ability to 
secrete proinfl ammatory cytokines such as tumor necrosis factor (TNF)-a, IL-1b, 
IL-12, IL-18 and the chemokines CCL15, CCL20, CXCL8-11 and CXCL13 [ 14 ]. 
Activated M1 macrophages facilitate killing of microorganisms by endocytosis, 
synthesising reactive oxygen intermediates (ROI), limiting the uptake of nutrients 
and iron essential for the growth of bacteria and replication of viruses, or production 
of nitric oxide facilitated by IFN-g-inducible NO synthase (iNOS).  

3.2.3.2     Alternative Activated Macrophages (M2) 

 M2 macrophages are important for killing extracellular parasites, wound healing, 
tissue repair, and to turn-off immune system activation. M2 macrophages are acti-
vated by interleukin (IL)-4 or IL-13 (M2a) to produce IL-10, transforming growth 
factor (TGF)-b and arginase-1 (Arg1), to enable this function [ 14 ]. M2 macrophages 
are mostly observed in lepromatous leprosy, Whipple’s disease and localised infec-
tions (keratitis, chronic rhinosinusitis). 

 A number of infectious organisms which manage to overcome the RES defence 
develop unique adaptive mechanisms which enable them to survive within the cell 
for prolonged periods of time. Eradication of such intracellular organisms poses 
immense challenges.   

3.2.4     Survival Mechanisms Adapted by Pathogens 

 Many pathogens have an innate ability to develop adaptive mechanisms under stress 
conditions to fi ght for their survival. Such adaptive mechanisms or protective strate-
gies, enables them to exhibit greater defence to the host and there by prolong survival. 
The different adaptive mechanisms employed by pathogens are discussed below. 

3.2.4.1     Inhibition of Phagolysosome Formation 

 Strategies adopted by microorganisms to inhibit phagolysosome formation include 
interference with the transformation of primary endosomes into late endosome, 
fusion with lysosomes and or phagosome acidifi cation. This delays the fusion of 
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endosomes with lysosomes [ 15 ] or blocks the same [ 16 ]. The strategies to inhibit 
phagolysosome formation and the pathogens which exhibit the same [ 17 ] are 
summarised in Table  3.2 .

3.2.4.2        Fusion of Endosome with Cell Organelles Other than Lysosome 

 Pathogens which exhibit this adaptation survive and multiply in vesicles formed by 
fusion of endosomes with cell organelles other than the lysosome, such as the rough 
endoplasmic reticulum, ribosome or mitochondria [ 29 ] and thus avoid phagolyso-
some formation. They thereby bypass destruction due to the enzymatic activity in 
the lysosome [ 30 ].  

3.2.4.3     Disruption of the Phagolysosome 

 Escape from endocytosis is a crucial step for intramacrophagic survival. Pathogens 
from this category contain lytic enzymes which enable them to break the endo-
somes membrane and disrupt membrane of the vacuole [ 31 ], and hence evade 
degradation in the phagolysosome, and enter the cytosol rich in nutrients [ 32 ]. 
Specifi c enzymes are produced by the microorganisms for instance,  L. monocytogenes  

   Table 3.2       Mechanisms of inhibition of phagolysosome formation   

 Mechanism  Pathogens  Diseases  References 

 Enzymatic breakdown   Mycobacterium 
tuberculosis  

 Tuberculosis  Sturgill-Koszycki et al. 
[ 18 ] 

  Mycobacterium 
leprae  

 Leprosy  Frehel and Rastogi [ 19 ] 

  Listeria 
monocytogenes  

 Listeriosis  Alvarez- Dominguez 
et al. [ 20 ] 

  Salmonella enteric   Salmonellosis  Buchmeier et al. [ 21 ] 
  Leishmania  spp.  Leishmaniasis  Desjardins et al. [ 22 ]; 

Mosser et al. [ 23 ] 
  Toxoplasma gondii   Toxoplasmosis  Sibley [ 24 ] 
  Helicobacter pylori   GIT infections  Borlace et al. [ 25 ] 
  Trypanosoma cruzii   Trypanosomiasis  Ochatt et al. [ 26 ] 

 Lack of acidifi cation   Yersinia pestis   Pneumonia, 
septicemia 

 Pujol et al. [ 17 ] 

 Disturbs the formation of 
lipid rafts by producing 
beta-1,2 glucans 

  Brucella  spp.  Brucellosis  Roy [ 27 ] 

 Alteration of host cell 
signaling by 
dephosphorylation of 
signal regulated kinase 

  Leishmania  spp.  Leishmaniasis  Ghosh et al. [ 28 ] 
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produces listeriolysin O (LLO) [ 33 ] and haemolysin C [ 34 ] while phospholipases 
are produced by the  Rickettsia  spp. [ 35 ].  

3.2.4.4     Survival in the Late Phagolysosomes 

 The microbes in this category exhibit virulence factors which allow them to survive in 
lytic enzymes, acidic conditions and oxidants, the harsh conditions in the phagolyso-
some environment. Intramacrophagic resistance employing multiple virulence factors 
enables alternative pathways for survival and multiplication [ 36 ].  

3.2.4.5     Internalisation by Non-phagocytic Pathways or by 
Parasitophorous Vacuole 

 Pathogens are internalised into macrophages by alternate routes. They traverse 
inside the cell by receptor mediated pathways like clathrin [ 37 ] and lipid rafts [ 38 ]. 
Formation of vesicles with new properties after fusion between the pathogen and 
membrane of the cell, like the parasitophorous vacuole formed by  Toxoplasma 
gondii  [ 38 ] also provides protection. In certain infections successful fusion of 
microorganisms with the macrophage is followed by secretion of antiapoptotic 
molecules (e.g. Bcl2). This results in impairment of apoptosis of the infected cells. 
Table  3.3  summarises illustrative examples of pathogens and their adaptive mecha-
nisms for survival.

   In addition to the adaptive mechanisms certain microbes employ highly specifi c 
strategies for persistence inside the cell. Such strategies are discussed with refer-
ence to some important diseases.   

3.2.5     Specifi c Approaches of Some Important Pathogens 
for Persistence Inside the Cell 

3.2.5.1     Tuberculosis 

 The adaptive mechanisms of  Mycobacterium tuberculosis  to survive inside the 
macrophages are prevention of fusion of the phagosome with lysosomes by produc-
ing tryptophan–aspartate-containing coat protein (TACO). Transformation of primary 
endosomes into phagolysosomes is prevented by a number of actions that occur 
simultaneously. These include reduced levels of proton ATPase inside the endo-
somes [ 18 ] removal of the Phosphatidylinositol 3-phosphate (PI3P) [ 16 ] and 
coupling of the inducible nitric oxide synthase (iNOS) [ 53 ]. The  M. tuberculosis  
cell envelop comprises mycolic acid which can interact with cholesterol in the 
plasma membrane [ 50 ]. Further, mycobacteria are taken up inside macrophages by 
multiple receptors. The complement receptors are among the most widely used 
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receptors for mycobacteria, for both opsonised and non- opsonised entry [ 54 – 56 ]. 
Other receptors are mannose receptors that bind glycosylated structures on the 
bacterial surface [ 57 ]. Fc receptors that can internalise IgG-opsonised bacteria [ 58 ] 
and scavenger receptors [ 59 ,  60 ] have also been implicated in mycobacterial uptake. 
Uptake of mycobacteria by the complement receptor pathway protects it from the 
aggressive lysosomal compartment ensuring relatively hospitable conditions.  

3.2.5.2     Salmonellosis 

 Salmonella specifi cally forms a glycolipid capsule or biofi lm. Biofi lm formation in 
salmonella is related to the multicellular and aggregative response of rdar [ 61 ], rugose 
[ 62 ], or lacy [ 63 ]. This multicellular behavior is a property of salmonellae [ 64 ] 

   Table 3.3    Other adaptive mechanisms of pathogens for persistence in macrophages   

 Adaptive mechanisms  Pathogens  Disease  References 

 Fusion of endosome 
with cell organelles 
other than lysosome 

  Legionella 
pneumophila 
Toxoplasma gondii  

 Legionellosis  Sibley et al. [ 38 ] 
 Toxoplasmosis  Sibley et al. [ 38 ] 

 Disruption of 
phagolysosome 

  Listeria 
monocytogenes  

 Listeriosis  Dabiri et al. [ 39 ] 

  Shigella  spp.  Shigellosis  Van der Wel et al. [ 40 ] 
  Mycobacterium 
tuberculosis  

 Tuberculosis  Schroeder et al. [ 41 ] 

  Mycobacterium leprae   Leprosy  Schroeder et al. [ 41 ] 
  Francisella tularensis   Tularemia  Santic et al. [ 42 ] 
  Trypanosoma cruzi   Trypanosomiasis  Andrews et al. [ 43 ] 
  Rickettsia  spp.  Typhus fever  Winkler et al. [ 44 ] 

 Survival in the late 
phagolysosomes 

  Leishmania  spp.  Leishmaniasis  Alexander et al. [ 45 ] 
  Legionella 
pneumophila  

 Legionellosis  Clemens et al. [ 46 ] 

  Coxiella burnetii   Q fever  Burton et al. [ 47 ] 
  Yersinia pestis   Pneumonia  Straley et al. [ 48 ] 
  Staphylococcus 
aureus  

 Septicemic 
Endocarditis 
Bacteremia 

 Miller et al. [ 49 ] 

 Internalization by 
non-phagocytic 
pathways or 
parasitophorous 
vacuole 

  Escherichia coli   GIT infections  Shin et al. [ 37 ] 
  Mycobacterium 
tuberculosis  

 Tuberculosis  Gatfi eld et al. [ 50 ] 

  Salmonella  spp.  Salmonellosis  Catron et al. [ 51 ] 
  Clostridium  spp.  Q fever  Simons et al. [ 52 ] 
  Streptococcus  spp.  Meningitis, 

bacterial 
pneumonia, 
endocarditis 

 Simons et al. [ 52 ] 

  Toxoplasma gondii   Toxoplasmosis  Sibley et al. [ 38 ] 
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and is responsible for elaboration of thin fi mbriae like Tafi , curli [ 65 ], cellulose [ 66 ], 
and other uncharacterised extracellular polysaccharides. Together, these compo-
nents form the extracellular matrix that confers resistance to acid and bleach and 
facilitates environmental persistence [ 62 ,  64 ,  67 – 70 ].  

3.2.5.3     Fungal Infections 

 Pathogens which cause fungal infections adapt various mechanisms to increase their 
pathogenesis and survive inside macrophages.  C. albicans  contains superoxide dis-
mutases (SOD) and catalase enzymes which are able to convert O 2-  into molecular 
oxygen and hydrogen peroxide, thereby decreasing the scavenging and toxic effects 
of O 2 -  and H 2 O 2  levels by certain reactions [ 71 ]. Further,  C. neoformans  evade phago-
cytic uptake by phenotypic switching. This mechanism is observed in yeast cells that 
express glucuronoxylomannan mucoid capsule that resist phagocytic uptake and 
cause high lethality in mice [ 72 ]. In case of  Aspergillus conidia  infection collectins, 
pentraxin proteins are essential for opsonisation, but their defi ciency is responsible for 
high susceptibility to infection in immunocompetent mice. Furthermore, several 
enzymes such as elastases and proteases released by the fungus enable conidia to 
escape from phagocytic uptake by alveolar macrophages.  

3.2.5.4     HIV Infection 

 In HIV-1-infected macrophages, the viral envelope protein induces macrophage 
colony-stimulating factor (M-CSF). This pro-survival cytokine down regulates the 
TRAIL (tumor necrosis factor-related apoptosis-inducing ligands) receptor and up 
regulates the anti-apoptotic genes Bfl -1 and Mcl-1 enabling HIV to survive inside 
the macrophages. HIV invades the macrophage through CCR5 a chemokine recep-
tor and through binding of gp120 to CD4 [ 73 ]. Macropinocytosis as a route of entry 
of HIV-1 into macrophages [ 74 ] also enables intracellular protection.  

3.2.5.5     Leishmaniasis 

 Leshmania prevent activation of macrophages by inhibiting secretion of cytokines 
such as the infl ammatory response IL-1 and tumor necrosis factor beta (TNF-beta) 
or T-lymphocyte activation (IL-12) and produce various immunosuppressive 
signaling molecules, such as arachidonic acid metabolites and the cytokines TNF-
beta and IL-10.  L. chagasi  induces TNF-beta production in the immediate environ-
ment of the infected human macrophage, and this may lead to inhibition of immune 
responses [ 75 ]. Further, this pathogen induces alteration of host cell signaling. 
Macrophages infected with  L. donovani  or  L. mexicana  have shown altered Ca 2+  
dependent responses, such as chemotaxis and production of ROI [ 76 ,  77 ].    
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3.3     Intracellular Targets 

 Based on the adaptive mechanisms microorganisms reside in different cells and at 
different locations in the cells. Treating diseases therefore, necessitates an under-
standing of both the resident cells and target organelles. Illustrative examples of 
microorganism and their cellular/organelles targets are listed out in Table  3.4 .

3.4        Other Reticuloendothelial System Cells 

 The granulocytes are classifi ed as neutrophils, eosinophils, or basophils on the basis 
of cellular morphology. Neutrophils play the major role in the body’s defence. 

3.4.1     Neutrophils 

 Neutrophils are produced in the bone marrow by hematopoiesis. They are released 
into blood where they circulate for 7–10 h and migrate into tissues where they have a 
life span of a few days. During infection the bone marrow releases more than usual 

   Table 3.4    Diseases and intracellular targets of pathogens   

 Intracellular diseases  Target Cell  Target organelle  References 

 AIDS/HIV  T cells, epithelial cells  Phagosome, nucleus  D’Orsogna [ 78 ] 
 Brucellosis  Macrophage  Phagosome/lysosome 

or vacuole, 
endoplasmic reticulum 

 Roop [ 79 ]; Celli 
[ 80 ] 

 Dengue  WBCs, hepatocytes, 
vascular endothelial cells 

 –  Libraty et al. [ 81 ] 

 Hepatitis B, C  Hepatocytes  Endoplasmic reticulum  Moradpour [ 82 ] 
 Herpes Simplex 
virus (HSV-2) 

 Epithelial cells, neural 
ganglion 

 Nucleus  Heinz et al. [ 83 ] 

 Infl uenza  Respiratory epithelial 
cells 

 –  Arnheiter et al. [ 84 ] 

 Legionellosis  Macrophages  Phagosome/lysosome 
or vacuole, 
endoplasmic reticulum 

 Tilney et al. [ 85 ] 

 Leishmaniasis  Macrophages  –  Handman et al. [ 86 ] 
 Listeriosis  Macrophages  Cytosol  Collins, [ 87 ] 
 Malaria  Hepatocytes, red blood 

cells 
 –  Moulder [ 88 ] 

 Salmonella infection  Macrophages  Phagosome/lysosome 
or vacuole 

 Trebichavsky [ 89 ] 

 Tuberculosis  Alveolar macrophages, 
dendritic cells 

 Phagosome/lysosome 
or vacuole 

 Skvortsov [ 90 ] 

 Tularemia  –  Cytosol  Al-Khodor [ 91 ] 
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number of neutrophils, which migrate to the site of the infection. They act by both 
oxygen-dependent and oxygen-independent pathways to kill microbes. Neutrophils 
exhibit a larger respiratory burst than macrophages and consequently are able to gen-
erate more reactive oxygen intermediates and reactive nitrogen intermediates. In addi-
tion, neutrophils express higher levels of defensins than macrophages do. Hence, 
neutrophils are more active than macrophages in killing ingested microorganisms.  

3.4.2     Dendritic Cells 

 Dendritic cells are antigen-presenting cells and constitute 0.5–1 % of the leukocyte 
population in the peripheral blood mononuclear cells. They are found mostly in non-
lymphoid tissues and organs such as skin, heart, liver, lungs, and mucosal surfaces. 
The function of these cells is to initiate, stimulate and regulate a T cell response which 
includes antigen-specifi c T lymphocytes, Th1/Th2 modulation, regulatory T cell 
induction and peripheral T cell deletion. There are four types of dendritic cells, i.e. 
Langerhans cells, myeloid dendritic cells, plasmacytoid dendritic cells and infi ltrating 
infl ammatory dendritic epidermal cells. CD1b, CD11a, CD11b and CD11c, the 
thrombospondin receptor (CD36), and the mannose receptor (CD206), present on 
infl ammatory dendritic epidermal cells, are known to be involved in the uptake of 
bacterial components. In case of  Mycobacterium tuberculosis  infection, alveolar mac-
rophages (dust cells), along with dendritic cells engulf bacteria and exhibit innate as 
well as an adaptive immune response. Combined efforts by macrophages and den-
dritic cells establish protective immunity in 90 % of infected individuals.  

3.4.3     Natural Killer Cells 

 Natural killer cells (NKC) are non-phagocytic cells present mostly in mammalian 
and avian species [ 92 ]. NKC express surface receptors for the Fc portion of IgG and 
their function is to mediate antibody-dependent cytotoxicity against tumor target 
cells [ 93 ]. It is also suggested that NKC play a role in resistance against some 
microbial infections. NKC also play a role in natural genetic resistance to infections 
caused by  cytomegalovirus  and  herpes simplex type I  [ 94 ,  95 ]. However, there is also 
evidence against the role of NKC in resistance to some other viruses [ 96 ].  

3.4.4     Lymphoid Cells 

 Lymphocytes are cells present 99 % in the lymph and constitute 20–40 % of the body’s 
white blood cells. There are approximately ~10 10 –10 12  lymphocytes in the human 
body, and this can vary with body weight and age. They circulate in the lymph and 
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blood, and can migrate into tissue spaces and lymphoid organs, enabling integration 
with the immune system. The two main categories of lymphoid cells that can recog-
nise and react against a wide range of specifi c antigens are B lymphocytes or B cells 
and T lymphocytes or T cells. 

3.4.4.1     B Lymphocytes 

 The main function of B cells is to produce antibodies against antigens [ 97 ]. Each of 
the approximately 1.5 × 10 5  molecules of the antibody on the membrane of a single 
B cell has identical binding sites for antigen. B cells express various receptors on 
the surface and exhibit following function for instance, Class II MHC molecules 
permit the B cell to function as an antigen-presenting cell (APC), CR1 (CD35) and 
CR2 (CD21) are receptors for certain complement products, while the FcRII (CD32) 
is a receptor for IgG, a type of antibody. Interaction of the membrane-bound anti-
body present on mature B cells with the antigen, as well as the interactions of the 
antigen with macrophages and T cells, results in B-cell clones of corresponding 
specifi city. Repeated division of the B cell over 4–5 days generates a population of 
memory cells and plasma cells. Further plasma cells, are responsible for synthesis 
and secretion of antibody.  

3.4.4.2     T Lymphocytes 

 Natural T lymphocytes mature in the thymus region and survive in the periphery. The 
chief function of T cells is to respond to signals associated with tissue destruction and 
to minimise the collateral tissue damage they cause [ 98 ]. T cells express T-cell recep-
tors (TCR) which are a composite of polypeptides including CD3 and either of one of 
the two membrane molecules, CD8 and CD4. TCR recognises virus infected cells and 
cancer cells. However, unlike B cells, TCR does not recognise free antigen, unless it 
is bound to MHC molecules on the membrane of antigen presenting cells. The main 
function of T cells is to induce death of virus infected cells by secretion of cytotoxins 
and cytokines which activates B cells, macrophages and cytotoxic T cells. T cells also 
play role in infectious diseases such as Leishmaniasis [ 99 ], infection by hepatitis C 
virus (HCV), etc. Their ability to confi ne exuberant immune reactivity, associated 
with many chronic infections is benefi cial the host due to limited tissue damage [ 100 ].    

3.5     Non-specifi c Immune System Cells 

 Infectious diseases are also located in cells other than cells of the RES. Such cells 
include hepatocytes, epithelial cells and erythrocytes. Hepatocytes are located in 
the liver and are major site for infections such as hepatitis B/C and malaria. 
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The hepatocytes are discussed in greater detail in Chapter 6 of this book. Epithelial 
cells bind together to form the epithelial tissue which is held together by adherens, 
tight junctions, gap junctions and desmosomes. The functions of epithelial cells are 
boundary and protection of vital organs, transportation, absorption, secretion, lubri-
cation and movement. These epithelial cells can be readily attacked by microbes 
such as HIV virus, infl uenza, Herpes Simplex virus (HSV-2) and cause infections. 
Furthermore, erythrocytes are infected and act as hosts for plasmodium causing 
malaria, one of the current fatal infections posing serious challenges.  

3.6     Limitations of Conventional Therapy for Infectious 
Diseases 

 The introduction of antimicrobial agents such as penicillin resulted in a major 
breakthrough to decrease morbidity and mortality caused by infectious diseases. 
Antibiotics represented one of the greatest discoveries. This euphoria was short 
lived due to adverse effects and the emergence of drug resistance. Conventional 
therapy when associated with side effects or necessitates long term treatment, 
results in low patient compliance. Further inadequate drug concentration within 
cells is a major barrier for effective treatment of intracellular diseases. Increasing 
the dose, however, resulted in enhanced toxicity. Mono-drug therapy evolved into 
multi-drug therapy, and enabled a good degree of success and continues to form 
standard therapy, even today. Classic examples include the multi-drug combination 
for tuberculosis AKT2, AKT3, AKT4 comprising 2, 3 or 4 drugs, respectively. 
The HAART combination for AIDS and two drug combinations for malaria are also 
examples of successful therapy. Nevertheless, the alarming rate at which drug resis-
tance is occurring, and more so the emergence of multi-drug resistance are a matter 
of great concern. Tuberculosis is one such major disease which has evolved from 
Resistant to Multi-drug Resistant(MDR) to total drug resistant (TDR), the latest 
being extremely drug resistant tuberculosis (XXDR), wherein, resistance is seen to 
almost all known antitubercular drugs. 

3.6.1     Multi-drug Resistance (MDR) 

 The emergence of multi-drug resistance is attributed to a number of factors. 
Pathogens resort to different mechanisms to avoid intracellular killing. Some 
pathogens secrete exotoxins which destroy phagocytes and prevent phagocytosis. 
Bacteria with pore forming cytolysins avoid the phagosome and also escape lyso-
somal destruction [ 101 – 105 ]. Certain bacteria interfere with the production of 
cytotoxic metabolites of phagocytes or contain the antioxidant proteins, thereby 
overcoming the effects of RNIs or ROIs and cause obstruction in phagocytosis 
[ 106 ,  107 ].  
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3.6.2     Microbial Biofi lms 

 Bacteria adhere to surfaces, aggregate and form a hydrated polymeric matrix 
comprising of exopolysaccharide known as biofi lms [ 108 ]. Biofi lms are devel-
oped by various bacteria such as  Salmonella ,  Streptococcus, Vibrio cholerae, 
Klebsiella pneumonia and Haemophilus infl uenzae.  Further some cells in the bio-
fi lm experience nutrient limitation and therefore survive in the starved state. Such 
cells are slow growing cells and less susceptible to antimicrobial agents [ 109 ]. 
Certain cells in a biofi lm adapt a different and protected phenotype. Biofi lms are 
resistant to antibodies, phagocytes, and antibiotics .  Although  p hagocytes reach 
the biofi lms, they become frustrated and release their enzymes, which cause dam-
age to the tissue around the biofi lm. Release of bacteria through the damaged 
biofi lm results in dissemination of the infection, leading to acute infection in the 
surrounding tissues [ 110 ,  111 ].  

3.6.3     Effl ux Pumps 

 Effl ux pump genes and proteins are present in almost all organisms. Effl ux pumps 
thwart the entry of an antibiotic in the bacterial cell and export an antibiotic from the 
cell. As effl ux pumps can be specifi c for one substrate or for drugs of dissimilar struc-
ture, they can be associated with multi-drug resistance. Multi-drug-resistance effl ux 
pumps are a known cause for the development of bacterial resistance against antibiot-
ics. Bacterial effl ux-pump proteins related with MDR are divided into fi ve families 
namely  the ATP binding cassette (ABC) superfamily, the major facilitator superfamily 
(MFS), the multi-drug and toxic-compound extrusion (MATE) family, the small multi-
drug resistance (SMR) family and the resistance nodulation division (RND) family  
[ 112 ]. Multi-drug resistance occurs, when effl ux proteins are overexpressed on the 
cell, and easily identify and effi ciently expel a broad range of antibiotics from the cells 
[ 113 ]. Gram-negative bacteria express several families of transporters which cause 
resistance [ 114 ]. Gram- positive bacteria mainly  Staphylococcus aureus  and 
 Streptococcus pneumoniae  express MDR effl ux pumps.  S. aureus  (responsible for 
skin and soft-tissue infections) overexpress MFS effl ux pump NorA which enables 
resistance to chloramphenicol and fl uoroquinolones. The  S. pneumoniae  MFS effl ux 
pumpPmrA exports the fl uoroquinolones ciprofl oxacin, norfl oxacin, and also expels 
the dyes acrifl avine and ethidium bromide [ 115 – 117 ]  Escherichia coli  EmrE express 
a member of the small multi-drug resistance (SMR) superfamily and AcrAB–TolC, a 
member of the resistance-nodulation-cell division (RND) superfamily.  Vibrio para-
haemolyticus  overexpress NorM, a member of the multi-drug and toxic compound 
extrusion (MATE) superfamily. 

 Multi-drug-resistant tuberculosis (MDR-TB) is appearing as a ghost among the 
MDR bacteria because TB patients are at high risk of death due to failure of 
 treatment. It is evident that MDR exhibits p55 effl ux pumps which play a crucial 
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role in the pathogenicity of the microorganisms, and is responsible for the effl ux of 
tetracycline and aminoglycosides. This has opened a vast array for research in iden-
tifying mutants which are responsible for overexpressing these protein pumps in 
cases of elevated virulence [ 112 ].  

3.6.4     Enzymatic Drug Degradation and Chemical 
Modifi cation 

 Chemical modifi cation of antibiotics resulting in their inactivation and hence, 
ineffective dug concentration can be a cause of bacterial resistance. The inactivation 
reactions include hydrolysis, redox, and group transfer. Hydrolysis is the major 
cause of degradation of beta lactam antibiotics. The group transfer approach is the 
most varied and includes modifi cation by thiol transfer, glycosylation, acyl transfer, 
ribosylation, nucleotidylation and phosphorylation transfer. Drugs which are 
degraded by group transfer are aminoglycoside, chloramphenicol, rifamycin, mac-
rolides, etc. [ 118 ].   

3.7     Strategies to Overcome Limitations of Conventional 
Drug Delivery 

 One important strategy to overcome the limitation of conventional drug delivery is 
to deliver high therapeutic payloads intracellularly. This could ensure high effi -
cacy, coupled with low toxicity to provide major advantages. Targeted nanocarriers 
provide high promise as potential drug delivery systems with the capacity to 
address this specifi c challenge. Targeted nanocarriers could therefore prove to be 
the magic wand. 

 Passive and active targeting approaches could be relied on to achieve organ based 
targeting (fi rst order), specifi c cell based targeting in an organ (second order) and 
cell organelle based targeting (third order) [ 119 ]. A major requirement, however, 
besides reaching the targeting site is to ensure adequate concentration and adequate 
retention at the site. 

3.7.1     Passive Targeting 

 Passive targeting can be described as deposition of drug or drug-carrier systems at a 
particular location due to pharmacological or physicochemical factors [ 120 ]. Passive 
targeting can be achieved by exploiting pathophysiological and anatomical oppor-
tunities. Introduction of drugs directly into various anatomical sites for example 
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lungs and the eye by using non-invasive or invasive methods such as catheters or 
direct injections can enable local targeting. These site specifi c drug delivery methods 
limit systemic toxicity of the drug thus reducing adverse effects of drugs in the non-
target tissues [ 121 ]. Exploiting altered pathological conditions in diseased tissues 
are strategies that can be adopted for passive targeting for example chemotactic 
factors released in infected or infl amed tissues increased permeability of vascular 
tissues, decreased pH and/or increased temperature [ 122 ,  123 ]. Increased vascular 
permeability specifi cally in cancers has enabled passive targeting of nanocarriers 
and is cited as the enhanced permeation and retention effect (EPR) effect [ 124 ]. 
Surface properties such as particle size, shape, hydrophobicity and surface charge 
have great impact on macrophage activation and phagocytosis. 

3.7.1.1     Size 

 Particle size plays essential role in distribution and elimination of nanocarriers 
[ 125 ]. Particles size can infl uence attachment, adhesion, phagocytosis, distribution, 
circulation half-life and endocytic pathways [ 126 ,  127 ]. The opsonisation and 
phagocytosis of particles is strongly affected by size of nanocarriers. Although mac-
rophages engulfed 0.2 versus 2 μm IgG-coated spherical particles by different 
mechanisms, they followed similar kinetics [clathrin endocytosis versus Fc-receptor 
mediated phagocytosis]. Phagocytic uptake is generally observed with polymeric 
particles and liposomes with high particle size [>200-microns] [ 128 ]. Table  3.7  
highlights the size of a number of nanocarriers evaluated for targeted delivery in 
infectious diseases.  

3.7.1.2     Shape 

 A broad range of non-spherical shaped particles studied including cylinders, cubes, 
hemispheres, ellipsoids, cones and complex shapes like fi lamentous, biconcave dis-
coid showed varying effects on phagocytosis [ 169 ]. Non-spherical shaped particles 
bypassed phagocytosis due to incomplete actin structure formation. Particle shape 
affected attachment and internalisation during phagocytosis [ 170 ]. For instance 
oblate ellipsoids show best attachment and internalisation by phagocytosis, while 
prolate ellipsoids showed good attachment but poor internalisation. Champion 
et al. reported that worm-like particles showed low phagocytosis as compared to 
spherical particles of the same volume [ 169 ]. Asymmetric polymer lipid nanostruc-
tures (LIPOMER) of Doxycycline hydrochloride (DH) in the range of (250–400 nm) 
[ 171 ] revealed enhanced splenic delivery. The irregular shape of the LIPOMER cou-
pled with rigidity resulted in fi ltration and non-phagocytic accumulation to reveal 
splenotropy in sinusoidal spleen models, rat, rabbit and dog. A high spleen liver ratio 
of 6.7:0.53 was seen in the dog model (Fig.  3.2 ) [ 172 ].   
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3.7.1.3     Surface Properties 

 Surface properties like hydrophobicity and surface charge also impact opsonisation, 
phagocytosis and biodistribution of nanoparticles [ 173 ]. Hydrophobic nanocarriers 
are readily coated by complement proteins, albumin, and immunoglobulin and scav-
enged by RES [ 174 ]. Surface charge of particles also infl uences interaction and sta-
bility with cells [ 175 ]. Reports suggest that positively charged particles showed high 
phagocytic uptake over negatively charged particles probably due to better interac-
tion with the negatively charged cell membrane. Cationic and neutral nanocarriers 
are less taken up by RES as compare to negatively charge [ 176 – 178 ]. However, nega-
tively charged nanoparticles can potentially attach to cationic sites on the macro-
phages namely the scavenger receptors, which facilitate their uptake by RES [ 179 ]. 

 For details on infl uence of particle size, shape and charge readers are directed to 
the following reviews [ 126 ,  180 ].   

3.7.2     Active Targeting 

 Active targeting, defi ned as specifi c targeting of drugs or drug containing nanocar-
riers by anchoring active agents or ligands, provides selectivity, recognisability and 
potential to interact with specifi c cells and tissues in the body [ 181 ]. Targeting by 
attaching ligands has been investigated as an additional strategy to enhance translo-
cation of antimicrobials inside cells. Attaching ligands facilitates greater uptake and 
can be mediated by various mechanisms.  

  Fig. 3.2    Gamma scintigraphic images—biodistribution of LIPOMER in dog: ( a ) irregular, 
( b ) spherical. Reprinted with permission from John Wiley and Sons       
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3.7.3     Receptor Mediated Endocytosis (RME) 

 The membrane of macrophages expresses various receptors to facilitate the inter-
nalisation of cargoes inside the cell and their degradation. Receptor mediated endo-
cytosis (RME) permits the rapid internalisation of ligand attached particles as 
compared to untargeted particles [ 182 ]. The common RME mechanisms are mac-
ropinocytosis, clathrin dependent endocytosis (CDE), caveolae- mediated endocyto-
sis and clathrin independent endocytosis (CIE). Each approach exhibits different 
binding and internalisation mechanisms. Further, the predominant uptake mecha-
nism is often dictated by the nature of the ligand. Receptor mediated processes are 
relatively slower than phagocytic processes, with the ligand playing an important 
role. The sizes, geometry, charge and density of the ligand signifi cantly infl uences 
receptor mediated endocytosis [ 183 ]. For more references readers can refer to [ 182 , 
 184 ,  185 ]. Table  3.5  lists the endocytic pathways, endosome morphology and the 
proteins involved in the endocytic pathways.

   Table 3.5    Endocytic pathways, endosome morphology and the proteins involved in the endocytic 
pathways   

 Endocytic mechanism  Proteins  Morphology  References 

 Clathrin mediated 
endocytosis 

 Dynamin, AP180, adaptin, 
Clathrin, AP2, epsin, 
SNX9, synaptojanin, actin, 
amphiphysin, Rab5, Arf6 
plus many others 

 Vesicular  Ford et al. [ 186 ]; 
Roth et al. [ 187 ] 

 Caveolae mediated 
endocytosis 

 Caveolins, Cavins, PTRF, 
src, PKC, actin 

 Vesicular/
tubulovesicular 

 Parton et al. [ 188 ]; 
Rothberg et al. 
[ 189 ]; Krajewska 
et al. [ 190 ] 

 Flotillin-dependent 
endocytosis 

 Flottilin-1 and -2  Vesicular  Glebov et al. [ 191 ]; 
Frick et al. [ 192 ] 

 Clathrin-independent 
carrier (CLIC)/GPI-AP-
enriched early endosomal 
compartment (GEEC) 

 ARHGAP10, actin, 
GRAF1, other GRAFs, 
Cdc42, Arf1 

 Tubular/ring  Lundmark et al. 
[ 193 ]; Naslavsky 
et al. [ 194 ] 

 ADP-ribosylation factor 6 
(Arf6) mediated CIE 

 Arf6  Vesicular/
tubular 

 Donaldson et al. 
[ 195 ] 

 Macropinocytosis  Phosphoinositide 3-kinase, 
Rac1, Brefeldin A-ADP 
ribosylated substrate 
(BARS), Actin, PAK1, 
PI3K,Ras, Src, HDAC6 

 Highly ruffl ed  Kirkham et al. 
[ 196 ]; Marbet et al. 
[ 197 ] 

 Circular dorsal ruffl e  Cortactin, actin  Highly ruffl ed  Krueger et al. [ 198 ] 
 IL2Rβ pathway  RhoA, Rac1, PAK1, PAK2  Vesicular?  Grassart et al. [ 199 ]; 

Lamaze et al. [ 200 ] 
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3.7.4        Receptors for Macrophage Targeting 

 Macrophages possess large number of surface receptors which help in the process 
of recognition and endocytosis of engineered particulate carriers. Infection of mac-
rophages leads to changes in the expression pattern of the concerned receptors, 
which can be exploited for targeted drug delivery employing nanocarriers. Table  3.6  
is a summary of the important receptors on macrophages and illustrative examples 
of ligands for the same that could play a role in designing targeted nanocarriers for 
infectious disease therapy.

   CD14 [ 213 ], Decay accelerating factor (CD55), Endo180 [ 214 ] are also recep-
tors which could be targeted. Nevertheless, ligands for the same need to be explored.   

3.8     Nanocarriers for Targeted Delivery in Infectious Diseases 

 All known nanocarriers can be effectively employed for targeted delivery in intracel-
lular infections. Both passive and active targeting approaches have been evaluated. 
The following Tables  3.7  and  3.8  illustrate examples of nanocarriers, limited to major 
anti-infective agents for active and passive targeting, respectively. Size being a major 
parameter infl uencing targeting to RES. Table  3.7  also highlights the size of nanocarriers, 
which is a primary factor in passive targeting.

   Table 3.6    Receptors expressed by macrophages and their specifi c ligands   

 Receptor  Ligands  References 

 Mannose  Mannose, fucose, N-acetyl glucosamine, 
glucose, collagen, mannan, mannosyl 
lipoarabinomanan 

 Ezekowitz et al. [ 201 ] 

 Tuftsin  Tuftsin  Agrawal and Gupta [ 202 ]; 
Tzehoval et al. [ 203 ] 

 Scavenger  Modifi ed LDL, lipopolysaccharides (LPS), 
lipoteichoic acid (LTA) 

 Wilkinson and Khoury [ 204 ]; 
Graversen et al. [ 205 ] 

 Fc  Monoclonal Antibody  Guilliams et al. [ 206 ] 
 Fibronectin  Fibronectin, laminin, serum amyloid P  Taylor et al. [ 207 ]; Schett 2008 
 Folate  Folic acid  Kroger et al. [ 208 ]; Van Der 

Heijden et al. [ 209 ] 
 Transferrin  Transferrin  Qian et al. [ 210 ] 
 Toll-like 
receptor 

 Lipopolysaccharides (LPS), lipoproteins, 
lipopeptides and lipoarabinomannan 

 Kawai and Akira [ 211 ] 

 Complement 
receptors CR3 
and CR4 

 C3b, iC3b, C3c and C3d  Campagne et al. [ 212 ] 
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     Table 3.7    Nanocarriers containing anti-infective agents and their particle size for passive targeting   

 Nanocarriers  Drug  Particle size  Diseases  References 

 Polymyxin B  343 ± 28 nm   Pseudomonas 
aeruginosa  

 Alipour et al. [ 129 ] 

 Liposomes  Clofazimine  –  Tuberculosis  Mehta et al. [ 130 ] 
 Pyrazinamide 
and rifabutin 

 0.1 μm  Tuberculosis  El-Ridy et al. [ 131 ]; 
Gaspar et al. [ 132 ] 

 Ampicillin  208 + 70 nm  Salmonellosis  Fattal et al. [ 133 ] 
 Gentamicin and 
streptomycin 

 –  Brucellosis  Fountain et al. [ 134 ] 

 Ciprofl oxacin  –  Salmonellosis  Magallanes et al. [ 135 ] 
 Antimonials  –  Leishmaniasis  Date et al. [ 136 ] 
 Dideoxycytidine  0.3 μm  HIV  Oussoren et al. [ 137 ] 

 Polymeric 
nanoparticles 

 Rifampicin 
gelatin NPS 

 264 ± 11.2 nm  Tuberculosis  Saraogia et al. [ 138 ] 

 Guar gum  895.5 ± 14.73 nm  Tuberculosis  Kaur et al. [ 139 ] 
 Rifampicin and 
isoniazid 

 382 ± 23 nm  Tuberculosis  Booysen et al. [ 140 ] 

 Rifampicin  200- 
260 ± 10.24 nm 

 Tuberculosis  Esmaeili et al. [ 141 ] 

 Indinavir  1.6 μm  HIV-1 
encephalitis 
(HIVE) 

 Dou et al. [ 142 ] 

 Rifampin and 
azithromycin 
antibodies 

 260 nm  Chlamydia 
infection 

 Toti et al. [ 143 ] 

 AMB  250 nm  Leishmaniasis  Tyagi et al. [ 144 ] 
 Gentamicin  245 ± 45 nm  Leishmaniasis  Zhang et al. [ 145 ] 
 Rifampicin  –   Staphylococcus 

aureus  and 
 Mycobacterium 
avium  

 Azrami et al. [ 146 ] 

 Moxifl oxacin  418 ± 90.2 nm  Tuberculosis  Kisich et al. [ 147 ] 
 Quinine  176 nm  Malaria  Hass et al. [ 148 ] 
 AMB  358 ± 62 nm  Leishmaniasis  Espuelas et al. [ 149 ] 

 Gelatin NPS  Rifampicin  264 ± 11.2 nm  Tuberculosis  Saraogi et al. [ 138 ] 
 Microparticles  Isoniazid and 

rifabutin 
 –  Tuberculosis  Yadav et al. [ 150 ] 

 Isoniazid  1 μm  Tuberculosis  Zhou et al. [ 151 ] 
 Solid lipid 
nanoparticles 

 Lopinavir  230 nm  HIV  Alex et al. [ 152 ] 

 Tobramycin  855 nm  Bacterial  Bargoni et al. [ 153 ] 
 Zidovudine  294 + 32 nm  HIV  Heiati et al. [ 154 ] 
 Atazanavir  167 nm  HIV  Chattopadhay et al. 

[ 155 ] 
 Isoniazid  131.7 nm  Tuberculosis  Bhandari and Kaur 

[ 156 ] 

(continued)
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 Nanocarriers  Drug  Particle size  Diseases  References 

 Metallic 
nanoparticles 

 Rifampin, 
Isoniazid 

 100 nm  Tuberculosis  Clemens et al. [ 157 ] 

 Niosomes  Isoniazid  450 nm  Tuberculosis  Singh et al. [ 158 ] 
 Nanoemulsions/
nanosuspension 

 Primaquine  10–200 nm   Plasmodium 
berghei  

 Singh et al. [ 159 ] 

 AMB  –  Leishmaniasis  Falk et al. [ 160 ] 
 Dendrimer  Lamivudine  –  HIV  Dutta and Jain [ 161 ] 

 Primaquine 
phosphate 

 –  Malaria  Bhadra et al. [ 162 ] 

 Carbon 
nanotubes 

 AMB  100–400 nm  Leishmaniasis  Prajapati et al. [ 163 ] 

 Cu oxide  20–95 nm   Meticillin-
resistant 
Staphylococcus 
aureus 
(MRSA); 
Escherichia 
coli (E.coli)  

 Ren et al. [ 164 ]; Raffi  
et al. [ 165 ] 

 Zn oxide  50–70 nm   Staphylococcus 
aureus  

 Jones et al. [ 166 ,  167 ] 

 Iron 
nanoparticles 

 3–9 nm   E. coli   Chatterjee et al. [ 168 ] 

Table 3.7 (continued)

(continued)

   Table 3.8    Nanocarriers containing anti-infective agents and ligands for active targeting   

 Nanocarriers  Targeting Ligands  Drug  Diseases  References 

 Liposomes  Mannose  Pentamidine 
isethionate 

 Pneumocystis 
pneumonia 

 Banerjee et al. 
[ 215 ] 

 Mannose  Ciprofl oxacin  Respiratory 
intracellular 
parasitic 
infections 

 Chono et al. [ 216 ] 

 Hyaluronan  Anti-infl ammatory 
drug 

 Infl ammatory 
sites 

 Glucksam-Galnoy 
et al. [ 217 ] 

 Apolipoprotein E  –  Hepatic 
diseases 

 Kim et al. [ 218 ] 

 Polyinosinic acid and 
phosphatidylserine 

 Antimony-
lipopolysaccharide 
(Sb-LP) 

 Leishmaniasis  Tempone et al. 
[ 219 ] 

 Ostearoylamylopectin 
(O-SAP) 

 Rifampicin and 
Isoniazid 

 Tuberculosis  Deol et al. [ 220 ] 

 O-palmitoyl 
amylopectin (OPA) 

 Amphotericin B  Pulmonary 
candidiasis 

 Vyas et al. [ 221 ] 

 IgG  –  Liver disease  Derksen et al. 
[ 222 ] 
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3.9         Specialised Targeting Approaches for Important 
Infectious Diseases 

3.9.1     Tuberculosis 

 Tuberculosis is persistent and deadly infectious disease, caused  Mycobacterium 
tuberculosis  which is non-specifi cally phagocytosed by alveolar macrophages. 
The emergence of various resistance forms of tuberculosis has accelerated research 
in specifi c approaches to target the  M. Tuberculosis . Date et al. developed folate 

 Nanocarriers  Targeting Ligands  Drug  Diseases  References 

 Tuftin  AMB  Leishmaniasis  Agrawal et al. 
[ 202 ] 

 Immunoliposomal  AMB  HIV-1  Bestman-Smith 
et al. [ 223 ] 

 Antibodies against 
human and murine 
HLA-DR and CD4 
antigen 

 Indinavir  HIV  Gangne et al. 
[ 224 ] 

 Nanoparticle  Mannose  Rifampicin  Visceral 
leishmaniasis 

 Chaubey et al. 
[ 225 ] 

 Folate  Rifampicin  Tuberculosis  Date et al. [ 226 ] 
 Folate  Vancomycin   Staphylococcus 

aureus  
 Chakraborty et al. 
[ 227 ] 

 TAT (trans-activating 
transcriptor) peptide 

 Ritonavir  HIV  Rao et al. [ 228 ] 

 Transferrin anchored 
pegylated albumin 
nanoparticles 
(Tf-PEG-NPs) 

 Azidothymidine  HIV  Mishra et al. 
[ 229 ] 

 Transferrin  Saquinavir  HIV  Ulbrich et al. 
[ 230 ] 

 Mannan  Diadanosine  HIV  Kaur et al. [ 231 ] 
 SLN  Mannan  Gene delivery  Alveolar 

macrophages 
 Yu et al. [ 232 ] 

 Mannose  Rifabutin  Alveolar 
macrophages 

 Nimje et al. [ 233 ] 

 Transferrin  Quinine HCl  Malaria  Gupta et al. [ 234 ] 
 Dendrimers  Mannose  -  Macrophages  Gao et al. [ 235 ] 

 Tuftsin  Efavirenz (EFV)  HIV  Dutta et al. [ 236 , 
 237 ] 

 Mannose  Rifampicin  Tuberculosis  Kumar et al. [ 238 ] 
 Carbon 
Nanotubes 

 Mannose  Amphotericin B  Macrophages  Pruthi et al. [ 239 ] 

Table 3.8 (continued)
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anchored polymeric nanoparticles of rifampicin and demonstrated 480 % enhancement 
in rifampicin uptake as compared to 300 % in the absence of folate in the human mac-
rophage cell line U-937 [ 226 ]. Folate receptors enable fl otillin-1 and caveolin receptor 
mediated endocytosis, thereby bypassing normal phagolysome formation to deliver 
the nanocarriers into the cytoplasm [ 191 ]. Lemmer et al. developed mycolic acid 
(MA) anchored nanoparticles (NP) of isoniazid. MA nanoparticles exhibited mac-
rophage uptake, possibly localising in the cytoplasm. Verma et al. developed inhal-
able microparticles containing NO donors for the treatment of  Mycobacterium 
tuberculosis . Such inhalable microparticles specifi cally delivered NO donors inside 
macrophages and showed sustain release in the cytosol. The antimycobacterial 
activity of microparticles was confi rmed by the decrease in the  M. tuberculosis  
CFU by up to 3-log in 24 h. The activity could be attributed to interaction of NO 
with bacterial DNA, lipids and protein. This strategy could be considered practical 
as the doses of NO donors (isosorbide nitrate) were much lower than those required 
for cardiovascular effects [ 240 ].  

3.9.2     Malaria 

 Malaria is a complex disease caused by plasmodium and majorly resides in non- RES 
cells like red blood cells (RBCs) and hepatocytes. Entry of the parasite into the 
brain causes cerebral malaria. Malaria can be targeted at the exoerythrocytic stage by 
targeting RBCs, or targeting the hypnozoites to tackle malarial relapse and further 
in case of cerebral malaria targeting the brain. Increased permeability of infected 
RBCs is seen after 12–16 h of plasmodium invasion through formation of channels. 
These channels are “new permeability pathways” (NPPs) which allow entry of mole-
cules such as dextran, protein A and IgG2a antibody thereby differentiating the 
non-infected and infected RBCs. Such pathways could be targeted to enable high 
drug loading in the erythrocytes specifi cally through design of nanocarriers of 
<80 nm [ 241 ]. This could be supported through design of stealth nanocarriers which 
could enable long circulation, using various stealth agents like poly(ethyleneglycol) 
(PEG), Pluronic, etc. [ 242 ]. Chloroquine liposomes anchored with anti-erythrocyte 
F (ab′)2 were studied for targeting to erythrocytes [ 243 ]. Hepatocytes the residence 
of hypnozoites expresses the asialoglycoprotein receptor (ASGPR), which is overex-
pressed in infections. Targeting this receptor using nanocarriers anchored with 
ASGPR ligands is a strategy for hepatocyte targeting. Joshi et al. prepared in situ 
primaquine nanocarboplex of primaquine phosphate anchored with pullulan as the 
ASGPR ligand for specifi c targeting to hepatocytes. Signifi cantly, enhanced hepatic 
accumulation with preferential accumulation in the hepatocytes and a high hepato-
cytes/nonparenchymal cells ratio of 75:25 confi rmed hepatocyte targeting [ 244 ]. 
Transferrin (Tf)-anchored solid lipid nanoparticles (SLNs) were intravenously 
administered for targeting quinine dihydrochloride to the brain, in cerebral malaria. 
Compared to conventional SLNs or drug solution the Tf-SLNs signifi cantly enhanced 
the brain uptake of quinine [ 234 ].  
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3.9.3     HIV 

 A major feature of HIV that complicates therapy is the existence of HIV in multiple 
reservoirs, which include various cellular and anatomical sites [ 245 ]. The typical 
reservoirs are the liver, spleen, lungs, GIT and genital tract with the brain and 
bone marrow representing remote sites [ 246 ]. Targeted delivery for HIV therefore 
needs to address delivery to maximum sites simultaneously to achieve remission. 
One strategy that we propose is a combination of nanocarriers of size <100 nm to 
target remote sites and size >200 nm target major RES organs (Unpublished data). 
Viral replication is inhibited by the antioxidant glutathione. Erythrocytes containing 
glutathione (GSH) in combination with azidothymidine (AZT) and didanosine 
(DDI) showed higher reduction in viral DNA in bone marrow and brain as compared 
to DDI + GSH alone [ 247 ]. Immunoliposomes containing siRNA for targeting the 
lymphocyte function-associated antigen-1 (LFA-1) integrin, which is expressed on 
all leukocytes, was selectively taken up by T cells and macrophages, the primary site 
of HIV. Further, in vivo administration of anti-CCR5 siRNA resulted in leukocyte-
specifi c gene silencing that was sustained for 10 days [ 248 ]. Nanogels comprising 
non-reverse transcriptase inhibitors (NRITs) decorated with a peptide for brain spe-
cifi c apolipoprotein E (apoE) receptors, showed tenfold suppression of retroviral 
activity and decrease infl ammation in humanised mouse model of HIV-1 infection in 
the brain [ 249 ].   

3.10     Veterinary Applications of Targeted Drug 
Delivery Systems 

 Targeted drug delivery for the therapy of veterinary infections assumes immense 
importance not only for improved animal health but due to the challenges posed by 
zoonotic diseases. About 13 zoonotic diseases including brucellosis, tuberculosis, 
trypanosomiasis, cysticercosis and others are related to 2.4 billion cases of infection 
in humans and over two million deaths annually [ 166 ,  167 ]. Such infections exist 
both in domestic animals and wild life. The close proximity of humans especially 
with such domestic animals is a cause of global concern. The WHO policy of “Cull 
and Kill” results not only in the loss of lives but also heavy monetary losses to the 
farmer. Targeted treatment strategies using nanodrug delivery systems could pro-
vide a revolutionary strategy to benefi t both the animals and man. The benefi ts of 
targeted nanomedicine strategies are slowly gaining recognition as evident from a 
number of reported studies. Liposomes have been used by many researchers for 
treating various veterinary diseases such as Leishmaniasis [ 250 ,  251 ], Brucellosis 
[ 252 ], Blastomycosis [ 253 ], Babesiosis [ 254 ], etc. Patil et al. [ 171 ] developed an 
asymmetric lipomer. This is a combination of polymer–lipid containing doxycy-
cline which could have application in the treatment of intracellular infections that 
are primarily resident in the spleen like brucellosis, ehrlichiosis, etc. A number of 
studies are reported on horses infected with babesiosis,  Streptococcus equi, T. gondii  
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and  Strongylus vulgaris  infections using liposomes [ 254 ], polymeric nanospheres 
[ 255 ], dendrimers [ 256 ] and micelles [ 257 ] respectively. A recent study revealed the 
improved therapy of theileiriosis in cattle with solid lipid nanoparticles (SLN) of 
buparvaquone [ 258 ]. SLN revealed comparable effect with the intramuscular injec-
tion at signifi cantly lower doses. Nanodrug delivery systems have also been evalu-
ated in dogs, sheep and pigs. For details on nanodrug delivery applications in 
targeted delivery in veterinary infections, readers are directed to the following 
reference [ 259 ].  

3.11     Future Scope 

 Targeted delivery for infectious diseases has immense scope. Tackling infections 
using nanodrug delivery systems could provide a practical alternative as a short term 
strategy. A rate-limiting factor however would be the serious concerns of toxicity. 
Nanodrug delivery systems due to their high intracellular delivery could precipitate 
new and unknown toxicities. Evolving strategies to predict the same is an important 
path forward. While vaccines could probably provide the ultimate cure and control, 
vaccine development is a complex process and not yet easily attained as evident from 
the limited success stories. However, designing nano-vaccines targeted to exhibit 
greater cellular response is also a near future prospect.     
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