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    Chapter 13   
 Functionalized Lipid Particulates 
in Targeted Drug Delivery 

             Mangal     S.     Nagarsenker     ,     Ankitkumar     S.     Jain    , and     Sanket     M.     Shah   

13.1              Introduction   

 Lipids have been of major interest and importance in fi eld of drug delivery systems. 
Their application in formulation science has been diverse and promising in different 
ways. The number of reports published each year on lipid based formulations and 
lipid based formulations in market establish critical role of lipids in drug delivery. 
Of considerable importance is the application of lipids in design of particulate 
systems which are amenable to surface modifi cations for improved drug/gene deliv-
ery. In the past few years, reports on different lipid based particulate systems have 
increased tremendously with major focus on liposomes and solid lipid nanoparticles 
(SLNs) [ 1 – 7 ]. Other lipid based particulate systems that are evaluated include nano-
structured lipid carriers (NLCs) [ 6 ,  8 – 11 ], emulsions [ 12 – 17 ], lipid–drug conjugates 
(LDCs) and recently reported lipid nano-particulates in the form of LeciPlex [ 18 , 
 19 ], and polymer-lipid hybrid nanoparticles (PLN) [ 20 – 22 ]. One of the various rea-
sons responsible for success of lipids in formulation of particulate systems is their 
bio-compatible and biodegradable nature [ 2 ,  19 ,  23 ]. Thus, lipid based particulate 
systems can suitably be employed for delivery through not only noninvasive routes, 
such as oral and topical, but also through parenteral routes which are very demand-
ing with reference to delivery system design. 

 Lipid particulate systems, over the years, have undergone stupendous modifi ca-
tions. Initially lipid particulate system of micron size were reported which were 
followed by lipid particulates in nanosize range. The nanosize range of particles 
made them capable of targeting tumors better, primarily because of enhanced 
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permeation and retention (EPR) effect [ 24 – 31 ]. Subsequently the use of pH and/or 
temperature sensitive lipids to suit drug release in tumor environment made them 
more pronounced tool for tumor drug delivery [ 32 ,  33 ]. Another worthwhile modi-
fi cation was to render surface of lipid nanosystems more hydrophilic using different 
agents such as polyethylene glycols (PEGs) [ 33 – 35 ], which increased the systemic 
circulation time, resulting in prolonged drug release in plasma. Another signifi cant 
achievement in lipid based particulate systems is conjugation of surface lipids to 
ligands that conferred ability to selectively target certain organs/tissue mass, and 
has been of great use in treatment of various infectious diseases and cancer in par-
ticular as depicted in Fig.  13.1  [ 3 ,  23 ,  25 ,  33 ,  36 – 45 ].  

 The chapter throws light on some key functional lipids employed in drug deliv-
ery and their fi nal fate in human body. The chapter also focuses upon various lipid 
based particulate systems, their feasibility to functionalization and consequently 
their role in drug delivery.  

13.2     Lipids as  Excipients   

 The classifi cation of lipids is very diverse. Lipids can be classifi ed on the basis of 
their HLB values; their chemical structure such as glycerides, fatty acids, and so on; 
on the basis of their fatty acid chain length; depending on the charge they possess or 
even on the basis of their uses. The lipids discussed here are the ones predominantly 
employed in pharmaceutical formulations. 

  Fig. 13.1    Representation of one of the functionalized liposomal delivery systems [ 36 ]       
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13.2.1      Phospholipid   

 Phospholipids comprise a huge family of lipids that have been instrumental in 
giving birth to a very important class of novel formulations known today, the vesic-
ular drug delivery systems, better known as liposomes. Phospholipids are biocom-
patible as they are the key component of human cell membrane [ 46 – 51 ]. They are 
known to permeate skin as well as other cell membranes very effectively owing to 
structural similarity to cell membrane components [ 52 – 54 ]. Most phospholipids 
generally consist of a diglyceride, a phosphate group and a polar head group such as 
ethanolamine or choline, attached to phosphate moiety. This imparts them, both 
hydrophilic and hydrophobic regions in same molecule enabling them to act as 
effi cient stabilizers at liquid–solid or liquid–immiscible liquid interface. 
Phospholipids have been extensively used as emulsifi ers and stabilizers for a pleth-
ora of particulate systems such as nano-emulsions, micro-emulsions, polymeric and 
lipidic nanoparticles, and so on.  

13.2.2     Liquid and Solid  Lipids   

 Lipids comprise fatty acids, their monoglycerides, diglycerides, or triglycerides 
with C-chain length of 10 and more; waxes; sterols (cholesterol); and partial glyc-
erides. Generally, short and medium chain glycerides fall in category of liquid lipids 
while long chain glycerides constitute most of solid lipids. Various solid lipids 
reported widely in recent literature reports include glyceryl behenate, glyceryl 
monostearate, glyceryl distearate, glyceryl dilaurate, glyceryl palmitostearate, cetyl 
palmitate, tristearin, tripalmitin, trimyristin, trilaurin, SOFTISAN ®  142, long chain 
fatty acids like stearic acid, palmitic acid, decanoic acid, behenic acid, to name a 
few [ 1 ,  55 – 59 ]. Lipids help in better permeation of drug with poor permeability. 
Lipids also aid in improving solubilization of drug in gastrointestinal tract (GIT) by 
increase in micellization of drug by fatty acids liberated upon lipid digestion by 
pancreatic lipase and other enzymes [ 60 – 64 ]. Lipids also offer improvement in sta-
bility of photo- or pH dependent unstable drug [ 6 ,  19 ]. Importantly, both solid as 
well as liquid lipids, are amenable to chemical modifi cations imparting target speci-
fi city to them [ 23 ]. Some of these can be directly conjugated to active drug mole-
cules to render a lipidic prodrug with better physicochemical properties which 
releases active molecule on reaching the desired site of action [ 65 – 67 ].  

13.2.3     Lipids for  Functionalization   

 Numerous reports are available on capability of functionalized lipids to improve 
drug delivery. Functionalization makes them either more target specifi c, or renders 
them a charge, or makes them capable of yielding pH/temperature-sensitive 
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nanoparticles or nanoparticles with greater plasma circulation half-life or a combi-
nation of all above mentioned attributes [ 68 – 74 ]. Attempts have been directed to 
conjugate hydrophilic molecules such as PEGs to lipids thus rendering stealth prop-
erties to the surface of nanoparticles fabricated from them. Conjugation of lipids to 
molecules possessing charge (+ve/−ve) renders them either a cationic or anionic 
charge, for instance dipalmitoyl phosphoglycerol (DPPG) imparts negative [ 75 ] and 
didodecyldimethylammonium bromide (DDAB) imparts positive charge [ 76 ] 
respectively. Various ligands based on immunoglobulins, carbohydrates, proteins, 
vitamins, and so on have been conjugated to lipids mentioned in greater detail later, 
to make them target specifi c. Another example of functionalizing lipids is of choles-
teryl hemisuccinate molecule which is cholesterol ester of hemisuccinic acid which 
upon incorporation has been reported to impart pH sensitivity to the fabricated lipo-
somes [ 77 ]. Functionalization of lipids has revolutionized the area of drug delivery, 
as elucidated, in the next sections of the chapter.   

13.3     Fate of Lipid Particulate  Systems   

 The major route of administration for a functionalized lipid based particulate 
system is the intravenous route, though a few functionalized lipid systems improve 
oral and transdermal absorption of actives. As is well known for metabolism of 
ingested lipids, and as is true for any lipid systems, whether functionalized or not, 
after oral delivery, lipids are acted upon by enzymes, especially pancreatic lipases, 
and the triglycerides are broken down to glycerol and free fatty acids or monoglyc-
erides. After absorption in GIT, these free fatty acids are again reformed to triglyc-
erides that are instrumental in formation of chylomicrons and lipoproteins. The 
lipoproteins are again responsible for utilization and excretion of cholesterol and 
also in formation of bile salts. The excess fatty acids is utilized for energy produc-
tion inside the mitochondria of cells after their uptake as they enter TCA cycle. 

 Final fate of lipids even when administered intravenously as functionalized 
nanoparticles remains the same with a few differences. The functionalized lipid 
owing to target specifi city reaches the target cells, helps in internalization of parti-
cles via receptor mediated endocytosis or carrier mediated uptake. However, once 
inside the cell, the biochemical pathway for the lipids remains the same as for lipids 
ingested by any other route, except that the targeted lipid is initially acted upon by 
enzymes to break the bond between the targeting ligand and lipid. 

 In addition to conferring targeting ability, lipid ligand employed for functional-
ization in lipid particulate system may infl uence in vivo course. It can render the 
surface of lipid nanosystems hydrophilic or charged depending on the property of 
ligand associated with lipid. This is benefi cial with respect to reduced opsonization 
and RES uptake thus resulting in slower clearance and improved circulation times. 
PEGylation of lipids signifi cantly improves circulation half-life of lipid nanosystems. 
The complex process of opsonization determines the eventual fate of the lipid 
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particulate system like its rate of clearance from the blood stream, volume distribution, 
organ distribution and its elimination from the body. PEGylation is an obligatory 
requirement to prolong circulation for delivery systems functionalized via antibod-
ies, due to their known interaction with reticuloendothelial system leading to 
faster clearance of antibody functionalized delivery system from the circulation. 
Functionalization can change the pharmacokinetic and pharmacodynamics of the 
lipid based delivery system having a negative or positive effect on the therapeutic 
effi cacy of the system [ 78 ].  

13.4     Formulation Considerations for Functionalized 
Lipid  Nanosystems   

 As in case of any formulation, the major concern for functionalized lipid nanosystem 
from point of view of formulation scientist is its ease to scalability and commercial-
ization. Till the early 1990s, there were no high hopes about the viability of nanopar-
ticulate based delivery systems in market, though the scenario started to change 
from late 1995, after introduction of Doxorubicin and Amphotericin B loaded lipo-
somes (Doxil ® , Caelyx ® ; and Ambisome ® ). Since then, various nanoparticulate systems, 
and predominantly lipid based nanosystems, have been introduced in market. 

 Today, functionalized lipid nanoparticles fi nd themselves in similar situation as 
nanoparticles did two decades ago. But their future will depend on the ease of func-
tionalization provided if those techniques can be scaled up without compromising 
the yield. 

 Tremendous efforts have been observed recently to effect functionalization of 
lipids to render delivery systems target specifi c. Ligands specifi c to receptors (tar-
gets) have been conjugated to lipids by either strong covalent bonds or weak van der 
Waal forces or hydrogen bonding. Covalent linkages generally employ esterifi ca-
tion, amidation or sulfonation reactions between lipids and the ligand. Lipids used 
possess an acid, amine, sulfate, or alcohol functional group which is accordingly 
conjugated to its counterpart functional group/s on ligands. One important consid-
eration during functionalization is that the ligand after being coupled to lipid should 
not show reduction in its affi nity for target site. The alternative method of coupling 
ligands to fabricated lipid nanosystem as reported by many scientists is incubation 
or lyophilization of ligand together with the nanosystem. In such cases, the associa-
tion of ligand to surface of lipid nanocarriers has been confi rmed by various tech-
niques, but predominantly by measurement of surface charge (zeta potential). 

 Literature also mentions use of linkers to couple ligand and lipid together. 
Linkers which are reported include pyridylditiopropionoylamino-PEG, hydrazide- 
PEG, maleimide-PEG,  p -nitrophenylcarbonyl-PEG-PE, pyridylthiopropionoyl-
amino- PEG-distearoylphosphatidylethanolamine (PDP-PEG- DSPE) to name a few 
[ 79 ,  80 ]. It is hypothesized that the linker allows the ligand to be extended from the 

13 Functionalized Lipid Particulates in Targeted Drug Delivery



416

   Ta
bl

e 
13

.1
  

  D
if

fe
re

nt
 li

ga
nd

s 
us

ed
 f

or
 ta

rg
et

in
g   

 C
at

eg
or

y 
 L

ig
an

ds
 

 R
ec

ep
to

r 
ta

rg
et

 
 R

ef
er

en
ce

s 

 Im
m

un
og

lo
bu

lin
s 

 M
on

oc
lo

na
l a

nt
ib

od
ie

s 
 O

ve
re

xp
re

ss
ed

 a
nt

ig
en

s 
on

 tu
m

or
 c

el
ls

 
 [ 7

9 ,
  8

3 –
 90

 ] 
 Ig

G
 

 O
ve

re
xp

re
ss

ed
 a

nt
ig

en
s 

on
 tu

m
or

 c
el

ls
 

 [ 9
0 ]

 
 C

ar
bo

hy
dr

at
es

 
 Su

ga
rs

 li
ke

 g
al

ac
to

se
, m

an
no

se
, f

uc
os

e 
 C

ar
bo

hy
dr

at
e 

re
ce

pt
or

 
 [ 9

1 ]
 

 A
ra

bi
no

ga
la

ct
an

 
 A

SG
PR

 (
as

ia
lo

gl
yc

op
ro

te
in

 r
ec

ep
to

r)
, 

a 
ty

pe
 o

f 
ca

rb
oh

yd
ra

te
 r

ec
ep

to
r 

 [ 3
6 ]

 

 Pu
llu

la
n 

 A
SG

PR
 (

as
ia

lo
gl

yc
op

ro
te

in
 r

ec
ep

to
r)

, 
a 

ty
pe

 o
f 

ca
rb

oh
yd

ra
te

 r
ec

ep
to

r 
 [ 9

2 ,
  9

3 ]
 

 Pr
ot

ei
ns

 
 G

ly
co

pr
ot

ei
ns

 li
ke

 tr
an

sf
er

ri
n,

 le
ct

in
s 

 T
ra

ns
fe

rr
in

 r
ec

ep
to

r 
 [ 9

3 ,
  9

4 ]
 

 R
G

D
 (

ar
gi

ni
ne

-g
ly

ci
ne

- 
as

pa
rt

ic
 a

ci
d 

ol
ig

op
ep

tid
e)

 
 αv

β3
 in

te
gr

in
s 

ov
er

ex
pr

es
se

d 
m

ai
nl

y 
on

 
en

do
th

el
ia

l c
el

ls
 

 [ 9
5 ]

 

 C
el

l p
en

et
ra

tin
g 

pe
pt

id
es

 s
uc

h 
as

 
TA

T
 p

ep
tid

es
 

 In
te

ra
ct

s 
di

re
ct

ly
 w

ith
 li

pi
d 

bi
la

ye
r 

of
 c

el
ls

 to
 e

ns
ur

e 
fa

st
er

 c
el

l i
nt

er
na

liz
at

io
n 

 [ 9
6 ]

 

 V
ita

m
in

s 
 fo

la
te

 o
r 

fo
lic

 a
ci

d 
 Fo

la
te

 r
ec

ep
to

r 
 [ 3

7 ,
  3

8 ,
  7

0 ]
 

 B
io

tin
 

 B
io

tin
 r

ec
ep

to
rs

 o
ve

re
xp

re
ss

ed
 

on
 tu

m
or

 c
el

ls
 

 [ 7
1 ]

 

 A
m

in
o 

ac
id

s 
 G

lu
ta

m
ic

 a
nd

 a
sp

ar
tic

 a
ci

ds
 

 A
m

in
o 

ac
id

 r
ec

ep
to

rs
 

 [ 4
0 ]

 
 A

rg
in

in
e 

 A
m

in
o 

ac
id

 r
ec

ep
to

rs
 

 [ 9
7 ]

 
 A

ct
iv

es
/c

he
m

ic
al

s 
 H

al
op

er
id

ol
, a

ni
sa

m
id

e 
 Si

gm
a 

re
ce

pt
or

s 
 [ 9

8 ,
  9

9 ]
 

 Po
si

tiv
el

y 
ch

ar
ge

d 
lip

id
s 

 C
et

yl
tr

im
et

hy
l a

m
m

on
iu

m
 b

ro
m

id
e,

 
L

ip
of

ec
ta

m
in

e,
 d

id
od

ec
yl

di
m

et
hy

l 
am

m
on

iu
m

 b
ro

m
id

e 

 N
eg

at
iv

el
y 

ch
ar

ge
d 

ph
os

ph
ol

ip
id

s 
ov

er
ex

pr
es

se
d 

on
 tu

m
or

 c
el

ls
 

 [ 7
0 ]

 

M.S. Nagarsenker et al.



417

surface for better interaction with receptors; however, ligand–lipid conjugates with-
out linkers have also been observed to be equally effective in targeting [ 81 ]. 

 Once the lipid–ligand conjugate is prepared, it is then incorporated in suitable 
amounts in the formula to ensure target specifi c lipid nanosystem is designed. 
Different percentages of conjugate are used in preparation of system and based on 
further in vitro experimentation; the right combination could be selected for further 
in vivo studies. 

 The various ligands which have been coupled to lipids as reported in literature 
are mentioned in Table  13.1  [ 25 ,  33 ,  82 ]

13.5        Route of  Administration   

 The major concern with functionalized lipid particulates is toxicity. They should be 
safe at doses to be administered and for the route that they will be employed for. 
Most functionalized lipid particulates are designed to be administered by parenteral 
route (mainly intravenous delivery) in order to utilize their target specifi city. Lipid 
particulates wherein surface is rendered more hydrophilic (by association with 
PEGs or gangliosides) or cationic (use of cationic lipids) are employed for intrave-
nous delivery to improve plasma circulation time by minimizing opsonization and 
RES uptake. Positively charged lipid based delivery system are also known to 
improve oral absorption. 

 Functionalized lipid particulates have been employed for improving drug deliv-
ery through other routes including transdermal, pulmonary, vaginal, rectal, nasal, 
and ocular as reported in scientifi c literature (Table  13.2 ).

13.6        Applications in Drug  Delivery   

13.6.1      Liposomes   

 Liposomes are the most researched and preferred vesicular drug delivery system 
due to its versatility, safety, and in vivo advantage. Functionalization of liposomes 
is achieved via many techniques. The primary and the simplest technique is adsorp-
tion. In this technique, the preformed liposomal dispersion is incubated with the 
solution of targeting ligand. This approach of functionalization is not preferred as it 
is nonspecifi c and in most of the cases the rate of desorption is fast during storage 
as well as in vivo. Other technique of functionalization employs covalent link for-
mation between targeting ligand and appropriate component of liposomes. This is 
usually achieved via chemical attachment of long carbon chain to functional groups 
like hydroxyl, carboxyl present on the targeting ligand. An important consideration 
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for chemical modifi cation is that the groups chosen for chemical modifi cation do 
not alter the receptor ligand interaction signifi cantly. Another technique for func-
tionalization involves chemical modifi cation of preformed liposomes. In this tech-
nique, the preformed liposomes are incubated with linkers that covalently bind to 
the phospholipid head groups present on the surface of liposomes. These linker 
tagged liposomes after separation are treated with a solution of targeting ligand 
wherein the free end of the linker covalently attaches itself to the functional group 
present on targeting ligand, imparting targeting ability to liposomes. 

 Vodovozova et al. showed improvement in effi cacy of a synthetic drug octadecy-
lmerphalan after its incorporation in a liposomal delivery system functionalized by 
use of lectin specifi c carbohydrate ligand Sialyl Lewis X using its 3-aminopropyl 
glycoside derivative [ 65 ]. In vivo results confi rmed superior therapeutic effi cacy of 
Lectin functionalized liposomes as compared to liposomes devoid of it. Tsuruta 
et al. successfully loaded doxorubicin in an actively targeted liposomal delivery 
system using Sialyl Lewis X for preventing stenosis after angioplasty [ 100 ]. Study 
established superior activity of doxorubicin liposomes functionalized with Sialyl 
Lewis X as rats treated with functionalized liposomes had larger lumen area as 
compared to those treated with Doxorubicin liposomes. Kawakami et al. investi-
gated the effect of glycosylation using galactose, mannose, and fucose on the clear-
ance of liposomes. They concluded that galactose coated liposomes were taken up 
by the asialoglycoprotein receptor of the parenchymal cells of liver, mannose coated 

   Table 13.2    Different routes of administration for functionalized lipid based nanoparticles   

 Type 
 Reported route/possible route 
of administration 

  Liposomes  
 Stealth, galactosylated, mannosylated 
immunoliposomes, arabinogalactan associated 
liposomes, haloperidol anchored liposomes, 
folate conjugated liposomes 

 For improved intravenous and 
pulmonary delivery 

  Solid lipid nanoparticles  
 Biotinylated  Improved delivery through oral 

and ocular epithelium 
 Galactosylated  Targeting via intravenous route 
  Nanostructured lipid carriers  
 Squalene associated NLCs  Application to skin to achieve better 

percutaneous absorption 
 Transferrin associated NLCs  Targeting via intravenous delivery 
 Cholesterol rich NLCs  Intravenous delivery to target brain 
  Lipid drug conjugates   Oral/Parenteral route 
  Nano- and micro-emulsions   Oral/Intravenous route 
  Mucoadhesive nano-emulsions   Intranasal delivery for brain targeting 
  LeciPlex, Invasomes, Ethosomes, Transfersomes   Mainly evaluated for topical delivery 
  Polymer–lipid hybrid nanoparticles   For intravenous delivery 
 e.g., Lecithmer, Lipomer 
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liposomes were taken up by the mannose receptor on the non-parenchymal cells of 
the liver and fucose coated liposomes were taken up by the fucose receptor on the 
non-parenchymal cells of the liver. A higher molar concentration of galactose coated 
liposomes were also taken up by the non-parenchymal cells of the liver [ 91 ]. Shah 
et al. successfully fabricated actively targeted liposomal delivery system using 
asialoglycoprotein receptor specifi c arabinogalactan as the targeting ligand using 
covalent link to lipid component [ 36 ]. For further reading on use of carbohydrate 
mediated liposomal targeting, readers are referred to an excellent review by Malcolm 
N. Jones [ 101 ]. 

 Wolff and Gregoriadis successfully fabricated monoclonal anti-Thy1IgG1 coated 
immunoliposomes for targeting to AKR-A cells [ 90 ]. Debs et al. successfully fabri-
cated anti-Thy 1.1 monoclonal antibody MRCOX7 conjugated liposomes which 
demonstrated enhanced uptake in lymph nodes that express high levels of target 
antigen [ 84 ]. Koning et al. showed high intracellular delivery of cytotoxic agent by 
developing immunoliposomes using monoclonal antibody against rat colon carci-
noma containing 5-fl uorodeoxyuridine as the cytotoxic agent [ 86 ]. Suzuki et al. 
developed long circulating immunoliposome containing doxorubicin using murine 
monoclonal antibody HBJ127 that recognizes a peptide epitope of gp125 which is 
expressed on almost all human cancer cells [ 88 ,  89 ]. Mercadal et al. fabricated 
My-10 monoclonal antibody coated immunoliposome against CD34 antigen using 
carboxyfl uorescein as marker compound [ 102 ]. Yang et al. formulated PEGylated 
immunoliposome loaded with paclitaxel using Herceptin as targeting ligand for cells 
overexpressing human epidermal growth factor receptor 2 [ 103 ]. Lukyanov et al. 
modifi ed commercially available doxorubicin loaded long circulating liposomes 
Doxil ®  with monoclonal nucleosome specifi c 2C5 antibody that identifi es tumors via 
surface bound nucleosomes [ 85 ,  87 ]. Biswas et al. reported enhanced suppression of 
tumor in vivo by surface functionalization of doxorubicin loaded long circulating 
liposome Doxil ®  using a cell penetrating peptide Octa-arginine [ 97 ]. 

 Kitagawa and Kasamaki improved the intradermal delivery of retinoic acid using 
positively charged liposomes functionalized with 1,2-dioleoyl-3- trimethylammonium 
propane as cationic surfactant [ 104 ]. Knudsen et al. demonstrated improved deliv-
ery of calcipotriol by formulating and altering the fl uid state of liposomes composed 
of dipalmitoyl phosphocholine and dilauroyl phosphocholine [ 105 ]. Geusens et al. 
developed ultradeformable cationic liposomes composed of cationic lipid 1,2-dio-
leoyl-3-trimethylammonium propane and the edge activator sodium cholate for 
delivery if siRNA into human primary melanocytes [ 106 ].  

13.6.2     Solid Lipid Nanoparticles (SLNs) and Nanostructured 
Lipid Carriers (NLCs)    

 SLNs and NLCs have been reported to a good extent for functionalization and tar-
geting. Modifi cations are reported either by functionalizing the lipid that is employed 
for SLN/NLC preparation or the surfactant that is employed in its colloidal 
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stabilization. Xu et al. designed hepatoma targeted SLN for effective delivery of 
docetaxel wherein galactosylated-DOPE was utilized for site-specifi c delivery [ 23 ]. 
The authors report the potential of galactosylated SLNs in effective treatment of 
locally advanced as well as metastatic hepatocellular carcinoma. In comparison to 
non galactosylated SLNs, galactosylated-SLNs demonstrated no signifi cant differ-
ence in mean particle size, zeta potential, drug loading, and entrapment effi ciency. 
However, remarkable difference was noted in in vitro cytotoxicity and bio- 
distribution of docetaxel when loaded in targeted SLN as compared to normal 
SLN. Galactosylated SLNs were superior to nongalactosylated SLN as well as mar-
keted Taxotere formulation for improved delivery of Docetaxel. 

 Alukda et al. fabricated functionalized SLNs with coats of PLL (polylysine) and 
heparin, as a delivery template, loaded with vaginal microbicide (tenofovir) for pre-
vention of HIV transmission [ 39 ]. The authors reported improved therapeutic effi -
cacy of functionalized SLN as compared to nonfunctionalized SLN with no 
cytotoxicity to vaginal epithelium. 

 Yet another interesting example is of Kashanian et al. who functionalized SLN 
with  N -glutaryl phosphatidylethanolamine and employed in the design of SLN to 
render the SLN pH sensitive, for enhancement in drug release in acidic pH of tumor 
[ 40 ]. When studied under different pH conditions, pH sensitive SLNs exhibited 
higher in vitro drug release at acidic pH. 

 NLCs were designed as a modifi cation of SLN to improve their drug loading 
capacity, improve their colloidal stability, and decrease drug leakage during shelf 
life of product. They comprise both liquid and solid lipids unlike their SLN coun-
terparts that make them comparatively more versatile as a drug delivery vehicle. 
NLCs have also been reported to be amenable to functionalization. Yang et al. pre-
pared hyaluronic acid coated NLCs for targeted delivery of Paclitaxel to CD44 
overexpressed on tumor cells. The study reports that functionalized NLCs were 
superior to Taxol in vitro as well as in vivo. Earlier Chen et al. had also published 
their work for targeted delivery of Paclitaxel. They conjugated Stearyl-2-amino-2-
deoxyglucose (2-DG), a glucosamine derivative serving as a broad tumor targeting 
ligand, to glyceryl monostearate and oleic acid NLCs, for improved delivery of 
Paclitaxel to tumor cells. 

 Folate and transferrin have also been anchored to lipid nanoparticles for estab-
lishing tumor specifi c delivery of etoposide [ 94 ]. As mentioned earlier, choice of 
excipients can also render delivery system like SLN/NLCs target specifi c. Goppert 
and Muller discovered that SLN stabilized by Tween 80 adsorbs such plasma pro-
teins as may be required for effi cient targeting to brain, whereas Poloxamer 188 
stabilized SLN adsorb proteins which imparted ability to prolong plasma circulation 
time [ 107 ]. Several reports have been published about binding of Tween 80 to apo-
lipoproteins in plasma and thus capable of targeting and traversing blood–brain bar-
rier. Incorporation of such functional surfactants confers target specifi city to delivery 
system. Similarly, Rezazadeh and coworkers designed tumor targeted NLCs com-
posed of cholesterol, known for targeting LDL receptors overexpressed on tumor 
cells [ 108 ,  109 ].  
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13.6.3     Nano- and Micro- emulsions   

 Not many reports are available with respect to functionalization of emulsions 
involving chemical reactions. However, use of specifi c surfactants possessing 
charge, negative or positive, in fabrication of charged nanoglobules of emulsions 
has been examined for improving bioavailability of actives as well as in gene 
delivery.  

13.6.4     Miscellaneous Functionalized Lipid Based  Systems   

 PLNs are a class of lipid nanocarriers that have surfaced up about a decade ago and 
have demonstrated capabilities to functionalization. PLN was viewed as an attempt 
to combine advantages and avoid disadvantages of polymeric nanoparticles and 
liposomes. Though dependent on method of preparation, general PLN description 
mentions presence of a polymer core coated with lecithin (or other lipid) which in 
turn can be conjugated/anchored to a ligand. Liu Y. et al. demonstrated that PLN 
composed of PLGA as polymer and mix of lipids, including PEGylated as well as 
folate conjugated PEGylated phospholipid [ 110 ]. The folate and PEG functional-
ized PLN when loaded with Docetaxel released ~18 % which was at surface of tar-
geted PLN within fi rst 12 h as would be required to exert immediate action on 
cancer cells. Thereafter, however, release was considerably slow, with only ~60 % 
Docetaxel released at the end of 72 h and sustained release continued for 168 h. The 
in vitro release study results correlated well with results of in vitro cytotoxicity 
study as well as cell uptake study, demonstrating ability of functionalized PLN to 
improve drug uptake possibly due to receptor mediated endocytosis. 

 Selection of polymer also in its own way contributes to functionalization of 
PLNs. Wu and coworkers demonstrated that use of soybean oil based anionic poly-
mer provided adequate loading of cationic drugs such as Doxorubicin HCl due to 
ionic complexation in PLN in comparison to their SLN counterparts which lack in 
polymer content [ 22 ]. 

 However, one of the interesting studies on PLN was reported by Clawson et al. 
who reported fabrication of PLN with pH triggered erosion of PEG shell covering 
PLN coat. The group designed PLN system for effective treatment of cancer with 
ability to erode the coat of PEG in response to low pH at tumor site. The targeting 
lipid (succinate ester based PEGylated lipid) used in design of PLN was synthesized 
by reacting 1,2-dipalmitoyl- sn -glycero-3-phospho(ethylene glycol) with methoxy 
polyethylene glycol. At neutral pH (physiological pH), the PEG surface coat will be 
more stable to hydrolysis whereas, in acidic tumor environment, due to erosion of 
PEG coat, the system will destabilize and show better fusion with cells at tumor site. 
However, it was worth noting that more the amount of synthesized functional lipid 
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used in fabricating the PLN system, more stable was the developed PLN system to 
aggregation and destabilization, possibly due to greater number of ester bonds 
which need to be hydrolysed. Thus, PLN with 15 mol% functional lipid were not 
stable at pH below 6.0, with 20 mol %, stability was lost at pH 5.0, with 30 mol %, 
particles retained stability until pH dropped to 4.0, with 40 mol %, PLN do not 
destabilize until pH drops to 3.0 and with 50 mol %, PLN system was stable over 
entire pH ranges evaluated (pH 7.4–3.0). 

 A great emphasis has been placed on lipid based nanosystems which are ame-
nable to surface functionalization that aids in rendering them target/site specifi c. 
However, several novel lipid based nanosystems can be considered functionally dis-
tinct from the others owing to their potential in improving delivery of actives. These 
include various deformable/fl exible vesicular systems like LeciPlex, transfersomes, 
invasomes, and ethosomes. Though all of these are vesicular in nature, the systems 
do possess notable differences imparting them certain specifi c characteristics. 

 LeciPlex is a novel vesicular system that combines advantages of cationic 
nanoparticles with those of vesicular systems (Fig.  13.2 ). The distinct advantage of 
LeciPlex system is ease of formulation and its amenability to scale-up. It employs 
a single step fabrication involving addition of aqueous phase to solution of phos-
pholipid and cationic agent in a biocompatible solvent leading to formation of 
vesicular system under simple agitation [ 18 ,  19 ]. LeciPlex are cationic vesicles, and 

  Fig. 13.2    CryoTEM images of LeciPlex system comprising cetyl trimethyl ammonium bromide 
( a ) and didodecyl dimethyl ammonium bromide ( b ) as charged lipids. These are multivesicular 
( black arrow ) multilamellar ( white arrow ) vesicles having a unique structure. They are unlike the 
classical multilamellar vesicles as each lamella is well differentiated giving an appearance of 
concentric rings       
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therefore capable of loading both hydrophilic as well as lipophilic drugs, and their 
cationic nature confers better colloidal stability to the system. Besides, the cationic 
charge allows them capability to target cancer cells overexpressing negatively 
charged molecules at their surface [ 111 ]. Also, the agents that impart positive 
charge to the vesicles possess selective cytotoxicity to various cancer cell lines. 
This makes LeciPlex a useful addition to drug delivery systems for cancer treat-
ment. LeciPlex has been implicated in improving oral bioavailability of actives with 
different polarities, such as Repaglinide and Quercetin. We have established the 
utility of LeciPlex in condensing DNA for gene delivery. Besides oral delivery, 
LeciPlex holds a lot of potential for effective topical delivery, the experimentation 
for which are under way.  

 Deformable liposomes, ultradeformable liposomes, ethosomes, and invasomes 
are all, another important sect of functionalized vesicular carriers that have been 
mainly explored for dermal/transdermal delivery. Transferosomes consist of fl exi-
ble bilayers and are the fi rst generation of elastic liposomes [ 112 ,  113 ]. These are 
reported to enhance skin permeation of loaded actives through intact skin under 
infl uence of transdermal hydration and osmotic gradients, when applied under 
non- occluded conditions [ 113 ,  114 ]. The innovative addition in engineering 
Transferosomes as a different vesicular carrier than conventional liposomes has 
been addition of an edge activator. The edge activator is a molecule that provides 
desired fl exibility and deformability to the lipid bilayers to improve its skin perme-
ation wherein the vesicle is able to move into skin layers in intact form, thus 
improving fl ux of loaded actives [ 115 ]. Examples of edge activators include mole-
cules such as sodium cholate, Span 80, Tween 80, and dipotassium glycyrrhizinate 
[ 116 – 118 ]. The second generation of deformable liposomes, named as proultrafl ex-
ible liposomes, was reported by Jain et al., following the proliposomal approach 
known to enhance stability of vesicles. The formulation demonstrated better perme-
ation of loaded active, levonorgestrel and better stability than proliposomal formu-
lation [ 119 ]. Numerous reports are available that enlighten ability of deformable 
liposomes or their likes, such as ultradeformable liposomes or cationic ultradeform-
able liposome employing a cationic lipid [ 120 ] to improve not only skin permeation 
of actives, such as diclofenac, bleomycin [ 121 ], diclofenac [ 112 ], 5-FU [ 122 ], but 
also delivery of vaccines and genetic material like siRNA [ 106 ,  123 ]. 

 Ethosomes, comprising phospholipids, a high ethanol content and water, are 
another specialized vesicular systems that are able to permeate into deeper layers 
of skin, as has been reported by few confocal laser scanning microscopy studies, 
due to their high malleability have improved systemic delivery of few actives. 
Ethosomes have reportedly improved skin permeation of various loaded agents 
including ketotifen, 5-aminolevulinic acid, and rhodamine red, to name a few 
[ 113 ,  124 – 129 ]. 

 Yet another interesting vesicular carrier class comprises invasomes reported by 
Fahr A. et al. which in addition to phospholipids consists of mixture of terpenes that 
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act as permeation enhancers. The group reported fabrication of phospholipid based 
invasomes comprising 3.3 % ethanol and 1 % mixture of terpenes with size less than 
150 nm, signifi cantly improved Temoporfi n deposition in stratum corneum as com-
pared to conventional liposomes [ 130 ].   

13.7     Marketed/Potential Lipid  Particulates   

 There are many lipid particulates which have either entered clinical trials or have 
been successfully launched commercially [ 131 ]. In case of liposomal products, cur-
rently, there are 53 under therapeutic investigation and 8 liposomal products avail-
able commercially, most in comparison to any other lipid based system. There are 
19 and 9 emulsion based products being available for therapeutic investigation and 
commercial use, respectively [ 132 ]. Table  13.3  mentions list of few of such func-
tionalized lipid nanoparticulates which are successful or have promise to reach the 
market.

13.8        Summary and  Conclusion   

 Functionalization of lipid particulates make them more promising for their intended 
use, such as enhanced permeation, increased target specifi city, improved lipophilic-
ity, and so on. A number of reports have been available recently on importance of 
functionalization of lipid nanosystems, as described earlier in the chapter. Task of 
functionalizing particulates renders excellent opportunity for formulation scientists 
and chemists to work together and lay foundation of successful novel drug delivery 
systems. Functionalized lipid nanoparticulates are expected to face the same chal-
lenge that was faced by lipid nanoparticulates a few years back with respect to their 
commercial feasibility. The efforts of multiple formulation scientists made the lipid 
based nanosystems a commercial success and it can be expected that functionalized 
lipid nanoparticles also reach market in increasing number and probability in near 
future.     
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