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    Chapter 11   
 Prodrug Conjugate Strategies in Targeted 
Anticancer Drug Delivery Systems 

             Shashwat     Banerjee    ,     Kiran     Todkar    ,     Govind     Chate    , and     Jayant     Khandare    

      Abbreviations 

   ADCC    Antibody-dependent cellular cytotoxicity   
  ADEPT    Antibody-directed enzyme prodrug therapy   
  AuNP    Gold nanoparticles   
  BCR    Breakpoint cluster region protein   
  BTK    Bruton’s tyrosine kinase   
  CDK inhibitor    Cyclin-dependent kinase inhibitors   
  CLL    Chronic lymphocytic leukemia   
  CPT    Camptothecin   
  CTC    Circulating tumor cells   
  Dox    Doxorubicin   
  DTC    Disseminated tumor cells   
  EGFR    Epidermal growth factor receptor   
  EPR    Enhanced permeability and retention   
  ERK    Extracellular signal-regulated kinases   
  FISH    Fluorescence in-situ hybridization   
  FOL    Folic acid   
  FR    Folate Receptor   
  GDEPT    Gene-directed enzyme prodrug therapy   
  GnRH    Gonadotropin-releasing hormone   
  GRP78    Glucose-regulated protein 78   
  HCC    Hepatocellular carcinoma   
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  HER2    human epidermal growth factor 2   
  HPLC    High-performance liquid chromatography   
  IGFR    Insulin-like growth factor receptor   
  KRAS    Kirsten rat sarcoma   
  LHRH    Luteinizing hormone releasing hormone   
  mAb    Monoclonal antibodies   
  MAPK    Mitogen-activated protein kinases   
  MCL    Mantle cell lymphoma   
  mCRC    Metastatic colorectal cancer   
  MDNS    Magneto-Dendritic Nano System   
  MDR    Multiple-drug resistance   
  mRNA    Messenger ribonucleic acid   
  mTOR    Mammalian target of rapamycin   
  NSCLC    Non-small-cell lung cancer   
  PCR    Polymerase chain reaction   
  PDGFRβ    Platelet-derived growth factor receptor   
  PI3K    Phosphatidylinositol 3-kinase   
  PIGF    Placental growth factor   
  RCC    Renal cell carcinoma   
  RET    Rearranged during transfection   
  RGD    Arginine-glycine-aspartic acid   
  SCCHN    Squamous cell carcinoma of the head and neck   
  scFv    Single chain variable fragment   
  siRNA    Small interfering RNA   
  Tf    Transferrin   
  Tf-PEG-AD    Transferrin-conjugated poly (ethylene glycol)-adamantane   
  TfR    Transferrin receptor   
  TPGS    D-α-Tocopheryl polyethylene glycol succinate   
  US FDA    United States Food and Drug administration   
  VEGF    Vascular endothelial growth factor   
  VEGFR    Vascular endothelial growth factor receptor   

11.1           Introduction 

 The primary dearth of treatment in chemotherapy is lack of molecular selectivity 
and severe toxicity associated from an anticancer drug. In general, chemotherapeu-
tic drugs responds through anti-proliferative mechanisms; or by preventing cell 
cycle at a specifi c phases rather than producing a toxic effect to particular site or 
types of cancer cells [ 1 ]. Hence, for the effective anticancer therapy, polymeric pro-
drug conjugation methodology represents one of the most promising approaches in 
achieving selective chemotherapy. Many efforts in reducing the systemic toxicity of 
chemotherapeutic moieties have been clinically explored (Fig.  11.1 ). In particular, 
polymeric  prodrug   conjugate is a chemical modifi cation of a biologically inert 
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component which is transformed to its active form, in vivo [ 2 ,  3 ]. Polymeric forms 
(e.g., poly(ethylene glycol) (PEG)) commonly referred in literature as “ PEGylation  ” 
is a polymeric prodrug approach, offering an important tool to enhance the pharma-
codynamics (PD) of the active pharmacologic component via a simple chemical 
alteration. Traditional prodrug design aims to offer: (1) enhanced aqueous solubil-
ity, chemical stability, brain permeability, and oral or local absorption of a drug; and 
(2) reduced undesired pre-systemic metabolism, and toxicity [ 4 ,  5 ].  

 An ideal polymeric prodrug conjugate system typically consists of multiple com-
ponents as represented in Fig.  11.2 . 

  Fig. 11.1    Advances in drug delivery systems representing varied architectures, physicochemical 
traits such as size, shape, and surface charge (modifi ed from [ 6 ])       

  Fig. 11.2    Schematic 
representation of a polymeric 
prodrug conjugate with 
targeting moiety       
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    1.    A polymer as a  drug delivery   vehicle   
   2.    Drug, protein or peptide as a biological active component   
   3.    A spacer molecule and targeting moiety    

  Following approaches are generally used to target anticancer prodrugs to the 
tumor or cancer cells [ 7 ,  8 ]: (1) Passive Drug  targeting   and (2) Active Drug 
targeting. 

  Passive Drug Targeting : In passive targeting, drug is delivered to the targeted site by 
conjugating it with polymer which releases the drug outside the targeted site due to 
altered environmental conditions as represented in Fig.  11.3a . The general features 
of tumors and many infl amed areas of body include leaky blood vessels and poor 
lymphatic drainage which passively provides increased retention of macromole-
cules into tumor [ 9 – 12 ]. This phenomenon is commonly referred to as Enhanced 
Permeability and Retention (EPR) effect [ 9 ]. EPR effect is primarily a passive tar-
geting due to the accumulation of prodrug, into the tumor. The phenomenon mainly 
occurs owing to hampered lymphatic drainage which allows them to release the 
drug into the tumor milieu. However, passive targeting approach has several limita-
tions. This is because targeting of the cancer cells is not always achieved as the 
diffusion of some drugs is insuffi cient and the random chemical approach makes it 
diffi cult to control the process. The lack of control is expected to lead into multiple-
drug resistance (MDR). This situation results in resistance of cancer cells towards 
one or more drugs, thereby leading to failure of chemotherapy treatments. Moreover, 
it is known that certain tumors do not show the EPR effect, and the permeability of 
vessels is unpredictable throughout tumor which further limits the passive targeting 
approach [ 13 ]. On the other hand, the more effi cient way to obtain targeting is by 
“active targeting” process.  

  Active Drug   Targeting  : Active targeting approach involve interactions between spe-
cifi c biological systems, e.g., ligand–receptor, antigen–antibody, enzyme–substrate 
(Fig.  11.3a  [ 14 ]). Active targeting is achieved by targeting ligand molecules that 
may interact with specifi c receptors on the cell surfaces—along with the bioactive 
prodrug system (Fig.  11.3b ), designed by variety of synthetic conjugation methods. 
Most commonly used targeting components are small organic molecules, antibod-
ies (mAbs), peptide ligands, sugar residues, aptamers (specifi c to particular recep-
tors), selectins, antigens, and mRNAs overexpressed in targeted cells or organs. It 
is imperative that the targeting moiety binds with high selectivity to molecular 
receptors that are uniquely overexpressed on the cell surface.  
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  Fig. 11.3    ( a ) Active and passive targeting approaches though prodrug system, ( b ) (1) prodrug is 
docked at cell surface by ligand–receptor interaction and then internalized by tumor cells through 
receptor-mediated  endocytosis  , (2) transport of prodrug in membrane limited organelles, (3) fusion 
with lysosomes, (4) fi nally, drug is released intracellularly on exposure to lysosomal enzymes or 
lower pH (pH 6.5 to <4.0) [ 15 ,  16 ]       
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11.2     Prodrug Systems for Targeted Drug Delivery 

 The critical requirements for achieving selective  targeting   of prodrug to tumors are 
as follows: (1) it should be highly stable in blood circulation, (2) higher bio- 
distribution to the targeted site, (3) adequate contact time with the target, (4) suffi -
cient retention by the target, (5) retention of drug potency, and (6) adequate clearance 
fate of non-targeted compound [ 17 ]. Polymer therapeutics with various polymeric 
architectures have been reported to achieve cellular targetability and EPR effect 
(Fig.  11.4 ). Similarly, Table  11.1  shows different types of targeting through ligands, 
and their specifi c targets through various drug delivery systems. Furthermore, to 
target specifi c biological molecules (e.g., enzymes, peptide transporters, antigens) 
that are overexpressed in tumor cells in comparison to normal cells, new promising 
anticancer prodrugs can be designed which includes: 

     1.    Enzyme-activated prodrugs—antibody-directed enzyme prodrug therapy 
(ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) [ 17 ].   

   2.    Targeting-ligand conjugated prodrugs—antibody–drug conjugates, peptide–drug 
conjugates, aptamer–drug conjugates, and folic acid–drug conjugates [ 18 ].   

   3.    Enzyme-cleavable prodrugs.   
   4.    Membrane transporter-associated prodrugs.   
   5.    Polymeric prodrug conjugates.    

  The section below describes the classifi cation and mechanisms of targeting.  

  Fig. 11.4        ( a - e ) Different polymer therapeutics with various architectures for delivering biological 
actives (reproduced from [ 3 ])       
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11.3     Type of Targeting Moieties 

 Targeting agents can be classifi ed broadly as proteins (mainly antibodies and their 
fragments),  nucleic acids   (aptamers), or other receptor ligands (peptides, vitamins, 
and carbohydrates) as shown in Fig.  11.5 .   

11.4     Implications of Molecular Targeting in Anticancer 
Therapy (e.g., CDK Inhibitors, mTOR, IGFR, VEGF) 

 The implementation of targeted cancer therapy for individual patient has revolution-
ized the existing ways for cancer therapy. There is an increasing importance of 
 targeted therapy in the treatment of several cancer entities (e.g., colon, NSCLC, 
breast, lymphoma, and malignant melanoma) and its molecular targets such as 
human epidermal growth factor 2 (HER2) [ 22 ], epidermal growth factor receptor 
(EGFR) [ 23 ], cyclin-dependent kinase inhibitors (CDK inhibitor) [ 24 ], vascular 
endothelial growth factor (VEGF), etc. [ 25 ,  26 ]. However, the key issue in imple-
menting targeted therapy may only be effective when the tumor carry certain 
 molecular features; otherwise they can be ineffective or can create unwanted side 
effects. For example, panitumumab is active against colon cancer only when the 
tumor is Kirsten rat sarcoma viral oncogene (KRAS) wild type [ 27 ]. 

 In order to avoid such limitations and designing diagnostic analysis of solid and 
hematological tumors, identifying  target genes   is an essential step. In order to have 
an identifi cation process, the laboratories explore high-end techniques, such as 

  Fig. 11.5    ( a ) Various targeting molecules such as a monoclonal antibody or antibodies’ fragments, 
non-antibody ligands, and aptamers. ( b ) Affi nity and selectivity can be increased by dimerization of 
ligand or by screening for conformation-sensitive targeting agents such as intact antibodies and 
their fragments as well as antibodies, avimers and nanobodies (reproduced from [ 19 ])       
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FISH assay, PCR, HPLC, protein arrays, DNA/RNA-array technology which are 
used to precisely detect the genetic alterations in the diseased state. For example, 
breast cancer is characterized by overexpression of HER2 which has been known to 
be more aggressive disease progression and a poorer prognosis [ 28 ,  29 ]. Hence, 
many researchers have focused on HER2 inhibitors as potential anticancer target 
which is achieved through gene therapy or by using drugs as Trastuzumab [ 30 ]. 
However, patients with HER2 positive breast cancer developed resistance towards 
the fi rst FDA-approved therapeutic antibody for metastatic breast cancer 
“Trastuzumab” through hyperactivation of the phosphatidylinositol 3-kinase 
(PI3K)/Akt/mTOR signaling pathway [ 31 ]. The PI3K/Akt/mTOR signaling  cascade 
has important regulatory functions in normal and oncogenic cellular growth, sur-
vival, proliferation, migrations and metabolism [ 32 ]. Several studies have shown 
that second mutations in this signaling pathway confers resistance mechanism to 
HER2-targeted therapies and direct inhibition of PI3K/Akt/mTOR signaling cas-
cade may overcome trastuzumab resistance [ 33 ,  34 ]. Hence, combination of 
Trastuzumab and Anastrozole is targeted towards MAPK pathways and Akt path-
way [ 35 ]. Likewise, inhibition of mTOR with drug Everolimus is effi cacious when 
combined with  Trastuzumab   [ 36 ]. Recently, US FDA has approved Trastuzumab 
with Emtansine as a fi rst antibody-drug conjugate for treating HER2-positive meta-
static breast cancer [ 20 ]. In addition to many other molecular targets, sialic acid, a 
derivative of neuraminic acid, is one of the major targets in developing therapeutic 
treatment in cancer patients as hypersialylation has been shown to contribute cancer 
cell progression and metastasis [ 37 ]. However, till date, there is no therapeutic drug 
developed to interfere with  sialic acid      synthesis which might offer better treatment 
approach for cancer patients. Sialic acid as a targeting moiety with PEGylated 
doxorubicin (Dox) targeted prodrug conjugate demonstrated signifi cant antitumor 
activity compared to free Dox and non-targeted conjugate counterpart. This signifi -
cant effect is achieved by enhancing the permeation and prodrug uptake by cancer 
cells and cytotoxicity of the prodrug [ 38 ].  

11.5     Role of Antibodies in Targeted Therapy 

 In 1975, Köhler and Milstein developed methods to recover antibodies in large 
amount which can be directed against specifi c  antigens  . Since then monoclonal  
have emerged as most important ligands for delivering contrast agents and chemo-
therapeutics for several different malignancies [ 39 ]. Monoclonal antibody are stable 
in blood and typically have nanomolar affi nities for their target. The binding and 
non-binding domains of mAb are separated physically; hence, they could impart 
substitution with other chemical agents like, contrast agents and chemotherapeutics. 
Three  targeting moieties, whole mAb, Fab′, and single chain variable fragment 
(scFv) were evaluated for targeting the same B-cell antigen CD19 [ 18 ]. The Fab′ 
immunoliposomes even though exhibited the most prolonged circulation times, 
exhibited statistically insignifi cant numbers of long-term survivors [ 18 ]. While, in 
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B-cell model, the anti-CD19 Fab′ immunoliposomes demonstrated increased circu-
lation time and higher survival rates for Namalwa-bearing SCID mice as compared 
to the anti- CD19 mAb immunoliposome treatment [ 40 ]. 

 More recently, the fragments of antibody containing only the variable region 
of the antibody are used for active targeting of therapeutics because they retain 
the specifi city for their target [ 36 ]. In addition, they prevent complement activa-
tion due to the lack of constant Fc effector region or undesirable interaction with 
other cells. Furthermore, the smaller sizes of antibody fragments are important 
factor in the development of an actively targeting nanoparticle. Moreover, using 
antibody fragments can also help in effi cient cell permeability [ 41 ]. Therapeutic 
agents must cross various biological barriers as well as the high interstitial pres-
sure to reach their target cells. Towards this antibody fragments such as scFv and 
Fab are known to represent higher effi ciency in penetrating tumor cells compared 
to intact antibody. 

 Immunogenicity caused by these antibodies is yet another important factor in 
using them for therapeutic targeting. Animal originated antibodies are obviously 
identifi ed as foreign agents resulting in strong immune responses. However, genetic 
engineering tools can now design chimeric mouse-human mAbs. For example the 
anti-CD20 mAb rituximab (Rituxan) has revolutionized lymphoma treatment. On 
the other hand, humanized antibodies, containing only the binding regions of the 
mouse antibodies combined with a human antibody, exhibit reduction in  immuno-
genicity   [ 42 ]. However, they have shown reduced affi nity in some cases. Further, 
antibodies could lose activity when translated into a conjugated form. Therefore, 
novel chemical strategies are essential to retain their potency even after the conjuga-
tion and at the same time are able to release the cytotoxic agent, either after binding 
to the cancer cell surface or after endocytosis into the cell. An example of such a 
conjugation is that of calicheamicin, a cytotoxic drug, conjugated to a tumor- 
targeting mAb through an amide linkage. The conjugate accumulates in the tumor 
but shows no appreciable cytotoxicity [ 43 ]. However, when calicheamicin is conju-
gated using a pH-sensitive bifunctional linker that permits its release intracellularly 
(Fig.  11.6 ), the conjugate shows potent antitumor activity [ 44 ].  

  Fig. 11.6    Cleavable bifunctional linker for the conjugation of calicheamicin to monoclonal anti-
bodies (reproduced from [ 17 ])       
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 The prodrug was designed by coupling calicheamicin to various hydrazide 
 bearing spacers through a disulfi de bond, and the resulting moiety was conjugated 
to humanized anti-CD33 monoclonal antibody (clone P67.6) hinge region. 
Monoclonal antibody conjugated calicheamicin was then coupled to aldehyde-bear-
ing oxidized carbohydrates, through hydrazone bonds [ 44 ]. In vivo study showed 
that active prodrugs rapidly cleaved at pH 4.5 whereas, they were stable at pH 7.4. 
On the other hand the effi cacy of the prodrug system was found to be far less when 
calicheamicin was conjugated with a linker encompassing a non-pH-labile amide 
bond to mAb. This conjugate although had the same affi nity for CD33 as Mylotarg, 
the system was found to be hundreds of times less cytotoxic in vitro and consider-
ably less active in vivo and ex vivo [ 44 ]. In this system, the release of calicheamicin 
was believed to be due to intracellular oxidation of a hindered disulfi de bond. This 
clearly indicated that the importances of  linker   chemistry for effective intracellular 
activation of calicheamicin–mAb conjugate.  

11.6     Protein and Peptide Based Carrier Systems 

 Peptide ligands are being explored against a tumor-specifi c antigen or a peptide 
transporter that is overexpressed in cancer cells [ 40 ].  Peptide   ligands can be directly 
conjugated to chemotherapy drugs to achieve a targeted delivery to cancer cells. 
Compared to antibody, peptides are more suitable targeting moieties because of (1) 
low molecular weight, (2) exceptional cell permeability, (3) ease in chemical conju-
gation, and (4) simple to produce [ 45 ]. 

 The main approach in identifying appropriate peptide ligands is to screen peptide 
libraries produced by either phage display [ 46 ] or by chemical synthesis process 
[ 47 ,  48 ]. Phage display assists in identifying peptides that target a specifi c receptor, 
or certain cell types even if the  receptors   are unidentifi ed [ 49 ]. Till date, various 
types of receptors or cells, have been discovered such as integrin receptors [ 50 ,  51 ], 
thrombin receptors [ 52 ], tumor cells [ 53 – 55 ], cardiomyocytes [ 56 ], and pancreatic 
β cells [ 57 ]. Tumor-targeting peptides have been effectively used in delivery vehi-
cles for targeting small molecule drugs, oligonucleotides, liposomes, imaging 
agents, and inorganic nanoparticles to tumors. Furthermore, peptidomimetic self-
assembled nanoparticles and peptide aptamers, which are peptide- related nanopar-
ticles, also have shown great promise in targeted drug delivery. The former have 
wider applications in tumor imaging, tumor targeting delivery and vaccination [ 58 ], 
whereas the latter are directly used as drugs interfering with the function of recep-
tors [ 59 ]. The use of these peptides has assisted in enhancing the specifi city and 
effi cacy of drug delivery with reduced side effects [ 60 ,  61 ]. The current discoveries 
of tumor lymphatic vessel targeting peptides present another route for targeted drug 
delivery for tumors [ 62 – 64 ]. 

 Transferrin (Tf), a serum non-heme iron binding glycoprotein is a very pertinent 
targeting agent for cancer therapeutics due to overexpressed Tf receptors (TfR + ) on 
malignant cells compared to normal cells because of the higher demand for faster 
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cell growth and division. We and many others have demonstrated use of Tf for tar-
geting TfR +  in cancer therapeutics and diagnostics [ 65 ]. Tf is also extensively 
reported in human clinical trials with adriamycin [ 66 ], cisplatin [ 67 ], and diphtheria 
toxin [ 68 ]. 

 An important study to demonstrate Tf mediated targeting was explored using 
0.05 % PEG-AD containing Tf formulation [ 69 ]. The formulation was compared 
against AD-PEG-particles (with 0.0 % Tf-PEG-AD) using cells K562 for gene 
delivery. Tf-PEG-AD demonstrated a fourfold increase in transfection mainly due 
to Tf mediated uptake. However, presence of excess Tf added to 0.05 % Tf-PEG-AD 
particles eliminated the transfection enhancement [ 69 ]. 

 An important characteristic of Tf ligand for targeting TfR +  is the iron-binding 
effi ciency.  Transferrin   ligand with low iron-binding effi ciency resulted in a lower 
effi ciency in binding to the TfR [ 68 ]. This was revealed from the fl ow cytometry 
study involving fl uorescein-labeled transferrin (Tf-fl uor) and holo-transferrin (holo-
 Tf, native transferrin), Tf-PEG-AD, or Tf-(PEGAD) 2 . The Tf-PEG-AD and 
Tf-(PEG-AD) 2  showed lower binding affi nities, while holo-Tf treatment showed the 
highest binding affi nity mainly due to their oxidized state. As a result, a different 
synthesis route for Tf-PEG-AD was designed to improve the binding affi nity to the 
Tf receptor. The synthesized Tf-PEG-AD nanoparticles (250 nM Tf-fl uor/75 nM 
Tf-PEG-AD nanoparticles) showed a 15 % reduction in fl uorescence compared to 
Tf-PEG-AD conjugates (250 nM Tf-fl uor/75 nM Tf-PEG-AD in conjugate form) 
revealing high binding. The difference in receptor binding was mainly due to mul-
tiple interactions between each ligand-modifi ed particle and cell surface receptors. 

 Davis et al. have also performed a novel study of small interfering RNA (siRNA) 
delivery in nonhuman primates using Tf-conjugated liposomes [ 70 ]. The effi cacy of 
these Tf-conjugated liposomes had been proven effective in metastatic mouse mod-
els of Ewing’s sarcoma, and consequently, the safety of the administration of these 
particles in nonhuman primates was the focus of this study [ 71 ,  72 ]. 

 Interestingly, Tf-conjugated liposomes co-encapsulating Dox and verapamil 
(Tf-L-DOX/VER) have been shown to effectively overcome multi-drug resistance 
[ 73 ]. Cellular uptake of Tf-L-DOX/VER was 5.2 and 2.8 times greater with cytotox-
icity (IC 50  = 4.18 μM) than non-targeted liposomes having Dox and verapamil 
(IC 50  = 21.7 μM) and Tf-conjugated liposomes loaded with Dox alone (IC 50  = 11.5 μM) 
in a chronicmyelogenous leukemia cell line (K562 cells). In addition, the difference 
in cytotoxicity between the targeted and non-targeted liposomes was diminished 
within the presence of 2 mg/mL free Tf. This exhibits the effectiveness of the Tf 
moiety for cellular uptake and cytotoxicity [ 72 ]. 

 We have recently shown that Tf conjugated multicomponent magneto-dendritic 
nanosystem (MDNS) can be effi ciently used for rapid tumor cell targeting, 
 isolation, and high-resolution imaging by a facile bioconjugation approach [ 65 ]. 
The bio-functionalized MDNS designed by combining multiple components such 
as Tf, iron oxide (Fe 3 O 4 ) nanoparticles, fourth generation (G4) dendrimers, cyanine 
5 NHS (Cy5) fl uorescent NIR dye and glutathione (GSH) was able to capture TfR 
overexpressed cancer cells from an artifi cial circulating tumor cell (CTC)-like 
 suspension (Fig.  11.7 ). The MDNS platform exhibited rapid capture (~5 min) of 
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TfR-overexpressing (TfR + ) cancer cells at clinically r elevant concentrations 
(approximately 1 CTC per 10 5  blood cells) [ 65 ].  

 Choi and his coworkers showed that Tf decorated PEGylated gold nanoparticles 
accumulations in the tumors and other organs are independent of Tf (Fig.  11.8 ) [ 74 ]. 
However, the  nanoparticle   localizations within a particular organ are infl uenced by 

  Fig. 11.7     Cellular targeting   of a bio-functionalized Magneto-Dendritic Nano System (MDNS). ( a ) 
Magnifi ed image of a cell showing localization of MDNS particles on the cell membrane after 5 min 
of incubation. ( b )  Left image  shows Tf +  MDNS particles attached to the HCT116 cells, whereas, 
hardly any Tf -  MDNS particles present on the cell surface as shown in right image. ( c ) After 60 min 
of exposure only the Tf +  MDNS were present in large numbers on the cells revealing target specifi c-
ity of MDNS interaction remains intact even after long exposure (reproduced from [ 65 ])       
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the Tf content. They also demonstrated that in tumor tissue, the content of targeting 
ligands signifi cantly infl uenced the number of nanoparticles localized within the 
cancer cells. Most nanoparticles remain in nonparenchymal cells, however, small 
amount of nanoparticles resided in hepatocytes due to higher Tf content [ 74 ].  

 Similarly, Lutenizing Hormone Releasing Hormone (LHRH) peptide- conjugated 
prodrug has shown promising results for cancer therapy [ 75 ,  8 ]. Khandare et al. 
conjugated LHRH peptide using PEG as the spacer to camptothecin (CPT), a cyto-
toxic drug [ 75 ,  8 ] (Fig.  11.9 ). The LHRH peptide-conjugated prodrug demonstrated 
higher effi cacy with minimized side effects on healthy organs. In addition, the pro-
drug system showed targeting potential for both solid tumor tissue as well as a sin-
gle tumor cell. Hence, this prodrug can effectively target tumor cells with a low 
toxicity to normal tissues [ 75 ]. Neamati and coworkers conjugated paclitaxel, an 
antimicrotubule agent commonly used in the treatment of metastatic breast cancer 
to a cyclic peptide E[c(RGDyK)] 2  (RGD). In vivo studies showed a specifi c tumor 
uptake of the RGD-paclitaxel system at 4 h post administration [ 76 ].  

 Similarly, Yoneda et al. have explored targeted delivery of paclitaxel and doxoru-
bucin by using  glucose-regulated protein   78 (GRP78) as a tumor-specifi c antigen 
[ 77 ]. GRP78 is overexpressed on many tumor cells, including skin, prostate, colon, 

  Fig. 11.8    Schematic of Tf-PEG-AuNPs. Unmodifi ed 50-nm AuNPs (I) were reacted with excess 
mPEG-SH to form PEG-AuNPs (II) as untargeted particles or fi rst were reacted with various 
amounts of Tf-PEG-SH and later excess mPEG-SH to form Tf-PEG-AuNPs (III: 2 Tf per particle; 
IV: 18 Tf per particle; V: 144 Tf per particle) (reproduced from [ 74 ])       
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and breast cancers. On the other hand, its expression on normal tissues is very 
small [ 78 ]. Pep42, a cyclic 13-meroligopeptide (CTVALPGGYVRVC), internalizes 
through the GRP78 receptor-mediated endocytosis after specifi cally binding to 
GRP78 and then traffi cked to the lysosome that contains protease cathepsin 
B. Therefore, Val-Cit motif, a cleavable linker, was used to link Pep42 to anticancer 
drugs. The Val-Cit linker is reasonably stable in the plasma, but cathepsin B in the 
cancer cells can cleave [ 79 ]. Both Pep42-paclitaxel and Pep42-Dox showed an 
enhanced toxicity in comparison to the free drug when cytotoxicity of the Pep42- 
prodrug was estimated in osteosarcoma cells, SJSA-1 [ 77 ].  

  Fig. 11.9    Schematic of  targeted multivalent anticancer prodrug  . The prodrug conjugate system 
was designed with ( a ) bis-PEG polymer as a carrier- one, two, or three copies of CPT as an anti-
cancer drug; and one, two, or three copies of LHRH peptide as a targeting agent. ( b ) α,ω-bis- 
PEG3000-CA conjugate (3) was designed by conjugation of bis(2-carboxyethyl) PEG (1) with CA 
(2). ( c ) The bis-PEG-CA conjugate (3) was conjugated with CPT (4) to obtain α,ω-bis(2- 
carboxyethyl) PEG-CA-CPT conjugates (5, 6, and 7). ( d ) α,ω-bis(2-carboxyethyl) PEG-CA-CPT- 
LHRH conjugates (d, 5a, 6a, and 7a) having one, two, and three copies of CPT (4) and LHRH (8)
were synthesized by conjugating LHRH (8) with 5, 6, and 7 (reproduced from [ 75 ])       
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11.7     Folic Acid-Drug Conjugate 

  Folic acid   (FA) is a member of the vitamin B family and is one of the most 
commonly used targeting moiety for specifi c delivery of various imaging agents, 
therapeutic agents, and nano-scaled systems to tumor cells. It is known to bind with 
a very high affi nity ( K  d  0.1–1 nM) to folate receptor (FR). Folate receptor is 
overexpressed on the surface of many malignant cells including breast, lung, 
kidney, ovarian, and endometrial cancers [ 80 ]. On the other hand, the expression of 
FR on other normal tissues is low and restricted to some epithelial cells. Folic acid 
conjugated prodrugs enter cells via receptor mediated endocytosis after binding to 
folate receptors. In addition, FA has a low immunogenicity and relatively simple 
chemistry compared to other targeting moieties such as antibody, peptide, and 
aptamer [ 80 – 82 ]. For targeting tumor cells, a range of anticancer drugs have been 
conjugated with FA. 

 To enhance the specifi city to tumor cells Dox was conjugated to FA [ 83 ]. Dox is 
an anthracyclinic drug used for a wide variety of cancers. However, poor solubility, 
extremely high toxicity and short half-life limit its therapeutic effi cacy.  D-α-
Tocopheryl polyethylene glycol succinate   (TPGS) was conjugated, to the FA modi-
fi cation, to Dox to enhance the solubility and drug permeability across cell 
membrane. The TPGS-Dox-FA prodrug exhibited enhanced half-life, high antitu-
mor effi cacy (45-fold more effective than the unmodifi ed Dox), and less accumula-
tion in the heart, which is the major organ affected by Dox’s side effects [ 83 ]. 

 Philip et al. demonstrated that FA on conjugation to campothecin, a poor water- 
soluble and highly toxic chemotherapy agent, via a hydrophilic peptide containing 
a disulfi de bond [ 81 ]. They showed increase in specifi city of the prodrug, while the 
cleavable spacer increased the solubility of campothecin and also provides an effi -
cient release of camptothecin within tumor cells via the disulfi de reduction [ 81 ].  

11.8     Conclusions 

 Polymeric prodrug conjugate systems offer a potent and versatile tool for improving 
the therapeutic potential of low-molecular-weight drugs and proteins. Although 
considerable progress has been made in the fi eld of prodrugs in clinic, prodrug sys-
tems consisting a targeting component still remains only as a perspective. There are 
numerous scientifi c challenges to overcome this goal, such as advanced biomateri-
als, molecular tunability, physicochemical strategies, immunogenicity, cell perme-
ability, and cell specifi city in clinically relevant targeted drugs. However, several 
prodrug systems having anticancer agents are currently under  clinical   trials. Towards 
this direction, in next few years many other anticancer conjugates could get regula-
tory approvals. In the future, requirement for advance drug delivery strategies such 
as targeted prodrugs will become more important since the discovery of new anti-
cancer drugs will become increasingly challenging and expensive [ 1 ].     
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