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    Chapter 10   
    Stimuli Responsive Carriers: Magnetically, 
Thermally and pH Assisted Drug Delivery 

             Eameema     Muntimadugu    ,     Anjali     Jain    , and     Wahid     Khan    

      Abbreviations 

   ABC    ATP-binding cassette   
  DEA    Diethylacrylamide   
  DOPE    Dioleoylphosphatidylethanolamine   
  ECM    Extracellular matrix   
  LCST    Lower critical solution temperature   
  NIPAM     N -isopropylacrylamide   
  PCLA    Poly(ε‐caprolactone-co-lactide)   
  PAD    Poly( N -amidino)dodecyl acrylamide   
  PEO    Polyethylene oxide   
  PNIPAM–CS    Poly( N -isopropylacrylamide)–chitosan   
  NVCL     N -vinylcaprolactam   
  UCST    Upper critical solution temperature   

10.1           Introduction 

 Clinical application of most of the drugs is limited by their side effects in spite of 
their benefi cial action. There has been a long time desire to achieve selective delivery 
of bioactives to target areas in the body in order to maximize therapeutic potential 
and minimize side-effects. For achieving better therapeutic application, 
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nanocarriers are considered for target-specifi c delivery of drugs to various sites in 
the body in order to improve the therapeutic effi cacy, while minimizing undesirable 
side effects    [ 1 ]. Nanocarriers possess in vivo longevity and specifi c capability of 
extravasation through the endothelium of infl ammatory tissues (the so-called 
enhanced permeability and retention effect), whereas their functionalisation with 
biologically active ligands facilitates the targeting of specifi c cells. However, the 
translation of both the enhanced permeability and retention effect and ligand recog-
nition into the clinic still remains questionable. This may be, to a certain extent a 
consequence of the stochastic nature of ligand–receptor interactions and of diffi cul-
ties in the control of the release of the drug from targeting nanocarriers. One alterna-
tive involves on-demand processes (also termed “switch on/off”), which in principle 
allow for tailored release profi les with excellent spatial, temporal and dosage con-
trol. On-demand drug delivery is becoming feasible through the design of stimuli 
responsive systems that recognize their microenvironment and react in a dynamic 
way, mimicking the responsiveness of living organisms [ 2 ]. The concept of stimuli- 
responsive drug delivery was fi rst suggested in the late 1970s with the use of ther-
mosensitive liposomes for the local release of drugs through hyperthermia. Since 
then, and particularly in the past decade a great deal of research has been carried out 
on stimuli-responsive materials for drug delivery, especially concerning their design 
and applications as nanocarriers [ 3 ]. 

 Stimuli-responsive nanocarriers are specialised nano-sized active delivery vehi-
cles that evolve with an external signal and are equipped with “load-and-release” 
modalities within their constituting units. The central operating principle of these 
carriers lies in the fact that a specifi c cellular/extracellular stimulus of chemical, 
biochemical, or physical origin can modify the structural composition/conforma-
tion of the nanocarriers, thereby promoting release of the active species to specifi c 
biological environment. The observed changes are mainly decomposition, isomeri-
sation, polymerisation, activation of supramolecular aggregation among many oth-
ers. The general concept of triggered release can be divided mainly into two major 
modes according to the nature of the interaction between the bioactive molecule and 
the nanocarriers. In the complexation approach, where the bioactive agent is 
entrapped within the nanocarrier, the release can be triggered by structural change 
within the carrier scaffold (i.e. carrier degradation, cleavage of shell, charging of 
functional groups), while in the nanocarrier-conjugate approach; the mechanism of 
release involves the splitting of the linker between the carrier and the bioactive 
agent. The external stimuli which bring about these changes are numerous and cross 
related. These advanced nanocarriers thus become an active participant in the thera-
peutic landscape, rather than an inert carrier molecule [ 4 ].  

10.2     Classifi cation 

 Stimuli that trigger drug release from the nanocarriers can be broadly classifi ed 
with respect to the biological systems as either endogenous (physiological, patho-
logical, and patho-chemical conditions) or exogenous (physical) (Fig.  10.1 ). 
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Endogenous stimuli of chemical and biochemical origin include cellular pH-shift, 
redox, and ionic microenvironment of the specifi c tissues, enzyme over-expression in 
certain pathological states, host–guest recognitions, and antigen–antibody interac-
tions. Physical stimuli that can be applied externally to bring about a triggered release 
of active guest may involve temperature, light, mechanical pressure, and strength of 
magnetic or electrical fi elds. This chapter throws light on pH, thermally and magnetic 
fi eld assisted drug delivery either alone or as dual responsive systems.   

10.3     pH-Responsive Carriers 

 Among the common stimuli, pH-responsiveness is the most frequently used. These 
carriers respond to pH gradients within the microenvironments of organs, tissues 
and cell organelles to achieve drug release at desired site. Certain tumours and 
infl amed tissue have a slightly lower pH values (between pH 5.4 and 7.4) than 
homeostatic conditions (pH 7.4). Furthermore, there exists a lower intracellular pH 
in endosomes and lysosomes. As such particles internalised through endocytosis 
will experience a pH gradient from neutral (pH ~ 7.4) in extracellular environment, 
to acidic (pH ~ 6.2) in early endosome and more acidic (pH ~ 5.0) in lysosome [ 5 ,  6 ]. 
Moreover, members of the ATP-binding cassette (ABC) effl ux pump superfamily, 
such as P-glycoprotein (P-gp)/ABCB1, MDR-associated protein/ABCC, and breast 
cancer resistance protein/ABCG2, play important roles in drug kinetics including 
absorption, distribution, metabolism and excretion, which limits the accumulation 
of drugs inside the cells and results in drug resistance [ 7 ]. pH responsive carriers are 
expected to provide fast intracellular drug release and make the intracellular drug 

  Fig. 10.1    Classifi cation of stimuli involved in responsive drug delivery systems       
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concentration to reach a suffi ciently high level to exceed the effl ux capacity of drug 
transporters and the threshold concentration to kill the MDR tumour cells. 

 There are several general approaches of such systems that undergo chemical 
transitions around the critical pH range of 5–7 [ 8 ]. One approach is to introduce 
“titratable” or “protonizable” chemical groups such as amines and carboxylic 
acids into the components assembling the nanocarriers. The systems containing 
amines or carboxylic groups with different chemical structures and pKa values 
could change their physical and chemical properties, such as swelling ratio or 
solubility in response to local pH level [ 9 ]. Another approach is to incorporate 
acid-labile linkages directly to attach drugs covalently to the vectors or into the 
main-chains of the polymers constructing the carriers. The pH sensitive bonds 
are cleaved at acidic pH, accompanied by dissolution of carriers and release of 
drugs. The third approach is to incorporate carbon dioxide (CO 2 )-generating 
ingredient for inducing CO 2  gas in acidic environment and leading to disintegra-
tion of the vehicles [ 10 ]. 

10.3.1     Delivery Systems 

 pH-responsive systems are mainly designed and reported as dendrimer, liposomes, 
nanoparticles and nanofi bres (Fig.  10.2  and Table  10.1 ). Dendrimers are highly 
branched oligomers or polymers characterised by three structural features: (1) the 
central core from which the polymeric branches emanate, (2) the nature of the 
repeating unit which determines the microenvironment of the interior and thus the 
solubilisation ability of the dendrimer and (3) the nature and number of the terminal 
functional groups, mainly responsible for the behavior of dendrimers in solution. 
Pistolis et al. Developed pyrene loaded poly(propyleneimine) dendrimers for pH 
dependent release of pyrene. The release was increased up to tenfold by decreasing 
the pH to 2–4 [ 11 ]. Dual acting pH and thermosensitive dendrimer with a shell of 
poly( N , N -dimethylaminoethyl methacrylate) were also developed [ 12 ]. Similarly 
Yuan et al., reported pH-sensitiveness and cellular targeting dendrimer to provide 
the advantage of thermo regulated targeting. This system contained poly( L -glutamic 
acid) dendrimers with a polyhedral oligomeric silsesquioxane nanocubic core. 
Doxorubicin was attached via pH-sensitive hydrazine bonds and biotin was used as 
targeting moiety [ 13 ]. 

   As another delivery system, pH-sensitive liposomes are designed to undergo 
acid-triggered destabilisation. For this, fi rst generation pH-sensitive liposomes 
which are based on the cone-shaped lipid dioleoylphosphatidylethanolamine and 
later, serum-resistant pH-sensitive liposome formulations containing egg phospha-
tidylcholine and cholesteryl hemisuccinate are developed. These liposomes 
exhibited excellent stability at pH 7.4 and underwent rapid destabilisation upon 
acidifi cation [ 14 ,  15 ]. 

 For polymeric delivery, few common examples of pH sensitive polymers 
are poly(methacrylic acid)s, poly(vinylpyridine)s, poly(vinylimmidazole)s. 
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Moreover, efforts are being made to develop new co-polymers with pH responsive 
properties. Giacomelli et al. Synthesised poly(ethyleneoxide)-b- poly(glycerolmonomethacrylate)–
Indomethacin conjugates. This polymer–drug conjugate self assembled into micelle 
in water. The release of Indomethacin (IND) was governed by intrinsic molecular 
characteristics of free-IND (aqueous dissociation behavior) and pH-sensitivity of 
ester linkages in the conjugates. At neutral pH, the ester bond linkages were stable 
which promoted diffusion of free-IND out of the carrier, whereas acidic pH facili-
tates sustained release with slow kinetics [ 16 ]. 

 pH sensitive poly(methacrylic acid and methacrylate) nanoparticles were 
designed to improve oral bioavailability of cyclosporin [ 17 ,  18 ]. Borchert et al. 
observed the pH-induced release of hydrophilic dyes from poly(2-vinylpyridine-b- 
ethylene oxide) block copolymer vesicles. At pH less than 5, protonation and dis-
solution of the poly-2-vinylpyridine blocks facilitated the release of dye from 
vesicles [ 19 ]. Similarly, gold-decorated shape-persistent, pH-responsive polymer-
somes were prepared by the self-assembly of a novel poly(ethyleneoxide)-block- 
poly[2-(diethylamino)ethylmethacrylate-stat-3-(trimethoxysilyl)-propy-
lmethacrylate], copolymer. These pH-sensitive blocks are located in the membrane 
walls, while the hydrophilic PEO chains forms the corona [ 20 ].  

  Fig. 10.2    Stimuli responsive carriers       
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10.3.2     Applications 

10.3.2.1     Anti Cancer Therapy 

 pH sensitive liposomes made of dioleoylphosphatidylethanolamine (DOPE) and 
oleic acid or DOPE and 1,2-dipalmitoylsuccinylglycerol explored multiple possi-
bilities to treat cancer. Problems associated with less circulation half-life, stability 
in blood have been resolved [ 21 ]. Recently, liposomal delivery system modifi ed 
with pH-responsive cell penetrating peptide TH (TH-Lip) has been reported. TH 
was found to be a wonderful pH responsive ligand as the cell penetrating capacity 
of TH concealed during the blood circulation and in normal tissues at neutral 
pH. However, when TH-Lip reached the tumour, low pH at these sites promoted 
protonation of TH and the surface charge of TH-Lip converted from negative to 
positive thus promoted enhanced cellular and tumour spheroid uptake [ 22 ].  

10.3.2.2     Antibacterial Therapy 

 Bacterial infections are generally characterised by very low pH values because of 
anaerobic fermentation and subsequent infl ammation. In this regard, systemic anti-
biotic therapy was achieved by incorporating an ionisable polyhistidine segment in 
a block copolymer to make PLGA-b-polyhistidine-b-PEG triblock copolymer 
nanoparticles. A charge switch at the sites of localised acidity promoted interactions 
with the negatively charged bacterial wall, and led to increased nanoparticle uptake 
in both Gram-positive and Gram-negative bacteria [ 23 ].  

10.3.2.3     Intracellular Traffi cking 

 The usefulness of pH-sensitive liposomes has been well exhibited in a wide variety 
of applications, these include the transport of fl uorescent probes to estimate the 
effi cacy of different liposome compositions and to explain the mechanisms involved 
in intracellular traffi cking, the intracellular transport of antigens, targeting intracel-
lular pathways involved in processing and presentation of antigens and enhancing 
the immune response to tumour cells [ 24 ].  

10.3.2.4     Oral Bioavailability Improvement 

 Because of the broad range of pH found throughout the gastrointestinal tract, pH- 
responsive systems for oral drug delivery have been designed to protect drugs from 
the harsh conditions found in the gastric cavity and to improve their absorption in 
the intestine [ 25 ]. For instance, poly(methacrylic acid)-based copolymers have been 
used as pH-sensitive coatings at the surface of porous silica nanoparticles, as well 
as to prepare copolymer micelles able to disassemble at the intestinal pH [ 26 ]. 
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This charge-reversal approach was also applied to multi stimuli responsive 
 nanocarriers to achieve drug release at neutral pH by taking advantage of electro-
static interactions, and to chitosan nanoparticles for gastric or intestinal delivery 
[ 27 ]. Similarly it was reported, pH sensitive oly(methacrylic acid and methacrylate) 
nanoparticles improved the oral bioavailability of cyclosporin [ 18 ].  

10.3.2.5     DNA Therapeutics 

 Gene therapy is most widely explored fi eld in biomedical research and increasing 
interest in stimuli responsive carriers to deliver DNA therapeutics can open multiple 
opportunities in this area. pH senstive liposomes were developed to deliver plasmid 
DNA into mammalian cell lines [ 28 ].    

10.4     Thermoresponsive Carriers 

 Thermoresponsive carriers are usually governed by a nonlinear sharp change in the 
properties of at least one component of the nanocarrier materials with temperature 
(Fig.  10.2  and Table  10.1 ). Such a sharp response triggers the release of the drug 
following a variation in the surrounding temperature. Ideally, thermosensitive nano-
carriers should retain their load at body temperature (~37 °C), and rapidly deliver 
the drug within a locally heated tumour (~40–42 °C) to counteract rapid blood- 
passage time and washout from the tumour [ 2 ]. The use of temperature as a signal 
has been justifi ed by the fact that the actual body temperature often deviates from 
the physiological value (37 °C) in the presence of pathogens or pyrogens. This 
deviation can be a useful stimulus to activate release of therapeutic agents from vari-
ous temperature-responsive drug delivery systems for diseases accompanied by 
fever. Drug-delivery systems responsive to temperature utilize various polymer 
properties, including the thermally reversible transition of polymer molecules, 
swelling change of networks, glass transition and crystalline melting [ 29 ]. 

 Thermoresponsive polymers utilize subtle changes in temperature to trigger 
macroscopic changes in material properties. Polymers that possess a lower critical 
solution temperature (LCST) typically undergo a sol-gel phase transition when 
heated above their LCST, whereas polymers that become soluble upon heating are 
said to possess an upper critical solution temperature (UCST) [ 6 ]. Both systems 
can be exploited for drug delivery purposes. LCST copolymers can simply be 
mixed with drug as a liquid suspension at room temperature and delivered via 
minimally invasive injection techniques directly to hard-to-access target tissues 
within the body. Heating to physiologic temperature drives a sol–gel phase transi-
tion, which entraps the infused drug within a solid depot and can provide sustained 
release of therapeutic concentrations of drug directly at the site of interest [ 30 ]. 
Drug-releasing polymer systems possessing a UCST may employ temperature-
induced swelling or scaffold destabilisation to rapidly release drug at a target site [ 31 ]. 
Localised heating (tumour tissues) or the application of an externally applied 
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 stimulus (ultrasound, infrared laser and so on) may be utilised to induce the local 
destabilisation of a UCST drug-releasing copolymer scaffold to produce targeted 
release [ 32 ,  33 ]. 

 Typical LCST polymers are based on  N -isopropylacrylamide (NIPAM),  N , N - 
diethylacrylamide  (DEA), methylvinylether and  N -vinylcaprolactam (NVCL) as 
monomers. Some example of these categories are Poly( N -vinylcaprolactam) [ 34 ], 
Poly( N -isopropylacrylamide) [ 35 ], Poly( N , N -ethylmethylacrylamide) [ 36 ], Poly( N - 
ethylacrylamide ) [ 37 ], Poly( N , N -diethylacrylamide) [ 38 ]. A typical UCST system 
is based on a combination of acrylamide and acrylic acid [ 6 ]. Thermoresponsiveness 
can also occur on a brief temperature decrease (also called cold shock or cryother-
apy). In this case, a thermally reversible swelling or de-swelling of the nanocarrier 
leads to free diffusion of the encapsulated drugs as a consequence of increased 
porosity [ 39 ]. Thermosensitive amphiphilic polymers generally have temperature- 
responsive hydrophilic segments and a suitable hydrophobic segment. NIPAM and 
its random copolymers are the most intensively investigated temperature-sensitive 
hydrophilic segments [ 40 ]. Block copolymers of PEG as a hydrophilic block and 
NIPAM or poly( N -isopropylacrylamide)-co- N -(2-hydroxypropyl) methacrylamide- 
dilactate as a thermosensitive block are able to self-assemble in water into 
temperature- responsive nanocarriers above the LCST of the thermosensitive block 
[ 41 ]. The hydrophobic segments, poly ( L -lactide), cholic acid, alkyl, and poly
(γ- benzyl  L -glutamate) have also been used in diblock polymers with the 
temperature- sensitive polyacrylamide derivatives being the hydrophilic segments. 

10.4.1     Delivery Systems 

 Generally used thermoresponsive carriers are liposomes, or polymer micelles, 
nanoparticles and nanofi bres [ 42 – 48 ]. For liposomes, thermoresponsiveness usually 
arises from a phase transition of the constituent lipids and the associated conforma-
tional variations in the lipid bilayer [ 49 ]. In vivo, heat is generally applied by using 
temperature-controlled water sacks, radiofrequency oscillators or miniature annular- 
phased array microwave applicators. Liposome-embedded hydrogels have been 
widely used for controlled drug release. Liu et al. embedded egg phosphatidylcho-
line liposome into a poly( N -isopropylacrylamide) (pNIPAM) hydrogel via chemical 
cross-linking. It was found that the confi nement of the network and the hydrophobic 
interactions between the liposome and pNIPAM modulated the integrity of the lipo-
some and the release profi le of the encapsulated content, such as calcein [ 50 ]. 

 Polymeric micelles have been explored for temperature induced release of 
actives for drug and gene delivery. The temperature-sensitive property is pos-
sessed by the outer shell of the polymeric micelles and the drug molecules are 
incorporated into the hydrophobic inner core [ 1 ]. Co-polymer of pNIPAM and 
poly(acrylic acid) with LCST 33 °C had shown potential to be developed as novel 
injectable drug delivery system due to rapid sol to gel conversion upon subcutane-
ous injection [ 51 ]. 
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 Chang et al. developed a block co-polymer from pNIPAM and poly(methyl 
methacrylate). They prepared prednisone acetate loaded uncross-linked micelles 
and cross-linked micelles with newly developed block co-polymer. LCST of 
uncross-linked and cross-linked micelles were 31.0 and 40.8 °C respectively. 
Uncross-linked micelles showed a rapid drug release near to 30 °C while cross- 
linked (SCL) micelles displayed negligible release up to 37 °C which increased 
rapidly above 40 °C [ 52 ]. Thermoresponsive, self-assembling polymersomes of 
poly( N -[3-aminopropyl] methacrylamide hydrochloride) and pNIPAM were also 
synthesised and used for similar applications [ 53 ]. 

 Vitamin B-12 loaded nanofi bres of pNIPAM/poly(ethylene oxide) (PEO) blend 
were also able to program drug release with the variation of temperature. Fibres 
containing higher ratios of pNIPAM displayed rapid release below LCST while the 
prolonged release was observed at 37 °C [ 54 ]. Stover and coworkers developed 
thermoresponsive, biodegradable linear-dendritic nanoparticles for targeted and 
sustained release of a pro-apoptotic drug ceramide (C6). These nanoparticles 
showed preferential uptake into human MDA-MB-231 breast adenocarcinoma cells 
at temperature above the LCST (37 °C) and sustained release of C6 up to 1 month 
in vitro [ 55 ].  

10.4.2     Applications 

10.4.2.1     Cancer Therapy 

 Thermoresponsive drug delivery is among the most investigated stimuli-responsive 
strategies, and has been widely explored in oncology. Qin et al. prepared thermore-
sponsive, doxorubicin-containing PEG–pNIPAM based polymersomes. Temperature 
induced transition facilitated self-assembly of polymer into vesicles at temperatures 
above 32 °C. Temperature-controlled release was determined by incorporating a 
hydrophobic fl uorescent dye into their membrane. These vesicles destabilised, or 
ruptured upon local cooling with either ice or penetrating cryoprobes [ 56 ]. For the 
treatment of gastric cancer, linoleic acid-coupled Pluronic F-127 (Plu-CLA) based 
thermoresponsive hydrogel loaded with docetaxel were developed. Docetaxel–Plu- 
CLA showed excellent anti-tumour activity, induced apoptosis and signifi cantly 
reduced the number of peritoneal metastatic nodules than docetaxel alone [ 57 ].  

10.4.2.2     Anti-Adhesive 

 Another application of thermosensitive polymers to inhibit ischemia-induced 
postoperative peritoneal adhesion was highlighted by Wu and coworkers. The 
PCL–PEG–PCL, developed for this purpose exhibited rapid micelle formation at 
10 °C and sol to gel conversion at body temperature. They were found to be well 
tolerated, less toxic and therapeutically more effective as compared to control 
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group. Emergence of a layer of neo-mesothelial cells on the injured tissues after 
micelle treatment provides a strong evidence in the support of its anti-adhesion 
activity [ 58 ].  

10.4.2.3     Temperature-Responsive Surfaces 

 Temperature-responsive cell culture surfaces of pNIPAM with the ability to alter its 
surface hydrophobicity in response to temperature were developed. The so devel-
oped cell culture surfaces facilitated cell adhesion and proliferation at 37 °C while 
released spread cultured cells below 32 °C without any need of trypsin. Further, 
pre-coating of these surfaces with fi bronectin improved spreading of less adhesive 
cultured hepatocytes [ 59 ]. Liao et al. developed NIPAM-based thermoresponsive 
polyelectrolyte multilayer fi lms as culture substrates to support hMSC expansion. 
These fi lm were via layer-by-layer adsorption of thermoresponsive polymer and 
positively charged allylamine hydrochloride, or negatively charged styrene sulfonic 
acid. Surface charge was found to alter ECM structure and subsequently cellular 
response for the surface. The positively charged surfaces resulted improved cell 
adhesion and growth compared to control surfaces [ 60 ].  

10.4.2.4    Diabetes Mellitus 

 For treatment of diabetes mellitus, pancreatic islet cells were harvested on laminin-
 5 coated temperature-responsive dishes functional activity of the islet cell sheets 
was confi rmed by histological examination and Insulin secretion assay prior to 
in vivo transplantation [ 61 ]. Thermoreversible hydrogel composed of poly(lactic 
acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) 
(PLGA-PEG-PLGA) triblock copolymers loaded with exenatide were also evalu-
ated to treat diabetes. Polymer decreased the degradation of the polypeptide. Further, 
the problems of loading of water soluble peptide and sustaining the release of pep-
tide were solved by synergistic effect of zinc acetate, PEG, and sucrose [ 62 ].  

10.4.2.5    Ocular Therapy 

 Thermosensitive poly( N -isopropylacrylamide)–chitosan (pNIPAM–CS) solution 
loaded with timolol maleate was investigated for ocular application due to its in situ 
gel-forming properties. Polymer showed lower critical solution temperature of 
32 °C, which was close to the surface temperature of the eye. Ocular pharmacoki-
netic analysis on rabbit eye showed higher Cmax and AUC as compared to conven-
tional eye drop solution. Moreover, pNIPAM–CS solution showed reduced in vitro 
cytotoxicity and higher capacity to reduce the intra-ocular pressure as compared to 
conventional solution [ 63 ]  
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10.4.2.6    CNS Disorders 

 Thermo-gelling injectable nanogels amphiphilically modifi ed chitosan were 
reported for delivery ethosuximide. In vivo studies suggested prominent therapeutic 
effect of ethosuximide loaded nanogels by suppressing spike wave discharges in 
Long Evan rat model [ 64 ].    

10.5     Magnetically Responsive Carriers 

 A magnetic fi eld-responsive nanocarrier generally involves paramagnetic or super- 
paramagnetic materials either embedded into a polymeric scaffold forming liposo-
mal, micellar, or supramolecular aggregates (Fig. 10.2  and Table  10.1 ). The versatile 
intrinsic properties of magnetic particles enable their use in numerous medical 
applications, such as: localisation of therapy, where magnetic carriers, associated 
with drugs, nucleic acids or loaded within cells can be directed or guided by means 
of a magnetic fi eld gradient towards certain biological targets; magnetic fl uid 
hyperthermia, where selective thermal ablation of tumours is achieved through 
heating of tumour-localised magnetic particles exposed to a high frequency mag-
netic fi eld; tissue engineering, where particles can be used in remote actuation for 
control of cellular behaviour enabling development of functional tissue or to pro-
vide means for a patterned cell assembly and facilitated seeding of tissue engi-
neered scaffold with functional cells; and MRI, where magnetic particles are used 
as contrast agents [ 65 ]. 

 Magnetic systems for magnetic targeting that have been proposed or employed 
so far fall into two main classes. In one class, magnets external to the body provide 
both the fi eld to magnetize the carrier and fi eld gradients for targeting [ 66 ,  67 ]. 
However, the use of external magnets imposes serious limitations in targeting deep 
tissues as their fi eld strength and fi eld gradient decrease exponentially with the dis-
tance from the surface. The other class is based on a combination of external mag-
nets and magnets (or magnetizable devices) implanted local to the target region. In 
the second class of systems, the external magnet would typically provide the mag-
netizing fi eld for the carrier, while the local magnet (or magnetisable implant) will 
provide the largest possible fi eld gradients for targeting. The second type of magnet 
system can be of potential use for targeting deep tissues, including blood vessels 
where magnetizable implants can be placed [ 68 – 70 ]. The effective use of magneti-
cally responsive nanocarriers for biomedical applications such as targeted drug 
delivery depends on a number of factors related to the size and magnetism of the 
biocompatible nanoparticles. Parameters such as the physicochemical properties of 
the drug-loaded nanocarriers, fi eld strength and geometry, depth of the target tissue, 
rate of blood fl ow, and vascular supply play a role in determining the effectiveness 
of this method of drug delivery [ 71 ,  72 ]. 
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 Iron oxides with core/shell structures are the most widely used as sources of 
magnetic materials. Iron oxides have several crystalline polymorphs known as 
   α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), ε-Fe2O3, Fe3O4 (magnetite) and 
some others (amorphous and high pressure forms). Nevertheless, only maghemite 
and magnetite found the greatest interest of bio-applications [ 73 ]. Readily, carbonyl 
iron, which is well-known material with a unique form of elemental iron because of 
its small particle size, was also used as magnetic core [ 74 ]. In some reports, pure 
metals, such as Fe and Co were chosen as a magnetic material because they have 
several advantages over iron oxides, e.g. better magnetic properties, high saturation 
magnetisation, and high specifi c loss of power [ 75 ,  76 ]. 

 Functionalisation of magnetically responsive carriers with amino group, silica, 
polymer, various surfactants or other organic compounds is usually provided in 
order to achieve better physical and chemical properties. Moreover, the core/shell 
structures of nanocarriers have the advantages of good dispersion, high stability 
against oxidation and appreciable amount of drug can be loaded to the polymer shell 
[ 77 ]. Lecommandoux et al. developed magnetic nanocomposites of polypeptide- 
based diblock copolymers of polybutadiene-block-poly(glutamic acid) in combina-
tion with hydrophobically modifi ed γ-Fe2O3 nanoparticles [ 78 ]. Furthermore, lots of 
functional groups from polymers on the surface can be used for further functionali-
sation to get various properties [ 79 ]. It is favoured that magnetically responsive 
carriers retain suffi cient hydrophilicity and, with coating, do not exceed 100 nm in 
size to avoid rapid clearance by reticuloendothelial system. It was found that surface 
functionalisation also plays the key role in nanoparticle toxicity [ 80 ]. 

10.5.1     Delivery Systems 

 Candidate nanosystems for such a therapeutic approach are core–shell nanoparticles 
(a magnetic core made of magnetite coated with silica or polymer) [ 81 ,  82 ], magneto-
liposomes (maghemite nanocrystals encapsulated in liposomes) [ 83 ,  84 ] and porous 
metallic nanocapsules [ 85 ] (Fig.  10.2 ). A novel nanocarrier, containing  functionalised 
magnetite (Fe3O4) core that was conjugated with drug via acid- labile hydrazone-bond 
and encapsulated by the thermosensitive chitosan-g-poly( N -isopropylacrylamide - co -
 N , N -dimethylacrylamide) was reported. Polymer exhibited a LCST of 38 °C below 
which the drug release response was appreciably low [ 86 ]. Antibody-conjugated 
magnetoliposomes for targeting cancer cells were also reported [ 87 ].  

10.5.2     Applications 

 Magnetically responsive carriers are getting signifi cant attention in the fi eld of ther-
anostics. Theranostics is the fusion of therapeutics and diagnostics to design indi-
vidualised pharmacotherapy. Paramagnetic nanoparticles were initially used as 
contrast agents for magnetic resonance imaging (MRI) later on surface modifi cation 
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of these nanoparticles introduced various functions for the nanoparticles to be used 
for both gene delivery and MR imaging. The combination based on the nanoparti-
cles allows non-invasive monitoring of in vivo gene delivery with MRI and delivery 
of therapeutic genes [ 88 ,  89 ]. Such magnetofection experiments were generally per-
formed using nanoassemblies with cationic coatings to condense nucleic acids, 
which resulted in higher transfection effi ciencies under a permanent magnetic fi eld. 
These technique led to improved effectiveness in the transfection of siRNA in vitro 
and/or in vivo when directed against prostate [ 90 ] and breast cancers [ 91 ], as well 
as in the gene transfer to oligodendrocyte precursors for neural repair [ 92 ].   

10.6     Recent Advancements 

10.6.1     Dual and Multi Stimuli Responsive Carriers 

 In an effort to further fi ne tune drug release and augment therapeutic effi cacy of 
nanoparticulate drugs, sophisticated polymeric nanoparticles that respond to dual 
and multi-stimuli such as pH/temperature, pH/redox, pH/magnetic fi eld, tempera-
ture/reduction, double pH, pH and diols, temperature/magnetic fi eld, temperature/
enzyme, temperature/pH/redox, temperature/pH/magnetic, pH/redox/magnetic, 
temperature/redox/guest molecules and temperature/pH/guest molecules have been 
aggressively pursued (Fig.  10.2 ) [ 93 – 96 ]. It should be noted that the responses take 
place either simultaneously at the same location or in a sequential manner in differ-
ent settings and/or compartments. These dual and multi-stimuli responsive poly-
meric nanoparticles might on one hand offer unprecedented control over drug 
delivery and release leading to superior in vitro and/or in vivo anti-cancer potency, 
and on the other hand also facilitate nanoparticles preparation and loading of drugs 
under mild conditions [ 97 ]. These two and more stimuli are combined in order to: 
(1) facilitate preparation of nanoparticles under mild conditions through application 
of an external stimulus such as temperature and pH; (2) trigger drug release via 
application of an external stimulus such as magnetic fi eld, ultrasonic, light and tem-
perature; (3) trigger drug release or reverse deshielding of nanoparticles thereby 
enhancing tumour cell uptake of nanoparticulate drugs in a mildly acidic tumour 
microenvironment; and/or (4) boost intracellular drug release in tumour cells under 
endo/lysosomal pH and/or cytosolic reductive conditions. 

 Shim et al. developed a polymer containing sulfamethazine as the pH-responsive 
component, and poly(ε‐caprolactone-co-lactide) (PCLA) in a triblock with PEG, 
PCLA–PEG–PCLA, as the thermosensitive moiety [ 98 ]. By controlling precise 
ratios between the two parts the co-polymer showed a reversible sol–gel–sol transi-
tion phase. At room temperature and pH 8 the polymer remained in a solution state, 
when the environment was altered to 37 °C and pH 7.4, i.e. normal physiological 
conditions, there was a rapid phase transition to a gel state. Once the gel was formed 
it remained stable and degraded over time without changing local pH levels [ 98 ,  99 ]. 
Despite the advantageous versatility of these systems, they often appear as too 
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c omplicated and many still remain as proofs of concept. To ascertain the viability of 
these strategies, evidence of the regulation of the response to each stimulus would 
be needed both in vitro and in vivo.  

10.6.2     Breathing Vesicles 

 The breathing, in this context, can be defi ned as a highly reversible vesicle volume 
change by a factor of approximately 7, which was accompanied by diffusion of 
s pecies into and out of the vesicles with a relaxation time of approximately 1 min. 
A three-layered vesicle system with pH-induced “breathing” feature was designed 
with triblock copolymer poly(ethylene oxide)-block-polystyrene-block-poly
(2- diethylaminoethylmethacrylate). Self-assembly into vesicles was observed at a 
pH of 10.4. As the pH decreased, both the vesicle size and the thickness of all three 
layers increased. Progressive swelling of the middle layer with a decrease in pH 
below 6 induced cracking of the two outer layers and also a sharp increase of the 
vesicle size and the wall thickness. When pH reached up to 3.4, the vesicle size was 
found to be increased by a factor of 1.9 and the wall showed a cracked surface. 
These changes between pH 10.4 and 3.4 were highly reversible with the relaxation 
time of 1 min with marked repeatedly. The change in the wall structure dramatically 
helped to increase the wall permeability to water along with rate of proton diffusion 
from practically zero to extremely rapid [ 100 ]. 

 Similarly, CO 2 -responsive breathing vesicles were synthesised with block poly-
mer poly(ethylene oxide)-poly( N -amidino)dodecyl acrylamide (PEO-b-PAD). 
PEO-b-PAD self-assembled in to micelle like structure in which the PEO portion 
formed hydrophilic exterior and the PAD portion formed hydrophobic interior. The 
amidine group in copolymer transformed into a charged amidinium species upon 
reaction with CO 2  which reverted back to its original form upon exposure to argon 
(Ar). It was confi rmed by much larger intact vesicles with a diameter of 205.25 nm 
and strikingly increases volume by 83.5 % after CO 2  treatment for 20 min. These 
vesicles shrunk back to their initial size in the presence of Ar [ 101 ].   

10.7     Challenges 

 Despite their responsive feature and versatility for drug delivery, thermoresponsive 
systems have some unanswered questions too. Co-polymeric systems provided ease 
to modulate the system properties but they are facing the problem of biocompatibil-
ity, biodegradability, reproducibility and tailored drug release as per requirement of 
site of action [ 51 ,  99 ]. Development of amphiphilic poly(asparagine) based 
 polymers, Poly[α/β-(DL-aspartate isopropylamide)-co-(succinimide)] PCL-PEG 
copolymer had solved the biodegradability issue up to certain extent still, 
more in vivo studies are needed to ascertain their complete safety [ 58 ,  102 – 104 ]. 
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While theranostics is the most recent advancement which utilizes the magnet 
stimuli as a component of diagnosis still the mismatch of dose required for imaging 
and therapy creates problem and require further optimisation. Further, the concen-
tration required for imaging may create toxicity problems [ 105 ].  

10.8     Clinical Status 

 Nanocarriers that are responsive to exogenous stimuli (temperature and magnetic 
fi eld) have reached clinical stage as they are more promising. Endogenous triggers 
are indeed diffi cult to control because they may vary from one patient to another 
(such as the pH of a tumour or the presence of reducing agents in the blood circula-
tion). Table  10.2  gives information regarding responsive carriers that are in different 
phases of clinical trials.

10.9        Conclusions 

 With greater understanding of physiological differences between normal and dis-
ease tissues and advances in material design, there is an opportunity to develop 
nanocarrier systems for target-specifi c drug delivery that will respond to local stim-
uli. They can shift the paradigm in the delivery of medicine and diagnostics. This 
chapter explained the role of pH, temperature and magnetic fi eld responsive nano-
carriers for targeted-drug delivery. However, compared to the amount of research 
being done in the fi eld, relatively few medical nanotechnologies have made it to the 
market. Clear demonstrations of biocompatibility and including biodegradable 
components will make these materials even more attractive for in vivo applications. 
Furthermore, development and implementation of scalable, cost-effective fabrica-
tion techniques will help promote clinical translation. Together, intelligent materials 
and nanocarriers provide a versatile toolbox that we believe will revolutionize the 
future of modern medicine.     
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