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Abstract. Connected Component Labeling (CCL) is a well-known algo-
rithm with many applications in image processing and computer vision.
Given the growth in terms of inter-pixel relationships and the amount
of information stored in a single pixel, the time to run CCL analysis on
an image continues to increase rapidly. In this paper we present an ac-
celerated version of CCL using NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) framework to address this growing overhead. Our
parallelization approach decomposes CCL while respecting all global de-
pendencies across the image. We compare our implementation against se-
rial execution and parallelized implementations developed on OpenMP.
We show that our parallelized CCL algorithm targeting NVIDIA’s CUDA
can significantly increase performance, while still ensuring labeling
quality.

Keywords: connected component labeling, CUDA,HYPER-Q, dynamic
parallelism.

1 Introduction

Image analysis plays an important role in many applications in biomedical, man-
ufacturing and security applications. Connected Component Labeling has been
used to identify blobs or regions in a graph. In many of these applications, the
graph represents the contents of an image. Different approaches of Connected
Component Labeling have been proposed [1,3,5].

Parallelization has been used effectively in image analysis implementations
to accelerate a number of data-parallel tasks. Image analysis is typically easily
parallelized, especially given the large amount of data that typically needs to
processed using a common set of operations. Previous work has focused on par-
allelization of CCL [2,4], even though CCL involves some global synchronization.
While speedups can be achieved, synchronization limits the amount of speedup
that can be achieved.

However, recent advances in parallel architectures, such as NVIDIA’s Kepler
graphics processor [7], have improved support for the class of global synchro-
nization operations present in CCL. The focus of our work here is to exploit
this parallelism and global synchronization mechanism effectively. We present a
new implementation of CCL which offers better performance compared against
previous serial and parallel approaches [6].
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CCL has been using in a number of image analysis settings. Specifically, in the
field of physical security, there are particular tasks such as luggage scanning at
airports that require near real-time response with a very high rate of accuracy.
Labeling is one of the first steps in the scanning pipeline; the accuracy of la-
beling will strongly affect the quality whole system. Unfortunately, labeling is a
time-consuming operation. For this reason, we propose an efficient parallel CCL
implementation which leverages the parallel architecture of NVIDIA’s Kepler
using the CUDA programming framework.

This paper is organized as follows. In the next section we review the state of
the art in CCL algorithms, as well as consider previous work on parallel imple-
mentations. In Section 3, we review the Kepler GK110 architecture (equipped
with compute capability 3.5), the target system used in our evaluation. In Sec-
tion 4, we present the proposed algorithm and in Section 5 present results of
running CCL on Kepler and compare against a serial implementation and a par-
allel OpenMP implementation. Finally, we conclude the paper in Section 6, and
discuss directions for future work.

2 Connected Component Labeling

Connected Component Labeling utilizes hierarchical data structures and union-
trees. CCL can be applied to graphs or images. When used on an image, typically
CCL uses two scans of an image and performs an analysis of every pixel [4].
There has been previous work that attempts to perform a single scan of the
image [3], but this form of CCL lacks inherent parallelism, making it difficult to
tune execution efficiency.

When working with images, the CCL algorithm begins by labeling each pixel
of an image I based on its neighbors. If a pixel belongs to the background, the
label 0 is assigned to it. If the pixel is not part of the background, its label is de-
termined by the labels of the neighboring pixels. In a sequential implementation
of connectivity, we would consider the North and West pixels first in order to
determine X ’s label. CCL constructs a tree in the first scan, by choosing a root
label for the region. Then CCL performs a second scan, updating temporary
labels based on their smallest neighboring labels.

There have been a number of attempts improve performance of CCL [1,2,3,4,5].
Stripe-based Connected Component Labeling [1] makes 3 passes over the image,
performing: 1) stripe extraction representation during the first pass, 2) stripe
union during the second scan, and 3) label assignment during the final step. The
first scan can be run in parallel, processing multiple rows concurrently. However,
the stripe union phase runs a find root task which explores all regions until a
root label is found. This exploration is inherently sequential, and therefore very
costly.

Klaiber et al. presented a memory-efficient parallel single pass CCL implemen-
tation targeting an FPGA [4] in 2012. Their approach improved the execution
speed of Bayley et al.’s Single Pass CCL FPGA-based earlier implementation [3],
reducing overhead due to memory allocation of labels while searching regions.
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When processing large images, they tiled images into small slices and evalu-
ated neighbors between slices. This approach reduced the memory requirements
significantly.

A fast CCL implementation was presented in [5]. The regions are connected
at region boundaries, which are identified during the second scan. This approach
considers performing only a half scan, since in the previous step the image was
divided into subregions and they used these subregions to merge components
using boundary overlaps. The disadvantage of this approach is it inherently
sacrifices accuracy. The approach uses semi-supervised learning, since the user
needs to calibrate which regions she would like to segment.

2.1 GPU-Based CCL Implementations

Previous work has evaluated a GPU-based implementation [2] which builds off
of a classical hierarchical structure, generates a root label for each component,
locally merges them using block-based division of the image, and then performs
a global merge to rejoin blocks. Since the local merge can be run in parallel, an
atomic operation is used to control the many threads updating the same pixel
label. Atomic operations impact performance due to thread waiting, and the
multi-step merging process increases the number of memory accesses.

In [10] Mehta et al. presented a parallel implementation of a video surveillance
algorithm run on a NVIDIA GPU using CUDA. Their CCL implementation
divides input video frames into tiles and computes labels sequentially. To merge
tiles, they choose the heaviest label from among the different tiles.

Riha et al. presented a promising GPU-based implementation of CCL using
a single scan of an image [11]. Their approach creates an intermediate dynamic
structure to store properties of groups of pixels on a per row basis. Their ap-
proach is very close to our own, though in their design, in order to merge and
create the objects they need to run an extra step to update the connections be-
tween contiguous rows. The main problem with their approach is the sequential
update of properties for every object in their dynamic structure.

3 NVIDIA’s Compute Unified Device Architecture
(CUDA)

With the advent of GPU computing, a number of computational barriers have
been overcome, enabling researchers to push the limits of applications that were
previously limited by performance. GPU computing architectures have been used
across a wide range of applications [6]. NVIDIA’s previous generation of GPUs,
the Fermi family, has been used in a number of applications, promising peak
single-precision floating performance of up to 1.5 TFLOPS. However, NVIDIA’s
Kepler GK110 GPU offers more than 3.5 TFLOPs of single-precision computing
capability. The newest features provided on the Kepler enable programmers move
a wider range of applications to the CUDA framework [8].
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3.1 Kepler Advanced Features

Given the level of sophistication provided in the Kepler, we have focused our
work on accelerating CCL while run on this particular architecture. Two new
features, introduced on the Kepler GK110, are utilized in our approach:

1. Dynamic Parallelism: Kepler adds the capability to launch child kernels
within a parent kernel. One typical pattern in sequential algorithms are
nested loops. Dynamic parallelism allows us to implement a nested loop
with variable amounts of parallelism.

2. Hyper-Q: Kepler provides the ability to run multiples kernels assigned to
different streams, concurrently. The Kepler GK110 supports up to 32 con-
current streams (as compared to 16 on the Fermi). Each stream is assigned
to a different hardware queue.

Additional features included on the Kepler GK110 include texture memory,
pinned memory, coalesced memory accesses, and new block/thread settings.
Many of these features will be exploited in order to produce our optimized CCL
implementation.

4 Accelerated Connected Component Labeling

The neighborhood operations present in CCL make it challenging to parallelize.
We must modify the structure of the underlying algorithm if we want to exploit
the massive thread-level parallelism present on the Kepler. Stripe-based CCL [1]
modifies the first step of the algorithm by using row-level parallelization. We fol-
lowed this approach in our design, but instead of only working on two rows at a
time, we launched as many threads as rows in the image (I) during the first scan.

Formally, our Accelerated CCL (ACCL) uses two scanning phases, but our
second phase simply updates a matrix that is half the size of the original image
I. An intermediate stage reduces the size of labels associated with I.

4.1 Phase 0: Find Spans

We define a span as a group of pixels that have the same intensity in image
I, and are located contiguously in the row. The structure of a span has two
elements (ystart, yend), which correspond to the column indices of the starting
pixel and the ending pixel, respectively. spanx defines a span in row x, and it is
defined as follow:

spanx = {(ystart, yend)|I(x,ystart) = I(x,ystart+1) = . . . = I(x,yend)} (1)

An intermediate matrix stores spans on a per row basis. Once a span is found,
a label is immediately assigned to the span in matrix L. Matrix L has half the
number of columns of I, since labels are only associated with spans, not pixels.
Processing I in this fashion, we reduce the number of updates performed during
Phase 1.
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A kernel findSpans is launched with as many threads as rows in the original
image I. Each thread will process its corresponding row and fill the Spans matrix
with indices. At the same time, the Label matrix L is assigned values found for
each span. Figure 1 shows the behavior of this kernel.

Fig. 1. The flow of the findSpans kernel

Our grid configuration attempts to maximize GPU occupancy. We launched
256 threads per block, where each image allocates 2 blocks. We can process up
to 8 images per SMX before reaching full occupancy.

4.2 Phase 1: Merge Spans

In order to reduce the time taken for the Union-Find phase (which involves
an exploration of previous regions to find the root), we record in matrix L the
corresponding root label associated with each span.

Our second kernel mergeSpans joins two spans from contiguous rows, only if
the indices of the spans overlap and both spans have the same intensity.

merge(spanx, spansx+1) =

{
1 merge if indexes spanx and spanx+1 overlap
0 skip otherwise

If the condition described above is satisfied, a child kernel is spawned with the
one thread per label in L. These threads will update the respective labels of the
newly added segment. Figure 2 shows the memory access pattern when the child
kernel is launched. Spawming is enabled exploiting dynamic parallelism, which
only became available in CUDA compute capability 3.5. The time to update
multiple labels is the same as to update one single element of matrix L. We set
up two grid configurations for this kernel. The parent kernel associates one block
per image. The child kernel has 256 threads per block and 512 blocks.

Most of the memory accesses generated from threads of the same block per-
form read-only accesses of contiguous memory locations. This memory behavior
is well-suited for the GPU texture memory. Texture memory is a read-only mem-
ory that is cached on-chip on the GPU. Utilizing texture memory can speed-
up data transfer when threads of the same block access contiguous memory
locations.



Accelerating CCL 507

Fig. 2. The flow of the mergeSpans kernel

5 Performance Results and Analysis

Next, we present results of running real-world applications on an NVIDIA GK-
110. Our experiments use DICOM images [9] of actual luggage scanned at air-
ports. Each DICOM set contains more than 700 images (512x512) of the same
luggage. All images were binarized and simplified (see Figure 3), even though
ACCL works well with varying intensity values.

Our experiments were run on an Intel Core i7-3770K processor and with a
NVIDIA GTX Titan GPU, compute capability 3.5 and CUDA 5.5. We used gcc
compiler 3.7 and OpenMP 3.0.

(a) DICOM image (b) Binarized and simplified
version

Fig. 3. The input image used in this work

We provide results for optimized serial, OpenMP and CUDA implementations
in Table 1, all achieving the same labeling accuracy. Computation was recorded
for one image at a time. The OpenMP configuration that uses two threads and
shared memory for matrix L obtains the best performance.

We can see that our proposed parallel ACCL algorithm achieves an average
speedup of 5x over CCL serial. Our parallel implementation ACCL reduces the
complexity of Phase 0 from CCL Serial O(N ∗M), where N and M are rows and
columns of input matrix, to O(N). Furthermore, for the relabeling in Phase 1,
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we reduced the CCL serial complexity of O(N ∗M) to O(1). However, in ACCL
mergeSpans is still stuck with the same serial complexity in order to respect all
global dependencies.

We compared our results against Stava’s CUDA algorithm [6]. This algorithm
processes 1542 Mpixels/s of for a 5122 CT image, while our algorithm processes
5242 Mpixels/s. This is a speedup of over 3.3x.

Table 1. Performance results

Method Running Time(s) Speedup

CCL Serial 0.25 1.00x
CCL OpenMP 0.18 1.39x

ACCL 0.05 5.00x

In Table 2 the runtime our ACCL implementation using NVIDIA’s Hyper-Q
feature for processing multiple images concurrently is compared to the serial
CCL runtime. Since we are using dynamic parallelism, there is a limitation in
terms of the hardware, which restricts the number of child kernel threads that
can be spawned. In the case where multiple images are processed concurrently,
child kernel threads will not be able to be spawned, and labeling quality may
suffer. In order to maintain labeling accuracy, we have added a sequential loop
inside of the child kernel, and thus reduced the number of child kernel threads
spawned. Adding the sequential loop reduces the speedup of our implementation
(as is seen in Table 2 for Stream 1). Introducing the loop allows us to use the
Hyper-Q feature effectively to process multiples images in parallel, and therefore
achieve a degree of speedup as we increase the number of processed streams.

Table 2. Performance results comparing ACCL with Hyper-Q against CCL Serial

#Streams CCL Serial(s) ACCL(s) Speedup

1 0.25 0.05 5.00x
2 1.08 0.10 10.80x
3 2.16 0.14 15.36x
4 4.18 0.19 21.44x
5 6.09 0.23 25.91x

We further investigated the cause of slowdown related to the loop added in
the child kernel. Due to the nature of mergeSpans (parent kernel), a sequen-
tial analysis explores all spans. Thus, complexity of mergeSpans is O(N ∗ M).
Since complexity of the child kernel is now increased from O(1) to O(M), the
overall complexity of parent kernel becomes O(N ∗M2). Therefore, performance
slowdown is reflected for stream 1.

The speed-up of any implementation that utilizes multiple streams greatly
depends on the number of concurrent streams running, and partially depends
on the image structure. As more streams run concurrently, we can continue to
see benefits, though the speedup begins to tail off. The ideal performance for
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Hyper-Q would be linear speedup (in the number of concurrent streams), but
the work distributor inside the GPU starts distributing blocks as soon as the
kernel is launched. If one kernel dominates the GPU, based on the intensity of
the kernel (which is the case for our implementation for dynamic parallelism),
then the second kernel will have to wait until first kernel is completed, at which
point the second kernel can start execution. Thus, in this case we will only see
a small amount of concurrent parallelism.

6 Conclusion

In this paper we presented Accelerated Connected Component Labeling (ACCL)
using the CUDA framework. We experimented with new features of the NVIDIA
Kepler GPU. Our proposed algorithm achieves improved performance versus
prior serial and OpenMP parallel implementations. We also compared the serial
CCL to processing multiples images concurrently using Hyper-Q running ACCL.
The results showed that our algorithm could scale well as long as we increased
the number of streams.

One interesting observation related to the parallelized algorithm we have pre-
sented here is that while dynamic parallelism improves performance for a small
number of child kernels, it turns out to be a disadvantage when trying to use
a larger number of child kernels. Hyper-Q, with dynamic parallelism, provides
some benefits, but is not a perfect match for ACCL to scale performance.
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