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Abstract. The paper describes new algorithm for automatic video ob-
ject tracking. Proposed architecture consists of two loops of Kalman
filter. In the loop of the tracking process, the information achieved from
video and from 2D histogram based on depth map is used. Two loops
work simultanously and the parameters between the loops are inter-
changed when the occlusion occurs. The 2D histogram representation
of the depth map has unique properties that can be used to improve
the tracking eficiency especially in the case of occlusions of the objects
in the image. Experimental results prove that the proposed system can
accurately track multiple objects in complex scenes.

1 Introduction

Accurately tracking of moving objects within monitored scenes is crucial to a
range of surveillance tasks. There are many effective methods of detecting and
tracking objects, many analyses have been conducted to improve object tracking
technique accuracy. Comprehensive literature survey of object tracking is pre-
sented in [1]. Another comprehensive survey was also produced by [2,3]. Tech-
niques used in object tracking are categorized on the basis of the used type of
objects and used motion representations. The most significant challenge in video
object tracking is the frequent problem of occlusion. During occlusion, an ambi-
guity occurs in occluded object features. The tracking methods must be capable
to resolve the individuality of the objects involved in the occlusion, when the
occlusion takes place.

In real situation 3 types of the occlusion occur: i) a self-occlusion when one
part of the object occludes another, ii) an inter-object occlusion when two ob-
jects being track occlude another object, iii) and occlusion by the background
when a structure in the background occludes the tracked objects.

In this paper, a new technique to deal with the second type of the occlusions
using the information contained in the depth maps is presented.

Depth maps create new opportunities to improve the algorithms of analysis of
3D scene, also in the video object tracking. New video acquisition systems often
use the stereo cameras that allow the calculation of the depth map - an image
that contains information about the distance of the points from the lens.
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Until recently, the depth map estimation algorithms were very complex, time-
consuming and generated depth maps of poor quality. For depth estimation a
global optimization algorithm like Belief propagation or Graph cuts has been
used. Nowadays, the local cost aggregation methods are used instead of global
optimization [5]. For example Winner-Takes-All (WTA) algorithm with low com-
plexity gives better results than the old solutions. WTA algorithm is also suitable
for hardware implementations. Moreover, increasingly are also available stereo-
scopic cameras with depth map estimation support. Some of the hardware or
even software solutions allow obtaining a depth map in real time [6-9]. For ex-
ample the Bumblebee stereo camera system offered by Point Grey Research [11]
is able to produce a depth map in real time. Despite significant progress in algo-
rithms of depth maps estimation, they still are not perfect. Main problems arise
when the scene consists some semi-transparent objects, light reflections, occlu-
sions or obscuring objects. On the other hand, even not perfect depth maps
contain reach information about 3D scene. It is still possible to obtain informa-
tion about the object distance from the camera lenses. Such information can
help us properly measure of scaling or distance for tracked objects (e.g. car or
person, etc.)[10]. The authors consider the use of depth maps to improve the
efficiency of the tracking when inter-object occlusions occur.

This paper is divided into 4 main sections. Section 2 presents a novel idea of 2D
histogram of depth map. Section 3 presents a new video object tracking algorithm
that uses the information from 2D histogram of depth map in the tracking
process. In the section 4 the assumptions of the experiments and achieved results
for object tracking under the occlusions conditions are presented.

2 2D Histogram of Depth Map

Luminance of each pixel in a depth map is interpreted as a normalized disparity.
Usually depth maps with 256 disparity levels are used. The proposed 2D his-
togram is a graphical representation of disparity values distribution in a depth
map. For a depth map with resolution J x K pixels we build the 2D histogram
with resolution J x 256. Each column of the 2D histogram is a 1D histogram with
256 bins corresponding to 256 disparity levels. This 1D histogram for column j
(j ⊂ 〈1; J〉) is calculated for j-th column of the depth map.

The proposed 2D histogram is defined as (1):

2D histogram = DH =

⎡
⎢⎣

L(0, 1) · · · L(0, J)
...

. . .
...

L(255, 1) · · · L(255, J)

⎤
⎥⎦ 255

K
(1)

where L(i, j) is a number of pixels in j-th column of a depth map that have
disparity value of i. K is a number of pixels in a single depth map column. The
2D histogram values are normalized to range 〈0, 255〉. Fig.1 presents a depth
map and its 2D histogram.
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Fig. 1. a. Depth map and b. 2D histogram
associated with c. a frame 282 from Poznan
Car Park sequence

Considering a picture from Fig. 1
c and associated 2D histogram from
Fig.1 b we can see that three people
from a center part of a picture are rep-
resented in a 2D depth histogram as a
three separated aggregations of lighter
pixels.

Depth map with camera parameters
represents information about three di-
mensional scene. In presented algo-
rithm for 2D histogram calculation a
depth map is treated as a two dimen-
sional picture. No information about
perspective are exploited. The pre-
sented technique has two useful prop-
erties. First is a low computational
complexity. Second, horizontal coordi-
nate of an tracked objects in a picture
are the same as horizontal coordinate
of its representation in 2D histogram.
With this property associating an ob-
jects in a sequence and in a 2D histogram is simplified.

What is very important, partly obscured objects are still easy distinguishable
on a 2D histogram. Of course, object cannot be recognised properly even using
depth map due to the occlusion, but the information about the position in space
of not obscured part is still correct.

3 Tracking Approach Assisted by the Information from
2D Histogram of Depth Map

Occlusions are predicted by checking pairs of bounding boxes at predicted posi-
tions. Suspending the update phase for any length of time, however, is problem-
atic since motions (particularly of people) can rapidly evolve. A recent simple but
effective approach is to track the boundaries of bounding boxes separately which
results in at least some updating evidence recovered for a substantial proportion
of the occlusion event.

The proposed video object tracking architecture is presented in Figure 2. The
tracker consists of two Kalman Filter loops. The first loop works on consecutive
frames of the video. This is a typical implementation of a system for object
detection and tracking based on the segmentation and classification of moving
pixels in the scene. Motion detection processes locate blobs (connected regions
of moving pixels) to create a candidate list of observations of the current active
scene objects. Normally these blobs are recovered by pixel differencing against
the reference frame of the static scene, usually attributed with their bounding
box.
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Fig. 2. Tracking architecture

The Tracker module is implemented using
a two-step approach: prediction and update.
In the prediction step of the procedure, posi-
tion of the objects tracked in previous frames
are projected to the current frame according
to trajectory models. Next, in the Data As-
sociation step predicted positions of objects
are confrontated with list of candidate ob-
servations i.e. objects from Object Detection
phase. Corresponding objects and observa-
tions are found.

The second loop is a fresh approach in the
tracking systems. This loop works on 2D his-
togram of disparity map (a depth map). In
this domain, the process locates moving re-
gions and creates a candidate list of observa-
tions of objects. In the concept, the algorithm
defines the moving blobs in two-dimensional
space of the histogram. When two or more
objects occlude one another it can still be
possible to separate objects in 2D histogram.
The only prerequsitive is that the objects
have a different assiociated depth. If that
condition is fulfilled the object will be rep-
resented in 2D histogram of depth map as
separated blobs. This makes segmenting the
object blob during occlusion easier.

In order to apply the Kalman filter, the
process should be described by the following
linear equations:

xIk = AI ̂xI(k−1)
+ BIuI(k−1)

(2)

xDk
= AD ̂xD(k−1)

+ BDuD(k−1)
(3)

zIk = HIxIk + νIk (4)

zDk
= HDxDk

+ νDk
(5)

The equations (2) and (4) concern the loop in video domain, (3) and (5)
concern the loop in the 2D histogram of the depth domain. The (2) and (3)
equations are called the equations of state or process models, while the (4)
and (5) are the measurement models. In the above equations, A, B, H are
matrices,where AI and AD are the state-transition models for image and depth
equations, HI and HD are the observation models for image and depth equations,
BI and BD are the control-input models for image and depth equations, the
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vector x is called the state of the system, the vector contains information from the
input system, e.g., predetermined speed of the objects. Vector z is the measured
output of the system. However, u and ν mean a noise (standard deviations).
However, u means the process noise whereas ν is the measurement noise. During
the prediction step, based on the previous x statea new value of x is determined,
and the covariance matrix QI for image and QD for the depth. These values are
determined on the basis of above equations.

QI = E[uI(k−1)
(uI(k−1)

)T ] (6)

QD = E[uD(k−1)
(uD(k−1)

)
T

] (7)

PIk = AIPI(k−1)
AI

T + QI (8)

PDk
= ADPD(k−1)

AD
T + QD (9)

In the correction (update) phase we set the variable K, hereinafter referred
to as the Kalman gain.

KIk = PIkH
T
I (HIPIkH

T
I + R)−1 (10)

KDk
= PDk

HT
D(HDPDk

HT
D + R)−1 (11)

At the beginning, the Kalman gain is determined. If we look at the way
how the K is calculated, (10) and (11), we come to the conclusion that if the
measurement noises are greater which here is represented by the covariance R,
the value of K is lower. Here we come to the heart of the proposal. In the case of a
small value of KIk (for the object tracking in the video, it indicates the occlusion
existance) and when the second parameter for the depth loop KDk

is greater than
δD (the Kalman gain does not indicate the measurement error, no occlusion exist)
the RI covariance matrix should be replaced by the RD covariance matrix (12).
The parameter δ is used to control the interchange between parameters RI and
RD. Its value was chosen experimentally. Motion object segmentation in the 2D
histogram of depth map gives more precise information about the object moving
trajectory. Due to the different values and measurement representation between
image and depth, the covariance matrix can not be used directly but scaling is
required. The measurement in the 2D histogram of the disparity is more reliable,
the standard deviation and the RD has the lower values.

Vice versa, the covariance matrix RI in the case of a small value KDk
should

be replaced by the scaled value of RI . Only of course if the KIk is greater than δI .

If KIk ≤ δI ∩KDk
> δD then RI = RDscale,

and if KDk
≤ δD then RD = RI

1

scale
. (12)
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From (4) and (5) the position of the detected blobs in the image and 2D
histogram of the depth map (from the measurement phase) zIk and zDk

are
calculated. For two-dimensional space:

HI = HD =

[
1 0 0 0
0 1 0 0

]
(13)

After the measurement process the new values of the process state for image
and 2D histogram domain are calculated (14)(15), the values of the covariance
matrices RI and RD are updated.

x̂Ik = xIk + KIk [zIk −HIxIk ] (14)

x̂Dk
= xDk

+ KDk
[zDk

−HDxDk
] (15)

PIk = [1 −KIkHI ]PIk (16)

PDk
= [1 −KDk

HD]PDk
(17)

RI = E[νI(k−1)
(νI(k−1)

)T ] (18)

RD = E[νD(k−1)
(νD(k−1)

)
T

] (19)

4 Experimental Results

The final versions of the proposed system architecture to object tracking have
been obtained by extensive iterative experiments in the scope of this paper. Pro-
posed two-loops Kalman filter tracking algorithm has been implemented. Here,
we report the experimental results that allow to estimate the overall efficiency of
the object detection under the occlusions condition. This is done using subjective
and objective tests on two MPEG MVD test sequences (1920 x 1080 resolution -
Poznan Car Park, Poznan Street). More extensive test for other MVD sequences
are planed when depth maps will be available.

Table 1. Experimental results

Sequence Tracking Total Frames Accuracy Accuracy
mode frames with occlusions [frames] [%]

Poznan without DM 150 98 93 62%
Car Park with DM 150 98 138 92%

Poznan without DM 130 35 98 75%
Street with DM 130 35 121 93%
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a b c

Fig. 3. Tracking algorithm results for frames numberr 223, 254, 282, 299, and 315 of
Poznan Car Park sequence (a bounding boxes of detected moving objects achieved for
the tracking system with and without information from depth)
a. the case of the tracking algorithm without the information from the depth maps.
b. the information used in the proposed solution to gain the efficiency of the detection.
c. the case of the proposed tracking algorithm (the two-loops Kalman filter solution
exploiting video and 2D histogram of a depth map).

The experiments were divided into 2 steps. First test was done for architecture
with one-loop Kalman filter. The information from 2D histogram of depth map
has not been used at this moment. The moving object blobs are detected with
HOG features and SVM classification process. The second step of the experiment
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use the full proposed approach (detection and tracking object on the video and
detection and tracking information on the 2D histogram of the depth map). The
results of the detection for both steps are presented in the Table 1. As shown
on the Fig.3, also subjective tests prove that the proposed solution achieves
more efficiency than classic method exploiting only video information (one-loop
architecture). The average gain of the efficiency of object tracking under the
occlusions is more than 24% for all frames of the sequence, moreover the gain of
the efficiency for the frames when the occlusions occur only is higher than 85%.

5 Conclusions

In this paper, a novel idea of the system to track the objects in video sequence
has been presented. In the paper the architecure of the tracking system, which
exploits the information from the depth has been proposed. Proposed method
combines well known Kalman filter based tracking method and 2D histogram of
depth map. This architecture has been tested under the scenarios where different
occlusion situations were present. This original approach results in significant
improvement of accuracy of objects’ tracking. Moreover, by adding a depth map
and 2D histogram to tracking algorithms their functionality has been enriched.
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