
Implementation of Advanced Foreground

Segmentation Algorithms GMM, ViBE and
PBAS in FPGA and GPU – A Comparison

Bart�lomiej Bulat, Tomasz Kryjak, and Marek Gorgon

AGH University of Science and Technology
Al. Mickiewicza 30, 30-059, Kraków, Poland

bartek.bulat@gmail.com, {kryjak,mago}@agh.edu.pl

Abstract. The article presents the results of implementing advanced
foreground object segmentation algorithms: GMM (Gaussian Mixture
Model), ViBE (Visual Background Extractor) and PBAS (Pixel-Based
Adaptive Segmenter) on different hardware platforms: CPU, GPU and
FPGA. The influence of the architecture on the segmentation accuracy
and feasibility to perform real-time video stream processing was anal-
ysed. Also the limitations resulting from the specific features of GPU
and FPGA were pointed out. Furthermore, the possible use of different
platforms in advanced vision systems was discussed.

Keywords: image processing, image analysis, foregorund object seg-
mentation, GMM, ViBE, PBAS, FPGA, GPU.

1 Introduction

Foreground object segmentation is a very important stage in digital video stream
processing and analysis systems. It is based on determining and thresholding
the differential image between the current frame and the background model.
The term background model refers to a representation of the ”empty scene”
(i.e. without objects of interest). This approach is usually referred to as back-
ground subtraction and modelling. A comprehensive review of the most common
algorithms is presented in [2].

The most popular method seems to be GMM (Gaussian Mixture Model),
which was proposed in 1999 by Stauffer and Grimson [8]. It is constantly devel-
oped, modified and improved, and its implementations are available in OpenCV
image processing library and Matlab software.

Interesting are also two fairly new proposals ViBE [1] and PBAS [5]. They
are based on a similar principle and allow to obtain good segmentation results
– according to the changedetection.net 2012 ranking [4]1. These three methods
will be discussed in this paper.

It is worth to consider, whether working on acceleration of foreground ob-
jects segmentation is justified. It should be emphasised that the segmentation is

1 http://www.changedetection.net/

L.J. Chmielewski et al. (Eds.): ICCVG 2014, LNCS 8671, pp. 124–131, 2014.
c© Springer International Publishing Switzerland 2014



GMM, ViBE and PBAS in FPGA and GPU – A Comparison 125

only one of many elements, beside image pre-processing, connected component
labelling, feature extraction, tracking and classification. While properly imple-
mented, a segmentation method can operate in real-time for moderate resolutions
on a standard PC. However, the whole vision system can not, particularly for
higher resolutions. Thus, the acceleration of some computations in a GPU or
FPGA allows to ”relive” the CPU and the obtained computing power can be
used in other stages of the vision system – usually recognition and classification.

In Section 2 the methods GMM, ViBE and PBAS are very briefly discussed.
In Section 3 the used architectures are described. Then, in Section 4 the obtained
results are presented and analysed. The article ends with a summary.

2 The Analysed Foreground Segmentation Methods

2.1 GMM

There are two different names of the algorithm [8] used in the literature: GMM
(Gaussian Mixture Model) and MOG (Mixture of Gaussians). The background
model for a given pixel consists of k Gaussian distributions described by triples:
(ωn, μn, Σn), where ωn – weight, μn – average value, Σn covariance matrix of
the colour components (RGB model). The total number of distributions usually
varies between 3-5.

Updating the model requires sorting the distributions, calculating the dis-
tances between distributions and the current pixel and an optional update of
the distributions parameters. It is worth noting that the computations are inde-
pendent for each pixel and no neighbourhood operations are involved.

The method was implemented in FPGA several times. In this paper, the re-
sults presented in the work [3] are used for comparison. GPU realisations are also
described in the literature. In [9] several optimizations were discussed: the use of
pinned memory, combining data transfers (memory coalescing), a special organi-
zation of the data structure and asynchronous kernels. The modifications made
it possible to process more than 30 frames per second, even for HD resolution.

2.2 ViBE

The foreground object segmentation algorithm ViBE (Visual Background Ex-
tractor) was proposed by O. Barnich and M. Van Droogenbroeck in 2009 [1].
The background model in ViBE consists of a set of N = 20 observed pixel
values. The classification is based on calculating the distance between the cur-
rent pixel and all samples from the model. If at least #min = 2 distances are
smaller than a given threshold the pixel is regarded as background. The model
is updated by replacing randomly selected samples with the current pixel. Also
a neighbourhood update procedure is proposed – a randomly selected sample
from a random model in the 3× 3 context is updated. To the best knowledge of
the authors, a GPU implementation of ViBE has not been described. An FPGA
implementation of this algorithm was presented in [7].



126 B. Bulat, T. Kryjak, and M. Gorgon

2.3 PBAS

The PBAS method [5] is an extension of the approach used in ViBE. Two ad-
ditional parameters R and T were added to the algorithm. The first defines the
threshold for the distance between the current pixel and samples from the model.
In contrast to the ViBE, it is determined for each pixel independently. The sec-
ond parameter specifies the probability of the model update. Also, information
about edges was added to the background model. All modifications allowed to
obtain slightly better segmentation results than ViBE. On the other hand, the
background model of PBAS is larger than ViBE, as additional parameters need
to be stored. To the best knowledge of the authors, the GPU implementation of
PBAS has not been described. An FPGA implementation of this algorithm was
presented in [6].

3 The Used Hardware Platforms

The methods described in Section 2 have been implemented on three platforms:
CPU, GPU and FPGA.

General purpose processors are, and will remain for a long time, the most
popular platform of implementation for all kinds of algorithms, including video
processing. This is due to their vast availability and dissemination of the required
programming skills. They are also very versatile, allowing to implement all kinds
of algorithms from simple filtering, to machine learning methods. Unfortunately,
in image processing tasks CPUs prove to be quite slow, as they are more suitable
to perform complex instructions on small or medium datasets, but not simple
instructions on huge amounts of data.

Graphic processing units have become a very popular platform for the realisa-
tion of parallel computing in recent years, mainly due to changes in architecture
(unified shader) and development of CUDA and OpenCL languages. They allow
to implement lots of image processing operations: simple filtration and morpho-
logical processing, Hough transform, optical flow, analysis and segmentation of
MRI images and foreground objects segmentation. It should be noted, however,
that the GPU architecture imposes certain restrictions on the implemented algo-
rithms. Firstly, there are no jump instructions. Another problem is the memory
model, which makes it difficult to perform operations on shared resources (up-
date necessary in ViBE and PBAS methods). The evaluated algorithms were
described in the OpenCL language, which is a cross-platform standard for paral-
lel programming. This allowed to run them on both: multi-core CPU and GPU.

FPGAs are a proven platform for parallel computing, including image process-
ing and analysis. The huge number of logical resources (LUT elements, flip-flops),
multipliers and block RAMs allows for the implementation of any type of par-
allelism (according to Flynn’s classification). An important feature of FPGAs is
the ability to work in embedded devices – e.g. smart cameras, where image pro-
cessing and analysis takes place immediately after the acquisition. Furthermore,
compared to CPU or GPU, they are characterized by a relatively low energy
consumption.



GMM, ViBE and PBAS in FPGA and GPU – A Comparison 127

4 The Obtained Results

4.1 Hardware Platforms

In the experiments the following platforms were used:

– a PC (laptop) with Intel R©CoreTM i7-3632QM (4-cores, 64-bit, nominal freq.
2.2 GHz, maximal 3.2 GHz) and NVIDIA GeForce GT 645M GPU (384
CUDA cores, freq. 710 MHz, PCI-E 3.0),

– ML 605 evaluation board with Virtex 6 FPGA device (XC6VLX240T) from
Xilinx (ViBE implementation and in-circuit verification),

– VC 707 evaluation board with Virtex 7 FPGA device (XC7VX485T) from
Xilinx (PBAS implementation and in-circuit verification).

4.2 The Impact of Hardware Architecture on Accuracy

The implementation of an algorithm on a platform different than CPU usu-
ally requires some modifications. A good example are fixed-point calculations on
FPGA devices. For the GMM method realized in OpenCL no changes were re-
quired and in the FPGA implementation fixed-point representation was used [3].

However, when implementing ViBE and PBAS on GPU, the neighbourhood
update procedure proved to be problematic. The use of shared memory calcula-
tions (atomic operations) resulted in poor performance. It was decided, therefore,
to modify the algorithm so that the accessing of neighbouring pixels was not re-
quired, while maintaining the update functionality. The step, in which for every
pixel considered as background a randomly chosen adjacent model was updated,
was replaced by the following mechanism. If in the neighbourhood of the con-
sidered pixel, at least one pixel labelled as background existed, than a randomly
selected sample from the model was replaced by an adjacent value (selected from
those regarded as background). This process occurred with a random probability.
In addition, it was decided to use a fixed array of pre-generated pseudo-random
numbers instead of their runtime generation.

The CIE Lab colourspace was used in the FPGA implementation of the ViBE
method [7]. The number of samples in the model was reduced from 35 (CPU,
GPU) do 19 (FPGA) due to hardware limitations (bandwidth to external RAM,
in which the background model was stored) in the case of PBAS. Also the edges
where not used in the model [6]. For both methods, all calculations were per-
formed on fixed-point numbers.

The changedetection.net 2012 dataset [4] was used to evaluate the impact
of the proposed modifications. The obtained foreground masks were compared
with manually annotated groundtruths and the parameters TP, TN, FP, FN
were calculated. Then a number of common factors: Re (Recall), Sp (Specifity),
FPR (False Positive Rate), FNR (False Negative Rate), PWC (Percent Wrong
Clasiffication), F (F-measure), Pr (Precision) was computed. A detailed descrip-
tion of the methodology can be found in [6]. As post-processing median filtering



128 B. Bulat, T. Kryjak, and M. Gorgon

Table 1. Segmentation quality evaluation for different implementations of GMM, ViBE
and PBAS methods

Re Sp FPR FNR PWC F Pr

GMM 0.669 0.987 0.013 0.023 3.286 0.625 0.697

GMMOpenCL 0.670 0.987 0.013 0.023 3.279 0.626 0.698

PBAS 0.837 0.922 0.018 0.108 1.994 0.637 0.799

PBASOpenCL 0.816 0.957 0.018 0.118 2.918 0.637 0.793

PBASFPGA 0.797 0.972 0.028 0.202 3.435 0.681 0.699

ViBE 0.723 0.969 0.031 0.012 3.846 0.677 0.761

ViBEOpenCL 0.723 0.923 0.037 0.007 3.669 0.572 0.721

ViBEFPGA 0.640 0.985 0.015 0.360 3.066 0.680 0.821

with 5× 5 window size was used in all cases. The results are summarized in Ta-
ble 1. The numbers for the GMMFPGA version are not presented, as the authors
of paper [3] did not use this dataset for evaluation.

An analysis of the results reveals that modifications related to hardware plat-
form do not significantly affect the segmentation results. In case of ViBE and
PBAS, there is a slight deterioration of the parameters associated with the
fixed-point representation and limited numbers of samples (PBAS) in the FPGA
version.

4.3 Comments Regarding the Implementations

During the implementation of the considered algorithms on the GPU, it turned
out that comparing background variants (samples) with the current pixel is quite
challenging. Since there is no support for the jump instruction, it is necessary
to perform all comparisons (eventually substituted by an empty instruction –
nop). Therefore, it is impossible to reduce the complexity by dynamically as-
signing the number of variants in case of the GMM method. The calculations
will always be performed for the maximum number of variants (K = 4 in the ex-
periments). However, the value is rather small and therefore the adverse effect is
minimal.

A similar problem occurs in the case of the ViBE and PBAS methods. The
number of variants (samples) is, however, much higher (20 and 35) and the effect
is much more apparent. It is worth noting that such problems do not occur in
the case of the CPU and FPGA implementations. In the first case, the jump
instruction is supported, and in the second the architecture allows to perform
all comparisons in parallel.

In the OpenCL language the access to individual memory bytes is slower than
to groups of 4, 8 or 16 blocks. One possible solution is to convert the typical
RGB format (3 bytes) to 0RGB (4 bytes). This results in acceleration, but in
the case of processing images from a camera an additional operation is required.



GMM, ViBE and PBAS in FPGA and GPU – A Comparison 129

4.4 The Possibility of Real-Time Image Processing

In case of most video systems, real-time processing is very important. Good
examples are surveillance of public space or traffic applications. The system
operates in real-time when the sequence is processed without any pixel or frame
dropping for a given image resolution and number of frames per second (fps).
Most of contemporary cameras registers 25(30) or 50(60) fps.2 In this study it
was assumed that 25 fps is the reference value. The fps values for the analysed
algorithms and implementations are summarized in Table 2.

Table 2. The number of frames that can be processed by different implementations in
one second. 720 HD – resolution 1280 × 720, 1080 HD – resolution 1920× 1080.

CPU CPUOpenCL GPUOpenCL FPGA

GMM 720 HD 10 13 63 205

GMM 1080 HD 5 6 27 91

ViBE 720 HD 2 7 3 151

ViBE 1080 HD 1 3 2 67

PBAS 720 HD 2 4 3 125

PBAS 1080 HD 1 2 - 55

The values for all methods in the column FPGA are estimations and were
determined using the maximum clock frequency for the designed modules. In
case of a working system, a cooperation with external RAM is required (storing
the background model). This is often the ”bottleneck” of the vision system.
FPGA evaluation boards ML605 and VC707 available to the authors allowed to
verify the algorithms ViBE for a video stream 640× 480 @ 60 fps and PBAS for
720×576 @ 50 fps. In the first case the resource usage was: flip-flops 12571 (3%)3,
LUT6 9278 (6%), DSP48 3 (1%), BRAM 18 172 20% and in the second: flip-flops
39108 (6%), LUT6 36060 (11%), DSP48 12 (1%), BRAM 18 3 (1%), BRAM 36
248 (24%). The GMM method was verified on a Virtex 4 based platform for
1280 × 720 @ 20 fps video stream by the authors of paper [3]. The resource
usage for the algorithm only (no video processing system with external RAM):
flip-flops 363 (0.3%), LUT 788 (2%), DSP48 3 (1%), BRAM 18 0 (0%). On the
GPU test platform, the PBAS GPUOpenCL version for 1080 HD resolution could
not be run due to lack of available memory. It should be pointed out that for
FPGA, the number of processed frames per second is independent of the image
content and other conditions. For other platforms the fps value is an average,
which depends on the image content as well as operation of the computer system
(e.g. operating system).

Analysis of the results allows to point out a difference between GMM and
ViBE/PBAS methods. The first is ideally suited for GPU acceleration (×6 speed-
up). The GPU implementation of methods with neighbourhood operations and

2 The number is brackets refer to US video standards.
3 % of available resources.



130 B. Bulat, T. Kryjak, and M. Gorgon

large number of samples in the model did not result in any acceleration. It
seems that the main issue is the lack of the jump instruction. A further proof
is the comparison of the CPUOpenCL and GPUOpenCL versions. The OpenCL
implementation evaluated on a CPU turned out to be more efficient for ViBE
and PBAS.

FPGA devices provide a wide opportunity to implement parallel computa-
tions. However, the bottleneck in this case is the access to external RAM memory
resources. Another drawback is also the quite long development time in hardware
description languages (i.e. Verilog).

4.5 The Concept of Using GPU and FPGA in a Vision System

The characteristic features of GPU and FPGA devices determine the way how
they can be used in a vision system. In the first case, a close cooperation with
the CPU within the computer system is necessary. Thus, the GPU could be an
accelerator for certain computing tasks such as foreground segmentation.

The advantages of this solution are: the availability of the equipment and
its low price, relative ease of programming and high parallel computing perfor-
mance. In contrast, the main disadvantage is the need to implement data ex-
change between CPU and GPU. This is especially important in video processing,
where the data stream is quite large. The measured transfer time ranges from
4% to 18% of the total computing time for GMM method and is less than 4%
for ViBE and PBAS. In addition, the computer system must be equipped with
an element responsible for the image acquisition. This could be, for example,
a HDMI frame-grabber or network card for IP cameras.

The FPGA cooperating with an external RAM memory module can work
independently of a processor system (standalone). Thus, in addition to the use
as an accelerator (e.g. FPGA board with PCI-E communication), it can be used
in a smart camera and in a configurable frame-grabber (HDMI or Ethernet).
Also, the often required video stream decompression (H.264, MJPEG) could
also be implemented in FPGA. This approach allows to reduce the required
data transfers between different components of the system.

5 Conclusions

The article presents a comparison of three advanced foreground objects seg-
mentation methods: GMM, ViBE and PBAS implemented on CPU, GPU and
FPGA. It is shown that the implementation on GPU or FPGA has a very lit-
tle impact on the segmentation quality, even if some modifications to algorithm
were required. The analysis of the calculated fps values indicates that the GMM
method is better suited for implementation in GPU than ViBE or PBAS. This
is due to the relatively small number of distributions (variants) in the model
(K = 4) and the independent processing of each pixel. The implementation of
all methods is possible in FPGA and in all cases allows to obtain a significant
acceleration. Here, the main limitation is the fast and wide access to external



GMM, ViBE and PBAS in FPGA and GPU – A Comparison 131

RAM resources. FPGAs are more versatile because they can be used as an ac-
celerator, part of smart-camera or an advanced frame-grabber. Also they are
more energy efficient. However, they are not so widely available as GPUs and
the process of implementation in hardware description language is usually quite
time-consuming. In conclusion, before choosing a particular hardware platform
to accelerate a segmentation algorithm the following issues should be considered:
the computations present in the algorithm (especially involving neighbourhood
operations) and the number of variants in the model as well as the architecture
of the vision system.

Acknowledgments. The work presented in this paper was supported by AGH
Univeristy of Science and Technology project number 11.11.120.612.

References

1. Barnich, O., Van Droogenbroeck, M.: ViBE: A Universal Background Subtraction
Algorithm for Video Sequences. IEEE Transactions on Image Processing 20(6),
1709–1724 (2011)

2. Bouwmans, T., Porikli, F., Horferlin, B., Vacavant, A.: Handbook on: Background
Modeling and Foreground Detection for Video Surveillance: Traditional and Recent
Approaches, Implementations, Benchmarking and Evaluation. Taylor and Francis
Group (2014)

3. Genovese, M., Napoli, E.: ASIC and FPGA Implementation of the Gaussian Mix-
ture Model Algorithm for Real-Time Segmentation of High Definition Video. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 22(3), 537–547 (2014)

4. Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: A
new change detection benchmark dataset. In: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012)

5. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback:
The Pixel-Based Adaptive Segmenter. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43 (2012)

6. Kryjak, T., Komorkiewicz, M., Gorgon, M.: Hardware implementation of the PBAS
foreground detection method in FPGA. In: Proceedings of the 20th International
Conference Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 591–
596 (2013)

7. Kryjak, T., Gorgon, M.: Real-time implementation of the ViBE foreground object
segmentation algorithm. In: Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), pp. 479–484 (2013)

8. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time
tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. xxiii+637+663 (1999)

9. Pham, V., Vo, P., Hung, V.T., Bac, L.H.: GPU Implementation of Extended Gaus-
sian Mixture Model for Background Subtraction. In: IEEE RIVF International Con-
ference on Computing and Communication Technologies, Research, Innovation, and
Vision for the Future (RIVF), pp. 1–4 (2010)


	Implementation of Advanced ForegroundSegmentation Algorithms GMM, ViBE andPBAS in FPGA and GPU – A Comparison
	1 Introduction
	2 The Analysed Foreground Segmentation Methods
	2.1 GMM
	2.2 ViBE
	2.3 PBAS

	3 The Used Hardware Platforms
	4 The Obtained Results
	4.1 Hardware Platforms
	4.2 The Impact of Hardware Architecture on Accuracy
	4.3 Comments Regarding the Implementations
	4.4 The Possibility of Real-Time Image Processing
	4.5 The Concept of Using GPU and FPGA in a Vision System

	5 Conclusions
	References




