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Abstract. In this paper we explore the problem of reconstruction of
RGB images with additive Gaussian noise. In order to solve this problem
we use Feynman-Kac formula and non local means algorithm. Expressing
the problem in stochastic terms allows us to adapt to anisotropic diffusion
the concept of similarity patches used in non local means. This novel
look on the reconstruction is fruitful, gives encouraging results and can
be successfully applied to denoising of high ISO images.

1 Introduction

Let D be a closed rectangular in R2, u : D → Rn be an original image and
u0 : D → Rn be the observed image of the form u0 = u+ η, where η stands for
a white Gaussian noise (added independently to all coordinates with standard
deviation ρ). We assume that u and u0 are appropriately regular. We are given
u0, the problem is to reconstruct u. This is a typical example of an inverse
problem [2].

Various techniques were proposed to tackle this inverse problem. One may
quote the linear filtering, DCT [23], wavelets theory [11], variational methods
[19], stochastic modelling [12, 18] and methods driven by nonlinear diffusion
equation [8, 17, 21, 22]. In another class, one could include methods that take
advantage of the non-local similarity of patches in the image. Among the most
famous, we can name non local means (in short NL-means) [5, 6], BM3D [9, 10,
13], NL-Bayes [14] and K-SVD [1, 15].

In the paper [4] the authors considered the problem of the reconstruction
of grey levels images using anisotropic diffusion expressed in stochastic terms.
This representation allows them to adapt to the reconstruction process the idea
of patches similarity using in NL-means algorithm. This novel look on the re-
construction problem was fruitful and gave very good results for gray images. In
this paper we generalise the results from [4] to colour images and apply proposed
metod to denoising of high ISO images taken from digital cameras.
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2 Feynman-Kac Formula

In order to express the anisotropic diffusion equation
∂u

∂t
= Au in stochastic

terms, where Au is some diffusion operator, one needs to use the Feynman-Kac
formula [16].

Theorem 1 (Feynman-Kac Formula). Let u0 ∈ C2
0 (R

n) (continuously twice
differentiable with compact support) then the function u(t, x) defined by

u(t, x) = E [u0(Xt)] (1)

satisfies the diffusion equation
∂u

∂t
= Au, where X is some stochastic process

driven by the operator Au and vice versa this operator determines a stochastic
process X.

We do not want to focus on the relationship between Au and X but for us the
important information is that the anisotropic diffusion can be expressed in the
form of the expected value of some stochastic process.

3 Non Local Means Algorithm

In this section we cite results from [5–7] and for precise definitions and deeper
discusion about NL-means algorithm we refer the reader to these articles.

Let v = {u0(i)|i ∈ I = Z2 ∩D} be a discrete noisy image and {w(i, j)} be the
weights that depend on the similarity between the pixels i and j and satisfy the
usual conditions 0 ≤ w(i, j) ≤ 1 and

∑
j w(i, j) = 1. The reconstructed value

NL(v)(i) for a pixel i is defined as a weighted average of all pixels in the image

NL(v)(i) =
∑

j∈I

w(Ni, Nj)v(j).

The weight w(Ni, Nj) depends on the similarity of the intensity gray level or
colour vectors of neighbourhoods Ni, Nj centred at pixels i and j and can be de-

fined by w(Ni, Nj) =
1

Z(i) exp
(
− d(Ni,Nj)

s2

)
where Z(i) is the normalising factor

Z(i) =
∑

j exp
(
− d(Ni,Nj)

s2

)
and d(Ni,Nj) is some measure of distance between

intensity gray level or colours vectors of similarity windows. The number s is a
parameter that controls the decay of the exponential function.

In [7] the authors proposed to use the following weight function for RGB
images:

w(Bi,r , Bj,r) = exp

⎛

⎝−
max

(‖Bi,r−Bj,r‖2

3(2r+1) − 2ρ2, 0
)

s2

⎞

⎠ ,

where Bi,r means a neighbourhood of a size (2r + 1) × (2r + 1) RGB pixels
centred at i and ‖Bi,r −Bj,r‖ is the Euclidean distance between Bi,r and Bj,r.
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Fig. 1. Original test images: 512× 512 a) Peppers b) Lenna

4 Image Reconstruction of Colour Images Based on
Feynman-Kac Formula and Non Local Means

Note that in the case of numerical scheme the Feynman-Kac formula can be
written as

u(t, x) =
1

M

M∑

i=1

u0(Xt(ωi)),

where M is a number of iterations of Monte Carlo method. In particular, for the
terminal time t = T , for which we get the reconstructed image,

u(x) = u(T, x) =
1

M

M∑

i=1

u0(XT (ωi)).

Now we need to construct a stochastic process X driven by a geometry of a
colour image. Unfortunately, we can not use the gradient function as it was for
grey levels images [4]. And therefore we propose to use the following stochastic
process X being a particular case of a general model taken from [3].

Let

X0 = x,

Hk = ΠD (Xk−1 + h · (Φ0,1, Φ0,1))

Xk =

{
Hk, if Θ,
Xk−1, elsewhere,

k = 1, 2, ..., τm,

whereΠD(x) denotes a projection of x on the setD and Φ0,1 is a random number
generator from the normal distribution with mean 0 and standard deviation 1.
By Θ we mean the condition

‖(Gδ ∗ u0)(Hk)− (Gδ ∗ u0)(Xk−1)‖ ≤ 0.8 · ρ
where Gδ is 3× 3 Gaussian mask and by τm

τm = min{k; k ≥ m and Θ is true m times}.
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Fig. 2. a) Noisy image ρ = 10 b) New method c) Anisotropic diffusion d) NL-means

The interpretation of the process X is the following. First, note that the
stochastic process X̃, where X̃0 = x and X̃k = X̃k−1+h ·(Φ0,1, Φ0,1) is a discrete
approximation of 2-dimensional Wiener process with time step parameter equals
h. Modification of this Wiener process by adding the condition Θ ensures that
the process X will move to the homogeneous areas. The above construction of
X has two important advantages. Firstly, we do not use gradient function or its
equivalence for colour images. Secondly, since we can use large value of time step
parameter, the process X can be simulated fast (see details in [3]).

Since the process X is considered on the random interval with the terminal
time τm, the model of stochastic anisotropic diffusion based on Feynman-Kac
formula has the following form:

u(x) =

M∑

i=1

1

M
u0(Xτm(ωi)(ωi)), (2)

which means that each pixel u0(Xτm(ωi)(ωi)) is weighted with the same value
1
M . But since pixels have different colours we may consider them with different
weights depending on their neighbourhood. We follow NL-means algorithm and
propose to think of weights that depend on patches similarity. Finally, we can
introduce a new method of the image restoration based on Feynman-Kac formula

u(x) =
1

Z

M∑

i=1

u0(Xτm(ωi)(ωi))w(Bx,r , BXτm(ωi)
(ωi),r). (3)
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The meaning of the parameters in the new method is the same as in original
approaches [3, 7]. Very good results we can obtain with (M,m, h) = (50, 10, 4)
for which the time of the reconstruction is comparable to NL-means.

Fig. 3. a) Noisy image ρ = 30 b) New method c) Anisotropic diffusion d) NL-means

5 Experimental Results

Some measures of quality for our evaluation experiments regarding new method,
non local means algorithm and anisotropic stochastic diffusion are presented in
Table 1, Table 2, Fig. 2 and Fig. 3. The results refer to RGB colour images Lenna
and Peppers corrupted (independent all channels) with the Gaussian noise with
standard deviation ρ. Noisy images have been reconstructed with using vector
analysis in RGB space. The maximum values of Peak Signal to Noise Ratio (in
short PSNR) and Structural SIMilarity (in short SSIM) index obtained using
tested methods are given in tables. Parameters of SSIM were set to the default
values as recommended by [20].

The analysis of the measures of image quality shows that the new method
performs better. Moreover, when comparing the figures one can observe that the
image created by the new method is visually more pleasant. The reason for this
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Fig. 4. a) Input high ISO image b) Result of the reconstruction using new method

is that the NL-means approach shows clear evidence of a halo of noise effect
around the edges whereas anisotropic diffusion smooth details too much and
show of a block image.

The type of high ISO sensor noise produced by a typical digital camera sensor
can be modelled as an additive white Gaussian distribution with zero mean and
a standard deviation proportional to the value of ISO. In figures Fig. 4., Fig. 5.
we see images taken at high ISO value and the result of reconstruction using the
new algorithm.

Fig. 5. a) Input high ISO image b) Result of the reconstruction using new method
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Table 1. Maximum values of PSNR

Image Noise ρ NL-means algorithm Stoch. anisotropic diffusion New method

10 32.9404 32.3572 33.1289
20 30.2984 30.6057 31.0984

Peppers 30 27.3031 29.2140 29.8178
40 26.6428 28.1988 28.6991
50 25.9941 27.2549 27.8611
60 25.5353 26.5094 27.0802

10 34.0127 33.0964 34.3550
20 31.5780 31.1301 31.8386

Lenna 30 29.6376 29.6041 30.2871
40 28.6433 28.5068 29.0773
50 27.7377 27.5843 28.1308
60 27.0094 26.7234 27.3205

Table 2. Maximum values of SSIM

Image Noise ρ NL-means algorithm Stoch. anisotropic diffusion New method

10 0.9536 0.9470 0.9548
20 0.9194 0.9146 0.9232

Peppers 30 0.8898 0.8866 0.8994
40 0.8645 0.8645 0.8759
50 0.8383 0.8447 0.8564
60 0.8284 0.8229 0.8362

10 0.9588 0.9467 0.9573
20 0.9224 0.9115 0.9232

Lenna 30 0.8929 0.8790 0.8930
40 0.8640 0.8528 0.8648
50 0.8377 0.8289 0.8414
60 0.8174 0.8050 0.8176

6 Conclusion

In this paper we proposed a new method of digital image denoising. Applying
the Feynman-Kac formula to express anisotropic diffusion allows us to adapt
the idea from non local means. The new method can be used successfully to
reconstruction of high ISO images by giving what is the best from anisotropic
diffusion and non local means method.
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