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1 Introduction

These notes resume a lecture given in the Cimpa School “Evolutionary equations
with applications in natural sciences” held in South Africa (Muizenberg, July 22–
August 2, 2013). However, the oral style of the lecture has been changed and
the bibliography augmented. This version benefited also from helpful remarks and
suggestions of a referee whom I would like to thank. The notes deal with various
functional analytic tools and results around spectral analysis of neutron transport-
like operators. A first section gives a detailed introduction (mostly without proofs)
to fundamental concepts and results on spectral theory of (non-selfadjoint) operators
in Banach spaces; in particular, we provide an introduction to spectral analysis
of semigroups in Banach spaces and its consequences on their time asymptotic
behaviour as time goes to infinity. A special attention is paid to positive semigroups
in ordered spaces (i.e. semigroups leaving invariant the cone of positive elements)
because of their fundamental interest in neutron transport theory. We focus on
the analysis of essential spectra and isolated eigenvalues with finite multiplicities.
A second section deals with spectral analysis of weighted shift (or collisionless
transport) semigroups. A third section is devoted to spectral analysis of perturbed
semigroups in Banach spaces, in particular to stability of essential type for perturbed
semigroups. A last section deals with a thorough analysis of compactness problems
for general models of neutron transport; the results are very different depending on
whether we work in Lp spaces (1 < p < 1) or in (the physical) L1 space; this
issue is the very core of spectral analysis of neutron transport operators and allow
the abstract theory to cover them.
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Transport theory provides a statistical description of large populations of
“particles” moving in a host medium (see e.g. [17]) and is of interest in various
fields such as radiative transfer theory, nuclear reactor theory, gas dynamics, plasma
physics, structured population models in mathematical biology etc. Among the most
classical kinetic equations, we mention the one governing the transport of neutrons
through the uranium fuel elements of a nuclear reactor. The aim of this lecture is
to present various functional analytic tools and results motivated by this class of
equations. In a nuclear reactor, the proportion of neutrons with respect to the atoms
of the host medium, is infinitesimal (about 10�11), so the possible collisions between
neutrons are negligible in comparison with the collisions of neutrons with the atoms
of the host material. Thus (in absence of feedback temperature) neutron transport
equations as well as radiative transfer equations for photons are genuinely linear.
The population of particles is described by a density function f .t; x; v/ of particles
at time t > 0, at position x and with velocity v. In particular

Z Z
f .t; x; v/dxdv

is the expected number of particles at time t > 0: One sees immediately that
L1 spaces are natural settings in transport theory! Various models are used in nuclear
reactor theory:

(1) Inelastic model for neutron transport

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D

Z
V

k.x; v; v0/f .t; x; v0/dv0

where .x; v/ 2 ˝�V; ˝ � R
3; V D ˚

v 2 R
3I c0 � jvj � c1

�
(0 � c0 < c1 <

1/ and dv is Lebesgue measure, with initial condition f .0; x; v/ D f0.x; v/
and boundary condition

f .t; x; v/j�
�

D 0

where

�� WD f.x; v/ 2 @˝ � V I v:n.x/ < 0g

and n.x/ is the unit exterior normal at x 2 @˝ . The collision frequency �.:; :/
and the scattering kernel k.:; :; :/ are nonnegative.

(2) Multiple scattering: This physical model differs from the previous “reactor
model” by the fact that ˝ D R

3 (no boundary condition) but �.x; v/ and
k.x; v; v0/ are compactly supported in space.
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(3) The presence of delayed neutrons
Besides the prompt neutrons (appearing instantaneously in a fission process),

some neutrons may appear after a time delay as a decay product of radioactive
fission fragments and induce a suitable source term in the usual equation

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D

Z
R3

k.x; v; v0/f .t; x; v0/dv0 C
mX
iD1

�igi

which is thus coupled to m differential equations

dgi
dt

D ��igi C
Z
R3

ki .x; v; v
0/f .t; x; v0/dv0 .1 � i � m/

where �i > 0 .1 � i � m/ are the radioactive decay constants; see [48,
Chapter 4] and references therein.

(4) Multigroup models (motivated by numerical calculations)

@fi

@t
C v:

@fi

@x
C �i .x; v/fi .t; x; v/ D

mX
jD1

Z
Vj

ki;j .x; v; v
0/fj .t; x; v0/�j .dv0/;

.1 � i � m/ where the spheres

Vj WD ˚
v 2 R

3; jvj D cj
�
; 1 � j � m; .cj > 0/

are endowed with surface Lebesgue measures �j and fi .t; x; v/ is the density
of neutrons (at time t > 0 located at x 2 ˝) with velocity v 2 Vi :

(5) Partly inelastic models

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D Kef CKif

inLp.˝�V /where, e.g. V D ˚
v 2 R

3I c0 � jvj � c1
�
. The inelastic scattering

operator is just

Kif D
Z
V

k.x; v; v0/f .x; v0/dv0

while the elastic scattering operator is given by

Kef D
Z
S2
k.x; �; !; !0/f .x; �!0/dS.!0/

where v D �!: The presence of an elastic scattering operator acting only on the
angles ! 2 S2 of velocities changes strongly the spectral structure of neutron
transport operators [35, 68].
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(6) Diffusive models

@f

@t
� 4xf C �.x; v/f D

Z C1

0

k.x; v; v0/f .t; x; v0/dv0

(motivated also by numerical calculations) where the transport operator @f
@t C

v: @f
@x is replaced by the parabolic operator @f

@t � 4xf where 4x denotes the
Laplacian in space variable x 2 ˝ with Dirichlet boundary condition, (here
v > 0 denotes a “ kinetic energy” instead of a velocity); see e.g. [14, p. 133].
In the same spirit, we mention that diffusion (i.e. heat) equations with Dirichlet
boundary condition turn out to be asymptotic approximations (as " ! 0) of
usual neutron transport equations appropriately rescaled by means of a small
parameter " (typically the mean free path); see e.g. [6] and references therein.
We find in [49] an approach of the diffusion approximation of neutron transport
(on the torus) via spectral theory.

In this lecture, we ignore the presence of delayed neutrons but deal with an
abstract velocity measure�.dv/ (with support V ) covering a priori different models,
e.g. Lebesgue measure on R

n or on spheres or even combinations of the two.
In absence of scattering event (i.e. k.x; v; v0/ D 0) the density of neutral particles

(e.g. neutrons) is governed by

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D 0

with initial condition f0 and is solved explicitly by the method of characteristics

f .t; x; v/ D e� R t
0 �.x��v;v/d�f0.x � tv; v/1ft�s.x;v/g

where

s.x; v/ D inf fs > 0I x � sv … ˝g
is the first exit time function. This defines a positive C0-semigroup .U.t//t>0 on
Lp.˝ � R

3I dx ˝ d�/

U.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g

called the advection semigroup. Its generator T is given (at least for smooth domains
˝) by

Tg D �v:
@g

@x
� �.x; v/g.x; v/; g 2 D.T /

D.T / D
�
g 2 Lp.˝ � R

3/I v:
@g

@x
2 Lp; gj�

�

D 0

�
I
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(see e.g. [12, 13] for a trace theory in neutron transport theory). Then the treatment
of the full equation follows naturally by perturbation theory. For instance, if the
scattering operator

K W g !
Z
R3

k.x; v; v0/g.x; v0/�.dv0/

is bounded on Lp.˝ � R
3/ then, by standard perturbation theory,

A WD T CK .D.A/ D D.T //

generates a positive C0-semigroup .V .t//t>0 which solves the full neutron transport
equation.

There are two basic eigenvalue problems in nuclear reactor theory:

(1) Criticality eigenvalue problem
This problem consists in looking for .�; g/ where � > 0 and g is a nontrivial

nonnegative solution to

0 D �v:
@g

@x
� �.x; v/g.x; v/C

Z
V

ks.x; v; v
0/g.x; v0/�.dv0/

C 1

�

Z
V

kf .x; v; v
0/g.x; v0/�.dv0/; gj�

�

D 0I

here ks.x; v; v0/ and kf .x; v; v0/ are the scattering kernel and the fission kernel,
see e.g. [41, 66].

(2) The “time eigenelements”

This problem consists in looking for .�; g/ with nontrivial g such that

�v:
@g

@x
� �.x; v/g.x; v/ C

Z
V

k.x; v; v0/g.x; v0/�.dv0/ D �g.x; v/; gj�
�

D 0

and in relating them to time asymptotic behaviour (t ! C1) of the semigroup
.V .t//t>0 :

In this lecture, we focus on the second class of problems. There exists a
considerable literature on the subject; we refer to [48] and references therein for
the state of the art up to 1997. In these lecture, we present mostly new developments
on this topic.

We note that this conventional neutron transport theory deals with the expected
(or mean) behaviour of neutrons. In order to describe the fluctuations from the mean
value of neutron populations, probabilistic formulations of neutron chain fissions
were proposed very early, in particular in [7]. This leads to nonlinear problems
governing divergent neutron chain fissions. Such problems are strongly related to
spectral theory of usual (linear) neutron transport operators, see [30, 46, 57, 64].
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We end this introduction by some historical notes. The beginning of spectral
theory of neutron transport dates back to the beautiful and seminal paper by J.
Lehner and M. Wing [36] devoted to a simplified model (constant cross sections)
in slab geometry. The time asymptotic behaviour of neutron transport semigroups
in bounded geometries is well-understood for a long time in the case when the
velocities are bounded away from zero; this is a classical result by K. Jorgens:

Theorem 1 ([31]) Let ˝ be bounded and convex, let

V D ˚
v 2 R

3I c0 � jvj � c1 < 1�

and let the scattering kernel k.:; :; :/ be bounded. If c0 > 0 then V.t/ is compact on
L2.˝ � V / for t large enough. In particular, for any ˛ 2 R

�.A/ \ fRe� > ˛g

consists at most of finitely many eigenvalues with finite algebraic multiplicities
f�1; : : : :�mg with spectral projections fP1; : : : :Pmg and there exists ˇ < ˛ such
that

V.t/ D
mX
jD1

e�j t etDj Pj CO.eˇt /

where Dj WD .T � �j /Pj :
The picture gets more complicated when arbitrarily small velocities must be

taken into account. In this case, the (essential) spectrum of the generator T (of the
advection semigroup fU.t/I t > 0g) on L2.˝ � V / consists of a half-plane

f� 2 CI Re� � ���g

where “typically” �� D inf �.x; v/; see S. Albertoni and B. Montagnini [2]. More-
over, important compactness results were obtained very early, (see e.g. Demeru-
Montagnini [16], Borysiewicz-Mika [8] and S. Ukai [74]) implying, for most
physical scattering kernels, that the scattering operatorK is T -compact on L2.˝ �
V / i.e.

K W D.T / ! L2.˝ � V /

is compact where D.T / is endowed with the graph norm. It follows that the
spectrum of A D T CK consists of a left half-plane f� 2 CI Re� � ���g and at
most of isolated eigenvalues with finite algebraic multiplicities located in the right
half-plane

f� 2 CI Re� > ���g :
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(Note that it may happen that this set of isolated eigenvalues is empty for small
bodies [2].) Then the time asymptotic behaviour of the solution is traditionally dealt
with by means of inverse Laplace transform (Dunford calculus)

V.t/f D lim
�!C1

1

2i	

Z �Ci�

��i�
e�t .� �A/�1fd�

(with � large enough). If for some " > 0

�.T CK/\ f�I Re� > ��� C "g D f�1; : : : :�mg

(with spectral projections fP1; : : : :Pmg) is finite and non-empty then, by shifting the
path of integration and picking up the residues, we get an asymptotic expansion

V.t/f D
mX
jD1

e�j t etDj Pj f COf .e
ˇt / .ˇ < ��� C "/I

for smooth initial data f ; see, e.g. M. Borysiewicz and J. Mika [8] (see also M.
Mokhtar-Kharroubi [45]). The drawbackof the approach is that we need very regular
initial data (say f 2 D.A2/) to estimate the transcient part of the solution. To
remedy this situation, a more relevant approach, initiated by I. Vidav [76], consists
in studying the spectrum of the semigroup .V .t//t>0 itself instead of the spectrum of
its generator because of the lack (in general) of a spectral mapping theorem relating
spectra of semigroups and spectra of their generators. The perturbed semigroup
.V .t//t>0 is expanded into a Dyson–Phillips series

V.t/ D
1X
nD0

Un.t/

where U0.t/ D U.t/ is the advection semigroup and

UnC1.t/ D
Z t

0

U.t � s/KUn.s/ds .n > 0/:

Theorem 2 ([76]) If some remainder term Rn.t/ WD P1
jDn Uj .t/ is compact for

large t then �.V.t// \
n
�I j�j > e���t

o
consists at most of isolated eigenvalues

with finite multiplicities. In particular, 8" > 0;

�.T CK/\ f�I Re� > ��� C "g D f�1; : : : :�mg
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is finite and

V.t/ D
mX
jD1

e�j t etDj Pj CO.eˇt /

in operator norm where ˇ < ��� C ":

Vidav’s result had relevant applications to realistic models of kinetic theory much
later; see Y. Shizuta [71], G. Greiner [25], J. Voigt [77, 79], P. Takak [72], M.
Mokhtar-Kharroubi [42, 43] and L. Weiss [82]. The role of positivity in peripheral
spectral theory of neutron transport was emphasized by I. Vidav [75], T. Hiraoka-S.
Ukaï [29], Angelescu-Protopopescu [4] and more recently, in others directions, e.g.
by G. Greiner [26], J. Voigt [78] and M. Mokhtar-Kharroubi [43–45, 47].

2 Fundamentals of Spectral Theory

This section is a crash course (mostly without proofs) on the fundamental concepts
and results on spectral theory of closed linear operators on complex Banach spaces
with a special emphasis on generators of strongly continuous semigroups. Because
of their importance in transport theory, the basic spectral properties of positive
operators (i.e. leaving invariant the positive cone of a Banach lattice) are also given.
Finally, we show the role of peripheral spectral theory of positive semigroups in their
time asymptotic behaviour as t ! C1: Apart from Subsection 2.10, the material
of this section is widely covered by the general references [15,20–22,32,61,73] and
will be used in the sequel without explicit mention. Subsection 2.10 presents a class
of positive semigroups whose real spectra can be described completely; this class
covers weighted shift (i.e. advection) semigroups we deal with in Sect. 3.

2.1 Basic Definitions and Results

We start with some basic definitions and results. Let X be a complex Banach space
and let

T W D.T / � X ! X

be a linear operator defined on a subspaceD.T /. We say that T is a closed operator
if its graph

f.x; T x/I x 2 D.T /g

is closed in X �X . We define the resolvent set of T by

�.T / WD f� 2 CI � � T W D.T / ! X is bijectiveg ;
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the spectrum of T by

�.T / WD f� 2 CI � … �.T /g

and the resolvent operator by

.� � T /�1 W X ! X .� 2 �.T //:

In particular, if there exists x 2 D.T / � f0g and � 2 C such that T x D �x then
� 2 �.T /. In this case, � is an eigenvalue of T and

ker.T / WD fx 2 D.T /I .T � �/x D 0g

is the corresponding eigenspace. In contrast to finite dimensional spaces, in general,
�.T / is not reduced to eigenvalues! For instance, one can show that the spectrum of
the multiplication operator on C.Œ0; 1
/ (endowed with the sup norm)

T W f 2 C.Œ0; 1
/ ! Tf 2 C.Œ0; 1
/

where Tf .x/ D xf .x/ is equal to Œ0; 1
 and that T has no eigenvalue. For
unbounded operators, the spectrum may be empty or equal to CŠ For example, let
X D C.Œ0; 1
 I C/ endowed with the sup-norm and

Tf D df

dx
; D.T / D C1.Œ0; 1
/:

Then 8� 2 C, x 2 Œ0; 1
 ! e�x 2 C is an eigenfunction of T so �.T / D C: If we
replace .T;D.T // by

OT f D df

dx
; D. OT / D ˚

f 2 C1.Œ0; 1
/I f .0/ D 0
�

then 8� 2 C and 8g 2 X; the equation

�f � df

dx
D g; f .0/ D 0

is uniquely solvable; thus �. OT / D C and �. OT / D ¿:
It is useful to decompose the spectrum of T as follows: The point spectrum

�p.T / D f� 2 CI � � T W D.T / ! X is not injectiveg :

The approximate point spectrum

�ap.T / D f� 2 CI � � T W D.T / ! X not injective or .� � T /X not closedg I
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this terminology is motivated by the fact that � 2 �ap.T / if and only if there exists
a sequence .xn/n � D.T / such that

kxnk D 1; kT xn � �xnk ! 0:

The residual spectrum

�res.T / D f� 2 C; .� � T /X is not denseg :

We note that

�.T / D �res.T / [ �ap.T /

is a non-disjoint union. Among the first results, we note:

• .��T /�1 W X ! X is a bounded operator for � 2 �.T /, i.e. .��T /�1 2 L.X/,
(by the closed graph theorem).

• �.T / is an open subset of C (so �.T / is closed) and

� 2 �.T / ! .� � T /�1 2 L.X/

is holomorphic.

More precisely, if � 2 �.T / then � 2 �.T / if j� � �j < ��.�� T /�1
���1

and
then

.� � T /�1 D
C1X
0

.� � �/n
�
.�� T /�1

�nC1
:

It follows that j� � �j >
��.� � T /�1���1

for any � 2 �.T / and then

dist.�; �.T // >
��.� � T /�1���1

:

In particular
��.� � T /�1�� ! 1 as dist.�; �.T // ! 0:

Bounded operators T 2 L.X/ enjoy specific properties:

• �.T / is bounded and non-empty.
• The spectral radius of T 2 L.X/, defined by

r� .T / WD sup fj�j I � 2 �.T /g ;

is equal to limn!1 kT nk 1
n D infn kT nk 1

n :
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• In particular r� .T / � kT k and .� � T /�1 is given by a Laurent’s series

.� � T /�1 D
1X
1

��nT n�1 .j�j > r�.T //

with T m D 1
2i	

R
C
�m.� � T /�1d� where C is any circle (positively oriented)

centered at the origin with radius> r�.T /:

If T W D.T / � X ! X is densely defined linear operator, we can define its dual
operator

T 0 W D.T 0/ � X 0 ! X 0

by

hT x; y0iX;X 0 D hx; T 0y0iX;X 0

with domain

D.T 0/ D ˚
y0 2 X 0I 9c > 0;

ˇ̌hT x; y0iˇ̌ � c kxk 8x 2 D.T /� :
We note that T 0 is closed but not necessarily densely defined. But if X is reflexive
then T 0 is densely defined, .T 0/0 D T , �.T 0/ D �.T / and .� � T 0/�1 D�
.� � T /�1	0

. In particular if T 2 L.X/ then r� .T 0/ D r� .T /:

We end this section with a spectral mapping theorem for bounded operators. Let
T 2 L.X/ and let˝ 3 � ! f .�/ 2 C be holomorphic on some open neighborhood
˝ of �.T /: Then there exists an open set ! such that �.T / � ! � ! � ˝ and @!
consists of finitely many simple closed curves that do not intersect. One defines a
Dunford integral

f .T / D 1

2i	

Z
@!

f .�/.� � T /�1d� 2 L.X/

where @! is properly oriented (the definition does not depend on the choice of !).
In particular if f .�/ is a polynomial then f .T / coincides with the usual meaning of
f .T /: Then we have a spectral mapping theorem

�.f .T // D f .�.T //.

2.2 Spectral Decomposition and Riesz Projection

Let X be a complex Banach space such that

X D X1 ˚X2
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(direct sum) where Xi .i D 1; 2/ are closed subspaces. Let P W x 2 X ! Px be
the (continuous) projection on X1 along X2: Let

T W D.T / � X ! X

be a closed linear operator such that P.D.T // � D.T / and Xi .i D 1; 2/ are
invariant under T . The parts Ti .i D 1; 2/ of T on Xi .i D 1; 2/ are defined by

D.Ti / D D.T /\ Xi; Tix D T x .x 2 D.Ti //:

We say that T is reduced by Xi .i D 1; 2/. Then

�.T / D �.T1/[ �.T2/

(not necessarily a disjoint union),

�p.T / D �p.T1/[ �p.T2/ and �ap.T / D �ap.T1/[ �ap.T2/:

Similar results hold for any finite direct sum: X D X1 ˚ : : : ˚ XnI see e.g. [73,
Theorem 5.4, p. 289].

Let now T W D.T / � X ! X be a closed linear operator such that �.T / is
a disjoint union of two non-empty closed subsets �1 and �2 and let �1 be compact.
Then there exists � , a finite number of rectifiable simple closed curves properly
oriented enclosing an open set O which contains �1 and such that �2 is included in
the exterior of O . Then

P WD
Z
�

.� � T /�1d�I P2 D P

and X D X1 ˚ X2 (X1 D PX and X2 D .I � P/X D KerP ) reduces T (i.e. Xi
are T invariant), �.Ti / D �i where Ti WD TjXi and T1 is bounded. P is the spectral
projection associated with �1. If �1 consists of finitely many points .�1; : : : ; �n/
then

P D P1 C : : :C Pn; PjPk D ıjkPj

Pj WD
Z
�j

.� � T /�1d�

(where �j is e.g. a small circle enclosing �j ). Pj is the spectral projection
associated with �j : We study now the structure of the resolvent around an isolated
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singularity. Let � 2 �.T / be an isolated point of �.T /: There exists a Laurent’s
series around �

.� � T /�1 D
C1X
nD�1

.� � �/nUn

where

Un D 1

2i	

Z
C

.� � T /�1

.� � �/nC1 d� .n 2 Z/

whereC is a small circle positively oriented centered at�. In particular, the residues

U�1 D 1

2i	

Z
C

.� � T /�1d�

is the spectral projection P . In addition

U�.nC1/ D .�1/n.� � T /nP .n > 0/:

We have

U�.nC1/U�.mC1/ D U�.nCmC1/

so � is a pole of the resolvent (i.e. there exists k > 0 such that U�k ¤ 0 and U�n D
0 8n > k) if and only if there exists k > 0 such that U�k ¤ 0 and U�.kC1/ D 0:

Then k is the order of the pole. In this case, � is an eigenvalue of T and PX D
Ker.� � T /k: The algebraic multiplicity ma � C1 of � is the dimension of PX .
Conversely, ifma < C1, i.e.P is of finite rank, then .��T /maP D 0 and then� is
a pole of the resolvent of order � ma:Actually, the order k of the pole is the smallest
j 2 N such that .��T /jP D 0. The subspace Ker.��T /k contains the generalized
eigenvectors; it coincides with the eigenspace if and only if PX D Ker.�� T /, i.e.
k D 1 (simple pole); � is said to be a semi-simple eigenvalue. We say that � is
algebraically simple if ma D 1.

2.3 Application to Riesz-Schauder Theory

As a first illustration of the interest of Riesz projections, we show why the non zero
eigenvalues of compact operators have finite algebraic multiplicities. Let T W X !
X be a compact operator (i.e. maps bounded sets into relatively compact ones).
Then �.T /= f0g consists at most of isolated eigenvalues. Let ˛ 2 �.T / with ˛ ¤ 0:

Define T� (in the neighborhood of ˛) by

.� � T /�1 D ��1 C T�:
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Then .�� T /.��1 C T�/ D I implies that T� D T .��1T� C ��2I / is compact. So
(C being a small circle around ˛ positively oriented) the spectral projection

U�1 D 1

2i	

Z
C

.� � T /�1d� D 1

2i	

Z
C

��1d�C 1

2i	

Z
C

T�d�

D 1

2i	

Z
C

T�d�

is compact too. Since U�1 has a closed range then the open mapping theorem and
Riesz theorem imply that U�1 has finite-dimensional range. Hence ˛ has a finite
algebraic multiplicity.

This result extends to power compact operators. Indeed, let T 2 L.X/ and n 2 N

(n > 2/ such that T n is compact. The spectral mapping theorem

�.T n/ D .�.T //n

implies that �.T /= f0g consists at most of isolated points. Let ˛ 2 �.T /with ˛ ¤ 0:

Then, for � close to ˛; .�n �T n/ D .�n�1I C�n�2T C : : :CT n�1/.��T / implies

.� � T /�1 D .�n � T n/�1.�n�1I C �n�2T C : : :C T n�1/

D Œ��n C C�
 .�
n�1I C �n�2T C : : :C T n�1/

D ��n.�n�1I C �n�2T C : : :C T n�1/

CC�.�n�1I C �n�2T C : : :C T n�1/

(where C� is compact) so the spectral projection

U�1 D 1

2i	

Z
C

.� � T /�1d� D 1

2i	

Z
C

C�.�
n�1I C �n�2T C : : :C T n�1/d�

is compact and we argue as previously.

2.4 Spectral Mapping Theorem for a Resolvent

Let T W D.T / � X ! X be closed linear operator and �0 2 �.T /: The spectral
links between T and its resolvent .�0 � T /�1 are completely described by:

• �
�
.�0 � T /�1

� nf0g D .�0��.T //�1 (so r�
�
.�0 � T /�1� D Œdist.�0; �.T //


�1)
• �p

�
.�0 � T /�1� n f0g D .�0 � �p.T //�1

• �ap
�
.�0 � T /�1

� n f0g D .�0 � �ap.T //
�1

• �res
�
.�0 � T /�1� n f0g D .�0 � �res.T //

�1
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• � is an isolated point of �.T / if and only if .�0 � �/�1 is an isolated point of
�

�
.�0 � T /�1

�
: In this case, the residues and the orders of the pole of .��T /�1

at � and of
�
� � .�0 � T /�1��1

at .�0 � �/�1 coincide.

See [20, Chapter IV]. These properties are of interest e.g. when we deal with
Riesz-Schauder theory of operators with compact resolvent.

2.5 Fredholm Operators

A closed operator T W D.T / � X ! X is said to be a Fredholm operator if
dim Ker.T / < 1 and the range R.T / of T is closed with finite codimension (i.e.
dim X

R.T /
< 1). Let T W D.T / � X ! X be closed linear operator; its Fredholm

domain is defined by

�F .T / WD f� 2 CI � � T W D.T / ! X is Fredholmg :

Then �F .T / is open and �.T / � �F .T /. If �0 is an isolated eigenvalue of T with
finite algebraic multiplicity then �0 2 �F .T /, (see [32, Chapter IV]).

We recall that T 2 L.X/ is Fredholm if and only if there exists S 2 L.X/ such
that I � ST and I � TS are finite rank operators (see [21] p. 190). The essential
spectrum of T is defined by

�ess.T / WD Cn�F .T /:

Let K.X/ � L.X/ be the closed ideal of compact operators. The Calkin algebra

C.X/ WD L.X/
K.X/

is endowed with the quotient norm (for OT WD T C K.X/)
��� OT

���
C.X/

D inf
K2K.X/kT CKk D dist.T;K.X//:

Then

�F .T / D �. OT / and �ess.T / D �. OT /:

The essential norm of T 2 L.X/ is defined by

kT kess WD
��� OT

���
C.X/

:
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In particular, kT kess � kT k and the essential norm k:kess is submultiplicative, i.e.

kT1T2kess � kT1kess kT2kess .Ti 2 L.X/; i D 1; 2/:

The essential radius of T 2 L.X/ is defined by

ress.T / WD r�. OT /:

Then

ress.T / D sup
n
j�j I � 2 �. OT /

o
D sup fj�j I � 2 �ess.T /g :

In addition

ress.T / D lim
n!1

���

 OT

�n���
1
n

C.X/
D lim

n!1

��� OT n
���
1
n

C.X/
D lim

n!1 kT nk 1
n
ess :

The unbounded component of �F .T / consists of resolvent set and at most of isolated
eigenvalues with finite algebraic multiplicities, (see [21, p. 204]). Then the essential
radius of T 2 L.X/ is also given by

inf fr > 0I � 2 �.T /; j�j > r ) � 2 �discr.T / g

where �discr.T / refers to the isolated eigenvalues of T with finite algebraic
multiplicities. Note that for any " > 0; �.T / \ fj�j > ress.T /C "g consists at
most of finitely many eigenvalues with finite algebraic multiplicities. We point out
that there exist several non equivalent definitions of essential spectrum for bounded
operators but the corresponding essential radius is the same for all them, see [19,
Corollary 4.11, p. 44].

2.6 Semigroups and Generators

Let X be a complex Banach space. By a C0-semigroup on X we mean a family
.S.t//t>0 of bounded linear operators on X indexed by t > 0 such that S.0/ D
I; S.t/S.s/ D S.t C s/ and such that the strong continuity condition holds:

Œ0;C1Œ 3 t ! S.t/x 2 X

is continuous for all x 2 X . By the uniform boundedness theorem, .S.t//t>0 is
locally bounded in L.X/. The infinitesimal generator of .S.t//t>0 is the unbounded
linear operator defined by

T W x 2 D.T / � X ! lim
t!0

S.t/x � x
t

2 X
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with domain

D.T / D
�
xI lim

t!0

S.t/x � x
t

exists in X

�
:

Then T is closed and densely defined. In addition,D.T / is invariant under S.t/ and
S.t/T x D TS.t/x 8x 2 D.T /: Finally, 8x 2 D.T /;

f W t > 0 ! S.t/x 2 X is C1

and

f 0.t/ D Tf .t/; f .0/ D xI

see e.g. [15].
If

p W RC ! Œ�1;C1Œ

is subadditive (i.e. p.t C s/ � p.t/C p.s/) and locally bounded from above then

lim
t!C1

p.t/

t
D inf

t>0

p.t/

t
:

see e.g. [15]. Since

t = 0 ! p.t/ WD ln.kS.t/k/ 2 Œ�1;C1Œ

is subadditive and locally bounded from above then

! WD inf
t>0

ln.kS.t/k/
t

D lim
t!C1

ln.kS.t/k/
t

2 Œ�1;C1Œ :

In particular .S.t//t>0 is exponentially bounded, i.e.

8˛ > ! 9M˛ > 1I kS.t/k � M˛e
˛t 8t = 0I

! is called the type or growth bound of .S.t//t>0. In addition, for any t > 0

r�.S.t// D lim
n!C1 kS.t/nk 1

n D lim
n!C1 kS.nt/k 1

n

D lim
n!C1 exp

1

n
ln kS.nt/k D lim

n!C1 exp t
1

nt
ln kS.nt/k D e!t :
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We recall that fRe� > !g � �.T / and

.� � T /�1 D
Z C1

0

e��tS.t/dt .Re� > !/

where the integral converges in operator norm. Thus �.T / � fRe� � !g and the
spectral bound of T

s.T / WD sup fRe�I � 2 �.T /g � !:

We end this section with the famous Hille–Yosida–Phillips–Miyadera–Feller theo-
rem (commonly called Hille–Yosida theorem) which provides a general framework
for a huge amount of linear evolution equations of mathematical physics and
probability theory [22].

Theorem 3 Let T W D.T / � X ! X be a closed densely defined linear
operator. Then T is the generator of a C0-semigroup .S.t//t>0 satisfying the
estimate kS.t/k � Me˛t 8t = 0 if and only if �.T / � fRe� � ˛g and

����
.� � T /�1�n

��� � M

.Re� � ˛/n
.Re� > ˛/ 8n 2 N:

We note that if X is a reflexive complex Banach space and if .S.t//t>0 is a
C0-semigroup with generator T then the dual semigroup .S 0.t//t>0 is strongly
continuous and its generator is given by T 0. In particular .S.t//t>0 and .S 0.t//t>0
have the same type while T and T 0 have the same spectral bound.

2.7 Partial Spectral Mapping Theorems for Semigroups

In general, there exist partial spectral links between a C0-semigroup and its
generator, see [20, Chapter IV].

Theorem 4 Let X be a complex Banach space and .S.t//t>0 be a C0-semigroup
on X with generator T:Then:

(i) et�ap.T / � �ap.S.t//n f0g :
(ii) et�p.T / D �p.S.t//n f0g :

(iii) et�res.T / D �res.S.t//n f0g :
(iv) mg.�; T / � mg.e

�t ; S.t//

(v) ma.�; T / � ma.e
�t ; S.t//

(vi) k.�; T / � k.e�t ; S.t//:
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Here mg (resp. ma, resp. k) refers to geometric multiplicity (resp. algebraic
multiplicity, resp. multiplicity of a pole). We note that the possible failure of the
spectral mapping theorem stems from the approximate point spectrum. The link
between the eigenvalues of .S.t//t>0 and those of its generator T is clarified
further by:

Theorem 5 Let X be a complex Banach space and .S.t//t>0 be a C0-semigroup
on X with generator T: Then:

(i) Ker.� � T / D \t>0Ker.e�t � S.t//:
(ii) Ker.e�t � S.t// D linn2ZKer.�C 2i	n

t
� T / 8t > 0:

Theorem 6 ([24] Proposition 1.10 or [20] p. 283) Let X be a complex Banach
space and .S.t//t>0 be a C0-semigroup on X with generator T and let t > 0 be
fixed. Let e�t be a pole of S.t/ of order k and let Q be the corresponding residue.
Then

(i) For every n 2 Z; �C 2i	n
t

is (at most) a pole of .� � T /�1 of order at most k
and residue Pn:

(ii) QX D linn2ZPnX:

Corollary 1 Let X be a complex Banach space and .S.t//t>0 be a C0-semigroup
on X with generator T and let t > 0 be fixed. Let ˛ ¤ 0 be an isolated
eigenvalue of S.t/ with finite algebraic multiplicity and with residue Q: Then
Q D Pn

jD1 Pj where the Pj are the residues of .� � T /�1 at f�1; : : : ; �ng, the

(finite and nonempty) set of eigenvalues of T such that e�i t D ˛:

2.8 Essentially Compact Semigroups

The fact that k:kess is submultiplicative implies that

t = 0 ! pess.t/ WD ln.kS.t/kess/ 2 Œ�1;C1Œ

is subadditive. It is also locally bounded from above so

!ess WD inf
t>0

ln.kS.t/kess/

t
D lim

t!C1
ln.kS.t/kess/

t
2 Œ�1; !
 :

In particular 8˛ > !ess 9M˛ > 1 such that

kS.t/kess � M˛e
˛t 8t = 0I
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!ess is called the essential type (or essential growth bound) of .S.t//t>0. For any
t > 0

ress.S.t// D lim
n!C1 kS.t/nk

1
n
ess D lim

n!C1 kS.nt/k
1
n
ess

D lim
n!C1 exp

1

n
ln .kS.nt/kess/

D lim
n!C1 exp t

1

nt
ln .kS.nt/kess/ D e!esst :

A C0-semigroup .S.t//t>0 on a complex Banach spaceX is said to be essentially
compact if its essential type is less than its type (i.e. !ess < !/: Such semigroups
have a nice finite-dimensional asymptotic structure.

Theorem 7 Let X be a complex Banach space and .S.t//t>0 be an essentially
compact C0-semigroup on X with generator T: Then:

(i) �.T / \ fRe� > !essg consists of a nonempty set of isolated eigenvalues with
finite algebraic multiplicities.

(ii) For any !0 such that !ess < !0 < !; �.T / \ fRe� > !0g consists of a finite
set (depending on !0) f�1; : : : ; �mg of eigenvalues of T:

(iii) Let Pj be the residues of .� � T /�1 at �j and let P WD Pm
jD1 Pj . Then the

projector P reduces .S.t//t>0 and

S.t/ D
mX
jD1

e�j t etDj Pj CO.e.!
0�"/t /

(for some " > 0) where Dj WD .T � �j /Pj are nilpotent bounded operators

(D
kj
j D 0 where kj is the order of the pole �j ).

Proof Let !0 be such that !ess < !0 < !. Let t > 0 be fixed. Then e!esst < e!
0t <

e!t and

�.S.t// \
n
�I j�j > e!

0t
o

consists of a finite (and nonempty) set of eigenvalues with finite algebraic multiplic-
ities f�1; : : : ; �ng while

�.S.t// \
n
�I j�j < e!0t

o
�

n
�I j�j < e.!0�"/t

o

for some " > 0. For each j (1 � j � n) let
n
�1j ; : : : ; �

lj
j

o
be the (finite and

nonempty) set of eigenvalues � of T such that e�t D �j : Then the residue of the
pole �j of the resolvent of S.t/ is given by

Qj D
ljX
kD1

P k
j
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where Pk
j is the residue of the �kj of the resolvent of T . Let Q D Pn

jD1 Qj be
the spectral projection corresponding to the eigenvalues f�1; : : : ; �ng of S.t/ inn
�I j�j > e!

0t
o
. One sees that Q D Pn

jD1
Plj

kD1 P k
j is nothing but the spectral

projection corresponding to the eigenvalues of T in fRe� > !0g. We decompose
S.t/ as S.t/Q C S.t/.I � Q/. We know that �.S.t/jImQ/ D f�1; : : : ; �ng while

�.S.t/jKerQ/ �
n
�I j�j < e.!0�"/t

o
so the type of S.t/jKerQ is � !0 � ": Finally,

S.t/jImQ is generated by the bounded operator

T .

mX
jD1

Pj / D
mX
jD1

TPj D
mX
jD1

�
�jPj C .T � �j /Pj

� D
mX
jD1

�
�jPj CDj

�

so S.t/jImQ D Pm
jD1 e�j t etDj Pj :

2.9 Peripheral Spectral Theory and Applications

In ordered Banach spaces, positive semigroups (i.e. leaving invariant the positive
cone) enjoy nice spectral properties. For the sake of simplicity, we restrict ourselves
to Lebesgue spaces

X D Lp .˝;A; �/ .1 � p � C1/

where .˝;A; �/ is a measure space (i.e. ˝ is a set, A is a �-algebra of subsets of
˝ and � is a �-finite measure on A) although most of the results hold in general
Banach lattices. For short, we will writeLp.�/ (or justLp) instead ofLp .˝;A; �/.
Let LpC .�/ be the cone of nonnegative a.e. functions. Then

Lp .�/ D L
p
C .�/� L

p
C .�/ :

More precisely

f D fC � f�; 8f 2 Lp .�/

where

fC D sup ff; 0g ; f� D sup f�f; 0g :

In particular

jf j D fC C f�; kf k D kjf jk
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where jf j .x/ WD jf .x/j. An operator G 2 L.X/ is said to be positive if Gf 2
L
p
C .�/ 8f 2 LpC .�/. We write G > 0: In this case

jGf j D jGfC �Gf�j � GfC CGf� D G .jf j/

and consequently

kGk D sup
kf k�1; f 2Lp

C

kGf k :

It follows that if 0 � G1 � G2 with Gi 2 L.Lp/(i D 1; 2/ then kG1k � kG2k. This
last property applied to the iterates shows that r� .G1/ � r�.G2/. It is easy to see
that G 2 L.Lp/ is positive if and only if its dual operator G0 2 L.Lp0

/ is positive.
A C0-semigroup .S.t//t>0 onX is said to be positive if 8t > 0, S.t/ is a positive

operator. A C0-semigroup .S.t//t>0 with type ! and generator T is positive if and
only if the resolvent .� � T /�1 is positive for � > !; this follows from

.� � T /�1f D
Z C1

0

e��tS.t/fdt .� > !/

and the exponential formula

S.t/f D lim
n!C1.I � t

n
T /�nf:

A fundamental result for positive C0-semigroups .S.t//t>0 on Lebesgue spaces
Lp .�/ is that the type of .S.t//t>0 coincides with the spectral bound s.T / of
its generator T (see e.g. [20]). Another fundamental spectral property of positive
operators G 2 L.X/ (in general Banach lattices) is that the spectral radius belongs
to the spectrum

r�.G/ 2 �.G/:

Let us show an analogous property for a generator T of a positive semigroup
.S.t//t>0:

s.T / > �1 ) s.T / 2 �.T /:

Indeed, note first that

ˇ̌
.� � T /�1f ˇ̌ �

Z C1

0

e�Re�tS.t/ jf j dt .8Re� > s.T //

so
��.� � T /�1

�� � ��.Re� � T /�1�� .8Re� > s.T // : By assumption there exists
a sequence .ˇn/n � �.T / such that Reˇn ! s.T /. We build a sequence .�n/n



Spectral Theory for Neutron Transport 341

with Re�n > s.T / (so .�n/n � �.T /), Im�n D Imˇn and Re�n ! s.T /. Then
j�n � ˇnj ! 0 and

��.�n � T /�1�� ! C1: Thus
��.Re�n � T /�1

�� ! C1 and
consequently s.T / 2 �.T /:

LetG 2 L.Lp/ be positive. We say thatG is irreducible if 8f 2 LpC.�/; f ¤ 0

and 8g 2 Lp0

C .�/; g ¤ 0 there exists n 2 N (depending a priori on f and g) such
that

hGnf; giLp;Lp0 > 0:

Forp < C1; this is equivalent to saying that there is no closed subspaceLp.˝ 0; �/
(with �.˝ 0/ > 0 and �.˝=˝ 0/ > 0) invariant by G. For instance, if Gf > 0 a.e.
8f 2 LpC.˝/; f ¤ 0 (we say thatG is positivity-improving) thenG is irreducible.
A positive C0-semigroup .S.t//t>0 is said to be irreducible if 8f 2 LpC.�/; f ¤ 0

and 8g 2 L
p0

C .�/; g ¤ 0 there exists t > 0 (depending a priori on f and g) such
that

hS.t/f; giLp;Lp0 > 0:

Forp < C1; this is equivalent to saying that there is no closed subspaceLp.˝ 0; �/
(with�.˝ 0/ > 0 and�.˝=˝ 0/ > 0) invariant by all S.t/:A positiveC0-semigroup
.S.t//t>0 with generator T is irreducible if and only if .� � T /�1 is positivity-
improving for some � > s.T /. This follows easily from

h.� � T /�1f; gi D
Z C1

0

e��t hS.t/f; gidt:

We recall a useful result combining compactness and irreducibility:

Theorem 8 ([63]) If G 2 L.X/ is compact and irreducible then r� .G/ > 0:

The fact that r� .Gn/ D r� .G/
n implies easily:

Corollary 2 If some power of G 2 L.X/ is compact and positivity-improving then
r�.G/ > 0:

The following result can be found in [61, Chapter CIII].

Theorem 9 Let .S.t//t>0 be a positive C0-semigroup on Lp .�/ with generator T:
If s.T / is a pole of the .� � T /�1 then the boundary spectrum

�b.T / WD �.T /\ .s.T /C iR/

consists of poles of the resolvent and is cyclic in the sense that there exists ˛ > 0

such that

�b.T / WD s.T /C i˛Z:
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Corollary 3 Let .S.t//t>0 be a positive C0-semigroup on Lp .˝;A; �/ with
generator T: We assume that .S.t//t>0 is essentially compact (i.e. !ess < !). Then

�b.T / D fs.T /g

i.e. s.T / is the leading eigenvalue and is strictly dominant (i.e. 9" > 0I Re� �
s.T /� " 8� 2 �.T /; � ¤ s.T /).

Proof According to the theorem above, �b.T / is either unbounded or reduces to
fs.T /g. The fact that !ess < ! implies that �b.T / is finite. �

By combining essential compactness and positivity arguments we get a funda-
mental functional analytic result:

Theorem 10 ([61] Prop 3.5, p. 310) Let .S.t//t>0 be an irreducible C0-semigroup
on Lp .˝;A; �/ with generator T: We assume that .S.t//t>0 is essentially compact
(i.e. !ess < !). Then s.T / is the leading eigenvalue, is strictly dominant and is
algebraically simple. In particular there exists " > 0 such that

S.t/f D es.T /t
�Z

f .x/v.x/�.dx/


u CO.e.s.T /�"/t /

where u is the (strictly positive almost everywhere) eigenfunction of T associated
to s.T / and v is the (strictly positive almost everywhere) eigenfunction of T 0
associated to s.T 0/ D s.T / with the normalization

R
u.x/v.x/�.dx/ D 1:

2.10 Semigroups with Dense Local Quasinilpotence Subspace

This subsection deals with a class of positive semigroups whose real spectra can
be described completely. This class is well-suited to weighted shift semigroups we
consider in the next section. We resume here some abstract results from [56]. For the
sake of simplicity, we restrict ourselves to complex Lebesgue spaces X D Lp.�/

(1 � p � 1/: Let .S.t//t>0 be a positive semigroup on Lp.�/. We define its local
quasinilpotence subset by

Y D
�
f 2 Lp.�/I lim

t!C1 kS.t/ jf jk 1
t D 0

�

where jf j is the absolute value of f 2 Lp.�/:
Lemma 1 Y is a subspace of Lp.�/ invariant under .S.t//t>0:
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Proof

(i) Linearity: Clearly �f 2 Y if f 2 Y: Let " > 0; f; g 2 Y be given. There
exists t > 0 depending on them such that

kS.t/ jf jk � "t and kS.t/ jgjk � "t 8t > t :

So kS.t/ jf C gjk � kS.t/ .jf j C jgj/k � 2"t 8t > t and

kS.t/ jf C gjk 1
t � 2

1
t " � 2" 8t > max.t ; 1/:

(ii) Invariance: Let � > 0; f 2 Y .

kS.t/ jS.�/f jk 1
t � kS.t/ .S.�/ jf j/k 1

t

D kS.t C �/ .jf j/k 1
t D



kS.t C �/ .jf j/k 1

tC�

� tC�
t ! 0

as t ! C1I i.e. S.�/f 2 Y:
Theorem 11 Let .S.t//t>0 be a positive semigroup on Lp.�/ with type !. If its
local quasinilpotence subspace is dense in Lp.�/ then Œ0; e!t 
 � �ap.S.t//:

Proof Let t > 0 be fixed. Let 0 < � < e!t and y 2 Y . The equation

�x � S.t/x D yI .y 2 Y; kyk D 1/

can be solved by

x D 1

�

1X
kD0

1

�k
S.t/ky D 1

�

1X
kD0

1

�k
S.kt/y

provided that this series converges. This is the case since

���� 1

�k
S.kt/y

����
1
k

D 1

�



kS.kt/yk 1

kt

�t ! 0 as k ! C1:

In particular x > 0 for y > 0 and

kxk > 1

�kC1
��S.t/ky�� 8k 2 N:

There exists zk 2 LpC.�/ such that kzkk D 1 and

��S.t/kzk
�� > 1

2

��S.t/k�� :
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By the denseness of Y , 9 yk 2 Y such that kykk D 1

��S.t/kyk�� > 1

3

��S.t/k�� :

We may assume that yk > 0 since
��S.t/k jykj

�� >
��S.t/kyk�� and jykj 2 Y: The

solution Oxk of

� Oxk � S.t/ Oxk D yk

satisfies

k Oxkk > 1

�kC1
��S.t/kyk�� > 1

3

1

�kC1
��S.t/k�� :

So

lim inf
k!C1 k Oxkk 1

k > 1

�
lim

k!C1
��S.t/k�� 1

k D e!t

�
> 1

and then limk!C1 k Oxkk D 1: Finally xk WD Oxk
k Oxkk is such that

kxkk D 1 and k�xk � S.t/xkk ! 0

i.e. � 2 �ap.S.t//. The closedness of �ap.S.t// ends the proof. �

Lemma 2 Let .S.t//t>0 be a positive semigroup on Lp.�/ with generator T . Let
Y be the local quasinilpotence subspace of .S.t//t>0: Then, for any � > !;

lim
k!1

��.� � T /�ky
�� 1
k D 0 8y 2 Y:

Proof For any y 2 Y and any " > 0 there exists ty;" > 0 such that

kS.t/yk � "t 8t > ty;"

i.e. (write " D e�A)

kS.t/yk � e�At 8t > ty;"

so 9My;A > 0 such that

kS.t/yk � My;Ae
�At 8t > 0:
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Hence

��.� � T /�ky
�� D

����
Z C1

0

dt1 : : :
Z C1

0

dtke
��.t1C:::Ctk/S.t1 C : : :C tk/y

����

�
Z C1

0

dt1 : : :
Z C1

0

dtke
��.t1C:::Ctk / kS.t1 C : : :C tk/yk

� My;A

Z C1

0

dt1 : : :
Z C1

0

dtke
��.t1C:::Ctk/e�A.t1C:::Ctk/

D My;A

.�C A/k

and

lim sup
k!C1

��.� � T /�ky
�� 1
k � 1

�C A

which ends the proof since A > 0 is arbitrary. �

Theorem 12 Let .S.t//t>0 be a positive semigroup onLp.�/with generatorT . Let
s.T / be the spectral bound of T . If the local quasinilpotence subspace of .S.t//t>0
is dense in Lp.�/ then

.�1; s.T /
 � �ap.T /:

Proof Let � < s.T / < � be fixed. Consider

1

� � �x � .�� T /�1x D y 2 Y:

Arguing as for the semigroup, we show the existence of .xk/k with kxkk D 1 and

���� 1

�� �
xk � .� � T /�1xk

���� ! 0

i.e. 1
��� 2 �ap..� � T /�1/ or equivalently � 2 �ap.T /. The closedness of �ap.T /

ends the proof. �
Corollary 4 Let .S.t//t>0 be a positive semigroup on Lp.�/ with type ! and
generator T . We assume that the local quasinilpotence subspace of .S.t//t>0 is
dense in Lp.�/:

(i) If �.T / is invariant under translations along the imaginary axis then

�.T / D f� 2 CI Re� � !g :
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(ii) If �.S.t// is invariant under rotations then

�.S.t// D ˚
� 2 CI j�j � e!t

�
:

3 Spectral Analysis of Advection Semigroups

Neutron transport theory is mainly a perturbation theory (by scattering operators) of
suitable weighted shift semigroups called advection semigroups

U.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g

where

s.x; v/ D inf fs > 0I x � sv … ˝g

is the (first) exit time function from the spatial domain ˝: We describe here the
spectra of such semigroups. This section resumes essentially [56]; (an alternative
approach is given in [78]).

3.1 On Advection Semigroups

Let ˝ � R
n be an open subset and let � be a positive Borel measure on R

n with
support V . Let

� W ˝ � V ! RC

be measurable and such that

lim
t!0

Z t

0

�.x � �v; v/d� D 0 a.e.

Let

s.x; v/ D inf fs > 0I x � sv … ˝g

be the so-called exit time function. Then

S.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g

defines a positive semigroup on Lp.˝ � V I dx ˝ �.dv// (for any 1 � p � C1),
strongly continuous when p < C1, see e.g. [78]. The dual streaming semigroups
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in Lp
0

.˝ � V / are given by

S 0.t/ W f ! e� R t
0 �.xC�v;v/d�f .x C tv; v/1ft�s.x;�v/g:

3.2 Invariance Property of Transport Operators

Let � f0g D 0 and

˛ W .x; v/ 2 ˝ � V ! x:v

jvj2 :

For any � > 0

M� W f 2 Lp.˝ � V / ! e�i�˛.x;v/f 2 Lp.˝ � V /

is an isometric isomorphism.

Theorem 13 ([78]) M�1
� S.t/M� D ei�tS.t/: In particular �.S.t// is invariant by

rotations.

Proof We have

S.t/M�f D e� R t
0 �.x��v;v/d�M�f .x � tv; v/1ft�s.x;v/g

D e� R t
0 �.x��v;v/d�e

�i� .x�tv/:v

jvj

2 f .x � tv; v/1ft�s.x;v/g

so

M�1
� S.t/M�f D e

i� x:v
jvj

2 e
�i� .x�tv/:v

jvj

2 S.t/f D ei�tS.t/f

so M�1
� S.t/M� D ei�tS.t/. Hence �.M�1

� S.t/M�/ D �.ei�tS.t//: On the other
hand, by similarity,

�.M�1
� S.t/M�/ D �.S.t//

and

�.ei�t S.t// D ei�t �.S.t//

so we are done. �
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As previously we have:

Theorem 14 Let T be the generator of a streaming semigroup .S.t//t>0. Then
M�1
� TM� D T C i�I: In particular �.T / is invariant by translation along the

imaginary axis.

Proof Let f 2 D.T /. Then

S.t/M�f �M�f

t
D M�

M�1
� S.t/M�f � f

t

D M�

ei�tS.t/f � f
t

D M�

ei�tS.t/f � ei�tf
t

CM�

ei�tf � f

t

D ei�tM�

S.t/f � f
t

C ei�t � 1
t

M�f

! M�Tf C i�M�f

so M�f 2 D.T / and TM�f D M�Tf C i�M�f or M�1
� TM� D T C i�I: By

similarity, �.T / D �.M�1
� TM�/ D �.T /C i�8� 2 R. �

3.3 Decomposition of the Phase Space

We consider the partition of the phase space ˝ � V according to

E1 D f.x; v/ 2 ˝ � V I s.x;�v/ < C1g ;

E2 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ < C1g ;

E3 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ D C1g :

This induces a direct sum

Lp.˝ � V I dx ˝ �.dv// D Lp.E1/˚ Lp.E2/˚ Lp.E3/

where, we identify Lp.Ei / to the closed subspace of functions f 2 Lp.˝ � V /

vanishing almost everywhere on ˝ �V n Ei . If some set Ei has zero measure then
we drop out Lp.Ei / from the direct sum above.

Theorem 15 The subspaces Lp.Ei/ .i D 1; 2; 3/ are invariant under .S.t//t>0::
For each i D 1; 2; 3, we denote by .Si .t//t>0 the part of .S.t//t>0: on Lp.Ei / and
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by Ti its generator. Then

�.S.t// D �.S1.t// [ �.S2.t// [ �.S3.t//

�.T / D �.T1/ [ �.T2/[ �.T3/:

We have also similar results where �.:/ is replaced by �p.:/ or �ap.:/: In addition,
if �.:; :/ is bounded then .S3.t//t>0 extends to a positive group.

Proof We check that the direct sum Lp.˝ � V / D Lp.E1/ ˚ Lp.E2/ ˚ Lp.E3/

reduces .S.t//t>0: We restrict ourselves to Lp.E1/: Let f 2 Lp.E1/, i.e. f
vanishes almost everywhere on E2 [ E3. We have to show that S.t/f 2 Lp.E1/

i.e. S.t/f vanishes almost everywhere on E2 [ E3. Since

S.t/f .x; v/ D e� R t
0 �.x��v;v/d�f .x � tv; v/1ft�s.x;v/g

is zero for t > s.x; v/, we assume from the start that t � s.x; v/. One notes that
.x; v/ 2 E2 [ E3 , s.x;�v/ D C1 and

s.x � tv;�v/ D t C s.x;�v/

so that .x � tv;�v/ 2 E2 [ E3 and f .x � tv; v/ D 0. Since the projection Pi
on Lp.Ei/ along Lp.˝ � V n Ei/ commutes with .S.t//t>0: then the direct sum
above reduces also the generator T . Finally, on E3 (if �.:; :/ is bounded) .S3.t//t>0
extends to a positive group where

S3.t/
�1g D e

R t
0 �.xC�v;v/d�f .x C tv; v/ .t > 0/:

3.4 Spectra of the First Reduced Advection Semigroup

Lemma 3 Let t > 0 be fixed. For any f 2 Lp.E1/

kS1.t/f kp D
Z

ft<s.y;�v/g\fs.y;�v/<1g
e�p R t

0 �.yC�v;v/d� jf .y; v/jp dx�.dv/:

Proof We have to compute the norm of S1.t/f on the set

ft � s.x; v/g \ fs.x;�v/ < C1g ;

so kS1.t/f kp is equal to

Z
ft�s.x;v/g\fs.x;�v/<C1g

e�p R t
0 �.x��v;v/d� jf .x � tv; v/jp dx�.dv/:
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Since s.x � tv;�v/ D t C s.x;�v/ is finite if and only if s.x;�v/ is finite then the
change of variable

y WD x � tv 2 ˝

gives s.y;�v/ > t and

kS1.t/f kp D
Z

ft<s.y;�v/g\fs.y;�v/<1g
e�p R t

0 �.yC�v;v/d� jf .y; v/jp dy�.dv/:

The type of .S1.t//t>0 is equal to ���
1 where

��
1 D lim

t!C1 inf
ft<s.y;�v/g\fs.y;�v/<1g

1

t

Z t

0

�.y C �v; v/d�:

because

kS1.t/k D sup
ft<s.y;�v/g\fs.y;�v/<1g

e� R t
0 �.yC�v;v/d�

D e
� infft<s.y;�v/g\fs.y;�v/<1g

R t
0 �.yC�v;v/d�

so

ln kS1.t/k
t

D � inf
ft<s.y;�v/g\fs.y;�v/<1g

1

t

Z t

0

�.y C �v; v/d�

and

!1 D � lim
t!C1 inf

ft<s.y;�v/g\fs.y;�v/<1g
1

t

Z t

0

�.y C �v; v/d�:

We have

�.S1.t// D
n
� 2 CI j�j � e���

1 t
o
; �.Ti / D f� 2 CI Re� � ���

1 g :

Indeed, it suffices to show that the local quasinilpotence subspace of .S1.t//t>0 is
dense in Lp.E1/: Let

Om WD fx; v/ 2 ˝ � V I s.x;�v/ � mg :

We note that [mL
p.Om/ is dense in Lp.E1/ because of

[mOm D fx; v/ 2 ˝ � V I s.x;�v/ < C1g :
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Finally

kS1.t/f kp D
Z

ft<s.y;�v/g\fs.y;�v/<1g
e�p R t

0 �.yC�v;v/d� jf .y; v/jp dy�.dv/

shows that, for f 2 Lp.Om/; kS1.t/f k D 0 for t > m so [mL
p.Om/ is included

in the local quasinilpotence subspace of .S1.t//t>0. �

3.5 Spectra of the Second Reduced Advection Semigroup

We deal now with .S2.t//t>0 on Lp.E2/ where

E2 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ < C1g :
We consider first the case 1 < p < C1: Indeed, by duality �.S2.t// D �.S 0

2.t//

where

S 0
2.t/f D e� R t

0 �.xC�v;v/d�f .x C tv; v/:

Thus kS2.t/f kp0

is equal to
Z

fs.x;�v/D1; s.x;v/<1g
e�p0

R t
0 �.yC�v;v/d� jf .x C tv; v/jp dx�.dv/

D
Z

fs.y;�v/D1; t�s.y;v/<1g
e�p0

R t
0 �.yC�v;v/d� jf .y; v/jp dy�.dv/:

Introducing the sets

O 0
m WD fx; v/ 2 E2I s.y; v/ � mg

one sees that [mL
p0

.O 0
m/ is dense in Lp

0

.E2/ because of

[mOm D E2:

Since in Lp
0

.O 0
m/; kS2.t/f k D 0 for t > m then the local quasinilpotence subspace

of .S 0
2.t//t>0 is dense. This ends the proof because �.S2.t// D �.S 0

2.t// and
�.T2/ D �.T 0

2/. �

3.6 Spectra of the Third Reduced Advection (Semi)group

Theorem 16 Let S WD �.T3/\ R be the real spectrum of T3. Then

�.T3/ D S C iR and �.S3.t// D et�.T3/:
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Moreover, supS D ���
3 and infS D ����

3 where

��
3 D lim

t!C1 inf
f s.y;�v/D1; s.y;v/D1g

1

t

Z t

0

�.y C �v; v/d�

��
3 D lim

t!C1 sup
f s.y;�v/D1; s.y;v/D1g

1

t

Z t

0

�.y C �v; v/d�:

Proof The fact that �.T3/ is invariant by translation along the imaginary axis
and that et�.T3/ is invariant under the rotations is a general feature of streaming
semigroups in arbitrary geometry. The spectral mapping property for the real
spectrum is due to the fact that .S3.t//t2R is a positive C0-group (see [27]). The
type ���

3 of .S3.t//t>0 is obtained as for .S1.t//t>0 or .S2.t//t>0: Finally, ��
3 is the

spectral bound of the generator of .S3.�t//t>0, (i.e. �T3) and is obtained similarly.
�

Theorem 17 If � W ˝ � V ! RC is space-homogeneous then S WD �.T3/ \ R is
nothing but the essential range of ��.:/:

See the details in [56]; in particular, S WD �.T3/ \ R need not be connected.
The description of �.T3/ \ R for general collision frequency � W ˝ � V ! RC
seems to be open. When ˝ D R

n, the situation is well understood for bounded and
compactly supported (in space) collision frequencies; see [28].

3.7 Reminders on Sun-Dual Theory

To study �.S2.t// inL1 spaces, we need to recall some material. LetX be a complex
Banach space and let .S.t//t>0 be a C0-semigroup on X with generator T . Let
.S 0.t//t>0 be the dual semigroup on the dual space X 0: If X is not reflexive then a
priori .S 0.t//t>0 is not strongly continuous. Let

Lˇ WD ˚
x0 2 X 0I ��S 0.t/x0 � x0�� ! 0 as t ! 0

�

the subspace of strong continuity of .S 0.t//t>0: Then

• Lˇ is a closed subspace of X 0 invariant under .S 0.t//t>0:
• Lˇ D D.T 0/ (the closure in X 0).

We denote by .Sˇ.t//t>0 the restriction of .S 0.t//t>0 to Lˇ (sun-dual C0-
semigroup). Its generator is given by

D.Tˇ/ D ˚
x0 2 D.T 0/; T 0x0 2 Lˇ�

and Tˇx0 D T 0x0
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and we have �.T / D �.T 0/ D �.Tˇ/ and �.S.t// D �.S 0.t// D �.Sˇ.t//I see
e.g. [20, Chapter IV].

3.8 Sun-Dual Theory for Advection Semigroups

We consider .S2.t//t>0 in L1.E2/ where

E2 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ < C1g

and assume that

� W ˝ � V ! RC is bounded.

Since

�.S2.t// D �.S 0
2.t// D �.Sˇ

2 .t//;

it suffices to identify �.Sˇ
2 .t//. Because of the boundedness of �;

Lˇ D
(
f 2 L1.E2/; sup

.x;v/
jf .x C tv; v/� f .x; v/j ! 0 as t ! 0

)
:

Actually, we are going to work in the smaller closed subspace

Lˇ
0 WD

(
f 2 Lˇ; sup

f.y;v/; s.y;v/>rg
jf .y; v/j ! 0 as r ! 1

)
:

Lemma 4 .S 0.t//t>0 leaves invariant Lˇ
0 :

Proof

ˇ̌�
S 0.t/f

	
.y; v/

ˇ̌ � jf .y C tv; v/j

and s.yCtv; v/ D s.y; v/Ct ! 1 if and only if s.y; v/ ! 1 so that S 0.t/f 2 Lˇ
0

if f 2 Lˇ
0 . �

Let
�
Sˇ
0 .t/

	
t>0 be the restriction of

�
Sˇ
2 .t/

	
t>0 to Lˇ

0 and let Tˇ
0 be its

generator. Then �ap.S
ˇ
0 .t// � �ap.S

ˇ
2 .t// and �ap.T

ˇ
0 / � �ap.T

ˇ
2 /. In particular,

�ap.S
ˇ
0 .t// � �.S2.t// and �ap.T

ˇ
0 / � �.T2/. Let

Lˇ
00 WD ˚

f 2 Lˇ; 9r > 0; f .y; v/ D 0 for s.y; v/ > r
�
:
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Theorem 18 Lˇ
00 is dense in Lˇ

0 :

Corollary 5 The local quasinilpotence subspace of
�
Sˇ
0 .t/

	
t>0 is dense in Lˇ

0 :

Proof of Corollary 5: The local quasinilpotence subspace of
�
Sˇ
0 .t/

	
t>0 contains

Lˇ
00. �

Before proving Theorem 18, we need:

Lemma 5 Lˇ is an algebra.

Proof For eachm 2 N, let �m W Œ0;C1Œ ! Œ0; 1
 be smooth (say C1) and such that

�m.s/ D
�
1 if s � m

0 if s > 2m:

Lemma 6 8m 2 N; .x; v/ ! �m.s.x; v// belongs to Lˇ
00:

Proof We have just to show that .x; v/ ! �m.s.x; v// belongs to Lˇ. Since �m is
Lipschitz then

j�m.s.x C tv; v//� �m.s.x; v//j D j�m.s.x; v/C t/ � �m.s.x; v//j
� C t 8.x; v/:

�

Proof of Theorem 18: Let f 2 Lˇ
0 then 8m 2 N; .x; v/ ! �m.s.x; v//f .x; v/

belongs to Lˇ
00.

j�m.s.x; v//f .x; v/ � f .x; v/j D j.1 � �m.s.x; v///f .x; v/j
� sup

s.x;v/>2m
jf .x; v/j ! 0 asm ! 1

since f 2 Lˇ
0 . �

By the general theory,

�.Tˇ
0 / D ˚

Re� � !ˇ
0

�
; �.Sˇ

0 .t// D
n
�I j�j � e!

ˇ

0 t
o

where !ˇ
0 is the type of

�
Sˇ
0 .t/

	
t>0. We have to identify !ˇ

0 Š The fact that��Sˇ
0 .t/

�� � ��S 0
2.t/

�� D kS2.t/k implies

!ˇ
0 � !2 D type of .S2.t//t>0 :

On the other hand,

gm W .x; v/ ! �m.s.x; v//
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belongs to Lˇ
0 and kgmk � 1 so that

��Sˇ
0 .t/

�� >
��Sˇ

0 .t/gm
�� D sup

.y;v/



e� R t

0 �.yC�v;v/d��m.s.y C tv; v//
�

D sup
.y;v/



e� R t

0 �.yC�v;v/d��m.s.y; v/C t/
�

8m 2 N:

But �m.s.y; v/C t/ D 1 if s.y; v/ � m � t so

��Sˇ
0 .t/

�� > sup
fs.y;v/�m�tg

e� R t
0 �.yC�v;v/d� 8m 2 N:

Finally

��Sˇ
0 .t/

�� > sup
fs.y;v/<C1g

e� R t
0 �.yC�v;v/d� D kS2.t/k

whence !2 � !ˇ
0 and we are done. �

A similar theory can be built for general vector fields. Indeed, consider
F W R

n ! R
n a Lipschitz vector field and denote by ˚.x; t/ the unique global

solution to

d

dt
X.t/ D F.X.t//; t 2 R

X.0/ D x:

Let ˝ � R
n be an open set and let

s˙.x/ WD inf fs > 0I ˚.x;˙s/ … ˝g

be the exit times from ˝ (with the convention that inf ; D C1/. We define a
weighted shift semigroup

U.t/ W f ! U.t/f

where

U.t/f D e� R t
0 �.˚.x;�s//dsf .˚.x;�t//ft<s

�

.x/g.x/:

We introduce the sets

˝1 D fx 2 ˝I sC.x/ < 1g ; ˝2 D fx 2 ˝I sC.x/ D 1; s�.x/ < 1g
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and

˝3 D fx 2 ˝I sC.x/ D 1; s�.x/ D 1g :

Then Lp.˝i/ (i D 1; 2; 3/ are invariant under .U.t//t>0 and we can extend the
previous spectral theory of advection semigroups, see [39].

4 Spectra of Perturbed Operators

This section deals with functional analytic results on stability of essential spectra
for perturbed generators or perturbed semigroups on Banach spaces. Let X be a
complex Banach space and D � C be open and connected. A compact operator
valued meromorphic mapping

A W D ! C.X/

(C.X/ � L.X/ is the closed subspace of compact operators) is called essentially
meromorphic on D if A is holomorphic on D except at a discrete set of points
zk 2 D where A has poles with Laurent expansions

A.z/ D
1X

nD�mk
.z � zk/

mAn.zk/ .0 < mk < 1/

where An.zk/.n D �1;�2; : : : ;�mk/ are finite rank operators. We recall now a
fundamental analytic Fredholm alternative:

Theorem 19 ([65] Corollary II) Let X be a complex Banach space andD � C be
open and connected. Let

A W D ! C.X/

be essentially meromorphic. Then

(i) Either � D 1 is an eigenvalue of all A.z/
(ii) or ŒI � A.z/
�1 exists except for a discrete set of points and ŒI �A.z/
�1 is

essentially meromorphic onD.

Let T W D.T / � X ! X be a closed operator. We define its “essential resolvent
set” as

�e.T / D �.T / [ �discr.T /

where �discr.T / refers to the isolated eigenvalues of T with finite algebraic
multiplicities. This set is open. We note that if T 2 L.X/ then the unbounded



Spectral Theory for Neutron Transport 357

component of �e.T / coincides with the unbounded component of the Fredholm
domain �F .T / (see [21, p. 204]). We give first a result from [77] and some of its
consequences.

Theorem 20 Let T W D.T / � X ! X be a closed operator and let ˝ be a
connected component of �e.T /: Let B W D.T / ! X be T -bounded such that there
exists n 2 N and

�
B.� � T /�1

�n
is compact .� 2 ˝ \ �.T //:

We assume that there exists some � 2 ˝ \ �.T / such that I � �
B.� � T /�1

�n
is

invertible (i.e. 1 is not an eigenvalue of
�
B.� � T /�1�n). Then˝ � �e.T CB/ and

�
B.� � T � B/�1�n is compact .� 2 ˝ \ �.T C B//:

Proof We note that .��T /�1 is essentially meromorphic on˝: ThenB� WD B.��
T /�1 and Bn

� D �
B.� � T /�1

�n
are also essentially meromorphic on ˝: Since Bn

�

is operator compact valued then, by the analytic Fredholm alternative .I �Bn
�/

�1 is
also essentially meromorphic on˝: On the other hand

I � Bn
� D .I � B�/.I C B� C : : :C Bn�1

� /

shows that

.I � B�/�1 D .I � Bn
�/

�1.I C B� C : : :C Bn�1
� /

is also essentially meromorphic on ˝ and then so is

.� � T � B/�1 D .� � T /�1.I � B�/�1

i.e. ˝ � �e.T C B/. Finally

�
B.� � T � B/�1

�n D �
B�.I � B�/

�1�n D Bn
�.I � B�/�n

is also compact on ˝ \ �.T C B/. �

We give now a more precise version of the theorem above under an additional
assumption.

Corollary 6 Let T W D.T / � X ! X be a closed operator and let ˝ be a
connected component of �e.T /: Let B W D.T / ! X be T -bounded such that there
exists n 2 N and

�
B.� � T /�1

�n
is compact .� 2 ˝ \ �.T //:
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We assume that there exists a sequence
�
�j

	
j

� ˝ \ �.T / such that

��B.�j � T /�1
�� ! 0 .j ! C1/:

Then
�
�j

	
j

� �.T C B/ for j large enough and
��B.�j � T � B/�1

�� ! 0 as
j ! C1. Furthermore ˝ is a component of �e.T C B/.

Proof We note that for j large enough

��B.�j � T � B/�1
�� D ��B�j .I � B�j /

�1�� �
1X
kD1

��B�j ��k ! 0 .j ! C1/

Let ˝ 0 be the component of �e.T C B/ which contains˝: We know that

�
B.� � T � B/�1

�n

is compact .� 2 ˝ \�.T CB//. By analyticity, this extends to˝ 0 \�.T CB/: By
considering T as .T CB/�B and reversing the arguments in the previous theorem
one gets ˝ 0 � �e.T / and consequently˝ D ˝ 0. �

Corollary 7 Let T;B 2 L.X/. We assume that
�
B.� � T /�1

�n
is compact on the

unbounded component of �.T /, i.e.

�
B.� � T /�1

�n
is compact .� 2 ˝ \ �.T //

where ˝ is the unbounded connected component of �e.T /: The unbounded compo-
nents of �e.T / and �e.T C B/ coincide and then

re.T / D re.T C B/:

Proof Since
��.� � T /�1�� ! 0 as j�j ! 1 we apply the corollary above. �

Corollary 8 Let T;B 2 L.X/:
(i) If B is compact then re.T / D re.T C B/:

(ii) If X D L1.�/ and B is weakly compact then re.T / D re.T CB/:

Proof The case (i) is clear with n D 1: In the case (ii) B.� � T /�1 is also weakly
compact on L1.�/ and consequently its square is compact. �

4.1 Strong Integral of Operator Valued Mappings

Let .˝;�/ be a finite measure space and let X; Y be two Banach spaces. Let

G W ! 2 ˝ ! G.!/ 2 L.X; Y /
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be bounded and strongly measurable in the sense that for each x 2 X

! 2 ˝ ! G.!/x 2 Y

is (Bochner) measurable. We define the strong integral of G on ˝ as the bounded
operator

Z
˝

G W x 2 X !
Z
˝

G.!/x�.d!/ 2 Y:

We note that strongly continuous mappings appear everywhere in semigroup theory!

Theorem 21 ([33, 80, 82]) Under the conditions above, assume in addition that
8! 2 ˝;G.!/ 2 C.X; Y / (i.e. G.!/ is a compact operator). Then

Z
˝

G 2 C.X; Y /:

In the statement above, we can replace “compact” by “weakly compact” [69].
Direct proofs in Lebesgue spaces relying on Kolmogorov’s compactness criterion
and the Dunford-Pettis criterion of weak compactness are given in [50].

4.2 Spectra of Perturbed Generators

Theorem 22 Let X be a complex Banach space. Let .U.t//t>0 be a C0-semigroup
with generator T and let K 2 L.X/. We denote by .V .t//t>0 the C0-semigroup
generated by T CK:We assume that K is T -power compact i.e. there exists n 2 N

such that (for � in some right half-plane included in �.T CK/)

�
K.� � T /�1�n is compact.

Then the components of �e.T / and �e.T C K/ containing a right half-plane
coincide. In particular

�.T CK/\ fRe� > s.T /g

consists at most of isolated eigenvalues with finite algebraic multiplicities.

The proof follows from Corollary 6 since
��.� � T /�1�� ! 0 as Re� goes to C1:

This theorem is a refinement of a first version due to I. Vidav [75].
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4.3 Dyson–Phillips Expansions

The perturbed semigroup .V .t//t>0 is related to the unperturbed one .U.t//t>0 by
an integral equation (Duhamel equation)

V.t/ D U.t/C
Z t

0

U.t/KV.t � s/ds:

The integrals are interpreted in a strong sense i.e.

V.t/x D U.t/x C
Z t

0

U.t/KV.t � s/xds .x 2 X/:

The Duhamel equation is solved by standard iterations

VjC1.t/x D U.t/x C
Z t

0

U.t/KVj .t � s/xds .j > 0/ V0 D 0

and

8C > 0; sup
t2Œ0;C 


��Vj .t/ � V.t/
��
L.X/ ! 0 as j ! C1:

Finally, .V .t//t>0 is given by a Dyson–Phillips series

V.t/ D
C1X
0

Uj .t/

where

UjC1.t/ D
Z t

0

U0.t/KUj .t � s/ds .j > 0/ U0.t/ D U.t/:

By remainder terms of Dyson–Phillips expansions we mean

Rm.t/ WD
C1X
jDm

Uj .t/ .m > 0/:

For any strongly continuous mappings f; g W RC ! L.X/, we define their
convolution by (the strong integral)

f � g D h.t/ WD
Z t

0

f .s/g.t � s/ds
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and note Œf 
n the n-fold convolution of f with the convention Œf 
1 D f . Then we
can express Uj .:/ for j > 1 as

Uj .:/ D ŒUK
j � U D U � ŒKU 
j .j > 1/:

Theorem 23 ([48] Chapter 2) Let n 2 N� be given. Then Un.t/ is compact for all
t > 0 if and only if Rn.t/ WD PC1

jDn Uj .t/ is compact for all t > 0. If X D L1.�/

then we can replace “compact” by “weakly compact”.

Proof If Un.t/ is compact for all t > 0 then

UnC1.t/ D
Z t

0

U.s/KUn.t � s/ds

is compact for all t > 0 as a strong integral of “compact operator” valued mappings.
By induction Uj .t/ is compact (for all t > 0) for all j > n and then Rn.t/ is
compact for all t > 0 since the series converges in operator norm. Conversely, let
Rn.t/ be compact for all t > 0. Then

RnC1.t/ D
C1X

jDnC1
Uj .t/ D

C1X
jDnC1

�
ŒUK
j � U 	

D ŒUK
 �
C1X

jDnC1



ŒUK
j�1 � U

�

D ŒUK
 �
C1X
jDn

�
ŒUK
j � U 	

D ŒUK
 �Rn.t/ D
Z t

0

U.s/KRn.t � s/ds

shows that RnC1.t/ is also compact for all t > 0 as a strong integral of “compact
operator” valued mappings. Finally Un.t/ D Rn.t/ � RnC1.t/ is also compact for
all t > 0. �

The following result is given in [81] for unbounded perturbations. We give here a
slightly different (and simpler) presentation of the proof thanks to the boundedness
of K:

Theorem 24 Let X be a complex Banach space. Let .U.t//t>0 be a C0-semigroup
with generator T and let K 2 L.X/. We denote by .V .t//t>0 the C0-semigroup
generated by T CK . If some remainder term

Rn.t/ WD
C1X
jDn

Uj .t/
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is compact for t large enough then !e.V / � !e.U / where !e.V / (resp. !e.U /) is
the essential type of .V .t//t>0 (resp. .U.t//t>0). If X D L1.�/ then we can replace
“compact” by “weakly compact”.

Proof Let ˇ > !e.U / then there exists a finite range projectionPˇ commuting with
.U.t//t>0 such that for any ˇ0 > ˇ

��U.t/.I � Pˇ/
�� � Mˇ0eˇ

0t .t > 0/:

(with Pˇ D 0 if ˇ > !.U / the type of .U.t//t>0). On the other hand, by stability
of essential radius by compact (or weakly compact if X D L1.�// perturbation

re.V .t// D re.

n�1X
jD0

Uj .t// D re.

n�1X
jD0

ŒUK
j � U /

for t large enough. We note that

ŒUK
j D �
U.I � Pˇ C Pˇ/K.I � Pˇ C Pˇ/

�j
D �

U.I � Pˇ/K.I � Pˇ/
�j C Cj .t/

where Cj .t/ is a sum of convolutions where each convolution involves at least one
term of the form U.I � Pˇ/KPˇ; UPˇKPˇ or UPˇK.I � Pˇ/. Such terms are
compact (of finite rank) because of Pˇ so that the convolutions are compact for
all time as strong integrals of “compact operator” valued mappings. Thus Cj .t/
is compact for all t > 0: Once again, the stability of essential radius by compact
perturbation gives for t large enough

re.V .t// D re..I � Pˇ/U.t/.I � Pˇ/C
n�1X
jD1

�
U.I � Pˇ/K.I � Pˇ/

�j � U /

�
������.I � Pˇ/U.t/.I � Pˇ/C

n�1X
jD1

�
U.I � Pˇ/K.I � Pˇ/

�j � U
������

� ��.I � Pˇ/U.t/.I � Pˇ/
�� C

n�1X
jD1

����
U.I � Pˇ/K.I � Pˇ/

�j � U
��� :

Observe that

�
U.I � Pˇ/K.I � Pˇ/

� � U D � QUK� � QU
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where
� QU .t/	

t>0 is the semigroup
�
U.t/.I � Pˇ/

	
t>0. More generally

�
U.I � Pˇ/K.I � Pˇ/

�j � U D � QUK�j � QU :

By using the estimate

�� QU .t/�� � Mˇ0eˇ
0t .t > 0/;

an elementary calculation shows that
���� QUK�j � QU

��� � cj t
j eˇ

0t so

re.V .t// � pn.t/e
ˇ0t

where pn.t/ is a polynomial of degree n: To end the proof, let ˇ00 > ˇ0. Then there
exists a constant Mˇ00 such that

re.V .t// � Mˇ00eˇ
00t

for t large enough. Let !e.V / be the essential type of .V .t//t>0. The fact that

re.V .t// D e!e.V /t

implies that !e.V / � ˇ00. Hence !e.V / � !e.U / since ˇ0 > !e.U / and ˇ00 > ˇ0
are chosen arbitrarily. �

Remark 1 A classical weaker estimate !e.V / � !.U / (where !.U / is the type of
.U.t//t>0) is due to I. Vidav [76]. The estimate !e.V / � !e.U / is also derived in
[70, 82] by using the properties of measure of noncompactness of strong integrals.

We have seen that if some remainder term Rn.t/ WD PC1
jDn Uj .t/ is compact (or

weakly compact when X D L1.�/) for large t then !e.V / � !e.U /:We show now
that if some remainder term is compact (or weakly compact when X D L1.�/) for
all t > 0 then !e.V / D !e.U /: We need a preliminary result:

Lemma 7 ([48] Chapter 2) Let X be a complex Banach space. Let .U.t//t>0 be
a C0-semigroup with generator T and let K 2 L.X/. We denote by .V .t//t>0 the
C0-semigroup generated by T CK . Let V.t/ D PC1

0 Uj .t/ be the Dyson–Phillips
expansion of .V .t//t>0 : Let U.t/ D PC1

0 Vj .t/ be the Dyson–Phillips expansion
of .U.t//t>0 considered as a perturbation of .V .t//t>0 (i.e. T D .T CK/C .�K/).
For any j 2 N�; Uj .t/ is compact for all t > 0 if and only if Vj .t/ is compact for
all t > 0. If X D L1.�/ then we can replace “compact” by “weakly compact”.

By reversing the role of .U.t//t>0 and .V .t//t>0 we obtain:

Corollary 9 Let X be a complex Banach space. Let .U.t//t>0 be a C0-semigroup
with generator T and let K 2 L.X/. We denote by .V .t//t>0 the C0-semigroup
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generated by T CK . Let

UjC1.t/ D
Z t

0

U0.t/KUj .t � s/ds .j > 0/ U0.t/ D U.t/

be the terms of the Dyson–Phillips expansion of .V .t//t>0. If for some n 2 N�; Un.t/
is compact (resp. weakly compact if X D L1.�// for all t > 0 then

!e.V / D !e.U /:

Remark 2 We note that the stability of essential type appears also in [70,81,82] but
under stronger assumptions.

4.4 Short Digression on Resolvent Approach

The following “resolvent characterization” is due to S. Brendle [9].

Theorem 25 Let n 2 N�. Then Un.t/ is compact for all t > 0 if and only if:

(i) t > 0 ! Un.t/ 2 L.X/ is continuous in operator norm
and

(ii)
�
.˛ C iˇ � T /�1K�n

.˛ C iˇ � T /�1 is compact for some ˛ > !.U / and all
ˇ 2 R .

This is useful in some applications (for example for kinetic equations involv-
ing boundary operators relating the incoming and outgoing fluxes) where the
unperturbed semigroup .U.t//t>0 is not explicit while the resolvent .� � T /�1 is
“tractable”! The cost of the approach is that we need a priori that

t > 0 ! Un.t/ 2 L.X/

is continuous in operator norm. The following result gives sufficient conditions of
continuity in operator norm.

Theorem 26 ([9]) Let n 2 N: If X is a Hilbert space and if

����
.˛ C iˇ � T /�1K

�n
.˛ C iˇ � T /�1

��� ! 0 as jˇj ! C1

then t > 0 ! UnC2.t/ 2 L.X/ is continuous in operator norm.

Note that the continuity of t > 0 ! U1.t/ 2 L.X/ (if we want to show the
compactness of V.t/ � U.t/) is out of reach of this theorem. We give now Sbihi’s
criterion of continuity in operator norm.
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Theorem 27 ([67]) Let X be a Hilbert space and let T be dissipative (i.e.
Re .T x; x/ � 0 8x 2 D.T /). If

��K�.� � T /�1K
�� C ��K.� � T /�1K��� ! 0 as jIm�j ! C1

then t > 0 ! U1.t/ 2 L.X/ is continuous in operator norm.

Useful applications of this result are given in [34, 38, 67].

5 Collisional Transport Theory

In this section, we show how the previous functional analytic tools apply to neutron
transport theory. We start with an unperturbed (advection) semigroup in Lp.˝ �
V I dx ˝ �.dv//

U.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g .t > 0/

(with generator T ) where

s.x; v/ D inf fs > 0I x � sv … ˝g

is the first exit time function from the spatial domain ˝ . We regard the scattering
operator

K W f !
Z
V

k.x; v; v0/f .x; v0/�.dv0/

as a bounded perturbation of T (we refer to [58] and references therein for
generation results with unbounded scattering operators) and denote by .V .t//t>0
the perturbed neutron transport semigroup. We are faced with two main questions:

• When is
�
.� � T /�1K�n

compact in Lp.˝ � V / for some n 2 N� ?
• When is some remainder term Rm.t/ compact in Lp.˝ � V / ?

We point out that the resolvent .��T /�1 of T cannot be compact (e.g. in bounded
geometries, �.T / is a half-plane when 0 2 V Š). The scattering operator

K W f !
Z
V

k.x; v; v0/f .x; v0/�.dv0/

is local with respect to the space-variable x so thatK cannot be compact onLp.˝�
V /. The good news is that compactness will emerge from subtle combinations of
properties of T and those of K . For information, we recall some classical results:
Under quite general assumptions on the scattering kernel k.x; v; v0/; for bounded
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domains ˝ and Lebesgue measure dv on R
n as velocity measure, the second order

remainder term R2.t/ is compact in Lp.˝ � V / (1 < p < 1) or weakly compact
in L1.˝ � V /I see e.g. [25, 43, 45, 72, 79, 82].

We introduce now a useful class of scattering operators. Let ˝ � R
n .n > 1/ be

an open subset and let � be a positive Radon measure with support V: Let

X WD Lp.˝ � V I dx ˝ �.dv//

with 1 � p < C1: Let

k W .x; v; v0/ W ˝ � V � V ! k.x; v; v0/ 2 RC

be measurable and such that

K W f 2 Lp.˝ � V / !
Z
V

k.x; v; v0/f .x; v0/dv0 2 Lp.˝ � V /

is a bounded operator on Lp.˝ � V /. Since K is local in space variable, we may
interpret it as a family of bounded operators on Lp.V / indexed by the parameter
x 2 ˝ i.e. a mapping

K W x 2 ˝ ! K.x/ 2 L.Lp.V //:

Then

kKkL.Lp.˝�V // D sup
x2˝

kK.x/kL.Lp.V // :

5.1 Lp Theory (1 < p < 1)

In this section, we restrict ourselves to 1 < p < 1. A scattering operator K is
called regular if

(i) fK.x/I x 2 ˝g is a set of collectively compact operators on Lp.V /, i.e. the set

˚
K.x/'I x 2 ˝; k'kLp.V / � 1

�

is relatively compact in Lp.V /:
(ii) For any  0 2 Lp

0

.V /; the set fK 0.x/ 0I x 2 ˝g is relatively compact in
Lp

0

.V / where p0 is the conjugate exponent and K 0.x/ is the dual operator of
K.x/.

We note that the compactness of K with respect to velocities (at least in L2.V /)
is satisfied by most physical models [8].
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Theorem 28 ([51]) The class of regular scattering operators is the closure in the
operator norm of L.Lp.˝ � V // of the class of scattering operators with kernels

k.x; v; v0/ D
X
j2J

˛j .x/fj .v/gj .v
0/

where ˛j 2 L1.˝/; fj ; gj continuous with compact supports and J finite.

The first part of the following lemma is given in ([48, Chapter 3, p. 32]) and the
second part in [51].

Lemma 8 Let � be a finite Radon measure on R
n.

(i) If the hyperplanes (through the origin) have zero �-measure then

sup
e2Sn�1

� fvI jv:ej � "g ! 0 as " ! 0:

(ii) If the affine (i.e. translated) hyperplanes have zero �-measure then

sup
e2Sn�1

�˝ �
˚
.v; v0/I ˇ̌

.v � v0/:e
ˇ̌ � "

� ! 0 as " ! 0:

Theorem 29 ([51]) We assume that ˝ has finite Lebesgue measure and the
scattering operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1). If the
hyperplanes have zero �-measure then .� � T /�1K and K.� � T /�1 are compact
on Lp.˝ � V I dx ˝ �.dv//:

Remark 3 The compactness ofK.��T /�1 can be expressed as an averaging lemma
in open sets ˝ with finite volume, i.e. if ± is a bounded subset of D.T / (for the
graph norm) then

fK'I ' 2 ±g is relatively compact in Lp.˝ � V /:

We note that if

sup
e2Sn�1

� fvI jv:ej � "g � c"˛

and if ˝ is bounded and convex then the compactness can be measured in terms of
fractional Sobolev regularity [23], (see also [1]).

Corollary 10 We assume that ˝ has finite Lebesgue measure, the scattering
operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1) and the hyperplanes
have zero �-measure. Then

�ess.T CK/ D �ess.T /:
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In particular �.T C K/ \ fRe� > s.T /g consists at most of isolated eigenvalues
with finite algebraic multiplicities where

s.T / D � lim
t!C1 inf

.y;v/

1

t

Z t

0

�.y C �v; v/d�:

Theorem 30 ([51]) We assume that ˝ has finite Lebesgue measure and the
scattering operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1). If the
hyperplanes have zero �-measure then

V.t/ � U.t/ is compact on Lp.˝ � V / .t > 0/;

i.e. the first remainder R1.t/ D PC1
jD1 Uj .t/ is compact on Lp.˝ � V /:

Strategy of the proof:

• R1.t/ D PC1
jDm Uj .t/ is compact for all t > 0 if and only if U1.t/ D R t

0
U.t �

s/KU.s/ds is. So we deal with U1.t/:
• U1.t/ depends (linearly and) continuously on the scattering operator K: So, by

approximation, we may assume that

k.x; v; v0/ D
X
j2J

˛j .x/fj .v/gj .v
0/

where ˛j 2 L1.˝/; fj ; gj continuous with compact supports and J is finite.
• By linearity, we may even choose

k.x; v; v0/ D ˛.x/f .v/g.v0/

where ˛ 2 L1.˝/; f; g are continuous with compact supports. In this case,
U1.t/ operates on all Lq.˝ � V / (1 � q � C1). So, by an interpolation
argument, we may restrict ourselves to the case p D 2:

• Domination arguments: In Lp spaces (1 < p < 1), if Oi .i D 1; 2/ are two
positive operators such that

O1f � O2f 8f 2 LpC
and if O2 is compact then O1 is also compact; see [3]. So we may assume that V
is compact, ˛ D f D g D 1 and � D 0 :

• Because of � D 0

U.t/' D '.x � tv; v/1ft�s.x;v/g

where s.x; v/ D inf fs > 0I x � sv … ˝g : If Q' 2 L2.Rn � V / is the trivial
extension of ' by zero outside˝ � V then, for nonnegative '

U.t/'.x; v/ � Q'.x � tv; v/ 8.x; v/ 2 ˝ � V:
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so U.t/' � RU1.t/E' where E W L2.˝ � V / ! L2.Rn � V / is the trivial
extension operator, R W L2.Rn � V / ! L2.˝ � V / is the restriction operator
and

U1.t/ W  2 L2.Rn � V / !  .x � tv; v/ 2 L2.Rn � V /:

• Thus

U1.t/ D
Z t

0

RU1.t � s/EKRU1.s/Eds

D R
�Z t

0

U1.t � s/EKRU1.s/ds

E

� R
�Z t

0

U1.t � s/KU1.s/ds

E :

and we are led to deal with the compactness of

R
Z t

0

U1.t � s/KU1.s/ds W L2.Rn � V / ! L2.˝ � V /:

• Note that

Z t

0

U1.t � s/KU1.s/ ds D
Z t

0

ds

Z
V

 .x � .t � s/v � sv0; v0/�.v0/:

For any  .:; :/ 2 L2.Rn � V /, we denote by

O .�; v/ D lim
M!1

1

.2	/
n
2

Z
j�j�M

 .x; v/e�i�:xd�

its partial Fourier transform with respect to space variable where the limit holds
in L2.Rn � V / norm. Then

k k2L2.Rn�V / D
Z
V

Z
Rn

ˇ̌
ˇ O .�; v/

ˇ̌
ˇ2 d��.dv/

and

 .x; v/ D lim
M!1

1

.2	/
n
2

Z
j�j�M

O .�; v/ei�:xd�

where the limit holds in L2.Rn � V / norm.
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Hence

Z t

0

U1.t � s/KU1.s/ ds

D
Z t

0

ds

Z
V

 .x � .t � s/v � sv0; v0/�.dv0/

D lim
M!1

1

.2	/
n
2

Z
j�j�M

eix:�
Z t

0

ds

Z
V

O .�; v/e�i..t�s/vCsv0/:��.dv0/

D lim
M!1

1

.2	/
n
2

Z
j�j�M

Z
V

eix:� O .�; v/
�Z t

0

dse�i..t�s/vCsv0/:�ds


�.dv0/

where the limit holds in L2.Rn � V / norm. For each M > 0; let

OM W L2.Rn � V / ! L2.Rn � V /

 !
Z

j�j�M

Z
V

eix:� O .�; v/
�Z t

0

dse�i..t�s/vCsv0/:�ds


�.dv0/:

We observe that ROM is a Hilbert Shmidt operator because ˝ has finite volume
and V is compact (keep in mind that x 2 ˝!). It suffices to show that

OM !
Z t

0

ds

Z
V

 .x � .t � s/v � sv0; v0/�.dv0/

in L2.Rn � V / uniformly in k kL2.Rn�V / � 1, i.e.

Z
j�j>M

eix:�
Z
V

O .�; v0/
�Z t

0

e�i..t�s/vCsv0/:�ds


�.dv0/ ! 0

inL2.Rn�V / uniformly in k kL2.Rn�V / � 1. By the Parseval identity, this amounts
to

Z
V

�.dv/
Z

j�j>M
d�

ˇ̌
ˇ̌Z
V

O .�; v0/
�Z t

0

e�i..t�s/vCsv0/:�ds


�.dv0/

ˇ̌
ˇ̌2 ! 0

uniformly in k kL2.Rn�V / � 1: Using Cauchy-Schwarz inequality, we majorize by

sup
j�j>M

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

e�i..t�s/vCsv0/:�ds

ˇ̌
ˇ̌2 Z

Rn�V

ˇ̌
ˇ O .�; v0/

ˇ̌
ˇ2

� sup
j�j>M

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

e�i..t�s/vCsv0/:�ds

ˇ̌
ˇ̌2 8 k k � 1:
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Now

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

e�i..t�s/vCsv0/:�ds

ˇ̌
ˇ̌2

D
Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌
Z t

0

eis.v�v0/:�ds

ˇ̌
ˇ̌2

D
Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

where � D j�j e; .e 2 Sn�1/ and

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

D
Z

fj.v�v0/:ej�"g
�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

C
Z

fj.v�v0/:ej>"g
�.dv0/�.dv/

ˇ̌
ˇ̌
Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

� t2
Z

fj.v�v0/:ej�"g
�.dv0/�.dv/

C
Z

fj.v�v0/:ej>"g
�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2 :

The first term can made arbitrarily small for " small enough (assumption on the
velocity measure �) and, for " fixed, the second term goes to zero as j�j ! 1
because of

R t
0
eisj�j.v�v0/:eds (Riemann-Lebesgue lemma). This ends the proof. �

Corollary 11 We assume that ˝ has finite Lebesgue measure, the scattering
operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1) and the hyperplanes
have zero �-measure. Then

�ess.V .t// D �ess.U.t//:

In particular !e.V / D !e.U / and �.V.t// \ ˚
ˇI jˇj > es.T /t� consists at most of

isolated eigenvalues with finite algebraic multiplicities.

Here !e.U / denotes the essential type of .U.t//t>0 etc. The assumption on the
velocity measure � is “optimal”:

Theorem 31 ([51]) Let � be finite, ˝ bounded and

K W ' 2 L2.˝ � V / !
Z
V

'.x; v/�.dv/:
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Let there exist a hyperplane H D fvI v:e D cg .e 2 Sn�1; c 2 R/ with positive
�-measure. Then there exists t > 0 such that V.t/ � U.t/ is not compact on
L2.˝ � V / for 0 < t � t .

and

Theorem 32 ([51]) In the general setting above, if every ball centred at zero
contains at least a section (by a hyperplane) with positive �-measure then V.t/ �
U.t/ is not compact on L2.˝ � V / for all t > 0:

The assumption that the scattering operator is regular is “nearly optimal”:

Theorem 33 ([51]) Let � be an arbitrary positive measure. We assume that its
support V is bounded. If V.t/ � U.t/ is compact on Lp.˝ � V / for all t > 0

then, for any open ball B � ˝ , the strong integral

Z
B

K.x/dx

is a compact operator on Lp.V /:

Corollary 12 Besides the conditions of Theorem 33, we assume that

x 2 ˝ ! K.x/ 2 L.Lp.V //

is measurable (not simply strongly measurable!) e.g. is piecewise continuous in
operator norm. ThenK.x/ is a compact operator on Lp.V / for almost all x 2 ˝:
Proof

1

jBj
Z
B

K.x/dx ! K.x/ in L.Lp.V // as jBj ! 0

at the Lebesgue points x of K W ˝ ! L.Lp.V //. �

5.2 L1 Theory

As noted previously, L1 space is the physical setting for neutron transport because

Z
˝

Z
V

f .x; v; t/dx�.dv/

is the expected number of particles. The L1 mathematical results are very different
from those in Lp theory (p > 1/ and the analysis is much more involved! Weak
compactness is a fundamental tool for spectral theory of neutron transport in L1

spaces. To this end, we recall first some useful results. Let .E;m/ be a �-finite
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measure space. A bounded subset B � L1.E;m/ is relatively weakly compact if

sup
f 2B

Z
A

jf jdm ! 0 as m.A/ ! 0

and (if m.E/ D 1) there exists measurable sets En � E , m.En/ < C1, En �
EnC1, [En D E such that

sup
f 2B

Z
Ecn

jf j dm ! 0 as n ! 1:

A bounded subset B � L1.E;m/ is relatively weakly compact if and only if B is
relatively sequentially weakly compact. A bounded operatorG on L1.E;m/ is said
to be weakly compact if G sends a bounded set into a relatively weakly compact
one. If Gi W L1.E;m/ ! L1.E;m/ (i D 1; 2/ are positive operators and G1f �
G2f 8f 2 L1C.E;m/ then G1 is weakly compact if G2 is; this follows easily
from the above criterion of weak compactness. If Gi (i D 1; 2/ are two weakly
compact operators onL1.E;m/ thenG1G2 is a compact operator [18]. We are going
to present (weak) compactness results for neutron transport operators and show their
spectral consequences. We give here an overview of [52]. We treat first a model case
where

�.x; v/ D 0; � is finite and k.x; v; v0/ D 1.

We start with negative results:

Theorem 34 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure and

� an arbitrary finite positive Borel measure on R
n with support V . Let n > 2 (or

n D 1 and 0 2 V /. Let

K W ' 2 L1.˝ � V / !
Z
V

'.x; v/�.dv/ 2 L1.˝/:

Then K.� � T /�1 is not weakly compact.

Proof We can assume without loss of generality that 0 2 ˝ . Consider just the case
n > 2: Let .fj /j � Cc.˝�V / a normalized sequence in L1.˝ �V / converging in
the weak star topology of measures to the Dirac mass ı.0;v/. Then for any 2 Cc.˝/

hK.� � T /�1fj ;  i D
Z
˝

 .x/dx
Z
V

�.dv/
Z s.x;v/

0

e��tfj .x � tv; v/dt

D
Z
˝

Z
V

fj .y; v/

"Z s.y;�v/

0

e��t .y C tv/dt

#
dy�.dv/

!
Z s.0;�v/

0

e��t .tv/dt
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i.e. K.� � T /�1fj tends, in the weak star topology of measures, to a (non-trivial)
Radon measure

m W  2 Cc.˝/ !
Z s.0;�v/

0

e��t .tv/dt

with support included in a segment. Hence m … L1.˝/ and K.� � T /�1 is not
weakly compact. �

We note that this property was noted for the first time in the whole space in [23].
We have also:

Theorem 35 ([52]) Let n > 3 and let ˝ � R
n be an open set with finite Lebesgue

measure. Let � be an arbitrary finite positive Borel measure on R
n with support V

and

K W ' 2 L1.˝ � V / !
Z
V

'.x; v/�.dv/ 2 L1.˝/:

Then

(i) .� � T �K/�1 � .� � T /�1 is not weakly compact.
(ii) V.t/ � U.t/ is not weakly compact.

We note that this theorem is false for n D 1 while the case n D 2 is open, see
[52]. We recall now a necessary condition on �.

Theorem 36 ([52]) We assume that the velocity measure is invariant under the
symmetry v ! �v: Let there exist m 2 N such that

�
K.� � T /�1�m

is compact on L1.˝ � V /: Then the hyperplanes (through zero) have zero
�-measure.

We note that for any m 2 N

�
K.� � T /�1K

�m � R �
K.� � T1/�1K

�m E

where

E W L1.˝ � V / ! L1.Rn � V /

is the trivial extension operator,

R W L1.Rn � V / ! L1.˝ � V /
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is the restriction operator and T1 is the generator of

U1.t/ W  2 L1.Rn � V / !  .x � tv; v/ 2 L1.Rn � V /:
We start with a fundamental observation:

Lemma 9 Let � be an arbitrary finite positive measure on R
n with support V and

K W ' 2 L1.˝ � V / !
Z
V

'.x; v/�.dv/ 2 L1.˝/:

For any � > 0 there exists a finite positive measure ˇ on R
n (depending on �) such

that

K.� � T1/�1K' D ˇ �K':
Moreover,

Ǒ.�/ D 1

.2	/
n
2

Z
Rn

�.dv/

�C i�:v
:

Proof

K.� � T1/�1K' D
Z
Rn

�.dv/
Z 1

0

e��t .K'/.x � tv/dt

D
Z 1

0

e��tdt
Z
Rn

.K'/.x � tv/�.dv/

D
Z 1

0

e��tdt
Z
Rn

.K'/.x � z/�t .d z/

D
Z 1

0

e��t Œ�t �K'
 dt

where �t is the image of � under the dilation v ! tv. So

K.� � T1/�1K' D ˇ �K'

where ˇ WD R 1
0
e��t�tdt (strong integral). Finally Ǒ.�/ is given by

Z 1

0

e��t O�t .�/dt D 1

.2	/
n
2

Z 1

0

e��t
�Z

Rn

e�i�:v�t.dv/

�
dt

D 1

.2	/
n
2

Z 1

0

e��t
�Z

Rn

e�i t�:v�.dv/

�
dt

D 1

.2	/
n
2

Z
Rn

�.dv/

�C i�:v
:

This ends the proof. �
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Remark 4 Ǒ.�/ D R
Rn

�.dv/
�Ci�:v ! 0 for j�j ! 1 if and only if the hyperplanes

(through zero) have zero �-measure; see [52]. We are going to show that the
compactness results rely on how fast Ǒ.�/ goes to zero as j�j ! 1:

Theorem 37 ([52]) We assume that ˝ � R
n is an open set with finite Lebesgue

measure. Let the velocity measure � be finite and such that

Z
Rn

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ2m d� < C1

for some m 2 N: Then
�
K.� � T /�1K�m

is weakly compact in L1.˝ � V / and�
K.� � T /�1K�mC1

is compact in L1.˝ � V /:
Proof We start from

�
K.� � T1/�1K

�m
' D ˇ.m/ �K'

where

ˇ.m/ D ˇ � : : : : � ˇ .m times/:

Since

Oˇ.m/.�/ D

 Ǒ.�/

�m

then our assumption amounts to Oˇ.m/ 2 L2.Rn/: In particular ˇ.m/ 2 L2.Rn/ (ˇ.m/

is now a function!). It follows that

�
K.� � T1/�1K

�m
' D ˇ.m/ �K' 2 L2.Rn/

and then
�
K.� � T1/�1K

�m
maps continuouslyL1.Rn � V / into L2.Rn/: Hence

R �
K.� � T1/�1K

�m W L1.Rn � V / ! L1.˝/

is weakly compact because the imbedding of L2.˝/ into L1.˝/ is weakly compact
since ˝ has finite Lebesgue measure (a bounded subset of L2.˝/ is equi-
integrable). Finally

�
K.� � T /�1K

�m
is also weakly compact by a domination

argument. It follows that
�
K.� � T /�1K

�2m
is compact as a product of two weakly

compact operators. Actually

�
K.� � T /�1K�mC1 D K.� � T /�1K �

K.� � T /�1K
�m

is compact because K.� � T /�1 is a Dunford-Pettis operator, see below. �
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We give now a geometrical condition on � implying the compactness results.

Theorem 38 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure. Let

the velocity measure � be finite and there exist ˛ > 0, c > 0 such that

sup
e2Sn�1

� fvI jv:ej � "g � c"˛:

Then
�
K.� � T /�1K�mC1

is compact in L1.˝ � V / for m >
n.˛C1/
2˛

:

Proof Note that Ǒ.�/ is a continuous function. According to the preceding theorem,

we need just check the integrability of
ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ2m at infinity. Up to a factor .2	/� n

2

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ D

ˇ̌
ˇ̌
Z
Rn

�.dv/

�C i�:v

ˇ̌
ˇ̌ �

Z
Rn

�.dv/q
�2 C j�j2 je:vj2

where e D �

j�j : So, for any " > 0;

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ �

Z
fje:vj<"g

�.dv/q
�2 C j�j2 je:vj2

C
Z

fje:vj>"g
�.dv/q

�2 C j�j2 je:vj2

� ��1� fje:vj < "g C k�k
j�j " � ��1c"˛ C k�k

j�j " :

Optimizing with respect to " yields

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ2m � C

j�j 2m˛˛C1

for some positive constant C depending on �. We are done if 2m˛
˛C1 > n i.e. if

m >
n.˛C1/
2˛

:�

In the same spirit (but with more involved estimates) we can show:

Theorem 39 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure. Let

the velocity measure � be finite and there exist ˛ > 0, c > 0 such that

sup
e2Sn�1

�˝ �
˚
.v; v0/I ˇ̌

.v � v0/:e
ˇ̌ � "

� � c"˛:

Then Um.t/ is weakly compact in L1.˝ � V / for all t > 0 and for m > m0 where
m0 is the smallest odd integer greater than n.˛C1/

2˛
C 1:

We point out that in Theorems 38 and 39, the condition on m does not depend
on the constant c in the statement; this fact is fundamental if we want to pass from
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model cases to more general models. We show now how to treat by approximation
more general velocity measures and scattering kernels. Indeed, in the approximation
procedure, a general (a priori infinite) velocity measure � is approximated, by
truncation, by a sequence of finite measures �j such that

sup
e2Sn�1

�j ˝ �j
˚
.v; v0/I ˇ̌

.v � v0/:e
ˇ̌ � "

� � cj "
˛

where ˛ is independent of j .
A scattering operatorK in L1.˝ � V / is said to be regular if fK.x/I x 2 ˝g is

a set of collectively weakly compact operators on L1.V /, i.e. the set

˚
K.x/'I x 2 ˝; k'kL1.V / � 1

�

is relatively weakly compact inL1.V /: This class of scattering kernels appears (with
Lebesgue measure dv on R

n/ in P. Takak [72] and L. W. Weis [82]. See B. Lods [37]
for the extension of P. Takak’s construction to abstract velocity measures �:

Theorem 40 ([37]) Let K be a regular scattering operator in L1.˝ � V /. Then
there exists a sequence .Kj /j of scattering operators such that:

(i) 0 � Kj � K

(ii)
��K �Kj

��
L.L1.˝�V // ! 0 as j ! C1:

(iii) For eachKj there exists fj 2 L1.V / such that

Kj' � fj .v/
Z
'.x; v0/�.dv0/ 8' 2 L1C.˝ � V /:

We are ready to show:

Theorem 41 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure and

let K be a regular scattering operator in L1.˝ � V /. We assume that the velocity
measure� is such that: There exists ˛ > 0 such that for any c1 > 0 there exists c2 >
0 such that

sup
e2Sn�1

� fvI jvj � c1; jv:ej � "g � c2"
˛:

Then the components of �e.T / and �e.T C K/ containing a right half-plane
coincide. In particular

�.T CK/\ fRe� > s.T /g

consists at most of isolated eigenvalues with finite algebraic multiplicities where

s.T / D � lim
t!C1 inf

.y;v/

1

t

Z t

0

�.y C �v; v/d�:
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Proof Let us show that
�
K.� � T /�1K�mC1

is weakly compact in L1.˝ � V / for

m >
n.˛C1/
2˛

. We fix m >
n.˛C1/
2˛

. It suffices to show the weak compactness of�
Kj .� � T /�1Kj

�mC1
for all j (Kj from Theorem 40). By domination, we may

replaceKj by OKj where

cKj' D fj .v/
Z
'.x; v0/�.dv0/:

By approximation again we may suppose that fj is continuous with compact
support. Let j be fixed and denote by Vj the support of fj . We note thathcKj .� � T /�1cKj

im
leaves invariant L1.˝ � Vj / and cKj maps L1.˝ � V / into

L1.˝ � Vj /. By replacing fj .v/ by its supremum, the model case (dealt with
previously) in L1.˝ � Vj / insures that

�
Kj .� � T /�1Kj

�m
is weakly compact on

L1.˝ � Vj / so

�
Kj .� � T /�1Kj

�mC1 D �
Kj .� � T /�1Kj

�m �
Kj .� � T /�1Kj

�

is weakly compact on L1.˝ � V /. Finally some power of K.� � T /�1 is compact
on L1.˝ � V / and we conclude by the general theory. �

Theorem 42 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure and

let K be a regular scattering operator in L1.˝ � V /. We assume that the velocity
measure� is such that: There exists ˛ > 0 such that for any c1 > 0 there exists c2 >
0 such that

sup
e2Sn�1

�˝ �
˚
.v; v0/I jvj ; ˇ̌v0 ˇ̌ � c1 ;

ˇ̌
.v � v0/:e

ˇ̌ � "
� � c2"

˛:

Then .V .t//t>0 and .U.t//t>0 have the same essential type. In particular

�.V.t// \ ˚
˛ 2 CI j˛j > es.T /t�

consists at most of isolated eigenvalues with finite algebraic multiplicities.

Proof Let us show that RmC1.t/ is weakly compact in L1.˝ � V / for all t > 0 and
for m > m0 where m0 is the smallest odd integer greater than n.˛C1/

2˛
C 1: We fix

m > m0. It suffices to show that RjmC1.t/ is weakly compact in L1.˝ �V / for all j

whereRjmC1.t/ is the remainder term of ordermC1 corresponding to a perturbation
Kj in place of K (Kj from Theorem 40). By domination, we may replace Kj by
cKj where

cKj' D fj .v/
Z
'.x; v0/�.dv0/:
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By approximation again we may suppose that fj is continuous with compact
support. Let j be fixed and denote by Vj the support of fj . We note that Rjm.t/
leaves invariantL1.˝ � Vj / and cKj maps L1.˝ � V / into L1.˝ � Vj /: Note also
that

R
j
mC1 D Rjm �

hcKjU
i

D
Z t

0

Rjm.t � s/cKjU.s/ds:

By dominating fj by its supremum, the previous model case (and a domination
argument) shows that Rjm.t � s/ is weakly compact in L1.˝ � Vj /. Thus Rjm.t �
s/cKjU.s/ is weakly compact in L1.˝�V / and then so is RjmC1 as a strong integral
of “weakly compact operator” valued mapping. We conclude by the general theory.
�
Remark 5 The conditions on � in Theorems 41 and 42 are satisfied e.g. for
Lebesgue measure on R

n or on spheres (multigroup models).

5.3 Dunford-Pettis Operators in Transport Theory

A bounded operator G 2 L.L1.�// is called a Dunford-Pettis (or a completely
continuous) operator if G maps a weakly compact subset into a (norm) compact
subset. For instance, a weakly compact operator on L1.�/ is Dunford-Pettis; this
explains why the product of two weakly compact operators on L1.�/ is compact.
More generally, if G2 is weakly compact on L1.�/ and G1 is Dunford-Pettis on
L1.�/ thenG1G2 is compact onL1.�/. We have seen that various relevant operators
for neutron transport are not weakly compact in L1.˝ � V /; for instance:

K.� � T /�1; .� � T �K/�1 � .� � T /�1 and V.t/ � U.t/:

We can show however that they are all Dunford-Pettis, (see [50] for more informa-
tion). This explains why we claimed in the proof of Theorem 37 that

�
K.� � T /�1K�mC1 D K.� � T /�1K �

K.� � T /�1K
�m

is compact since
�
K.� � T /�1K�m

is weakly compact andK.��T /�1 is Dunford-
Pettis. We restrict ourselves to:

Theorem 43 ([50]) Let ˝ � R
n be an open set with finite Lebesgue measure and

let K be a regular scattering operator in L1.˝ � V /. If the affine hyperplanes have
zero �-measure then V.t/ � U.t/ is a Dunford-Pettis operator on L1.˝ � V /:
Proof We note first that V.t/ � U.t/ D P1

1 Uj .t/ is Dunford-Pettis for all t > 0

if and only if U1.t/ is [50]. By approximation, we may assume that their exists f



Spectral Theory for Neutron Transport 381

continuous with support in fjvj < cg such that

K' � f .v/
Z
'.x; v0/�.dv0/ 8' 2 L1C.˝ � V /:

Let E � L1.˝ � V / be relatively weakly compact. In particular

sup
'2E

Z
jvj>c

�.dv/
Z
˝

j'.x; v/j dx ! 0 as c ! C1:

We decompose ' 2 E as

' D 'fjvj<cg C 'fjvj>cg

so

��U1.t/.'fjvj>cg/
�� � kU1.t/k

��'fjvj>cg
�� ! 0 as c ! C1

uniformly in ' 2 E: On the other hand 'fjvj<cg is zero for jvj > c and (for c > c)
for any  2 L1.˝ � V /; K is zero for jvj > c. So we may assume from the
beginning that V is bounded and then K maps also L2.˝ � V / into itself. We
decompose ' 2 E as

' D '1˛ C '2˛ WD 'fj'j<˛g C 'fj'j>˛g

and note that
Z

j'j >
Z

fj'j>˛g
j'j > ˛ .dx ˝ � fj'j > ˛g/

so

dx ˝ � fj'j > ˛g ! 0 as ˛ ! C1:

The equi-integrability of E implies that

��'2˛
��
L1

! 0 as ˛ ! C1

uniformly in ' 2 E and finally
��U1.t/'2˛

��
L1

! 0 as c ! C1 uniformly in
' 2 E . Since,

˚
'1˛

�
is bounded in L1 and in L1 then the interpolation inequality

��'1˛
��
L2

� ��'1˛
�� 1
2

L1

��'1˛
�� 1
2

L1



382 M. Mokhtar-Kharroubi

shows that
˚
'1˛

�
is also bounded in L2.˝ � V /. We know (from the L2 theory) that

U1.t/ is compact in L2.˝ � V / so
˚
U1.t/'

1
˛

�
is relatively compact in L2.˝ � V /

and then relatively compact in L1.˝ � V / since ˝ � V has a finite measure. Thus
fU1.t/'I ' 2 Eg is as close to a relatively compact subset ofL1.˝�V / as we want
and finally fU1.t/'I ' 2 Eg is relatively compact. �

6 Comments

6.1 Measure Convolution Operators in Transport Theory

The compactness results for neutron transport operators in Lp spaces with 1 < p <
1 (see Subsection 5.1) can also be derived from the analysis of just two particular
measure convolution operators on R

n, see [59].

6.2 Unbounded Geometries

The compactness results given in this lecture in spatial domains ˝ with finite
Lebesgue measure need no be true in general domains, e.g. the results are false in the
whole space (i.e.˝ D R

n) and space homogeneous cross-sections. However, under
suitable assumptions on the cross-sections, we can recover the compactness results
above in unbounded geometries [60]. Actually, for general geometries and cross-
sections, the relevant perturbation theory does not concern the essential spectra (and
the essential types) but rather the critical spectra (and the critical types); we refer
to [10, 53, 54, 59, 62, 67] for the abstract theory and how to use it in the context of
neutron transport theory.

6.3 Leading Eigenvalue of Neutron Transport

The time asymptotic behaviour of neutron transport semigroup is meaningful if the
latter has a spectral gap or equivalently if its generator has a leading eigenvalue. This
topic relies on peripheral spectral analysis of neutron transport. The first relevant
question concerns irreducibility criteria of neutron transport semigroups for which
we refer e.g. to [26, 47, 78] and [48, Chapter 5]. The second relevant question
concerns the effective existence of leading eigenvalues; besides the isotropic case
dealt with by [29], we refer to ([48, Chapter 5]) for general tools. Variational
characterizations of the leading eigenvalue in Lp spaces (InfSup or SupInf
criteria) and lower bounds of this eigenvalue are given in [55]. The criticality
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eigenvalue problem is dealt with in [41,66] and [48, Chapter 5]. Finally, we refer to
[40] for variational characterizations of the criticality eigenvalue.

6.4 Partly Elastic Scattering Operators

Most of the literature on spectral theory of neutron transport is devoted either to
one speed models or to inelastic models. Despite their apparent difference, these
two models can be covered by a unique general formalism as we did in Sect. 5.
However, more complex models which take into account of both elastic and inelastic
scatterings appear e.g. in [35]:

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D Kef CKif

where

Kif D
Z
R3

k.x; v; v0/f .x; v0/dv0 (inelastic operator)

and

Kef D
Z
S2
k.x; �; !; !0/f .x; �!0/dS.!0/ (elastic operator)

where v D �!: The peculiarity of the elastic scattering operator is that it is not
compact “in velocities” in contrast to usual inelastic scattering operators. This
explains the complexity of �.T C Ke/ which consists of a half-plane and various
“curves”[35]. We find in [68] various compactness results (due to Ki ) and spectral
results. In particular the semigroups generated by T CKe and by T CKe CKi have
the same essential type.

6.5 Generalized Boundary Conditions

We point out that “zero incoming flux” is the natural (i.e. physical) boundary
condition for neutron transport. However, various boundary conditions (relating e.g.
the incoming and outgoing fluxes) were also considered in kinetic theory [11] or
in structured cell population models (see e.g. [5]). The literature on the subject is
considerable and we do not try to comment on it. We just note that the corresponding
advection semigroup is no longer explicit and, for this reason, spectral analysis of
such kinetic models with non local boundary conditions is much more technical. We
refer for instance to [38] and references therein.
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