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1 Preliminaries

1.1 Introduction

Mathematical models arising in the natural sciences often involve equations that
describe how the phenomena under investigation evolve in time. Such evolution
equations can arise in a number of different forms; for example, the assump-
tion that time is a discrete variable could lead to difference equations, whereas
continuous-time models are often expressed in terms of differential equations.

The construction and application of a mathematical model usually proceeds in
the following manner.

• We make assumptions on the various factors that influence the evolution of the
time-dependent process that we are interested in.

• We obtain a ‘model’ by expressing these assumptions in terms of mathematics.
• We use mathematical techniques to analyse our model. If the model takes the

form of an equation, then ideally we would like to obtain an explicit formula for
its solution (unfortunately, this is impossible in the majority of cases).

• Finally, we examine the outcome of our mathematical analysis and translate this
back into the real world situation to find out how closely the predictions from our
model agree with actual observations.

In the case of kinetic models, where the interest is in describing, in mathematical
terms, the evolution of some population of objects, the modelling process usually
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results in a so-called Kinetic (or Master) Equation. A nice account of the typical
steps involved in deriving such an equation is given in Sect. 1.1 of the contribution
to this volume by Jacek Banasiak [3].

Note that a mathematical model will usually be only an approximation to
what is actually happening in reality. Highly detailed models, incorporating many
different factors, inevitably mean very complicated mathematical equations which
are difficult to analyse, whereas crude models, which are easy to analyse, are most
likely to provide poor predictions of actual behaviour. In practice, a compromise has
to be reached; a small number of key factors are identified and used to produce a
model which is not excessively complicated.

When faced with a specific mathematical problem that has emerged from the
modelling process, an important part of the mathematical analysis is to establish
that the problem has been correctly formulated. The usual requirements for this to
be the case are the following.

1. Existence of Solutions. We require at least one solution to exist.
2. Uniqueness of Solutions. There must be no more than one solution.
3. Continuous Dependence on the Problem Data. The solution should depend

continuously on any input data, such as initial or boundary conditions.

Problems that meet these requirements are said to be well-posed. Note that
implicit in the above statements is that we know exactly what is meant by a solution
to the problem. Often there will be physical, as well as mathematical, constraints
that have to be satisfied. For example we may be only interested in solutions which
take the form of non-negative, differentiable functions. Also, in some cases, it may
be possible to define a solution in different ways, and this could lead to a well-posed
problem if we work with one type of solution but an ill-posed problem if we adopt
a different definition of a solution. When multiple solutions exist, then we may be
prepared to accept this provided a satisfactory explanation can be provided for the
non-uniqueness condition being violated.

In these notes, we shall present some techniques that have proved to be effective
in establishing the well-posedness of problems involving evolution equations. We
shall illustrate how these techniques can be applied to standard problems that arise
in population dynamics, beginning initially with the simple case of initial-value
problems (IVPs) for scalar ordinary differential equations (ODEs) (the Malthus
and Verhulst models of single-species population growth), and then going on to
IVPs for finite systems of ODEs (e.g. models of interacting species and epidemics).
We conclude by discussing and analysing models of coagulation–fragmentation
processes that are expressed in terms of an infinite system of differential equations.
To enable these problems to be treated in a unified manner, the techniques used
will be developed from a dynamical systems point of view and concepts and results
from the related theory of semigroups of operators will be introduced at appropriate
stages.
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1.2 Dynamical Systems

From a mathematical viewpoint, a dynamical system consists of the following two
parts:

• a state vector that describes the state of the system at a given time,
• a function that maps the state at one instant of time to the state at a later time.

The following definition expresses this more precisely; see [15, p.160].

Definition 1 Let X represent the state space (i.e. the space of all state vectors) and
let J be a subset of R (which we assume contains 0). A function � W J � X ! X

that has the two properties

(i) �.0;
ı
u/ D ı

u

(ii) �.s; �.t;
ı
u// D �.t C s;

ı
u/ ; for t; s; t C s 2 J; (the semigroup property)

is called a dynamical system on X .

Remarks

1. Throughout, we assume that X is a Banach space (i.e. a complete normed vector
space); see Sect. 1.3.2 for details.

2. We can regard �.t;
ı
u/ as the state at time t of the system that initially was at state

ı
u. The semigroup property then has the following interpretation: let the system

evolve from its initial state
ı
u to state �.t;

ı
u/ at time t , and then allow it to evolve

from this state for a further time s. The system will then arrive at precisely the

state �.t C s;
ı
u/ that it would have reached through a single-stage evolution of

t C s from state
ı
u.

3. In these notes, we shall consider only the case when J is an interval in R, usually
J D R

C D Œ0;1/. The dynamical system is then called a continuous-time
(semi- or forward) dynamical system. We shall abbreviate this to CDS.

In operator form, we can write

�.t;
ı
u/ D S.t/

ı
u;

where S.t/ is an operator mapping the state space X into X . Note that S.0/ D I

(the identity operator onX ) and the semigroup property (in the case when J D RC)
becomes

S.t/S.s/ D S.t C s/; 8t; s � 0:

The family of operators S D fS.t/gt�0 is said to be a semigroup of operators
on X (algebraically, S is a semigroup under the associative binary operation of
composition of operators).
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Example 1 As a simple illustration of how a CDS arises from a differential
equation, consider the initial value problem

u0.t/ D lu.t/ ; u.0/ D ı
u ; (1)

where l is a real constant. Routine methods show that a solution to (1) is u.t/ D etl ı
u.

This establishes that there exists at least one solution to (1). To prove that there is
no other differentiable solution (i.e. to establish the uniqueness of the solution that
we have produced), we argue as follows. Suppose that another solution v exists and
let t > 0 be arbitrarily fixed. Then, for 0 < s � t , we have

d

ds
.e.t�s/lv.s// D �le.t�s/lv.s/C e.t�s/lv0.s/

D �le.t�s/lv.s/C e.t�s/l lv.s/ D 0:

It follows from this that e.t�s/lv.s/ is a constant function of s on Œ0; t �. On choosing
s D 0 and s D t , we obtain

etlv.0/ D e.t�t /lv.t/ D v.t/:

Since this argument works for any t > 0 and we already know that v.0/ D u.0/ Dı
u,

we deduce that v.t/ D u.t/ D etl ı
u for all t � 0. Now let � W R�R ! R be defined

by

�.t;
ı
u/ D etl ı

u ; t;
ı
u 2 R ;

that is, �.t;
ı
u/ denotes the value at time t of the solution of the IVP (1). Clearly

(i) �.0;
ı
u/ Dı

u

(ii) �.s; �.t;
ı
u// D �.s; etl ı

u/ D esl etl ı
uD e.tCs/l ı

uD �.t C s;
ı
u/

and so � W R � R ! R is a CDS (by Definition 1).

Example 2 To make things a bit more interesting, we shall add a time-dependent
forcing term to the IVP (1) and consider the non-homogeneous problem

u0.t/ D lu.t/C g.t/; t > 0; u.0/ D ı
u; (2)

where g is some known, and suitably restricted, function of t . To find a solution
of (2), we use the following trick to reduce the problem to one that is more
straightforward. Suppose that the solution u can be written as u.t/ D etlv.t/: On
substituting into the non-homogeneous ODE, we obtain

letlv.t/C etlv0.t/ D letlv.t/C g.t/:
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It follows that v satisfies the ODE v0.t/ D e�tlg.t/ and therefore, from basic
calculus,

v.t/ � v.0/ D
Z t

0

v0.s/ ds D
Z t

0

e�slg.s/ ds:

Rearranging terms, and using the fact that v.0/ D ı
u, produces

v.t/ D ı
u C

Z t

0

e�slg.s/ ds;

and therefore a solution of the IVP (2) is given by

u.t/ D etl ı
u C

Z t

0

e.t�s/lg.s/ ds: (3)

Formula (3) is sometimes referred to as Duhamel’s (or the variation of constants)
formula. As we have actually found a solution, we have resolved the question of
existence of solutions to (2). But what about uniqueness? Do solutions to (2) exist
other than that given by the Duhamel formula? The following argument shows
that (3) is the only solution. Suppose that another solution, say w, of (2) exists and
consider z D u � w, where u is the solution given by (3). Then z must satisfy the
IVP z0.t/ D lz.t/; z.0/ D 0, and therefore, by the previous example, is given by
z.t/ D etl0 D 0 for all t � 0. Consequently, w.t/ D u.t/ for all t � 0. In this case,
if we define

�.t;
ı
u/ WD etl ı

u C
Z t

0

e.t�s/lg.s/ ds;

then we do not obtain a CDS as the semigroup property is not satisfied. The reason
for this is that the right-hand side of (2) depends explicitly on t through the function
g; i.e. the equation is non-autonomous. In the previous example, where the solution
of the IVP led to a CDS, the equation is autonomous since the right-hand side
depends on t only through the solution u.

In the sequel, we shall consider only autonomous differential equations. When
existence and uniqueness of solutions can be established for IVPs associated with
an equation of this type, then we end up with a CDS � W J �X ! X which we can
go on to investigate further. Typical questions that we would like to answer are the
following.

1. Given an initial value
ı
u, can we determine the asymptotic (long-term) behaviour

of �.t;
ı
u/ as t ! 1 ?

2. Can we identify particular initial values which give rise to the same asymptotic
behaviour?
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3. Can we say anything about the stability of the system? For example, if
ı
u is “close

to”
ı
v in X , what can be said about the distance between �.t;

ı
u/ and �.t;

ı
v/ for

future values of t?

In many situations, a dynamical system may also depend on a parameter (or
several parameters), that is, the system takes the form �� W J � X ! X where
� 2 R represents the parameter. In such cases, the following questions would also
be of interest.

4. Can we determine what happens to the behaviour of the dynamical system as the
parameter varies?

5. Can we identify the values of the parameter at which changes in the behaviour of
the system occur (bifurcation values)?

In some special cases, it is possible to find an explicit formula for the dynamical

system. For example, �.t;
ı
u/ D etl ı

u (where l can be regarded as a parameter). The
formula can then be used to answer questions 1–5 above. Unfortunately, in most
cases no such formula can be found and analysing the dynamical system becomes
more complicated.

1.3 Some Basic Concepts from Functional Analysis

The definition we gave of a dynamical system in Sect. 1.2, involved a state space
X . Recall that, from a mathematical point of view, a dynamical system is a function

� of time t and the state variable
ı
u 2 X . In the context of evolution equations,

ı
u

represents the initial state of the system (physical, biological, economic, etc.) that
is being investigated. We now examine the algebraic and analytical structure of the
state spaces that will be used in these notes. For a more detailed account, see any
standard book on Functional Analysis such as [16].

1.3.1 Vector Spaces

A complex vector space (or complex linear space) is a non-empty set X of
elements f; g : : : (often called vectors) together with two algebraic operations,
namely vector addition and multiplication of vectors by scalars (complex numbers).
Vector addition associates with each ordered pair .f; g/ 2 X�X a uniquely defined
vector f C g 2 X (the sum of f and g) such that

f C g D g C f and f C .g C h/ D .f C g/C h 8f; g; h 2 X:
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Moreover there exists a zero elementOX and, for each f 2 X , there exists �f 2 X ,
such that

f COX D f and f C .�f / D OX:

Multiplication by scalars associates with each f 2 X and scalar ˛ 2 C a uniquely
defined vector f̨ 2 X such that for all f; g 2 X and scalars ˛; ˇ we have

˛. f̌ / D .˛ˇ/f; 1x D x; ˛.f C g/ D f̨ C ˛g; .˛ C ˇ/f D f̨ C f̌:

Note that a real vector space, in which the scalars are restricted to be real numbers,
is defined analogously.

A linear combination of ff1; f2; : : : ; fmg � X is an expression of the form

˛1f1 C ˛2f2 C : : :C ˛mfm D
mX
jD1

˛j fj

where the coefficients ˛1; ˛2; : : : ; ˛m are any scalars. For any (non-empty subset)
M � X , the set of all linear combinations of elements in M is called the span of
M , written span .M/ (or sp .M/).

The vectors f1; f2; : : : ; fm are said to be linearly independent if

˛1f1 C ˛2f2 C : : :C ˛mfm D OX , ˛1 D ˛2 D : : : D ˛m D 0I

otherwise the vectors are linearly dependent. An arbitrary subsetM ofX is linearly
independent if every non-empty finite subset of M is linearly independent; M is
linearly dependent if it is not linearly independent.

A vector space X is said to be finite-dimensional if there is a positive integer n
such thatX contains a linearly independent set of n vectors whereas any set of nC1
or more vectors ofX is linearly dependent—in this caseX is said to have dimension
n and we write dimX D n. By definition, if X D fOX g, then dimX D 0. If
dimX D n, then any linearly independent set of n vectors fromX forms a basis for
X . If e1; e2; : : : ; en is a basis for X then each f 2 X has a unique representation as
a linear combination of the basis vectors; i.e.

f D ˛1e1 C ˛2e2 C : : :C ˛nen ;

with the scalars ˛1; ˛2; : : : ˛n uniquely determined by f .

1.3.2 Normed Vector Spaces and Banach Spaces

A norm on a vector spaceX is a mapping fromX into R satisfying the conditions

• kf k � 0 for all f 2 X and kf k D 0 , f D OX ;
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• k f̨ k D j˛j kf k for all scalars ˛ and f 2 X ;
• kf C gk � kf k C kgk for all f; g 2 X (the Triangle Inequality).

A vector space X , equipped with a norm k � k, is called a normed vector space,
denoted by .X; k�k/ (or simply byX when it is clear which norm is being used). Note
that a norm can be regarded as a generalisation to a vector space of the familiar idea
of the modulus of a number. Moreover, just as j˛�ˇj gives the distance between two
numbers, we can use kf � gk to measure the distance between two elements f; g
in .X; k � k/. This then enables us to discuss convergence of sequences of elements
and continuity of functions in a normed vector space setting.

We say that a sequence .fn/1nD1 in a normed vector space X (with norm k � k) is
convergent in X if there exists f 2 X (the limit of the sequence) such that

lim
n!1 kfn � f k D 0:

In this case we write fn ! f as n ! 1. Note that a convergent sequence .fn/1nD1
in X has a uniquely defined limit.

A sequence .fn/1nD1 in a normed vector space X is a Cauchy sequence if for
every � > 0; there exists N 2 N such that

kfm � fnk < � for all m; n � N:

The normed vector spaceX is said to be complete if every Cauchy sequence inX is
convergent, and we refer to a complete normed vector space as a Banach space. Note
that every finite-dimensional normed vector space is complete and hence a Banach
space.

Example 3 Let

C
n WD ff D .f1; : : : ; fn/ W fi 2 C for i D 1; : : : ng:

We say that two vectors f D .f1; : : : ; fn/ and g D .g1; : : : ; gn/ are equal in C
n if

f1 D g1; : : : ; fn D gn:

Also, if we define

f C g WD .f1 C g1; : : : ; fn C gn/; f; g 2 C
n;

f̨ WD . f̨1; : : : ; f̨n/; ˛ 2 C; f 2 C
n;

and

kf k WD
p

jf1j2 C � � � C jfnj2; f D .f1; : : : ; fn/ 2 C
n;
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then .Cn; k � k/ is a normed vector space with dimension n. Consequently .Cn; k � k/
is a Banach space. The Banach space .Rn; k � k/ consisting of all ordered n-tuples of
real numbers is defined in an analogous manner.

Example 4 For fixed � � 0, we define a vector space of scalar-valued sequences
.fi /

1
iD1 by

`1� WD ff D .fi /
1
iD1 W

1X
iD1

i�jfi j < 1g:

Equality, addition and multiplication by a scalar are defined pointwise in much the
same way as in C

n (e.g. .fi /1iD1 C .gi /
1
iD1 D .fi C gi /

1
iD1) and if we define a norm

on `1� by

kf k1;� D
1X
iD1

i�jfi j;

then .`1�; k � k1;�/ can be shown to be an infinite-dimensional Banach space.

1.3.3 Operators on Normed Vector Spaces

We now introduce some concepts related to functions that are defined on a normed
vector space X . Functions of this type are often referred to as operators (or
transformations) and we shall denote these by capital letters, such as L; S and T .
We shall concentrate only on cases where the operator, say T , maps each vector
f 2 D.T / � X onto another (uniquely defined) vector T .f / 2 X . Note that T .f /
is often abbreviated to Tf andD.T / is the domain of T .

The simplest type of operator on a normed spaceX is an operatorL that satisfies
the algebraic condition

L.˛1f1 C˛2f2/ D ˛1L.f1/C˛2L.f2/; 8 f1; f2 2 X and scalars ˛1; ˛2: (4)

Any operator L that satisfies (4) is said to be a linear operator on X . The set of all
linear operators mappingX into X will be denoted by L.X/ and, defining L1 CL2
and ˛L in L.X/ by .L1 C L2/.f / WD L1.f / C L2.f / and .˛L/.f / WD ˛L.f /,
where L1;L2; L 2 L.X/, f 2 X and ˛ is a scalar, L.X/ is a vector space.

An operator T W X ! X (T not necessarily linear) is said to be continuous at a
given f 2 X if and only if

fn ! f in X ) T .fn/ ! T .f / in X:

We say that T is continuous on X if it is continuous at each f 2 X .
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Another important concept is that of a bounded operator. We say that the operator
T W X ! X is bounded on the normed vector space X if

kT .f /k � M kf k for all f 2 X; (5)

where M is a positive constant that is independent of f ; i.e. the same constant M
works for all f 2 X . In the case of a linear operator L W X ! X , continuity and
boundedness are equivalent as it can be proved that

the linear operator L W X ! X is continuous on X , L is bounded on X:

We shall denote the collection of bounded linear operators on X by B.X/. It is
straightforward to verify that B.X/ is a subspace of L.X/. Moreover, if X is a
finite-dimensional normed vector space, then all operators in L.X/ are bounded (so
that, as sets, L.X/ D B.X/).

It follows from (5) that, if L is bounded, then

sup fkL.f /k W f 2 X and kf k � 1g

exists as a finite non-negative number. This supremum is used to define the norm of
a bounded linear operator in the vector space B.X/; i.e.

kLk WD sup fkL.f /k W f 2 X and kf k � 1g :

Equipped with this norm, B.X/ is a normed vector space in its own right, and
is a Banach space whenever X is a Banach space. Specific examples of bounded
and unbounded linear operators can be found in Sect. 1.1 of the contribution to this
volume by Adam Bobrowski [8].

1.3.4 Calculus of Vector-Valued Functions

The basic operations of differentiation and integration of scalar-valued functions
can be extended to the case of functions which take values in a normed vector space
.X; k�k/. A function of this type is said to be vector-valued because each value taken
by the function is an element in a vector space. In the sequel, we shall encounter
functions of the form u W J ! X where J � R is an interval. Thus, u.t/ 2 X for
all t 2 J . Such a function u is said to be strongly continuous at c 2 J if, for each
" > 0, a positive ı can be found such that

ku.t/ � u.c/k < " whenever t 2 J and jt � cj < ı:
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If u is strongly continuous at each point in J , then u is said to be strongly continuous
on J . Similarly, u is said to be strongly differentiable at c 2 J if there exists an
element u0.c/ 2 X such that

lim
h!0

u.c C h/� u.c/

h
D u0.c/; (6)

where the limit is with respect to the norm defined on X ; i.e. given " > 0, there
exists ı > 0 such that����u.c C h/� u.c/

h
� u0.c/

���� < " whenever c C h 2 J and 0 < jhj < ı: (7)

If u is strongly differentiable at each point in J then we say that u is strongly
differentiable on J .

As regards integration of a vector-valued function u W J ! X , it is a
straightforward task to extend the familiar definition of the Riemann integral of
a scalar-valued function. For example, if J D Œa; b�, then, for each partition Pn of
J of the form

a D t0 < t1 < t2 < : : : < tn D b;

there is a corresponding Riemann sum

S.uIPn/ WD
nX

kD1
u.�k/.tk � tk�1/;

in which �k is arbitrarily chosen in the sub-interval Œtk�1; tk�. We then define

Z b

a

u.t/ dt WD lim
kPnk!0

S.u; Pn/;

whenever this limit exists inX (and is independent of the sequence .Pn/ of partitions
and choice of �k). Here

kPnk WD max
1�k�n

.tk � tk�1/:

We refer to this integral as the strong (Riemann) integral of u over the interval
Œa; b�. The strong Riemann integral has similar properties to its scalar version. For
example, suppose that u W Œa; b� ! X is strongly continuous on Œa; b�. Then it can
be shown that, for each t 2 Œa; b�,
Z t

a

u.s/ ds exists ;

����
Z t

a

u.s/ ds

���� �
Z t

a

ku.s/k ds;
d

dt

�Z t

a

u.s/ ds

�
D u.t/I

see [7, Section 1.6] and also [4, Subsection 2.1.5].
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1.3.5 The Contraction Mapping Principle

As discussed earlier, when carrying out a rigorous investigation into problems
arising from mathematical models, the first step is usually to show that solutions
actually exist. Moreover, such solutions should be uniquely determined by the
problem data. Theoretical results which establish these properties are often referred
to as Existence-Uniqueness Results. To end this section, we present one of the most
important results of this type. We shall also supply a proof as this provides concrete
motivation for working with Banach spaces.

Theorem 1 (Banach Contraction Mapping Principle ) Let .X; k�k/ be a Banach
space and let T W X ! X be an operator with the property that

kTf � Tgk � ˛ kf � gk 8 f; g 2 X;

for some constant ˛ < 1 (such an operator T is said to be a (strict) contraction).
Then the equation

Tf D f

has exactly one solution (called a fixed point of T) in X . Moreover, if we denote
this unique solution by f and use T iteratively to generate a sequence of vectors
.f1; Tf1; T

2f1; T
3f1; : : :/, where f1 is any given vector in X , then

T nf1 ! f as n ! 1:

Proof Let the sequence .fn/1nD1 be defined as in the statement of the theorem. Then,
for n � 2,

kfnC1 � fnk D kTfn � Tfn�1k � ˛kfn � fn�1k � � � � � ˛n�1kf2 � f1k:

Note that the above inequality trivially holds for n D 1 as well. Hence, for any
m > n � 1, we have

kfm � fnk D kfm � fm�1k C kfm�1 � fm�2k C � � � C kfnC1 � fnk
� .˛m�2 C ˛m�3 C � � � C ˛n�1/kf2 � f1k

< ˛n�1.1C ˛ C ˛2 C � � � /kf2 � f1k D ˛n�1

1 � ˛ kf2 � f1k:
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Since

˛n�1

1 � ˛ kf2 � f1k ! 0 as n ! 1;

it follows that .fn/1nD1 is a Cauchy, and hence convergent, sequence in the Banach
space .X; k � k/. Let f 2 X be the limit of this convergent sequence. Then, by
continuity of the operator T , we obtain

fnC1 D Tfn ) lim
n!1fnC1 D lim

n!1Tfn D T
�

lim
n!1fn

�
) f D Tf;

and so f is a fixed point of T . To show that no other fixed point exists, suppose that
both f and g are fixed points, with f ¤ g. Then

kf � gk D kTf � Tgk � ˛kf � gk:

Dividing each side by kf � gk .¤ 0/ leads to 1 � ˛, which is a contradiction. ut

2 Finite-Dimensional State Space

In this section we give a brief account of some aspects of the theory associ-
ated with autonomous finite-dimensional systems of ODEs and will explain how
continuous-time dynamical systems defined on the finite-dimensional state-space
R
n arise naturally from such systems. This will pave the way for the discussion on

infinite-dimensional dynamical systems that will follow in the next section. Note
that the intention with these lectures is not to provide an exhaustive treatment of
systems of ODEs. Instead, we concentrate only on those results which will be
needed to analyse some selected problems arising in population dynamics. We
begin by examining the most straightforward case where we have a linear system
of constant-coefficient ODEs. We will then move on to systems involving nonlinear
equations and describe how, through the process of linearisation, useful information
on the long-time behaviour of solutions near an equilibrium solution can be obtained
from a related linear, constant-coefficient system. Obviously, before we can talk
about the long-time behaviour of solutions, we should make sure that solutions
do, in fact, exist. Hence, we shall highlight some conditions which, thanks to the
Contraction Mapping Principle, guarantee the existence and uniqueness of solutions
to systems of ODEs.
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2.1 Linear Constant-Coefficient Systems of ODEs

2.1.1 Matrix Exponentials

Consider the following IVP involving a linear system of n constant-coefficient
ODEs:

u0
1.t/ D l11u1.t/C l12u2.t/C � � � C l1nun.t/; u1.0/ D ı

u1;

u0
2.t/ D l21u1.t/C l22u2.t/C � � � C l2nun.t/; u2.0/ D ı

u2;

:::

u0
n.t/ D ln1u1.t/C ln2u2.t/C � � � C lnnun.t/; un.0/ D ı

un;

where l11; l12; : : : ; ln;n and
ı
u1; : : : ;

ı
un are real constants. The problem is to find n

differentiable functions u1; u2; : : : ; un of the variable t that satisfy the n equations
in the system. Obviously, before seeking solutions, we have to know that solutions
actually exist, and it is here that considerable progress can be made if we adopt
the strategy of working with matrix exponentials that was pioneered by the Italian
mathematician Guiseppe Peano in 1887 (see [13, pp. 503–504]).

The first step is to express the IVP system in the matrix–vector form

u0.t/ D Lu.t/; u.0/ D ı
u; (8)

where L is the n � n constant real matrix

L D

2
6664

l11 l12 � � � l1n
l21 l22 � � � l2n
:::
:::
: : :

:::

ln1 ln2 � � � lnn

3
7775 ;

and u.t/ D .u1.t/; : : : ; un.t// is interpreted as a column vector. A solution of (8)
will be a vector-valued function in the sense that u.t/ lies in the n-dimensional
Banach space R

n for each t . This means that our state space X is Rn.
Note that u0.t/ D .u0

1.t/; : : : ; u
0
n.t// with integrals of the vector-valued function

u being interpreted similarly; e.g.

Z t

0

u.s/ ds D .

Z t

0

u1.s/ ds; : : : ;
Z t

0

un.s/ ds/:
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Expressed as (8), the linear system of ODEs bears a striking resemblance to the
scalar equation u0.t/ D lu.t/, and so it is tempting to write down a solution in the
form

u.t/ D e tL ı
u : (9)

It turns out that the unique solution of (8) can indeed be written as (9), but this
obviously leads to the following questions.

Q1. What does e tL mean when L is an n � n constant matrix?
Q2. How do we verify that (9) is a solution of (8)?
Q3. How do we prove that (9) is the only differentiable solution of (8) that satisfies

the initial condition u.0/ D ı
u 2 R

n?
Q4. For a given n � n constant matrix L, can we actually express e tL in terms of

standard scalar-valued functions of t?

To answer Q1, we consider the power series definition of the scalar exponential
el , i.e.

e l D 1C l C l2

2Š
C l3

3Š
C � � � : (10)

This infinite series converges to the number e l D exp . l/ for each fixed l 2 R.
Motivated by this, Peano defined the exponential of an n � n constant matrix L by
a formula, which, in modern notation, takes the form

e L D exp .L/ D I C LC L2

2Š
C L3

3Š
C � � � : (11)

Here I is the n � n identity matrix, L2 represents the matrix product LL, L3 is
the product LLL D L2L D LL2 and so on. Note that the operation f 7! Lf ,
where f is a column vector in R

n, defines a bounded linear transformation that
maps Rn into R

n. If we use L to represent both the matrix and the bounded linear
operator that it defines, then it can be shown that the infinite series of n�n matrices
(or, equivalently, bounded linear operators in B.Rn/) will always converge (with
respect to the norm on B.Rn)) to a uniquely defined n� n matrix (which, as before,
can be interpreted as an operator in B.Rn/). Moreover

ke Lk � e kLk;

where kLk WD supfkLf k W f 2 R
n and kf k � 1g for any L 2 B.Rn/; see [15, pp.

82–84] and [13, p. 6]. It follows from (11) that, for any n� n constant matrix L and
any scalar t ,

e tL D exp .tL/ D I C tL C t2L2

2Š
C t3L3

3Š
C � � � ; (12)
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and

ke tLk � e jt j kLk:

The time-dependent matrix exponential defined by (12) has similar properties to
its one-dimensional “little brother”. For example, if L is any n � n constant matrix,
then

(P1) e 0L D I ;
(P2) e sLe tL D e .sCt /L for all s; t 2 RI
(P3) d

dt

�
e tLf

� D Le tLf for any given vector f 2 R
n.

The derivative in (P3) is interpreted as a strong derivative with respect to the norm
on R

n, so that
����e

.tCh/Lf � e tLf

h
� Le tLf

���� ! 0 as h ! 0:

Note that an R
n-valued function u is strongly differentiable at c 2 R if and only

if each of its scalar-valued components uk; k D 1; 2; : : : ; n; is differentiable at c;
the strong and pointwise (or component-wise) derivatives are then identical. In other
words, the notions of strong derivative and pointwise derivative coincide in this n-
dimensional case. It should also be remarked that a stronger version of (P3) can be
established. Since
����1h

�
e hL � I

� �L
���� �

1X
kD2

jhjk�1 kLkk
kŠ

D e jhj kLk � 1

jhj � kLk ! 0 as h ! 0;

and

e .tCh/L � e tL D �
e hL � I � e tL;

it follows that the operator-valued function t 7! e tL is strongly differentiable in
B.Rn/.

2.1.2 Existence and Uniqueness of Solutions

We can now answer Q2 and Q3. On setting u.t/ D e tL ı
u, it follows immediately

from properties (P1) and (P3) that

u.0/ D I
ı
u D ı

u

and

u0.t/ D Lu.t/:
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Therefore u.t/ D e tL ı
u is a solution of the IVP

u0.t/ D Lu.t/; u.0/ D ı
u :

To show that this IVP has no other differentiable solutions, we argue in exactly
the same way as for the scalar case. Suppose that another solution v exists; i.e.

v0.t/ D Lv.t/ and v.0/ D ı
u, and let t > 0 be arbitrarily fixed. Then, for 0 < s � t ,

we have

d

ds
.e.t�s/Lv.s// D �Le.t�s/Lv.s/C e.t�s/Lv0.s/

D �Le.t�s/Lv.s/C e.t�s/LLv.s/ D 0;

where 0 is the zero vector in R
n. It follows from this that e.t�s/Lv.s/ is a constant

vector for all s 2 Œ0; t �. On choosing s D 0 and s D t , we obtain

e tL ı
uD e tLv.0/ D e .t�t /L v.t/ D e 0L v.t/ D v.t/:

Since this argument works for any t > 0 and we already know that v.0/ D u.0/ D ı
u,

we deduce that v.t/ D u.t/ D e tL ı
u for all t � 0.

Note that this solution can be used to define the n-dimensional CDS
� W Œ0;1/ � R

n ! R
n, where �.t;

ı
u/ WD e tL ı

u. The associated semigroup of
operators fS.t/gt�0, S.t/ WD etl; is referred to as the semigroup generated by the

matrix L, and, for each
ı
u, the set fS.t/ ı

uW t � 0g � R
n is called the (positive semi-)

orbit of
ı
u. Geometrically, we can regard the orbit as a continuous (with respect to t)

“curve” (or path or trajectory), emanating from
ı
u, that lies in the state-space R

n for
all t � 0. The continuity property follows from the fact that

ke hL � Ik � e jhj kLk � 1 ! 0 as h ! 0:

A constant solution, u.t/ 	 u for all t , where u D .u1; : : : ; un/ 2 R
n is called

an equilibrium solution or steady state solution. The orbit of such a solution is the
single element (or point) u 2 R

n; u is called an equilibrium point (or rest point,
stationary point or critical point). If u is an equilibrium point, then Lu D 0. We
shall only consider the case when the matrixL is non-singular and therefore the only
equilibrium point of the system u0.t/ D Lu.t/ is u D 0: When each eigenvalue of
L has a negative real part, the equilibrium point 0 is globally attractive (or globally
asymptotically stable) since ke tLf k ! 0 as t ! 1 for all f 2 R

n; see [13, p.12].
In principle, e tL can be computed by using the fact that, if P is a non-singular

matrix and L D P�P�1, then e tL D Pe t�P�1. For example, if L has n distinct
real eigenvalues �1; : : : ; �n, then the corresponding eigenvectors can be used as the
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columns of a matrix P such that L D P�P�1, where � D diagf�1; : : : ; �ng, in
which case

e tL D P e t�P�1 with e t� D diagfe �1t ; : : : ; e �nt g:

More generally, it can be shown that the components uj .t/; j D 1; : : : ; n, of any
given solution u.t/ can be written as a linear combination of the functions

tke � t cos.	t/; t`e � t sin.	t/;

where �C i	 runs through all the eigenvalues of L, and k; ` are suitably restricted
non-negative integers; see [15, p.135].

One final remark in this subsection is that it should be clear that the restriction
t � 0 is unnecessary in all of the above, and that we could just as easily have defined
a group fe tLgt2R. We have focussed only on the semigroup case since this is usually
the best that we can hope to obtain when we look at the more complicated setting of
semigroups generated by operators defined in an infinite-dimensional state space.

2.2 Nonlinear Autonomous Systems of ODEs

We have seen that IVPs involving constant-coefficient linear systems of ODEs have
unique, globally defined solutions that can be expressed in terms of matrix exponen-
tials. For more general systems of ODEs, life becomes a bit more complicated and it
is usually difficult to obtain exact solutions. However, useful qualitative results can
sometimes be obtained. We shall consider the IVP

u0.t/ D F.u.t//; u.0/ D ı
u; (13)

where u.t/ D .u1.t/; : : : ; un.t//,
ı
uD .

ı
u1; : : : ;

ı
un/ and F W R

n 
 W ! R
n is a

vector-valued function F D .F1; : : : ; Fn/ defined on an open subset W of Rn. A
solution of (13) is a differentiable function u W J ! W defined on some interval
J � R, with 0 2 J , such that

u0.t/ D F.u.t// 8 t 2 J; and u.0/ D ı
u :

2.2.1 Existence and Uniqueness of Solutions

The following theorem provides sufficient conditions for the existence of a unique
solution to (13) on some interval J D .�a; a/. We shall denote such a solution by

�.�; ı
u/, i.e. at time t 2 .�a; a/, the solution is u.t/ D �.t;

ı
u/. We shall also express

�.t;
ı
u/ as S.t/

ı
u.
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Theorem 2 Let F be continuously differentiable on W .

(i) (Local Existence and Uniqueness) For each
ı
u 2 W , there exists a unique

solution �.�; ı
u/ of the IVP (13) defined on some interval .�a; a/ where a > 0.

(ii) (Continuous Dependence on Initial Conditions) Let the unique solution

�.�; ı
u/ be defined on some closed interval Œ0; b�. Then there exists a neigh-

bourhood U of
ı
u and a positive constant K such that if

ı
v 2 U , then the

corresponding IVP v0 D F.v/; v.0/ D ı
v, has a unique solution also defined

on Œ0; b� and

k�.t; ı
u/� �.t;

ı
v/k D kS.t/ ı

u �S.t/ ı
v k � eKtk ı

u � ı
v k 8 t 2 Œ0; b�:

(iii) (Maximal Interval of Existence) For each
ı
u 2 W , there exists a maximal open

interval Jmax D .˛; ˇ/ containing 0 (with ˛ and ˇ depending on
ı
u) on which

the unique solution �.t;
ı
u/ is defined. If ˇ < 1, then, given any compact

subset K of W , there is some t 2 .˛; ˇ/ such that u.t/ … K:
Remarks

(a) Proofs of these results can be found in [15, Chapter 8].
(b) The vector function F is said to be differentiable at g 2 W if there exists a

linear operator Fg 2 B.Rn/ such that

F.g C h/ D F.g/C Fg.h/C E.g; h/; h 2 R
n;

where

lim
khk!0

kE.g; h/k
khk D 0:

It can be shown that Fg can be represented by the n � n Jacobian matrix

DF D

2
6664

@1F1 @2F1 � � � @nF1
@1F2 @2F2 � � � @nF2
:::

:::
: : :

:::

@1Fn @2Fn � � � @nFn

3
7775

evaluated at g. The function F is continuously differentiable on W if all the
partial derivatives @j Fi exist and are continuous onW .

(c) The fact that F is continuously differentiable on W means that F satisfies a

local Lipschitz condition onW ; i.e. for each
ı
u 2 W there is a closed ball

Br.
ı
u/ WD ff 2 R

n W kf � ı
u k � rg � W
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and a constant k, which may depend on
ı
u and r , such that

kF.f / � F.g/k � k kf � gk 8f; g 2 Br.
ı
u/:

(d) The proof of Theorem 2(i) involves the Banach Contraction Mapping Principle.
The first step is to note that the IVP (13) is equivalent to the fixed point problem
u D T u; where T is the operator defined by

.T u/.t/ D ı
u C

Z t

0

F .u.s//ds;

i.e. u is a solution of (13) if and only if u satisfies the integral equation

u.t/ D ı
u C

Z t

0

F .u.s//ds:

The local Lipschitz continuity of F can then be used to establish that T is
a contraction on a suitably defined Banach space of functions; this yields
existence and uniqueness. It is also possible to produce a sequence of iterates

.un/ convergent to the unique solution �.�; ı
u/ by using the Picard successive

approximation scheme. We simply take u1.t/ 	 ı
u and then set

un.t/ D ı
u C

Z t

0

F .un�1.s//ds; n D 2; 3; : : :

(e) The proof of Theorem 2(ii) relies on Gronwall’s inequality which states that if
 W Œ0; b� ! R is continuous, non-negative and satisfies

 .t/ � C CK

Z t

0

 .s/ ds 8 t 2 Œ0; b�;

for constants C � 0; K � 0, then

 .t/ � CeKt 8 t 2 Œ0; b�:

(f) It can be shown that the operators S.t/ have the following semigroup property:

S.t/S.s/
ı
uD S.t C s/

ı
u;

where this identity is valid whenever one side exists (in which case, the other
side will also exist).
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2.2.2 Equilibrium Points

When analysing the nonlinear autonomous system of ODEs

u0 D F.u/; (14)

the starting point is usually to look for equilibrium points (corresponding to
constant, or steady-state solutions). In this case Nu is an equilibrium point if

F1.Nu/ D 0; : : : ; Fn.Nu/ D 0;

and the local stability properties of the equilibrium Nu are usually determined by
the eigenvalues of the Jacobian matrix .DF /.Nu/. The equilibrium Nu is hyperbolic if
.DF /.Nu/ has no eigenvalues with zero real part.

An equilibrium Nu is said to be stable if nearby solutions remain nearby for all
future time. More precisely, Nu is stable if, for any given neighbourhood U of Nu,
there is a neighbourhoodU1 of Nu in U such that

ı
u 2 U1 ) �.t;

ı
u/ exists for all t � 0 and �.t;

ı
u/ 2 U for all t � 0:

If, in addition,

ı
u 2 U1 ) �.t;

ı
u/ ! Nu as t ! 1;

then Nu is (locally) asymptotically stable. Any equilibrium which is not stable is said
to be unstable. When Nu is hyperbolic then it is either asymptotically stable (when all
eigenvalues of .DF /.Nu/ have negative real parts) or unstable (when .DF /.Nu/ has at
least one eigenvalue with positive real part).

The basic idea behind the proof of these stability results is that of linearisation.

Suppose that Nu is an equilibrium point and that
ı
u is sufficiently close to Nu. On setting

v.t/ D �.t;
ı
u/� Nu, we obtain

v0.t/ D F.Nu C v.t// � F.Nu/C .DF /.Nu/ v.t/

i.e. v0.t/ � .DF /.Nu/ v.t/:

Thus, in the immediate vicinity of Nu, the nonlinear ODE u0 D F.u/ can be
approximated by the linear equation

v0 D Lv; where L D .DF /.Nu/:

In effect, this means that in order to understand the stability of a hyperbolic
equilibrium point Nu of u0 D F.u/, we need only consider the linearised equation
v0 D .DF /.Nu/v.
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2.2.3 Graphical Approach in One and Two Dimensions

In the scalar case,

u0.t/ D F.u.t//; u.0/ Dı
u;

we can represent the asymptotic behaviour of solutions using a phase portrait.
Geometrically, the state space R

1 can be identified with the real line which, in this
context, is called the phase line, and so the value u.t/ of a solution u at time t
defines a point on the phase line. As t varies, the solution u.t/ traces out a trajectory,

emanating from the initial point
ı
u, that lies completely on the phase line. If we

regard u.t/ as the position of a particle on the phase line at time t , then the direction
of motion of the particle is governed by the sign of F.u.t//. If F.u.t// > 0 the
motion at time t is to the right; if F.u.t// < 0, then motion is to the left.

In two-dimensions, we use the phase plane. Here, we interpret the components
u1.t/ and u2.t/ of any solution u.t/ as the coordinates of a curve defined paramet-
rically (in terms of t) in the u1–u2 phase plane. Each solution curve plotted on the
phase plane is a trajectory. A trajectory can also be regarded as the projection of a
solution curve which “lives” in the three-dimensional space R

3 (with coordinates
u1; u2 and t) onto the two-dimensional u1–u2 plane. Phase plane trajectories have
the following important properties.

1. Each trajectory corresponds to infinitely many solutions.
2. Through each point of the u1–u2 phase plane there passes a unique trajectory and

therefore trajectories cannot intersect.
3. On the phase plane, an equilibrium point Nu D .Nu1; Nu2/ is the trajectory of the

constant solution

u1.t/ D Nu1; u2.t/ D Nu2; t 2 R:

4. The trajectory of a non-constant periodic solution is a closed curve called a cycle.

The key to establishing these properties is to use the uniqueness of solutions to IVPs.

For example, suppose that the point
ı
u lies, not only on the trajectory C.

ı
u/, but also

on the trajectory C.
ı
v/ corresponding to the solution �.�; ı

v/. Then,
ı
uD �.t0;

ı
v/ for

some t0 and therefore the function .t/ D �.t�t0; ı
v/ is a solution of the system that

satisfies the initial condition .0/ D ı
u. By uniqueness of solutions, .t/ D �.t;

ı
u/.

Therefore, the trajectories corresponding to  and �.�; ı
u/ (and hence �.�; ı

v/ and

�.�; ı
u/) are identical.
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2.3 Dynamical Systems and Population Models

Suppose we are interested in the long-term behaviour of the population of a partic-
ular species (or the populations of several inter-related species). By a “population”
we mean an assembly of individual organisms which can be regarded as being
alike. What is required is a mathematical model that contains certain observed or
experimentally determined parameters such as the number of predators, severity of
climate, availability of food etc. This model may take the form of a differential
equation or a difference equation, depending upon whether the population is
assumed to change continuously or discretely. We shall restrict our attention to the
case of continuous time. We can attempt to use the model to answer questions such
as:

1. Does the population ! 0 as t ! 1 (extinction)?
2. Does the population become arbitrarily large as t ! 1 ( eventual overcrowd-

ing)?
3. Does the population fluctuate periodically or even randomly?

Example 5 Single Species Population Dynamics (see [14, Section 2.1]). When
all individuals in the population behave in the same manner, then the net effect of
this behaviour on the total population is given by the product of the population
size with the per capita effect (i.e. the effect due to the behaviour of a typical
individual in the population). For example, if we consider the case of the production
of new individuals, then the rate of change of the population size N.t/ at time t in a
continuous-time model can be expressed as

dN

dt
D N � per capita reproduction rate: (15)

This can be written as

1

N

dN

dt
D per capita reproduction rate

or, equivalently,

d

dt
ln.N / D per capita reproduction rate.

(i) The Malthus Model. In this extremely simple model, the per capita
reproduction rate is assumed to be a constant, say ˇ, in which case Eq. (15)
becomes

dN

dt
D ˇN;
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and soN.t/ D eˇt
ı
N , where

ı
N D N.0/. This type of population growth is often

referred to as Malthusian growth. The Malthus model can easily be adapted
to include the effect of deaths in the population. If we also assume that the
mortality rate is proportional to the population size, then we obtain

dN

dt
D ˇN � ıN D rN;

where �ıN represents the decline in population size due to deaths, and the
parameter r D ˇ � ı is the net per capita “growth” rate. The solution now is
given by

N.t/ D ert
ı
N; (16)

where N.0/ D ı
N is the initial size of the population. It follows that:

r > 0 ) N.t/ ! 1 as t ! 1 .overcrowding/
r < 0 ) N.t/ ! 0 as t ! 1 .extinction/

r D 0 ) N.t/ D ı
N 8t � 0.

Clearly, the solution (16) leads to an unrealistic prediction of what will happen
to the size of the population in the long term and so we must include other
(nonlinear) effects to improve the model.

(ii) The Verhulst Model. A slightly more realistic model is given by

dN

dt
D G.N/N; t > 0I N.0/ D ı

N;

with a variable net growth rate G depending on the population size N . In some
cases we would expectG to reflect the fact that there is likely to be some intra-
specific competition for a limited supply of resources. This would require a
growth rate, G.N/, that would lead to a model predicting a small population
growth whenN is small, followed by more rapid population growth untilN hits
a saturation value, sayK , beyond which N will level off. If N ever manages to
exceedK , then G.N/ should be such that N rapidly decreases towards K .

For example, the equation of limited growth is

dN

dt
D r

�
1 � N

K

�
N; N.0/ D ı

N; (17)

where K and r are positive constants. To obtain this equation, we have set
G.N/ D r.1�N=K/. Note thatK is the population size at whichG is zero and
therefore dN=dt D 0 when N D K . Equation (17) is called the (continuous
time) logistic growth equation or Verhulst equation, the constantK is called the
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carrying capacity of the environment, and r is the unrestricted growth rate. The
method of separation of variables can be used to show that the solution of (17)
is

N.t/ D K

1 � .1�K=
ı
N/ exp.�rt/

; (18)

and thereforeN.t/ ! K as t ! 1:

Example 6 Models of Two Interacting Species (see [14, Section 2.2]). We now
consider how interactions between pairs of species affect the population dynamics of
both species. The type of interactions that can occur can be classified as follows:

• Competition: each species has an inhibitory effect on the other;
• Commensalism: each species benefits from the presence of others (symbiosis);
• Predation: one species benefits and the other is inhibited by interactions between

them.

In any given habitat, such as a lake, an island or a Petri dish, it is likely that a
number of different species will live together. A common strategy is to identify two
species as being the most important to each other, and then to ignore the effect on
them of all the other species in the habitat.

In the case when the two species are in competition for the same resources, any
increase in the numbers of one species will have an adverse effect on the growth rate
of the other. The competitive Lotka–Volterra system of equations used to model this
situation is given by

u0
1 D u1.r1 � l11u1 � l12u2/; u0

2 D u2.r2 � l21u1 � l22u2/; (19)

where

• u1.t/; u2.t/ are the sizes of the two species at time t ;
• r1; r2 are the intrinsic growth rates of the respective species;
• l11; l22 represent the strength of the intraspecific competition within each species,

with r1= l11 and r2= l22 the carrying capacities of the respective species;
• l12; l21 represent the strength of the interspecific competition (i.e. competition

between the species).

Each of the constants r1; r2; l11; l12; l21; l22 is positive.

It follows from the existence-uniqueness theorem that, for each initial state
ı
u,

there exists a unique solution u.t/ D S.t/
ı
u defined on some interval Œ0; tmax/, where

tmax < 1 only if ku.t/k diverges to infinity in finite time. Moreover, since the non-
negative u1 and u2 axes are composed of complete trajectories, any trajectory that
starts off in the positive first quadrant must remain there; i.e. solutions that start off
at positive values stay positive (recall from phase plane analysis that trajectories in
the phase plane cannot intersect).
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Let L be the matrix

L D
	
l11 l12
l21 l22



;

and assume that jLj ¤ 0. The system of Eq. (19) has four equilibria, namely

U1 D .0; 0/; U2 D .r1= l11; 0/; U3 D .0; r2= l22/ and U4 D .u�
1 ; u

�
2 /;

where

	
u�
1

u�
2



D L�1

	
r1

r2



D 1

jLj
	
r1l22 � r2l12
r2l11 � r1l21



:

Note that

jLj > 0 when
l12

l22
<
l11

l21

jLj < 0 when
l12

l22
>
l11

l21
:

From this, we can deduce that there are two scenarios that result in u�
1 > 0 and

u�
2 > 0, namely

Case I W l12
l22

<
r1

r2
<
l11

l21

Case II W l11
l21

<
r1

r2
<
l12

l22
:

The Jacobian matrix at .x; y/ is given by

.DF /.x; y/ D
	
r1 � 2l11 x � l12 y �l12 x

�l21 y r2 � l21 x � 2l22 y



:

For the equilibrium U1, we have

.DF/.0; 0/ D
	
r1 0

0 r2



;

and it follows immediately that U1 is unstable in each of Case I and Case II.
Consider now the other three equilibria when Case I applies. To determine the

stability properties of these, we note first that the characteristic equation of a real
2 � 2 matrix, say A, can be written in the form

�2 � trace.A/ �C jAj D 0:



Applying Functional Analytic Techniques to Evolution Equations 27

It follows that a non-singular matrix A will have two eigenvalues with negative real
parts when jAj > 0 and t race.A/ < 0, and will have exactly one positive eigenvalue
when jAj < 0. At U2 we have

.DF/.r1= l11; 0/ D
	�r1 �l12 r1= l11
0 r2 � l21 r1= l11



:

As the determinant of this Jacobian matrix is

�r1
�
r2 � l21 r1

l11

�
< 0;

the equilibrium U2 is unstable. Similarly, U3 is unstable. Now consider U4. In this
case,

.DF/.u�

1 ; u
�

2 / D
	
r1 � 2l11u�

1 � l12u�

2 �l12u�

1

�l21u�

2 r2 � l21u�

1 � 2l22u�

2



D
	�l11u�

1 �l12u�

1

�l21u�

2 �l22u�

2



:

Consequently, the characteristic equation takes the form

�2 C �.l11u
�
1 C l22u

�
2 /C u�

1u�
2 jLj D 0;

and therefore U4 is locally asymptotically stable (since the trace of the Jacobian
matrix is negative and the determinant is positive). In fact, it can be shown that
all trajectories in the positive first quadrant converge to U4 as t ! 1; see [14,
p. 32]. Thus, in Case I, the competing species may coexist in the long term. Note
that the condition l11l22 > l12l21, which holds here, can be interpreted as stating
that the overall intraspecific competition is stronger than the overall interspecific
competition.

In Case II, a similar analysis shows that U2 and U3 are both asymptotically
stable, with U4 unstable (in fact U4 is a saddle point). It follows that, in the long
term, one of the species will die out. The species that survives is determined by the
initial conditions. Since U4 is a saddle point, there exist stable and unstable orbits
emanating from U4; see [24, p. 21]. These orbits are referred to as separatrices.
As discussed in [14, p. 31], if the initial point on a trajectory lies above the stable

separatrix, then the trajectory converges to U3 (i.e. species u1 dies out). If
ı
u lies

below this separatrix, then the trajectory converges to U2 (i.e. species u2 dies out).
For an analysis of the case when U4 does not lie in the first quadrant of the phase

plane, see [14, Section 2.3]. Note also that the equations used to model two species
which are interacting in a co-operative manner are also given by (19), but now we
have l12 < 0; l21 < 0; l11 > 0 and l22 > 0.

Example 7 The SIR Models of Infectious Diseases (see [14, Chapter 3], [9,
Chapter 3] and [12, Chapter 6]). In simple epidemic models, it is often assumed
that the total population size remains constant. At any fixed time, each individual
within this population will be in one (and only one) of the following classes.
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• Class S : this consists of individuals who are susceptible to being infected (i.e.
can catch the disease).

• Class I : this consists of infected individuals (i.e. individuals who have the disease
and can transmit it to susceptibles).

• Class R : this consists of individuals who have recovered from the disease and
are now immune.

The class R is sometimes regarded as the Removed Class as it can also include
those individuals who have died of the disease or are isolated until recovery. The
SIR model was pioneered in a paper “Contribution to the Mathematical Theory of
Epidemics” published in 1927 by two scientists, William Kermack and Anderson
McKendrick, working in Edinburgh. In searching for a mechanism that would
explain when and why an epidemic terminates, they concluded that: “In general a
threshold density of population is found to exist, which depends upon the infectivity,
recovery and death rates peculiar to the epidemic. No epidemic can occur if the
population density is below this threshold value.”

If we let S.t/, I.t/ and R.t/ denote the sizes of each class, then the following
system of differential equations can be used to describe how these sizes change with
time:

ds

dt
D �ˇSI (20)

dI

dt
D ˇSI � 
I (21)

dR

dt
D 
I: (22)

Here we are making the following assumptions.

• The gain in the infective class is proportional to the number of infectives and the
number of susceptibles; i.e. is given by ˇSI , where ˇ is a positive constant. The
susceptibles are lost at the same rate.

• The rate of removal of infectives to the recovered class is proportional to the
number of infectives; i.e. is given by 
I , where 
 is a positive constant.

We refer to 
 as the recovery rate and ˇ as the transmission (or infection) rate.
Note that, when analysing this system of equations, we are only interested in

non-negative solutions for S.t/; I.t/ and R.t/. Moreover, the constant population
size is built into the system (20)–(22) since adding the equations gives

dS

dt
C dI

dt
C dR

dt
D 0;

showing that, for each t ,

S.t/C I.t/CR.t/ D N;
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whereN is the fixed total population size. The model is now completed by imposing
initial conditions of the form

S.0/ D ı
S � N; I.0/ D ı

I D N� ı
S > 0; R.0/ D 0:

Given particular values of ˇ; 
;
ı
S and

ı
I , we can use the model to predict whether

the infection will spread or not, and if it does spread, in what manner it will grow
with time. One observation that can be made more or less immediately is that the
infectious class will grow in size if dI=dt > 0. Since we are assuming that there
are infectious individuals in the population at time t D 0, Eq. (21) shows that I.t/

will increase from its initial value provided
ı
S > 
=ˇ. The parameter R0 D ˇ=


is called the Basic Reproductive Ratio and is defined as the average number of
secondary cases produced by an average infectious individual in a totally susceptible
population.

We shall determine the long term behaviour of solutions by arguing as follows.

• Since S.t/C I.t/C R.t/ D N for all t , the system is really only a 2-D system
and so we shall concentrate on the equations governing the evolution of S and
I . For this 2-D system, we have an infinite number of equilibria, namely .S; 0/,
where S can be any non-negative number in the interval Œ0; N �. Note that these
equilibria are not isolated (i.e. for each of these equilibria, no open ball centred
at the equilibrium can be found that contains no other equilibrium). This means
that the customary local-linearisation at an isolated equilibrium cannot be used
to determine the stability of the equilibria of this 2-D system.

• The non-negative S axis consists entirely of equilibrium points and the non-
negative I axis is composed of two complete trajectories, namely the equilibrium

.0; 0/ and the positive I axis. This means that solutions that start off with
ı
S > 0

and
ı
I > 0 remain positive.

• Since S.t/ > 0 and I.t/ > 0, it follows (from the equation for S ) that S.t/ is

strictly decreasing. Hence S.t/ <
ı
S for any t > 0 for which S.t/ exists. Note

that it is impossible for I.t/ to blow up in finite time since

I 0.t/ � .ˇ
ı
S �
/I.t/

)
Z t

0

I 0.s/
I.s/

ds �
Z t

0

.ˇ
ı
S �
/ ds D .ˇ

ı
S �
/t

) ln.I.t// � ln.
ı
I /C .ˇ

ı
S �
/t

) 0 < I.t/ � exp.ˇ
ı
S �
/t/ ı

I :

Therefore both S.t/ and I.t/ exist globally in time. Moreover, if
ı
S < 
=ˇ, then

I.t/ ! 0 as t ! 1.
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• For the epidemic to spread initially, we require
ı
S > 
=ˇ, since we will then have

I 0.0/ > 0. However, in this case there will exist some finite time, say t�, such
that S.t�/ < 
=ˇ. To see this, simply observe that if we assume that S.t/ � 
=ˇ

for all t then we obtain I.t/ � ı
I and S 0.t/ � �
 ı

I for all t . From this it follows
that

S.t/ � �
 ı
I tC ı

S! �1 as t ! 1;

which clearly is a contradiction. Arguing as before (but now with
ı
S replaced

by S.t�/) shows that once again I.t/ ! 0 as t ! 1, despite I.t/ initially
increasing.

• Since S.t/ is a strictly decreasing function that is bounded below (by zero), S.t/
must converge to some limit S1 � 0 as t ! 1. We now establish that S1 > 0,
showing that although the epidemic ultimately dies out, this is not caused by the
number of available susceptibles decreasing to zero. Here we make use of the
equation for R. We have

dS

dR
D dS=dt

dR=dt
D �ˇ



S ) S D exp.�ˇR=
/ ı

S :

Since R � N , we deduce that S is always greater than the positive constant

exp.�ˇN=
/ ı
S and therefore S1 > 0.

• Finally the trajectories in the S � I phase plane can be obtained from the ODE

dI

ds
D �1C 


ˇS
:

This has solution given by

I D N � S C .
=ˇ/ ln.S=
ı
S/I

here we have used the fact that
ı
S C ı

I D N . Consequently, on taking limits
(t ! 1) on each side, and rearranging, we obtain

S1 D N C .
=ˇ/ ln.S1=
ı
S/:

For each given
ı
S , this equation has only one positive solution S1.

To summarise, we have shown that each solution .S.t/; I.t// will converge to an
equilibrium .S1; 0/, with S1 > 0, which is determined by the initial value of S .
From this, it follows that .S.t/; I.t/; R.t// ! .S1; 0; N � S1/ as t ! 1. The
value ofN �S1 shows the extent to which the infection has affected the population.
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3 Infinite-Dimensional State Space

We now move into the realm of infinite-dimensional dynamical systems. There-
fore, in the following discussion, we shall assume that the state space X is an
infinite-dimensional Banach space with norm k � k. The aim now is to express
evolution equations in operator form as ordinary differential equations which are
posed in X . We shall consider only problems of the type

u0.t/ D L.u.t//CN .u.t//; t > 0; u.0/ D ı
u; (23)

where L W X 
 D.L/ ! X and N W X ! X are, respectively, linear and nonlinear
operators, with D.L/ a linear subspace of X . In (23), the derivative is interpreted
as a strong derivative, defined via (6) and (7), and a solution u W Œ0;1/ ! X is
sought. The operator LCN that appears in (23) governs the time-evolution of the
infinite-dimensional state vector u.�/, and the initial-value problem (23) is usually
called a (semi-linear) abstract Cauchy problem (ACP).

To provide some motivation for looking at infinite-dimensional dynamical sys-
tems, we shall investigate a particular mathematical model of a system of particles
that can coagulate to form larger particles, or fragment into smaller particles.
Coagulation and fragmentation (C–F) processes of this type can be found in many
important areas of science and engineering. Examples range from astrophysics,
blood clotting, colloidal chemistry and polymer science to molecular beam epitaxy
and mathematical ecology. An efficient way of modelling the dynamical behaviour
of these processes is to use a rate equation which describes the evolution of the
distribution of the interacting particles with respect to their size or mass; see [10,23]
and also Section 1 of the contribution to this volume by Philippe Laurençot [18].

Suppose that we regard the system under consideration as one consisting of a
large number of clusters (often referred to as mers) that can coagulate to form
larger clusters or fragment into a number of smaller clusters. Under the assumption
that each cluster of size n (n-mer) is composed of n identical fundamental units
(monomers), the mass of each cluster is simply an integer multiple of the mass of a
monomer. By appropriate scaling, each monomer can be assumed to have unit mass.
This leads to a so-called discrete model of coagulation–fragmentation, with discrete
indicating that cluster mass is a discrete variable which, in view of the above, can
be assumed to take positive integer values.

In many theoretical investigations into discrete coagulation–fragmentation mod-
els, both coagulation and fragmentation have been assumed to be binary processes.
Thus a j -mer can bind with an n-mer to form a .jCn/-mer or can break up into only
two mers of smaller sizes; see the review article [10] by Collet for further details.
However, a model of multiple fragmentation processes in which the break-up of
a n-mer can lead to more than two mers has also been developed by Ziff; for
example, see [25]. Consequently, we shall consider the more general model of
binary coagulation combined with multiple fragmentation in the work we present
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here. In this case, the kinetic equation describing the time-evolution of the clusters
is given by

u0
n.t/ D �anun.t/C

1X
jDnC1

aj bn;juj .t/

C1

2

n�1X
jD1

kn�j;jun�j .t/uj .t/ �
1X
jD1

kn;j un.t/uj .t/ ; (24)

un.0/ D ı
un ; n D 1; 2; 3; : : : ; (25)

where un.t/ is the concentration of n-mers at time t (where t is assumed to be
a continuous variable), an is the net rate of break-up of an n-mer, bn;j gives the
average number of n-mers produced upon the break-up of a j -mer, and kn;j D kj;n
represents the coagulation rate of an n-mer with a j -mer. Note that the total mass in
the system at time t is given by

M.t/ D
1X
nD1

nun.t/ ;

and for mass to be conserved we require

j�1X
nD1

nbn;j D j ; j D 2; 3; : : : : (26)

On using this condition together with (24), a formal calculation establishes that
M 0.t/ D 0.

When the fragmentation process is binary, the C-F equation is usually expressed
in the form

u0
n.t/ D �1

2
un.t/

n�1X
jD1

Fj;n�j C
1X

jDnC1
Fn;j�nuj .t/

C1

2

n�1X
jD1

kn�j;jun�j .t/uj .t/ �
1X
jD1

kn;j un.t/uj .t/ ; (27)

where Fn;j D Fj;n represents the rate at which an .n C j /-mer breaks up into an
n-mer and a j -mer. In this case,

2an D
n�1X
jD1

Fj;n�j ; bn;j aj D Fn;j�n
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and so

bn;j D Fn;j�n
aj

D 2Fn;j�nPj�1
rD1 Fr;j�r

)
j�1X
nD1

bn;j D 2I

i.e. the number of clusters produced in any fragmentation event is always two.
Equation (27) is the binary model that has been studied in [1] and [11], where

existence and uniqueness results are presented for various rate coefficients. The
underlying strategy common to each of these is to consider finite-dimensional
truncations of (27). Standard methods from the theory of ordinary differential
equations then lead to the existence of a sequence of solutions to these truncated
equations. It is then shown, via Helly’s theorem, that a subsequence exists that
converges to a function u that satisfies an integral version of (27). A solution
obtained in this way is called an admissible solution. A similar approach has
been used by Laurençot in [17] to prove the existence of appropriately defined
global mass-conserving solutions of the more general Eq. (24), and also, in [18],
of the continuous-size coagulation equation, which takes the form of an integro-
differential equation.

In contrast to the truncation approach used in the aforementioned papers, here
we shall show how results from the theory of semigroups of operators can be used
to establish the existence and uniqueness of solutions to (24). For simplicity, we
shall assume that kn;j D k for all n; j where k is a non-negative constant. Note,
however, that a semigroup approach can also deal with more general coagulation
kernels. In particular, results related to the concept of an analytic semigroup play
an important role. We shall not discuss analytic semigroups in these notes, but the
interested reader should consult the contribution to this volume by Banasiak [3]
where the continuous size C-F equation is investigated via analytic semigroups.

To see how an IVP for the discrete C–F equation can be expressed as an ACP, we
define u.t/ to be the sequence .u1.t/; u2.t/; : : : ; uj .t/; : : :/. Then u.t/ is a sequence-
valued function of t for each t � 0, and it therefore makes sense to seek a function u,
defined on Œ0;1/, that takes values in an infinite-dimensional state space consisting
of sequences. The state space that is most often used due to its physical relevance
is the Banach space `11 discussed in Example 4. The `11-norm of a non-negative
element f 2 `11 (i.e. f D .f1; f2; : : :/ with fj � 0 for all j ), given by

P1
jD1 jfj ,

represents the total mass of the system. Similarly, the `10-norm of such an f gives
the total number of particles in the system. Note that `11 is continuously imbedded
in `10 since

kf k0;1 � kf k1;1 8 f 2 `11:

The function u will be required to satisfy an ACP of the form

u0.t/ D L.u.t//CN .u.t//; u.0/ D ı
u;
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where L and N are appropriately defined operator versions of the respective
mappings

fn ! �anfn C
1X

jDnC1
aj bn;j fj and

fn ! k

2

n�1X
jD1

fn�j fj � k

1X
jD1

fnfj ; .n D 1; 2; 3; : : :/:

We begin our investigation into (23) by considering the case when only the linear
operator L appears on the right-hand side of the equation; i.e. (23) takes the form

u0.t/ D L.u.t//; t > 0; u.0/ D ı
u : (28)

In the context of our C–F model, this will represent a situation when no coagulation
is occurring; i.e. the coagulation rate constant k is zero.

A function u W Œ0;1/ ! X is said to be a strong solution to (28) if

(i) u is strongly continuous on Œ0;1/;
(ii) the strong derivative u0 exists and is strongly continuous on .0;1/;

(iii) u.t/ 2 D.L/ for each t > 0;
(iv) the equations in (28) are satisfied.

3.1 Linear Infinite-Dimensional Evolution Equations

3.1.1 Bounded Infinitesimal Generators

Although an infinite-dimensional setting may seem a bit daunting, it turns out that,
for a bounded linear operator L, the methods discussed earlier in finite dimensions
continue to work. Indeed, when L is bounded and linear on X , then the unique
strong solution of the linear infinite-dimensional ACP (28) is given by

u.t/ D e tL ı
u; (29)

where the operator exponential is defined by

e tL D I C tL C t2L2

2Š
C t3L3

3Š
C � � � ; (30)

with I denoting the identity operator on X . This infinite series of bounded, linear
operators on X always converges in B.X/ to a bounded, linear operator on X .
Moreover,

e 0L D I I e sLe tL D e.sCt /L for all s; t 2 RI e tL ı
u!ı

u in X as t ! 0I (31)
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see [19, Theorem 2.10]. It can easily be verified that the function �.t;
ı
u/ D e tL ı

u
defines a continuous, infinite-dimensional dynamical system on X .

The person who appears to have been the first to generalise the use of matrix
exponentials for finite-dimensional systems of ODEs to operator exponentials in
infinite-dimensional spaces is Maria Gramegna, a student of Peano, in 1910; see
[13]. Peano had considered some special types of infinite systems of ODEs in 1894,
but it was Gramegna who demonstrated that operator exponentials could be applied
more generally, not only to infinite systems of ODEs, but also to integro-differential
equations.

Example 8 We examine the simple case of an IVP for a fragmentation equation in
which aj D a for all j � 2, where a is a positive constant. We shall show that the
corresponding linear fragmentation operator L is bounded on `11. If we recall that
a1 D 0, and also that the mass-conservation condition (26) holds, then we obtain,
for each f 2 `11,

kLf k1;1 D
1X
nD1

n

ˇ̌
ˇ̌
ˇ̌�anfn C

1X
jDnC1

aj bn;j fj

ˇ̌
ˇ̌
ˇ̌

�
1X
nD1

nanjfnj C
1X
nD1

1X
jDnC1

naj bn;j jfj j

D
1X
nD1

nan jfnj C
1X
jD2

 
j�1X
nD1

nbn;j

!
aj jfj j

D
1X
nD1

nan jfnj C
1X
jD1

jaj jfj j

D 2a

1X
nD1

njfnj D 2akf k1;1:

It follows that L 2 B.`11/ and so the ACP

u0.t/ D L.u.t//; u.0/ D ı
u;

has a strong, globally-defined, solution given by

u.t/ D e tL ı
u :

As we shall demonstrate later when we consider the fragmentation equation with
less restrictive conditions imposed on the rate coefficients an, this strong solution is

non-negative whenever
ı
u is non-negative, and ku.t/k1;1 D k ı

u k1;1 for all t > 0,
showing that mass is conserved.
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3.1.2 Unbounded Infinitesimal Generators: The Hille–Yosida Theorem

In many applications that involve the analysis of a linear evolution equation,
posed in an infinite-dimensional setting, when an approach involving semigroups
of operators and exponentials of operators is tried, the restriction that L is bounded
and defined on all of the state space X is frequently too severe. In most cases,
L is unlikely to be bounded and is usually only defined on elements in X which
have specific properties. Is it possible that a family of exponential operators fetLgt�0
can be generated from an unbounded linear operator L and yield a unique solution
to the IVP (28) via (29)? The answer to this is yes. In 1948, Einar Hille and
Kôsaku Yosida, simultaneously and independently, proved a theorem (the Hille–
Yosida theorem) that forms the cornerstone of the Theory of Strongly Continuous
Semigroups of Operators. Since then, there has been a great deal of research
activity in the theory and application of semigroups of operators. Amongst many
other important developments, the Hille–Yosida theorem was extended in 1952
to a result that completely characterises the operators L that generate strongly
continuous semigroups on a Banach space X . What this means is that, when a
natural interpretation of “solution” is adopted, a unique solution to (28) exists if
and only if the operator satisfies the conditions of this more general version of the
Hille–Yosida theorem. Moreover, the solution is still given by (29), although, for
unbounded linear operators L, a different exponential formula has to be used to
define e tL. One such formula is

e tLf WD lim
n!1

hn
t
R.n=t; L/

in
f D lim

n!1

�
I � t

n
L

��n
f; (32)

where R.�;L/ denotes the inverse of �I � L. Compare this with the scalar
sequential formula for etl,

e tl D lim
n!1.1C t l=n/n:

There are many excellent books devoted to the theory of strongly continuous
semigroups; for example [6,19,21] and [13]. Important details can also be found in
the lecture notes by Banasiak [3, Section 2.5] and a nice gentle introduction to the
theory is given by Bobrowski [8, Section 1]. As in [8], the account of semigroups
that is presented here is not intended to be comprehensive; instead we merely
summarise several key results from this very elegant, and applicable, theory. We
begin with the following fundamental definition.

Definition 2 Let fS.t/gt�0 be a family of bounded linear operators on a complex
Banach space X . Then fS.t/gt�0 is said to be a strongly continuous semigroup (or
C0- semigroup) in B.X/ if the following conditions are satisfied.

S1. S.0/ D I , where I is the identity operator on X .
S2. S.t/S.s/ D S.t C s/ for all t; s � 0.
S3. S.t/f ! f in X as t ! 0C for all f 2 X .
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Associated with each strongly continuous semigroup fS.t/gt�0 is a unique linear
operator L defined by

Lf WD lim
h!0C

S.h/f � f

h
; D.L/ WD

�
f 2 X W lim

h!0C

S.h/f � f

h
exists in X

�
: (33)

The operatorL is called the infinitesimal generator of the semigroup fS.t/gt�0. For
example, the infinitesimal generator of the semigroup given by S.t/ D e tL, where
L 2 B.X/, is the operator L.

Before stating some important properties of strongly continuous semigroups and
their generators, we require some terminology.

Definition 3 Let L W X 
 D.L/ ! X be a linear operator.

(i) The resolvent set, �.L/, of L is the set of complex numbers

�.L/ WD f� 2 C W R.�;L/ WD .�I � L/�1 2 B.X/gI

R.�;L/ is called the resolvent operator of L (at �).
(ii) L is a closed operator (or L is closed) if whenever .fn/1nD1 � D.L/ is such

that fn ! f and Lfn ! g in X as n ! 1, then g 2 D.L/ and Lf D g.
(iii) An operator L1 W X � D.L1/ ! X is an extension of L, written L � L1, if

D.L/ � D.L1/ and Lf D L1f for all f 2 D.L/. The operator L is closable
if it has a closed extension, in which case the closure L of L is defined to be
the smallest closed extension of L.

(iv) L is said to be densely defined ifD.L/ D X , i.e. if the closure of the setD.L/
(with respect to the norm in X ) is X . This means that, for each f 2 X , there
exists a sequence .fn/1nD1 � D.L/ such that kf � fnk ! 0 as n ! 1.

Theorem 3 (Some Semigroup Results) Let fS.t/gt�0 � B.X/ be a strongly
continuous semigroup with infinitesimal generator L. Then

(i) S.t/f ! S.t0/f in X as t ! t0 for any t0 > 0 and f 2 X ;
(ii) S.t/f ! f in X as t ! 0C;

(iii) there are real constantsM � 1 and ! such that

kS.t/k � Me!t for all t � 0I (34)

(iv) f 2 D.L/ ) S.t/f 2 D.L/ for all t > 0 and

d

dt
S.t/f D LS.t/f D S.t/Lf for all t > 0 and f 2 D.L/I (35)

(iv) the infinitesimal generator L is closed and densely defined.
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We shall write L 2 G .M;!IX/ when L is the infinitesimal generator of a strongly
continuous semigroups of operators satisfying (34) on a Banach spaceX . When the
operator L 2 G .1; 0IX/, L is said to generate a strongly continuous semigroup of
contractions on X .

Theorem 4

(Hille–Yosida) The operator L is the infinitesimal generator of a strongly
continuous semigroup of contractions on X if and only if

(i) L is a closed, linear and densely-defined operator in X ;
(ii) � 2 �.L/ for all � > 0;

(iii) kR.�;L/k � 1=� for all � > 0.

(Hille–Yosida–Phillips–Miyadera–Feller)L 2 G .M;!IX/ if and only if

(i) L is a closed, linear and densely-defined operator in X ;
(ii) � 2 �.L/ for all � > !;

(iii) k.R.�;L//nk � M=.� � !/n for all � > !; n D 1; 2; : : :.

Proofs of these extremely important results can be found in [19, Chapter 3].
We can now state the following existence/uniqueness theorem for the linear ACP

u 0.t/ D L.u.t//; t > 0I u.0/ D ı
u 2 D.L/: (36)

Theorem 5 LetL be the infinitesimal generator of a strongly continuous semigroup
fS.t/gt�0 � B.X/. Then (36) has one and only one strong solution u W Œ0;1/ ! X

and this is given by u.t/ D S.t/
ı
u :

The operator S.t/ can be interpreted as the exponential e tL if we define the latter
by (32); see [19, Chaper 6] for a proof.

3.1.3 The Kato–Voigt Perturbation Theorem

Although the Hille–Yosida theorem and the generalisation due to Phillips et al. are
extremely elegant results, in practice it is often difficult to check that the resolvent
conditions are satisfied for a given linear operator L. One way to get round this is
to make use of perturbation theorems for infinitesimal generators; see the book by
Banasiak and Arlotti [4]. The basic idea is to treat, if possible, the linear operator
governing the dynamics of the system as the sum of two linear operators, say
A C B , where A is an operator which can easily be shown to generate a strongly
continuous semigroup fSA.t/gt�0 on a Banach space X , and B is regarded as a
perturbation of A. The question then is to identify sufficient conditions on B which
will guarantee that AC B (or some extension of AC B) also generates a strongly
continuous semigroup onX . A number of perturbation results of this type have been
established. We shall focus on just one of these, namely the Kato–Voigt Perturbation
theorem, but only for the specific case when the state space is the Banach space `1�



Applying Functional Analytic Techniques to Evolution Equations 39

of Example 4. An account of the general version of this important perturbation result
is given in [3, Section 2.6].

As mentioned earlier, non-negative elements in `1� are taken to be sequences
f D .f1; f2; : : :/ with fj � 0 for all j , in which case we write f � 0. An operator
T W `1� 
 D.T / ! `1�, is said to be non-negative if Tf � 0 for all non-negative
f 2 D.T /.
Theorem 6 (See [2, Theorem 2.1] and [4, Corollary 5.17]) Let the operators
A W `1� 
 D.A/ ! `1� and B W `1� 
 D.B/ ! `1� have the following properties.

(i) A is the infinitesimal generator of a semigroup of contractions fSA.t/gt�0 on
`1�, with SA.t/ � 0 for all t � 0.

(ii) B is non-negative andD.B/ 
 D.A/.
(iii) For each non-negative f in D.A/,

1X
jD1

j �.Af C Bf /j � 0:

Then there exists a strongly continuous semigroup of contractions, fS.t/gt�0; on `1�
satisfying the Duhamel equation

S.t/f D SA.t/f C
Z t

0

S.t � s/BSA.s/f ds; f 2 D.A/:

Each S.t/ is non-negative and the infinitesimal generator of the semigroup is an
extension L of AC B .

Example 9 We now show that a straightforward application of this perturbation
theorem establishes the existence and uniqueness of solutions to the fragmentation
equation for a wide class of fragmentation rate coefficients. Once again we work in
the state space `11, and we take A and B to be the operators

.Af /n WD �anfn; n 2 N; D.A/ D ff 2 `11 W Af 2 `11g;

.Bf /n WD
1X

jDnC1
bn;j aj fj ; n 2 N; D.B/ D D.A/:

Then

1. By arguing as in [8, Example 6], it is not difficult to prove that the operator A
is the infinitesimal generator of a strongly continuous semigroup of contractions
fSA.t/gt�0 on `11 given by

.SA.t/f /n WD e�antfn; n 2 N:

It is clear that SA.t/ � 0 for each t .
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2. The calculations used in Example 8 can be repeated to show that

kBf k �
1X
nD1

1X
jDnC1

naj bn;j jfj j

D
1X
jD2

 
j�1X
nD1

nbn;j

!
aj jfj j

D
1X
jD2

j aj jfj j D kAf k; 8 f 2 D.A/:

Consequently, B is well defined on D.A/ and Bf � 0 for all f 2 D.A/ with
f � 0.

3. A similar argument shows that

1X
nD1

n.Af C Bf /n D 0 8 f 2 D.A/ with f � 0:

Consequently, by the Kato–Voigt Perturbation Theorem, there exists a strongly
continuous semigroup of contractions fS.t/gt�0 generated by an extension L of
the operator .AC B;D.A//, with S.t/f � 0 for all non-negative f 2 `11.

In this example it is possible to show that L is the closure of .ACB;D.A// and
also that

1X
nD1

n.Lf /n D 0 8 f 2 D.L/ with f � 0I

see [20]. Consequently, the ACP

u0.t/ D L.u.t//; u.0/ D ı
u 2 D.L/; ı

u � 0;

with L D AC B , has a unique strongly differentiable solution u W Œ0;1/ ! D.L/

given by u.t/ D S.t/
ı
u.

Other results that can be established for this discrete-size fragmentation equation
are:

• If the sequence .an/ is monotonic increasing, then S.t/ W D.A/ ! D.A/ for all

t � 0 and therefore u.t/ D S.t/
ı
u is the unique strong solution of the ACP

u0.t/ D A .u.t//CB .u.t//; u.0/ D ı
u 2 D.A/; ı

u� 0:
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• Suppose that an > 0 for all n � 2. Then

.AC B/u D .0; 0; : : :/ in `11 , u D ce1;

where c is a constant and e1 D .1; 0; 0; : : :/. Moreover, it can be shown that

S.t/u0 ! M.
ı
u/e1 in `11 as t ! 1, where M.

ı
u/ D P1

nD1 n
ı
un. This situation

is similar to that observed with the SIR model in that we have infinitely many
equilibria, and the equilibrium that any given solution converges to is uniquely
determined by the initial data.

See [5] and [20] for further details.

3.2 Semi-linear Infinite-Dimensional Evolution Equations

To conclude, we return to the semi-linear ACP (23). We shall assume that the
linear operator L is the infinitesimal generator of a strongly continuous semigroup
fS.t/gt�0 on X. A strong solution on Œ0; t0/ of this ACP is a function u W Œ0; t0/ ! X

such that

(i) u is strongly continuous on Œ0; t0/;
(ii) u has a continuous strong derivative on .0; t0/;

(iii) u.t/ 2 D.L/ for 0 � t < t0;
(iv) u.t/ satisfies (23) for 0 � t < t0.

Suppose that u is a strong solution. Then, under suitable assumptions on N , u
will also satisfy the Duhamel equation

u.t/ D S.t/
ı
u C

Z t

0

S.t � s/N.u.s// ds; 0 � t < t0: (37)

This leads to the following definition of a weaker type of solution to the ACP.

Definition 4 A mild solution on Œ0; t0/ of (23) is a function u W Œ0; t0/ ! X such
that

(i) u is strongly continuous on Œ0; t0/;
(ii) u satisfies (37) on Œ0; t0/.

The definitions given earlier for a function on the finite-dimensional space
R
n to be Fréchet differentiable, or to satisfy a local Lipschitz condition, extend

to operators on infinite-dimensional spaces. In particular, the nonlinear operator

N W X ! X satisfies a local Lipschitz condition on X if, for each
ı
u 2 X , there

exists a closed ball Br.
ı
u/ WD ff 2 X W kf � ı

u k � rg such that

kN.f /�N.g/k � kkf � gk; 8f; g 2 Br.
ı
u/:
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Also, N is Fréchet differentiable at f 2 X if an operator Nf 2 B.X/ exists such
that

N.f C h/ D N.f /CNf .h/C E.f; h/; h 2 X;

where

lim
khk!0

kE.f; h/k
khk D 0:

The operatorNf is the Fréchet derivative of N at f .

Theorem 7 Let L 2 G .M;!IX/ and let N satisfy a local Lipschitz condition on
X . Then there exists a unique mild solution of the ACP on some interval Œ0; tmax/.
Moreover, if tmax < 1, then

ku.t/k ! 1 as t ! t�max:

Theorem 8 Let L 2 G .M;!IX/ and let N be continuously Fréchet differentiable

on X . Then the mild solution of the semi-linear ACP, with
ı
u 2 D.L/, is a strong

solution.

For proofs of these results, see [21, Chapter 6] and [7, Chapter 3].

Example 10 We now describe how these results have been applied to the discrete
C-F equation in [20,22] and [5]. Having already established that L D AC B is the
infinitesimal generator of a strongly continuous positive semigroup of contractions
on the space `11, we express the full C-F equation as the semi-linear ACP

u 0.t/ D L.u.t//CN .u.t//; t > 0; u.0/ D ı
u 2 D.L/;

where

.Nf /n WD k

2

n�1X
jD1

fn�j fj � k

1X
jD1

fnfj ; f 2 `11:

We shall show below that N.f / 2 `11 for all f 2 `11. For this it is convenient to
introduce the following bilinear operator

QN.f; g/ WD QN1.f; g/ � QN2.f; g/;

where, for f; g 2 `11,

Œ QN1.f; g/�n WD k

2

n�1X
jD1

fn�j gj ; Œ QN2.f; g/�n WD k

1X
jD1

fngj ; n 2 N:
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Note thatN.f / D QN.f; f /. Also, it is straightforward to verify that QN.�; �/ is linear
in both left-hand and right-hand arguments. Consequently,

QN.f C h; f C h/ D QN.f; f /C QN.f; h/C QN.h; f /C QN.h; h/: (38)

Now,

k QN1.f; g/k � k

2

1X
nD1

n�1X
jD1

njfn�j j jgj j

D k

2

1X
jD1

1X
nDjC1

njfn�j j jgj j

D k

2

1X
jD1

1X
iD1
.i C j /jfi j jgj j

� 2
k

2
kf k kgk D kkf k kgk:

Similarly,

k QN1.f; g/k � kkf k kgk:

Hence

k QN.f; g/k � 2kkf k kgk and kN.f /k � 2kkf k2:

In the case when N.f / � 0, we can also deduce that

kN.f /k D
1X
nD1

nŒN.f /�n

D k

2

 1X
iD1

ifi

!0
@ 1X
jD1

fj

1
AC k

2

 1X
iD1

fi

!0
@ 1X
jD1

jfj

1
A

�k
 1X
iD1

ifi

!0
@ 1X
jD1

fj

1
A D 0:

The bilinearity of QN.�; �/ leads immediately to the Fréchet differentiability of N .
From (38), we obtain

N.f C h/ D N.f /CNf .h/CN.h/;
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where

Nf .h/ WD QN.f; h/C QN.h; f /: (39)

For fixed f 2 `11, Nf is a linear operator on `11 and also

kNf .h/k � 4kkf k khk ; 8h 2 `11 (40)

showing that Nf 2 B.X/. Moreover,

kN.h/k
khk � 2kkhk ! 0 as khk ! 0:

Hence, N is Fréchet differentiable at each f 2 `11, with Fréchet derivative given
by (39). Moreover, inequality (40) can be used to establish that Nf is continuous in
f . (Note that this also means that N is locally Lipschitz continuous.) We can now
apply Theorems 7 and 8 to conclude that the semi-linear ACP has a unique, locally
defined (in time) strong solution.

To complete our analysis, we must show that the solution u.t/ is non-negative
for all t for which it is defined. We would also like to establish that the solution is
defined for all t � 0. It turns out that the latter can be deduced directly from the
former since

d

dt
ku.t/k D kL.u.t//CN .u.t//k D

1X
nD1

n.L .u.t//n C
1X
nD1

n.N .u.t//n D 0;

showing that ku.t/k cannot blow up in finite time. The proof that the solution
remains non-negative is the most involved part of the argument and so only some
outline details will be supplied here (see [20] for further information). In essence,
we use the following trick. The ACP is rewritten as

u 0.t/ D .L. u.t/ � ˛u.t//C .˛u.t/CN.u.t//;

where the constant ˛ is chosen so that .N C ˛/u.t/ � 0 for all t in some interval
Œ0; t0�. The operator L � ˛I is the infinitesimal generator of the positive semigroup
fe�˛tS.t/gt�0 (where fS.t/gt�0 is the positive semigroup generated by L). The
solution u of this modified equation satisfies the integral equation

u.t/ D e�˛tS.t/ ı
u C

Z t

0

e�˛.t�s/S.t � s/.N C ˛/u.s/ ds DW T˛.u.t//; t 2 Œ0; t0�:

The value t0 is selected so that the operator T˛ on the right-hand side of the above
equation is a contraction on a suitable Banach space of `11-valued functions and
so we can obtain the solution u (the fixed point of this contraction) by means of
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successive iterations of T˛ on the initial state
ı
u> 0. Since T˛ is positivity preserving,

it follows that u.t/ � 0 for all t 2 Œ0; t0�. We then repeat this argument, but now
with u.t0/ as the initial state, and continue in this manner.
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