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Abstract. The uncertainty theory solves problems with uncertain data.
Often to perform arithmetic operations on uncertain data, the calcu-
lations on intervals are necessary. Interval arithmetic uses traditional
mathematics in the calculations on intervals. There are many methods
that solve the problems of uncertain data presented in the form of in-
tervals, each of them can give in some cases different results. The most
known arithmetic, often used by scientists in calculations is Moore in-
terval arithmetic. The article presents a comparison of Moore interval
arithmetic and multidimensional RDM interval arithmetic. Also, in both
Moore and RDM arithmetic the basic operations and their properties
are described. Solved examples show that the results obtained using the
RDM arithmetic are multidimensional while Moore arithmetic gives one-
dimensional solution.

Keywords: interval arithmetic, uncertainty theory, fuzzy arithmetic,
granular computing, computing with words.

1 Introduction

Interval arithmetic was deemed as necessary with the development of the the-
ory of uncertainty [1]. It was realized that the use of uncertain parameters and
uncertain data is very important for the description of reality in the form of a
mathematical model. Interval arithmetic is used in scientific fields such as uncer-
tainty theory [1], grey systems [4], granular computing [8], fuzzy systems [3,7], to
determine the uncertain data and modeling of uncertain systems. The most com-
mon and most frequently used interval arithmetic is Moore arithmetic [5,6,8]. A
number of limitations and the drawbacks has been found in the Moore interval
arithmetic [2,9,14] such as: the excess width effect problem, dependency prob-
lem, difficulties of solving even simplest equation problem, interval equation’s
right-hand side problem, absurd solutions and request to introduce negative en-
tropy into the system problem. In Moore arithmetic basic operations on intervals
A = [a, a] and B =

[
b, b

]
are realized by formulas (1).

[a, a] +
[
b, b

]
=

[
a+ b, a+ b

]

[a, a]− [
b, b

]
=

[
a− b, a− b

]

[a, a] · [b, b] = [
min

(
ab, ab, ab, ab

)
,max

(
ab, ab, ab, ab

)]

[a, a] /
[
b, b

]
= [a, a] · [1/b, 1/b] if 0 /∈ [

b, b
]

(1)
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The alternative for Moore arithmetic can be multidimesional RDM interval arith-
metic. The idea of multidimensional RDM arithemtic was developed by A. Piegat
[10,11,12,13]. Abbreviation RDM stands for Relative Distance Measure where
given value x from interval X = [x, x] is described using RDM variable αx,
αx ∈ [0, 1], as shown in (2).

x = x+ αx(x − x) (2)

In notation RDM the interval X = [x, x] is described in the form (3).

X = {x : x = x+ αx(x− x), αx ∈ [0, 1]} (3)

The RDM variable αx gives possibility to obtain any value between left border
x and right border x of interval X . For αx = 0 the value from interval X equals x
and the variable αx = 1 gives x. Lets consider value x ∈ [2, 4], in RDM notation
the value x is written as x = 2+2αx, where αx ∈ [0, 1]. Fig. 1 shows the interval
X = [x, x] and the meaning of the RDM variable αx in case x ≤ x.

Fig. 1. The interval X = [x, x] and the meaning of the RDM variable αx ∈ [0, 1], x ≤ x

2 Operations in RDM Interval Arithmetic

In RDM arithmetic the following operations are definied: addition, subtraction,
multiplication and division. Depending on the numbers of variables in the calcu-
lations, the obtained solution is in multidimensional space, in Moore arithmetic
the solution are in 1-dimensional space.

Let X and Y are two intervals: X = [x, x] = {x : x = x + αx (x− x) , αx ∈
[0, 1]} and Y =

[
y, y

]
= {y : y = y + αy

(
y − y

)
, αy ∈ [0, 1]}.

Addition in RDM

X + Y = {x+ y : x+ y = x+ αx (x− x) + y + αy

(
y − y

)
, αx, αy ∈ [0, 1]} (4)

Subtraction in RDM

X − Y = {x− y : x− y = x+ αx (x− x)− y − αy

(
y − y

)
, αx, αy ∈ [0, 1]} (5)

Multiplication in RDM

X · Y = {xy : xy = [x+ αx (x− x)] · [y + αy

(
y − y

)]
, αx, αy ∈ [0, 1]} (6)



Differences between Moore and RDM Interval Arithmetic 333

Division in RDM

X/Y ={x/y : x/y = [x+ αx (x− x)] /
[
y + αy

(
y − y

)]
, αx, αy ∈ [0, 1]}, if 0 /∈ Y

(7)
For intervalsX = [x, x] and Y =

[
y, y

]
and the base operations ∗ ∈ {+,−, ·, /}

span is an interval defined as (8), operation / is defined only if 0 /∈ Y .

s(X ∗ Y ) = [min{X ∗ Y },max{X ∗ Y }] (8)

Example 1. To show multidimensionality of solution in RDM arithmetic and 1-
dimensional solution in Moore arithmetic, we will consider operations such as
addition, subtraction, multiplication and division of two intervals A = [1, 3] and
B = [3, 4].

The first solution in 1-dimension space by Moore arithmetic will be presented
by equations (9).

A+B = [1, 2] + [3, 4] = [4, 6]
A−B = [1, 2]− [3, 4] = [−3,−1]
A · B = [1, 2] · [3, 4] = [3, 8]
A/B = [1, 2]/[3, 4] = [1, 2] · [1/4, 1/3] = [1/4, 2/3]

(9)

To find solutions by RDM arithmetic we should write intervals in RDM no-
tation using RDM variable αa and αb, where αa ∈ [0, 1] and αb ∈ [0, 1], formula
(10).

A = [1, 2] = {a : a = 1 + αa, αa ∈ [0, 1]}
B = [3, 4] = {b : b = 3 + αb, αb ∈ [0, 1]} (10)

Obtained solutions are presented in equations (11).

A+B = {a+ b : a+ b = 4 + αa + αb, αa, αb ∈ [0, 1]}
A−B = {a− b : a− b = −2 + αa − αb, αa, αb ∈ [0, 1]}
A ·B = {ab : ab = 3 + 3αa + αb + αaαb, αa, αb ∈ [0, 1]}
A/B = {a/b : a/b = (1 + αa)/(3 + αb), αa, αb ∈ [0, 1]}

(11)

To show the illustration of solution obtained by RDM arithmetic we should
find border values of the results, Table 1.

Illustration of the solutions obtained by RDM arithmetic presents Fig. 2.
Spans of the 3-dimensional solutions (12), (13), (14) and (15) are the same as

intervals calculated by Moore arithmetic (9).

s(A+B) =

⎡

⎢
⎣ min

αa∈[0,1]
αb∈[0,1]

(4 + αa + αb), max
αa∈[0,1]
αb∈[0,1]

(4 + αa + αb)

⎤

⎥
⎦ = [4, 6] (12)

s(A−B) =

⎡

⎢
⎣ min

αa∈[0,1]
αb∈[0,1]

(−2 + αa − αb), max
αa∈[0,1]
αb∈[0,1]

(−2 + αa − αb)

⎤

⎥
⎦ = [−3,−1] (13)
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Table 1. Results of the basic operations for two intervals A = [a, a] = [1, 2] and
B =

[
b, b

]
= [3, 4] for border values of RDM-variables αa ∈ [0, 1] and αb ∈ [0, 1]

αa 0 0 1 1
a 1 1 2 2
αb 0 1 0 1
b 3 4 3 4

a + b a + b a + b a + b a + b
4 5 5 6

a − b a − b a − b a − b a − b
-2 -3 -1 -2

ab ab ab ab ab
3 4 6 8

a/b a/b a/b a/b a/b
1/3 1/4 2/3 1/2

s(AB) =

⎡

⎣ min
αa∈[0,1]
αb∈[0,1]

(3 + 3αa + αb + αaαb), max
αa∈[0,1]
αb∈[0,1]

(3 + 3αa + αb + αaαb)

⎤

⎦ = [3, 8]

(14)

s(A/B) =

⎡

⎢
⎣ min

αa∈[0,1]
αb∈[0,1]

[(1 + αa)/(3 + αb)], max
αa∈[0,1]
αb∈[0,1]

[(1 + αa)/(3 + αb)]

⎤

⎥
⎦ = [1/4, 2/3]

(15)
As it can be seen in Fig. 2 spans are only partial information pieces about full

3-dimensional result granules.

3 Properties of RDM and Moore Interval Arithmetic

Commutativity
Both Moore arithmetic and RDM arithnetic are commutative. For any inter-

vals X and Y equations (16) and (17) are true.

X + Y = Y +X (16)

X · Y = Y ·X (17)

Associativity
Also it is easy to show that both interval addition and multiplication in Moore

arithmetic and RDM arithnetic are associative. For any intervals X , Y and Z
there are true equations (18) and (19).

X + (Y + Z) = (X + Y ) + Z (18)

X · (Y · Z) = (X · Y ) · Z (19)
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Fig. 2. Example of addition, subtraction, multiplication and division in RDM arith-
metic of two intervals A = [1, 2] and B = [3, 4], 3-dimensional result

Neutral elements of addition and multiplication
In the conventional and RDM arithmetic there exist additive and multiplica-

tive neutral elements such as degragative intervals 0 and 1 for any interval X ,
as shown in equations (20) and (21).

X + 0 = 0 +X = X (20)

X · 1 = 1 ·X = X (21)

Inverse elements
In RDM arithmetic −X = − [x, x] = {−x : −x = −x − αx (x− x) , αx ∈

[0, 1]}, is an additive inverse element of interval X = [x, x] = {x : x = x +
αx (x− x) , αx ∈ [0, 1]}, so:
X−X = {x−x : x−x = x+αx (x− x)−x−αx (x− x) , αx ∈ [0, 1]} = 0. (22)

An multiplicative inverse element ofX = {x : x = x−αx (x− x) , αx ∈ [0, 1]},
if 0 /∈ X , in RDM arithmetic is X = {x : x = x− αx (x− x) , αx ∈ [0, 1]}:
X/X = {x/x : x/x = [x+ αx (x− x)] / [x− αx (x− x)] , αx ∈ [0, 1]} = 1. (23)

In Moore arithmetic an additive inverse element for interval X does not exist,
as equation (24) shows.

X −X = [x, x]− [x, x] = [x, x] + [−x,−x] = [x− x, x− x] (24)
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Equation (24) only for x = x (if width of X is 0) equals [0, 0].
In Moore arithmetic a multiplicative inverse element of interval X , 0 /∈ X ,

does not exist, shown in equation (25), except degenarate intervals where width
equals zero.

X/X = X · (1/X) = [x, x] · [1/x, 1/x] =
{
[x/x, x/x] for x > 0
[x/x, x/x] for x < 0

(25)

Subdistributive law
The subdistributive law (26) in RDM arithmetic holds,

X(Y + Z) = XY +XZ. (26)

Proof. For any three intervals described in RDM notation: X = [x, x] = {x : x =
x + αx (x− x) , αx ∈ [0, 1]}, Y =

[
y, y

]
= {y : y = y + αy

(
y − y

)
, αy ∈ [0, 1]}

and Z = [z, z] = {z : z = z + αz (z − z) , αz ∈ [0, 1]}, we have:

X(Y + Z) = [x, x]
([
y, y

]
+ [z, z]

)

= {x(y + z) : x(y + z) = [x+ αx (x− x)]
[
y + αy

(
y − y

)
+ z + αz (z − z)

]
,

αx, αy, αz ∈ [0, 1]}
= {xy : xy = [x+ αx (x− x)]

[
y + αy

(
y − y

)]
, αx, αy ∈ [0, 1]}

+{xz : xz = [x+ αx (x− x)] [z + αz (z − z)] , αx, αz ∈ [0, 1]}
= [x, x]

[
y, y

]
+ [x, x] [z, z] = XY +XZ.

��
In Moore arithmetic the subdistributive law holds only in the form (27).

X(Y + Z) ⊆ XY +XZ. (27)

Cancellation law
The cancellation law for addition of intervals (28) holds for both Moore and

RDM arithmetic.
X + Z = Y + Z ⇒ X = Y (28)

Proof. Concerns RDM arithmetic. For any intervals X = {x : x = x+αx(x− x),
αx ∈ [0, 1]}, Y = {y : y = y + αy

(
y − y

)
, αy ∈ [0, 1]} and Z = {z : z =

z+αz (z − z) , αz ∈ [0, 1]} in RDM notation using inverse element of interval Z
and associativity we have:

X + Z = Y + Z

[x, x] + [z, z] =
[
y, y

]
+ [z, z]

{x+ z : x+ z = x+ αx (x− x) + z + αz (z − z) , αx, αz ∈ [0, 1]}
= {y + z : y + z = y + αy

(
y − y

)
+ z + αz (z − z) , αy, αz ∈ [0, 1]} (29)

Adding an inverse interval −Z = {−z : −z = −z − αz (z − z) , αz ∈ [0, 1]},
to both sides of equation (29), we obtain:

{x : x = x+ αx (x− x) , αx ∈ [0, 1]} = {y : y = y + αy

(
y − y

)
, αy ∈ [0, 1]}
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[x, x] =
[
y, y

]

X = Y

��
Example 2 shows that multiplicative cancellation does not hold in interval

arithmetic, from equation XZ = Y Z we cannot imply X = Y .

Example 2. Let us give three intervals: X = [1, 3], Y = [2, 3] and Z = [−1, 1].
Using Moore arithmetic values of multiplication XZ and Y Z are equal (30), but
X and Y are different intervals.

XZ = [1, 3][−1, 1] = [−3, 3]
Y Z = [2, 3][−1, 1] = [−3, 3]

(30)

To find a product by RDM arithmetic we write intervals X , Y and Z in RDM
notation with RDM variable (31).

X = [1, 3] = {x : x = 1 + 2αx, αx ∈ [0, 1]}
Y = [2, 3] = {y : y = 2 + αy, αy ∈ [0, 1]}
Z = [−1, 1] = {z : z = −1 + 2αz, αz ∈ [0, 1]}

(31)

The solutions with RDM variable αx, αy and αz are presented in (32).

XZ = [1, 3][−1, 1] = {xz : xz = (1 + 2αx)(−1 + 2αz), αx, αz ∈ [0, 1]}
Y Z = [2, 3][−1, 1] = {yz : yz = (2 + αy)(−1 + 2αz), αy, αz ∈ [0, 1]} (32)

To find graphical illustration of solution, the border values should be com-
puted, Table 2 and Table 3.

Table 2. Multiplication results of fwo intervals XZ = [x, x] [z, z] = [1, 3][−1, 1] for
border values of RDM-variables αx ∈ [0, 1] and αz ∈ [0, 1]

αx 0 0 1 1
x 1 3 1 3
αz 0 1 0 1
z -1 1 -1 1
xz xz xz xz xz

-1 1 -3 3

Fig. 3 and Fig. 4 show fully 3-dimensional results of interval multiplication
XZ and Y Z, the span of solution in both cases are equal [−3, 3], but the solution
surfaces are different.

Comparing solutions obtained by Moore and RDM arithmetic we see that in
Moore arithmetic multiplication interval Z = [−1, 1] by different intervals X =
[1, 3] or Y = [2, 3] (X 	= Y ) gives the same results XZ = Y Z and the differences
in multiplication XZ and Y Z are not noticeable. Analizing the solution obtained
by RDM arithmetic Fig. 3 and Fig. 4 show that the results of multiplication
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Table 3. Multiplication results of fwo intervals Y Z =
[
y, y

]
[z, z] = [2, 3][−1, 1] for

border values of RDM-variables αy ∈ [0, 1] and αz ∈ [0, 1]

αy 0 0 1 1
y 2 2 3 3
αz 0 1 0 1
z -1 1 -1 1

Y Z yz yz yz yz
-2 2 -3 3

Fig. 3. 3-dimensional result of interval multiplication XZ = [1, 3][−1, 1] with use of
RDM interval arithmetic with span [−3, 3]

intervals XZ and Y Z are different, XZ 	= Y Z. The span [−3, 3] are equal in
both multiplications but the surfaces of solutions have different shapes.

Example 2 also shows that Moore arithmetic does not give a full solution,
the solution obtained by Moore method is 1-dimensional and describes only the
span. Example 3 shows that the results of operation made by Moore arithmetic
depend on the form of equation.

Example 3. Let us consider the results of Moore and RDM interval arithmetic
for nonlinear equation (33) where A = [0, 2].

C = A−A2 (33)

Equation (33) can take a form (34) and (35).

C = A(1−A) (34)

C = (A− 1) + (1−A)(1 +A) (35)

Calculating value C from equation (33), (34) and (35) for A = [0, 2] using
Moore arithmetic we obtain different results (36), (37) and (38).

C1 = [0, 2]− ([0, 2])2 = [−4, 2] (36)

C2 = [0, 2](1− [0, 2]) = [−2, 2] (37)
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Fig. 4. 3-dimensional result of interval multiplication Y Z = [2, 3][−1, 1] with use of
RDM interval arithmetic with span [−3, 3]

C3 = ([0, 2]− 1) + (1− [0, 2])(1 + [0, 2]) = [−4, 4] (38)

Which solution is correct?
Solving equations (33), (34) and (35) by RDM arithmetic the inetrval A =

[0, 2] in notation RDM takes the form (39).

A = [0, 2] = {a : a = 2αa, αa ∈ [0, 1]} (39)

The solution obtained by RDM arithmetic for different forms of the equation
(33) gives the same results (40), (41) and (42).

C = A−A2 = {c : c = 2αa − 4α2
a, αa ∈ [0, 1]} (40)

C = A(1−A) = {c : c = 2αa(1 − 2αa), αa ∈ [0, 1]}
= {c : c = 2αa − 4α2

a, αa ∈ [0, 1]} (41)

C = (A − 1) + (1−A)(1 +A)
= {c : c = (2αa − 1) + (1− 2αa)(1 + 2αa), αa ∈ [0, 1]}
= {c : c = 2αa − 4α2

a, αa ∈ [0, 1]}
(42)

The solution calculated by RDM arithmetic has only one RDM variable αa ∈
[0, 1] so is 1-dimensional and has the form (43).

C =

[
min

αa∈[0,1]
(2αa − 4α2

a), max
αa∈[0,1]

(2αa − 4α2
a)

]
= [−2, 1/4] (43)

4 Conclusions

The paper compares the Moore and RDM interval arithmetic. The results ob-
tained with Moore arithmetic are one-dimensional, the RDM arithmetic gives
a multidimensional solution. In some cases the solutions in Moore arithmetic
depend on the form of the equation, so it suggests that Moore arithmetic cannot
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correctly solve more complicated problems. The RDM arithmetic for different
forms of the equation gives the same results. The Moore arithmetic gives only
the span, not a full solution, except one-dimensional problems where the solution
is an interval.
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