

A. Bouchachia (Ed.): ICAIS 2014, LNAI 8779, pp. 110–120, 2014.
© Springer International Publishing Switzerland 2014

Reference Architecture for Self-adaptive Management
in Wireless Sensor Networks

Jesús M.T. Portocarrero1, Flavia C. Delicato1, Paulo F. Pires1, and Thais V. Batista2

1 PPGI-iNCE/DCC-IM/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{jesus140,fdelicato,paulo.f.pires}@gmail.com

2 DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil
thaisbatista@gmail.com

Abstract. Self-adaptive component-based architectures facilitate the building of
systems able of dynamically adapting to varying execution contexts. Such a dy-
namic adaptation is particularly relevant in the domain of wireless sensor
networks (WSNs), where numerous and unexpected changes of the execution
context prevail. In this paper, we introduce a reference architecture for WSNs in
order to contribute to middleware development for enabling self-adaptive
behavior in service-oriented WSNs. This reference architecture follows the au-
tonomic computing model MAPE-K, for making decisions aiming to attend
self-adaptive WSN requirements. At the end of this paper, we present a case
study to explain how instantiate our reference architecture in order to create a
specific concrete middleware for WSN.

Keywords: Autonomic computing, sensor network, reference architecture.

1 Introduction

Wireless sensor networks (WSN) consist of networks composed of devices equipped
with sensing, processing, storage, and wireless communication capabilities. Each
node of the network can have several sensing unit, which is able to perform measure-
ments of physical variables. The nodes in a WSN have limited computing resources,
and are usually powered by batteries; thus energy saving is a key issue in these net-
works in order to prolong their operational lifetime. WSN nodes operate collabora-
tively, extracting environmental data, performing same simple processing and
transmitting them to one or more exit points of the network called sink nodes, to be
analyzed and further processed.

There is currently a wide range of applications for WSN, ranging from environmen-
tal monitoring to structural damage detection. The first WSN applications had simple
requirements that did not demand complex software infrastructures. Typically WSN
were designed to attend requirements of a unique target application. However, the rapid
evolution in this area and the increasing of complexity of sensors and applications in-
volved the need of specific middleware platforms for these networks. Furthermore,
typically WSN are used in highly dynamic and hostile environments, without human
participation, and therefore, they should have an autonomous behavior, able to be
fault-tolerant coverage and connectivity. Sensor nodes must be smart to recover

 Reference Architecture for Self-adaptive Management in Wireless Sensor Networks 111

autonomously from failures with minimal human intervention; in other words, WSN
should be able to self-manage and to adapt itself to the context dynamically.

According to [1], autonomic computing, also known as self-adaptive computing, is
a capacity of an infrastructure for adapting itself according to policies and business
goals. Autonomic computing just tries to help IT professionals to focus in higher
value tasks, turning technological work more intelligent, with business rules oriented
to self-management. These rules also known as self-* properties are: (i) Self-
Configuration, it is the ability to adapt itself to the environment changing according to
high-level policies, aligned with business goals and defined by system administrators;
(ii) Self-Healing, it is the ability to recover after a system disturbance and to minimize
interruptions to maintain the software available for the user, even in the presence of
individual failure of components; (iii) Self-Optimization, it is the system ability to
improve its operation continuously and (iv) Self-Protection, it is the ability to predict,
detect, recognize and protect from malicious attacks and unplanned cascade failures.

A highlight approach to develop autonomic systems is the architecture to autonom-
ic computing proposed by IBM [2] that defines an abstract framework for self-
managing IT systems. In this framework an autonomic system is a collection of
autonomic elements. Each element consists of an autonomic manager and a managed
resource. In the context of WSN, an autonomic manager can be a middleware system
and the own sensor network represents the managed resource. The autonomic manag-
er allows adaptation through four activities: monitoring, analyzing, planning and ex-
ecuting, with support from a knowledge base. In monitoring activity, elements collect
relevant data via sensors to reflect the current state of the system – the managed re-
source (and thus, grant it context awareness). In analyzing activity, the collected data
are analyzed in search of symptoms relating the current and desired behavior. The
planning activity decides whether is necessary to adapt the system to attend the goals
defined previously. In execution activity are instrumented the desired adaptation acts
by actuators or effectors. In order to implement these activities to allow self-
adaptation of software feedback loops are required, with explicit functional elements
and interactions between them for managing the dynamic adaptation. These elements
are known as MAPE-K model (Monitor, Analyze, Plan, Execute and Knowledge
Base). Feedback control loops are considered a key issue in pursuing self-adaption for
any system, because they support the four above-mentioned activities. They play an
integral role in adaptation decisions. Thus, key decisions about a self-adaptive
system’s control depend on the structure of the system and the complexity of the
adaptation goals. Control loops can be composed in series, parallel, multi-level (hie-
rarchical), nested, or independent patterns. We refer the interested readers to [3]
which have further discussed the choices and impact of control loops on the design of
self-adaptive systems. In this context, Autonomic Computing is presented as an inter-
esting option to meet basic requirements in WSN design. Thus, autonomic computing
principles can be applied to WSN in order to optimize network resources, facilitate
their operations and achieve desired functionality in the wide field of sensing-based
applications and providing conditions for this type of network manage itself without
involve human operators. So, a WSN becomes an autonomous WSN. The MAPE-K
model described above provides conceptual guidelines about the autonomic systems
conception; in practice, this information model needs to be mapped to an implement-
able architecture for managing and control of autonomic WSNs.

112 J.M.T. Portocarrero et al.

Hence, this work proposes a middleware reference architecture for self-adaptive
management of WSN. Middleware for WSN [4] assists the development of WSN
applications, providing services and abstractions that hide details about underlying
hardware devices and low-level software mechanisms. Reference architectures are
created based on reference models and architectural patterns [5]. Our reference archi-
tecture adopts the MAPE-K model and a component-based and service-oriented ap-
proach. The main purpose of a reference architecture is to facilitate and guide [6] (i)
the design of concrete architectures for new systems; (ii) the extensions of systems of
neighbor domains of a reference architecture (iii) the evolution of systems that were
derived from the reference architecture and (iv) the improvement in the standardiza-
tion and interoperability of different systems. These play a dual role in relation to
specific software architectures, the first role generalizes and extracts common func-
tions and configurations, and the second role provides a base for instantiating target
systems. In other words, reference architectures can be seen as a repository of a given
knowledge area, contributing towards software development, since the reuse of know-
ledge and improvements of productivity are promoted. Thus, the proposed middle-
ware reference architecture aims to satisfy this dual role in WSN domain. This mid-
dleware reference architecture has been designed applying a service-based approach
[7], in which the WSN is seen as a service provider for user applications. The service
provided by the WSN is data collection and delivery. The services provided by the
middleware are the interpretation of the application requirements and the selection of
the best initial network configuration and network reconfiguration based on those
requirements.

The rest of the paper is organized as follows: Section 2 introduces the self-adaptive
WSN requirements addressed in the work. Section 3 details the proposed approach.
An instance of our reference architecture is described and analyzed in Section 4. Sec-
tion 5 draws conclusions and related work.

2 Self-adaptive WSN Requirements

Considering WSN singularities, especially with regard to resource constraints, there
are some requirements of design in WSN applications that also must be considered in
the middleware design for WSN:

─ Hardware resources: the advent in microelectronics technology made it possible
to design miniaturized devices on the order of one cubic centimeter. These tiny de-
vices could be deployed in hundred or even thousands in harsh and hostile envi-
ronments, where in some situations a physical contact to maintain or replace these
devices is impossible and wireless media is the only way for remote accessibility.

─ Scalability and dynamic network topology: the network topology is subject
to frequent changes due to diverse factors as devices failures, mobile obstacles,
mobility and interferences. If an application grows, the network should be flexible
enough to include other nodes anytime without impacting network performance. A
WSN middleware should support mechanisms for fault tolerance and sensor nodes
self-maintenance. In order to attend these requirements, Topology Control and
Fault Tolerance mechanisms are required.

 Reference Architecture for Self-adaptive Management in Wireless Sensor Networks 113

─ Dynamic network organization: Unlike traditional networks, sensor networks
must deal with resources that are dynamic, such as energy, bandwidth, and
processing power. An important issue is to support applications in the efficient de-
sign of routing protocols and providing ad hoc network resource discovery, be-
cause knowledge of the networks is essential for it to operate properly.

─ Application knowledge: An autonomic middleware for WSN must include me-
chanisms for injecting application knowledge of WSN infrastructure. This allows
mapping the application requirements with the network parameters, and adjusts the
process of network monitoring.

─ Focused on data: WSN applications generally are not interested in node identity,
but the data it produces, especially when the same types of nodes are deployed to
produce the same type of data. A WSN middleware should support the centrality of
data, providing mechanisms for routing and centralized query inside the network.
Mechanisms for Sensing and Data Delivery are appropriate.

─ Quality of service (QoS): Traditional networks only move data from one place to
another, however, nodes in WSN work collaboratively to move data, monitor and
control an environment. For this type of networks, data confidence determines that
an event that should be detected was in fact detected.

3 Reference Architecture for Self-adaptive Management of WSN

This Section details the proposed approach. First is presented the architectural styles
and design patterns used in the reference architecture designing process and after that
the components of the architecture are detailed. We consider the interactions among
the different activities of control loops realized by the MAPE-K components.

3.1 Architectural Styles and Design Patterns

Software architectures is almost never limited to a single architectural style, is often a
combination of architectural styles that make up the complete software. To built our
reference architecture we used combinations of the following architectural styles.

─ Layer Architectural Style: Focuses on the grouping of related functionality with-
in an application into distinct layers that is stacked vertically on top each other.
The main benefits are abstraction, isolation, manageability, performance, reusabili-
ty and testability. Our reference architecture contains three 3 layers (Figure 1a):
Sensor MAPE-K Layer (SML), Network MAPE-K Layer (NML) and Goal Man-
agement Layer (GML). SML concerns the autonomic management inside sensor
devices; NML concerns the autonomic management in the whole network and
GML aims to set adaptation policies used by underlying layers in order to perform
adaptations. Also, this layer allows to get the current network status. At this level
of abstraction the NML acts as the autonomic a manager and the SML acts as a
managed resource. The communication between GML and NML is based on SOA
services, and the communication between NML and SML uses the Message Bus
Architectural Style. Here, the communication is based on messages that use known
schemas.

114 J.M.T. Portocarrero e

─ Component-based and
tectural style focuses on
or logical components th
ing methods, events, and
deployment, reduced co
nical complexity. Servic
nality to be provided as
pattern proposed by [8] t
in self-adaptive systems.
information; Output, use
able to achieve informat
be able to manage the e
ternal manager.

─ Decorator Pattern. For
the design pattern Decor
ject, either statically or d
from the same class. Thi
entities: (i) Interfaces th
classes with the definitio
ponents, and (iii) Implem

 (a)

Fig. 1. (a) Layers of Referenc
implementation of components

3.2 Reference Architec

Our reference architecture
manager and managed node
necting WSN nodes and e
autonomic managers of ma
organized in clusters. Node
Managed nodes receive ada

The overall system is co
MAPE-K loops are present
at different levels interact w
loop at a given level may pa
filtered or aggregated, toge
may issue to the level belo

et al.

Service-Oriented Architectural Style. Component arc
the decomposition of the design into individual functio

hat expose well-defined communication interfaces conta
d properties. The main benefits of this approach are: easy
ost, easy to development, reusable and mitigation of te
ce-oriented architectural style enables application func
s a set of service. At the component level we applied
that describes the structure of service components for us
. The interfaces are (see Figure 1b): Input, used to rece
ed to send information; Sensor, that makes the compon
tion from the external; Effector, that makes the compon
xternal; Emitter, used to emit status information to an

the general implementation of the components we adop
rator that allows behavior to be added to an individual
dynamically, without affecting the behavior of other obje
is pattern, depicted in Figure 1c, is based on three type
hat define services provided by components, (ii) Abstr
on of basic methods, services and references to other co
mentation classes that define the specific required behavi

(b) (c)

ce Architecture (b) Structure of service components (c) Gen
s

cture Components

assumes a network as a set of heterogeneous nodes (n
es) and sink nodes. The sink node acts as the gateway c
xternal networks and applications. Node manager acts

anaged nodes; this type of nodes manages a group of no
e managers are cluster heads of clusters. On the other ha
aptation messages from Node managers.
ntrolled by a hierarchical control structure where comp
t at all architecture layers of the hierarchy. MAPE-K lo
with each other by exchanging information. The MAPE
ass to the level above information it has collected, possi
ether with information about locally planned actions,

ow directives about adaptation plans that should be refi

chi-
onal
ain-
y of
ech-
ctio-

the
sing
eive
nent
nent
ex-

pted
ob-
ects
s of
ract
om-
ior.

neral

node
con-
s as

odes
and,

lete
oops
E-K
ibly
and

ined

 Reference Architecture for S

into corresponding actions.
three levels of layers follow

The SML allows adaptin
mation and adaptation poli
context information: batter
sensing data, state of node
manager/managed node) fu
tion. Node managers may
inside the cluster. Each nod
order to determine all adap
cluster, a node manager rec
nodes and a MAPE-K pro
needed, a node configuratio
tains information able to m
ing managed nodes), to ad
delivery model) and node fu

Fig. 2. Reference

In addition, this layer is
NML. This message conta
adaptation policies used by
sions. SML consists in two

Self-adaptive Management in Wireless Sensor Networks

. Our proposed architecture depicted in Figure 2, conta
wing the architectural style presented in Section 3.1.
ng a node configuration according to nodes context inf
cies. At this point, our reference architecture considers

ry level of sensor nodes, data delivery model/send rate
es (active/inactive/idle), ID of nodes, type of node (n
unction (routing/sensing/storing), power of signal, locali

create new configurations for managed nodes locali
de manager is responsible for managing its own cluster
ptation actions needed to reconfigure managed nodes o
ceives continuously context information from its mana

ocess is performed to verify the need of an adaptation
on message is created. A node configuration message c

modify the topology of the cluster (activating and deactiv
djust tasks performed by cluster members (such as, d
unctions (routing, sensing storing).

e architecture for self-adaptive management of WSN

s able to receive a cluster configuration message sent
ains a set of task to be executed by sensor nodes and
y the underlying layer in order to support adaptation d
o service components: SensorManager and AcquisitionM

115

ains

for-
s as
e of

node
iza-
ized
r. In
of a

aged
n, if
con-
vat-
data

t by
the

eci-
Ma-

116 J.M.T. Portocarrero et al.

nager. All components of our architecture follow the pattern for autonomic computing
components proposed by [8], presented in Section 3.1.

• SensorManager component manages the nodes behavior and determines all adapta-
tion actions needed to reconfigure: (i) a cluster, if the node is configured as a man-
ager, (ii) itself, if the node is configured as a managed node. This component is re-
sponsible for executing the MAPE-K process.

• AcquisitionManager component collects measures of physical phenomena moni-
tored by sensors and executes the data delivery. If an adaptation request defines
changes in the data delivery model, this component will be notified through the in-
terface called setTaskConfiguration.
The NML performs adaptation actions to the network configuration. Thus, the con-

textual information used for this activity is provided by whole network. This layer
contains service components that consists in:
• GatewayCommunication: This component provides to Analyser component, con-

textual information collected through the SML. This information is collected using
the interface publishData. This interface collects: sensing data (measures of physical
phenomena), context information (such as battery status) and the services provided
by a node (such as temperature, humidity).

• Analyser component uses the sendCurrentState interface to collect contextual in-
formation of network and detects symptoms to determine a network adaptation
need. This interface collects: sensing data provided by Sensing Data Manager com-
ponent, context information of nodes provided by Context Manager component and
the current services of network provided by Publish and Discovery component. Al-
so, the Analyser uses other sources of contextual information, from application re-
quirements, such as data delivery model, desired services and QoS requirements.
With this information the Analyser component supports the implementation of me-
thods for verifying if application requirements, coverage and connectivity are been
guaranteed, and verify the energy state of network. If an adaptation need is detected
must be performed an adaptation request using the adaptationRequest interface.

• Planner component plans a network configuration once an adaptation request is
sent by Analyser component. The Planner component considers adaptation policies
in order to generate a network configuration. A policy specifies a set of actions that
should be taken by the middleware upon the occurrence of adaptation requests. An
adaptation policy can be defined using XML or JSON files.

• ConfigurationManager receives configuration parameters through the
sendWSNAdaptation interface, translates these parameters in a configuration mes-
sage and disseminates this configuration to the network nodes, through the Gateway
Communication component.

• SensingDataManager receives sensing data from Gateway component and publish-
es these data to application monitor component. Also, this component publishes the
sensing data to Analyser component in order to analyze the context of the network.

• ContextManager receives sensor context information from Gateway Monitor and
publishes this information to Analyser component.

 Reference Architecture for Self-adaptive Management in Wireless Sensor Networks 117

• PublishandDiscovery, receives an advertise of service from Gateway Monitor,
provided by sensor nodes. This data is published to Application Monitor and Ana-
lyser component.

• KnowlodgeBase store all context information and support the MAPE-K process.

The proposed reference architecture is based on self-adaptation principles and in
order to perform this autonomic behavior a minimal human intervention is required.
The components that allow human interaction to define the policies and configura-
tions of network adaptation mechanisms are in the GML and its components are Ap-
plicationManager, AdaptationPoliciesManger and Inspection Manager.

• ApplicationManager component is used to create applications, present to the end-
user network provided services and monitoring sensing data.

• AdaptationPoliciesManager is used to define adaptation policies. This component
uses the setAdaptationPolicies interface to offer these policies to the Network
MAPE-K layer.

• Inspection Manager is used to inspect adaptation information of middleware that is
accessible to external environment.

4 Case Study

In this section we defined a case study in order to instantiate a concrete architecture
derived from our reference architecture. The concrete architecture consists in the defi-
nition of a specific WSN middleware to perform self-adaptation of network configura-
tion in order to preserve energy consumption of the network. Energy management was
the main adaptation requirement of this concrete middleware whereas WSN nodes
have limited computing resources, thus energy saving is a key issue in these networks
in order to prolong their operational lifetime. For such, this energy-aware middleware
must guarantee: (i) application requirements (ii) the network has sufficient residual
energy to attend all running applications, (iii) each sensor node becomes active wheth-
er it has residual energy to guarantee its work until the end of task allocated to it, and
(iv) the network must be fully connected in terms of radio communication. Table 1
shows a mapping between the reference architecture layers and the case study require-
ments and depicts activities that must be executed in every feedback cycle. The NML
and the GML of the concrete architecture were implemented in Java programming
language. The SML was implemented in NesC (network embedded systems C) pro-
gramming language, an extension of C programming language [9]. This layer was
deployed in MicaZ sensor platform, which runs on TinyOS operating system.

Figure 3 shows the NML class diagram. Each component was implemented follow-
ing the general structure of components (Decorator pattern). It is important to note that
these abstract classes are connected to other service interfaces. This approach allows to
clarify the component relationship and to define the behavior of components. Thus, we
can see a clear and complete separation among mechanisms that handle adaptation
issues of the reference architecture and the specificity of the instantiated middleware.
In this case, seven implementation classes (gray classes) extend our reference architec-
ture (white classes) in order to create the specific energy-aware middleware detailed
in this case study: GatewayImpl, AnalyserImpl, PlannerImpl, ConfigurationImpl and

118 J.M.T. Portocarrero e

GatewayExecutorImpl. SM
text messages with residual
to process context message

Table 1. Spe

MAPE-K
Components

SM

Monitor
tasks

-To monitor
energy of no

Analyzer
tasks

-Residual en
last by the al
task time.

Planner
tasks

-When an un
energy level
tected: send
message, red
delivery inte

Executor
tasks

-Update the
very interval
-Node only
ter/sensing fu
ties, Turn off

Thus, the GatewayImpl

with the NML, receive the
objects. AnalyzerImpl and
requirements of the concr
which nodes are able, in te
requirements.

Fig

et al.

ML, implemented on MicaZ/TinyOS platform, publish c
l energy information to the GatewayMonitor class, in or
and select a list of best nodes.

ecific actions of every concrete architecture layer

ML NML

r residual
odes

-To monitor data delivery rate and residual ener
-To monitor state of nodes

nergy must
llocated

-Residual energy must last by runtime applicatio
time.
-Network fully connected, coverage redundancy

ndesirable
is de-
an alert

duce data
erval.

-When an undesirable energy level is detected:
reduce the percentage of active nodes, remove
node redundancy.
-When an undesirable state linked to QoS is de-
tected: increase the percentage of active nodes,
increase node redundancy.

data deli-
l
with rou-

functionali-
ff the node.

-Translate the adaptation plan in a readable for-
mat by the MicaZ/TinyOS platform, and dissem
nate the new network configuration.

class contains specific methods to communicate the SM
ese TinyOS context messages and translate them in J
d PlannerImpl class contains methods to manage

rete middleware, detailed in Table 1, and adjust cho
erms of energy, to publish services and attend applicat

g. 3. Network MAPE-K Layer Instance

con-
rder

rgy

on

y

-

mi-

ML
Java

the
oose
tion

 Reference Architecture for Self-adaptive Management in Wireless Sensor Networks 119

5 Final Remarks and Related Work

In this paper was proposed a reference architecture for self-adaptive service-oriented
WSN in order to facilitate the building of middlewares capable of dynamically adapting
to varying execution context. This reference architecture follows an autonomic compu-
ting model for making decisions aiming to attend self-adaptive WSN requirements.

Our reference architecture consists in two levels of autonomic management, one
level of management inside sensor devices and the second level of management con-
siders whole network. Both of them are based in the autonomic computing model
MAPE-K. A case study was described to instantiate our proposed reference architec-
ture in a specific energy-aware middleware, and showed how it supports designers of
WSN middleware. In the current literature we found four different paradigms that
allow building middleware systems for self-adaptive WSNs, namely component-
based [10], service-oriented [11], multi-agent [12] and Software Product Line [13].
Our reference architecture adopts a component-based and service-oriented approach
specific for self-adaptive WSNs.

Acknowledgments. This work is partially supported by FAPERJ, CNPq and CAPES.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

2. IBM: An Architectural blueprint for autonomic computing, Autonomic Computing (2005)
3. Brun, Y., et al.: Engineering Self-Adaptive Systems through Feedback Loops. In: Cheng,

B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems.
LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

4. Wang, M., Cao, J., Li, J., et al.: Middleware for wireless sensor networks: A survey. Jour-
nal of Computer Science and Technology 23(3), 305–326 (2008)

5. Angelov, S., Grefen, P., Greefhorst, D.: A framework for analysis and design of software
reference architectures. Information and Software Technology 54(4), 417–431 (2012)

6. Nakagawa, E.Y., Oquendo, F., Becker, M.: RAModel: A reference model of reference ar-
chitectures. In: ECSA/WICSA 2012, Helsinki, Finland, pp. 297–301 (2012)

7. Delicato, F.C., Pires, P.F., Rezende, J., Pirmez, L.: Service Oriented Middleware for Wire-
less Sensor Networks. In: Editor (Ed.)^(Eds.): Book Service Oriented Middleware for
Wireless Sensor Networks (2004)

8. Puviani, M., Cabri, G., Zambonelli, F.: A taxonomy of architectural patterns for self-
adaptive systems. In: Proceedings of the International C* Conference on Computer
Science and Software Engineering (C3S2E 2013), pp. 77–85. ACM, New York (2013)

9. nesC: A Programming Language for Deeply Networked Systems, http://nescc.
sourceforge.net/ (last access: April 2014)

120 J.M.T. Portocarrero et al.

10. Conan, D., Rouvoy, R., Seinturier, L.: Scalable processing of context information with
COSMOS. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 210–
224. Springer, Heidelberg (2007)

11. Ruiz, L.B., Nogueira, J.M.S., Loureiro, A.A.F.: MANNA: A Management Architecture for
Wireless Sensor Network. IEEE Commun Mag. 41(2), 116–125 (2003)

12. Fok, C.-L., Roman, G.-C., Lu, C.: Agilla: A mobile agent middleware for self-adaptive
wireless sensor networks. TAAS 4(3) (2009)

13. Gamez, N., Fuentes, L., Araguez, M.: Autonomic computing driven by feature models and
architecture in FamiWare. Springer (2011)

	Reference Architecture for Self-adaptive Management in Wireless Sensor Networks
	1 Introduction
	2 Self-adaptive WSN Requirements
	3 Reference Architecture for Self-adaptive Management of WSN
	3.1 Architectural Styles and Design Patterns
	3.2 Reference Architecture Components

	4 Case Study
	5 Final Remarks and Related Work
	References

