
Design Principles for Single-Stranded RNA

Origami Structures

Cody W. Geary and Ebbe Sloth Andersen�

Interdisciplinary Nanoscience Center, Aarhus University,
Gustav Wieds Vej 14, 8000 Aarhus, Denmark

esa@inano.au.dk

Abstract. We have recently introduced an experimental method for
the design and production of RNA-origami nanostructures that fold up
from a single strand while the RNA is being enzymatically produced,
commonly referred to as cotranscriptional folding. To realize a general
and scalable architecture we have developed a theoretical framework for
determining RNA crossover geometries, long-distance interactions, and
strand paths that are topologically compatible with cotranscriptional
folding. Here, we introduce a simple parameterized model for the A-
form helix and use it to determine the geometry and base-pair spacing
for the five types of RNA double-crossover molecules and the curvature
resulting from crossovers between multiple helices. We further define a
set of paranemic loop-loop and end-to-end interactions compatible with
the design of folding paths for RNA structures with arbitrary shape and
programmable curvature. Finally, we take inspiration from space-filling
curves in mathematics to design strand paths that have high-locality,
programmed folding kinetics to avoid topological traps, and structural
repeat units that might be used to create infinite RNA ribbons and
squares by rolling circle transcription.
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1 Introduction

RNA molecules have a greater structural diversity than DNA and are thus of
interest as design substrate for biomolecular engineering. The field of RNA nan-
otechnology has taken inspiration from the modular nature of structurally char-
acterized RNA molecules to develop a design paradigm where structural modules
can be composed to achieve complex geometric shapes and lattices [13]. How-
ever, RNA modular design is currently limited to rather small RNAs, suggesting
that there is still a need to develop a more standardized design approach such as
that used in DNA nanotechnology [2] and best exemplified by the DNA origami
method [22]. Particularly, in DNA nanotechnology the double-crossover (DX)
motif plays a central role in organizing DNA helices into large arrays, but the
RNA field has yet to leverage RNA DX motifs to build similarly large structures.
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DX molecules have been described extensively for B-form DNA helices [9], but
to our knowledge not in great detail for A-form RNA helices, which we will now
describe. Several papers have revealed that using a simplified model considering
only the helical twist of 11 base pairs (bps) per turn for RNA is not sufficiently
accurate for fully realizing design in RNA. For example, for the RNA/DNA hy-
brid design of Mao and colleagues it was revealed that the inclination of the
bases in RNA influences the tiling behavior of the RNA/DNA nanostructures
[17]. Likewise, in Delebecque et al. RNA assemblies designed considering only
the helical twist required the inclusion of unpaired bases within the tile [5],
which we here propose generate a required flexibility to counteract the distance
offset caused by the base-pair inclination. Furthermore, studies of RNA assem-
blies based on the paranemic crossover motif (PX) have found that the ideal tile
designs differ significantly from the DNA versions, due to the difference in width
of the major and minor grooves of RNA compared to DNA [1]. Recently, we ini-
tiated the design and testing of RNA double-crossover molecules with crossover
spacings based on calculated distances and three-dimensional (3D) modeling,
and demonstrated very robust formation of RNA DX motifs [12]. Here, we ex-
tend upon this work and describe the DX motifs for RNA in detail, and propose
a new method for the systematic design of RNA nanostructures.

A useful feature of RNA structure is that it can be produced directly from
the RNA polymerase enzyme by the cotranscriptional self-assembly process. In
this process the RNA folds locally as it is transcribed and the structure grad-
ually builds up as more sequence is produced by the enzyme. The autonomous
enzymatic process furthermore allows engineered RNA structures to be genet-
ically encoded and expressed in cells, much like natural RNAs. We have re-
cently demonstrated the design of single-stranded RNA origami structures and
their production by both heat-annealing and/or cotranscriptional folding [12].
To develop this method further we consider the cotranscriptional folding pro-
cess as it relates to requirements for the order of folding and assembly events
along the RNA strand, and propose geometrical and topological principles for
single-stranded RNA nanostructures.

2 Simple Model of a Double Helix

In DNA nanotechnology simplified helices are often used when designing larger
constructs to decrease the computational requirements for handling large 3D
objects, since only a few parameters are needed to determine crossover posi-
tions [24]. By contrast, many artificial RNA nanostructures are still designed
using fully-atomistic models [23,14], in a tedious process requiring specialized
experience, or by using over-reduced models that do not capture important de-
tails of the RNA helix [5]. Thus, there is a need for an appropriately simplified
RNA model that can still be easily manipulated. Here, we propose such a model
that is a parameterization describing only the positions of phosphate atoms on
the helix, which we call the “P-stick model”. Our model generates the atomic
positions of phosphates relative to the central axis of the helix, based on five
parameters: base inclination relative to the helix-axis, rise between bases, helix
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Fig. 1. P-stick model for the A-form helix. (A) Left: Model of A-form helix shown
in side view with indications of inclination and rise distances along helical axis. Right:
End view of the same A-form helix model as seen along the helical axis from the left
as indicated by the eye symbol. The radius, axis and twist angles are indicated. Lines
connecting the phosphates to the central axis depict the connectivity of the helix and
do not represent base-pairs. (B) Schematics of P-stick model with 3’ end indicated by
circle with a dot (tip of arrow) and 5’ end indicated by a circle with a cross (end of
arrow). The second bp is shown in grey to indicate twist angle and the right handed
rotation of the helix.

Table 1. Parameters for P-stick helix model. Parameters are measured by the
authors based on data from Arnot et. al. 1973 [3] and Dickerson et al. 1982 [6]. We
also note that the inclination variable measures the inclination of paired-phosphates
relative to the helical axis, and should not be confused with base-pair inclination.

Parameters Variables A-form B-form

Radius R 8.7 Å 9.3 Å
Rise D 2.81 Å 3.4 Å
Inclination I -7.45 Å 3.75 Å
Axis A 139.9◦ 170.4◦

Twist T 32.73◦ 34.48◦

Helicity H 11 bp 10.44 bp

radius, axis angle across the minor groove, and helicity in bps per turn (described
in Fig 1A).

Parameters for RNA A-form helices were measured from standard helices
generated by Westhof’s Assemble2 program [16], which are based on classical
A-form parameters [3]. Parameters for DNA B-form helices were derived from
various literature sources: The helicity was chosen to be 10.44 bps/turn based
on NMR measurements in solution [26] and parameters found to be the optimal
for producing twist-corrected DNA origami structures [27]. The inclination be-
tween phosphates was found by aligning the B-DNA crystal structure (PDB-ID
1BNA) [7] and averaging for all phosphate positions giving a value of 3.748 Å.
Parameters for both A- and B-form helices are provided in Table 1.

The P-stick model consists of two equations that generate xyz coordinates for
the phosphate atoms along each strand of a helix, with the axis centered on the
origin pointing along the x-axis:
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Eq(1) describes the strand running from 3’ to 5’ along the x-axis and Eq(2)
describes the complement strand running 5’ to 3’.

3 RNA Crossover Motifs

The alignment of phosphates between helices is taken as an indicator of positions
where a crossover junction can join the helices [24]. Here we use the P-stick model
to predict optimal crossover spacings for A- and B-form helices. To construct
a crossover between two helices we first align one pair of phosphates between
the helices, then break the backbone bond on the same side of each phosphate
and rejoin them with the opposite strand. Likewise, to construct a DX between
two helices we orient the helices in parallel and rotate the helices to align two
pairs of phosphates in the plane, and perform two crossover operations on the
backbone.

3.1 The RNA DX Types

DXs can either be formed between anti-parallel (A) or parallel (P) strands,
and the spacing between the two crossovers (measured by the number of half
turns) can either be even (E) or odd (O). Even-spaced crossovers result in
both crossovers bridging the same strand, while odd-spacing results in the two
crossovers formed between opposite strands (Fig. 2). Thus, DX molecules can
take the form of AE, AO, PE and PO. Two possibilities exist for PO since the
DX can bridge either the major or minor groove. For B-form helices the major
groove is wide (W) and the minor groove is narrow (N), and the DXs are thus
called PON and POW [9]. For A-form helices the major groove is narrow and
deep (D) and the minor groove is wide and shallow (S), and thus we propose
to name the A-form PO-DX motifs POD and POS. PO-DXs with more than
one groove spanning the crossovers are named depending on which groove is
predominant. PO-DXs that span a single groove width have the property of be-
ing paranemic, and have been described and studied for both DNA and RNA,
although with non-ideal spacings for RNA[1]. Interestingly, the DX molecules
all have different pseudosymmetry axes (shown in Fig. 2) that are important for
their use as building blocks, which we will discuss later.
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Fig. 2. Minimal A-form DX molecules. A-form DX of type AE, AO, PE, POD
and POS (see section 3.1 for naming conventions) that can be expanded by 11 ∗n bps.
Left: Ribbon diagrams show how the helix inclination affects the base-pair spacing
between the two crossovers. Red dashed lines show the junctions and their inclinations.
Base-pair spacing is indicated above and below, with horizontal lines. Red lines and
ellipse shapes show C2 pseudosymmetry axes. Ribbon diagrams are based on P-stick
models and drawn using positions of P and C3 atoms. Helices (H) and junctions (J) are
numbered from top to bottom and left to right, respectively. Right: The two junctions
are shown with schematics similar to Fig. 1B as seen along the helical axis from the
eye symbol. The DX adjusted rotation of the helices are shown. Bottom left: Four
AO DXs with different spacing are shown in side view, where black diagram is J1 and
red diagram is J2. The distance between P atoms at crossovers is written below each
side view.

3.2 Spacing between A-Form DXs

We use the P-stick model to calculate optimal crossover positions, which is
done by measuring the distance between pairs of phosphates on two strands and
finding the pairs for which the distances are at a minimum. For each crossover
pattern that we analyze, we provide distance and angular measurements to qual-
ify how well-aligned the crossover pattern is (Table 2). The distance between
two crossovers (DX-distx) is measured from the midpoint between the phos-
phates of one crossover to the midpoint of phosphates of the second crossover.
The angular gap (ΔAngle) of the crossovers is calculated by perfectly aligning
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the phosphates of the first crossover, and then measuring the angular offset of
the phosphates from the center-line of the second crossover. We calculate the
bp spacing, derived from the number of phosphates between the crossovers, and
the direction of the strands as they pass through the crossovers. Because of the
different strand directionality in odd- versus even-spaced junctions, the number
of bps in the junction have the following relations:

bp = P − 1 for AE and PE

bp = P for AOD and POD

bp = P − 2 for AOS and POS.

Thus, for AO junctions where the minor groove of the first helix (H1) aligns with
the major groove of the second helix (H2), the two strands must be considered
differently. In Table 2, bp values (b2,b1) for each set of phosphate spacings (p2,p1)
are reported.

An interesting feature of all AO- and PO-DXs is that the crossovers occur
between opposite strands which, due to the incline of the phosphates, results in
an asymmetry. The asymmetry is much more apparent for A-form RNA helices
than for B-form DNA helices, and results in a substantial difference in the num-
ber of bps on each side of the crossover. Our calculations for the optimal AO-DX
(Fig. 2) find that there should be 9 bps in H1 and only 2 bps in H2 (Table 2) and
that the phosphates do not perfectly align, resulting in a large 42◦ angular gap
between the crossovers, but a short distance of 0.4 Å between the two crossover
phosphates along the helical axis.

Likewise, PO-DXs in RNA have different spacings depending on whether they
cross the deep groove (POD) or the shallow groove (POS) of the RNA, where
POD-DX have a spacing of 8 bp on each helix and a distance of 12.2 Å between
crossovers and POS-DX have only 3 bp on each helix and a distance of 18.7 Å
between crossovers. All spacings for RNA crossovers can be extended by n ∗ 11
bps, for positive integer n. Spacings for DNA crossovers can be extended by
roughly n∗21 bps, but because of the 10.44bp/turn helicity they are not perfectly
equivalent.

Using the previously defined variables for Eq(1), we define the alignment of
two helices with parameters that translate and rotate H2 relative to H1, such
that the two helices are aligned with phosphate-1 of each strand superimposed.
The primary strand is thus defined similarly to Eq(1), where p1 represents the
nth phosphate in strand 1 on H1:
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Likewise, the complement strand 2 is defined by a shift and rotation about
the helical axis by the axis and inclination variables, similar to Eq(2):

⎡
⎣
x2

y2
z2

⎤
⎦ =

⎡
⎢⎢⎣

(p1 − 1) ·D + I

R · cos
(

2π(p1−1)
H +

(
A·π
180◦

))

R · sin
(

2π(p1−1)
H +

(
A·π
180◦

))

⎤
⎥⎥⎦ (4)

For the purpose of calculating the crossover spacing distances, H2 is aligned
such that its phosphate-1 is superimposed on the phosphate-1 of H1, where
variables for the translation and rotation of H2 are defined as follows:

Trx = I (5)

Try = R · cos
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)
. The directionality of H2 is changed by δ = 1 for

antiparallel helices and δ = −1 for parallel helices giving the following equations,
where p2 is the nth phosphate:
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The distance between phosphates is then calculated by measuring the
euclidian distance between p1 and p2 on the pair of strands forming the
crossover:

distAO =

√
(x1 − x4)

2
+ (y1 − y4)

2
+ (z1 − z4)

2
(10)

distAE =

√
(x2 − x3)

2
+ (y2 − y3)

2
+ (z2 − z3)

2
(11)

Thus, for any crossover domain of length p1 and p2, we need only evaluate
the equations to get the table of distances (P-distxyz in Table 2).

Using the P-stick model we have calculated parameters for what we propose
are the ideal spacings for all four DX types in both A-form and B-form helices.
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Table 2. Base-pair spacing for A- and B-form DX molecules. Numbers are
given for phosphate and base-pair spacings on helix 1 and 2. The spacings are minimum
spacings and can be extended by full helical turns (+11 bps for RNA, and +21 bps for
DNA). DX-distx is the distance between P-P midpoints of the two crossovers. P-dist
is the P-P distance at the J2 crossover. *Negative numbers for p1 and p2 are converted
to phosphate spacings by taking: -p+2. **Has symmetry equivalent: (p2,p1) = (p1,p2).

Helix DX (p2,p1) (b2,b1) DX-distx (Å) ΔAngle (◦) P-distx (Å) P-distxyz (Å)

A AE/PE (12,12) (11,11) 30.9 0 0 0
AO (8,4) (8,2) 14.1 25.4 1.83 6.20
AO (8,5) (8,3) 15.5 9.0 3.24 6.48
AO (9,4) (9,2) 15.5 41.7 0.43 4.49
AO (9,5) (9,3) 16.9 25.4 1.83 6.20
AO (18,20) (18,18) 50.6 72.8 10.26 25.17
POD (-6,-6)* (8,8) 12.2 9.0 0 2.73
POS (5,5) (3,3) 18.7 9.0 0 2.73

B AE/PE (22,22) (21,21) 71.4 4.1 0 1.34
AE/PE (11,11) (10,10) 34.0 15.2 0 4.91
AE/PE (11,12)** (10,11) 35.7 17.2 1.7 3.56
AO (5,7) (5,5) 17.0 44.1 0.3 5.68
AO (16,17) (16,15) 52.7 26.8 2.0 4.86
AO (16,18) (16,16) 54.4 44.1 0.3 6.19
AO (26,28) (26,26) 88.4 44.1 0.3 5.37
POW (-4,-5)*,** (6,7) 22.4 17.2 1.7 3.50
POW (-15,-15)* (17,17) 58.1 2.1 0 0.69
PON (6,6) (4,4) 13.3 2.0 0 0.66
PON (17,16) (15,14) 49.0 17.2 1.7 3.73
PON (16,16) (14,14) 47.3 13.2 0 4.26

In addition, we report measurements for commonly used spacings in the litera-
ture, for comparison (Table 2). Interestingly, we find that some of the commonly
used DX spacings are not the best possible arrangements. However, we also note
that non-ideal phosphate spacings may still be preferential for symmetry reasons,
or out of a need to have domains of the same length, and thus might represent
necessary compromises for structural or thermodynamic reasons that are not
considered in our model. Of particular interest, we find that for narrow DNA-
AE crossovers a 10/11 bps ((b2/b1), respectively) arrangement results in shorter
P-distxyz than a 10/10 bp spacing. Likewise, we find that DNA-AO crossovers
have an asymmetry of 16/15 bps which is better than the regularly used 16/16
bp spacing, consistent with early modeling predictions for DNA [9]. For DNA
crossovers, we find that the shortest crossover gaps are a PON crossover with
4/4 bps spacing and a POW crossover with 17/17 bps spacing. By contrast
in RNA, the 18/18 bps spacing used in Delebecque et al. [5] to form RNA-
AO crossovers has a large P-distxyz, likely explaining why the experimenters
needed several unpaired bases to provide the necessary flexibility to form these
crossovers.
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3.3 Multiple Crossovers and Curvature

The DX motifs can be further combined into multiple crossover (MX) molecules.
We define the distance between DX molecules in a MX molecule as follows:
position 1 (n1) is set at the first crossover between H1 and H2, where the 5’ end
of H1 enters the crossover from the left. Position 2 (n2) is the position of the
second crossover between H2 and H3. The spacing (s) is given as the difference
between the crossover positions:

s = n2 − n1

and relates to the number of basepairs between the two crossovers. Only certain
spacings are possible since some spacings will bring the helices to overlap and
sterically clash.

Depending on the DX type, only certain spacings are allowed for producing
MX arrays without steric clashes. For RNA-AE, spacings of

s = −5,−4,−3,−2,−1, 0, 1, 2

are allowed, as well as spacings of s− 11 ∗ n. For RNA-PE, spacings of

s = −2,−1, 0, 1, 2, 3, 4, 5

are allowed, plus spacings of s − 11 ∗ n. For both AE and PE, the curvature
of multiple helices can be controlled in this fashion. AO has very strict spacing
restrictions when the crossovers are placed in close proximity, since the two
junctions bend in opposite directions (Fig. 3). This is because AO-DX has an
even/odd number of bases in the shallow/deep groove, respectively, and it is thus
not possible to have symmetrically opposed curvature on both junctions with
this spacing. Thus, to obtain a symmetric molecule we choose a less optimal DX
spacing of 9-3 (see Fig. 2 and Table 2), which results in a MX spacing of s = −3
between the three helices. The curvature is expected to cancel out by pushing
the crossovers in opposite directions (see 3H-AO in Fig. 3) and this molecule has
been tested and found to assemble [12]. Similarly, the POS and POD crossovers
for RNA also require consideration of symmetry if they are to be used in MX
arrays.

Interestingly, another consequence of symmetry is that if one forms MX ar-
rays by repeating a PE crossover pattern then the bending of the array evens
out because the structure becomes corrugated with alternating ridges and val-
leys. Likewise, for a continuous sheet of POS and POD crossovers, the bending
also evens out internally in the sheet but results in a strained although flat
conformation of the sheet.

The most flat RNA-AE spacing is s = −1∗(n∗11), which bends only 7 degrees
into the plane. However, as the spacing can be variegated row-by-row, another
way to make planar sheets of AE or PE DXs is to alternate between two or more
different spacings e.g. s = 0,−2, 0,−3 for AE as will be used later to construct
large planar AE strand paths.
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Fig. 3. Crossovers between three helices. RNA 3-helix double-crossover molecules
shown as strand diagrams and in side-view. Helices (H) and junctions (J) are numbered
from bottom to top and left to right, respectively. Spacing (s) between the sets of
crossovers joining the three helices are marked in parenthesis behind the name of the
motif, and shown in red on the strand diagrams. Red arrows indicate the positions
of the crossovers. H1 and H2 are fixed in their common plane. H3 (marked in red) is
rotated depending on the crossovers spacing. For AO crossovers, the curvature induced
by crossovers on each side are in opposition and are expected to cancel out by deforming
the geometry of the crossover junction, as indicated at the top right.

4 Single-Stranded RNA Origami

We have recently introduced a general architecture called single-stranded RNA
origami, where we use the crossover motifs introduced above to fold a single
RNA strand into complex topologies [12]. To force the otherwise multi-stranded
architecture into a single-stranded form we use kissing-loop interactions to bridge
the crossover junctions (Fig. 4), and use minimal spacings at helix junctions
(named dovetail seams). The art of folding RNA structures from a single strand
without getting into topological problems will be discussed below.

4.1 Paranemic Connectors

The structural diversity of RNA provides numerous long-range RNA-RNA in-
teractions which can be used to form programmable contacts between specific
elements in the RNA structure. Long-range interactions can be especially useful
when considering crossover patterns that would otherwise require many separate
strands. Many different connectors can be found from natural RNA structures,
some of which are listed in Fig. 5. Loop-loop interactions are a class of pseu-
doknot that form between preformed secondary structure elements, bringing
distant elements in a 2D structure together in a sequence-programmable fash-
ion. The kissing-loops are typically in the range of 2-7 bps, and are limited to
be less than one helical turn in order to avoid being topologically entangled.
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A B
seam seam

Kissing-loop

Fig. 4. Multi-stranded to single-stranded conversion. (A) Eleven strands in a
multi-crossover motif between four helices. (B) Loops are inserted to convert the motif
into a single-stranded architecture. Loops on the edges cap the end of the helix. Loop-
loop interactions are inserted inside the structure to connect the helices across the
crossover junctions.

Loop-receptor interactions (Fig. 5C) represent an entirely different class of
programmable long-range interaction that have been extensively studied [4,15,10].
Unlike kissing-loop interactions, these tertiary contacts do not form any Watson-
Crick bps in their assembly, but are still highly sequence specific. Because they
do not form bps with each other, loop-receptor interactions do not form pseudo-
knotted structures, and also have a higher salt requirement compared to kissing-
loop interactions. These properties make loop-receptor interactions of interest
for use as paranemic connectors because they likely fold in a different time scale
compared to kissing loops and are a completely orthogonal class of interaction
from kissing loops.

Lastly, RNA-PX crossovers represent a third class of interaction that can be
implemented sequence-specifically [1]. Of all the paranemic connectors we have
presented here, PX crossovers are the only variety that have been implemented
in DNA [25,28].

4.2 Dovetail Seams

Aside from paranemic type connectors, helices can also interact by stacking
at their helix ends. In the context of single-stranded RNA origami we call
these end-end interactions “dovetail seams” because they can click rigidly to-
gether without creating topological problems. The dovetail bps are only possible
when the structure is at least three helices wide, and to our knowledge,
there are no natural RNA molecules that adopt this architecture. The interesting
feature of dovetail seams is that they can be used to program a specific stacking
conformation of a junction, as well as define the curvature of the single-stranded
RNA origami tile. The small stems formed by the dovetail seams are in them-
selves a secondary structure motif and do not increase the topological complexity
of the structure. Additionally, as discussed in section 3.3, only certain spacings
are allowed. For AE crossovers, the dovetail seams can have spacings of

s = −5,−4,−3,−2,−1, 0, 1, 2.
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A

B

C

D

Fig. 5. Examples of paranemic interactions. (A) 180◦ kissing-loop interaction
from HIV-1 [8]. (B) 120◦ kissing-loop motif [19]. (C) Loop-receptor interaction
[4,15,10]. (D) Paranemic crossover motif PX [1].

The other DX types have similar allowable dovetail seam spacings, although we
will focus on AE crossovers here as it is the simplest example.

4.3 Folding Path Design

The different types of DX lattices can all be used as the basis of designing
single-stranded folding paths, simply by inserting loop-loop interactions as shown
in Fig. 4. The AE crossover pattern is especially easy to design since it has
a regular folding path and the curvature can be precisely controlled by the
choice of dovetail spacings. As illustrated in Fig. 6, an 8 helix tall structure
can be expanded in two-dimensions by utilizing multiple dovetail seams, and
through the choice of the dovetail spacings on each row can be programmed to
be relatively flat. Long helices can potentially cause topological problems, as
they require a complement strand that wraps around the helix by more than a
full turn. This problem can be circumvented by careful strand-path design to
minimize the number of long helices, placing the long helices where they will be
less likely to generate a trap, and by choosing the location of the 3’ end so that
it wraps less than one helical turn at the end of the folding proces. As a general
rule we find that it is important that long helices are completely formed before
pseudoknotted long-range interactions form connections that block access to the
helix. In analogy to tying a knot, we wish to avoid cases where the end of the
rope needs to be threaded back through the structure, and thus knots should be
formed only in the bight of the rope. Even more complicated strand paths can
be designed (Fig. 6), and in these cases the choice of strand path and position
of the 5’ and 3’ ends becomes an even more important factor.
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14H,6S-AE

2H-AO 8H,3S-AO 7H,3S-AE 8H,3S-AE

4H-AO

Fig. 6. Folding paths of single-stranded RNA origami structures. Top: Vari-
ous strand paths for RNA origami in different size ranges, to illustrate how AO and AE
junctions might be incorporated into arbitrary designs. The designs are named by the
number of helices tall (H), the number of dovetail seams wide (S), and the type of DX
used (AO or AE).AO strand paths are more intertwined than AE strand paths, and
thus for larger designs AE patterns might be preferable. Bottom: An example of a
single-stranded RNA origami with a complicated arbitrary strand path, here inspired
from the DNA origami smiley face [22]. The dovetail junctions must have the same
spacing within any given row to minimize strain in the structure. A particularly flat
combination of spacings for AE is s = 0,−2, 0,−3, shown in side-profile at the right.5’
and 3’ ends are found near the middle of the structure (on the upper lip). The strand
path has been colorized to highlight the order of synthesis.
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Depending on the choice of the loop-loop placement within the strand path,
the locality of interactions can either be decreased or increased. We choose to
design structures by maximizing the locality of long-range interactions, with the
goal of helping the kinetic folding of loops and their cognate partners. Following
this logic, the shorter time between the expression of a loop and the expression
of its partner loop, the less likely that these loops are to bind in the wrong place,
especially if degenerate loop sequences are used. In terms of co-transcriptional
folding where the 5’ end is made first by the RNA polymerase and has time to
fold before downstream sequence is produced, we believe this design principle
can help to narrow choices in strand path design. In particular, locality seems
to be beneficial for two main reasons: 1) the structural core forms faster and
new elements can be added gradually, 2) loop-loop interaction sequences can be
reused if the former loop is already base paired in the structure. The timing of
formation of loop-loop interactions can be further programmed by choosing loop-
loop interactions with different association-dissociation constants. Additionally,
it may be possible to even further tune the folding pathway by implementing
pausing sites for the RNA polymerase [18], by which a short 16 nucleotide se-
quence can be programmed into the DNA that causes the polymerase to pause
for long enough to allow time for one folding event to complete before the next
structure is synthesized.

4.4 Space-Filling Folding Paths

We have found inspiration in space-filling curves from mathematics for designing
RNA folding paths with high locality. Some space-filling curves have similar
strand paths to the structures shown in Fig. 6. In particular, the Peano curve
has a pattern (Fig. 7B, top) that can be interpreted as RNA helices with dovetail
seams and kissing-loop interactions (Fig. 7B, bottom). This strand path differs
from natural RNAs in that sequences are left unpaired and that the 5’ and
3’ ends do not meet, where most natural RNAs fold into structures resulting
in the two ends co-localized [29]. The Peano-inspired RNA structure also has
some long stems internal to the structure that could form potential topological
problems. However, these topological barriers can be bypassed with the ability
to control the speed of transcription, pausing sites, and strength of kissing-
loop interactions. We have highlighted all of the barrier-forming kissing loop
interactions in orange and indicated the point in the sequence (shown as orange
dots) in which the 2D structure is required to fold up to before the kissing loops
form. Additionally, variations of the repeating pattern in the Peano-curve with
either fewer or more kissing-loop interactions are expected to have an effect on
the fold (Fig. 7A). We present a second Peano-inspired curve (Fig. 7C, top)
and its translation into RNA secondary structure (Fig. 7C, bottom), to further
illustrate the large variety of possible space-filling patterns that can be translated
into RNA strand path patterns.
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(1)

(2)

(3)

(4)

(5)

Fig. 7. Space-filling curves and their translation into RNA folding paths. (A)
A set of simple repeating strand path patterns that can be tiled to form a Peano-like
curve. (B, top) RNA Peano folding path based on pattern (4). The strand is colored to
illustrate the strand directionality. Dotted lines indicate repetitions of the tile pattern.
(B, bottom) The translation of the Peano curve into an RNA secondary structure.
Colored lines indicate kissing loop interactions and their order of assembly, where blue
forms first, orange second, and red last. Orange lines indicate kissing-loop interactions
that have a requirement of slow folding, such that they must fold only after the 2D
structure has formed up to the indicated orange dot. Red lines indicate a long seam of
kissing-loop interactions. (C) A second RNA Peano-inspired folding path.

4.5 Rolling Circle Transcription of a Space-Filling RNA Structure

Rolling circle transcription (RCT) has recently been used to produced long
transcripts of repeating RNA hairpin structures that further condense into
sponge-like microspheres [20]. Likewise, rolling circle replication has been used
to produce well-defined nanostructures out of DNA [21], although not nearly
as large as has been demonstrated for RNA. Using the RNA origami architec-
ture introduced in this paper it might be possible to produce well-ordered RNA
structures by RCT. For example, an infinite 1D ribbon of RNA might be pro-
duced from only two repeat units (shown in light and dark blue, Fig. 8A). Such
a ribbon shape would consist of alternating layers of kissing-loop and dovetail
connections in a continuous 1D sheet.
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(      )

DT

stem

crossover

KL

A

B

KL KL KL

Fig. 8. Repeat units for 1D and 2D structure growth. (A) Curve and helix
interpretation similar to the subpart of Fig. 7A with 4-helix repeat units shown in
dark blue and cyan. Borders between repeat units are annotated as being composed
of kissing-loop (KL) interactions. (B) Peano curve and helix interpretation similar to
Fig. 7B with minimal repeating units shown in dark blue and cyan. The red arrow
points to one position where a hairpin adopts a single-stranded form to fit the Peano
path. Borders of the Peano curve are noted as being composed of either dovetail (DT),
KL, stem or crossover interactions.

The space-filling curves of Peano inspire us to design repeating patterns of
sequence and structure that could produce large and well-ordered space-filling
structures by RCT. Taking the Peano curve as an example, we have made an
attempt to define the sequence constraints for a tile that, when produced, will
be able to adopt the infinite Peano-curve folding path while taking account of
both 3D structure and topology. The basic repeating pattern is described in
Fig. 8B, where just two RNA domains are required to produce the pattern. The
structure is expected to raster back and forth, alternating between dovetail and
kissing-loop seams. Several sequence constraints are imposed on the kissing-loop
interactions and the dovetail seams, shown in more detail in Fig. 9A and 9B.
Further illustrated in Fig. 9, some kissing loops form internally (denoted by
different colors), while other have constraints because they are on the outside of
the tile. One kissing loop and one dovetail are on the edge of the tile and are
found to require base-pair palindromic symmetry in order to allow formation of
the tile (marked in red).
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Fig. 9. Design of a circular RNA gene for producing a space-filling RNA
structure. (A) The repeat units from Fig. 8B drawn as a ribbon diagram (similar to
Fig. 2), with the repeating units shown in different colors. (B) Secondary structure with
sequence constraints shown in different colors. Red indicate sequences that have to base
pair with copies of itself and thus be base-pair palindromes. Sequences in orange, blue
and green are orthogonal and pair according to color. Arrows indicate complementary
domains. Grey sequence show the T7 promoter sequence and its complement, where
GU mismatches have been introduced to disrupt the promoter signal in the opposite
direction on the circular DNA template. (C) Ribbon diagram for an RNA structure
produced from the circular DNA template gene by rolling circle transcription. T7 RNA
polymerase and circular DNA template are shown to scale. Dark blue and cyan color
of the circular DNA template indicate the two repeat domains.

We envision such a Peano tile may be encoded on a circular DNA template,
which has an internal promoter sequence that is also encoded inside the RNA
structure (positioned in the stem and marked in light grey). Fig. 9C shows
the Peano-tile as it grows to larger structures. Even though it conceptually is
tantalizing, this structure might not form for several reasons: First, the tile
unit has many outward-facing interactions that might instead form internally
in the tile, resulting in a misfold. Second, as mentioned before, the long stems
may produce topological problems. Third, the assembly depends on the two-
part tile unit to adopt an alternative conformation at key parts of the lattice.
However, the correct interactions might still be preferred because, as the struc-
ture grows large, it may try to pack into its densest form, the desired assembly
shape.
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5 Discussion

We have introduced the A-form DX types and shown their extension to larger
multi-crossover structures. The DX types have special properties concerning
their bp spacing and internal symmetry. In the multi-crossover structures be-
tween several helices the DX types also have different properties concerning
bending or flattening of the structures. As such, these motifs are important to
consider when building extended architectures in 2D or 3D. This is especially
important when designing RNA structures to be folded from a single strand,
where geometry of crossovers and topological interactions have to be consid-
ered. We highlighted several paranemic assembly motifs well suited for making
non-topologically linked interactions. We have demonstrated a methodology for
folding path design using kissing-loop interactions and dovetail seams, which
could easily be replaced with other tertiary motifs, of which there are plenty of
good examples to choose from in the literature. To realize the design of complex
structures produced by cotranscriptional folding, several theoretical aspects have
to be further developed: 1) Sequence design taking account of pseudoknots, 2)
The development of a kinetic model of folding, 3) Coarse grained modeling of
the cotranscriptional folding process, and finally, 4) A theory for tile assembly
when produced on a single strand.
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