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Preface

This volume contains the papers presented at DNA 20: 20th International
Conference on DNA computing andMolecular Programming held during Septem-
ber 22–26, 2014 at Kyoto University, Kyoto, Japan. The DNA conference series
aim to draw together computer science, mathematics, chemistry, nanotechnol-
ogy, molecular biology, and physics to address the analysis, design, and synthesis
of information-based molecular systems.

Presentations are sought in all areas that relate to biomolecular computing,
including, but not restricted to: algorithms and models for computation on
biomolecular systems; computational processes in vitro and in vivo; molecu-
lar switches, gates, devices, and circuits; molecular foldings and self-assembly of
nanostructures; analysis and theoretical models of laboratory techniques; molec-
ular motors and molecular robotics; studies of fault-tolerance and error correc-
tion; software tools for analysis, simulation, and design; synthetic biology and
in vitro evolution; applications in engineering, physics, chemistry, biology, and
medicine.

Authors who wished to present their works were asked to select one of two
submission tracks: Track (A) (full paper) or Track (B) (one page abstract with
supplementary document). Track (B) is primarily for authors submitting ex-
perimental results who plan to submit to a journal rather than publish in the
conference proceedings.

We received 55 submissions for oral presentations: 20 submissions in Track
(A) and 35 submissions in Track (B). Each submission was reviewed by at least 3
reviewers. The Program Committee finally decided to accept 10 papers in Track
(A) and 13 papers in Track (B). The topics of accepted presentations are well
balanced between theoretical and experimental works. This volume contains the
accepted Track (A) papers.

We express our sincere appreciation to Shawn Douglas, Cristian S. Calude,
Hiroshi Sugiyama, Rhiju Das, Anne Condon, and Masaki Sano for their excellent
keynote talks. Thanks are also given to all the authors who presented their
works at oral and poster sessions. We would like to thank Nadrian C. Seeman
and Hiroyuki Asanuma for their excellent special talks in a one-day workshop
on molecular robotics. Last but not least, the editors would like to thank the
members of the Program Committee and the reviewers for all their hard work
of reviewing and providing constructive comments to authors.

July 2014 Satoshi Murata
Satoshi Kobayashi
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Design Principles for Single-Stranded RNA

Origami Structures

Cody W. Geary and Ebbe Sloth Andersen�

Interdisciplinary Nanoscience Center, Aarhus University,
Gustav Wieds Vej 14, 8000 Aarhus, Denmark

esa@inano.au.dk

Abstract. We have recently introduced an experimental method for
the design and production of RNA-origami nanostructures that fold up
from a single strand while the RNA is being enzymatically produced,
commonly referred to as cotranscriptional folding. To realize a general
and scalable architecture we have developed a theoretical framework for
determining RNA crossover geometries, long-distance interactions, and
strand paths that are topologically compatible with cotranscriptional
folding. Here, we introduce a simple parameterized model for the A-
form helix and use it to determine the geometry and base-pair spacing
for the five types of RNA double-crossover molecules and the curvature
resulting from crossovers between multiple helices. We further define a
set of paranemic loop-loop and end-to-end interactions compatible with
the design of folding paths for RNA structures with arbitrary shape and
programmable curvature. Finally, we take inspiration from space-filling
curves in mathematics to design strand paths that have high-locality,
programmed folding kinetics to avoid topological traps, and structural
repeat units that might be used to create infinite RNA ribbons and
squares by rolling circle transcription.

Keywords: RNA, structure, folding, kinetics, space-filling curves.

1 Introduction

RNA molecules have a greater structural diversity than DNA and are thus of
interest as design substrate for biomolecular engineering. The field of RNA nan-
otechnology has taken inspiration from the modular nature of structurally char-
acterized RNA molecules to develop a design paradigm where structural modules
can be composed to achieve complex geometric shapes and lattices [13]. How-
ever, RNA modular design is currently limited to rather small RNAs, suggesting
that there is still a need to develop a more standardized design approach such as
that used in DNA nanotechnology [2] and best exemplified by the DNA origami
method [22]. Particularly, in DNA nanotechnology the double-crossover (DX)
motif plays a central role in organizing DNA helices into large arrays, but the
RNA field has yet to leverage RNA DX motifs to build similarly large structures.

� Corresponding author.

S. Murata and S. Kobayashi (Eds.): DNA 2014, LNCS 8727, pp. 1–19, 2014.
c© Springer International Publishing Switzerland 2014



2 C.W. Geary and E.S. Andersen

DX molecules have been described extensively for B-form DNA helices [9], but
to our knowledge not in great detail for A-form RNA helices, which we will now
describe. Several papers have revealed that using a simplified model considering
only the helical twist of 11 base pairs (bps) per turn for RNA is not sufficiently
accurate for fully realizing design in RNA. For example, for the RNA/DNA hy-
brid design of Mao and colleagues it was revealed that the inclination of the
bases in RNA influences the tiling behavior of the RNA/DNA nanostructures
[17]. Likewise, in Delebecque et al. RNA assemblies designed considering only
the helical twist required the inclusion of unpaired bases within the tile [5],
which we here propose generate a required flexibility to counteract the distance
offset caused by the base-pair inclination. Furthermore, studies of RNA assem-
blies based on the paranemic crossover motif (PX) have found that the ideal tile
designs differ significantly from the DNA versions, due to the difference in width
of the major and minor grooves of RNA compared to DNA [1]. Recently, we ini-
tiated the design and testing of RNA double-crossover molecules with crossover
spacings based on calculated distances and three-dimensional (3D) modeling,
and demonstrated very robust formation of RNA DX motifs [12]. Here, we ex-
tend upon this work and describe the DX motifs for RNA in detail, and propose
a new method for the systematic design of RNA nanostructures.

A useful feature of RNA structure is that it can be produced directly from
the RNA polymerase enzyme by the cotranscriptional self-assembly process. In
this process the RNA folds locally as it is transcribed and the structure grad-
ually builds up as more sequence is produced by the enzyme. The autonomous
enzymatic process furthermore allows engineered RNA structures to be genet-
ically encoded and expressed in cells, much like natural RNAs. We have re-
cently demonstrated the design of single-stranded RNA origami structures and
their production by both heat-annealing and/or cotranscriptional folding [12].
To develop this method further we consider the cotranscriptional folding pro-
cess as it relates to requirements for the order of folding and assembly events
along the RNA strand, and propose geometrical and topological principles for
single-stranded RNA nanostructures.

2 Simple Model of a Double Helix

In DNA nanotechnology simplified helices are often used when designing larger
constructs to decrease the computational requirements for handling large 3D
objects, since only a few parameters are needed to determine crossover posi-
tions [24]. By contrast, many artificial RNA nanostructures are still designed
using fully-atomistic models [23,14], in a tedious process requiring specialized
experience, or by using over-reduced models that do not capture important de-
tails of the RNA helix [5]. Thus, there is a need for an appropriately simplified
RNA model that can still be easily manipulated. Here, we propose such a model
that is a parameterization describing only the positions of phosphate atoms on
the helix, which we call the “P-stick model”. Our model generates the atomic
positions of phosphates relative to the central axis of the helix, based on five
parameters: base inclination relative to the helix-axis, rise between bases, helix
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Inclination

Radius
Axis

Twist

Rise

Radius
Axis

Twist

A                            B

Fig. 1. P-stick model for the A-form helix. (A) Left: Model of A-form helix shown
in side view with indications of inclination and rise distances along helical axis. Right:
End view of the same A-form helix model as seen along the helical axis from the left
as indicated by the eye symbol. The radius, axis and twist angles are indicated. Lines
connecting the phosphates to the central axis depict the connectivity of the helix and
do not represent base-pairs. (B) Schematics of P-stick model with 3’ end indicated by
circle with a dot (tip of arrow) and 5’ end indicated by a circle with a cross (end of
arrow). The second bp is shown in grey to indicate twist angle and the right handed
rotation of the helix.

Table 1. Parameters for P-stick helix model. Parameters are measured by the
authors based on data from Arnot et. al. 1973 [3] and Dickerson et al. 1982 [6]. We
also note that the inclination variable measures the inclination of paired-phosphates
relative to the helical axis, and should not be confused with base-pair inclination.

Parameters Variables A-form B-form

Radius R 8.7 Å 9.3 Å
Rise D 2.81 Å 3.4 Å
Inclination I -7.45 Å 3.75 Å
Axis A 139.9◦ 170.4◦

Twist T 32.73◦ 34.48◦

Helicity H 11 bp 10.44 bp

radius, axis angle across the minor groove, and helicity in bps per turn (described
in Fig 1A).

Parameters for RNA A-form helices were measured from standard helices
generated by Westhof’s Assemble2 program [16], which are based on classical
A-form parameters [3]. Parameters for DNA B-form helices were derived from
various literature sources: The helicity was chosen to be 10.44 bps/turn based
on NMR measurements in solution [26] and parameters found to be the optimal
for producing twist-corrected DNA origami structures [27]. The inclination be-
tween phosphates was found by aligning the B-DNA crystal structure (PDB-ID
1BNA) [7] and averaging for all phosphate positions giving a value of 3.748 Å.
Parameters for both A- and B-form helices are provided in Table 1.

The P-stick model consists of two equations that generate xyz coordinates for
the phosphate atoms along each strand of a helix, with the axis centered on the
origin pointing along the x-axis:
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⎡
⎣x
y
z

⎤
⎦ =

⎡
⎣ p ·D
R · cos

(
p ·

(
2π
H

))
R · sin

(
p ·

(
2π
H

))
⎤
⎦ , p|p ∈ Z (1)

⎡
⎣x
y
z

⎤
⎦ =

⎡
⎣ p ·D + I
R · cos

(
p ·

(
2π
H

)
+
(

A·π
180◦

))
R · sin

(
p ·

(
2π
H

)
+
(

A·π
180◦

))
⎤
⎦ , p|p ∈ Z (2)

Eq(1) describes the strand running from 3’ to 5’ along the x-axis and Eq(2)
describes the complement strand running 5’ to 3’.

3 RNA Crossover Motifs

The alignment of phosphates between helices is taken as an indicator of positions
where a crossover junction can join the helices [24]. Here we use the P-stick model
to predict optimal crossover spacings for A- and B-form helices. To construct
a crossover between two helices we first align one pair of phosphates between
the helices, then break the backbone bond on the same side of each phosphate
and rejoin them with the opposite strand. Likewise, to construct a DX between
two helices we orient the helices in parallel and rotate the helices to align two
pairs of phosphates in the plane, and perform two crossover operations on the
backbone.

3.1 The RNA DX Types

DXs can either be formed between anti-parallel (A) or parallel (P) strands,
and the spacing between the two crossovers (measured by the number of half
turns) can either be even (E) or odd (O). Even-spaced crossovers result in
both crossovers bridging the same strand, while odd-spacing results in the two
crossovers formed between opposite strands (Fig. 2). Thus, DX molecules can
take the form of AE, AO, PE and PO. Two possibilities exist for PO since the
DX can bridge either the major or minor groove. For B-form helices the major
groove is wide (W) and the minor groove is narrow (N), and the DXs are thus
called PON and POW [9]. For A-form helices the major groove is narrow and
deep (D) and the minor groove is wide and shallow (S), and thus we propose
to name the A-form PO-DX motifs POD and POS. PO-DXs with more than
one groove spanning the crossovers are named depending on which groove is
predominant. PO-DXs that span a single groove width have the property of be-
ing paranemic, and have been described and studied for both DNA and RNA,
although with non-ideal spacings for RNA[1]. Interestingly, the DX molecules
all have different pseudosymmetry axes (shown in Fig. 2) that are important for
their use as building blocks, which we will discuss later.
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AO:

AO(8-2)

AE: PE:

POS:

POD:

3 bp

3 bp

8 bp

3 bp

8 bp

8 bp

11 bp

11 bp J1 J2

J1J1 J2J2

J1J1 J2J2

J1J1

H1

H2

H1

H2

H1

H2

H1

H2

H1

H2

J2

AO(8-3)

J2

J1J1 J2J2

11 bp

11 bpJ1 J2

AO(9-2) AO(9-3)

d=3.66 Å d=3.24 Å d=0.43 Å d=1.83 Å

Fig. 2. Minimal A-form DX molecules. A-form DX of type AE, AO, PE, POD
and POS (see section 3.1 for naming conventions) that can be expanded by 11 ∗n bps.
Left: Ribbon diagrams show how the helix inclination affects the base-pair spacing
between the two crossovers. Red dashed lines show the junctions and their inclinations.
Base-pair spacing is indicated above and below, with horizontal lines. Red lines and
ellipse shapes show C2 pseudosymmetry axes. Ribbon diagrams are based on P-stick
models and drawn using positions of P and C3 atoms. Helices (H) and junctions (J) are
numbered from top to bottom and left to right, respectively. Right: The two junctions
are shown with schematics similar to Fig. 1B as seen along the helical axis from the
eye symbol. The DX adjusted rotation of the helices are shown. Bottom left: Four
AO DXs with different spacing are shown in side view, where black diagram is J1 and
red diagram is J2. The distance between P atoms at crossovers is written below each
side view.

3.2 Spacing between A-Form DXs

We use the P-stick model to calculate optimal crossover positions, which is
done by measuring the distance between pairs of phosphates on two strands and
finding the pairs for which the distances are at a minimum. For each crossover
pattern that we analyze, we provide distance and angular measurements to qual-
ify how well-aligned the crossover pattern is (Table 2). The distance between
two crossovers (DX-distx) is measured from the midpoint between the phos-
phates of one crossover to the midpoint of phosphates of the second crossover.
The angular gap (ΔAngle) of the crossovers is calculated by perfectly aligning
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the phosphates of the first crossover, and then measuring the angular offset of
the phosphates from the center-line of the second crossover. We calculate the
bp spacing, derived from the number of phosphates between the crossovers, and
the direction of the strands as they pass through the crossovers. Because of the
different strand directionality in odd- versus even-spaced junctions, the number
of bps in the junction have the following relations:

bp = P − 1 for AE and PE

bp = P for AOD and POD

bp = P − 2 for AOS and POS.

Thus, for AO junctions where the minor groove of the first helix (H1) aligns with
the major groove of the second helix (H2), the two strands must be considered
differently. In Table 2, bp values (b2,b1) for each set of phosphate spacings (p2,p1)
are reported.

An interesting feature of all AO- and PO-DXs is that the crossovers occur
between opposite strands which, due to the incline of the phosphates, results in
an asymmetry. The asymmetry is much more apparent for A-form RNA helices
than for B-form DNA helices, and results in a substantial difference in the num-
ber of bps on each side of the crossover. Our calculations for the optimal AO-DX
(Fig. 2) find that there should be 9 bps in H1 and only 2 bps in H2 (Table 2) and
that the phosphates do not perfectly align, resulting in a large 42◦ angular gap
between the crossovers, but a short distance of 0.4 Å between the two crossover
phosphates along the helical axis.

Likewise, PO-DXs in RNA have different spacings depending on whether they
cross the deep groove (POD) or the shallow groove (POS) of the RNA, where
POD-DX have a spacing of 8 bp on each helix and a distance of 12.2 Å between
crossovers and POS-DX have only 3 bp on each helix and a distance of 18.7 Å
between crossovers. All spacings for RNA crossovers can be extended by n ∗ 11
bps, for positive integer n. Spacings for DNA crossovers can be extended by
roughly n∗21 bps, but because of the 10.44bp/turn helicity they are not perfectly
equivalent.

Using the previously defined variables for Eq(1), we define the alignment of
two helices with parameters that translate and rotate H2 relative to H1, such
that the two helices are aligned with phosphate-1 of each strand superimposed.
The primary strand is thus defined similarly to Eq(1), where p1 represents the
nth phosphate in strand 1 on H1:

⎡
⎣x1

y1
z1

⎤
⎦ =

⎡
⎢⎢⎣

(p1 − 1) ·D
R · cos

(
2π(p1−1)

H

)
R · sin

(
2π(p1−1)

H

)
⎤
⎥⎥⎦ (3)
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Likewise, the complement strand 2 is defined by a shift and rotation about
the helical axis by the axis and inclination variables, similar to Eq(2):

⎡
⎣x2

y2
z2

⎤
⎦ =

⎡
⎢⎢⎣

(p1 − 1) ·D + I

R · cos
(

2π(p1−1)
H +

(
A·π
180◦

))
R · sin

(
2π(p1−1)

H +
(

A·π
180◦

))
⎤
⎥⎥⎦ (4)

For the purpose of calculating the crossover spacing distances, H2 is aligned
such that its phosphate-1 is superimposed on the phosphate-1 of H1, where
variables for the translation and rotation of H2 are defined as follows:

Trx = I (5)

Try = R · cos
(
A ·

( π

180◦

))
−R · cos (θ) (6)

Trz = R · sin
(
A ·

( π

180◦

))
−R · sin (θ) (7)

where θ = π + A ·
(

π
180◦

)
. The directionality of H2 is changed by δ = 1 for

antiparallel helices and δ = −1 for parallel helices giving the following equations,
where p2 is the nth phosphate:

⎡
⎣x3

y3
z3

⎤
⎦ =

⎡
⎢⎢⎣

(p2 − 1) ·D + Trx

R · cos
(

2π·(p2−1)
H + θ

)
+ Try

R · sin
(

2π·(p2−1)
H + θ

)
+ Trz

⎤
⎥⎥⎦ (8)

⎡
⎣x4

y4
z4

⎤
⎦ =

⎡
⎢⎢⎣

(p2 − 1) ·D + δ · I + Trx

R · cos
(

2π·(p2−1)
H + δ·A·π

180 + θ
)
+ Try

R · sin
(

2π·(p2−1)
H + δ·A·π

180 + θ
)
+ Trz

⎤
⎥⎥⎦ (9)

The distance between phosphates is then calculated by measuring the
euclidian distance between p1 and p2 on the pair of strands forming the
crossover:

distAO =

√
(x1 − x4)

2
+ (y1 − y4)

2
+ (z1 − z4)

2
(10)

distAE =

√
(x2 − x3)

2
+ (y2 − y3)

2
+ (z2 − z3)

2
(11)

Thus, for any crossover domain of length p1 and p2, we need only evaluate
the equations to get the table of distances (P-distxyz in Table 2).

Using the P-stick model we have calculated parameters for what we propose
are the ideal spacings for all four DX types in both A-form and B-form helices.
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Table 2. Base-pair spacing for A- and B-form DX molecules. Numbers are
given for phosphate and base-pair spacings on helix 1 and 2. The spacings are minimum
spacings and can be extended by full helical turns (+11 bps for RNA, and +21 bps for
DNA). DX-distx is the distance between P-P midpoints of the two crossovers. P-dist
is the P-P distance at the J2 crossover. *Negative numbers for p1 and p2 are converted
to phosphate spacings by taking: -p+2. **Has symmetry equivalent: (p2,p1) = (p1,p2).

Helix DX (p2,p1) (b2,b1) DX-distx (Å) ΔAngle (◦) P-distx (Å) P-distxyz (Å)

A AE/PE (12,12) (11,11) 30.9 0 0 0
AO (8,4) (8,2) 14.1 25.4 1.83 6.20
AO (8,5) (8,3) 15.5 9.0 3.24 6.48
AO (9,4) (9,2) 15.5 41.7 0.43 4.49
AO (9,5) (9,3) 16.9 25.4 1.83 6.20
AO (18,20) (18,18) 50.6 72.8 10.26 25.17
POD (-6,-6)* (8,8) 12.2 9.0 0 2.73
POS (5,5) (3,3) 18.7 9.0 0 2.73

B AE/PE (22,22) (21,21) 71.4 4.1 0 1.34
AE/PE (11,11) (10,10) 34.0 15.2 0 4.91
AE/PE (11,12)** (10,11) 35.7 17.2 1.7 3.56
AO (5,7) (5,5) 17.0 44.1 0.3 5.68
AO (16,17) (16,15) 52.7 26.8 2.0 4.86
AO (16,18) (16,16) 54.4 44.1 0.3 6.19
AO (26,28) (26,26) 88.4 44.1 0.3 5.37
POW (-4,-5)*,** (6,7) 22.4 17.2 1.7 3.50
POW (-15,-15)* (17,17) 58.1 2.1 0 0.69
PON (6,6) (4,4) 13.3 2.0 0 0.66
PON (17,16) (15,14) 49.0 17.2 1.7 3.73
PON (16,16) (14,14) 47.3 13.2 0 4.26

In addition, we report measurements for commonly used spacings in the litera-
ture, for comparison (Table 2). Interestingly, we find that some of the commonly
used DX spacings are not the best possible arrangements. However, we also note
that non-ideal phosphate spacings may still be preferential for symmetry reasons,
or out of a need to have domains of the same length, and thus might represent
necessary compromises for structural or thermodynamic reasons that are not
considered in our model. Of particular interest, we find that for narrow DNA-
AE crossovers a 10/11 bps ((b2/b1), respectively) arrangement results in shorter
P-distxyz than a 10/10 bp spacing. Likewise, we find that DNA-AO crossovers
have an asymmetry of 16/15 bps which is better than the regularly used 16/16
bp spacing, consistent with early modeling predictions for DNA [9]. For DNA
crossovers, we find that the shortest crossover gaps are a PON crossover with
4/4 bps spacing and a POW crossover with 17/17 bps spacing. By contrast
in RNA, the 18/18 bps spacing used in Delebecque et al. [5] to form RNA-
AO crossovers has a large P-distxyz, likely explaining why the experimenters
needed several unpaired bases to provide the necessary flexibility to form these
crossovers.
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3.3 Multiple Crossovers and Curvature

The DX motifs can be further combined into multiple crossover (MX) molecules.
We define the distance between DX molecules in a MX molecule as follows:
position 1 (n1) is set at the first crossover between H1 and H2, where the 5’ end
of H1 enters the crossover from the left. Position 2 (n2) is the position of the
second crossover between H2 and H3. The spacing (s) is given as the difference
between the crossover positions:

s = n2 − n1

and relates to the number of basepairs between the two crossovers. Only certain
spacings are possible since some spacings will bring the helices to overlap and
sterically clash.

Depending on the DX type, only certain spacings are allowed for producing
MX arrays without steric clashes. For RNA-AE, spacings of

s = −5,−4,−3,−2,−1, 0, 1, 2

are allowed, as well as spacings of s− 11 ∗ n. For RNA-PE, spacings of

s = −2,−1, 0, 1, 2, 3, 4, 5

are allowed, plus spacings of s − 11 ∗ n. For both AE and PE, the curvature
of multiple helices can be controlled in this fashion. AO has very strict spacing
restrictions when the crossovers are placed in close proximity, since the two
junctions bend in opposite directions (Fig. 3). This is because AO-DX has an
even/odd number of bases in the shallow/deep groove, respectively, and it is thus
not possible to have symmetrically opposed curvature on both junctions with
this spacing. Thus, to obtain a symmetric molecule we choose a less optimal DX
spacing of 9-3 (see Fig. 2 and Table 2), which results in a MX spacing of s = −3
between the three helices. The curvature is expected to cancel out by pushing
the crossovers in opposite directions (see 3H-AO in Fig. 3) and this molecule has
been tested and found to assemble [12]. Similarly, the POS and POD crossovers
for RNA also require consideration of symmetry if they are to be used in MX
arrays.

Interestingly, another consequence of symmetry is that if one forms MX ar-
rays by repeating a PE crossover pattern then the bending of the array evens
out because the structure becomes corrugated with alternating ridges and val-
leys. Likewise, for a continuous sheet of POS and POD crossovers, the bending
also evens out internally in the sheet but results in a strained although flat
conformation of the sheet.

The most flat RNA-AE spacing is s = −1∗(n∗11), which bends only 7 degrees
into the plane. However, as the spacing can be variegated row-by-row, another
way to make planar sheets of AE or PE DXs is to alternate between two or more
different spacings e.g. s = 0,−2, 0,−3 for AE as will be used later to construct
large planar AE strand paths.
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Fig. 3. Crossovers between three helices. RNA 3-helix double-crossover molecules
shown as strand diagrams and in side-view. Helices (H) and junctions (J) are numbered
from bottom to top and left to right, respectively. Spacing (s) between the sets of
crossovers joining the three helices are marked in parenthesis behind the name of the
motif, and shown in red on the strand diagrams. Red arrows indicate the positions
of the crossovers. H1 and H2 are fixed in their common plane. H3 (marked in red) is
rotated depending on the crossovers spacing. For AO crossovers, the curvature induced
by crossovers on each side are in opposition and are expected to cancel out by deforming
the geometry of the crossover junction, as indicated at the top right.

4 Single-Stranded RNA Origami

We have recently introduced a general architecture called single-stranded RNA
origami, where we use the crossover motifs introduced above to fold a single
RNA strand into complex topologies [12]. To force the otherwise multi-stranded
architecture into a single-stranded form we use kissing-loop interactions to bridge
the crossover junctions (Fig. 4), and use minimal spacings at helix junctions
(named dovetail seams). The art of folding RNA structures from a single strand
without getting into topological problems will be discussed below.

4.1 Paranemic Connectors

The structural diversity of RNA provides numerous long-range RNA-RNA in-
teractions which can be used to form programmable contacts between specific
elements in the RNA structure. Long-range interactions can be especially useful
when considering crossover patterns that would otherwise require many separate
strands. Many different connectors can be found from natural RNA structures,
some of which are listed in Fig. 5. Loop-loop interactions are a class of pseu-
doknot that form between preformed secondary structure elements, bringing
distant elements in a 2D structure together in a sequence-programmable fash-
ion. The kissing-loops are typically in the range of 2-7 bps, and are limited to
be less than one helical turn in order to avoid being topologically entangled.
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A B
seam seam

Kissing-loop

Fig. 4. Multi-stranded to single-stranded conversion. (A) Eleven strands in a
multi-crossover motif between four helices. (B) Loops are inserted to convert the motif
into a single-stranded architecture. Loops on the edges cap the end of the helix. Loop-
loop interactions are inserted inside the structure to connect the helices across the
crossover junctions.

Loop-receptor interactions (Fig. 5C) represent an entirely different class of
programmable long-range interaction that have been extensively studied [4,15,10].
Unlike kissing-loop interactions, these tertiary contacts do not form any Watson-
Crick bps in their assembly, but are still highly sequence specific. Because they
do not form bps with each other, loop-receptor interactions do not form pseudo-
knotted structures, and also have a higher salt requirement compared to kissing-
loop interactions. These properties make loop-receptor interactions of interest
for use as paranemic connectors because they likely fold in a different time scale
compared to kissing loops and are a completely orthogonal class of interaction
from kissing loops.

Lastly, RNA-PX crossovers represent a third class of interaction that can be
implemented sequence-specifically [1]. Of all the paranemic connectors we have
presented here, PX crossovers are the only variety that have been implemented
in DNA [25,28].

4.2 Dovetail Seams

Aside from paranemic type connectors, helices can also interact by stacking
at their helix ends. In the context of single-stranded RNA origami we call
these end-end interactions “dovetail seams” because they can click rigidly to-
gether without creating topological problems. The dovetail bps are only possible
when the structure is at least three helices wide, and to our knowledge,
there are no natural RNA molecules that adopt this architecture. The interesting
feature of dovetail seams is that they can be used to program a specific stacking
conformation of a junction, as well as define the curvature of the single-stranded
RNA origami tile. The small stems formed by the dovetail seams are in them-
selves a secondary structure motif and do not increase the topological complexity
of the structure. Additionally, as discussed in section 3.3, only certain spacings
are allowed. For AE crossovers, the dovetail seams can have spacings of

s = −5,−4,−3,−2,−1, 0, 1, 2.
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A

B

C

D

Fig. 5. Examples of paranemic interactions. (A) 180◦ kissing-loop interaction
from HIV-1 [8]. (B) 120◦ kissing-loop motif [19]. (C) Loop-receptor interaction
[4,15,10]. (D) Paranemic crossover motif PX [1].

The other DX types have similar allowable dovetail seam spacings, although we
will focus on AE crossovers here as it is the simplest example.

4.3 Folding Path Design

The different types of DX lattices can all be used as the basis of designing
single-stranded folding paths, simply by inserting loop-loop interactions as shown
in Fig. 4. The AE crossover pattern is especially easy to design since it has
a regular folding path and the curvature can be precisely controlled by the
choice of dovetail spacings. As illustrated in Fig. 6, an 8 helix tall structure
can be expanded in two-dimensions by utilizing multiple dovetail seams, and
through the choice of the dovetail spacings on each row can be programmed to
be relatively flat. Long helices can potentially cause topological problems, as
they require a complement strand that wraps around the helix by more than a
full turn. This problem can be circumvented by careful strand-path design to
minimize the number of long helices, placing the long helices where they will be
less likely to generate a trap, and by choosing the location of the 3’ end so that
it wraps less than one helical turn at the end of the folding proces. As a general
rule we find that it is important that long helices are completely formed before
pseudoknotted long-range interactions form connections that block access to the
helix. In analogy to tying a knot, we wish to avoid cases where the end of the
rope needs to be threaded back through the structure, and thus knots should be
formed only in the bight of the rope. Even more complicated strand paths can
be designed (Fig. 6), and in these cases the choice of strand path and position
of the 5’ and 3’ ends becomes an even more important factor.
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14H,6S-AE

2H-AO 8H,3S-AO 7H,3S-AE 8H,3S-AE

4H-AO

Fig. 6. Folding paths of single-stranded RNA origami structures. Top: Vari-
ous strand paths for RNA origami in different size ranges, to illustrate how AO and AE
junctions might be incorporated into arbitrary designs. The designs are named by the
number of helices tall (H), the number of dovetail seams wide (S), and the type of DX
used (AO or AE).AO strand paths are more intertwined than AE strand paths, and
thus for larger designs AE patterns might be preferable. Bottom: An example of a
single-stranded RNA origami with a complicated arbitrary strand path, here inspired
from the DNA origami smiley face [22]. The dovetail junctions must have the same
spacing within any given row to minimize strain in the structure. A particularly flat
combination of spacings for AE is s = 0,−2, 0,−3, shown in side-profile at the right.5’
and 3’ ends are found near the middle of the structure (on the upper lip). The strand
path has been colorized to highlight the order of synthesis.
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Depending on the choice of the loop-loop placement within the strand path,
the locality of interactions can either be decreased or increased. We choose to
design structures by maximizing the locality of long-range interactions, with the
goal of helping the kinetic folding of loops and their cognate partners. Following
this logic, the shorter time between the expression of a loop and the expression
of its partner loop, the less likely that these loops are to bind in the wrong place,
especially if degenerate loop sequences are used. In terms of co-transcriptional
folding where the 5’ end is made first by the RNA polymerase and has time to
fold before downstream sequence is produced, we believe this design principle
can help to narrow choices in strand path design. In particular, locality seems
to be beneficial for two main reasons: 1) the structural core forms faster and
new elements can be added gradually, 2) loop-loop interaction sequences can be
reused if the former loop is already base paired in the structure. The timing of
formation of loop-loop interactions can be further programmed by choosing loop-
loop interactions with different association-dissociation constants. Additionally,
it may be possible to even further tune the folding pathway by implementing
pausing sites for the RNA polymerase [18], by which a short 16 nucleotide se-
quence can be programmed into the DNA that causes the polymerase to pause
for long enough to allow time for one folding event to complete before the next
structure is synthesized.

4.4 Space-Filling Folding Paths

We have found inspiration in space-filling curves from mathematics for designing
RNA folding paths with high locality. Some space-filling curves have similar
strand paths to the structures shown in Fig. 6. In particular, the Peano curve
has a pattern (Fig. 7B, top) that can be interpreted as RNA helices with dovetail
seams and kissing-loop interactions (Fig. 7B, bottom). This strand path differs
from natural RNAs in that sequences are left unpaired and that the 5’ and
3’ ends do not meet, where most natural RNAs fold into structures resulting
in the two ends co-localized [29]. The Peano-inspired RNA structure also has
some long stems internal to the structure that could form potential topological
problems. However, these topological barriers can be bypassed with the ability
to control the speed of transcription, pausing sites, and strength of kissing-
loop interactions. We have highlighted all of the barrier-forming kissing loop
interactions in orange and indicated the point in the sequence (shown as orange
dots) in which the 2D structure is required to fold up to before the kissing loops
form. Additionally, variations of the repeating pattern in the Peano-curve with
either fewer or more kissing-loop interactions are expected to have an effect on
the fold (Fig. 7A). We present a second Peano-inspired curve (Fig. 7C, top)
and its translation into RNA secondary structure (Fig. 7C, bottom), to further
illustrate the large variety of possible space-filling patterns that can be translated
into RNA strand path patterns.
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(5)

Fig. 7. Space-filling curves and their translation into RNA folding paths. (A)
A set of simple repeating strand path patterns that can be tiled to form a Peano-like
curve. (B, top) RNA Peano folding path based on pattern (4). The strand is colored to
illustrate the strand directionality. Dotted lines indicate repetitions of the tile pattern.
(B, bottom) The translation of the Peano curve into an RNA secondary structure.
Colored lines indicate kissing loop interactions and their order of assembly, where blue
forms first, orange second, and red last. Orange lines indicate kissing-loop interactions
that have a requirement of slow folding, such that they must fold only after the 2D
structure has formed up to the indicated orange dot. Red lines indicate a long seam of
kissing-loop interactions. (C) A second RNA Peano-inspired folding path.

4.5 Rolling Circle Transcription of a Space-Filling RNA Structure

Rolling circle transcription (RCT) has recently been used to produced long
transcripts of repeating RNA hairpin structures that further condense into
sponge-like microspheres [20]. Likewise, rolling circle replication has been used
to produce well-defined nanostructures out of DNA [21], although not nearly
as large as has been demonstrated for RNA. Using the RNA origami architec-
ture introduced in this paper it might be possible to produce well-ordered RNA
structures by RCT. For example, an infinite 1D ribbon of RNA might be pro-
duced from only two repeat units (shown in light and dark blue, Fig. 8A). Such
a ribbon shape would consist of alternating layers of kissing-loop and dovetail
connections in a continuous 1D sheet.
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KL KL KL

Fig. 8. Repeat units for 1D and 2D structure growth. (A) Curve and helix
interpretation similar to the subpart of Fig. 7A with 4-helix repeat units shown in
dark blue and cyan. Borders between repeat units are annotated as being composed
of kissing-loop (KL) interactions. (B) Peano curve and helix interpretation similar to
Fig. 7B with minimal repeating units shown in dark blue and cyan. The red arrow
points to one position where a hairpin adopts a single-stranded form to fit the Peano
path. Borders of the Peano curve are noted as being composed of either dovetail (DT),
KL, stem or crossover interactions.

The space-filling curves of Peano inspire us to design repeating patterns of
sequence and structure that could produce large and well-ordered space-filling
structures by RCT. Taking the Peano curve as an example, we have made an
attempt to define the sequence constraints for a tile that, when produced, will
be able to adopt the infinite Peano-curve folding path while taking account of
both 3D structure and topology. The basic repeating pattern is described in
Fig. 8B, where just two RNA domains are required to produce the pattern. The
structure is expected to raster back and forth, alternating between dovetail and
kissing-loop seams. Several sequence constraints are imposed on the kissing-loop
interactions and the dovetail seams, shown in more detail in Fig. 9A and 9B.
Further illustrated in Fig. 9, some kissing loops form internally (denoted by
different colors), while other have constraints because they are on the outside of
the tile. One kissing loop and one dovetail are on the edge of the tile and are
found to require base-pair palindromic symmetry in order to allow formation of
the tile (marked in red).
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Fig. 9. Design of a circular RNA gene for producing a space-filling RNA
structure. (A) The repeat units from Fig. 8B drawn as a ribbon diagram (similar to
Fig. 2), with the repeating units shown in different colors. (B) Secondary structure with
sequence constraints shown in different colors. Red indicate sequences that have to base
pair with copies of itself and thus be base-pair palindromes. Sequences in orange, blue
and green are orthogonal and pair according to color. Arrows indicate complementary
domains. Grey sequence show the T7 promoter sequence and its complement, where
GU mismatches have been introduced to disrupt the promoter signal in the opposite
direction on the circular DNA template. (C) Ribbon diagram for an RNA structure
produced from the circular DNA template gene by rolling circle transcription. T7 RNA
polymerase and circular DNA template are shown to scale. Dark blue and cyan color
of the circular DNA template indicate the two repeat domains.

We envision such a Peano tile may be encoded on a circular DNA template,
which has an internal promoter sequence that is also encoded inside the RNA
structure (positioned in the stem and marked in light grey). Fig. 9C shows
the Peano-tile as it grows to larger structures. Even though it conceptually is
tantalizing, this structure might not form for several reasons: First, the tile
unit has many outward-facing interactions that might instead form internally
in the tile, resulting in a misfold. Second, as mentioned before, the long stems
may produce topological problems. Third, the assembly depends on the two-
part tile unit to adopt an alternative conformation at key parts of the lattice.
However, the correct interactions might still be preferred because, as the struc-
ture grows large, it may try to pack into its densest form, the desired assembly
shape.
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5 Discussion

We have introduced the A-form DX types and shown their extension to larger
multi-crossover structures. The DX types have special properties concerning
their bp spacing and internal symmetry. In the multi-crossover structures be-
tween several helices the DX types also have different properties concerning
bending or flattening of the structures. As such, these motifs are important to
consider when building extended architectures in 2D or 3D. This is especially
important when designing RNA structures to be folded from a single strand,
where geometry of crossovers and topological interactions have to be consid-
ered. We highlighted several paranemic assembly motifs well suited for making
non-topologically linked interactions. We have demonstrated a methodology for
folding path design using kissing-loop interactions and dovetail seams, which
could easily be replaced with other tertiary motifs, of which there are plenty of
good examples to choose from in the literature. To realize the design of complex
structures produced by cotranscriptional folding, several theoretical aspects have
to be further developed: 1) Sequence design taking account of pseudoknots, 2)
The development of a kinetic model of folding, 3) Coarse grained modeling of
the cotranscriptional folding process, and finally, 4) A theory for tile assembly
when produced on a single strand.
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Abstract. We study the power of uncontrolled random molecular move-
ment in a model of self-assembly called the nubots model. The nubots
model is an asynchronous nondeterministic cellular automaton augmented
with rigid-body movement rules (push/pull, deterministically and pro-
grammatically applied to specific monomers) and random agitations (non-
deterministically applied to every monomer and direction with equal
probability all of the time). Previous work on nubots showed how to
build simple shapes such as lines and squares quickly—in expected time
that is merely logarithmic of their size. These results crucially make use
of the programmable rigid-body movement rule: the ability for a single
monomer to push or pull large objects quickly, and only at a time and
place of the programmers’ choosing. However, in engineered molecular
systems, molecular motion is largely uncontrolled and fundamentally ran-
dom. This raises the question of whether similar results can be achieved
in a more restrictive, and perhaps easier to justify, model where uncon-
trolled random movements, or agitations, are happening throughout the
self-assembly process and are the only form of rigid-body movement. We
show that this is indeed the case: we give a polylogarithmic expected time
construction for squares using agitation, and a sublinear expected time
construction to build a line. Such results are impossible in an agitation-
free (and movement-free) setting and thus show the benefits of exploiting
uncontrolled random movement.

1 Introduction

Every molecular structure that has been self-assembled in nature or in the lab
was assembled in conditions (above absolute zero) where molecules are vibrating
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relative to each other, randomly bumping into each other via Brownian motion,
and often experiencing rapid uncontrolled fluid flows. It makes sense then to
study a model of self-assembly that includes, and indeed allows us to exploit
and program, such phenomena. It is a primary goal of this paper to show the
power of self-assembly under such conditions.

In the theory of molecular-scale self-assembly, millions of simple interacting
components are designed to autonomously stick together to build complicated
shapes and patterns. Many models of self-assembly are cellular automata-like
crystal growth models, such as the abstract tile assembly model [9]. Indeed this
and other such models have given rise to a rich theory of self-assembly [5,8,10].
In biological systems we frequently see much more sophisticated growth pro-
cesses, where self-assembly is combined with active molecular motors that have
the ability to push and pull large structures around. For example, during the gas-
trulation phase of the embryonic development of the model organism Drosophila
melanogaster (a fly) large-scale (100s of micrometers) rearrangements of the
embryo are effected by thousands of (nanoscale) molecular motors working to-
gether to rapidly push and pull the embryo into a final desired shape [4,7].
We wish to understand, at a high level of abstraction, the ultimate computa-
tional capabilities and limitations of such molecular scale rearrangement and
growth.

The nubots model of self-assembly, put forward in [11], is an asynchronous
nondeterministic cellular automaton augmented with non-local rigid-body move-
ment. Unit-sized monomers are placed on a 2D hexagonal grid. Monomers can
undergo state changes, appear, and disappear, using local cellular-automata style
rules. However, there is also a non-local aspect to the model, a kind of rigid body
movement that comes in two forms: movement rules and random agitations. A
movement rule r, consisting of a pair of monomer states and two unit vectors,
is a programatic way to specific unit-distance translation of a set of monomers
in one step: if two adjacent monomers on the grid have states A and B and
are in a prescribed orientation, then we may try to apply r so that one of A
or B moves unit distance in a prescribed direction relative to the other. The
rule r is applied in a rigid-body fashion: if A is to move right, it pushes any-
thing immediately to its right and pulls any monomers that are bound to its
left (roughly speaking), which in turn push and pull other monomers. The rule
may not be applicable if it is blocked (i.e. if movement of A would force B to
also move), which is analogous to the fact that an arm can not push its own
shoulder. The other form of movement in the model is called agitation: at every
point in time, every monomer on the grid may move unit distance in any of
the six directions, at unit rate for each (monomer, direction) pair. An agitating
monomer will push or pull any monomers that it is adjacent to, in a way that
preserves rigid-body structure. Unlike movement, agitations are never blocked.
Rules are applied asynchronously and in parallel in the model. Taking its time
model from stochastic chemical kinetics, a nubots system evolves as a continuous
time Markov process.
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In summary, there are two kinds of movement in the model: (a) a move-
ment rule is applied only to a pair of monomers with the prescribed states
and orientation, and then causes the movement of one of these monomers (and
other pushed/pulled monomers) but not the other, whereas (b) agitations are
always applicable at every time instant, in every direction and to every monomer
throughout the grid.

In previous work, the movement rule was exploited to show that nubots is
very efficient in terms of its computational ability to quickly build complicated
shapes and patterns. Agitation was treated as something to be robust against
(i.e. the constructions in [11,2] work both with and without agitation), which
seems like a natural requirement when building structures in a molecular-scale
environment. However, it was left open as to whether the kind of results achieved
with movement could be achieved without movement, but by exploiting agita-
tion [2]. In other words, it was left open as to whether augmenting a cellular
automaton with an uncontrolled form of random rigid-body movement would
facilitate functionality that is impossible without it. Here we show this is the
case.

Agitation, and the movement rule, are defined in such a way that larger ob-
jects move faster, and this is justified by imagining that we are self-assembling
rigid-body objects in a nanoscale environment where there are uncontrolled and
turbulent fluid flows in all directions interacting with each monomer at unit rate
per monomer. It remains as an interesting open research direction to look at the
nubots model but with a slower rate model for agitation and movement, specifi-
cally where we hold on to the notion of rigid body movement and/or agitation
but where bigger things move slower, as seen in Brownian motion for example.
Independent of the choice of rate model, one of our main motivations here is to
understand what can be done with asynchronous, distributed and parallel self-
assembly with rigid body motion: the fact that our systems work in a parallel
fashion is actually more important to us than the fact they are fast. It is precisely
this engineering of distributed asynchronous molecular systems that interests us.

The nubots model is related to, but distinct from, a number of other self-
assembly and robotics models as described in [11]. Besides the fact that biological
systems make extensive use of molecular-scale movements and rearrangements, in
recent yearswe have seen the design and fabrication of a number ofmolecular-scale
DNAmotors [1] and active self-assembly systems which also serve to motivate our
work, details of which can be found in previous papers on nubots [11,2].

1.1 Results and Future Work

Agitation nubots denotes the nubots model without the movement rule and with
agitation (see Section 2 for formal definitions). The first of our two main re-
sults shows that agitation can be exploited to build a large object exponentially
quickly:

Theorem 1. There is a set of nubots rules Nsquare, such that for all n ∈ N,
starting from a line of �log2 n� + 1 monomers, each in state 0 or 1, Nsquare in
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Fig. 1. Overview of nubots model. (a) A nubot configuration showing a single nubot
monomer on the triangular grid. (b) Examples of nubot monomer rules. Rules r1-r6 are
local cellular automaton-like rules, whereas r7 effects a non-local movement. A flexible
bond is depicted as an empty red circle and a rigid bond is depicted as a solid red disk.
Rules and bonds are described more formally in Section 2.

the agitation nubots model assembles an n×n square in O(log2 n) expected time,
n× n space and O(1) monomer states.

The proof is in Section 4. Our second main result shows that we can achieve
sublinear expected time growth of a length n line in only O(n) space:

Theorem 2. There is a set of nubots rules Nline, such that for any ε > 0, for
sufficiently large n ∈ N, starting from a line of �log2 n� + 1 monomers, each
in state 0 or 1, Nline in the agitation nubots model assembles an n × 1 line in
O(n1/3+ε) expected time, n× 5 space and O(1) monomer states.

The proof is in Section 5. Lines and squares are examples of fundamental com-
ponents for the self-assembly of arbitrary computable shapes and patterns in
nubots [11,2,3] and other self-assembly models [5,8].

Our work here suggests that random agitations applied in an uncontrolled
fashion throughout the grid are a powerful resource. However, are random agi-
tations as powerful as the programable and more deterministic movement rule
used in previous work on nubots [11,2]? In other words can agitation simulate
movement? More formally, is it the case that for each nubots program N , there
is an agitation nubots program AN , that acts just like N but with some m×m
scale-up in space, and a k factor slowdown in time, where m and k are (con-
stants) independent of N and its input? This question is inspired by the use of
simulations in tile assembly as a method to classify and separate the power of
self-assembly systems, for more details see [6,10]. It would also be interesting
to know whether the full nubots model, and indeed the agitation nubots model,
are intrinsically universal [6,10]. That is, is there a single set of nubots rules
that simulate any nubots system? Is there a single set of agitation nubots rules
that simulate any agitation nubots system? Here the scale factor m would be a
function of the simulated system N . As noted in the introduction, it remains as
an interesting open research direction to look at the nubots model but with a
slower rate model for agitation and movement, as seen in Brownian motion, for
example.
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2 The Nubots Model

In this section we formally define the nubots model. Figure 1 gives an overview
of the model and rules. Figure 3 shows a simple example construction using only
local rules, while Figure 2 gives two examples of agitation.

The model uses a two-dimensional triangular grid with a coordinate system
using axes x and y as shown in Figure 1(a). A third axis, w, is defined as running
through the origin and −→w = −−→x + −→y = (−1, 1), but we use only the x and y
coordinates to define position. The axial directions D = {±−→x ,±−→y ,±−→w} are
the unit vectors along axes x, y, w. A pair −→p ∈ Z2 is called a grid point and has
the set of six neighbors {−→p + −→u | −→u ∈ D}. Let S be a finite set of monomer
states. A nubot monomer is a pair X = (si, p(X)) where si ∈ S is a state and
p(X) ∈ Z2 is a grid point. Two monomers on neighboring grid points are either
connected by a flexible or rigid bond, or else have no bond (called a null bond).
Bonds are described in more detail below. A configuration C is a finite set of
monomers along with all of the bonds between them (unless otherwise stated a
configuration consists of all of the monomers on the grid and their bonds).

One configuration transitions to another either via the application of a rule
that acts on one or two monomers, or by an agitation. For a rule r = (s1, s2, b,−→u )
→ (s1′, s2′, b′,−→u ′), the left and right sides of the arrow respectively represent
the contents of the two monomer positions before and after the application
of r. Specifically, s1, s2, s1′, s2′ ∈ S ∪ {empty} are monomer states where empty
denotes lack of a monomer, b, b′ ∈ {flexible, rigid, null} are bond types, and
−→u ,−→u ′ ∈ D are unit vectors. b is a bond type between monomers with state
s1 and s2, and −→u ∈ D is the relative position of a monomer with state s2 to
a monomer with state s1 (likewise for b′, s1′, s2′,−→u ′). At most one of s1, s2 is
empty (we disallow spontaneous generation of monomers from empty space). If
empty ∈ {s1, s2} then b = null, likewise if empty ∈ {s1′, s2′} then b′ = null.

A rule either does not or does involve movement (translation). First, in the
case of no movement we have −→u = −→u ′. Thus we have a rule of the form r =
(s1, s2, b,−→u ) → (s1′, s2′, b′,−→u ), where the monomer pair may change state (s1 �=
s1′ and/or s2 �= s2′ ) and/or change bond (b �= b′), examples are shown in
Figure 1(b). If si ∈ {s1, s2} is empty and s′i is not, then the rule is said to induce
the appearance of a new monomer at the empty location. If one or both monomer
states go from non-empty to empty, the rule induces the disappearance of one or
both monomers. Second, in the case of a movement rule, −→u �= −→u ′ and the rule
has a specific form defined in [11,2]. Movement rules are not used in the agitation
nubots model studied in this paper, and so their definition may be ignored by
the reader. A rule is only applicable in the orientation specified by −→u .

To define agitation we introduce some notions. Let −→v ∈ D be a unit vector.
The −→v -boundary of a set of monomers S is defined to be the set of grid points
outside of S that are unit distance in the −→v direction from monomers in S.

Definition 3 (Agitation set). Let C be a configuration containing monomer A,
and let −→v ∈ D be a unit vector. The agitation set A(C,A,−→v ) is defined to be the
smallest monomer set in C containing A that can be translated by −→v such that:
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Fig. 2. Top: Example agitations. Starting from the centre configuration, there are
48 possible agitations (8 monomers, 6 directions each), any one of which is chosen
with equal probability 1/48. The right configuration results from the agitation of the
monomer at position (1, 2) in the direction →, starting from the centre configuration.
The left configuration results from the agitation of the monomer at position (2, 1) in
the direction ←, starting from the centre configuration. The shaded monomers are the
agitation set—the set of monomers that are moved by the agitation—when beginning
from the centre configuration. Bottom: simplified ball-and-stick representation of the
monomers and their bonds, which is used in a number of other figures.

(a) monomer pairs in C that are joined by rigid bonds do not change their relative
position to each other, (b) monomer pairs in C that are joined by flexible bonds
stay within each other’s neighborhood, and (c) the −→v -boundary of A(C,A,−→v )
contains no monomers.

We now define agitation. An agitation step acts on an entire configuration C
as follows. A monomer A and unit vector −→v are selected uniformly at random
from the configuration of monomers C and the set of six unit vectors D respec-
tively. Then, the agitation set A(C,A,−→v ) of monomers (Definition 3) moves by
vector −→v .

Figure 2 gives two examples of agitation. Some remarks on agitation: It can be
seen that for any non-empty configuration the agitation set is always non-empty.
During agitation, the only change in the system configuration is in the positions
of the constituent monomers in the agitation set, and all the monomer states and
bond types remain unchanged. We let agitation nubots denote the nubots model
without the movement rule. Agitation is intended to model movement that is
not a direct consequence of a rule application, but rather results from diffusion,
Brownian motion, turbulent flow or other uncontrolled inputs of energy.

An assembly system T = (C0,N ) is a pair where C0 is the initial configura-
tion, and N is the set of rules. If configuration Ci transitions to Cj by some
rule r ∈ N , or by an agitation step, we write Ci 	N Cj . A trajectory is a finite
sequence of configurations C1, C2, . . . , C� where Ci 	N Ci+1 and 1 ≤ i ≤ � − 1.
An assembly system is said to assemble a shape or pattern if, starting from some
initial configuration C0, every trajectory evolves to the desired shape or pattern.
An assembly system evolves as a continuous time Markov process. The rate for
each rule application, and for each agitation step, is 1. If there are k applicable
transitions for a configuration Ci (i.e. k is the sum of the number of rule and
agitation steps that can be applied to all monomers), then the probability of any
given transition being applied is 1/k, and the time until the next transition is
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Fig. 3. A nubots system that slowly grows a length n line in O(n) time, n monomer
states, and using space n × 1. (a) Rule set: Rslow line

n = {ri | ri = (i, empty, null,x) →
(0, i − 1, rigid,x), where n > i > 0}. (b) Starting from an initial configuration with a
single monomer in state n, the system generates a length n line. Taken from [11].

applied is an exponential random variable with rate k (i.e. the expected time is
1/k). The probability of a trajectory is then the product of the probabilities of
each of the transitions along the trajectory, and the expected time of a trajec-
tory is the sum of the expected times of each transition in the trajectory. Thus,∑

t∈T Pr[t]time(t) is the expected time for the system to evolve from configu-
ration Ci to configuration Cj , where T is the set of all trajectories from Ci to
any configuration isomorphic (up to translation) to Cj , that do not pass through
any other configuration isomorphic to Cj , and time(t) is the expected time for
trajectory t.

The complexity measure number of monomers is the maximum number of
monomers that appears in any configuration. The number of states is the total
number of distinct monomer states that appear in the rule set. Space is the
maximum, over the set of all reachable configurations, of the minimum-sized
l×w rectangle (on the hex grid) that, up to translation, contains all monomers
in the configuration.

2.1 Example: A Simple, But Slow, Method to Build a Line

Figure 3, from [11], shows a simple method to build a length n line in expected
time n, using O(n) monomer states. Here, the program is acting as an asyn-
chronous cellular automata and is not exploiting the ability of a large set of
monomers to quickly move via agitation. Our results show that we can do much
better than this very slow and expensive (many states) method to grow a line.

3 Synchronization via Agitation

In this section we describe a fast method to synchronize the states of a line of
monomers using agitation. Specifically, the synchronization problem is: given a
length-m line of monomers that are in a variety of states but that all eventually
reach some target state s, then after all m monomers have reached state s,
communicate this fact to all m monomers in O(logm) expected time.

Lemma 4 (Synchronization). A line of monomers of length m ∈ N can be
synchronized (all monomers put into the same state) in O(logm) expected time,
with O(1) states, and in m×O(1) space.

The proof is described in Figure 4 and its caption. The figure gives a synchroniza-
tion routine that is used throughout our constructions. This is a modification of
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Fig. 4. Synchronization via agitation: a nubots construction to synchronize (or send a
signal, or reach consensus) between n monomers in O(log n) expected time. Steps (1)–
(6): build a row of monomers called the synchronization row. Rigid bonds are converted
to flexible bonds in such a way that agitations do not change the relative position of
monomers. A structure with this property is said to be stable. Specifically, monomers
are added using rigid vertical bonds; new monomers join to left-right neighbours using
rigid horizontal bonds; when a monomer is bound horizontally to both neighbours
it makes its vertical bond flexible; monomers on the extreme left and right of the
synchronization row are treated differently—their vertical bonds become flexible after
joining any horizontal neighbour. This enforces that the entire structure is stable up
until the final horizontal bond is added, and then the structure becomes unstable in
such a way that the synchronization row can agitate left-right relative to the backbone
row. Steps (7)–(10), the structure is not stable, and the synchronization row is free to
agitate left and right relative to the backbone row. While agitating, the synchronization
row spends half the time to the left, and half to the right, of the backbone row. However,
whenever the synchronization row is to the right a rigid bond may form between any
synchronization row monomer and the backbone monomer directly above, hence the
first such bond forms in expected time 1/m, where m is the length of the backbone.
Then all bonds become rigid in O(logm) expected time, during which time (12)–(15)
the backbone monomers change their state to the final synchronized state.
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Fig. 5. An overview of the square doubling algorithm that grows an m × m zig-zag
“comb” to a 2m × 2m comb. (1) An initial m × m comb with vertical teeth, is (2)
“half-doubled” to give a �1.5m� × m comb, which is (3) again half-doubled to give
a 2m × m comb. (4)–(5) The internal bond structure is reconfigured to give a comb
with horizontal teeth. (6)–(7) this comb is vertically doubled in size and then (8)–
(9) reconfigured to give a 2m × 2m comb with vertical teeth. The green lines indicate
temporary synchronization rows that are used when reorientating the teeth of the comb.

the synchronization routine in [11], made to work with agitation instead of the
movement rule.

4 Building Squares via Agitation

This section contains the proof of our first main result, Theorem 1.

Proof (Theorem 1). Overview of Construction. Figure 5 gives an overview of
our construction. A binary string that represents n ∈ N in the standard way is
encoded as a string x, of length � = �log2 n�+1, of adjacent rigidly bound binary
nubot monomers (each in state 0 or 1) placed somewhere on the hexagonal grid.

The leftmost of these monomers begins an iterated square-doubling process,
that happens exactly � times. Each iteration of this square-doubling process:
reads the current most significant bit xi of x, where 0 ≤ i ≤ �, stores it in the
state of a monomer in the top-left of the square and then deletes xi. Then, if
xi = 0 it takes an m×m comb structure and doubles its size to give a 2m× 2m
comb structure, or if xi = 1 it gives a (2m+1)×(2m+1) structure. We will prove
that each square-doubling step takes O(logm) time. There are � rounds of square-
doubling, i.e. the number of input monomers � act as a counter to control the
number of iterations, and since m ≤ n throughout, the process completes in the
claimed expected time of O(log2 n). The main part of the construction, detailed
below, lies in the details of how each doubling step works and an expected time
analysis, and constitutes the remainder of the proof.

Doubling Construction. A single square-doubling consists of four phases: two
horizontal “half-doublings” and two vertical half-doublings. Figure 5 gives an
overview. Figure 6 gives the details of how we do the first of two horizontal half-
doublings; more precisely, the figure shows how to go from an m×m structure to
a structure of size �1.5m�×m. Assume we are at a configuration with m vertical
comb teeth (Figure 6(1)) each of height m (plus some additional monomers).
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Fig. 6. The m×m to �1.5m� ×m horizontal half-doubling algorithm, for m = 8. This
shows the details for step (1) to (2) of Figure 5. Monomer states are denoted using
colours (bonds are also coloured for readability). Rigid bonds are solid, flexile bonds
are dotted. See main text for details.

Teeth are numbered from the left t1, t2, . . . , tm. Each tooth monomer undergoes
agitation. It can be seen in Figure 6(1)–(4), from the bond structure, that the
only agitations that change the relative position of monomers are left or right
agitations which move the green flexible bonds (depicted as dashed lines)—all
other agitations move the entire structure without changing the relative positions
of any monomers. Furthermore, left-right monomer agitations can create gaps
between teeth ti and t1+1 for even i only—for odd i, teeth ti and t1+1 are rigidly
bound. An example of a gap opening between tooth t4 and tooth t5 is shown
in Figure 6(2). If a gap appears between teeth ti and t1+1 then each of the m
monomers in tooth ti tries to attach a new purple monomer to its right (with
a rigid bond, and each at rate 1), so attachment for any monomer to tooth i
happens at rate m. (Note that the gap is closing and opening at some rate also—
details in the time analysis.) After the first such purple monomer appears, the
gap gi, to the right of tooth ti, is said to be “initially filled”. For example, in
Figure 6(4), gap g2 is initially filled.

When gaps appear between teeth monomers, and then become initially filled,
additional monomers are attached, asynchronously and in parallel. Monomers
attaching to tooth ti initially attach by rigid bonds as shown in Figure 6(4). As
new monomers attach to ti, they then attempt to bind to each other vertically,
and after such a binding event they undergo a sequence of bond changes—see
Figure 6(4)-(9). Specifically, let si,j be the jth monomer on the newly-forming
“synchronization row” si adjacent to ti. When the neighbors si,j−1, si,j+1 of
monomer si,j appear, then si,j forms rigid bonds with them (at rate 1). Af-
ter this, si,j changes its rigid bonds to ti,j to flexible. The top and bottom
monomers si,1, si,m are special cases: their bonds to ti,1, ti,m become flexible
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after they have joined to their (single) neighbors si,2, si,m−1. Changing bonds
in this order guarantees that only after all monomers of si have attached, and
not before, the synchronization row si is free to agitate up and down relative to
the tooth ti (this is the same technique for building a synchronization row as
described in Section 3). The new vertical synchronization row si is then free to
agitate up and down relative to its left-adjacent tooth ti. When si,j is “down”
relative to ti,j the horizontal bonds between si,j and ti,j become rigid, at rate 1
per bond (Figure 6(6)–(7)). When the vertical synchronization of si is done, a
message is sent from the top monomer ti,m of ti (after its bond to si,m becomes
rigid) to the adjacent monomer at the top of the comb. This results in the for-
mation of a horizontal synchronization row at the top of the structure. Using
a similar technique, a horizontal synchronization row grows at the bottom of
the structure. After all 2�0.5m� such messages have arrived, and not before, the
horizontal synchronization rows at the top and bottom of the (now) �1.5m�×m
comb change the last of their rigid (vertical) bonds to flexible and those synchro-
nization rows are free to agitate left/right and then lock into position, signaling
to all monomers along their backbone that the first of the four half-doublings of
the comb has finished.

The system prepares for the next horizontal half-doubling which will grow the
�1.5m� × m comb to be an 2m × m comb. The bonds at the top and bottom
horizontal synchronization rows reconfigure themselves (preserving connectivity
of the overall structure—see the description of reconfiguration below) in such a
way as to build the gadgets needed for the next half-doubling. (Specifically, we
want to now double teeth ti for odd i ≤ m.) The construction proceeds similarly
to the first half-doubling, except for the following change. After tooth synchro-
nization row s1 has synchronized, tooth t1 grows a vertical synchronization row
to its left, and after sm has synchronized, tooth tm grows a vertical synchroniza-
tion row to its right (Figure 5(4)). These two synchronization rows are used to
set-up the bond structure for the next stage of the construction (where we will
reconfigure the entire comb so that the teeth are horizontal).

This covers the case of the input bit being 0. Otherwise, if the input bit is 1,
adding an extra tooth can be done using the single vertical synchronization row
on the right—it reconfigures itself to have the bond structure of a tooth and
then grows a new vertical synchronization row.

Reconfiguration Construction. Next we describe how the comb with verti-
cal teeth is reconfigured to have horizontal teeth, as in Figure 5(4)–(5). After
synchronization row si has synchronized, each monomer si,j in si already has
a rigid horizontal bond to monomer ti,j . After both si and si+1 have synchro-
nized, for all j, monomers si,j and ti+1,j bond using a horizontal rigid bond (at
rate 1) for each pair (si,j , ti+1,j). Monomers ti and si then delete their vertical
rigid bonds in such a way that preserves the overall connectivity of the struc-
ture. (For these bond reconfigurations we are simply using local—asynchronous
cellular automaton style—rules that preserves connectivity. This trick has been
used in previous nubots constructions in [11,2].) This leads to a bond structure
similar to that in Figure 6(10) both with roughly twice the number of horizon-
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tal purple bonds: i.e. for each j, 1 ≤ j ≤ m, there is now a horizontal straight
line of purple bonds from the jth monomer on the leftmost vertical line to the
jth monomer on the rightmost vertical line. While this reconfiguration is taking
place, the leftmost and rightmost vertical synchronization rows synchronize and
delete themselves, leaving appropriate gadgets to connect the horizontal teeth:
this signals the beginning of the next two half-doubling steps.

Expected Time, Space and States Analysis. Lemma 5 states that the ex-
pected time to perform a half-doubling is O(logm) for an m×m comb, and since
n ≤ m, the slowest half-doubling takes expected time O(log n). Each doubling
involves 2 horizontal half-doubling phases, and 2 vertical half-doubling phases,
and the 4 phases are separated by discrete synchronization events. Reconfigura-
tion involves O(n2) bond and state change events, that take place independently
and in parallel (O(log n) expected time) as well as a constant number of syn-
chronizations that each take O(log n) expected time. Hence for 4(�log2 n� + 1)
such half-doublings, plus �log2 n�+1 reconfigurations, we get an overall expected
time of O(log2 n).

We’ve sketched how to make an n×n structure in (n+2)× (n+2) space. To
make the construction work in n×n space, we first subtract 2 from the input, and
build an (n− 2)× (n− 2) structure, and then at the final step have the leftmost
and rightmost horizontal, and topmost and bottommost vertical, synchroniza-
tion rows become rigid and be the border of the final n × n structure. A final
monomer is added on the top left corner and we are done. By stepping through
the construction it can be seen that O(1) monomer states are sufficient. ��

Intuitively, the following lemma holds because the long (length m) teeth allow
for rapid, O(1) time per tooth, and parallel insertion of monomers to expand
the width of the comb. This intuition is complicated by the fact that teeth
agitating open and closed may temporarily block other teeth inserting a new
monomer. However, after an insertion actually happens further growth occurs
independently and in parallel, taking logarithmic expected time overall.

Lemma 5. A comb with m teeth where each tooth is of height m, can be hori-
zontally half-doubled to length �1.5m� in expected time O(logm) using agitation
nubots.

Proof. Consider tooth i, where 1 ≤ i ≤ m for i even. A tooth can be open,
closed or initially filled (one new monomer inserted). Although the re-
maining structure can affect the transition probabilities relevant to tooth i, in
any state, the rate at which the tooth transitions from closed to open is at least
m, the rate that it transitions from open to closed is at most m2, and the rate
at which it transitions from open to initially filled is exactly m. We define
a new Markov process, with states open, closed, and initially filled and
the transition probabilities just described, which is easier to analyze. Clearly, the
random variable representing the time for this process to transition from closed

to initially filled upper bounds the random variable representing the time
for the real nubots process to do the same for a single tooth. We now show that
this new random variable has expected value O(1).
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Let Tcf be the random variable representing the time to go from closed to
initially filled. Let Tco be the random variable representing the time to go
from closed to open. Let Toc be the random variable representing the time to
go from open to closed, conditioned on that transition happening, and define
Tof similarly for going from open to initially filled. Note that E[Tco] ≤ 1

m ,
E[Toc] ≥ 1

m2 , and E[Tof ] =
1
m . Let Ei represent the event that the process revisits

state closed exactly i times after being in state open (and before reaching state
initially filled). Let Ti be the random variable representing the time to
take exactly i cycles between the states open and closed. Let C be the random
variable representing the number of cycles taken between the states open and
closed before transitioning to state initially filled. E[C] = m since the
process goes from open to initially filled with probability 1

m . Then

E[Tcf ] = E[Tco] + E[Tof ] +

∞∑
i=0

Pr[Ei] · E[Ti]

≤ 2

m
+

∞∑
i=0

Pr[Ei] · i ·
(

1

m2
+

1

m

)

=
2

m
+

(
1

m2
+

1

m

) ∞∑
i=0

Pr[Ei] · i

=
2

m
+

(
1

m2
+

1

m

)
E[C]

=
2

m
+

(
1

m2
+

1

m

)
m ≤ 2.

By Markov’s inequality, the probability is at most 1
2 that it will take more than

time 4 to reach from closed to initially filled. Because of the memoryless
property of the Markov process, conditioned on the fact that time t has elapsed
without reaching state initially filled, the probability is at most 1

2 that it
will take more than t+ 4 time to reach state initially filled. Hence for any
t > 0, the probability that it will take more than than 4t time to reach from
state closed to initially filled is at most 2−t.

Since this tail probability decreases exponentially, it follows that form/2 teeth,
the expected time for all of them to reach state initially filled is O(logm). ��

5 Building Lines via Agitation

In this section we build a line in sublinear time while using merelyO(n) space.We
prove this, our second main theorem (Theorem 2), by giving a line construction
that works in merely n × 5 = O(n) space while achieving sublinear expected
time O(nε+1/3), and O(1) monomer states.

Proof (Theorem 2). Overview of Construction. The binary expansion of n ∈
N is encoded as a horizontal line, denoted x, of � = �log2 n�+ 1 adjacent binary



Fast Algorithmic Self-assembly of Simple Shapes Using Random Agitation 33

Fig. 7. Line doubling construction. The inner component is called the sword, which
agitates left/right relative to the outer component called the scabbard (both are in
black). The black sword-and-scabbard are doubled from length m = 8 to length 2m =
16. Other monomers (red, green, blue) serve to both ratchet the movement, and to
quickly in parallel build up the mass of the doubled sword-scabbard.

nubot monomers (each in state 0 or 1) with neighbouring monomers bound by
rigid bonds, placed somewhere on the hexagonal grid. The leftmost of these
monomers triggers the growth of a constant sized (length 1) sword and scabbard
structure. Then an iterated doubling process begins, that happens exactly �
times and will result in a sword-and-scabbard of length n (and height 5). At
step i of doubling, 1 ≤ i ≤ �, the leftmost of the input monomers xi (from
x) is read, and then deleted. If xi = 0 then there will be a doubling of the
length of the sword-and-scabbard, else if xi = 1 there will be a doubling of the
length of the sword-and-scabbard with the addition of one extra monomer. It
is straightforward to check that this doubling algorithm finishes with a length
n object after � rounds. After the final doubling step, a synchronization occurs,
and then ≤ 4n of the monomers are deleted (in parallel) in such a way that an
n× 1 line remains. All that remains is to show the details of how each doubling
step works.

Doubling Construction. Figure 7 describes the doubling process in detail: at
iteration i of doubling assume that (a) we read an input bit 0, and that (b)
we have a sword-and-scabbard structure of length m (and height 5). Since the
input bit is 0 we want to double the length to 2m. As shown in Figure 7(1), we
begin with the sword sheathed in the scabbard. We next describe a biased (or
ratcheted) random walk process that will ultimately result in the sword being
withdrawn all the way to the hook, giving a structure of length 2m. Via agita-
tion, the sword may be unsheathed by moving out (to the left) of the scabbard,
or by the scabbard moving (to the right) from the sword, although, because
of the hook the sword can never be completely withdrawn and hence the two
components will never drift apart.1 The withdrawing of the sword is a random
walk process with both the sword and scabbard agitating left-right. While this
is happening, each monomer—at unit rate, conditioned on that monomer being
unsheathed—on the top row of the sword tries to attach a new monomer above.
Any such attachment event that succeeds acts as a ratchet that biases the ran-

1 Besides preserving correctness of the construction, the hook is a safety feature, and
hence the sword is merely decorative.
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dom walk process in the forward direction. Also, as the sword is unsheathed
each unsheathed sword monomer at the bottom of the sword attaches—at unit
rate, conditioned on that monomer being unsheathed—a monomer below, and
each monomer on the top (respectively, bottom) horizontal row of the scabbard
tries to attach a monomer below (respectively, above) it. These monomers can
also serve as ratchets (although in our time analysis below we ignore them which
serves only to slow down the analysis). Eventually the sword is completely with-
drawn to the hook, and ratcheted at that position, so further agitations do not
change the structure.

At this point we are done with the doubling step, and the sword and scab-
bard reconfigure themselves to prepare for the next doubling (or deletion of
monomers if we are done). Figure 7(6)–(9) gives the details. The attachment of
new monomers results in 4 new horizontal line segments, each of length m − 1.
Each segment is built in the same way as used for the synchronization technique
shown in Section 3, Figure 4; specifically the bonds are initially formed as rigid,
and then transition to flexible in such a way that the line segment (or “syn-
chronization” row) is free to agitate relative to its “backbone” row only when
exactly all m bonds have formed. The line agitates left and right and is then
synchronized (or locked into place, see Figure 4) causing all m monomers on the
line to change state to “done”. When the two new line segments that attached to
the bottom and top of the sword are both done their rightmost monomers each
bind to the scabbard with a rigid bond (as shown in Figure 7(8)) and delete
their bonds to the sword (Figure 7(9)) (note that the rightmost of the latter
kind of bonds is not deleted until after binding to the scabbard which ensures
the entire structure remains connected at all times; also before the leftmost bond
on the bottom is deleted a new hook is formed which prevents the new sword
leaving the new scabbard prematurely). In a similar process, the two new line
segments that are attached to the scabbard form a new hook, bind themselves
to the sword, and then release themselves from the scabbard. We are new ready
for the next stage of doubling.

The previous description assumed that the input bit is 0. If the input bit is
instead 1 then after doubling both the sword and scabbard are increased in length
by 1 monomer (immediately before forming the hook on the new scabbard).

After the final doubling stage then O(n) monomers need to be deleted to leave
an n × 1 line of rigidly bound monomers (the goal is to build a line) without
having monomers drift away (so as not to violate the space bound). This is
relatively straightforward to achieve with two synchronizations, and subsequent
deletion of monomers.

Expected Time Analysis. Lemma 6 states the expected time for a single
doubling event: a length m sword is fully withdrawn to the hook, and locked
into place, from a length m scabbard in expected time O(m1/3+ε).

Between each doubling event there is a reconfiguration of the sword and scab-
bard. Each reconfiguration invokes a constant number of synchronizations which,
via Lemma 4, take expected time O(logm) each. Changing of the bond struc-
ture also takes place in O(logm) expected time since each of the four new line
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segments change their bonds independently, and within a line segment all bond
changes (expect for a constant number) occur independently and in parallel.

There are � = �log2 n� + 1 doubling plus reconfiguration events, each taking
time c((2k)1/3+ε) on the k’th event for some constant c (by Lemma 6, since the
size of the structure during the k’th event is Θ(2k)), the total expected time is
bounded by the geometric series

�−1∑
k=0

c(2k)1/3+ε = c

�−1∑
k=0

(21/3+ε)k = c
1− (21/3+ε)�

1− 21/3+ε
= O((21/3+ε)�) = O(n1/3+ε).

��

The next lemma states that, starting from length m, one “length-doubling”
stage of the 1D line construction completes in expected time O(m1/3+ε). In-
tuitively, the proof (see full paper) shows that the rapid agitation process is
a random walk that quickly exposes a large portion of the sword, to which a
monomer quickly attaches. This attachment irreversibly “ratchets” the random
walk forward, preventing it from walking backwards by very much.

Lemma 6. For any ε > 0, for sufficiently large m, the expected time for one
line-doubling stage (doubling the length of the sword and scabbard) is O(m1/3+ε).

Acknowledgments. A special thanks to Erik Winfree for many insightful
and helpful discussions on the model and constructions. We also thank Robert
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Abstract. The computational power of stochastic chemical reaction
networks (CRNs) varies significantly with the output convention and
whether or not error is permitted. Focusing on probability 1 compu-
tation, we demonstrate a striking difference between stable computation
that converges to a state where the output cannot change, and the notion
of limit-stable computation where the output eventually stops changing
with probability 1. While stable computation is known to be restricted to
semilinear predicates (essentially piecewise linear), we show that limit-
stable computation encompasses the set of predicates in Δ0

2 in the arith-
metical hierarchy (a superset of Turing-computable). In finite time, our
construction achieves an error-correction scheme for Turing universal
computation. This work refines our understanding of the tradeoffs be-
tween error and computational power in CRNs.

1 Introduction

Recent advances in the engineering of complex artificial molecular systems have
stimulated new interest in models of chemical computation. How can chemical
reactions process information, make decisions, and solve problems? A natural
model for describing abstract chemical systems in a well-mixed solution is that
of (finite) chemical reaction networks (CRNs), i.e., finite sets of chemical reac-
tions such as A+B → A+C. Subject to discrete semantics (integer number of
molecules) the model corresponds to a continuous time, discrete state, Markov
process. A state of the system is a vector of non-negative integers specifying
the molecular counts of the species (e.g., A, B, C), a reaction can occur only
when its reactants are present, and transitions between states correspond to re-
actions (i.e., when the above reaction occurs the count of B is decreased by 1
and the count of C increased by 1). CRNs are used extensively to describe nat-
ural biochemical systems in the cellular context. Other natural sciences use the
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model as well: for example in ecology an equivalent model is widely employed to
describe population dynamics [16]. Recently, CRNs began serving as a program-
ming language for engineering artificial chemical systems. In particular, DNA
strand displacement systems have the flexibility to realize arbitrarily complex
interaction rules [4, 6, 15], demonstrating that arbitrary CRNs have a chemical
implementation. Outside of chemistry, engineering of sensor networks and robot
swarms often uses CRN-like specification rules to prescribe behavior [2].

The exploration of the computational power of CRNs rests on a strong theoret-
ical foundation, with extensive connections to other areas of computing. Similar
models have arisen repeatedly in theoretical computer science: Petri nets [11],
vector addition systems [10], population protocols [2], etc. They share the fun-
damental feature of severely limited “agents” (molecules), with complex com-
putation arising only through repeated interactions between multiple agents. In
population protocols it is usually assumed that the population size is constant,
while in CRNs molecules could be created or destroyed1 — and thus different
questions are sometimes natural in the two settings.

Informally speaking, we can identify two general kinds of computation in
CRNs. In non-uniform computation, a single CRN computes a function over
a finite domain. This is analogous to Boolean circuits in the sense that any
given circuit computes only on inputs of a particular size (number of bits),
and to compute on larger inputs a different circuit is needed. Conversely, in
uniform computation, a single CRN computes on all possible input vectors. This
is analogous to Turing machines that are expected to handle inputs of arbitrary
size placed on their (unbounded) input tape. In this work we focus entirely on
uniform computation.2

We focus on the question of the distinguishability of initial states by a CRN.
We view CRNs as computing a Boolean valued predicate on input vectors in Nk

that are the counts of certain input species X1, . . . , Xk. We believe that a similar
characterization holds for more general function computation where the output
is represented in counts of output species (e.g. f : Nk → Nl), but that remains
to be shown in future work.

Previous research on uniform computation has emphasized the difference in
computational power between paradigms intended to capture the intuitive no-
tions of error-free and error-prone computation [7]. In contrast to many other
models of computing, a large difference was identified between the two settings
for CRNs. We now review the previously studied error-free (probability 1) and
error-prone (probability < 1) settings. In this paper we develop an error cor-
rection scheme that reduces the error of the output with time and achieves
probability 1 computation in the limit. Thus, surprisingly the large distinction

1 Having an external (implicit) supply of fuel molecules avoids violating the
conservation of mass.

2 However, it is important to keep in mind that settings with extremely weak uni-
form computational power may nonetheless achieve complex computation from the
non-uniform perspective. For example, probability 1 committing computation (see
below), while restricted to constant predicates in our setting, can simulate arbitrary
Boolean circuits with a proper encoding of input and output (e.g. using so called
“dual-rail” encoding with two species per input bit).
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Table 1. Categorizing the computational power of CRNs by output convention and
allowed error probability. In all cases we consider the class of total predicates φ :
Nk → {no, yes} (“total” means φ must be defined on all input values). The input
consists of the initial molecular counts of input species X1, . . . , Xk. Committing : In
this output convention, producing any molecules of N indicates that the output of the
whole computation is “no”, and producing any molecules of Y indicates “yes”. Stable:
Let the output of a state be “no” if there are some N molecules and no Y molecules
(and vice versa for “yes”). In the stable output convention, the output of the whole
computation is b ∈ {no, yes} when the CRN reaches a state with output value b from
which every reachable state also has output value b. Limit-stable: The output of the
computation is considered b ∈ {no, yes} when the CRN reaches a state with output
b and never changes it again (even though states with different output may remain
reachable). The parenthetical settings have not been explicitly formalized; however the
computational power indicated naturally follows by extending the results from other
settings.3

committing stable limit-stable

prob correct = 1 (constant) semilinear [1] Δ0
2 [this work]

prob correct < 1 computable [14] (computable) (Δ0
2)

between probability 1 and probability < 1 computation disappears in a “limit
computing” setting.

The best studied type of probability 1 computation incorporates the stable
output criterion (Table 1, prob correct = 1, stable) and was shown to be limited
to semilinear predicates [1] (later extended to functions [5]). For example, con-
sider the following CRN computing the parity predicate (a semilinear predicate).
The input is encoded in the initial number of molecules of X , and the output is
indicated by species Y (yes) and N (no):

X + Y → N, X +N → Y

Starting with the input count n ∈ N of X , as well as 1Y , the CRN converges to
a state where a molecule of the correct output species is present (Y if n is even
and N if n is odd) and the incorrect output species is absent. From that point
on, no reaction can change the output.

Motivated by such examples, probability 1 stable computation admits the
changing of output as long as the system converges with probability 1 to an
output stable state — a state from which no sequence of reactions can change
the output. In the above example, the states with X absent are output stable.

3 Probability 1 committing computation: Suppose there are two inputs x1,x2 ∈ Nk

such that φ(x1) = no and φ(x2) = yes. Consider any input x3 such that x3 ≥ x1 and
x3 ≥ x2. From state x3 we can produce N by the sequence of reactions from φ(x1),
and Y by the sequence of reactions from φ(x2). Both sequences occur with some
non-zero probability, and so the probability of error is non-zero for non-constant
predicates. Probability < 1 stable computation: The question of whether there is
a sequence of reactions to change the output is computable and thus the stable
output convention cannot give more computational power than the committing out-
put convention. Probability < 1 limit-stable computation: Our negative result for
probability 1 limit-stable computation can be modified to apply.
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(Although the limits on stable computation were proven in the population pro-
tocols model [1] they also apply to general CRNs where infinitely many states
may be reachable.)

A more stringent output convention requires irreversibly producing N or Y to
indicate the output (i.e., “Y is producible from initial state x” ⇐⇒ “N is not
producible from x” ⇐⇒ φ(x) = yes). We term such output convention commit-
ting. However, probability 1 committing computation is restricted to constant
predicates4 (Table 1, prob correct = 1, committing).

Intuitively, committing computation “knows” when it is done, while stable
computation does not. Nonetheless, stable computation is not necessarily im-
practical. All semilinear predicates can be stably computed such that checking
for output stability is equivalent to simply inspecting whether any further reac-
tion is possible — so an outside observer can easily recognize the completion of
computation [3]. While stable CRNs do not know when they are done comput-
ing, different downstream processes can be catalyzed by the N and Y species. As
long as these processes can be undone by the presence of the opposite species,
the overall computation can be in the sense stable as well. A canonical down-
stream process is signal amplification in which a much larger population of N̂ , Ŷ
is interconverted by reactions N̂ + Y → Ŷ + Y and Ŷ + N → N̂ + N . Finally
all semilinear predicates can be stably computed quickly (polylogarithmic in the
input molecular counts).

In contrast to the limited computational abilities of the probability 1 settings
just now discussed, tolerating a positive probability of error significantly expands
computational power. Indeed arbitrary computable functions (Turing universal
computation) can be computed with the committing output convention [14].
Turing universal computation can also be fast — the CRN simulation incurs only
a polynomial slowdown. However, error is unavoidable and is due fundamentally
to the inability of CRNs to deterministically detect the absence of species. (Note
that Turing universal computation is only possible in CRNs when the reachable
state space, i.e., molecular count, is unbounded — and is thus not meaningful
in population protocols.)

When a CRN is simulating a Turing machine, errors in simulation cannot
be avoided. However, can they be corrected later? In this work we develop an
error correction scheme that can be applied to Turing universal computation
that ensures overall output error decreases the longer the CRN runs. Indeed, in
the limit of time going to infinity, with probability 1 the answer is correct.

To capture Turing-universal probability 1 computation with such an error
correction process a new output convention is needed, since the committing and
stable conventions are limited to much weaker forms of probability 1 computation
(Table 1). Limit-stability subtly relaxes the stability requirement: instead of
there being no path to change the output, we require the system to eventually
stop taking such paths with probability 1. To illustrate the difference between
the original notion of stability and our notion of limit-stability, consider the

4 Particulars of input encoding generally make a difference for the weaker computa-
tional settings. Indeed, probability 1 committing computation can compute more
than constant predicates if they are not required to be total. For example, a com-
mitting CRN can certainly distinguish between two ≤-incomparable inputs.
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reachability of the empty state (without any molecules of Y , in which the output
is undefined) in the CRN:

∅
1→Y, Y

1→∅, Y
2→ 2Y

From any reachable state, the empty state is reachable (just execute the second
reaction enough times). However, with probability 1, the empty state is visited
only a finite number of times.5 If, as before, we think of the presence of Y
indicating a yes output, then the yes output is never stable (the empty state
is always reachable), but with probability 1 a yes output will be produced and
never change — i.e., it is limit-stable.

We show that with the limit-stable output convention, errors in Turing univer-
sal computation can be rectified eventually with probability 1. Our construction
is based on simulating a register machine (a.k.a. Minsky counter machine) over
and over in an infinite loop, increasing the number of simulated steps each time
(dovetailing). Each time the CRN updates its answer to the answer given by
the most recently terminated simulation. While errors occur during these sim-
ulations, our construction is designed such that with probability 1 only a finite
number of errors occur (by the Borel-Cantelli Lemma), and then after some
point the output will stay correct forever. The main difficulty is ensuring that
errors “fail gracefully”: they are allowed to cause the wrong answer to appear for
a finite time, but they cannot, for instance, interfere with the dovetailing itself.
Thus, although errors are unavoidable in a CRN simulation of a register ma-
chine, they can subsequently be corrected for with probability 1. We also show
that the expected time to stabilize to the correct output is polynomial in the
running time of the register machine (which, however, is exponentially slower
than a Turing machine).

It is natural to wonder if limit-stable probability 1 computation in CRNs char-
acterizes exactly the computable languages. However, we show that the class of
predicates limit-stable computable by CRNs with probability 1 is exactly the
so-called Δ0

2 predicates (at the second level of the arithmetical hierarchy [12]).
The class Δ0

2 can be characterized in terms of “limit computing” of Turing ma-
chines that can change their output a finite but unbounded number of times [13].
Thus it is not surprising that relaxing the output convention from committing to
limit-stable for probability < 1 computation increases the computational power
from the computable predicates to Δ0

2. However, the key contribution of this
paper is that the gap between probability < 1 and probability 1 computation
completely disappears with limit-stable output.

Note that in no way should our result be interpreted to mean that chemistry
violates the Church-Turing thesis. Since we do not know when the CRN will
stop changing its answer, the output of a limit-stable computation cannot be
practically read out in finite time.

5 The second and third reactions are equivalent to the gambler’s ruin problem [8],
which tells us that, because the probability of increasing the count of Y is twice that
of decreasing its count, there is a positive probability that Y ’s count never reaches
0. The first reaction can only increase this probability. Since whenever Y reaches 0,
we have another try, eventually with probability 1 we will not reach 0.
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Relaxing the definition of probability 1 computation further does not increase
computational power. An alternative definition of probability 1 limit-stable com-
putation is to require that as time goes to infinity, the probability of expressing
the correct output approaches 1. In contrast to limit-stability, the output may
change infinitely often. Note that this is exactly the distinction between almost
sure convergence and convergence in probability. Our proof that probability 1
limit-stable computation is limited to Δ0

2 predicates applies to this weaker sense
of convergence as well, bolstering the generality of our result. Interestingly, it is
still unclear whether in CRNs there is a natural definition of probability 1 com-
putation that exactly corresponds to the class of Turing-computable functions.

In the remainder of this paper we focus on the type of probability 1 compu-
tation captured by the notion of limit-stability, reserving the term probability 1
computation to refer specifically to probability 1 limit-stable computation.

To our knowledge, the first hints in the CRN literature of probability 1 Turing
universal computation occur in ref. [17], where Zavattaro and Cardelli showed
that the following question is uncomputable: Will a given CRN with probability 1
reach a state where no further reactions are possible? Although their construction
relied on repeated simulations of a Turing machine, it did not use the Borel-
Cantelli Lemma, and could not be directly applied to computation with output.

2 Preliminaries

Computability theory. We use the term predicate (a.k.a. language, decision prob-
lem) interchangeably to mean a subset L ⊆ Nk, or equivalently a function
φ : Nk → {0, 1}, such that φ(x) = 1 ⇐⇒ x ∈ L. The class Δ0

2 of predicates
at the second level of the arithmetical hierarchy (cf. [12]) has many equivalent
definitions. In this paper we use the following characterization (see e.g. [13]).
A predicate φ : Nk → {0, 1} is limit computable, and we write φ ∈ Δ0

2, if
there is a computable function r : Nk × N → {0, 1} such that, for all x ∈ Nk,
lim
t→∞

r(x, t) = φ(x).

Chemical reaction networks. If Λ is a finite set (in this paper, of chemical
species), we write NΛ to denote the set of functions f : Λ → N. Equivalently,
we view an element c ∈ NΛ as a vector c ∈ N|Λ| of |Λ| nonnegative integers,
with each coordinate “labeled” by an element of Λ. Given S ∈ Λ and c ∈ NΛ,
we refer to c(S) as the count of S in c. We write c ≤ c′ if c(S) ≤ c′(S) for all
S ∈ Λ, and c < c′ if c ≤ c′ and c �= c′. Given c, c′ ∈ NΛ, we define the vector
component-wise operations of addition c + c′ and subtraction c − c′. For a set
Δ ⊂ Λ, we view a vector c ∈ NΔ equivalently as a vector c ∈ NΛ by assuming
c(S) = 0 for all S ∈ Λ \Δ.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α =
〈r,p, k〉 ∈ NΛ × NΛ × R+, specifying the stoichiometry (amount consumed/
produced) of the reactants and products, respectively, and the rate constant k.

For instance, given Λ = {A,B,C}, the reaction A+2B
7.5→A+3C is represented

by the triple 〈(1, 2, 0), (1, 0, 3), 7.5〉. If not specified, assume that the rate constant
k = 1. A chemical reaction network (CRN) is a pair N = (Λ,R), where Λ is a
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finite set of chemical species, and R is a finite set of reactions over Λ. A state of
a CRN N = (Λ,R) is a vector c ∈ NΛ.

Given a state c and reaction α = 〈r,p〉, we say that α is applicable to c if
r ≤ c (i.e., c contains enough of each of the reactants for the reaction to occur).
If α is applicable to c, then write α(c) to denote the state c + p − r (i.e., the
state that results from applying reaction α to c). If c′ = α(c) for some reaction
α ∈ R, we write c →1 c′. An execution sequence E is a finite or infinite sequence
of states E = (c0, c1, c2, . . .) such that, for all i ∈ {1, . . . , |E| − 1}, ci−1 →1 ci. If
a finite execution sequence starts with c and ends with c′, we write c → c′, and
we say that c′ is reachable from c.

Stable decidability by CRNs. We now review the definition of stable decidability
of predicates introduced by Angluin, Aspnes, and Eisenstat [1]. Although our
main theorem concerns probability 1 decidability, not stable decidability, many of
the definitions of this section will be required, so it it useful to review. Intuitively,
some species “vote” for a yes/no answer, and a CRN is a stable decider if it is
guaranteed to reach a consensus vote that cannot change.

A chemical reactiondecider (CRD) is a tupleD = (Λ,R,Σ, Υ, φ, s),where (Λ,R)
is aCRN,Σ ⊆ Λ is the set of input species,6 Υ ⊆ Λ is the set of voters,φ : Υ → {0, 1}
is the (Boolean) output function, and s ∈ NΛ\Σ is the initial context. An input to
D is a vector x ∈ NΣ , or equivalently x ∈ Nk if |Σ| = k; D and x define an initial
state i ∈ NΛ as i = s+ x (when i and x are considered as elements of NΛ).7 When
i is clear from context, we say that a state c is reachable if i → c.

We extend φ to a partial function Φ : NΛ ��� {0, 1} as follows. Φ(c) is un-
defined if either c(V ) = 0 for all V ∈ Υ , or if there exist N, Y ∈ Υ such that
c(N) > 0, c(Y ) > 0, φ(N) = 0 and φ(Y ) = 1. Otherwise, (∃b ∈ {0, 1})(∀V ∈
Υ )(c(V ) > 0 =⇒ φ(V ) = b); in this case, the output Φ(c) of state c is b. In
other words Φ(c) = b if some voters are present and they all vote b.

If Φ(y) is defined and every state y′ reachable from y satisfies Φ(y) = Φ(y′),
then we say that y is output stable, i.e., if y is ever reached, then no reactions
can ever change the output. We say that D stably decides the predicate φ : Nk →
{0, 1} if, for all input states x ∈ Nk, for every state c reachable from x, there is
an output stable state y reachable from c such that Φ(y) = φ(x). In other words,
no sequence of reactions (reaching state c) can prevent the CRN from being able
to reach the correct answer (since c → y and Φ(y) = φ(x)) and staying there if
reached (since y is output stable).8

6 In Section 3 and beyond, we restrict attention to the case that |Σ| = 1, i.e., single-
integer inputs.

7 In other words, species in Λ \Σ must always start with the same counts, and counts of
species inΣ are varied to represent different inputs toD, similarly to a Turing machine
that starts with different binary string inputs, but the Turing machine must always
start with the same initial state and tape head position.

8 At first glance, this definition appears too weak to claim that the CRN is “guaran-
teed” to reach the correct answer. However, if the set of reachable states is finite,
it implies that a correct output stable state is actually reached with probability
1, assuming the model of stochastic kinetics defined later. Conversely, if a correct
output-stable state is reached with probability 1, then this implies a correct output-
stable state is always reachable, even with an infinite reachable state space.
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Probability 1 decidability by CRNs. In order to define probability 1 computation
with CRNs, we first review the model of stochastic chemical kinetics. It is widely
used in quantitative biology and other fields dealing with chemical reactions
between species present in small counts [9]. It ascribes probabilities to execution
sequences, and also defines the time of reactions.

A reaction is unimolecular if it has one reactant and bimolecular if it has two
reactants. We use no higher-order reactions in this paper.

The kinetics of a CRN is described by a continuous-time Markov process as
follows. The system has some volume v ∈ R+ that affects the transition rates,
which may be fixed or allowed to vary over time; in this paper we assume a
constant volume of 1.9 In state c, the propensity of a unimolecular reaction α :

X
k→ . . . in state c is ρ(c, α) = k ·c(X). The propensity of a bimolecular reaction

α : X + Y
k→ . . ., where X �= Y , is ρ(c, α) = k · c(X)·c(Y )

v . The propensity of a

bimolecular reaction α : X+X
k→ . . . is ρ(c, α) = k

2 ·
c(X)·(c(X)−1)

v . The propensity
function governs the evolution of the system as follows. The time until the next
reaction occurs is an exponential random variable with rate ρ(c) =

∑
α∈R ρ(c, α)

(note ρ(c) = 0 if and only if no reactions are applicable to c). The probability

that next reaction will be a particular αnext is
ρ(c,αnext)

ρ(c) .

We now define probability 1 computation by CRDs. Our definition is based on
the limit-stable output convention as discussed in the introduction. Let D = (Λ,
R, Σ, Υ , φ, s) be a CRD. Let E = (c0, c1, . . .) be an execution sequence of D. In
general E could be finite or infinite, depending on whether D can reach a terminal
state (one in which no reaction is applicable); however, in this paper all CRDs
will have no reachable terminal states, so assume E is infinite. We say that E
has a defined output if there exists b ∈ {0, 1} such that, for all but finitely many
i ∈ N, Φ(ci) = b. In other words, E eventually stabilizes to a certain answer. In
this case, write Φ(E) = b; otherwise, let Φ(E) be undefined.

If x ∈ Nk, write E(D,x) to denote the random variable representing an exe-
cution sequence of D on input x, resulting from the Markov process described
previously. We say that D decides φ : Nk → {0, 1} with probability 1 if, for all
x ∈ Nk, Pr[Φ(E(D,x)) = φ(x)] = 1.

3 Turing-Decidable Predicates

This section describes how a CRD can decide an arbitrary Turing-decidable pred-
icate with probability 1. This construction also contains most of the technical
details needed to prove our positive result that CRDs can decide arbitrary Δ0

2

predicates with probability 1. The proof is via simulation of register machines,

9 A common restriction is to assume the finite density constraint, which stipulates
that arbitrarily large mass cannot occupy a fixed volume, and thus the volume must
grow proportionally with the total molecular count. With some minor modifications
to ensure relative rates of reactions stay the same (even though all bimolecular
reactions would be slowed down in absolute terms), our construction would work
under this assumption, although the time analysis would change. For the sake of
conceptual clarity, we present the construction assuming a constant volume.



Probability 1 Computation with Chemical Reaction Networks 45

which are able to simulate arbitrary Turing machines if at least 3 registers are
used. This section describes the simulation and gives intuition for how it works.
Section 4 proves its correctness (proof sketch in this version of the paper). Sec-
tion 5 shows how to extend the construction to handle Δ0

2 predicates and prove
that no more predicates can be decided with probability 1 by a CRD.

3.1 Register Machines

A register machine M has m registers r1, . . . , rm that can each hold a non-
negative integer. M is programmed by a finite sequence (lines) of instructions.
There are four types of instructions: accept, reject, inc(rj), and dec(rj,k).
For simplicity, we describe our construction for single-input register machines
and thus predicates φ : N → {0, 1}, but it can be easily extended to more inputs.
The input n ∈ N to M is the initial value of register r1, and the remaining m−1
registers are used to perform a computation on the input, which by convention
are set to 0 initially. The semantics of execution ofM is as follows. The initial line
is the first instruction in the sequence. If the current line is accept or reject,
then M halts and accepts or rejects, respectively. If the current line is inc(rj),
then register rj is incremented, and the next line in the sequence becomes the
current line. If the current line is dec(rj,k), then register rj is decremented,
and the next line in the sequence becomes the current line, unless rj = 0, in
which case it is left at 0 and line k becomes the current line. In other words, M
executes a straight-line program, with a “conditional jump” that occurs when
attempting to decrement a 0-valued register. For convenience we assume there
is a fifth type of instruction goto(k), meaning “unconditionally jump to line
k”. This can be indirectly implemented by decrementing a special register r0
that always has value 0, or easily implemented in a CRN directly. The set of
input values n that cause the machine to accept is then the language/predicate
decided by the machine. For example, the following register machine decides the
parity of the initial value of register r1:

1: dec(r1,5)
2: dec(r1,4)
3: goto(1)
4: accept
5: reject

Chemical reaction networks can be used to simulate any register machine
through a simple yet error-prone construction, which is similar to the simula-
tion described in [14]. We now describe the simulation and highlight the source
of error. Although this simulation may be error-prone, the effect of the errors
has a special structure, and our main construction will take advantage of this
structure to keep errors from invalidating the entire computation. Specifically,
there is a possibility of an error precisely when the register machine performs a
conditional jump. We highlight this fact in the construction below to motivate
the modifications we make to the register machine in Section 3.2.

For a register machine with l lines of instructions and m registers, create
molecular species L1, . . . , Ll and R1, . . . , Rm. The presence of molecule Li is
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used to indicate that the register machine is in line i. Since the register machine
can only be in one line at a time, there will be exactly one molecule of the form
Li present in the solution at any time. The count of species Rj represents the
current value of register rj . The following table shows the reactions to simulate
an instruction of the register machine, assuming the instruction occurs on line i:

accept Li → HY

reject Li → HN

goto(k) Li → Lk

inc(rj) Li → Li+1 +Rj

dec(rj,k) Li +Rj → Li+1

Li → Lk

The first four reactions are error-free simulations of the corresponding instruc-
tions. The final two reactions are an error-prone way to decrement register rj .
If rj = 0, then only the latter reaction is possible, and when it occurs it is a
correct simulation of the instruction. However, if rj > 0 (hence there are a pos-
itive number Rj molecules in solution), then either reaction is possible. While
only the former reaction is correct, the latter reaction could still occur. The
semantic effect this has on the register machine being simulated is that, when
a decrement dec(rj,k) is possible because rj > 0, the machine may nondeter-
ministically jump to line k anyway. Our two goals in the subsequently described
construction are 1) to reduce sufficiently the probability of this error occurring
each time a decrement instruction is executed so that with probability 1 errors
eventually stop occurring, and 2) to set up the simulation carefully so that it
may recover from any finite number of errors.

3.2 Simulating Register Machine

We will first describe how to modify M to obtain another register machine S
which is easier for the CRD to simulate repeatedly to correct errors. There
are two general modifications we make to M to generate S. The first consists
of adding several instructions before M ’s first line and at the end (denoted
line h below). The second consists of adding a pair of instructions before every
decrement of M . We now describe these modifications in more detail.

Intuitively, S maintains a bound b ∈ N on the total number of decrements
M is allowed to perform, and S halts if M exceeds this bound.10 Although
M halts if no errors occur, an erroneous jump may take M to a configuration
unreachable from the initial configuration, so that M would not halt even if
simulated correctly from that point on. To ensure that S always halts, it stores b
in such a way that errors cannot corrupt its value. S similarly stores M ’s input
n in an incorruptible way. Since we know in advance that M halts on input n
but do not know how many steps it will take, the CRD will simulate S over

10 It is sufficient to bound the number of decrements, rather than total instructions,
since we may assume without loss of generality that M contains no “all-increment”
cycles. (If it does then either these lines are not reachable or M enters an infinite
loop.) Thus any infinite computation of M must decrement infinitely often.
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and over again on the same input, each time incrementing the bound b, so that
eventually b is large enough to allow a complete simulation of M on input n,
assuming no errors.

If the original register machine M has m registers r1, . . . , rm, then the sim-
ulating register machine S will have m + 4 registers: r1, . . . , rm, rin, rin′ , rt, rt′ .
The first m registers behave exactly as in M , and the additional 4 registers will
be used to help S maintain the input n and bound b.

The registers rin and rin′ are used to store the input value n. The input value
n is given to S, and initially stored in rin, and passed to rin′ and r1 before any
other commands are executed. This additional step still allows the input n to be
used in register r1, while retaining the input value n in rin′ for the next run of S.
We want to enforce the invariant that, even if errors occur, rin+rin′ = n, so that
the value n can be restored to register rin when S is restarted. To ensure that this
invariant is maintained, the values of registers rin and rin′ change only with one
of the two following sequences: dec(rin,k);inc(rin′) or dec(rin′,k);inc(rin) (it
is crucial that the decrement comes before the increment, so that the increment
is performed only if the decrement is successful). The only time the invariant
rin + rin′ = n is not maintained is between the decrement and the subsequent
increment. However, once the decrement is successfully performed, there is no
possibility of error in the increment, so the invariant is guaranteed to be restored.

Registers rt and rt′ are used to record and bound the number of decrements
performed by M , and their values are modified similarly to rin and rin′ so that
S maintains the invariant rt + rt′ = b throughout each execution. The following
lines are inserted before every decrement of M (assuming the decrement of M
occurs on line i+ 2):

i: dec(rt,h)
i+ 1: inc(rt′)

S uses lines h and h + 1 added at the end to halt if M exceeds the decrement
bound:

h: inc(rt)
h+ 1: reject

As S performs each decrement command in M , rt is decremented and rt′
is incremented. If the value of rt is zero, then this means M has exceeded the
allowable number of decrements, and computation halts (with a reject, chosen
merely as a convention) immediately after incrementing rt on line h. This final
increment ensures that when the CRD simulates S again, the bound b = rt + rt′
will be 1 larger than it was during the previous run of S.

S is simulated multiple times by the CRD. To make it easier for the CRD to
“reset” S by simply setting the current instruction to be the first line, S assumes
that the work registers r2, . . . , rm are initially positive and must be set to 0. It
sets r1 to 0 before using rin and rin′ to initialize r1 to n. In both pairs of registers
rin, rin′ and rt, rt′ , S sometimes needs to transfer the entire quantity stored in
one register to the other. We describe below a “macro” for this operation, which
we call flush. The following three commands will constitute the flush(rj,rj′)
command for any registers rj and rj′ .
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flush(rj,rj′) i: dec(rj,i+ 3)
i+ 1: inc(rj′)
i+ 2: goto(i)

While rj has a non-zero value, it will be decremented and rj′ will be incremented.
To flush into more than one register, we can increment multiple registers in the
place of line i+ 1 above. We denote this as flush(rj,rj′ and rj′′).

To set register rj to 0, we use the following macro, denoted empty(rj).

empty(rj) i: dec(rj,i+ 2)
i+ 1: goto(i)

If an error occurs in a flush, the invariant on the sum of the two registers will
still be maintained. If an error occurs on an empty, the effect will be that the
register maintains a positive value. Both effects can be remedied by an error-free
repeat of the same macro.

Combining all techniques described above, the first instructions of S when
simulating M will be as follows:

1: empty(r1)
2: empty(r2)

...
m: empty(rm)

m+ 1: flush(rin′,rin)
m+ 2: flush(rin,rin′ and r1)
m+ 3: flush(rt′,rt)
m+ 4: first line of M

The first m lines ensure that registers r1, . . . , rm are initialized to zero. Lines
m+1 and m+2 pass the input value n (stored as rin+ rin′) to register r1 (input
register of M) while still saving the input value in rin′ to be reused the next
time S is run. Line m + 3 passes the full value of rt′ to rt, so that the value of
register rt can be used to bound the number of jumps in the register machine.
After line m+3, S executes the commands of M , starting with either the initial
line of M (or decrementing rt if the initial line of M is a decrement command
as explained above).

Let dn be the number of decrements M makes on input n without errors. If
S is run without errors from an initial configuration (starting on line 1) with
rin + r′in′ = n and rt + rt′ ≥ dn, then it will successfully simulate M . Since
the invariants on rin + rin′ = n and rt + rt′ are maintained throughout the
computation — even in the face of errors — the only thing required to reset S
after it halts is to set the current line to 1.

3.3 CRD Simulation of the Modified Register Machine

We now construct a CRD D to simulate S, while reducing the probability of an
error each time an error could potentially occur. Besides the species described
in Section 3.1, we introduce several new species: voting species N and Y , an
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“accuracy” species A, and four “clock” species C1, C2, C3, and C4. The accuracy
and clock species will be used to reduce the probability of an error occurring.
The initial state of D on input n ∈ N is {n Rin, 1 L1, 1 Y, 1 C1} — i.e., start
with register rin = n, initialize the register machine S at line 1, have initial vote
“yes” (arbitrary choice), and start the “clock module” in the first stage.

Recall that the only source of error in the CRD simulation is from the decre-
ment command dec(rj,h), when Rj is present, but the jump reaction Li → Lk

occurs instead of the decrement reaction Li +Rj → Li+1. This would cause the
CRD to erroneously perform a jump when it should instead decrement register
rj . To decrease the probability of this occurring, we can slow down the jump
reaction, thus decreasing the probability of it occurring before the decrement
reaction when Rj is present.

The following reactions we call the “clock module,” which implement a ran-
dom walk that is biased in the reverse direction, so that C4 is present sporadi-
cally, with the bias controlling the frequency of time C4 is present. The count of
“accuracy species” A controls the bias:

C1 → C2, C2 +A → C1 +A,
C2 → C3, C3 +A → C2 +A,
C3 → C4, C4 +A → C3 +A.

We modify the conditional jump reaction to require a molecule of C4 as a re-
actant, as shown below. Increasing the count of species A decreases the expected
time until the reaction Ci+1 + A → Ci + A occurs, while leaving the expected
time until reaction Ci → Ci+1 constant. This has the effect that C4 is present
less frequently (hence the conditional jump reaction is slowed). Intuitively, with
an �-stage clock, if there are a molecules of A, the frequency of time that C� is
present is less than 1

a�−1 . A stage � = 4 clock is used to ensure that the error
decreases quickly enough that with probability 1 a finite number of errors are
ever made, and the last error occurs in finite expected time. A more complete
analysis of the clock module is contained in the full version of this paper.

To use the clock module to make decrement instructions unlikely to incur er-
rors, we change the CRD simulation of a decrement command to be the following
two reactions:

dec(rj,k) Li +Rj → Li+1 +A
Li + C4 → Lk + C1 +A

The jump reaction produces a C1 molecule so the clock can be restarted for
the next decrement command. Both reactions produce an additional A molecule
to increase the accuracy of the next decrement command. As we continue to
perform decrements, the random walk from C1 to C4 acquires a stronger reverse
bias, so the conditional jump becomes less likely to occur erroneously.

The accept, reject, goto, and inc commands cannot result in errors for the
CRD simulation, so we keep their reactions unchanged from Section 3.1.

After the CRD has completed the simulation and stabilizes, we would like
the CRD to store the output of computation (either HY or HN ) and restart. At
any time, there is precisely one molecule of either of the two voting species Y
or N and none of the other, representing the CRD’s “current vote.” The vote
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is updated after each simulation of S, and S is reset to its initial configuration,
via these reactions: HY + Y → L1 + Y , HY +N → L1 + Y , HN + Y → L1 +N ,
and HN +N → L1 +N .

4 Correctness of Simulation

Theorem 4.1. Let D be the CRD described in Section 3, simulating an arbitrary
register machine M deciding predicate φ : N → {0, 1}. Then D decides φ with
probability 1. Furthermore, the expected time until D stabilizes to the correct
answer is O(t8n), where tn is the number of steps M takes to halt on input n.

Proof (sketch). Theorem 4.1 is proven formally in the full version of this paper.
Intuitively, the proof is as follows. We use the clock module to reduce the proba-
bility of an incorrect decrement (a conditional jump on the instruction dec(rj,k)
to line k even when rj > 0) each time a decrement occurs. For an error to occur,
the two reactions Li + Rj → Li+1 + A and Li + C4 → Lk + A + C1 compete.
After d decrement instructions have occurred, the count of A is d. The stage
� = 4 clock module ensures that the frequency of time in which C4 is present
is bounded above by 1

d3 . Thus if an error is possible (i.e., if at least one Rj is
present), then the probability of error on that step — i.e., that Li encounters
C4 before Rj — is bounded by 1

d3 . Since
∑∞

d=1
1
d3 < ∞, by the Borel-Cantelli

lemma, with probability 1, only finitely many errors occur. Our construction of
S is designed so that it can recover from any finite number of errors. Once the
final error occurs and S is reset to run from line 1, assuming the bound b on
the number of decrements of M that S has is sufficiently large (and it grows
by 1 on each subsequent simulation of S), then M will be simulated correctly
from then on. After the first such simulation, the voter species will stabilize its
vote forever. The bound on expected time until convergence follows from the
fact that the error probability bound 1

d3 ensures a constant expected number of
errors. (Borel-Cantelli follows even for an � = 3 stage clock which results in er-
ror probability bound 1

d2 ; but then the expected number of errors may diverge.)
Hence the time is limited by the time required for the decrement bound b to
grow large enough to simulate M all the way until it halts, roughly quadratic
in the number of steps taken by M , followed by accounting for the slowdown of
the CRD on each simulated register machine step due to the fact that correct
conditional jumps due to the reaction Li + C4 → Lk + A + C1 get slower with
each additional decrement. ��

5 Δ0
2 Predicates

In this section we extend the technique of Section 3 to show that every Δ0
2

predicate is decidable with probability 1 by a CRD (Theorem 5.1). We also
show the converse result (Theorem 5.2) that every predicate decidable with
probability 1 by a CRD is in Δ0

2. Theorems 5.1 and 5.2 give our main result,
that probability 1 decidability by CRDs is exactly characterized by the class Δ0

2.

Theorem 5.1. Every Δ0
2 predicate is decidable with probability 1 by a CRD.
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Proof. For every Δ0
2 predicate φ : N → {0, 1}, there is a computable function

r : N × N → {0, 1} such that, for all n ∈ N, limt→∞ r(n, t) = φ(n). Therefore
there is a register machine M that computes r. As in Section 3, we first construct
a register machine S that simulates M in a controlled fashion that ensures errors
in simulation by a CRD will be handled gracefully.

It is routine to show that the definition of Δ0
2 does not change if we require

the register machine M computing r(n, t) to halt in exactly 2t steps. Similar
to Section 3, S uses a “timer” to simulate M(n, t) for at most 2t steps. Unlike
in Section 3, S decrements the timer after every step (not just the decrement
steps) and the timer is incremented by 2 after each execution (in the previous
construction, the timer is incremented by 1 and only if M exceeds the time
bound). Note that no matter what errors occur, no execution can go for longer
than 2t steps by the timer construction in Section 3. So S will dovetail the
computation as before, running M(n, 1) for 2 steps, M(n, 2) for 4 steps, etc.,
and in between each execution of M(n, t), update its voting species with the
most recent answer.

As in the construction of Section 3, so long as the d’th decrement has error
probability at most 1

d3 , then by the Borel-Cantelli lemma, with probability 1
a finite number of errors occur. Errors in the CRD simulating S maintain the
input without error and increment the timer value without error. Thus after the
last error occurs, and after t is sufficiently large that r(n, t) = φ(n), the CRD
will stop updating its voter, and the CRD’s output will be correct. ��

The next theorem shows that only Δ0
2 predicates are decidable with proba-

bility 1 by a CRD.

Theorem 5.2. Let the CRD D decide predicate φ : N → {0, 1} with probability
1. Then φ ∈ Δ0

2.

Theorem 5.2 is proven in the full version of this paper. Intuitively, it follows
because on input n, t, a Turing machine M can conduct a breadth-first search of
the graph of reachable states and compute each of their probabilities of being the
CRD’s state after exactly t reactions. M uses this information to compute the
probability that the output is 0 or 1 (or undefined) after exactly t reactions and
outputs whichever bit has higher probability. Since D decides φ with probability
1, for all sufficiently large t, after t reactions the bit φ(n) has higher probability
than its negation, hence is output by M .

Acknowledgements. We thank Shinnosuke Seki, Chris Thachuk, and Luca
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LNCS, vol. 5347, pp. 57–69. Springer, Heidelberg (2009)

[16] Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali
conviventi. Mem. Acad. Lincei Roma 2, 31–113 (1926)

[17] Zavattaro, G., Cardelli, L.: Termination problems in chemical kinetics. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491.
Springer, Heidelberg (2008)



The Computational Capability of Chemical

Reaction Automata

Fumiya Okubo1,�,�� and Takashi Yokomori2,���

1 Faculty of Arts and Science, Kyushu University 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan
fokubo@artsci.kyushu-u.ac.jp
2 Department of Mathematics,

Faculty of Education and Integrated Arts and Sciences,
Waseda University 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan

yokomori@waseda.jp

Abstract. We propose a new computing model called chemical reaction
automata (CRAs) as a simplified variant of reaction automata (RAs)
studied in recent literature ([7–9]).

We show that CRAs in maximally parallel manner are computation-
ally equivalent to Turing machines, while the computational power of
CRAs in sequential manner coincides with that of the class of Petri
nets, which is in marked contrast to the result that RAs (in both max-
imally parallel and sequential manners) have the computing power of
Turing universality ([7, 8]). Intuitively, CRAs are defined as RAs with-
out inhibitor functioning in each reaction, providing an offline model of
computing by chemical reaction networks (CRNs).

Thus, the main results in this paper not only strengthen the previous
result on Turing computability of RAs but also clarify the computing
powers of inhibitors in RA computation.

Keywords: Chemical reaction automata, Reaction automata, Chemical
reaction networks, Turing computability.

1 Introduction

For the last few decades, the notion of a multiset has frequently appeared and
been investigated in many disciplines such as mathematics, computer science,
linguistics, and so forth. In fact, during the last decade, a multiset has received
more and more attention, particularly in the areas of biochemical computing
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Fig. 1. The DSD implementation of a bimolecular reaction X + Y → A + B: (A
simplified modification of Fig.1 in [11] is depicted here.) Strands x: U · T · X and y:
V · T · Y convey the information on the reactants X and Y , respectively, where U and
V can be arbitrarily designed, while T is the toehold domain used universally in the
implementation. The molecular structure M is designed uniquely to this reaction. For
given x and y, the series of the reactions x+M → I + a followed by y + I → W+ b
eventually produces a and b for the products A and B, respectively.

and molecular computing (e.g., [1]). There are two major research approaches in
the area of biochemical computing: one is the formal computing systems based
on multiset rewriting, and the other is the abstract models for chemical reaction
machines.

Among many models proposed from the viewpoint of the former approach,
inspired by the seminal work on reaction systems proposed in [4], reaction au-
tomata (RAs) have been first introduced in [8] as computing devices for accepting
string languages. In the theory of RAs, a biochemical reaction is formulated as
a triple a = (Ra, Ia, Pa), where Ra is a multiset of molecules called reactants, Ia
is a set of molecules called inhibitors, and Pa is a multiset of molecules called
products. Let T be a multiset of molecules, then the result of applying a reaction
a to T , denoted by Resa(T ), is given by T ′(= T − Ra + Pa) if a is enabled by
T (i.e., if T completely includes Ra and excludes Ia). A computation step in
RAs is performed in such a way that each time receiving an input molecule ai+1

(i = 0, 1, 2, . . .) provided from the environment, the system incorporates it to
the current multiset Ti and changes its state into Ti+1(= Resa(Ti ∪ {ai+1})).
When starting with the initial state T0 (of a multiset), an external input string
a1 · · · an is accepted if it induces a sequence of configurations Tis that ends in the
final state predesignated. In RA computation process, two manners of applying
reactions are considered: maximally parallel manner and sequential manner.

In the latter approach mentioned above, chemical reaction networks (CRNs)
are formal models for molecular programming and defined as a finite set of
chemical reactions with a multiset of signal molecules. An advantage of CRNs
is that they can be in principle implemented by a molecular reaction primi-
tive called DNA strand displacement systems (DSDs). For example, the DSD
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implementation of a bimolecular reaction X + Y → A+B is illustrated in Fig-
ure 1. Note that a bimolecular reaction X + Y → A+B in CRN formulation is
represented by a reaction a = (XY, ∅, AB) in RA models. Thus, a formulation
by CRNs is closely-related to RA models.

From these observations, in this paper we introduce a new computing model
called chemical reaction automata (CRAs) that is a simplified variant of RAs
where no inhibitor is involved in each reaction a in RAs. This notion of CRAs
provides a new model for CRNs that is an open system for CRNs in which input
molecules are provided in sequential manner from the environment. Thus, CRAs
can be characterized as an offline model of computing device of (irreversible)
CRNs. We primarily investigate the computational powers of CRAs, which may
shed new light on the computational aspects of CRNs.

2 Preliminaries

2.1 Basic Definitions

We assume that the reader is familiar with the basic notions of formal language
theory. For unexplained details, refer to [6]. Let V be a finite alphabet. For a set
U ⊆ V , the cardinality of U is denoted by |U |. The set of all finite-length strings
over V is denoted by V ∗. The empty string is denoted by λ.

We use the basic notations and definitions regarding multisets that follow
[1]. A multiset over an alphabet V is a mapping μ : V → N, where N is the
set of non-negative integers and for each a ∈ V , μ(a) represents the number
of occurrences of a in the multiset μ. The set of all multisets over V is de-
noted by V #, including the empty multiset denoted by μλ, where μλ(a) = 0 for
all a ∈ V . We can represent the multiset μ by any permutation of the string

w = a
μ(a1)
1 · · · aμ(an)

n . Conversely, with any string x ∈ V ∗ one can associate the
multiset μx : V → N defined by μx(a) = |x|a for each a ∈ V . In this sense, we
often identify a multiset μ with its string representation wμ or any permutation
of wμ. Note that the string representation of μλ is λ, i.e., wμλ

= λ. A usual
set U ⊆ V is regarded as a multiset μU such that μU (a) = 1 if a is in U and
μU (a) = 0 otherwise. In particular, for each symbol a ∈ V , a multiset μ{a} is
often denoted by a itself.

For two multisets μ1, μ2 over V , we define one relation and two operations as
follows:

– Inclusion : μ1 ⊆ μ2 iff μ1(a) ≤ μ2(a), for each a ∈ V ,
– Sum : (μ1 + μ2)(a) = μ1(a) + μ2(a), for each a ∈ V ,
– Difference : (μ1 − μ2)(a) = μ1(a)− μ2(a), for each a ∈ V

(for the case μ2 ⊆ μ1).

The sum for a family of multisets M = {μi}i∈I is denoted by
∑

i∈I μi. For a
multiset μ and n ∈ N, μn is defined by μn(a) = n · μ(a) for each a ∈ V . The
weight of a multiset μ is |μ| =

∑
a∈V μ(a).

For a symbol a, a new symbol a′ is introduced as the primed version of a.
Similarly, for a set S, S′ = {a′ | a ∈ S} is introduced as the primed version of S.



56 F. Okubo and T. Yokomori

Finally, for a multiset x = an1
1 an2

2 · · · ank

k ∈ S#, x′ denotes the primed version of
a multiset x such that x′ = a′n1

1 a′n2
2 · · · a′nk

k ∈ S′#.

2.2 Reaction Automata

Inspired by the works of reaction systems ([4]), we have introduced the notion
of reaction automata in [8] by extending sets in each reaction to multisets. Here,
we start by recalling basic notions concerning reaction automata.

Definition 1. For a set S, a reaction rule (or reaction) in S is a 3-tuple a =
(Ra, Ia, Pa) of finite multisets, such that Ra, Pa ∈ S#, Ia ⊆ μS and Ra ∩ Ia = ∅.

The multisets Ra, Ia and Pa are called the reactant of a, the inhibitor of a and
the product of a, respectively. These notations are extended to a multiset of
reactions as follows: For a set of reactions A and a multiset α over A,

Rα =
∑
a∈A

Rα(a)
a , Iα =

⋃
a⊆α

Ia, Pα =
∑
a∈A

Pα(a)
a .

In this paper, we consider two ways for applying reactions, i.e., sequential
manner and maximally parallel manner. Intuitively, one reaction is applied to a
multiset of objects in each step in sequential manner, while a multiset of reactions
is exhaustively applied to a multiset in maximally parallel manner.

Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of
reactions over A. Then, for a finite multiset T ∈ S#, we say that
(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅,
(2) α is enabled by T in sequential manner if α is enabled by T with |α| = 1.
(3) α is enabled by T in maximally parallel manner if there is no β ∈ A# such
that α ⊂ β, and α and β are enabled by T .
(4) By Ensq

A (T ) and Enmp
A (T ), we denote the sets of all multisets of reactions

α ∈ A# which are enabled by T in sequential manner and in maximally parallel
manner, respectively.
(5) The results of A on T , denoted by ResXA (T ) with X ∈ {sq,mp}, is defined
as follows:

ResXA (T ) = {T −Rα + Pα |α ∈ EnX
A (T )},

We note that RessqA (T ) = {T } if Ensq
A (T ) = ∅. Thus, if no multiset of reactions

α ∈ A# is enabled by T , then T remains unchanged. In the case of maximaly
parallel manner, Enmp

A (T ) at least contains one element. Specifically, if no mul-
tiset of reactions over A is enabled by T , then Enmp

A (T ) = {λ}, and therefore
Resmp

A (T ) = {T }.

Example 1. Let S = {a, b, c, d, e} and consider the following set A = {a,b, c} of
reactions in S:

a = (b2, a, c), b = (c, d, b), c = (bc, ∅, e).

Consider a finite multiset T = {b4cd}.
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– In the case of sequential manner, a and c are enabled by T , while b is not
enabled by T , because Ib ∩ T �= ∅. Since Ensq

A (T ) = {a, c}, we have

RessqA (T ) = {b2c2d, b3de}.

– In the case of maximally parallel manner, α2 = a2 is enabled by T in maxi-
mally parallel manner, because no β with α2 ⊂ β is enabled by T . Similarly,
α3 = ac is also enabled by T in maximally parallel manner. Since Rα2 = b4,
Pα2 = c2, Rα3 = b3c, Pα3 = ce and Enmp

A (T ) = {α2, α3}, we have

Resmp
A (T ) = {c3d, bcde}.

It is obvious from the above example that reactions are applied to a multiset in
nondeterministic way both in sequential manner and maximally parallel manner.

We are now in a position to introduce the notion of reaction automata.

Definition 3. A reaction automaton (RA) A is a 5-tuple A = (S,Σ,A,D0, f),
where

– S is a finite set, called the background set of A,

– Σ(⊆ S) is called the input alphabet of A,

– A is a finite set of reactions in S,

– D0 ∈ S# is an initial multiset,

– f ∈ S is a special symbol which indicates the final state.

Definition 4. Let A = (S,Σ,A,D0, f) be an RA, w = a1 · · ·an ∈ Σ∗ and
X ∈ {sq,mp}. An interactive process in A with input w in X manner is an
infinite sequence π = D0, . . . , Di, . . ., where{

Di+1 ∈ ResXA (ai+1 +Di) (for 0 ≤ i ≤ n− 1), and
Di+1 ∈ ResXA (Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow notation”
for π : D0 →a1 D1 →a2 D2 →a3 · · · →an−1 Dn−1 →an Dn → Dn+1 → · · · . By
IPX(A, w) we denote the set of all interactive processes in A with input w in X
manner.

Let Σλ = Σ ∪ {λ}. When ai = λ for some several 1 ≤ i ≤ n in an input
string w = a1 · · · an, an interactive process is said to be with λ-input mode. By
IPλ

X(A, w) we denote the set of all interactive processes in A with λ-input mode
in X manner for the input w ∈ Σ∗

λ.

For an interactive process π in A with input w, if EnX
A (Dm) = ∅ for some

m ≥ |w|, then we have that ResA(Dm) = {Dm} and Dm = Dm+1 = · · · . In
this case, considering the smallest m, we say that π converges on Dm (at the
m-th step). If an interactive process π converges on Dm, then Dm is called the
converging state of π and each Di of π is omitted for i ≥ m+ 1.
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Definition 5. Let A = (S,Σ,A,D0, f) be an RA and X = {sq,mp}. Then, the
set of accepting interactive processes is defined as follows:

AIPλ
X(A, w) = {π ∈ IPλ

X(A, w) | π converges on Dm at the m-th step

for some m ≥ |w| and f ⊆ Dm}.

The language accepted by A is defined as follows:

Lλ
X(A) = {w ∈ Σ∗

λ |AIPλ
X(A, w) �= ∅}.

Example 2. Let us consider a reaction automaton A = (S,Σ,A,D0, f) defined
as follows:

S = {a, b, c, d, e, f} with Σ = {a},
A = {a1, a2, a3, a4, a5, a6}, where

a1 = (a2, ∅, b), a2 = (b2, ac, c), a3 = (c2, b, b),

a4 = (bd, ac, e), a5 = (cd, b, e), a6 = (e, abc, f),

D0 = d.

Let w = aaaaaaaa ∈ S∗ be the input string. Consider an interactive process π
such that

π : d →a ad →a bd →a abd →a b2d →a ab2d

→a b3d →a ab3d →a b4d → c2d → bd → e → f.

For instance, in the 9th step, since a22 ∈ Enmp
A (b4d), it holds that c2d ∈ Resmp

A

(b4d). Hence, the step b4d → c2d is valid. Similarly, we can confirm that π ∈
IPλ

mp(A, w). Since π converges on f , it holds that π ∈ AIPλ
mp(A, w). Hence, it

also holds that w ∈ L(A).
We can also see that Lλ

mp(A) = {a2n |n ≥ 1} which is context-sensitive.

2.3 Chemical Reaction Automata: CRAs

We define a chemical reaction automaton (CRA) as a special version of a reaction
automaton. That is, a CRA is a 5-tuple (S,Σ,A,D0, F ), where each reaction in
A is of the form (R, ∅, P ) (each reaction in CRA has no inhibitor), and F is a
set of final multisets. For convenience, each reaction in A is denoted by R → P .
In an interactive process of CRA, if EnX

A (D) = ∅, ResXA (D) is undefined. A
language accepted by a CRA A = (S,Σ,A,D0, F ) is defined by

Lλ
X(A) = {w ∈ Σ∗

λ |π : D0 →a1 D1 →a2 · · · →an D ∈ IPλ
X(A,w), D ∈ F}.

Remark. The acceptance condition of CRA computation is slightly different from
that of RA computation. A CRA accepts a string if the final multiset coincides
with an element of F , while an RA accepts a string if the final multiset includes
a particular symbol f . This deference is significant to obtain our results in the
paper.
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Fig. 2. A graphic illustration of interactive biochemical reaction processes for accepting
strings in the language L = {anbn | n ≥ 0} in terms of A in Example 3

Example 3. Let A = (S, {a, b}, A, p0, {f}) be a CRA which works in sequential
manner, where

S = {a, b} ∪ {a′, p0, p1, f, �}
A = {a1 : p0 + a → p0 + a′, a2 : p0 + a′ + b → p1, a3 : p0 + b → �,

a4 : p0 → f, a5 : p1 + a′ + b → p1, a6 : p1 → f,

a7 : p1 + a → �, a8 : f + a → �, a9 : f + a′ → �, a10 : f + b → �}

In the graphic drawing in Figure 2, each reaction ai is applied to a multiset (a
test tube) after receiving an input symbol (if any is provided) from the envi-
ronment. In particular, applying a4 to {p0} leads to that the empty string is
accepted by A. It is seen, for example, that reactions a1 and a2 are enabled by
the multiset T = {p0, a′, a′} only when inputs a and b, respectively, are received,
which result in producing R1 = {p0, a′, a′, a′} and R2 = {p1, a′}, respectively.
Thus, we have that Ressqa1

(T ∪{a}) = R1 and Ressqa2
(T ∪{b}) = R2. Once apply-

ing a2 has brought about a change of p0 into p1, A has no possibility of accepting
further inputs a’s. Otherwise any possible application of rules leads to introduc-
ing the symbol �, eventually resulting in the failure of computations. (Thus, in
the construction of A, the symbol � plays a role of trapdoor for unsuccessful
computations.) It is easily seen that

Lλ
sq(A) = {anbn | n ≥ 0}.

We remark that this language is also accepted by a RA in both maximally
parallel and sequential manners, where the RA has fewer reaction rules than the
above CRA has.

3 Main Results

3.1 The Computation Power of CRAs in Maximally Parallel
Manner

In this section, we show that the computational power of CRAs working in
maximally parallel manner is equivalent to that of Turing machines. To this aim,
we utilize the notion of a multicounter machine: a variant of a Turing machine



60 F. Okubo and T. Yokomori

with a one-way read only input tape and several counters. It is known that a
two-counter machine is equivalent to a Turing machine as a language accepting
device ([5], [6]).

Multicounter Machines. For a non-negative integer k ≥ 1, a k-counter ma-
chine is represented by a 5-tuple

M = (Q,Σ, δ, q0, F ),

where, Q is a set of states, Σ is an alphabet of inputs, q0 is an initial state, F is
a set of final states, and δ is a set of transition rules defined by a mapping from
Q× (Σ∪{λ})×{0, 1}k into Q×{0,+1}×{−1, 0,+1}k. A configuration of M on
an input w (∈ Σ∗) is given by a (k+3)-tuple (q, w, i, c1, . . . , ck), where M is in a
state q with the input head reading the i-th symbol of w, and c1, c2, . . . , ck(∈ N)
stored in the k counters. We write

(q, w, i, c1, . . . , ck) 	 (p, w, i+ d, c1 + d1, . . . , ck + dk),

if a is the i-th symbol of w and δ(q, a, h(c1), . . . , h(ck)) contains (p, d, d1, . . . , dk),
where a = λ implies d = 0, and h is the logical mapping such that, for each
1 ≤ j ≤ k,

h(cj) =

{
0 (if cj = 0; the content of the j-th counter is zero)
1 (if cj �= 0; the content of the j-th counter is nonzero).

(Note that, thus, M has the ability of distinguishing between zero and nonzero
for the content cj of each counter.)

The reflexive-transitive closure of 	 is written by 	∗. A language accepted by
M is defined as

L(M) = {w ∈ Σ∗ | (q0, w, 1,
k{

0, . . . , 0) 	∗ (f, w, i, c1, . . . , ck), f ∈ F}.

We introduce the label for each transition rule in δ. A transition rule with a
label is denoted as r : (p, d, d1, . . . , dk) ∈ δ(q, a, e1, . . . , ek). The set of labels of δ
is denoted by Lab(δ).

The following lemma plays a crucial rule for our purpose.

Lemma 1. For any k-counter machine M , there exists a CRA A such that
L(M) = Lλ

mp(A).

Proof. For a given k-counter machine M = (Q,Σ, δ, q0, F ), let T = Q ∪ Σ ∪
{t1, . . . , tk}, where each ti is a new symbol (corresponding to the i-th counter
of M for 1 ≤ i ≤ k). Consider the set of reaction rules Δ as follows: for each
transition rule r : (p, d, d1, . . . , dk) ∈ δ(q, a, e1, . . . , ek), let

Ur = {ti ∈ T | 1 ≤ i ≤ k, ei = 1},
Vr = {ti ∈ T | 1 ≤ i ≤ k, ei = 0},

Xr = {ti ∈ T | 1 ≤ i ≤ k, di = +1},
Yr = {ti ∈ T | 1 ≤ i ≤ k, di = −1}.
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Then, we define

Δ = {r : (qa+Ur, Vr, p+Ur+Xr−Yr) | r : (p, d, d1, . . . , dk) ∈ δ(q, a, e1, . . . , ek)}.

(Note that an inhibitor Vr of r in Δ plays a role of testing for zero for each
counter of M1.)

Using Δ, we construct a CRA A = (S,Σ,A, q0$, {#}), where

S = T ∪ T ′ ∪ T ′′ ∪ {$,#, �, f} ∪ {$r | r ∈ Lab(δ)},
A = A′ ∪ {a → � | a ∈ Σ} ∪ {a+# → # | a ∈ S},

and A′ is composed of all the reaction rules from the union of the following
three groups shown in Table 1 for every r : (R, I, P ) in Δ. We note that a set of
reactions A is designed for simulating Δ without inhibitor.

Table 1. Reaction rules in A′

period 0 period 1 period 2 conditions

R+ $ → R′ + $r R′ → R′′ R′′ + $r → P + $ (if f � P ) for f ∈ F ,
$r + i → � R′′ + $r → P +# (if f ⊆ P ) for i ∈ I

[The sketch of simulation of M ]
Basically, one step of M is simulated by three steps of A (period 0, 1 and 2).

On the (i+1)-th step of A, only the reaction rules of period j can be used with
i ≡ jmod 3. Reaction rules of each group in A′ work as follows:

– Reaction rules {a → � | a ∈ Σ} are used to control the timing of an input. If
the symbol a is inputted in the timing when rules in period 1 or period 2 are
used, then the reaction a → � must be used in maximally parallel manner.
This means that A cannot reach the final multiset. Hence, in an accepting
interactive process, each symbol in Σ may be inputted only in period 0.

– Using reaction rules in A′, one transition of M is simulated by three steps
of A (period 0, period 1, period 2), where the “zero-test” of multicounter
machine is performed by taking advantage of maximally parallel manner. If
a reaction rule r is applied in a wrong way, then the reaction rule $r + i → �
must be used in the next step. This means that A cannot reach the final
multiset.

– The reaction rule R′′+$r → P +# is used when M is in the final step. After
this step, by using reaction rules {a+# → # | a ∈ S}, the final multiset #
is derived in A, if M reaches the final state.

The simulation proceeds as follows: Let (q, w, j, c1, . . . , ck) 	 (p, w, j′, c′1, . . . , c
′
k)

be the (i + 1)-th step of M by the transition r : (p, d, d1, . . . , dk) ∈
1 This trick has been used for simulating M by an RA (with inhibitors) in sequential
manner in [7].
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δ(q, a, e1, . . . , ek) corresponding to the reaction r : (R, I, P ) in A. Then, it holds
that D3i → D3i+1 → D3i+2 → D3(i+1) in A, where

D3i = q + tc11 tc22 · · · tckk + $,

D3i+1 = (D3i −R) +R′ + $r,

D3i+2 = (D3i −R) +R′′ + $r,

D3(i+1) =

{
D3i −R+ P + $ = p+ t

c′1
1 t

c′2
2 · · · tc

′
k

k + $, (if p /∈ F )

p+ t
c′1
1 t

c′2
2 · · · tc

′
k

k +# (if p ∈ F )

This process is realized by the reaction rules in A′. Note that when the multi-
counter machine M reads ai in (i+ 1)-th step, ai is inputted into D3i of period
0 (in (3i+ 1)-th step) in A.

After appearing #, only reaction rules in {a+ # → # | a ∈ S} can be used,
which deletes all objects but #. As a result of computation of A, if M accepts
w, then only # remains in the multiset of A, hence A accepts w. Conversely,
from the manner of constructing A, it is easily seen that A can accept no input
other than w that is accepted by M . Thus, it holds that L(M) = Lλ

mp(A). �

Note. As in mentioned in Remark in section 2.3, the modification of the ac-
ceptance condition in RA is essentially required for CRA in this proof. If the
acceptance condition of CRA remains unchanged, then a multiset �# may be a
final multiset, since it contains #. However, this implies that a symbol is input
into the system in period 1 or period 2, leading to the failure of simulating a
k-counter machine.

Thus, by Lemma 1, we have already proved the following:

Theorem 1. The computational power of CRAs with λ-input mode in maxi-
mally parallel manner is equivalent to that of Turing machines.

Corollary 1. Every recursively enumerable language is accepted by a CRA with
λ-input mode in maximally parallel manner.

3.2 The Computation Power of CRAs in Sequential Manner

We now consider a naive question on the computing powers of CRAs whether or
not there exists a real gap between working in maximally parallel manner and in
sequential manner. We shall show that the class of CRAs in sequential manner is
computationally less powerful than the other. In fact, it is shown that the class
of CRAs in sequential manner is computationally equivalent to the class of Petri
nets (of a certain type). Our question is thus solved as a corollary of the next
theorem.

Petri Nets. A Petri net is a 4-tuple N = (P, T,A, μ0), where P is a finite
alphabet of places, T is a finite alphabet of transitions, A : T → P# × P# is
an arc function and μ0 ∈ P# is an initial marking. For t in T , A(t) = (α, β) is
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(a)

(b)

.aa c bb .

σ(t) + p1 … pm p’ … p’ A

…

p1

p2

pm

…p’

p’

p’

t

1

2

n

n1

a a a a

cc c

bb b b

c

.. ..

Fig. 3. (a). A graphic drawing of a transition sequence in Petri net N . (b). A corre-
spondence between transitions on t in N and a reaction rule involving t in A. (Note
that pi and p′j are not necessarily distinct each other. )

also denoted by α →t β (in A). When a transition t with α →t β is applied to
a multiset μ in P# with α ⊆ μ, we write it as μ ⇒t μ − α + β. For t ∈ T and
w ∈ T ∗, μ ⇒tw μ′ is defined by μ ⇒λ μ and μ ⇒t μ′′ ⇒w μ′.

There are several ways to define a language generated by a Petri net in [10].
Here, we adopt the following definition. A Petri net system is a 6-tuple NS =
(P, T,A, μ0, σ, F ), where (P, T,A, μ0) is a Petri net, σ : T → Σλ is a labeling of
transitions, and F is a finite set of final markings. Then, a language generated
by a Petri net system NS is defined as

L(NS) = {σ(w) ∈ Σ∗ |w ∈ T ∗, μ0 ⇒w μ, μ ∈ F}.

Example 4. Consider a Petri net systemNS=({p1, p2, p3},{a, b, c},A, p1,σ, {p3}),
where A(a) = (p1, p1p2), A(b) = (p2p3, p3), A(c) = (p1, p3), σ(a) = a, σ(b) = b,
and σ(c) = λ. Figure 3 (a) illustrates an example of the computation process
in NS: μ0(= p0) ⇒aa μ1 ⇒c μ2 ⇒bb μ. Thus, the sequence of transitions
w = aacbb leads μ0 to μ. Since μ = p3 is designated as a final marking, a string
σ(w) = aabb is in L(NS). In general, N together with the labeling function σ
and the final marking p3 generates the language {anbn | n ≥ 0}. Thus, we have
that L(NS) = {anbn | n ≥ 0}.

Theorem 2. A language L is generated by a Petri net system if and only if L
is accepted by a CRA in sequential manner.

Proof. Here, we only outline the proof for both directions.
(only if part) For a Petri net system NS = (P, T,A, μ0, σ, F ), construct a

CRA A = (P ∪ σ(T ), σ(T ), A, μ0, F ), where σ(t) + α → β ∈ A if α →t β. Let
w = a1 · · · an in T ∗, then it holds that μ0 ⇒w μ if and only if π : μ0 →σ(a1)

· · · →σ(an) μ ∈ IPλ
sq(A, σ(w)). Thus, we have L(NS) = Lλ

sq(A).
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(if part) For a CRA A = (S,Σ,A,D0, F ), construct a Petri net system NS =
(S, T,A′, D0, σ, F ) as follows:

T = {ra | a ∈ Σ, a ⊆ R, r : R → P ∈ A} ∪ {r′a | a ∈ Σ, a �⊆ R, r : R → P ∈ A}
∪{r | r : R → P}

A′ and σ are constructed as below:

– (i) R− a →ra P and σ(ra) = a, for all ra in T
– (ii) R →r′a P + a and σ(r′a) = a, for all r′ain T
– (iii) R →r P and σ(r) = λ, for all r in T .

Each rule in (i) is used in the case when the input σ(ra) is consumed by the
corresponding rule r of A, while each rule in (ii) is used in the case when the
input σ(r′a) is not consumed by the corresponding rule r of A. Each rule in (iii)
is used in the case when the corresponding rule r of A is used in the λ-input
mode.

Then, for w = a1 · · · an in T ∗, it holds that π : D0 →σ(a1) · · · →σ(an) D ∈
IPλ

sq(A, σ(w)) if and only if D0 ⇒w D. In this way, Lλ
sq(A) = L(NS) is ob-

tained. (Note that the one-to-one correspondence between a graph structure of
transitions in N and a reaction rule in A is illustrated in Figure 3 (b).) �

It is known that the class of Petri net languages is strictly included in the class
of context-sensitive languages and is incomparable to the class of context-free
languages ([10]). Hence, we have:

Corollary 2. The computational power of CRAs with λ-input mode in sequen-
tial manner is less powerful than that of CRAs with λ-input mode in maximally
parallel manner.

4 Discussion

4.1 Related Work

Apart from our previous works on reaction automata (RAs) (in [7–9]), here we
only refer to the following two themes of work that share subjects and issues
with this paper.

– Turing computation and CRNs/DSDs: Chemical reaction networks
(CRNs) have been introduced as a descriptive formal language to analyze the
behaviors of chemical reactions in nature, while DNA strand displacement
systems (DSDs) is known as a powerful method for implementing CRNs.
In the stochastic setting of CRNs, Soloveichik et al. ([12]) shows that CRNs

can perform Turing-universal computation with arbitrary small error proba-
bility, in which register machines, as well as Turing machines (TMs), are used
to prove the result. By providing an energy efficient molecular implementa-
tion of stack machines, Qian et al. ([11]) shows that Turing computability
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can be achieved by using DSDs together with polymers. It was shown in
[14] that reversible CRNs (and DSDs) can simulate in a space and energy
efficient manner polynomially space-bounded TM computation. The latter
work also proves that the reachability problem for CRNs is PSPACE-complete
for some restricted classes of CRNs.

– Multiset-based computing models: Suzuki et al. ([13]) propose an
abstract chemical reaction model based on multiset rewriting that first at-
tracted our attention. With the CRN framework called ARMS, they pri-
marily investigates the modeling (and simulation) capability of ARMS from
the artificial life point of view. Among many in the literature on language
acceptors based on multiset rewriting, a variant of P systems called P au-
tomata has been intensively investigated (e.g., [2],[3]). In a P automaton, a
configuration comprises a tuple of multisets each of which consists of objects
from each membrane region. On receiving an input (a multiset) from the
environment it changes its configuration by making region-wise applications
of the equipped rules. In this sense, RAs (and CRAs) may also be regarded
as a simplified variant of P automata without any membrane structure.

4.2 Conclusion and Future Work

We have investigated the computational capability of a new class of automata
called chemical reaction automata (CRAs) that was a simplified version of the
class of reaction automata (RAs) in [7–9]. CRAs are offline computational mod-
els based on the chemical programming languages known as chemical reaction
networks (CRNs) in which an input sequence (i.e., a sequence of molecular
species) is provided one by one from the external environment to the solution
(i.e., a multiset of molecules) during a nondeterministic computation process.
Hence, the class of CRAs offers a good device of models to explore the compu-
tational aspects of CRNs. In this paper, we have shown the following:

1. CRAs with λ-input mode in maximally parallel manner can achieve the Tur-
ing universal computability. Further, it was shown that, in turn,

2. the computational power of CRAs with λ-input mode in sequential manner
exactly coincides with that of the class of Petri Nets, therefore, strictly less
powerful than Turing machines. From these results, it turned out that

3. within the RA computing models, the use of inhibitors of reaction rules
makes no effect on the power of computing in maximally parallel manner,
while it does in sequence manner.

4. Considering that the class of RAs with λ-input mode in sequential manner
can achieve the Turing computability (Theorem 3.1 in [7]), it is strongly
suggested that as for the computational power, there exists a trade-off rela-
tion between the role of inhibitors in reaction rules and that of maximally
parallelism in computation process of RAs.

There remain many subjects to be investigated along the research direction
suggested by CRAs and the related. Among others,
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• it is of importance to clarify the relationships between subclasses of CRAs
and others defined by computing devices based on the multiset rewriting,
such as a variety of P-automata and their variants of dP automata ([3]).

• It is also valuable to explore the computational power of deterministic CRAs.
Specifically, it is open whether deterministic CRAs in maximally parallel
manner are Turing universal.

• In the contexts of computational complexity of CRAs subclasses, no effort
has been made yet for investigating the time complexity of any subclass.

• CRAs can be modified in an obvious manner to define a class of transducers.
Such a variant of CRAs that can compute functions (rather than languages)
remains left open to be studied.
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Emulating Cellular Automata
in Chemical Reaction-Diffusion Networks
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Abstract. Chemical reactions and diffusion can produce a wide variety of static
or transient spatial patterns in the concentrations of chemical species. Little is
known, however, about what dynamical patterns of concentrations can be reli-
ably programmed into such reaction-diffusion systems. Here we show that given
simple, periodic inputs, chemical reactions and diffusion can reliably emulate
the dynamics of a deterministic cellular automaton, and can therefore be pro-
grammed to produce a wide range of complex, discrete dynamics. We describe
a modular reaction-diffusion program that orchestrates each of the fundamen-
tal operations of a cellular automaton: storage of cell state, communication be-
tween neighboring cells, and calculation of cells’ subsequent states. Starting from
a pattern that encodes an automaton’s initial state, the concentration of a “state”
species evolves in space and time according to the automaton’s specified rules.
To show that the reaction-diffusion program we describe produces the target dy-
namics, we simulate the reaction-diffusion network for two simple 1-dimensional
cellular automata using coupled partial differential equations. Reaction-diffusion
based cellular automata could potentially be built in vitro using networks of DNA
molecules that interact via branch migration processes and could in principle per-
form universal computation, storing their state as a pattern of molecular concen-
trations, or deliver spatiotemporal instructions encoded in concentrations to direct
the behavior of intelligent materials.

1 Introduction

A fundamental question in materials design is how we might program materials to sense
and respond to dynamic signals across time and space. Biological materials routinely
exhibit this capacity, as cells and tissues sense and respond to a complex array of spatial
and temporal cues. For example, during chemotaxis, many cells can detect gradients of
chemoattractants and move in the direction of increasing chemoattractant concentra-
tion. In a mechanism like chemotaxis[1–3], cells use spatiotemporal chemical reaction
networks to process information collected by distributed chemical sensors to decide on
and execute responses to changing environmental conditions. In this paper we discuss
the design of analogous synthetic chemical reaction networks that have robust, pro-
grammable spatiotemporal dynamics. The ability to engineer such systems could have
wide-ranging applications for the design of smart, responsive, programmable materials.
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Fig. 1. A cellular automaton consists of a lattice of cells. At a given time, each cell is in one
of a finite number of states, shown by color (blue or white). Cell states change over time as the
result of the application of local rules - finite functions that take as inputs the states of the current
cell and a finite set of neighbors and produce the cells’ new state as output. Here we consider
a 1-dimensional automaton where each cell is either on or off, and where update rules take the
cell’s own state and those of its left and right neighbors as inputs. (a) An example rule set. (b)
Example dynamics for the rule set in (a). (c) Schematic of the chemical reaction-diffusion cellular
automaton described in this paper. A 1-dimensional channel contains cells separated by spacers.
The state in each cell is encoded by either a high or low concentration of a ‘state’ species within
that cell. Spacers between cells, which do not contain any state information, are shown in black.
During the computation, the program and state species react and diffuse. This reaction-diffusion
process maintains and updates cell state according to the rules of the desired cellular automaton.
(d) Target dynamics of the state species for the example cellular automaton rule in (a).

To design a generic set of mechanisms that can process a wide range of input signals
and invoke a wide range of responses, we consider a framework for distributed spatial
computation that has been studied extensively – the cellular automaton (Fig. 1). A cel-
lular automaton (CA) is a model of computation consisting of a rectangular lattice of
domains, or ‘cells’. At a given time a cell can be in one of a finite number of states,
such as an on or off. In a synchronous CA, cells update their state once per time step
based on their current state and the current states of a finite set of nearby cells. Although
each cell update is relatively simple, groups of cells can together perform elaborate spa-
tial computation. CA can execute any computable algorithm, a trait known as universal
computation [4–7]. Specific automata also exist that can programmably construct any
structure[8, 9], self-replicate[8–10], mutate and evolve[11].

In this paper we propose a strategy for building synchronous CA using chemical
reaction-diffusion networks1. We begin by breaking down CA into their fundamental
operations: storage of cell states, communication between nearby cells, and calculation
of new cell states. We demonstrate how existing chemical computing mechanisms could
implement these operations. We then combine these chemical mechanisms to emulate
two specific automata, known as ‘Rule 110’ and ‘Rule 60’. These chemical CA can be
viewed as a proof of concept that synthetic materials could sense signals across space
and time and execute a broad class of dynamic programmed responses.

1 A more complex design for an asynchronous CA can be constructed along similar lines.
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2 Background: Reaction-Diffusion Processes for Computation

Reaction-diffusion (RD) networks are sets of chemically reactive species that diffuse
within a continuous substrate. In contrast to a well-mixed chemical reaction system,
reaction-diffusion (RD) networks can produce spatial patterns, where some species are
more abundant in some parts of the substrate and less abundant in others. The interplay
of reactions and diffusion can lead to sustained spatial patterns and even the emergence
of patterns from a homogeneous initial substrate which experiences transient concen-
tration fluctuations [12]. Transient waves within these patterns can emulate Turing ma-
chines and perform basic computations[13–15].

Recently it has been shown that arbitrary chemical reaction networks can be readily
designed and implemented in vitro using short strands of synthetic DNA [16, 17]. Be-
cause DNA binding under many conditions is largely determined by the Watson-Crick
sequence complementarity (A-T, G-C), reactive species can be designed to minimize
unintended crosstalk between species that should not interact. These techniques sep-
arate the design of new reaction networks from the discovery of naturally occurring
chemicals that perform the intended reactions. In support of this idea, large reaction
networks involving up to 130 different sequences of DNA have been demonstrated
in vitro without substantial crosstalk[18], and have been used to implement Boolean
logic[18–20]. Further, the rates of the emulated reactions can be controlled[17].

It also appears plausible to extend this mechanism of DNA reaction design to the de-
sign of large reaction-diffusion networks, as the diffusion rates of different DNA strands
can be programmed. Because the diffusion coefficient of DNA scales polynomially with
the length of the strand[21], the diffusion rate of each species in a DNA reaction network
can be independently tuned by adding or removing bases from a sequence, and such
changes can be done so that the reactive propensity of a species is largely unchanged.
Further, within a polymer gel, species attached to the gel substrate do not diffuse, but
can continue to react. Together, the capacities to design arbitrary chemical reactions
and tune the diffusion coefficient of each species in principle enable us to implement
de novo simple RD networks that perform pattern transformations[22, 23].Here we ask
how we might design an RD network that could be implemented by DNA molecules,
given what is known about designing DNA-based reactions and diffusion processes. To
focus on this question, here we ignore experimental nonidealities and the challenges of
building large molecular networks, including unintended crosstalk between species.

By designing RD network modules that perform simple, predictable, repeatable trans-
formations to a pattern of chemical concentrations, circuits of modules can be com-
bined to perform elaborate patterning operations[24]. Pattern transformation modules
take specific species as inputs, perform reactions potentially involving some intermedi-
ate species within the module, and produce an output species (Fig. 2). Modules can be
connected together with the output of upstream modules serving as the input to down-
stream modules. If these modules are designed such that the intermediate species of one
module do not react with the intermediates of other modules, then many modules can
operate simultaneously in the same substrate without interfering with each other. Fur-
ther, by imposing the design requirement that modules must not significantly deplete (or
“load”) the concentrations of their inputs, it is possible to ensure that a module’s reac-
tions affect only other modules that lie downstream within the network. Thus, modules
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Fig. 2. Reaction-Diffusion Modules. Each module is a set of simpler modules or of abstract
chemical reactions that could in principle be emulated in vitro using a DNA strand-displacement
network. In an emulation of these reactions using DNA strand displacement processes, species
are represented as DNA strands or hybridized complexes of strands with particular sequences.
Other strands or complexes are also required for the emulation, and act as “intermediates” in the
reaction process [16, 24]. More details on these modules and their operation can be found in [24].

can be added one at a time to a system such that each addition of a module results in a
simple, predictable change to the patterning process.

Here we extend existing pattern transformation techniques to emulate a discrete,
synchronous, 1-dimensional CA, generating spatial patterns of chemical concentrations
with controlled dynamics. We design a network of reaction-diffusion pattern transfor-
mation modules (defined in detail in Fig. 2) in combination with a simple, static initial
pattern and an external “clock” signal whose concentrations change periodically. This
network forms the target CA structure, and controllably transforms the state of that
structure over time. In principle, our abstract chemical reaction-diffusion network could
be translated into a DNA strand displacement network for in vitro implementation.

One challenge in the design of pattern transformations is that the second law of dy-
namics implies that without the continual input of energy, purely diffusive patterns are
unstable and tend to become well mixed over time. Thus, to prevent spatial patterns of
soluble molecules from dissipating, reaction-diffusion networks will require a constant
energy flux. One way to achieve this flux is to develop reactions that slowly release and
degrade high-energy species. These reactions produce a sustained flux of molecules in
the environment, and maintain a pattern such that only sporadic replenishment of some
high-energy precursors are required to sustain the pattern formation process. Production
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reactions take the form source → species, and continuously produce reactants that are
depleted by converting a high-energy precursor into the desired species. Degradation
reactions take the form species → waste, and convert species that are produced into
low-energy waste to stabilize the system.

3 Anatomy of Our Reaction-Diffusion Cellular Automaton

Reaction-diffusion systems emulating a CA must be able to store the current state of
the system as a tape or grid of cells and execute the update rules as a function of the
states of the cell and the cell’s left and right neighbors (Fig. 3). For the class of CA we
consider here, the state of each cell is either on or off.

(b) Broadcasting Each Cell’s Own State
On cells broadcast a signal, off cells do not broadcast anything

(e.g. for keyA cells, keyA  + S -> keyA  + S + signal A).
Broadcast species diffuse out, diluting with distance.

(c) Receiving Neighbor States
Cells interpret broadcasts locally based on keys

(e.g. for keyA cells, keyA  + signal B -> keyA  + signal B + R,
and keyA  + signal D -> keyA  + signal B + L).

Signals below a threshold concentration are ignored,
so distant cells can’t communicate.

(d) Calculating Next States
A composite Boolean function f(L, S, R), executed by

the global reaction network calculates next state.
When clock goes high, calculation is stored in [state].
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(a) Encoding Persistent Cell State
Repeating pattern of `key’ concentrations defines cells.

Local `state‘ concentration encodes on/off.
Off cells have low [state], on cells have high [state].

Global `clock’ is off until cells compute new state, then turns on.

Legend:
State

KeyA
KeyB
KeyC
KeyD

SignalA
SignalB
SignalC
SignalD

Right neighbor ON
Left neighbor ON
Both neighbors ON

Fig. 3. The chemical CA we describe performs three types of operations. (a) The state of each
cell is stored locally. (b & c) Cells communicate their state to their immediate neighbor cells.
(d) A Boolean logic circuit calculates each cell’s next state as a function of the cell’s own state
and the state of its neighbors, and stores this new state in (a), completing one cycle of automaton
dynamics. A global clock signal synchronizes these three operations. The clock is off for the
communication and calculation stages, and turns on to allow the calculated new state to be stored
in memory for the next cycle.

In our construction, each cell is a region of the substrate with a static, uniformly
high concentration of a particular catalyst molecule. Catalyst molecules are attached
to the substrate, so they do not diffuse. We call these molecules ‘keys.’ In our one-
dimensional grid, cells can have one of four different types of keys (KeyA, KeyB,
KeyC and KeyD) with key types repeating as one proceeds down the channel so that
cells can identify neighbors based on local key type (Fig. 3a). For instance, cells defined
by KeyA are always neighbored on the right by KeyB cells, and the left by KeyD cells.
Cells are separated by ‘spacer’ regions that do not contain keys.
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Since key molecules only participate in reactions as catalysts, it is assumed that they
are not depleted over time2. In this paper we assume that this pattern of key catalysts
is present at the start of the reaction as a set of initial conditions. Such a grid pattern
could either be manually patterned into the substrate by top-down techniques, such as
microcontact printing[25] or directed hydrogel assembly[26], or generated by a separate
bottom-up RD patterning program[24].

In addition to the static pattern of key catalysts, a mix of many other freely diffusing
“program” species is supplied across the substrate. These program molecules interact
with the key molecules to emulate the dynamics of a CA in a cycle of three discrete
conceptual stages (Fig. 3b-c). In the first stage, cells share their states with their neigh-
bors and receive the states of other neighbors. Next, cells use information about their
local state and the states of their neighbors to determine their state at the next time step.
Finally, the calculated state is stored as the current state. Cycles of communication,
calculation of new states, and storage of the new state in a cell’s memory emulate the
dynamics of a CA. In the construction below, an externally provided clock signal syn-
chronizes the three cycles. While a global clocking mechanism isn’t strictly required to
implement a CA[27], we chose to construct a CA with a clock, because such a system
can compute niversally when each cell can take one of only two possible states.

3.1 Communication: Sending and Receiving Addressable Signals

[ ]

x

keyD keyA

S

Threshold

high/on

low/off

R L

keyB

Broadcast

ReceiveReceive

(a)

(b)

Fig. 4. Communication Stage. (a) Using a
broadcast module, each on cell produces a gra-
dient encoding its current state and key. Receive
modules interpret broadcasts based on the iden-
tity of their local key. (b) Plot of [species] vs. x
for a single on A-type cell, with local [S] =
high. A broadcast module generates a stable
gradient of ABroadcast that decays with distance
from KeyA. Receive modules at D-type cells
interpret ABroadcast as R, while receive mod-
ules at B-type cells interpret the same broadcast
as L. Broadcast signals below a threshold are
ignored, so cells only communicate with their
neighbors.

We begin the description of a CA cycle
in the Communication Stage, right after a
set of cell states for the last time step have
been stably stored. At this point, each
cell’s current on/off state is represented,
respectively, by the local high or low con-
centration of a ‘state’ species. During the
communication stage of a computation
cycle, cells must communicate their cur-
rent state to their immediate neighbors.

Communication is managed by Broad-
cast and Receive modules (Fig. 4).
Each on cell broadcasts information
about its current state by producing
a signal within the cell that can dif-
fuse away from the cell. Broadcast
modules (Fig. 2g) execute this func-
tion. In order for neighboring cells to
interpret these broadcasts as coming
from the left or right neighbor cell,
these broadcasts must contain informa-
tion about which cell is sending them.

2 In practice, catalysts have a fixed turnover number. Reactions that cyclically produce and de-
grade catalysts could enable the periodic replacement of key catalysts (and other catalysts in
the system) that are no longer functional.
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The identity of the cell broadcasting information about its state is encoded using the
key types of cells: Cells that are defined by ‘key A’ species broadcast ‘signal A’, those
defined by ‘key B’ broadcast ‘signal B’, and so on. The distance that broadcast signals
propagate is controlled by the production and degradation rates of the Broadcast mod-
ule, such that a cell’s broadcasts only reach its neighbors. Each key has its own separate
broadcast module.

The counterpart to a Broadcast module, a Receive module (Fig. 2f), receives signals
transmitted by a cell’s neighbors and translates them into local information about the
state of a neighboring cell. This conversion is also done in a cell-specific manner, such
that each cell converts particular broadcasts into information about particular types of
neighbors. For example, within cells defined by KeyA, the key species catalyzes the
conversion of the broadcast signal from KeyB into a species that encodes the right
neighbor’s state as on and catalyzes the conversion of the broadcast signal from KeyD
into a species that encodes the left neighbor’s state as on. Key species B through D
catalyze a corresponding set of reactions to produce signals that encode whether their
right and left neighbors are on. Each conversion reaction of a broadcast to a type of
neighbor information is managed by a separate receive module. Because there are four
key types and each cell has two types of neighbors, eight Receive modules are required.

Receive modules convert broadcasts into “preliminary neighbor signals.” These pre-
liminary neighbor signals are at different concentrations throughout a cell because they
are copies of the broadcast signals, which decay in concentration with the distance
from the neighbor. To produce uniform on/off neighbor signals throughout a cell, com-
parators (Fig. 2h) rectify preliminary neighbor signals, producing digital “processed
neighbor signals” whose on levels are the same across a cell.

Together, the broadcast and receive modules ensure that after some period of broad-
casting, each cell contains species that encode its own state and those of its neighbors.

3.2 Calculation Stage: Calculating New State Changes
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(a) Rule 60

(c) Rule 110

Fig. 5. Calculation Stage. Every CA update rule
has a corresponding Boolean logic implemen-
tation. (a) Rule 60. (b) Rule 60 converted into
Boolean logic. (c) Rule 110. (d) Boolean logic
for Rule 110.

Neighbor broadcasts that are received
and processed by each cell are used to
calculate the next cell state. Each update
rule can be encoded as a Boolean cir-
cuit with the neighbors and the cell’s own
state as inputs. Such circuits can be im-
plemented as a set of reaction-diffusion
program modules (Fig. 5). For instance,
in a Rule 60 CA, a cell’s next generation
state is on if its own current state is on
OR its left-hand neighbor is on, but NOT
if both of these states are on. Because the
state of the right-hand neighbor is irrel-
evant, Rule 60 cells do not need to lis-
ten to their right-hand neighbor’s broadcast. The logic for a Rule 110 local update is
performed by the sub-circuit in Figure 5d. The output signal produced by this circuit
determines the target state of the cell at the next time step.
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3.3 Memory: Storing and Stably Encoding a New Cell State

During the Memory stage the computed next state of the cell is stored using a “flip-
flop” module (Fig. 6). Flip-flops have “set” and a “reset” input signal and one output
signal. When the set input is on, the output signal also turns on. The output remains on
even after the set signal turns off. When the reset signal turns on the output turns off,
and remains off until the set signal again turns on. This module encodes the cell’s state,
providing a persistent state signal used by the communication and calculation stages.

STATERESET

SET

SET RESET

STATE

FLIP
FLOP

(a) (b)

Fig. 6. The Memory stage stores cell state in a
flip-flop. (a) A flip-flop’s output does not change
when its inputs are off. In our design, these in-
puts are off when the clock is off. When the clock
is on, the set signal is on if the calculation stage
outputs on, setting the flip-flop on. The reset sig-
nal is on if the calculation stage outputs off, re-
setting the flip-flop off. Memory is required so
the inputs to the other stages are not affected by
the calculation of new local or neighbor states.
(b) Circuit for our reaction-diffusion flip-flop us-
ing modules from Fig. 2. Copy modules ensure
output is not depleted by internal feedback or
downstream load.

The reactions that communicate a
cell’s state to its neighbors and compute
its next state occur without control over
timing. Different cells (or different re-
gions within a cell) may take different
amounts of time to compute their new
state. To ensure that all cells finish com-
puting their next states before any other
cell commits its new state to memory,
calculated next states are not stored in
memory until a global clock signal turns
on. For a given CA, the clock period
must be designed so that all cells fin-
ish communicating and calculating be-
fore the clock signal turns on. The next
state must be committed to memory be-
fore the clock turns off.

To ensure that calculated next states are not stored in memory unless the clock signal is
on, an AND gate takes the clock signal and the calculated next state from the Calculation
stage as inputs, and sends a set signal to the flip-flop module only when both the clock
and the calculated next state are on. Another AND gate takes the clock signal and the
inverse of the calculated next state as inputs, and produces a reset signal when the clock
is on but the next state is off. The process of storing the new state in memory ends when
the clock signal returns to a low value at the beginning of the next stage of computation.

4 Simulation of a Reaction-Diffusion Cellular Automaton

The complete automaton circuit is shown in Fig. 7. We simulated the simultaneous
mass action reaction kinetics and diffusion for the entire system, using Rules 60 and
110 in the logic stage, and observed the intended cell updating for both rules (Fig. 8).
The complete set of chemical reactions and the corresponding coupled partial differen-
tial equations describing these systems are provided in the Appendix A, along with all
other simulation details. Concentrations within [0, 0.3] μM were considered off, while
concentrations within [0.7, 1] μM were considered on. One irregularity that appears in
our system is that the cells have blurred boundaries, an artifact that arises when chem-
ical species produced inside of a cell diffuse across the cell boundary. This blurring
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effect is the reason that we included short spacer regions to separate adjacent cells, so
that the logic inside of one cell does not interfere with the logic inside of its neighbors.

L C

NEXT GEN

CA
LOGIC

R

FROM LEFT

TO
NEIGHBORS

&

(a) COMMUNICATE

[clock]

t
communicate
and calculate

store

FROM RIGHT

&

(b)

SET RESET

STATE

FLIP
FLOP

(c)

Fig. 7. CA Circuit Diagram (a) The ‘Commu-
nication’ stage. Current cell states are broadcast
to neighbors, while neighbor states are received.
(b) The ‘Calculation’ stage. The states of a cell
and its neighbors are passed through a subcircuit
that performs the update logic. The output from
this subcircuit is on if the cell should change into
an on state in the next generation. This next state
is prevented from affecting the Memory stage
by AND gates when the clock is off. (c) When
the clock turns on, the next state is stored in the
‘Memory’ stage.

Two important parameters can break
the reaction-diffusion program if not
tuned carefully: the on time or ‘duty cy-
cle’ of the clock signal, and the kinetic
rates for the broadcast module. If the
duty cycle is too short, then the flip-
flop does not have enough time to store
the intended next-generation state. In our
simulations, this occurs for duty cycles
shorter than 15-20 minutes. However, for
particularly long duty cycles, some cell
states can become desynchronized be-
cause cells can erroneously update their
state multiple times within a single cell
cycle. In our simulations, duty cycles
longer than about an hour and a half led
cells to become desynchronized.

The second critical parameter is the
production rate constant for the broad-
cast module. When a cell is on, this con-
stant must be high enough to saturate its
neighbors with signaling molecule. In the
worst case, where a cell is at the mini-
mum on concentration of 0.7 μM, it must
maintain a broadcast signal above the re-
ceive module’s threshold concentration at the farthest edge of its neighboring cell re-
gions. On the other hand, when a cell is off, this constant must be low enough to avoid
broadcasting any signal to its neighbors. Specifically, in the worst case where a cell is
at the maximum off concentration of 0.3 μM, it must maintain a broadcast signal below
the receive module’s threshold concentration at the closest edge of its neighboring cell
regions. If either of these conditions are not met, then erroneous signals can be sent
between cells.

5 Discussion

In this work we develop a method for building a CA using a reaction-diffusion program.
This program consists of a set of molecules that everywhere can react and diffuse in the
same way, along with a small set of molecules that are patterned into a grid of cells. The
collective actions of these molecules cause the pattern of molecules that encode an “on”
state to change over time to display a series of patterns that are the successive states of a
one-dimensional binary CA. While the construction we propose is for a 1-dimensional
binary CA, straightforward extensions to the system could be used to produce 2- or
3-dimensional CA, or CA in which cells can be in more than two states.
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Fig. 8. Results of Chemical CA Simulations Ideal CA (left) compared to our simulated reaction-
diffusion program (right). Every three-length binary input state is contained in each pattern,
demonstrating correct updating for all eight possible local states. (a) Rule 60. (b) Rule 110. The
dynamics shown here were computed using the set of coupled partial differential equations in the
Appendix A. The detail of the rapid dynamics of a state transition are shown on the far right.

This construction thus suggests two important new capabilities for systems that are
driven by designed chemical reaction networks. First, this system provides a way to gen-
erate dynamic spatial patterns, where the concentrations of species vary continuously
over time, by encoding these dynamics within a CA. Second, this system makes it pos-
sible to perform computations using molecules in which the same molecular species
simultaneously perform different computations within different regions of a substrate.

The capacity for this kind of spatial computation is likely to be an important part of
scaling the capacity for molecular systems to process information. Because the number
of independent molecular interfaces is inherently limited, it is not possible to arbitrarily
increase the number of interacting molecules within a well-mixed system without intro-
ducing crosstalk. The importance of spatial computation with molecules is underscored
by its prevalence in living systems. Reaction-diffusion processes are used for signal-
ing within cells, and across tissues, where different cells (which each share the same
genome) collectively coordinate tissue behavior.

While other molecular processes can perform Turing universal computation with
only a limited number of molecular species, i.e. they are uniform, these constructions
require that the state of a computation be encoded either within a single molecular
assembly [28] or in the precise number of molecules [29]. As such, these constructions
are susceptible to errors that can destroy the computation. In contrast, computation by
the CA that we describe involves the collective action of many molecules, so it is not
susceptible to errors caused by a small number of microscopic events.

However, the designs presented in this paper require the construction of large chem-
ical reaction networks, a clock signal at regular intervals and a printed grid of different
“key” molecules. Our reaction network uses 65 species to emulate a “Rule 60” CA, and
76 species to emulate a “Rule 110” CA. Further emulating these abstract chemical net-
works using DNA strand-displacement reactions could increase the network size by an
order of magnitude, because multiple intermediate DNA strands are generally required
when emulating reactions. Likely there are simplifications that could be made to our
circuit, as our goal was to demonstrate that such an implementation is theoretically pos-
sible instead of designing the smallest possible circuit. For instance, it may be possible
to condense some sections or our system into smaller special case circuits for particular
CA updating rules. Additionally, our four-key system that provides unique identities to
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cells in a local group is expensive in terms of number of species, requiring four separate
sets of transmitter modules and eight separate sets of receiver modules in 1-dimensional
space, and a more clever means for identifying neighboring cells may exist. However, it
is unclear how to reduce the number of strands in our system by an order of magnitude.

Generally, the complexity of our circuits suggests that implementing even a simple
1-dimensional automaton would be challenging with current chemical computers. Con-
structing CA as complex as von Neumann’s self-replicating automata is likely to be
infeasible for the foreseeable future. It will therefore be important to ask whether there
are more efficient models for spatial-computing in which complex behaviors such as
self-replication or healing can be designed as simply as possible. One starting point is
to consider computation systems that do not require an explicit regular grid, such as
Petri nets[30], Lindenmayer systems[31], or graph automata[32, 33], and un-clocked
systems such as asynchronous CA[27].

More generally, we might ask not only how to perform molecular computation using
space as a medium, but how to construct a scalable architecture for computing appropri-
ate responses of a material to stimuli that are presented across space and time. Patterns
generated by CA could act as blueprints, encoding dynamic information spatially. By
constructing CA in chemical networks, it may be possible to use this information to
coordinate the behavior of intelligent programmable materials. Biological cells, tissues,
and synthetic nanostructures could potentially respond to local instructions released by
an embedded chemical automaton. CA could endow these physical systems with unique
properties, creating artificial structures that heal, self-replicate and evolve.
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A Rule 110 Partial Differential Equations
“I hope to say something about a ‘continuous’ rather than ‘crystalline’ model [of automata].

There, as far as I can now see, a system of nonlinear partial differential equations, essentially of
the diffusion type, will be used.”

- John von Neumann (Oct. 28th, 1952) discussing unfinished Theory of Automata.
von Neumann papers, Library of Congress, Box 28 “Theory of Automata”.

This section describes the set of coupled partial differential equations that govern our
Rule 110 chemical automaton. These equations use standard mass-action equations and
the diffusion equation. Figure 8(b) contains a plot of the solution to these equations.
One equation is devoted to each of the 76 species in our network. Figure 9 shows a
detail of the circuit from Figure 7 for a Rule 110 automaton, with each species labeled.

Unless otherwise specified, all species start with zero initial concentration. Absorb-
ing boundary conditions apply to all species whose concentrations change over time.
Our reaction rate constants and diffusion coefficients are selected to be realistically at-
tainable values for DNA-based reaction-diffusion networks, on the same order of mag-
nitude as experimentally derived data in the literature[34–36]. The Mathematica code
we used to numerically solve these equations is available upon request.

Constants:
xMax=64

D=0.00015mm2s−1

kT =20μM−1s−1

kL=0.2μM−1s−1

kp=0.002μMs−1

kx=0.002μM−1s−1

kB =0.0002μM−2s−1

kBd=0.00002 s−1

crecTh=0.5μM
clkPeriod=2∗24∗3600 s

clkDuty= .5∗3600 s

1. External Signals:
(a) Keys (in μM):

KeyA(t,x)=

{
1/(1+Exp[−25∗(Mod(x,16)−1)]) :Mod(x,16)≤2
1−1/(1+Exp[−25∗(Mod(x,16)−3)]) :otherwise.

(1)

KeyB(t,x)=

{
1/(1+Exp[−25∗(Mod(x,16)−5)]) :Mod(x,16)≤6
1−1/(1+Exp[−25∗(Mod(x,16)−7)]) :otherwise.

(2)

KeyC(t,x)=

{
1/(1+Exp[−25(Mod(x,16)−9)]) :mod(x,16)≤10
1−1/(1+Exp[−25(Mod(x,16)−11)]) :otherwise.

(3)

KeyD(t,x)=

{
1/(1+Exp[−25(Mod(x,16)−13)]) :mod(x,16)≤14
1−1/(1+Exp[−25(Mod(x,16)−15)]) :otherwise.

(4)

(b) Clock:

clk(t,x)=

⎧⎨
⎩

1μM : t<4000
1μM :Mod(t,clkPeriod)<clkDuty
0 :otherwise.

(5)

∂clkOn(t,x)

∂t
=D∇2clkOn(t,x)−kd∗clkOn(t,x)+kd∗clk(t,x)

−kL∗clkOn(t,x)∗SgnxOn(t,x) (6)

∂clkOff (t,x)

∂t
=D∇2clkOff (t,x)−kd∗clkOff (t,x)+kd∗clk(t,x)

−kL∗clkOff (t,x)∗SgOffNx(t,x) (7)

2. Communication Stage:
(a) Broadcast Modules (in μM):
SrcA(t,x)=1 (8) SrcB(t,x)=1 (9) SrcC(t,x)=1 (10) SrcD(t,x)=1 (11)

(b) Broadcast signals, note initial concentration of SigA triggers initial on cell:
∂SigA(t,x)

∂t
=D∇2SigA(t,x)+kBSrcA(t,x)KeyA(t,x)Last(t,x)−kBdSigA(t,x) (12)

SigA(t=0,x)=

{
2μM :xmax−8<x<xmax−0.1
0 :otherwise.
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TO
NEIGHBORS

FROM LEFT FROM RIGHT

clock

(a) COMMUNICATE

(b)

(c) STORE - MEMORY

1 - key A
2 - key B
3 - key C
4 - key D
5 - clock (clk)
6 - clock On (clkOn)
7 - clock Off (clkOff)
8 - source A (SrcA)
9 - source B (SrcB)
10 - source C (SrcC)
11 - source D (SrcD)
12 - signal A (SigA)
13 - signal B (SigB)
14 - signal C (SigC)
15 - signal D (SigD)
16 - left raw (Lraw)
17 - threshold left (ThL)
18 - amp left (AmpL)
19 - left (Lft)
20 - right raw (Rraw)
21 - threshold right (Thr)
22 - amp right (Ampr)
23 - right (Rght)
24 - Previous for Birth (BrPr) 
25 - Right for Birth (RBr)
26 - Previous for On (OnPr)
27 - Right for Crowded (RCr)
28 - Left for Crowded (LCr)
29 - Previous for Off (OffPr)
30 - `birth’ sum gate (SgBr)
31 - `birth’ sum signal (SumBr)
32 - `birth‘ threshold (ThBr)
33 - `birth’ amp (AmpBr)
34 - `birth’ signal (Br)
35 - neighbor off sum gate (SgnbOff)
36 - neighbor off sum signal (SumnbOff)
37 - neighbor off threshold (ThnbOff)
38 - neighbor off amp (AmpnbOff)
39 - neighbor off signal (nbrOff)
40 - `crowded’ sum gate (SgCr)
41 - `crowded’ sum signal (SumCr)
42 - `crowded’ threshold (ThCr)
43 - `crowded’ amp (AmpCr)
44 - still alive signal (Live)
45 - next state on sum gate (SgNx)
46 - next state on sum signal (SgNx)
47 - next state on threshold (ThNx)
48 - next state on amp (AmpNx)
49 - next state on signal (Nx)
50 - next state on copy (OnNx)
51 - next state not on copy (NtNx)
52 - next state off signal (OffNx)
53 - on sum gate (SgNxOn)
54 - on sum signal (OnNxSum)
55 - on threshold (OnNxTh)
56 - on amp (OnNxAmp)
57 - buffered set signal (SetBfr)
58 - off sum gate (SgOffNx)
59 - off sum signal (SumOffNx)
60 - off threshold (ThOffNx)
61 - off amp (AmpOffNx)
62 - buffered reset signal (ResBfr)
63 - set signal (Set)
64 - reset signal (Res)
65 - buffered flipflop output (ffBfrd)
66 - flipflop NOT feedback (ffFbackNot)
67 - NOR gate 1 threshold (N1Th)
68 - NOR gate 2 sum signal (N2Sum)
69 - flipflop feedback (ffFback)
70 - NOR gate 1 sum gate (N1Sg)
71 - NOR gate 1 sum signal (N1Sum)
72 - NOR gate 1 amp (N1)
73 - NOR gate 2 sum gate (N2Sg)
74 - NOR gate 2 threshold (N2Th)
75 - NOR gate 2 amp (N2)
76 - Stored state (Last)
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Fig. 9. Chemical reaction-diffusion circuit for Rule 110. This is a detailed version of the circuit
outlined in Fig. 7, using the modules defined in Fig. 2. Species are labelled in red by their equation
numbers from Appendix section A., with species names and abbreviations to the right.

∂SigB(t,x)

∂t
=D∇2SigB(t,x)+kBSrcB(t,x)KeyB(t,x)Last(t,x)−kBdSigB(t,x) (13)

∂SigC(t,x)

∂t
=D∇2SigC(t,x)+kBSrcC(t,x)KeyC(t,x)Last(t,x)−kBdSigC(t,x) (14)

∂SigD(t,x)

∂t
=D∇2SigD(t,x)+kBSrcD(t,x)KeyD(t,x)Last(t,x)−kBdSigD(t,x) (15)

(c) Receiving and processing left-hand neighbor signal:

∂Lraw(t,x)

∂t
=D∇2Lraw(t,x)−4kdLraw(t,x)−kTLraw(t,x)Thl(t,x)

+kxSigD(t,x)KeyA(t,x)+kxSigA(t,x)KeyB(t,x)+kxSigB(t,x)KeyC(t,x)
+kxSigC (t,x)KeyD(t,x) (16)

∂Thl(t,x)

∂t
=D∇2Thl(t,x)+crecThkp−kdThl(t,x)−kTLraw(t,x)Thl(t,x) (17)
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∂Ampl(t,x)

∂t
=D∇2

Ampl(t,x)+kp−kdAmpl(t,x)−kLLraw(t,x)Ampl(t,x) (18)

∂Lft(t,x)

∂t
=D∇2Lft(t,x)−kdLft(t,x)+kLLraw(t,x)Ampl(t,x) (19)

(d) Receiving and processing right-hand neighbor signal:

∂Rraw(t,x)

∂t
=D∇2Rraw(t,x)−4kdRraw(t,x)−kTRraw(t,x)Thr(t,x)

+kxSig(t,x)KeyA(t,x)+kxSigC(t,x)KeyB(t,x)+kxSigD(t,x)KeyC(t,x)

+kxSigA(t,x)KeyD(t,x) (20)

∂Thr(t,x)

∂t
=D∇2Thr(t,x)+crecThkp−kdThr(t,x)−kTRraw(t,x)Thr(t,x) (21)

∂Amprt(t,x)

∂t
=D∇2

Amprt(t,x)+kp−kdAmprt(t,x)−kLRraw(t,x)Amprt(t,x) (22)

∂Rght(t,x)

∂t
=D∇2Rght(t,x)−kdRght(t,x)+kLRraw(t,x)Amprt(t,x) (23)

3. Calculation Stage:
(a) Copy left, right and previous time step (pr) signals (multiple gates operate on

each)
∂Brpr(t,x)

∂t
=D∇2Brpr(t,x)−kdBrpr(t,x)+kdLast(t,x)−kTBrpr(t,x)Offpr(t,x) (24)

∂Rbr(t,x)

∂t
=D∇2Rbr(t,x)−kdRbr(t,x)+kdRght(t,x)−kLRbr(t,x)Sgbr(t,x) (25)

∂Onpr(t,x)

∂t
=D∇2Onpr(t,x)−kdOnpr(t,x)+kdLast(t,x)−kLOnpr(t,x)Sgcr(t,x) (26)

∂Rcr(t,x)

∂t
=D∇2Rcr(t,x)−kdRcr(t,x)+kdRght(t,x)−kLRcr(t,x)SgnbOff (t,x) (27)

∂Lcr(t,x)

∂t
=D∇2Lcr(t,x)−kdLcr(t,x)+kdLft(t,x)−kLLcr(t,x)SgnbOff (t,x) (28)

∂Offpr(t,x)

∂t
=D∇2

Offpr(t,x)+kp−kdOffpr(t,x)−T Brpr(t,x)Offpr(t,x)

−kLOffpr(t,x)Sgbr(t,x) (29)

(b) Boolean logic for Br (birth) condition: off to on transition
∂Sgbr(t,x)

∂t
=D∇2Sgbr(t,x)+2kp−kdSgbr(t,x)

−kLOffpr(t,x)Sgbr(t,x)−kLRbr(t,x)Sgbr(t,x) (30)
∂Sumbr(t,x)

∂t
=D∇2Sumbr(t,x)−kdSumbr(t,x)

+kLOffpr(t,x)Sgbr(t,x)+kLRbr(t,x)Sgbr(t,x)−kTSumbr(t,x)Thbr(t,x) (31)
∂Thbr(t,x)

∂t
=D∇2Thbr(t,x)+1.35kp−kdThbr(t,x)−kTSumbr(t,x)Thbr(t,x) (32)

∂Ampbr(t,x)

∂t
=D∇2Ampbr(t,x)+kp−kdAmpbr(t,x)−kLSumbr(t,x)Ampbr(t,x) (33)

∂Br(t,x)

∂t
=D∇2Br(t,x)−kdBr(t,x)+kLSumbr(t,x)Ampbr(t,x)−kLBr(t,x)Sgnx(t,x)

(34)

(c) Boolean logic for no death condition (on and at least one neighbor off ): stay
on

∂SgnbOff (t,x)

∂t
=D∇2SgnbOff (t,x)+2kp−kdSgnbOff (t,x)

−kLRcr(t,x)SgnbOff (t,x)−kLLcr(t,x)SgnbOff (t,x) (35)
∂SumnbOff (t,x)

∂t
=D∇2

SumnbOff (t,x)−kdSumnbOff (t,x)+kLRcr(t,x)SgnbOff (t,x)

+kLLcr(t,x)SgnbOff (t,x)−kTSumnbOff (t,x)ThnbOff (t,x) (36)
∂ThnbOff (t,x)

∂t
=D∇2

ThnbOff (t,x)+1.35kp−kdThnbOff (t,x)

−kTSumnbOff (t,x)ThnbOff (t,x) (37)
∂AmpnbOff (t,x)

∂t
=D∇2AmpnbOff (t,x)+kp−kdAmpnbOff (t,x)

−kLThnbOff (t,x)AmpnbOff (t,x) (38)
∂nbrOff(t,x)

∂t
=D∇2nbrOff(t,x)−kdnbrOff(t,x)+kLThnbOff (t,x)AmpnbOffy(t,x)
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−kLnbrOff(t,x)Sgcr(t,x) (39)
∂Sgcr(t,x)

∂t
=D∇2Sgcr(t,x)+2kp−kdSgcr(t,x)

−kLOnpr(t,x)Sgcr(t,x)−kLnbrOff(t,x)Sgcr(t,x) (40)
∂Sumcr(t,x)

∂t
=D∇2Sumcr(t,x)−kdSumcr(t,x)+kLOnpr(t,x)Sgcr(t,x)

+kLnbrOff(t,x)Sgcr(t,x)−kTSumcr(t,x)Thcr(t,x) (41)
∂Thcr(t,x)

∂t
=D∇2

Thcr(t,x)+1.35kp−kdThcr(t,x)−kTSumcr(t,x)Thcr(t,x) (42)

∂Ampcr(t,x)

∂t
=D∇2Ampcr(t,x)+kp−kdAmpcr(t,x)−kLSumcr(t,x)Ampcr(t,x) (43)

∂Live(t,x)

∂t
=D∇2Live(t,x)−kdLive(t,x)

+kLSumcr(t,x)Ampcr(t,x)−kLLive(t,x)Sgnx(t,x) (44)

(d) Boolean logic to determine if next state is on
∂Sgnx(t,x)

∂t
=D∇2

Sgnx(t,x)+2kp−kdSgnx(t,x)

−kLLive(t,x)Sgnx(t,x)−kLBr(t,x)Sgnx(t,x) (45)
∂Sumnx(t,x)

∂t
=D∇2

Sumnx(t,x)−kdSumnx(t,x)

+kLLive(t,x)Sgnx(t,x)+kLBr(t,x)Sgnx(t,x)−kTSumnx(t,x)Thnx(t,x) (46)
∂Thnx(t,x)

∂t
=D∇2Thnx(t,x)+0.65kp−kdThnx(t,x)−kTSumnx(t,x)Thnx(t,x) (47)

∂Ampnx(t,x)

∂t
=D∇2

Ampnx(t,x)+kp−kdAmpnx(t,x)−kLSumnx(t,x)Ampnx(t,x) (48)

∂Nx(t,x)

∂t
=D∇2Nx(t,x)−kdNx(t,x)+kLSumnx(t,x)Ampnx(t,x) (49)

∂Onnx(t,x)

∂t
=D∇2Onnx(t,x)−kdOnnx(t,x)+kdNx(t,x)−kLOnnx(t,x)SgnxOn(t,x)

(50)

(e) Boolean logic to determine if next state is off
∂Ntnx(t,x)

∂t
=D∇2Ntnx(t,x)−kdNtnx(t,x)+kdNx(t,x)−kTNtnx(t,x)Offnx(t,x) (51)

∂Offnx(t,x)

∂t
=D∇2Offnx(t,x)+kp−kdOffnx(t,x)

−kTNtnx(t,x)Offnx(t,x)−kLOffnx(t,x)SgOffNx(t,x) (52)

(f) Clocked synchronization gates

∂SgnxOn(t,x)

∂t
=D∇2

SgnxOn(t,x)+2kp−kdSgnxOn(t,x)

−kLOnnx(t,x)SgnxOn(t,x)−kLclkOn(t,x)SgnxOn(t,x) (53)
∂OnnxSum(t,x)

∂t
=D∇2

OnnxSum(t,x)−kdOnnxSum(t,x)+kLOnnx(t,x)SgnxOn(t,x)

+kLclkOn(t,x)SgnxOn(t,x)−kT OnnxSum(t,x)OnnxTh(t,x) (54)
∂OnnxTh(t,x)

∂t
=D∇2

OnnxTh(t,x)+1.35kp −kdOnnxTh(t,x)

−kT OnnxSum(t,x)OnnxTh(t,x) (55)
∂OnnxAmp(t,x)

∂t
=D∇2

OnnxAmp(t,x)+kp−kdOnnxAmp(t,x)

−kLOnnxSum(t,x)OnnxAmp(t,x) (56)
∂SetBfr(t,x)

∂t
=D∇2

SetBfr(t,x)−kdSetBfr(t,x)+kLOnnxSum(t,x)OnnxAmp(t,x) (57)

∂SgOffNx(t,x)

∂t
=D∇2

SgOffNx(t,x)+2kp−kdSgOffNx(t,x)

−kLOffnx(t,x)SgOffNx(t,x)−kLclkOff (t,x)SgOffNx(t,x) (58)
∂SumOffNx(t,x)

∂t
=D∇2

SumOffNx(t,x)−kdSumOffNx(t,x)

+kLOffnx(t,x)SgOffNx(t,x)+kLclkOff (t,x)SgOffNx(t,x)−kT SumOffNx(t,x)ThOffNx(t,x)

(59)
∂ThOffNx(t,x)

∂t
=D∇2

ThOffNx(t,x)+1.35kp−kdThOffNx(t,x)

−kT SumOffNx(t,x)ThOffNx(t,x) (60)
∂AmpOffNx(t,x)

∂t
=D∇2

AmpOffNx(t,x)+kp−kdAmpOffNx(t,x)

−kLSumOffNx(t,x)AmpOffNx(t,x) (61)
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∂ResBfr(t,x)

∂t
=D∇2ResBfr(t,x)−kdResBfr(t,x)+kLSumOffNx(t,x)AmpOffNx(t,x) (62)

4. Storage Stage
(a) Copies of Set/Res signals

∂Set(t,x)

∂t
=D∇2

Set(t,x)−kdSet(t,x)+kdSetBfr(t,x)−kLSet(t,x)N1Sg(t,x) (63)

∂Res(t,x)

∂t
=D∇2Res(t,x)−kdRes(t,x)+kdResBfr(t,x)−kLRes(t,x)N2Sg(t,x) (64)

(b) Flip-flop module
∂ffBfrd(t,x)

∂t
=D∇2

ffBfrd(t,x)−kdffBfrd(t,x)+kLN2Th(t,x)N2(t,x) (65)

∂ffFbackNot(t,x)

∂t
=D∇2ffFbackNot(t,x)−kdffFbackNot(t,x)

+kLN1Th(t,x)N1(t,x)−kLffFbackNot(t,x)N2Sg(t,x) (66)
∂N1Th(t,x)

∂t
=D∇2

N1Th(t,x)+0.65kp−kdN1Th(t,x)−kTN1Sum(t,x)N1Th(t,x) (67)

∂N2Sum(t,x)

∂t
=D∇2N2Sum(t,x)−kdN2Sum(t,x)+kLRes(t,x)N2Sg(t,x)

+kLffFbackNot(t,x)N2Sg(t,x)−kTN2Sum(t,x)N2Th(t,x) (68)
∂ffFback(t,x)

∂t
=D∇2ffFback(t,x)−kdffFback(t,x)+kdffBfrd(t,x)

−kLffFback(t,x)N1Sg(t,x) (69)
∂N1Sg(t,x)

∂t
=D∇2

N1Sg(t,x)+2kp−kdN1Sg(t,x)

−kLSet(t,x)N1Sg(t,x)−kLffFback(t,x)N1Sg(t,x) (70)
∂N1Sum(t,x)

∂t
=D∇2N1Sum(t,x)−kdN1Sum(t,x)+kLSet(t,x)N1Sg(t,x)

+kLffFback(t,x)N1Sg(t,x)−kTN1Sum(t,x)N1Th(t,x) (71)
∂N1(t,x)

∂t
=D∇2N1(t,x)+kp−kdN1(t,x)−kLN1Th(t,x)N1(t,x) (72)

∂N2Sg(t,x)

∂t
=D∇2

N2Sg(t,x)+2kp−kdN2Sg(t,x)

−kLRes(t,x)N2Sg(t,x)−kLffFbackNot(t,x)N2Sg(t,x) (73)
∂N2Th(t,x)

∂t
=D∇2N2Th(t,x)+0.65kp−kdN2Th(t,x)−kTN2Sum(t,x)N2Th(t,x) (74)

∂N2(t,x)

∂t
=D∇2

N2(t,x)+kp−kdN2(t,x)−kLN2Th(t,x)N2(t,x) (75)

(c) Stored State
∂Last(t,x)

∂t
=D∇2Last(t,x)−kdLast(t,x)+kdffBfrd(t,x) (76)
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Abstract. DNA self-assembly is a powerful technology for controlling
matter at the nanometre to micron scale, with potential applications in
high-precision organisation and positioning of molecular components.
However, the ability to program DNA-only self-organisation beyond the
microscopic scale is currently lacking. In this paper we propose a compu-
tational method for programming spatial organisation of DNA at the cen-
timetre scale, by means of DNA strand displacement reaction diffusion
systems. We use this method to analyse the spatiotemporal dynamics of
an autocatalytic system, a predator-prey oscillator and a two-species con-
sensus network. We find that both autocatalytic and oscillating systems
can support travelling waves across centimetre distances, and that con-
sensus in a spatial context results in the spontaneous formation of distinct
spatial domains, in which one species is completely eliminated. Together,
our results suggest that programmed spatial self-organisation of DNA,
through a reaction diffusion mechanism, is achievable with current DNA
strand displacement technology.

Keywords: DNA strand displacement, autocatalysis, consensus, approx-
imate majority, reaction-diffusion, oscillators, travelling waves.

1 Introduction

Biological systems rely on a variety of mechanisms for the organisation of mat-
ter across spatial scales. At the subcellular scale, molecular self-assembly is an
efficient way of creating shapes and structures, for example to assemble viral
capsids from protein building blocks [1]. To propagate signals over distances
beyond the cellular scale, biological systems often rely on diffusible signalling
molecules that interact with other molecular components to form reaction dif-
fusion patterns [2]. For instance, a reaction diffusion mechanism was recently
proposed to explain digit formation in mouse embryos [3].

In recent years, DNA nanotechnology has made spectacular progress in the
structural self-assembly of micron-sized objects with nanometre scale precision

S. Murata and S. Kobayashi (Eds.): DNA 2014, LNCS 8727, pp. 84–99, 2014.
c© Springer International Publishing Switzerland 2014
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[4]. Even centimetre-length DNA crystals [5] and hydrogels [6] have been ex-
perimentally realised. However, these materials have relatively simple long-
range order that is either periodic or random. To replicate the diversity and
scale of biological organisms, novel approaches are needed that extend to the
centimetre scale and beyond. A reaction diffusion mechanism based on DNA
molecules diffusing through and reacting in a hydrogel or similar matrix could
provide a promising solution.

There are several examples of chemical systems capable of pattern formation,
most famously the Belousov-Zhabotinskii system [7]. One of the earliest exam-
ples of spatial organisation in a cell-free biochemical system is the travelling
waves of in vitro evolving RNA observed by Bauer and co-workers [8]. More
recently, Isalan et al. [9] engineered a cell-free transcription-translation system
that mimicked the pattern forming program observed in Drosophila. Simpson et
al. proposed a method for implementing amorphous computation with in vitro
transcription networks [10]. Rondelez and co-workers elegantly demonstrated
travelling wave patterns in a molecular predator prey model created using a
combination of DNA molecules, nicking enzymes and polymerases [11]. How-
ever, all of these approaches rely on enzymes and are thus more sensitive to
reaction conditions than an approach that uses DNA alone.

Ellington and co-workers took a first step towards demonstrating pattern
formation with enzyme-free DNA strand displacement systems by engineering
a DNA-based edge detection circuit [12, 13]. Using UV light, a target pattern
was first projected onto a gel that contained multiple DNA reactants, some of
which had photo-cleavable bases. This initial pre-patterning activated a reac-
tion pathway that led to pattern refinement. Scalise and Schulman [14] devel-
oped a modelling framework based on reaction diffusion equations for gener-
ating arbitrary shapes and patterns, starting from a small set of localised DNA
signal sources. In principle, transient wave patterns and even stable Turing pat-
terns could emerge from homogeneous inital conditions with small random
perturbations. If realised with DNA molecules, such emergent patterns could
complement existing approaches for self-assembly or diffusible signalling based
on pre-patterned information by providing a mechanism for initial symmetry
breaking. To understand if such self-organised patterns are within reach of cur-
rent DNA technology, we first investigate how information can propagate in
simple DNA strand displacement systems with a single localised input source.
Then, we investigate the behaviour of a multi-reaction network with homoge-
neous (but noisy) initial conditions.

Recent work demonstrated that it is possible, in principle, to build DNA
components that can approximate the kinetics of any well-mixed chemical reac-
tion network (CRN) [15–17]. CRNs were proposed as a prescriptive program-
ming language for specifying a target behaviour, which is then realised with
DNA components. Here, we propose to build on this work to go beyond well-
mixed chemistry. In particular, we demonstrate that DNA molecules can be
programmed to approximate the behaviour of chemical reaction diffusion sys-
tems that yield self-organising patterns with macroscopic dimensions.
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Central to this work is the use of computer-aided design tools. The Visual
DSD (vDSD) software uses a textual syntax to describe an initial set of DNA
molecules, and automatically generates the corresponding strand displacement
reactions [18, 19]. It has previously been used to aid the design of several DSD
circuits [17, 20–22]. Here, we extend vDSD to enable simulations of reaction dif-
fusion DSD systems in a range of spatially heterogeneous scenarios. We design
systems that form spatial patterns and analyse their behaviour in the context of
realistic kinetic parameters. We then propose a number of scenarios that could
be tested experimentally. Specifically, we demonstrate the design of systems
that generate periodic travelling waves and stationary patterns, and analyse
the impact of leaks arising from dysfunctional DNA gates enabling us to iden-
tify key insights and constraints on our systems prior to their construction.

2 Methods

Two-Domain DNA Strand Displacement. We consider the implementation of
high-level CRNs using DNA strand displacement, following the two-domain
approach proposed in [16]. Signal strands are single-stranded DNA (ssDNA)
molecules which combine a short toehold domain and a longer recognition do-
main. The recognition domain specifies the identity of a signal, while the toehold
domain can be shared among multiple signals. Accordingly, we use the notation
〈t x〉 to represent a signal strand X. To implement the stoichiometry of an ar-
bitrary chemical reaction in the two-domain scheme, a nicked double-stranded
DNA (ndsDNA) join gate receives all reactant strands and produces a translator
strand, which then triggers the release of product strands from a fork gate (see
[16, 17] for a detailed description). We adopt a naming convention for join and
fork gates in which subscripts identify the reactants and products respectively.
For example, the reaction B+X → 2X is implemented by 〈t b〉 and 〈t x〉 strands
binding JoinBX gates, with Fork2X gates producing two 〈t x〉 strands.

Error Modes. We consider the impact of imperfections in DNA strand/gate
synthesis, as modelled in [17]. Specifically, we consider a leak parameter, which
is the fraction of ndsDNA gates that spontaneously produce their output strand
without requiring inputs.

Simulating Partial Differential Equations (PDEs) in Visual DSD. To analyse
the spatiotemporal dynamics of DNA strand displacement circuits, and to pro-
vide the means for others to do this conveniently, we incorporated numerical
solvers for partial differential equations into the Visual DSD (vDSD) software.
Specifically, we provide numerical algorithms to solve problems of the form

∂c
∂t

= f (c) + D∇2c (1)

where c is the vector of concentrations and D is the diagonal matrix of diffusion
rates, and ∇2 represents the second spatial derivative. Solvers for both 1- and
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2- dimensional domains have been implemented, using a Crank-Nicolson finite
difference approach [23]. Extensions to the DSD programming language enable
specifying PDE solver parameters, by way of directives (see Appendix A1 for
a complete list; Table S1). A screenshot of the new PDE-solving capabilities of
vDSD is shown in Fig. 1.

Fig. 1. Screenshot of the Visual DSD software during a 1d spatial simulation

Using the defaultdiffusion directive, we applied a diffusion rate of 10−10 m2

s−1 for all ssDNA strands and dsDNA gates, as approximated in [24]. Note that
when simulating reaction-diffusion equations, modifications to a uniform D
(i.e. D �→ αD′) can be applied by rescaling the spatial domain as x �→

√
αx′.

Therefore, all qualitative behaviours presented here are independent of the
choice of diffusion rate.

Simulation of an Invasion Scenario. To determine how local signals propagate
through a reactive medium, we consider invasion scenarios. These occur when
the initial concentrations of specified molecular species are non-zero only in
some sub-region R of the full domain. In a vector of concentrations c = c(x, t),
where x is the position and t is the time, the elements cI (where I is a subset of
the species labels) have initial conditions

cI(x, 0) =

{
c0

I if x ∈ R
0 otherwise

(2)

In the case of DNA strand displacement, we supplied gates and auxiliary
strands uniformly in space. In vDSD, the species in the subset I can be initialised

1 Appendices in the online version, available from the author’s website.
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according to (2) with R as a central channel in 1d or a central square in 2d, by
using the centralcore option of the spatialic directive (Table S1).

3 Results

To predict how DNA diffusion might enable pattern formation over macroscopic
scales, we considered three circuits that have previously been well-studied at the
CRN level: an autocatalytic circuit, a Lotka-Volterra predator-prey oscillator and
a consensus network. We implemented DNA strand displacement versions of
these circuits, and analysed their spatiotemporal dynamics with vDSD.

3.1 Wave Propagation in an Autocatalytic Circuit

One of the simplest known systems for which travelling wave phenomena have
been observed is an autocatalytic reaction [25]

X +Y k−→ 2Y (3)

The distance travelled in time t by the front of a travelling wave in an autocat-
alytic reaction-diffusion system is dW ≈ 2

√
f Dt [26], where f is the intensity

of the interaction. In this case f becomes approximately equal to k[X]0, where
[X]0 is the initial concentration of X (see Appendix B for a derivation). The dif-
fusion coefficient of a single-stranded 20mer in water at 20◦C was reported to
be on the order of 10−10 m2 s−1 [24]. Furthermore, the concentrations of DNA
species in strand displacement systems are typically on the order of 10 nM –
1 μM. For a bimolecular rate constant k = 5 × 10−5 M−1 s−1 and an initial con-
centration of [X]0 = 5 nM, the distance travelled by a wave front in 40 hours is
approximately 4.55 cm, which agreed with simulations (Fig. 3a,e).

Several previous works have demonstrated the implementation of autocat-
alytic behaviours using DNA strand displacement [17, 27]. However, the
spatiotemporal dynamics of this simple circuit has not yet been reproduced
experimentally. While the wave-speed of the single reaction can be analytically
characterised, the impact of diffusion and consumption of ndsDNA gates can
only be predicted via numerical simulation. To address this, we compared sim-
ulations of the high-level autocatalytic reaction (3) in one spatial dimension
with equivalent simulations of strand displacement implementations. Here we
use a model of the autocatalytic B + X → 2X circuit that is identical to the
model in [17] (Fig. 2).

We analysed spatiotemporal dynamics of the autocatalytic circuit from [17].
In an ideal parameterisation, in which all rates of toehold-mediated strand dis-
placement are equal, we observed a very similar pattern to the CRN model
(Fig. 3a,b,e). When using the experimentally calibrated rates from [17], we also
found a similar pattern in the absence of leaks (Fig. 3c,e). However, approxi-
mately 1% leak from the JoinBX gate completely disrupted the travelling wave
(Fig. 3d). The strong impact of leaks on spatiotemporal dynamics is analogous
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Fig. 2. DNA strand displacement implementation of an autocatalytic reaction. Two-
domain signals and gates were used to implement the formal reaction B + X → 2X,
where B is the 〈t b〉 strand, and X is the 〈t x〉 strand. (a) The initial molecules are
shown, including products of fast leak reactions, which are assumed to immediately
produce gate outputs. (b) Complete reaction list. The reaction rates are quantified in
[17], in which each rate was inferred from experimental data.

to its impact on purely temporal dynamics of autocatalytic circuits, observed in
[17, 27], in which the presence of a small concentration of reactant kick-starts
autocatalysis and eventually consumes all available gates. Here, as there are
gates across the whole spatial domain, the presence of leaks means that diffu-
sion from neighbouring locations is not required to kick-start autocatalysis, and
so a travelling wave is not observed.

3.2 Periodic Travelling Waves in Lotka-Volterra Predator-Prey Oscillators

To analyse more complex spatiotemporal dynamics in an equivalent experi-
mental setup, we considered designs for generating periodic travelling waves.
Mathematical theory dictates that periodic travelling waves can be produced
in spatially heterogeneous settings (i.e. with diffusion) when the corresponding
spatially homogeneous dynamics show oscillations [2]. A range of CRN oscilla-
tors have been studied, providing an extensive set of examples to test. Among
them, the Lotka-Volterra system is a canonical example of nonlinear dynamics,
which has also been studied in the context of DNA strand displacement [15]. A
Lotka-Volterra network can be described by

X
k1−→ 2X X + Y

k2−→ 2Y Y
k3−→ ∅ (4)
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Fig. 3. Wave propagation in autocatalytic circuits. Simulations were carried out using
vDSD for autocatalytic circuits. (a) CRN model with k = 5 × 10−5 nM−1 s−1. (b) Ideal
strand displacement implementation, in which all toehold-mediated strand displace-
ment reactions occur at rate 10−4 nM−1 s−1. (c,d) Strand displacement implementation
of B + X → 2X in [17], where rates of toehold-mediated strand displacement were set
to values inferred from experimental data. Leak parameters were either equal to zero
(c), or at inferred quantities (d). In all cases, simulations were initialised with 1 nM of X
in a central channel of width 0.01 m, and 5 nM of Y across the whole 0.1 m domain. In
strand displacement models, 200 nM of gates and auxiliary strands were also supplied
homogeneously. The concentration of X is indicated by the colour bar in the upper right,
in nM units. (e) Wave propagation was characterised by determining the time at which
the concentration of X reached 3 nM, half of the maximal level in the ideal system, for
each point in space.

DSD Implementation of a Lotka-Volterra Predator-Prey System. To assess
experimentally feasible designs for Lotka-Volterra oscillators, we translated the
reactions (4) into a two-domain DNA strand displacement system (Fig. 4). In
this design, the majority of toeholds are the same (domain t), though a second
toehold sequence (domain u) specifically distinguishes translator strands from
other single-stranded DNA strands in the system. A single toehold scheme is
presented in Appendix C, where it is noted that auxiliary strand reuse (crosstalk)
between gates complicates the selection of their initial concentrations.

Not all auxiliary strand crosstalk is removed in this design, as the 〈x t〉
strand required to release the second output on the Fork2X gate is also a reverse
strand on JoinXY gates. Thus, the effective rate constrant for X + Y → 2Y may
increase as Fork2X gates are consumed. An optimisation of this design would
therefore be to remove this crosstalk.
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Fig. 4. Candidate DNA strand displacement implementation of a Lotka-Volterra os-
cillator. Two-domain signals and gates were used to implement the reaction system (4),
where X is the 〈t x〉 strand and Y is the 〈t y〉 strand. (a) The initial molecules required.
(b) Complete reaction list. The reaction rates are all set as k except for the binding of the
first input strands to Join gates, which include a coefficient representing possible manip-
ulations to the degree of complementarity. Specifically, kJoinX = c1*k, kJoinXY = c2*k,
and kJoinY = c3*k.

Generating Oscillatory Behaviours by Modulating External Toehold Binding
Rates. In order to generate periodic travelling waves, we sought conditions
under which DSD versions of the Lotka-Volterra reactions gave oscillatory be-
haviours. Despite the potential for modulating effective rate constants by vary-
ing concentrations of auxiliary strands, we found no regime in which more than
a single oscillation could be observed (simulations not shown). Instead, we con-
sidered modifications to the binding sites of inputs on the join gates, in order
to obtain direct control over the effective rate constant. By shortening the se-
quence of the exposed toehold and thus the degree of complementarity, strand
displacement reactions can be slowed down by several orders of magnitude
[28]. Manipulating the rate constants in this way is equivalent to the approach
in [15], in which the first step of the implementation of the bimolecular reaction
is 3 orders of magnitude slower than the unimolecular reactions.
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To determine an appropriate parameter regime for oscillatory behaviours,
we simulated combinations of (kJoinX, kJoinXY, kJoinY), where kG is the binding of
the input to gate G ∈ {JoinX, JoinXY, JoinY}, and analysed the resulting traces
for the number of turning points within 96 h. A fixed duration was important
to rule out slow yet persistent oscillations, which would be challenging to ob-
serve experimentally. Also, as gates are consumed, both the amplitude and fre-
quency of oscillations will diminish over time, meaning it was important to
use a methodology suitable for damped oscillations. Reducing binding rates to
JoinX and JoinY gates led to a dramatic improvement in oscillatory behaviours
(Fig. 5). A reduction of approximately 2 orders of magnitude was optimal (see
leftmost panels of Fig. 5a,b), and produced up to 10 turning points in the 96 h
window. Reducing kJoinXY led to fewer turning points in both 〈t x〉 and 〈t y〉
traces (Fig. 5c,d). The strong dependency of oscillatory behaviours on specific
values of the parameters emphasises the importance of accurate quantification
of these rates.

Fig. 5. Parameter analysis for the proposed DSD implementation of a Lotka-Volterra
oscillator. Simulations were performed over different combinations of rates for inputs
binding join gates. The simulations of (a) 〈t x〉 and (b) 〈t y〉 were analysed for the num-
ber of turning points in 96 h. (c,d) Example simulations corresponding to the black cross-
hairs in the leftmost panels of a and b. Here, kJoinXY = 10−4 nM−1s−1, the values for both
kJoinX and kJoinY are as indicated in the legend, and all other rates of toehold-mediated
strand displacement were assumed to be 10−4 nM−1s−1. All gates and auxiliary strands
were initialised at 200 nM, and 〈t x〉 and 〈t y〉 were initialised at 10 nM.
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Spatiotemporal Dynamics for Strand Displacement Oscillators. Having es-
tablished parameter regimes for DNA strand displacement implementations
in which oscillatory behaviour persists over 96 hours, we sought to determine
whether periodic travelling wave phenomena could be produced. In addition
to the consumption of gates diminishing oscillatory behaviour, we would ex-
pect the diffusion of all DNA molecules to spatially homogenise behaviours
that are more heterogeneous in the CRN version. We simulated invasions of
〈t x〉 and 〈t y〉 strands in media containing the gates and auxiliary strands. We
selected a parameterisation in which non-spatial simulations predicted robust
cycling with minimal amplitude decay (Fig. 6a). In 1d, we observed periodic
travelling waves, though the waves both decayed in amplitude and decoupled
from cycles in the centre (Fig. 6b). In 2d, we observed a similar pattern, with
the emergence of several travelling waves with decaying amplitude (Fig. 6c).

Fig. 6. Spatiotemporal dynamics of the proposed DSD implementation of a Lotka-
Volterra oscillator. This DSD implementation was simulated in vDSD using parame-
ter values identified in Fig. 5 as leading to oscillatory dynamics. Specifically, kJoinX =

kJoinY = 2 × 10−6 nM−1 s−1, and all other toehold-mediated strand displacement rates
at k = 10−4 nM−1 s−1. (a) Simulation of the spatially inhomogeneous problem. (b) Sim-
ulation of spatiotemporal dynamics in 1d. (c) Simulation of spatiotemporal dynamics in
2d. In b,c, the domain was 0.1 m wide, and the solver used 101 grid-points. A central
core of relative width 0.1 was applied to 〈t x〉 and 〈t y〉, 1 nM internally and 0 nM ex-
ternally. All gates and auxiliary strands were supplied uniformly at 200 nM. In b and c,
the concentration of 〈t x〉 is indicated by the colour bar in the upper right, in nM units.
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Similar analysis applied to the single toehold DSD implementation revealed
greater amplitude loss in non-spatial simulations, and equivalently weaker
travelling waves in both 1d and 2d simulations (Fig. S3).

3.3 Emergence of Stationary Patterns from a Consensus Network

In previous sections, we predicted that non-stationary spatial patterns could
be generated from invasion scenarios. However, owing to technical challenges
in producing such initialisations in an experiment, here we considered pattern
formation that only relies on inherent random spatial heterogeneity. We consid-
ered circuits with bistable dynamics, which might give rise to spatial bistabil-
ity, and thus stationary patterns. Consensus algorithms use bistability to enable
distributed agents holding a mixture of beliefs to reach consensus. For a binary
belief, X or Y say, it is possible for a population of N agents to reach consensus
on the initial majority in O(N log N) steps [29]. There are several ways to de-
scribe the algorithm in terms of chemical reaction networks (CRNs). Here, we
consider the three reaction scheme

X +Y k−→ 2B B + X k−→ 2X B +Y k−→ 2Y, (5)

as previously implemented using two-domain strand displacement [17]. This
scheme was also used in a recent analysis of consensus algorithms in a spatial
context [30].

Simulation of Spatiotemporal Dynamics for the Consensus Network. To gain
insight into how diffusion of DNA molecules might modulate consensus dynam-
ics in a spatially heterogeneous experimental system, we simulated consensus
networks in vDSD. As with the autocatalytic circuits in Section 3.1, we compared
the spatiotemporal dynamics of the CRN level model with those from strand
displacement-level models. To encode the more realistically achievable experi-
mental setting of providing a target concentration uniformly in space, but subject
to spatial variations, we used the random option of the spatial initial condition
directive (see Table S1).

We found that consensus networks routinely produced spatial patterns in 1d
within 2 days (Fig. 7). As predicted from theory [31, 32], the CRN model pro-
duced a variety of patterns that depended on the random initial configuration
of the concentrations of X and Y molecules, and were demonstrably stable in
time (Fig. 7a). Furthermore, these patterns were reasonably robust to deviations
from a zero majority, as seen by varying [X] both above and below the value of
[Y] (Fig. 8). We next simulated the DSD version of the consensus network, de-
scribed in [17]. This network has a majority threshold that is not 1:1, owing to
differences in the effective rate constants of the two autocatalytic reactions. Sim-
ulations of random perturbations to [X] = 7.5 nM and [Y] = 5 nM led to the
emergence of patterns that persisted in excess of 10 days, similar to the CRN
model, both in the absence (Fig. 7b) and presence (Fig. 7c) of fast leaks arising
from dysfunctional dsDNA gates or ssDNA strands. The presence of leaks in-
creased the maximum concentration of [X] considerably as compared with the
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Fig. 7. Pattern formation in 1d for diffusive consensus networks. Simulations were
carried out using vDSD for 1d domains. (a) The CRN version of the consensus net-
work (5) was simulated with [X] and [Y] initialised with random perturbations to 5 nM
of strength 0.2 (see Appendix A) at each grid-point. (b) DSD version of the consensus
network assuming no leaks. (c) DSD version of the consensus network assuming leak
parameters as quantified in [17]. The concentration of X is indicated by the colour bars
on the right, in nM units.

Fig. 8. Robustness of stationary patterns to initial conditions. The reaction-diffusion
equations were solved for the CRN version on a 0.1 m 1d grid of 101 points, analogous to
Fig. 7. Using the random option for the spatialic directive, initial conditions were random
perturbations from [Y] = 10 nM and [X] as indiciated on the horizontal axes. Simula-
tions were conducted 10 times each with [X] initialised over 0.1 nM increments between
8 nM and 12 nM. After 20 days of simulation, the mean average of concentrations for
(a) X, (b) Y and (c) B was computed over the domain. When the mean concentration of
X is 0, this indicates that no stationary pattern was observed, and similarly when the
mean of [X] is equal to 10 + X0. Mean concentrations in between these values indicate
the presence of stationary patterns. This illustrates how robustly deviations from the
unstable coexistence state can be stabilised by diffusion.

CRN or DSD system without leaks, though gave qualitatively similar patterns
in the same spatial domain.

Spatial patterns were also observable in 2d domains (Fig. 9). Starting from a
random initial configuration of the concentrations of X and Y molecules, pat-
terns with high amplitude emerged within 1 day of simulated time in CRN (Fig.
9a), and DNA strand displacement (Figs. 9b,c) models. As for 1-dimensional
simulations, leaks did not change the qualitative behaviour of the patterns,
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Fig. 9. Pattern formation in 2d for diffusive consensus networks. Simulations were
carried out using vDSD for 2d domains. (a) The CRN version of the consensus network
(5) was simulated with [X] and [Y] initialised with random perturbations to 5 nM at
each grid-point. (b) DSD version assuming no leaks. (c) DSD version assuming leak
parameters as described and quantified in [17]. The concentration of X is indicated by
the colour bars on the right, in nM units.

Fig. 10. Stationary pattern for the consensus network in a 2d domain. The CRN version
of the consensus network (5) was simulated using vDSD, using the CRN tab, on a 0.05 m
x 0.05 m grid with 101 points in each dimension. The initial conditions were set to [Y] =
10 nM uniformly, and [X] = 100 nM in a central square of size 0.025 m x 0.025 m. (a) The
time-evolution of [Y] at times specified above each panel. (b) The horizontal position
at which [Y] = 5 nM at each time-slice, at the middle of the vertical axes (indicated by
dashed lines in a).
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though increased the maximum concentration of X strands throughout.
However, in contrast to 1d, we found that the patterns gradually disappeared
over time (up to 10 days from the start of the simulated experiment). This might
be due to an increased directional effect of diffusion in 2d, though could not be
corrected for by reducing the rate of diffusion (simulations not shown). How-
ever, we found that stationary patterns could arise in 2d problems in invasion
scenarios, in which invading species X were placed at the centre of a spatially
homogeneous concentration of Y (Fig. 10). In simulations of the CRN model, a
wave separating regions of high [X] from high [Y] transiently moved position,
though became spatially stable by 2 days of simulated time (Fig. 10). These con-
trasting behaviours emphasise the importance of initial conditions on pattern
formation in an experimental setting.

4 Discussion

In this article, we have shown that purely DNA-based circuits have great
potential for producing spatial patterns. By using an experimentally demon-
strable strategy for mapping CRNs to DNA strand displacement circuits, we
provide realistic analysis of emergent spatiotemporal dynamics in the presence
of isothermal diffusion. Specifically, we find that strand displacement realisa-
tions of autocatalytic circuits are particularly sensitive to leaks, which com-
pletely disrupt wave propagation. Additionally, diffusion degrades periodic
travelling waves emanating from a strand displacement realisation of the Lotka-
Volterra predator-prey network. However, we find that the consensus network
in [17] produces stationary and travelling waves in different scenarios, both
of which are robust to the presence of leaks. More generally, our simulations
demonstrate that it is possible to exploit chemical diffusion to produce emer-
gent pattern formation at the centimetre scale. The formation of patterns at this
scale could open up new opportunities for programmed self-assembly.

The ability to design robust DNA-based circuits in the presence of unplanned
interactions is a fundamental problem in molecular programming. While we
expect DNA synthesis methods to improve over time, there will likely always
be some imperfections. Therefore, the ability to both experimentally charac-
terise and model leaks will continue to be important for fine-tuning DNA cir-
cuits. We found that leaks had varying impacts on emergent pattern formation.
Autocatalytic circuits were particularly sensitive (Fig. 3a), while the consensus
network was qualitatively robust (Figs. 7 & 9).

To experimentally observe the spatial patterns presented here, we note sev-
eral challenges. To reproduce the scenarios in Figs. 3 and 6b,c, input DNA
strands will need to be applied in a specific sub-region of the media. However,
pipetting will likely result in a disturbance that will produce a travelling wave
in the fluid, which might disrupt the diffusion of the DNA molecules within
the solution. Therefore, pattern formation arising from more spatially uniform
initial conditions is likely to be easier to achieve. In Figs. 7 and 9, initial condi-
tions were set to be random perturbations from a target concentration, which
models the inevitable spatial heterogeneity in a mixture.
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Our approach to analysing DNA strand displacement circuits in the pres-
ence of diffusion has involved the extension of the Visual DSD software to
describe and simulate reaction-diffusion equations. This has allowed us to con-
veniently analyse the dependence of spatiotemporal dynamics on different
DNA gate designs, unplanned DNA interactions, fluctuations in initial con-
ditions and kinetic rates. Future extensions could include the specification of
irregular domains and a range of boundary conditions, which could be impor-
tant for applications of DNA-based patterning or for describing experimental
systems such as microchemostats, which involve measuring molecular interac-
tions in chambers subjected to fluxes of reactants.

It is hoped that our methodology and corresponding software implementa-
tion will provide the means to design strand displacement circuits that
both acknowledge and take advantage of the inherent spatial heterogeneity in
physical systems.
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Abstract. We study the set of output stable configurations of chemical
reaction deciders (CRDs). It turns out that CRDs with only bimolecular
reactions (which are almost equivalent to population protocols) have a
special structure that allows for an algorithm to efficiently calculate the
(finite) set of minimal output stable configurations. As a consequence, a
relatively large sequence of configurations may be efficiently checked for
output stability.

We also provide a number of observations regarding the semilinearity
result of Angluin et al. [Distrib. Comput., 2007] from the context of
population protocols (which is a central result for output stable CRDs).
In particular, we observe that the computation-friendly class of totally
stable CRDs has equal expressive power as the larger class of output
stable CRDs.

1 Introduction

In scenarios where the number of molecules in a chemical reaction network
(CRN) is small, traditional continuous models for CRNs based on mass action
kinetics are not suitable and one may need to consider discrete CRNs. In discrete
CRNs, the number of molecules of each species is represented by a nonnegative
integer and probabilities are assigned to each reaction. The computational power
of discrete CRNs has been formally studied in [16] (see also [7]), where it is shown
that Turing-universal computation is possible with arbitrary small (but nonzero)
error probability. The implementability of arbitrary CRNs has been studied us-
ing strand displacement reactions as a primitive [17]. As observed in [16], discrete
CRNs are similar to population protocols [1,4] and results carry over from one
domain to the other. From now on we consider only discrete CRNs, and so we
omit the adjective “discrete”.

We continue in this paper the study of CRNs that has for each given input
a deterministic output [5]. Thus, we are concerned here with error-free compu-
tation and so probabilities are irrelevant and only reachability is important. A
given input is accepted by such a “deterministic” CRN, or more precisely output
stable chemical reaction decider (CRD) [5], if at the end of the “useful” com-
putation we obtain an accept configuration c, which is a configuration where at
least one yes voter is present and none of the no voters (each species is marked
by the CRD as either a yes or a no voter). Otherwise, the input is rejected and
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c is a reject configuration, which is a configuration where at least one no voter
is present and none of the yes voters. The configuration c may still change, but
it stays an accept configuration when c is an accept configuration (and similar
for reject). In this case c is called output stable.

In Section 3, we provide a number of observations regarding the semilinearity
result for population protocols of [1,2]. First we mention that this result has a
small gap in its proof which is easily fixable, except for the corner case where
the semilinear set contains the zero vector. Next, we define a stricter variant of
the notion of output stable, called totally stable. In contrast to output stable
CRDs, totally stable CRDs eventually (completely) halt for every input. For
totally stable CRDs it is computationally easy to determine when the compu-
tation has ended. We mention that the semilinearity result of [1,2] works also
for totally stable CRDs, and consequently the class of totally stable CRDs has
equal expressive power as the larger class of output stable CRDs.

CRNs are similar to Petri nets [14] and vector addition systems (VASs) [11],
see [16]. However, Petri nets and VASs operate as “generators” where the compu-
tation starts in the given fixed starting configuration (called the initial marking)
and one is (generally) interested in the reachable configurations. In contrast, a
CRD is a decider where one is (generally) interested in determining the set of
inputs that is accepted by the CRD. Despite these differences, various results
concerning Petri nets and VASs can be carried over to CRDs.

In Section 4, we take a closer look at the notion of output stable. First, using
some well-known results for VASs, we show that determining whether or not a
configuration is output stable for an output stable CRD is decidable. Next, we
turn to bimolecular CRNs, i.e., CRNs where each reaction has two reactants and
two products. It turns out that bimolecular CRDs provide a special structure
on the set of output stable configurations. More precisely, it turns out that the
set of minimal elements M of the upward closed set of output unstable config-
urations may be efficiently determined for bimolecular CRDs, cf. Theorem 6 —
this is the main result of the paper. Given M , it is then computationally easy
to determine if a given configuration c is output stable. Consequently, the algo-
rithm to determine M provides for an efficient method to test a relatively large
number of configurations for output stability (the preprocessing cost to gener-
ate M becomes smaller, relatively, when testing more configurations for output
stability).

Recent work related to CRNs include the calculus of chemical systems [15], the
study of timing issues in CRNs [9], and the study of rate-independent continuous
CRNs [6].

2 Chemical Reaction Networks and Deciders and
Population Protocols

2.1 Chemical Reaction Networks

The notation and terminology of this subsection and the next are similar
as in [10].
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Let N = {0, 1, . . .}. Let Λ be a finite set. The set of vectors over N indexed by
Λ (i.e., the set of functions ϕ : Λ → N) is denoted by NΛ. For x ∈ NΛ, we define
‖x‖ =

∑
i∈Λ x(i). We denote the restriction of x to Σ ⊆ Λ by x|Σ . For x, y ∈ NΛ

we write x ≤ y iff x(i) ≤ y(i) for all i ∈ Λ. For notational convenience we now
also denote vectors in NΛ, which can be regarded as multisets, by their string

representations. Thus we denote c ∈ NΛ by the string A
c(A1)
1 · · ·Ac(An)

n (or any
permutation of these letters) where Λ = {A1, . . . , An}.

Let Λ be a finite set. A reaction α over Λ is a tuple (r, p) with r, p ∈ NΛ; r
and p are called the reactants and products of α, respectively. We say that α
is mute if r = p. We say that α is bimolecular if ‖r‖ = ‖p‖ = 2. A chemical
reaction network (CRN, for short) is a tuple R = (Λ,R) with Λ a finite set and
R a finite set of reactions over Λ. The elements of Λ are called the species of R.
The elements of NΛ are called the configurations of R. For a configuration c, ‖c‖
is the number of molecules of c.

For a c ∈ NΛ and a reaction α over Λ, we say that α = (r, p) is applicable to
c if r ≤ c. If α is applicable to c, then the result of applying α to c, denoted by
α(c), is c′ = c− r + p. Note that α(c) ∈ NΛ. In this case, we also write c →α c′.
Moreover, we write c →R c′ if c →α c′ for some reaction α of R. The transitive
and reflexive closure of →R is denoted by →∗

R. We say that c′ is reachable from
c in R if c →∗

R c′. If R is clear from the context, then we simply write → and
→∗ for →R and →∗

R, respectively.
We remark that a CRN is similar to a Petri net N [14] without the initial

marking M : the set Λ corresponds to the set of places of N and the set of
reactions R corresponds to the set of transitions of N . While in a Petri net
distinct transitions in N may correspond to a single reaction in R (i.e., there
may be “copies” of each transition), this is irrelevant for our purposes.

A CRN is also similar to a vector addition system (VAS) [11]. A VAS V is a
tuple (Λ, S) with Λ a finite set and S a finite subset of ZΛ. Again, the elements
of NΛ are the configurations of V . One is interested in the relation → over NΛ,
where c → c′ iff c′ = c + x for some x ∈ V . Reachability problems concerning
CRNs can be straightforwardly translated to VASs (or Petri nets) and vice versa,
see [16, Appendix A.6].

2.2 Chemical Reaction Deciders

A (leaderless) chemical reaction decider (CRD, for short) is a tuple D = (Λ,R,
Σ, Υ ), where (Λ,R) is a CRN, Σ ⊆ Λ, Υ : Λ → {0, 1}. The elements of Σ,
Υ−1(0), and Υ−1(1) are called the input species, no voters, and yes voters of D,
respectively. Notation and terminology concerning CRNs carry over to CRDs.
For example, we may speak of a configuration of D. An initial configuration of
D is a nonzero configuration c of D where c|Λ\Σ = 0 (by abuse of notation we
denote the zero vector over suitable alphabet by 0). A CRD is called bimolecular
if all reactions of R are bimolecular.

We define the following function ΦD : NΛ → {0, 1, und}. For x ∈ NΛ, let
Ix = {S ∈ Λ | x(S) > 0}. Then, for i ∈ {0, 1}, we have ΦD(x) = i iff both
Ix ∩ Υ−1(i) �= ∅ and Ix ∩ Υ−1(1 − i) = ∅ (as usual, Υ−1 denotes the preimage
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of Υ ). If x is zero or Ix ∩ Υ−1(0) �= ∅ �= Ix ∩ Υ−1(1), then ΦD(x) = und. Here,
the value und is regarded as “undefined”.

A configuration c is called totally stable (t-stable for short) in D if both
ΦD(c) ∈ {0, 1} and, for all c′ with c →∗ c′, we have c′ = c. Note that if c is
t-stable in D, then for all c′ with c → c′, we have c′ = c. A configuration c is
called output stable (o-stable for short) in D if both ΦD(c) ∈ {0, 1} and, for all
c′ with c →∗ c′, ΦD(c

′) = ΦD(c). Note that every t-stable configuration is o-
stable. A configuration that is not o-stable (t-stable, resp.) and nonzero is called
o-unstable (t-unstable, resp.).

We say that D o-stably decides (t-stably decides, resp.) the function ϕ : NΣ \
{0} → {0, 1} if for each initial configuration c of D and each configuration c′

with c →∗ c′, we have c′ →∗ c′′ where c′′ is o-stable (t-stable, resp.) in D and
ϕ(c|Σ) = ΦD(c

′′). In this case, we also say that D o-stably decides (t-stably
decides, resp.) the set ϕ−1(1) and that D is o-stable (t-stable, resp.). Note that
ϕ−1(1) along with the setΣ, uniquely determine ϕ. In [1] (and [10]), only o-stable
CRDs are considered, and as a result the prefix output is omitted there.

Remark 1. We adopt here the definition of o-stably decides from [2, Section 2].
In the original definition of o-stably decides from [1], an initial configuration
may be the zero vector and the domain of ϕ contains the zero vector. Since
the zero vector corresponds to an input without any molecules and the number
of molecules in a bimolecular CRD stays fixed, no molecule can be introduced
and, in particular, none of the yes or no voters can be introduced. As a result,
there exist no o-stable bimolecular CRDs when (strictly) using the definition of
[1]. Finally, we remark that there are (leaderless) CRDs that are o-stable CRDs
using the definition of [1], since we may then have reactions (r, p) with r the
zero vector. However, it is easy to verify that these CRDs can only decide NΣ or
the empty set, and thus this notion is also not interesting for the (larger) class
of CRDs.

2.3 Population Protocols

The notion of population protocol [1,4] is almost equivalent to the notion of
bimolecular CRD. The only difference is that, in a population protocol, the set
of reactions R is replaced by a transition function δ : Λ2 → Λ2. In this setting,
δ(A,B) = (C,D) corresponds to the reaction (r, p) with r = AB and p = CD
(recall that we may denote vectors by strings). Note that the tuples (A,B) and
(C,D) are ordered. Note also that, for given A,B ∈ Λ, there are at most two
non-mute reactions with A and B as reactants (since we have a transition for
(A,B) and for (B,A)), while for bimolecular CRDs there can be arbitrary many
such reactions.

Reactions, molecules, and species are called transitions, agents, and states,
respectively, in the context of population protocols.

An important property of bimolecular CRDs is that the number of molecules
stays fixed, i.e., if c →∗ c′, then ‖c‖ = ‖c′‖.
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Remark 2. In [1], δ(A,B) = (C,D) is interpreted as follows: a molecule of type
A is transformed into a molecule of type C and simultaneously a molecule of
type B is transformed into a molecule of type D. As a consequence, applying the
“reaction” δ(A,B) = (B,A) would result in a different configuration. However,
in [2] this interpretation is abandoned and δ(A,B) = (B,A) is considered a mute
reaction. We adopt the convention of [2].

3 Semilinearity

In this section we state a number of modest, but useful, observations we made
when studying the proof of the semilinearity result of [1].

Let Λ be a finite set. A set S ⊆ NΛ is called linear (over Λ) if there are
v0, . . . , vn ∈ NΛ such that S = {v0 +

∑n
i=1 kivi | ki ∈ N, i ∈ {1, . . . , n}}. A set

S ⊆ NΛ is called semilinear (over Λ) if S is the union of a finite number of linear
sets over Λ.

It is stated in [1] that every semilinear set S is o-stably decidable by a popu-
lation protocol (i.e., a bimolecular CRD). While this result is often cited in the
literature, it is straightforward to verify that the result fails if S contains the
zero vector. Indeed, by definition semilinear sets may contain the zero vector,
while the domain of ϕ in the above definition of stably decides is restricted to
nonzero vectors (recall from Remark 1 that we have to use the definition of [2]
instead of [1]). This small counterexample led us to revisit the proof of [1]. It
turns out that Lemma 5 of [1] implicitly assumes that there are at least 2 agents
(i.e., molecules), which translate into an initial configuration of size at least 2.
Fortunately, this proof can be straightforwardly modified to allow for initial con-
figurations of size 1, by letting, in [1, Lemma 5], I map σi to (1, b, ai) with b = 1
iff ai < c for case 1, and with b = 1 iff ai = c mod m for case 2 (instead of
to (1, 0, ai)). In [2] (see also [3]), it is shown that if S ⊆ NΛ is o-stably decid-
able by a population protocol, then S is semilinear. Thus we have the following
(attributed, of course, to [1,2]).

Theorem 1 ([1,2]). For every S ⊆ NΣ, S is o-stably decidable by a population
protocol (i.e., a bimolecular CRD) iff S is both semilinear and does not contain
the zero vector.

As recalled in [5], the result from [2] that the sets o-stably decidable by popula-
tion protocols are semilinear holds not only for population protocols, but for any
reflexive and transitive relation →∗ that respects addition (i.e., for c, c′, x ∈ NΣ ,
c →∗ c′ implies c+ x →∗ c′ + x). Hence, Theorem 1 holds also for the (broader)
family of all CRDs.

Another observation one can make when studying [1] is that the proof con-
cerning o-stable CRDs holds unchanged for the smaller class of t-stable CRDs.
By expressive power of a family F of CRDs we mean the family of sets decidable
by F . As the result follows from the proof of [1], we attribute it to [1].

Theorem 2 ([1]). The family of t-stable bimolecular CRDs have equal expres-
sive power as the family of o-stable CRDs. Equivalently, the sets that are t-stably
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decidable by bimolecular CRDs are precisely the semilinear sets without the zero
vector.

Proof. First recall, by the comment below Theorem 1, that the expressive powers
of the families of o-stable CRDs and o-stable bimolecular CRDs are equal. Now,
the family of t-stable bimolecular CRDs is a subset of the family of o-stable
bimolecular CRDs. Thus it suffices to show that the if-direction of Theorem 1
holds for t-stable bimolecular CRDs.

The essential part of the if-direction of the proof of Theorem 1 above is Lemma
3 and Lemma 5 from [1]. In the proof of Lemma 5 in [1] a population protocol
P is described that eventually reaches a configuration c which is called “stable”
in [1], and which, in fact, is easily seen to be t-stable (by checking the three
conditions of “stable” in [1]). The proof of Lemma 3 in [1] trivially holds for
t-stable bimolecular CRDs. ��

Since the bimolecular CRDs form a subset of the CRDs, Theorem 2 holds also
when omitting the word “bimolecular”.

The family of t-stable CRDs form an interesting subclass of CRDs. Indeed, it
is easy to verify, during a run of a t-stable CRD, whether or not a configuration
is t-stable: one simply needs to verify whether or not there is an applicable
(non-mute) reaction. In other words, it is easily verified whether or not the
computation has ended. In the larger class of o-stable CRDs, it is not clear
whether or not it is computationally easy to verify if a given configuration is
o-stable or not. We revisit this latter problem in Section 4.

The concept of CRDs with leaders was introduced in [5] (it is simply called a
CRD in [5]). The difference with (leaderless) CRDs is that for CRDs with leaders
an additional vector σ ∈ NΛ\Σ is given and that the initial configurations c have
the condition that c|Λ\Σ is equal to σ (instead of equal to 0). Moreover, in the
definition of o/t-stably decides the domain of the function ϕ is NΣ instead of
NΣ \ {0}. Using Theorem 1, we now straightforwardly observe that CRDs with
leaders decide all semilinear sets.

Theorem 3 ([5]). For every S ⊆ NΣ, S is o-stably decidable by a CRD with
leaders iff S is semilinear.

Proof. Again, by [2], every set o-stably decidable by a CRD with leaders is
semilinear.

Conversely, let S ⊆ NΣ be semilinear. Consider Σ′ = {t} ∪ Σ, where t is an
element outside Σ. Let S′ = {x ∈ NΣ′ | x(t) = 1, x|Σ ∈ S}. It is easy to verify
that S′ is semilinear. Indeed, let v0, . . . , vn be the vectors (cf. the definition of
linear set) for one of the linear sets that together make up S. Then by adding
an entry for t with value 1 for v0 and value 0 for the other vectors, we see that
the obtained vectors define a corresponding linear set for S′. Consequently, S′ is
semilinear. Note that S′ does not contain the zero vector. By Theorem 1, there
is a CRD D = (Λ,R,Σ′, Υ ) that o-stably decides S′. Consider now the CRD
D′ = (Λ,R,Σ, Υ, σ) with leaders where σ ∈ NΛ\Σ is such that σ(t) = 1 and
σ(i) = 0 if i ∈ Λ \ Σ′. Consequently, the difference between D and D′ is that
index t is not part of the input species. Hence, D′ o-stably decides S. ��
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Of course, (the proof of) Theorem 3 also holds by replacing o-stable by t-stable
and/or replacing CRDs by bimolecular CRDs.

4 Determining the Output Stable Configurations

In this section we consider the problem of determining whether or not the “use-
ful” computation of an o-stable CRD has ended. More precisely, we consider the
problem of determining whether or not a given configuration of a o-stable CRD
is output stable. Recall from the previous section that it is straightforward to
determine whether or not a given configuration c is t-stable: one simply needs
to check whether or not a non-mute reaction is applicable to c (and check that
ΦD(c) ∈ {0, 1}).

Similar as done in [16, Theorem 4.2], we formulate now [11, Corollary 4.1]
(defined in the context of VASs) in terms of CRNs.

Proposition 1 ([11]). For given CRN R and configurations x, y of R, it is
decidable whether or not x →∗ y′ for some configuration y′ ≥ y.

A much more involved result is known as the decidability of the reachability
problem for vector addition systems, shown in [13] (see [12] for a simplified
proof).

Proposition 2 ([13]). For given CRN R and configurations x, y of R, it is
decidable whether or not x →∗ y.

The precise complexity of the reachability problem of Proposition 2 is famously
unknown (see, e.g., [12]).

By Propositions 1 and 2 we straightforwardly obtain the following result.

Theorem 4. For a given o-stable CRD D and configuration c of D, it is decid-
able whether or not c is o-stable in D.

Proof. Testing whether or not ΦD(c) ∈ {0, 1} is clearly decidable. Let ΦD(c) = j.
Let, for X ∈ Λ, yX be the configuration with ‖yX‖ = 1 and yX(X) = 1. By
Proposition 1 it is decidable, for each X ∈ Υ−1(1 − j), whether or not there
exists a c′ such that c →∗ c′ and c′ ≥ yX , i.e., c′(X) > 0. Hence if c contains
only yes voters, then we can decide if there is a reachable configuration with
no voters (and analogously if c contains only no voters). The only case left to
decide is whether or not c →∗ 0 (again, 0 denotes the zero vector over Λ). By
Proposition 2 it is decidable if the zero vector is reachable. Consequently, it is
decidable if c is o-stable in D. ��

We now investigate more deeply some complexity issues involved to decide
whether or not a configuration is o-stable. In fact, it turns out that bimolecular
CRDs provide a convenient added “structure” for this problem.

Let D be an o-stable CRD. We now consider the set UD of all output unstable
configurations of D. If D is clear from the context, then we simply write U for
UD. We now recall a useful result from [2, Lemma 10]. For convenience, we also
recall its short proof.
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Proposition 3 ([2]). Let D be an o-stable CRD. Then U is closed upward under
≤. In other words, for all c, c′ ∈ NΛ with c ≤ c′, if c ∈ U , then c′ ∈ U .

Proof. Let c ∈ U and c ≤ c′. If ΦD(c) = und, then c contains both yes and
no voters (since c ∈ U , c is nonzero). Thus c′ also contains both yes and no
voters and we have c′ ∈ U . Assume that ΦD(c) ∈ {0, 1}. If ΦD(c

′) = und, then
there is nothing to prove. Thus assume that ΦD(c) = ΦD(c

′). Since c ∈ U ,
there is a c′′ with c →∗ c′′ with ΦD(c

′′) �= ΦD(c). Let x := c′ − c ∈ NΛ. Then
c′ = c+ x →∗ c′′ + x with ΦD(c

′′ + x) �= ΦD(c) = ΦD(c
′) and c′ ∈ U . ��

Remark 3. In some papers, such as [5], not all species in CRDs need to be voters.
In other words, in the definition of CRD we have Υ : E → {0, 1} for some E ⊆ Λ
(instead of E = Λ). We remark that Proposition 3 fails in this more general
setting. Indeed, if nonzero c contains no voters, then c ∈ U , but by extending c
with, say, a yes voter may result in an output stable configuration.

By Proposition 3, the set U is characterized by the set min(U) of mini-
mal elements of U under ≤. By Dickson’s lemma, recalled below, min(U) is a
finite set.

Proposition 4 (Dickson’s lemma [8]). Let Λ be a finite set. Then for every
S ⊆ NΛ, min(S) is finite.

Given an o-stable CRD D and the set min(U), it is straightforward to ver-
ify if a given configuration c is o-stable in D. Indeed, c is o-stable in D iff
u �≤ c for all u ∈ min(U). Thus, to check whether or not c is o-stable in
D takes |min(U)| · |Λ| comparisons of molecule counts, which corresponds to
a complexity of O(|min(U)| · |Λ| · log(z))-time, where z is the largest entry
among the configurations in U (assuming the entries of a vector are encoded,
say, in binary). Note that this complexity bound depends only on D, i.e., it is
independent of c.

We now show that min(U) can be efficiently determined when D is bimolec-
ular. This is particularly useful when one wants to test for o-stability for some
large (finite) set of configurations (instead of just a single configuration).

Let, for k ≥ 0, C≤k (C=k, resp.) be the set of configurations c ∈ NΛ with
‖c‖ ≤ k (‖c‖ = k, resp.).

We remark that the naive approach to determine whether or not a particular
configuration c is o-stable in a o-stable bimolecular CRD D, would compute the
set Rc of all configurations reachable from c and then verify that ΦD(c

′) = ΦD(c)
for all c′ ∈ Rc. Note that Rc ⊆ C=k with k = ‖c‖ since D is bimolecular. Thus,
in the worst case, one needs to compute in the order of |C=k| configurations.
The value of |C=k| is equal to the number of multisets of cardinality k over Λ.
This number (called figurate number, simplex number, or multiset coefficient),

sometimes denoted by
((

|Λ|
k

))
, is equal to the binomial coefficient

(|Λ|+k−1
k

)
, see,

e.g., [18, Section 1.2].
First we prove a technical lemma. For c, c′ ∈ min(U), denote c ↪→α c′ if

c →α c′ + b where α = (r, p) is a reaction and b is some configuration with b ≤ p
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and b �= p. We write c ↪→ c′ if c ↪→α c′ for some reaction α. It is important to
realize that ↪→ is a relation on min(U). Again, the transitive closure of ↪→ is
denoted by ↪→∗. For the next result, recall again that we may denote vectors by
strings.

Lemma 1. Let D = (Λ,R,Σ, Υ ) be an o-stable CRD. Let M1 = {c ∈ min(U) |
Φ(c) = und}, M2 = {c ∈ min(U) | Φ(c) ∈ {0, 1}, c → c′ for some c′ with Φ(c′) �=
Φ(c)}, and T = {r | (r, p) ∈ R, Υ (A) �= Υ (B) for some A,B ∈ Λ with r(A) �=
0 �= p(B)}. We have the following.

1. If ‖r‖ �= 1 for all (r, p) ∈ R, then M1 = {AB | A,B ∈ Λ, Υ (A) �= Υ (B)}.
2. If ‖p‖ �= 0 for all (r, p) ∈ R, then M2 ⊆ T .
3. If ‖r‖ = 2 for all (r, p) ∈ R, then T ⊆ M1 ∪M2.
4. If c →α c′ for some α ∈ R, c ∈ min(U), and c′ ∈ U , then there is a

c′′ ∈ min(U) with c ↪→α c′′.
5. If ‖r‖ ≥ ‖p‖ for all (r, p) ∈ R, then, for all c ∈ min(U), c ↪→∗ c′ for some

c′ ∈ M1 ∪M2.
6. If D is bimolecular and c ↪→ c′, then ‖c′‖ = ‖c‖ or ‖c′‖ = ‖c‖ − 1.

Proof. Since ‖r‖ �= 1 for all reactions (r, p) of D, the configurations of size 1
are o-stable, and so the elements of min(U) are of size at least 2. The nonzero
configurations where Φ(c) = und are those where there are A,B ∈ Λ such that
both c(A) > 0 and c(B) > 0, and Υ (A) �= Υ (B). The minimal such configurations
are such that c(A) = c(B) = 1 and c(X) = 0 for all other species X , and since
these configurations are of size 2, we obtain the first statement.

We now turn to the second statement. Let c ∈ M2. Thus c ∈ min(U) with
Φ(c) ∈ {0, 1} and c → c′ for some c′ with Φ(c′) �= Φ(c). Without loss of generality,
assume that Φ(c) = 0, i.e., c contains only no voters. Let α = (r, p) be the
reaction of D such that c →α c′. Since Φ(c′) �= Φ(c), a yes voter has been
introduced by α (c′ cannot be the zero vector as ‖p‖ �= 0). As c ∈ min(U),
we have c = r. Also, we have Υ (A) = 0 �= 1 = Υ (B) for some A,B ∈ Λ with
r(A) �= 0 �= p(B).

We turn to the third statement. Let α = (r, p) be a reaction of D such that
Υ (A) �= Υ (B) for some A,B ∈ Λ with r(A) �= 0 �= p(B). Then r ∈ U and since
‖r‖ = 2 we have r ∈ min(U) (note that the elements of min(U) are of size at
least 2). Assume r /∈ M1, i.e., Φ(r) ∈ {0, 1}. Then r →α p with Φ(p) �= Φ(r)
since Υ (A) �= Υ (B) for some A,B ∈ Λ with r(A) �= 0 �= p(B). Consequently,
r ∈ M2.

We now turn to the fourth statement. Let α = (r, p). Since c ∈ min(U), we
have that c − r = c′ − p /∈ U . Since c′ ∈ U , we have c′′ = c′ − b ∈ min(U) for
some configuration b ≤ p and b �= p. Therefore, c ↪→α c′′.

We now turn to the fifth statement. If c ∈ M1, then we are done. For all
c ∈ min(U)\M1, c →∗ x → y for some configurations x and y with Φ(x) �= Φ(y).
For all such c, we assign the value (k, l) where k = ‖c‖ and l is minimal such
that c →l x → y for some configurations x and y with Φ(x) �= Φ(y) (by →l we
mean the l-th power of the relation →). We show the result by induction on
(k, l). If l = 0, then c ∈ M2 and we are done. Assume l > 0. Then, by the fourth



Output Stability and Semilinear Sets in CRNs and CRDs 109

statement, c ↪→ c′′ and c = c′′ + b+ r − p. As ‖r‖ ≥ ‖p‖, we have ‖c′′‖ ≤ ‖c‖. If
‖c′′‖ < ‖c‖, then, by the induction hypothesis, c′′ ↪→∗ c′ with c′ ∈ M1 ∪M2 and
so c ↪→∗ c′. If ‖c′′‖ = ‖c‖, then c′′ →l−1 x → y. This also leads, by the induction
hypothesis, to c′′ ↪→∗ c′ with c′ ∈ M1 ∪M2 and so c ↪→∗ c′.

For the sixth statement, note that if D is bimolecular, then by the definition
of the relation ↪→, we have ‖c′‖+ ‖b‖ = ‖c‖ and ‖b‖ < ‖p‖ = 2. ��

Lemma 1 above is key for Theorem 5 below. The strategy in the proof of
Theorem 5 is to discover all elements of min(U) ordered by size: first all elements
of min(U) of size k are computed, before any of the elements of min(U) of size
k+1 are computed. This ensures that the generated candidates c can be tested
for minimality in U , i.e., it can be tested whether or not c ∈ min(U). Otherwise,
the number of generated candidates could potentially grow unbounded.

Theorem 5. Let D = (Λ,R,Σ, Υ ) be an o-stable bimolecular CRD. Given D,
Algorithm 1 computes min(U).

Proof. First, we initialize M := M1 ∪M2 = M1 ∪ T with M1, M2, and T from
Lemma 1, see Lines 3-4. The second (and final) phase is to iteratively augment
M with the elements from min(U) \ (M1 ∪M2) as prescribed by Statements 5
and 6 of Lemma 1.

We show by induction that at Line 15, we have Mit = min(U) ∩ C=k and
M = min(U) ∩ C≤k.

We first consider the basis case k = 2. Note that, by Lemma 1, min(U)∩C=2 =
min(U) ∩ C≤2 is obtained from M1 ∪M2 by adding all c′ such that c′ →∗ c and
c ∈ M1 ∪ M2. Note that each such c′ is minimal in U as ‖c′‖ = 2. This is
accomplished in Lines 6-14.

We now consider the induction step. Let k ≥ 2. Consider the set X = {c′ |
c′ →α c + B, for some α ∈ R, c ∈ min(U) ∩ C=k, B ∈ Λ, c′′ �≤ c′ for all c′′ ∈
min(U)∩C≤k}, where we identify here B ∈ Λ by the configuration b with ‖b‖ = 1
and b(B) = 1. Note that X ⊆ U . Since for all c′ ∈ X , ‖c′‖ = k + 1 and
c′ ∈ U , we have that c′′ �≤ c′ for all c′′ ∈ min(U) ∩ C≤k iff c′′ �≤ c′ for all
c′′ ∈ min(U). Hence X ⊆ min(U) ∩ C=k+1. The set X is computed in Lines 16-
21. Now, by Statements 5 and 6 of Lemma 1, min(U) ∩ C=k+1 is obtained from
X by adding the configurations c′ such that c′ →∗ c with c ∈ X and c′′ �≤ c′ for
all c′′ ∈ min(U). Again, since ‖c′‖ = k + 1 and c′ ∈ U , we have that c′′ �≤ c′

for all c′′ ∈ min(U) iff c′′ �≤ c′ for all c′′ ∈ min(U) ∩ C≤k. These additional
configurations c′ are (again) computed in Lines 6-14.

The algorithm halts as by Dickson’s Lemma (Proposition 4), min(U) is
finite. ��

We now consider the time complexity of Algorithm 1.

Theorem 6. Algorithm 1 computes min(U) in O(n log|Λ|− 1
2 (n)·|R|·|Λ|2 ·log(z))

time, where n = |min(U)| and z is the largest entry among the configurations
in min(U).
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Algorithm 1. Generate the set M of minimal output unstable configurations
of an o-stable bimolecular CRD D = (Λ,R,Σ, Υ )

1: procedure GenMinUnstable(D)
2: M ← ∅
3: Mit ← {AB | A,B ∈ Λ, Υ (A) �= Υ (B)}
4: Mit ← Mit ∪ {r | (r, p) ∈ R, Υ (A) �= Υ (B) for some A,B ∈ Λ with r(A) �= 0 �=

p(B)}
5: while Mit �= ∅ do
6: Mnew ← Mit

7: while Mnew �= ∅ do
8: Mold,Mnew ← Mnew,∅
9: for all c ∈ Mold, α ∈ R do
10: if ∃ c′ with c′ →α c and c′′ �≤ c′ for all c′′ ∈ M then
11: Mnew,Mit,M ← Mnew ∪ {c′},Mit ∪ {c′},M ∪ {c′}
12: end if
13: end for
14: end while
15: 	 At this point M = min(U)∩C≤k and Mit = min(U)∩C=k for some k ≥ 2.
16: Mitold,Mit ← Mit,∅
17: for all c ∈ Mitold, α ∈ R, B ∈ Λ do
18: if ∃ c′ with c′ →α c+B and c′′ �≤ c′ for all c′′ ∈ M then
19: Mit,M ← Mit ∪ {c′},M ∪ {c′}
20: end if
21: end for
22: end while
23: return M
24: end procedure

Proof. There are two inner loops. The first inner loop (at Lines 9-13) checks for
every c ∈ min(U) and α ∈ R, whether or not a c′ →α c exists, and if such a c′

exists, whether or not c′′ �≤ c′ for all c′′ ∈ min(U) ∩ C≤‖c′‖−1. The second inner
loop (at Lines 17-21) checks for every c ∈ min(U), α ∈ R, and B ∈ Λ, whether
or not a c′ →α c+B exists, and if such a c′ exists, whether or not c′′ �≤ c′ for all
c′′ ∈ min(U) ∩ C≤‖c′‖−1. Consequently, the second inner loop is dominant and
has at most n · |R| · |Λ| iterations. We store the vectors of M in the k-fold tree
Tb(k) described in [19]. The value k is the dimension of the vectors of M , and
thus k = |Λ|. To determine if a vector v is such that w �≤ v for all vectors w in

Tb(k) takes O(logk−
1
2 (N)) vector comparisons, where N = |M | is the number of

elements in Tb(k). Thus, we have O(n log|Λ|− 1
2 (n) · |R| · |Λ|) vector comparisons.

Inserting a vector in Tb(k) takes O(logk−
1
2 (N)) vector comparisons and so this

step does not dominate. Comparison of two vectors takes O(|Λ| · log(z)) time,
assuming the entries of a vector are binary encoded. Consequently, we obtain
the stated complexity. ��
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We remark that there is no obvious way to extend Algorithm 1 for arbitrary
o-stable CRDs. Indeed, Lemma 1 depends on D being bimolecular. Moreover,
it is not clear how to generate the elements of min(U) in order of their size
(as used in the proof of Theorem 5) since minimal configurations may generate
larger minimal configurations. In fact, it is not even clear if it is decidable, given
an arbitrary o-stable CRD D and a finite set M of configurations, whether or
not M = min(U).

In view of Theorem 6, it would be interesting to obtain an upper bound
on |min(U)|. In fact, it is perhaps reasonable to view |min(U)| as a measure
for the “complexity” of the underlying o-stable CRD D. The set min(U) is an
antichain, as any two elements of min(U) are incomparable (i.e., if x, y ∈ min(U)
are distinct, then x �≤ y and y �≤ x). In general, antichains can be arbitrary large
for fixed Λ: for example, for every k ∈ N, C=k is an antichain with |C=k| =((

|Λ|
k

))
> k if |Λ| ≥ 2. Note however that, by Lemma 1, if x ∈ min(U) with

‖x‖ = k, then for every l ∈ {2, . . . , k − 1} there is a y ∈ min(U) with ‖y‖ = l.
Thus, in particular, min(U) (for some o-stable bimolecular CRD D) cannot be
equal to C=k for any k ≥ 3. We expect, but it would be interesting to confirm,
that the existence of these “small” configurations in min(U) significantly restricts
the cardinality of the antichain min(U).

5 Discussion

Using the semilinearity proof of [1], we found that the class of t-stable CRDs
have equal expressive power as the larger class of o-stable CRDs. Also, we shown
a subtle difference in expressive power between CRDs and CRDs with leaders.
Then, we considered the problem of determining whether or not a given config-
uration c is output stable. In particular, we have shown that the set min(U) of
minimal output unstable configurations may be efficiently computed provided
that we restrict to the class of o-stable bimolecular CRDs. Given min(U) it
is straightforward to verify whether or not a given configuration c is output
stable.

Various questions regarding the computational complexity of CRDs are open.
For example, is it decidable whether or not a given CRD is o-stable, or whether
or not it is t-stable? Also, likely some “bridges” between the domains of CRDs
(functioning as acceptors/deciders) and Petri nets (functioning as generators)
remain to be discovered. For example, the semilinear sets are precisely the sets of
reachable markings of weakly persistent Petri nets [20]. This suggests a possible
link between the notions of weak persistence (from the domain of Petri nets)
and stable deciders (from the domain of CRDs).
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Abstract. We propose a theoretical framework that uses a novel DNA
strand displacement mechanism to implement abstract chemical reaction
networks (CRNs) on the surface of a DNA nanostructure, and show
that surface CRNs can perform efficient algorithmic computation and
create complex spatial dynamics. We argue that programming molecular
behaviors with surface CRNs is systematic, parallel and scalable.

1 Introduction

Despite the increasing complexity of synthetic DNA circuits and machinery [48],
every step that is made towards building more sophisticated and powerful molec-
ular systems has also revealed new challenges in the scalability and programma-
bility of such systems. For example, in DNA strand displacement circuits, a larger
circuit results in a larger number of distinct DNA molecules, and the spurious
interactions among these DNA molecules can temporarily disable a fraction of
the circuit components and thus slow down the computation and increase the
error rate. A number of implementations have been proposed to explore the
possibility of using spatial organization that allows circuit components to inter-
act without requiring diffusion, and thus increase the speed of computation and
limit spurious interactions to immediate neighbors [5,28]. Interestingly, localized
circuits are related to molecular robotics [10]. Spatial organization could also en-
able running multiple instances of circuits in parallel, each on a different surface
but all in the same test tube.

Another challenge is to implement fully general and efficient (space-limited)
algorithmic computation that is experimentally feasible and scalable. By this we
mean, informally, systems capable of storing and retrieving data from memory,
performing logical operations, and executing iterative loops that repeat a pro-
cessing step. For the purpose of this paper, we are not concerned with whether
literally unbounded memory is available, so both a Turing machine and a laptop
computer (i.e. a sequential digital logic circuit) would qualify. Efficient (space-
limited) computations are possible on both, and a small program can perform a
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large computation. In contrast, feedforward digital logic circuits can only perform
limited computation: they have no memory and during execution from input to
output, each logic gate updates exactly once. Even if provided new inputs, a
feedforward circuit can only make decisions based on the current input signals,
while a Turing machine or sequential circuit can store information in memory
and access it at a later point to make more sophisticated decisions based on both
current and historical input signals.

In this work, we first explain an abstract model of chemical reaction networks
(CRNs) on a surface, in the context of how bimolecular reactions alone can
efficiently simulate (space-bounded) Turing machines. Then we introduce the
implementation of formal unimolecular and bimolecular reactions on surface,
based on a novel DNA mechanism (the three-way initiated four-way strand dis-
placement reaction) that can recognize a DNA signal, pull it off from the surface,
and simultaneously load a different signal onto the same location. Following the
implementation, we give an example of propagating waves created from a simple
set of surface CRNs. Finally, to demonstrate the power and elegance of surface
CRNs, we develop systematic approaches for building continually active logic
circuits and cellular automata. These approaches are highly efficient and scal-
able in two ways: First, they compute and generate complex spatial dynamics
in parallel. Second, they use a constant number of distinct molecules for vastly
different sizes of molecular programs.

2 Abstract Chemical Reaction Networks on a Surface

In the abstract model of surface CRNs, formal chemical species (e.gA, B, C, etc.)
are located on a finite two-dimensional grid, and each site has a finite number of
neighboring sites. Chemical species at any site can be recognized and converted
into an arbitrary different species multiple times, either at a single site through a
formal unimolecular reaction (e.g. A → B), or cooperatively with a neighboring
site through a formal bimolecular reaction (e.g. A+B → C +D, if A and B are
neighbors, then A gets converted to C while simultaneously B gets converted to
D). Bimolecular reactions can be applied in any orientation on the surface, but
always the first reactant is replaced by the first product, and the second by the
second. Thus, A+B → C +D is effectively the same as B+A → D+C, but is
distinct fromA+B → D+C. Importantly, molecules do not move from site to site
unless there is an explicit reaction, so by default there is no diffusion. (Diffusion
could be “simulated” by including extra reactions such as A+B → B +A that
allow species A and B to randomly walk through each other.) Unlike well-mixed
CRNs, both unimolecular and bimolecular reaction rate constants have the same
units, per second, because molecules have explicit locations and thus it is not
necessary to approximate diffusion and collision probabilities.

Previous works have shown that synthetic DNA molecules can be used to
implement arbitrary CRNs in a well-mixed solution [36,7]. As an extension and
complement to well-mixed CRNs, we will show that DNA strands can be tethered
on the surface of a DNA nanostructure such as DNA origami [32] to implement
surface CRNs. Fig. 1a shows the abstract diagram of a small portion of a DNA



116 L. Qian and E. Winfree

b 

scaffold strand 

DNA origami 

staple strands 

substrate positions 

a 

transition rule:  

1L 1L 0L 0L  1R 0R 1R 1R 

head left side of the tape right side of the tape 

1L 1L 0L 0L  0R 0R 1R 1R 

 

current  
symbol 

1L 1L 0L 0L α 1R 1R 1R 0R 

1L 1L 0L 0L  0R 1R 1R 0R 

1L 1L 0L 0L 0L  0R 1R 1R 

 transition rule:  

1L 1L 0L 0L 0L  1R 1R 0R 

Fig. 1. Abstract chemical reaction networks (CRNs) on a surface. (a) Abstract diagram
of a small portion of a DNA origami. All substrate locations are about 6 nm apart from
each other. (b) An example of efficient molecular Turing machines implemented with
abstract surface CRNs.

origami. Each staple strand can be extended from the 5’ or 3’ end to provide
substrate positions for tethering DNA molecules that represent distinct chemical
species. Because all staple strands have distinct sequences, all substrate locations
on a origami surface are uniquely addressable. This allows us to locate specific
DNA-based chemical species at their initial sites on a two-dimensional hexago-
nal grid of about 200 sites with about 6 nm distance between any neighboring
sites, using a single DNA origami. With DNA origami arrays [26], much larger
two-dimensional grids can be created.

Turing machines are one of the simplest models for universal computation, and
building molecular Turing machines has a been a challenge for over 30 years.
Charles Bennett was the first to come up with an implementation that uses
hypothetical enzymes [2]. Later, concrete molecular implementations were pro-
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posed. The DNA tile self-assembly model was developed and proved to be Turing
universal, but it has the distinct disadvantage of storing the entire history of its
computation within an array of DNA tiles [33]. Both non-autonomous [34,1,35]
and autonomous [44] DNA-based Turing machines were designed; however they
required enzymes such as ligase and restriction enzymes for their operation, and
their complexity discouraged experimental implementation. Well-mixed CRNs
were also shown to be probabilistically Turing universal, but the computation
requires molecular counts and therefore volumes that grow exponentially with
the amount of memory used [37]. Recently, we developed a stack machine model
with DNA polymers [30] that can simulate Turing machines efficiently, but there
must be exactly one copy of the polymer DNA molecule for each stack, which
introduces significant experimental challenges.

As an example to illustrate the power and generality of surface CRNs, Fig. 1b
shows the implementation for a hypothetical molecular Turing machine with a
finite tape. Unlike the stack machine implementation with polymer CRNs, our
new Turing machine implementation with surface CRNs allows multiple inde-
pendent Turing machines to operate in parallel within the same test tube, and
there is no slow-down as the reaction volume gets larger. However, whereas the
stack machine construction has an explicit mechanism for growing an unbounded
amount of memory, the Turing machine construction here is limited to the size
of the origami surface; in principle, this limit is obviated by unbounded self-
assembly of origami [26], ideally configured so that self-assembly is inhibited
until triggered [11] by the Turing machine needing more memory.

To review, a Turing machine has a head that moves along a tape and reads
or writes symbols on the tape. The function of a Turing machine is decided by
a set of transition rules. Each rule updates the state of the head and the symbol
near the head based on the current state and symbol information, and moves the
head to the left or right on the tape. Here we use an equivalent variant of the
standard Turing machine where state change and movement steps are separate
[3]. A tethered DNA strand on a DNA origami surface represents a state (such as
α or β) if the position corresponds to the head, and represents a symbol (such as
0 or 1) if the position is on the tape. All symbols on the left side of the tape are
0L or 1L, and those on the right side are 0R or 1R. Each transition rule can be
encoded in one or more formal bimolecular reactions on a surface. For example,
transition rule {α, 1} → {β, 0}, which reads current state α and current symbol
1 and updates the state to β and the symbol to 0, can be encoded in surface
reaction α + 1R → β + 0R. Transition rule {β} → {α,+}, which reads current
state β, updates the state to α, and moves the head to one cell on the right, can
be encoded as two surface reactions β + 0R → 0L + α and β + 1R → 1L + α.

3 Implementation of Surface CRNs

It is a significant challenge to implement surface CRNs. Existing DNA imple-
mentations of well-mixed CRNs [36,7] use the mechanism of three-way strand
displacement [45]. Such implementations can not be used for recognizing and
updating a DNA signal on a surface for two reasons: First, in the process of
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Fig. 2. DNA implementation of formal unimolecular reaction A → B on a surface.
Fuel molecules are highlighted with outlines and waste molecules are shaded with light
grey background; they are free-floating molecules in solutions that are maintained at
a constant concentration.

three-way strand displacement, a single-stranded signal that is being recognized
will become bound to a complementary strand that is eventually part of a waste
molecule. Thus the waste molecule would be stuck on the surface attached to
the current signal strand. Second, upon completion of three-way strand displace-
ment, a new signal strand would be released into the solution, instead of staying
on the surface as an updated signal.

In contrast, the mechanism of four-way branch migration [40,27] allows the
recognition of a double-stranded signal with two adjacent single-stranded toe-
holds. Upon completion of branch migration, all strands will have swapped their
base-paring partners. One strand in the original signal will now become part of a
new signal as a result of the formation of a new pair of adjacent single-stranded
toeholds, which makes it possible to recognize and update a signal on a surface.
Unlike the high specificity of signals that can be encoded in branch migration
domains with three-way strand displacement [47], four-way branch migration
relies on distinct toehold sequences to represent different signals, and thus it is
limited to implementations that require a small number of signal species.

Here, we show that with the help of associative/combinatorial toehold [6,15],
three-way strand displacement and four-way branch migration can be integrated
into one single step, simultaneously achieving the high specificity of signals and
the localized updating of signals through swapping base-paring partners. We call
this new mechanism three-way initiated four-way strand displacement, and we
use it to implement surface CRNs.
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Fig. 3. DNA implementation of formal bimolecular reaction A+B → C +D on a sur-
face. Fuel molecules are highlighted with outlines and waste molecules are shaded with
light grey background, they are free-floating molecules in solution that are maintained
at a constant concentration.

As shown in Fig. 2 and appendix Fig. A1, a DNA signal encoding chem-
ical species A on a surface consists of a short single-stranded toehold domain
(e.g. T1, perhaps of 6 nucleotides) and a long single-stranded recognition domain
(e.g. A, perhaps of 15 nucleotides) held together by a double-stranded branch mi-
gration domain (e.g. X and X∗) followed by a double-stranded toehold domain
(e.g. T2 and T ∗

2 ). Initially, a fuel molecule A → RA is free floating in solution. It
first binds to signal A through the single-stranded domain T ∗

1 , three-way branch
migration occurs within the double-stranded A and A∗ domain, and a single-
stranded waste molecule is produced. Simultaneous with the three-way branch
migration, four-way branch migration occurs within two double-stranded X and
X∗ domains. When the double-stranded molecule on the right side is only at-
tached by a short toehold T2, it will spontaneously fall off the surface and become
a waste molecule. At this point, signal A on a surface has been replaced by signal
RA, but with a different orientation. We then use a second fuel molecule RA → B
to replace RA with B on the surface and to restore the original orientation of
A. Note that the single strand A in fuel molecule A → RA and single strand RA
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Fig. 4. DNA implementation of a reversible reporting reaction on a surface.

in fuel molecule RA → B not only increase the specificity of signal recognition
through branch migration, but also protect the fuel molecules from binding to
each other in a larger network (e.g. when A → B and X → A co-exist).

Doubling the complexity of each fuel molecule, we can now implement the
formal bimolecular reaction A + B → C +D on a surface. As shown in Fig. 3
and appendix Fig. A2, signals A and B are located at neighboring sites on the
surface. Fuel molecule A + B → RAB first undergoes three-way initiated four-
way branch migration with signal A on the surface; at the end of this process
two short toeholds spontaneously disassociate and neighboring signal B can bind
to the intermediate product and undergo a second three-way initiated four-way
branch migration reaction to replace both signals A and B with a joint signal
RAB on the surface. A second fuel molecule RAB → C+D then recognizes RAB,
and signal D will be placed at the original site of B followed by C being placed
at the original site of A.

The keen observer will note that this mechanism requires neighboring sites to
make use of distinct branch migration domains X1 and X2, rather than univer-
sally X . This constraint can be accommodated by using a checkerboard arrange-
ment of X1 and X2 sites on the origami and by multiplying the number of fuel
species – for example, each unimolecular reaction will need both fuels using X1

and fuels using X2 (unless, for some reason, we wish to restrict the unimolec-
ular reaction to just one color of the checkerboard). As it is straightforward to
handle, we will henceforth ignore this minor complication.

To experimentally read DNA signals on a surface, we propose a reporting
mechanism that reversibly produces a fluorescent signal. As shown in Fig. 4,
the free-floating reporter molecule is labeled with a fluorophore and a quencher.
A reversible three-way strand displacement reaction separates the fluorophore
from the quencher and results in increased fluorescence that can be measured
in bulk by a spectrofluorometer. This mechanism, reversibly binding and ac-
tivating the fluorophore, is compatible with the DNA-PAINT method [22] for
super-resolution microscopy, suggesting that dynamic spatial patterns could be
observed on a single origami or origami array.
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Fig. 5. A nanoscaled pacemaker that triggers a propagating wave. Simulated on a 100
by 100 grid, black pixels indicate signal A, grey pixels indicate signal R, and white
pixels indicate signal Q. The signal in the center of the grid is always C.

4 Dynamic Spatial Patterns

With just unimolecular and bimolecular surface CRNs, dynamic spatial patterns
can be created on a two-dimensional DNA origami surface. For example, with
the set of four reactions shown in Fig. 5, a propagating wave pulse can be re-
peatedly generated. Initially, the site in the center of the grid has signal C (“the
pacemaker”) and all other sites have signal Q. The only reaction that can take
place under this initial condition is Q + C → A + C, allowing the signal in the
center to update one of its neighbors from Q to A. Subsequently, a fast reaction
Q+A → A+A will occur, and each site with signal A will update its neighbors
from Q to A, creating the front of a wave. A slower reaction A → R will then
convert signals A to R, thereby identifying older parts of the wave and helping
establish directionality of the wave propagation. A even slower reaction R → Q
will restore signals from R to Q after the wavefront has passed. Finally, the
slowest reaction Q+C → A+C enables a new wave to emerge from the center
after the previous wave has faded.

In this example, if all possible reactions execute synchronously (independent
of rate constants), the propagating wave will expand deterministically — it is
the 3-state Greenberg-Hastings model of excitable media [17]. But discrete CRNs
are intrinsically asynchronous, all signals will be updated stochastically, and the
edge of the wave will be less well defined, as shown in the simulation in Fig. 5.
To obtain reliable wave propagation, rate parameters must be tuned roughly
as described above. In the DNA implementation, desired rates can be achieved
by varying the lengths of toeholds on fuel molecules encoding the unimolecular
and bimolecular reactions (assuming the three-way initiated four-way strand dis-
placement follow roughly the same range of kinetics as three-way strand displace-
ment [46]). As an alternative to tuning rates, it is possible to design (typically
larger) surface CRNs that behave exactly as if they were updated synchronously;
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we will discuss such an approach later in the paper, in the context of cellular
automata.

Rather than eliminate it, the randomness of asynchronous reaction execu-
tion can be embraced, and in combination with explicit reactions that simulate
two-dimensional diffusion (e.g. X + e → e+X for all diffusible species X and a
special “empty space” signal e), we obtain the entire space of chemical reaction-
diffusion systems in the stochastic limit, closely analogous to reactive lattice
gas automata models [4]. For example, spiral wave dynamical patterns could be
achieved using the six-reaction Oregonator model of the Belousov-Zhabotinsky
excitable medium [21].

5 Continuously Active Logic Circuits

Unlike in reaction-diffusion systems, signals in surface CRNs by default will
remain in their exact location until a reaction occurs. This feature enables precise
geometric control at the single-molecule level, and can be exploited to carry
out precise tasks such as digital circuit computation. As shown in Fig. 6b, to
construct a two-input OR gate with surface CRNs, three neighboring sites are
initially assigned with blank signals B∪x, B∪y and B∪z , and each of them has
another blank neighboring site B to serve as a wire that moves signals around
and connects layers of logic gates together (Fig. 6a). Logic OR computation can
be performed with six bimolecular reactions. The first four reactions recognize
the two input signals 00, 01, 10, or 11 at the x and y sites, update the y site
to the correct output signal 0∪k or 1∪k, and reset the x site to be blank. The
last two reactions move the output signal to the z site and reset the y site to
be blank. Similarly, AND gate and NOT gate can be implemented with six and
two reactions respectively (Fig. 6cd). Additional straightforward reactions are
needed to load the signal from the input wires onto the gate, and to push the
output onto its wire (Fig. 6a). These unidirectional reactions ratchet the signals
forward, despite the random walks on the wires.

With two additional sets of reactions implementing signal fan-out and crossing
wires (Fig. 6ef), arbitrary feedforward logic circuits can be systematically trans-
lated into surface CRNs. An example circuit that calculates the square roots of
four-bit binary numbers is shown in Fig. 6g. To run the circuit, 0 or 1 signals are
initiated at x1, . . . , x4, while y1 and y2 are in state B. Signals asynchronously
propagate through the circuit. Two-input gates must wait until both input sig-
nals arrive, before they can produce an output. Crossing wires are designed to
ensure that deadlock is impossible. The correct circuit outputs are eventually
produced at y1 and y2 regardless of the order in which reactions execute.

Unlike the previous well-mixed DNA logic circuits, which deplete some cir-
cuit components by the end of each computation and thus are not capable of
responding to a new set of input signals [31], these logic circuits with surface
CRNs are continuously active. With free-floating fuel molecules in large excess,
the signal on each site can be updated multiple times, switching between “0” and
“1” and back, as needed. With reversible reporters that read the output signals
without consuming them, a changed set of input signals will trigger a cascade of
reactions resulting in the update of output signals and associated fluorescence.
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Fig. 6. Continuously active logic circuits. (a) wire, loading and unloading, (b)OR gate,
(c) AND gate, (d) NOT gate, (e) fan-out wires and (f) crossing wires implemented
with surface CRNs. “0/1” is shorthand for two rules of the same form, one with all
instances “0” and the other with all instances “1”. (g) A four-bit square root circuit
implemented with surface CRNs. The three-input AND gate is implemented with 2
two-input AND gates. The fan-out of three is implemented similarly as (but distinctly
from) the fan-out of two, with an extra state F2 of site BF .

An additional benefit of the continuously active logic circuit architecture
using surface CRNs is that iterative sequential circuits can be implemented
using the same mechanisms. For example, if three NOT gates are wired to-
gether in a ring (a canonical oscillatory circuit), and a single 0 signal is placed
on one of the wires, then the signal will travel around and around the ring,
flipping from 0 to 1 and back as it goes. More usefully, to iterate a func-
tion f(x1, x2, . . . , xn) = (x′

1, x
′
2, . . . , x

′
n), the outputs of a circuit computing f()

merely need to be routed back to the input, controlled with a synchronizing
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signal that ensures that the new inputs are not activated until all of the pre-
vious outputs have been computed and collected. Thus, in principle, arbitrary
finite state machines, and even standard central processing unit (CPU) designs,
can be efficiently implemented using surface CRNs on a large enough origami
array. Such designs are closely related to the implementation of delay-insensitive
circuits in asynchronous cellular automata [25].

Logic circuits with surface CRNs should be more scalable than previous DNA-
based logic circuits. Any feedforward or sequential logic circuit can be imple-
mented with the same set of signal molecules on the surface and fuel molecules
in solution, regardless of the circuit size. A different circuit will correspond to a
different layout of signals on the surface, and a larger circuit simply requires a
larger grid on DNA origami. For example, all three OR gates in the square root
circuit (Fig. 6g) at different locations on the surface will interact with the same
set of fuel molecules (Fig. 6b) to perform the desired computation, and all three
OR gates can operate at the same time. Assuming the concentrations of all fuel
molecules stay constant, which can be approximated by using a small amount
of DNA origami (and hence signal molecules on its surface) and a large excess
of fuel molecules in solution, the speed of each logic operation should stay the
same in larger circuits. This is in contrast to well-mixed DNA circuits, where the
maximum total DNA concentration limit requires that larger circuits operate at
lower signal concentrations, resulting in a per-operation slowdown linear in the
number of gates (c.f. SI section S15 of [31]). Finally, because each origami can
contain a different circuit and/or be initialized with different input, billions of in-
dependent circuit computations can execute within a single test tube, in contrast
to well-mixed bulk-phase reactions where only a single circuit is executed.

6 Cellular Automata

Compared to Turing machines where only the single site representing the head is
updated at a time, cellular automata take full advantage of parallel computation
and can efficiently generate complex patterns that evolve over time. A cellular
automaton has a grid of cells, each with an initial state. Based on the current
state of itself and its neighbors, each cell can be updated to a new state. A
set of transition rules determine how the cells are updated, and these rules are
applied to all cells in the grid simultaneously. Interesting biological processes
such as the behavior of muscle cells, cardiac function, animal coat markings,
and plant ecology have been simulated by cellular automata [13]. Even some
of the simplest one-dimensional cellular automata with two states (0 and 1)
are rich enough to support universal computation [8]. DNA tile self-assembly
has been used to successfully implement cellular automata [33], but only by
constructing a static pattern representing the cellular automata’s space-time
history. A previous proposal to implement one-dimensional cellular automata
dynamics on one-dimensional structures [43] used a variety of enzymes and may
not be experimentally feasible.

An example of cellular automata with surface CRNs is shown in Fig. 7. It
is an implementation of a one-dimensional block cellular automaton that sorts
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Fig. 7. A one-dimensional block cellular automaton that sorts numbers. The behavior
with synchronous updates is shown, with blue and orange dots indicating pairing on
alternate time steps. Superscripts indicate extra information that the asynchronous
surface CRN must track to ensure correct behavior. Transition rules in red performs
sorting and transition rules in black maintain the updates in alternating order.

single-digit numbers. A blocked (aka partitioning) cellular automata executes
by dividing the array into pairs of neighboring sites, synchronously applying
a look-up-table of rules for how to replace each pair by a new pair of values,
shifts the pairing by one, and repeats. Unlike the cellular automata, our model
of surface CRNs is intrinsically non-oriented and asynchronous. To allow the
recognition of orientations and to synchronize the update of all sites, each signal
molecule on a DNA origami surface (e.g. 1AL and 0AR) is designed to include
both information about a number (e.g. 0, 1, 2, or 3) and information about
block pairing (AL, AR, BL or BR, where AL indicates the left side of an “A”
pair, AR indicates the right side of an “A” pair, and so on). Each transition
rule {x, y} → {x�, y�} that reads the current states of two neighboring cells
and updates them with new states can be implemented with two fuel molecules
encoding xAL + yAR → x�BR + y�AL and xBL + yBR → x�AR + y�BL. This
ensures that the ways of pairing up signals alternate after each update, so all
signals will be compared with neighbors on both sides; further, it ensures that
a site won’t be updated again until its neighbor has caught up. Transition rules
such as {1, 0} → {0, 1}, {2, 1} → {1, 2}, and {3, 2} → {2, 3} ensure that smaller
numbers will be sorted to the left and larger numbers will be sorted to the right.
Left edge signal EL, right edge signal ER and corresponding fuel molecules are
used to complete the function of sorting.

The approach illustrated here for simulating synchronous one-dimensional
block cellular automata with asynchronous one-dimensional surface CRNs can
be generalized to provide simulations of arbitrary synchronous two-dimensional
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block cellular automata [39] and even traditional cellular automata with von
Neumann and Moore neighborhood update functions [23]. The construction uses
the same basic principles but is more elaborate, and is not presented here.

7 Discussion

The key mechanism that we proposed for implementing surface CRNs is a novel
strand displacement primitive that we call the three-way initiated four-way
strand displacement reaction. This reaction is more complex than any other
DNA strand displacement primitives that have been demonstrated so far, and
it is important to understand the kinetics and robustness of this reaction. We
argue that because the toehold binding step makes use of both a regular toehold
plus a co-axial stacking bond, it is immediately followed by three-way branch
migration (without the delay one might expect from a remote toehold [16]).
Presumably right after the initiation of three-way branch migration, the four-
way branch migration will simultaneously take place. Thus the reaction should
be completed roughly as fast as a single-step three-way or four-way strand dis-
placement reaction.

It is also important to evaluate the potential leak reactions in our surface
CRNs implementation. Any leak reactions that could occur between signal
molecules on a surface would have to involve two double-stranded domains with-
out toeholds, which is unlikely. Any leak reactions that could occur between fuel
molecules in solution will only produce waste molecules in solution and not affect
the state of signal molecules on surfaces. The most likely leak would be between
a fuel molecule and a mismatching surface-bound signal: although single short
toeholds are not very effective for initiating 4-way branch migration [9], it is pos-
sible that at some rate 4-way branch migration could initiate even without the
3-way branch migration taking place. Overall, however, the potential leak reac-
tions should be less significant than other types of strand displacement systems.
Also note that, because the number of distinct fuel molecules is constant with
any size of the logic circuits with surface CRNs, the number of leak reactions
will not scale with the complexity of the circuits. For cellular automata, a small
set of transition rules can be used to create very complex behaviors programmed
by various initial conditions, and in these cases the leak reactions will not scale
with the size of programs either.

The implementation of formal bimolecular reactions on a surface raises a
couple of concerns, including the step that requires two toeholds to temporarily
disassociate when other part of the molecules are still held together, and the
step that requires initiation of four-way branch migration with a toehold on one
side and a bulge on another. We believe it should be possible to simplify and
optimize this implementation.

It is inevitable that experimental implementation of surface CRNs will have
occasional errors, and therefore robustness and fault-tolerance will be important
issues to address in future work. Successful approaches may depend upon the
type of surface CRN being implemented. For example, for digital circuits on DNA
origami, classical and modern techniques for faulty digital circuits [41,19] provide
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solutions if the faults are transient bit-flips or permanent device failure. But DNA
surface CRNs may have other types of faults, such as arbitrary signal errors (not
just 0-to-1 or 1-to-0) and even signal loss, origami-to-origami exchange, or stuck
intermediate reaction steps. Asynchronous cellular automata models are closer
models; although error correction is more difficult there, techniques have been
developed both in one and two dimensions [14,42]. Finding practical and effective
methods for molecular programming remains an important challenge.

Even if errors at the molecular level (leak reactions, stuck intermediates, de-
fective molecules, etc.) are negligible, the complexity of understanding DNA
strand displacement system implementations at the domain level already calls
for simulation tools and logical verification techniques. An important step will
be expanding the capability of software like Visual DSD [29] to handle DNA
complexes with arbitrary secondary structure as well as localization on surfaces
– this would also enable simulation of a large variety of molecular robotics imple-
mentations. Even when the full set of domain-level reactions have been worked
out for DNA strand displacement systems, logical errors may be difficult to iden-
tify manually. Automated approaches for verifying the correctness of well-mixed
DNA strand displacement systems are being developed [24] and these may pro-
vide a starting point for verifying surface-based systems.

If these considerable challenges can be overcome, the resulting control over
spatially-organized molecular systems could provide important new capabilities.
As a systematic implementation for an extremely general class of systems, our
approach leverages the effort spent characterizing and debugging a small set
of reaction mechanisms to construct a wide range of system behaviors, rang-
ing from continuously active algorithmic computation with memory, to pattern
formation and spatial dynamics. Applications could include synthetic molecular
systems that regulate biochemical pathways in response to continuously changing
environmental signals, therapeutic molecular devices [12] that efficiently produce
treatment decisions not only based on biomarkers that are currently present, but
also those that indicate historical conditions of the target cell, or molecular-scale
devices and instruments that precisely regulate nanoscale components (such as
plasmonic elements [38] or chemical moieties [18,20]) to achieve measurement or
synthesis tasks.
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Fig. 8. Detailed mechanism of formal unimolecular reaction A → B on a surface
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Fig. 9. Detailed mechanism of formal bimolecular reaction A+B → C+D on a surface
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Abstract. Sequence-specific DNA interactions are a powerful means of pro-
gramming nanoscale locomotion. These systems typically use a DNA track that
is tethered to a surface, and molecular interactions enable a signal or cargo to
traverse this track. Such low copy number systems are highly amenable to mech-
anized analyses such as probabilistic model checking, which requires a formal
encoding. In this paper we present the first general encoding of tethered DNA
species into a formal language, which allows the interactions between tethered
species to be derived automatically using standard reaction rules. We apply this
encoding to a previously published tethered DNA circuit architecture based on
hairpin assembly reactions. This work enables automated analysis of large-scale
tethered DNA circuits and, potentially, synthesis of optimized track layouts to
implement specific logic functions.

1 Introduction

Nanoscale locomotion, driven by motor proteins such as kinesin and myosin, is a key
component of many cellular processes [1]. Recent attempts to implement synthetic
analogs of such systems typically rely on DNA components that are physically teth-
ered to a surface, e.g., a DNA origami tile, to form a track. The intuition here is that
tethered components can only interact if they are tethered in close proximity to one an-
other, so that when a component is attached to a particular tethered track location it can
only move to nearby available track locations. This approach has been used to imple-
ment a range of DNA walkers [2, 3], molecular-scale assembly lines [4], and localized
DNA logic circuits [5, 6].

Since these systems typically involve small numbers of molecules, they are highly
suited to formal analysis using methods such as probabilistic model checking [7]. Prob-
abilistic model checking has previously been applied to solution-phase DNA strand
displacement circuits [8] but its practical utility is limited by the state space explo-
sion caused by large species populations. Previous work on model checking of DNA
walkers [9] used a manually constructed representation of the state space, which is
not scalable to larger track sizes with more reachable states. Therefore, it is important
to define a general mechanism for deriving the interactions of tethered DNA species
in large-scale systems. In this paper we present such a mechanism, by extending the
DSD language [10, 11] with new syntactic constucts and reaction rules for encoding
of tethered DNA strand displacement systems on tiles. This encoding could be used to
formalize, simulate and analyze large-scale tethered DNA circuits.

S. Murata and S. Kobayashi (Eds.): DNA 2014, LNCS 8727, pp. 132–147, 2014.
c© Springer International Publishing Switzerland 2014
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Domain lists without tethers S ::= D1 · · · Dn

Left domain lists L ::= tether(a1, . . . ,an) S | S
Right domain lists R ::= S tether(a1, . . . ,an) | S
Strands A ::= 〈L〉 | 〈R〉 | {L} | {R}
Segments (no hairpins) MNH ::= {L′}〈L〉[S]〈R〉{R′}
Segments (left hairpin) MLH ::= 〈S′}[S]〈R〉{R′}
Segments (right hairpin) MRH ::= {L′}〈L〉[S]{S′〉
Segment join operators ∼ ::= : | ::
Gates (no hairpins) GNH ::= MNH | MNH ∼ GNH

Gates (left hairpin) GLH ::= MLH | MLH ∼ GNH
Gates (right hairpin) GRH ::= MRH | GNH ∼ MRH
Gates (two hairpins) GT H ::= MLH ∼ GRH

Gates G ::= GNH | GLH | GRH | GT H
Species X ::= A | G
Tethered species XT ::= X (if tethered(X))
Untethered species XU ::= X (if untethered(X))
Tethered systems T ::= XT | (T1 || T2)
Mixed systems I ::= X | (I1 || I2)
Systems U ::= XU | [[T]] | (U1 || U2)

Fig. 1. Extended syntax for DSD with tethered species, hairpins, and DNA tiles. The predicate
tethered(X) is satisfied if X contains at least one tether, and the predicate untethered(X) is satisfied
if X contains no tethers.

2 Abstract Specifications of Tether Locations

In an initial design of a large-scale tethered DNA circuit, the designer will not necessar-
ily have precise locations in mind for each of the individual tethered species. Hence, in
this early design phase it may be simpler to represent the relationship between tethered
species abstractly, by simply specifying which tethered species are located sufficiently
close to react with which other tethered species.

Here we adopt this abstract approach to the specification of the locations of tethered
species. We represent physical proximity using location tags, which are chosen from
an alphabet A = {a,b,c, . . .}. Each tether in a species will be annotated with a finite
number of tags, and we assume that all of the species which share a particular tag
are tethered such that they are close enough together to react with each other (but not
with any species that do not share that tag). Hence, two tethered species can interact if
they have at least one tag in common. Below, we will associate each tag with a local
concentration, so that certain tethered species may interact at a faster rate than others.

3 DSD Syntax for Tethered Species

To model tethered species in the DSD language, we introduce the reserved keyword
tether(a1, . . . ,an) to represent a tether point that attaches the species to a surface,
where a1, . . . ,an is a finite, non-empty list of location tags. This keyword is somewhat
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like a domain, except that it cannot be complemented and its occurrences in structures
are syntactically restricted. A species with no tethers is free to diffuse in solution.

Figure 1 defines a grammar for tethered DSD systems. (For brevity, we omit mod-
ule definitions and local domain declarations, which are present in the standard DSD
syntax.) Here and henceforth, D ranges over domains excluding tethers. This enables
us to syntactically limit the occurrences of tethers in the segment syntax. Strands are
divided into “upper” strands (〈L〉 or 〈R〉, which are rendered 5’ to 3’ from left to right),
and “lower” strands ({L} or {R}, which are rendered 3’ to 5’ from left to right). Note
that this grammar limits single strands to at most one tether point.

Multi-strand complexes are known as “gates” in the DSD language, and are com-
posed of one or more concatenated “segments”, which have a double-stranded portion,
possibly with single-stranded overhangs. From our previous work [10, 11], the general
form of a segment is {L′}〈L〉[S]〈R〉{R′}. Here, S is the double-stranded portion and the
other domain sequences denote the upper and lower single-stranded overhangs, which
are distinguished based on the brackets as in the case of single strands. Multiple seg-
ments may be composed using the segment join operator (:) for concatenation of the
lower strand, or (::) for concatenation of the upper strand.

Here, we extend the DSD syntax with hairpin loops, which can occur at either end
of a gate. This is an important extension because metastable hairpins are widely used
as a fuel supply in the design of DNA nanomachines [2, 12–14], but they are not repre-
sentable in the previously published DSD syntax [11]. We write 〈S} for a hairpin loop
at the left-hand end of a gate and {S〉 for a hairpin loop at the right-hand end of a gate.
Within a hairpin loop, we list domains from 5’ to 3’, that is, clockwise (since, by con-
vention, the upper strand runs 5’ to 3’ from left to right). The grammar includes multiple
syntactic categories for gates, to ensure that hairpins can only appear at the ends of gate
structures. Note that we omit empty overhangs when writing down gate structures and,
as standard in DSD, we assume that the only single-stranded complementary domains
are toeholds.

We let the metavariables XT and XU range over species (i.e., strands or gates) with
and without tethers, respectively. We then define tethered systems T that consist en-
tirely of tethered species, and systems U that consist of untethered species and tiles [[T]],
which represent a DNA tile with the tethered species T attached to it. Hence, a system
corresponds to a DSD program, in which tethered species can only occur within a tile
construct. This provides a syntactic means of delimiting the occurrences of tethers in
a program, and allows us to encode and simulate solutions containing many tethered
circuits on many tiles. (We also define mixed systems I that may contain both tethered
and untethered species—these are not considered well-formed and only appear during
intermediate computations of reactions between tiles and untethered species.)

For simplicity, the grammar in Figure 1 admits gate structures with tethers in un-
realistic locations at the joins between gate segments. Instead, We assume that such
gates are disallowed by a subsequent well-formedness check on grammatical structures
which requires that, if two neighbouring gate segments are joined along a particular
strand, the domains adajcent to the join operator cannot be tethers. To simplify the se-
mantics, we assume that hairpins are sufficiently short that nothing will bind to a domain
in one of these structures. These extensions to the DSD syntax will enable us to model
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Fig. 2. Example of computing the sets of tags that influence several exposed toeholds in tethered
gates G, G′ and G′′, together with evaluations of the interact predicate to determine whether pairs
of gates may interact. The gate structures are derived from the transmission line design from [6],
and corresponding DSD code is presented. In this example, the domains labelled � and �′′ have no
tags in common and are therefore deemed too far apart to interact, whereas the domains labelled
�′ and �′′ are both influenced by the location tag a and can therefore interact. Thus the design
enforces that only neighbouring structures in the transmission line can interact.

tethered DNA circuits using hairpin fuels, as shown below. Appendix A presents addi-
tional extensions to the DSD syntax and semantics to encode internal loops and bulges
(the Appendices are available for download from the corresponding authors’ websites).

4 Computing Interactions between Tethered Species

In order to derive bimolecular interactions involving tethered species, we must calculate
whether the domains involved are close enough to interact. Thus we must determine
which tether points are exerting influence over which domains, in order to determine
whether those domains are tethered close enough to interact.

4.1 Labels

To identify the particular domains involved in an interaction, we fix a countably infinite
set Λ of labels �1, �2, . . . and assume that every occurrence of every domain is associated
with a globally unique label. For example, the gate {Tˆ∗}[X]〈X〉 might be labelled as
{Tˆ∗�1}[X�2 ]〈X�3〉. Domain labels are not part of the user-visible language syntax, rather,
they are an internal mechanism to distinguish between multiple instances of the same
domain when calculating which tether is exerting influence over that domain. Hence,
the particular assignment of labels to domain occurrences is not important, provided
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that they are globally unique. We do not state labels explicitly unless they are required
in a reaction rule.

4.2 Computing Bimolecular Interactions with Tethered Species

The key operation in the tethered semantics is to compute the set of tethers that are cur-
rently exerting influence on a particular domain labelled with �. We write inftags(�,G)
for the set of location tags that influence the domain labelled by � in the gate G. To
compute this we traverse the structure of the species, starting from the labelled domain
in question and moving outwards, and assume that the first tethers that we find in either
direction (written as LHtags(�,G) and RHtags(�,G)) are those exerting influence on the
position of the labelled domain:

inftags(�,G) �
⋃
(LHtags(�,G)∪RHtags(�,G))

In this definition, the inner union is over sets of tag lists, while the outer union combines
the resulting set of tag lists into a single set of location tags. The inftags(�,G) function,
and the case for tethered strands, can be fully defined as follows.

Given a segment M, we write LHtags(M) and RHtags(M) for the sets of tag lists
a1, . . . ,an such that tether(a1, . . . ,an) appears on the left or right overhang of the seg-
ment M, respectively. Furthermore, we write tags(M) for the set of all tag lists a1, . . . ,an

such that tether(a1, . . . ,an) appears anywhere in M.
We now define functions LHtags(G) and RHtags(G), which return the leftmost and

rightmost tag sets found by searching a gate G segment-wise, respectively. These func-
tions can be defined by recursion on the structure of gates, as follows.

LHtags(M)� tags(M) LHtags(M∼ G)�
{

tags(M) if tags(M) �=∅

LHtags(G) otherwise.

RHtags(M)� tags(M) RHtags(G∼ M)�
{

tags(M) if tags(M) �=∅

RHtags(G) otherwise.

We now define the first tag sets found by searching outwards from a particular labelled
domain in a gate structure. Suppose that the domain in question has label �, and that the
gate G has the form GL ∼ M∼ GR, where M is the segment containing the domain with
label �. Then, we define functions LHtags and RHtags that compute the first tag sets
found in a segment-wise search outward from the segment in G containing �, as follows.

LHtags(�,GL ∼ M∼ GR) �
{

LHtags(M) if LHtags(M) �=∅

RHtags(GL) otherwise.

RHtags(�,GL ∼ M∼ GR) �
{

RHtags(M) if RHtags(M) �=∅

LHtags(GR) otherwise.
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In the case where G has the form M∼ GR, where M is the segment containing the domain
with label �, the definitions are as follows.

LHtags(�,M∼ GR) � LHtags(M)

RHtags(�,M∼ GR) �
{

RHtags(M) if RHtags(M) �=∅

LHtags(GR) otherwise.

Finally, in the case where G has the form GL ∼ M, where M is the segment containing the
domain with label �, the definitions are as follows.

LHtags(�,GL ∼ M) �
{

LHtags(M) if LHtags(M) �=∅

RHtags(GL) otherwise.

RHtags(�,GL ∼ M) � RHtags(M).

These functions are used to define inftags(�,G), as shown above. Furthermore, since
single strands may also be tethered, we must also define a similar function for strands:
assuming that the label � appears in the strand A, we simply let inftags(�,A) return the
union of all tag lists a1, . . . ,an such that tether(a1, . . . ,an) appears in A. Our well-
formedness conditions on the occurrences of tethers mean that inftags(�,A) must con-
tain at tags from at most one tag set, as the syntax only allows a tether at one end of a
single strand.

The inftags(�,X) function, where X could be a gate G or a strand A, will be used
below to define interaction rules for tethered species. Figure 2 presents the result of
computing the sets of tags that influence exposed toeholds in an example interaction
between a tethered gate and a tethered strand.

We can now define the additional tests, expressed in terms of the inftags function,
that govern bimolecular interactions involving species that may be tethered. If species
X1 and X2 may interact via toeholds with labels �1 and �2, the interaction is possible if
the predicate interact(X1, �1,X2, �2) is satisfied, which is defined as follows.

interact(X1, �1,X2, �2) � (inftags(X1, �1)∩ inftags(X2, �2)) �=∅

∨ inftags(X1, �1) =∅∨ inftags(X2, �2) =∅

The first clause of the definition covers the case when the reactants X1 and X2 are both
tethered, and when the interacting toehold domains have one or more location tags in
common. This means that the species are tethered close enough together to interact. The
two remaining clauses cover the cases when one or both reactants contain no tethers,
and are therefore freely diffusing. In these cases, the reaction is always possible be-
cause a freely diffusing species can always find any other species to interact with. This
definition will be used below to formalize the reaction rules for tethered species.

5 Reaction Rules for Tethered Species

We write GL for any gate capable of serving as a left-hand context, that is, either GNH

(no hairpins) or GLH (hairpin present only on the left-hand side), or an empty context.
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Two strands binding / unbinding:

. . . where forward reaction is only derivable if interact(�,A, �′,A′).

A strand binding to / unbinding from a gate:

. . . where forward reaction is only derivable if interact(�,A, �′,G).

Two gates binding / unbinding:

. . . where forward reaction is only derivable if interact(�,G, �′,G′).

Fig. 3. Bimolecular DSD reaction rules for tethered species

Similarly, we write GR for any gate capable of serving as a right-hand context, that
is, either GNH (no hairpins) or GRH (hairpin present only on the right-hand side), or an
empty context. In this section we present rules that define the possible reactions between
species, including permissible structural contexts. Each reaction rule is labelled with the
reaction rate constant: we assume the existence of functions bindrate and unbindrate
that map each toehold domain Nˆ (and its complement Nˆ∗) to the associated binding
rate constant bindrate(Nˆ) and unbinding rate constant unbindrate(Nˆ) respectively,
and rate constants ρF for “fast” unimolecular reactions (e.g., branch migration) and
ρS for “slow” unimolecular reactions (e.g., formation of internal loops, which involves
internal diffusion).

Figure 3 presents bimolecular binding rules for strands and gates, and the corre-
sponding unimolecular unbinding rules. Since these species may be tethered, the bi-
molecular rules use the interact predicate defined in Section 4.2 as a crucial additional
test, so that two tethered species may only bind if they are tethered close enough to-
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Branch migration:

Strand displacement:

Gate displacement:

Hairpin displacement:

Hairpin binding / unbinding:

Fig. 4. Unimolecular DSD reaction rules, including additional rules to model hairpins. Note that
the DSD convention is to list domains from left to right on the page, which corresponds to 5’ to
3’ for “upper” strands but 3’ to 5’ for “lower” strands. The inclusion of hairpins in the syntax
muddies this distinction somewhat, and we must use the “rev” keyword to reverse the appropriate
domain sequences in hairpin reactions.

gether. Figure 4 recaps the basic unimolecular reaction rules from the DSD semantics
and presents additional rules to define intramolecular hairpin opening (displacement)
and (un)binding reactions. (ASCII representations of all rules, using the DSD syntax,
are presented in Appendix B.) Note that the formation rule for hairpins is an instance
of the remote toehold design concept [15]. To formalize the interactions of DNA tiles
as tethering surfaces in the DSD language, we require the following rules, to turn the
reactions of tethered species into reactions involving the corresponding tile species.

(TINT)
T

ρ−→ T′

[[T]]
ρ−→ [[T′]]

(TBND)
XU || T ρ−→ T′

XU || [[T]] ρ−→ [[T′]]
(TUBND)

T
ρ−→ T′ || XU

[[T]]
ρ−→ [[T′]] || XU
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Rule (TINT) handles direct interactions between tethered species on the tile, since all re-
actants and products are tethered to the tile (see syntax definitions above). Rule (TBND)
handles the case where an incoming diffusing species XU (which could be a strand or
a gate) binds to a tile. Similarly, rule (TUBND) covers the case where a reaction on a
tile produces an untethered species that is now free to diffuse. Note that the premisses
of rules (TBND) and (TUBND) are instances of mixed systems of tethered and untethered
species, but the final derived reactions in all cases involve well-formed systems in which
all and only tethered species are encapsulated within tile constructs. These rules do not
allow any crosstalk between two tiles—a species that is tethered to a tile can only inter-
act with another species tethered to the same tile, or with a freely diffusing species. This
is a reasonable assumption because of the slow diffusion rate of large DNA tiles com-
pared to non-tile species, and means that two tile-based circuits can only communicate
via a freely diffusing signal. Hence, all interactions taking place inside a tile are mod-
eled as unimolecular reactions. Furthermore, the entire tile in a particular configuration
must be used as the reactant species, to enable accurate modelling and simulation of
populations of tiles. Finally, some additional contextual rules are required to complete
the definition of the semantics: these are presented in Appendix C.

6 Calculating the Propensities of Tethered Interactions

For simulations or probabilistic model checking of tethered circuits, we must compute
the propensity of every possible interaction in the system, including tethered interac-
tions. In mass action kinetics, the propensity, p, of a bimolecular reaction with reactants
X1 and X2 and rate constant, k, is given by p� k× [X1]× [X2], where [Xi] is the concentra-
tion of species Xi. In tethered DSD systems, we use this expression for the propensity
of bimolecular reactions in which both reactants are freely diffusing or precisely one
reactant is tethered. In the latter case, we justify the use of this expression because the
tiles to which the tethered species are attached are assumed to be well-mixed in the
solution.

For bimolecular reactions involving two tethered reactants, however, this expression
is not valid because tethered species do not satisfy the well-mixed assumption of mass
action kinetics. To compute the propensities of bimolecular interactions between two
tethered species, we use the concept of “local concentration” developed in previous
work on the kinetics of biomolecular interactions between tethered species [5,15]. This
approach approximates the corresponding rates by computing the volume swept out by
flexible tethered strands, to estimate the probability that the two species will be close
enough to interact at a given point in time. For example, Genot et al. [15] computed
local concentrations of ∼ 1× 105 nM for localized strand displacement reactions.

To incorporate this theory into our tethered DSD framework, we assume the exis-
tence of a function lc that maps every location tag a to the local concentration for inter-
actions occurring between species influenced by that tag. A higher value for the local
concentration means that species sharing that tag are tethered relatively close to each
other and will therefore interact at a faster rate. Then, for a bimolecular reaction between
two tethered species X1 and X2 that interact via domains labelled �1 and �2 with rate con-
stant k, we compute the reaction propensity, p, as p� k×max(lc(a1), . . . , lc(an)), where
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a1, . . . ,an = inftags(�1,X1)∩ inftags(�2,X2). According to the rules from Figure 3, the
bimolecular reaction can only occur if inftags(�1,X1)∩ inftags(�2,X2) is non-empty. If
there are multiple shared tags in this intersection, we use the largest of the correspond-
ing local concentrations. We take this design decision because multiple shared tags do
not enable additional mechanisms for a given reaction to occur—instead, they simply
impose further constraints on how tethered species could be placed on a tile so that they
will interact with the specified local concentrations. Hence the largest local concentra-
tion is the dominant one when computing the rate of a given interaction. Thus we are
able to model the rates of bimolecular interactions between tethered species, enabling
simulation and probabilistic model checking of solutions of tile-based circuits.

7 Examples

As an example application of our abstract modelling framework for tethered DNA cir-
cuits, we encoded the hairpin-based tethered circuit architecture from [6] into our ex-
tended DSD language. Figure 5 presents the DSD code and reduction sequence for the
three-stator transmission line system from [6]. Note that the stators are all contained
within a syntactic tile construct, and that all of the tags are assigned the same local
concentration, i.e., the signal is passed between each pair of stators at the same rate.
Furthermore, the distribution of location tags prevents the fuel bound to the first stator
from binding directly to the third stator—hence, the signal must be passed sequentially
along the stators with none being missed. Importantly, this causal dependence between
the binding reactions can be deduced automatically by the DSD compiler, thanks to the
use of location tags. Finally, a freely-diffusing strand displacement probe produces an
increase in bulk fluorescence to indicate that the signal has reached the last stator. Fig-
ure 6 encodes a threshold-based spatial AND gate design from [6] by using different
local concentration values for different location tags. The resulting reaction propensi-
ties mean that there is a high probability that the first input will bind to the threshold
rather than the output stator. If this happens, the second input is required to trigger the
output, achieving the desired AND logic. However, there is a non-zero probability that
the first input will erroneously activate the output without the second input. We have
implemented our syntax and semantics for tethered systems in the Visual DSD soft-
ware tool [16], and Appendix D presents simulation and state space analysis results
from encoding the examples from this section in the latest version of Visual DSD.

8 Discussion

To summarize, we have defined an encoding of tethered DNA circuits on tiles in the
DSD language, which uses location tags to abstractly specify the pattern of tethering,
and therefore the pattern of possible interactions between tethered species. We have
extended the DSD syntax to include hairpins, which are often used as fuel for DNA
nanomachines, and also to include DNA tiles, which colocalize tethered species in
solution. We have demonstrated a formalization of the hairpin-based tethered circuit
design from [6]. Our abstract representation strategy removes the need to explicitly for-
malize the layout of the track and the structure of the supporting surface, which could
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Fig. 5. DSD encoding of a variant on the full three-stator transmission line system from Figure 7
of [6]. To derive the reaction rate constants, we assume that all toeholds bind at the DSD default
rate (3×10−4 nM−1 s−1) and that lc(a) = lc(b) = 1×105 nM, giving a tethered interaction rate
of 30s−1.
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Fig. 6. DSD encoding of threshold-based spatial AND gate system from Figure 9 of [6]. We
assume that input 1 arrives first, followed by input 2. The two possible trajectories for the system
are outlined: one where the first input correctly binds to the threshold, and one where the first
input erroneously triggers the output. To derive the reaction rate constants, we assume that all
toeholds bind at the DSD default rate (3×10−4 nM−1 s−1), and that lc(a) = lc(c) = 1×106 nM
and lc(b) = lc(d) = 1×105 nM. The differing local concentrations produce a thresholding effect
that gives AND logic.
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be a complex DNA nanostructure that is non-trivial to represent in a formal language.
The inclusion of DNA tiles in the language provides a means of encapsulating tethered
species such that multiple tethered circuits can be simulated in a single solution. The re-
sult is a powerful tool for modelling and verifying more sophisticated tethered systems,
e.g., to analyze the possible routes taken by walkers in a multi-track system [9].

8.1 Abstractions for Tethered Circuit Design

For detailed design of tethered DNA circuits, a coordinate-based system for specifying
the absolute positions of tethered components on a surface, e.g., a DNA origami tile,
would be required. Ideally, this would be paired with a graphical design tool, so that the
user could draw out the desired tether geometry directly, and could be integrated with
existing DNA origami design tools such as caDNAno [17].

However, the coordinate-based approach requires a highly general biophysical model
to predict the interaction rates of arbitrary DSD-representable structures with arbitrary
toehold and tether locations. Previous calculations [5, 15] have derived expressions for
tethered interaction rates for particular structures and tethering geometries, whereas
to cope with the full generality of the DSD metalanguage a far more comprehensive
physical model would be required.

In the absence of such a model, we chose a level of abstraction that is similar to
the “channel-based” approach to specifying inter-process interactions in modelling lan-
guages such as the stochastic π-calculus [18, 19]. In the channel-based approach, all
possible interactions between processes must be provided explicitly by the design via
the mechanism of channel sharing. In this paper we have moved away from that idea
to some extent by using the DSD reduction semantics to derive certain interactions
between species, however, we still rely on a channel-like approach to specify which
tethered species are close enough to react according to the reduction rules, via the mech-
anism of shared location tags.

By requiring the modeller to directly associate location concentrations with the var-
ious location tags, we shift the burden of computing the local concentrations to the
modeller, who can perform structure-specific analyses to determine a reasonable value
for the local concentration value, or alternatively fit these rate constants directly to ex-
perimental data, if available. Hence, a fully general biophysical model of the dynamics
of tethered toehold interactions is not required. This approach gives a high degree of
modelling flexibility, allowing measured rates to be included directly where available,
or to be estimated using a biophysical model [5, 15]. However, the need to specify all
possible interactions between tethered species means that the user must have some idea
of the desired track geometry before encoding the system in DSD. Furthermore, po-
tentially undesired interactions, such as track-jumping behaviour in molecular walker
systems [9], cannot be inferred automatically by the compiler.

Hence, we envision that this method for the specification of tethered circuit behaviour
will form but one layer of an abstraction hierarchy for the design and simulation of
tethered DNA circuits, similar to our approach to the semantics of strand displacement
reactions [11]. We see this model as sitting atop a more detailed coordinate-level spec-
ification, as described above. A geometric interpretation of location tags is that each
tag corresponds to a point, whose physical coordinate is the average of the physical
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coordinates of the tether locations that share that tag. If we assume the existence of a
detailed, realistic model of tethered reaction kinetics, this geometric interpretation could
form the basis of a compilation phase that takes a tethered system specified abstractly
using location tags and computes possible physical coordinates for each tether location,
producing a concrete design suitable for experimental implementation. This may involve
an iterative optimization routine to find tether coordinates that satisfy the constraints
specified in the abstract model.

Alternatively, coordinate-level specifications could be translated back into the
abstract domain for ease of analysis—this process could automatically generate the
location tag-based encoding without further input from the user. Furthermore, these
translations could be combined so that a tethered circuit design specified in the abstract
domain can be compiled into a detailed, coordinate-based representation and subse-
quently lifted back into the abstract domain. This process would exploit the detailed
model of tethered species to detect any spurious interactions between components in
an abstractly specified circuit, and could be iterated to refine the tether geometry to
minimize or eliminate the spurious interactions. This abstraction hierarchy could be
extended further by implementing automated layout algorithms that directly compile
logical specifications into geometrically arranged tracks that execute the corresponding
computation with minimal spurious interactions.

8.2 Molecular Spiders

Another potential approach to implementing nanoscale locomotion is via multivalent
catalytic walkers known as molecular spiders. These comprise multiple “legs” each of
which is a catalytically active DNAzyme [20], all attached to a rigid body such as a
streptavidin molecule. Molecular spiders move in a biased random walk due to cleav-
age of substrates displayed on a surface, and have been realized experimentally [21,22].
Previous work on computational analysis of molecular spider behaviour has used mod-
els ranging from the physically detailed [23, 24] to the more abstract [25, 26]. These
simpler models have enabled computational studies of various effects, including coop-
erative nanoscale search due to self-avoidance [27] and maze navigation [28]. The latter
is of particular interest with regard to our emphasis on the verification of track designs
for molecular walkers. However, to model these systems in our framework would re-
quire us to extend the DSD framework further to model DNAzyme-catalyzed substrate
cleavage reactions. Furthermore, the mechanism of spider motion implies that, for a
given body position, any unattached leg has the choice of a number of potential attach-
ment points. Encoding this mechanism using the approach proposed in this paper would
require a very large number of interaction tags, because a separate tag would be needed
for each pair of displayed substrates S1 and S2 that are sufficiently close together that a
spider with a leg attached to S1 can attach another leg to S2. Hence, the resulting system
would be rather cumbersome to simulate. Therefore, we believe that existing methods
of simulating molecular spider dynamics using custom Monte Carlo simulation rou-
tines [23–26] are more practical than encoding them in our framework. Our work is
more suited to encoding of tethered circuits whose interactions are constrained by the
geometry of the track layout [5, 6].
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8.3 Representable Structures

As the set of DSD-representable structures grows, we will gain increased power and
flexibility for the design of tethered reaction systems. In particular, by enabling auto-
matic, integrated compilation of enzymatic reactions, such as restriction enzyme and
nickase reactions, we hope to model an important class of DNA walkers powered by
enzymatic reactions, e.g., as in [3]. We also hope to combine this work with a formal-
ization of dendritic DSD structures to enable simulation of tethered logic circuits with
fan-in where both inputs must bind simultaneously [5], although several examples, such
as the threshold-based AND circuit described in Section 7, do not require this exten-
sion. Finally, including four-way branch migration would enable us to encode additional
published DNA walker designs [2].
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also provide a new approach for proving the undecidability of prob-
lems involving bio-operations for which the usual method of reduction
to the undecidability of the Post Correspondence Problem (PCP) may
not be easy to apply. Our closure and decidability results strengthen or
generalize previous results.

Keywords: hairpin-inversion, pseudo-inversion, pushdown automaton,
counters, reversal-bounded, decidable, undecidable, closure properties.

1 Introduction

The DNA literature has a large collection of papers that connect biological op-
erations to formal languages and automata theory. Many studies have inves-
tigated bio-properties in terms of well-known notions in formal languages. In
particular, researchers have looked at closure questions, decision problems, and
other problems concerning formal languages under biological operations, see,
e.g., [2,3,4,5,8,12,13,14,15].

Our work was motivated in part by a recent paper [1] that introduced a new
bio-inspired operation called pseudo-inversion, which a variant of an important
and well-studied operation called inversion. In a pseudo-inversion of a string,
only the outermost parts of the string are reversed, while the middle part is not
reversed. Inversion on the other hand, completely reverses the string. In looking
at some of the results concerning pseudo-inversion in [1], we found that we are
able to extend the findings in [1] to large classes of formal languages and to
other bio-operations, like hairpin-inversion, that have been investigated in the
literature (see, e,g., [2,3]).
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In this paper, we give general results that are useful in showing closure and
decidable properties of classes of languages with respect to bio-operations. For-
mally, let let Σ be an alphabet (finite nonempty set of symbols), L ⊆ Σ∗,
k ≥ 1, p = (p1, . . . , pk) be a permutation of (1, . . . , k), and c = (c1, . . . , ck)
where each ci is R (denoting “reverse”) or (denoting blank, i.e., “not reverse”).
Let F (x1, . . . , xk) be a Presburger relation on strings x1, . . . , xk over Σ∗ (e.g.,
linear relationships on the lengths of the strings, specification as what symbols
occur in some positions of the strings, etc.) We will give a precise definition of
F below. Define the language:

L(k, p, c, F ) = {xc1
p1

· · ·xck
pk

| x1 · · ·xk ∈ L, F (x1, . . . , xk)}

An example of L(k, p, c, F ) is the following:

L(4, (4, 1, 2, 3), (R, ,R,R), F ) = {xR
4 x1x

R
2 x

R
3 ) | x1x2x3x4 ∈ L, x1 begins and

ends with the same symbol, the first symbol of x2 is the same as the last
symbol of x3, |x1| < |x4|, |x1|+ |x3| > |x2|+ |x4|}.

Clearly, the constraints on the xi’s can be specified by a Presburger relation F .

We say that a class of languages L is closed under (k, p, c, F )-inversion if for
every L ∈ L, L(k, p, c, F ) is also on L. We exhibit large classes of languages
L with decidable emptiness problem that are closed under (k, p, c, F )-inversion.
An example is the class of finite-crossing two-way NFAs augmented with a finite
number of reversal-bounded counters (precise definition to be given later).

Using closure under (k, p, c, F )-inversion, we are then able to prove decidable
properties for L. For example, we show that it is decidable, given a language
accepted by a two-way DFA with one reversal-bounded counter, whether it is
L(k, p, c, F )-inversion-free (precise definition to be given later).

The proofs of many undecidable properties concerning bio-operations use the
undecidability of the Post Correspondence Problem (PCP). Here we show a tech-
nique for proving undecidability for which PCP is not applicable. Our construc-
tion is a reduction to the undecidability of the halting problem for two-counter
machines.

2 Preliminaries

In a recent paper [1], the notions of pseudo-inverse of a string and of a language
were introduced. Let Σ be an alphabet (of symbols). For a string w ∈ Σ∗, define
P (w) = {vRxuR | u, x, v ∈ Σ∗, w = uxv, and vu �= ε} (The null string is denoted
by ε.) The definition can be extended to languages in the natural way. So for a
language L, P (L) is the set of all pseudo-inverses of strings in L.

Let d ≥ 1. The d-iterated pseudo-inverse of a language L is defined as follows:
P 1(L) = P (L), and for d > 1, P d(L) = P (P d−1(L)). The iterated pseudo-inverse
of L, denoted by P ∗(L), is the union of all the P d(L) over all d ≥ 1.

A language L is pseudo-inversion-free if there is no string in P (L) that is a
substring of some string in L, i.e., Σ∗P (L)Σ∗ ∩ L = ∅.
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Another important bio-operation is hairpin-inversion, For w �= ε, the hairpin-
inverse of w is H(w) = {xuyRuRz | w = xuyuRz, x, u, y, z ∈ Σ∗, u �= ε}. If L is
a language, H(L) is the set of all hairpin-inversions of strings in L. For d ≥ 1,
d-iterated hairpin-inversion is defined in the obvious way: H1(L) = H(L), and
for d > 1, Hd(L) = H(Hd−1(L)). Again, H∗(L) is the union of all the Hd(L)
over all d ≥ 1. L is hairpin-inversion-free if there is no string in H(L) that is a
substring of some string in L, i.e., Σ∗H(L)Σ∗ ∩ L = ∅.

In this paper, we generalize the notions above to (k, p, c, F )-inversion. Let
L1 and L2 be two languages over alphabet Σ. We say that L1 is (k, p, c, F )-
inversion-free for L2, if there is no string in L1(k, p, c, F ) that is a substring of
some string in L2, i.e., Σ

∗L1(k, p, c, F )Σ∗ ∩ L2 = ∅. In the special case when
L = L1 = L2, we simply say L is (k, p, c, F )-inversion-free.

We will use the following notation throughout the paper: NPDA for nondeter-
ministic pushdown automaton; DPDA for deterministic pushdown automaton;
NCA for an NPDA that uses only one stack symbol in addition to the bot-
tom of the stack, which is never altered; DCA for deterministic NCA; NFA
for nondeterministic finite automaton; DFA for deterministic finite automaton;
2NFA, 2DFA, etc. are the two-way versions (whose input tape has left and
right end markers). We refer the reader to [9] for the formal definitions of these
devices.

A counter is an integer variable that can be incremented by 1, decremented by
1, left unchanged, and tested for zero. It starts at zero and cannot store negative
values. Thus, a counter is a pushdown stack on unary alphabet, in addition to
the bottom of the stack symbol which is never altered.

An automaton (NFA, NPDA, NCA, etc.) can be augmented with a finite
number of counters, where the “move” of the machine also now depends on
the status (zero or non-zero) of the counters, and the move can update the
counters. It is well known that a DFA augmented with two counters is equivalent
to a TM [16].

In this paper, we will restrict the augmented counter(s) to be reversal-bounded
in the sense that each counter can only reverse (i.e., change mode from nonde-
creasing to nonincreasing and vice-versa) at most r times for some given r. In
particular, when r = 1, the counter reverses only once, i.e., once it decrements,
it can no longer increment. Note that a counter that makes r reversals can be
simulated by # r+1

2 $ 1-reversal counters.
We call a relation F (x1, . . . , xk) on k strings over an alphabet Σ a Presburger

relation if the language LF = {x1# · · ·#xk | (x1, . . . , xk) satisfies F} can be
accepted (i.e., verified) by an NFA with reversal-bounded counters, where # is
a symbol not in Σ.

However, there is one place in the paper (section 4), where we define F to be
Presburger if LF can be accepted by a 2DFA with one reversal-bounded counter.

We will use the following result:

Theorem 1. [10] It is decidable, given an NPDA M augmented with reversal-
bounded counters, whether L(M) = ∅ (resp., whether L(M) is finite).
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3 Closure Results

We begin with the following theorem concerning NCAs with reversal-bounded
counters. (Note that such a machine has one unrestricted counter in addition to
the reversal-bounded counters.)

Theorem 2. Let L be a language accepted by an NCA M with reversal-bounded
counters. Let L′ = {x3x2x1 | x1x2x3 ∈ L}. Then L′ can also be accepted by an
NCA M ′ with reversal-bounded counters.

Proof. Assume that M has disjoint state set and input alphabet. Let c be the
unrestricted counter of M . Suppose M has n reversal-bounded counters. Let 0,
1, # be new symbols. Define a language L′′ consisting of strings of the form:

w=q31
i301j310 · · · 01j3nx3q41

i401j410 · · · 01j4n#q21
i201j210 · · · 01j2nx2q31

i301j310
· · · 01j3n#q11

i101j110 · · · 01j1nx1q21
i201j210 · · · 01j2n

where q1 is the initial state of M , q4 is an accepting state of M , the i’s and j’s
are nonnegative integers with i1 = j11 = · · · = j1n = 0, and x1x2x3 ∈ L.

L′′ can be accepted by an NCA M ′′ with reversal-bounded counters (using many
more reversal-bounded counters than M). M ′′, when given input w, operates in
three phases:

Phase 1: M ′′ reads q31
i301j310 · · · 01j3n and remembers q3 in the finite control

and stores i3 in its unrestricted counter c and i3, j31, . . . , j3n in two sets of n+1
reversal-bounded counters. Then M ′′ simulates M on input segment x3 starting
in state q3 using c (which has value i3) and one set of n reversal-bounded counters
which contain j31, . . . , j3n. At the end of the simulation, it checks that the state
is q4 and the values of the unrestricted counter c and reversal-bounded counters
are i4, j41, . . . , j4n, respectively which are represented on the input after x3. Note
that i3, j31, . . . , j3n have been stored in another set of counters.

Phase 2: As in phase 1, M ′′ reads q21
i201j210 · · · 01j2n and simulates M on x2

and carries out the same process as in Phase 1, but it also checks at the end
of the phase that the state and values of c and reversal-bounded counters are
identical to the values stored in the second set of n+1 counters in Phase 1, i.e.,
the configuration (state and counter values) at the end of Phase 2 is identical to
the configuration that Phase 1 started with.

Phase 3: As in Phase 2, M ′′ reads q11
i101j110 · · · 01j1n and simulates M on x1

and carries out the same process as Phase 2 and at the end of the phase checks
that the configuration at the end of Phase 3 is identical to the configuration that
Phase 2 started with.

It is easily verified that M ′′ accepts L′′. Finally, we construct from M ′′ an NCA
with reversal-bounded counters M ′ that accept L′ (since languages accepted by
these machines are clearly closed under homomorphism). ��
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In the special case when M is an NFA, we have:

Corollary 1. Let L be a language accepted by an NFA M . Let L′ = {x3x2x1 |
x1x2x3 ∈ L}. Then L′ can also be accepted by an NFA M ′ whose size is polyno-
mial in the size of M .

Proof. We need only note that in the proof of Theorem 2, the language L′′ will
now consist of strings of the form w = q3x3q4#q2x2q3#q1x1q2 (i.e., no counter
values to be stored). Hence the size of M ′′ is polynomial in the size of M . Then
the NFA M ′ to accept L′ (which is simply erasing the q’s and the #’s from the
input string) would still be polynomial in the size of M . ��

The reason why the construction in Theorem 2 is a bit complicated is because
we needed to construct an NCA M ′ with reversal-bounded counters for L′ which
has one-way input, since we need the fact that the emptiness problem for NCAs
with reversal-bounded counters is decidable. It is known that the emptiness
problem for 2DCAs (i.e., the machines have only an unrestricted counter and no
reversal-bounded counters) is undecidable, even when the input head makes only
3 turns on the input tape [10]. The construction of the intermediate machine M ′′

above works, because in executing the three phases, we are able to “temporarily”
store the value of the unrestricted counter c in a reversal-bounded counter in
going from phase to phase in simulating the NCA M with reversal-bounded
counters, since in the simulation, the input to M ′′ is not given in the same order
as the input to M . This idea does not work when the unrestricted counter is
replaced by a pushdown stacks, since we would need another stack to temporarily
store the contents of the stack and the resulting machine would then have two
stacks (the emptiness would be undecidable).

We observe that Theorem 2 and Corollary 1 would still hold for the case when
some of x1, x2, x3 are reversed. For example, L′ = {x3x

R
2 x1 | x1x2x3 ∈ L} can

be accepted by a NCA with reversal-bounded counters. In this case, the input
segment:

q21
i201j210 · · · 01j2nx2q31

i301j310 · · · 01j3n

will now be displayed in reverse, i.e., the segment will now be:

1j3n0 · · · 01j3101i3q3xR
2 1

j2n0 · · · 01j2101i2q2
Then in Phase 2, the simulation of M on input segment x2 will be carried out
by M ′′ in reverse.

Using the ideas above, we can prove a general result. Let L ⊆ Σ∗, k ≥ 1, p =
(p1, . . . , pk) a permutation of (1, . . . , k), and c = (c1, . . . , ck) where each ci is R
(denoting “reverse”) or (denoting blank, i.e., “not reverse”). Let F (x1, . . . , xk)
be a Presburger relation on strings x1, . . . , xk over Σ∗. Define the language:

L(k, p, c, F ) = {xc1
p1

· · ·xck
pk

| x1 · · ·xk ∈ L, F (x1, . . . , xk)}

We say that a class of languages L is closed under (k, p, c, F )-inversion if for every
L ∈ L, L(k, p, c, F ) is also on L. An example of L(k, p, c, F ) is the following:
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L(3, (3, 2, 1), (R, ,R)) = {xR
3 x2x

R
1 | x1x2x3 ∈ L, |x1|+ |x3| > 0}.

Clearly, the constraints on the xi’s can be specified by a Presburger relation
F that can be verified by an NFA with reversal-bounded counters. Note that
L(3, (3, 2, 1), (R, ,R)) is the pseudo-inversion of L.

Theorem 3. The class of languages accepted by NCAs with reversal-bounded
counters is closed under (k, p, c, F )-inversion.

Proof. Let M be an NCA with reversal-bounded counters accepting L. We
construct an NCA M ′ with reversal-bounded counters accepting L(k, p, c, F )
following the ideas in the proof of Theorem 2 and discussion above and the
fact that the Presburger relation F can be verified by an NFA with reversal-
bounded counters (by definition), which can run in parallel with M ′′ (see proof of
Theorem 2). ��

In the special case when M is an NFA and F can be verified by an NFA (i.e.,
without reversal-bounded counters):

Corollary 2. If L is accepted by an NFA M and F can be verified by an NFA
MF , then L(k, p, c, F ) can also be accepted by an NFA M ′ whose size is polyno-
mial in the k and the sizes of M and MF .

The above corollary generalizes the results in [1] and [2] which showed that
regular sets are closed under pseudo-inversion and hairpin-inversion, respectively.

We think that Theorem 3 and Corollary 2 can serve as powerful tools for
showing closure properties and decidability of formal languages with respect to
bio-operations. We illustrate some applications on positive closure properties
here. In the next section, we will prove some decidable properties.

From Theorem 3 and the example above, we have:

Corollary 3. The class of languages accepted by NCAs with reversal-bounded
counters is closed under pseudo-inversion and d-iterated-pseudo-inversion.

Corollary 4. Let L ⊆ Σ∗ be a language accepted by an NCA with reversal-
bounded counters, and d ≥ 1. Then Hd(L) is also accepted by a NCA with
reversal-bounded counters.

Proof. It was shown in [2] that the hairpin-inversion definition of a string w is
equivalent to H(w) = {xayRaz | w = xayaz, a ∈ Σ, x, y, z ∈ Σ∗}. We then
apply Theorem 3 with k = 5, p = (1, 2, 3, 4, 5), c = ( , , R, , ), and Presburger
constraint |x2| = |x4| = 1 and x1 and x2 contain the same symbol. ��

There are other interesting and well-known bio-operations such as synchro-
nized insertion, synchronized deletion, and synchronized bi-deletion (see, e.g.,
[2,3]). Theorem 3 and the easily proved closure of languages accepted by NPDAs
(resp., NCAs, NFAs) with reversal-bounded counters under intersection with reg-
ular sets, homomorphism, inverse homomorphism and reversal, can be used to
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improve or give shorter proofs of closure properties that have appeared in the
literature (see, e.g., [2]).

Now we look at languages accepted by NPDAs (resp., NPDAs with reversal-
bounded counters). Let 0, 1, a, b,#1,#2,#3 be distinct symbols, and consider
the language L = {#1x1#2x2#3 | x1 ∈ (0 + 1)+, x2 ∈ (a + b)+, x1 when
0, 1 are mapped to a, b, respectively, is the reverse of x2}. Clearly, L can be
accepted by a DPDA. Suppose the pseudo-inversion of L, P (L), can be ac-
cepted by an NPDA (resp., NPDA with reversal-bounded counters). Then L′ =
P (L) ∩ #2(a + b)+#3(0 + 1)+#1 can also be accepted by an NPDA (resp.,
NPDA with reversal-bounded counters), since these families are closed under
intersection with regular sets. But L′ = {#2x#3y#1 | y when 0, 1 are mapped
to a, b is equal to x. Clearly, L′ is not context-free (i.e., cannot be accepted
by an NPDA). It is also unlikely that L′ can be accepted by an NPDA with
reversal-bounded counters. We conclude that the class of languages accepted
by NPDAs is not closed under pseudo-inversion, and it is very likely that the
class accepted by NPDAs with reversal-bounded counters is also not closed un-
der pseudo-inversion. The observation that the class of languages accepted by
NPDAs is not closed under pseudo-inversion was already made in [1], but the
NPDA language L used in [1] is such that P (L) can be accepted by a NPDA
with reversal-bounded counters.

There is another powerful class of machines with decidable emptiness problem
that one can use for showing closure properties. Consider a 2NFA with reversal-
bounded counters (recall that ‘2’ means the input head is two-way, and the
input has left and right end markers). It is known that the emptiness problem
for such machines is undecidable, even when there are only two reversal-bounded
counters [10]. But suppose it is finite-crossing in the sense that there is some
given integer c such that the input head crosses the boundary between any two
adjacent input symbols at most c times. The following was shown in [6]:

Theorem 4. It is decidable, given a finite-crossing 2NFA M augmented with
reversal-bounded counters, whether L(M) = ∅ (resp., whether L(M) is finite).

One can also show the following proposition using the results in [10,6]:

Proposition 1. The class of languages accepted by finite-crossing 2NFAs with
reversal-bounded counters is closed under union, intersection, reversal, and
homomorphism.

Languages accepted by finite-crossing 2NFAs with reversal-bounded counters
can easily be shown to be closed under bio-operations like pseudo-inversion,
hairpin-inversion, etc. This is because the input head is allowed to have two-way
capability. In fact, we can prove a result similar to Theorem 3:

Theorem 5. The class of languages accepted by finite-crossing 2NFAs with
reversal-bounded counters is closed under (k, p, c, F )-inversion.

Proof. By definition, Let M be a finite-crossing 2NFA accepting L. L(k, p, c,
F ) = {xc1

p1
· · ·xck

pk
| x1 · · ·xk ∈ L, F (x1, . . . , xk)}. Let # be a new symbol.
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Let L′ = {xc1
p1
# · · ·#xck

pk
| x1 · · ·xk ∈ L, F (x1, . . . , xk)}. Thus, L′ is L(k, p, c, F )

with markers.
We show that L′ can also be accepted by a finite-crossing 2NFA M ′ with

reversal-bounded counters. M ′, when given input w′, simulates the computation
the computation of M on input w = x1 · · ·xk. Even though the xi’s in the input
w′ to M ′ are not displayed in the same way, M ′ is able to simulate M easily
because the boundaries of the input segments are marked by #’s. M ′ accepts
if M accepts and (x1, . . . , xk) satisfies the relation F . Then from Proposition 1,
M ′ can be converted to a finite-crossing 2NFA with reversal bounded counters
to accept L(k, p, c, F ) (which is just a homomorphic image of L′, which erases
the #’s). ��

Finally, we note that since the emptiness problem for finite-crossing two-way
NPDAs and two-way NCAs (even when the machines only make three sweeps of
the input) is undecidable, finite-crossing for these devices would not be useful.

4 Decidable Results

Let L1 and L2 be two languages over alphabet Σ. Recall that L1 is (k, p, c, F )-
inversion-free for L2 if Σ∗L1(k, p, c, F )Σ∗ ∩ L2 = ∅. In the special case when
L = L1 = L2, we simply say L is (k, p.c, F )-inversion-free.

Theorem 6. It is decidable, given L1, L2 ⊆ Σ∗, whether L1 is (k, p, c, F )-
inversion-free for L2 for the following cases:

1. L1 is accepted by an NCA (hence, also NFA) with reversal-bounded counters
and L2 is accepted by an NFA with reversal-bounded counters.

2. L1 is accepted by an NFA with reversal-bounded counters and L2 is accepted
by an NPDA with reversal-bounded counters.

3. L1 and L2 are accepted by finite-crossing 2NFAs with reversal-bounded
counters.

Proof. Consider part 1. Let L1 be accepted by an NCA M1 with reversal-
bounded counters, and L2 be accepted by an NFA M2 with reversal-bounded
counters. (Note that M1 has one unrestricted counter in addition to reversal-
bounded counters.) From Theorem 3, we construct from M1, an NCA M ′

1 with
reversal-bounded counters to accept L1(k, p, c, F ). Then we construct from M ′

1

another NCA M ′′
1 with reversal-bounded counters to accept Σ∗L1(k, p, c, F )Σ∗.

Finally, we construct an NCA M with reversal-bounded counters to accept
L(M ′′

1 )∩L(M2). (M simulates M ′′
1 and M2 in parallel.) Clearly, L1 is (k, p, c, F )-

inversion-free for L2 if and only if L(M) = ∅. The result follows, since empti-
ness of languages accepted by NPDAs (hence also NCAs) with reversal-bounded
counters is decidable by Theorem 1.

Now consider part 2. As in part 1, Σ∗L1(k, p, c, F )Σ∗ can be accepted by
an NFA M ′′

1 with reversal-bounded counters (similar construction as in part
1). Then we can construct an NPDA M with reversal-bounded counters to ac-
cept L(M ′′

1 )∩L(M2). Again, the result follows since emptiness for NPDAs with
reversal-bounded counters is decidable (Theorem 1).
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For part 3, let L1 and L2 be accepted by finite-crossing 2NFAs with reversal-
bounded counters M1 and M2, respectively. From Theorem 5, we construct
from M1, a finite-crossing 2NFA M ′

1 with reversal-bounded counters to accept
L1(k, p, c, F ). Let # be a new symbol. Clearly, we can construct fromM ′

1, a finite-
crossing 2NFA M2 with reversal-bounded counters to accept Σ∗#L1(k, p, c, F )
#Σ∗. Then by Proposition 1, Σ∗L1(k, p, c, F )Σ∗ can also be accepted by a finite-
crossing 2NFA M ′′

1 with reversal-bounded counters (i.e., the #’s are deleted).
Finally, from Proposition 1 again, we can construct from M ′′

1 and M2 a finite-
crossing 2NFA M with reversal-bounded counters to accept Σ∗L1(k, p, c, F )Σ∗∩
L2. The result follows, since emptiness of languages accepted by finite-crossing
2NFAs with reversal-bounded counters is decidable by Theorem 4. ��

For the special cases of pseudo-inversion and hairpin-inversion, we get the
following corollary from Theorem 6:

Corollary 5. It is decidable, given L1, L2 ⊆ Σ∗, whether L1 is pseudo-inversion-
free (resp., hairpin-inversion-free) for L2 for the following cases:

1. L1 is accepted by an NCA (hence, also NFA) with reversal-bounded counters
and L2 is accepted by an NFA with reversal-bounded counters.

2. L1 is accepted by an NFA with reversal-bounded counters and L2 is accepted
by an NPDA with reversal-bounded counters.

3. L1 and L2 are accepted by finite-crossing 2NFAs with reversal-bounded coun-
ters.

Part 1 of Corollary 5 does not hold if L2 is also accepted by an NCA with
reversal-bounded counters. In fact, as we shall see in the next section, it is
already undecidable, given a language L accepted by an NCA, whether it is
pseudo-inversion-free.

Theorem 7. Let c, r ≥ 0 be fixed. The problem of deciding, given an NFA with
c counters, each of which makes at most r-reversals, whether L(M) is pseudo-
inverse-free is in NLOGSPACE, hence also in PTIME.

Proof. It is known that for fixed c, r, the emptiness problem for NFAs with c
r-reversal counters is in NLOGSPACE [6]. The result follows from the construc-
tions in the proofs of Theorems 3 and 6, i.e., M in proof of Theorem 6 will have
a fixed number of counters depending only on r and c, and the reversal bound
for each of the counters will also only depend on r and c. ��

Theorem 7 improves a result in [1] which showed that it decidable in PTIME
whether a language accepted by an NFA is pseudo-inversion-free. Theorem 7
also holds when “pseudo-inverse-free” is replaced by “hairpin-inverse-free”.

Remark. Suppose L1 is not pseudo-inversion-free for L2. Can we decide if
Σ∗L1(k, p, c, F )Σ∗ ∩ L2 is finite? The answer is “yes” for the three cases in
Theorem 6 and Corollary 5, because it is decidable if an NPDA with reversal-
bounded counters is finite (Theorem 1).
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As we mentioned earlier, 2DFAs with two reversal-bounded counters have
an undecidable emptiness problem. However, the emptiness problem for 2DFAs
with one reversal-bounded counter is decidable [11]. Note that a 2DFA with
one reversal-bounded counter is quite powerful. For example, it can accept the
language L = {aibj | i, j ≥ 1, i is divisible by j}.

Here we assume that the Presburger relations can be verified by 2DFAs with
one reversal-bounded counter.

Theorem 8. It is decidable, given L1, L2 ⊆ Σ∗ that are accepted by 2DFAs with
one reversal-bounded counter, whether L1 is (k, p, c, F )-inversion-free for L2.

Proof. GivenM1 accepting L1 and k, p, c, F , letMF be a 2DFA with one reversal-
bounded counter that verifies F . Let L′

1 = {#xc1
p1
# · · ·#xck

pk
# | x1 · · ·xk ∈

L1, F (x1, . . . , xk)}, where # is a new symbol not in Σ. Thus L′
1 is L1(k, p, c, F )

with markers. We construct a 2DFA M ′
1 with one reversal-bounded counter to

accept L′
1. Then from M ′

1, we construct another 2DFA M ′′
1 with one reversal-

bounded counter to accept L′′
1 = Σ∗L′

1Σ
∗. Let M2 be a 2DFA with one reversal-

bounded counter that accepts L2. Let L′
2 = {y0#y1# · · ·#yk#yk+1 | y0y1

· · · ykyk+1 ∈ L2}. Thus L′
2 is L2 with markers. Clearly, we can construct from

M2 a 2DFA M ′
2 with one reversal-bounded counter to accept L′

2. Finally, we
construct from M ′′

1 and M ′
2 a 2DFA M with one reversal-bounded counter to

accept L(M ′′
1 ) ∩ L(M ′

2). The result follows since Σ∗L1(k, p, c, F )Σ∗ ∩ L2 = ∅ if
and only if Σ∗L′′

1Σ
∗ ∩ L′

2 = ∅, and the emptiness problem for 2DFAs with one
reversal-bounded counters is decidable. ��

5 Undecidable Results

In [1], it was shown that it is undecidable if a context-free grammar (or, equiv-
alently, an NPDA) is pseudo-inversion-free. The proof involved the use of the
undecidability of the Post Correspondence Problem (PCP), which does not seem
easy to apply to NCAs.

Here, we show, by a different construction, that the problem is still unde-
cidable for NCAs (i,e., the pushdown stack is restricted to use only one stack
symbol, in addition to the bottom of the stack, which is never altered).

Theorem 9. It is undecidable to determine, given an NCA, whether it is pseudo-
inversion-free.

Proof. The proof uses the undecidability of the halting problem for 2-counter
machines. A close look at the proof in [16] of the undecidability of the halting
problem for 2-counter machines, where initially one counter has value d1 and
the other counter is zero, reveals that the counters behave in a regular pattern.
The 2-counter machine operates in phases in the following way. Let c1 and c2
be its counters. The machine’s operation can be divided into phases, where each
phase starts with one of the counters equal to some positive integer di and the
other counter equal to 0. During the phase, the positive counter decreases, while
the other counter increases. The phase ends with the first counter having value
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0 and the other counter having value di+1. Then in the next phase the modes of
the counters are interchanged. Thus, a sequence of configurations corresponding
to the phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 the initial state, and d1, d2, d3, . . . are positive
integers. Note that the second component of the configuration refers to the value
of c1, while the third component refers to the value of c2. We assume, w.l.o.g.,
that d1 = 1.

Let T be a 2-counter machine. We assume that if T halts, it does so in a
unique state qh. Let T ’s state set be Q, and 1 be a new symbol.

In what follows, α is any sequence of the form I1I2 · · · I2m (thus we assume
that the length is even), where Ii = 1kq for some k ≥ 1 and q ∈ Q, represents a
possible configuration of T at the beginning of phase i, where q is the state and
k is the value of counter c1 (resp., c2) if i is odd (resp., even).

Define Lodd to be the set of all strings α such that

1. α = #I1#I2 · · ·#I2m$;

2. m ≥ 1;

3. I1 = 1d1q1, where d1 = 1 and q1 is the initial state, which we assume is never
re-entered during the computation;

4. I2m = 1vqh for some positive integer v, where qh is the only halting state;

5. for odd j, 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij ,
then after one phase, T is in configuration Ij+1;

Similarly, define Leven analogously except that the condition “Ij ⇒ Ij+1” now
applies to even values of j, 2 ≤ j ≤ 2m− 2.

Now, let L = Lodd∪LR
even (note that R denotes reverse). Let Σ be the alphabet

over which L is defined.

We can construct an NCA M accepting L ⊆ Σ∗ as follows. Given input x, M
executes (1) or (2) below:

(1) M checks that x is in Lodd deterministically by simulating the 2-counter
machine T as follows:M reads x = #I1#I2 · · ·#I2m$ = #1d1q1#1d2q2 · · ·#1d2m

q2m$ and verifies that d1 = 1, q1 is the initial state, q2m is the halting state qh,
and for odd j, 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1. To check that Ij ⇒ Ij+1, M reads
the segment 1djqj and stores 1dj in its counter (call it c) and remembers the
state qj in its finite control. This represents the configuration of T when one
of its two counters, say c1, has value dj , the other counter, say c2, has value
0, and its state is qj . Then, starting in state qj , M simulates the computation
of T by decrementing c (which is simulating counter c1 of T ) and reading the
input segment 1dj+1 until c becomes zero and at which time, the input head of
M should be on qj+1. Thus, the process has just verified that counter c2 of T
has value 1dJ+1 , counter c1 has value 0, and the state is qj+1.
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(2) In a similar way,M checks that xR is in LR
even, i.e., for even j, 2 ≤ j ≤ 2m−2,

Ij ⇒ Ij+1. But M does the checking in reverse, since Ij+1 is read before Ij ; so
M does the checking in a nondeterministic way.

One can verify that M is not pseudo-inversion-free if and only if T halts. We
omit the details. ��

Finally, we note that using a construction similar to that in the proof of
Theorem 9, we can show that it is undecidable to determine, given an NCA,
whether it is hairpin-inversion-free.

6 Conclusion

We have presented general results that are useful in showing closure and decid-
able properties of large classes of languages with respect to biologically-inspired
operations. We have also provided a technique for proving the undecidability of
problems involving bio-operations for which the PCP is not applicable.

It was recently shown in [7] that the emptiness problem for NPDAs augmented
with reversal-bounded counters (where the number of counters and the bound r
on reversals are not fixed, but r is assumed to be given in unary) is NP-complete,
even when the counters can be compared against and incremented/decremented
by constants that are given in binary. This result can be used to show that some
of the decision problems we discussed in Section 4 are NP-complete.
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