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Abstract In this paper we extend the class of stochastic processes allowed to
represent solutions of the Navier-Stokes equation on the two dimensional torus to
certain non-Markovian processes which we call admissible. More precisely, using
the variations of Ref. [3], we provide a criterion for the associated mean velocity
field to solve this equation. Due to the fluctuations of the shift a new term of pressure
appears which is of purely stochastic origin. We provide an alternative formulation
of this least action principle by means of transformations of measure. Within this
approach the action is a function of the law of the processes, while the variations are
induced by some translations on the space of the divergence free vector fields. Due to
the renormalization in the definition of the cylindrical Brownian motion, our action
is only related to the relative entropy by an inequality. However we show that, if we
cut the high frequency modes, this new approach provides a least action principle
for the Navier-Stokes equation based on the relative entropy.

Keywords Navier-Stokes · Entropy

1 Introduction

Let (Wt) be a suitably renormalized Brownian motion on the space of vector fields
on the two dimensional torus T2 with a well chosen Sobolev regularity. In the case
where (ut) is a deterministic vector field, it was shown that equations of the form

dgt = (◦dWt + utdt)(gt); gt = e (1.1)
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could model the Navier-Stokes flows (see for instance the review article [2] and
references within). More precisely it was shown that (ut) solves the Navier-Stokes
equation if and only if a certain associated action is stationary. Subsequently, models
of the form

dgt = (◦dWt + v̇t(ω)dt)(gt); gt = e (1.2)

where considered in Ref. [1], together with a notion of generalized stochastic flows
with fixed marginals. In these latter models, the shift v̇t(ω) is allowed to be random:
the drift changes from one realization of the noise to another which seems to fit
accuratelywith themicroscopicmodels of theNavier-Stokes equation one encounters
in physics. In particular such processes are not necessarily Markovian.

In the case of (1.2) there is no reason why we should hope v̇(ω) to solve the
Navier-Stokes equation for any ω a.s., and we should focus on the mean velocity
field

u : (t, x) ∈ [0, 1] × T
2 → u(t, x) = Eη[v̇t(x)] ∈ TxT

2

where η is the underlying probability on the canonical path space, and where TxT
2

is the tangent space at x.
We extend here the criterion of Ref. [2] from equations with the form (1.1) to

equations of type (1.2) for a wide class of stochastic drifts. Namely we focus on
drifts v associated with a probability η with finite entropy with respect to the law μ
of the renormalized Brownian motion on the corresponding path space. We exhibit a
class of such drifts (they will be called admissible) whose mean velocity field solves
the Navier-Stokes equation if and only if the associated action, which will be noted
S(η|μ), is critical. We then prove that this notion naturally extends the variational
principle of Ref. [2]. One of the aspects of this model is to allow that the fluctuations
of the drift itself may contribute to the pressure. Then we provide an alternative
formulation to the least action principle by means of transformation of measure.
However in this case, due to the renormalization involved in the definition of the
cylindrical Brownian motion, our action for a process with law η is only related to
the corresponding relative entropy

H(η|μ) := Eη

[
ln

dη

dμ

]

by an inequality. Nevertheless, by introducing a cut-off, the action S(ν|η) becomes
proportional to the relative entropy, and by cutting the high modes, we provide a
least action principle to the Navier-Stokes equation by means of the relative entropy.

The structure of this paper is the following. In Sect. 2 we introduce the general
framework as well as the main notations of the paper. In Sect. 3 we provide a charac-
terization of solutions of the Navier-Stokes equation as critical flows of the action. In
Sect. 4 this criterion is proved to extend those of Refs. [2, 3]. In Sect. 5 we introduce
a cut-off in order to transform variations of the action in variations of the entropy.
(Sect. 6).



On the Stochastic Least Action Principle for the Navier-Stokes Equation 165

2 Preliminaries and Notations

2.1 A Basis of Vector Fields on the Two Dimensional Torus

Let M := T
2 be the set of pairs (θ1, θ2) of real numbers modulo 2π, and denote

mT = λL⊗λL

4π2 where λL is the Lebesgue measure on [0, 2π]. Integration will often be
noted dx instead of mT(dx). A basis of the tangent space TxM at x = (θ1, θ2) ∈ M is
given by (∂i|x) := ( ∂

∂θi
|x=(θ1,θ2)). We define a scalar product 〈., .〉TxM on each TxM

by setting 〈∂i|x, ∂j|x〉TxM = δi,j where δi,j = 1 if i = j and 0 if i �= j. When there is
no ambiguity, we will sometimes note X.Y instead of 〈X, Y〉TxM for X, Y ∈ TxM. If
X (M) consists of sections of TM, X (M) = {X : M → T(M)}, and considering its
L2 equivalence class, we set

G =
⎧⎨
⎩X ∈ X (M)| div(X) = 0 and

∫
M

|X(x)|2TxMdx < ∞
⎫⎬
⎭

which is a separable Hilbert space with the product

〈X, Y〉G :=
∫
M

〈X(x), Y(x)〉TxMdx

An Hilbertian basis of G is given by a subset (eα)∞α=1, whose definition is the fol-
lowing. Let k : α ∈ N/ {0} → k(α) := (k1(α), k2(α)) ∈ (Z × Z)/ {(0, 0)} be a

bijection such that |k(α)| :=
√

k21(α) + k2(α)2 ↑ ∞; we set

eα(x) :=
∑

j

aα,j(x)∂j|x

where

aα,i(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (α, i) ∈ (1, 1) ∪ (2, 2)

0 if (α, i) ∈ (2, 1) ∪ (1, 2)√
2 k2(m)

|k(m)| cos(k(m).x) if (α, i) = (2m + 2, 1), m ≥ 1

−√
2 k1(m)

|k(m)| cos(k(m).x) if (α, i) = (2m + 2, 2), m ≥ 1
√
2 k2(m)

|k(m)| sin(k(m).x) if (α, i) = (2m + 1, 1), m ≥ 1

−√
2 k1(m)

|k(m)| sin(k(m).x) if (α, i) = (2m + 1, 2), m ≥ 1

and where, for k = (k1, k2) ∈ Z×Z and x = (θ1, θ2) ∈ M, k.x := k1θ1 + k2θ2. Any
X ∈ G can be written
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X(x) =
∑

j

Xj(x)∂j|x

where Xj(x) = ∑
α〈X, eα〉Gaα,j(x). Let Y(x) := ∑

j Yj(x)∂j|x be another vector
field: it is straightforward to check that we also have

〈X, Y〉G =
∫
M

∑
j

Xj(x)Yj(x)dx

We recall the following formulae

div(X) :=
∑

j

∂jX
j,

�X :=
∑

i

(
∑

j

∂2
j,jXi)∂i|x

and
(X.∇)Y :=

∑
j

(
∑

i

Xi(∂iYj))∂j|x

2.2 The Group of the Volume Preserving Homeomorphisms

Let G be the group of the homeomorphisms of M which leaves mT invariant

G := {φ : M → M, homeomorphisms,φ�mT = mT}

We note e the identity on G and φ.ψ the group operation of φ,ψ ∈ G (given by
the composition of the two maps). We recall [6] that the subset of G consisting of
maps which are, together with their inverses, in the Sobolev class Hr , for r > 2 is a
Hilbert manifold and a topological group. It is not, strictly speaking, a Lie algebra
since left translation is not smooth. TeG is given by the set of the vector fields
X : x ∈ M → Xx ∈ TxM such that div(X) = 0. Let X ∈ TeG, and let

c : t ∈ R → ct ∈ G; c0 = e

be a smooth curve on G to which X is tangent. We recall that, by setting ĉ : (t, x) ∈
R × M → ct(x) ∈ M, the value of X at x ∈ M is given by

X(x) = ∂t̂ c(t, x)|t=0 ∈ TxM
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Furthermore X can be uniquely extended to a right invariant vector field X̂ on G by
setting

X̂ : φ ∈ G → X̂φ ∈ TφG

where X̂φ is given by

X̂φ : x ∈ M → X̂φ(x) := X(φ(x)) ∈ Tφ(x)M

i.e. X̂φ is tangent to the curve cφ : t ∈ R → ct .φ ∈ G. In particular for any smooth
f on M and x ∈ M denote f x the map φ ∈ G → f x(φ) := f (φ(x)) ∈ R. Then f x is
smooth on G and we have

(X̂f x)(φ) := X̂φf x = ∂t f (ct .φ(x))|t=0 = ∂t f (̂c(t,φ(x)))|t=0 = X(φ(x))f := (Xf )(φ(x))

In the sequel wewill simplywriteX instead of X̂ since it will be clear from the context
whether we consider X as an element of the tangent space, or as a right-invariant
vector field on G. In order to kill the noise in the higher modes and to control the
integrability of the derivatives, we introduce the following Sobolev spaces (Gλ)λ>1
and the associated abstract Wiener spaces (W, Hλ,μλ).

2.3 Sobolev Vector Fields

To any positive real number λ > 1 we associate a sequence (λα)α∈N defined by

λα = |k([α−1
2 ])|2λ

K(λ)

where [.] is the floor function and where K(λ) is chosen so that

∑
α

aα,i(x)√
λα

aα,j(x)√
λα

= δi,j

Such a K(λ) exists from standard results on Riemann series since λ > 1, and we
have K(λ) ↑ ∞ as λ ↓ 1. For λ > 1, let Sλ be the positive, definite, trace class
operator defined by

Sλx :=
∑

i

1

λi
〈x, ei〉Gei

and let
Gλ := √Sλ(G)
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which is an Hilbert space for the scalar product 〈., .〉Gλ
characterized by

〈√
Sλx,

√
Sλy
〉
Gλ

= 〈x, y〉G .

A natural Hilbertian basis of Gλ is given by (Hλ
α)∞α=1 where

Hλ
α := eα√

λα
(2.3)

We set
Aλ

α,j(x) = aα,j√
λα

so that ∑
α

Aλ
α,i(x)A

λ
α,j(x) = δi,j (2.4)

and
Hλ

α(x) =
∑

j

Aλ
α,j(x)∂j|x

Since
√

Sλ is Hilbert-Schmidt, it is well known that |.|G is a measurable semi-norm
on the Hilbert space Gλ (see [9]). In particular (Gλ,G) is an abstract Wiener space
[9, 12], which allows to regard the cylindrical Brownianmotion below as a Brownian
sheet (note that we could have defined aWienermeasure directly on theWiener space
(Gλ,G), but we won’t use this in the sequel since we are interested in the path space).

2.4 Associated Wiener Spaces

The space

Hλ :=
⎧⎨
⎩h : [0, 1] → Gλ : h :=

.∫
0

ḣsds,

1∫
0

|ḣs|2Gλ
ds < ∞

⎫⎬
⎭

is an Hilbert space whose product will be noted 〈., .〉λ. On the other hand the space

W := C0 ([0, 1],G)

is a separable Banach space for the uniform convergence norm. We denote by iλ the
injection of Hλ in W . Since for λ > 1 |.|G is a measurable semi-norm on Gλ, it is a
classical result onWiener spaces that (iλ, W, Hλ) is also an abstract Wiener space. If
μλ is the standard Wiener measure on W for the A.W.S. (W, Hλ, iλ), we recall that
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under this probability the coordinate process t → Wt(ω) = ω(t) ∈ G is an abstract
Brownian motion with respect to its own filtration (Ft) (see for instance [10, 12]).
From the Itô Nisio theorem, we have μλ−a.s.

Wt =
∑
α

W α
t Hλ

α

with W α
t := δ̂Hα(Wt), and where

{̂
δ(X), X ∈ Gλ

}
is the isonormal Gaussian process

on Gλ. We recall that under μλ,
{̂
δ(X)(Ws), X ∈ Gλ, s ∈ [0, 1]} is a Gaussian process

with covariance
Eμλ [̂δ(X)(Ws)̂δ(Y)(Wt)] = (s ∧ t)〈X, Y〉Gλ

so that (W α
. ) is a family of real valued independent Brownian motions under μλ.

Under μλ, the coordinate process t → Wt is called the cylindrical Brownian motion.
The difference with respect to the case where the state space is finite dimensional is
that it is a renormalized sum of independent Brownian motions, the renormalization
appearing in (2.3). For ameasure η � μλ and a u ∈ L0

a(η, Hλ), the stochastic integral
δW u := ∫ 1

0 u̇sdWs is well defined as an abstract stochastic integral [10, 12]. Let η
be a probability which is absolutely continuous with respect to μλ. Then there is a
unique v ∈ L0

a(η, Hλ) such that η − a.s.

dη

dμλ
:= exp

(
δW v − |v|2λ

2

)
(2.5)

Moreover W η := IW − v is a (Ft)-Brownian motion on (W,F , η). We call v the
velocity field associated to η. The famous formula of [7] (which in fact holds in a
more general framework: [10, 12]) reads

2H(η|μλ) = Eη

⎡
⎣

1∫
0

|v̇t |2Gλ
dt

⎤
⎦ (2.6)

where

H(η|μλ) := Eη

[
ln

dη

dμλ

]

is the relative entropy of η with respect to μλ. Note that since Gλ ⊂ G ⊂ TeG it
makes sense to consider (Xf )(φ) for φ ∈ G, for f smooth on G and for X ∈ Gλ or
X ∈ G.
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3 Navier-Stokes Flows with Stochastic Drifts

Henceforth and until the end of Sect. 5 we assume that the renormalization sequence
is fixed for a λ ≥ 2, and we drop the indices λ of the notations except for Gλ.

3.1 Constraints on the Kinematics: Regular and Admissible
Flows

Definition 1 A probability η which is absolutely continuous with respect to μ with
finite entropy (H(η|μ) < ∞) is called a regular flow if u ∈ C1([0, 1] × M) and
dt- a.s. ∂tu ∈ G, where u(t, x) := Eη [v̇t(x)], and where v := ∫ .

0 v̇sds is the velocity
field of η (see (2.5)). We call u the mean velocity field of η. Moreover we say that a
regular flow is admissible if there is a C1([0, 1]×M)mapping p� : [0, 1]×M → R

such that
Cov(v̇t(x)) = p�(t, x)Id

i.e. for i, j ∈ N ∩ [1, d]

Eη

[(
v̇i

t(x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

= p�(x, t)δi,j (3.7)

where (v̇
j
t (x)) denotes the jth (random) component of (v̇

j
t ) at x i.e. it is such that

v̇t(x) =∑j v̇
j
t (x)∂j|x, and where uj

t(x) := Eη[v̇j
t (x)].

3.2 Constraints on the Dynamics: Critical Flows

Definition 2 Let η be a regular flowwhose velocity field is denoted by vη (see (2.5)).
For any k ∈ C1([0, 1];G) we set

LkS(η|μ) := Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

< v̇
η
t (x), ∂tk + (v̇

η
t .∇)k + �k

2
>TxM dx

⎞
⎠ dt

⎤
⎦

The probability η is said to be critical if and only if for any k ∈ C1
0([0, 1],G)

LkS(η|μ) = 0

where
C1
0([0, 1],G) :=

{
k ∈ C1([0, 1];G) : k(0, .) = k(1, .) = 0

}
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The dynamic of the mean velocity field of a critical flow is given by the following
theorem

Theorem 1 Let η be a regular flow with a velocity field v and a mean velocity field
u ∈ Gλ. Then η is critical (Definition 2) if and only if there is a function p̂(t, x) such
that

∂tu + Eη[(v̇t(x).∇)v̇t(x)] = �u

2
− ∇p̂(t, x) (3.8)

In other words, let

β(t, x) := Eη[((v̇t(x) − ut(x)).∇)(v̇t(x) − ut(x))] (3.9)

Then u solves, in the weak L2 sense, the following equation :

∂tu + (ut .∇)u = �u

2
− ∇p̂ − β (3.10)

Proof For any k ∈ C0
1([0, 1];G)wehave k(0, .) = k(1, .) = 0, so that an integration

by parts yields

LkS(η|μ) = −
∫
M

1∫
0

(
∂tu + Eη[(v̇t .∇)v̇t] − �u

2

)
(t, x).k(t, x)dxdt (3.11)

from which we obtain (3.8). Since

β(t, x) := Eη [[v̇t(x) − ut(x)].∇)[v̇t(x) − ut(x)]]
= Eη [(v̇t(x).∇)v̇t(x)] + (ut(x).∇)ut(x) − Eη [(v̇t(x).∇)ut(x)] − Eη [(u(x).∇)v̇t(x)]

= Eη [(v̇t(x).∇)v̇t(x)] + (ut(x).∇)ut(x) − (Eη [v̇t(x)] .∇)ut(x) − (u(x).∇)Eη [v̇t(x)]

= Eη [(v̇t(x).∇)v̇t(x)] − (ut(x).∇)ut(x)

we obtain (3.10) from (3.8). �

3.3 Navier-Stokes Flows

Definition 3 A regular flow η (see Definition 1) is a Navier-Stokes flow if its mean
velocity field u solves the Navier-Stokes equation, i.e. if and only if there is a function
p : [0, 1] × M → R which is such that u solves, in the weak L2 sense, the Navier-
Stokes equation

∂tu + u.∇u = �u

2
− ∇p
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we have:

Corollary 1 An admissible flow is a Navier-Stokes flow if and only if it is critical.

Proof Let η be an admissible flow.We recall that by definition there exists a mapping
p� such that

Cov(v̇t(x)) = p�(x, t)Id (3.12)

where v := ∫ .

0 v̇sds is the velocity field of η (see (2.5)). We also recall that

u(t, x) := Eη[v̇t(x)]

The idea is to apply Theorem 1 and to set

p := p� + p̂

We have
βi(t, x) =

∑
j

∂jCov(v̇t(x))
i,j

Indeed (repeated indices are summed over) we have

βi(t, x) = Eη

[(
v̇

j
t (x) − uj

t(x)
)

∂j

(
v̇i

t (x) − ui
t(x)
)]

= ∂jEη

[(
v̇i

t (x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

− Eη

[(
v̇i

t (x) − ui
t(x)
)

∂j

(
v̇

j
t (x) − uj

t(x)
)]

= ∂jEη

[(
v̇i

t (x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

− Eη

[(
v̇i

t (x) − ui
t(x)
)
div (v̇t(x) − ut(x))

]

= ∂jEη

[(
v̇i

t (x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

= ∂jCov(v̇t(x))
i,j

Assumption (3.12) then yields βi(t, x) = ∂ip� i.e.

β = ∇p� (3.13)

�

Remark 1 Note that by this proof, for critical flows, p� appears as a part of the
pressure which is originated from the stochastic model. Specifically it expresses the
fluctuations of the drift itself. Indeed by (3.13) and (3.9) for an admissible flow η we
have

∇p�(t, x) = Eη[(v̇t(x).∇)v̇t(x)] − (ut(x).∇)ut(x) (3.14)

where p� is the function associated to the admissible flow η by formula (3.7).
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4 Interpretation of Critical Flows by Means of the Stochastic
Exponential

In this section we prove that the quantities LkS(η|μ) defined in Definition 2 can still
be interpreted in terms of certain variations along deterministic paths which extend
those of Ref. [3].

4.1 The Stochastic Exponential

Let CG = Ce ([0, 1], G) be the space of continuous paths starting from e and with
values in G. The coordinate function (t, γ) ∈ [0, 1] × CG → γt(ω) generates a
filtration

(FG
t

)
and we denote FG := FG

1 .

Proposition 1 The equation

dXt = ◦dBt; X0 = e (4.15)

has a continuous strong solution on the space
(
W,FW

. ,μ
)

with the canonical Brown-
ian t → Wt ∈ G. We note g this solution. By this we mean that for μ−a.s. g ∈ CG

and, for any smooth f on G,

f (gt) = f (e) +
∑
α

t∫
0

(Hαf )(gt) ◦ dWt

where ◦ denotes the Stratonovich integral.

Proof See [11]. �
Girsanov theorem on (W, H,μ) implies the following:

Proposition 2 Let η be a probability which is absolutely continuous with respect to
μ whose velocity field is noted v, and set W̃ := IW − v. Then (g, W̃ ) is a solution of

dXt = (◦dBt + v̇tdt); X0 = e (4.16)

on (W,F., η).

Proof We have

W̃s =
∑
α

δ̂(Hα)(Ws)Hα −
∑
α

〈v, Hα〉λHα =
∑
α

δ̂(Hα)(W̃s)Hα

Since W̃�η = μ, W̃ α
. := δ̂(Hα)(W̃.) are independent Brownian motions on

(W, H, η), by Itô’s formula we have, η − a.s.,
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f (gt) = f (e) +
1∫

0

∑
α

(Hαf )(gt) ◦ dW̃ α
t +

∑
α

1∫
0

(Hαf )(gs)〈v̇s, Hα〉Gλ
ds

i.e.

f (gt) = f (e) +
1∫

0

(Hαf )(gs) ◦ dW̃ α
t +

1∫
0

(v̇t(ω)f )(gs)ds �

Proposition 3 Let η be a probability absolutely continuous with respect to μ, v :=∫ .

0 v̇sds the associated velocity field, W̃ = IW − v and W̃ α
. = δ̂(Hα)(W̃.). For any

smooth function f on [0, 1] × M we have η−a.s.

f (t, gt(x)) = f (0, x) +
t∫

0

(
�

2
f + (v̇σ .∇)f + ∂σ f )(σ, gσ(x)

)
dσ +

t∫
0

∑
α

(Hαf )(σ, gσ(x))dW̃ α
σ

(4.17)
and η−a.s.

lim
δ→0

Eη

[
f (t + δ, gt+δ(x)) − f (t, gt(x))

δ

∣∣∣∣Ft

]
=
(

∂t f + (v̇t(ω).∇)f + �f

2

)
(t, gt(x))

(4.18)

Proof Let x ∈ M, f ∈ C∞(M). The main part of the proof will be to prove that

∑
α

(H2
αf x)(φ) = (�f )(φ(x)) (4.19)

To see this recall that f x : φ ∈ G → f (φ(x)) ∈ R. We have

(Hαf x)(φ) := Hα(φ)f x = Hα(φ(x))f = (Hαf )(φ(x)) = (Hαf )x(φ) (4.20)

so that by iterating (4.20) we obtain

∑
α

(H2
αf x)(φ) =

∑
α

(H2
αf )(φ(x)) (4.21)

On the other hand ∑
α

(H2
αf )(φ(x)) = (�f )(φ(x)) (4.22)

Indeed by using the fact that for any α the vector field Hα is divergence free together
with (2.4) we obtain

∑
α

H2
αf =

∑
α,j

Aα,j∂j(Hαf )
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=
∑
α,i,j

Aα,jAα,i(∂j∂if ) + Aα,j(∂jA
α,i)(∂if )

=
∑

i

(∂2
i,if ) +

∑
α,i,j

Aα,j(∂jA
α,i)(∂if )

= �f +
∑
α,i,j

Aα,j(∂jA
α,i)(∂if )

= �f +
∑
α,i,j

∂j(A
α,jAα,i)(∂if ) −

∑
α,i,j

(∂jA
α,j)Aα,i(∂if )

= �f +
∑
i,j

∂j(
∑
α

Aα,jAα,i)(∂if ) −
∑
α,i

(div(Hα)Aα,i(∂if )

= �f

Finally by putting together (4.21) and (4.22) we get (4.19) which yields

f (t, gt(x)) = f x(t, gt)

= f x(s, gs) +
t∫

s

(Hαf x)(gσ) ◦ dW̃ α
σ +

t∫
s

(∂σf x + v̇σf x)(gσ)dσ

= f (s, gs(x)) +
t∫

s

(
�

2
f + (v̇σ.∇)f + ∂σf

)
(σ, gσ(x))dσ

+
t∫

s

∑
α

(Hαfσ)(gσ(x))dW̃ α
σ

On the other hand by the Girsanov theorem, (W̃t) is a (Ft)-Brownian motion on
(W, η) so that (4.18) follows from (4.17). �

4.2 Perturbations of the Energy Along Deterministic Paths

For k ∈ C0([0, 1],Gλ), k := ∫ .

0 k̇sds, we define e(k) to be the solution of the ordinary
differential equation on G

d(et(k)) = (k̇tdt)(et(k)); e0 = e

i.e. for any smooth F : G → R,

F(et(k)) = F(e) +
t∫

0

(k̇sF)(es(k))ds. (4.23)
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Note that e.(0H) = e i.e. the exponential of the function which is constant and equal
to 0H is constant and equal to e. We denote by (ei

t(k)) the ith component of (et(k))

in the canonical chart.

Proposition 4 If η is a probability of finite entropy with respect to μ, for any k ∈
C1
0([0, 1],Gλ) we have

LkS(η|μ) = d

dε
Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

|Dηet(εk).gt(x)|2Tgt (x)M

2
dx

⎞
⎠ dt

⎤
⎦ |ε=0 (4.24)

where LkS(η|μ) has been defined in Definition 2 and where Dηet(εk).gt(x) is defined
a.e. by

Dηet(εk).gt(x) :=
∑

i

lim
δ→0

Eη

[
ei

t+δ(εk).gt+δ(x) − ei
t(εk).gt(x)

δ

∣∣∣∣∣Ft

]
∂i|gt(x)

(4.25)

Proof By (4.18) of Proposition 3 we first obtain

Dηet(εk).gt(x) :=
∑

i

(
∂te

i
t(εk) + (v̇t(ω).∇)ei

t(εk) + �ei
t(εk)

2

)
(gt(x))∂i|gt(x)

(4.26)

On the other hand let x ∈ M and denote by f a smooth function on M. Considering
F := f x in (4.23) we have

f (et(εk)(x)) = f (x) + ε

t∫
0

(k̇sf )(es(εk)(x))ds

Since e.(0H)(x) = e(x) = x, we get :

d

dε
|ε=0f (et(εk)(x)) =

t∫
0

(k̇sf )(x)ds = (ktf )(x)

so that
d

dε
|ε=0et(εk)(x) = kt(x) (4.27)

By (4.26) and (4.27) we obtain

d

dε
Dηet(εk).gt(x)|ε=0 =

(
∂tkt + v̇t .∇kt + �kt

2

)
(gt(x)) (4.28)
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For convenience of notations we denote by A the right hand term of (4.24). By first
differentiating the product, then by applying (4.26) at ε = 0, then by applying (4.28),
and finally by using that gt preserves the measure we obtain

A = Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

〈Dηgt(x),
d

dε
Dηet(εk).gt(x)|ε=0〉Tgt (x)Mdx

⎞
⎠ dt

⎤
⎦

= Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

〈v̇t(gt(x)),
d

dε
Dηet(εk).gt(x)|ε=0〉Tgt (x)Mdx

⎞
⎠ dt

⎤
⎦

= Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

〈v̇t(gt(x)),

(
∂tkt + v̇t .∇kt + �kt

2

)
(gt(x))〉Tgt (x)Mdx

⎞
⎠ dt

⎤
⎦

= Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

〈v̇t(x), ∂tkt(x) + v̇t .∇kt(x) + �kt

2
(x)〉TxMdx

⎞
⎠ dt

⎤
⎦

which proves (4.24). �

5 Variations of the Energy Along Translations

Let η be a probability which is absolutely continuous with respect to μ (as mentioned
in the beginning of Sect. 3 we work with a fixed λ ≥ 2) and with velocity field vη .
The stochastic action of η is defined by

S(η|μ) := Eη

⎡
⎣

1∫
0

|v̇η
s |2G
2

ds

⎤
⎦ (5.29)

The motivation for this definition is that, by taking ε = 0 in (4.26) and using the fact
that gt preserves the measure, we also have

S(η|μ) = Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

|Dηgs(x)|2Tgs(x)M

2
dx

⎞
⎠ ds

⎤
⎦

with the notations of Proposition 4. By (2.6), Gλ ⊂ G implies that whenever the
entropy is finite we have

S(η|μ) < ∞
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as well. More accurately, by a classical result on abstract Wiener spaces together
with (2.6), there exists a c > 0 such that for any η � μ

S(η|μ) ≤ cH(η|μ)

In this section we introduce another kind of variations for the functional S(η|μ),
namely we study its variations along translations, These variations are generally dif-
ferent from those introduced above; however, when restricted to admissible flows,
they are the same. We also investigate similar variations for the relative entropy.
Proposition 5 computes the values of the variations of these quantities along deter-
ministic translations.

Proposition 5 Let η be a probability absolutely continuous with respect to μ with
velocity field vη and mean velocity us(x) := Eη[v̇η

s (x)]. If S(η|μ) < ∞ we have,

d

dε
S(τεhη|μ)|ε=0 =

1∫
0

〈us, ḣs〉Gds (5.30)

and if H(η|μ) < ∞ we have

d

dε
H(τεhη|μ)|ε=0 =

1∫
0

〈us, ḣs〉Gλ
ds (5.31)

where τhη is the image measure of η by the mapping τh defined by

τh : ω ∈ W → ω + h ∈ W

Proof A straightforward application of the Cameron-Martin theorem shows that for
any h := ∫ .

0 ḣsds ∈ H, the velocity field field vτhη of τhη is given by

vτhη = τh ◦ vη ◦ τ−h = vη ◦ τ−h + h (5.32)

Hence by (5.29) we have

S(τhη|μ) = Eη

⎡
⎣

1∫
0

|v̇η
s + ḣs|2G

2
ds

⎤
⎦

which yields (5.30). Similarly (5.31) follows by (2.6) and (5.32). �

Let

Cn
0([0, 1],Gλ+2) := {k ∈ Cn([0, 1],Gλ+2) : k(0, .) = k(1, .) = 0

}
(5.33)



On the Stochastic Least Action Principle for the Navier-Stokes Equation 179

and let � be the Helmoltz projection on divergence free vector fields. We set

Kη
0 :=

⎧⎨
⎩h :=

.∫
0

ḣs(ω)ds

∣∣∣∣∣∣∃k ∈ Cn
0 ([0, 1],Gλ+2), ds − a.s., ḣs = ∂sks + �((us.∇)ks) + �ks

2

⎫⎬
⎭

(5.34)

so that it makes sense to say that any h ∈ Kη
0 is associated to a k ∈ Cn

0([0, 1],Gλ+2).
For n sufficiently large we have Kη ⊂ H.

Proposition 6 Let η be a smooth flow whose mean velocity field is given by u. Then
u solves the Navier-Stokes equation if and only if for any h ∈ Kη

0

d

dε
S(τεhη|μ)|ε=0 = 0

Proof By Proposition 5, and by definition of �, for any h (which is associated to k)
we have

d

dε
S(τεhη|μ)|ε=0 =

∫
M

1∫
0

(
∂sk + �((u.∇)k) + �k

2

)
(s, x).u(s, x)dxds (5.35)

=
∫
M

1∫
0

(
∂sk + (u.∇)k + �k

2

)
(s, x).u(s, x)dxds (5.36)

and, since k(0, .) = k(1, .) = 0, the result directly follows from an integrating by
parts. �

We now relate these variations to the ones of Sect. 4. Namely we prove that,
for admissible flows, these variations of measure by quasi-invariant transformations
yield exactly the same variations as the exponential variations of Sect. 4.

Proposition 7 Let η be an admissible flow. Then, for any h ∈ Kη
0 (see (5.34))

associated with a k ∈ Cn
0([0, 1],Gλ+2) (see (5.33)) we have

d

dε
S(τεhη|μ)|ε=0 = LkS(η|μ)

Proof Let u be the mean velocity field of η. Since η is admissible we have, by (3.14)

〈ut, (ut .∇)kt〉G = −〈(ut .∇)ut, kt〉G = −Eη[〈(v̇t .∇)v̇t, kt〉G] = Eη[〈v̇t, (v̇t .∇)kt〉G]
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Hence, using (5.36),

d

dε
S(τεhη|μ)|ε=0 = Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

〈
v̇

η
t (x), ∂tk + (v̇

η
t .∇)k + �k

2

〉
TxMdx

⎞
⎠ dt

⎤
⎦

which is exactly the definition of LkS(η|μ) (Definition 2). �

6 Generalized Flows with a Cut-off

In Sect. 5 we have seen that in the infinite dimensional case, the relative entropy was
generally not proportional to the action S(·|μ). The reason is that the renormalization
procedure gives a different weight to the different modes: hard modes have a weaker
weight in the energy than in the relative entropy. However if instead of renormalizing
we introduce a cutoff, and rescale the noise accordingly,S(·|μ) becomes proportional
to the relative entropy H(·|μ). Within this framework, we investigate the existence
of generalized flows with a given marginal.

6.1 General Framework for a Cut-off at Scale n

We recall that (eα) denotes the Hilbertian basis of G of Sect. 2. By induction we
define (Il)

∞
l=1 by I1 = 1 and

Il+1 = min ({m ≥ Il : |k(m)| > |k(Il)|})

For N ∈ N, N > 1 we set
n := 2IN

We define Gn = V ect(e1, . . . , en) ⊂ G and recall that we work under the hypothesis

eα(x) =
∑

j

aα,j(x)∂j|x

The cut-off has been chosen so that ∃S(N) such that

n∑
α=1

aα,i(x)aα,j(x) = S(N)δi,j
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where S(N) ↑ ∞. We note

Hn :=
⎧⎨
⎩h : [0, 1] → Gn, h :=

.∫
0

ḣsds,

1∫
0

|ḣs|2Gds < ∞
⎫⎬
⎭

and 〈., .〉Hn the associated scalar product. We set Wn := C([0, 1],Gn) endowed with
the norm of uniform convergence, and μn the Wiener measure on (Wn, Hn) with a
parameter

σ(N) := 2ν

S(N)

t → Wt is the coordinate process. Define gn to be the solution of

dgn
t := (◦dWt)(g

n
t ); gn

0 = e

on the Wiener space (Wn, Hn,μn) i.e., satisfying, for every smooth f ,

f (gn
t ) = f (e) +

t∫
0

n∑
α=1

(eαf )(gn
s ) ◦ dW α

s

where W α := 〈Wt, eα〉Gn . We are now working with the Wiener measure with
parameter σ(N). Still by the Girsanov theorem, for any η � μn there is a unique
v ∈ L0(η, Hn) such that

dη

dμ
= exp

(
δW v − σ(N)|v|2Hn

2

)

and W̃ := IW − σ(N)v is a Brownian motion with parameter σ(N) under η. We call
v the velocity field of η. Furthermore, Föllmer’s formula (c.f. [8]) then reads

H(η|μn) = σ(N)Eη

[ |v|2Hn

2

]

Hence (g, W̃ ) is a solution to

dgn
t := ◦(dW ν

t + σ(N)v̇tdt))(gn
t ); gn

0 = e

on the probability space (Wn, η) for the filtration generated by the coordinate process
t → Wt , i.e., for every smooth f ,
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f (gn
t ) = f (e) +

t∫
0

n∑
α=1

(eαf )(gs) ◦ dW̃ α
s + σ(N)

t∫
0

n∑
α=1

(eαf )(gs)〈v̇s, eα〉ds

Within this framework, by an admissible flow we mean a probability η of finite
entropy with respect to η satisfying the same conditions as in Definition 1 with μn

(resp. Gn) instead of μ (resp. of G).

6.2 Variations of the Action

We now define the action for the cutoff n ∈ N by

S(η|μn) := Eη

⎡
⎣

1∫
0

|Dη
s gn

s |2G
2

ds

⎤
⎦ = Eη

⎡
⎣

1∫
0

|σ(N)v̇s|2G
2

ds

⎤
⎦ = σ(N)2Eη

⎡
⎣

1∫
0

|v̇s|2G
2

ds

⎤
⎦

Therefore
S(η|μn) = σ(N)H(η|μn) (6.37)

Similarly to Proposition 7 we note

Kη
0(n) :=

{
h ∈ Hn : ∃k ∈ C1

0([0, 1],Gn), ds − a.s., ḣs = ∂sk + πn�((σ(N)us.∇)k) + ν�k
}

where πn is the orthogonal projection πn : G → Gn and we say that a h ∈ Kη
0(n) is

associated to a k ∈ C1
0([0, 1],Gn).

Proposition 8 For any smooth flow η

un(t, x) := σ(N)Eη[v̇t(x)]

solves the Navier-Stokes equation if and only if for any h ∈ Kη
0(n) we have

d

dε
H(τεhη|μn)]|ε=0 = 0

for any h associated with a k ∈ C1
0([0, 1],Gn). Moreover whenever η is an admissible

flow, and h ∈ Kη
0(n) is associated to k ∈ C1

0([0, 1],Gn) we have

d

dε
H(τεhη|μn)]|ε=0 = d

dε
Eη

⎡
⎣

1∫
0

⎛
⎝∫

M

|Dηet(εk).gn
t (x)|2Tgt (x)M

2
dx

⎞
⎠ dt

⎤
⎦ |ε=0

where the notations are those of Sect.4.
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Proof The first part of the proof is the same as in Proposition 6. We now prove the
second part of the claim which is similar to Proposition 7. As in the first subsection
we have

n∑
α=1

e2αf = S(N)�f

Therefore by setting

A := lim
ε→0

⎛
⎝Eη

[∫ 1
0

(∫
M |Dηet(εk).gn

t (x)|2Tgt (x)M
dx
)

dt
]

− Eη

[∫ 1
0

(∫
M |Dηgn

t (x)|2Tgt (x)M
dx
)

dt
]

2ε

⎞
⎠

and using the fact gt preserves the measure we get

A = Eη

[∫ 1

0
〈v̇t, ∂tk + σ(N)v̇t .∇k + ν�k〉Gdt

]

If η is assumed to be admissible, then similarly to the proof of Proposition 7 we
obtain

A = d

dε
H(τεhη|μn)]|ε=0 �

Concerning existence of Lagrangian Navier-Stokes flows with a cut-off they have
been shown to exist in Ref. [4] for deterministic L2 drifts. Examples of random
solutions of Navier-Stokes equations were constructed in Ref. [5] but we did not
prove existence of the corresponding flows.
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