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Abstract The classical Loewner differential equation for simply connected domains
is attracting new attention since Oded Schramm launched in 2000 the stochastic
Loewner evolution (SLE) based on it. The Loewner equation itself has been extended
to various canonical domains of multiple connectivity after the works by Y. Komatu
in 1943 and 1950, but the Komatu-Loewner (K-L) equations have been derived rig-
orously only in the left derivative sense. In a recent work, Z.-Q. Chen, M. Fukushima
and S. Rhode prove that the K-L equation for the standard slit domain is a genuine
ODE by using a probabilistic method together with a PDE method, and that the right
hand side of the equation admits an expression in terms of the complex Poisson kernel
of the Brownian motion with darning (BMD). In the present paper, K-L equations for
the annulus and circularly slit annili are investigated. For the annulus, we establish a
K-L equation as a genuine ODE possessing a normalized Villat’s kernel on its right
hand side by using a variant of the Carathéodory convergence theorem for annuli
indicated by Komatu. This method is also used to obtain the same K-L equation
in the right derivative sense on annulus for a more general family of growing hulls
that satisfies a specific right continuity condition usually adopted in the SLE theory.
Villat’s kernel is then identified with a BMD Schwarz kernel for the annulus. Finally
we derive K-L equations for circularly slit annuli in terms of their normalized BMD
Schwarz kernels, but only in the left derivative sense when at least one circular slit
is present.
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1 Introduction

The celebrated Loewner differential equation for the planar unit disk has been
extended to various canonical domains of multiple connectivity, first by Komatu
[14] to the annulus, then by Komatu [17] to the circularly slit annulus, much later by
Bauer and Friedrich [2] to the circularly slit disk, and further by Bauer and Friedrich
[3] to the circularly slit annulus as well as to the standard slit domain, namely, a
domain obtained from the upper half plane by removing a finite number of disjoint
line segments parallel to the x-axis. However, theKomatu-Loewner differential equa-
tion has been derived only in the left derivative sense. Recall that, even in the case of
the classical Loewner equation for a disk, its derivation in the right derivative sense
is harder (cf.[1, Sect. 6.2]).

In a recent paper by Z.-Q. Chen et al. [7], the Komatu-Loewner equation (the
K-L equation in abbreviation) for the standard slit domain is established to be a
genuine differential equationwith the kernel appearing on its right hand side being the
complex Poisson kernel of the Brownianmotionwith darning (BMD in abbreviation)
on the standard slit domain. In order to obtain the right differentiability in t of
the family of conformal mappings gt (z) involved in the equation, a probabilistic
representation of �gt (z) in terms of the BMD as well as a Lipschitz continuity of the
BMD complex Poisson kernel under the perturbation of the standard slit domains
are utilized.

The purpose of the present paper is to investigate the counterparts ofK-L equations
for the annulus and circularly slit annuli.

In Sect. 3, we consider an annulus whose outer boundary component is the unit
circle and establish the K-L equation for it as the genuine differential equation (3.10)
with a normalized Villat’s kernel on its right hand. The right differentiability of
g.(z) will be shown by using a variant of Carathéodory kernel convergence theorem
for annuli formulated in Appendix. In Komatu [14], K-L equations for the annulus
were obtained in terms of the Weierstrass zeta function and Jacobi’s elliptic function
instead of Villat’s function. The stated variant of Carathéodory theorem for annuli
was also presented in [14] without proof to ensure the continuity of the modulus
of the domain with respect to the parameter of the Jordan arc being removed. But
the proof of the stated differentiability was not as rigorous as in the present paper.
Villat’s kernel was adopted 8years later by Goluzin [12] to derive a K-L equation in
a different setting (for annuli located outside the unit disk).

In Sect. 4, we consider a general family of growing hulls in annulus that satisfies a
specific right continuity condition usually adopted in the SLE theory (cf. [18]) and in
SKLE aswell (cf. [6]).We show that the samemethod as in Sect. 3works to derive the
associated K-L equation (3.10) in the right derivative sense. Zhan presented in [22,
Proposition 2.1] a variant of Corollary 4.2 without proof for his study of an annulus
SLE that was defined based on the unnormalized Villat’s kernel. One may formulate
an annulus SLE based directly on the K-L equation (3.10) or its reparametrization
(3.21) driven by the Brownian motion (with constant drifts) on the outer circle of the
annulus.
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The Brownian motion with darning (BMD) for an (N + 1)-connected planar
domain is defined as follows, A closed connected subset of C containing at least
two points is called a continuum. Let E be a domain in C such that C\E is
an unbounded continuum and {A1, . . . , AN } be a collection of mutually disjoint
compact continua contained in E . We write E0 = E\⋃N

j=1 A j and consider the
topological space E∗ = E0∪{a∗

1 , . . . , a∗
N } obtained from E by rendering each ‘hole’

A j of E into a single point a∗
j .Extend the Lebesguemeasurem on E0 to E∗ by setting

m(a∗
j ) = 0, 1 ≤ j ≤ N . There exists then a unique m-symmetric diffusion process

Z∗ on E∗ admitting no killing at a∗
1 , . . . , a∗

N whose part (killed) process Z0 on E0 is
just the absorbing Brownian motion on E0 (cf. [5, Sect. 7.7]). We call Z∗ the BMD
for E0. Informally we may say that Z∗ is the diffusion process on E∗ obtained from
the absorbing Brownian motion on E by rendering each hole A j into a single point
a∗

j (darning).
A simple way to conceive the BMD Z∗ is to consider the Dirichlet form (E∗,F∗)

defined by
F∗ = {u ∈ H1

0 (E) : ũ is constant q.e. on each A j }

E∗(u, v) = 1

2

∫

E

∇u(x) · ∇v(x)dx,

where ũ denotes a quasi-continuous version of u. Then (E∗,F∗) turns out to be a
regular Dirichlet form on L2(E∗, m) and the associated diffusion process on E∗ is
nothing but the BMD for E0 (cf. [7]).

The notion of a BMD-harmonic function for E0 is well defined to be a func-
tion on E∗ satisfying a usual probabilistic averaging property with respect to the
BMD Z∗ (cf. [7]). Thus a BMD-harmonic function is harmonic on E0 in the clas-
sical sense but it has an additional important property that its period around each
hole A j vanishes, and accordingly it admits a unique harmonic conjugate on E0
up to the addition of a constant. If ∂E is smooth, every bounded BMD-harmonic
function u on E∗ with continuous boundary value on ∂E admits an expression
u(z) = ∫

∂E K ∗(z, ζ)u(ζ)ds(ζ), z ∈ E∗, in terms of the uniquely determined kernel
K ∗(z, ζ), z ∈ E∗, ζ ∈ ∂E, called the BMD-Poisson kernel.

Since K ∗(z, ζ) is BMD-harmonic in z for each ζ ∈ ∂E , it admits an analytic
function �(z, ζ), z ∈ E0, with ��(z, ζ) = K ∗(z, ζ) uniquely up to the addition
of a real constant. �(z, ζ) with the normalization limz→∞ �(z, ζ) = 0 is called a
BMD complex Poisson kernel for E0 and it appears on the right hand side of the K-L
equation for the standard slit domain (cf. [7]).

There exists also a function S(z, ζ), z ∈ E0, ζ ∈ ∂E, analytic in z with

S(z, ζ) = K ∗(z, ζ) uniquely up to the addition of an imaginary constant. We
call S(z, ζ) a BMD Schwarz kernel for E0 because its counterpart for the unit disk is
the classical Schwarz kernel 1

2π
ζ+z
ζ−z . We may expect that the BMD Schwarz kernel

would play important roles in the K-L equations for the annulus and circularly slit
annuli.
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Indeed we shall show in Sect. 5 that, in the case of the annulus Aq = {z ∈ C :
q < |z| < 1}, 1 < q < 1, (E = D, A = {z ∈ C : |z| ≤ q} and E0 = Aq in the
preceding notation), Villat’s kernel for Aq coincides with a BMD Schwarz kernel
for Aq up to a constant factor.

In Sect. 6, we shall consider more generally a circularly slit annulus and derive
a K-L differential equation possessing a normalized BMD Schwarz kernel on its
right hand side by making computations similar to [7]. Such a representation of the
equation in terms of a BMD Schwarz kernel was obtained neither in [17] nor in [3].
But, when at least one circular slit is present, the equation will be shown to hold only
in the sense of left derivative and the problem to make it a genuine ODE is left open.

In this connection, we mention a recent work by C. Boehm andW. Lauf [4] where
a K-L equation for a circularly slit disk is obtained as a genuine ODE by using an
extended version of the Carathéodory convergence theorem.

2 Villat’s Kernel Representing Analytic Functions on
Annulus

Define an annulus by Aq = {z ∈ C : q < |z| < 1} for q ∈ (0, 1). Sometimes Aq is
written as A by omitting q. Define Villat’s function by

Kq(z) = lim
N→∞

N∑

n=−N

1 + q2nz

1 − q2nz

= 1 + z

1 − z
+ lim

N→∞

N∑

n=1

(
1 + q2nz

1 − q2nz
+ 1 + q−2nz

1 − q−2nz

)

, z ∈ Aq . (2.1)

It holds that

Kq(z) = 1 + z

1 − z
+ 2

∞∑

n=1

q2n

q2n − z
+ 2

∞∑

n=1

q2nz

1 − q2nz
, z ∈ Aq , (2.2)

both sums on the righthand side being convergent. This is because

q2n

q2n − z
+ q2nz

1 − q2nz
= 1

1 − q2nz
+ z

q2n − z
, n ≥ 1.

For z ∈ Aq and ζ ∈ ∂Aq , define Villat’s kernel by

Kq(z, ζ) = Kq(z/ζ) = ζ + z

ζ − z
+ 2

∞∑

n=1

(
q2nζ

q2nζ − z
+ q2nz

ζ − q2nz

)

. (2.3)
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The following representation by Villat’s kernel of any analytic function on A that
is continuous on A has been known:

Theorem 2.1 If f is analytic on A and f ∈ C(A,C), then it holds that

f (z) = 1

2πi

∫

∂A


 f (ζ)Kq(z, ζ)
dζ

ζ
− 1

2πi

∫

|ζ|=q


 f (ζ)
dζ

ζ
+ ic, z ∈ A, (2.4)

where

c = 1

2πi

∫

|ζ|=q

� f (ζ)
dζ

ζ
.

Furthermore

1

2πi

∫

∂A


 f (ζ)
dζ

ζ
= 0, namely,

2π∫

0


 f (eiθ)dθ =
2π∫

0


 f (qeiθ)dθ. (2.5)

This theorem is taken from PhD thesis by Vaitsiakhovich [19] that is quoted in a
paper [8] of M.D. Contreras et al. Denote by L(z, ζ) the infinite sum in (2.3). For
z ∈ A, L(z, ζ) and L(1/z, ζ) are both analytic in ζ ∈ A and continuous on A, and
the expression (2.4) is an easy consequence of the Cauchy theorem and the Cauchy
integral formula. Using expression (2.4), we get

lim
r↑1 
 f (reiθ) = 
 f (eiθ), lim

r↓q

 f (reiθ) = 
 f (qeiθ) + 1

2πi

∫

∂A


 f (ζ)
dζ

ζ
, (2.6)

which yields (2.5).
This theorem goes back to Villat [21]. In page 12–20 of this book, the expression

like (2.4) was obtained in terms of the kernel (2.3) by matching the coefficients in the
Laurent expansion of f and in Fourier expansion of φ

∣
∣
∂A

. In fact, (2.3) for |ζ| = 1
coincides with 1+ 2S for the kernel S in [21]. (2.3) for |ζ| = q is also related to the
kernel T in [21]. The expressions of S and T were then rewritten in [21] to derive
the celebrated Villat’s formula to represent an analytic function f on A in terms of
the Weierstrass zeta functions. Apparently it was in G.M. Goluzin [12] where the
sum (2.2) was first rewritten as a sum (2.1) in the principal value sense.

The next proposition will be utilized in Sects. 3 and 5. We adopt the notations
D = {z ∈ C : |z| < 1}, Dq = {z ∈ C : |z| < q}.
Proposition 2.2 (i) Suppose that f is analytic on A, f ∈ C(A,C) and


 f is equal to a real constant A on ∂Dq . (2.7)
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Then

1

2π

2π∫

0


 f (eiθ)dθ = A, (2.8)

and moreover f can be expressed as

f (z) = 1

2π

2π∫

0


 f (eiθ) Kq(z, eiθ)dθ + ic, z ∈ A, (2.9)

for some real constant c.
(ii) Conversely, for any φ ∈ C(∂D,R) and c ∈ R, define f (z), z ∈ A, by (2.9) and

A by (2.8) with φ in place of 
 f , respectively. Then

lim
r↓q


 f (reiη) = A for any η ∈ [0, 2π), lim
r↑1 
 f (reiθ) = φ(eiθ), θ ∈ [0, 2π).

(2.10)

Proof (i) Condition (2.7) implies (2.8) by Theorem 2.1. Under the condition (2.7),
the contribution of the integral on the inner circle |ζ| = q to the right-
hand side of (2.4) is − A

2πi

∫
|ζ|=q Kq(z, ζ)

dζ
ζ − A, which vanishes because

1
2πi

∫
|ζ|=q Kq(z.ζ)

dζ
ζ = −1 on account of (2.3) and

Res{ζ=0} ζ+z
ζ−z · 1

ζ = −1,
∫
|ζ|=q

dζ
ζ−q−2n z

= 0, Res{ζ=0} q2n z
ζ−q2n z

· 1
ζ = −1,

Res{ζ=q2n z}
q2n z

ζ−q2n z
· 1

ζ = 1.

(ii) By (2.3), we readily have limr↓q 
Kq(reiη, eiθ) = 1 boundedly, yielding the
first identity of (2.10). Then f admits the expression (2.4) by the observation
made in (i) and so the second identity of (2.10) is nothing but the first one in
(2.6). �

The following extension of Proposition 2.2 (i) will be utilized in Sect. 4.

Proposition 2.3 Suppose that f is analytic and bounded on A, and


 f admits a constant limit A at each point of ∂Dq . (2.11)

Then the limit
φ(eiθ) = lim

r↑1 
 f (reiθ) (2.12)

exists for a.e. θ ∈ [0, 2π) and

1

2π

2π∫

0

φ(eiθ)dθ = A. (2.13)
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Furthermore f can be expressed as

f (z) = 1

2π

2π∫

0

φ(eiθ) Kq(z, eiθ)dθ + ic, z ∈ A, (2.14)

for some real constant c.

Proof Since 
 f is a bounded harmonic function on A = Aq , the Fatou theorem
(cf. [11]) yields its boundary limit (2.12) on ∂D. On account of the assumption
(2.11), f can be extended to be an analytic function on {z : q2 < |z| < 1} denoted
by f again across ∂Dq by the mirror reflection. For any Q ∈ (q, 1), the function
fQ(z) = f (Qz) is analytic on Aq continuous on Aq so that (2.4) and (2.5) hold for
fQ . By letting Q ↑ 1,weget (2.13) and also (2.4)with
 f

∣
∣
∂D

= φ and
 f
∣
∣
∂Dq

= A,

which is reduced to (2.14) as in the proof of Proposition 2.2. �

3 Komatu-Loewner Equation on Annulus
in Terms of Villat’s Kernel

Fix an annulus AQ for 0 < Q < 1, and a Jordan arc γ = {γ(t) : 0 ≤ t ≤ tγ}
satisfying γ(0) ∈ ∂D, γ(0, tγ] ⊂ AQ .

According to [13, Chap.5, Sect. 1], there exists then a strictly increasing function
α : [0, tγ] �→ [Q, Qγ] (α(tγ) = Qγ < 1) with the following property: if α(t) =
q, then there is a unique conformal map gq from AQ \ γ[0, t] onto Aq with the
normalization condition

gq(Q) = q. (3.1)

We shall prove the continuity of α eventually, but we do not assume it presently.
Nevertheless we can reparametrize the curve γ as {̃γ(q) : q ∈ dom(̃γ)} by setting
γ̃(q) = γ(α−1(q)) where dom(̃γ) = α[0, tγ] ⊂ [Q, Qγ].

Take 0 ≤ t∗ < t ≤ tγ and put q = α(t), q∗ = α(t∗), then Q ≤ q∗ < q ≤ Qγ .

Define
gq∗q = gq∗ ◦ g−1

q , Sq∗q = gq∗γ[t∗t]. (3.2)

gq∗q is a conformal map from Aq onto Bq∗q = Aq∗\Sq∗q such that

gq∗q(q) = q∗. (3.3)

Let
λ(q) = gq (̃γ(q)) (3.4)
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be the image of the tip of the curve γ[0, t] under gq , which is a unique point on the
outer circle of Aq . The pre-image δq∗q = g−1

q∗q(Sq∗q) is a subarc {eiθ : β1(t∗, t) <

θ < β2(t∗, t)} of the outer circle of Aq containing the point λ(q).

We consider the function

�(w) = log
gq∗q(w)

w
, w ∈ Aq , �(q) = log

q∗

q
, (3.5)

which is a well defined analytic function on Aq , continuously extendable to Aq with


�(w) = log
q∗

q
for any w ∈ ∂Dq . (3.6)

Since 
�(eiθ) = log |gq∗q(eiθ)|, we have by Proposition 2.2 (i),

1

2π

2π∫

0

log |gq∗q(eiθ)|dθ = log
q∗

q
. (3.7)

and, for some real constant c,

log
gq∗q(w)

w
= 1

2π

2π∫

0

log |gq∗q(eiθ)|Kq(w, eiθ)dθ + ic. (3.8)

We now substitute w = gq(z), z ∈ AQ \ γ[0, t] in (3.8) to get

log
gq∗(z)

gq(z)
= 1

2π

2π∫

0

log |gq∗q(eiθ)|Kq(gq(z), eiθ)dθ + ic.

We next put z = Q and obtain from the normalization condition (3.5) that

log
q∗

q
= 1

2π

2π∫

0

log |gq∗q(eiθ)|Kq(q, eiθ)dθ + ic,

and consequently

c = − 1

2π

2π∫

0

log |gq∗q(eiθ)|�Kq(q, eiθ)dθ.
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Thus we arrive at

log
gq∗(z)

gq(z)
= 1

2π

2π∫

0

log |gq∗q(eiθ)|
[
Kq(gq(z), eiθ) − i�Kq(q, eiθ)

]
dθ. (3.9)

Theorem 3.1 q = α(t) is a strictly increasing continuous function from [0, tγ] onto
[Q, Qγ]. gq(z), z ∈ AQ\γ[0, t], is continuously differentiable in q ∈ [Q, Qγ] and
satisfies the differential equation

∂ log gq(z)

∂ log q
= Kq(gq(z),λ(q)) − i�Kq(q,λ(q)), Q ≤ q ≤ Qγ, gQ(z) = z.

(3.10)

Proof (I) We first prove that α(t), t ∈ [0, tγ), is left continuous in t , gq(z) is
left-differentiable in q and the Eq. (3.11) holds in the left-derivative sense.
Wemaintain the notations in the above. Every point on the outer circle ofAq off
the set δq∗q is sent by gq∗q to a point on the outer circle ofAq∗ .Accordingly the
domain [0, 2π] of the integration in both Eqs. (3.7) and (3.9) can be replaced
by a smaller interval [β1(t∗, t),β2(t∗, t)].
We fix t and let t∗ ↑ t. Denote by γ+(t∗), γ−(t∗) the points of ‘both sides of
the Jordan arc γ corresponding to γ(t∗). Then as t∗ ↑ t, γ+(t∗) → γ(t) =
γ̃(q), γ−(t∗) → γ(t) = γ̃(q) so that

{
β1(t∗, t) = gq(γ−(t∗)) ↑ gq (̃γ(q)) = λ(q),

β2(t∗, t) = gq(γ+(t∗)) ↓ gq (̃γ(q)) = λ(q).
(3.11)

Since the integrand in the left hand side of (3.7) is bounded, we have q∗ ↑ q
the left continuity of α. We divide the both hand sides of the Eq. (3.9) by the
both hand sides of (3.7) and let t∗ ↑ t to obtain the left-differentiablility of
gq(z) in q together with the Eq. (3.10) holding in the left-derivative sense.

(II) We use the following notations: for r > 0, 0 < s < t < ∞,

D(z, r) = {w ∈ C : |w − z| < r}, As,t = {w ∈ C : s < |w| < t}.

The mirror reflection with respect to the circle ∂D(0, r)will be denoted by�r .

For 0 ≤ t∗ < t ≤ tγ, q∗ = α(t∗), q = α(t) as before, we consider the inverse
conformal map

hq∗q = g−1
q∗q = gq ◦ g−1

q∗ : Aq∗ \ Sq∗q �→ Aq .

hq∗q satisfies hq∗q(q∗) = q and it sends the inner circle ∂D(0, q∗) of Aq∗ onto
the inner circle ∂D(0, q) of Aq . It further sends ∂D \ {λ(q∗)} onto ∂D \ δq∗q .

Hence we can extend hq∗q by the mirror reflection �q∗ to a univalent function
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(denoted by hq∗q again) on

Aq∗2 \ (Sq∗q ∪ �q∗ Sq∗q) (⊃ Aq∗ \ Sq∗q).

Furthermore, by means of the mirror reflection �1, we can extend hq∗q to a
univalent function (denoted by hq∗q again) on

Aq∗2,(q∗)−2 \ (Sq∗q ∪ �q∗ Sq∗q) \ �1(Sq∗q ∪ �q∗ Sq∗q). (3.12)

By fixing t∗, we claim that

lim
t↓t∗

q = q∗, namely, α is right continuous, (3.13)

lim
t↓t∗

hq∗q(z) = z locally uniformly on Aq∗2,(q∗)−2 \ {λ(q∗)}. (3.14)

As t ↓ t∗, the domain of definition of the univalent function hq∗q increases to
Aq∗2,(q∗)−2 \ {λ(q∗)}. Obviously {hq∗q : t ∈ (t∗, tγ]} is a uniformly bounded
family of univalent functions. Take any sequence {tn} decreasing to t∗ andwrite
hn = hq∗qn , qn = α(tn). By taking a subsequence if necessary, hn converges
to a function h locally uniformly on Aq∗2,(q∗)−2 \ {λ(q∗)}.
To prove the claims (3.13) and (3.14), Let us consider the restriction of hn to
En for En = Aq∗ \ Sq∗qn , which is denoted by hn again. Then {hn} satisfies
all the conditions (i) ∼ (iv) of Corollary 7.2, yielding (3.13) and also (3.14)
holding on Aq∗ . Obviously (3.14) then holds on Aq∗2,(q∗)−2 \ {λ(q∗)} as well.
We note that, since hq∗q(gq∗(z)) = gq(z), (3.14) implies

lim
t↓t∗

gq(z) = gq∗(z), z ∈ AQ \ γ[0, t∗ + δ], δ > 0. (3.15)

(III) The continuity ofα has been established by (I) and (3.13).Keeping the notations
in (I), we shall prove that

lim
t↓t∗

β1(t
∗, t) = λ(q∗), lim

t↓t∗
β2(t

∗, t) = λ(q∗), lim
t↓t∗

λ(q) = λ(q∗). (3.16)

Once (3.16) is established, thenwe can combine itwith (3.15) and the continuity
of the Villat’s kernelKq in q to prove the following readily from (3.7) and (3.9)
with the domain of the integration being [β1(t∗, t),β2(t∗, t)] in place of [0, 2π] :
gq(z) is right differentiable in q ∈ [Q, Qγ), the equation (3.10) holds in the
right-derivative sense and the right hand side of (3.10) is right continuous.
Just as in [10], (3.16) can be obtained from (3.14) in the following way. For
any ε > 0 with ε < 1 − q∗, choose δ > 0 such that

Sq∗q ∪ �1Sq∗q ⊂ D(λ(q∗), ε) for any t ∈ (t∗, t∗ + δ). (3.17)
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Let C = ∂D(λ(q∗), ε) and χ = hq∗q(C). Then δq∗q ⊂ ins χ. By virtue of
(3.14), we have for a sufficiently small δ > 0

|hq∗q(z) − z| < ε, for any z ∈ C and t ∈ (t∗, t∗ + δ), (3.18)

which particularly means that diam χ < 3ε. By taking any z ∈ C , we then get
for any t ∈ (t∗, t∗ + δ)

|λ(q∗) − λ(q)| ≤ |λ(q∗) − z| + |z − hq∗q(z)| + |hq∗q − λ(q)| < 5ε,

|λ(q∗) − βi (t
∗, t)| ≤ |λ(q∗) − z| + |z − hq∗q(z)| + |hq∗q − βi (t

∗, t)| < 5ε,

for i = 1, 2.
(IV) We finally show that λ(q) is left continuous:

lim
q∗↑q

λ(q∗) = λ(q), (3.19)

which implies the left continuity of the right hand side of the equation (3.10)
completing the proof of Theorem 3.1.
It follows from (3.9) that, for z ∈ Aq ,

log
gq∗q(z)

z
= 1

2π

β2(t∗,t)∫

β1(t∗,t)

log |gq∗q(eiθ)|
[
Kq(z, eiθ) − i�Kq(q, eiθ)

]
dθ.

For any ε > 0, we can choose δ > 0 such that {eiθ : β1(t∗, t) < θ <

β2(t∗, t)} ⊂ D(λ(q), ε) for t∗ ∈ (t − δ, t) by (3.12). For such t∗, we can
therefore see from the expression (2.3) of the Villat’s kernel Kq(z, ζ) that the
integrand in the right hand side of the above identity is bounded uniformly in
z ∈ Aq \ D(λ(q), ε) and in q∗ = α(t∗). Thus we deduce from (3.11)

lim
q∗↑q

gq∗q(z) = z, locally uniformly in z ∈ Aq \ {λ(q)}. (3.20)

By the mirror reflection �1, we further extend gq∗q to Aq,q−1 \ δt∗t across
∂D(0, 1). Then (3.20) is still valid locally uniformly in z ∈ Aq,q−1 \{λ(q)} and
we can repeat the same argument as in (III) for gq∗q in place of hq∗q to obtain
(3.19). �

Remark 3.2 For the function gq ◦ g−1
Qγ

in place of gq in the above, Komatu [14,
16] derived the Eq. (3.10) in terms of the Weierstrass zeta function as well as
Jacobi’s elliptic function in place of the present Villat’s function. A variant of the
Carathéodory kernel convergence theorem for annuli as Theorem 7.1 of the present
paper was also stated there without proof, that implicitly implied the continuity of the



338 M. Fukushima and H. Kaneko

correspondenceα : t �→ q (as is shown in step (II) in the above proof). But the proof
of the right differentiability of gq ◦ g−1

Qγ
in q was not given as rigorously as in steps

(II), (III) of the present one. Goluzin [12] obtained a counterpart of Theorem 3.1 in
terms of Villat’s kernel under a different setting for annuli located outside the unit
disk D. �

Remark 3.3 Since α is shown to be continuous, the Jordan arc γ can be reparame-
trized in terms of q as {γ(q) : Q ≤ q ≤ Qγ} by redefining γ(α−1(q)) as γ(q) so
that gq is a conformal map from AQ \ γ[0, q] onto Aq with the normalization (3.1).
gq(z) satisfies the ODE (3.10) for z ∈ AQ \ γ[0, q].

It is sometimes convenient to reparametrize the curve γ further in terms of the
modulus p of the annulus Aq : p = − log q, q = e−p. Denote by P, Pγ the
modulus of AQ, AQγ , respectively. Villat’s kernel is denoted in terms of p as
Sp(z, ζ) = Ke−p (z, ζ). We further change the parameter q to s in a way that
q = e−P es, 0 ≤ s ≤ sγ = Pγ − P. Since the module of Aq equals P − s,
(3.10) reads for z ∈ Aq \ γ[0, s] and s ∈ [0, sγ]

∂ log gs(z)

∂s
= SP−s(gs(z),λ(s)) − i�SP−s(e

s−P ,λ(s)), g0(z) = z, (3.21)

for the conformal mapping gs fromAQ \γ[0, s] ontoAQes with gs(Q) = Qes .Here
λ(s) = gs(γ(s)). Zhan defined in [22] an annulus SLE based on the equation (3.21)
with the second normalization term of its right hand side being dropped however.
One may formulate an annulus SLE based directly on (3.10) or (3.21) driven by
the Brownian motion (with constant drifts) on the outer circle of AQ by making
analogous considerations to the case of standard slit domains in [6]. �

4 K-L Equation on Annulus for Right Continuous Growing
Hulls

We consider an annulus AQ for a fixed Q ∈ (0, 1). A closed subset F of AQ is
called a hull in AQ if the set AQ\F is doubly connected possessing ∂DQ as one of
its boundary components. A strictly increasing family {Ft : 0 < t ≤ T } of hulls in
AQ is said to be a family of growing hulls in AQ . A typical example of a family of
growing hulls in AQ is {Ft = γ(0, t]; t ∈ (0, tγ]} for a Jordan arc γ considered in
the preceding section.

Let {Ft ; 0 < t ≤ T } be a family of growing hulls in AQ . We define F0 = ∅
by convention. According to [13, Chap.5, Sect. 1] again, there exists then a strictly
increasing function α : [0, T ] �→ [Q, QT ](β(T ) = QT < 1) with the following
property: if α(t) = q, then there is a unique conformal map gq from AQ\Ft onto
Aq with the normalization condition

gq(Q) = q. (4.1)
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Needless to say, the function α is determined depending on {Ft } and it is different in
general from α in the preceding section.

Take 0 ≤ t∗ < t ≤ tγ and put q = α(t), q∗ = α(t∗), then Q ≤ q∗ < q ≤ Qγ .

Define
gq∗q = gq∗ ◦ g−1

q , Sq∗q = gq∗(Ft \ Ft∗). (4.2)

gq∗q is a conformal map from Aq onto Aq∗\Sq∗q such that

gq∗q(q) = q∗. (4.3)

We also consider the inverse map hq∗q = g−1
q∗q(= gq ◦g−1

q∗ ). hq∗q is a conformal map
from Aq∗\Sq∗q onto Aq sending the inner circle of Aq∗ onto the inner circle of Aq

homeomorphically.
Denote by δq∗q(⊂ C) the set of accumulation points of hq∗q(z) as z approaches

to Sq∗q . δq∗q is then a closed subset of the outer circle of Aq so that we can write
δq∗q = {eiθ : θ ∈ �q∗q} for a closed subset �q∗q of [0, 2π). Observe that any point
on the outer circle of Aq∗ off the closure of Sq∗q is a simple boundary point of
Aq∗\Sq∗q in the sense of [9]. In view of [9, Theorem 15.3.6], the map hq∗q extends
to a continuous one-to-one map (denoted by hq∗q again) from Aq∗\Sq∗q into Aq .

We show that

hq∗q(Aq∗ \ K ) = Aq \ δq∗q for K = Sq∗q . (4.4)

Denote the outer circle of Aq∗ (resp. Aq ) by C∗ (resp. C). For any z ∈ C∗\K , take
a crosscut γ of Aq∗ separating z and K . Then hq∗q(γ) separates hq∗q(z) ∈ C from
δq∗q so that we have the inclusion ⊂ in (4.4). Next, take any sequence wn ∈ Aq

converging to w ∈ C\δq∗q . Then zn = gq∗q(wn) ∈ Aq∗\Sq∗q converges to a point
z ∈ C∗ ∪ K by taking a suitable subsequence if necessary. If z ∈ K , then wn =
hq∗q(zn) accumulates to δq∗q that is absurd. Hence z ∈ C∗\K . Since z is simple, wn

converges to a point w′ ∈ C that must equal w by the assumption, yielding (4.4).
Analogously to Sect. 3, we consider the function

�(w) = log
gq∗q(w)

w
, w ∈ Aq , �(q) = log

q∗

q
, (4.5)

which is a well defined bounded analytic function on Aq with


�(w) = log
q∗

q
for any w ∈ ∂Dq . (4.6)

Hence, by virtue of Proposition 2.3, the limit

φ(eiθ) = lim
r↑1 log |gq∗q(reiθ)| (4.7)
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exists for a.e. θ ∈ [0, 2π), and the identities (2.13) with A = log q∗
q and (2.14)

hold true. But, by the observation made above, limr↑1 |gq∗q(reiθ)| = 1 for any
θ ∈ [0, 2π)\�q∗q so that the domain of integration [0, 2π) in those identities can be
replaced by �q∗q , yielding as in Sect. 3

1

2π

∫

�q∗q

φ(eiθ)dθ = log
q∗

q
. (4.8)

log
gq∗(z)

gq(z)
= 1

2π

∫

�q∗q

φ(eiθ)
[
Kq(gq(z), eiθ) − i�Kq(q, eiθ)

]
dθ. (4.9)

We now state a specific right continuity condition on a family of growing hulls.
Let {Ft ; t ∈ (0, T ]} be a family of growing hulls in the annulus AQ . We keep the
related notations introduced above. Let q∗ = α(t∗) for t∗ ∈ [0, T ). The family is
called right continuous at t∗ with limit λ(q∗) if there exists a point λ(q∗) on the outer
boundary of Aq∗ such that

⋂

t>t∗
Sq∗q = λ(q∗), (4.10)

for Sq∗q defined by (4.2). This condition is obviously satisfied when the hulls are
generated by a Jordan arc γ, in which case λ(q∗) = gq∗(γ(t∗)). But such a condition
is also satisfied by more general families of growing hulls arising in SLE (cf. [18])
and in SKLE (cf. [6]) as well.

Theorem 4.1 Let {Ft ; t ∈ (0, T ]} be a family of growing hulls in the annulus AQ

that is right continuous at t∗ ∈ [0, T ) with limit λ(q∗). Then q = α(t) is right
continuous at t = t∗, gq(z) is right differentiable at q = q∗ and

∂+ log gq(z)

∂ log q

∣
∣
∣
∣
q=q∗

= Kq∗(gq∗(z),λ(q∗)) − i�Kq∗(q∗,λ(q∗)), (4.11)

for z ∈ AQ\Ft∗+δ, δ > 0, where the left hand side denotes the right derivative.

Proof It suffices to repeat the steps (II) and (III) in the proof of Theorem 3.1 almost
word for word.

Indeed we have verified in the above that the conformal map hq∗q extends to a
continuous one-to-one map from Aq∗\Sq∗q onto Aq\δq∗q . Accordingly, using the
mirror reflections �q∗ and �1, it can be further extended to a conformal map from
the region specified by (3.12) that increases to Aq∗2,(q∗)−2\{λ(q∗)} as t ↓ t∗ owing
to the current condition (4.10). The functions hn and regions En defined in the
paragraph above (3.15) satisfy all the conditions (i)–(iv) of Corollary 7.2 again owing
to condition (4.10). Hence we get the right continuity (3.13) of α and a local uniform
convergence (3.14) of hq∗q together with the right continuity (3.15) of g.(z).
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For any ε > 0 with ε < 1− q∗, we can choose δ > 0 such that (3.17) is valid due
to condition (4.10). Let C = ∂D(λ(q∗), ε) and χ = hq∗q(C). By virtue of (3.14),
we have for a sufficiently small δ > 0 the property (3.18) which particularly means
that diam χ < 3ε. Since δq∗q ⊂ ins χ, we get for every ζ ∈ δq∗q

|λ(q∗) − ζ| < 5ε, for any t ∈ (t∗, t∗ + δ). (4.12)

By taking the continuity of Villat’s kernel Kq(z, ζ) and (3.15) into account, we
can now deduce the desired conclusion of Theorem 4.1 from (4.8), (4.9) and (4.12).

�

Corollary 4.2 Let {Ft ; t ∈ [0, T ]}, F0 = ∅ be a family of growing hulls in the
annulus AQ satisfying the following conditions:

(1) α is continuous on [0, T ] so that α[0, T ] = [Q, QT ].
(2) There exists a continuous map λ from [Q, QT ] to ∂D and Ft is right continuous

at each t ∈ [0, T ] with limit λ(q) for q = α(t).
(3) gq(z) is continuous in q ∈ [Q, QT ] for each z ∈ AQ\FT .

Then gq(z), z ∈ AQ \FT , is continuously differentiable in q ∈ [Q, QT ] and satisfies
the differential equation

∂ log gq(z)

∂ log q
= Kq(gq(z),λ(q)) − i�Kq(q,λ(q)), gQ(z) = z. (4.13)

In fact, under the stated conditions, (4.13) holds in the right derivative sense by virtue
of Theorem 4.1. As the right hand side of (4.13) is continuous in q, it becomes a
genuine ODE.

5 Villat’s Kernel Is a BMD Schwarz Kernel

The Schwarz kernel on a planar domain is by definition an analytic function with its
real part being the Poisson kernel to represent harmonic functions by their values on
the boundary. But we need to specify which class of harmonic functions and which
part of the boundary are involved.Weconsider aBMDSchwarzkernelS(z, ζ)defined
in Introduction.
S(z, ζ), z ∈ Aq , ζ ∈ ∂D, for the annulusAq thus represents BMD
harmonic functions for Aq by their boundary values on ∂D. We now deduce from
Proposition 2.2 (ii) that the Villat’s kernel Kq(z, ζ) for z ∈ Aq , ζ ∈ ∂D, is equal to
a BMD Schwarz kernel S(z, ζ) for Aq up to a constant factor.

The BMDonAq is the diffusion process onAq ∪{a∗} obtained from the absorbing
Brownian motion on D by rendering the inner concentric disk Dq = {z : |z| < q}
into a single point a∗.TheBMD-Poisson kernel K ∗(z, eiθ), z ∈ Aq , 0 ≤ θ < 2π, to
representBMD-harmonic functions by their values on∂D admits the same expression
as (5.2) of [7]:
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K ∗(z, eiθ) = −1

2

d

dr
G0(z, reiθ)

∣
∣
r=1 − ϕ(z)p−1 d

dr
ϕ(reiθ)

∣
∣
r=1,

where G0 is the Green function (the 0-order resolvent density) of the ABM onAq , ϕ
is the hitting probability ofDq for the ABMonD, and p is the period ofϕ aroundDq .

Due to the rotational symmetry, the second term of the right hand side is independent
of θ, and K ∗(z, ζ) is a harmonic function in z ∈ Aq taking a constant 1/(2π) on
∂Dq for each θ ∈ [0, 2π).

Consider any non-negative continuous functionφ on [0, 2π)with
∫ 2π
0 φ(θ)dθ = 1

and let u(z) = ∫ 2π
0 K ∗(z, eiθ)φ(θ)dθ, z ∈ Aq . Then u is harmonic on Aq , taking a

constant 1/(2π) on ∂Dq and taking the value φ(θ) at each eiθ ∈ ∂D. By virtue of

Proposition 2.2 (ii), f (z) = 1
2π

∫ 2π
0 φ(θ)Kq(z, eiθ)dθ is an analytic function on Aq

whose real part 
 f (z) possesses the same boundary value on ∂Aq as u. Therefore

 f (z) = u(z), z ∈ Aq . By making φ → δθ0 for a fixed θ0 ∈ [0, 2π), we conclude
that 1

2π 
Kq(z, eiθ0) = K ∗(z, eiθ0), that is to say, 1
2πKq(z, eiθ0), 0 ≤ θ0 < 2π, is

nothing but a BMD-Schwarz kernel for the annulus Aq .

6 K-L Equation on Circularly Slit Annulus in Terms of
BMD Schwarz Kernel

A domain D of the form D = Aq\⋃N−1
j=1 C j is called a circularly slit annulus if

Aq = {z ∈ C : q ≤ |z| < 1} is an annulus for some q ∈ (0, 1) and C j are mutually
disjoint concentric circular slits contained inAq .We denote byD the collection of all
circularly slit annuli. The Komatu-Loewner equation for D has been formulated by
Komatu [17] and Bauer-Friedrich [3]. In this section, we make their descriptions of
the equation more precise in terms of a normalized BMD Schwarz kernel introduced
below.

We fix D = AQ\⋃N−1
j=1 C j ∈ D and consider a Jordan arc γ : [0, tγ] �→ D with

γ(0) = ∂D, γ(0, tγ] ⊂ D. According to [17], we can then find a strictly increasing
function α : [0, tγ] �→ [Q, Qγ], (α(tγ) = Qγ) such that, for q = α(t), there exists
a unique conformal map

gq : D \ γ[0, t] �→ Dq = Aq \
N−1⋃

j=1

C j (q) ∈ D, with gq(Q) = q.

α may not be continuous as in the annulus case of Sect. 3. Nevertheless we can
reparametrize the curve γ as {̃γ(q) : q ∈ dom(̃γ)} by setting γ̃(q) = γ(α−1(q)),

where dom(̃γ) = α[0, tγ] ⊂ [Q, Qγ].
For D = Aq\⋃N−1

j=1 C j ∈ D, let K ∗
D(z, ζ), z ∈ D, ζ ∈ ∂D, be the BMD

Poisson kernel for D. A BMD Schwarz kernel SD(z, ζ) for D is by definition a
function analytic in z ∈ D satisfying 
SD(z, ζ) = K ∗

D(z, ζ). For each ζ ∈ ∂D,
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SD(·, ζ) exists uniquely up to an imaginary additive constant owing to the zero
period property of a BMD harmonic function (cf. [7]). Let us denote by ŜD(z, ζ) the
BMD Schwarz kernel subjected to a normalization

�ŜD(q, ζ) = 0, for any ζ ∈ ∂D. (6.1)

Any BMD Schwarz kernel SD(z, ζ) gives rise to a normalized one by

ŜD(z, ζ) = SD(z, ζ) − i�SD(q, ζ), z ∈ D, ζ ∈ ∂D. (6.2)

If D is just an annulus Aq with no circular slit, then we see by virtue of the result in
the preceding section that its normalized BMDSchwarz kernel equals the normalized
Villat’s kernel multiplied by 1

2π :

ŜD(z, ζ) = 1

2π
[Kq(z, ζ) − i�Kq(q, ζ)]. (6.3)

Take 0 ≤ t∗ < t ≤ tγ and put q = α(q), q∗ = α(t∗). Then Q ≤ q∗ < q ≤ Qγ .

Define gq∗q = gq∗ ◦ g−1
q which maps Dq conformally onto Dq∗\Sq∗q and satisfies

gq∗q(q) = q∗, (6.4)

where Sq∗q = gq∗γ[t∗, t]. Let

λ(q) = gq (̃γ(q)) (6.5)

that is located on an outer circle of Dq . The pre-image g−1
q∗q(Sq∗q) of Sq∗q is a subarc

{eiθ : β1(t∗, t) < θ < β2(t∗, t)} of the outer circle of Dq containing the point λ(q).

Now log

∣
∣
∣
∣
gq∗q(z)

z

∣
∣
∣
∣ , z ∈ Dq , is harmonic on Dq as the imaginary part of the

well defined analytic function log
gq∗q(z)

z
on Dq and takes a constant value on each

circular slit C j (q). Therefore we can verify just as in [7, Sect. 6.3] that

log

∣
∣
∣
∣
gq∗q(z)

z

∣
∣
∣
∣ =

∫

∂D

∣
∣
∣
∣log

gq∗q(ζ)

ζ

∣
∣
∣
∣ K ∗

q (z, ζ)s(dζ), z ∈ Dq , (6.6)

where K ∗
q (z, ζ) is the BMD Poisson kernel for the circularly slit annulus Dq . Hence

we get

log
gq∗q(z)

z
=

β1(t∗,t)∫

β0(t∗,t)

log |gq∗q(eiϕ)|Ŝq(z, eiϕ)dϕ + ic, (6.7)

for the normalized BMD Schwarz kernel Ŝq and for some real constant c.
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By substituting z = q in (6.7), we obtain from (6.4)

log
q∗

q
=

β1(t∗,t)∫

β0(t∗,t)

log |gq∗q(eiϕ)|Ŝq(q, eiϕ)dϕ + ic,

which implies that c = 0 on account of (6.1).
On the other hand, the Cauchy integral theorem applied to the analytic function

log
gq∗q(z)

z
on the circularly slit annulus Dq yields just as in [3, Sect. 3.2]

log
q∗

q
=

β1(t∗,t)∫

β0(t∗,t)

log |gq∗q(eiϕ)|dϕ. (6.8)

The integrand on the right hand side of (6.8) being uniformly bounded, we get
the left continuity of q = α(t) by letting t∗ ↑ t in (6.8).

We next substitute z = gq(w) into the identity (6.7) with c = 0. We then divide
the resulting the both hand sides of the resulting identity by those of (6.8) and let
t∗ ↑ t in getting the following theorem.

Theorem 6.1 q = α(t) is left continuous in t ∈ (0, tγ].
gq(z) is left-differentiable in q and it holds for z ∈ D\γ[0, t] that

∂− log gq(z)

∂ log q
= 2πŜq(gq(z),λ(q)), q ∈ α(0, tγ] ⊂ (Q, Qγ], gQ(z) = z, (6.9)

where the left hand side denotes the left derivative.

Remark 6.2 In the special case that N = 1, D is just an annulusAQ and the equation
(6.9) is reduced to

∂− log gq(z)

∂ log q
= Kq(gq(z),λ(q)) − i�Kq(q,λ(q)). q ∈ α(0, tγ], gQ(z) = z,

(6.10)
by virtue of (6.3), which actually holds in the true derivative sense as has been
proved in Theorem 3.1 by making use of the kernel convergence theorem for annuli
formulated in Appendix.

In the case where N > 1 so that the degree of the multiplicity of the circularly slit
annulus D is equal or greater than 3, the problem of proving the equation (6.9) to be
a genuine ODE remains open, although Komatu [17] tried to do so by an induction
in N ≥ 1 not quite successfully.
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7 Appendix: Carathéodory-Komatu Convergence
Theorem for Annuli

As in Sect. 3, we use the notations D(z, r) = {w ∈ C : |w − z| < r}, A(s, t) =
{w ∈ C : s < |w| < t} for r > 0, 0 < s < t.

Consider the following two conditions on a doubly connected domain D in C :

(i) D ⊂ A(1, a) for some a > 1,
(ii) D admits ∂D(0, 1) as one of the boundary components of D.

We let D = {D : D is a doubly connected domain satisfying (i) and (ii)}.
For a sequence {Dn} in D, we define its kernel as follows. Suppose that D0 ⊂

∩∞
n=1Dn for some D0 ∈ D. Then the kernel of {Dn} is defined as the maximal doubly

connected domain D in D(0, 1)c such that D satisfies (ii) and any compact subset
of D is contained in Dn for sufficiently large n. Otherwise, the kernel is defined to
be ∂D(0, 1). A sequence {Dn} in D is said to be convergent to D in the sense of
kernel convergence, if D is the kernel of {Dn} and the kernel of any subsequence of
{Dn} coincides with D. A sequence {Dn} in D is said to be uniformly bounded if
Dn ⊂ A(1, a), n ≥ 1, for some a > 1.

It is known that if there exists a conformal map from D onto D′ with D, D′ ∈ D,
then D and D′ admit an identical modulus and the map extends homeomorphically
from ∂D(0, 1) ∪ D onto ∂D(0, 1) ∪ D′.

A version of the following theorem was presented in [14, 16] without proof only
bymentioning its similarity to a proof of Carathéodory’s kernel convergence theorem
for a disk. But we give a proof for completeness.

Theorem 7.1 (Carathéodory-Komatu Convergence Theorem) Let {Dn} be a
uniformly bounded sequence of doubly connected domains in D and let {Rn} be
a sequence with Rn > 1, n ≥ 1, such that there is a conformal map Fn from
A(1, Rn) onto Dn satisfying Fn(1) = 1 for every n. Then the kernel convergence of
{Dn} to a doubly connected domain D inD implies that the sequence {Rn} converges
to R yielding the modulus of D to be log R and that the sequence {Fn} converges
locally uniformly to a conformal map F from A(1, R) onto D.

Proof The assumption of the uniform boundedness of {Dn} and the kernel conver-
gence of {Dn} to D ∈ D imply that ∂Dn ⊂ A(1, a) \A(1, b), n ≥ 1, for some a, b
with 1 < b ≤ a. Due to the monotonicity of the moduli (cf. [13, 5,1,Theorem 3]),
we then have b ≤ Rn ≤ a.

As {Fn} is a normal family, there exist a positive number R′ > 1 and a sub-
sequence {nk} of {n} such that limk→∞ Rnk = R′ and {Fnk } converges locally
uniformly to some analytic function F on A(1, R′), which is non-constant because
1

2πi

∫
|z|=(R′+1)/2 d log F(z)dz = limk→∞

1

2πi

∫
|z|=(R′+1)/2 d log Fnk (z)dz =

limk→∞
1

2π

∫
|z|=(R′+1)/2 d arg Fnk (z) = 1. By virtue of Hurwitz’s theorem, we can
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deduce from the univalence of {Fnk } that F is an injective map from A(1, R′) to its
image F(A(1, R′)).

It holds that F(A(1, R′)) ⊂ D. In fact, for any ζ ∈ A(1, R′), there exists δ > 0
with D(ζ, δ) ⊂ A(1, R′). Then D(ζ, δ) ⊂ A(1, Rn) from some n on. Since the
univalence of the function F implies that the coefficient c1 in the Taylor expansion
of F(z) − F(ζ) = c1(z − ζ) + · · · around ζ does not vanish, we can deduce
|F ′

nk
(ζ)| ≥ c holding for some c > 0 and for sufficiently large k from the local

uniform convergence of {Fnk } to F combined with Cauchy’s integral expressions of
F ′(ζ) and F ′

nk
(ζ). Hence there existsρ > 0 such thatD(Fnk (ζ), ρ) ⊂ Fnk (D(ζ, δ)) ⊂

Dnk from some k on by Koebe 1/4 theorem. Since limnk→∞ Fnk (ζ) = F(ζ), we
have D(F(ζ), ρ/2) ⊂ Dnk from some k on, and consequently F(A(1, R′)) ⊂ D
because D is also the kernel of Dnk .

Denote by Hn the inverse of Fn . Since the family {Hn} is uniformly bounded,
we may assume that {Hnk } is a locally uniformly convergent sequence by tak-
ing a suitable subsequence of {nk} if necessary. Since D is also the kernel of
{Dnk }, we can see that, for any w ∈ D, w ∈ Dnk for sufficiently large k and
H(w) = limk→∞ Hnk (w) is well defined with 1 ≤ |H(w)| ≤ R′. Further H is non-

constant because of
1

2πi

∫
|w|=r d log H(w) = limk→∞

1

2πi

∫
|w|=r d log Hnk (w) =

limk→∞
1

2π

∫
|w|=r d arg Hnk (w) = 1 for some r > 1 satisfying ∂D(0, r) ⊂

∩∞
n=1Dn .
Therefore, by applying the open mapping theorem to the analytic function H

together with the pointwise convergence of {Hnk } to H as k → ∞, we see that, for
any fixedw ∈ D, there exists a positive number δ such that Hnk (w) ∈ D(H(w), δ) ⊂
A(1, R′) for sufficiently large k.

If F omits the value w, we have the following contradiction:

0 = 1

2πi

∫

CH(w),δ

F ′(z)
F(z) − w

dz = lim
k→∞

1

2πi

∫

CH(w),δ

F ′
nk

(z)

Fnk (z) − w
dz = 1,

where CH(w),δ = ∂D(H(w), δ) with counterclockwise orientation. Accordingly, F
takes thevaluew at somepoint inD(H(w), δ). By combining thiswith F(A(1, R′)) ⊂
D and the univalence of F , we conclude that F is a conformal map from A(1, R′)
onto D.

Owing to the uniqueness of the modulus of the domain D, we have R =
limk→∞ Rnk independently of the choice of {nk}. Further, F = limk→∞ Fnk gives
a conformal map from A(1, R) onto D. As F(1) = 1, F is uniquely determined
independently of the choice of {nk} (cf. [13, 5,1, Theorem 2]), yielding the desired
conclusion. �

Consider q∗ with 0 < q∗ < 1 and a sequence {qn} satisfying q∗ < qn < 1 for
each n.
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Corollary 7.2 Let {hn} be a sequence of univalent functions satisfying the following
conditions:

(i) Each hn is a surjective map from a domain En to A(qn, 1) with En ⊂ A(q∗, 1).
(ii) En ⊂ En+1 for every n and ∪∞

n=1En = A(q∗, 1).
(iii) Each En has ∂D(0, q∗) as one of its boundary components.
(iv) hn(q∗) = qn for every n.

Then limn→∞ qn = q∗ and {hn} converge locally uniformly to the identity map
on A(q∗, 1).

Proof We denote the inverse function of hn by gn and define a conformal map Fn

from A(1,
1

qn
) onto Dn satisfying Fn(1) = 1 by Fn(z) = 1

q∗ gn(qnz) for each n,

where Dn = { z

q∗ ∈ C : z ∈ En} ∩ A(1,
1

q∗ ). Then the kernel convergence of

the sequence {Dn} in D to A(1,
1

q∗ ) ∈ D follows from (ii). Since the modulus of

A(1,
1

q∗ ) equals q∗, we can apply Theorem7.1 to deduce that limn→∞ qn = q∗ and

that {Fn} converges to a conformalmap F fromA(1, 1
q∗ ) onto itself locally uniformly

onA(1, 1
q∗ ). Since F(1) = 1,we get F(z) = z, z ∈ A(1, 1

q∗ ), that yields the desired
conclusion. �
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