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Preface

Stochastic Analysis is the branch of mathematics that deals with the analysis of
dynamical systems affected by noise. It emerged as a core area of mathematics in
the late twentieth century and has subsequently developed into an important theory
with a wide range of powerful and novel tools, and with impressive diverse
applications within and beyond mathematics. As so many systems are profoundly
affected by stochastic fluctuations, it is not surprising that the array of applications
of Stochastic Analysis is vast and touches many aspects of life.

This volume includes articles from some of the main contributors to the recent
progress in stochastic analysis, and provides a snapshot of the current state of the
area and its ongoing developments. It constitutes the proceedings of the conference
on “Stochastic Analysis and Applications” held at the University of Oxford and the
Oxford-Man Institute during 23–27 September 2013. The conference honoured the
60th birthday of Professor Terry Lyons FLSW FRSE FRS, Wallis Professor of
Mathematics, University of Oxford. Terry Lyons is one of the leaders of the field of
stochastic analysis. His introduction of the notion of rough path has revolutionized
the field in both theory and applications.

A Biographical Account of Terry Lyons

Terence John Lyons was born in May 1953 in London. He went to Trinity College,
Cambridge as an undergraduate from 1972–1976. His doctoral studies were in
Oxford under the supervision of Richard Hayden. During this period he became
interested in stochastic analysis and in particular some of the work of Paul
Malliavin. In his early development he was influenced by Ted Gamelin and Henry
McKean.

After completing his D.Phil. he held a Junior Research Fellowship at Jesus
College, Oxford before taking up a Hedrick visiting professorship at UCLA for
1981–1982. He returned to the UK to take up a lectureship at Imperial College,
London which he held until 1985. At that time he was appointed to the Colin
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MacLaurin chair at the University of Edinburgh, where he took a turn as Head of
Department. He moved back to a chair at Imperial College in 1993 but still
maintained links with Edinburgh to encourage the group that he had started there. In
1993 he was awarded an EPSRC Senior Fellowship and used this to develop the
theory of rough paths. In 2000 he moved to the Wallis Professorship of Mathe-
matics at the University of Oxford and a Professorial Fellowship at St Anne’s
College.

Over the course of his career he has been awarded many prizes and honours. He
was awarded the Rollo Davidson prize in 1985, a London Mathematical Society
Junior Whitehead prize in 1986. He was awarded the Polya prize of the LMS in
2000. He was elected a fellow of the Royal Society of Edinburgh in 1987, the Royal
Society in 2002 and the Learned Society of Wales in 2011. He has an Honorary
degree from the University Paul Sabatier, Toulouse as well as Honorary fellowships
at the Universities of Aberystwyth and Cardiff. He became the first director of the
Wales Institute of Mathematical and Computational Sciences in 2008, which he
held until 2011 when he became the director of the Oxford-Man Institute of
Quantitative Finance. In 2013 he became president of the London Mathematical
Society. He has been an invited speaker at the International Congress of Mathe-
maticians, the Schramm lecturer for the Institute of Mathematical Statistics as well
as delivering expository lecture courses such as the Summer School in Probability
at St Flour.

Terry has been very much concerned with providing for the next generation of
mathematicians. From 1988–2000 he managed a series of three EU grants bringing
together the leading European institutions in the field, allowing the development of
a generation of stochastic analysts. He has also been a great proponent of mathe-
matics in bringing new ideas and techniques from academia to industry and, in
particular, its transformative power in tackling the challenges thrown up by the
growth and complexity of many aspects of modern society. He has written ground
breaking papers on potential theory, Dirichlet forms, Markov chains, numerical
analysis, filtering and mathematical finance. However, it is his pathwise view of
integration, developed as the theory of rough paths, that has had a profound effect
both within and outside the field of stochastic analysis. It has led to deep and
powerful results in stochastic differential equations and stochastic partial differential
equations. In particular it provided the initial tools that were built on by Martin
Hairer in the work that led to the award of a Fields Medal in 2014. Terry Lyons’
introduction of the signature of a path as a tool to provide an effective description of
a path and the way that it acts has already provided new insights into efficient
extraction of information from data.

In his personal life Terry married Barbara in 1975 and has two children, Barnaby,
born 1981, and Josephine, born 1983, and currently one grandchild, born 2014.

Throughout his career, Terry Lyons supervised a large number of Ph.D. students.
The following is the list of students that have completed or are currently working on
their Ph.D. under his supervision:
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Babbar, Katia
Chang, C.Y.
Dickinson, Andrew S.
Gaines, Jessica
Hoff, Ben
Litterer, Christian
Pan, Wei
Rapoo (Sipilainen), Eeva
Tchernychova, Maria
Xu, Weijun

Boutaib, Youness
Chevyrev, Ilya
Fawcett, Thomas
Gyurko, Greg
Janssen, Arend
Lunt, John
Penrose, Mathew
Skipper, Max
Victoir, Nicolas
Yam, Phillip

Caruana, Michael
Crisan, Dan
Flint, Guy
Hitchcock, David
Liang, Gechun
Ni, Hao
Potter, Chris
Smith, Adam
Williams, David
Yang, Danyu

The Contents of This Volume

The first chapter starts with the contribution of Shigeki Aida. In it, the author
continues his previous work on the study of the strong convergence of Wong-Zakai
approximations of the solution to the reflecting stochastic differential equations. In
this chapter, he proves the strong convergence under weaker assumptions on the
domain. The first main theorem shows the convergence when the domain is convex.
The estimate of the order of the convergence is the same as that given in the
previous work. The second main theorem establishes the convergence when the
domain is not convex, but satisfies certain additional conditions.

The contribution of Dominique Bakry contains a description of symmetric
diffusion operators where the spectral decomposition is given through a family
of orthogonal polynomials. In dimension one, this reduces to the case of Hermite,
Laguerre and Jacobi polynomials. In higher dimension, some basic examples arise
from compact Lie groups. The author gives a complete description of the bounded
sets on which such operators may live and a classification of those sets when the
polynomials are ordered according to their usual degrees.

The contribution of Erich Baur and Jean Bertoin discusses old and new results
related to the destruction of a random recursive tree (RRT), in which its edges are
cut one after the other in a uniform random order. In particular, the authors study
the number of steps needed to isolate or disconnect certain distinguished vertices
when the size of the tree tends to infinity. New probabilistic explanations are given
in terms of the so-called cut-tree and the tree of component sizes, which both
encode different aspects of the destruction process. Finally, the authors establish the
connection to Bernoulli bond percolation on large RRTs and present recent results
on the cluster sizes in the supercritical regime.

The contribution of René Carmona and Francois Delarue discusses the Master
Equation for large population equilibriums. The authors use a simple N-player
stochastic game with idiosyncratic and common noises to introduce the concept
of the Master Equation, originally proposed by Lions in his lectures at the Collège
de France. They highlight the stochastic nature of the limit distributions of the states
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of the players due to the fact that the random environment does not average out in
the limit, and recast the Mean Field Game (MFG) paradigm in a set of coupled
Stochastic Partial Differential Equations. The first one is a forward stochastic
Kolmogorov equation giving the evolution of the conditional distributions of the
states of the players given the common noise. The second equation has the form of
a stochastic Hamilton Jacobi Bellman (HJB) equation providing the solution of the
optimization problem when the flow of conditional distributions is given. Being
highly coupled, the system reads as an infinite dimensional Forward Backward
Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its Markov
property lead to the representation of the solution of the backward equation (i.e. the
value function of the stochastic HJB equation) as a deterministic function
of the solution of the forward Kolmogorov equation, function which is usually
called the decoupling field of the FBSDE. The (infinite dimensional) PDE satisfied
by this decoupling field is identified with the master equation. Finally the authors
show that this equation can be derived for other large populations equilibriums like
those given by the optimal control of McKean-Vlasov stochastic differential
equations.

The contribution of Thomas Cass, Martin Clark and Dan Crisan revisits the
filtering equations. The problem of nonlinear filtering has engendered a surprising
number of mathematical techniques for its treatment. A notable example is the
change-of-probability-measure method introduced by Kallianpur and Striebel to
derive the filtering equations and the Bayes-like formula that bears their names. More
recent work, however, has generally preferred other methods. In this chapter, the
authors reconsider the change-of-measure approach to the derivation of the filtering
equations and show that many of the technical conditions present in previous work
can be relaxed. The filtering equations are established for general Markov signal
processes that can be described by a martingale problem formulation. Two specific
applications are treated.

The contribution of Ana Bela Cruzeiro and Remi Lassalle discusses the sto-
chastic least action principle for the Navier-Stokes equation. The authors extend the
class of stochastic processes allowed to represent solutions of the Navier-Stokes
equation on the two-dimensional torus to certain non-Markovian processes, which
they call admissible. More precisely, they provide a criterion for the associated
mean velocity field to solve this equation. Due to the fluctuations of the shift, a new
term of pressure appears which is of purely stochastic origin. The authors also
provide an alternative formulation of this least action principle by means of
transformations of measure. Within this approach, the action is a function of the law
of the processes, while the variations are induced by some translations on the
space of the divergence-free vector fields. Due to the renormalization in the defi-
nition of the cylindrical Brownian motion, this action is only related to the relative
entropy by an inequality. However it is shown that, if the high frequency modes are
cut, this new approach provides a least action principle for the Navier-Stokes
equation based on the relative entropy.

The contribution of Sandy Davie studies the dyadic method of Komlós, Major
and Tusnády (KMT), which is a powerful way of constructing simultaneous normal
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approximations to a sequence of partial sums of i.i.d. random variables. The author
uses a version of this KMT method to obtain a first-order approximation in a
Vaserstein metric to solutions of vector SDEs under a mild nondegeneracy con-
dition using an easily implemented numerical scheme.

The contribution of Joscha Diehl, Peter Friz and Harald Oberhauser studies
partial differential equations driven by rough paths. This is a continuation of the
authors’ earlier work on the subject motivated by the Lions-Souganidis theory of
viscosity solutions for SPDEs. The authors continue and complement the previous
(uniqueness) results with general existence and regularity statements. Much of this
is transformed to questions for deterministic parabolic partial differential equations
in viscosity sense. On a technical level, the authors establish a refined parabolic
theorem of sums which may be useful in its own right.

The contribution of Yidong Dong and Ronnie Sircar discusses time-inconsistent
portfolio investment problems. The explicit results for the classical Merton optimal
investment/consumption problem rely on the use of constant risk aversion param-
eters and exponential discounting. However, many studies have suggested that
individual investors can have different risk aversions over time, and they discount
future rewards less rapidly than exponentially. While state-dependent risk aversion
and nonexponential type (e.g. hyperbolic) discounting align more with real life
behaviour and household consumption data, they have tractability issues and make
the problem time-inconsistent. In their contribution, Dong and Sircar analyse the
cases where these problems can be closely approximated by time-consistent ones.
Using asymptotic approximations, they are able to characterize the equilibrium
strategies explicitly in terms of corrections to solutions for the base problems with
constant risk aversion and exponential discounting. The authors also explore the
effects of hyperbolic discounting under proportional transaction costs.

The contribution of David Elworthy discusses decompositions of diffusion
operators and related couplings. Results by Cranston, Greven and Feng-YuWang on
relationships between coupling and shift coupling, and harmonic functions and space
time harmonic functions are reviewed. These lead to extensions of a result by Freire
on the separate harmonicity of bounded harmonic functions on certain product
manifolds. The extensions are to situations where a diffusion operator is decomposed
into the sum of two other commuting diffusion operators. This is shown to arise for a
class of foliated Riemannian manifolds with totally geodesic leaves. A form of skew
product decomposition of Brownian motions on these foliated manifolds is obtained,
as are gradient estimates in leaf directions. Relationships between stochastic
completeness of the manifold itself and stochastic completeness of its leaves are
established. Baudoin and Garafola’s “sub-Riemannian manifolds with transverse
symmetries” are shown to be examples.

The contribution of Hans Föllmer and Claudia Klüppelberg studies a mathe-
matical consistency problem motivated by the interplay between local and global
risk assessment in a large financial network. In analogy to the theory of Gibbs
measures in Statistical Mechanics, they focus on the structure of global convex risk
measures which are consistent with a given family of local conditional risk mea-
sures. Going beyond the locally law-invariant (and hence entropic) case, the authors
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show that a global risk measure can be characterized by its behaviour on a suitable
boundary field. In particular, a global risk measure may not be uniquely determined
by its local specification, and this can be seen as a source of “systemic risk” in
analogy to the appearance of phase transitions in the theory of Gibbs measures.
The proof combines the spatial version of Dynkin’s method for constructing the
entrance boundary of a Markov process with a certain nonlinear extension of
backwards martingale convergence.

In their contribution, Masatoshi Fukushima and Hiroshi Kaneko discuss the
Villat’s kernels and BMD Schwarz kernels in Komatu-Loewner equations. The
classical Loewner differential equation for simply connected domains is attracting
new attention since Schramm launched in 2000 the stochastic Loewner evolution
(SLE) based on it. The Loewner equation itself has been extended to various
canonical domains of multiple connectivity after the works by Komatu in 1943 and
1950, but the Komatu-Loewner (K-L) equations have been derived rigorously only
in the left derivative sense. In a recent work, Chen, Fukushima and Rhode prove
that the K-L equation for the standard slit domain is a genuine ODE by using a
probabilistic method together with an SDE method, and that the right-hand side
of the equation admits an expression in terms of the complex Poisson kernel of the
Brownian motion with darning (BMD). In the present paper, K-L equations for the
annulus and circularly slit annili are investigated. For the annulus, they establish a
K-L equation as a genuine ODE possessing a normalized Villat’s kernel on its right-
hand side by using a variant of the Carathéodory convergence theorem for annuli
indicated by Komatu. This method is also used to obtain the same K-L equation in
the right derivative sense on annulus for a more general family of growing hulls that
satisfies a specific right continuity condition usually adopted in the SLE theory.
Villat’s kernel is then identified with a BMD Schwarz kernel for the annulus.
Finally, the authors derive K-L equations for circularly slit annuli in terms of their
normalized BMD Schwarz kernels, but only in the left derivative sense when at
least one circular slit is present.

Tomoyuki Ichiba and Ioannis Karatzas study the unfolding of the Skorokhod
reflection of a continuous semimartingale, in a possibly skewed manner, into
another continuous semimartingale on an enlarged probability space according to
the excursion-theoretic methodology of Prokaj. This is done in terms of a skew
version of the Tanaka equation, whose properties are studied in some detail. The
result is used to construct a system of two diffusive particles with rank-based
characteristics and skew-elastic collisions. Unfoldings of conventional reflections
are also discussed, as are examples involving skew Brownian Motions and skew
Bessel processes.

David Nualart contributes with a survey of some recent developments in the
applications of Malliavin calculus combined with Stein’s method to derive central
limit theorems for random variables on a finite sum of Wiener chaos. Starting from
the fourth moment theorem by Nualart and Peccati, the author discusses several
related topics such as conditions for the convergence in total variation, absolute
continuity of probability laws and uniform convergence of densities under suitable
nondegeneracy assumptions. The fact that the random variables belong to a fixed
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Wiener chaos (or to a finite sum of Wiener chaos) will play a fundamental role in
the results. Normal approximation on a finite Wiener chaos.

Zhenjie Ren, Nizar Touzi and Jianfeng Zhang provide an overview of the
recently developed notion of viscosity solutions of path-dependent partial differ-
ential equations. The authors review the Crandall-Ishii notion of viscosity solutions,
so as to motivate the relevance of the definition in the path-dependent case. The
authors focus on the well-posedness theory of such equations. In particular, they
provide a simple presentation of the current existence and uniqueness arguments in
the semilinear case and review the stability property of this notion of solutions,
including the adaptation of the Barles-Souganidis monotonic scheme approxima-
tion method. The results rely crucially on the theory of optimal stopping under
nonlinear expectation. In the dominated case, we provide a self-contained presen-
tation of all required results. The fully nonlinear case is more involved and is
addressed elsewhere.

Marta Sanz-Sole and Andre Suess study logarithmic asymptotics of the densities
of SPDEs driven by spatially correlated noise. The authors consider the family of
stochastic partial differential equations indexed by a parameter ε 2 ð0; 1�,

Luεðt; xÞ ¼ εσðuεðt; xÞÞ _Fðt; xÞ þ bðuεðt; xÞÞ;

ðt; xÞ 2 ð0; T � � R
d with suitable initial conditions. In this equation, L is a second-

order partial differential operator with constant coefficients, σ and b are smooth
functions and _F is a Gaussian noise, white in time and with a stationary correlation
in space. Let pεt;x denote the density of the law of uεðt; xÞ at a fixed point

ðt; xÞ 2 ð0; T � � R
d . The authors study the existence of limε#0 ε2 log pεt;xðyÞ for a

fixed y 2 R. The results apply to classes of stochastic wave equations with d 2
f1; 2; 3g and stochastic heat equations with d� 1.
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Wong-Zakai Approximation of Solutions
to Reflecting Stochastic Differential
Equations on Domains in Euclidean
Spaces II

Shigeki Aida

Abstract The strong convergence of Wong-Zakai approximations of the solution
to the reflecting stochastic differential equations was studied in [2]. We continue the
study and prove the strong convergence under weaker assumptions on the domain.

Keywords Wong-Zakai approximation · Reflecting SDE

1 Introduction

Wong-Zakai approximations of solutions of stochastic differential equations (=SDEs)
were studied by many researchers, e.g. [13, 15, 27]. In the case of reflecting SDEs,
Doss and Priouret [5] studied the Wong-Zakai approximations when the boundary is
smooth. Actually, the unique existence of strong solutions of reflecting SDEs were
proved for domains whose boundary may not be smooth by Tanaka [26], Lions-
Sznitman [16] and Saisho [23]. In their studies, the standard conditions, (A), (B), (C)
and admissibility condition, on the domain for reflecting SDEs were introduced and
the unique existence of strong solutions were proved under the conditions either (A)
and (B) hold or the domain is convex in [23, 26]. We explain the conditions (A), (B),
(C) in the next section. There were studies on Wong-Zakai approximations in such
cases, e.g., [20–22] for convex domains and [7] for domains satisfying admissibil-
ity condition as well as conditions (A), (B), (C). When the domain is convex, Ren
and Xu [22] proved that Wong-Zakai approximations converge to the true solution
in probability in the setting of stochastic variational inequality. In [2], the strong
convergence of Wong-Zakai approximations was proved under the conditions (A),
(B), (C). We note that Zhang [28] proved the strong convergence of Wong-Zakai
approximations in the setting of [7] independent of [2]. The aim of this paper is to
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2 S. Aida

prove the strong convergence of Wong-Zakai approximation under the conditions
either (A) and (B) hold or the domain is convex following the proof in [2]. Note
that our proof in the case of convex domains is different from [22] and we give an
estimate of the order of convergence.

The paper is organized as follows. In Sect. 2, we recall conditions of the bound-
ary and state the main theorems. The first main theorem (Theorem 2.2) shows the
strong convergence of Wong-Zakai approximations when the domain is convex. The
estimate of the order of the convergence is the same as given in [2]. The second main
theorem (Theorem 2.3) is concerned with the convergence of Wong-Zakai approxi-
mations in the case where the domain satisfies the conditions (A) and (B). We prove
main theorems in Sects. 3 and 4.

2 Preliminaries and Main Theorems

Let D be a connected domain in Rd . The following conditions can be found in [23].
In [2], we used the conditions (A), (B), (C) on D. In this paper, we will use (B′) too.
The set Nx of inward unit normal vectors at x ∈ ∂D is defined by

Nx = ∪r>0Nx,r ,

Nx,r =
{

n ∈ R
d | |n| = 1, B(x − rn, r) ∩ D = ∅

}
,

where B(z, r) = {y ∈ R
d | |y − z| < r}, z ∈ R

d , r > 0.

Definition 2.1 (A) (uniform exterior sphere condition). There exists a constant
r0 > 0 such that

Nx = Nx,r0 �= ∅ for any x ∈ ∂D. (2.1)

(B) There exist constants δ > 0 and β ≥ 1 satisfying:
for any x ∈ ∂D there exists a unit vector lx such that

(lx , n) ≥ 1

β
for any n ∈ ∪y∈B(x,δ)∩∂DNy . (2.2)

(B′) (uniform interior cone condition) There exist δ > 0 and 0 ≤ α < 1 such that
for any x ∈ ∂D there exists a unit vector lx such that

C(y, lx ,α) ∩ B(x, δ) ⊂ D̄ for any y ∈ B(x, δ) ∩ ∂D,

where C(y, lx ,α) = {z ∈ R
d | (z − y, lx ) ≥ α|z − y|}.

(C) There exists a C2
b function f on R

d and a positive constant γ such that for
any x ∈ ∂D, y ∈ D̄, n ∈ Nx it holds that
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(y − x, n) + 1
γ

((D f )(x), n) |y − x |2 ≥ 0. (2.3)

Note that if D is a convex domain, the condition (A) holds for any r0 and the
condition (C) holds for f ≡ 0. Also we can prove that the condition (B′) implies
condition (B) with the same δ and β = (1 − α2)−1/2 by noting that ny ∈ Ny,r is
equivalent to (

z − y, ny
)+ 1

2r
|y − z|2 ≥ 0 for any z ∈ D̄.

Further, if D is a convex domain in R
2 or a bounded convex domain in any

dimensions, then the condition (B) holds. This is stated in [26]. Before considering
reflecting SDE, let us explain the Skorohod problem on themultidimensional domain
D for which Nx �= ∅ for all x ∈ ∂D. Let w = w(t) (0 ≤ t ≤ T ) be a continuous
path onRd withw(0) ∈ D̄. The pair of paths (ξ,φ) onRd is a solution of a Skorohod
problem associated with w if the following properties hold.

(i) ξ = ξ(t) (0 ≤ t ≤ T ) is a continuous path in D̄ with ξ(0) = w(0).
(ii) It holds that ξ(t) = w(t) + φ(t) for all 0 ≤ t ≤ T .
(iii) φ = φ(t) (0 ≤ t ≤ T ) is a continuous bounded variation path on R

d such that
φ(0) = 0 and

φ(t) =
t∫

0

n(s)d‖φ‖[0,s] (2.4)

‖φ‖[0,t] =
t∫

0

1∂D(ξ(s))d‖φ‖[0,s]. (2.5)

where n(t) ∈ Nξ(t) if ξ(t) ∈ ∂D.

In the above, the notation ‖φ‖[s,t] stands for the total variation norm of φ(u) (0 ≤
s ≤ u ≤ t ≤ T ).

Let us consider reflecting SDEs. Let σ ∈ C2
b (Rd → R

d ⊗R
n) and b ∈ C1

b(Rd →
R

d). Let � = C([0,∞) → R
n;ω(0) = 0) and P be the Wiener measure on �.

Let B(t,ω) = ω(t) (ω ∈ �) be the canonical realization of Brownian motion. We
consider the reflecting SDE on D̄:

X (t, x,ω) = x +
t∫

0

σ(X (s, x,ω)) ◦ d B(s,ω) +
t∫

0

b(X (s, x,ω))ds + �(t,ω),

(2.6)

where ◦d B(s) denotes the Stratonovich integral. We use the notation (SDE)σ,b to
indicate this equation. Note that this usage is different from that in [2] but I think
there are no confusion. The solution (X (t),�(t)) to this equation is nothing but a
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solution of the Skorohod problem associated with

Y (t) = x +
t∫

0

σ(X (s, x,ω)) ◦ d B(s,ω) +
t∫

0

b(X (s, x,ω))ds.

As explained in the Introduction, if either the condition “(i) D is a convex domain”
or the condition “(ii) D satisfies the conditions (A) and (B)” holds, then the strong
solution X (t) to (2.6) exists uniquely. These are due to Tanaka [26] for (i) and
Saisho [23] for (ii). See also [6, 16]. Let X N be the Wong-Zakai approximation
of X . That is, X N is the solution to the reflecting differential equation driven by
continuous bounded variation paths:

X N (t, x,ω) = x +
t∫

0

σ(X N (s, x,ω))d B N (s,ω)

+
t∫

0

b(X N (s, x,ω))ds + �N (t,ω), (2.7)

where

B N (t) = B(t N
k−1) + �N Bk

�N
(t − t N

k−1) t N
k−1 ≤ t ≤ t N

k , (2.8)

�N Bk = B(t N
k ) − B(t N

k−1), �N = T

N
, t N

k = kT

N
. (2.9)

Wemay denote t N
k and�N by tk and� respectively. The solution X N uniquely exists

under conditions (A) and (B) on D. See, e.g., [2, 23]. Under the convexity assumption
of D too, the solution X N uniquely exists by the results in [26]. In the convex case, we
can check the existence in the following different way. More generally we consider
a reflecting differential equation driven by a continuous bounded variation path wt :

xt = x0 +
t∫

0

σ(xs)dws +
t∫

0

b(xs)ds + �(t) xt ∈ D̄. (2.10)

The definition of the solution to this equation is similar to that of the equation
previously discussed. Let DR = B(x0, R) ∩ D. Then conditions (A) and (B) hold
on DR and the solution, say, x R

t to reflecting differential equation on DR exists.
Moreover by Lemma 2.4 in [2], ‖x R‖[0,T ] ≤ 2(

√
2+ 1)(‖σ‖∞‖w‖[0,T ] + ‖b‖∞T ),

where ‖w‖[0,T ] denotes the total variation of w(t) (0 ≤ t ≤ T ) as we already
explained and ‖σ‖∞ and ‖b‖∞ denotes the sup-norm of the operator norm and the
Euclidean norm of σ and b respectively. Thus, we have max0≤t≤T |x R(t) − x0| ≤
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2(
√
2+ 1)(‖σ‖∞‖w‖[0,T ] + ‖b‖∞T ) and we can apply the result in the case where

(A) and (B) hold. Now we are in a position to state our main theorems.

Theorem 2.2 Assume D is convex. Then, for any 0 < θ < 1, we have

max
0≤t≤T

E
[
|X N (t) − X (t)|2

]
≤ Cθ · �

θ/2
N (2.11)

E

[
max
0≤t≤T

|X N (t) − X (t)|2
]

≤ CT,θ�
θ/6
N . (2.12)

Theorem 2.3 Assume the conditions (A) and (B) hold. Then for any ε > 0, we have

lim
N→∞ P

(
max
0≤t≤T

|X N (t) − X (t)| ≥ ε

)
= 0. (2.13)

Remark 2.4 We refer the readers to [2, 24, 25] for Euler approximations. Rough
path analysis clarifies the meaning of Wong-Zakai approximations. We refer the
readers for basic results of rough path analysis to [3, 11, 12, 17–19] and for Wong-
Zakai approximations of rough differential equations driven by fractional Brownian
motions to [4, 9, 10, 14]. Note that reflecting differential equations driven by rough
paths are defined and the existence and estimates of the solutions are studied in the
author’s recent paper [1]. See also [8] for reflecting differential equations driven by
fractional Brownian motions whose Hurst parameter are greater than 1/2.

3 Convex Domains

In this section, we prove Theorem 2.2. Below, we use the notation

‖w‖∞,[s,t] = max
s≤u≤v≤t

|w(u) − w(v)|.

The notation ‖w‖[s,t] was already defined in Sect. 2. We can prove the following in
the same way as in the proof of Lemma 2.3 in [2].

Lemma 3.1 Assume conditions (A) and (B) hold. Let w be a q-variation continuous
path such that

|w(t) − w(s)| ≤ ω(s, t)1/q 0 ≤ s ≤ t ≤ T (3.1)

where q ≥ 1 and ω is a control function. That is, ω(s, t) is a nonnegative continuous
function of (s, t) with 0 ≤ s ≤ t ≤ T satisfying ω(s, u) + ω(u, t) ≤ ω(s, t) for all
0 ≤ s ≤ u ≤ t ≤ T . Then the local time φ of the solution to the Skorohod problem
associated with w has the following estimate.
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‖φ‖[s,t] ≤ β
({

δ−1G(‖w‖∞,[s,t]) + 1
}q

ω(s, t) + 1
)

× (
G(‖w‖∞,[s,t]) + 2

) ‖w‖∞,[s,t], (3.2)

where

G(a) = 4 {1 + β exp {β (2δ + a) /(2r0)}} exp {β (2δ + a) /(2r0)} . (3.3)

The above estimate is one of key for the proof in [2]. Since the unbounded convex
domains inRd (d ≥ 3)may not satisfy the condition (B), we cannot use this estimate.
However, it is possible to estimate the total variation ‖φ‖[s,t] by ‖w‖∞,[s,t] together
with the sup-norm of ξ since we can give an estimate for the numbers β and δ in the
condition (B) for bounded convex domains.

Lemma 3.2 Let D be a convex domain in R
d . Let x0 ∈ D and assume that there

exists R0 > 0 such that B(R0, x0) ⊂ D. Let R ≥ R0 and define DR = D∩ B(R, x0).
The Condition (B) holds for the bounded convex domain DR with δ = R0/2 and

β =
(
1 +

(
2R
R0

)2)1/2

.

Proof We prove the condition (B′). Let x ∈ ∂DR . Let lx be the unit vector in the
direction from x to x0. Let S(x0) be a d −1 dimensional ball which is the slice of the
ball B(R0, x0) by a hyperplane H(x0) that passes through x0 and is orthogonal to lx .
Let α = R√

R2+(R0/2)2
. Then for any point y ∈ B(δ, x), it holds that C(y, lx ,α) ∩

H(x0) ⊂ S(x0). Hence for any y ∈ B(δ, x) ∩ ∂DR , C(y, lx ,α) ∩ B(x, δ) ⊂ DR

which implies condition (B′).

Lemma 3.3 Let D be a convex domain. Let x0 ∈ D and assume that there exists
R0 > 0 such that B(R0, x0) ⊂ D. Let w(t) (0 ≤ t ≤ T ) be a continuous q-variation
path with the control function ω on R

d with w(0) ∈ D̄ and q ≥ 1. Assume that there
exists a solution (ξ,φ) to the Skorohod problem associated with w. Then it holds that

‖φ‖[s,t] ≤ 10

[{
16R−1

0

(
1 + 4R−2

0 ‖ξ − x0‖2∞,[0,T ]
)1/2 + 1

}q

ω(s, t) + 1

]

×
(
1 + 4R−2

0 ‖ξ − x0‖2∞,[0,T ]
)

‖w‖∞,[s,t]. (3.4)

Proof Note that ξ is the solution of the Skorohod problem associated with w on
D ∩ B(x0, R), where R = ‖ξ − x0‖∞,[0,T ]. This domain satisfies (B) with the
constants δ and β specified in the above lemma. In the lemma, letting r0 → ∞, G
reads

G(a) = 4

{
1 +

√
1 + (2R−1

0 R)2
}

. (3.5)

By applying Lemma 3.1, we complete the proof.
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To prove Theorem 2.2, we need moment estimates for increments of X N and�N .

Lemma 3.4 Assume D is a convex domain. For the Wong-Zakai approximation X N ,
we define

Y N (t, x,ω) = x +
t∫

0

σ(X N (s, x,ω))d B N (s,ω) +
t∫

0

b(X N (s, x,ω))ds. (3.6)

(1) For all p ≥ 1, we have

E[‖Y N ‖2p
∞,[s,t]] ≤ C p|t − s|p. (3.7)

(2) Let tk−1 ≤ s < t ≤ tk . Then we have for all p ≥ 1,

E[|X N (t) − X N (s)|2p | Ftk−1] ≤ C p|t − s|p, (3.8)

‖�N ‖[s,t] ≤ C

(
|�Bk | t − s

�
+ (t − s)

)
, (3.9)

where C p and C are positive constants.

Proof These assertions can be proved by the same way as the proof of Lemma 4.3
and 4.4 in [2]. We assumed the condition (B) in those lemmas but we can argue
in the same way since Skorohod equation associated with the continuous bounded
variation path is uniquely solved under the convexity of D.

Lemma 3.5 Assume D is convex. Let p ≥ 2 be an integer. For 0 ≤ s ≤ t ≤ T , we
have

E
[|X (t) − X (s)|p] ≤ C p|t − s|p/2, (3.10)

E
[
|X N (t) − X N (s)|p

]
≤ C p|t − s|p/2, (3.11)

E
[
‖�N ‖p

[s,t]
]

≤ C p|t − s|p/2, (3.12)

where C p is a positive number independent of N .

Proof Let τR = inf{t > 0 | X (t, x, w) /∈ B(x, R)} and X τR (t) = X (t ∧ τR).
For (3.10), it suffices to prove E[|X τR (t) − X τR (s)|p|] ≤ C p|t − s|p/2 for all even
positive integers p and 0 ≤ s ≤ t ≤ T , where C p is independent of R. We prove
this by an induction on p. Let b̃ = b + 1

2 tr(Dσ)(σ). By the Ito formula,

|X τR (t) − X τR (s)|2 = 2

t∧τR∫

s∧τR

(X τR (u) − X τR (s),σ(X τR (u))d B(u))
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+ 2

t∧τR∫

s∧τR

(X τR (u) − X τR (s), b̃(X τR (u)))du

+
t∧τR∫

s∧τR

tr
(
(σ tσ)(X τR (u))

)
du

+ 2

t∧τR∫

s∧τR

(X τR (u) − X τR (s), d�(u)). (3.13)

Noting the non-positivity of the term containing�which follows from the convexity
of D and taking the expectation, we have

E
[
|X τR (t) − X τR (s)|2

]
≤ C

t∫

s

E
[
|X τR (u) − X τR (s)|2

]
du + C(t − s) (3.14)

which implies E[|X τR (t) − X τR (s)|2] ≤ C(t − s). Let p ≥ 4 and suppose the
inequality holds for p − 2.

|X τR (t) − X τR (s)|p

= p

t∧τR∫

s∧τR

|X τR (u) − X τR (s)|p−2(X τR (u) − X τR (s),σ(X τR (u))d B(u))

+ p

t∧τR∫

s∧τR

|X τR (u) − X τR (s)|p−2(X τR (u) − X τR (s), b̃(X τR (u)))du

+ p

2

t∧τR∫

s∧τR

|X τR (u) − X τR (s)|p−2tr
(
(σ tσ)(X τR (u))

)
du

+ 1

2
p (p − 2)

t∧τR∫

s∧τR

|X τR (u) − X τR (s)|p−4|tσ(X τR (u)
(
X τR (u) − X τR (s)

) |2du

+ p

t∧τR∫

s∧τR

|X τR (u) − X τR (s)|p−2(X τR (u) − X τR (s), d�(u)).
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Hence we have

E
[|X τR (t) − X τR (s)|p] ≤ C p

( t∫

s

E
[
|X τR (u) − X τR (s)|p−2

]

+ E
[
|X τR (u) − X τR (s)|p−1

])
du

≤ C p

( t∫

s

E
[
|X τR (u) − X τR (s)|p−2

]

+ E
[|X τR (u) − X τR (s)|p]

)
du

which implies

E
[|X τR (t) − X τR (s)|p] ≤ C peC p(t−s)

t∫

s

E
[
|X τR (u) − X τR (s)|p−2

]
du (3.15)

≤ C p(t − s)p/2.

This proves (3.10). Next we prove (3.11). Again, is is sufficient to prove the case
where p is an even number. We prove this by an induction on p similarly to (3.10).
By Lemma 2.4 in [2], we have E[‖X N ‖p

[0,T ]] < ∞ for any p ≥ 1. We consider the
case where p = 2. Let s = tl < tm = t . By the chain rule,

|X N (t) − X N (s)|2 = 2

t∫

s

(X N (u) − X N (s),σ(X N (u))d B N (u))

+ 2

t∫

s

(X N (u) − X N (s), b(X N (u)))du

+ 2

t∫

s

(X N (u) − X N (s), d�N (u)) (3.16)

≤ 2

t∫

s

(X N (u) − X N (s),σ(X N (u))d B N (u))

+ 2

t∫

s

(X N (u) − X N (s), b(X N (u)))du =: I1 + I2,

where we have used the non-positivity of the third term which follows from the
convexity of D. We estimate I1, I2. We have
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I1 =
m∑

k=l+1

2

tk∫

tk−1

(
X N (u) − X N (s),σ(X N (u))

�Bk

�

)
du. (3.17)

I1,k :=
tk∫

tk−1

(X N (u) − X N (s),σ(X N (u))
�Bk

�
)du

=
(

X N (tk−1) − X N (s),σ(X N (tk−1))�Bk

)

+
tk∫

tk−1

(
X N (u) − X N (tk−1),σ(X N (tk−1))

�Bk

�

)
du (3.18)

+
tk∫

tk−1

(
X N (tk−1) − X N (s),

(
σ(X N (u)) − σ(X N (tk−1))

) �Bk

�

)

+
tk∫

tk−1

(
X N (u) − X N (tk−1),

(
σ(X N (u)) − σ(X N (tk−1))

) �Bk

�

)
du

By Lemma 3.4 (2),

E
[
I1,k

] ≤ C
(
1 + E[|X N (tk−1) − X N (s)|]

)
� (3.19)

≤ C

⎛
⎝

tk∫

tk−1

(
E[|X N (u) − X N (s)|2] + 1

)
du

⎞
⎠ .

Thus, we obtain

E[|X N (t) − X N (s)|2] ≤ C

⎛
⎝(t − s) +

t∫

s

E[|X N (u) − X N (s)|2]du

⎞
⎠ . (3.20)

Again by noting Lemma 3.4 (2), we see that (3.20) holds for any 0 ≤ s ≤ t ≤ T .
Applying the Gronwall inequality, we get the inequality (3.11) with p = 2. Let
p ≥ 4. Let s = tl < tm = t . By the chain rule,

|X N (t) − X N (s)|p = p

t∫

s

|X N (u) − X N (s)|p−2

× (X N (u) − X N (s),σ(X N (u))d B N (u))
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+ p

t∫

s

|X N (u) − X N (s)|p−2(X N (u) − X N (s), b(X N (u)))du

+ p

t∫

s

|X N (u) − X N (s)|p−2(X N (u) − X N (s), d�N (u))

≤ p

t∫

s

|X N (u) − X N (s)|p−2 (3.21)

× (X N (u) − X N (s),σ(X N (u))d B N (u))

+ p

t∫

s

|X N (u) − X N (s)|p−2(X N (u) − X N (s), b(X N (u)))du

=: J1 + J2,

where we have used the non-positivity of the third term which follows from the con-
vexity of D. By noting |X N (u)− X N (s)|p−1 ≤ 1

2

(|X N (u) − X N (s)|p + |X N (u) −
X N (s)|p−2

)
and by the assumption of induction, we have

E[J2] ≤ C(t − s)p/2 +
t∫

s

E[|X N (u) − X N (s)|p]du. (3.22)

For J1, we have

J1 =
m∑

k=l+1

p

tk∫

tk−1

|X N (u) − X N (s)|p−2
(

X N (u) − X N (s),σ(X N (u))
�Bk

�

)
du.

(3.23)
tk∫

tk−1

|X N (u) − X N (s)|p−2(X N (u) − X N (s),σ(X N (u))
�Bk

�
)du

=
tk∫

tk−1

|X N (u) − X N (s)|p−2
(

X N (tk−1) − X N (s),σ(X N (tk−1))
�Bk

�

)
du

+
tk∫

tk−1

|X N (u) − X N (s)|p−2
(

X N (u) − X N (tk−1),σ(X N (tk−1))
�Bk

�

)
du
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+
tk∫

tk−1

|X N (u) − X N (s)|p−2 (3.24)

×
(

X N (tk−1) − X N (s),
(
σ(X N (u)) − σ(X N (tk−1))

) �Bk

�

)

+
tk∫

tk−1

|X N (u) − X N (s)|p−2

×
(

X N (u) − X N (tk−1),
(
σ(X N (u)) − σ(X N (tk−1))

) �Bk

�

)
du

= J k
1,1 + J k

1,2 + J k
1,3 + J k

1,4.

We have

J k
1,1 = J k

1,1,1 + J k
1,1,2 + J k

1,1,3 + J k
1,1,4 (3.25)

where

J k
1,1,1 =

tk∫

tk−1

{ u∫

tk−1

(p − 2)|X N (r) − X N (s)|p−4

×
(

X N (r) − X N (s),σ(X N (r))
�Bk

�

)
dr

}

×
(

X N (tk−1) − X N (s),σ(X N (tk−1))
�Bk

�

)
du, (3.26)

J k
1,1,2 =

tk∫

tk−1

⎧⎨
⎩

u∫

tk−1

(p − 2)|X N (r) − X N (s)|p−4
(

X N (r) − X N (s), b(X N (r))
)

dr

⎫⎬
⎭

×
(

X N (tk−1) − X N (s),σ(X N (tk−1))
�Bk

�

)
du, (3.27)

J k
1,1,3 =

tk∫

tk−1

⎧⎨
⎩

u∫

tk−1

(p − 2)|X N (r) − X N (s)|p−4
(

X N (r) − X N (s), d�N (r)
)
⎫⎬
⎭

×
(

X N (tk−1) − X N (s),σ(X N (tk−1))
�Bk

�

)
du (3.28)

J k
1,1,4 =

tk∫

tk−1

∣∣∣X N (tk−1) − X N (s)
∣∣∣

p−2
(

X N (tk−1) − X N (s),σ(X N (tk−1))
�Bk

�

)
du
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By the estimate for p = 2 and Lemma 3.4 (2), we have

E[J k
1,1,1] ≤ C p E

[
|X N (tk−1) − X N (s)|p−2

]
�

+
tk∫

tk−1

u∫

tk−1

E
[
|X N (r) − X N (tk−1)|p−3||X N (tk−1) (3.29)

−X N (s)|
( |�Bk |

�

)2
]

drdu

≤ C p E
[
|X N (tk−1) − X N (s)|p−2

]
� + C(tk−1 − s)1/2�(p−1)/2.

Noting that for any a > 0,
∑m

k=l+1(tk−1−s)a� ≤ ∫ t
s (u−s)adu ≤ (t−s)a+1/(a+1)

and using the assumption of induction,

E[
m∑

k=l+1

J k
1,1,1] ≤ C

m∑
k=l+1

{
(tk−1 − s)(p−2)/2� + (tk−1 − s)1/2�(p−1)/2

}

≤ C(t − s)p/2. (3.30)

Similarly,

E[J k
1,1,2] ≤ C p E[|X N (tk−1) − X N (s)|p−2]�3/2 + C(tk−1 − s)1/2�p/2. (3.31)

E[J k
1,1,3] ≤ C p E

[
|X N (tk−1) − X N (s)|p−2E

[
‖�N ‖[tk−1,tk ]|�Bk ||Ftk−1

]]

+ C p E

[
|X N (tk−1) − X N (s)|E

[
max

tk−1≤r≤tk
|X N (r) (3.32)

−X N (tk−1)|p−3‖�N ‖tk−1,tk |�Bk | |Ftk−1

]]

≤ C p E[|X N (tk−1) − X N (s)|]p−2� + (tk−1 − s)1/2�(p−1)/2.

A similar estimate holds for J k
1,1,4. Thus, we have

∑4
i=2 E

[∑m
k=l+1 J k

1,1,i

] ≤
C(t − s)p/2. We consider the terms J k

1,i (2 ≤ i ≤ 4).

E[J k
1,2] ≤ C�−1

tk∫

tk−1

E
[
|X N (tk−1) − X N (s)|p−2 (3.33)

× E
[
|X N (u) − X N (tk−1)||�Bk ||Ftk−1

]]
du + C�p/2

≤ C E[|X N (tk−1) − X N (s)|p−2]� + C�p/2.
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E[J k
1,3] ≤ C�−1

tk∫

tk−1

E
[
|X N (tk−1) − X N (s)|E

×
[
|X N (u) − X N (tk−1)|p−1|�Bk ||Ftk−1

]]
du

+ C�−1

tk∫

tk−1

E
[
|X N (tk−1) − X N (s)|p−1E (3.34)

×
[
|X N (u) − X N (tk−1)||�Bk ||Ftk−1

]]
du

≤ C E[|X N (tk−1) − X N (s)|]�p/2 + C E[|X N (tk−1) − X N (s)|p−1]�.

E[J k
1,4] ≤ C�−1

tk∫

tk−1

E
[
|X N (tk−1) − X N (s)|p−2E

×
[
|X N (u) − X N (tk−1)|2|�Bk ||Ftk−1

]]
du

+ C�−1

tk∫

tk−1

E
[
|X N (u) − X N (tk−1)|p|�Bk |

]
du (3.35)

≤ C E[|X N (tk−1) − X N (s)|p−2]�3/2 + C�(p+1)/2.

Hence

E
[
|X N (t) − X N (s)|p

]
≤ C(t − s)p/2 +

t∫

s

E
[
|X N (u) − X N (s)|p

]
du. (3.36)

By using (3.8), we see that (3.36) holds for any 0 ≤ s ≤ t ≤ T . By the Gron-
wall inequality, we get the desired inequality for p and we complete the proof of
(3.11). The estimate (3.7) and the Garsia-Rodemich-Rumsey estimate imply the Lr -
boundedness of the Hölder norm with exponent 1/2−ε of Y N for any r ≥ 1 and
0 < ε <1/2. Hence, (3.12) follows from Lemma 3.3 and (3.11).

Thanks to the above estimates, we can prove the first main theorem as in [2].

Proof (Proof of Theorem 2.2) Let X N
E (t) be the Euler approximation of X . That is,

X N
E (0) = x and X N

E is the solution to the Skorohod equation:
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X N
E (t) = X N

E (t N
k−1) + σ(X N

E (t N
k−1))(B(t) − B(t N

k−1)) + b̃(X N
E (t N

k−1))(t − t N
k−1)

+ �N
E (t) − �N

E (t N
k−1) t N

k−1 ≤ t ≤ t N
k , (3.37)

where �N
E (t) − �N (t N

k−1) is the local time term and b̃ = b + 1
2 tr(Dσ)(σ). By a

similar argument to (3.10) and (3.12), we obtain

E[‖X N
E ‖2p

∞,[s,t]] ≤ C p|t − s|p, (3.38)

E
[
‖�N

E ‖2p
[s,t]

]
≤ C p|t − s|p. (3.39)

Hence by the same proof as in [2], we obtain there exists C p > 0 such that

E

[
max
0≤t≤T

|X N
E (t) − X (t)|2p

]
≤ C p�

p
N (3.40)

By these estimates and Lemma 3.5, we can prove the desired estimates as in the same
way in [2]. The proof is simpler than that in [2] because f ≡ 0 when D is convex.

4 General Domains Satisfying Conditions (A) and (B)

In this section, we prove Theorem 2.3. The following observationwhich can be found
in Lemma 5.3 in [23] is crucial for our purpose.

Lemma 4.1 Assume (A) and (B) are satisfied on D. Let γ = 2r0β−1. Then for
each z0 ∈ ∂D we can find a function f ∈ C2

b (Rd) satisfying (2.3) for any x ∈
B(z0, δ)∩∂D, y ∈ D̄ and n ∈ Nx . Moreover the sup-norms ‖Dk f ‖∞ (k = 0, 1, 2)
are bounded by some constant independent of z0.

It is stated in Lemma 5.3 in [23] that the conclusion in the above proposition holds
for y ∈ B(z0, δ) ∩ D̄. However, it is obvious to see the same conclusion holds for
any y ∈ D̄. Thanks to this proposition, we can localize the problem. Let us choose
a positive number δ′ < δ/2. For any z ∈ D̄, if B(z, δ′) ∩ ∂D �= ∅, then there exists
z0 ∈ ∂D such that B(z, δ′) ⊂ B(z0, δ). Next, let χ be a C∞ function on R

d such
that χ(x) = 1 for x with |x | ≤ δ′/2, χ(x) = 0 for x with |x | ≥ 2δ′/3. Let z ∈ D̄
and define

σz(x) = σ(x)χ(x − z), bz(x) = b(x)χ(x − z) x ∈ R
d . (4.1)

We denote the solution and the Wong-Zakai approximation to (SDE)σz ,bz with the
starting point x by X z(t, x,ω) and X N ,z(t, x,ω) respectively. By the uniqueness of
strong solutions, we have

(i) X z(t, x,ω) = X N ,z(t, x,ω) = x for all x ∈ B(z, 2δ′/3)c
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(ii) If x ∈ B(z, 2δ′/3), then both X z(t, x,ω) and X N ,z(t, x,ω)belong to B(z, 2δ′/3)
for all t and N .

We need a continuous dependence of solutions of reflecting SDE with respect
to the starting point as in the following. Below, we state it for the particular case
SDEσz ,bz but it is easy to extend the result to more general situations.

Lemma 4.2 Assume (A) and (B) hold on D.

(1) For any p ≥ 1 and x, y ∈ D̄, we have

E

[
max
0≤t≤T

|X z(t, x) − X z(t, y)|p
]

≤ C p|x − y|p. (4.2)

The constant C p is independent of z.
(2) Let 0 < θ < 1. There exists a positive constant CT,θ such that for any x, z ∈ D̄,

we have

E

[
max
0≤t≤T

|X N ,z(t, x) − X z(t, x)|2
]

≤ CT,θ�
θ/6
N . (4.3)

(3) Let x ∈ B(z, δ′/2). Let τ (ω) and σ(ω) be the exit time of X (t, x,ω) and
X z(t, x,ω) respectively from B(z, δ′/2). Then τ (ω) = σ(ω) P-a.s. ω and
X (t, x,ω) = X z(t, x,ω) (0 ≤ t ≤ τ (ω)).

Proof (1) If x or y belongs to B(z, 5δ′/6)c, the assertion is true because of (i) and
(ii) above. Therefore we may assume x, y ∈ B(z, 5δ′/6). It is sufficient to consider
the case where B(z, δ′) ∩ ∂D �= φ. Then we can pick a point z0 ∈ B(z, δ′) ∩ ∂D
such that B(z, δ′) ⊂ B(z0, δ). Let f be a function in Lemma 4.1 associated with z0.
Let

Z z(t) = X z(t, x)−X z(t, y), ρz(t) = e− 2
γ ( f (X z(t,x))+ f (X z(t,y))

,

kz(t) = ρz(t)|Z z(t)|2. (4.4)

In the calculation below, we omit the superscript z in the notation X z , and so on. Let
b̃ = b + 1

2 tr(Dσ)(σ). By the Ito formula,

dk(t) = ρ(t)

{
2
(

Z(t), (σ(X (t, x)) − σ(X (t, y))) d B(t)
)

+ 2
(

Z(t), b̃(X (t, x)) − b̃(X (t, y))
)

dt

+ ‖σ(X (t, x)) − σ(X (t, y))‖2H.S.dt

}

+ 2ρ(t) (Z(t), d�(t, x) − d�(t, y))

− 2ρ(t)

γ
|Z(t)|2

{
((D f )(X (t, x)), d�(t, x)) + ((D f )(X (t, y)), d�(t, y))

}
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− 2ρ(t)

γ
|Z(t)|2

{
((D f )(X (t)),σ(X (t, x))d B(t))

+ ((D f )(X (t, y)),σ(X (t, y))d B(t))
}

+ R(t)dt, (4.5)

where

R(t) = 4ρ(t)

γ

(
(D f )(X (t, x)),σ(X (t, x)) t (σ(X (t, x)) − σ(X (t, y))) (Z(t))

)
dt

+ 4ρ(t)

γ

(
(D f )(X (t, y)),σ(X (t, y)) t (σ(X (t, x)) − σ(X (t, y))) (Z(t))

)
dt

− 2ρ(t)

γ
|Z(t)|2

((
(D f )(X (t, x)), b̃(X (t, x))

)
dt

+
(
(D f )(X (t, y)), b̃(X (t, y))

)
dt
)

− ρ(t)

γ
|Z(t)|2

{
tr(D2 f )(X (t, x)) (σ(X (t, x))·,σ(X (t, x))·)

+ tr(D2 f )(X (t, y)) (σ(X (t, y))·,σ(X (t, y))·))
}

dt

+ 2ρ(t)

γ2 ‖(D f )(X (t, x))(σ(X (t, x)))

+ (D f )(X (t, y))(σ(X (t, y)))‖2|Z(t)|2dt. (4.6)

Let us take a look at the second and third terms of (4.6). This term is not equal to
0 when X (t, x) or X (t, y) hits ∂D. By the property of f , these terms are negative.
Taking this into account and using the Burkholder-Davis-Gundy inequality, we esti-
mate L p-norm of max0≤t≤T ′ k(t) (0 ≤ T ′ ≤ T ), where p ≥ 2. Similarly to the
proof of Theorem 3.1 in [2] and Lemma 3.1 in [16], we have

E[ max
0≤t≤T ′ k(t)p] ≤ C p|x − y|2p + C ′

p

T ′∫

0

E

[
max
0≤s≤t

k(s)p
]

dt (4.7)

which implies the desired result.
We prove (2). When x /∈ B(z, 2δ′/3), X z(t, x,ω) = X N ,z(t, x,ω) = x for

all t, N . So we assume x ∈ B(z, 2δ′/3). If B(z, δ′) ∩ ∂D = ∅, by the properties (i)
and (ii), X N ,z(t, x) and X z(t, x) never hits the boundary of D. Hence the classical
Wong-Zakai theorem implies the assertion. Suppose B(z, δ′) ∩ ∂D �= ∅. Then there
exists z0 ∈ ∂D such that B(z, δ′) ⊂ B(z0, δ). In [2], (4.3) is proved under the
conditions (A), (B) and (C) on D. By Lemma 3.1, the condition (C) holds locally in
some sense. Also, X N ,z(t, x), X z(t, x) ∈ B(z, 2δ′/3). However, we cannot conclude
that the proof in [2] works in the present case too. Because, there, first, we proved
that the Euler approximation converges to the true solution in Theorem 3.1 and,
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second, the difference of theEuler approximation and theWong-Zakai approximation
converges to 0 in Lemma 4.6 in [2]. In the present case, the Euler approximation
solutionmay exit from x ∈ B(z, 2δ′/3) and reach the boundary of D outside B(z0, δ)
even if B(z, δ′). However, such a probability is small and we can prove (4.3). Let
us show it more precisely. Let X N ,z

E (t, x) be the Euler approximation of the solution
to (SDE)σz ,bz with the starting point x associated with the partition {kT/N }N

k=0 and

�
N ,z
E (t, x) be the associated local time term. See (3.37) for the definition of the Euler

approximation. Let N be a sufficiently large number such that ‖b‖∞�N is small.
Then by the estimate (3.2), we have

P
({

There exists a time t ∈ [0, T ] such that X N ,z
E (t, x) ∈ B(z, δ′)c

})

≤ P

(
max

1≤k≤N
‖B‖∞,[(k−1)T/N ,kT/N ] ≥ εδ′

)
(4.8)

≤ P

(
‖B‖H,θ > εδ′

(
N

T

)θ
)

≤ exp

(
−C(εδ′)2

(
N

T

)2θ
)

where ε is a small positive number and ‖ ‖H,θ denotes theHölder normwith exponent
θ (θ <1/2). Thus, combining (4.8), and the moment estimates in Lemma 2.8 and
Lemma 3.2 in [2] for X,�, X N ,z

E ,�
N ,z
E , by a similar calculation to the proof of

Theorem 3.1, we obtain

E

[
max

0≤t≤T ′ |X
N ,z
E (t, x) − X (t, x)|2p

]
(4.9)

≤ CT �
p
N + e−C(N/T )2θ + CT

T ′∫

0

E

[
max
0≤s≤t

|X N ,z
E (s, x) − X (s, x)|2p

]
ds

(4.10)

which implies E[max0≤t≤T |X N ,z
E (t, x) − X (t, x)|2p] ≤ CT �

p
N . Similarly, the key

of the proof of Lemma 4.6 in [2] is the non-positivity of the sum of second and third
terms involving local times �N and �N

E in (4.49) in [2]. For (SDE)σz ,bz too, the

corresponding term involving �N ,z is non-positive. For the term �
N ,z
E , by the same

reasoning as in (4.10), we have

E

⎡
⎣

tk∫

tk−1

{
ρN ,z(t)

(
Z̃ N ,z(t), d�

N ,z
E (t)

)
− ρN ,z(t)

γ
|Z̃ N ,z(t)|2

(
(D f )(X N ,z

E (t)), d�
N ,z
E (t)

)}]
≤ CT e−C(N/T )2θ , (4.11)
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where ρN ,z(t) = exp
(
− 2

γ

(
f (X N ,z

E (t, x)) + f (X N ,z(t, x))
))

and Z̃ N ,z = X N ,z
E −

X N ,z . Consequently, in a similar way to the proof of Lemma 4.6 in [2], we obtain
for any 0 < θ < 1

max
0≤k≤N

E
[
|X N ,z(t N

k ) − X N ,z
E (t N

k )|2
]

≤ Cθ · �
θ/2
N (4.12)

E

[
max
0≤t≤T

|X N ,z(t) − X z(t)|2
]

≤ CT,θ�
θ/6
N . (4.13)

The assertion (3) can be proved by the same argument as in the proof of Lemma 5.5
in [23].

Proof (Proof of Theorem 2.3) Let x ∈ D̄ and Px denote the probability law of the
process X (t, x) (0 ≤ t ≤ T ) which exists on C([0, T ] → D̄;w(0) = x). Let
c(t) (0 ≤ t ≤ T ) be a point of the support of Px and

Ur (c) =
{
ω
∣∣∣ max
0≤t≤T

|X (t, x,ω) − c(t)| ≤ r

}
. (4.14)

It is sufficient to prove that for any ε > 0 and c

lim
N→∞ P

({
max
0≤t≤T

|X (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c)

)
= 0. (4.15)

Let us define a subset of increasing numbers {s0, . . . , sK } ⊂ {t N
k }N

k=0 so that s0 = 0
and sk = max{t N

l ≥ sk−1 | maxsk−1≤t≤t N
l

|c(t) − c(sk−1)| ≤ δ′/8}. For any c, if N
is sufficiently large, then the set on the RHS in the definition of sk is not empty and
sK = T . Note that the set {sk} and K may depend on N but lim supN→∞ K < ∞.
We prove by an induction on 1 ≤ k ≤ K that for any ε > 0

lim
N→∞ P

({
max
0≤t≤sk

|X (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c)

)
= 0. (4.16)

First, we prove the case k = 1. Let s∗
1 = max{t | max0≤s≤t |c(s) − x | ≤ δ′/8}.

Clearly, s1 ≤ s∗
1 and s1 → s∗

1 as N → ∞. We prove

lim
N→∞ P

({
max

0≤t≤s∗
1

|X (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c)

)
= 0. (4.17)

By Lemma 4.2 (3), we have

P

({
max

0≤t≤s∗
1

|X (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c)

)

= P

({
max

0≤t≤s∗
1

|X x (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c)

)



20 S. Aida

= P

({
max

0≤t≤s∗
1

|X x (t, x) − X N (t, x)| ≥ ε

}

∩
{

max
0≤t≤s∗

1

|X x (t, x) − X N ,x (t, x)| ≥ δ′/8
}

∩ Uδ′/4(c)

)

+ P

({
max

0≤t≤s∗
1

|X x (t, x) − X N (t, x)| ≥ ε

}
(4.18)

∩
{

max
0≤t≤s∗

1

|X x (t, x) − X N ,x (t, x)| ≤ δ′/8
}

∩ Uδ′/4(c)

)

≤ P

({
max

0≤t≤s∗
1

|X x (t, x) − X N ,x (t, x)| ≥ δ′/8
})

+ P

({
max

0≤t≤s∗
1

|X x (t, x) − X N ,x (t, x)| ≥ ε

})
.

Here we have used that for ω satisfying max0≤t≤s∗
1
|X N ,x (t, x,ω) − x | ≤ δ′/2,

X N (t, x,ω) = X N ,x (t, x,ω) holds for 0 ≤ t ≤ s∗
1 . The estimate (4.18) and

Lemma 4.2 (2) implies the case k = 1. We prove (4.16) in the case of k +1 assuming
the case of k. Let

Vη,k =
{
ω
∣∣∣ max
0≤t≤sk

|X (t, x) − X N (t, x)| ≤ η

}
. (4.19)

It suffices to prove

lim sup
η→0

lim sup
N→∞

P

({
max

sk≤t≤sk+1
|X (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c) ∩ Vη,k

)
= 0.

(4.20)

Note that for t ≥ sk ,

X (t, x,ω) = X (t − sk, X (sk, x,ω), τkω),

X N (t, x,ω) = X N (t − sk, X N (sk, x,ω), τkω), (4.21)

where (τkω)(t) = ω(t + sk). This identity follows from the uniqueness of strong
solutions and B N (t, τkω) = B N (sk + t,ω) for all k and t ≥ 0. Hence,

P

({
max

sk≤t≤sk+1
|X (t, x) − X N (t, x)| ≥ ε

}
∩ Uδ′/4(c) ∩ Vη,k

)

≤ P

({
max

0≤s≤sk+1−sk
|X (s, X (sk), τkω) − X (s, X N (sk), τkω)| ≥ ε/2

}
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∩ Uδ′/4(c) ∩ Vη,k

)

+ P

({
max

0≤s≤sk+1−sk
|X (s, X N (sk), τkω) − X N (s, X N (sk), τkω)| ≥ ε/2

}

∩ Uδ′/4(c) ∩ Vη,k

)

:= I1 + I2, (4.22)

where we have written X (sk) = X (sk, x,ω) and X N (sk) = X N (sk, x,ω) for sim-
plicity. By Lemma 4.2 (1) and the Chebyshev inequality, we have I1 ≤ 4ε−2C2η

2.

Let

Wk,δ′,η =
{

max
0≤s≤sk+1−sk

|X (s, X (sk), τkω) − X (s, X N (sk), τkω)| ≤ δ′/16
}

∩ Uδ′/4(c) ∩ Vη,k,

I3 = P

({
max

0≤s≤sk+1−sk
|X (s, X N (sk), τkω) − X N (s, X N (sk), τkω)| ≥ ε/2

}

∩ Wk,δ′,η

)
.

To prove lim supη→0 lim supN→∞ I2 = 0, it suffices to show lim supN→∞ I3 = 0
for sufficiently small η. We explain the reason. By Lemma 4.2 (3),

P

({
max

0≤s≤sk+1−sk
|X (s, X (sk), τkω) − X (s, X N (sk), τkω)| ≥ δ′/16

}
∩ Uδ′/4(c)

∩
{
|X (sk) − X N (sk)| ≤ 2

})

≤ P

({
max

0≤s≤sk+1−sk
|Xc(sk )(s, X (sk), τkω) − Xc(sk )(s, X N (sk), τkω)| ≥ δ′/16

}

∩ Uδ′/4(c) ∩
{
|X (sk) − X N (sk)| ≤ 2

})
. (4.23)

By Lemma 4.2 (1), this probability goes to 0 as N → ∞ by the assumption of the
induction. Now we estimate I3. For ω ∈ Wk,δ′,η , we have

|X (s, X N (sk, x,ω), τkω) − c(s + sk)| ≤ 5δ′

16
0 ≤ s ≤ sk+1 − sk (4.24)

and so

|X (s, X N (sk, x,ω), τkω) − c(sk)| ≤ 7δ′

16
0 ≤ s ≤ sk+1 − sk . (4.25)
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Here we consider (SDE)σc(sk ),bc(sk ) , where the driving path is τkω. Then, for any
ω ∈ Wk,δ′,η , by (4.25) and Lemma 4.2 (3),

X (s, X N (sk, x,ω), τkω) = Xc(sk )(s, X N (sk, x,ω), τkω) 0 ≤ s ≤ sk+1 − sk .

(4.26)

Hence, by a similar argument to the case k = 1, we can prove lim supN→∞ I3 = 0
which completes the proof.

Remark 4.3 As explained in the above proof, we estimated the difference X N − X N
E

in Lemma 4.6 in [2]. However, it is easy to check that we can estimate the difference
X N − X in a similar way to the proof of X N − X N

E and obtain max0≤t≤T E[|X N (t)−
X (t)|2] ≤ CT,θ�

θ/2
N in the setting in [2]. In the proofs of Theorems 2.2 and 2.3 too,

we can directly estimate the difference X N − X in the convex case and X N ,z − X z

similarly. By noting this, actually, we do not need to use the Euler approximation in
the above proofs too.Also,we note that Zhang [28] proved that the difference X N −X
converges to 0 without using the Euler approximation under stronger assumptions
than those in [2].
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24. L. Słomiński, On approximation of solutions of multidimensional SDEs with reflecting bound-
ary conditions. Stoch. Process. Appl. 50(2), 197–219 (1994)
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Symmetric Diffusions with Polynomial
Eigenvectors

Dominique Bakry

Abstract We describe symmetric diffusion operators where the spectral decompo-
sition is given through a family of orthogonal polynomials. In dimension one, this
reduces to the case of Hermite, Laguerre and Jacobi polynomials. In higher dimen-
sion, some basic examples arise from compact Lie groups. We give a complete
description of the bounded sets on which such operators may live. We then pro-
vide in dimension 2 a classification of those sets when the polynomials are ordered
according to their usual degrees.

Keywords Orthogonal polynomials · Diffusion operators · Random matrices

Classifications 60B15 · 60B20 · 60G99 · 43A75 · 14H50

1 Introduction

Symmetric diffusion operators and their associated heat semigroups play a central
rôle in the study of continuous Markov processes, and also in differential geometry
and partial differential equations. The analysis of the associated heat or potential
kernels have been considered from many points of view, such as short and long time
asymptotics, upper and lower bounds, on the diagonal and away from it, convergence
to equilibrium, for example. All these topics had been deeply investigated during the
past half century, see [3, 11, 27] for example. Unfortunately, there are very few
examples where computations are explicit.

The spectral decompositionmay provide one approach to the heat kernel study and
the analysis of convergence to equilibrium, especially when the spectrum is discrete.
Once again, there are very few models where this spectral decomposition is at hand,
either for the explicit expressions of the eigenvalues or the eigenvectors. The aim
of this survey is to present a family of models where this spectral decomposition is
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completely explicit. Namely, we shall require the eigenvectors to be polynomials in
a finite number of variables. We are then dealing with orthogonal polynomials with
respect to the reversible measure of this diffusion operator. Once again, orthogonal
polynomial have been thoroughly investigated in many aspects, going back to the
early works of Legendre, Chebyshev, Markov and Stieltjes, see [12, 22, 26] e.g.

To be more precise, we shall consider some open connected set � ⊂ R
d , with

piecewise smooth boundary ∂� (say at least piecewise C1, and may be empty), and
some probability measure μ(dx) on �, with smooth positive density measure ρ(x)

with respect to the Lebesgue measure and such that polynomials are dense in L2(μ).
A diffusion operator L on � (but we shall also consider such objects on smooth

manifolds with no further comment) is a linear second order differential operator
with no 0-order terms, therefore written as

L( f ) =
∑

i j

gi j (x)∂2
i j f +

∑
i

bi (x)∂i f, (1.1)

such that at every point x ∈ �, the symmetric matrix (gi j (x)) is non negative. For
simplicity, we shall assume here that this matrix is always non degenerate in � (it
may, and will in general, be degenerate at the boundary ∂�). This is an ellipticity
assumption, which will be in force throughout. We will also assume that the coeffi-
cients gi j (x) and bi (x) are smooth. We are mainly interested in the case where L is
symmetric on L2(μ) when restricted to smooth functions compactly supported in �.
On the generator L, this translates into the following relation between the coefficients
of the operator L and the density ρ(x) of the reversible measure with respect to the
Lebesgue measure

L( f ) = 1

ρ

∑
i

∂i

(
ρ

∑
j

gi j∂ j f
)
, (1.2)

as is readily seen using integration by parts in �, see [3].
We are also interested in the casewhenL2(μ) admits a complete orthonormal basis

Pq(x), q ∈ N, of polynomials such that L(Pq) = −λq Pq , for some real (indeed non
negative) parameters λq . This is equivalent to the fact that there exists an increasing
sequence Pn of finite dimensional subspaces of the set P of polynomials such that
∪nPn = P and such that L maps Pn into itself.

When this happens, we have a spectral decomposition of L in this basis, and, when
a function f ∈ L2(μ) is written as f = ∑

q cq Pq , then L( f ) = ∑
q −λqcq Pq , such

that any expression depending only on the spectral decomposition may be analyzed
easily.

Our aim is to describe various families of such situations, which will be referred
to as polynomial models. In dimension d, many such models may be constructed
with various techniques: Lie groups, root systems, Hecke algebras, etc., see [1, 2, 7,
9, 10, 12–14, 16–22], among many other possible references. Introducing weighted
degrees, we shall analyse the situation where the operator maps for any k ∈ N
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the space Pk of polynomials with degree less than or equal to k into itself. For
bounded sets � with regular boundaries, this leads to an algebraic description of the
admissible boundaries for such sets. In dimension 2 and for the usual degree, we give
a complete description of all the admissible models (reducing to 11 families up to
affine transformation). We then present some other models, with other degrees, or in
larger dimension, with no claim for exhaustivity.

This short survey is organized as follows. In Sect. 2, we present a brief tour of
the dimension 1 case, where the classical families of Hermite, Laguerre and Jacobi
polynomials appear. We provide some geometric description for the Jacobi case
(which will serve as a guide in higher dimension) together with various relations
between those three families. In Sect. 3 we describe some basic notions concerning
the symmetric diffusion operators, introducing in particular the operator � and the
integration by parts formula. We also introduce the notion of image, or projection, of
operators, a key tool towards the construction of polynomial models. In Sect. 4, we
describe theLaplace operators on spheres, SO(n) and SU (n), andwe provide various
projections arising from these examples leading to polynomials models, in particular
for spectral measures in the Lie group cases. Section5 describes the general case,
with the introduction of the weighted degree models. In particular, when the set � is
bounded, we provide the algebraic description of the sets on which such polynomial
models may exist. In particular, we show that the boundaries of those admissible sets
�must lie in some algebraic variety, satisfying algebraic restrictions. The description
of the sets lead then to the description of the measures and the associated operators.
Section6 is a brief account of the complete classification for the ordinary degree of
those boundedmodels in dimension 2. This requires a precise analysis of the algebraic
nature of the boundary which is only sketched in this paper. Section7 provides some
examples of 2 dimensional models withweighted degrees, and is far from exhaustive,
since no complete description is valid at the moment. Section8 proposes some new
ways (apart from tensorization) to construct higher dimensional models from low
dimension ones. Finally, we give in Sect. 9 the various pictures corresponding to the
2 dimensional models described in Sect. 6.

2 Dimension 1 Case: Jacobi, Laguerre and Hermite

In dimension one, given a probability measure μ for which the polynomials are dense
inL2(μ), there is, up to the choice of a sign, a unique family (Pn) of polynomials with
deg(Pn) = n and which is an orthonormal basis in L2(μ). It is obtained through the
Gram-Schmidt orthonormalization procedure of the sequence {1, x, x2, . . .}. When
does such a sequence consists of eigenvectors of some given diffusion operator of the
form L( f )(x) = a(x)∂2 f + b(x)∂ f (a Sturm-Liouville operator)? This had been
described long ago (see e.g. [4, 23]), and reduces up to affine transformation to the
classical cases of Jacobi, Hermite and Laguerre polynomials.

Those three families play a very important rôle in many branches of mathematics
and engineering (mainly in statistics and probability for the Hermite family and in
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fluid mechanics for the Jacobi one), and we refer to the huge literature on them
for further information. We briefly recall these models, one the different possible
intervals I ⊂ R, up to affine transformations.

1. I = R. The measure μ is Gaussian centered: μ(dx) = e−x2/2√
2π

dx . The associated

polynomials are the Hermite polynomials (Hn). They are eigenvectors of the
Ornstein–Uhlenbeck operator

H = d2

dx2
− x

d

dx
H(Hn) = −nHn .

2. I = R
∗+ The measure is the gamma measure μa(dx) = Ca xa−1e−x dx , a > 0.

The associated polynomials are the Laguerre polynomials L(a)
n , and the associ-

ated operator is the Laguerre operator

La = x
d2

dx2
+ (a − x)

d

dx
, La(L(a)

n ) = −nL(a)
n .

3. I = (−1, 1). The measure is the beta measure μa,b(dx) = Ca,b(1− x)a−1(1+
x)b−1 dx , a, b > 0. The associated polynomials are the Jacobi polynomials
(J (a,b)

n ) and the associated Jacobi operator is

Ja,b = (1−x2)
d2

dx2
−(

a−b+(a+b)x
) d

dx
, Ja,b J (a,b)

n = −n(n+a+b)J (a,b)
n .

The Jacobi family contains the ultraspherical (or Gegenbauer) family (when a=b)
with as particular cases the Legendre polynomials a = b = 0, the Chebyshev of the
first and second kind (a = b = −1/2 and a = b = 1/2 respectively), which appear,
after renormalization, when writing cos(nθ) = Pn(cos θ) (first kind) and sin(nθ) =
sin(θ)Qn(cos θ) (second kind). The first two families (Hermite and Laguerre) appear
as limits of the Jacobi case. For example, when we chose a = b = n/2 and let then
n go to ∞, and scale the space variable x into x/

√
n, the measure μa,a converges

to the Gaussian measure, the Jacobi polynomials converge to the Hermite ones, and
2
nJa,a converges toH.

In the same way, the Laguerre case is obtained from the Jacobi one fixing b,
changing x into 2x

a − 1, and letting a go to infinity. Then μa,b converges to μb, and
1
aJa,b converges to Lb.

Also, when a is a half-integer, the Laguerre operator may be seen as the image
of the Ornstein–Uhlenbeck operator in dimension d. Indeed, as the product of one
dimensional Ornstein–Uhlenbeck operators, the latter has generator Hd = � −
x .∇. It’s reversible measure is e−|x |2/2dx/(2π)d/2, it’s eigenvectors are the products
Qk1(x1) . . . Qkd (xd), and the associated process Xt = (X1

t , . . . , Xd
t ), is formed of

independent one dimensional Ornstein-Uhlenbeck processes. Then, if one considers
R(x) = |x |2, then one may observe that, for any smooth function F : R+ 	→ R,
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Hd
(
F(R)

) = 2La(F)(R),

where a = d/2. In the probabilist interpretation, this amounts to observe that if Xt

is a d-dimensional Ornstein–Uhlenbeck process, then |Xt/2|2 is a Laguerre process
with parameter a = d/2.

In the same way, as we shall see below in Sect. 4, when a = b = (d − 1)/2, Ja,a

may be seen as the Laplace operator �Sd−1 on the unit sphere Sd−1 in Rd acting on
functions depending only on the first coordinate (or equivalently on functions invari-
ant under the rotations leaving (1, 0, . . . , 0) invariant), and a similar interpretation
is valid for Jp/2,q/2 for integers p and q. This interpretation comes from Zernike
and Brinkman [8] and Braaksma and Meulenbeld [6] (see also Koornwinder [15]).
Jacobi polynomials also play a central role in the analysis on compact Lie groups.
Indeed, for (a, b) taking the various values of (q/2, q/2), ((q − 1)/2, 1), (q − 1, 2),
(2(q − 1), 4) and (4, 8) the Jacobi operator Ja,b appears as the radial part of the
Laplace-Beltrami (or Casimir) operator on the compact rank 1 symmetric spaces,
that is spheres, real, complex and quaternionic projective spaces, and the special
case of the projective Cayley plane (see Sherman [25]).

3 Basics on Symmetric Diffusions

Diffusion operators are associated with diffusion processes (that is continuous
Markov processes) through the requirement that, if (Xt ) is the Markov process with
associated generator L, then for any smooth function f , f (Xt )−

∫ t
0 L( f )(Xs)ds is a

local martingale, see [3]. Here, we are mainly interested in such diffusion operators
which are symmetric with respect to some probability measure μ. In probabilistic
terms, this amounts to require that when the law of X0 is μ, then not only at any time
the law of Xt is still μ, but also, for any time t > 0, the law of (Xt−s, 0 ≤ s ≤ t) is
the same as the law of (Xs, 0 ≤ s ≤ t) (that is why this measure is often called the
reversible measure).

For any diffusion operator as such described in Eq. (1.1), we may define the carré
du champ operator � as the following bilinear application

�( f, g) = 1

2

(
L( f g) − f L(g) − gL( f )

)
, (3.1)

defined say for smooth functions defined on � ⊂ R
d . From formula (1.2), it is

readily seen that
�( f, g) =

∑
i j

gi j∂i f ∂ jg, (3.2)

such that �( f, f ) ≥ 0. As already mentioned, we restrict ourselves to the case where
thematrix (gi j ) is everywhere positive definite. Then, the inverse matrix (gi j ) defines
a Riemannian metric. By abuse of language, we shall refer to the matrix (gi j ) (or
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equivalently to the operator �) as the metric of the operator, although formally it
should be called a co-metric. Then, Riemannian properties of this metric may carry
important information on the models under study. Typically, most of the models
described below in Sect. 6 have constant curvature.

The operator L satisfies the following chain rule (or change of variable formula).
For any k-uple f = ( f1, . . . , fk) and any smooth function � : Rk 	→ R,

L
(
�( f )

) =
∑

i

∂i�( f )L( fi ) +
∑

i j

∂2
i j�( f )�( fi , f j ). (3.3)

This allows us to compute L
(
�( f )

)
as soon as we knowL( fi ) and�( fi , f j ). This

is in particular the case for the coordinates xi : � 	→ R, where �(xi , x j ) = gi j (x)

and L(xi ) = bi (x), recovering then the form given in Eq. (1.1). But we may observe
that the family f = ( fi , i = 1 . . . k) in the previous formula does not need to be a
coordinate system (that is a diffeomorphism from � into some new set �1 between
d-dimensional manifolds or open sets in Rd ). There may be more function ( fi ) than
required (k > d) or less (k < d). This remark will play an important rôle in the
sequel.

In general, when looking at such operators, one considers first the action of the
operator on smooth compactly supported function on �. Since we want to work
on polynomials, it is better to enlarge the set of functions we are working on, for
example the set of L2(μ) functions which are smooth and compactly supported in a
neighborhood of �, referred to below just as “smooth functions”.

The operator is symmetric inL2(μ)when, for any pair ( f, g) of smooth functions

∫

�

L( f ) g dμ =
∫

�

f L(g) dμ. (3.4)

Usually, for this to be true, one should require one of the functions f or g to be
compactly supported in �, or ask for some boundary conditions on f and g, such
as Dirichlet or Neuman. However, in the case of polynomial models, the operator
will be such that no boundary conditions will be required for Eq. (3.4) to hold. More
precisely, at any regular point of the boundary, we shall require the unit normal vector
to belong to the kernel of the matrix (gi j ). Under such assumption, the symmetry
Eq. (3.4) is satisfied whenever f and g are smooth functions.

If we observe that L(1) = 0 (where 1 denotes the constant function), then apply-
ing (3.4) to 1 shows that

∫
L( f ) dμ = 0, and therefore, applying the definition of �

and integrating over � (provided f g ∈ L2(μ)), that

∫
L( f ) g dμ = −

∫
�( f, g) dμ =

∫

�

f L(g) dμ, (3.5)

which is called the integration by parts formula.
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The fact that �( f, f ) ≥ 0 and the previous formula (3.5) shows that, for any
function f ,

∫
�

f L( f ) dμ ≤ 0, and therefore all eigenvalues are non positive.
The operator is entirely determined by the knowledge of � and μ, as is obvious

from formula (1.2), and the datum (�, �,μ) is called aMarkov triple in the language
of [3], to which we refer for more details about the general description of such
symmetric diffusion operators.

As already mentioned, we want to analyse those situations such that the set P
of polynomials is dense in L2(μ) (and, being an algebra, all polynomials will be
automatically in any Lp(μ) for any p > 1), and such that there exists some Hilbert
basis (Pn) of L2(μ) with elements in P such that L(Pn) = −λn Pn . Since we also
require that any polynomial is a finite linear combination of the Pn’s, we see that the
setPn = {∑n

0 μk Pk} is an increasing sequence of finite dimensional linear subspaces
of P such that L : Pn 	→ Pn , and ∪nPn = P .

Conversely, if there exists such an increasing sequence Pn of finite dimensional
linear subspaces of P such that ∪nPn = P satisfying L : Pn 	→ Pn , then we may
find a sequence (Pn) which is an orthonormal basis of L2(μ) and eigenvectors of L.
Indeed, the restriction of L to the finite dimensional subspace Pn is symmetric when
we provide it with the Euclidean structure inherited from the L2(μ) structure, and
therefore may be diagonalized in some orthonormal basis. Repeating this in any
space Pn provides the full sequence of polynomial orthogonal vectors.

It may be worth to observe that when this happens, the set of polynomials is
an algebra dense in L2(μ) and stable under L and the associated heat semigroup
Qt = exp(tL). When this happens, it is automatically dense in the L2(μ) domain
of L, for the domain topology, and the set of polynomial will be therefore a core for
our operator (see [3] for more details).

From now on, we shall denote by (Pn) such a sequence of eigenvectors, with
L(Pn) = −λn Pn (and we recall that λn ≥ 0). Since L(1) = 0, we may always chose
P0 = 1, and λ0 = 0. In general, this eigenvalue is simple, in particular in the elliptic
case. Indeed, thanks to the integration by parts formula (3.5), any function f such
that L( f ) = 0 satisfies

∫
�( f, f )dμ = 0, from which �( f, f ) = 0. If ellipticity

holds (but also undermuchweaker requirements), then this implies that f is constant.
As mentioned in the introduction, one is often interested in the heat semigroup

Qt associated with L, that is the linear operator exp(tL), defined through the fact
that Qt Pn = e−λn t Pn , or equivalently by the fact F(x, t) = Qt ( f )(x) satisfies the
heat equation ∂t F = Lx (F), with F(x, 0) = f (x).

This heat semigroup may be represented (at least at a formal level) as

Qt ( f )(x) =
∫

�

f (y)qt (x, y)dμ(y),

where the heat kernel qt (x, y) may be written

qt (x, y) =
∑

n

e−λn t Pn(x)Pn(y), (3.6)
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provided that the series
∑

n e−2λn t is convergent (in practise and in all our models,
this will always be satisfied). From this we see that a good knowledge on λn and Pn

provides information of this heat kernel. However, it happens (thanks to the positivity
of �) that Pt preserves positivity, (and of course Pt (1) = 1), which is equivalent to
the fact that pt (x, y)μ(dy) is a probability measure for any t > 0 and any x ∈ �,
in particular pt (x, y) ≥ 0. This is not at all obvious from the representation (3.6).
Therefore, this representation (3.6) of pt (x, y) does not carry all the information
about it.

It isworth to observe the following,whichwill be the basic tool for the construction
of our polynomial models. Start from an operator L (defined on some manifold �1
or some open set in it), symmetric under some probability measure μ. Assume that
we may find a set of functions f = ( fi )i=1,...k , that we consider as a function
f : � 	→ �1 ⊂ R

k , and smooth functions Bi and Gi j mapping �1 to R such that

L( fi ) = Bi ( f ), �( fi , f j ) = Gi j ( f ).

Then, for any smooth function F : �1 	→ R, and thanks to formula (3.3), one has

L
(
F( f )

) = L1(F)( f ),

where
L1(F) =

∑
i j

Gi j∂2
i j F +

∑
i

Bi∂i F. (3.7)

This new diffusion operator L1 is said to be the image of L under f . In probabilistic
terms, the image Yt = f (Xt ) of the diffusion process Xt associated with L under f
is still a diffusion process, and it’s generator is L1. Moreover, if L is symmetric with
respect to μ, L1 is symmetric with respect of the image measure ν of μ under f .

This could (and will) be an efficient method to determine the density ρ1 of
this image measure with respect to the Lebesgue measure, through the use of for-
mula (1.2).

4 Examples: Spheres, SO(d), SU(d)

We now describe a few natural examples leading to polynomial models. The first
basic remark is that, given a symmetric diffusion operator L described as before by a
Markov triple (�, �,μ), it is enough to find a set {X1, . . . , Xk} of functions such that
for any i = 1, . . . , k, L(Xi ) is a degree 1 polynomial in the variables X j , and for any
pair (i, j), i, j = 1, . . . , k, �(Xi , X j ) is a degree 2 polynomial in those variables.
Indeed, if such happens, then the image L1 of L under X = {X1, . . . , Xk} given
in (3.7) is a symmetric diffusion operator with reversible measure μ1, where μ1 is
the image of μ under X . Thanks to formula (3.3), L1 preserves for each n ∈ N the
set Pn of polynomials in the variables (Xi ) with total degree less than n. One may
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then diagonalize L1 inPn , and this leads to the construction of aL2(μ1) orthonormal
basis formed with polynomials.

Moreover, given polynomial models, we may consider product models, which are
again polynomial models, and from them consider projections. Indeed, given two
polynomial models described by triples (�i , �i ,μi ) as in Sect. 3, we may introduce
on �1 ×�2 the measure μ1 ⊗μ2, and the sum operator �1 ⊕�2, acting on functions
f (x, y) and h(x, y) as

(
�1 ⊗ Id ⊕ Id ⊗ �2

)
( f, h)(x, y) =

∑
i j

g
i j
1 ∂xi f ∂x j h +

∑
kl

gkl
2 (y)∂yk f ∂yl h.

Oncewehave somepolynomialmodels (�1, �1,μ1) and (�2, �2,μ2), then (�1×
�2, �1⊕�2,μ1⊗μ2) is again a polynomialmodel.At the level of processes, if (Xi

t ) is
associated with (�i , �i ,μi ), and are chosen independent, then the process (X1

t , X2
t )

is associated with this product. This kind of tensorisation procedure constructs easily
new dimensional models in higher dimension once we have some in low dimension.
The polynomials Ri, j (x, y), x ∈ �1, y ∈ �2 associated with the product are then
just the tensor products Pi (x)Q j (y) of the polynomials associated with each of the
components.

Moreover, one may consider quotients in these products to construct more poly-
nomial models, as we did to pass from the one dimensional Ornstein-Uhlenbeck
operator to the Laguerre operator.

The easiest example to start with is the Laplace operator �S on the unit sphere
S

d−1 ⊂ R
d . This operator may be naively described as follows: considering some

smooth function f on Sd−1, we extend it in a neighborhood of Sd−1 into a function
which is independent of the norm, that is f̂ (x) = f ( x

‖x‖ ), where ‖x‖2 = ∑
i x2i ,

for x = (x1, . . . , xd) ∈ R
d . Then, we consider �( f̂ ), where � is the usual Laplace

operator in Rd , and restrict �( f̂ ) on S
d . This is �S( f ).

An easy exercise shows that, for the functions xi which are the restriction to Sd−1

of the usual coordinates in R
d , then

�S(xi ) = −(d − 1)xi , �S(xi , x j ) = δi j − xi x j .

The uniform measure on the sphere (that is the unique probability measure which
is invariant under rotations) is the reversible measure for �S. The system of func-
tions (x1, . . . , xd) is not a coordinate system, since those functions are linked by
the relation

∑
i x2i = 1. For example, one sees from the previous formulae that

�S(‖x‖2) = �(‖x‖2, ‖x‖2) = 0 on Sd−1 (an good way to check the right value for
λ when imposing L(xi ) = −λxi with the same � operator).

But the system (x1, . . . , xd−1) is a system of coordinates for say the upper half
sphere.Wemay observe that the operator indeed projects onto (x1, . . . , xd−1) into an
elliptic operator in the unit ball Bd−1 = {‖x‖ < 1}, with exactly the same relations
for L(xi ) and �(xi , x j ). The image operator (that is the Laplace operator in this
system of coordinates) is then
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L =
∑

i j

(δi j − xi x j )∂
2
i j − (d − 1)

∑
i

xi∂i ,

and from the formula (1.2), is is easy to determine the density measure (up to a
multiplicative constant), which is ρ(x) = (1 − ‖x‖2)−1/2, which happens here to
be det(gi j )−1/2 (as is always the case for Laplace operators). We see then that this
provides an easy way to compute the density of the uniform measure on the sphere
under this map S

d−1 	→ B
d−1, which projects the upper half sphere onto the unit

ball.
One may also observe that if M = (Mi j ) is a matrix (with fixed coefficients), and

if yi = ∑
j Mi j x j , then�(yi ) = −(d−1)yi and�(yi , y j ) = (M Mt )i j −yiy j . Then,

when M is orthogonal, the image measure of �S under x 	→ Mx is �S itself, which
tells us that the Laplace operator is invariant under orthogonal transformations.

We may also consider the projection π from S
d−1 to Bp for p < d − 1 : π :

(x1, . . . , xd) 	→ (x1, . . . , xp), which provides the same operator as before, except
that nowwe areworking on the unit ballBp ⊂ R

p and L(xi ) = −(d−1)xi , where the
parameter d is no longer correlated with the dimension p of the ball. We may as well
consider the generic operator Lλ on the unit ball inRp with�(xi , x j ) = δi j −xi x j and
L(xi ) = −λxi , where λ > p−1. Is is readily checked that it has symmetric measure

density Cp,d(1 − ‖x‖2) λ−p−1
2 . As a consequence, the image measure of the sphere

S
d−1 onto the unit ball through this projection has density Cd,p(1− ‖x‖2)(d−p−2)/2.

It is worth to observe that when λ converges to p − 1, the measure converges to the
uniform measure on the boundary of Bp, that is Sp−1, and the operator converges to
the operator on S

p−1.
When we chose p = 1, we recover the symmetric Jacobi polynomial model in

dimension 1 with parameters a = b = (d − 1)/2.
For these operators, we see that, in terms of the variables (xi ), gi j are polyno-

mials with total degree 2 and L(xi ) are degree 1. Therefore, in view of the chain
rule formula (3.3), we see that the operator L such defined maps the space Pn of
polynomials with total degree less than n into itself, and this provides a first family
of polynomial models.

One may also still consider the unit sphere in R
d , and choose integers such that

p1 + · · · + pk = d. Then, setting P0 = 0, Pi = p1 + · · · + pi , consider the functions
Xi = ∑Pi

Pi−1+1 x2j , for i = 1, . . . k−1. The image of the sphere under this application

is the simplex Dk−1 = {Xi ≥ 0,
∑k−1

1 Xi ≤ 1}. We have �S(Xi ) = 2(pi − d Xi ),
and �(Xi , X j ) = 4Xi (δi j − Xi X j ). The operator �S thus projects on the simplex,
with

Gi j = 4Xi (δi j − X j ), Bi = 2(pi − d Xi ),

and provides again a polynomial model on it. The reversible measure is easily seen
to have density C

∏k−1
1 Xri

i (1−∑k−1
1 Xi )

rk , with ri = pi −2
2 , ri = 1, . . . , k, which

a Dirichlet measure on the simplex Dk−1. This measure is then seen as the image
of the uniform measure on the sphere through this application X : Sd−1 	→ Dk−1.
The general Dirichlet density measure ρr1,...,rk (X) = Xr1

1 . . . Xrk−1
k−1 (1 − ∑

i Xi )
rk ,
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with real parameters ri > −1, i = 1, . . . , k, also produces (with the same � oper-
ator) a new family of polynomial models. We may play a around with the Dirichlet
measures for half integer parameters. For example, the image in a Dirichlet ρr1,...,rk

measure for the image through (X1, X2, . . . , Xk−1) 	→ (X1+ X2, X3, . . . , Xk−1) is
a Dirichlet measure with parameters ρr1 + r2,r3,...,rk , which is obvious from the sphere
interpretation (that is when ai = pi −2

2 for some integers pi ), and extends easily to
the general class. The same procedure is still true at the level of the operators (or the
associated stochastic processes).

Once again, when considering the case k = 2, we get an operator on [0, 1].
Changing X into 2X − 1, we get an operator on [−1, 1], which, up to the scaling
factor 4, is the asymmetric Jacobi model with parameters a = r1/2, b = (d − r1)/2.

There are many other ways to produce polynomial models from spheres, (and we
shall provide some later in dimension 2, see Sect. 7). But we want to show another
very general way to construct some. Let us consider some semi-simple compact Lie
groupG (such as SO(n), SU (n), Sp(n), etc.). On those groups, there exist a unique
invariant probability measure (that is invariant under x 	→ gx and x 	→ xg, for
any g ∈ G). This is the Haar measure. There also exists a unique (up to a scaling
constant) diffusion operator �G which is also invariant under left and right action:
this means that if, for a smooth function f : G 	→ R, one defines for any g ∈ G,
Lg( f )(x) = f (gx), then �G(Lg( f )) = Lg(�G f ), and the same is true for the
right action Rg( f )(x) = f (xg). This operator is called the Laplace (or Casimir )
operator on the groupG. Assume then that the Lie groupG is represented as a group
of matrices, as is the case for the natural presentation of the natural above mentioned
Lie groups. The Lie algebra G of G is the tangent space at the origin, and to any
element A of the Lie algebra, that is a matrix (Ai j ), we may associate some vector
field RA on the group through X A( f )(g) = ∂t f (get A)t=0. If we write g = (gi j ) and
consider a function f (gi j ) : G 	→ R, then

X A(g) =
∑
i jk

gik Ak j∂gi j f,

and therefore X A preserves the set Pn of polynomials with total degree n in the
variables (gi j ). Now, the Casimir operator may be written as

∑
i X2

Ai
, where the Ai

form an orthonormal basis for some natural quadratic form on the Lie algebra G
called the Killing form. This operator also preserves the set Pn . Unfortunately, those
“coordinates” gi j are in general linked by algebraic relations, and may not serve as
a true coordinate system on the group. However, we may then describe the operator
�G through it’s action on those functions gi j : G 	→ R.

Without further detail, consider the group SO(n) of orthogonal matrices with
determinant 1. Let mi j be the entries of a matrix in SO(n), considered as functions
on the group. We have

�SO(n)(mi j ) = −(n − 1)mi j , �SO(n)(mkl , mqp) = δkqδlp − mkpmql .



36 D. Bakry

We now show some projections of this operator. LetM(p, q) be the space of p×q
matrices. Select p lines and q columns in the matrix g ∈ SO(n), (say the first ones),
and consider the map π : SO(n) 	→ M(p, q) which to M ∈ SO(n) associates the
extracted matrix N = (mi j ), 1 ≤ i ≤ p, 1 ≤ j ≤ q. From the form of �SO(n)(mi j )

and �SO(n)(mi j , mkl), it is clear that the operator projects onM(p, q) through π. It
may happen (whenever p + q > n) that the image is contained in a sub-manifold
(indeed an algebraic variety) ofM(p, q). But we have nevertheless a new diffusion
operator on this image, and the associated process is known as the matrix Jacobi
process. It is worth to observe that if p = n and q = 1, this is nothing else than the
spherical operator �S in S

n−1. In general, whenever p + q ≤ n, this process lives
of the symmetric domain {N N∗ ≤ Id}, and has a reversible measure with density ρ
with respect to the Lebesgue measure which is det(Id − N N∗)(n−p−q−1)/2, which
is easily seen from formula (1.2). We may also now fix p and q and consider n as a
parameter, andwe obtain a family of polynomial processes on this symmetric domain
a long as p + q < n + 1.

One may play another game and consider the image of the operator on the spec-
trum. More precisely, given the associated process Xt ∈ SO(n), one looks at the
process obtained on the eigenvalues of Xt (that is the spectral measure of Xt ). This
process is again a diffusion process, for which we shall compute the generator. To
analyze the spectral measure (that is the eigenvalues up to permutations of them), the
best is to look at the characteristic polynomial P(X) = det(M −X Id) = ∑n

i=1 ai Xi .
Then we want to compute �SO(n)(ai ) and �SO(n)(ai , a j ).

For a generic matrix M = (Mi j ), Cramer’s formulae tells us that, on the set where
M is invertible, ∂Mi j log(det(M)) = M−1

j i and ∂2
Mi j ,Mkl

log(det(M)) = −M−1
jk M−1

li .
From this, and using the chain rule formula, we get that

�SO(n) log P(X) = −(n − 1)trace (M(M − X Id)−1

−trace
(
(M − X Id)−1(Mt − X Id)−1)

+
(
trace M(M − X Id)−1

)2
.

and

�
(
log(P(X)), log(P(Y ))

) = trace
(
(M − X Id)−1(Mt − Y Id)−1)

−trace
(
M2(M − X Id)−1(M − Y Id)−1).

But

⎧⎪⎪⎨
⎪⎪⎩

trace (M(M − X Id)−1 = n − X P ′
P (X),

trace
(
(M − X Id)−1(Mt − Y Id)−1

) = 1
1−XY

(
1
Y

P ′
P ( 1

Y ) − X P ′
P (X)

)

trace
(
M2(M − X Id)−1(M − Y Id)−1

) = n + 1
X−Y

(
X2 P ′

P (X) − Y 2 P ′
P (Y )

)
.
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One may use the fact that M ∈ SO(n) to see that P( 1
X ) = (−X)−n P(X), so that

1
Y

P ′
P ( 1

Y ) = n − Y P ′
P (Y ).

In the end, we see that

�SO(n)(P) = −(d − 1)X P ′ + X2P ′′,

�SO(n)

(
P(X), P(Y )

) = XY

1 − XY

(
n P(X)P(Y )

+ (1 − X2)P(Y )P ′(X) − (1 − Y 2)P(X)P ′(Y )

X − Y

)
.

Since �SO(n) P(X) = ∑
i �SO(n)(ai )Xi and

�SO(n)

(
P(X), P(Y )

) =
∑

i j

�SO(n)(ai , a j )Xi Y j ,

we see from the action of �SO(n) and �SO(n) on P(X) that, in terms of the variables
(ak), �SO(n)(ai ) are degree one polynomials and �SO(n)(ai , a j ) are degree two.
Therefore, from the same argument as before, the operator �SO(n) projects on it’s
spectrum into a polynomial model in the variables ai .

The same is true (with similar computations) for the spectra of N N∗, where N is
the extracted matrix inM(p, q) described above (corresponding to the matrix Jacobi
process), and for many more models.

Similarly, onemay also look at the special unitary group SU (n), where the coordi-
nates (zi j = xi j + iyi j ) are the entries of the matrix. Using complex coordinates, one
has then to consider �SU (n)(zi j ) and �(zi j , zkl) and �(zi j , z̄kl) in order to recover
the various quantities corresponding to the variables xi j and yi j (using the linearity
of � and the bilinearity of �). We have (up to some normalization)

⎧⎪⎨
⎪⎩

�SU (n)(zi j ) = −(n2 − 1)zi j ,

�SU (n)(zi j , zkl) = zi j zkl − nzil zk j ,

�SU (n)(zi j , z̄kl) = nδikδ jl − zi j z̄kl)

The same remark as before applies about the extracted matrices, and also, with the
same method, we get for the characteristic polynomial

⎧⎪⎪⎨
⎪⎪⎩

�SU (n)(P) = −(n2 − 1)X P ′ + (n + 1)X2P ′′,
�SU (n)(P(X), P(Y )) = XY

(
P ′(X)P ′(Y ) + n

X−Y

(
P ′(X)P(Y ) − P ′(Y )P(X)

))
,

�SU (n)(P(X), P̄(Y )) = 1
1−XY

(
n P(X)P̄(Y ) − Ȳ P̄ ′(Y )P(X) − X P ′(X)P̄(Y )

)
.

(4.1)
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Once again, the Casimir operator on SU (n) projects onto a polynomial model in
the variables of the characteristic polynomial.

5 The General Case

As we briefly showed in Sect. 4, there are many models for orthogonal polynomials
and they are quite hard to describe in an exhaustive way. We propose in this Section
a more systematic approach. Recall that we are considering probability measures μ
on Rd , on some open connected set � ⊂ R

d for which the set P of polynomials are
dense in L2(μ). Recall that it is enough for this to hold that there exists some ε > 0
such that

∫
eε‖x‖dμ < ∞.

The first thing to do is to describe some ordering of the polynomials. For this,
we chose a sequence a = (a1, . . . , ad) of positive integers and say that the degree
of a monomial xp1

1 xp2
2 . . . xpd

d is a1p1 + · · · adpd . Then, the degree dega(P) of a
polynomial P(x1, . . . , xd) is the maximum value of the degree of it’s monomials
(such a degree is usually referred as a weighted degree). Then, the space Pn of
polynomials with dega(P) ≤ n is finite dimensional. Moreover, Pn ⊂ Pn+1, and
∪nPn = P .

To chose a sequence of orthogonal polynomials (Pk) for μ, we chose at each step
n some orthonormal basis in the orthogonal complement Hn of Pn−1 in Pn . This
space in general has a large dimension (increasing with n), and there is therefore not
an unique choice of such an orthonormal basis.

We are then looking for diffusion differential operators L (with associated �

operator) on �, such that L admits such a sequence (Pn) as eigenvectors, with real
eigenvalues . The operator L will be then automatically essentially self-adjoint on
P . The first observation is that for each n, L maps Pn into itself.

In particular, for each coordinate, L(xi ) ∈ Pai and for each pair of coordinates
(xi , x j ), �(xi , x j ) ∈ Pai +a j . Then, writing L = ∑

i j gi j∂i j + ∑
i bi∂i , we see that

gi j ∈ Pai +a j , bi ∈ Pai (5.1)

Moreover, under the conditions (5.1), we see from the chain rule formula (3.3) that for
each n ∈ N, L maps Pn into itself. Provided it is symmetric on Pn for the Euclidean
structure induced from L2(μ), we will then be able to derive an orthonormal basis
formed with eigenvectors for it.

Once we have a polynomial model with a given choice of degrees (a1, . . . , ad),
say, in the variables (xi , i = 1, . . . , d), and as soon as one may find polynomials
X1, . . . , Xk in the variables xi with dega(Xi ) = bi , as soon as L(Xi ) and �(Xi , X j )

are polynomials in those variables Xi , then we get a new model in the variables (Xi )

(provided however that the ellipticity requirement is satisfied), with new degrees
b = (b1, . . . , bk). Indeed, from the chain rule (3.3), one sees that the image operator
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L1 maps the set Qn of polynomials in the variables (Xi ) with degree degb ≤ n into
itself.

The next task is then to describe the sets � on which such a choice for L and μ
is possible. For that, we restrict our attention for those � ⊂ R

d which are bounded
with piecewise C1 boundaries. We call those sets admissible sets.

Then, we have the main important characterization

Theorem 5.1

1. If � is an admissible set, then ∂� is included into an algebraic variety, with
dega ≤ 2

∑
i ai .

2. Let Q be the reduced equation of ∂�. � is admissible if and only if there exist
some gi j ∈ Pai +a j and Li ∈ Pai such that

∀i = 1, . . . , d,
∑

j

gi j∂ j Q = Li Q, (gi j ) with non negative in �. (5.2)

When such happens, Q divides det(g).
3. Let Q = Q1, . . . , Qk the decomposition of Q into irreducible factors. If (5.2)

is satisfied, then any function ρ(x) = Qr1
1 , . . . , Qrk

k is an admissible density
measure for the measure μ, provided

∫
�

ρ(x)dx < ∞. When Q = det(g), then
there are no other measures.

4. For any solution (gi j ) of (5.2), and any μ as before, setting �( f, g) =∑
i j gi j∂i∂ jg, then the triple (�, �,μ) is an admissible solution for the opera-

tor L.

Remark 5.2 Observe that Eq. (5.2) may be rewritten as �(log Q, xi ) = Li .

Proof We shall not give the full details of the proof here (see [5] for a complete
proof), and just describe the main ideas.

Suppose we have a polynomial model with coefficients gi j , bi on �, with poly-
nomial functions gi j and bi satisfying the above requirements on their degrees.

The first thing to observe is that if L is diagonalizable of Pn for each n ∈ N, then
for each polynomial pair (P, Q)

∫

�

L(P) Q dμ =
∫

�

P L(Q) dμ. (5.3)

This extends easily to any pair ( f, g) of smooth functions compactly supported in
�, so that the description (1.2) holds true. Moreover, � being bounded, and the
coefficients gi j and bi being polynomials, formula (5.3) extends further to every pair
( f, g) of smooth functions, not necessarily with support in�. Using Stokes formula,
(and the regularity of the boundary of �), this imposes that, for any pair of smooth
function ( f, h),

∫
∂�

∑
i j f ∂i hgi j n j dx = 0, where (n j ) is the normal tangent vector

at the boundary ∂�. Therefore, this implies that, for any i ,
∑

j gi j n j = 0 on the
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boundary, so that (n j ) is in the kernel of (g) at the boundary. This implies in turn
that the boundary lies inside the algebraic set {det(g) = 0}.

Therefore, ∂� is included in some algebraic variety. For any regular point x ∈
∂� consider an irreducible polynomial Q1 such that, in a neighborhood V of x ,
the boundary is included in {Q1 = 0}. Then, (n j ) is parallel to ∂ j Q1, so that∑

j gi j∂ j Q1 = 0 on V ∩ {Q1 = 0}. From Hilbert’s Nullstellensatz,
∑

j gi j∂ j Q1 =
Li Q1, for some polynomial Li .

This being valid for any polynomial Q1 appearing in the reduced equation of ∂�,
this is still true for the reduced equation itself (and in fact the two assertions are
equivalent).

For a given polynomial Q, if Eq. (5.2) admits a non trivial solution (gi j ), then
∂i Q is in the kernel of (gi j ) at every regular point of {Q = 0}. Then, det(g) vanishes
at that point. Q being reduced, then Q is a factor of det(g).

Now, the link between bi = L(xi ) and
∑i j

g ∂ j log ρ given in (1.2) shows that, in

order for bi to be a polynomial with degree less than ai , it is enough (and in fact
equivalent) to have

∑
j gi j∂ j log ρ = Ai , for some polynomial Ai with degree less

than ai . But comparing with Eq. (5.2) shows that it is satisfied for Qri
i for any factor

Qi of Q and any parameter ri . Then, all the condition are satisfied and the model
(�, �,μ) is a polynomial model.

One sees that indeed the problemof determining polynomialmodels relies entirely
on the study of the boundary ∂�, at least as far as bounded sets � are considered.
Given any algebraic curve, and a fixed choice of degrees (a1, . . . , ak) it is an easy task
to decide if this curve is a candidate to be (or to belong to) the boundary of some set�
on which there exist a polynomial model: Eq. (5.2) must have a non trivial solution.
This equation is a linear system of equations in the coefficients of the polynomials
gi j and Li , however in general with much more equations than variables.

Moreover, as soon as one has a model on �, there exist as we already saw many
other models on the same set, with the same (gi j ), with measures described with a
finite number of parameters, depending on the number of irreducible components in
the reduced equation of ∂�.

The solutions of Eq. (5.2) provide a set of measures which are admissible. The
admissible measures are determined through the requirement that

∑
j gi j∂ j log ρ =

Ai , with dega(Ai ) ≤ ai , or in other terms �(log ρ, xi ) = Ai . When the reduced
equation of the boundary is {det(g) = 0}, then we have described all the measures in
Theorem 5.1. But when some factor of det(g) does not appear in the reduced equation
of∂�, it is nor excluded that those factormay provide some other admissiblemeasure
(see [5]). However, in dimension two and for the usual degree, where we are able do
provide a complete description of all possible models, this situation never appears
and we wonder if this may appear at all.

The fact that the boundary is included into {det(g)} = 0 allows to restrict in
general to one of the connected components of the complement of this set, so that
the metric may never degenerate inside �. But it may happen (although we have
no example for this) that there exist some solutions of this problem for which the
solution (gi j ) is not positive inside any bounded region bounded by {Q = 0}.
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But the determination of all possible admissible boundaries (that is the curves for
which Eq. (5.2) have a non trivial solution) is a much harder problem. The possibility
for an algebraic surface to have a non trivial solution in Eq. (5.2) is a very strong
requirement, as we shall see next, and this reduces considerably the possible models.

6 Classification with Usual Degree in Dimension 2

In this Section, we reduce to the two dimensional case, and moreover to the usual
degree a1 = a2 = 1. In this situation, the problem is then invariant under affine
transformation, and this allows to use classical tools of algebraic geometry to reduce
the problem. The coefficients (gi j ) have at most degree 2 and the boundarymaximum
degree 4. The main result is the following

Theorem 6.1 In dimension 2 and for the usual degree a1 = a2 = 1, and up to affine
transformations, there exist exactly 11 bounded sets � (with piecewise C1 boundary)
corresponding to a polynomial model. Their boundaries are (see pictures in Sect. 9):
the triangle, the circle, the square, two coaxial parabolas, a parabola, a tangent line
and a line parallel to the axis, a parabola and two tangent lines, a cuspidal cubic
and a tangent line, a cuspidal cubic and a line passing through the infinite point of
the cubic, a nodal cubic, the swallow tail and the deltoid curve.

In all the models, the only possible values for the measure are the one described
in Theorem 5.1. When the boundary has maximal degree, then the metric (gi j ) is
unique up to scaling, and correspond to a constant curvature metric, either 0 or 1
(after appropriate scaling).

There are models (triangle, circle) where the metric (gi j ) is not unique.

Remark 6.2 The previous assertion is not completely exact. The family described by
two axial parabolas are not reducible one to the other under affine transformations.
But a simple quadratic transformation does the job.

Proof It is out of scope to give the proof here, which is quite lengthy and technical.
But it relies on some simple argument. The main point is to show (using appropriate
change of coordinates allowed by the affine invariance of the problem) that there may
be no flex point and no flat point on the boundary. That is (in complex variables),
that one may no find an analytic branch locally of the form y = x3 + o(x3) or
y = x4 + o(x4). This is done through the local study of Eq. (5.2). Such points
correspond to singular points of the dual curve. But there is a balance between the
singular points of the curve, of it’s dual curve, and the genus of the curve (seen as a
compact Riemann surface), known as Plucker’s formulae. This allows to show that
∂� must indeed have many singular points, which list is easy to write since the
degree is low (here 4). It remains to analyze all the possible remaining cases. See [5]
for details.

Observe that the triangle and the circle case where already described in Sect. 4
as image of the two dimensional sphere. But even in this case, Eq. (5.2) produces



42 D. Bakry

other metrics (gi j ) than the one already described. If one considers a single entry of
a SU (d) matrix, then it corresponds to a polynomial model in the unit disk which
is one of these exotic metrics on the unit ball in R

2. Typically, on the circle, one
may add to the generator a(x∂y − y∂x )

2, which satisfies the boundary condition
and corresponds to some extra random rotation in the associated stochastic process.
Indeed, all these 11 models may be described, at least for some half-integer values of
the parameters appearing in the description of the measure, as the image of the above
mentioned models constructed on spheres, SO(d) or SU (d). But there are also, for
other values of the measure, some constructions provided by more sophisticated
geometric models, in particular root systems in Euclidean spaces. We refer to [5] for
a complete description of theses models.

7 Other Models with Other Degrees in Dimension 2

When� is not bounded, Eq. (5.2) is not fully justified. If one restricts our attention to
the usual degree and to those boundaries which satisfy this condition, then we obtain
only the products of the various one dimensionalmodels, and two extramodelswhich
are bounded by a cuspidal cubic or a parabola. In this situation, there are some expo-
nential factors in the measures, as happens in the Laguerre case. When there is no
boundary at all, it may be proved (although not easily) that the only admissible mea-
sures are the Gaussian ones: they correspond to the product of Ornstein-Uhlenbeck
operators, but as is the case with the circle, one may add to the metric some rotational
term (x∂y − y∂x )

2, which produces new families of orthogonal polynomials.
Beyond this, one may exhibit some examples on various bounded sets � with

weighted degrees. There is no complete classification in general for such general
models at the moment. The reason is that affine invariance is then lost (this is coun-
terbalanced by the fact that some other polynomial change of variables are allowed),
but the local analysis made above is no longer valid. To show how rich this new
family of models may be, we just present here some examples.

On SU (3), let Z be the trace of the matrix, considered as a function Z : SU (3) 	→
C = R

2. Then thanks to the fact that there are 3 eigenvalues belonging to the unit
circle and product 1, the characteristic polynomial det(M − Id) of an SU (3) matrix
may be written as −X3 + Z X2 − Z̄ X + 1 such that Z itself encodes the spectral
measure. Applying formulae (4.1), and up to a change of Z into Z/3 and scaling,
one gets ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�(Z , Z) = Z̄ − Z2,

�(Z̄ , Z) = 1/2(1 − Z Z̄),

�(Z̄ , Z̄) = Z − Z̄2,

LZ = −4Z ,L Z̄ = −4Z̄ .

(7.1)

This corresponds indeed with the deltoid model appearing in Sect. 6. From these for-
mulae, one sees that functions F(Z , Z̄)which are symmetric in (Z , Z̄) are preserved
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by the image operator. Setting S = Z + Z̄ and P = Z Z̄ , this leads to the following
polynomial model with degree degS +2 degP , with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(S, S) = 1 + S + P − S2,

�(S, P) = 1
2 S − 2P + S2 − 3

2 S P,

�(P, P) = P − 3S P − 3P2 + S3,

LS = −4S,L(P) = 1 − 9P.

Up to some constant, the determinant of the metric is (4P − S2)(4S3 − 3P2 −
12S P − 6P + 1), and the boundary is the domain which is delimited by a parabola
and a cuspidal cubic (a degree 5 curve), which are bi-tangent at their intersection
point. This leads to a two-parameter family of measures and associated orthogonal
polynomials.

One may also construct more models using discrete symmetry groups. Here are
some examples.

We cut the 2-d sphere into n vertical slices along the meridians, and and look for a
basis of functions invariant under the reflections around these meridians. Writing the
sphere as x21 + x22 + x23 = 1, we chose X = x3 and writing in complex notations x1+
ix2 = z,we chose Y = �(zn). In polynomials terms Y = (x21 + x22 )

n/2Pn( x1√
x21 + x22

),

where Pn is the n-th first kind Chebychef polynomial. For parity considerations on
Pn , this is always a polynomial in the variables (x1, x2). We have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�(X, X) = 1 − X2,

�(X, Y ) = −nXY,

�(Y, Y ) = n2
(
(1 − X2)n−1 − Y 2

)

LX− = −2X, L(Y ) = −n(n + 1)Y

The boundary equation is then (1 − X2)n − Y 2 = 0, which is irreducible when n is
odd, leading to a one parameter family of measures, and splits into two parts when
n is even, leading to a two parameters family. We may in the previous model look at
functions of (X2, Y ) adding a new invariance under symmetry around the hyperplane
{x3 = 0}, or of (X, Y 2), or also of (X2, Y 2) leading to 3 new families.

There are other ways to construct such two dimensional models. A general idea is
to consider some finite sub-group of SO(3), and extract from the axes of the rotation
some subfamily Vi which is invariant under the group action. Then, one consid-
ers the homogeneous polynomial P(x, y, z) = ∏

i X · Vi , where X = (x, y, z)
and X · V denotes the scalar product. It is also invariant under the group action.
Let m be the degree of this polynomial. With P , one constructs a new polynomial
Q = rm+1/2P(∂x , ∂y, ∂z)r−1/2, where r = (x2 + y2 + z2)1/2. Q is still homo-
geneous with degree m, invariant under the group action, and moreover harmonic.
Then, one looks for the system X = Q, Y = �(Q, Q) where � is the spherical
Laplace operator on the unit sphere S2 ⊂ R

3. The action of the spherical operator
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on the pair (X, Y ) may lead to a polynomial system. This is not always the case
however. For example, with the symmetry group of the icosahedron, there are 3
homogeneous polynomials P6, P10 and P15, with degrees 6, 10 and 15 which gen-
erate all homogeneous polynomials which are invariant under the group action. The
technology that we provided works starting from P6 but not from P15. The associated
formulae are too complicated to be given here. For the reader interested in explicit
computations (see [24] for more examples), the explicit value of P6 is as follows
(with c = (1 + √

5)/2)

P6(x, y, z) = (c2x2 − y2)(c2y2 − z2)(c2z2 − x2).

8 Higher Dimensional Models

The technology which allows to describe all the bounded dimensional models for
the usual degree is not available in higher dimension, mainly because of the lack of
the analogues of Plucker’s formulae. The many models issued from Lie group action
that we produced so far provide many families, with various degrees. Beyond these
explicit constructions, and sticking to the bounded models with the usual degree in
dimension 2, it is worth to observe that one may produce new admissible sets by
double cover. More explicitly, as soon as we have a model in dimension d, with
reduced boundary equation P(x) = 0, one may look for models in dimension d + 1
with boundary equation y2 − P(x) = 0 (y being the extra one dimensional variable.
It turns out that this produces a new model for every two dimensional model which
have no cusps or tangent lines as singular points (that is, in our setting, the circle, the
triangle, the square, the double parabola and the nodal cubic). The boundary has no
longer maximal degree, even if the starting model has, and the metric is not unique
in general. Moreover, even in the simplest cases, the curvature is not constant.

We may then pursue the construction adding new dimensions. The reason why
this works (together with the obstruction about singular points) remains mysterious.
Most of the questions regarding these constructions and others remain open at the
moment.

9 Pictures

In this Section, we give the various pictures for the 11 bounded models in dimension
2 with natural degree. We give the reduced equation of the boundary, and we indicate
when the metric is unique, up to a scaling factor. When it is unique, we indicate the
cases when the curvature is constant, and what is it’s sign. It is worth to observe that
all the models with maximal degree (here 4) have a unique constant curvature metric
(Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11).
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Fig. 1 Triangle:
xy(1 − x − y) = 0, metric
not unique

Fig. 2 Square: (1 − x2)
(1 − y2) = 0, one metric,
curvature 0

Fig. 3 Circle: x2 + y2 = 1,
metric not unique

Fig. 4 Double parabola:
(y+1−x2)(y−1+ax2) = 0,
one metric, curvature 1
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Fig. 5 Parabola with 1
tangent and one secant line:
(y − x2)y(x − 1) = 0, one
metric, curvature 1

Fig. 6 Parabola with 2
tangents: (y − x2)(y + 1 −
2x)(y + 1 + 2x) = 0, one
metric, curvature 0

Fig. 7 Cuspidal cubic with
secant line:
(y2 − x3)(x − 1) = 0, one
metric, curvature 1
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Fig. 8 Cuspidal cubic with
tangent line:
(y2 − x3)(3x − 2y − 1) = 0,
one metric, curvature 1

Fig. 9 Nodal cubic:
y2 − x2(1 − x) = 0, one
metric, non constant
curvature

Fig. 10 Swallow tail:
4x2 − 27x4 + 16y − 128y2

− 144x2y + 256y3 = 0,
one metric, curvature 1

Fig. 11 Deltoid:
(x2 + y2)2 + 18(x2 + y2) −
8x3 + 24xy2 − 27 = 0, one
metric, curvature 0
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Cutting Edges at Random in Large Recursive
Trees

Erich Baur and Jean Bertoin

Abstract We comment on old and new results related to the destruction of a
random recursive tree (RRT), in which its edges are cut one after the other in a
uniform random order. In particular, we study the number of steps needed to isolate
or disconnect certain distinguished vertices when the size of the tree tends to infin-
ity. New probabilistic explanations are given in terms of the so-called cut-tree and
the tree of component sizes, which both encode different aspects of the destruction
process. Finally, we establish the connection to Bernoulli bond percolation on large
RRT’s and present recent results on the cluster sizes in the supercritical regime.

Keywords Random recursive tree · Destruction of graphs · Isolation of nodes ·
Disconnection · Supercritical percolation · Cluster sizes · Fluctuations

1 Introduction

Imagine that we destroy a connected graph by removing or cutting its edges one after
the other, in a uniform random order. The study of such a procedure was initiated
by Meir and Moon [31]. They were interested in the number of steps needed to
isolate a distinguished vertex in a (random) Cayley tree, when the edges are removed
uniformly at random from the current component containing this vertex. Later on,
Meir and Moon [32] extended their analysis to random recursive trees. The latter
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Fig. 1 An increasing tree on the vertex set {0, 1, . . . , 10}

form an important family of increasing labeled trees (see Sect. 2 for the definition),
and it is the goal of this paper to shed light on issues related to the destruction of
such trees.

Mahmoud and Smythe [30] surveyed a multitude of results and applications for
random recursive trees. Their recursive structure make them particularly amenable
to mathematical analysis, from both a combinatorial and probabilistic point of view.
We focus on the probabilistic side. Our main tools include the fundamental splitting
property, a coupling due to Iksanov and Möhle [22] and the so-called cut-tree (see
[9]), which records the key information about the destruction process. The cut-tree
allows us to re-prove the results of Kuba and Panholzer [28] on the multiple isolation
of nodes.Moreover, we gain information on the number of steps needed to disconnect
a finite family nodes.

Finally, we relate the destruction of a random recursive tree to Bernoulli bond
percolation on the same tree. We explain some results concerning the sizes of per-
colation clusters in the supercritical regime, where the root cluster forms the unique
giant cluster.

2 Main tools

In this section, we present some basic tools in the study of random recursive trees
which will be useful to our purposes.

2.1 The Recursive Construction, Yule Process and Pólya Urn

Consider a finite and totally ordered set of vertices, say V . A tree on V is naturally
rooted at the smallest element of V , and is called increasing if and only if the sequence
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of vertices along a segment from the root to an arbitrary vertex increases (Fig. 1).
Most of the time we shall take V = {0, 1, . . . , n}, which induces of course no loss
of generality. More precisely, it is convenient to introduce the following notion. For
an arbitrary totally ordered set V with cardinality |V | = n + 1, we call the bijective
map from V to {0, 1, . . . , n} which preserves the order, the canonical relabeling of
vertices. Plainly the canonical relabeling transforms an increasing tree on V into an
increasing tree on {0, 1, . . . , n}. Such relabelings enable us to focus on the structure
of the rooted tree without retaining specifically the elements of V .

A random recursive tree (in short, RRT) on {0, 1, . . . , n} is a tree picked uniformly
at random amongst all the increasing trees on {0, 1, . . . , n}; it shall be denoted hence-
forth by Tn . In particular, Tn hasn edges and size (i.e. number of vertices) |Tn | = n+1.
The terminology stems from the easy observation that a version of Tn can be con-
structed by the following simple recursive random algorithm in which vertices are
incorporated one after the other. The vertex 1 is naturally connected by an edge to
the root 0, then 2 is connected either to 0 or to 1 with equal probability 1/2, and
more generally, the parent of the vertex i is chosen uniformly at random amongst
0, 1, . . . , i − 1 and independently of the other vertices. This recursive construction
is a close relative to the famous Chinese Restaurant construction of uniform random
permutations (see, for instance, Sect. 3.1 in Pitman [34]), and in particular the number
of increasing trees of size n + 1 equals n!

Another useful observation is that this recursive construction can be interpreted
in terms of the genealogy of a Yule process. Recall that a Yule process describes
the evolution in continuous time of a pure birth process in which each individual
gives birth to a child at unit rate and independently of the other individuals. We
label individuals in the increasing order of their birth times, the ancestor receiving
by convention the label 0. If we let the process evolve until the population reaches
size n + 1, then its genealogical tree, that is the tree where individuals are viewed
as vertices and edges connect children to their parent, is clearly a RRT. Here is an
application to percolation on Tn which will be useful later on.

Lemma 1 Perform a Bernoulli bond percolation on Tn with parameter 0 < p < 1
(i.e. each edge of Tn is deleted with probability 1 − p, independently of the other
edges), and let C0

n (p) denote the size of the cluster containing the root. Then

lim
n→∞ n−pC0

n (p) = C0(p) in distribution,

where C0(p) > 0 a.s. is some random variable.

Proof We view Tn as the genealogical tree of a standard Yule process (Ys)s≥0 up to
time ρn = inf{s ≥ 0 : Ys = n + 1}. It is well-known that the process e−sYs is a
martingale which converges a.s. to some random variable W with the exponential
distribution, and it follows that

lim
n→∞ n−1eρn = 1/W a.s.
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In this setting, performing a Bernoulli bond percolation can be interpreted as
superposing neutral mutations to the genealogical tree, namely each child is a clone
of its parent with probability p and a mutant with a new genetic type with probability
1 − p, independently of the other children. Neutrality means that the rate of birth
does not depend on the genetic type. Then the process (Ys(p))s≥0 of the number of
individuals with the same genetic type as the ancestor is again a Yule process, but
now with birth rate p. As a consequence

lim
s→∞ e−psYs(p) = W (p) a.s.,

where W (p) denotes another exponentially distributed random variable. We then
observe that

C0
n (p) = Yρn (p) ∼ W (p)epρn ∼ W (p)W −pn p,

which completes the proof. �
Plainly, the recursive construction can also be interpreted in terms of urns, and we

conclude this section by exemplifying this connection. Specifically, the size of the
root cluster C0

n (p) in the above lemma can be identified as the number of red balls
in the following Pólya-Hoppe urn. Start with one red ball which represents the root
of the tree. A draw is effected as follows: (i) Choose a ball at random from the urn,
observe its color, and put the ball back to the urn. (ii) If its color was red, add a red
ball to the urn with probability p, and add a black ball to the urn with probability
1 − p. If its color was black, add another black ball to the urn. Then, after n draws,
the number of red balls is given by C0

n (p), and in this way, Lemma 1 yields a limit
theorem for the proportion of red balls.

The choice p = 1 in this urn scheme corresponds to the usual Pólya urn. Here,
if one starts with one red ball and k black balls, then the number of red balls after
n − k draws is distributed as the size of the subtree T k

n of a RRT Tn that stems from
the vertex k. It is well-known from the theory of Pólya urns that this number follows
the beta-binomial distribution with parameters (n − k, 1, k). Moreover,

lim
n→∞ n−1|T k

n | = β(1, k) in distribution, (1)

whereβ(1, k) is a beta(1, k)-distributed randomvariable.Wewill use this fact several
times below.

2.2 The Splitting Property

The splitting property (also called randomness preservingproperty) reveals the fractal
nature of RTT’s: roughly speaking, if one removes an edge from a RRT, then the two
subtrees resulting from the split are in turn, conditionally on their sizes, independent
RRT’s. This is of course of crucial importance when investigating the destruction
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of a RRT, as we can then apply iteratively the splitting property when removing the
edges uniformly at random and one after the other.

We select an edge of Tn uniformly at random and remove it. Then Tn splits into
two subtrees, say τ0n and τ∗

n , where τ0n contains the root 0. We denote by T 0
n and T ∗

n
the pair of increasing trees which then result from the canonical relabelings of the
vertices of τ0n and τ∗

n , respectively. Introduce also an integer-valued variable ξ with
distribution

P(ξ = j) = 1

j ( j + 1)
, j = 1, 2, . . . (2)

Proposition 1 (Meir and Moon [32]) In the notation above, |τ∗
n | = |T ∗

n | has the
same law as ξ conditioned on ξ ≤ n, that is

P(|T ∗
n | = j) = n + 1

nj ( j + 1)
, j = 1, 2, . . . , n.

Further, conditionally on |T ∗
n | = j , T 0

n and T ∗
n are two independent RRT’s with

respective sizes n − j + 1 and j .

Proof There arenn! configurations (t, e)givenbyan increasing tree t on {0, 1, . . . , n}
and a distinguished edge e. We remove the edge e and then relabel vertices canoni-
cally in each of the resulting subtrees. Let us enumerate the configurations that yield
a given pair (t0, t∗) of increasing trees on {0, 1, . . . , n − j} and {0, 1, . . . , j − 1},
respectively.

Let k ∈ {0, 1, . . . , n − 1} denote the extremity of the edge e which is the closest
to the root 0 in t, and V ∗ the set of vertices which are disconnected from k when e is
removed. Since t is increasing, all the vertices in V ∗ must be larger than k, and since

we want |V ∗| = j , there are
(

n−k
j

)
ways of choosing V ∗ (note that this is possible

if and only if k ≤ n − j). There are a unique increasing tree structure on V ∗ and a
unique increasing tree structure on {0, 1, . . . , n}\V ∗ that yield respectively t∗ and
t0 after the canonical relabelings.

Conversely, given t0, t∗, k ∈ {0, 1, . . . , n − j} and V ∗ ⊂ {k + 1, . . . , n} with
|V ∗| = j , there is clearly a unique configuration (t, e) which yields the quadruple
(k, V ∗, t0, t∗). Namely, relabeling vertices in t0 and t∗ produces two increasing tree
structures τ0 and τ∗ on {0, 1, . . . , n}\V ∗ and V ∗, respectively. We let e denote the
edge (k,min V ∗) and then t is the increasing tree obtained by connecting τ0 and τ∗
using e.

It follows from the analysis above that

P(T 0
n = t0, T ∗

n = t∗) = 1

nn!
n− j∑
k=0

(
n−k
j

)
.

Now recall that
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n− j∑
k=0

(
n−k
j

)
=

n∑
�= j

(
�
j

)
=

(
n+1
j+1

)

to conclude that

P(T 0
n = t0, T ∗

n = t∗) = n + 1

n(n − j)!( j + 1)! = n + 1

nj ( j + 1)
× 1

(n − j)!( j − 1)! .

Since there are (n − j)! increasing trees with size n − j + 1 and ( j − 1)! increasing
trees with size j , this yields the claim. �

Remark It can be easily checked that the splitting property holdsmore generallywhen
one removes a fixed edge, that is the edge connecting a given vertex k ∈ {1, . . . , n}
to its parent. Of course, the distribution of the sizes of the resulting subtrees then
changes; see the connection to Pólya urns mentioned in the beginning.

2.3 The Coupling of Iksanov and Möhle

The splitting property was used by Meir and Moon [32] to investigate the following
random algorithm for isolating the root 0 of a RRT. Starting from Tn , remove a first
edge chosen uniformly at random and discard the subtree which does not contain
the root 0. Iterate the procedure with the subtree containing 0 until the root is finally
isolated, and denote by Xn the number of steps of this random algorithm. In other
words, Xn is the number of random cuts that are needed to isolate 0 in Tn .

Iksanov andMöhle [22] derived fromProposition 1 a useful coupling involving an
increasing randomwalkwith step distribution given by (2). Specifically, let ξ1, ξ2, . . .
denote a sequence of i.i.d. copies of ξ and set S0 = 0,

Sn = ξ1 + · · · + ξn . (3)

Further, introduce the last time that the random walk S remains below the level n,

L(n) = max{k ≥ 0 : Sk ≤ n}. (4)

Corollary 1 (Iksanov and Möhle [22]) One can construct on the same probability
space a random recursive tree Tn together with the random algorithm of isolation of
the root, and a version of the random walk S, such that if

T 0
n,0 = Tn ⊃ T 0

n,1 ⊃ · · · ⊃ T 0
n,Xn

= {0} (5)

denotes the nested sequence of the subtrees containing the root induced by the algo-
rithm, then Xn ≥ L(n) and
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(|T 0
n,0\T 0

n,1|, . . . , |T 0
n,L(n)−1\T 0

n,L(n)|) = (ξ1, . . . , ξL(n)). (6)

Proof Let us agree for convenience that T 0
n, j = {0} for every j > Xn , and first work

conditionally on (|T 0
n,i |)i≥1. Introduce a sequence ((εi , ηi ))i≥1 of independent pairs

of random variables such that for each i , εi has the Bernoulli law with parameter
1/|T 0

n,i−1| = P(ξ ≥ |T 0
n,i−1|) and ηi is an independent variable distributed as ξ

conditioned on ξ ≥ |T 0
n,i−1|. Then define for every i ≥ 1

ξi =
{|T 0

n,i−1| − |T 0
n,i | if εi = 0

ηi if εi = 1

and the partial sums Si = ξ1+· · ·+ξi . Observe that εi = 1 if and only if ξi ≥ |T 0
n,i−1|,

and hence, by construction, there is the identity

min{i ≥ 1 : εi = 1} = min{i ≥ 1 : Si ≥ n + 1}.

Therefore, (6) follows if we show that ξ1, ξ2 . . . are (unconditionally) i.i.d. copies
of ξ. This is essentially a consequence of the splitting property. Specifically, for
j ≤ n, we have

P(ξ1 = j) = P(ε1 = 0)P(n + 1 − |T 0
n,1| = j) = n

n + 1
P(|T ∗

n | = j) = 1

j ( j + 1)
,

where we used the notation and the result in Proposition 1, whereas for j > n we
have

P(ξ1 = j) = P(ε1 = 1)P(ξ = j | ξ ≥ n + 1) = 1

j ( j + 1)
.

Next, consider the conditional law of ξ2 given ξ1 and |T 0
n,1|. Of course, |T 0

n,1| ≥
n + 1 − ξ1, and this inequality is in fact an equality whenever ξ1 ≤ n. We know
from the splitting property that conditionally on its size, say |T 0

n,1| = m + 1 with

m ≤ n − 1, T 0
n,1 is a RRT. Therefore Proposition 1 yields again for j ≤ m

P

(
ξ2 = j | ξ1 and |T 0

n,1| = m + 1
)

= P

(
ε2 = 0 | ξ1 and |T 0

n,1| = m + 1
)
P(m + 1 − |T 0

n,2|
= j | ξ1 and |T 0

n,1| = m + 1)

= m

m + 1
P(|T ∗

m | = j)

= 1

j ( j + 1)
.

Similarly for j > m
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P(ξ2 = j | ξ1 and |T 0
n,1| = m + 1)

= P(ε2 = 1 | ξ1 and |T 0
n,1| = m + 1)P(ξ = j | ξ ≥ m + 1)

= 1

j ( j + 1)
.

This shows that ξ2 has the same distribution as ξ and is independent of ξ1 and |T 0
n,1|.

Iterating this argument, we get that the ξi form a sequence of i.i.d. copies of ξ, which
completes the proof. �

3 The Number of Random Cuts Needed to Isolate the Root

Recall the algorithm of isolation of the root which was introduced in the preceding
section, and recall that Xn denotes its number of steps for Tn , i.e. Xn is the number
of random cuts that are needed to isolate the root 0 in Tn . Meir and Moon [32] used
Proposition 1 to investigate the first two moments of Xn and showed that

lim
n→∞

ln n

n
Xn = 1 in probability. (7)

The problem of specifying the fluctuations of Xn was left open until the work by
Drmota et al., who obtained the following remarkable result.

Theorem 1 (Drmota, Iksanov, Möhle and Rösler [16]) As n → ∞,

ln2 n

n
Xn − ln n − ln ln n

converges in distribution to a completely asymmetric Cauchy variable X with char-
acteristic function

E(exp(i t X)) = exp
(

i t ln |t | − π

2
|t |

)
, t ∈ R. (8)

In short, the starting point of the proof in [16] is the identity in distribution

Xn
(d)= 1 + Xn−Dn , (9)

where Dn is a random variable with the law of ξ given ξ ≤ n, and Dn is assumed
to be independent of X1, . . . , Xn . More precisely, (9) derives immediately from
the splitting property (Proposition 1). Drmota et al. deduce from (9) a PDE for the
generating function of the variables Xn , and then singularity analysis provides the
key tool for investigating the asymptotic behavior of this generating function and
elucidating the asymptotic behavior of Xn .



Cutting Edges at Random in Large Recursive Trees 59

Iksanov and Möhle [22] developed an elegant probabilistic argument which
explains the unusual rescaling and the Cauchy limit law in Theorem 1. We shall
now sketch this argument.
Sketch proof of Theorem 1: One starts observing that the distribution in (2)
belongs to the domain of attraction of a completely asymmetric Cauchy variable X
whose law is determined by (8), namely

lim
n→∞

(
n−1Sn − ln n

)
= −X in distribution. (10)

Then one deduces from (10) that the asymptotic behavior of the last-passage time
(4) is given by

lim
n→∞

(
ln2 n

n
L(n) − ln n − ln ln n

)
= X in distribution, (11)

see Proposition 2 in [22]. This limit theorem resembles of course Theorem 1, and the
relation between the two is explained by the coupling of the algorithm of isolation
of the root and the random walk S stated in Corollary 1, as we shall now see.

Let the algorithm for isolating the root run for L(n) steps. Then the size of the
remaining subtree that contains the root is n +1− SL(n), and as a consequence, there
are the bounds

L(n) ≤ Xn ≤ L(n) + n − SL(n),

since at most � − 1 edge removals are needed to isolate the root in any tree of size �.
On the other hand, specializing a renewal theorem of Erickson [17] for the increasing
random walk S, one gets that

lim
n→∞ ln(n − SL(n))/ ln n = U in distribution,

where U is a uniform [0, 1] random variable. In particular

lim
n→∞

ln2 n

n
(n − SL(n)) = 0 in probability.

Thus Theorem 1 follows from (11). �
It should be noted that there exists a vertex version of the isolation algorithm,

where one chooses a vertex at random and destroys it together with its descend-
ing subtree. The algorithm continues until the root is chosen. Using an appropriate
coupling with Xn , one readily shows that the number of random vertex removals
X (v)

n needed to destroy a RRT Tn satisfies (Xn − X (v)
n ) = o(n/ ln2 n) in probability.

Henceforth, we concentrate on cutting edges.
RemarkWeak limit theorems for the number of cuts to isolate the root vertex have also
been obtained for other tree models, like conditioned Galton-Watson trees including
e.g. uniform Cayley trees and random binary trees (Panholzer [33] and, in greater
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generality, Janson [24]), deterministic complete binary trees (Janson [23]) and ran-
dom split trees (Holmgren [20, 21]). More generally, Addario-Berry et al. [1] and
Bertoin [6] found the asymptotic limit distribution for the number of cuts required
to isolate a fixed number � ≥ 1 of vertices picked uniformly at random in a uniform
Cayley tree. This result was further extended by Bertoin and Miermont [11] to con-
ditioned Galton-Watson trees. We point to the remark after Corollary 3 for more on
this. Turning back to RRT’s, recent generalizations of Theorem 1 were found first
by Kuba and Panholzer [27, 28] and then by Bertoin [9], some of which will be
discussed in the reminder of this paper.

In [28], Kuba and Panholzer considered the situation when one wishes to isolate
the first � vertices of a RRT Tn , 0, 1, . . . , �−1, where � ≥ 1 is fixed. In this direction,
onemodifies the algorithm of isolation of the sole root in an obvious way. A first edge
picked uniformly at random in Tn is removed. If one of the two resulting subtrees
contains none of the vertices 0, 1, . . . , �−1, then it is discarded forever. Else, the two
subtrees are kept. In both cases, one iterates until each and every vertex 0, 1, . . . , �−1
has been isolated, and we write Xn,� for the number of steps of this algorithm.

The approach of Kuba and Panholzer follows analytic methods similar to the orig-
inal proof of Theorem 1 by Drmota et al. [16]. We point out here that the asymptotic
behavior of Xn,� can also be deduced from Theorem 1 by a probabilistic argument
based on the following elementary observation, which enables us to couple the vari-
ables Xn,� for different values of �. Specifically, we run the usual algorithm of
isolation of the root, except that now, at each time when a subtree becomes discon-
nected from the root, we keep it aside whenever it contains at least one of the vertices
1, . . . , �−1, and discard it forever otherwise. Once the root 0 of Tn has been isolated,
we resume with the subtree containing 1 which was set aside, meaning that we run
a further algorithm on that subtree until its root 1 has been isolated, keeping aside
the further subtrees disconnected from 1 which contain at least one of the vertices
2, . . . , � − 1. We then continue with the subtree containing the vertex 2, and so on
until each and every vertex 0, 1, . . . , �−1 has been isolated. If we write X ′

n,� for the
number of steps of this algorithm, then it should be plain that X ′

n,� has the same law
as Xn,�, and further Xn = X ′

n,1 ≤ · · · ≤ X ′
n,�.

We shall now investigate the asymptotic behavior of the increments �n,i =
X ′

n,i+1−X ′
n,i for i ≥ 1 fixed. In this direction, suppose that we now remove the edges

ofTn one after the other in a uniform randomorder until the edge connecting the vertex
i to its parent is removed. Let τ i

n denote the subtree containing i that arises at this step.

Lemma 2 For each fixed i ≥ 1,

lim
n→∞

ln |τ i
n|

ln n
= U in distribution,

where U is a uniform [0, 1] random variable.

For the moment, let us take Lemma 2 for granted and deduce the following.
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Corollary 2 We have

lim
n→∞

ln�n,i

ln n
= U in distribution,

where U is a uniform [0, 1] random variable.

Proof Just observe that �n,i has the same law as the number of cuts needed to
isolate the root i of τ i

n , and recall from an iteration of the splitting property that
conditionally on its size, τ i

n is a RRT. Our statement now follows readily from (7) and
Lemma 2. �

Writing X ′
n,� = Xn + �n,1 + · · · + �n,�−1, we now see from Theorem 1 and

Corollary 2 that for each fixed � ≥ 1, there is the weak convergence

lim
n→∞

(
ln2 n

n
X ′

n,� − ln n − ln ln n

)
= X in distribution, (12)

which is Theorem 1 in [28]. We now proceed to the proof of Lemma 2.

Proof Let T i
n denote the subtree of Tn that stems from the vertex i , and equip each

edge e of Tn with a uniform [0, 1] random variable Ue, independently of the other
edges. Imagine that the edge e is removed at time Ue, and for every time 0 ≤ s ≤ 1,
write T i

n (s) for the subtree of T i
n which contains i at time s. Hence, if we write

U = Ue for e the edge connecting i to its parent, then τ i
n = T i

n (U ). Further, since U
is independent of the other uniform variables, conditionally on U and T i

n , τ
i
n can be

viewed as the cluster that contains the root vertex i after a Bernoulli bond percolation
on T i

n with parameter 1 − U . Thus, conditionally on |T i
n | = m + 1 and U = 1 − p,

|τ i
n| has the same law as C0

m(p) in the notation of Lemma 1.
From (1) we know that n−1|T i

n | converges in distribution as n → ∞ to a beta
variable with parameters (1, i), say β, which is of course independent of U . On the
other hand, conditionally on its size, and after the usual canonical relabeling of its
vertices, T i

n is also a RRT (see the remark at the end of Sect. 2). It then follows from
Lemma 1 that

lim
n→∞

ln |τ i
n|

ln n
= 1 − U in probability,

which establishes our claim. �

4 The Destruction Process and Its Tree Representations

Imagine now that we remove the edges of Tn one after the other and in a uniform
random order, no matter whether they belong to the root component or not. We call
this the destruction process of Tn . After n steps, no edges are present anymore and
all the vertices have been isolated. In particular, the random variable which counts
only the number of edge removals from the root component can be identified with
Xn from the previous section.
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The purpose of this section is to introduce and study the asymptotic behavior of
two trees which can be naturally associated to this destruction process, namely the
tree of component sizes and the cut-tree. Furthermore, we give some applications
of the cut-tree to the isolation and disconnection of nodes and comment on ordered
destruction of a RRT.

4.1 The Tree of Component Sizes

In this part, we are interested in the sizes of the tree components produced by the
destruction process. Our analysis will also prove helpful for studying percolation
clusters of a RRT in Sect. 5.

The component sizes are naturally stored in a tree structure. As our index set, we
use the universal tree

U =
∞⋃

k=0

N
k,

with the convention N
0 = {∅} and N = {1, 2, . . .}. In particular, an element u ∈ U

is a finite sequence of strictly positive integers (u1, . . . , uk), and its length |u| = k
represents the “generation” of u. The j th child of u is given by u j = (u1, . . . , uk, j),
j ∈ N. The empty sequence ∅ is the root of the tree and has length |∅| = 0. If no
confusion occurs, we drop the separating commas and write (u1, . . . , uk) or simply
u1, . . . , uk instead of (u1, . . . , uk). Also, ∅u represents the element u.

We define a tree-indexed process B(n) = (B(n)
u : u ∈ U), which encodes the

sizes of the tree components stemming from the destruction of Tn . We will directly
identify a vertex u with its label B(n)

u . Following the steps of the destruction process,
we build this process dynamically starting from the singleton B(n)

∅ = n + 1 and
ending after n steps with the full process B(n). More precisely, when the first edge of
Tn is removed in the destruction process, Tn splits into two subtrees, say τ0n and τ∗

n ,
where τ0n contains the root 0. We stress that τ0n is naturally rooted at 0 and τ∗

n at its

smallest vertex. The size |τ∗
n | is viewed as the first child of B(n)

∅ and denoted by B(n)
1 .

Now first suppose that the next edge which is removed connects two vertices in τ∗
n .

Then, τ∗
n splits into two tree components. The size of the component not containing

the root of τ∗
n is viewed as the first child of B(n)

1 and denoted by B(n)
11 . On the other

hand, if the second edge which is removed connects two vertices in τ0n , then the size

of the component not containing 0 is viewed as the second child of B(n)
∅ and denoted

byB(n)
2 . It should now be plain how to iterate this construction. After n steps, we have

in this way defined n + 1 variables B(n)
u with |u| ≤ n, and we extend the definition

to the full universal tree by letting B(n)
u = 0 for all the remaining u ∈ U . We refer to

Fig. 2 for an example. The tree components whose sizes are encoded by the elements
B(n)

u with |u| = k are called the components of generation k.
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Fig. 2 Left A recursive tree with vertices labeled 0,1,…,10. The labels on the edges indicate
the order in which they are removed by the destruction process. Right The corresponding tree of
component sizes, with the vertex sets of the tree components. The elementsB(n)

u of size 0 are omitted

To sum up, every time an edge is removed in the destruction process, a tree
component τn splits into two subtrees, and we adjoin the size of the subtree which
does not contain the root of τn as a new child to the vertex representing τn . Note that
the root B(n)

∅ has Xn many nontrivial children, and they represent the sizes of the
tree components which were cut from the root one after the other in the algorithm
for isolating the root.

We now interpret B(n) as the genealogical tree of a multi-type population model,
where the type reflects the size of the tree component (and thus takes integer values).
In particular the ancestor ∅ has type n + 1; furthermore, a node u with B(n)

u = 0
corresponds to an empty component and is therefore absent in the population model.
We also stress that the type of an individual is always given by the sum of the types of
its children plus 1. As a consequence, types can be recovered from the sole structure
of the genealogical tree. More precisely, the type of an individual is simply given by
the total size of the subtree of the genealogical tree stemming from that individual.

The splitting property of a RRT immediately transfers into a branching property
for this population model.

Lemma 3 The population model induced by the tree of component sizes B(n) is
a multi-type Galton-Watson process starting from one particle of type n + 1. The
reproduction distribution λi of an individual of type i ≥ 1 is given by the law of the
sequence of the sizes of the non-root subtrees which are produced in the algorithm
for isolating the root of a RRT of size i .

Even though the coupling of Iksanov and Möhle is not sufficient to fully describe
the reproduction law, it nonetheless provides essential information on λi in terms of
a sequence of i.i.d. copies of ξ. As we will see next, extreme value theory for the
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i.i.d. sequence then enables us to specify asymptotics of the population model when
the type n + 1 of the ancestor goes to infinity.

To give a precise statement, we rank the children of each individual in the decreas-
ing order of their types. Formally, given the individual indexed by u ∈ U has exactly
� children of type ≥ 1, we let σu be the random permutation of {1, . . . , �} which
sorts the sequence of types B(n)

u1 , . . . ,B(n)
u� in the decreasing order, i.e.

B(n)
uσu(1) ≥ B(n)

uσu(2) ≥ . . . ≥ B(n)
uσu(�),

where in the case of ties, children of the same type are ranked uniformly at random.
We extend σu to a bijection σu : N → N by putting σu(i) = i for i > �.

We then define the global random bijection σ = σ(n) : U → U recursively
by setting σ(∅) = ∅, σ( j) = σ∅( j), and then, given σ(u), σ(u j) = σ(u)σσ(u)( j),
u ∈ U , j ∈ N. Note thatσ preserves the parent-child relationship, i.e. children ofu are
mapped into children of σ(u). We simply write (B(n)↓

u : u ∈ U) = (B(n)
σ(u) : u ∈ U)

for the process which is ranked in this way.
Now, if the sizes of the components of generation k are normalized by a factor

lnk n/n, we obtain finite-dimensional convergence ofB(n)↓ towards the genealogical
tree of a continuous-state branching process with reproduction measure ν(da) =
a−2da on (0,∞). More precisely, the limit object is a tree-indexed process Z =
(Zu : u ∈ U) with initial state Z∅ = 1, whose distribution is characterized by
induction on the generations as follows.

(a) Z∅ = 1 almost surely;
(b) for every k = 0, 1, 2, . . . , conditionally on (Zv : v ∈ U , |v| ≤ k), the sequences

(Zu j ) j∈N for the vertices u ∈ U at generation |u| = k are independent, and
each sequence (Zu j ) j∈N is distributed as the family of the atoms of a Poisson
random measure on (0,∞) with intensity Zuν, where the atoms are ranked in
the decreasing order of their sizes.

Proposition 2 As n → ∞, there is the convergence in the sense of finite-dimensional
distributions,

Z(n) =
(

(ln n)|u|

n
B(n)↓

u : u ∈ U
)

=⇒ Z.

We only sketch the proof and refer to the forthcoming paper [5] for details. Basically,
if ξ1, ξ2, . . . is a sequence of of i.i.d. copies of ξ, then for a > 0, the number of
indices j ≤ k such that ξ j ≥ an/ ln n is binomially distributed with parameters
k and �an/ ln n�−1. From (11) and Theorem 16.16 in [25] we deduce that for a
fixed integer j , the j largest among ξ1, . . . , ξL(n), normalized by a factor ln n/n,
converge in distribution to the j largest atoms of a Poisson random measure on
(0,∞) with intensity ν(da) = a−2da. Since n − SL(n) = o(n/ ln2 n) in probability,
finite-dimensional convergence of Z(n) restricted to generations ≤ 1 then follows
from (6). Lemma 3 enables us to transport the arguments to the next generations.
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Fig. 3 Left Tree T with vertices labeled a,…,i; edges are enumerated in the order of the cuts. Right
Cut-tree Cut(T ) on the set of blocks recording the destruction of T

4.2 The Cut-Tree

Consider for a while a deterministic settingwhere T is an arbitrary tree on some finite
set of vertices V . Imagine that its edges are removed one after the other in some given
order, so at the end of the process, all the vertices of T have been disconnected from
each other. We shall encode the destruction of T by a rooted binary tree, which we
call the cut-tree and denote by Cut(T ). The cut-tree has internal nodes given by the
non-singleton connected components which arise during the destruction, and leaves
which correspond to the singletons and which can thus be identified with the vertices
in V . More precisely, the root of Cut(T ) is given by V , and when the first edge of T
is removed, disconnecting V into, say, V1 and V2, then V1 and V2 are viewed as the
two children of V and thus connected to V by a pair of edges. Suppose that the next
edge which is removed connects two vertices in V1, so removing this second edge
disconnects V1 into, say V1,1 and V1,2. Then V1,1 and V1,2 are viewed in turn as the
two children of V1. We iterate in an obvious way, see Fig. 3 for an example.1

It should be clear that the number of cuts required to isolate a given vertex v in the
destruction of T (as previously, we only count the cuts occurring in the component

1 For the sake of simplicity, this notation does not record the order in which the edges are removed,
although the latter is of course crucial in the definition of the cut-tree. In this part, we are concerned
with uniform random edge removal, while in the last part of this section, we look at ordered
destruction of a RRT, where edges are removed in the order of their endpoints most distant from
the root.
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which contains v) corresponds precisely to the height of the leaf {v} in Cut(T ).
More generally, the number of cuts required to isolate k distinct vertices v1, . . . , vk

coincides with the total length of the cut-tree reduced to its root and the k leaves
{v1}, . . . , {vk} minus (k − 1), where the length is measured as usual by the graph
distance on Cut(T ). In short, the cut-tree encapsulates all the information about the
numbers of cuts needed to isolate any subset of vertices.

Wenow return to our usual setting, that is Tn is aRRTof size n+1,whose edges are
removed in a uniform random order, and we write Cut(Tn) for the corresponding cut-
tree.We point out that the genealogical tree of component sizeswhichwas considered
in the previous section can easily be recovered from Cut(Tn). Specifically, the root
{0, 1, . . . , n} of Cut(Tn) has to be viewed as the ancestor of the population model,
its type is of course n + 1. Then the blocks of Cut(Tn) which are connected by an
edge to the segment from the root {0, 1, . . . , n} to the leaf {0} are the children of
the ancestor in the population model, the type of a child being given by the size
of the corresponding block. The next generations of the population model are then
described similarly by an obvious iteration.

The segment of Cut(Tn) from its root {0, 1, . . . , n} to the leaf {0} is described by
the nested sequence (5), and the coupling of Iksanov andMöhle stated in Corollary 1
expresses the sequence of the block-sizes along the portion of this segment starting
from the root and with length L(n), in terms of the random walk S. We shall refer
to this portion as the trunk of Cut(Tn) and denote it by Trunk(Tn). The connected
components of the complement of the trunk, Cut(Tn)\Trunk(Tn) are referred to as
the branches of Cut(Tn).

Roughly speaking, it has been shown in [9] that upon rescaling the graph distance
of Cut(Tn) by a factor n−1 ln n, the latter converges to the unit interval. The precise
mathematical statement involves the notion of convergence of pointed measured
metric spaces in the sense of the Gromov-Hausdorff-Prokhorov distance.

Theorem 2 Endow Cut(Tn) with the uniform probability measure on its leaves, and
normalize the graph distance by a factor n−1 ln n. As n → ∞, the latter converges
in probability in the sense of the pointed Gromov-Hausdorff-Prokhorov distance to
the unit interval [0, 1] equipped with the usual distance and the Lebesgue measure,
and pointed at 0.

Providing the background on the Gromov-Hausdorff-Prokhorov distance needed
to explain rigorously the meaning of Theorem 2 would probably drive us too far
away from the purpose of this survey, so we shall content ourselves here to give an
informal explanation. After the rescaling, each edge of Cut(Tn) has length n−1 ln n,
and it follows from (11) that the length n−1 ln n × L(n) of Trunk(Tn) converges in
probability to 1 as n → ∞. Because the trunk is merely a segment, if we equip it
with the uniform probability measure on its nodes, then we obtain a space close to
the unit interval endowed with the Lebesgue measure. The heart of the argument
of the proof in [9] is to observe that in turn, Trunk(Tn) is close to Cut(Tn) when
n is large, both in the sense of Hausdorff and in the sense of Prokhorov. First, as
Trunk(Tn) is a subset of Cut(Tn), the Hausdorff distance between Trunk(Tn) and
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Cut(Tn) corresponds to the maximal depth of the branches of Cut(Tn), and one thus
have to verify that all the branches are small (recall that the graph distance has been
rescaled by a factor n−1 ln n). Then, one needs to check that the uniform probability
measures, respectively on the set of leaves of Cut(Tn) and on the nodes of Trunk(Tn),
are also close to each other in the sense of the Prokhorov distance between probability
measures on a metric space. This is essentially a consequence of the law of large
numbers for the random walk defined in (3), namely

lim
n→∞

Sn

n ln n
= 1 in probability;

see (10).

4.3 Applications

Theorem 2 enables us to specify the asymptotic behavior of the number of cuts
needed to isolate randomly chosen vertices of Tn . For a given integer � ≥ 1 and
for each n ≥ 1, let U (n)

1 , . . . , U (n)
� denote a sequence of i.i.d. uniform variables in

{0, 1, . . . , n}. We write Yn,� for the number of random cuts which are needed to
isolate U (n)

1 , . . . , U (n)
� . The following corollary, which is taken from [9], is a multi-

dimensional extension of Theorem 3 of Kuba and Panholzer [28].

Corollary 3 As n → ∞, the random vector

(
ln n

n
Yn,1, . . . ,

ln n

n
Yn,�

)

converges in distribution to

(U1,max{U1, U2}, . . . ,max{U1, . . . , U�}) ,

where U1, . . . , U� are i.i.d. uniform [0, 1] random variables. In particular, ln n
n Yn,�

converges in distribution to a beta(�, 1) variable.

Proof Recall that U (n)
1 , . . . , U (n)

� are � independent uniform vertices of Tn . Equiva-

lently, the singletons {U (n)
1 }, . . . , {U (n)

� } form a sequence of � i.i.d. leaves of Cut(Tn)

distributed according to the uniform law. Let also U1, . . . , Ul be a sequence of �

i.i.d. uniform variables on [0, 1]. Denote by Rn,� the reduction of Cut(Tn) to the �

leaves {U (n)
1 }, . . . , {U (n)

� } and its root {0, 1, . . . , n}, i.e. Rn,� is the smallest subtree
of Cut(Tn) which connects these nodes. Similarly, writeR� for the reduction of I to
U1, . . . , U� and the origin 0. Both reduced trees are viewed as combinatorial trees
structures with edge lengths, and Theorem 2 entails that n−1 ln nRn,� converges in
distribution toR� as n → ∞. In particular, focusing on the lengths of those reduced
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trees, there is the weak convergence

lim
n→∞

(
ln n

n
|Rn,1|, . . . , ln n

n
|Rn,�|

)
= (|R1|, . . . , |R�|) in distribution. (13)

This yields our claim, as plainly |Ri | = max{U1, . . . , Ui } for every i = 1, . . . , �. �
RemarkThe nearly trivial proof of this corollary exemplifies the power of Theorem 2,
and one might ask for convergence of the cut-tree for other tree models. In fact,
employing the work of Haas and Miermont [19], it has been shown in [6] that if T (c)

n

is a uniformCayley tree of size n, then n−1/2Cut(T (c)
n ) converges weakly in the sense

of Gromov-Hausdorff-Prokhorov to the Brownian Continuum Random Tree (CRT),
see Aldous [2]. Since the total length of the CRT reduced to the root and � i.i.d leaves
picked according to its mass-measure follows the Chi(2�)-distribution, one readily
obtains the statement corresponding to Corollary 3 for uniform Cayley trees ([6] and
also, by different means, [1]). Bertoin and Miermont [11] extended the convergence
of the cut-tree towards the CRT to the full family of critical Galton-Watson trees with
finite variance and conditioned to have size n, in the sense of Gromov-Prokhorov.
As a corollary, one obtains a multi-dimensional extension of Janson’s limit theorem
[24]. Very recently, Dieuleveut [14] proved the analog of [11] for the case of Galton-
Watson trees with offspring distribution belonging to the domain of attraction of a
stable law of index α ∈ (1, 2).

With Corollary 3 at hand, we can also study the number Zn,� of random cuts which
are needed to isolate the � last vertices of Tn , i.e. n − � + 1, . . . , n, where � ≥ 1 is
again a given integer. As Kuba and Panholzer [28] proved in their Theorem 2, Zn,�

has the same asymptotic behavior in law as Yn,�. The following multi-dimensional
version was given in [9], relying on Theorem 2 of [28]. Here we give a self-contained
proof of the same statement.

Corollary 4 As n → ∞, the random vector

(
ln n

n
Zn,1, . . . ,

ln n

n
Zn,�

)

converges in distribution to

(U1,max{U1, U2}, . . . ,max{U1, . . . , U�}) ,

where U1, . . . , U� are i.i.d. uniform [0, 1] random variables.

Proof For ease of notation, we consider only the case � = 1, the general case being
similar. The random variable Zn = Zn,1 counts the number of random cuts needed
to isolate the vertex n, which is a leaf of Tn . If we write v for the parent of n in Tn ,
then v is uniformly distributed on {0, 1, . . . , n − 1}, and it follows that the number
Y ′

n of cuts needed to isolate v has the same limit behavior in law as Yn−1,1. In view
of Corollary 3, it suffices therefore to verify that
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lim
n→∞

ln n

n

(
Y ′

n − Zn
) = 0 in probability.

We now consider the algorithm for isolating the vertex v. Clearly, the number of
steps of this algorithm until the edge e joining v to n is removed is distributed as
Zn . In particular, we obtain a natural coupling between Y ′

n and Zn with Zn ≤ Y ′
n .

Denote by [0; n] the segment of Tn from the root 0 to the leaf n, and write k for the
outer endpoint of the first edge from [0; n] which is to be removed by the isolation
algorithm. Since |[0; n]| ∼ ln n in probability (see e.g. Theorem 6.17 of [15]), and
since the isolation algorithm chooses its edges uniformly at random, the probability
that k is equal to n tends to zero. Moreover, with high probability |[k; n]| will still
be larger than (ln n)1/2, say. By conditioning on k and repeating the above argument
with [k; n] in place of [0; n], we see that we can concentrate on the event that before
n is isolated, at least two edges different from e are removed from the segment [0; n].
On this event, after the second time an edge from [0; n] is removed, the vertices v and
n lie in a tree component which can be interpreted as a tree component of the second
generation in the destruction process. As a consequence of Proposition 2, the size
of this tree component multiplied by factor ln n/n converges to zero in probability.
Since the size of the component gives an upper bound on the difference Y ′

n − Zn , the
claim follows. �

As another application of the cut-tree, Theorem 2 allows us to determine the
number of cuts An,� which are required to disconnect (and not necessarily isolate)
� ≥ 2 vertices in Tn chosen uniformly at random. For ease of description, let us
assume that the sequence of vertices U (n)

1 , . . . , U (n)
� is chosen uniformly at random

in {0, 1, . . . , n} without replacement. Note that in the limit n → ∞, it makes no
difference whether we sample with or without replacement.

We run the algorithm for isolating the vertices U (n)
1 , . . . , U (n)

� , with the modifica-
tion that we discard emerging tree components which contain at most one of these �

vertices. We stop the algorithm when U (n)
1 , . . . , U (n)

� are totally disconnected from
each other, i.e. lie in � different tree components.Write An,2 for the (random) number
of steps of this algorithm until for the first time, the vertices U (n)

1 , . . . , U (n)
� do no

longer belong to the same tree component, further An,3 for the number of steps until
for the first time, the � vertices are spread out over three distinct tree components,
and so on, up to An,�, the number of steps until the � vertices are totally disconnected.
We obtain the following result.

Corollary 5 As n → ∞, the random vector

(
ln n

n
An,2, . . . ,

ln n

n
An,�

)

converges in distribution to

(
U(1,�), . . . , U(�−1,�)

)
,
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where U(1,�) ≤ U(2,�) ≤ · · · ≤ U(�−1,�) denote the first � − 1 order statistics of an
i.i.d. sequence U1, . . . , U� of uniform [0, 1] random variables.

In particular, ln n
n An,2 converges in distribution to a beta(1, �) random variable, and

ln n
n An,� converges in distribution to a beta(� − 1, 2) law.

Proof Since the branches of Cut(Tn) are asymptotically small compared to the trunk
(see e.g. Proposition 1 in [9]), with probability tending to 1 as n → ∞ the � vertices
U (n)
1 , . . . , U (n)

� are cut from the root component one after the other, i.e. in no stage of
the disconnection algorithm, a non-root tree component will contain more than one
of the U (n)

1 , . . . , U (n)
� . On this event, writing againRn,� for the reduction of Cut(Tn)

to the � leaves {U (n)
1 }, . . . , {U (n)

� } and its root {0, 1, . . . , n}, the variable An,i+1 − 1
is given by the length of the path inRn,� from the root to the i th branch point. Now,
if U1, . . . , U� and R� are defined as in the proof of Corollary 3, the distance in R�

from the root 0 to the i th smallest amongU1, . . . , U� is distributed asU(i,�). Together
with (13), this proves the claim.

Remark With a proof similar to that of Corollary 4, one sees that the statement of
Corollary 5 does also hold if An,2, . . . , An,� are replaced by the analogous quantities
for disconnecting the � last vertices n − � + 1, . . . , n. On the other hand, if one is
interested in disconnecting the first � vertices 0, . . . , � − 1, and if Bn,2, . . . , Bn,�

denote in this case the quantities corresponding to An,2, . . . , An,�, one first observes
the trivial bound

Bn,2 ≤ · · · ≤ Bn,� ≤ Xn,�,

where Xn,� is the number of steps needed to isolate 0, 1, . . . , �−1. Now, Bn,2 can be
identified with the number of steps in the algorithm for isolating the root until for the
first time, an edge connecting one of the vertices 1, . . . , �−1 to its parent is removed.
By similar means as in the proof of Lemma 2, one readily checks that at this time, the
root component has a size of order nβ , with β having a beta(� − 1, 1)-distribution.
In particular, we see that (Xn − Bn,2) = o(n/ ln2 n) in probability, where Xn is the
number of steps to isolate the root 0. But by (12), also (Xn − Xn,�) = o(n/ ln2 n) in
probability. Therefore, the variables Bn,i have the same limit behavior in law as Xn ,

that is as n → ∞, ln2 n
n Bn,i − ln n − ln ln n, i = 2, . . . , �, converge all to the same

completely asymmetric Cauchy variable X defined by (8).

4.4 Ordered Destruction

Here, we consider briefly another natural destruction procedure of a RRT, where
instead of removing edges in a uniform random order, we remove them determinis-
tically in their natural order. That is the i th edge of Tn which is removed is now the
one connecting the vertex i to its parent, for i = 1, . . . , n.
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We first point at the fact that the number of ordered edge removals which are now
needed to isolate the root (recall that we only take into account edge removals inside
the current subtree containing the root) can be expressed as dn(0) = β1 + · · · + βn ,
where βi = 1 if the parent of vertex i in Tn is the root 0, and 0 otherwise. That is to
say that dn(0) is the degree of the root. Further the recursive construction entails the
βi are independent variables, such that each βi has the Bernoulli distribution with
parameter 1/ i . As is well-known, it then follows e.g. from Lyapunov’s central limit
theorem that

lim
n→∞

dn(0) − ln n√
ln n

= N (0, 1) in distribution.

We refer to Kuba and Panholzer [26] for many more results about the degree distri-
butions in random recursive trees.

We then turn our attention to the cut-tree described in Sect. 4.2, which encodes
the ordered destruction of Tn . We write Cutord(Tn) for the latter and observe that
the recursive construction of Tn implies that in turn, Cutord(Tn) can also be defined
by a simple recursive algorithm. Specifically, Cutord(T1) is the elementary complete
binary treewith two leaves, {0} and {1}, and root {0, 1}. Once Tn and henceCutord(Tn)

have been constructed, Tn+1 is obtained by incorporating the vertex n+1 and creating
a new edge between n +1 and its parent Un+1, which is chosen uniformly at random
in {0, 1, . . . , n}. Note that this new edge is the last one which will be removed in the
ordered destruction of Tn+1. In terms of cut-trees, this means that the leaf {Un+1}
of Cutord(Tn) should be replaced by an internal node {Un+1, n + 1} to which two
leaves are attached, namely {Un+1} and {n + 1}. Further, any block (internal node)
B of Cutord(Tn) with Un+1 ∈ B should be replaced by B ∪ {n + 1}. The resulting
complete binary tree is then distributed as Cutord(Tn+1).

If we discard labels, this recursive construction of Cutord(Tn) corresponds pre-
cisely to the dynamics of theMarkov chain on complete binary trees described e.g. in
Mahmoud [29] for Binary Search Trees (in short, BST). We record this observation
in the following proposition.

Proposition 3 The combinatorial tree structure of Cutord(Tn) is that of a BST with
n + 1 leaves.

BSThave been intensively studied in the literature, seeDrmota [15] and references
therein, and the combination with Proposition 3 yields a number of precise results
about the number of ordered cuts which are needed to isolate vertices in Tn . For
instance, the so-called saturation level H̄n in a BST is the minimal level of a leaf,
and can then be viewed as the smallest number of ordered cuts after which some
vertex of Tn has been isolated. Similarly, the height Hn is the maximal level of a
leaf, and thus corresponds to the maximal number of ordered cuts needed to isolate
a vertex in Tn . The asymptotic behaviors of the height and of the saturation level of
a large BST are described in Theorem 6.47 of Drmota [15], in particular one has

lim
n→∞

H̄n

ln n
= α− and lim

n→∞
Hn

ln n
= α+
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where 0 < α− < α+ are the solutions to the equation α ln(2e/α) = 1. In the same
vein, the asymptotic results of Chauvin et al. on the profile of large BST can be
translated into sharp estimates for the number of vertices of Tn which are isolated
after exactly k ordered cuts (see in particular Theorem 3.1 in [13]).

Finally, let us look at component sizes when edges are removed in their natural
order. Compared to uniform random edge removal, the picture is fairly different.
Indeed, when removing an edge from Tn picked uniformly at random, the size of the
subtree not containing 0 is distributed according to the law of ξ conditioned on ξ ≤ n.
If, in contrast, the first edge to be removed is the edge joining 1 to its parent 0, then
we know from (1) that both originating subtrees are of order n. Since the splitting
property still holds when we remove a fixed edge, the component sizes again inherit
a branching structure. In fact, it is an immediate consequence of the definition that
the structure of the tree of component sizes corresponding to the ordered destruction
on Tn agrees with the structure of Tn and therefore yields the same RRT of size n +1.

5 Supercritical Percolation on RRT’s

5.1 Asymptotic Sizes of Percolation Clusters

In Sect. 3 it has become apparent that Bernoulli bond percolation on Tn is a tool to
study the sizes of tree components which appear in isolation algorithms. Here, we
take in a certain sense the opposite point of view and obtain results on the sizes
of percolation clusters using what we know about the sizes of tree components.
Throughout this section, we use the term cluster to designate connected components
induced by percolation, while we use the terminology tree components for connected
components arising from isolation algorithms.

More specifically, the algorithm for isolating the root can be interpreted as a
dynamical percolation process in which components that do not contain the root are
instantaneously frozen. Imagine a continuous-time version of the algorithm, where
each edge of Tn is equippedwith an independent exponential clock of some parameter
α. When a clock rings, the corresponding edge is removed if and only if it currently
belongs to the root component. At time t > 0, the root component can naturally
be viewed as the root cluster of a Bernoulli bond percolation on Tn with parameter
p = exp(−αt). Moreover, under this coupling each percolation cluster is contained
in some tree component which was generated by the isolation process up to time t .
In order to discover the percolation clusters inside a non-root tree component T ′,
the latter has to be unfrozen, i.e. additional edges from T ′ have to be removed. In
particular, the percolation cluster containing the root of T ′ can again be identified as
the root component of an isolation process on T ′, stopped at an appropriate time.

These observations lead in [7] to the study of the asymptotic sizes of the largest
and next largest percolation clusters of Tn , when the percolation parameter p(n)

satisfies
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p(n) = 1 − t

ln n
+ o(1/ ln n) for t > 0 fixed. (14)

This regime corresponds precisely to the supercritical regime, in the sense that the
root cluster is the unique giant cluster, and its complement in Tn has a size of order
n, too. Indeed, the height hn of a vertex u picked uniformly at random in a RRT of
size n + 1 satisfies hn ∼ ln n. Since the probability that u is connected to the root is
given by the first moment of (n + 1)−1C0,n , where C0,n denotes the size of the root
cluster, one obtains

E((n + 1)−1C0,n) = E

(
p(n)hn

)
∼ e−t .

Asimilar argument showsE((n−1C0,n)2) ∼ e−2t , which proves limn→∞ n−1C0,n =
e−t in L2(P).

Let us now consider the next largest clusters in the regime (14). We write
C1,n, C2,n, . . . for the sizes of the non-root percolation clusters of Tn , ranked in
the decreasing order. We quote from [7] the following limit result.

Proposition 4 For every fixed integer j ≥ 1,

(
ln n

n
C1,n, . . . ,

ln n

n
C j,n

)

converges in distribution as n → ∞ towards

(x1, . . . , x j ),

where x1 > x2 > . . . denotes the sequence of the atoms of a Poisson random measure
on (0,∞) with intensity te−t x−2dx.

The intensity is better understood as the imageof the intensitymeasurea−2da⊗e−sds
on (0,∞)× (0, t) by the map (a, s) �→ x = e−(t−s)a. In fact, from our introductory
remarks and Proposition 2 it should be clear that the first coordinate of an atom (a, s)
stands for the asymptotic (and normalized) size of the tree component containing
the percolation cluster, while the second encodes the time when the component was
separated from the root.

Instead of providingmore details here, let us illustrate an alternative route to prove
the proposition, whichwas taken in [10] to generalize the results to scale-free random
trees. These random graphs form a family of increasing trees indexed by a parameter
β ∈ (−1,∞) that grow according to a preferential attachment algorithm, see [3]. In
the boundary case β → ∞, one obtains a RRT, while in the case β = 0, the i th vertex
is added to one of the first i − 1 vertices with probability proportional to its current
degree. In [10], the connection of scale-free random trees to the genealogy of Yule
processeswas employed, and it should not come as a surprise that this approach can be
adapted to random recursive trees. In fact, the case of RRT’s is considerably simpler,
since one has not to keep track of the degree of vertices when edges are deleted.
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Let us sketch the main changes. Denote by T (s) the genealogical tree of a standard
Yule process (Yr )r≥0 at time s. Similar to Sect. 3 of [10], we superpose Bernoulli
bond percolation with parameter p = p(n) to this construction. Namely, if a new
vertex is attached to the genealogical tree, we delete the edge connecting this vertex
to its parent with probability 1− p. We write T (p)(s) for the resulting combinatorial
structure at time s, and T (p)

0 (s), T (p)
1 (s), . . . for the sequence of the subtrees at time s,

enumerated in the increasing order of their birth times, where we use the convention
that T (p)

j (s) = ∅ if less than j edges have been deleted up to time s. In particular,

T (p)
0 (s) is the subtree containing the root 0, and

∑
i≥0 |T (p)

i (s)| = Ys . Furthermore,

if b(p)
i denotes the birth time of the i th subtree, then the process (T (p)

i (b(p)
i + s) :

s ≥ 0) is a Yule process with birth rate p per unit population size, started from a
single particle of size 1. By analyzing the birth times as in [10], one readily obtains
the analogous statements of Section 2 and 3 there. This leads to another proof of
Proposition 4.

Remark As it is shown in the forthcoming paper [5], the approach via Yule processes
can be extended further to all percolation regimes p(n) → 1. Moreover, if the entire
family of cluster sizes is encoded by a tree structure similar to the tree of component
sizes, one can specify the finite-dimensional limit of this “tree of cluster sizes”.
Details will be given in [5].

5.2 Fluctuations of the Root Cluster

We finally take a closer look at the size of the root cluster C0,n for supercritical
percolation with parameter

p(n) = 1 − t

ln n
.

As we have already discussed, C0,n satisfies a law of large numbers, but as we will
point out here, C0,n exhibits non-Gaussian fluctuations. This should be seen in sharp
contrast to other graph models, were asymptotic normality of the giant cluster has
been established, e.g. for the complete graph on n vertices and percolation parameter
c/n, c > 1 fixed (Stephanov [37], Pittel [35], Barraez et al. [4]).

For RRT’s, the fluctuations can be obtained from a recent result of Schweinsberg
[36]. Among other things, he studied how the number of blocks in the Bolthausen-
Sznitman coalescent changes over time. The Bolthausen-Sznitman coalescent was
introduced in [12] in the context of spin glasses, and Goldschmidt and Martin [18]
discovered the following connection to the random cutting of RRT’s: Equip each
edge of a RRT of size n on the vertex set {1, . . . , n} with an independent standard
exponential clock. If a clock rings, delete the corresponding edge, say e, and the
whole subtree rooted at the endpoint of e most distant from the root 1. Furthermore,
replace the label of the vertex of e which is closer to the root 1, say i , by the label
set consisting of i and all the vertex labels of the removed subtree. Then the sets of
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labels form a partition of {1, . . . , n}, which evolves according to the dynamics of the
Bolthausen-Sznitman coalescent started from n blocks {1}, . . . , {n} (see Proposition
2.2 of [18] for details).

Note that in this framework, the variable Xn counting the number of steps in the
algorithm for isolating the root can be interpreted as the number of collision events
which take place until there is just one block left.

Theorem 1.7 in [36], rephrased in terms of C0,n , now reads as follows.

Theorem 3 (Schweinsberg [36]) There is the weak convergence

(
n−1C0,n − e−t

)
ln n − te−t ln ln n =⇒ te−t (X − ln t),

where X is a completely asymmetric Cauchy variable whose law is determined
by (8).

This statement was re-proved in [8], with a different approach which does not rely
on the Bolthausen-Sznitman coalescent. Instead, three different growth phases of
a RRT Tn are considered, and the effect of percolation is studied in each of these
phases. This approach makes again use of the coupling of Iksanov andMöhle and the
connection to Yule processes, providing an intuitive explanation for the correction
terms in the statement.
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The Master Equation for Large Population
Equilibriums

René Carmona and François Delarue

Abstract Weuse a simple N -player stochastic gamewith idiosyncratic and common
noises to introduce the concept of Master Equation originally proposed by Lions in
his lectures at the Collège de France. Controlling the limit N → ∞ of the explicit
solution of the N -player game, we highlight the stochastic nature of the limit distri-
butions of the states of the players due to the fact that the random environment does
not average out in the limit, and we recast the Mean Field Game (MFG) paradigm
in a set of coupled Stochastic Partial Differential Equations (SPDEs). The first one
is a forward stochastic Kolmogorov equation giving the evolution of the conditional
distributions of the states of the players given the common noise. The second is
a form of stochastic Hamilton Jacobi Bellman (HJB) equation providing the solu-
tion of the optimization problem when the flow of conditional distributions is given.
Being highly coupled, the system reads as an infinite dimensional Forward Back-
ward Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its
Markov property lead to the representation of the solution of the backward equation
(i.e. the value function of the stochastic HJB equation) as a deterministic function of
the solution of the forward Kolmogorov equation, function which is usually called
the decoupling field of the FBSDE. The (infinite dimensional) PDE satisfied by this
decoupling field is identified with the master equation. We also show that this equa-
tion can be derived for other large populations equilibriums like those given by the
optimal control of McKean-Vlasov stochastic differential equations. The paper is
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written more in the style of a review than a technical paper, and we spend more time
motivating and explaining the probabilistic interpretation of the Master Equation,
than identifying the most general set of assumptions under which our claims are
true.

1 Introduction

In several lectures given at the Collège de France, P.L. Lions describes mean-field
games by a single equation referred to as the fundamental equation or master equa-
tion. Roughly speaking, this equation encapsulates all the information about the
Mean Field Game (MFG) problem into a single equation. The purpose of this paper
is to review its theoretical underpinnings and to derive it for general MFGs with
common noise.

The master equation is a Partial Differential Equation (PDE) in time, the state
controlled by the players (typically an element of a Euclidean space, say R

d ), and
the probability distribution of this state. While standard differential calculus can be
used in the time domain [0, T ] and the state space Rd , a special kind of differential
calculus needs to be used in the space P(Rd) of probability measures. The rules of
this special differential calculus are described in Lions’ lectures, and explained in the
notes Cardaliaguet wrote from these lectures [2]. See also Ref. [3] and its appendix
at the end of the paper for useful idiosyncrasies of this calculus.

Here our goal is to emphasize the probabilistic nature of the master equation, as
the associated characteristics are (possibly random) paths with values in the space
R

d ×P(Rd). Our approach is especially enlightening for mean field games in a ran-
dom environment (see Sect. 2 for definitions and examples), the simplest instances
occurring in the presence of random shocks common to all the players. In that frame-
work, the characteristics are given by the sample paths ((Xt ,L(Xt |W 0)))0≤t≤T ,
where (Xt )0≤t≤T are the state equilibrium trajectories as identified by the solution
of the mean field game problem, and (L(Xt |W 0))0≤t≤T denote the state conditional
marginal distributions in equilibrium, given the value of the past history of the com-
mon noise. Examples of mean field games with a common noise were considered in
Refs. [7, 10, 11]. Their theory is developed in the forthcoming paper [5] in a rather
general setting.

As in the analysis of standard MFG models, the main challenge is the solution
of a system comprising a forward PDE coupled with a backward PDE. However,
in the random environment case, both equations are stochastic PDEs (SPDEs). The
forward SPDE is a Kolmogorov equation describing the dynamics of the conditional
laws of the state given the common noise, and the backward SPDE is a stochastic
Hamilton-Jacobi-Bellman equation describing the dynamics of the conditional value
function. Our contention is that this couple of SPDEs should be viewed as a Forward
Backward Stochastic Differential Equation (FBSDE) in infinite dimension. For with
this point of view, if some form of Markov property holds, it is natural to expect that
the backward component can be written as a function of the forward component, this
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function being called the decoupling field. In finite dimension, a simple application
of Itô’s formula shows that when the decoupling field is smooth, it must satisfy a
PDE. We use an infinite dimensional version of this argument to derive the master
equation. The infinite dimension version of Itô’s formula needed for the differential
calculus chosen for the space of measures is taken from another forthcoming paper
[8], and is adapted to the case of a random environment in the appendix.

While the MFG approach does not require the solution of stochastic equations
of the McKean-Vlasov type per se, the required fixed point argument identifies the
equilibrium trajectory of the game as a de facto solution of such an equation. This sug-
gests that the tools developed for solving MFG problems could be reused toward the
solution of optimal control problems for McKean-Vlasov dynamics. In the previous
paper [3], we established a suitable version of the stochastic Pontryagin principle
for the control of McKean-Vlasov SDEs and highlighted the differences with the
version of the stochastic Pontryagin principle used to tackle MFG models. Here we
show in a similar way that our derivation of the master equation can be used as well
for this type of large population equilibrium problem.

This research agenda, namely deriving the master equation for mean-field games
and the control of McKean-Vlasov SDEs, has been considered in Ref. [1] in parallel
and independently of our work. Therein, another approach is suggested. It relies on
a different interpretation of the master equation, yielding a different equation in the
case of the control of McKean-Vlasov SDEs. It also involves a different differential
calculus on the space of measures, operating at the level of the densities of the
probability distributions whenever they exist. We expand on the similarities and
differences between the two sets of results in Sect. 4.7.

The present paper is organized as follows. Mean field games in a random envi-
ronment are presented in Sect. 2. The problem is formulated in terms of a stochastic
forward-backward system in infinite dimension. A specific example, taken from [7],
is exposed in Sect. 3. The master equation is derived explicitly in this particular case.
In Sect. 4, we propose a systematic approach to the master equation for large pop-
ulation control problems in random environment. We consider both MFGs and the
control of McKean-Vlasov dynamics. Another example, taken from [11], is revisited
in Sect. 5. In the Appendix, we conclude with a proof of the Itô’s chain rule along
flows of random measures.

When analyzed within the probabilistic framework of the stochastic maximum
principle, MFGs with a common noise lead to the analysis of stochastic differential
equations conditioned on the knowledge of some of the driving Brownian motions.
These forms of conditioned forward stochastic dynamics are best understood in the
framework of Terry Lyons’ theory of rough paths. Indeed integrals and differentials
with respect to the conditioned paths can be interpreted in the sense of rough paths
while the meaning of the others can remain in the classical Itô calculus framework.
We thought this final remark was appropriate given the raison d’être of the present
volume, and our strong desire to convey our deepest appreciation to the man, and
pay homage to the mathematician as a remarkably creative scientist.



80 R. Carmona and F. Delarue

2 Mean Field Games in a Random Environment

The basic purpose of mean-field game theory is to analyze asymptotic Nash equi-
libriums for large populations of individuals with mean-field interactions. This goes
back to the independent works of Lasry and Lions [13–15] and Huang, Caines and
Malhamé [12].

Throughout the paper, we consider models in which individuals (also referred to
as particles or players) are subject to two sources of noise: an idiosyncratic noise,
independent from one individual to another, and a common noise, accounting for the
common environment in which the individuals evolve. We decide to model the envi-
ronment bymeans of a zero-meanGaussianwhite noise field W 0 = (W 0(�, B))�,B ,
parameterized by the Borel subsets � of a Polish space � and the Borel subsets B
of [0,∞), and such that

E
[
W 0(�, B)W 0(�′, B ′)

] = ν
(
� ∩ �′)|B ∩ B ′|,

where we use the notation |B| for the Lebesgue measure of a Borel subset of [0,∞).
Here ν is a non-negative measure on �, called the spatial intensity of W 0. Often we
shall use the notation W 0

t for W 0( · , [0, t]), and most often, we shall simply take
� = R

�.
We now assume that the dynamics inRd , with d ≥ 1, of the private state of player

i ∈ {1, . . . , N } are given by stochastic differential equations (SDEs) of the form:

d Xi
t = b

(
t, Xi

t ,μ
N
t ,αi

t

)
dt + σ

(
t, Xi

t ,μ
N
t ,αi

t

)
dW i

t

+
∫

�

σ0(t, Xi
t ,μ

N
t ,αi

t , ξ
)
W 0(dξ, dt), (1)

where W 1, . . . , W N are N independent Brownian motions, independent of W 0, all
of them being defined on some filtered probability space (�,F = (Ft )t≥0,P). For
simplicity, we assume that W 0, W 1, . . . , W N are scalar valued, multidimensional
analogs can be handled along the same lines. The term μN

t denotes the empirical
distribution of the individual states at time t :

μN
t = 1

N

N∑
i=1

δXi
t
.

The processes ((αi
t )t≥0)1≤i≤N are progressively-measurable, with values in an open

subset A of some Euclidean space. They stand for control processes. The coefficients
b, σ and σ0 are defined accordingly on [0, T ]×R

d ×P(Rd)× A(×�)with values in
R

d , in a measurable way, the set P(Rd) denoting the space of probability measures
on Rd endowed with the topology of weak convergence.

The simplest example of random environment corresponds to a coefficient σ0

independent of ξ. In this case, the randommeasure W 0 may as well be independent of
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the spatial component. In other words, we can assume that W 0(dξ, dt) = W 0(dt) =
dW 0

t , for an extra Wiener process W 0 independent of the space location ξ and of the
idiosyncratic noise terms (W i )1≤i≤N , representing an extra source of noise which is
common to all the players.

We should think of W 0(dξ, dt) as a random noise which is white in time (to
provide the time derivative of a Brownianmotion) and colored in space (the spectrum
of the color being given by the Fourier transform of ν). In fact, if � = R

d and ν is
integrable enough, then a motivating example we should have in mind is as follows.
Denoting by δ a mollified version of the delta function (which we treat as the actual
point mass at 0 for the purpose of this informal discussion), if σ0 is a function of the
form σ0(t, x,μ,α, ξ) ∼ σ0(t, x,μ,α)δ(x − ξ) then the integration with respect to
the spatial part of the random measure W 0 gives

∫

Rd

σ0(t, Xi
t ,μ

N
t ,αi

t , ξ)W 0(dξ, dt) = σ0(t, Xi
t ,μ

N
t )W 0(Xi

t , dt),

which says that, at time t , the private state of player i is subject to several sources
of random shocks: its own idiosyncratic noise W i

t , but also, an independent white
noise shock picked up at the very location/value of his own private state.

2.1 Asymptotics of the Empirical Distribution µN
t

The rationale for theMFG approach to the search for approximate Nash equilibriums
for large games is based on several limiting arguments, including the analysis of the
asymptotic behavior as N → ∞ of the empirical distribution μN

t coupling the states
dynamics of the individual players. By the symmetry of our model and de Finetti’s
law of large numbers, this limit should exist if we allow only exchangeable strategy
profiles (α1

t , . . . ,α
N
t ). This will be the case if we restrict ourselves to distributed

strategy profiles of the form α
j
t = α(t, X j

t ,μN
t ) for some deterministic (smooth)

function (t, x,μ) 
→ α(t, x,μ) ∈ A.
In order to understand this limit, we can use an argument from propagation of

chaos theory, as presented in Sznitman’s lecture notes [20]. A possible alternative is
to analyze the action of μN

t on test functions for t ∈ [0, T ], T denoting some time
horizon. Fixing a smooth test function φ with compact support in [0, T ] × R

d and
using Itô’s formula, we compute:

d〈φ(t, · ), 1

N

N∑
j=1

δ
X j

t
〉 = 1

N

N∑
j=1

dφ(t, X j
t )

= 1

N

N∑
j=1

(
∂tφ(t, X j

t )dt + ∇φ(t, X j
t ) · d X j

t + 1

2
trace{∇2φ(t, X j

t )d[X j , X j ]t }
)
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= 1

N

N∑
j=1

∂tφ(t, X j
t )dt + 1

N

N∑
j=1

∇φ(t, X j
t ) · σ

(
t, X j

t ,μN
t ,α(t, X j

t ,μN
t )
)
dW j

t

+ 1

N

N∑
j=1

∇φ(t, X j
t ) · b

(
t, X j

t ,μN
t ,α(t, X j

t ,μN
t )
)
dt

+ 1

N

N∑
j=1

∇φ(t, X j
t ) ·

∫

�

σ0(t, X j
t ,μN

t ,α(t, X j
t ,μN

t ), ξ
)
W 0(dξ, dt)

+ 1

2N

N∑
j=1

trace

{(
[σσ†](t, X j

t ,μN
t ,α(t, X j

t ,μN
t )
)

+
∫

�

[σ0σ0†](t, X j
t ,μN

t ,α(t, X j
t ,μN

t ), ξ
)
ν(dξ)

)
∇2φ(t, X j

t )

}
dt.

Our goal is to take the limit as N → ∞ in this expression. Using the definition of
the measures μN

t we can rewrite the above equality as:

〈φ(t, · ), μN
t 〉 − 〈φ(0, · ),μN

0 〉 = O(N−1/2) +
t∫

0

〈
∂tφ(s, · ), μN

s

〉
ds

+
t∫

0

〈∇φ(s, · ) · b
(
s, · , μN

s ,α(s, · , μN
s )
)
,μN

s

〉
ds

+ 1

2

t∫

0

〈
trace

{(
[σσ†](s, · ,μN

s , α(s, · , μN
s )
)

+
∫

�

[σ0σ0†](s, · , μN
s , α(s, · , μN

s ), ξ
)
ν(dξ)

)
∇2φ(s, · )

}
, μN

s

〉
ds

+
t∫

0

〈∇φ(s, · ) ·
∫

�

σ0(s, · , μN
s , α(s, · ,μN

s ), ξ
)
W 0(dξ, ds), μN

s

〉
,

which shows (formally) after integration by parts that, in the limit N → ∞,

μt = lim
N→∞ μN

t

appears as a solution of the Stochastic Partial Differential Equation (SPDE)
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dμt = −∇ · [b(t, · ,μt ,α(t, · ,μt )
)
μt
]
dt

− ∇ ·
(∫

�

σ0(t, · ,μt ,α(t, · ,μt ), ξ
)
W 0(dξ, dt)μt

)

+ 1

2
trace

[
∇2
([

σσ†](t, · ,μt ,α(t, · ,μt )
)

+
∫

�

[
σ0σ0†](t, · ,μt ,α(t, · ,μt ), ξ

)
ν(dξ)

)
μt

]
dt. (2)

This SPDE reads as a stochastic Kolmogorov equation. It describes the flow of
marginal distributions of the solution of a conditional McKean-Vlasov equation,
namely:

d Xt = b
(
t, Xt ,μt ,α(t, Xt ,μt )

)
dt + σ

(
t, Xt ,μt ,α(t, Xt ,μt )

)
dWt

+
∫

�

σ0(t, Xt ,μt ,α(t, Xt ,μt ), ξ
)
W 0(dξ, dt), (3)

subject to the constraint μt = L(Xt |F0
t ), where F

0 = (F0
t )t≥0 is the filtration

generated by the spatial white noise measure W 0. Throughout the whole paper, the
letter L refers to the law, so that L(Xt |F0

t ) denotes the conditional law of Xt given
F0

t . The connection between (2) and (3) can be checked by expanding (〈φ(t, ·),μt 〉 =
E(φ(Xt )|F0

t ))0≤t≤T by means of Itô’s formula.
For the sake of illustration we rewrite this SPDE in a few particular cases which

we will revisit later on:

1. If we assume that σ(t, x,μ,α) ≡ σ is a constant, that σ0(t, x,μ,α) ≡ σ0(t, x)

is also uncontrolled and that the spatial white noise is actually scalar, namely
W (dξ, dt) = dW 0

t for a scalar Wiener process W 0 independent of the Wiener
processes (W i )i≥1, then the stochastic differential equations giving the dynamics of
the state of the system read

d Xi
t = b(t, Xi

t ,μ
N
t ,αi

t )dt + σdW i
t + σ0(t, Xi

t )dW 0
t , i = 1, . . . , N (4)

and the limit μt of the empirical distributions satisfies the equation

dμt = −∇ · [b(t, · ,μt ,α(t, · ,μt )
)
μt
]
dt − ∇ · (σ0(t, · )dW 0

t μt
)

+ 1

2
trace

[
∇2
([

σσ† + σ0σ0†](t, · )
)
μt

]
dt. (5)

Once coupled with the corresponding version (3), rough paths theory can be used
to express the dynamics of the path (Xt )t≥0 conditional on the values of W 0. This
would be still another way to express the dynamics of the conditional marginal laws
of (Xt )t≥0 given W 0.
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2. Note that, when the ambient noise is not present (i.e. either σ0 ≡ 0 or W 0 ≡ 0),
this SPDE reduces to a deterministic PDE. It is the Kolmogorov equation giving the
forward dynamics of the distribution at time t of the nonlinear diffusion process
(Xt )t≥0 (nonlinear in McKean-Vlasov’s sense).

2.2 Solution Strategy for Mean Field Games

When players are assigned a cost functional, a natural (and challenging) question is
to characterize and identify equilibriums for the population. A typical framework is
to assume that the cost to player i , for any i ∈ {1, . . . , N }, writes

J i (α1, . . . ,αN ) = E

[ T∫

0

f
(
t, Xi

t ,μ
N
t ,αi

t

)
dt + g

(
Xi

T ,μN
T

)]
,

for some functions f : [0, T ] ×R
d ×P(Rd) × A → R and g : Rd ×P(Rd) → R.

Each cost functional J i depends upon all the controls ((α
j
t )0≤t≤T ) j∈{1,...,N } through

the flow of empirical measures (μN
t )0≤t≤T .

In the search for a Nash equilibrium α, one assumes that all the players j but
one keep the same strategy profile α, and the remaining player deviates from this
strategy in the hope of being better off. If the number of players is large (think
N → ∞), one expects that the empirical measure μN

t will not be affected much by
infinitesimal deviations by one single player, and for all practical purposes, one can
assume that the empirical measure μN

t is approximately equal to its limit μt . So in the
case of large symmetric games, the search for approximate Nash equilibriums could
be approached through the solution of the optimization problem of one single player
(typically the solution of a stochastic control problem instead of a large game) when
the empirical measure μN

t is replaced by the solution μt of the SPDE (2) appearing in
this limiting regime, the ‘α’ plugged in (2) denoting the strategy used by the players
at equilibrium.

The implementation of this method can be broken down into three steps for
pedagogical reasons:

(i) Given an initial distribution μ0 on Rd , fix an arbitrary measure valued adapted
stochastic process (μt )0≤t≤T over the probability space of the random measure
W 0. It stands for a possible candidate for being a Nash equilibrium.

(ii) Solve the (standard) stochastic control problem (with random coefficients)

inf
(αt )0≤t≤T

E

⎡
⎣

T∫

0

f (t, Xt ,μt ,αt )dt + g(XT ,μT )

⎤
⎦ (6)

subject to
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d Xt = b
(
t, Xt ,μt ,αt

)
dt + σ

(
t, Xt ,μt ,αt

)
dWt

+
∫

�

σ0(t, Xt ,μt ,αt , ξ
)
W 0(dξ, dt),

with X0 ∼ μ0, over progressively measurable admissible controls.
(iii) If and when an optimal control exists in feedback form α(t, x,μt ), plug it in

the SPDE (2), and determine the measure valued stochastic process (μt )0≤t≤T

in step (i) so that the solution of the SPDE (2) for α(t, x,μt ) obtained in point
(ii) is precisely (μt )0≤t≤T we started from.

Clearly, this last item requires the solution of a fixed point problem in an infinite
dimensional space, while the second item involves the solution of an optimization
problem in a space of stochastic processes. Thanks to the connection between the
SPDE (2) and the McKean-Vlasov equation (3), the fixed point item (iii) reduces
to the search for a flow of random measures (μt )0≤t≤T such that the law of the
optimally controlled process (resulting from the solution of the second item) is in
fact μt , i.e.

∀t ∈ [0, T ], μt = L(Xt |F0
t ).

In the absence of the ambient random field noise term W 0, the measure valued
adapted stochastic process (μt )0≤t≤T can be taken as a deterministic function
[0, T ] � t 
→ μt ∈ P(Rd), and the control problem in item (ii) is a standard
Markovian control problem.Moreover, the fixed point item (iii) reduces to the search
for a deterministic flow of measures [0, T ] � t 
→ μt ∈ P(Rd) such that the opti-
mally controlled process (resulting from the solution of the second item) satisfies
L(Xt ) = μt for each t .

2.3 Stochastic HJB Equation

In this subsection, we study the stochastic control problem (ii) when the flow of
random measures μ = (μt )0≤t≤T is fixed, and as mentioned earlier, adapted to
the filtration F

0 of the common noise. Optimization is performed over sets At of
F-progressively measurable A-valued processes (αs)t≤s≤T satisfying

E

T∫

t

|αs |2ds < ∞,

andwe use the notationA forA0. For each (t, x) ∈ [0, T ]×R
d , we let (Xt,x

s )t≤s≤T be
the solution of the stochastic differential equation (being granted that it is well-posed)
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d Xs = b(s, Xs,μs,αs)ds + σ(s, Xs,μs,αs)dWs

+
∫

�

σ0(s, Xs,μs,αs, ξ)W 0(dξ, ds), (7)

with Xt = x . With this notation, we define the (conditional) cost

Jμ
t,x
(
(αs)t≤s≤T

) = E

[ T∫

t

f (s, Xt,x
s ,μs,αs)ds + g(Xt,x

T ,μT )

∣∣∣F0
t

]
(8)

and the (conditional) value function

V μ(t, x) = ess inf
(αs )t≤s≤T ∈At

Jμ
t,x
(
(αs)t≤s≤T

)
. (9)

We shall drop the superscript and write Xs for Xt,x
s when no confusion is pos-

sible. Under some regularity assumptions, we can show that, for each x ∈ R
d ,

(V μ(t, x))0≤t≤T is an F
0-semi-martingale, and deduce by identification of its Itô

decomposition, that it solves a form of stochastic Hamilton-Jacobi Bellman (HJB)
equation. Because of the special form of the state dynamics (7), we introduce the
(random and nonlocal) operator symbol

L∗(t, x, y, z, (z0(ξ))ξ∈�, μt
)

= inf
α∈A

[
b(t, x, μt , α) · y + 1

2
trace

([σσ†](t, x, μt , α) · z
)+ f (t, x, μt , α)

+ 1

2
trace

(∫

�

[σ0σ0†](t, x, μt , α, ξ)dν(ξ) · z

)

+
∫

�

σ0
(
t, x, μt , α, ξ) · z0(ξ)dν(ξ)

]
. (10)

Assuming that the value function is smooth enough, we can use a generalization
of the dynamic programming principle to the present set-up of conditional value
functions to show that V μ(t, x) satisfies a form of stochastic HJB equation as given
by a parametric family of BSDEs in the sense that:

V μ(t, x) = g(x,μT ) +
T∫

t

L∗(s, x, ∂x V μ(s, x), ∂2
x V μ(s, x), (Zμ(s, x, ξ))ξ∈�,μs

)
ds

+
T∫

t

Zμ(s, x, ξ)W 0(dξ, ds). (11)
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Noticing that W 0 enjoys the martingale representation theorem (see Chap.1 in [18]),
this result can be seen as part of the folklore of the theory of backward SPDEs (see
for example [19] or [17]).

2.4 Towards the Master Equation

The definition of L∗ in (10) suggests that the optimal feedback in (8) could be identi-
fied as a function α̂ of t , x ,μt , V μ(t, ·) and Zμ(t, ·, ·) realizing the infimum appearing
in the definition of L∗. Plugging such a choice for α in the SPDE (2), we deduce that
the fixed point condition in item (iii) of the definition of an MFG equilibrium could
be reformulated in terms of an infinite dimensional FBSDE, the forward component
of which being the Kolmogorov SPDE (2) (with the specific choice of α), and the
backward component the stochastic HJB equation (11). The forward variable would
be (μt )0≤t≤T and the backward one would be (V μ(t, ·))0≤t≤T . Standard FBSDE
theory suggests the existence of a decoupling field expressing the backward vari-
able in terms of the forward one, in other words that V μ(t, x) could be written as
V (t, x,μt ) for some function V , or equivalently, that V μ(t, ·) could be written as
V (t, ·,μt ). Using a special form of Itô’s change of variable formula proven in the
appendix at the end of the paper, these decoupling fields are easily shown, at least
when they are smooth, to satisfy PDEs or SPDEs in the case of FBSDEs with random
coefficients. The definition of the special notion of smoothness required for this form
of Itô formula is recalled in the appendix. This is our hook to Lions’ master equation.
In order to make this point transparent in the sequel, we strive to provide a better
understanding of the mapping V : [0, T ] × R

d × P(Rd) → R and of its dynamics.

3 An Explicitly Solvable Model

This section is devoted to the analysis of an explicitly solvable model. It was intro-
duced and solved in Ref. [7]. There, the players were banks i ∈ {1, . . . , N }, the states
Xi

t represented the log-capitalizations of these banks at time t , and it was assumed
that each bank controlled its rate of borrowing and lending to a central bank through
the drift of Xi

t according to Ornstein-Uhlenbeck dynamics specified below in (12).
Here, we ignore the financial interpretation of the model, and we concentrate on
some of the mathematical properties of the equilibriums. We reproduce the parts of
the solution which are relevant to the present discussion of the master equation. Our
interest in this model is the fact that the finite player game can be solved explicitly
and the limit N → ∞ of the solution can be controlled. We use it as motivation
and testbed for the introduction of the master equation of mean field games with a
common noise.



88 R. Carmona and F. Delarue

3.1 Constructions of Exact Nash Equilibria
for the N-Player Game

We assume that the dynamics of the states Xi
t are given by the stochastic differential

equations:

d Xi
t =

[
a(m N

t − Xi
t ) + αi

t

]
dt + σ

(√
1 − ρ2dW i

t + ρdW 0
t

)
, (12)

where W i
t , i = 0, 1, . . . , N are independent scalar Wiener processes, σ > 0, a ≥ 0,

andm N
t denotes the sample mean of the Xi

t as defined bym N
t = (X1

t +· · ·+ X N
t )/N .

So, in the notation introduced in (1), we have

b(t, x,μ,α) = a(m − x) + α, with m =
∫

R

x ′dμ(x ′),

since the drift of (Xi
t )t≥0 at time t depends only upon Xi

t itself and the mean m N
t of

the empirical distribution μN
t of Xt = (X1

t , . . . , X N
t ), and

σ(t, x,μ,α) = σ
√
1 − ρ2, and σ0(t, x) = σρ.

Player i ∈ {1, . . . , N } controls its state at time t by choosing the control αi
t in order

to minimize

J i (α1, . . . ,αN ) = E

[ T∫

0

f (t, Xi
t ,μ

N
t ,αi

t )dt + g(Xi
T ,μN

T )

]
, (13)

where the running and terminal cost functions f and g are given by:

f (t, x,μ,α) = 1

2
α2 − qα(m − x) + ε

2
(m − x)2, (14)

g(x,μ) = c

2
(m − x)2,

for some positive constants q, ε and c. As before, m denotes the mean of the measure
μ. Clearly, this is a Linear-Quadratic (LQ) model and, thus, its solvability should be
equivalent to the well-posedness of a matrix Riccati equation. However, given the
special structure of the interaction, the Riccati equation is in fact scalar and can be
solved explicitly as we are about to demonstrate.

Given an N -tuple (α̂i )1≤i≤N of functions from [0, T ] × R into R, we define, for
each i ∈ {1, . . . , N }, the related value function V i by:



The Master Equation for Large Population Equilibriums 89

V i (t, x1, . . . , x N ) = inf
(αi

s )t≤s≤T

E

[ T∫

t

f
(
s, Xi

s,μ
N
s ,αi

s

)
ds + g(Xi

T ,μN
T )

∣∣∣Xt = x

]
,

with the cost functions f and g given in (14), and where the dynamics of (X1
s , . . . ,

X N
s )t≤s≤T are given in (12) with X j

t = x j for j ∈ {1, . . . , N } and α
j
s = α̂ j (s, X j

s )

for j �= i . By dynamic programming, the N scalar functions V i must satisfy the
system of HJB equations:

∂t V
i (t, x) + inf

α∈R
{(

a(x − xi ) + α
)
∂xi V i (t, x) + 1

2
α2 − qα

(
x − xi )}+ ε

2
(x̄ − xi )2

+
∑
j �=i

(
a(x − x j ) + α̂ j (t, x j )

)
∂x j V j (t, x)

+ σ2

2

N∑
j=1

N∑
k=1

(
ρ2 + δ j,k(1 − ρ2)

)
∂2

x j xk V i (t, x) = 0,

for (t, x) ∈ [0, T ]×R
N , where we use the notation x for the mean x = (x1 +· · ·+

x N )/N and with the terminal condition V i (T, x) = (c/2)(x − xi )2. The infima in
these HJB equations can be computed explicitly:

inf
α∈R
{(

a(x − xi ) + α
)
∂xi V i (t, x) + 1

2
α2 − qα

(
x − xi )}

= a(x − xi )∂xi V i (t, x) − 1

2

[
q
(
x − xi )− ∂xi V i (t, x)

]2
,

the infima being attained for

α = q
(
x − xi )− ∂xi V i (t, x),

which suggests to solve the system of N coupled HJB equations:

∂t V
i +

N∑
j=1

[
(a + q)

(
x − x j

)
− ∂x j V j

]
∂x j V i

+ σ2

2

N∑
j=1

N∑
k=1

(
ρ2 + δ j,k(1 − ρ2)

)
∂2

x j xk V i

+ 1

2
(ε − q2)

(
x − xi

)2 + 1

2
(∂xi V i )2 = 0, i = 1, . . . , N , (15)

with the same boundary terminal condition as above. Then, the feedback functions
α̂i (t, x) = q(x − xi ) − ∂xi V i (t, x) are expected to give the optimal Markovian
strategies. Generally speaking, these systems of HJB equations are difficult to solve.
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Here, because of the particular forms of the couplings and the terminal conditions,
we can solve the system by inspection, checking that a solution can be found in the
form

V i (t, x) = ηt

2
(x − xi )2 + χt , (16)

for some deterministic scalar functions t 
→ ηt and t 
→ χt satisfying ηT = c and
χT = 0 in order to match the terminal conditions for the V i s. Indeed, the partial
derivatives ∂x j V i and ∂x j xk V i read

∂x j V i (t, x) = ηt
( 1

N
− δi, j

) (
x − xi

)
, ∂2

x j xk V i (t, x) = ηt
( 1

N
− δi, j

)
(
1

N
− δi,k),

and plugging these expressions into (15), and identifying term by term, we see that
the system of HJB equations is solved if an only if

⎧⎪⎨
⎪⎩

η̇t = 2(a + q)ηt + (1 − 1

N 2

)
η2t − (ε − q2),

χ̇t = −1

2
σ2(1 − ρ2)

(
1 − 1

N

)
ηt ,

(17)

with the terminal conditions ηT = c and χT = 0. As emphasized earlier, the Riccati
equation is scalar and can be solved explicitly. One gets:

ηt = −(ε − q2)
(
e(δ+−δ−)(T −t) − 1

)− c
(
δ+e(δ+−δ−)(T −t) − δ−)

(
δ−e(δ+−δ−)(T −t) − δ+)− c(1 − 1/N 2)

(
e(δ+−δ−)(T −t) − 1

) , (18)

provided we set:

δ± = −(a +q)±√
R, with R = (a +q)2 +

(
1 − 1

N 2

)
(ε−q2) > 0. (19)

Observe that the denominator in (18) is always negative since δ+ > δ−, so that ηt

is well defined for any t ≤ T . The condition q2 ≤ ε implies that ηt is positive with
ηT = c. Once ηt is computed, one solves for χt (remember that χT = 0) and finds:

χt = 1

2
σ2(1 − ρ2)

(
1 − 1

N

) T∫

t

ηs ds. (20)

For the record, we note that the optimal strategies read

α̂i
t = q

(
Xt − Xi

t

)− ∂xi V i =
(

q + (1 − 1

N
)ηt

)(
Xt − Xi

t

)
, (21)
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and the optimally controlled dynamics:

d Xi
t =

(
a + q + (1 − 1

N
)ηt

)(
Xt − Xi

t

)
dt + σ

(√
1 − ρ2dW i

t + ρdW 0
t

)
. (22)

3.2 The Mean Field Limit

In this subsection, we emphasize the dependence upon the number N of players by
writing ηN

t and χN
t for the solutions ηt and χt of the system (17), and V i,N (t, x) =

(ηN /2)(x − xi )2 + χN
t for the value function of player i . Clearly,

lim
N→∞ ηN

t = η∞
t , and lim

N→∞ χN
t = χ∞

t ,

where the functions η∞
t and χ∞

t solve the system:

⎧⎨
⎩

η̇∞
t = 2(a + q)η∞

t + (η∞
t )2 − (ε − q2),

χ̇∞
t = −1

2
σ2(1 − ρ2)η∞

t ,
(23)

which is solved as in the case N finite. We find

η∞
t = −(ε − q2)

(
e(δ+−δ−)(T −t) − 1

)− c
(
δ+e(δ+−δ−)(T −t) − δ−)

(
δ−e(δ+−δ−)(T −t) − δ+)− c

(
e(δ+−δ−)(T −t) − 1

) , (24)

and

χ∞
t = 1

2
σ2(1 − ρ2)

T∫

t

η∞
s ds. (25)

Next we consider the equilibrium behavior of the players’ value functions V i,N .
For the purpose of the present discussion we notice that the value functions V i,N of
all the players in the N player game can be written as

V i,N (t, (x1, . . . , x N )
) = V N

(
t, xi ,

1

N

N∑
j=1

δx j

)

where the single function V N is defined as

V N (t, x,μ) = ηN
t

2

(
x −

∫

R

x ′dμ(x ′)
)2

+ χN
t , (t, x,μ) ∈ [0, T ] × R × P1(R),
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where P1(R) denotes the space of probability measures on R with a finite first
moment. Since the dependence upon the measure is only through the mean, we shall
often use the function

vN (t, x, m) = ηN
t

2
(x − m)2 + χN

t , (t, x, m) ∈ [0, T ] × R × R,

Notice that, at least for (t, x, m) fixed, we have

lim
N→∞ vN (t, x, m) = v∞(t, x, m)

where

v∞(t, x, m) = η∞
t

2
(x − m)2 + χ∞

t , (t, x, m) ∈ [0, T ] × R × R.

Similarly, all the optimal strategies in (21) may be expressed through a single feed-
back function α̂N (t, x, m) = [q + (1 − 1/N )ηN

t ](m − x) as α̂i
t = α̂N (t, Xi

t , m N
t ).

Clearly,

lim
N→∞ α̂N (t, x, m) = α̂∞(t, x, m),

where α̂∞(t, x, m) = [q + ηt ](m − x).
Repeating the analysis in Sect. 2.1, we find that the limit of the empirical distrib-

utions satisfies the following version of (5):

dμt = −∂x

(
[a(mt − · ) + α∞(t, · )]μt

)
dt

+ σ2

2
∂2

xxμt dt − σρ∂xμt dW 0
t , t ∈ [0, T ], (26)

where mt = ∫
Rd xdμt (x), which is the Kolmogorov equation for the conditional

marginal law, given W 0, of the solution of the McKean-Vlasov equation:

d Xt = [a(mt − Xt ) + α∞(t, Xt )
]

dt + σ
(
ρdW 0

t +
√
1 − ρ2dWt

)
, (27)

subject to the condition mt = E[Xt |F0
t ]. Applying the Kolmogorov equation to the

test function φ(x) = x , we get

dmt =
(∫

α∞(t, x)dμt (x)

)
dt + σρdW 0

t . (28)

We now write the stochastic HJB equation (11) in the present context. Remember
that we assume that the stochastic flow (μt )0≤t≤T is given (as the solution of (26)
with some prescribed initial condition μ0 = μ), and hence so is (mt )0≤t≤T . Here
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L∗(t, x, y, z, z0, mt ) = inf
α∈A

[
[a(mt − x) + α]y + σ2

2
z + σρz0

+α2

2
− qα(mt − x) + ε

2
(mt − x)2

]
.

Since the quantity to minimize is quadratic in α, we need to compute it for ᾱ =
ᾱ(t, x, mt , y) with ᾱ(t, x, m, y) = q(m − x) − y. We get:

L∗(t, x, y, z, z0, mt ) = (a+q)(mt −x)y− 1

2
y2+ σ2

2
z+σρz0+ 1

2
(ε−q2)(mt −x)2.

Accordingly, the stochastic HJB equation takes the form

dt V
μ(t, x) =

[
− (a + q)(mt − x)∂x V μ(t, x) + 1

2
[∂x V μ(t, x)]2

− σ2

2
∂2

x V μ(t, x) − σρ∂x Zμ(t, x) − 1

2
(ε − q2)(mt − x)2

]
dt

− Zμ(t, x)dW 0
t , (29)

with the terminal condition V μ(T, x) = (c/2)(mT − x)2.

3.3 Search for a Master Equation

Anatural candidate for solving (29) is the randomfield (t, x) 
→ v∞(t, x, mt ), where
as above (mt )0≤t≤T denotes the means of the solution (μt )0≤t≤t of the Kolmogorov
SPDE (26). This can be checked rigorously by using the expression of v∞ and by
expanding (v∞(t, x, mt ))0≤t≤T by Itô’s formula and taking advantage of (28). As
suggested at the end of the previous section, this shows that the stochastic HJB
equation admits a solution V μ(t, x) that can be expressed as a function of the current
value μt of the solution of the Kolmogorov SPDE, namely

V μ(t, x) = v∞
(

t, x,

∫

Rd

x ′dμt (x ′)
)

.

The same argument shows that (Xt )0≤t≤T defined in (27) as a solution of aMcKean-
Vlasov SDE is in fact the optimal trajectory of the control problem considered in
the item (ii) of the definition of a MFG, see (6), when the fixed flow of measures is
the solution (μt )0≤t≤T of the stochastic PDE (26). Put it differently, (μt )0≤t≤T is a
solution of theMFGproblem, and the functionα∞ is the associated feedback control,
as suggested by the asymptotic analysis performed in the previous paragraph.

A natural question is to characterize the properties of the function v∞ in an
intrinsic way. By definition of the value function (see (9)), we have
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V μ(t, Xt ) = E

[ T∫

t

f
(
s, Xs,μs, α̂

∞(s, Xs)
)
ds + g

(
X T ,μT

)∣∣Ft

]
.

Notice that the expectation is here conditional on Ft whereas in (9), the expression
of the value function was conditional onF0

t . The reason is that, in the above formula,
the randomness of the initial condition has to be taken into account.

We deduce

dV μ(t, Xt ) = − f
(
t, Xt ,μt , α̂

∞(t, Xt )
)
dt + d Mt , t ∈ [0, T ],

for some (Ft )0≤t≤T -martingale (Mt )0≤t≤T . Recalling that ᾱ(t, x, m, y)=q(m − x)

− y, ∂xv
∞(t, x, m) = η∞

t (x − m), and α̂∞(t, x, m) = [q + ηt ](m − x), we deduce
that

α̂∞(t, x, m) = ᾱ
(
t, x, m, ∂xv

∞(t, x, m)
)
,

which is the standard relationship in stochastic optimal control for expressing the
optimal feedback in terms of theminimizer ᾱ of the underlying extendedHamiltonian
and of the gradient of the value function v∞. We deduce that

f
(
t, Xt ,μt , α̂

∞(t, Xt )
) = −1

2

(
q(mt − Xt ) − ∂xv

∞(t, Xt , mt )
)(

q(mt − Xt )

+ ∂xv
∞(t, Xt , mt )

)+ ε

2

(
mt − Xt

)2
,

so that

dV μ(t, Xt ) =
(

− 1

2
(ε − q2)(mt − Xt )

2 − 1

2

[
∂xv

∞(t, Xt , mt )
]2)

dt + d Mt . (30)

We are to compare this Itô expansionwith the Itô expansion of (v∞(t, Xt , mt ))0≤t≤T .
Using the short-hand notation v∞

t for v∞(t, Xt , mt ) and standard Itô’s formula, we
get:

dv∞
t = ∂tv

∞
t dt + ∂xv∞

t d Xt + ∂mv∞
t dmt

+ σ2

2
∂2xxv∞

t + σ2

2
ρ2∂2mmv∞

t + σ2ρ2∂2xmv∞
t

=
[
∂tv

∞
t + ∂xv∞

t a(mt − Xt ) + ∂xv∞
t α̂∞(t, Xt ) + ∂mv∞

t 〈μt , α
∞(t, · )〉 (31)

+ σ2

2
∂2x v∞

t + σ2

2
ρ2∂2mv∞

t + σ2ρ2∂2xmv∞
t

]
dt

+ σρ[∂xv∞
t + ∂mv∞

t ]dW 0
t + σ

√
1 − ρ2∂xv∞

t dWt .
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Identifying the bounded variation terms in (30) and (31), we get:

∂tv
∞
t + ∂xv

∞
t a(mt − Xt ) + ∂xv

∞
t α̂∞(t, Xt ) + ∂mv∞

t 〈μt ,α
∞(t, · )〉

+ σ2

2
∂2

x v∞
t + σ2

2
ρ2∂2

mv∞
t + σ2ρ2∂2

xmv∞
t

= −1

2
(ε − q2)(mt − Xt )

2 − 1

2

[
∂xv

∞
t

]2
,

where α̂∞(t, x, m) = q(m − x) − ∂xv
∞(t, x, m). Therefore, for a general smooth

function V : (t, x, m) 
→ V (t, x, m), the above relationship with v∞ replaced by V
holds if

∂t V (t, x, m)

+ (a + q)(m − x)∂x V (t, x, m) + 1

2
(ε − q2)(m − x)2 − 1

2
[∂x V (t, x, m)]2

+ σ2

2
∂2

x V (t, x, m) + σ2

2
ρ2∂2

m V (t, x, m) + σ2ρ2∂2
xm V (t, x, m) = 0, (32)

for all (t, x, m) ∈ [0, T ] × R
d × R

d provided we have

∫
∂x V (t, x, m)dμ(x) = 0, 0 ≤ t ≤ T, (33)

Equation (33) being used to get rid of the interaction between μt and α∞. Obviously,
v∞ satisfies (33). (Notice that this implies that the stochastic Kolmogorov equation
becomes: dmt = ρσdW 0

t .)
Equation (32) reads as the dynamics for the decoupling field permitting to express

the value function V μ as a function of the current statistical stateμt of the population.
We call it the master equation of the problem.

4 The Master Equation

While we only discussed mean field games so far, it turns out that the concept
of master equation applies as well to the control of dynamics of McKean-Vlasov
type whose solution also provides approximate equilibriums for large populations of
individuals interacting through mean field terms. See Ref. [3] for a detailed analysis.
We first outline a procedure common to the two problems. Next we specialize this
procedure to the two cases of interest, deriving amaster equation in each case. Finally,
we highlight the differences to better understand what differentiates these two related
and often confused problems.
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4.1 General Set-Up

Stated in loose terms, the problem is to minimize the quantity

E

[ T∫

0

f (s, Xα
s ,μs,αs)ds + g(Xα

T ,μT )

]
(34)

over the space of square integrableF-adapted controls (αs)0≤s≤T under the constraint
that

d Xα
s = b

(
s, Xα

s ,μs,αs
)
ds + σ(s, Xα

s ,μs,αs)dWs

+
∫

�

σ0(s, Xα
s ,μs,αs, ξ)W 0(dξ, ds). (35)

Yet the notion of what we call a minimizer must be specified. Obvious candidates for
a precise definition of the minimization problem lead to different solutions. We con-
sider two specifications: mean field games on the one hand, and control of McKean-
Vlasov dynamics on the other.

1. When handling mean-field games, minimization is performed along a frozen
flow of measures (μs = μ̂s)0≤s≤T describing a statistical equilibrium of the pop-
ulation. Then, the stochastic process (X̂s)0≤s≤T formed by the optimal paths of
the optimal control problem (34) is required to satisfy the matching constraints
μ̂s = L(X̂s |F0

s ) for 0 ≤ s ≤ T . This is exactly the procedure described in Sect. 2.2.
2. Alternatively, minimization can be performed over the set of all the solutions

of (35) subject to the McKean-Vlasov constraint (μs = μα
s )0≤s≤T , with μα

s =
L(Xα

s |F0
s ) for 0 ≤ s ≤ T , in which case the problem consists in minimizing the

cost functional (34) over McKean-Vlasov diffusion processes.

As discussed painstakingly in Ref. [6], the two problems have different solutions
since, in mean field games, the minimization is performed first and the fitting of
the distribution of the optimal paths is performed next, whereas in the control of
McKean-Vlasov dynamics, the McKean-Vlasov constraint is imposed first and the
minimization is handled next. Still, we show here that both problems can be refor-
mulated in terms of master equations, and we highlight the differences between the
two equations resulting from these reformulations.

Themain reason for handling both problemswithin the same framework is because
in both cases, we rely on manipulations of a value function defined over the enlarged
state space Rd × P2(R

d). For technical reasons, we restrict ourselves to measures
in P2(R

d) which denotes the space of square integrable probability measures (i.e.
probability measures with a finite second moment). For each (t, x,μ) ∈ [0, T ] ×
R

d × P2(R
d), we would like to define V (t, x,μ) as the expected future costs:
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V (t, x,μ) = E

[ T∫

t

f (s, X α̂
s , μ̂s, α̂s)ds + g(X α̂

T , μ̂T )
∣∣X α̂

t = x

]
, (36)

where α̂minimizes the quantity (34)whenwe add the constraintμt = μ and compute
the time integral between t and T . In other words:

(α̂s)t≤s≤T = argminαE

[ T∫

t

f (s, Xα
s ,μs,αs)ds + g(Xα

T ,μT )

]
, (37)

the rule for computing the infimumbeing articulated above, either from themeanfield
game procedure as in 1, or from the optimization over McKean-Vlasov dynamics as
explained in 2. In both cases, the flow (μ̂s)t≤s≤T appearing in (36) satisfies the fixed
point condition (μ̂s = L(X α̂

s |F0,t
s ))t≤s≤T , which is true in both cases as (X α̂

s )t≤s≤T

is an optimal path. Here and in the following (F0,t
s )t≤s≤T is the filtration generated by

the future increments of the common noiseW 0, in the sense thatF0,t
s = σ{W 0

r −W 0
t :

t ≤ r ≤ s}. Recall that we use the notation W 0
r for {W 0(�, [0, r)}� when � varies

through the Borel subsets of �. Below, the symbol ‘hat’ always refers to optimal
quantities, and (X α̂

s )t≤s≤T is sometimes denoted by (X̂s)t≤s≤T .

Generally speaking, the definition of the (deterministic) functionV (t, x,μ)makes
sense whenever the minimizer (α̂s)t≤s≤T exists and is unique.When handling mean-
field games, some additional precaution is needed to guarantee the consistency of the
definition. Basically, we also need that, given the initial distribution μ at time t , there
exists a unique1 equilibrium flow of conditional probability measures (μ̂s)t≤s≤T

satisfying μ̂t = μ and μ̂s = L(X̂s |F0,t
s ) for all s ∈ [t, T ], where (X̂s)t≤s≤T is the

optimal path of the underlying minimization problem (performed under the fixed
flow of measures (μ̂s)t≤s≤T ). In that case, the minimizer (α̂s)t≤s≤T reads as the
optimal control of (X̂s)t≤s≤T . In the case of the optimal control of McKean-Vlasov
stochastic dynamics, minimization is performed over the set of conditional McKean-
Vlasov diffusion processes with the prescribed initial distribution μ at time t , in other
words, satisfying (35)withL(Xt ) = μ andμs = μα

s = L(Xα
s |F0,t

s ) for all s ∈ [t, T ].
In that case, themapping (t,μ) 
→ ∫

Rd V (t, x,μ)dμ(x) appears as the value function
of the optimal control problem:

E
[
V (t,χ,μ)

] = inf
α

E

[ T∫

t

f
(
s, Xα

s ,L(Xα
s |F0,t

s ),αs
)
ds + g

(
Xα

T ,L(Xα
T |F0,t

T )
)]

,

(38)

subject to Xα
t = χ where χ is a random variable with distribution μ, i.e. χ ∼ μ.

1 We refer to the Lasry-Lions monotonicity conditions in Ref. [2] for a typical set of assumptions
under which uniqueness holds. See also Ref. [5] for a discussion of uniqueness in the presence of a
common noise.



98 R. Carmona and F. Delarue

Our goal is to characterize the function V as the solution of a partial differential
equation (PDE) on the space [0, T ]×R

d ×P2(R
d). In the framework of mean-field

games, such an equation was touted in several presentations, and called the master
equation. See for example [2, 10, 16]. We discuss the derivation of this equation
below in Sect. 4.4. Using a similar strategy, we also derive a master equation in the
case of the optimal control of McKean-Vlasov stochastic dynamics in Sect. 4.5.

4.2 Dynamic Programming Principle

In order to understand better the definition (36), we consider the case in which the
minimizer (α̂s)t≤s≤T has a feedback form, namely α̂s reads as α̂(s, X α̂

s , μ̂s) for some
function α̂ : [0, T ] × R

d × P2(R
d) → R. In this case, (36) becomes

V (t, x,μ) = E

[ T∫

t

f
(
s, X α̂

s , μ̂s, α̂(s, X α̂
s , μ̂s)

)
ds + g(X α̂

T , μ̂T )
∣∣Xα

t = x

]
, (39)

where (X α̂
s )t≤s≤T is the solution (if well-defined) of (35) with αs replaced by

α̂(s, X α̂
s , μ̂s). It is worth recalling that, in that writing, μ̂s matches the conditional

law L(X α̂
s |F0,t

s ) and is forced to start from μ̂t = μ at time t .

Following the approach used in finite dimension, a natural strategy is then to
use (39) as a basis for deriving a dynamic programming principle for V . Quite
obviously, a very convenient way to do so consists in requiring the optimal pair
(X̂s = X α̂

s , μ̂s)t≤s≤T to be Markov in Rd × P2(R
d), in which case we get

V (t + h, X α̂
t+h, μ̂t+h) = E

[ T∫

t+h

f (s, X α̂
s , μ̂s, α̂s)ds

+ g(X α̂
T , μ̂T )

∣∣F0,t
t+h ∨ σ

{
X α̂

t , (Ws − Wt )s∈[t,t+h]
}]

.

Here, the σ-fieldF0,t
t+h ∨σ{X α̂

t , (Ws − Wt )s∈[t,t+h]} comprises all the relevant events
observed up until time t + h.

The rigorous proof of the Markov property for the path (X̂s = X α̂
s , μ̂s)t≤s≤T

is left open. Intuitively, it sounds reasonable to expect that theMarkov property holds
if, for any initial distribution μ, there exists a unique equilibrium (μ̂s)t≤s≤T starting
from μ̂t = μ at time t ∈ [0, T ]. The reason is that, when uniqueness holds, there is
no need to investigate the past of the optimal path in order to decide of the future of
the dynamics. Such an argument is somehow quite generic in probability theory. In
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particular, the claim is expected to be true in both cases, whatever the meaning of
what an equilibrium is. Of course, this suggests that the following dynamic version
of (36)

V (t, x,μ) = E

[ t+h∫

t

f (s, X α̂
s , μ̂s, α̂s)ds + V

(
t + h, X α̂

t+h, μ̂t+h
)∣∣X α̂

t = x

]
(40)

must be valid. The fact that (40) should be true in both cases is the starting point for
our common analysis of the master equation. For instance, as a by-product of (40),
we can derive a variational form of the dynamic programming principle:

E
[
V (t,χ,μ)

] = inf E

[ t+h∫

t

f (s, Xα
s ,μs,αs)ds + V (t + h, Xα

t+h,μt+h)

]
, (41)

which must be true in both cases as well, provided the random variable χ has distri-
bution μ, i.e. χ ∼ μ, and is Ft -measurable, the minimization being defined as above
according to the situation we are considering.

The proof of (41) is as follows. First, we observe from (39) that (41) must be
valid when t + h = T . Then, (40) implies that the left-hand side is greater than the
ride-hand side by choosing (α̂s)t≤s≤T as a control. To prove the converse inequality,
we choose an arbitrary control (αs)t≤s≤t+h between times t and t + h. In the control
of McKean-Vlasov dynamics, this means that the random measures (μs)t≤s≤t+h are
chosen accordingly, as they depend on (αs)t≤s≤t+h , so that μt+h is equal to the
conditional law of Xα

t+h at time t + h. At time t + h, this permits to switch to the
optimal strategy starting from (Xα

t+h,μt+h). The resulting strategy is of a greater
cost than the optimal one. By (39), this cost is exactly given by the right-hand side
in (41).

In the framework of mean field games, the argument for proving that the left-hand
side is less than the right-hand side in (41) is a bit different. Indeed, in that case, the
flow (μs)t≤s≤T is fixed and matches (μ̂s)t≤s≤T , so that α̂(s, X α̂

s , μ̂s) appears as an
optimal control for optimizing (34) in the environment (μs = μ̂s)t≤s≤T . So in that
case, V (t, x,μ) is expected to match the optimal conditional cost

V (t, x,μ) = inf E

[ T∫

t

f (s, Xα
s , μ̂s,αs)ds + g(Xα

T , μ̂T )
∣∣Xα

t = x

]
, (42)

where (Xα
s )t≤s≤T solves the SDE (35) with (μs = μ̂s)t≤s≤T therein. Going back to

(41), the choice of an arbitrary control (αs)t≤s≤t+h between times t and t +h doesn’t
affect the value of (μs)t≤s≤t+h , which remains equal to (μ̂s)t≤s≤t+h . At time t + h,
this permits to switch to the optimal strategy starting from Xα

t+h in the environment
(μ̂s)t≤s≤T . Again, the resulting strategy is of a greater cost than the optimal one and,
by (39), this cost is exactly given by the right-hand side in (41).
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We emphasize that, when controlling McKean-Vlasov dynamics, (42) fails as in
that case, the flow of measures is not frozen during the minimization procedure. In
particular, the fact that (42) holds true in mean-field games only suggests that V
satisfies a stronger dynamic programming principle in that case:

V (t, x,μ) = inf E

[ t+h∫

t

f (s, Xα
s , μ̂s,αs)ds + V

(
t + h, Xα

t+h, μ̂t+h
)∣∣Xα

t = x

]
.

(43)

The reason is the same as above. On the one hand, (40) implies that the left-hand side
is greater than the ride-hand side by choosing (α̂s)t≤s≤T as a control. On the other
hand, choosing an arbitrary control (α̂s)t≤s≤t+h between t and t +h and switching to
the optimal control starting from Xα

t+h in the environment (μ̂s)t≤s≤T , the left-hand
side must be less than the right-hand side.

4.3 Derivation of the Master Equation

As illustrated earlier (see also the discussion of the second example below), the
derivation of the master equation can be based on a suitable chain rule for computing
the dynamics of V along paths of the form (35). This requires V to be smooth enough
in order to apply an Itô-like formula.

In the example considered in the previous section, the dependence of V upon
the measure reduces to a dependence upon the mean of the measure, and a stan-
dard version of Itô’s formula could be used. In general, the measure argument lives
in infinite dimension and different tools are needed. The approach advocated by
P.L. Lions in his lectures at the Collège de France suggests to lift-up the mapping
V into

Ṽ : [0, T ] × R
d × L2(�̃, F̃ , P̃;Rd) � (t, x, χ̃) 
→ Ṽ (t, x, χ̃) = V (t, x,L(χ̃)),

where (�̃, F̃ , P̃) can be viewed as a copy of the space (�,F ,P). The resulting
Ṽ is defined on the product of [0, T ] × R

d and a Hilbert space, for which the
standard notion of Fréchet differentiability can be used. Demanding V to be smooth
in the measure argument is then understood as demanding Ṽ to be smooth in the
Fréchet sense. In that perspective, expanding (V (s, Xα

s ,μs))t≤s≤T is then the same
as expanding (Ṽ (s, Xα

s , χ̃s))t≤s≤T , where the process (χ̃s)t≤s≤T is an Itô process
with (μs)t≤s≤T as flow of marginal conditional distributions (conditional on F0,t ).

The fact that we require (χ̃s)t≤s≤T to have (μs)t≤s≤T as flow of marginal condi-
tional distributions calls for some precaution in the construction of the lifting. A way
to do just this consists in writing (�,F ,P) in the form (�0×�1,F0⊗F1,P0⊗P

1),
(�0,F0,P0) supporting the common noise W 0, and (�1,F1,P1) the idiosyncratic
noise W . So an element ω ∈ � can be written as ω = (ω0,ω1) ∈ �0 × �1.
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Considering a copy (�̃1, F̃1, P̃1) of the space (�1,F1,P1), it then makes sense to
consider the process (χ̃s)t≤s≤T as the solution of an equation of the same form of
(35), but on the space (�0×�̃1,F0⊗F̃1,P0⊗P̃

1), (�̃1, F̃1, P̃1) being endowedwith
a copy W̃ of W . The realization at some ω0 ∈ �0 of the conditional law of χ̃s given
F0 then reads as the law of the random variable χ̃s(ω

0, ·) ∈ L2(�̃1, F̃1, P̃1;Rd).
Put in our framework, this makes rigorous the identification of L(χ̃s(ω

0, ·)) with
μs(ω

0).
Generally speaking, we expect that (Ṽ (s, Xα

s , χ̃s) = Ṽ (s, Xα
s (ω0,ω1), χ̃s

(ω0, ·)))t≤s≤T can be expanded as

dṼ
(
s, Xα

s , χ̃s
) = [∂t Ṽ (s, Xα

s , χ̃s) + Aα
x Ṽ (s, Xα

s , χ̃s) + Aα
μ Ṽ (s, Xα

s , χ̃s)

+ Aα
xμṼ (s, Xα

s , χ̃s)
]
ds + d Ms, t ≤ s ≤ T, (44)

with Ṽ (T, x, χ̃) = g(x,L(χ̃)) as terminal condition, where

(i) Aα
x denotes the second-order differential operator associated to the process

(Xα
s )t≤s≤T . It acts on functions of the state variable x ∈ R

d and thus on the
variable x in Ṽ (t, x, χ̃) in (44).

(ii) Aα
μ denotes some second-order differential operator associated to the process

(χ̃s)t≤s≤T . It acts on functions from L2(�̃1, F̃1, P̃1;Rd) into R and thus on
the variable χ̃ in Ṽ (t, x, χ̃).

(iii) Aα
xμ denotes some second-order differential operator associated to the cross

effect of (Xα
s )t≤s≤T and (χ̃s)t≤s≤T , as both feel the same noise W 0. It acts

on functions from R
d × L2(�̃1, F̃1, P̃1;Rd) into R and thus on the variables

(x, χ̃) in Ṽ (t, x, χ̃).
(iv) (Ms)t≤s≤T is a martingale.

A proof of (44) is given in the appendix at the end of the paper. Observe that Axμ ≡ 0
if there is no common noise W 0. Plugging (44) into (41) and letting h tend to 0, we
then expect:

∂tE
[
Ṽ (t,χ, χ̃)

]+ inf
α

E
[
Aα

x Ṽ (t,χ, χ̃) + Aα
μ Ṽ (t,χ, χ̃) + Aα

xμṼ (t,χ, χ̃)

+ f (t,χ,μ,α)
] = 0, (45)

where χ and χ̃ random variables defined on (�1,F1,P1) and (�̃1, F̃1, P̃1) respec-
tively, both being distributed according to μ. If the minimizer has a feedback
form, namely if the optimization over random variables α reduces to optimiza-
tion over random variables of the form α(t,χ,μ), α being a function defined on
[0, T ] × R

d × P2(R
d), then if we denote by α̂ the optimum, the same strategy

applied to (40), shows that Ṽ satisfies the master equation

∂t Ṽ (t, x, χ̃) + Aα̂(t,x,μ)
x Ṽ (t, x, χ̃) + Aα̂(t,x,μ)

μ Ṽ (t, x, χ̃)

+ Aα̂(t,x,μ)
xμ Ṽ (t, x, χ̃) + f

(
t, x,μ, α̂(t, x,μ)

) = 0. (46)
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Of course, the rule for computing the infimum in (45) depends upon the frame-
work. In the case of the optimal control of McKean-Vlasov diffusion processes,
(χ̃s(ω

0, ω̃1))t≤s≤T in (44) is chosen as a copy, denoted by (X̃α
s (ω0, ω̃1))t≤s≤T , of

(Xα
s (ω0,ω1))t≤s≤T on the space (�0 × �̃1,F0 ⊗ F̃1,P0 ⊗ P̃

1). In that case, Aα
μ

depends on α explicitly. In the framework of mean field games, (χ̃s(ω
0, ω̃1))t≤s≤T

is chosen as a copy of the optimal path (X̂s)t≤s≤T of the optimization problem (36)
under the statistical equilibrium flow initialized at μ at time t . Such a choice for χ̃ is
dictated by the optimization procedure (6), in which the flow of measures is chosen
as the flow of measures at equilibrium. Since χ̃ does not depend on α, neither does
Aα

μ . Therefore, Aμ = Aα
μ has no role in the computation of the infimum.

For the sake of illustration, we further specialize the form of of themaster equation
(46) to the simpler case when (35) reduces to

d Xs = b(s, Xs,μs,αs)ds + σ(Xs)dWs + σ0(Xs)dW 0
s .

In that case, we know from the results presented in the appendix that

Aα
x ϕ̃(t, x, χ̃) = 〈b(t, x,L(χ̃),α

)
, ∂x ϕ̃(t, x, χ̃)〉

+ 1

2
Trace

[[
σ(x)

(
σ(x)

)† + σ0(x)
(
σ0(x)

)†]
∂2

x ϕ̃(t, x, χ̃)

]
,

Aα
μϕ̃(t, x, χ̃) = b

(
t, χ̃,L(χ̃), β̃

) · Dμϕ̃(t, x, χ̃) (47)

+ 1

2
D2

μϕ̃
(
t, x, χ̃

)[
σ0(χ̃),σ0(χ̃)

]+ 1

2
D2

μϕ̃
(
t, x, χ̃

)[
σ(χ̃)G̃,σ(χ̃)G̃

]
,

Aα
xμϕ̃(t, x, χ̃) = 〈{∂x Dμϕ̃

(
t, x, χ̃

) · σ0(χ̃)
}
,σ0(x)

〉
,

where G̃ is an N (0, 1) random variable on the space (�̃1, F̃1, P̃1), independent of
W̃ . The notations Dμ and D2

μ refer to Fréchet derivatives of smooth functions on

the space L2(�̃1, F̃1, P̃1;Rd). For a random variable ζ̃ ∈ L2(�̃1, F̃1, P̃1;Rd), the
notation Dμϕ̃(t, x, χ̃) · ζ̃ denotes the action of the differential of ϕ̃(t, x, ·) at point χ̃
along the direction ζ̃. Similarly, the notation D2

μϕ̃(t, x, χ̃)[ζ̃, ζ̃] denotes the action
of the second-order differential of ϕ̃(t, x, ·) at point χ̃ along the directions (ζ̃, ζ̃).
We refer to the appendix for a more detailed account.

Notice that χ̃ in Aα
μϕ̃(t, x, χ̃) denotes the copy of χ, χ standing for the value

at time t of the controlled diffusion process (χs)t≤s≤T . The control process driving
(χs)t≤s≤T is denoted by (βs)t≤s≤T . Specifying the values ofχ and β according to the
framework used for performing the optimization, we derive below the appropriate
form of the resultingmaster equation. Notice also that Aα

xμϕ̃(t, x, χ̃) does not depend
upon α as the coefficients σ0 and σ do not depend on it.
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4.4 The Case of Mean Field Games

In the framework ofMean-Field Games, (χ̃s)t≤s≤T is chosen as a copy of the optimal
path (X̂s)t≤s≤T . This says that, in (47), χ̃ stands for the value at time t of the optimally
controlled state from the optimization problem (36) under the statistical equilibrium
flow initialized at μ at time t . Therefore, the minimization in (45) reduces to

inf
α

E
[〈b(t,χ,μ,α), ∂x Ṽ (t,χ, χ̃)〉 + f (t,χ,μ,α)

]

= inf
α

E
[〈b(t,χ,μ,α), ∂x V (t,χ,μ)〉 + f (t,χ,μ,α)

]
, (48)

the equality following from the fact that ∂x Ṽ (t, x, χ̃) is the same as ∂x V (t, x,μ) (as
the differentiation is performed in the component x).

Assume now that there exists a measurable mapping ᾱ : [0, T ]×R
d ×P2(R

d)×
R

d � (t, x,μ) 
→ ᾱ(t, x,μ, y), providing the argument of the minimization:

ᾱ(t, x,μ, y) = arg inf
α∈A

H(t, x,μ, y,α), (49)

where the reduced Hamiltonian H is defined as:

H(t, x,μ, y,α) = 〈b(t, x,μ,α), y〉 + f (t, x,μ,α), (50)

Then, the minimizer in (48) must be α = ᾱ(t,χ,μ, ∂x V (t,χ,μ)), hence showing
that α̂(t, x,μ) = ᾱ(t, x,μ, ∂x V (t, x,μ)) is an optimal feedback. By (46), themaster
equation reads

∂t Ṽ (t, x, χ̃) + inf
α

H
(
t, x,μ, ∂x Ṽ (t, x, χ̃),α

)+ (Aμ + Axμ

)
Ṽ (t, x, χ̃)

+ 1

2
Trace

[[
σ(x)

(
σ(x)

)† + σ0(x)
(
σ0(x)

)†]
∂2

x Ṽ (t, x, χ̃)

]
= 0, (51)

the optimization over α being now performed in the set A (and thus in finite dimen-
sion).

By identification of the transport term, this says that the statistical equilibrium of
theMFGwithμ as initial distributionmust be given by the solution of the conditional
McKean-Vlasov equation:

d X̂s = b
(
s, X̂s, μ̂s, ᾱ

(
s, X̂s, μ̂s, ∂x V (s, X̂s, μ̂s)

)+ σ
(
X̂s
)
dWs + σ0(X̂s

)
dW 0

s ,

(52)

subject to the constraint μ̂s = L(X̂s |F0
s ) for s ∈ [t, T ], with X̂t ∼ μ. We indeed

claim

Proposition 4.1 On the top of the above assumptions and notations, assume that,
for all t ∈ [0, T ], x ∈ R

d and μ ∈ P2(R
d)
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|ᾱ(t, x,μ, y)| ≤ C

[
1 + |x | + |y| +

(∫

Rd

|x ′|2dμ(x ′)
)1/2]

, (53)

and that the coefficients b, σ and σ0 satisfy a similar bound. Assume also that Ṽ
is a (classical) solution of (51) satisfying, for all t ∈ [0, T ], x ∈ R

d and χ̃ ∈
L2(�̃1, F̃1, P̃1;Rd),

|∂x Ṽ (t, x, χ̃)| + ‖DμṼ (t, x, χ̃)‖L2(�̃1) ≤ C
(
1 + |x | + ‖χ̃‖L2(�̃1)

)
, (54)

and that, for any initial condition (t,μ) ∈ [0, T ] × P2(R
d), Eq. (52) has a unique

solution. Then, the flow (L(X̂s |F0
s ))t≤s≤T solves the mean field game with (t,μ) as

initial condition.

Proof The proof consists of a verification argument. First, we notice from (53) and
(54) that the solution of (52) is square integrable in the sense that its supremum
norm over [0, T ] is square integrable. Similarly, for any square integrable control
α, the supremum of Xα (with Xα

t ∼ μ) is square integrable. Next we plug μ̂s =
L(X̂s |F0

s ) in the right-hand side of (42), replace g by V (T, ·, ·) and apply the version
of Itô’s formula proven in the appendix (see Proposition 6.5), using the growth
and integrability assumptions to guarantee that the expectation of the martingale
part is zero. We conclude that the right-hand side is indeed greater than V (t, x,μ).
Choosing (αs = ᾱ(s, X̂s, μ̂s, ∂x V (s, X̂s, μ̂s))t≤s≤T , equality holds. This proves
that (X̂s)t≤s≤T is a minimization path of the optimization problem driven by its
own flow of conditional distributions, which is precisely the definition of an MFG
equilibrium. �
Remark 4.2 Proposition 4.1 says that the solution of the master equation (51) con-
tains all the information needed to solve the mean field game problem. It implies that
the flow of conditional distributions (μ̂s = L(X̂s |F0

s ))t≤s≤T solves the SPDE (2),
with α(s, ·, μ̂s) = ᾱ(s, x, μ̂s, ∂x V (s, x, μ̂s)).

Remark 4.3 Notice that (Ys = ∂x V (s, X̂s, μ̂s))t≤s≤T may be reinterpreted as the
adjoint process in the stochastic Pontryagin principle derived for mean field games
in Ref. [4] (at least when there is no common noise W 0). Furthermore, the function
(t, x,μ) 
→ ∂x V (t, x,μ) appears as the decoupling field of the McKean-Vlasov
FBSDE derived from the stochastic Pontryagin principle. It plays the same role as
the gradient of the value function in standard optimal control theory. See Sect. 4.6.

4.5 The Case of the Control of McKean-Vlasov Dynamics

When handling the control of McKean-Vlasov dynamics, (χ̃s)t≤s≤T is chosen as a
copy of (Xα

s )t≤s≤T . So if α̃ denotes a copy of α, the minimization in (45) takes the
form
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inf
α

E
[〈b(t,χ,μ,α), ∂x Ṽ (t,χ, χ̃)〉 + b(t, χ̃,μ, α̃) · DμṼ (t,χ, χ̃) + f (t,χ,μ,α)

]

= inf
α

E
1
[
〈b(t,χ,μ,α), ∂x V (t,χ,μ)〉 + Ẽ

1[〈b(t, χ̃,μ, α̃), ∂μV (t,χ,μ)(χ̃)〉]

+ f (t,χ,μ,α)
]
,

where the function ∂μV (t, x,μ)(·) represents the Fréchet derivative DμṼ (t, x, χ̃),
that is DμṼ (t, x, χ̃) = ∂μV (t, x,μ)(χ̃). See the appendix at the end of the paper
for details on the definitions and the properties of these differentials. By Fubini’s
theorem, the minimization can be reformulated as

inf
α

E
1
[〈

b(t,χ,μ,α), ∂x V (t,χ,μ) + Ẽ
1[∂μV (t, χ̃,μ)(χ)

]〉+ f (t,χ,μ,α)
]
.

(55)

The strategy is then the same as in the previous subsection. Assume indeed that there
exists a measurable mapping ᾱ : [0, T ] × R

d × P2(R
d) × R

d � (t, x,μ, y) 
→
ᾱ(t, x,μ, y) minimizing the reduced Hamiltonian as in (49), then the minimizer in
(55) must be

α̂ = ᾱ
(
t,χ,μ, ∂x V (t,χ,μ) + Ẽ

1[∂μV (t, χ̃,μ)(χ)])

= ᾱ

(
t,χ,μ, ∂x V (t,χ,μ) +

∫

Rd

∂μV (t, x ′,μ)(χ)dμ(x ′)
)

,

showing that α̂(t, x,μ) = ᾱ(t, x,μ, ∂x V (t, x,μ) + ∫
Rd ∂μV (t, x ′,μ)(x)dμ(x ′)) is

an optimal feedback. By (46), this permits to make explicit the form of the master
equation:

∂t Ṽ (t, x, χ̃) + 〈b(t, x,μ, α̂(t, x,μ)
)
, ∂x Ṽ (t, x, χ̃)〉

+ b
(
t, χ̃,μ, α̂(t, χ̃,μ)

) · DμṼ (t, x, χ̃)

+ 1

2
Trace

[[
σ(x)

(
σ(x)

)† + σ0(x)
(
σ0(x)

)†]
∂2

x Ṽ (t, x, χ̃)
]

+ 1

2

[
D2

μṼ
(
t, x, χ̃

)[
σ0(χ̃),σ0(χ̃)

]+ D2
μṼ
(
t, x, χ̃

)[
σ(χ̃)G̃,σ(χ̃)G̃

]]

+ 〈{∂x DμṼ
(
t, x, χ̃

) · σ0(χ̃)
}
,σ0(x)

〉+ f
(
t, x,μ, α̂(t, x,μ)

) = 0. (56)

Moreover, the optimal path solving the optimal control ofMcKean-Vlasov dynamics
is given by:

d X̂s

= b

[
s, X̂s, μ̂s, ᾱ

(
s, X̂s, μ̂s, ∂x V (s, X̂s, μ̂s) +

∫

Rd

∂μV (s, x ′, μ̂s)(X̂s)dμ̂s(x ′)
)]

ds

+ σ
(
X̂s
)
dWs + σ0(X̂s

)
dW 0

s , (57)
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subject to the constraint μ̂s = L(X̂s |F0
s ) for s ∈ [t, T ], with X̂t ∼ μ. We indeed

claim

Proposition 4.4 On the top of the assumptions and notations introduced above,
assume that ᾱ, b, σ and σ0 satisfy (53), that Ṽ is a classical solution of (56) satisfying,
for all t ∈ [0, T ], x ∈ R

d and χ̃ ∈ L2(�̃1, F̃1, P̃1;Rd),

|∂x Ṽ (t, x, χ̃)| + ‖DμṼ (t, x, χ̃)‖2,�̃1 ≤ C
(
1 + |x | + ‖χ̃‖L2(�̃1)

)
, (58)

and that, for any initial condition (t,μ) ∈ [0, T ] × P2(R
d), Eq. (57) has a unique

solution. Then, the flow (L(X̂s |F0
s ))t≤s≤T solves the minimization problem (34) over

controlled McKean-Vlasov dynamics.

Proof The proof consists again of a verification argument. As for mean field games,
we notice from (53) and (58) that the supremum over [0, T ] of the solution of (57)
is square integrable and that, for any square integrable control α, the supremum of
Xα (with Xα

t ∼ μ) is also square integrable. Next, we replace g by V (T, ·, ·) in
(38), and apply the version of Itô’s formula proven in the appendix (see Proposition
6.5), the integrability condition (58) ensuring that the expectation of the martingale
part is zero. Using the same Fubini argument as in (55), we deduce that the right-
hand side is indeed greater than E[V (t,χ,μ)]. Choosing αs = α̂(s, X̂s, μ̂s), with
α̂(t, x,μ) = ᾱ(t, x,μ, ∂x V (t, x,μ) + ∫

Rd ∂μV (t, x ′,μ)(x)dμ(x ′)), equality must
hold. �

Remark 4.5 Notice that the combination of the terms in α̂ in (56) does not read as
an infimum, namely:

〈b(t, x,μ, α̂(t, x,μ)
)
, ∂x Ṽ (t, x, χ̃)〉 + b

(
t, χ̃,μ, α̂(t, χ̃,μ)

) · DμṼ (t, x, χ̃)

+ f
(
t, x,μ, α̂(t, x,μ)

) �= inf
α

[〈b(t, x,μ,α), ∂x Ṽ (t, x, χ̃)〉 + b(t, x,μ, α̃
)

× DμṼ (t, x, χ̃) + f (t, x,μ,α)
]
,

which shows that equation (56) cannot be put in a variational form of the same type
as equation (51), theminimization in (51) being performed overα ∈ A. The reason is
that the minimization in (55) is performed over random variables, and not over finite
dimensional variables, the functional to minimize being written as the integrated
version of the one which is above.

Actually, the variational structure has to be read in (45). Under the assumption
of Proposition 4.4, the map [0, T ] × L2(�,F ,P;Rd) � (t,χ) 
→ E[Ṽ (t,χ, χ̃)]
can be shown to satisfy (45) by taking expectation in (56), provided that the time
derivative and the expectation can be interchanged.

Remark 4.6 The flow of conditional distributions (μ̂s = L(X̂s |F0
s ))t≤s≤T solves an

SPDE, of the same form as (2). The precise formulation of that SPDE is left to the
reader.
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Remark 4.7 Notice that (∂x V (s, X̂s, μ̂s) + ∫
Rd ∂μV (s, x, μ̂s)(X̂s)dμ̂s(x))t≤s≤T

may be reinterpreted as the adjoint process in the stochastic Pontryagin principle
derived for the control of McKean-Vlasov dynamics in Ref. [3] (at least when there
is no common noise W 0). In particular, the function (t, x,μ) 
→ ∂x V (s, x,μ) +∫
Rd ∂μV (s, x ′,μ)(x)dμ(x ′) reads as the decoupling field of the McKean-Vlasov
FBSDE deriving from the stochastic Pontryagin principle for the control ofMcKean-
Vlasov dynamics. It is interesting to notice that the fact that the formula contains two
different terms is a perfect reflection of the backward propagation of the terminal
condition of the FBSDE. Indeed, as seen in Ref. [3], this terminal condition has two
terms corresponding to the partial derivatives of the terminal cost function g with
respect to the state variable x and the distribution μ. See Sect. 4.6.

4.6 Viscosity Solutions

In the previous paragraph, we used the master equation within the context of a
verification argument to identify optimal paths of the underlying optimal control
problem, and we alluded to the connection with purely probabilistic methods derived
from the Pontryagin stochastic maximum principle which works as follows: under
suitable conditions, optimal paths are identified with the forward component of a
McKean-Vlasov FBSDE. In that framework, our discussion permits to identify the
gradient of the function V with the decoupling field of the FBSDE. This FBSDE has
the form:

d Xs = b(s, Xs,μs, ᾱ(s, Xs,μs, Ys))ds + σ0(Xs)dW 0
s + σ(Xs)dWs,

dYs = −�
(
s, Xs, νs, Ys, ᾱ(s, Xs,μs, Ys)

)
ds + Z0

s dW 0
s + ZsdWs,

YT = φ(XT ,μT ) (59)

for some functions (t, x, ν, y,α) 
→ �(t, x, ν, y,α) and (x,μ) 
→ φ(x,μ), the
McKean-Vlasov nature of the FBSDE being due to the constraints μs = L(Xs |F0

s )

and νs = L((Xs, Ys)|F0
s ). The function ᾱ is given by (49).

In the mean field game case, the stochastic Pontryagin principle takes the form

�(t, x, ν, y,α) = ∂x H
(
t, x,μ, y,α

)
, φ(x,μ) = ∂xg(x,μ), (60)

where μ denotes the first marginal of ν, and

�(t, x, ν, y,α) = ∂x H
(
t, x,μ, y,α

)

+
∫

Rd×Rd

(
∂μH

(
t, x ′,μ, y′,α′)(x)

)
|α′=α̂(t,x ′,μ,y′)ν(dx ′, dy′),

φ(x,μ) = ∂xg(x,μ) +
∫

Rd

∂μg(x ′,μ)(x)μ(dx ′) (61)
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in the case of the control of McKean-Vlasov dynamics.

One may wonder if a converse to the strategy discussed previously is possible:
how could we reconstruct a solution of the master equation from a purely probabilis-
tic approach? Put it differently, given the solution of the McKean-Vlasov FBSDE
characterizing the optimal path via the Pontryagin stochastic maximum principle, is
it possible to reconstruct V and to prove that it satisfies a PDE or SPDE which we
could identify to the master equation?

In the forthcoming paper [8], the authors investigate the differentiability of the
flow of a McKean-Vlasov FBSDE and reconstruct , in some cases, V as a classical
solution of the master equation.

A more direct approach consists in checking that V is a viscosity solution of the
master equation. This direct approach was used in Ref. [2] for non-stochastic games.
In all cases the fundamental argument relies on a suitable form of the dynamic
programming principle. This was our motivation for the discussion in Sect. 4.2. Still
we must remember that Sect. 4.2 remains mostly at the heuristic level, and that a
complete proof of the dynamic programming principle in this context would require
more work. This is where the stochastic maximum principle may help. If uniqueness
of the optimal paths and of the equilibrium are known (see for instance [4] and
[3]), then the definition of V in (36) makes sense. In this case, not only do we have
the explicit form of the optimal paths, but the dynamic programming principle is
expected to hold.

We refrain from going into the gory details in this review paper. Instead, we take
the dynamic programming principle for granted. The question is then to derive the
master equation solved by V in the viscosity sense, from the three possible versions
(43), (40) and (41). In the present context, since differentiability with respect to
one of the variables is done through a lifting of the functions, we will be using the
following definition of viscosity solutions.

Definition 4.8 We say that V is a super-solution (resp. sub-solution) in the sense
of viscosity of the master equation if whenever (t, x,μ) ∈ [0, T ] × R

d × P2(R
d)

and the function [0, T ] × R
d × P2(R

d) � (s, y, ν) 
→ ϕ(s, y, ν) is continuously
differentiable, once in the time variable s, and twice in the variables y and ν, satisfies
V (t, x,μ) = ϕ(t, x,μ) and V (s, y, ν) ≥ ϕ(s, y, ν) (resp. V (s, y, ν) ≤ ϕ(s, y, ν))
for all (s, y, ν) then we have (45) and/or (46), with Ṽ replaced by ϕ̃ and= 0 replaced
by ≤ 0 (respectively by ≥ 0). Notice that the signs are reversed since the equation
is set backward.

The reason why we say and/or might look rather strange. This will be explained
below, the problem being actually more subtle than it seems at first.

Following the approach used in standard stochastic optimal control problems, the
proof could consist in applying Itô’s formula to ϕ̃(s, X α̂

s , μ̂s)t≤s≤t+h . In fact, there
is no difficulty in proving the viscosity inequality (46) by means of (40). Still, this
result is rather useless as the optimizer α̂ is expected to depend upon the gradient of
Ṽ and much more, as α̂ reads as ᾱ applied to the gradient of Ṽ . The question is thus
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to decide whether it makes sense to replace the gradient of Ṽ in ᾱ by the gradient of
ϕ̃. To answer the question, we must distinguish the two problems:

1. In the framework of mean field games, the answer is yes. The reason is that,
when V is smooth, the inequality V ≥ ϕ in the neighborhood of (t, x,μ) implies
∂x V (t, x,μ) = ∂xϕ(t, x,μ). This says that we expect ϕ̃ to satisfy (51) with = 0
replaced by ≤ 0. Actually, this can be checked rigorously by means of the stronger
version (43) of the dynamic programming principle, following the discussion in
Ref. [9].

2. Unfortunately, this is false when handling the control of McKean-Vlasov dyna-
mics. Indeed, the gradient ofV is then understood as∂x V (t, x,μ)+∫

Rd ∂μV (t, x ′,μ)

(x)dμ(x ′), which is ‘non-local’ in the sense that it involves values of V (t, x ′,μ) for
x ′ far away from x . In particular, there is no way one can replace ∂x V (t, x,μ) +∫
Rd ∂μV (t, x ′,μ)(x)dμ(x ′) by ∂xϕ(t, x,μ)+∫

Rd ∂μϕ(t, x ′,μ)(x)dμ(x ′) on the sin-
gle basis of the comparison of ϕ and V . This implies that, in the optimal control
of McKean-Vlasov dynamics, viscosity solutions must be discussed in the frame-
work of (45). Obviously, this requires adapting the notion of viscosity solution
as only the function (t,μ) 
→ ∫

Rd V (t, x,μ)dμ(x) matters in the dynamic pro-
gramming principle (41). Comparison is then done with test functions of the form
(t,μ) 
→ ∫

Rd φ(t, x,μ)dμ(x) (or simply φ(t,μ)). The derivation of an inequality in
(45) is then achieved by a new application of Itô’s formula.

4.7 Comparison of the Two Master Equations

We repeatedly reminded the reader that the function V obtained in the case of mean
field games (whether or not there is a common noise) is not a value function in
the usual sense of optimal control. Indeed, solving a mean field game problem is
finding a fixed point more than solving an optimization problem. For this reason, the
master equation should not read (and should not be interpreted) as aHamilton-Jacobi-
Bellman equation. Indeed, even though the first terms in Eq. (51) are of Hamiltonian
type, the extra term Aμ (specifically thefirst order term in Aμ) shows that this equation
is not an HJB equation. On the other hand, the previous subsection shows that the
master equation for the control of McKean-Vlasov dynamics, which comes from an
optimization problem, can be viewed as an HJB equation when put in the form (45).
In that case, the solution reads as the value function (t,μ) 
→ ∫

Rd V (t, x,μ)dμ(x)

of the corresponding optimization problem.
In the case of mean-field games, the master equation (51) matches the one given

in Ref. [1]. Another type of differential calculus is used in Ref. [1] for handling the
infinite dimensional component, but the master equation is indeed the same. The
reason is that the master equation has the same interpretation: the solution V (t, x,μ)

is also defined as the value function of the game when, at time t , the population is
initialized with the distribution μ and the representative player with the state x .
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This identification can be checked by connecting the two types of differen-
tial calculus. Roughly speaking, it holds ∂v[∂m V (t, x, m)(v)] = ∂μV (t, x,μ)(v),
where V (t, x, m) in the left-hand side refers to the concepts used in Ref. [1] and
V (t, x,μ) in the right-hand side refers to the concepts we use in this paper. For-
mally, m is intended to be the density of μ. The notation ∂m V (t, x, m)(v) refers
to the differential calculus used in Ref. [1] for differentiating a functional of m
in the Gâteaux sense. The gradient ∂m V (t, x, m) has to be understood as a func-
tion R

d � v 
→ ∂m V (t, x, m)(v). The notation ∂μV (t, x,μ)(v) is explained in
detail in Sect. 6. Essentially, this function R

d � v 
→ ∂μV (t, x,μ)(v) is such
that DμṼ (t, x, χ̃) = ∂μV (t, x,μ)(χ̃) whenever χ has law μ. The connection
can be easily checked when V (t, x, m) = ∫

Rd ϕ(t, x, v)m(v)dv or equivalently
V (t, x,μ) = ∫

Rd ϕ(t, x, v)dμ(v) for a test function ϕ. Then, ∂m V (t, x, m)(v) =
ϕ(t, x, v) whereas, as shown in [2], ∂μV (t, x,μ)(v) = ∂vϕ(t, x, v). The relation-
ship ∂v[∂m V (t, x, m)(v)] = ∂μV (t, x,μ)(v) between the first-order derivatives can
be extended to the second-order derivatives. With the same notations, it indeed
holds that ∂v∂v′ [∂2

m V (t, x, m)(v, v′)] = ∂2
μV (t, x,μ)(v)(v′), where the function

R
d × R

d � (v, v′) 
→ ∂2
m V (t, x, m)(v, v′) ∈ R

d×d represents the second-order
derivatives of V with respect to m according to the concept used in Ref. [1] and
∂2

μV (t, x,μ)(v)(v′) is obtained by differentiating ∂μV (t, x,μ)(v) with respect to μ
according to the rules detailed in Sect. 6, see in particular Remark 6.4. The identity
between the second-order derivatives can be easily checked when V has the form
V (t, x, m) = ∫

Rd×Rd ϕ(t, x, v, v′)m(v)m(v′)dvdv′ or equivalently V (t, x,μ) =∫
Rd×Rd ϕ(t, x, v, v′)dμ(v)dμ(v′), in which case ∂2

m V (t, x, m)(v, v′) = 2ϕ(t, x,

v, v′) and ∂2
μV (t, x, m)(v)(v′) = 2∂v∂v′ϕ(t, x, v, v′).

In the case of the control of McKean-Vlasov SDEs, the master equation (56) does
not match the one given in Ref. [1]. Therein, the master equation for the control of
McKean-Vlasov SDEs has a different interpretation. Indeed, its solution appears as
the derivative in the sense used in [1], of the value function of the HJB equation
(45). Intuitively, the derivative of the value function of Eq. (45) is expected to be the
decoupling field of an infinite dimensional forward-backward system, in the spirit of
the approach based on the Pontryagin stochastic maximum principle. The fact that
it is the decoupling field of an infinite dimensional forward-backward system is the
main reason why it is called the solution of the master equation in Ref. [1], in full
analogy with what happens in the framework of mean-field games.

5 A Second Example: A Simple Growth Model

The following growth model was introduced and studied in Ref. [11]. We review its
main features by recasting it in the framework of the present discussion of the master
equation of mean field games with common noise. In fact the common noise W 0 is
the only noise of the model since σ ≡ 0 and the idiosyncratic noises do not appear.
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5.1 Background

As it is the case in many economic models, the problem in Ref. [11] is set for an
infinite time horizon (T = ∞) with a positive discount rate r > 0. As we just
said, σ ≡ 0. Moreover, the common noise is a one dimensional Wiener process
(W 0

t )t≥0. As before, we denote by F
0 = (F0

t )t≥0 its filtration. We also assume that
its volatility is linear, that is σ0(x) = σx for some positive constant σ, and that each
player controls the drift of its state so that b(t, x,μ,α) = α. In other words, the
dynamics of the state of player i read:

d Xi
t = αi

t dt + σXi
t dW 0

t . (62)

We shall restrict ourselves to Markovian controls of the form αi
t = α(t, Xi

t ) for a
deterministic function (t, x) 
→ α(t, x), which will be assumed non-negative and
Lipschitz in the variable x . Under these conditions, for any player, say player 1,
X1

t ≥ 0 at all times t > 0 if X1
0 ≥ 0 and for any two players, say players 1 and 2,

the homeomorphism property of Lipschitz SDEs implies that X1
t ≤ X2

t at all times
t > 0 if X1

0 ≤ X2
0.

Note that in the particular case

α(t, x) = γx (63)

for some γ > 0, then

X2
t = X1

t + (X2
0 − X1

0)e
(γ−σ2/2)t+σW 0

t . (64)

We assume that k > 0 is a fixed parameter and we introduce a special notation for the
family of scaled Pareto distributions with decay parameter k. For any real number
q ≥ 1, we denote by μ(q) the Pareto distribution:

μ(q)(dx) = k
qk

xk+1 1[q,∞)(x)dx . (65)

Notice that X ∼ μ(1) is equivalent to q X ∼ μ(q). We shall use the notation μt for the
conditional distribution of the state Xt of a generic player at time t ≥ 0 conditioned
by the knowledge of the past up to time t as given byF0

t . Under the prescription (63),

we claim that, if μ0 = μ(1), then μt = μ(qt ) where qt = e(γ−σ2/2)t+σW 0
t . In other

words, conditioned on the history of the common noise, the distribution of the states
of the players remains Pareto with parameter k if it started that way, and the left-hand
point of the distribution qt can be understood as a sufficient statistic characterizing the
distribution μt . This remark is an immediate consequence of formula (64) applied to
X1

t = qt , in which case q0 = 1, and X2
t = Xt , implying that Xt = X0qt . So if X0 ∼

μ(1), then μt ∼ μ(qt ). In particular, we have an explicit solution of the conditional
Kolmogorov equation in the case of the particular linear feedback controls.
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5.2 Optimization Problem

We now introduce the cost functions and define the optimization problem. We first
assume that the problem is set for a finite horizon T . For the sake of convenience,
we skip the stage of the N player game for N finite, and discuss directly the limiting
MFG problem in order to avoid dealing with the fact that empirical measures do not
have densities. The shape of the terminal cost g will be specified later on. Using the
same notation as in Ref. [11], we define the running cost function f by

f (x,μ,α) = c
xa

[(dμ/dx)(x)]b
− E

p

αp

[μ([x,∞))]b
,

for some positive constants a, b, c, E and p > 1 whose economic meanings are
discussed in Ref. [11]. We use the convention that the density is the density of the
absolutely continuous part of the Lebesgue’s decomposition of the measure μ, and
that in the above sum, the first term is set to 0 when this density is not defined or is
itself 0. The extended Hamiltonian of the system (see (49)) reads

H(x, y,μ,α) = αy + c
xa

[(dμ/dx)(x)]b
− E

p

αp

[μ([x,∞))]b

and the value ᾱ of α minimizing H is given by (for y ≥ 0):

ᾱ = ᾱ(x,μ, y) =
(

y

E

[
μ([x,∞))

]b)1/(p−1)

(66)

so that:

H(x, y,μ, ᾱ) =
(

y

E

[
μ([x,∞))

]b)1/(p−1)

y + c
xa

[(dμ/dx)(x)]b

− E

p

(
(y/E)[μ([x,∞))]b

)p/(p−1)

[μ([x,∞))]b

= p − 1

p
E−1/(p−1)y p/(p−1)[μ([x,∞))

]b/(p−1) + c
xa

[(dμ/dx)(x)]b
.

In the particular case of linear controls (63), using the explicit formula (65) for the
density of μ(q) and the fact that

μ(q)([x,∞)) = 1 ∧ qk

xk
,
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we get

f
(
x,μ(q),α

) = c
xa

(kqk/xk+1)b
1{x≥q} − E

p

αp

1 ∧ (qkb/xkb)

= c

kbqkb
xa+b(k+1)1{x≥q} − E

pqkb
αp(xkb ∨ qkb),

and

ᾱ(x,μ, y) =
[

y

E

(qkb

xkb
∧ 1
)]1/(p−1)

, (67)

so that

H(x, y,μ(q), ᾱ) = p − 1

p
E−1/(p−1)y p/(p−1)

(qkb/(p−1)

xkb/(p−1)
∧1
)
+c

xa+(k+1)b

kbqkb
1{x≥q}.

5.3 Search for an Equilibrium

Assuming that the initial distribution of the values of the state is given by the Pareto
distribution μ(1), we now restrict ourselves in searching for equilibriums with Pareto
distributions, which means that the description of the equilibrium flow of measures
(μ̂t )0≤t≤T can be reduced to the description of the flow of corresponding Pareto
parameters (q̂t )0≤t≤T . Introducing the letter V for denoting the solution of themaster
equation, we know from (51) and Proposition 4.1 that the optimal feedback control
must read

α̂(t, x) = ᾱ
(
x, μ̂t , ∂x V (t, x, μ̂t )

) =
[
∂x V (t, x, μ̂t )

E

( q̂kb
t

xkb
∧ 1
)]1/(p−1)

.

In order to guarantee that the equilibrium flow of measures is of Pareto type, it must
satisfy the condition:

γx =
(

∂x V (t, x, μ̂t )

E

q̂kb
t

xkb

)1/(p−1)

, x ≥ q̂t . (68)

for some γ > 0. There is no need for checking the condition for x < q̂t as the path
driven by the Pareto distribution is then always greater than or equal to (q̂t )t≥0.

Since we focus on equilibriums of Pareto type, we compute the function V at
distributions of Pareto type only. It then makes sense to parameterize the problem
and to seek for V in the factorized form:

V(t, x, q) = V (t, x,μ(q)),
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for some function V : (t, x, q) ∈ [0, T ] × R × R → R. Then, the relationship (68)
takes the form:

γx =
(

∂xV(t, x, q)

E

qkb

xkb

)1/(p−1)

, x ≥ q.

The point is then towrite the equation satisfied byV , namely the equivalent of (51)
but satisfied by V instead of V . First, we observe that, in (51), σ(x) ≡ 0. Obviously,
the difficult point is to rewrite Aμ and Axμ as differential operators acting on the
variables q and (x, q) respectively.

A natural solution is to redo the computations used for deriving (51) by replacing
Itô’s formula for the measures (μ̂t )0≤t≤T by Itô’s formula for (q̂t )0≤t≤T , taking
benefit that (q̂t )0≤t≤T solves the SDE

dq̂t = γq̂t dt + σq̂t dWt , (69)

which is a consequence of (63) and (64). Then the term AμṼ in (51), which reads
as the Itô expansion of V along (μ̂t )0≤t≤T , turns into the second-order differential
operator associated to the SDE satisfied by q̂t , namely

AqV(t, x, q) = γq∂qV(t, x, q) + 1

2
σ2q2∂2

qV(t, x, q).

Similarly, the term AxμṼ in (51), which reads as the bracket of the components inRd

and in P2(R
d) in the Itô expansion, turns into the second-order differential operator

associated to bracket of the SDEs satisfied by (Xt )0≤t≤T in (62) and by (q̂t )0≤t≤T ,
namely

AxqV(t, x, q) = σ2xq∂2
xqV(t, x, q).

Rewriting (51), we get

∂tV(t, x, q) + p − 1

p
E−1/(p−1)(∂xV(t, x, q)

)p/(p−1)
(qkb/(p−1)

xkb/(p−1)
∧ 1
)

+ c
xa+(k+1)b

kbqkb
1{x≥q} + γq∂qV(t, x, q)

+ 1

2
σ2[x2∂2

xV(t, x, q) + q2∂2
qV(t, x, q) + 2xq∂2

xvV(t, x, q)
] = 0. (70)

Now we look for a constant B > 0 such that

V(t, x, q) = V(x, q) = B
x p+bk

qbk
, (71)
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solves the parameterized master equation (70) on the set {x ≥ q}. Under the addi-
tional condition that a + b = p, B must be the solution of the equation

p − 1

p
E−1/(p−1)(B(p + bk)

)p/(p−1) + c

kb
− γBbk + σ2

2
Bp(p − 1) = 0.

The condition (68) reads

γ =
( B(p + bk)

E

)1/(p−1)
,

so that the above equation for B becomes

(p + bk)1/(p−1)E−1/(p−1)(p − 1 − bk

p

)
B p/(p−1) + σ2

2
p(p − 1)B + c

kb
= 0.

which always admits a solution if p(p − 1) < bk. The fact that (70) is satisfied for
x ≥ q is enough to prove that

(
V(X̂t , q̂t ) +

t∫

0

f
(
X̂s, μ̂s, γ X̂s

)
ds

)

0≤t≤T
, with μ̂s = μ(q̂s ) for s ∈ [0, T ],

is a martingale, whenever

d X̂t = γ X̂t dt + σ X̂t dW 0
t , t ∈ [0, T ],

with X̂0 ∼ μq̂0 , and (q̂t )0≤t≤T also solves (69). The reason is that X̂t > q̂t for any
t ∈ [0, T ] (equality X̂t = q̂t holds along scenarios for which X̂0 = q̂0, which are of
zero probability).

Themartingale property is a part of the verification Proposition 4.1 for proving the
optimality of (X̂t )0≤t≤T when (μ̂t )0≤t≤T is the flow of conditional measures, but this
is not sufficient. We must evaluate V along a pair (Xt , q̂t )0≤t≤T , (Xt )0≤t≤T denoting
a general controlled process satisfying (62). Unfortunately, things then becomemore
difficult as Xt might not be larger than q̂t . In other words, we are facing the fact that
V satisfies the PDE (70) on the set {x ≥ q} only. In order to circumvent this problem,
a strategy consists in replacing V by

V(x, q) = Bx p
( xbk

qbk
∧ 1
)
,

for the same constant B as above. Obviously, the PDE (70) is not satisfied when
x < q, but V defines a subsolution on the set {0 ≤ x < q}, as (70) holds but with
= 0 replaced by ≥ 0. Heuristically, this should show that
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(
V(Xt , q̂t ) +

t∫

0

f
(
Xs, μ̂s,αs

)
ds

)

0≤t≤T
(72)

is a submartingale when (Xt )0≤t≤T is an arbitrary controlled process driven by the
control (αt )0≤t≤T . Still, the justification requires some precaution as the functionV is
notC2 (which is the standard framework to apply Itô’s expansion), its first-order deriv-
atives being discontinuous on the diagonal {x = q}. The argument for justifying the
Itô expansion is a bit technical so that we just give a sketchy proof of it. Basically, we
can write V(Xt , q̂t ) = B(Xt )

p[ϕ(Xt/q̂t )]bk , with ϕ(r) = min(1, r). The key point
is that (Xt/q̂t )0≤t≤T is always a bounded variation process, so that the expansion of
(φ(Xt/q̂t ))0≤t≤T , for some function φ, only requires to control φ′ and not φ′′. Then,
we can regularize ϕ by a sequence (ϕn)n≥1 such that (ϕn)′(r) = 0, for r ≤ 1− 1/n,
(ϕn)′(r) = 1, for r ≥ 1 and (ϕn)′(r) ∈ [0, 1] for r ∈ [1 − 1/n, 1]. The fact that
(ϕn)′(r) is uniformly bounded in n permits to expand (B(Xt )

p[ϕn(Xt/q̂t )]bk)0≤t≤T

and then to pass to the limit.
The submartingale property shows that

∫

Rd

V(x, q̂0)dμq̂0(x) ≤ inf
(αt )0≤t≤T

[ T∫

0

f (Xt , q̂t ,αt )dt + V(XT , q̂T )

]
, (73)

which, together with the martingale property along (X̂t )0≤t≤T , shows that equality
holds and that the Pareto distributions (μ̂t )0≤t≤T form a MFG equilibrium, provided
g is chosen as V . This constraint on the choice of g can be circumvented by choosing
T = ∞, as done in Ref. [11], in which case f must be replaced by e−r t f for some
discount rate r > 0.

The analysis in the case T = ∞ can be done in the following way. In the proof
of the martingale and submartingale properties, V must replaced by e−r tV . Plugging
e−r tV and e−r t f in (70) instead of V and f , we understand that V must now satisfy
(70) butwith an additional−rV in the left-hand side. Then,we can repeat the previous
argument in order to identify the value of B in (71). Finally, if r is large enough,
E[e−rTV(X̂T , q̂T )] tends to 0 as T tends to the infinity in the martingale property
(72). Similarly, if we restrict ourselves to a class of feedback controls with a suitable
growth, E[e−rTV(XT , q̂T )] tends to 0 in (73), which permits to conclude.

5.4 Control of McKean-Vlasov Equations

A similar framework could be used for considering the control of McKean-Vlasov
equations. The analog of the strategy exposed in the previous paragraph would con-
sist in limiting the optimization procedure to controlled processes in (62) driven by
controls (αt )0≤t≤T of the form (αt = γt Xt )0≤t≤T for some deterministic (γt )0≤t≤T .
Using an obvious extension of (64), this would force the conditional marginal distri-
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butions of (Xt )0≤t≤T to be Pareto distributed. Exactly as above, this would transform
the problem into a finite dimensional problem. Precisely, this would transform the
problem into a finite dimensional optimal control problem. In that perspective, the
corresponding master equation could be reformulated as an HJB equation in finite
dimension. In comparison with, we emphasize, once again, that the master equation
(70) for the mean field game is not a HJB equation.

6 Appendix: A Generalized Form of Itô’s Formula

Our derivation of the master equation requires the use of a form of Itô formula in
a space of probability measures. This subsection is devoted to the proof of such a
formula.

6.1 Notion of Differentiability

In Sect. 4, we alluded to a specific notion of differentiability for functions of probabil-
ity measures. The choice of this notion is dictated by the fact that (1) the probability
measures we are dealing with appear as laws of random variables; (2) in trying to
differentiate functions of measures, the infinitesimal variations which we consider
are naturally expressed as infinitesimal variations in the linear space of those random
variables. The relevance of this notion of differentiability was argued by P.L. Lions in
his lectures at the Collège de France [16]. The notes [2] offer a readable account, and
[3] provides several properties involving empirical measures. It is based on the lifting
of functions P2(R

d) � μ 
→ H(μ) into functions H̃ defined on the Hilbert space
L2(�̃;Rd) over some probability space (�̃, F̃ , P̃) by setting H̃(X̃) = H(L(X̃)),
for X̃ ∈ L2(�̃;Rd), �̃ being a Polish space and P̃ an atomless measure.

Then, a function H is said to be differentiable at μ0 ∈ P2(R
d) if there exists

a random variable X̃0 with law μ0, in other words satisfying L(X̃0) = μ0, such
that the lifted function H̃ is Fréchet differentiable at X̃0. Whenever this is the case,
the Fréchet derivative of H̃ at X̃0 can be viewed as an element of L2(�̃;Rd) by
identifying L2(�̃;Rd) and its dual. It turns out that its distribution depends only
upon the law μ0 and not upon the particular random variable X̃0 having distribution
μ0. See Sect. 6 in Ref. [2] for details. This Fréchet derivative [DH̃ ](X̃0) is called
the representation of the derivative of H at μ0 along the variable X̃0. It is shown in
Ref. [2] that, as a random variable, it is of the form h̃(X̃0) for some deterministic
measurable function h̃ : Rd → R

d , which is uniquely defined μ0-almost everywhere
on R

d . The equivalence class of h̃ in L2(Rd ,μ0) being uniquely defined, it can be
denoted by ∂μH(μ0) (or ∂H(μ0)when no confusion is possible). It is then natural to
call ∂μ H(μ0) the derivative of H atμ0 and to identify it with a function ∂μ H(μ0)( · ) :
R

d � v 
→ ∂μH(μ0)(v) ∈ R
d .
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This procedure permits to express [DH̃ ](X̃0) as a function of any random variable
X̃0 with distribution μ0, irrespective of where this random variable is defined.

Remark 6.1 Since it is customary to identify a Hilbert space to its dual, we will
identify L2(�̃) with its dual, and in so doing, any derivative DH̃(X̃) will be viewed
as an element of L2(�̃). In this way, the derivative in the direction Ỹ will be given by
the inner product [DH̃(X̃)] · Ỹ . Accordingly, the second Frechet derivative D2 H̃(X̃)

which should be a linear operator from L2(�̃) into itself because of the identification
with its dual, will be viewed as a bilinear form on L2(�̃). In particular, we shall use
the notation D2 H̃(X̃)[Ỹ , Z̃ ] for ([D2 H̃(X̃)](Ỹ )

) · Z̃ .

Remark 6.2 The following result (see [3] for a proof) gives, though under stronger
regularity assumptions on the Fréchet derivatives, a convenient way to handle this
notion of differentiation with respect to probability distributions. If the function H̃ is
Fréchet differentiable and if its Fréchet derivative is uniformly Lipschitz (i.e. there
exists a constant c > 0 such that ‖DH̃(X̃) − DH̃(X̃ ′)‖ ≤ c|X̃ − X̃ ′| for all X̃ , X̃ ′
in L2(�̃)), then there exists a function ∂μH

P2(R
d) × R

d � (μ, v) 
→ ∂μH(μ)(v)

such as |∂μH(μ)(v) − ∂μH(μ)(v′)| ≤ c|v − v′| for all v, v′ ∈ R
d and μ ∈ P2(R

d),
and for every μ ∈ P2(R

d), ∂μH(μ)(X̃) = DH̃(X̃) almost surely if μ = L(X̃).

A.2 Itô’s Formula Along a Flow of Conditional Measures

In the derivation of the master equation, the value function is expanded along a flow
of conditional measures. As already explained in Sect. 4.3, this requires a suitable
construction of the lifting.

Throughout this section, we assume that (�,F ,P) is of the form (�0×�1,F0⊗
F1,P0 ⊗P

1), (�0,F0,P0) supporting the common noise W 0, and (�1,F1,P1) the
idiosyncratic noise W . So an element ω ∈ � can be written as ω = (ω0,ω1) ∈ �0 ×
�1, and functionals H(μ(ω0)) of a random probability measure μ(ω0) ∈ P2(R

d)

with ω0 ∈ �0, can be lifted into H̃(X̃(ω0, ·)) = H(L(X̃(ω0, ·))), where X̃(ω0, ·)
is an element of L2(�̃1, F̃1,P1;Rd) with μ(ω0) as distribution, (�̃1, F̃1, P̃1) being
Polish and atomless. Put it differently, the random variable X̃ is defined on (�̃ =
�0 × �̃1, F̃ = F0 ⊗ F̃1, P̃ = P

0 ⊗ P̃
1).

The objective is then to expand (H̃(χ̃t (ω
0, ·)))0≤t≤T , where (χ̃t )0≤t≤T is the copy

so constructed, of an Itô process on (�,F ,P) of the form:

χt = χ0 +
t∫

0

βsds +
t∫

0

∫

�

ς0s,ξW 0(dξ, ds) +
t∫

0

ςsdWs,
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for t ∈ [0, T ], assuming that the processes (βt )0≤t≤T , (ςt )0≤t≤T and (ς0t,ξ)0≤t≤T,ξ∈�

are progressively measurable with respect to the filtration generated by W and W 0

and square integrable, in the sense that

E

T∫

0

(
|βt |2 + |ςt |2 +

∫

�

|ς0t,ξ|2dν(ξ)

)
dt < +∞. (74)

Denoting by (W̃t )0≤t≤T , (β̃t )0≤t≤T , (ς̃t )0≤t≤T and (ς̃0t,ξ)0≤t≤T,ξ∈� the copies of

(Wt )0≤t≤T , (βt )0≤t≤T , (ςt )0≤t≤T and (ς0t,ξ)0≤t≤T,ξ∈�, we then have

χ̃t = χ̃0 +
t∫

0

β̃sds +
t∫

0

∫

�

ς̃0s,ξW 0(dξ, ds) +
t∫

0

ς̃sdW̃s,

for t ∈ [0, T ]. In this framework, we emphasize that it makes sense to look at
H̃(χ̃t (ω

0, ·)), for t ∈ [0, T ], since

E
0
Ẽ
1[ sup

0≤t≤T
|χ̃t |2

] = E
0
E
1[ sup

0≤t≤T
|χt |2

]
< +∞,

where E0, E1 and Ẽ
1 are the expectations associated to P

0, P1 and P̃
1 respectively.

In order to simplify notations, we let χ̌t (ω
0) = χ̃t (ω

0, ·) for t ∈ [0, T ], so
that (χ̌t )0≤t≤T is L2(�̃1, F̃1, P̃1;Rd)-valued, P0 almost surely. Similarly, we let
β̌t (ω

0) = β̃t (ω
0, ·), ς̌t (ω

0) = ς̃t (ω
0, ·) ς̌t,ξ(ω

0) = ς̃t,ξ(ω
0, ·), for t ∈ [0, T ] and

ξ ∈ �. We then claim

Proposition 6.3 On the top of the assumption and notation introduced right above,
assume that H̃ is twice continuously Fréchet differentiable. Then, we have P0 almost
surely, for all t ∈ [0, T ],

H̃
(
χ̌t
) = H̃

(
χ̌0
)+

t∫

0

DH̃
(
χ̌s
) · β̌sds +

t∫

0

∫

�

DH̃
(
χ̌s
) · ς̌0s,ξ W 0(dξ, ds)

+ 1

2

t∫

0

(
D2 H̃(χ̃s)

[
ς̌s G̃, ς̌s G̃

]+
∫

�

D2 H̃
(
χ̌s
)[

ς̌0s,ξ, ς̌
0
s,ξ

]
dν(ξ)

)
ds. (75)

where G̃ is an N (0, 1)-distributed random variable on (�̃1, F̃1, P̃1), independent
of (W̃t )t≥0.

Remark 6.4 Following Remark 6.2, one can specialize Itô’s formula to a situation
with smoother derivatives. See Ref. [8] for a more detailed account. Indeed, if one
assumes that
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1. the function H is C1 in the sense given above and its first derivative is Lipschitz;
2. for each fixed v ∈ R

d , the function μ 
→ ∂μH(μ)(v) is differentiable with
Lipschitz derivative, and consequently, there exists a function

(μ, v′, v) 
→ ∂2
μH(μ)(v)(v′) ∈ R

d×d

which is Lipschitz in v′ uniformly with respect to v and μ and such that
∂2

μH(μ)(v)(X̃) gives the Fréchet derivative of μ 
→ ∂μH(μ)(v) for every v ∈ R
d

as long as L(X̃) = μ;
3. for each fixed μ ∈ P2(R

d), the function v 
→ ∂μH(μ)(v) is differentiable with
Lipschitz derivative, and consequently, there exists a bounded function (v,μ) 
→
∂v∂μH(μ)(v) ∈ R

d×d giving the value of its derivative;
4. the functions (μ, v′, v) 
→ ∂2

μH(μ)(v)(v′) and (μ, v) 
→ ∂v∂μH(μ)(v) are con-
tinuous (the space P2(R

d) being endowed with the 2-Wasserstein distance).

Then, the second order term appearing in Itô’s formula can be expressed as the
sum of two explicit operators whose interpretations are more natural. Indeed, the
second Fréchet derivative D2 H̃(X̃) can be written as the linear operator Ỹ 
→ AỸ
on L2(�̃1, F̃1,P1;Rd) defined by

[AỸ ](ω̃1) =
∫

�̃1,′

∂2
μH
(L(X̃)

)(
X̃(ω̃1)

)(
X̃ ′(ω′)

)
Ỹ ′(ω′) dP̃1,′(ω′)

+ ∂v∂μH
(L(X̃)

)(
X̃(ω̃1)

)
Ỹ (ω̃1),

where (�̃1,′, F̃1,′, P̃1,′) is another Polish and atomless probability space endowed
with a copy (X̃ ′, Ỹ ′) of (X̃ , Ỹ ).

In particular, when Ỹ is replaced by Ỹ × G̃, with G̃ ∼ N (0, 1) and independent
of (X̃ , Ỹ ), the integral over �̃1,′ in the right-hand side vanishes. We then obtain

D2 H̃(X̃)
[
Ỹ , Ỹ

] = Ẽ
1
Ẽ
1,′{trace[∂2

μH
(L(X̃)

)
(X̃)(X̃ ′)Ỹ

(
Ỹ ′)�]}

+ Ẽ
1{trace[∂v∂μH

(L(X̃)
)
(X̃)Ỹ Ỹ �]},

D2 H̃(X̃)
[
Ỹ G̃, Ỹ G̃

] = Ẽ
1{trace[∂v∂μH

(L(X̃)
)
(X̃)Ỹ Ỹ �]}.

The derivation of the master equation actually requires a more general result
than Proposition 6.3. Indeed one needs to expand (H̃(Xt , χ̌t ))0≤t≤T for a func-
tion H̃ of (x, X̃) ∈ R

d × L2(�̃1, F̃1, P̃1;Rd). As before, (χ̌t )0≤t≤T is understood
as (χ̃t (ω

0, ·))0≤t≤T . The process (Xt )0≤t≤T is assumed to be another Itô process,
defined on the original space (�,F ,P) = (�0 × �1,F0 ⊗ F1,P0 ⊗ P

1), with
dynamics of the form
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Xt = X0 +
t∫

0

bsds +
t∫

0

∫

�

σ0
s,ξW 0(dξ, ds) +

t∫

0

σsdWs,

for t ∈ [0, T ], the processes (bt )0≤t≤T , (σt )0≤t≤T and (σ0
t,ξ)0≤t≤T,ξ∈� being

progressively-measurable with respect to the filtration generated by W and W 0,
and square integrable as in (74). Under these conditions, the result of Proposition 6.3
can be extended to:

Proposition 6.5 On the top of the above assumptions and notations, assume that H̃
is twice continuously Fréchet differentiable on R

d × L2(�̃1, F̃1, P̃1;Rd). Then, we
have P almost surely, for all t ∈ [0, T ],

H̃
(
Xt , χ̌t

) = H̃
(
X0, χ̌0

)

+
t∫

0

(
〈∂x H̃

(
Xs, χ̌s

)
, bs〉 + Dμ H̃

(
Xs, χ̌s

) · β̌s

)
ds +

t∫

0

[
∂x H̃

(
Xs, χ̌s

)]†
σsdWs

+
t∫

0

∫

�

([
∂x H̃

(
Xs, χ̌s

)]†
σ0

s,ξ + Dμ H̃
(
Xs, χ̌s

) · ς̌0s,ξ

)
W 0(dξ, ds)

+ 1

2

t∫

0

∫

�

(
trace

[
∂2

x H̃
(
Xs, χ̌s

)
σ0

s,ξ(σ
0
s,ξ)

†]+ D2
μ H̃
(
Xs, χ̌s

)[
ς̌0s,ξ, ς̌

0
s,ξ

])
dν(ξ)ds

+ 1

2

t∫

0

(
trace

[
∂2

x H̃
(
Xs, χ̌s

)
σs(σs)

†]+ D2
μ H̃
(
Xs, χ̌s

)[
ς̌s G̃, ς̌s G̃

])
ds

+
t∫

0

∫

�

〈
∂x Dμ H̃

(
Xs, χ̌s

) · ς̌0s,ξ , σ0
s,ξ

〉
dν(ξ)ds.

where G̃ is an N (0, 1)-distributed random variable on (�̃1, F̃1, P̃1), independent of
(W̃t )t≥0. The partial derivatives in the infinite dimensional component are denoted
with the index ‘μ’. In that framework, the term 〈∂x Dμ H̃(Xs, χ̌s) · ς̌0s,ξ,σ

0
s,ξ〉 reads

d∑
i=1

{∂xi Dμ H̃(Xs, χ̌s) · ς̌0s,ξ}
(
σ0

s,ξ

)
i .
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A.3 Proof of Itô’s Formula

Weonly provide the proof of Proposition 6.3 as the proof of Proposition 6.5 is similar.

By a standard continuity argument, it is sufficient to prove that Eq. (75) holds for
any t ∈ [0, T ] P0-almost surely. In particular, we can choose t = T . Moreover, by
a standard approximation argument, it is sufficient to consider the case of simple
processes (βt )0≤t≤T , (ςt )0≤t≤T and (ς0t,ξ)0≤t≤T,ξ of the form

βt =
M−1∑
i=0

βi 1[τi ,τi+1)(t), ςt =
M−1∑
i=0

ςi 1[τi ,τi+1)(t), ς0t,ξ =
M−1∑
i=0

N∑
j=1

ς0i, j 1[τi ,τi+1)(t)1A j (ξ),

where M, N ≥ 1, 0 = τ0 < τ1 < · · · < τM = T , (A j )1≤ j≤N are piecewise dis-
joint Borel subsets of� and (βi , ς i , ς0i, j )1≤ j≤N are boundedFτi -measurable random
variables.

The strategy is taken from Ref. [8] and consists in splitting H̃(χ̌T ) − H̃(χ̌0) into

H̃(χ̌T ) − H̃(χ̌0) =
K−1∑
k=0

(
H̃(χ̌tk+1) − H̃(χ̌tk )

)
,

where 0 = t0 < · · · < tK = T is a subdivision of [0, T ] of step h such that, for
any k ∈ {0, . . . , K − 1}, there exists some i ∈ {0, . . . , M − 1} such that [tk, tk+1) ⊂
[τi , τi+1). We then start with approximating a general increment H̃(χ̌tk+1)− H̃(χ̌tk ),
omitting to specify the dependence upon ω0. By Taylor’s formula, we know that we
can find some δ ∈ [0, 1] such that

H̃(χ̌tk+1) − H̃(χ̌tk )

= DH̃(χ̌tk ) · (χ̌tk+1 − χ̌tk )

+ 1

2
D2 H̃

(
χ̌tk + δ(χ̌tk+1 − χ̌tk )

)(
χ̌tk+1 − χ̌tk , χ̌tk+1 − χ̌tk

)

= DH̃(χ̌tk ) · (χ̌tk+1 − χ̌tk ) + 1

2
D2 H̃(χ̌tk )

(
χ̌tk+1 − χ̌tk , χ̌tk+1 − χ̌tk

)

+ 1

2

[
D2 H̃

(
χ̌tk + δ(χ̌tk+1 − χ̌tk )

)− D2 H̃
(
χ̌tk

)](
χ̌tk+1 − χ̌tk , χ̌tk+1 − χ̌tk

)
.

(76)

By Kolmogorov continuity theorem, we know that, P0 almost surely, the mapping
[0, T ] � t 
→ χ̃t ∈ L2(�̃1, F̃1, P̃1;Rd) is continuous. Therefore, P0 almost surely,
the mapping (s, t, δ) 
→ D2 H̃(χ̌t + δ(χ̌s − χ̌t )) is continuous from [0, T ]2 × [0, 1]
to the space of bounded operators from L2(�̃1, F̃1, P̃1;Rd) into itself, which proves
that, P0 almost surely,

lim
h↘0

sup
s,t∈[0,T ],|t−s|≤h

sup
δ∈[0,1]

|||D2 H̃
(
χ̌t + δ(χ̌s − χ̌t )

)− D2 H̃
(
χ̌t
)|||2,�̃1 = 0,
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|||·|||2,�̃1 denoting the operator normon the space of bounded operators on L2(�̃1, F̃1,

P̃
1;Rd). Now,

∣∣∣∣
K−1∑
k=0

[
D2 H̃

(
χ̌tk + δ(χ̌tk+1 − χ̌tk )

)− D2 H̃
(
χ̌tk

)](
χ̌tk+1 − χ̌tk , χ̌tk+1 − χ̌tk

)∣∣∣∣

≤ sup
s,t∈[0,T ],|t−s|≤h

sup
δ∈[0,1]

|||D2 H̃
(
χ̌t + δ(χ̌s − χ̌t )

)

− D2 H̃
(
χ̌t
)|||2,�̃1

K−1∑
k=0

‖χ̌tk+1 − χ̌tk ‖2L2(�̃)
.

Since

E
0
[K−1∑

k=0

‖χ̌tk+1 − χ̌tk ‖2L2(�̃)

]
≤ C

K−1∑
k=0

(
tk+1 − tk

) ≤ CT,

we deduce that

∣∣∣∣
K−1∑
k=0

[
D2 H̃

(
χ̌tk +δ(χ̌tk+1−χ̌tk )

)−D2 H̃
(
χ̌tk

)]·(χ̌tk+1−χ̌tk , χ̌tk+1−χ̌tk

)∣∣∣∣→ 0 (77)

in P
0 probability as h tends to 0. We now compute the various terms appearing in

(76). We write

DH̃(χ̌tk ) · (χ̌tk+1 − χ̌tk ) = DH̃(χ̌tk ) ·
tk+1∫

tk

β̃s(ω
0, ·)ds

+ DH̃(χ̌tk ) ·
[( tk+1∫

tk

∫

�

ς̃0s,ξW 0(dξ, ds)

)
(ω0, ·)

]

+ DH̃(χ̌tk ) ·
[( tk+1∫

tk

ς̃sdW̃s

)]
(ω0, ·).

Assume that, for some 0 ≤ i ≤ M − 1, τi ≤ tk < tk+1 ≤ τi+1. Then,

DH̃(χ̌tk ) ·
tk+1∫

tk

β̃s(ω
0, ·)ds = (tk+1 − tk

)
DH̃(χ̌tk ) · β̃tk (ω

0, ·). (78)

Note that the right-hand side is well-defined as βtk is bounded. Similarly, we notice
that
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DH̃(χ̌tk ) ·
[( tk+1∫

tk

ς̃sdW̃s

)
(ω0, ·)

]
= (tk+1− tk

)
DH̃(χ̌tk ) ·

[
ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)]
.

Now, using the specific form of DH̃ , DH̃(χ̌tk (ω
0)) = (ω̃1 
→ ∂μH(L(χ̌tk (ω

0)))

(χ̃tk (ω
0, ω̃1)) appears to be a F̃tk -measurable random variable, and as such, it is

orthogonal to ς̃tk (ω
0, ·)(W̃tk+1 − W̃tk ), which shows that

DH̃(χ̌tk ) ·
[( tk+1∫

tk

ς̃sdW̃s

)
(ω0, ·)

]
= 0. (79)

Finally,

DH̃(χ̌tk ) ·
[( tk+1∫

tk

∫

�

ς̃0s,ξW 0(dξ, ds)

)
(ω0, ·)

]

= DH̃(χ̌tk ) ·
[ N∑

j=1

ς̃0i, j (ω
0, ·)W 0(A j × [tk, tk+1)

)
(ω0)

]
.

Now, W 0
(

A j ×[tk, tk+1)
)
(ω0) behaves as a constant in the linear form above. There-

fore,

DH̃(χ̌tk ) ·
[( tk+1∫

tk

∫

�

ς̃0s,ξW 0(dξ, ds)

)
(ω0, ·)

]

=
N∑

j=1

DH̃(χ̌tk ) · ς̃0i, j (ω
0, ·)W 0(A j × [tk, tk+1)

)
(ω0)

=
[ tk+1∫

tk

∫

�

{
DH̃(χ̌tk ) · ς̃0s,ξ(ω

0, ·)}W 0(dξ, ds)

]
(ω0). (80)

Therefore, in analogy with (77), we deduce from (78), (79) and (80) that

K−1∑
k=0

DH̃(χ̌tk )·(χ̌tk+1−χ̌tk ) →
T∫

0

DH̃(X̃s)·β̌sds+
T∫

0

∫

�

{
DH̃(χ̌s)·ς̌0s,ξ

}
W 0(dξ, ds),

in P0 probability as h tends to 0.

We now reproduce this analysis for the second order derivatives. We need to
compute:
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�k := D2 H̃(χ̌tk )
[
β̃tk (ω

0, ·)(tk+1 − tk
)+ ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)

+
N∑

j=1

ς̃0i, j (ω
0, ·)W 0([tk, tk+1) × A j

)
(ω0),

β̃tk (ω
1, ·)(tk+1 − tk

)+ ς̃tk (ω
0, ·)(W̃tk+1 − W̃tk

)

+
N∑

j=1

ς̃0i, j (ω
0, ·)W 0([tk, tk+1) × A j

)
(ω0)

]
.

Clearly, the drift has very low influence on the value of�k . Precisely, for investigating
the limit (inP0 probability) of

∑K−1
k=0 �k , we can focus on the ‘reduced’ version of�k :

�k := D2 H̃(χ̌tk )
[
ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)+
N∑

j=1

ς0i, j (ω
0, ·)W 0([tk, tk+1) × A j

)
(ω0),

ς̃tk (ω
0, ·)(W̃tk+1 − W̃tk

)+
N∑

j=1

ς0i, j (ω
0, ·)W 0([t, t + h] × A j

)
(ω0)

]
.

We first notice that

D2 H̃(χ̌tk )
[
ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)
, ς̃0i, j (ω

0, ·)W 0([tk, tk+1) × A j
)
(ω0)

] = 0

(and the same for the symmetric term), the reason being that

D2 H̃(χ̌tk )
[
ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)
, ς̃0i, j (ω

0, ·)W 0([tk, tk+1) × A j
)
(ω0)

]

= lim
ε→0

ε−1[DH̃
(
χ̌tk + ες̃0i, j (ω

0, ·)W 0([tk, tk+1) × A j
)
(ω0)

)

− DH̃(χ̌tk )
] · [ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)]
,

which is zero by the independence argument used in (79). Following the proof of
(80),

D2 H̃(χ̌tk )
[ N∑

j=1

ς̃0i, j (ω
0, ·)W 0([tk, tk+1) × A j

)
(ω0),

N∑
j=1

ς̃0i, j (ω
0, ·)W 0([tk, tk+1) × A j

)
(ω0)

]

=
N∑

j, j ′=1

D2 H̃(χ̌tk )
[
ς̃0i, j (ω

0, ·), ς̃0i, j ′(ω
0, ·)]

× W 0([tk, tk+1) × A j
)
(ω0)W 0([tk, tk+1) × A j ′

)
(ω0).
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The second line reads as a the bracket of a discrete stochastic integral. Letting
ς̌0i, j (ω

0) = ς̃0i, j (ω
0, ·), it is quite standard to check

K−1∑
k=0

N∑
j, j ′=1

D2 H̃(χ̌tk )
[
ς̌0i, j , ς̌

0
i, j ′
]
W 0([tk, tk+1) × A j

)
W 0([tk, tk+1) × A j ′

)

−
K−1∑
k=0

N∑
j=1

D2 H̃(χ̌tk )
[
ς̌0i, j , ς̌

0
i, j

](
tk+1 − tk

)
ν(A j ) → 0

in P0 probability as h tends to 0. Noticing that

K−1∑
k=0

N∑
j=1

D2 H̃(χ̌tk )
[
ς̌0i, j , ς̌

0
i, j

](
tk+1 − tk

)
ν(A j )

=
K−1∑
k=0

tk+1∫

tk

∫

�

D2 H̃(χ̌tk )
[
ς̌0s,ξ, ς̌

0
s,ξ

]
dν(ξ)ds,

we deduce that

K−1∑
k=0

N∑
j, j ′=1

D2 H̃(χ̌tk )
[
ς̌0i, j , ς̌

0
i, j ′
]
W 0([tk, tk+1) × A j

)
W 0([tk, tk+1) × A j ′

)

−
T∫

0

∫

�

D2 H̃(χ̌s)
[
ς̌0s,ξ, ς̌

0
s,ξ

]
dν(ξ)ds → 0

in P0 probability as h tends to 0. It remains to compute

D2 H̃(χ̌tk )
[
ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)
, ς̃tk (ω

0, ·)(W̃tk+1 − W̃tk

)]
.

Recall that this is the limit

lim
ε→0

1

ε2
[
H̃
(
χ̃tk (ω

0, ·) + ες̃tk (ω
0, ·)(W̃tk+1 − W̃tk )

)

+ H̃
(
χ̃tk (ω

0, ·) − ες̃tk (ω
0, ·)(W̃tk+1 − W̃tk )

)− 2H̃
(
χ̃tk (ω

0, ·))],

which is the same as

lim
ε→0

1

ε2
[
H̃
(
χ̃tk (ω

0, ·) + ες̃tk (ω
0, ·)√tk+1 − tk G̃

)− H̃
(
χ̃tk (ω

0, ·))],

where G̃ is independent of (W̃t )0≤t≤T , and N (0, 1) distributed. Therefore,
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D2 H̃(χ̌tk )
[
ς̌tk

(
W̃tk+1 −W̃tk

)
, ς̌tk

(
W̃tk+1 −W̃tk

)] = (tk+1−tk
)
D2 H̃(χ̌tk )

[
ς̌tk G̃, σ̌tk G̃

]
,

which is enough to prove that

K−1∑
k=0

D2 H̃(χ̌tk )
[
ς̌tk

(
W̃tk+1 − W̃tk

)
, ς̌tk

(
W̃tk+1 − W̃tk

)]→
T∫

0

D2 H̃(χ̌s)
[
ς̌s G̃, ς̌s G̃

]
ds

in P0 probability as h tends to 0.
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The Filtering Equations Revisited

Thomas Cass, Martin Clark and Dan Crisan

Abstract The problem of nonlinear filtering has engendered a surprising number
of mathematical techniques for its treatment. A notable example is the change-
of–probability-measure method introduced by Kallianpur and Striebel to derive the
filtering equations and the Bayes-like formula that bears their names. More recent
work, however, has generally preferred other methods. In this paper, we reconsider
the change-of-measure approach to the derivation of the filtering equations and show
that many of the technical conditions present in previous work can be relaxed. The
filtering equations are established for general Markov signal processes that can be
describedby amartingale-problem formulation.Two specific applications are treated.

Keywords Measure valued processes · Non-linear filtering · Kallianpur-Striebel
formula · Change of probability measure method · Kazamaki criterion

1 Introduction

The aim of nonlinear filtering is to estimate an evolving dynamical system, customar-
ily modelled by a stochastic process and called the signal process. The signal process
cannot be measured directly, but only via a related process, termed the observation
process. The filtering problem consists in computing the conditional distribution of
the signal at the current time given the observation data accumulated up to that time.
In order to describe the contribution of the paper, we start with a few historical
comments on the subject.
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The development of the modern theory of nonlinear filtering started in the sixties
with the publications of Stratonovich [35, 36], Kushner [14, 15] and Shiryaev [33]
for diffusions and Wonham for pure-jump Markov processes [38]; these introduced
the basic form of the class of stochastic differential equations for the conditional dis-
tributions of partially observedMarkov processes, which are now known generically
as the filtering equation. This class of equations has inspired authors to introduce
a rich variety of mathematical techniques to justify their structure, together with
that of their un-normalized form, the Zakai (or Duncan-Mortensen-Zakai) equation,
[9, 23, 41], and to establish the existence, uniqueness and regularity of their solu-
tions. A description of much of the work on this equation and its generalizations can
be found in [13] for papers before 1980, in [16, 17] for papers before 2000 and in
[2, 6, 39] for more recent work.

For instance, Fujisaki et al. [10] exploited a stochastic-integral representation
theorem in order to enable them to express conditional distributions as functionals of
an “innovations” martingale (a concept introduced in the Gaussian case by Kailath
[20]). Krylov et al. [18, 19, 24], Chap. 6 in [6] and other authors developed a general
theory of stochastic partial differential equations that led to a direct ‘PDE’ approach to
the filtering equations, but there aremany other approaches For example, see thework
ofGrigelionis andMikulevicius on filtering for signal and observation processeswith
jumps [4, Chap. 4] and that of Kurtz and Nappo on the filtered martingale problem
[4, Chap.5].

In parallelwith the above developments, Snyder [34], Brémaud [3] and vanSchup-
pen [28] have initiated the study of the filtering problem for observations of counting
process type. A large number of papers have been written on this class of filtering
problems. Some of the early contributors to this topic include Boel, Davis, Segal,
Varaiya, Willems and Wong, see [7, 29–32, 37]. Also, Grigelionis [11] looked at
filtering problems with common jumps of the unobserved state process and of the
observations. For further developments in this directions see [4, Chap. 10].

A probabilistic approach, initially considered formally by Bucy [4], but developed
in detail by Kallianpur and Striebel [21, 22], made use of a functional form of Bayes
formula for processes, now known as the Kallianpur-Striebel formula. This tech-
nique, which is based on a change of probability measure that makes, at each time,
the future observation process independent of past processes, is effective for filtering
problems in which the observation process is of the “signal plus white noise” variety,
where the signal is independent of the noise process, but less so for the “correlated
case”; that is, for problems in which observed and unobserved components are cou-
pled via a common noise process. For this reason, among probabilistic methods, the
“innovations” approach is often preferred to the “change of measure” method. The
awkwardness in the application of the latter results from the fact that an exponential
local martingale, constructed via Girsanov’s theorem as a process of potential den-
sities, has to be verified as a true martingale, and this is generally requires ad hoc
techniques peculiar to the particular filtering problem being considered.

In this paper we re-visit the change-of-measure method and show that it can be
used to derive the filtering equations for a broad class of Markov processes with
coupled observed and unobserved components. This class includes diffusions with
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jumps obeying onlymild linear growth conditions on their characteristic coefficients.
Propositions are also presented that serve to test whether the filtering equations are
derivable by the change-of-measure method for a particular filtering problem.

2 The Filtering Framework

Let (�,F ,P) be a probability space together with a filtration (Ft)t≥0 which satisfies
the usual conditions.1 On (�,F ,P)weconsider anFt-adapted processX with càdlàg
paths. The processX consists in a pair of processesX and Y ,X = (X, Y). The process
X is called the signal process and is assumed to take values in a complete separable
metric space S (the state space). The process Y is assumed to take values in Rm and
is called the observation process.

Let B(S × R
m) be the associated product Borel σ-algebra on S × R

m and
bB(S × R

m) be the space of bounded B(S × R
m)-measurable functions. Let

A : bB(S × R
m) → bB(S × R

m) and write D(A) ⊆ bB(S × R
m) for the domain

of A. We assume that 1 ∈ D(A) and A1 = 0. In the following we will assume that
the distribution of X0 is π0 ∈ P(S) and that Y0 = 0. Since Y0 = 0, the initial
distribution of X, is identical with the conditional distribution of X0 given Y0 and
we use the same notation for both. Further we will assume that X is a solution of
the martingale problem for (A,π0 × δ0). In other words, we assume that the process
Mϕ = {Mϕ

t , t ≥ 0} defined as

Mϕ
t = ϕ(Xt) − ϕ(X0) −

t∫

0

Aϕ(Xs)ds, t ≥ 0, (1)

is anFt-adaptedmartingale for anyϕ ∈ D(A). In addition, let h = (hi)
m
i=1 : S → R

m

be a measurable function such that

P

⎛
⎝

t∫

0

∣∣∣hi(Xs)

∣∣∣
2

ds < ∞
⎞
⎠ = 1. (2)

for all t ≥ 0. Let W be a standard Ft-adapted m-dimensional Brownian motion
definedon (�,F ,P).Wewill assume thatY satisfies the following evolution equation

1 The probability space (�,F,P) together with the filtration (Ft)t≥0 satisfies the usual conditions
provided: a. F is complete i.e. A ⊂ B, B ∈ F and P(B) = 0 implies that A ∈ F and P(A) = 0,
b. The filtration Ft is right continuous i.e. Ft = Ft+. c. F0 (and consequently all Ft for t ≥ 0)
contains all the P-null sets.
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Yt =
t∫

0

h(Xs) ds + Wt . (3)

To complete the description we need to identify the covariation process between
Mϕ = {Mϕ

t , t ≥ 0} and W . For this we introduce m operators Bi : bB(S × R
m) →

bB(S × R
m), i = 1, . . . , m with D(A) ⊆ D(Bi) ⊆ bB(S × R

m). We assume that
1 ∈ D(A) and A1 = 0. We will assume that,

〈
Mϕ, W i

〉
t
=

t∫

0

Biϕ
(
Xs
)

ds +
t∫

0

∂ϕ

∂yi

(
Xs
)

ds, (4)

for any t ≥ 0 and for test functions ϕ both in the domain of A and with bounded
partial derivatives in the y direction. In particular, for functions that are constant in
the second component, then we have

〈
Mϕ, W

〉
t =

t∫

0

Biϕ (Xs, Ys) ds. (5)

Let {Yt, t ≥ 0} be the usual augmentation of the filtration associated with the process
Y , viz

Yt =
⋂
ε>0

σ(Ys, s ∈ [0, t + ε]) ∨ N , Y =
∨

t∈R+

Yt . (6)

where N is the class of all P-null sets. Note that Yt is Ft-adapted, hence Yt ⊂ Ft .
In the following we will assume that Yt is a right continuous filtration.

Definition 1 The filtering problem consists in determining the conditional distribu-
tion πt of the signal X at time t given the information accumulated from observing
Y in the interval [0, t]; that is, for ϕ ∈ bB(S), computing

πt(ϕ) = E[ϕ(Xt) | Yt]. (7)

There exists a suitable regularisation of the process π = {πt, t ≥ 0}, so that
πt is an optional Yt-adapted probability measure-valued process for which (7) holds
almost surely. 2 In addition, sinceYt is right-continuous, it follows that π has a càdlàg
version (see Corollary 2.26 in [2]). In the following, we take π to be this version.

In the following we deduce the evolution equation for π. A new measure is con-
structed under which Y becomes a Brownian motion and π has a representation in
terms of an associated unnormalised version ρ. This ρ is then shown to satisfy a linear
evolution equation which leads to the evolution equation for π by an application of
Itô’s formula.

2 See Theorem 2.1 in [2].
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2.1 Preliminary Results

Definition 2 We define H1 (P) to be the set of càdlàg real-valued Ft-martingales
M = {Mt, t ≥ 0} such that the associated process M∗ = {M∗

t , t ≥ 0} defined as
M∗

t := sup0≤s≤t |Ms| for t ≥ 0 is a submartingale. In particular, E [Mt] < ∞. for
any t ≥ 0.

Remark 3 H1 (P) together with the distance function

d (M, N) :=
∞∑

n=1

1

2n
min

(
E
[
(M − N)∗n

]
, 1
)

is a Fréchet space with translation invariant metric. Suppose (Wt)t≥0 is anR
d-valued

Brownian motion and H = (Hi)d
i=1 is an Ft-adapted measurable Rd-valued process

such that

P

⎛
⎝

t∫

0

|Hs|2 ds < ∞
⎞
⎠ = 1. (8)

Define Z = (Zt)t≥0 to be the exponential local martingale3

Zt = exp

⎛
⎝

t∫

0

H�
s dWs − 1

2

t∫

0

|Hs|2 ds

⎞
⎠ ,

where
∫ t
0 H�

s dWs := ∑d
i=1

∫ t
0 Hi

sdW i
s .

Lemma 4 (The Z logZ lemma) For any t ≥ 0 we have

sup
τ∈Tt

E
[
Zτ logZτ

] = 1

2
E

⎡
⎣

t∫

0

Zs |Hs|2 ds

⎤
⎦ ∈ [0,∞] , (9)

where Tt is the set of (Ft) -stopping times bounded by t. If furthermore the terms in
(9) are finite, then they are both equal to E

[
Zt log Zt

]
. We also have

E
[
Z∗

t

] ≤ e + 1

e − 1
+ e

2 (e − 1)
E

⎡
⎣

t∫

0

Zs |Hs|2 ds

⎤
⎦ ∈ [0,∞] . (10)

As an immediate consequence of this lemma we have

3 Here and later if a = (ai)
d
i=1 ∈ R

d , then |a|2 = ∑d
i=1 a2i . Hence, for example, in the expression

for Z from
∫ t
0 |Hs|2 ds = ∑d

i=1

∫ t
0

(
Hi

s

)2
ds.
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Corollary 5 If the terms in (9) are finite,then (Zt)t≥0 is a genuine martingale, uni-
formly integrable over any finite interval [0, t], that belongs to H1 (P).

Remark 6 The first part of this corollary—that Z is amartingale if the terms in (9) are
finite—is not new.At the time of going to press J. Ruf brought to the authors’ attention
that it is a consequence of the either of two more general results: see Theorem 1 and
Corollary 5 in [27]. The additional generality of these results is in fact unnecessary
for us. Since the governing considerations of our presentation are those of economy
and self-sufficiency, we include a short proof of our result below.

Proof Let Lt := Zt log Zt for t ≥ 0. If we assume that supτ∈Tt
E [Lτ ] is finite, then

for all K ≥ e

sup
τ∈Tt

E
[|Zτ | 1{|Zτ |≥K}

] ≤ sup
τ∈Tt

E
[|Zτ | logZτ 1{|Zτ |≥K}

]

logK
≤ 1

logK

(
sup
τ∈Tt

E [Lτ ] + e−1

)

the right hand side of which tends to zero as K → ∞. Hence the family random
variables

{Zτ : τ ∈ Tt}

is uniformly integrable.Z is thus amartingale over [0, t] andL, by Jensen’s inequality,
is a submartingale. Using P (0 < Zt < ∞, for all t < ∞) = 1 we have from Itô’s
formula that

Lt =
t∫

0

(1 + logZs) ZsH
�
s dWs

︸ ︷︷ ︸
:=Mt

+ 1

2

t∫

0

Zs |Hs|2 ds

︸ ︷︷ ︸
:=At

.

M is a local martingale; hence the stopped process Mσn· := M·∧σn is a martingale
for some localising sequence 0 ≤ σn ≤ σn+1 ↑ ∞ as n → ∞. For any τ ∈ Tt we
obtain

E
[
Lσn

τ

] = E
[
Aσn

τ

] ≤ E [Lτ ] ≤ E [Lt] .

Then, using Fatou’s lemma4 and the monotone convergence theorem, we have

E [Lτ ] ≤ lim inf
n→∞E

[
Lσn

τ

] = lim inf
n→∞E

[
Aσn

τ

] = E [Aτ ] ≤ E [Lτ ] ≤ E [Lt] .

Finally taking the supremum over τ ∈ Tt yields

E [Lt] ≤ sup
τ∈Tt

E [Lτ ] ≤ sup
τ∈Tt

E [Aτ ] ≤ E [At] ≤ sup
τ∈Tt

E [Lτ ] ≤ E [Lt] .

and the equality (9) holds in this case. If instead we know that E [At] < ∞, then by
defining the sequence of stopping times (τn)

∞
n=1 , 0 ≤ τn ≤ τn+1 by

4 Which we may do since L is bounded from below by −e−1.
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τn = inf

{
t ≥ 0 : |Zt | = 1

n
or |Zt | = n

}

we have

E

[
M2

t∧τn

]
= E

⎡
⎣

t∧τn∫

0

(1 + logZs)
2 Z2

s |Hs|2 ds

⎤
⎦ ≤ 2n2 (1 + log n)2 E [At] < ∞.

From this we deduce that the stopped process Mτn· := M·∧τn is a square-integrable
martingale over [0, t] . Combining this with the fact that At∧τn ≤ At yields

E
[
Lτ∧τn

] = E
[
Aτ∧τn

] ≤ E [At]

for any τ ∈ Tt . We notice that τn ↑ ∞, and hence Zt∧τn → Zt a.s. as n → ∞. Then
applying Fatou’s lemma and taking the supremum over all τ ∈ Tt then gives that
supτ∈Tt

E [Lτ ] ≤ E [At] < ∞. The equality

E [Lt] = E [At] = sup
τ∈Tt

E [Lτ ] ∈ [0,∞)

then follows from the first part of the proof. It is clear from the argument that At is
not integrable if and only if supτ∈Tt

E [Lτ ] = ∞.

Turning attention to (10), we observe that the stopped process Lτn is a bounded
submartingale, with a bounded martingale part given by Mτn . Hence, by a modifica-
tion of a standard maximal inequality (see p. 52 in [25]), we deduce that

E
[(

Zτn
)∗

t

] ≤ e + 1

e − 1
+ e

e − 1
E
[
Lt∧τn

]

≤ e + 1

e − 1
+ e

e − 1
E
[
At∧τn

]
.

The proof is finished by an application of the monotone convergence theorem. �

Remark 7 (A comparison with Kazamaki’s criterion) The criterion of finite trans-
formed average energy:

E

⎡
⎣

t∫

0

Zs |Hs|2 ds

⎤
⎦ < ∞, (11)

turns out to be a criterion for Z to be a martingale that is independent of Kazamaki’s
criterion—and therefore of Novikov’s criterion—in the sense that one is sometimes
applicable when the other is not.

We give two examples to illustrate this. First, we can make use of a simple
example introduced in Revuz and Yor [25] (p. 366, Exercise 2.10.40) in which
Kazamaki’s criterion fails. Let W be a scalar Brownian motion with W0 = 0
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and set Ht = αWt for some α > 0. Recall that Kazamaki’s criterion is that
exp

( 1
2

∫ ·
0 HT

s dWs
)
should be a submartinagle. But, as Revuz and Yor point out,

Z· = exp
(
α
∫ ·
0 WsdWs − α2

2

∫ ·
0 W 2

s ds
)
is a true martingale on [0,∞) for all α, but

exp
(

α
2

∫ t
0 WsdWs

)
ceases to be a submartingale for t ≥ α−1. However, under the

transformed probability measure P̃, defined on the σ-ring ∪t≥0Ft by

dP̃

dP

∣∣∣∣∣Ft

= Zt,

W is turned into a Gaussian semimartingale satisfying

Wt =
t∫

0

αWsds + Bt

for some
(
{Ft}t≥0 , P̃

)
Brownian motion B. But W can also be expressed as

Wt =
t∫

0

eα(t−s)dBs

and then it is straightforward to show that for all t ≥ 0

E

⎡
⎣

t∫

0

ZsH
2
s ds

⎤
⎦ = Ẽ

⎡
⎣α2

t∫

0

W 2
s ds

⎤
⎦ = 1

4

(
e2αt − 2αt − 1

)
.

Hence the transformed average energy condition is applicable in this case.
To give an example in the other direction, we construct a stopping time S < 1

a.s., a continuous local martingale X on [0, 1] with quadratic variation

〈X〉· =
S∧·∫

0

dr

(1 − r)2

such that e
1
2 X· is a submartingale on [0, 1] and the transformedaverage energy satisfies

E

⎡
⎣

1∫

0

ζr

(1 − r)2
dr

⎤
⎦ = E

⎡
⎣

S∫

0

ζr

(1 − r)2
dr

⎤
⎦ = ∞,
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where ζ is the exponential local martingale ζt = eXt− 1
2 〈X〉t . For this example, Kaza-

maki’s criterion implies that ζ is a martingale on the closed interval [0, 1] , while the
average energy condition fails to do so for t = 1.

Suppose W is an {Ft}-adapted Brownian motion, null at zero, on a filtered prob-

ability space
(
�,F , {Ft}t≥0 , P̃

)
and N is an F0−measurable integer-valued ran-

dom variable, independent of W , with distribution under P given by P (N = n) =
1/(n(n + 1)) for n ∈ N. Introduce a sequence of stopping times

Tn := inf {t ≥ 0 : Wt = −1 or Wt = n} ,

with the convention that Tn = ∞ if this set is empty.
For each n, P̃ (Tn < ∞) = 1 and WTn∧· is a zero-mean bounded martingale with

P̃
(
WTn = −1

) = n/(n+1) and P̃
(
WTn = n

) = 1/(n+1). Furthermore, by Jensen’s
inequality, exp

(− 1
2WTn∧·

)
is a positive submartingale which is bounded uniformly

in n and t by e1/2. We now let T = TN . The process e− 1
2 WT∧· is also a bounded

submartingale since for all stopping times R < S and for all n

E
P̃

[
e− 1

2 WT∧R; N = n
]

= E
P̃

[
e− 1

2 WTn∧R; N = n
]

≤ E
P̃

[
e− 1

2 WTn∧S ; N = n
]

= E
P̃

[
e− 1

2 WT∧S ; N = n
]
.

Now the strictly positive local martingale Z̃· := e−WT∧·− 1
2 T∧· is bounded and hence

is a uniformly integrable martingale of the form Z̃t = E
P̃

[
Z̃T

∣∣∣Ft

]
. Let P be the

probabilitymeasurewhich is equivalent to P̃ defined by dP =Z̃T dP̃. Define on [0,∞]
the process Y :

Yt = WT∧t + T ∧ t for t ∈ [0,∞), and

Y∞ = (WT + T) 1{T<∞}.

Girsanov’s Theorem tells us that Y is a local martingale under P . Set Zt =
(

Z̃t

)−1
.

Then Z· = eY·−T∧· on [0,∞). We need to show that e
1
2 Y· is a submartingale under

P. But this follows from the fact that for any finite stopping times R < S,

EP

[
e
1
2 YR

]
= E

P̃

[
Z̃Re

1
2 YR

]
= E

P̃

[
e− 1

2 WR
]

≤ E
P̃

[
e− 1

2 WS
]

= EP

[
e
1
2 YS

]
,

where we have used the fact that e− 1
2 W· is a submartingale under P̃. So Kazamaki’s

criterion allows us to construct a probability measure P such that, for all stopping
times S, dP =ZSdP onFS ∩{S < ∞} . Since ZS = ZS∧T = Z̃−1

S∧T , and P (T < ∞) =
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P̃ (T < ∞) = 1 the measures P and P̃ coincide on FT . Now the quadratic variation
〈Y〉· = T ∧·, and the integral in the relevant transformed average energy condition is

EP

⎡
⎣

T∫

0

Zsds

⎤
⎦ = EP [TZT ] = E

P̃
[T ]

= E
P̃

[
W 2

T

]

= P̃ (WT = −1) + E
P̃

[
W 2

T ; WT ≥ 1
]

= P̃ (WT = −1) +
∞∑

n=1

n

(n + 1)2

= ∞.

We now turn to the construction of X and ζ. Let σ : [0, 1] → [0,∞] be the time-
change σ (t) = t (1 − t)−1 . Let Xt = Yσ(t) and ζt = Zσ(t). Then X, e

1
2 X and ζ

inherit, respectively, the local martingale, the submartingale and the uniformly inte-

grable martingale properties of Y , e
1
2 Y and Z , though with respect to the filtration{Fσ(t)

}
0≤t<1 . Set S = T (1 + T)−1 ; that is, σ (S) = T . Then the quadratic variation

〈X〉t = T ∧ σ (t) = S ∧ t

1 − S ∧ t
=

S∧t∫

0

dr

(1 − r)2
.

Furthermore

EP

⎡
⎣

S∫

0

ζr

(1 − r)2
dr

⎤
⎦ = EP

⎡
⎣

T∫

0

Zsds

⎤
⎦ = ∞.

This completes the justification of the properties of the example.

Remark 8 We record four observations:

1. The proof does not require the a priori assumption that E
[∫ t

0 |Hs|2 ds
]

< ∞.

However observe that

E

⎡
⎣

t∫

0

Zs |Hs|2 ds

⎤
⎦ = E

⎡
⎣

t∫

0

E [Zt |Fs] |Hs|2 ds

⎤
⎦ = E

⎡
⎣Zt

t∫

0

|Hs|2 ds

⎤
⎦ .

2. If the Brownian motion W is independent of H then using the sequence of
stopping times (τn)

∞
n=1 , 0 ≤ τn ≤ τn+1, defined by

τn = inf {t ≥ 0 : |Ht | ≥ n} ,
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we get that

E
[
Zt∧τn |H

] = E

⎡
⎣exp

⎛
⎝

t∧τn∫

0

H�
s dWs − 1

2

t∧τn∫

0

|Hs|2 ds

⎞
⎠
∣∣∣∣∣∣
H

⎤
⎦

= exp

⎛
⎝−1

2

t∧τn∫

0

|Hs|2 ds

⎞
⎠E

⎡
⎣exp

⎛
⎝

t∧τn∫

0

H�
s dWs

⎞
⎠
∣∣∣∣∣∣
H

⎤
⎦ = 1.

In particular, the stopped process Zτn is a martingale. Moreover

E

⎡
⎣

t∧τn∫

0

Zs |Hs|2 ds

∣∣∣∣∣∣
H

⎤
⎦ =

t∫

0

E
[

Zs∧τn

∣∣H
] ∣∣Hs∧τn

∣∣2 ds =
t∧τn∫

0

|Hs|2 ds.

Hence, by an application of the monotone convergence theorem

E

⎡
⎣

t∫

0

Zs |Hs|2 ds

⎤
⎦ = E

⎡
⎣

t∫

0

|Hs|2 ds

⎤
⎦ .

By the same argument one can prove directly that Z is a martingale under the
weaker condition (8). This result is contained in Lemma 11.3.1 of [13].

3. Assume that E [At] < ∞ for all t ≥ 0, then (Z − 1) is a zero-mean martingale
and E

[
(Z − 1)∗t

]
< 1+ E

[
Z∗

t

]
< ∞. Since 〈Z − 1〉t = ∫ t

0 Z2
s |Hs|2 ds the

Burkholder-Davis-Gundy inequalities give

E

⎡
⎢⎣
⎛
⎝

t∫

0

Z2
s |Hs|2 ds

⎞
⎠

1/2
⎤
⎥⎦ < ∞

for all t ≥ 0.
4. The finiteness of the transformed average energy does not imply that the average

energy itself is finite. The following example illustrates this. Let W = (Wt)0≤t≤1
be a one-dimensional (Ft)0≤t≤1 -adapted Brownian motion with W0 = 0, and
suppose that F0 carries a uniform [0, 1] random variable which is independent
of W. Then we will prove there exists an (Ft)-optional process H = (Ht)0≤t≤1
such that the local martingale Z given by

Zt = exp

⎛
⎝

t∫

0

HsdWs − 1

2

t∫

0

H2
s ds

⎞
⎠
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is a martingale on [0, 1] for which

E

⎡
⎣

1∫

0

ZsH
2
s ds

⎤
⎦ < ∞ and E

⎡
⎣

1∫

0

H2
s ds

⎤
⎦ = ∞.

To construct Z we will make use of the Gaussian martingale Bt = ∫ t
0

1
1−s dWs

defined on [0, 1). We notice that (1 − t) Bt is a Brownian bridge on [0, 1) and
the related process Vt := exp

[
Bt − t

2(1−t)

]
is just the martingale of densities

on (Ft)0≤t<1 that turns W into a Brownian bridge, cf. [25]. But the property we
exploit is the existence of a Brownian motion B on [0,∞) such that Bt = B σ(t)

wherein σ (t) := t (1 − t)−1 . Let

Xt =
t∫

0

Vsds

(1 − s)2

be defined on [0, 1] and introduce the sequence of stopping times

Tn = inf

{
t ≥ 0 : Xt = n (1 − t)

n (1 − t) + t

}
.

SinceX· is non-negative and increasingwithX0 = 0 and the function t �→ n(1−t)
n(1−t)+t

is strictly decreasing to 0, each Tn is strictly less than one. Furthermore
the sequence (Tn)

∞
n=1 increases to a limit T∞ ≤ 1. We need to prove that

P (T∞ = 1) > 0. Using the fact that

lim
n→∞

n (1 − t)

n (1 − t) + t
= 1 for all t < 1,

it follows that P (T∞ = 1) = P (X1 < 1) . However,

X1 =
1∫

0

1

(1 − t)2
exp

[
Bt − t

2 (1 − t)

]
dt

=
∞∫

0

exp

(
Bt − 1

2
s

)
ds

and it is a result of Dufresne [8] (see also Yor [40], p. 15) that this latter inte-
gral is distributed as twice the inverse of a standard exponential random vari-
able Y . In particular P (X1 < 1) = P (Y > 2) = e−2, from which it follows

that P (T∞ = 1) > 0 and, that, E
[

T∞
1−T∞

]
= ∞. The monotone convergence
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theorem implies that the sequence

m (n) := E

[
Tn

1 − Tn

]
↑ ∞ as n → ∞.

Let U be the uniform [0, 1] random variable on F0 referred to earlier. We can
construct, as ameasurable function ofU , an integer randomvariableN satisfying

E [m (N)] = ∞.

If T denotes the stopping time TN then T < 1, but also

E

[
T

1 − T

]
= E [m (N)] = ∞.

Finally we take Zt := Mt∧T on [0, 1] and define H to be the corresponding
integrand

Ht =
{

(1 − t)−1 on [0, T)

0 on [T , 1]
,

whereupon we have

E

⎡
⎣

1∫

0

ZsH
2
s ds

⎤
⎦ = E [XT ] = E

[
N (1 − T)

N (1 − T) + T

]
< 1, but

E

⎡
⎣

1∫

0

H2
s ds

⎤
⎦ = E

⎡
⎣

T∫

0

1

(1 − t)2
dt

⎤
⎦ = E

[
T

1 − T

]
= ∞

as required.

Remark 9 For any K > 0, it is possible to decompose the local martingale M as

M = Msq,K + Md,K ,

where Msq,K is a locally square-integrable martingale with jumps bounded by a con-
stant K and Md,K is a purely discontinuous local martingale with locally integrable
total variation, with jumps greater than K , in such a manner that the quadratic varia-
tion process

[
Msq,K , Md,K

]
is identically equal to 0. In what follows we will discard

the dependence on the constant K in the notation for Msq,K and Md,K . The first part
of the statement is essentially Proposition I.4.17 in [12] while the second part follows
from Theorem I.4.18 of the same reference, i.e., from the classical decomposition of
the local martingale Msq into its continuous and purely discontinuous parts

Msq = Msq,c + Msq,d .
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We have that [
Msq, Md

]
=
[
Msq,c, Md

]
+
[
Msq,d, Md

]
= 0.

Here
[
Msq,c, Md

]
is null since it is the quadratic variation between a continuous and

a purely discontinuous martingale and
[
Msq,d, Md

]
is null since it is the quadratic

variation of two purely discontinuous martingales with no jumps occurring at the
same time.

For the following proposition, we introduce a positive Ft -adapted càdlàg semi-
martingale of the form

Ut = U0 +
t∫

0

asds + Mt,

where a is a measurable Ft-adapted process and M is a local Ft-martingale null at
zero.5 We also assume that E [U0] < ∞ and additionally that the quadratic variation
processes

〈
W i, M

〉
i = 1, . . . , m are absolutely continuous. In particular, there exists

a measurable m-dimensional Ft-adapted process N = (Ni)m
i=1 such that

〈
W i, M

〉
t
=

t∫

0

Ni
sds, t ≥ 0, i = 1, . . . , m.

Moreover we will assume that there exists a positive constant c such that

max
(
|at | , |Nt |2

)
≤ cmax (Ut, Ut−) , t ≥ 0. (12)

Proposition 10 Assume that the Ft -adapted measurable process H = (Hi)d
i=1

satisfies the inequality

|Ht |2 ≤ cmax (Ut, Ut−) t ≥ 0. (13)

Then the functions t → E
[
Zt |Ht |2

]
, t → E

[|Ht |2
]

are locally bounded. In particular
Lemma 4 allows us to deduce that the process Z is a H1 (P) martingale.

Proof Let (Tn)n>0 be a localizing sequence of stopping times such that the stopped

process
(

Msq
Tn∧·

)
is a square integrable martingale and the process

(
Md

Tn∧·
)
is a mar-

tingale with integrable total variation V ar
(
Md

)
Tn∧·. Now introduce the localizing

sequence (Sn)n>0 where

5 We will use the notation [·, ·] to denote the quadratic variation process of two local martingales.
In addition, we will use the notation 〈·, ·〉 to denote the predictable quadratic variation process of
two locally square integrable martingales. The two processes coincide if one of the martingales is
continuous. For further details see, for example, Chap.4 of [26].



The Filtering Equations Revisited 143

Sn = inf

⎧⎨
⎩t ≥ 0

∣∣∣∣∣∣
max

⎧⎨
⎩Zt,

t∫

0

|as| ds, Ut−

⎫⎬
⎭ ≥ n

⎫⎬
⎭ ∧ Tn.

Note that the left continuity of the processes listed in the inner brackets implies that
these processes, when stopped at Sn are bounded by n. Consider now the evolution
equation for ZU, that is

ZtUt = U0 +
t∫

0

Zs

(
as + H�

s Ns

)
ds +

t∫

0

Zs

(
H�

s dWs + dMsq
s + dMd

s

)
. (14)

It follows that the expected value of ZtUt is controlled by the sum of the expected
values of the six terms on the right hand side of (14). The stochastic integral terms
in (14), when stopped at Sn become genuine martingales. They can be controlled as
follows:

E

⎡
⎢⎣
⎛
⎝

t∧Sn∫

0

ZsUs−H�
s dWs

⎞
⎠

2⎤
⎥⎦ = E

⎡
⎣

t∧Sn∫

0

Z2
s U2

s− |Hs|2 ds

⎤
⎦

≤ cn4E

⎡
⎣

t∧Sn∫

0

max (Ut, Ut−) ds

⎤
⎦ ≤ cn5t.

Here we have used the fact that, for all t ≥ 0,
∫ t
0 P (Us �= Us−) ds = 0.We also have

that

E

⎡
⎢⎣
⎛
⎝

t∧Sn∫

0

ZsdMsq
s

⎞
⎠

2⎤
⎥⎦ = E

⎡
⎣

t∧Sn∫

0

Z2
s d

〈
Msq〉

s

⎤
⎦ ≤ n2E

[〈
Msq〉

t∧Sn

]
< ∞

E

⎡
⎣
∣∣∣∣∣∣

t∧Sn∫

0

ZsdMd
s

∣∣∣∣∣∣

⎤
⎦ ≤ nE

[
V ar

(
Md

)
Sn∧t

]
< ∞.

By taking the expectation of both sides in (14) stopped at t ∧ Sn, we deduce that

E
[
ZtUt1{t≤Sn}

] ≤ E
[
Zt∧Sn Ut∧Sn

]

= E [U0] + E

⎡
⎣

t∧Sn∫

0

Zs

(
as + H�

s Ns

)
ds

⎤
⎦
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≤ E [U0] + 2cE

⎡
⎣

t∫

0

Zs max (Us, Us−) 1{s≤Sn}ds

⎤
⎦

≤ E [U0] + 2c

t∫

0

E
[
ZsUs1{s≤Sn}

]
ds ≤ e2ct

E [U0] < ∞.

Note that the last inequality follows fromGronwall’s lemma. Since limn→∞ Sn = ∞,
we can then deduce by the monotone convergence theorem that, for all t > 0,

sup
s∈[0,t]

E [ZsUs] ≤ e2ct
E [U0] . (15)

The local boundedness of t → E
[
Zt |Ht |2

]
follows from (13) and (15). Similarly we

show that for all t > 0,

sup
s∈[0,t]

E [Us] < ∞.

by using the above argument with H = 0 for all t ≥ 0 (and therefore Zt = 1). This
in turn implies the local boundedness of the functions t → E

[|Ht |2
]
. �

3 Two Particular Cases

3.1 The Signal is a Jump-Diffusion Process

We continue to assume that the observation process follows (3), and suppose that
Xt = (Xi

t )
d
i=1, for all t ≥ 0, is a càdlàg solution of a d-dimensional stochastic

differential equation. This is driven by a triplet (V ,W, L) comprising a p-dimensional
Brownian motion V = (V j)

p
j=1, the m-dimensional Brownian motion W = (W j)m

j=1

driving the observation process Y , and an Rr-valued Lévy process L = (Lj)r
j=1 with

no centred Gaussian component and with Lévy measure F such that F ({0}) = 0.
viz.

Xi
t = Xi

0 +
t∫

0

f i(Xs−) ds +
p∑

j=1

t∫

0

σij(Xs−) dV j
s

+
m∑

k=1

t∫

0

σik(Xs−) dW k
s +

r∑
l=1

t∫

0

σ̃il(Xs−) dLl
s, (16)
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for i = 1, . . . , d. We write f = (f i)d
i=1 : Rd → R

d , σ = (σij)i=1,...,d,j=1,...,p :
R

d → R
d×p, σ = (σij)i=1,...,d,j=1,...,m : Rd → R

d×m and σ̃ = (σ̃ij)i=1,...,d,j=1,...,r :
R

d → R
d×r .

We recall that a function g : E → F between two normed spaces (E, ||·||E) and
(F, ||·||F) has at most linear growth if there exists K < ∞ such that

||g (e)||F ≤ K (1 + ||e||E)

for all e ∈ E.We record the assumptions to bemade on the coefficients in the Eq. (16).

Condition 11 We assume f , σ, σ and σ̃ are Borel and have at most linear growth.

We will use μ to denote the Poisson random measure associated with L, i.e. for
every t ≥ 0 and A ∈ B (Rr \ {0}) the random measure μ (t, ·) defined by

μ (t, A) :=
∑
0≤s≤t

1A (�Ls) .

We let ν (t, ·) := F (·) t = E [μ (1, ·)] t, where F (·) is the Lévy measure of L, and
denote the compensated measure by μ̃ (t, A) = μ (t, A) − ν (t, A) . L then has a
Lévy-Ito decomposition of the form

Lt = at +
∫

0<|ρ|<1

ρμ̃ (t, dρ) +
∫

|ρ|≥1

ρμ (t, dρ) . (17)

Condition 12 Let L = (Lt)t≥0 be a Lévy process with Lévy measure F. We assume
the square integrability condition

∫

|ρ|≥1

ρ2F (dρ) < ∞.

Remark 13 Whenever this condition is in force we have that
∫

|ρ|≥1

ρF (dρ) < ∞ for every t ≥ 0, (18)

and hence the Lévy-Ito decomposition (17) may be rewritten as

Lt = bt +
∫

Rr\{0}
ρμ̃ (t, dρ) ,

where b := a − ∫
|ρ|≥1 ρF (dρ) .
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We continue to assume the dynamics for the observation process described in (3),
and we now assume that (18) holds. We can restate this example in the language
of Sect. 2.1 by noticing that the process X = (X, Y) is a solution to a martingale
problem, with generator A now given by

Aφ (x) = Aφ (x, y)

= Lφ (x, y) +
∫

Rr\{0}

[
φ (x + σ̃(x)η, y) − φ (x, y)

−
d∑

i=1

r∑
l=1

∂φ (x, y)

∂xi
σ̃il(x)ηl

]
F (dη)

where

L =
d∑

i=1

f̃ i(x)
∂

∂xi
+

m∑
k=1

hk(x, y)
∂

∂yk

+ 1

2

d∑
i,j=1

(
aij (x) + aij (x)

) ∂2

∂xi∂xj
+ 1

2

m∑
k=1

∂2

∂x2k
,

with f̃ i(x) := f i(x) + bi, and a = (aij)i,j=1,...,d : Rd → R
d×d, a = (aij)i,j=1,...,d :

R
d → R

d×d are the matrix-valued function defined respectively as

aij = 1

2

p∑
k=1

σikσjk = 1

2

(
σσ�)ij

and aij = 1

2

m∑
k=1

σikσjk = 1

2

(
σσ�)ij

for all i, j = 1, . . . , d.

Toensure thefiltering equations described inSect. 6 canbe applied to this example,
we wish to establish that the functions E

[
Z· |h (X·)|2

]
and E

[|h (X·)|2
]
are locally

bounded.

Corollary 14 Assume the coefficients in (16) satisfy Condition 11 and that σ is
uniformly bounded. Let Xt = (Xi

t )
d
i=1 denote a d-dimensional jump-diffusion process

which solves (16) for all t ≥ 0. Suppose the driving Lévy process L has a Lévy
measure F which satisfies F ({0}) = 0 and has no Gaussian part. Assume Condition
12 and further suppose that X0, V, W and L are independent with E

[|X0|2
]

< ∞.

Let h : Rd → R
m be any Borel measurable function for which there exists K > 0

such that for all x ∈ R
d

|h (x)| ≤ K (1 + |x|) ,

and let Z = (Zt)t≥0 be the positive local martingale which solves Zt = 1 +∫ t
0 Zsh (Xs)

T dWs. Then E
[
Z· |h (X·)|2

]
and E

[|h (X·)|2
]

are locally bounded.
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Proof By exploiting Remark 13 we can rewrite the SDE governing X as

dXt = f̃ (Xt−) dt + σ(Xt−) dVt + σ(Xt−) dWt +
∫

Rr\{0}
σ̃(Xt−)ρ μ̃ (dt, dρ) ,

where f̃ (x) = f (x) + b (b is as given in Remark 13) is clearly still locally Lipschitz.
In order to apply the local boundedness lemma we need to find a suitable process U
and the component processes in its decomposition. To this end we let

Ut = 1 + |Xt |2 .

and use Itô’s formula to obtain

Ut = 1 + |X0|2 + 2

t∫

0

XT
s−dXs + [X, X]t ,

where the quadratic variation [X, X] may be computed as

[X, X]t =
t∫

0

tr
[
σ (Xs−)T σ(Xs−) + σ (Xs−)T σ (Xs−)

]
ds

+
t∫

0

∫

Rr\{0}
tr
[
σ̃(Xs−)ρρT σ̃(Xs−)T

]
μ (ds, dρ)

=
t∫

0

tr
[
σ (Xs−)T σ(Xs−) + σ (Xs−)T σ (Xs−)

]
ds

+
∑
0≤s≤t

tr
[
σ̃(Xs−)�Ls�LT

s σ̃(Xs−)T
]
.

Hence we may write U as

Ut = U0 +
t∫

0

asds + Mt,
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where

U0 = 1 + |X0|2
at = 2XT

t− f̃ (Xt−) + tr
[
σ (Xt−)T σ(Xt−) + σ (Xt−)T σ (Xt−)

]

+
t∫

0

∫

Rr\{0}
tr
[
σ̃(Xs−)ρρT σ̃(Xs−)T

]
F (dρ) ds

and M is the local martingale

Mt =
t∫

0

2XT
s−
[
σ(Xs−) dVs + σ(Xs−) dWs

]

+
t∫

0

∫

Rr\{0}
tr
[
σ̃(Xs−)ρρT σ̃(Xs−)T

]
μ̃ (ds, dρ) .

Condition 11 on f̃ ,σ,σ and σ̃ ensures the existence of C > 0 such that

at ≤ C (Ut− ∨ Ut) ,

moreover the boundedness of σ gives rise to the estimate

∣∣〈W, M〉′t
∣∣ = |σ(Xt−)Xt−| ≤ K |Xt−| ≤ KU1/2

t− .

The result then follows from Proposition 10. �

Remark 15 We may adapt this example to the case where X be an {Ft}-adapted
Markov process with values in a finite state space I .

3.2 The Change-Detection Filtering Problem

The following is a simple example with real-world applications which fits within the
above framework. The effect we try to capture is a sudden change in the parameters
of the model which describes the (stochastic) evolution of the observed process. The
following illustrates how such an effect might be incorporated into the framework
presented previously.

We assume that Y is the real-valued process with dynamics

Yt =
t∫

0

(
b0 + B1[T ,∞) (s)

)
Ysds + Wt,



The Filtering Equations Revisited 149

where W = {Wt, t ≥ 0} is a standard Brownian motion, b0 a constant and B and
T independent random variables, which are also independent of W. We also assume

that T ≥ 0 and that E
[
eλB2

]
< ∞ for all λ ∈ R. The process Xt = (

X1
t , X2

t

)
is then

defined by

X1
t = B and X2

t = I[T ,∞)(t), t ≥ 0,

whereupon the process Xt = (
X1

t , X2
t , Yt

)
is adapted to the filtration

{Ft}t≥0 := {
σ
(
B, I[T ,∞)(s), Ws : s ≤ t

) ∨ N }
t≥0 ,

where N is the class of null sets of the completed σ -field F∞ = σ (B, T , Ws,

s < ∞).We introduce the uniquely defined càdlàg (B (R) × Ft)-optional processes

(t, b,ω) �→ Hb
t (ω) = (

b0 + b1[T(ω),∞) (t)
)

Yb
t (ω)

(t, b,ω) �→ Yb
t (ω) =

t∫

0

Hb
s (ω) ds + Wt (ω) ,

and set Zb
t := exp

[
− ∫ t

0 Hb
s dWs − 1

2

∫ t
0 (Hs)

2 ds
]
. Notice that B is F0-measurable,

and hence the continuous process
(
ZB

t

)
t≥0 is an {Ft} -adapted exponential local

martingale. Again, as in the previous example, we need to show that the functions

E

[
ZB·

(
HB·

)2]
and E

[(
HB·

)2]
are locally bounded. To do this, fix b ∈ R and take the

terms Ut and c in Proposition 10 to be

Ut = Ub
t := 1 +

(
Yb

t

)2
and c = c (b) := 4 + (b0 + b)2 .

Thenwemay verify that the conditions of Proposition 10 are satisfied. It is immediate
from its proof that the conclusion of Proposition 10 can be strengthened to give the
estimate

max

{
E

[
Zb

t

(
Hb

t

)2]
,E

[(
Hb

t

)2]} ≤ ec(b)t
E

[
Ub
0

]
= ec(b)t .

Consequently

E

[
ZB

t

(
HB

t

)2] = E

[
E

[
Zb

t

(
Hb

t

)2]∣∣∣∣
b=B

]
≤ E

[
ec(B)t

]
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and similarly

E

[(
HB

t

)2] ≤ E

[
ec(B)t

]
.

These inequalities, together with themoment condition onB, give the required result.

4 The Change of Probability Measure Method

We now have all the ingredients required for introducing a probability measure with
respect to which the process Y becomes a Brownian motion. We return to the set-up
of Sect. 2. Define Z = (Zt)t≥0 to be the exponential local martingale

Zt = exp

⎛
⎝−

t∫

0

h
(
Xs
)�

dWs − 1

2

t∫

0

∣∣h (Xs
)∣∣2 ds

⎞
⎠ .

The change of probability measure method consists in modifying the probability
measure on � by means of Girsanov’s theorem. As we require Z to be a martingale
in order to construct the change of measure, Lemma 4 suggests the following as a
suitable condition to impose upon h,

E

⎡
⎣

t∫

0

Zs
∥∥h(Xs)

∥∥2 ds

⎤
⎦ < ∞, ∀t > 0. (19)

Let us assume that (19) holds. Then, by Lemma 4, Z is a true martingale. Let P̃
be the probability measure defined on the field

⋃
0≤t<∞ Ft that is specified by its

Radon–Nikodym derivative Zt on each Ft with respect to the corresponding trace of
P; that is, for each t ≥ 0:

dP̃

dP

∣∣∣∣∣Ft

= Zt .

P̃ restricted to each Ft is equivalent to P since Zt is a positive random variable.6

Let Z̃ = {Z̃t, t ≥ 0} be the process defined as Z̃t = Z−1
t for t ≥ 0. Under P̃, Z̃t

satisfies the following stochastic differential equation,

dZ̃t =
m∑

i=1

Z̃th
i(Xt) dYi

t (20)

6 Note that we have not defined P̃ on F∞ , where F∞ = ∨∞
t=0 Ft = σ

(⋃
0≤t<∞ Ft

)
.

http://dx.doi.org/10.1007/978-3-319-11292-3_2
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and since Z̃0 = 1,

Z̃t = exp

⎛
⎝

m∑
i=1

t∫

0

hi(Xs) dYi
s − 1

2

m∑
i=1

t∫

0

hi(Xs)
2 ds

⎞
⎠ , (21)

then Ẽ[Z̃t] = E[Z̃tZt] = 1. So Z̃ is an Ft-adapted martingale under P̃ and

dP

dP̃

∣∣∣∣Ft

= Z̃t for t ≥ 0.

P and P̃ are therefore equivalent on each Ft for t ≥ 0.

Proposition 16 If Condition (19) is satisfied, then under P̃ the observation process
Y is a Brownian motion. Let ϕ ∈ D(A) have bounded derivatives in the y -direction,
and let M̃ϕ denote the semimartingale

M̃ϕ
t := Mϕ

t +
t∫

0

m∑
i=1

(
hiBiϕ + ∂ϕ

∂yi

) (
Xt
)
ds.

Then the stochastic integral
∫ ·
0 Z̃sdM̃ϕ

s is a zero-mean martingale under P̃.

Proof Lemma 4, together with Condition 19, ensures that Z is a martingale (under
P) and that P̃ is a probability measure on each Ft . That Y becomes a Brownian
motion under P̃ is an immediate consequence of Girsanov’s theorem. For brevity, let
β denote the process defined by

βt :=
m∑

i=1

(
hiBiϕ + ∂ϕ

∂yi

) (
Xt
) ;

then M̃ϕ
t can be expressed asMϕ

t +∫ t
0 βsds. It also follows from (4) and the definition

of Z̃ that
〈
Mϕ, Z̃

〉
t
= ∫ t

0 Z̃sβsds. But by Itô’s integration-by-parts formula

Z̃tM
ϕ
t =

t∫

0

Mϕ
s dZ̃s +

t∫

0

Z̃sdMϕ
s +

〈
Mϕ, Z̃

〉
t

=
t∫

0

Mϕ
s dZ̃s +

t∫

0

Z̃s
(
dMϕ

s + βsds
)

(22)

=
t∫

0

Mϕ
s dZ̃s +

t∫

0

Z̃sdM̃ϕ
s .
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However Mϕ being a martingale under P̃ implies that Z̃Mϕ is a martingale under
P̃, and the first integral on the right-hand side is a martingale under P̃ because Mϕ

is bounded on finite intervals and Z̃ itself is a martingale. The conclusion of the
proposition follows. �

Remark 17 Since P and P̃ are absolutely continuous with respect to each other,
they have the same class of null sets N and therefore the (augmented) observation
filtration is the same both under P and P̃. Since Y is a Brownian motion under P̃ it
follows that the filtration {Yt, t ≥ 0} is right-continuous both under P and P̃. To put
it differently, {Yt, t ≥ 0} satisfies the usual conditions both under P and under P̃.

The following proposition is a consequence of the Brownian motion property of
the process Y under P̃.

Proposition 18 Let U be an integrable Ft -measurable random variable. Then we
have

Ẽ[U | Yt] = Ẽ[U | Y]. (23)

Proof Let us denote by

Y ′
t = σ(Yt+u − Yt; u ≥ 0);

then Y = σ(Yt,Y ′
t ). Under the probability measure P̃ the σ-algebra Y ′

t ⊂ Y is
independent of Ft because Y is an Ft-adapted Brownian motion. Hence since U is
Ft-adapted using the property (f) of conditional expectation

Ẽ[U | Yt] = Ẽ[U | σ(Yt,Y ′
t )] = Ẽ[U | Y]. �

5 Unnormalised Conditional Distribution

In this sectionwe first prove theKallianpur–Striebel formula and use this to define the
unnormalized conditional distribution process. The notation P̃(P)-a.s. below means
that the result holds both P̃-a.s. and P-a.s. We only need to show that it holds true in
the first sense since P̃ and P are equivalent probability measures.

Proposition 19 (Kallianpur–Striebel) Assume that Condition (19) holds. For every
ϕ ∈bB(S), for fixed t ∈ [0,∞),

πt(ϕ) = Ẽ[Z̃tϕ(Xt) | Y]
Ẽ[Z̃t | Y] P̃(P)-a.s. (24)
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Proof It is clear from the definition that Z̃t > 0 P̃(P)-a.s. as a consequence of which
Ẽ[Z̃t | Y] > 0 P-a.s. and the right-hand side of (24) is well defined. It suffices to
show that

πt(ϕ)Ẽ[Z̃t | Yt] = Ẽ[Z̃tϕ(Xt) | Yt] P̃-a.s.

As both the left- and right-hand sides of this equation are Yt-measurable, this is
equivalent to showing that for any bounded Yt-measurable random variable b,

Ẽ[πt(ϕ)Ẽ[Z̃t | Yt]b] = Ẽ[Ẽ[Z̃tϕ(Xt) | Yt]b].

A consequence of the definition of the process πt is that πtϕ = E[ϕ(Xt) | Yt] P̃-a.s.,
so from the definition of Kolmogorov conditional expectation

E [πt(ϕ)b] = E [ϕ(Xt)b] .

Writing this under the measure P̃,

Ẽ

[
πt(ϕ)bZ̃t

]
= Ẽ

[
ϕ(Xt)bZ̃t

]
.

Since the function b is Yt-measurable, by the tower property of the conditional
expectation,

Ẽ

[
πt(ϕ)Ẽ[Z̃t | Yt]b

]
= Ẽ

[
Ẽ[ϕ(Xt)Z̃t | Yt]b

]

which proves that the result holds P̃-a.s. �
Let ζ = {ζt, t ≥ 0} be the process defined by

ζt = Ẽ[Z̃t | Yt], (25)

then as Z̃t is an Ft-martingale under P̃ and Ys ⊆ Fs, it follows that for 0 ≤ s < t,

Ẽ[ζt | Ys] = Ẽ[Z̃t |Ys] = Ẽ

[
Ẽ[Z̃t | Fs] | Ys

]
= Ẽ[Z̃s | Ys] = ζs.

Therefore byDoob’s regularization theorem (see Rogers andWilliams [26, Theorem
II.67.7]) since the filtration Yt satisfies the usual conditions we can choose a càdlàg
version of ζt which is a Yt-martingale. In what follows, assume that {ζt, t ≥ 0}
has been chosen to be such a version. Yt-optional projection of Z̃t with respect to
the probability measure P̃. Given such a ζ, Proposition 19 suggests the following
definition.

Definition 20 Define the unnormalised conditional distribution of X to be the
measure-valued process ρ = {ρt, t ≥ 0} given by ρt = ζtπt for any t ≥ 0.

Lemma 21 The process {ρt, t ≥ 0} is càdlàg and Yt -adapted. Furthermore, for
any t ≥ 0,
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ρt(ϕ) = Ẽ

[
Z̃tϕ(Xt) | Yt

]
P̃(P)-a.s. (26)

Proof Both πt(ϕ) and ζt are Yt-adapted. By construction {ζt, t ≥ 0} is also càdlàg.
We know that {πt, t ≥ 0} is càdlàg and Yt-adapted; therefore the process {ρt, t ≥ 0}
is also càdlàg and Yt-adapted.

For the second part, from Propositions 18 and 19 it follows that

πt(ϕ)Ẽ[Z̃t | Yt] = Ẽ[Z̃tϕ(Xt) | Yt] P̃-a.s.,

From (25), Ẽ[Z̃t | Yt] = ζt a.s. from which the result follows. �

Corollary 22 Assume that Condition (19) holds. For every ϕ ∈ B(S),

πt(ϕ) = ρt(ϕ)

ρt(1)
∀t ∈ [0,∞) P̃(P) -a.s. (27)

Proof It is clear from Definition 20 that ζt = ρt(1). The result then follows imme-
diately. �

The Kallianpur–Striebel formula explains the usage of the term unnormalised in
the definition of ρt as the denominator ρt(1) can be viewed as the normalising factor.

Lemma 23 i. Let {ut, t ≥ 0} be an Ft -progressively measurable process such
that for all t ≥ 0, we have

Ẽ

⎡
⎢⎣
⎛
⎝

t∫

0

u2s ds

⎞
⎠

1/2
⎤
⎥⎦ < ∞; (28)

then, for all t ≥ 0, and j = 1, . . . , m, we have

Ẽ

⎡
⎣

t∫

0

us dYj
s

∣∣∣∣∣∣
Y
⎤
⎦ =

t∫

0

Ẽ[us | Y] dYj
s . (29)

ii. Let M̃ϕ be as defined in Proposition 16. Then for all t ≥ 0

Ẽ

⎡
⎣

t∫

0

Z̃s dM̃ϕ
s

∣∣∣∣∣∣
Y
⎤
⎦ =

m∑
j=1

t∫

0

Ẽ

[(
Bjϕ + ∂ϕ

∂yj

) (
Xs
)

Z̃s

∣∣∣∣ Y
]
dYj

s, (30)

Proof i. To deduce the results we introduce the set of uniformly bounded test
random variables
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St =
⎧⎨
⎩εt = exp

⎛
⎝i

t∫

0

r�
s dYs + 1

2

t∫

0

‖rs‖2 ds

⎞
⎠ : r ∈ L∞ ([0, t],Rm)

⎫⎬
⎭ . (31)

Then St is a total set. That is, if a ∈ L1(�,Yt, P̃) and Ẽ[aεt] = 0, for all εt ∈ St ,
then a = 0 P̃-a.s. For a proof of this result see, for example, Lemma B.39 p. 355
in Bain and Crisan [2]. In addition, if εt ∈ St , then

εt = 1 +
t∫

0

iεsr
�
s dYs.

From Condition (28) it follows, by Burkholder-Davis-Gundy’s inequalities that
both processes t → ∫ t

0 us dYj
s and t → ∫ t

0 Ẽ [us | Y] dYj
s belong to H1(P̃). In

particular they are zero-mean martingales. We observe the following sequence
of identities

Ẽ

⎡
⎣εtẼ

⎡
⎣

t∫

0

us dYj
s

∣∣∣∣∣∣
Y
⎤
⎦
⎤
⎦ = Ẽ

⎡
⎣εt

t∫

0

us dYj
s

⎤
⎦

= Ẽ

⎡
⎣

t∫

0

us dYj
s

⎤
⎦+ Ẽ

⎡
⎣

t∫

0

iεsr
j
sus ds

⎤
⎦

= Ẽ

⎡
⎣ Ẽ

⎡
⎣

t∫

0

iεsr
j
sus ds

∣∣∣∣∣∣
Y
⎤
⎦
⎤
⎦

= Ẽ

⎡
⎣

t∫

0

iεsr
j
s Ẽ[us | Y] ds

⎤
⎦

= Ẽ

⎡
⎣εt

t∫

0

Ẽ[us | Y] dYj
s

⎤
⎦ ,

which completes the proof of (29).
ii. FromProposition 16we know that

∫ ·
0 Z̃s dM̃ϕ

s is a zero-meanmartingale under P̃.
It is therefore integrable and its conditional expectation is well defined. Notice
that

〈
M̃ϕ, Yj

〉
t
=
〈
Mϕ, W j

〉
t
=

t∫

0

(
Bjϕ + ∂ϕ

∂yj

) (
Xs
)
ds

The rest of the proof of (30) is similar to that of (29). Once again we choose εt
from the set St and in this case we obtain the following sequence of identities.
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Ẽ

⎡
⎣εtẼ

⎡
⎣

t∫

0

Z̃s dM̃ϕ
s

∣∣∣∣∣∣
Y
⎤
⎦
⎤
⎦ = Ẽ

⎡
⎣εt

t∫

0

Z̃s dM̃ϕ
s

⎤
⎦

= Ẽ

⎡
⎣

t∫

0

Z̃s dM̃ϕ
s

⎤
⎦+

m∑
j=1

Ẽ

〈 ·∫

0

iεsrj
s dYj

s,

·∫

0

Z̃s dM̃ϕ
s

〉

t

= Ẽ

⎡
⎣

t∫

0

Z̃s dM̃ϕ
s

⎤
⎦+

m∑
j=1

Ẽ

t∫

0

iεsrj
sZ̃s d

〈
M̃ϕ, Yj

〉
s

=
m∑

j=1

Ẽ

t∫

0

iεsrj
sZ̃s

(
Bjϕ + ∂ϕ

∂yj

) (
Xs
)
ds

=
m∑

j=1

Ẽ

⎡
⎣εt

t∫

0

Ẽ

[(
Bjϕ + ∂ϕ

∂yj

) (
Xs
)

Z̃s

∣∣∣∣ Y
]
dYj

s

⎤
⎦ .

As the identities hold for an arbitrary choice of εt ∈ St, the proof of (30) is
complete. �

6 The Filtering Equations

To simplify the analysis, we will impose onto Z̃ a similar Condition to (19). More
precisely, we will assume that,

Ẽ

⎡
⎣

t∫

0

Z̃s
∥∥h(Xs)

∥∥2 ds

⎤
⎦ < ∞, ∀t > 0. (32)

Reverting back to P, Condition (32) is equivalent to

E

⎡
⎣

t∫

0

∥∥h(Xs)
∥∥2 ds

⎤
⎦ < ∞, ∀t > 0. (33)

From Corollary 5, it follows that Z̃ is an H1(P̃)-martingale. Then
(

Z̃· − 1
)
is a

zero-mean martingale and E

[(
Z̃· − 1

)∗
t

]
< 1+ E

[
Z̃∗

t

]
< ∞. Since

〈
Z̃· − 1

〉
t
=

∫ t
0 Z̃2

s

∣∣h(Xs)
∣∣2 ds the Burkholder-Davis-Gundy inequalities give
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E

⎡
⎢⎣
⎛
⎝

t∫

0

Z̃2
s

∣∣h(Xs)
∣∣2 ds

⎞
⎠

1/2
⎤
⎥⎦ < ∞ (34)

for all t ≥ 0 and hence, for any ϕ ∈bB(S × R
m), the processes

t →
t∫

0

ϕ(Xt)Z̃th(Xs)
�dYs

t →
t∫

0

Ẽ[ϕ(Xt)Z̃th(Xs)
� | Yt] dYs

are zero-meanH1(P̃)martingales. In the following, for any functionϕ ∈ bB(S × R
m)

such that ϕ ∈ D(A) and that has bounded partial derivatives in the y direction we
will denote by Diϕ, j = 1, . . . , m the functions

Djϕ = hj
(

ϕ + Bjϕ + ∂ϕ

∂yj

)
j = 1, . . . , m.

Theorem 24 If Conditions (19) and (32) are satisfied then,

Ẽ[Z̃tϕ(Xt) | Y] = π0(ϕ) +
t∫

0

Ẽ[Z̃sAϕ(Xs) | Y] ds +
m∑

j=1

Ẽ[Z̃sDjϕ(Xs) | Y]dYj
s

(35)

for any ϕ ∈ bB(S × R
m) be a function such that ϕ,ϕ2 ∈ D(A) and that has bounded

partial derivatives in the y direction. In particular the process ρt satisfies the follow-
ing evolution equation

ρt(ϕ) = ρ0(ϕ) +
t∫

0

ρs (Aϕ) ds +
t∫

0

ρs((h
� + B�)ϕ) dYs, P̃-a.s. ∀t ≥ 0 (36)

for any function ϕ ∈bB(S) be a function such that ϕ ∈ D(A).

Proof Using Itô’s formula and integration-by-parts, we find
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d
(

Z̃tϕ(Xt)
)

= Z̃tAϕ(Xt) dt + Z̃tdMϕ
t + ϕ(Xt)Z̃th

�(Xt) dYt +
m∑

j=1

Z̃th
i(Xt)

〈
Mϕ, Yi

〉
t

= Z̃t

⎡
⎣Aϕ(Xt) +

m∑
j=1

hi(Xt)

(
Biϕ

(
Xt
)+ ∂ϕ

∂yi

(
Xt
))
⎤
⎦ dt

+Z̃tdMϕ
t + ϕ(Xt)Z̃th

�(Xt) dYt (37)

= Z̃tAϕ(Xt)dt + Z̃tdM̃ϕ
t + ϕ(Xt)Z̃th

�(Xt) dYt .

We next take the conditional expectation with respect to Y and obtain

Ẽ[Z̃tϕ(Xt) | Y] = Ẽ[Z̃0ϕ(Xt) | Y] +
t∫

0

Ẽ[Z̃tAϕ(Xt) | Y] ds

+Ẽ

⎡
⎣

t∫

0

Z̃sdM̃ϕ
s | Y

⎤
⎦+ Ẽ

⎡
⎣

t∫

0

ϕ(Xs)Z̃sh
�(Xs) dYs | Y

⎤
⎦ , (38)

where we have used Fubini’s theorem (the conditional version) to get the second
term on the right hand side of (38). Observe that, since Z̃ is an H1(P̃)-martingale,
we have

Ẽ

⎡
⎢⎣
⎛
⎝

t∫

0

Z̃2
s ds

⎞
⎠

1/2
⎤
⎥⎦ ≤ √

tẼ
[
Z̃∗

s

]
< ∞.

Also from (34) we get that

Ẽ

⎡
⎢⎣
⎛
⎝

t∫

0

(
ϕ(Xs)Z̃sh

j(Xs)
)2

ds

⎞
⎠

1/2
⎤
⎥⎦ ≤ ||ϕ||E

⎡
⎢⎣
⎛
⎝

t∫

0

Z̃2
s

∣∣h(Xs)
∣∣2 ds

⎞
⎠

1/2
⎤
⎥⎦ < ∞.

In other words Condition (28) is satisfied for u = ϕZ̃hj. The identity (35) then
follows from (38) by applying (29) and (30). Identity (36) follows immediately after
observing that the terms containing the partial derivatives in the y direction ∂ϕ

∂yi
are

zero since the function no longer depends on y. �

Theorem 25 If Conditions (19) and (32) are satisfied then the conditional distrib-
ution of the signal πt satisfies the following evolution equation
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πt(ϕ) = π0(ϕ) +
t∫

0

πs(Aϕ) ds

+
t∫

0

(
πs(ϕh�) − πs(h

�)πs(ϕ) + πt(B
�ϕ)

)
(dYs − πs(h) ds), (39)

for any ϕ ∈ D(A).

Proof SinceA1 =0, it follows from (1) thatM1 ≡ 0,which together with (4) implies
that

t∫

0

Bi1
(
Xs
)

ds = 0,

for any t ≥ 0 and i = 1, . . . , m, so

m∑
j=1

t∫

0

ρs

(
hjBj1

)
ds = 0.

Hence, from (36), one obtains that ρt(1) satisfies the following equation

ρt(1) = 1 +
t∫

0

ρs(h
�) dYs.

Let (Un)n>0 be the sequence of stopping times

Un = inf

{
t ≥ 0

∣∣∣∣ρt(1) ≤ 1

n

}
.

Then

ρUn
t (1) = ρt∧Un(1) = 1 +

t∧Un∫

0

ρs(h
�) dYs,

We apply Itô’s formula to the stopped process t → ρt∧Un(1) and the function x �→ 1
x

to obtain that

1

ρUn
t (1)

= 1 −
t∧Un∫

0

ρs(h�)

ρs(1)2
dYs +

t∧Un∫

0

ρs(h�)ρs(h)

ρs(1) 3
ds (40)
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By using (stochastic) integration by parts, (40), the equation for ρt(ϕ) and the
Kallianpur–Striebel formula, we obtain

ρ
Un
t (ϕ)

ρ
Un
t (1)

= π0 (ϕ) +
t∧Un∫

0

πs (Aϕ) ds +
t∧Un∫

0

πs((h
� + B�)ϕ) dYs −

t∧Un∫

0

πs(ϕ)πs(h
�)dYs

+
t∧Un∫

0

πs(ϕ)πs(h
�)πs(h) ds −

t∧Un∫

0

πs((h
� + B�)ϕ)πs(h)ds

As limn→∞ Un = ∞ almost surely, we obtain the result by taking the limit as n
tends to infinity. �

Remark 26 The jump-diffusion example and the change detection model discussed
in Sect. 3 both satisfy Conditions (19) and (33). Therefore the two previous theorems
can be applied to these two cases.

Acknowledgments The authors are grateful to J. Ruf for setting us straight on the provenance of
Corollary 5 and on other points in the paper.
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On the Stochastic Least Action Principle
for the Navier-Stokes Equation

Ana Bella Cruzeiro and Remi Lassalle

Abstract In this paper we extend the class of stochastic processes allowed to
represent solutions of the Navier-Stokes equation on the two dimensional torus to
certain non-Markovian processes which we call admissible. More precisely, using
the variations of Ref. [3], we provide a criterion for the associated mean velocity
field to solve this equation. Due to the fluctuations of the shift a new term of pressure
appears which is of purely stochastic origin. We provide an alternative formulation
of this least action principle by means of transformations of measure. Within this
approach the action is a function of the law of the processes, while the variations are
induced by some translations on the space of the divergence free vector fields. Due to
the renormalization in the definition of the cylindrical Brownian motion, our action
is only related to the relative entropy by an inequality. However we show that, if we
cut the high frequency modes, this new approach provides a least action principle
for the Navier-Stokes equation based on the relative entropy.

Keywords Navier-Stokes · Entropy

1 Introduction

Let (Wt) be a suitably renormalized Brownian motion on the space of vector fields
on the two dimensional torus T2 with a well chosen Sobolev regularity. In the case
where (ut) is a deterministic vector field, it was shown that equations of the form

dgt = (◦dWt + utdt)(gt); gt = e (1.1)
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could model the Navier-Stokes flows (see for instance the review article [2] and
references within). More precisely it was shown that (ut) solves the Navier-Stokes
equation if and only if a certain associated action is stationary. Subsequently, models
of the form

dgt = (◦dWt + v̇t(ω)dt)(gt); gt = e (1.2)

where considered in Ref. [1], together with a notion of generalized stochastic flows
with fixed marginals. In these latter models, the shift v̇t(ω) is allowed to be random:
the drift changes from one realization of the noise to another which seems to fit
accuratelywith themicroscopicmodels of theNavier-Stokes equation one encounters
in physics. In particular such processes are not necessarily Markovian.

In the case of (1.2) there is no reason why we should hope v̇(ω) to solve the
Navier-Stokes equation for any ω a.s., and we should focus on the mean velocity
field

u : (t, x) ∈ [0, 1] × T
2 → u(t, x) = Eη[v̇t(x)] ∈ TxT

2

where η is the underlying probability on the canonical path space, and where TxT
2

is the tangent space at x.
We extend here the criterion of Ref. [2] from equations with the form (1.1) to

equations of type (1.2) for a wide class of stochastic drifts. Namely we focus on
drifts v associated with a probability η with finite entropy with respect to the law μ
of the renormalized Brownian motion on the corresponding path space. We exhibit a
class of such drifts (they will be called admissible) whose mean velocity field solves
the Navier-Stokes equation if and only if the associated action, which will be noted
S(η|μ), is critical. We then prove that this notion naturally extends the variational
principle of Ref. [2]. One of the aspects of this model is to allow that the fluctuations
of the drift itself may contribute to the pressure. Then we provide an alternative
formulation to the least action principle by means of transformation of measure.
However in this case, due to the renormalization involved in the definition of the
cylindrical Brownian motion, our action for a process with law η is only related to
the corresponding relative entropy

H(η|μ) := Eη

[
ln

dη

dμ

]

by an inequality. Nevertheless, by introducing a cut-off, the action S(ν|η) becomes
proportional to the relative entropy, and by cutting the high modes, we provide a
least action principle to the Navier-Stokes equation by means of the relative entropy.

The structure of this paper is the following. In Sect. 2 we introduce the general
framework as well as the main notations of the paper. In Sect. 3 we provide a charac-
terization of solutions of the Navier-Stokes equation as critical flows of the action. In
Sect. 4 this criterion is proved to extend those of Refs. [2, 3]. In Sect. 5 we introduce
a cut-off in order to transform variations of the action in variations of the entropy.
(Sect. 6).
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2 Preliminaries and Notations

2.1 A Basis of Vector Fields on the Two Dimensional Torus

Let M := T
2 be the set of pairs (θ1, θ2) of real numbers modulo 2π, and denote

mT = λL⊗λL

4π2 where λL is the Lebesgue measure on [0, 2π]. Integration will often be
noted dx instead of mT(dx). A basis of the tangent space TxM at x = (θ1, θ2) ∈ M is
given by (∂i|x) := ( ∂

∂θi
|x=(θ1,θ2)). We define a scalar product 〈., .〉TxM on each TxM

by setting 〈∂i|x, ∂j|x〉TxM = δi,j where δi,j = 1 if i = j and 0 if i �= j. When there is
no ambiguity, we will sometimes note X.Y instead of 〈X, Y〉TxM for X, Y ∈ TxM. If
X (M) consists of sections of TM, X (M) = {X : M → T(M)}, and considering its
L2 equivalence class, we set

G =
⎧⎨
⎩X ∈ X (M)| div(X) = 0 and

∫

M

|X(x)|2TxMdx < ∞
⎫⎬
⎭

which is a separable Hilbert space with the product

〈X, Y〉G :=
∫

M

〈X(x), Y(x)〉TxMdx

An Hilbertian basis of G is given by a subset (eα)∞α=1, whose definition is the fol-
lowing. Let k : α ∈ N/ {0} → k(α) := (k1(α), k2(α)) ∈ (Z × Z)/ {(0, 0)} be a

bijection such that |k(α)| :=
√

k21(α) + k2(α)2 ↑ ∞; we set

eα(x) :=
∑

j

aα,j(x)∂j|x

where

aα,i(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (α, i) ∈ (1, 1) ∪ (2, 2)

0 if (α, i) ∈ (2, 1) ∪ (1, 2)√
2 k2(m)

|k(m)| cos(k(m).x) if (α, i) = (2m + 2, 1), m ≥ 1

−√
2 k1(m)

|k(m)| cos(k(m).x) if (α, i) = (2m + 2, 2), m ≥ 1
√
2 k2(m)

|k(m)| sin(k(m).x) if (α, i) = (2m + 1, 1), m ≥ 1

−√
2 k1(m)

|k(m)| sin(k(m).x) if (α, i) = (2m + 1, 2), m ≥ 1

and where, for k = (k1, k2) ∈ Z×Z and x = (θ1, θ2) ∈ M, k.x := k1θ1 + k2θ2. Any
X ∈ G can be written
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X(x) =
∑

j

Xj(x)∂j|x

where Xj(x) = ∑
α〈X, eα〉Gaα,j(x). Let Y(x) := ∑

j Yj(x)∂j|x be another vector
field: it is straightforward to check that we also have

〈X, Y〉G =
∫

M

∑
j

Xj(x)Yj(x)dx

We recall the following formulae

div(X) :=
∑

j

∂jX
j,

�X :=
∑

i

(
∑

j

∂2
j,jXi)∂i|x

and
(X.∇)Y :=

∑
j

(
∑

i

Xi(∂iYj))∂j|x

2.2 The Group of the Volume Preserving Homeomorphisms

Let G be the group of the homeomorphisms of M which leaves mT invariant

G := {φ : M → M, homeomorphisms,φ�mT = mT}

We note e the identity on G and φ.ψ the group operation of φ,ψ ∈ G (given by
the composition of the two maps). We recall [6] that the subset of G consisting of
maps which are, together with their inverses, in the Sobolev class Hr , for r > 2 is a
Hilbert manifold and a topological group. It is not, strictly speaking, a Lie algebra
since left translation is not smooth. TeG is given by the set of the vector fields
X : x ∈ M → Xx ∈ TxM such that div(X) = 0. Let X ∈ TeG, and let

c : t ∈ R → ct ∈ G; c0 = e

be a smooth curve on G to which X is tangent. We recall that, by setting ĉ : (t, x) ∈
R × M → ct(x) ∈ M, the value of X at x ∈ M is given by

X(x) = ∂t̂ c(t, x)|t=0 ∈ TxM
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Furthermore X can be uniquely extended to a right invariant vector field X̂ on G by
setting

X̂ : φ ∈ G → X̂φ ∈ TφG

where X̂φ is given by

X̂φ : x ∈ M → X̂φ(x) := X(φ(x)) ∈ Tφ(x)M

i.e. X̂φ is tangent to the curve cφ : t ∈ R → ct .φ ∈ G. In particular for any smooth
f on M and x ∈ M denote f x the map φ ∈ G → f x(φ) := f (φ(x)) ∈ R. Then f x is
smooth on G and we have

(X̂f x)(φ) := X̂φf x = ∂t f (ct .φ(x))|t=0 = ∂t f (̂c(t,φ(x)))|t=0 = X(φ(x))f := (Xf )(φ(x))

In the sequel wewill simplywriteX instead of X̂ since it will be clear from the context
whether we consider X as an element of the tangent space, or as a right-invariant
vector field on G. In order to kill the noise in the higher modes and to control the
integrability of the derivatives, we introduce the following Sobolev spaces (Gλ)λ>1
and the associated abstract Wiener spaces (W, Hλ,μλ).

2.3 Sobolev Vector Fields

To any positive real number λ > 1 we associate a sequence (λα)α∈N defined by

λα = |k([α−1
2 ])|2λ

K(λ)

where [.] is the floor function and where K(λ) is chosen so that

∑
α

aα,i(x)√
λα

aα,j(x)√
λα

= δi,j

Such a K(λ) exists from standard results on Riemann series since λ > 1, and we
have K(λ) ↑ ∞ as λ ↓ 1. For λ > 1, let Sλ be the positive, definite, trace class
operator defined by

Sλx :=
∑

i

1

λi
〈x, ei〉Gei

and let
Gλ := √Sλ(G)
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which is an Hilbert space for the scalar product 〈., .〉Gλ
characterized by

〈√
Sλx,

√
Sλy
〉
Gλ

= 〈x, y〉G .

A natural Hilbertian basis of Gλ is given by (Hλ
α)∞α=1 where

Hλ
α := eα√

λα
(2.3)

We set
Aλ

α,j(x) = aα,j√
λα

so that ∑
α

Aλ
α,i(x)A

λ
α,j(x) = δi,j (2.4)

and
Hλ

α(x) =
∑

j

Aλ
α,j(x)∂j|x

Since
√

Sλ is Hilbert-Schmidt, it is well known that |.|G is a measurable semi-norm
on the Hilbert space Gλ (see [9]). In particular (Gλ,G) is an abstract Wiener space
[9, 12], which allows to regard the cylindrical Brownianmotion below as a Brownian
sheet (note that we could have defined aWienermeasure directly on theWiener space
(Gλ,G), but we won’t use this in the sequel since we are interested in the path space).

2.4 Associated Wiener Spaces

The space

Hλ :=
⎧⎨
⎩h : [0, 1] → Gλ : h :=

.∫

0

ḣsds,

1∫

0

|ḣs|2Gλ
ds < ∞

⎫⎬
⎭

is an Hilbert space whose product will be noted 〈., .〉λ. On the other hand the space

W := C0 ([0, 1],G)

is a separable Banach space for the uniform convergence norm. We denote by iλ the
injection of Hλ in W . Since for λ > 1 |.|G is a measurable semi-norm on Gλ, it is a
classical result onWiener spaces that (iλ, W, Hλ) is also an abstract Wiener space. If
μλ is the standard Wiener measure on W for the A.W.S. (W, Hλ, iλ), we recall that
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under this probability the coordinate process t → Wt(ω) = ω(t) ∈ G is an abstract
Brownian motion with respect to its own filtration (Ft) (see for instance [10, 12]).
From the Itô Nisio theorem, we have μλ−a.s.

Wt =
∑
α

W α
t Hλ

α

with W α
t := δ̂Hα(Wt), and where

{̂
δ(X), X ∈ Gλ

}
is the isonormal Gaussian process

on Gλ. We recall that under μλ,
{̂
δ(X)(Ws), X ∈ Gλ, s ∈ [0, 1]} is a Gaussian process

with covariance
Eμλ [̂δ(X)(Ws)̂δ(Y)(Wt)] = (s ∧ t)〈X, Y〉Gλ

so that (W α
. ) is a family of real valued independent Brownian motions under μλ.

Under μλ, the coordinate process t → Wt is called the cylindrical Brownian motion.
The difference with respect to the case where the state space is finite dimensional is
that it is a renormalized sum of independent Brownian motions, the renormalization
appearing in (2.3). For ameasure η � μλ and a u ∈ L0

a(η, Hλ), the stochastic integral
δW u := ∫ 1

0 u̇sdWs is well defined as an abstract stochastic integral [10, 12]. Let η
be a probability which is absolutely continuous with respect to μλ. Then there is a
unique v ∈ L0

a(η, Hλ) such that η − a.s.

dη

dμλ
:= exp

(
δW v − |v|2λ

2

)
(2.5)

Moreover W η := IW − v is a (Ft)-Brownian motion on (W,F , η). We call v the
velocity field associated to η. The famous formula of [7] (which in fact holds in a
more general framework: [10, 12]) reads

2H(η|μλ) = Eη

⎡
⎣

1∫

0

|v̇t |2Gλ
dt

⎤
⎦ (2.6)

where

H(η|μλ) := Eη

[
ln

dη

dμλ

]

is the relative entropy of η with respect to μλ. Note that since Gλ ⊂ G ⊂ TeG it
makes sense to consider (Xf )(φ) for φ ∈ G, for f smooth on G and for X ∈ Gλ or
X ∈ G.
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3 Navier-Stokes Flows with Stochastic Drifts

Henceforth and until the end of Sect. 5 we assume that the renormalization sequence
is fixed for a λ ≥ 2, and we drop the indices λ of the notations except for Gλ.

3.1 Constraints on the Kinematics: Regular and Admissible
Flows

Definition 1 A probability η which is absolutely continuous with respect to μ with
finite entropy (H(η|μ) < ∞) is called a regular flow if u ∈ C1([0, 1] × M) and
dt- a.s. ∂tu ∈ G, where u(t, x) := Eη [v̇t(x)], and where v := ∫ .

0 v̇sds is the velocity
field of η (see (2.5)). We call u the mean velocity field of η. Moreover we say that a
regular flow is admissible if there is a C1([0, 1]×M)mapping p� : [0, 1]×M → R

such that
Cov(v̇t(x)) = p�(t, x)Id

i.e. for i, j ∈ N ∩ [1, d]

Eη

[(
v̇i

t(x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

= p�(x, t)δi,j (3.7)

where (v̇
j
t (x)) denotes the jth (random) component of (v̇

j
t ) at x i.e. it is such that

v̇t(x) =∑j v̇
j
t (x)∂j|x, and where uj

t(x) := Eη[v̇j
t (x)].

3.2 Constraints on the Dynamics: Critical Flows

Definition 2 Let η be a regular flowwhose velocity field is denoted by vη (see (2.5)).
For any k ∈ C1([0, 1];G) we set

LkS(η|μ) := Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

< v̇
η
t (x), ∂tk + (v̇

η
t .∇)k + �k

2
>TxM dx

⎞
⎠ dt

⎤
⎦

The probability η is said to be critical if and only if for any k ∈ C1
0([0, 1],G)

LkS(η|μ) = 0

where
C1
0([0, 1],G) :=

{
k ∈ C1([0, 1];G) : k(0, .) = k(1, .) = 0

}
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The dynamic of the mean velocity field of a critical flow is given by the following
theorem

Theorem 1 Let η be a regular flow with a velocity field v and a mean velocity field
u ∈ Gλ. Then η is critical (Definition 2) if and only if there is a function p̂(t, x) such
that

∂tu + Eη[(v̇t(x).∇)v̇t(x)] = �u

2
− ∇p̂(t, x) (3.8)

In other words, let

β(t, x) := Eη[((v̇t(x) − ut(x)).∇)(v̇t(x) − ut(x))] (3.9)

Then u solves, in the weak L2 sense, the following equation :

∂tu + (ut .∇)u = �u

2
− ∇p̂ − β (3.10)

Proof For any k ∈ C0
1([0, 1];G)wehave k(0, .) = k(1, .) = 0, so that an integration

by parts yields

LkS(η|μ) = −
∫

M

1∫

0

(
∂tu + Eη[(v̇t .∇)v̇t] − �u

2

)
(t, x).k(t, x)dxdt (3.11)

from which we obtain (3.8). Since

β(t, x) := Eη [[v̇t(x) − ut(x)].∇)[v̇t(x) − ut(x)]]
= Eη [(v̇t(x).∇)v̇t(x)] + (ut(x).∇)ut(x) − Eη [(v̇t(x).∇)ut(x)] − Eη [(u(x).∇)v̇t(x)]

= Eη [(v̇t(x).∇)v̇t(x)] + (ut(x).∇)ut(x) − (Eη [v̇t(x)] .∇)ut(x) − (u(x).∇)Eη [v̇t(x)]

= Eη [(v̇t(x).∇)v̇t(x)] − (ut(x).∇)ut(x)

we obtain (3.10) from (3.8). �

3.3 Navier-Stokes Flows

Definition 3 A regular flow η (see Definition 1) is a Navier-Stokes flow if its mean
velocity field u solves the Navier-Stokes equation, i.e. if and only if there is a function
p : [0, 1] × M → R which is such that u solves, in the weak L2 sense, the Navier-
Stokes equation

∂tu + u.∇u = �u

2
− ∇p
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we have:

Corollary 1 An admissible flow is a Navier-Stokes flow if and only if it is critical.

Proof Let η be an admissible flow.We recall that by definition there exists a mapping
p� such that

Cov(v̇t(x)) = p�(x, t)Id (3.12)

where v := ∫ .

0 v̇sds is the velocity field of η (see (2.5)). We also recall that

u(t, x) := Eη[v̇t(x)]

The idea is to apply Theorem 1 and to set

p := p� + p̂

We have
βi(t, x) =

∑
j

∂jCov(v̇t(x))
i,j

Indeed (repeated indices are summed over) we have

βi(t, x) = Eη

[(
v̇

j
t (x) − uj

t(x)
)

∂j

(
v̇i

t (x) − ui
t(x)
)]

= ∂jEη

[(
v̇i

t (x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

− Eη

[(
v̇i

t (x) − ui
t(x)
)

∂j

(
v̇

j
t (x) − uj

t(x)
)]

= ∂jEη

[(
v̇i

t (x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

− Eη

[(
v̇i

t (x) − ui
t(x)
)
div (v̇t(x) − ut(x))

]

= ∂jEη

[(
v̇i

t (x) − ui
t(x)
) (

v̇
j
t (x) − uj

t(x)
)]

= ∂jCov(v̇t(x))
i,j

Assumption (3.12) then yields βi(t, x) = ∂ip� i.e.

β = ∇p� (3.13)

�

Remark 1 Note that by this proof, for critical flows, p� appears as a part of the
pressure which is originated from the stochastic model. Specifically it expresses the
fluctuations of the drift itself. Indeed by (3.13) and (3.9) for an admissible flow η we
have

∇p�(t, x) = Eη[(v̇t(x).∇)v̇t(x)] − (ut(x).∇)ut(x) (3.14)

where p� is the function associated to the admissible flow η by formula (3.7).
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4 Interpretation of Critical Flows by Means of the Stochastic
Exponential

In this section we prove that the quantities LkS(η|μ) defined in Definition 2 can still
be interpreted in terms of certain variations along deterministic paths which extend
those of Ref. [3].

4.1 The Stochastic Exponential

Let CG = Ce ([0, 1], G) be the space of continuous paths starting from e and with
values in G. The coordinate function (t, γ) ∈ [0, 1] × CG → γt(ω) generates a
filtration

(FG
t

)
and we denote FG := FG

1 .

Proposition 1 The equation

dXt = ◦dBt; X0 = e (4.15)

has a continuous strong solution on the space
(
W,FW

. ,μ
)

with the canonical Brown-
ian t → Wt ∈ G. We note g this solution. By this we mean that for μ−a.s. g ∈ CG

and, for any smooth f on G,

f (gt) = f (e) +
∑
α

t∫

0

(Hαf )(gt) ◦ dWt

where ◦ denotes the Stratonovich integral.

Proof See [11]. �
Girsanov theorem on (W, H,μ) implies the following:

Proposition 2 Let η be a probability which is absolutely continuous with respect to
μ whose velocity field is noted v, and set W̃ := IW − v. Then (g, W̃ ) is a solution of

dXt = (◦dBt + v̇tdt); X0 = e (4.16)

on (W,F., η).

Proof We have

W̃s =
∑
α

δ̂(Hα)(Ws)Hα −
∑
α

〈v, Hα〉λHα =
∑
α

δ̂(Hα)(W̃s)Hα

Since W̃�η = μ, W̃ α
. := δ̂(Hα)(W̃.) are independent Brownian motions on

(W, H, η), by Itô’s formula we have, η − a.s.,
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f (gt) = f (e) +
1∫

0

∑
α

(Hαf )(gt) ◦ dW̃ α
t +

∑
α

1∫

0

(Hαf )(gs)〈v̇s, Hα〉Gλ
ds

i.e.

f (gt) = f (e) +
1∫

0

(Hαf )(gs) ◦ dW̃ α
t +

1∫

0

(v̇t(ω)f )(gs)ds �

Proposition 3 Let η be a probability absolutely continuous with respect to μ, v :=∫ .

0 v̇sds the associated velocity field, W̃ = IW − v and W̃ α
. = δ̂(Hα)(W̃.). For any

smooth function f on [0, 1] × M we have η−a.s.

f (t, gt(x)) = f (0, x) +
t∫

0

(
�

2
f + (v̇σ .∇)f + ∂σ f )(σ, gσ(x)

)
dσ +

t∫

0

∑
α

(Hαf )(σ, gσ(x))dW̃ α
σ

(4.17)
and η−a.s.

lim
δ→0

Eη

[
f (t + δ, gt+δ(x)) − f (t, gt(x))

δ

∣∣∣∣Ft

]
=
(

∂t f + (v̇t(ω).∇)f + �f

2

)
(t, gt(x))

(4.18)

Proof Let x ∈ M, f ∈ C∞(M). The main part of the proof will be to prove that

∑
α

(H2
αf x)(φ) = (�f )(φ(x)) (4.19)

To see this recall that f x : φ ∈ G → f (φ(x)) ∈ R. We have

(Hαf x)(φ) := Hα(φ)f x = Hα(φ(x))f = (Hαf )(φ(x)) = (Hαf )x(φ) (4.20)

so that by iterating (4.20) we obtain

∑
α

(H2
αf x)(φ) =

∑
α

(H2
αf )(φ(x)) (4.21)

On the other hand ∑
α

(H2
αf )(φ(x)) = (�f )(φ(x)) (4.22)

Indeed by using the fact that for any α the vector field Hα is divergence free together
with (2.4) we obtain

∑
α

H2
αf =

∑
α,j

Aα,j∂j(Hαf )
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=
∑
α,i,j

Aα,jAα,i(∂j∂if ) + Aα,j(∂jA
α,i)(∂if )

=
∑

i

(∂2
i,if ) +

∑
α,i,j

Aα,j(∂jA
α,i)(∂if )

= �f +
∑
α,i,j

Aα,j(∂jA
α,i)(∂if )

= �f +
∑
α,i,j

∂j(A
α,jAα,i)(∂if ) −

∑
α,i,j

(∂jA
α,j)Aα,i(∂if )

= �f +
∑
i,j

∂j(
∑
α

Aα,jAα,i)(∂if ) −
∑
α,i

(div(Hα)Aα,i(∂if )

= �f

Finally by putting together (4.21) and (4.22) we get (4.19) which yields

f (t, gt(x)) = f x(t, gt)

= f x(s, gs) +
t∫

s

(Hαf x)(gσ) ◦ dW̃ α
σ +

t∫

s

(∂σf x + v̇σf x)(gσ)dσ

= f (s, gs(x)) +
t∫

s

(
�

2
f + (v̇σ.∇)f + ∂σf

)
(σ, gσ(x))dσ

+
t∫

s

∑
α

(Hαfσ)(gσ(x))dW̃ α
σ

On the other hand by the Girsanov theorem, (W̃t) is a (Ft)-Brownian motion on
(W, η) so that (4.18) follows from (4.17). �

4.2 Perturbations of the Energy Along Deterministic Paths

For k ∈ C0([0, 1],Gλ), k := ∫ .

0 k̇sds, we define e(k) to be the solution of the ordinary
differential equation on G

d(et(k)) = (k̇tdt)(et(k)); e0 = e

i.e. for any smooth F : G → R,

F(et(k)) = F(e) +
t∫

0

(k̇sF)(es(k))ds. (4.23)
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Note that e.(0H) = e i.e. the exponential of the function which is constant and equal
to 0H is constant and equal to e. We denote by (ei

t(k)) the ith component of (et(k))

in the canonical chart.

Proposition 4 If η is a probability of finite entropy with respect to μ, for any k ∈
C1
0([0, 1],Gλ) we have

LkS(η|μ) = d

dε
Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

|Dηet(εk).gt(x)|2Tgt (x)M

2
dx

⎞
⎠ dt

⎤
⎦ |ε=0 (4.24)

where LkS(η|μ) has been defined in Definition 2 and where Dηet(εk).gt(x) is defined
a.e. by

Dηet(εk).gt(x) :=
∑

i

lim
δ→0

Eη

[
ei

t+δ(εk).gt+δ(x) − ei
t(εk).gt(x)

δ

∣∣∣∣∣Ft

]
∂i|gt(x)

(4.25)

Proof By (4.18) of Proposition 3 we first obtain

Dηet(εk).gt(x) :=
∑

i

(
∂te

i
t(εk) + (v̇t(ω).∇)ei

t(εk) + �ei
t(εk)

2

)
(gt(x))∂i|gt(x)

(4.26)

On the other hand let x ∈ M and denote by f a smooth function on M. Considering
F := f x in (4.23) we have

f (et(εk)(x)) = f (x) + ε

t∫

0

(k̇sf )(es(εk)(x))ds

Since e.(0H)(x) = e(x) = x, we get :

d

dε
|ε=0f (et(εk)(x)) =

t∫

0

(k̇sf )(x)ds = (ktf )(x)

so that
d

dε
|ε=0et(εk)(x) = kt(x) (4.27)

By (4.26) and (4.27) we obtain

d

dε
Dηet(εk).gt(x)|ε=0 =

(
∂tkt + v̇t .∇kt + �kt

2

)
(gt(x)) (4.28)
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For convenience of notations we denote by A the right hand term of (4.24). By first
differentiating the product, then by applying (4.26) at ε = 0, then by applying (4.28),
and finally by using that gt preserves the measure we obtain

A = Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

〈Dηgt(x),
d

dε
Dηet(εk).gt(x)|ε=0〉Tgt (x)Mdx

⎞
⎠ dt

⎤
⎦

= Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

〈v̇t(gt(x)),
d

dε
Dηet(εk).gt(x)|ε=0〉Tgt (x)Mdx

⎞
⎠ dt

⎤
⎦

= Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

〈v̇t(gt(x)),

(
∂tkt + v̇t .∇kt + �kt

2

)
(gt(x))〉Tgt (x)Mdx

⎞
⎠ dt

⎤
⎦

= Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

〈v̇t(x), ∂tkt(x) + v̇t .∇kt(x) + �kt

2
(x)〉TxMdx

⎞
⎠ dt

⎤
⎦

which proves (4.24). �

5 Variations of the Energy Along Translations

Let η be a probability which is absolutely continuous with respect to μ (as mentioned
in the beginning of Sect. 3 we work with a fixed λ ≥ 2) and with velocity field vη .
The stochastic action of η is defined by

S(η|μ) := Eη

⎡
⎣

1∫

0

|v̇η
s |2G
2

ds

⎤
⎦ (5.29)

The motivation for this definition is that, by taking ε = 0 in (4.26) and using the fact
that gt preserves the measure, we also have

S(η|μ) = Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

|Dηgs(x)|2Tgs(x)M

2
dx

⎞
⎠ ds

⎤
⎦

with the notations of Proposition 4. By (2.6), Gλ ⊂ G implies that whenever the
entropy is finite we have

S(η|μ) < ∞
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as well. More accurately, by a classical result on abstract Wiener spaces together
with (2.6), there exists a c > 0 such that for any η � μ

S(η|μ) ≤ cH(η|μ)

In this section we introduce another kind of variations for the functional S(η|μ),
namely we study its variations along translations, These variations are generally dif-
ferent from those introduced above; however, when restricted to admissible flows,
they are the same. We also investigate similar variations for the relative entropy.
Proposition 5 computes the values of the variations of these quantities along deter-
ministic translations.

Proposition 5 Let η be a probability absolutely continuous with respect to μ with
velocity field vη and mean velocity us(x) := Eη[v̇η

s (x)]. If S(η|μ) < ∞ we have,

d

dε
S(τεhη|μ)|ε=0 =

1∫

0

〈us, ḣs〉Gds (5.30)

and if H(η|μ) < ∞ we have

d

dε
H(τεhη|μ)|ε=0 =

1∫

0

〈us, ḣs〉Gλ
ds (5.31)

where τhη is the image measure of η by the mapping τh defined by

τh : ω ∈ W → ω + h ∈ W

Proof A straightforward application of the Cameron-Martin theorem shows that for
any h := ∫ .

0 ḣsds ∈ H, the velocity field field vτhη of τhη is given by

vτhη = τh ◦ vη ◦ τ−h = vη ◦ τ−h + h (5.32)

Hence by (5.29) we have

S(τhη|μ) = Eη

⎡
⎣

1∫

0

|v̇η
s + ḣs|2G

2
ds

⎤
⎦

which yields (5.30). Similarly (5.31) follows by (2.6) and (5.32). �

Let

Cn
0([0, 1],Gλ+2) := {k ∈ Cn([0, 1],Gλ+2) : k(0, .) = k(1, .) = 0

}
(5.33)
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and let � be the Helmoltz projection on divergence free vector fields. We set

Kη
0 :=

⎧⎨
⎩h :=

.∫

0

ḣs(ω)ds

∣∣∣∣∣∣
∃k ∈ Cn

0 ([0, 1],Gλ+2), ds − a.s., ḣs = ∂sks + �((us.∇)ks) + �ks

2

⎫⎬
⎭

(5.34)

so that it makes sense to say that any h ∈ Kη
0 is associated to a k ∈ Cn

0([0, 1],Gλ+2).
For n sufficiently large we have Kη ⊂ H.

Proposition 6 Let η be a smooth flow whose mean velocity field is given by u. Then
u solves the Navier-Stokes equation if and only if for any h ∈ Kη

0

d

dε
S(τεhη|μ)|ε=0 = 0

Proof By Proposition 5, and by definition of �, for any h (which is associated to k)
we have

d

dε
S(τεhη|μ)|ε=0 =

∫

M

1∫

0

(
∂sk + �((u.∇)k) + �k

2

)
(s, x).u(s, x)dxds (5.35)

=
∫

M

1∫

0

(
∂sk + (u.∇)k + �k

2

)
(s, x).u(s, x)dxds (5.36)

and, since k(0, .) = k(1, .) = 0, the result directly follows from an integrating by
parts. �

We now relate these variations to the ones of Sect. 4. Namely we prove that,
for admissible flows, these variations of measure by quasi-invariant transformations
yield exactly the same variations as the exponential variations of Sect. 4.

Proposition 7 Let η be an admissible flow. Then, for any h ∈ Kη
0 (see (5.34))

associated with a k ∈ Cn
0([0, 1],Gλ+2) (see (5.33)) we have

d

dε
S(τεhη|μ)|ε=0 = LkS(η|μ)

Proof Let u be the mean velocity field of η. Since η is admissible we have, by (3.14)

〈ut, (ut .∇)kt〉G = −〈(ut .∇)ut, kt〉G = −Eη[〈(v̇t .∇)v̇t, kt〉G] = Eη[〈v̇t, (v̇t .∇)kt〉G]
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Hence, using (5.36),

d

dε
S(τεhη|μ)|ε=0 = Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

〈
v̇

η
t (x), ∂tk + (v̇

η
t .∇)k + �k

2

〉
TxMdx

⎞
⎠ dt

⎤
⎦

which is exactly the definition of LkS(η|μ) (Definition 2). �

6 Generalized Flows with a Cut-off

In Sect. 5 we have seen that in the infinite dimensional case, the relative entropy was
generally not proportional to the action S(·|μ). The reason is that the renormalization
procedure gives a different weight to the different modes: hard modes have a weaker
weight in the energy than in the relative entropy. However if instead of renormalizing
we introduce a cutoff, and rescale the noise accordingly,S(·|μ) becomes proportional
to the relative entropy H(·|μ). Within this framework, we investigate the existence
of generalized flows with a given marginal.

6.1 General Framework for a Cut-off at Scale n

We recall that (eα) denotes the Hilbertian basis of G of Sect. 2. By induction we
define (Il)

∞
l=1 by I1 = 1 and

Il+1 = min ({m ≥ Il : |k(m)| > |k(Il)|})

For N ∈ N, N > 1 we set
n := 2IN

We define Gn = V ect(e1, . . . , en) ⊂ G and recall that we work under the hypothesis

eα(x) =
∑

j

aα,j(x)∂j|x

The cut-off has been chosen so that ∃S(N) such that

n∑
α=1

aα,i(x)aα,j(x) = S(N)δi,j
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where S(N) ↑ ∞. We note

Hn :=
⎧⎨
⎩h : [0, 1] → Gn, h :=

.∫

0

ḣsds,

1∫

0

|ḣs|2Gds < ∞
⎫⎬
⎭

and 〈., .〉Hn the associated scalar product. We set Wn := C([0, 1],Gn) endowed with
the norm of uniform convergence, and μn the Wiener measure on (Wn, Hn) with a
parameter

σ(N) := 2ν

S(N)

t → Wt is the coordinate process. Define gn to be the solution of

dgn
t := (◦dWt)(g

n
t ); gn

0 = e

on the Wiener space (Wn, Hn,μn) i.e., satisfying, for every smooth f ,

f (gn
t ) = f (e) +

t∫

0

n∑
α=1

(eαf )(gn
s ) ◦ dW α

s

where W α := 〈Wt, eα〉Gn . We are now working with the Wiener measure with
parameter σ(N). Still by the Girsanov theorem, for any η � μn there is a unique
v ∈ L0(η, Hn) such that

dη

dμ
= exp

(
δW v − σ(N)|v|2Hn

2

)

and W̃ := IW − σ(N)v is a Brownian motion with parameter σ(N) under η. We call
v the velocity field of η. Furthermore, Föllmer’s formula (c.f. [8]) then reads

H(η|μn) = σ(N)Eη

[ |v|2Hn

2

]

Hence (g, W̃ ) is a solution to

dgn
t := ◦(dW ν

t + σ(N)v̇tdt))(gn
t ); gn

0 = e

on the probability space (Wn, η) for the filtration generated by the coordinate process
t → Wt , i.e., for every smooth f ,
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f (gn
t ) = f (e) +

t∫

0

n∑
α=1

(eαf )(gs) ◦ dW̃ α
s + σ(N)

t∫

0

n∑
α=1

(eαf )(gs)〈v̇s, eα〉ds

Within this framework, by an admissible flow we mean a probability η of finite
entropy with respect to η satisfying the same conditions as in Definition 1 with μn

(resp. Gn) instead of μ (resp. of G).

6.2 Variations of the Action

We now define the action for the cutoff n ∈ N by

S(η|μn) := Eη

⎡
⎣

1∫

0

|Dη
s gn

s |2G
2

ds

⎤
⎦ = Eη

⎡
⎣

1∫

0

|σ(N)v̇s|2G
2

ds

⎤
⎦ = σ(N)2Eη

⎡
⎣

1∫

0

|v̇s|2G
2

ds

⎤
⎦

Therefore
S(η|μn) = σ(N)H(η|μn) (6.37)

Similarly to Proposition 7 we note

Kη
0(n) :=

{
h ∈ Hn : ∃k ∈ C1

0([0, 1],Gn), ds − a.s., ḣs = ∂sk + πn�((σ(N)us.∇)k) + ν�k
}

where πn is the orthogonal projection πn : G → Gn and we say that a h ∈ Kη
0(n) is

associated to a k ∈ C1
0([0, 1],Gn).

Proposition 8 For any smooth flow η

un(t, x) := σ(N)Eη[v̇t(x)]

solves the Navier-Stokes equation if and only if for any h ∈ Kη
0(n) we have

d

dε
H(τεhη|μn)]|ε=0 = 0

for any h associated with a k ∈ C1
0([0, 1],Gn). Moreover whenever η is an admissible

flow, and h ∈ Kη
0(n) is associated to k ∈ C1

0([0, 1],Gn) we have

d

dε
H(τεhη|μn)]|ε=0 = d

dε
Eη

⎡
⎣

1∫

0

⎛
⎝
∫

M

|Dηet(εk).gn
t (x)|2Tgt (x)M

2
dx

⎞
⎠ dt

⎤
⎦ |ε=0

where the notations are those of Sect.4.
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Proof The first part of the proof is the same as in Proposition 6. We now prove the
second part of the claim which is similar to Proposition 7. As in the first subsection
we have

n∑
α=1

e2αf = S(N)�f

Therefore by setting

A := lim
ε→0

⎛
⎝Eη

[∫ 1
0

(∫
M |Dηet(εk).gn

t (x)|2Tgt (x)M
dx
)

dt
]

− Eη

[∫ 1
0

(∫
M |Dηgn

t (x)|2Tgt (x)M
dx
)

dt
]

2ε

⎞
⎠

and using the fact gt preserves the measure we get

A = Eη

[∫ 1

0
〈v̇t, ∂tk + σ(N)v̇t .∇k + ν�k〉Gdt

]

If η is assumed to be admissible, then similarly to the proof of Proposition 7 we
obtain

A = d

dε
H(τεhη|μn)]|ε=0 �

Concerning existence of Lagrangian Navier-Stokes flows with a cut-off they have
been shown to exist in Ref. [4] for deterministic L2 drifts. Examples of random
solutions of Navier-Stokes equations were constructed in Ref. [5] but we did not
prove existence of the corresponding flows.
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KMT Theory Applied to Approximations
of SDE

Alexander Davie

Abstract The dyadic method of Komlós, Major and Tusnády is a powerful way
of constructing simultaneous normal approximations to a sequence of partial sums
of i.i.d. random variables. We use a version of this KMT method to obtain order 1
approximation in a Vaserstein metric to solutions of vector SDEs under a mild non-
degeneracy condition using an easily implemented numerical scheme.

Keywords SDE · Numerical scheme · Vaserstein metric

1 Introduction

The pathwise simulation of solutions of vector stochastic differential equations is
challenging because, using standard methods, to obtain approximations to order
greater than 1

2 requires simulation of iterated integrals of the Brownian path, which is
difficult. One approach is to seek approximations in aVasersteinmetric, meaning that
there is a coupling between the approximate and exact solutionswith respect towhich
the error is of the desired order. Reference [2] describes an easily generated scheme,
based on the standard order 1 Milstein scheme, which is order 1 in a Vaserstein
metric, provided the SDE has a nondegenerate diffusion term. Here we describe a
modified version of the scheme from Ref. [2] which gives order 1 under a weaker
nondegeneracy condition. The proof uses a construction of a coupling based on the
KMT method.

Section2 reviews the basics of SDE approximation and states the main result.
Section3 briefly reviews the KMT theorem and presents some required material
from coupling and optimal transport theory. The rest of the paper is devoted to the
proof of the theorem and a relevant example.

Some other work on SDE approximation using coupling is described in the final
chapter of volume 2 of Ref. [6]. We also mention [1] which obtains an order 2

3 − ε
bound in a Vaserstein metric for the Euler method in one dimension.
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presentation of the paper.

2 Approximation of SDEs

Here we briefly review the Milstein scheme and formulate our new version.
Consider an Itô SDE

dxi (t) =
d∑

k=1

bik(t, x(t))dWk(t), xi (0) = x (0)
i , i = 1, . . . , q (1)

on an interval [0, T ], for a q-dimensional vector x(t), with a d-dimensional driving
Brownian path W (t). If the coefficients bik(t, x) satisfy a global Lipschitz condition

|ai (t, x) − ai (t, y)| ≤ C |x − y|, |bik(t, x) − bik(t, y)| ≤ C |x − y| (2)

for all x, y ∈ R
q , t ∈ [0, T ] and all i, k, where C is a constant, and if ai and bi are

continuous in t for each x , then (1) has a unique solution x(t) which is a process
adapted to the filtration induced by the Brownian motion. This solution satisfies
satisfies E|x(t)|p < ∞ for each p ∈ [1,∞) and t ∈ [0, T ].

The standard approach to the strong or pathwise approximation of the solution of
(1), as described for example in Ref. [4], is to divide [0, T ] into a finite number N of
subintervals, which we shall usually assume to be of equal length h = T/N , and to
approximate the equation on each subinterval using a stochastic Taylor expansion.
Such expansions are described in detail in Chap.5 of [4]. The simplest such approx-
imation, using only the linear term in the expansion, gives the Euler (also known as
Euler-Maruyama) scheme

x ( j+1)
i = x ( j)

i +
d∑

k=1

bik(t j , x ( j))V ( j)
k (3)

while adding the quadratic terms gives the Milstein scheme

x ( j+1)
i = x ( j)

i +
d∑

k=1

bik(t j , x ( j))V ( j)
k +

d∑
k,l=1

ρikl(t j , x ( j))I ( j)
kl (4)

where V ( j)
k = Wk(( j + 1)h) − Wk( jh), I ( j)

kl = ∫ ( j+1)h
jh {Wk(t) − Wk( jh)}dWl(t)

and ρikl(t, x) = ∑q
m=1 bmk(t, x)

∂bil
∂xm

(t, x).

Assuming (2) the Euler scheme has order 1
2 , in the sense that E(maxN

j=1 |x ( j)

− x( jh)|2) = O(h) and under a stronger smoothness condition on the bik the
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Milstein scheme has order 1, indeed

E(
N

max
j=1

|x ( j) − x( jh)|2) = O(h2) (5)

(see Kloeden and Platen [2], Sect. 10.3). These L2 bounds can be extended to L p for
any p ≥ 1.

The Euler scheme is straightforward to implement, as the only random variables
one has to generate are the normally-distributed V ( j)

k , but for Milstein one has also

to generate the ‘area integrals’ I ( j)
kl which is non-trivial if d ≥ 2. Order 1

2 is the best

one can do in general when the only random variables generated are the V ( j)
k .

We remark here that we can write I ( j)
kl = 1

2 (V ( j)
k V ( j)

l − hδkl) + ζ
( j)
k V ( j)

l −
ζ

( j)
l V ( j)

k + K ( j)
kl with random variables ζ

( j)
k , K ( j)

kl for 1 ≤ k, l ≤ d all having zero

mean, variance h
12 , satisfying K ( j)

kl = −K ( j)
lk , and such that the d(d + 1)/2 random

variables consisting of ζ
( j)
k : 1 ≤ k ≤ d and K ( j)

kl : 1 ≤ k < l ≤ d are mutually
uncorrelated (though not independent).

Motivated by this remark we consider the following modification of Milstein,
which requires the generation of normal random variables only.

x̃ ( j+1)
i = x̃ ( j)

i +
d∑

k=1

bik(t j , x̃ ( j))Ṽ ( j)
k +

d∑
k,l=1

ρikl(t j , x̃ ( j))J ( j)
kl (6)

where again the Ṽ ( j)
k are independent N (0, h) and J ( j)

kl = 1
2 (Ṽ ( j)

k Ṽ ( j)
l − hδkl) +

z( j)
k Ṽ ( j)

l − z( j)
l Ṽ ( j)

k + λ
( j)
kl , where the z( j)

k for 1 ≤ k ≤ d and λ
( j)
kl for 1 ≤ k < l ≤ d

are independent N (0, h
12 ), and then we set λ( j)

lk = −λ
( j)
kl for k < l and λ

( j)
kk = 0.

Our main result is that, under suitable regularity conditions and a fairly mild
nondegeneracy condition, the scheme (6) has order 1 under a suitable coupling. To
formulate the nondegeneracy condition, we define for each (t, x) ∈ [0, T ] × R

d

a linear mapping Lt,x : R
d ⊕ Sd → R

q by Lt,x (r, s)i = ∑d
k=1 bik(t, x)rk +∑d

k,l=1 ρikl(t, x)skl for r ∈ R
d and s ∈ Sd , where Sd is the space of skew-symmetric

d × d matrices. We will require that Lx be surjective for each (t, x) ∈ [0, T ] × R
d ;

this is equivalent to requiring that for each (t, x) the vectors bk(x) and [bk, bl ](x),
for 1 ≤ k, l ≤ d, will span R

q (here bk is the vector whose i th component is bik ,
and [bk, bl ] denotes the Lie bracket, regarding bk and bl as vector fields on R

q for
each t). This can be thought of as a strengthened Hörmander condition. In fact we
need a version with some uniformity in (t, x), which we state precisely in the main
theorem:

Theorem 1 Suppose that the first and second derivatives of bik are bounded on
[0, T ] × R

q , and that there constants δ > 0 and K > 0 such that for each (t, x) ∈
[0, T ] × R

q the image under Lt,x of the unit ball in R
r ⊕ Sd contains the ball of

radius δ(1 + |x |)−K in R
q .
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Then there is a constant C > 0 such that if N ∈ N is given we can find independent
N (0, h

12 ) random variables z( j)
k for 1 ≤ k ≤ d and λ

( j)
kl for 1 ≤ k < l ≤ d and

0 ≤ j < N, defined on the same probability space as the Brownian path W (t),
such that, if x̃ ( j) is as given by the scheme (6), we have E|x̃ ( j) − x( jh)|2 ≤ Ch2 for
j = 1, . . . , N.

A similar result is proved in Ref. [2] for the scheme

x ( j+1)
i = x ( j)

i +
d∑

k=1

bik(t j , x ( j))V ( j)
k + 1

2

d∑
k,l=1

ρikl(t j , x ( j))(V ( j)
k V ( j)

l − hδkl)

under a stronger nondegeneracy condition that the matrix (bik) has rank q.
The proof of Theorem 1 occupies much of the remainder of the paper. We note

here some properties of the joint characteristic function χ of the random variables
(zk), (λkl), regarded as a function on Rd(d+1)/2. An explicit expression for χ can be
found in Ref. [9]. What we require are the following (taking the case h = 1, from
which the general case can be deduced by scaling): χ extends to be analytic on a
‘strip’ {x + iy : x, y ∈ R

d(d+1)/2 in C
d(d+1)/2 and |y| < δ} for some δ > 0, and

|χ(x + iy)| < C(1 + |x |)−1 on this strip.

3 Coupling and KMT Theory

If we have two probability spaces (X ,F ,P) and (Y,G,Q) then a coupling between
P and Q is a measure on X × Y which has P and Q as its marginal distributions.
Theorem 1 asserts the existence of a coupling between the probability space of the
Brownian path and that of the random variables used in the approximation (6). We
collect here some results on couplings which we shall need.

First we mention the Vaserstein metrics on probability measures on R
n . If P1

and P2 are such measures, we define Wp(P1,P2) to be the infimum of E|X − Y |p,
taken over all couplings between P1 and P2 where X and Y have distributions P1
and P2 respectively. For p ≥ 1 one can then show that Wp is a metric on the
set of all probability measures P on R

n having finite pth moment (i.e. satisfying∫
Rn |x |pdP(x) < ∞). Wp is known as the p-Vaserstein metric after Ref. [7] (Note:
we use the transliteration ‘Vaserstein’ from the Cyrillic as that is the one used by
Vaserstein himself; ‘Wasserstein’ is also used in the literature).

We also note the elementary result (see e.g. Proposition 7.10 in [8]) that

Wp(μ, ν) ≤ 2(p−1)/p
{∫

|x |pd|μ − ν|(x)

}1/p

(7)

for any two probability measures μ, ν on Rn and for any p ≥ 1.
This is quite a good bound if p = 1 but is less good for p > 1; we shall however

use it for bounding some small remainder terms.
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The KMT theorem [5] is a form of simultaneous Central Limit Theorem using
coupling. A variant of this result (modified from the original to be closer to the type of
result we will use) states that if P is a suitably well-behaved probability distribution
on R, with zero mean, variance 1 and zero 3rd moment, then there is a constant
C > 0 such that the following holds: if n ∈ N and X1, . . . , Xn are independent with
distribution P, and if Y1, . . . , Yn are independent N (0, 1), then there is a coupling
between the random vectors (X1, . . . , Xn) and (Y1, . . . , Yn) such that

E

{
k∑

i=1

(Xi − Yi )

}2

≤ C

for k = 1, . . . , n.
There are various generalisations in the literature. Einmahl [3] extended the result

to vector random variables and Zaitsev [10] further extended it to non-identical
distributions which are uniformly non-degenerate. What we require is a variant of
this latter result where the distributions are themselves random. It is not clear that
this can be easily deduced from results in the literature so we prefer to give a self-
contained argument in the context we need. This argument will use the lemma and
corollary below, on polynomial perturbations of normal distributions. We denote by
φ the standard normal N (0, I ) distribution on R

q .

Lemma 2 Let X be an R
q-valued random variable with N (0, I ) distribution, let

p : Rq → R
q be a polynomial function of degree 3, and define ρ : Rq → R

q by
ρ(x) = x + p(x). Let P be the probability distribution of ρ(X) and let ν be the
signed measure on R

q with density φ(y)(1+ y.p(y)−∇.p(y)). Then for any M ≥ 1
we have a bound

∫

Rq

(1 + |y|)M d|P − ν|(y) ≤ Cε2 (8)

where C is a positive constant depending only on q and M, and ε is an upper bound
for the absolute values of the coefficients of p.

Proof We use C1, C2 etc. to denote positive constants which depend only on q and
M . First we can find C1 ≥ 1 such that

max(|ρ(x) − x |, ‖Dρ(x) − I‖) ≤ C1ε(1 + |x |)3 (9)

and

max(|r(x)|, ‖Dr(x)‖) ≤ C1ε
2(1 + |x |)9 (10)

for all x ∈ R
q , where r(x) = p(x) − p(x + p(x)). Then let R = (2C1ε)

−1/6 − 1
and let BR = {x ∈ R

q : |x | < R} (which will of course be empty if R ≤ 0, which
can happen if ε is not very small).
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Now define a measure μ as the image under ρ of the restriction to BR of the
N (0, I ) distribution on R

q . We also define ν̃ = ν|ρ(BR). Then we have

∫

Rq

(1 + |y|)M d|P − ν|(y) ≤ �1 + �2 + �3

where �1 = ∫
Rq (1 + |y|)M d|μ − ν̃|(y), �2 = ∫

Rq (1 + |y|)M d(P − μ)(y) and
�3 = ∫

Rq (1 + |y|)M d|ν − ν̃|(y).
We first bound�1. To this end we note that, by the definition of R, for x ∈ BR the

RHS of (9) is bounded by 1
2 |ε|1/2. It then follows from (9) that for x ∈ BR we have

‖Dρ(x) − I‖ ≤ 1
2 and so ρ is bijective on BR . Then the density f of ν̃ on ρ(BR) is

given by f (y) = det Dρ−1(y)φ(ρ−1(y)) and so we have

�1 =
∫

ρ(BR)

(1 + |y|)M | det Dρ−1(y)φ(ρ−1(y)) − (1 + y.p(y) − ∇.p(y))φ(y)|dy

To bound the RHS, we fix x ∈ BR and set y = ρ(x), noting that |x − y| ≤
min(1, |y|−1) by (9). Noting that x = y − p(y) + r(x) and using the bound (10)
we readily find that

|φ(x) − (1 + y.p(y) − ∇.p(y))φ(y)| ≤ C2ε
2(1 + |y|C3)φ(y)

and

| det Dρ−1(y) − (1 − ∇.p(y))| ≤ C2ε
2(1 + |y|C3).

From this we easily deduce that �1 ≤ C4ε
2.

Similar bounds for�2 and�3 are also easily proved, using the exponential decay
of φ, and the result follows. �

We require a corollary of this lemma, for which we first introduce some notation.
Let P denote the space of all real-valued polynomials on R

q , and Pq the space
of Rq -valued functions p = (p1, . . . , pq) on R

q such that each pi is a polynomial.
Let P0 denote the subspace of S ∈ P such that

∫
Rq S(y)φ(y)dy = 0. We can

characterise P0 as follows. Let L : Pq → P be the linear mapping defined by
Lp(x) = ∇.p(x) − x .p(x). Then ∇.(φp)(x) = Lp(x)φ(x) and it follows from the
divergence theorem that Lp ∈ P0 for every p ∈ Pq . In the converse direction, we
note that if u ∈ P has degree n ≥ 1 then L∇u = −nu + r where r ∈ P has degree
less than n. If this u is in P0 then we have r ∈ P0 and by induction on n we can
deduce that u is in the range of L. So P0 is precisely the range of L.
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Corollary 3 Let g ∈ P have degree 4, let μ be the measure with density φ (i.e.
the standard normal probability measure) and let λ be a probability measure on R

q

such that
∫

Rq

(1 + |y|)M d|(1 + g)μ − λ|(y) ≤ α (11)

Then WM (μ,λ) ≤ C(ε + (ε2 + α)1/M ), where C is a positive constant depending
only on q and M, and ε is an upper bound for the absolute values of the coefficients
of g.

Proof Let β = ∫
gdμ. Then (11) gives |β| ≤ α, and g − β ∈ P0. So by replacing g

by g − β we can assume g ∈ P0.
Then as described above we can find p ∈ Pq with Lp = g, and from the

construction of p it is clear that p has degree 3 and its coefficients are bounded byC1ε.
Let X be an N (0, I ) random variable and let Y = X + p(X). By Lemma 2 we have

∫

Rq

(1 + |y|)M d|gμ − ν|(y) ≤ C2ε
2

and so
∫

Rq

(1 + |y|)M d|ν − λ|(y) ≤ C2ε
2 + α

Hence by (7), WM (ν,λ) ≤ C3(ε
2 + α)1/M . Finally E|Y − X |M = E|p(X)|M ≤

C4ε
M soWM (μ, ν) ≤ C1/M

4 ε and the result follows by the triangle inequality. �

4 First Reduction

For theMilstein approximation (x ( j)
i ) given above, we know thatE|x ( j)−x( jh)|2 ≤

Ch2 holds under the assumptions of the theorem. So to prove the theorem it suffices
to obtain a bound E|x̃ ( j) − x ( j)|2 ≤ Ch2. We will construct a coupling between the
set of random variables V ( j)

k , I ( j)
kl used for Milstein and the set of random variables

used by (6), such that this bound holds.
We first split each of the random variables V ( j)

k as the sum of two parts: V ( j)
k =

Q( j)
k + R( j)

k where Q( j)
k ∼ N (0, h −h2) and R( j)

k ∼ N (0, h2) are independent. (See
the remarks following the proof of Theorem 1 for discussion of this splitting). Now
let (u( j)

i ) be the modified Euler approximation defined by the recurrence relation

u( j+1)
i = u( j)

i +
d∑

k=1

bik(u
( j))Q( j)

k (12)
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with u(0) = x (0). Then define the q × q matrix A( j) by A( j)
il = ∑d

k=1
∂bik
∂xl

(u( j )Q( j)
k ,

and a modified matrix by Â( j) = A( j) if ‖A( j)‖ ≤ 1
2 , and Â( j) = 0 otherwise.

We also define a modified version of I ( j)
kl by replacing V by Q, namely I

( j)
kl =

1
2 (Q( j)

k Q( j)
l − (h − h2)δkl) + ζ

( j)
k Q( j)

l − ζ
( j)
l Q( j)

k + K ( j)
kl . Then define α( j) by the

recurrence relation

α
( j+1)
i = {(I + Â( j))α( j)}i +

d∑
k=1

bik(u
( j))R( j)

k +
d∑

k,l=1

ρikl(u
( j))I

( j)
kl (13)

withα(0) = 0.Next defineβ( j) = x ( j)−u( j)−α( j) ∈ R
q and note that thenβ(0) = 0.

We have β
( j+1)
i − β( j) = x ( j+1)

i − x ( j)
i − (u( j+1)

i − u( j)
i ) − (α

( j+1)
i − α

( j)
i ) and

using (4), (12) and (13) we find after some rearrangement that

β
( j+1)
i − β

( j)
i =

d∑
k,l=1

∂bik

∂xl
(u( j))β

( j)
l Q( j)

k

+
d∑

k=1

{
bik(x ( j)) − bik(u

( j)) −
q∑

l=1

∂bik

∂xl
(u( j))(x ( j)

l − u( j)
l )

}
Q( j)

k

+
d∑

k=1

{bik(x ( j)) − bik(u
( j))}R( j)

k +
d∑

k,l=1

(ρikl(x ( j)) − ρikl(u
( j)))Ikl

+ {(A( j) − Â( j))α( j)}i +
d∑

k,l=1

ρikl(u
( j))(I ( j)

kl − I
( j)
kl ) (14)

Wenowbound theRHSof (14). First note that, conditional on the randomvariables
Q(i), R(i), ζ(i), K (i) for i < j , each of the 6 terms on the RHS has expectation 0.
Also the first term has variance bounded by C1E|β( j)|2h. Next, we see that the
scheme (12) has order 1

2 , being an Euler scheme with the random term scaled by√
1 − h = 1 + O(h), so that E|x ( j) − u( j)|2 ≤ C2h. Then we see that each of the

other 3 terms on the RHS has variance bounded by C3h3. Then we conclude from
(14) that E|β( j+1)|2 ≤ (1 + C1h)E|β( j)|2 + C3h3 and hence that

E|x ( j) − u( j) − α( j)|2 = E|β( j)|2 ≤ C4h2 (15)

for j = 1, . . . , N .
We can do a similar analysis for (x ( j)

i ) as defined by (6) using random variables

Ṽ ( j)
k , z( j)

k and λ
( j)
kl as above. We again write Ṽ ( j)

k = Q̃( j)
k + R̃( j)

k with Q̃( j)
k ∼

N (0, h − h2) and R̃( j)
k ∼ N (0, h2). Our intention is to construct a coupling between
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the two sets of random variables so that they all all defined on the same probability
space, on which we can compare the two approximations. Our coupling will satisfy
Q̃( j) = Q( j), so we will assume this from now on.

Then, using the same Â( j) and u( j) as above, we define α̃( j) by the recurrence
relation

α̃
( j+1)
i = {(I + Â( j))α̃( j)}i +

d∑
k=1

bik(u
( j))R̃( j)

k +
d∑

k,l=1

ρikl(u
( j))J

( j)
kl (16)

with α̃(0) = 0,where J
( j)
kl = 1

2 (Q( j)
k Q( j)

l − (h−h2)δkl) + z( j)
k Q( j)

l −z( j)
l Q( j)

k + λ
( j)
kl

and just as before we obtain a bound

E|x̃ ( j) − u( j) − α̃( j)|2 = E|β̃( j)|2 ≤ C5h2 (17)

From the bounds (15) and (17) we see that to prove the theorem it is enough to
obtain a bound

E|α( j) − α̃( j)|2 ≤ Ch2 (18)

We prove this in the next section.
As preparation we note some properties of the process (u( j)). We let G denote the

σ-algebra generated by Q(0), . . . , Q(N−1), so that theu( j) and Â( j) areG-measurable.
As u( j) is an Euler approximation to (1), with the random term scaled by

√
1 − h,

standard bounds apply and we have E|u( j)|p ≤ C(p) for any p ≥ 1. We also define
B(r) = (I + Â(1))−1 · · · (I + Â(r))−1 and we readily obtain E‖B(r)‖p ≤ C(p) and
E‖(B(r))−1‖p ≤ C(p).

5 Proof of Theorem

Throughout we use C to denote a constant which may depend on the SDE but is
independent of N ; each occurrence may be different.

With B(r) as defined above we set

γ(r) = B(r)

⎧⎨
⎩

d∑
k=1

R(r)
k bk(u

(r)) +
d∑

k,l=1

σkl(u
(r))Q(r)

l ζ(r)
k +

∑
1≤k<l≤d

σkl(u
(r))K (r)

kl

⎫⎬
⎭ ,

γ̃(r) = B(r)

⎧⎨
⎩

d∑
k=1

R̃(r)
k bk(u

(r)) +
d∑

k,l=1

σkl(u
(r))Q(r)

l z(r)
k +

∑
1≤k<l≤d

σkl(u
(r))λ(r)

kl

⎫⎬
⎭ ,
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where σkl(x) is the vector in R
q whose i th component is ρikl(x) − ρilk(x), and we

see that

α( j) − α̃( j) = (B( j))−1
j−1∑
r=0

(γ(r) − γ̃(r)) (19)

It is convenient to reformulate the above expressions for γ(r) and γ̃(r) using
random variables scaled to have variance 1. We let m = d(d + 3)/2 and define
random vectors X (r) = (X (r)

1 , . . . , X (r)
m ) by X (r)

k = h−1R(r)
k for k = 1, . . . , d;

X (r)
k = (12/h)1/2ζ(r)

k−d for k = d + 1, . . . , 2d; X(k+1)(d−k/2)+l = 121/2h−1K (r)
kl .

Then (conditional on G), X (r) has mean 0 and covariance matrix I . We can
then write h−1γ(r) = Gr X (r) where Gr is a q × m matrix defined in terms of
B(r), bk(u(r)),σkl(u(r)), Q(r). In the same way we have h−1γ̃(r) = Gr X̃ (r) where
X̃ (r) is N (0, I ).

We have inequalities

‖Gr‖ ≤ ‖B(r)‖
⎛
⎝

d∑
k=1

|b(r)
k (u(r)| +

d∑
k,l=1

|σkl(u
(r)|(h−1/2|Q(r)

l | + 1)

⎞
⎠

and Gr Gt
r ≥ B(r)F(u(r))B(r)t where F(x) = ∑d

k=1 bk(x)bk(x)t + 1
12

∑
k<l σkl(x)

σkl(x)t . We note that the nondegeneracy hypothesis in the theorem implies that
‖(F(x)F(x)t )−1‖ ≤ C(1+ |x |)−2K . From these bounds and those at the end of the
last section we deduce that E‖Gr‖p ≤ C(p) and E‖(Gr Gt

r )
−1‖p ≤ C(p) for all

p ≥ 1. We remark that, conditional on G, γ(r) and γ̃(r) have the same covariance
matrix h2Gr Gt

r .
From now on we assume for convenience that N is a power of 2, N = 2κ (this

can always be arranged by extending the SDE to the interval [0, 2κh] where κ is the
smallest integer such that 2κ ≥ N ).

Let E0 = {0, 1, . . . , 2κ − 1}. We call a subset E of E0 dyadic if it is of the
form E = {m2n, m2n + 1, . . . , (m + 1)2n − 1} for some n ∈ {0, 1, . . . ,κ} and
m ∈ {0, 1, . . . , 2κ−n−1}.We see then that, for eachn, the dyadic sets of size 2n forma
partition of E0, and each dyadic set of size 2n+1 is the union of two dyadic sets of size
2n . For each dyadic set E of size 2n we then defineγE = ∑

r∈E γ(r), γ̃E = ∑
r∈E γ̃(r)

and HE = 2−n ∑
r∈E Gr Gt

r . Note that since, conditional on G, the random variables
γ(0), . . . , γ(N−1) are independent, HE is the (conditional) covariancematrix ofYE :=
2−n/2h−1γE . The same applies to γ̃E .

The idea is to construct couplings between γ̃E and γE recursively, starting with
E0 and proceeding by successive bisection. For this purpose we use the following
lemma, which is a version of the Central Limit Theorem saying that the density of
γE is close to the (Gaussian) density of γ̃E .
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Lemma 4 Let E be a dyadic set of size 2n, and let fE be the density function of
YE , conditional on G. Fix η with 0 < η < 1

12 . Then, provided ‖Gr‖ < 2ηn and
‖(Gr Gt

r )
−1‖ < 22ηn for each r ∈ E, we have for |v| < 2ηn that

∣∣∣∣
fE

f̃E
(v) − 1 − pE (v)

∣∣∣∣ < C2(16η−2)n

where f̃E (v) = (2π)−q/2(det HE )−1/2 exp(− 1
2v

t H−1
E v) is the density of ỸE and

pE (v) is a 4th degree polynomial whose coefficients are bounded by C2(4η−1)n.

Proof Note first that the bounds on Gr imply ‖HE‖ ≤ 22nη and ‖H−1
E ‖ ≤ 22nη .

Letψ be the characteristic function of the random variable X (r) (which is indepen-
dent of r ). ψ is real-valued and even onRm , and extends to a complex-analytic func-
tion on a ‘strip’ {x + iy : x, y ∈ R

m, |y| < a} for some a > 0. In a neighbourhood
of 0 inC, logψ has a convergent expansion logψ(z) = − 1

2 |z|2+c4(z) + c6(z)+· · ·
where ck(z) is a homogeneous polynomial of degree k, and |ck(z)| ≤ (C |z|)k for
even k ≥ 4. Then ψ(z) = exp− zt z

2 + χ(z) where χ(z) = c4(z) + c6(z) + · · · .
From this it follows that there exists δ > 0 such that

if x, y ∈ R with 2|y| ≤ |x | < δ then |ψ(x + iy)| ≤ e−|x |2/6 (20)

Then using the decay of ψ as x → ∞ and the fact that |ψ(x)| < 1 for x ∈ R with
x �= 0, we can find γ with 0 < γ < 1 and δ′ > 0 so that

if x, y ∈ R with |x | ≥ δ and |y| ≤ δ′ then |ψ(x + iy)| ≤ min(γ, C |x |−1) (21)

Now let� be the characteristic function of YE ; then�(u) = ∏
r∈E ψ(2−n/2Gt

r u)

and fE (v) = (2π)−q/2
∫
Rq e−iut v�(u)du, which by translating the subspace of

integration in Cq by −i H−1v we can write as

fE (v) = (2π)−qe−vt H−1
E v

∫

Rq

e−iut v�(u − i H−1
E v)du (22)

If |u| ≥ 24ηn+1 we can write �(u − i H−1
E v) = ∏

r∈E ψ(2−n/2Gt
r u − i2−n/2Gt

r

H−1
E v). Now using (20) and (21) we see that each term in the product is bounded

by either min(γ, (C2n(η+1/2)|u|−1) or exp(−2−(1+2η)n|u|2/6), and we deduce that
|�(u − i H−1

E v)| ≤ min(γ, (C2n(η+1/2)|u|−1)2
n + exp(−2−2ηn|u|2/6) for

|u| ≥ 24ηn+1. It then follows easily that
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∫

|u|≥24ηn+1

|�(u − i H−1
E v)|du ≤ C

{
2nmγ2n + exp(−26ηn−1)

}
(23)

To get a bound for |u| ≤ 24ηn+1 we write w = u − i H−1
E v and note that e−iut v

�(w) = exp( 12v
t H−1

E v − 1
2ut HE u +�(w) where �(w) = ∑

r∈E χ(2−n/2Gt
rw) =∑∞

k=2 S2k(w) where S2k(w) = 2−kn ∑
r∈E c2k(Gt

rw). We see that S2k is a homoge-
neous polynomial of degree 2k and satisfies |S2k(w)| ≤ C2(1−k+2kη)n|w|2k . We find
that |e�(w) − 1 − S4(w)| ≤ C2(8η−2)n|w|6 and hence that

e− 1
2 vt H−1

E v

∫

|u|≤24ηn+1

|e−iut v�(u − i H−1
E v) − (1 + S4(u − i H−1

E v))e−u2HE u |du

≤ C2(16η−2)n (24)

We also have
∫
|u|≥24ηn+1 |1+ S4(u − i H−1

E v)|e− 1
2 ut HE udu ≤ Ce−2ηn

and combining

these bounds the lemma follows, with pE (v) = ∫
Rq S4(u − i H−1

E v)e− 1
2 u2HE udu

which is a polynomial of degree 4 whose coefficients are bounded by C2(4η−1)n . �

Initial step. We start the construction by finding a coupling between ỸE0 and YE0 .
Let E0 be the event that condition (27) below holds with E = E0. Then provided E0
holds, Lemma 4 gives | fE0(y)/ f̃ E0(y)− 1− pE0(y)| < C2(16−2η)n for |y| ≤ 2nη/3.
To apply Corollary 3 we write y = H1/2

E0
u and g(u) = (det HE0)

1/2 fE0(H1/2
E0

U ),
and deduce that

∫

A
(1 + |u|)3

∣∣∣
{
1 + pE0

(
H1/2

E0
u
)}

φ(u) − g(u)

∣∣∣ du < C2(16η−2)n (25)

where A = {u ∈ R
q : |H1/2

E0
u| < 2nη/3}. One can easily see that the integral

over Ac is bounded by C2−2n so that (25) holds with the integral over Rq . And the
polynomial pE0(H1/2u) has coefficients bounded by C2(4η−1)n so from Corollary 3
we have W3(g,φ) ≤ C2(16η−2)n/3. Then W3( fE0 , f̃E0) ≤ ‖H1/2

E0
‖W3(g,φ) ≤

C2(17η−2)n/3. So can can find a coupling between YE0 and YE so that

E|YE0 − ỸE0 |3 ≤ C2(17η−2)n (26)

Recursive step. Let E be a dyadic set of size 2n where n ≥ 1. We can write E in a
unique way as the union of two disjoint dyadic sets F and G of size 2n−1 and note
that YF + YG = 21/2YE and ỸF + ỸG = 21/2ỸE . We suppose a coupling between
ỸE and YE has been defined, conditional on G. In other words, for each choice
of Q(0), . . . , Q(N−1), we have a joint distribution of YE and ỸE with the correct
conditional marginal distributions. We wish to extend this coupling to a coupling
between (YF , YG) and (ỸF , ỸG).
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For each x ∈ R
q , let fx be the density of YF conditional on YE = x and on

G, and let f̃x be the density of ỸF conditional on ỸE = x and on G. We note
that the conditional distribution of ỸF , given ỸE = x and G, is N (J x, H) where
J = HF H−1

E and H = 1
2 HF H−1

E HG . So f̃x is the density function of N (J x, H).
We need to find a coupling between YF and ỸF , conditional on YE = x and

ỸE = x̃ . To do this we need a coupling between the distributions with densities fx

and f̃ x̃ . We shall in fact construct a coupling between fx and f̃x , then use the fact
that f̃ x̃ is just f̃x translated by J (x̃ − x).

First we note that fx (y) = 21/2 fF (y) fG (21/2x−y)
fE (x)

. Then the provided the condition

‖Gr‖ < 2ηn/6 and ‖(Gr Gt
r )

−1‖ < 2ηn/3 for each r ∈ E (27)

holds, applying Lemma 4 to each of E, F, G gives

∣∣∣∣
fx (y)

f̃x (y)
− 1 − px (y)

∣∣∣∣ < C2(16η−2)n (28)

for |x |, |y| ≤ 2nη/3, where px (y) = pF (y) + pG(21/2x − y) − pE (x).
Let� = {x ∈ R

q : E(|YF |3χ|YF |≥2ηn/3 |YE = x & G) > 2−2n}, and let p = 60/η.
Then we see that, provided (27) holds,

P(YE ∈ �|G) ≤ 22n
E(|YF |3χ|YF |≥2ηn/3 |G) ≤ 2−18n

E(|YF |p+3|G)

≤ C2−18n‖HE‖(p+3)/2 ≤ C2−2n (29)

Let E denote the event that (27) holds, |YE | ≤ 2nη/6−1 and YE /∈ �. Write
x = YE . In order to apply Corollary 3 to the conditional distribution of YF , we make
the change of variable y = J x + H1/2u, noting that then f̃x (y) = (det H)−1/2φ(u).
We define gx (u) = (det H)1/2 fx (J x + H1/2u). Then, provided E holds, (28) gives

∫

A
(1 + |u|)3

∣∣∣
{
1 + px (J x + H1/2u)

}
φ(u) − gx (u)

∣∣∣ du < C2(16η−2)n (30)

where A = {u ∈ R
q : |J x + H1/2u| < 2nη/3}. Also, writing y = J x + H1/2u, if

|y| ≥ 2nη/3 we have |H1/2u| ≤ 2|y| so |u| ≤ 21+nη/6|y| and then, using x /∈ �,
we find

∫
Ac (1 + |u|)3gx (u) ≤ 2(η−2)n . We also easily get

∫
A(1 + |u|)3|1 + px (J x

+ H1/2u)φ(u)|du < C2−2n . Putting these bounds together, we obtain

∫

Rq

(1 + |u|)3
∣∣∣
{
1 + px (J x + H1/2u)

}
φ(u) − gx (u)

∣∣∣ du < C2(16η−2)n (31)

The polynomial px (J x + H1/2u) has coefficients bounded by C2(5η−1)n and then
applyingCorollary3wededuce that W3(gx ,φ) ≤ C2(16η−2)n/3. ThenW3( fx , f̃x ) ≤
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‖H1/2‖W3(gx ,φ) ≤ C2(17η−2)n/3. In other words, conditional on YE = x and
assuming E , we can find a random variable Y ∗

F with density f̃x such that E|Y ∗
F −

YF |3 ≤ C2(17η−2)n . If E fails then we find an arbitrary variable Y ∗ with density f̃x .
One easily finds that P(E) ≤ C2−6n and then taking expectation over G and YE we
find that unconditionally

E|Y ∗
F − YF |3 ≤ C2(17η−2)n (32)

We can now complete the recursive step by defining

ỸF = Y ∗
F + HF H−1

E (ỸE − YE ) (33)

which has the correct conditional density f̃ x̃ with x̃ = ỸE . Then we must have
ỸG = 21/2ỸE − ỸF . It is natural to define Y ∗

G = 21/2YE − Y ∗
F ; then one sees that

(32) and (33) both hold with F replaced by G.

Conclusion of proof. We apply the recursive procedure as described above, starting
with E0 (initial step), then using the recursive step to proceed from dyadic sets of size
2n to dyadic sets of size 2n−1, to generate a coupling for every dyadic set. The result
can be summarised as follows: conditional on G we have constructed a coupling
between the sets of random variables (YE ) and (ỸE ), each ranging over the dyadic
sets E , such that (32) and (33) hold whenever F is a dyadic set of size 2n−1 contained
in a dyadic set E of size 2n .

Now consider a given dyadic set E of size 2n . We can write in a unique way
E = Ek ⊆ Ek−1 ⊆ · · · ⊆ E0 where k = κ − n and, for each j , E j is a dyadic
set of size 2κ− j . Then from (33) we obtain ỸE − YE = ∑k

j=1 HEk H−1
E j

(Y ∗
E j

−
YE j ) + HEk H−1

E0
(ỸE0 − YE0). From this, using (26) and (32) along with the L p

bounds for H−1
E j

and HEk , and using Hölder’s inequality, we obtain ‖ỸE −YE‖5/2 ≤
C23(17η−2)n/10. Thus

‖γ̃E − γE‖5/2 ≤ C2(51η−1)n/10h (34)

holds whenever E is a dyadic set of size 2n . We now apply this to (19). If 1 ≤ j ≤ N
wecanwrite {0, 1, . . . , j−1} as a union of dyadic sets E1∪· · ·∪Ek where E1, . . . , Ek

have different sizes. Then (19) gives α( j) − α̃( j) = (B( j))−1 ∑k
i=1(γ̃Ei − γEi ).

Provided η < 1
51 , (34) then gives (18) using Hölder’s inequality and an L10 bound

for (B( j))−1. This completes the proof of the theorem.

Remark A natural question is whether the theorem is true without the nondegen-
eracy condition. Without this condition the KMT-type argument faces considerable
technical difficulties, but I would conjecture that the theorem is still true.

The splitting V ( j) = Q( j) + R( j) is introduced in order to allow the vectors bk as
well as the Lie brackets be included in the nondegeneracy condition. If we have the
nondegeneracy condition with the brackets only (i.e. the term in rk is omitted from
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the definition of Lt,x ) then we can prove the theorem without this splitting - but this
condition is considerable stronger (e.g. it cannot hold if q = d = 2).

Note that our result is slightly weaker than than the bound (5) for Milstein which
has a max over j . Equation (5) is deduced from the bound for individual j using
Doob’s martingale inequality; however we cannot apply this to our scheme because
our coupling does not preserve the filtrations, so the error x̃ ( j) − x( jh) is not a
martingale. The following example shows that the analogue of (5) fails for scheme
(6), whatever coupling is used.

Example We consider the SDE with q = 3 and d = 2 given by

dx1 = dW1, dx2 = dW2, dx3 = x1dW2 − x2dW1

on the time interval [0, 1], with initial condition xi (0) = 0.
This SDE has solution x1 = W1, x2 = W2, x3(t) = ∫ t

0 (W1(s)dW2(s) − W2(s)d
W1(s)). We find that ρ312(x) = 1, ρ321(x) = −1 and all other ρikl are zero. It is then
easy to check that the hypotheses of Theorem 1 are satisfied. We also note that the
Milstein approximation is exact, in that x ( j) = x( jh) for each j .

We claim that there is a constant c > 0 such that, for any N ∈ N the approximation
using scheme (6) with h = 1

N and any coupling between the random variables

Ṽ ( j)
k , z( j)

k ,λ
( j)
12 used by (6) and the Brownian path W , we have

P( max
0≤ j<N

|x̃ ( j) − x( jh)| ≥ cN−1 log N ) >
1

2
(35)

To prove this claim we first note that

x ( j+1)
3 − x ( j)

3 = x ( j)
1 V ( j)

2 − x ( j)
2 V ( j)

1 + I ( j)
12 − I ( j)

21 (36)

and

x̃ ( j+1)
3 − x̃ ( j)

3 = x̃ ( j)
1 Ṽ ( j)

2 − x̃ ( j)
2 Ṽ ( j)

1 + 2(z( j)
1 Ṽ ( j)

2 − z( j)
2 Ṽ ( j)

1 + λ
( j)
12 ) (37)

We also define random variables M = max0≤ j<N |x̃ ( j) − x ( j)|, K = max1≤ j≤N

|W ( jh)| and K̃ = max1≤ j≤N |(x̃ ( j)
1 , x̃ ( j)

2 )|. And we set X j = h−1(I ( j)
12 − I ( j)

21 ),

Y ( j) = 2
h (z( j)

1 Ṽ ( j)
2 − z( j)

2 Ṽ ( j)
1 ) and Z ( j) = 2

h λ
( j)
12 . Then subtracting (36) from (37)

and using the above definitions we find that

h|X ( j) − Y ( j) − Z ( j)| ≤ 2M(1 + 2K + 2K̃ ) (38)

The idea is to use (38) to get a lower bound for M . For this we need the distributions of
the random variables on the LHS of (38). First note that, from the known distribution
of the Lévy area, X ( j) has density 1

2 sech(πx/2) so P(|X ( j)| ≥ λ) ≥ C1e−πλ/2 for
λ > 0. And Y ( j) can be expressed as 1

2
√
3
(P2− Q2+ R2− S2)where P, Q, R, S are
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independent N (0, 1), so that P2 + R2 and Q2 + S2 have exponential distributions,
and then a simple calculation shows thatY ( j) has a symmetric exponential distribution
with P(|Y ( j)| > λ) = e−√

3λ. Moreover Z ( j) has N (0, 1
3 ) distribution, from which

one finds easily that P(|Y ( j) + Z ( j)| > λ) ≤ C2e−5λ/3 (using 5
3 <

√
3).

Now fix α and β with 3
5 < β < α < 2

π . Then we have

P( max
0≤ j<N

|X ( j)| ≤ α log N ) ≤ (1 − C1e−πα log N/2)N ≤ exp(C1N 1− πα
2 )

and

P( max
0≤ j<N

|Y ( j) + Z ( j)| ≥ β log N ) ≤ C2N 1− 3β
5

So if N is large enough we have P(max0≤ j<N |X ( j)| ≤ α log N ) ≤ 1
8 and

P(max0≤ j<N |Y ( j) + Z ( j)| ≥ β log N ) ≤ 1
8 . Moreover we can find a constant C3

so that P(K ≥ C3) ≤ 1
8 and P(K̃ ≥ C3) ≤ 1

8 . Then, with probability at least 1
2 , we

have

max
0≤ j<N

|X ( j)| ≥ α log N , max
0≤ j<N

|Y ( j) + Z ( j)| ≤ β log N ,

K ≤ C3, and K̃ ≤ C3 (39)

Finally, using (38), (39) implies 2M(1+4C3) ≥ (α−β)h log N , giving the required
result.
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Regularity Theory for Rough Partial
Differential Equations and Parabolic
Comparison Revisited

Joscha Diehl, Peter K. Friz and Harald Oberhauser

Abstract Partial differential equations driven by rough paths are studied. We return
to the investigations of [Caruana, Friz and Oberhauser: A (rough) pathwise approach
to a class of non- linear SPDEs, Annales de l’Institut Henri Poincaré/Analyse Non
Linéaire 2011, 28, pp. 27–46],motivated by the Lions–Souganidis theory of viscosity
solutions for SPDEs.We continue and complement the previous (uniqueness) results
with general existence and regularity statements. Much of this is transformed to
questions for deterministic parabolic partial differential equations in viscosity sense.
On a technical level, we establish a refined parabolic theorem of sums which may
be useful in its own right.
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1 Introduction

In Ref. [5], and then [6], inspired by earlier works of Lions–Souganidis on stochastic
viscosity theory [24, 25, 27, 28], rough path stability (with respect to the multi-
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problem with spatial domain R
n,

du = F
(

t, x, Du, D2u
)

dt −
d∑

i=1
Du (t, x) · Vi (x) dzi, u (0, ·) = u0.

Loosely speaking, if a family (zε) is Cauchy in rough path metric, with rough path
limit z (example: typicalmollifications of Brownianmotionwill satisfy this condition
with probability one; the rough path limit is identified asBrownianmotion andLévy’s
stochastic area; see e.g. [15]), then the resulting PDE solutions of the above problem,
(uε)will converge locally uniformly to a limit which is seen to depend only on z, and
not on the particular sequence (zε). In particular, this allows a (rough)pathwise and
robust view on stochastic partial differential equations (SPDEs). Immediate (prob-
abilistic) benefits of this approach include support theorems, large deviations and a
variety of limit theorems for SPDEs; see [6] for a discussion.Another nice application
of robustness in the driving signal is that it quickly leads to splitting results for such
(rough, and then stochastic) PDEs; see [17]. There are various extensions to noise
other than H(x, Du) = ∑d

i=1 Du · Vi (x). The “fully non-linear” case H = H(Du),
with non-linear dependence on Du, is quite intricate and discussed in Ref. [25], and
then [26] with regard to applications; adding x-dependence i.e. H = H(x, Du) is a
difficult problem, cf. the forthcoming book by Lions–Souganidis and also forthcom-
ing joint work with P. Gassiat. The case H = H(x, u) is considered in Refs. [12, 27];
the later reference makes a link to backward stochastic differential equations with
rough drivers. Even the “fully linear” case, with both F and H = H(x, u, Du) linear
(in u and its derivatives), is interesting as it covers the Zakai equation from filtering
theory (e.g. [1]): robust dependence on z (the “observation” path) is a classical prob-
lem, which goes back to the engineering literature of the late seventies; the rough
path point of view has recently led to resolution of this problem; [11, 16].

Having commented on the importance of such classes of (rough) partial differ-
ential equations, let us describe the contribution of this paper. We complement the
stability result of Ref. [6], which settled uniqueness, with general existence and reg-
ularity results, giving conditions for a space-time modulus of continuity (en passant,
this justifies regarding solutions as elements in BUC-spaces, as is common in viscos-
ity theory) and also spatial Lipschitz regularity. Our conditions are satisfied for large
classes ofF; for instance, infima and/or suprema over linearweakly elliptic operators,
as is typical in stochastic control resp. differential games. As for the noise term, we
have focused on H(x, Du) = Du · V (x), but adaptions to (linear) H = H(x, u, Du)

or the setting of Ref. [12] are not difficult.
As a matter of fact, after reduction of the RPDE problem to a (classical) viscosity

problem, we are in the need of fairly general (parabolic) comparison results on R
n.

Unfortunately, we failed to find this in the literature which forced us to revisit and
adapt some results from viscosity theory. This is a common situation, of course, but
since the necessary work seems to go well beyond a routine exercise, and may be
of independent interest, we opted to include a reasonably self-contained discussion
(Sect. 2) whichmay be read independently from the rough path/RPDE considerations
of Sect. 3.
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2 Parabolic Comparison Revisited

2.1 Structural Conditions on F

Let F = F (t, x, u, p, X) : [0, T ] × R
n × R× R

n × Sn → R be continuous and
degenerate elliptic i.e. non-decreasing in X. Here Sn denotes the space of symmetric
n× n matrices. Assume also that there exists γ such that, uniformly in t, x, p, X,

γ (u− v) ≤ F (t, x, v, p, X)− F (t, x, u, p, X) whenever v ≤ u. (1)

When γ ≥ 0 such Fs are called proper. Since we will be interested in parabolic
problems of the form ∂t − F a suitable change of variable (u ↔ eγtu) shows that
γ < 0 does not cause trouble. Assume furthermore that there exists, for all R > 0, a
function θR : [0,∞]→ [0,∞] with θR (0+) = 0, such that

F (t, x, r,α (x − x̃) , X)− F (t, x̃, r,α (x − x̃) , Y)

≤ θR

(
α |x − x̃|2 + |x − x̃|

)
(2)

for all t ∈ [0, T ] , x, x̃ ∈ R
n, r ∈ [−R, R] ,α > 0 and X, Y ∈ Sn (the space of n× n

symmetric matrices) which satisfy

− 3α

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
. (3)

Under these conditions, comparison for the Cauchy–Dirichlet problem ∂t−F = 0
on (0, T)×�, with� bounded, holds (User’s Guide, Chap.8). We shall be interested
in comparison for bounded (semi-continuous, sub- and super-) solutions on (0, T ]×
R

n. In particular, the unboundedness of Rn leads us to the following additional
assumption: assume F = F (t, x, u, p, X) is uniformly continuous (UC) whenever
u, p, X remain bounded; i.e.

∀R > 0 : F|[0,T ]×Rn×[−R,R]×BR×MR is uniformly continuous (4)

where BR, MR denote (open) balls of radius R in R
n, Sn respectively.1 Remark that

these structural conditions are satisfied when F = F (u, p, X) is proper (no t, x
dependence).

2.2 Statement of Theorems

Wewrite BC,BUC,BUSC,BLSC for bounded continuous, bounded uniformly con-
tinuous and bounded upper- resp. lower semi-continuous functions.

1 Using any of the equivalent norms on Sn.

http://dx.doi.org/10.1007/978-3-319-11292-3_8
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Theorem 1 (Comparison and spatial regularity) Assume F satisfies the assumptions
of Sect.2.1. Consider u ∈ BUSC ([0, T)× R

n) , v ∈ BLSC ([0, T)× R
n), extended

to [0, T ]× R
n via their semi-continuous envelopes; i.e.2

u (T , x) = lim sup
(t,y)∈[0,T)×Rn:

t→T ,y→x

u (t, y) , v (T , x) = lim inf
(t,y)∈[0,T)×Rn:

t→T ,y→x

v (t, y) . (5)

Assume that, in the sense of parabolic viscosity sub- and super-solutions 3

∂tu− F
(

t, x, u, Du, D2u
)
≤ 0 ≤ ∂tv − F

(
t, x, v, Dv, D2v

)

on (0, T)× R
n. (6)

Then the following statements hold true.
(i) The validity of (6) extends to Q := (0, T ] × R

n.
(ii) If u0 := u (0, ) v0 := v (0, ) ∈ BUC (Rn) and u0 ≤ v0 on R

n one has the “key”
estimate

u (t, x)− v (t, y) ≤ inf
α

[α

2
|x − y|2 + l (α)

]
,

valid for all (t, x, y) ∈ [0, T ]×R
n×R

n, where l (α) tends to 0 as α ↑ ∞, uniformly
in t ∈ [0, T ].

Remark 1 Since ũ (t, x) = e−γtu (t, x) [resp. ṽ (t, x) = e−γtv (t, x) ] is a sub- [resp.

super-]solution to
(
∂t − F̃

)
ũ+ γũ = 0 with

F̃ (t, x, p, X) = e−γtF
(

t, x, eγt ũ, eγtDũ, eγtD2ũ
)

we can always reduce to the case that γ > 0. In particular, we shall give the proof
under this assumption.

Remark 2 The key estimate immediately implies comparison (take x = y)

u ≤ v on [0, T ] × R
n.

By a 2ε argument, it also yields a spatial modulus for any solution u; uniform in t ∈
[0, T ]. Indeed, for fixed t ≤ T pick α large enough so that l (α) < ε/2 ; for any x, y :
|x − y| small enough (only depending onα andhence ε)we haveu (t, x)−u (t, y) < ε.
By switching the roles of x and y, if necessary, we see |u (t, x)− u (t, y)| < ε.

2 If one assumes that given u ∈ BUSC ([0, T ] × R
n) , v ∈ BLSC ([0, T ] × R

n) satisfy (6) on
(0, T ]×R

n then it already follows that (5) holds true. This follows from the so-called Accessibility
Theorem [7].
3 As is well-known, the precise meaning of (6) is expressed (equivalently) in terms of “touching”
test-functions or in term of sub- and super-jets.We shall switch between these points of viewwithout
further comments.
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Theorem 2 (Spatial Lipschitz regularity) Assume F satisfies the assumptions of
Sect.2.1 with the strengthening that the modulus θR is linear, i.e. θR(x) = θRx for a
constant θR > 0. Let u ∈ BC([0, T ] × R

n) be a solution to

∂tu− F
(

t, x, u, Du, D2u
)
= 0 on (0, T ] × R

n. (7)

and assume u(0, ·) to be Lipschitz with Lipschitz constant Lu0 . Then, for all t ∈ (0, T ],
u(t, ·) is Lipschitz uniformly in t ∈ [0, T ], with Lipschitz constant eγ̄t/2+2L2

u0+θ2R/γ
where γ̄ := 2(θR + 1).

Theorem 3 (Time-space regularity) Assume F satisfies the assumptions of Sect.2.1,
with the strengthening

∀R > 0 : F|[0,T ]×Rn×[−R,R]×BR×MR is bounded, uniformly continuous. (8)

(i) Let u ∈ BC ([0, T ] × R
n) be a viscosity solution to ∂t −F = 0 on (0, T ]×R

n

with intial data u0 = u (0, ·) ∈ BUC (Rn). Then

u = u (t, x) ∈ BUC
([0, T ] × R

n) .

(ii) If, in addition, θR is linear and if F has also linear growth in the Hessian, i.e.
there exists an M > 0 such that

|F(t, x, r, p, X)| ≤ M(1+ |X|),

for all t ∈ [0, T ] , x ∈ R
n, r ∈ R, p ∈ R

n and X, Y ∈ Sn, and u0 = u (0, ·) ∈
BC ∩ Lip (Rn) then u is 1/2-Hö lder in time (uniformly in space) and Lipschitz in
space (uniformly in t ∈ [0, T ]).

Theorem 4 (Existence) Assume F satisfies the assumptions of Sect.2.1, with the
strengthening (8), as above. Let u0 ∈ BUC (Rn). Then there exists a unique bounded
viscosity solution to the initial value problem

∂tu− F
(

t, x, u, Du, D2u
)
= 0 on (0, T ] × R

n,

u (0, ·) = u0

and u = u (t, x) ∈ BUC ([0, T ] × R).

2.3 Comments on the Existing Literature

The above ensemble of results gives, under natural conditions, a fairly complete
picture of the (model) case of bounded solutions to parabolic problems on R

n.
While it is not harder to think of further generalizations (e.g. unbounded solutions,
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discontinuous F, Dirichlet problem on unbounded domains …), the setting here is
appropriate for the study of stochastic viscosity4 and rough partial differential equa-
tions.Moreover, and this is the raison d′êtreof the present section, one is hard-pressed
to find these results in a similar form in the literature.

Let us be specific and point to the closest we are aware of: results in the spirit
of Theorem 1, part (ii) and 3, part (i), are found in Ref. [19]. As for Theorem 1,
part (ii), related results are found in Ref. [7, 18, 22] (and the references therein).
Regularity results relating to Theorem 3, part (ii), are found in Ref. [20]. (The works
[20, 21] are based on a useful continuous dependence result whose proof is a variant
of the comparison principle proof5 If one restricts to the first order case, so that
F = F(t, x, u, Du), the theory is less involved and there is a fairly complete text
book literature [2, 3]. For instance, the natural analogue of condition 4 in a first oder
setting appear in Ref. [2], p. 49, as condition (H11) and p. 136, as condition (H23).

Ona technical level, the deepest result of this section is an extensionof theTheorem
of Sums (TOS), cf. Sect. 2.9, and it does not appear that one can get uniform continuity
in space-time easily without it. To elaborate on this point, recall that almost every
modern treatise of second order comparison relies in one way or another on the
TOS, also known as Crandall-Ishii Lemma [9]. A parabolic version of the TOS on
(0, T) × R

n then underlies most second order (parabolic) comparison results; such
as those in [10, Chap.8] or [14, Chap.5]. As is well-known, its application requires
a barrier at time T ; e.g. replace a subsolution u by uγ := u − γ/(T − t) or so,
followed by γ ↓ 0 in the end. The downside is that an initially bounded function
u is turn into an unbounded function uγ ; consequently various localizations of the
non-linearity are necessary to deal with the resulting unboundedness. (An example
of the resulting complication was also seen in Ref. [12].) But then, establishing a
spatial modulus of solutions with the (standard) form of the parabolic Theorem of
Sums leads to an (apriori) dependence of the spatial modulus in time; establishing
the (desired) uniformity in t ∈ [0, T ], cf. (iii) above, would then entail, if possible at
all, a painstaking checking of uniformity in γ for all double limits in the technical
Lemma 6 below. All these difficulties, as will be seen, are avoided by our extension
of the (parabolic) TOS on Q := (0, T ] × R

n.6 Since, in fact, the TOS is often used
as a “black-box” theorem, in particular in the stochastic control literature such as
[14, Chap.5]), there seems to be every reason to use it in its strongest possible form;
in this sense our extension seems to be of independent interest. Concluding this short
subsection, it appears that Theorems1–4, which are otherwise proved by more or
less well-known techniques, have not been obtained previously in this form for lack
of a suitable TOS, valid at terminal time.

4 All results of Lions–Souganidis on stochastic viscosity theory are stated in BUC-spaces with
spatial domain R

n.
5 These ideas may prove useful in establishing rates of convergence for equations driven by (zε),
convergent in rough path sense.
6 The point here, of course, is to handle appropriately terminal time T which is a well-documented
subtlety in (parabolic) viscosity theory; some mistakes in the early literature were corrected in
Ref. [7].
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2.4 Proof of Theorem 1: Parabolic Comparison, Part (i)

Proof Assume u ∈ BUSC ([0, T)× R
n) solves ∂tu − F (t, x, u, Du, Du) ≤ 0 with

“properness” γ ≥ 0; with initial data u (0, ·) on (0, T) × R
n. By assumption, u is

extended to BUSC ([0, T ] × R
n) by setting

u (T , x) = lim sup
t↑T ,y→x

u (t, y) .

Assume u− φ has a (strict) max at (T , x̄), relative to [0, T ]×R
n. (The test function

φ is defined in an open neighbourhood of (T , x̄) ∈ [0, T ]×R
n.) In the remainder of

this section we establish

∂tφ (T , x̄)− F
(

T , x̄, u (T , x̄) , Dφ (T , x̄) , D2φ (T , x̄)
)
≤ 0.

To this end, start by taking (tn, xn) ∈ (0, T) × R
n s.t. (tn, xn) → (T , x̄) and

u (tn, xn) → u (T , x̄). Set αn := T − tn ↓ 0. Then take

(tn, xn) ∈ argmax

(
u− φ− α2

n

T − t

)
≡ argmaxψn.

over [0, T ] × R
n. In order to guarantee that the sequence (tn, xn) ∈ [0, T) × R

n

remains in a compact, say [T/2, T ] × B̄1(x̄), we make the assumption (without
loss of generality) that φ(T , x̄) = 0 and φ(t, x) > 3|u|∞ for (t, x) /∈ [T/2, T ] ×
B̄1(x̄); this implies (tn, xn) ∈ [T/2, T ] × B̄1(x̄) for n large enough, as desired. By
compactness, (tn, xn) →

(
t̃, x̃

)
at least along a subsequence n (k). We shall run

through the other sequence (tn, xn) along the same subsequence and relabel both
to keep the same notation. Note ψn (tn, xn) is non-decreasing and bounded, hence
ψn (tn, xn)→ l. Since ψn (tn, xn) ≤ (u− φ) (tn, xn) it follows (using USC of u− φ)
that l ≤ (u− φ)

(
t̃, x̃

)
. On the other hand,

ψn (tn, xn) ≥ ψn
(
tn, xn) = (u− φ)

(
tn, xn)− α2

n

T − tn︸ ︷︷ ︸
=αn

and hence l ≥ (u− φ) (T , x̄). Since (T , x̄) was a strict maximum point for u − φ
conclude that

(
t̃, x̃

) = (T , x̄) is the common limit of the sequences (tn, xn) , (tn, xn).
Now we note that

(u− φ) (tn, xn) ≥ ψn (tn, xn) ≥ (u− φ)
(
tn, xn)− αn

which implies that u (tn, xn) ≥ u (tn, xn) + o (1) where o (1) → 0 as n → ∞. By
definition of a subsolution,

∂tφ (tn, xn)− F
(

tn, xn, u (tn, xn) , Dφ (tn, xn) , D2φ (tn, xn)
)
≤ 0
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and hence, using properness of F (more specifically, (1) applied with u = u (tn, xn)

and v = u (tn, xn)+ o (1)),

−F(u (tn, xn)) ≥ −F
(
u
(
tn, xn)+ o (1)

)+ γ
(
u (tn, xn)−

(
u
(
tn, xn)+ o (1)

))

≥ −F
(
u
(
tn, xn))+ o (1) ,

also using uniform continuity of F as function of u over compacts, we obtain

∂tφ (tn, xn)− F
(

tn, xn, u
(
tn, xn) , Dφ (tn, xn) , D2φ (tn, xn)

)
≤ o (1) .

Sending n →∞ yields (use continuity of φ and F)

∂tφ (T , x̄)− F
(

T , x̄, u (T , x̄) , Dφ (T , x̄) , D2φ (T , x̄)
)
≤ 0,

as desired. �

2.5 Proof of Theorem 1: Parabolic Comparison, Part (ii)

Proof By assumption, u (t, x)− v (t, y) is bounded on [0, T ]×R
n×R

n. Let
(
t̂, x̂, ŷ

)
be a maximum point of

φ (t, x, y) := u (t, x)− v (t, y)− α

2
|x − y|2 − ε

(
|x|2 + |y|2

)
(9)

over [0, T ] × R
n × R

n where α > 0 and ε > 0; such a maximum exists since φ ∈
USC ([0, T ] × R

n × R
n) and φ → −∞ as |x| , |y| → ∞. (The presence ε > 0

amounts to a barrier at∞ in space ). The plan is to show a “key estimate” of the form

u (t, x)− v (t, y) ≤ inf
α

[α

2
|x − y|2 + l (α)

]
, (10)

valid on [0, T ] × R
n × R

n, where l (α) tends to 0 as α ↑ ∞. Thanks to the very
definition of

(
t̂, x̂, ŷ

)
as argmax of φ = φ (t, x, y), we obtain the estimate

u (t, x)− v (t, y) ≤ α

2
|x − y|2 + ε

(
|x|2 + |y|2

)
+ φ

(
t̂, x̂, ŷ

)
.

Note that
(
t̂, x̂, ŷ

)
depends on α, ε. We shall consider the cases t̂ = 0 and t̂ ∈ (0, T ]

separately. In the first case t̂ = 0 we have

φ
(
0, x̂, ŷ

) = sup
x,y

[
u0 (x)− v0 (y)− α

2
|x − y|2 − ε

(
|x|2 + |y|2

)]
=: Aα,ε
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and Lemma 5 below asserts that Aα,ε → supx [u0 (x)− v0 (x)] ≤ 0 as (ε,α) →
(0,∞). The second case is t̂ ∈ (0, T ] and we will show

φ
(
t̂, x̂, ŷ

) ≤ Bα,ε where

(
lim sup

ε→0
Bα,ε

)
→ 0 as α →∞; (11)

it is here that we will use Theorem of Sums and viscosity properties. (Since

φ
(
t̂, x̂, ŷ

) ≤ u
(
t̂, x̂

)− v
(
t̂, ŷ

)

we can and will use the fact that it is enough to consider the case u
(
t̂, x̂

) − v(
t̂, ŷ

) ≥ 0.) Leaving the details of this to below, let us quickly complete the argument:
our discussion of the two cases above gives φ

(
t̂, x̂, ŷ

) ≤ Aα,ε ∨ Bα,ε and hence

u (t, x)− v (t, y) ≤ α

2
|x − y|2 + ε

(
|x|2 + |y|2

)
+ Aα,ε ∨ Bα,ε;

we emphasize that this estimate is valid for all t, x, y ∈ [0, T ]×R
n×R

n andα, ε > 0.
Take now lim supε→0 on the right hand side, then optimize over α > 0, to obtain the
key estimate

u (t, x)− v (t, y) ≤ inf
α

{α

2
|x − y|2 + l (α)

}

where we may take l (α) := lim supε→0 Aα,ε ∨ lim supε→0 Bα,ε, noting that l (α)

indeed tends to 0 as α → ∞. It remains to prove the estimate (11). To this end,
rewrite φ as

φ (t, x, y) = uε (t, x)− vε (t, y)− α

2
|x − y|2

where uε (t, x) = u (t, x)− ε |x|2 and vε (t, y) = v (t, y)+ ε |y|2. Since uε (resp. vε)
are upper (resp. lower) semi-continuous we can apply the (parabolic) Theorem of
Sums as given in the appendix at

(
t̂, x̂, ŷ

) ∈ (0, T ] ×R
n ×R

n to learn that there are
numbers a, b and X, Y ∈ Sn such that

(
a,α

(
x̂ − ŷ

)
, X

) ∈ P̄2,+
Q uε

(
t̂, x̂

)
,

(
b,α

(
x̂ − ŷ

)
, Y

) ∈ P̄2,−
Q vε

(
t̂, ŷ

)
(12)

such that a− b ≥ 0 (equality if t̂ ∈ (0, T), although this does not matter), and such
that one has the two-sided matrix estimate (3). It is easy to see (cf. [10, Remark 2.7])
that (12) is equivalent to

(
a,α

(
x̂ − ŷ

)+ 2εx̂, X + 2εI
) ∈ P̄2,+

Q u
(
t̂, x̂

)
,

(
b,α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
) ∈ P̄2,−

Q v
(
t̂, ŷ

)
.
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Using the viscosity sub- and super-solution properties (and part (i) in the case that
t̂ = T ) we then see that

a− F
(
t̂, x̂, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)+ 2εx̂, X + 2εI
) ≤ 0,

b− F
(
t̂, ŷ, v

(
t̂, ŷ

)
,α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
) ≥ 0.

Note that (using a− b ≥ 0)

F
(
t̂, ŷ, v

(
t̂, ŷ

)
,α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
)

− F
(
t̂, x̂, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)+ 2εx̂, X + 2εI
) ≤ 0 (13)

Trivially, (recall it is enough to consider the case u
(
t̂, x̂

) ≥ v
(
t̂, ŷ

)
)

γφ
(
t̂, x̂, ŷ

) ≤ γ
(
u
(
t̂, x̂

)− v
(
t̂, ŷ

))

≤ F
(
t̂, ŷ, v

(
t̂, ŷ

)
,α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
)

−F
(
t̂, ŷ, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
)

≤ F
(
t̂, x̂, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)+ 2εx̂, X + 2εI
)

−F
(
t̂, ŷ, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
)

where we used (13) in the last estimate. If ε were absent (e.g. set ε = 0 throughout)
we would estimate, with R := |u|∞ ∨ |v|∞,

F
(
t̂, x̂, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)
, X

)− F
(
t̂, ŷ, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)
, Y

)

≤ θR

(
α
∣∣x̂ − ŷ

∣∣2 + ∣∣x̂ − ŷ
∣∣) =: Bα

and since α
∣∣x̂ − ŷ

∣∣2 + ∣∣x̂ − ŷ
∣∣ ≤ 2α

∣∣x̂ − ŷ
∣∣2 + 1/α → 0 as α → ∞, thanks to

[10, Lemma 3.1], we see that Bα → 0 with α → ∞, which is enough to con-
clude. The present case where ε > 0 is essentially reduced to the case ε = 0 by
adding/subtracting

F
(
t̂, x̂, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)
, X

)− F
(
t̂, ŷ, u

(
t̂, x̂

)
,α

(
x̂ − ŷ

)
, Y

)
,

but we need some refined properties of
(
t̂, x̂, ŷ

)
as collected in Lemma 6: (a)

p = α
(
x̂ − ŷ

)
remains, for fixed α, bounded as ε → 0, (b) 2ε

∣∣x̂∣∣ and 2ε
∣∣ŷ∣∣ tend to

zero as as ε → 0 for fixed (large enough) α; this follows from the fact, that for α
large enough we must have lim supε→0 ε|x̂|2 = cα < ∞ (after all, cα tends to zero
with α →∞) and by rewriting lim supε→0 ε|x̂| ≤ √cα lim supε→0

√
ε = 0, (c) that

lim supε→0

(
α
2

∣∣x̂ − ŷ
∣∣2 + ∣∣x̂ − ŷ

∣∣) → 0 as α → ∞. We also note that (3) implies

(d): any matrix norm of X, Y is bounded by a constant times α, independent of ε.
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We can now return to the estimate of φ and clearly have

φ
(
t̂, x̂, ŷ

) ≤ 1

γ
[(i)+ (ii)+ (ii)] =: Bα,ε

where

(i) = ∣∣F (
t̂, x̂, u

(
t̂, x̂

)
, α

(
x̂ − ŷ

)+ 2εx̂, X + 2εI
)− F

(
t̂, x̂, u

(
t̂, x̂

)
, α

(
x̂ − ŷ

)
, X

)∣∣
(ii) = ∣∣F (

t̂, ŷ, u
(
t̂, x̂

)
, α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
)− F

(
t̂, ŷ, u

(
t̂, x̂

)
, α

(
x̂ − ŷ

)
, Y

)∣∣
(iii) = θR

(
α
∣∣x̂ − ŷ

∣∣2 + ∣∣x̂ − ŷ
∣∣) .

From (a), (d) above the gradient and Hessian argument in F as seen in (i) , (ii), i.e.

α
(
x̂ − ŷ

)± 2εx̂ and X + 2εI, Y − 2εI,

remain in a bounded set, for fixed α, uniformly as ε → 0. From (b) above and the
assumed uniform continuity properties of F (i.e. (4)), it then follows that for fixed
(large enough) α

(i) , (ii)→ 0 as ε → 0.

On the other hand, continuity of θR at 0+ together with (c) above shows that also
(iii)→ 0 as ε << 1

α → 0. We conclude that

Bα,ε → 0 as ε <<
1

α
→ 0,

which implies (11), as desired. The proof is now finished. �

Lemma 5 Assume u0, v0 ∈ BUC (Rn). Then

sup
x,y

[
u0 (x)− v0 (y)− α

2
|x − y|2 − ε

(
|x|2 + |y|2

)]

→ sup
x

[u0 (x)− v0 (x)] as (ε,
1

α
)→ (0, 0) .

Proof (Similar to [2, Lemme 2.9] but we include full details for the reader’s conve-
nience.)

Without loss of generality M := supx [u0 (x)− v0 (x)] > 0; for otherwise replace
u0 by u0 + 2 |M|. Write Mα,ε for the achieved maximum (at x̂, ŷ, say) of the left-
hand-side. Obviously, u0 (x)− v0 (x)− 2ε |x|2 ≤ Mα,ε for any x and so

M ≤ lim inf
ε→0

α→∞
Mα,ε.
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It follows that we can and will consider ε (α) small (large) enough so that Mα,ε > 0.
On the other hand, |u0| , |v0| ≤ R <∞ and so

0 ≤ Mα,ε ≤ 2R− α

2

∣∣x̂ − ŷ
∣∣2 − ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)

from which we deduce α
2

∣∣x̂ − ŷ
∣∣2 ≤ 2R, or

∣∣x̂ − ŷ
∣∣ ≤ √

4R/α. By omitting the
(positive) penalty terms, we can also estimate

Mα,ε ≤ u0
(
x̂
)− v0

(
ŷ
)

≤ u0
(
x̂
)− v0

(
x̂
)+ σv0

(√
4R/α

)

≤ M + σv0

(√
4R/α

)

where σv0 denotes the modulus of continuity of v0. It follows that

lim sup
ε→0

α→∞
Mα,ε ≤ M

which shows that the lim Mα,ε (as ε→ 0,α →∞) exists and is equal to M. �

Lemma 6 Let u ∈ BUSC ([0, T ] × R
n) and v ∈ BLSC ([0, T ] × R

n). Consider a

maximum point
(
t̂, x̂, ŷ

) ∈ (0, T ] × R
n × R

n of

φ (t, x, y) = u (t, x)− v (t, y)− α

2
|x − y|2 − ε

(
|x|2 + |y|2

)
.

where α, ε > 0. Then

lim sup
ε→0

α
(
x̂ − ŷ

) = C (α) <∞, (14)

lim sup
α→∞

lim sup
ε→0

ε
(∣∣x̂∣∣2 + ∣∣ŷ∣∣2

)
= 0, (15)

lim sup
α→∞

lim sup
ε→0

(α

2

∣∣x̂ − ŷ
∣∣2 + ∣∣x̂ − ŷ

∣∣) = 0. (16)

The order in which limits are taken is important and suggests the notation

lim sup
ε<< 1

α →0

(...) := lim sup
α→∞

lim sup
ε→0

(...) , lim inf
ε<< 1

α →0
(...) := lim inf

α→∞ lim inf
ε→0

(...) .

Proof A similar Lemma (without t dependence) is found in Barles’ book [2, Lemme
4.3]. Again, we include details for the reader’s convenience.
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We start with some notation, where unless otherwise stated t ∈ [0, T ] and
x, y ∈ R

n,

Mα,ε := sup
t,x,y

φ (t, x, y) = u
(
t̂, x̂

)− v
(
t̂, ŷ

)− α

2

∣∣x̂ − ŷ
∣∣2 − ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)
;

M (h) := sup
t,x,y:|x−y|≤h

[
u (t, x)− v (t, y)

] ≥ sup
t,x

[u (t, x)− v (t, x)]

M ′ :=↓ lim
h→0

M (h) ,

where M ′ exists as limit of M (h), non-increasing in h and bounded from below.
Step 1: Take t = x = y = 0 as argument ofφ (t, x, y). SinceMα,ε = supφwehave

c = u (0, 0)− v (0, 0) ≤ Mα,ε = u
(
t̂, x̂

)− v
(
t̂, ŷ

)− α

2

∣∣x̂ − ŷ
∣∣2 − ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)

and hence, for a suitable constant C (e.g. C2 := sup u+ sup (−v)+ c)

α

2

∣∣x̂ − ŷ
∣∣2 + ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)
≤ C2

which implies

∣∣x̂ − ŷ
∣∣ ≤ C

√
2/α (17)

and hence α
∣∣x̂ − ŷ

∣∣ ≤ √2αC which is the first claimed estimate (14).
Step 2: We first argue that it is enough to show the two estimates

lim sup
ε<< 1

α →0

[
u
(
t̂, x̂

)− v
(
t̂, ŷ

)] ≤ M ′ ≤ lim inf
ε<< 1

α →0
Mα,ε. (18)

Indeed, from α
2

∣∣x̂ − ŷ
∣∣2 + ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)
= u

(
t̂, x̂

) − v
(
t̂, ŷ

) − Mα,ε it readily

follows that

lim sup
ε<< 1

α →0

α

2

∣∣x̂ − ŷ
∣∣2 + ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)

≤ lim sup
ε<< 1

α →0

[
u
(
t̂, x̂

)− v
(
t̂, ŷ

)−Mα,ε

]

= lim sup
ε<< 1

α →0

[
u
(
t̂, x̂

)− v
(
t̂, ŷ

)]− lim inf
ε<< 1

α →0
Mα,ε

≤ 0 (and hence = 0).

This, together with (17), already gives (15) and also (16).
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We are left to show (18). For the first estimate, it suffices to note that, from (17)
and the definition of M (h) applied with h = C

√
2/α,

lim sup
ε<< 1

α →0

[
u
(
t̂, x̂

)− v
(
t̂, ŷ

)] ≤ lim sup
ε<< 1

α →0

M

(√
2

α
C

)

= lim
α→∞M

(√
2

α
C

)
= M ′.

We now turn to the second estimate in (18). From the very definition of M ′ as
limh→0 M (h), there exists a family (th, xh, yh) so that

|xh − yh| ≤ h and u(th, xh)− v(th, xh)→ M ′ as h → 0 (19)

For everyα, εwemay take (th, xh, yh) as argument of φ; sinceMα,ε = supφwe have

u(th, xh)− v(th, yh)− α

2
h2 − ε(|xh|2 + |yh|2) ≤ Mα,ε (20)

Take now ε = ε (h) → 0 with h → 0; fast enough so that ε(|xh|2 + |yh|2) → 0; for
instance ε (h) := h/

(
1+ (|xh|2 + |yh|2)

)
would do. It follows that

M ′ = lim
h→0

u(th, xh)− v(th, yh)

= lim inf
h→0

u(th, xh)− v(th, yh)− α

2
h2 − ε(|xh|2 + |yh|2)

≤ lim inf
h→0

Mα,εh = lim inf
ε→0

Mα,ε by monotonicity of Mα,ε in ε.

Since this is valid for every α, we also have

M ′ ≤ lim inf
α→∞ lim inf

ε→0
Mα,ε.

This is precisely the second estimate in (18) and so the proof is finished. �

2.6 Proof of Theorem 2: Lipschitz Regularity in Space

Remark 3 The argument will be similar to the regularity proof in [20]. Like there,
it can be adapted to show Hölder continuity in x for Hölder initial data and a corre-
sponding condition on the modulus θR.

Proof We modify the proof of Theorem 1 (ii) by adding a specific t-dependence to
the test function. This idea can for example also be found in Ref. [20]. Since the
proof is similar to the proof of Theorem 1 (ii) we will omit redundant arguments.
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Let
(
t̂, x̂, ŷ

)
be a maximum point of

φ (t, x, y) := u (t, x)− u (t, y)− α

2
eγ̄t |x − y|2 − ε

(
|x|2 + |y|2

)
(21)

over [0, T ] × R
n × R

n where α > 0 and ε > 0. The plan is to show the estimate

u (t, x)− u (t, y) ≤ inf
α

[
eγ̄t α

2
|x − y|2 + (2L2

u0 +
θ2R
γ

)
1

α
.

]
, (22)

valid on [0, T ] × R
n × R

n. It then immediately follows, that

u (t, x)− u (t, y) ≤ (eγ̄t 1

2
+ 2L2

u0 +
θ2R
γ

)|x − y|.

Thanks to the very definition of
(
t̂, x̂, ŷ

)
as argmax of φ (t, x, y) = u (t, x)

− u (t, y)− α
2 |x − y|2 − ε

(|x|2 + |y|2), we obtain the estimate

u (t, x)− u (t, y) ≤ α

2
eγ̄t |x − y|2 + ε

(
|x|2 + |y|2

)
+ φ

(
t̂, x̂, ŷ

)
.

Note that
(
t̂, x̂, ŷ

)
depends on α, ε. We shall consider the cases t̂ = 0 and t̂ ∈ (0, T ]

separately. In the first case t̂ = 0 we have

φ
(
0, x̂, ŷ

) = sup
x,y

[
u0 (x)− u0 (y)− α

2
|x − y|2 − ε

(
|x|2 + |y|2

)]
=: Aα,ε

and Lemma 7 below asserts that

lim sup
ε→0

Aα,ε ≤ 2L2
u0

1

α
. (23)

The second case is t̂ ∈ (0, T ] and we will show

φ
(
t̂, x̂, ŷ

) ≤ Bα,ε where

(
lim sup

ε→0
Bα,ε

)
≤ θ2R

γ

1

α
; (24)

it is here that we will use Theorem of Sums and viscosity properties. From (23) and
(24) we can then deduce (22) just as in the proof of Theorem (1) (ii).

It remains to prove the estimate (24). To this end, as before, we can deduce the
existence of

(
a,αeγ̄ t̂ (x̂ − ŷ

)+ 2εx̂, X + 2εI
)
∈ P̄2,+

Q u
(
t̂, x̂

)
,

(
b,αeγ̄ t̂ (x̂ − ŷ

)− 2εŷ, Y − 2εI
)
∈ P̄2,−

Q u
(
t̂, ŷ

)
,
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with the difference, that in this case a−b ≥ α
2 γ̄eγ̄ t̂

∣∣x̂ − ŷ
∣∣2 (since the time derivative

of the test function does not vanish) and such that one has the two-sided matrix
estimate

− 3αeγ̄ t̂
(

I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3αeγ̄ t̂

(
I −I
−I I

)
. (25)

Using the viscosity sub- and super-solution properties we then see that

F
(

t̂, ŷ, u
(
t̂, ŷ

)
,αeγ̄ t̂ (x̂ − ŷ

)− 2εŷ, Y − 2εI
)

(26)

− F
(

t̂, x̂, u
(
t̂, x̂

)
,αeγ̄ t̂ (x̂ − ŷ

)+ 2εx̂, X + 2εI
)
≤ −α

2
γ̄eγ̄ t̂ |x − y|2 .

Trivially, (recall it is enough to consider the case u
(
t̂, x̂

) ≥ u
(
t̂, ŷ

)
)

γφ
(
t̂, x̂, ŷ

) ≤ γ
(
u
(
t̂, x̂

)− u
(
t̂, ŷ

))

≤ F
(

t̂, ŷ, u
(
t̂, ŷ

)
,αeγ̄ t̂ (x̂ − ŷ

)− 2εŷ, Y − 2εI
)

− F
(

t̂, ŷ, u
(
t̂, x̂

)
,αeγ̄ t̂ (x̂ − ŷ

)− 2εŷ, Y − 2εI
)

≤ F
(

t̂, x̂, u
(
t̂, x̂

)
,αeγ̄ t̂ (x̂ − ŷ

)+ 2εx̂, X + 2εI
)

− F
(

t̂, ŷ, u
(
t̂, x̂

)
,αeγ̄ t̂ (x̂ − ŷ

)− 2εŷ, Y − 2εI
)
− α

2
γ̄eγ̄ t̂

∣∣x̂ − ŷ
∣∣2

where we used (26) in the last estimate. So

φ
(
t̂, x̂, ŷ

) ≤ 1

γ
[(i)+ (ii)+ (iii)] =: Bα,ε

where (remember the choice of γ̄ = 2(θR + 1))

(i) = ∣∣F (
t̂, x̂, u

(
t̂, x̂

)
, α

(
x̂ − ŷ

)+ 2εx̂, X + 2εI
)− F

(
t̂, x̂, u

(
t̂, x̂

)
, α

(
x̂ − ŷ

)
, X

)∣∣
(ii) = ∣∣F (

t̂, ŷ, u
(
t̂, x̂

)
, α

(
x̂ − ŷ

)− 2εŷ, Y − 2εI
)− F

(
t̂, ŷ, u

(
t̂, x̂

)
, α

(
x̂ − ŷ

)
, Y

)∣∣
(iii) = θR(α

∣∣x̂ − ŷ
∣∣2 + ∣∣x̂ − ŷ

∣∣)− α

2
γ̄eγ̄ t̂

∣∣x̂ − ŷ
∣∣2

= θR
∣∣x̂ − ŷ

∣∣+ α

(
θR − 1

2
γ̄eγ̄ t̂

) ∣∣x̂ − ŷ
∣∣2

≤ θR
∣∣x̂ − ŷ

∣∣− α
∣∣x̂ − ŷ

∣∣2

≤ θ2R
1

α
.

The last inequality follows from supr

[
c1r − c2r2

] ≤ c21c−12 , for c1, c2 > 0. As
before we deduce for fixed (large enough) α that (i) , (ii)→ 0 as ε→ 0. Hence

lim sup
ε→0

Bα,ε ≤ θ2R
γ

1

α
. �
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Lemma 7 Assume u0 is bounded and Lipschitz with Lipschitz constant Lu0 . Then

lim sup
ε→0

sup
x,y

[
u0 (x)− u0 (y)− α

2
|x − y|2 − ε

(
|x|2 + |y|2

)]
≤ 2L2

u0

1

α
.

Proof Write Mα,ε for the achieved maximum (at x̂, ŷ, say) of the left-hand-side (for
fixed α and ε). By comparing to evaluation at x = y = 0 we have

0 ≤ u0(x̂)− u0(ŷ)− α

2

∣∣x̂ − ŷ
∣∣2 − ε

(∣∣x̂∣∣2 + ∣∣ŷ∣∣2
)

from which we deduce α
2

∣∣x̂ − ŷ
∣∣2 − Lu0

∣∣x̂ − ŷ
∣∣ ≤ 0. Hence

∣∣x̂ − ŷ
∣∣ ≤ 2

Lu0
α . By

omitting the (positive) penalty terms, we can also estimate

Mα,ε ≤ u0
(
x̂
)− u0

(
ŷ
) ≤ Lu0

∣∣x̂ − ŷ
∣∣ ≤ 2

L2
u0

α
.

It follows that lim supε→0 Mα,ε ≤ 2
L2

u0
α . �

2.7 Proof of Theorem 3: Regularity in Time-Space

Remark 4 The linear growth condition in (ii) is especially satisfied for linear prob-
lems. Even in this case the Hölder regularity cannot be improved, as maybe seen in
the standard heat equation started with initial data u0(x) = max{|x|, 1}.
Proof (i): We adapt the argument from [4, Lemma 9.1]; see also [3]. From Theorem
1, there exists a spatial modulus m for u (t, ·), uniform over t ∈ [0, T ]. Given 0 ≤
t0 < t ≤ T and x0, x ∈ R

n we now estimate, using the triangle inequality,

|u (t, x)− u (t0, x0)| ≤ m (|x0 − x|)+ |u (t, x0)− u (t0, x0)| .

We shall show that |u (t, x0)− u (t0, x0)| goes to zero as t ↓ t0, uniformly in x0 ∈ R
n

and t0 ∈ [0, T). Wewill show a little more. Fix x0 ∈ R
n and R ∈ (0,∞); for instance

R = 1 would do (and there is no need to track dependence in R). We claim that for
every η > 0 one can find constants C = C (η) , K = K (η), not dependent on x0 and
t0, such that, for all x ∈ BR/2 (x0) and y ∈ BR (x0) and all t ∈ [t0, T ]

u (t, y)− u (t0, x) ≤ η + C |y − x|2 + K (t − t0) (27)

and

u (t, y)− u (t0, x) ≥ −η − C |y − x|2 − K (t − t0) . (28)
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(Choosing x = y = x0 in these estimates shows that |u (t, x0)− u (t0, x0)| ≤
inf {η + K (η) (t − t0) : η > 0} which immediately gives the desired uniform conti-
nuity in time, uniformly in x0.)We only prove (27), (28) being proved in an analogous
way. In the sequel, x is fixed in BR/2 (x0). Rewrite (27) as

u− χ ≤ 0 on [t0, T ] × BR (x0)

where χ (t, y) := u (t0, x) + η + C |y − x|2 + K (t − t0). We shall see below we
can find C, the choice of which only depends on η (and in a harmless way on
|u|∞;[0,T ]×Rn , R and m (·) but not on K and not on x0, t0), such that u−χ ≤ 0 on the
parabolic boundary of [t0, T ] × BR (x0). The extension to the interior is then based
on the maximum principle. More precisely, we can chose K depending on η (and
again in a harmless way |u|∞;[0,T ]×Rn , R and m (·)) such that χ is a (smooth) strict
supersolution of ∂t − F on (t0, T)× BR (x0);

K − F (t, y,χ(t, y), 2C (y− x) , 2CI) > 0 on (t0, T)× BR (x0) .

Indeed, by properness we have

K − F (t, y,χ(t, y), 2C (y − x) , 2CI) > K − F (t, y,− |u|∞ , 2C (y − x) , 2CI) ;
noting |y− x| ≤ 2R so that p := 2C (y − x) , X := 2CI remain in a bounded set
whose size may depend on η through C, it then follows by our structural assumption
on the non-linearity 7 that we can pick K = K (η) large enough such as to achieve the
claimed strict inequality. (Note that this choice of K is uniformly in t0 provided we
can find C with the correct dependences.) Since, on the other hand, u is a viscosity
solution (hence subsolution), it follows from the very definition of a subsolution that

K − F
(
t̂, ŷ,χ(t, y), 2C

(
ŷ− x

)
, 2CI

) ≤ 0

whenever
(
t̂, ŷ

) ∈ (t0, T ] × BR (x0) is a maximum point of u− χ. (Note that t̂ = T
is possible here, we then rely on part (i) of Theorem 1.) This contradiction shows
that maximum points of u−χ over [t0, T ] × B̄R (x0) are necessarily achieved on the
parabolic boundary

(t, y) ∈ [t0, T ] × ∂BR (x0) ∪ {t0} × B̄R (x0) .

The remainder of the proof is thus concerned with showing that u − χ ≤ 0 on this
parabolic boundary. Consider first the case that t ∈ [t0, T ] and |y − x0| = R.
Since x ∈ BR/2 (x0) we must have |y− x| ≥ R/2 and it thus suffices to take
C ≥ 8 |u|∞;[0,T ]×Rn /R2 to ensure that

u (t0, y) ≤ u (t0, x)+ η + C |y− x|2 + K (t − t0) (29)

7 ... notably boundedness of F (·, ·, y, p, X) when y, p, X remain in a bounded set ...
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for all t ∈ [t0, T ] and y ∈ BR (x0), and any η, K ≥ 0. The second case to be considered
is t = t0 and y ∈ B̄R (x0). We want to see that for every η there exists C = C (η)

such that

u (t0, y) ≤ u (t0, x)+ η + C |y − x|2 for all y ∈ B̄R (x0) ; (30)

but this follows immediately from the fact (cf. Theorem 1) that u (t0, ·) has a spatial
modulus m. Indeed: If there were η > 0 such that for all C there are points yC so
that u (t0, y) > u (t0, x)+ η + C |y− x|2, then |yC − x|2 ≤ 2 |u|∞;[0,T ]×Rn /C → 0
with C →∞ and a contradiction to

m (|yC − x|) ≥ u (t0, y)− u (t0, x) ≥ η > 0.

is obtained as soon as C is chosen large enough and this choice depends only on
η, |u|∞;[0,T ]×Rn and m. Since all these quantities are independent of t0, so is our
choice of C.

(ii): By Theorem 2 we get for every t ∈ [0, T ] that u(t, ·) is Lipschitz continuous
with the same Lipschitz constant, say L.

For the regularity in time, let η be given. Choose C = L2

4η , then (30) holds. If we
then fix R large enough, (29) is also fulfilled.

We can now choose K explicitly. Indeed, with K ≥ M(1 + 2C), χ is a superso-
lution. Using this in (27), we get

u(t, x)− u(t0, x) ≤ η +M(1+ L2

4η
)t,

for all t ∈ [t0, T ]. Optimization with respect to η leads to

u(t, x)− u(t0, x) ≤ L̃t1/2,

where L̃ depends only on M and L. �

2.8 Proof of Theorem 4: Existence

At last, we discuss existence via Perron’s Method; the only difficulty in the proof is
to produce subsolutions and supersolutions.

Proof Step 1: Assume u0 is Lipschitz continuous with Lipschitz constant L. Define
for z ∈ R

n, ε > 0

ψε,z(x) := u0(z)− L
(
|x − z|2 + ε

)1/2
.

We will show that there exists Aε ≤ 0 (non-positive, yet to be chosen) such that

uε,z(t, x) := Aεt + ψε,z(x)
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is a (classical) subsolution of ∂t−F = 0. To this end we first note thatDuε,z = Dψε,z

and D2uε,z = D2ψε,z are bounded by LCε where C is a constant dependent on ε. We
also note that (for any non-positive choice of Aε)

uε,z(t, x) ≤ uε,z(0, x) = ψε,z (x) ≤ u0(z)− L|x − z| ≤ u0(x),

thanks to L-Lipschitzness of u0. Since F = F (t, x, u, p, X) is assumed to be proper,
and thus in particular anti-monotone in u, we have

∂tuε,z − F
(

t, x, uε,z, Duε,z, D2uε,z

)

= Aε − F
(

t, x, uε,z, Dψε,z, D2ψε,z

)

≤ Aε − F
(

t, x, |u0|∞ , Dψε,z, D2ψε,z

)
.

Since |u0|∞ < ∞ and
∣∣Dψε,z

∣∣ , ∣∣D2ψε,z
∣∣ ≤ LCε we can use the assumed bound-

edness of F over sets where u, p, X remain bounded. In particular, we can pick Aε

negative, large enough, such that

∂tuε,z − F
(

t, x, uε,z, Duε,z, D2uε,z

)
≤ · · · ≤ 0.

We now define the sup of all these subsolutions,

û(t, x) := sup
ε∈(0,1],z∈Rn

uε,z(t, x) ≤ u0 (x) ≤ |u0|∞ <∞.

Then

−∞ < A1T − L ≤ A1t − L = u1,x(t, x) ≤ û(t, x) ≤ u0 (x) ≤ |u0|∞ <∞,

so that û is bounded. We moreover have

û(0, x) = sup
ε∈(0,1],z∈Rn

ψε,z (x) = sup
ε∈(0,1]

u0 (x)− Lε1/2 = u0 (x) .

The upper semicontinuous envelope u(t, x) := û∗ is then (cf. Proposition 8.2 in
[8] for instance) also a bounded subsolution to ∂t − F = 0.

Step 2: We show that û(t, x) is continous at t = 0; this implies that

u(0, x) := û (0, x) = u0 (x)

and thus yields a sub-solution with the correct initial data. Let (tn, xn) → (0, x).
First we show lower semicontinuity, i.e.

lim inf
n→∞ û(tn, xn) ≥ û(0, x).
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Let δ > 0. Choose ε̃, z̃ such that

uε̃,z̃(0, x) ≥ û(0, x)− δ.

Let M be a bound for |Duε̃,z̃| (and hence for |Dψε̃,z̃|). Choose N such that for n ≥ N

|tn|, |xn − x| ≤ min

{
δ

Aε̃
,

δ

M

}
.

Then

û(tn, xn) ≥ uε̃,z̃(t
n, xn)

= uε̃,z̃(t
n, xn)− uε̃,z̃(0, x)+ uε̃,z̃(0, x)

= Aε̃tn + ψε̃,z̃(x
n)− ψε̃,z̃(x)+ uε̃,z̃(0, x)

≥ û(0, x)− 3δ,

which proves the lower semicontinuity.
For upper semicontinuity, notice that

uε,z(s, y) = Aεs+ ψε,z(y)

≤ Aεs+ u0(y)

≤ u0(y),

where we have used that Aε ≤ 0 and that ψε,z(y) ≤ u0(y), as shown above. Hence,
û(s, y) ≤ u0(y), and then for (tn, xn) → (0, x), we have

lim sup
n

û(tn, xn) ≤ lim sup
n

u0(x
n) = u0(x) = û(0, x).

Hence û is also upper semicontinuous at (0, x) and hence continuous at (0, x).
Step 3: Similarly, one constructs a bounded super-solution with correct (bounded,

Lipschitz) initial data u0. Perron’smethod then applies and yields a bounded viscosity
solution to ∂t − F = 0 with bounded, Lipschitz initial data.

Step 4: Let now u0 ∈ BUC(Rn) and un
0 be a sequence of bounded Lipschitz func-

tions such that |un
0−u0|∞ → 0. By the previous step there exists a bounded solution

un to ∂t − F = 0 with initial data un (0, ·) = un
0. (It is also unique by comparison.)

Since F is proper (γ ≥ 0), the solutions form a contraction in the sense

|un − um|∞;[0,T ]×Rn ≤ |un
0 − um

0 |∞;Rn

(This follows immediately from comparison and properness.). Hence un is Cauchy
in supremum norm and converges to a continuous bounded function u : [0, T ] ×R

n

→ R. By Lemma 6.1 in the User’s Guide we then have that u is a bounded solution
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to ∂t −F = 0 with BUC(Rn) initial data. By comparison, it is the unique (bounded)
solution with this initial data. At last, Corollary 3 shows that the solution is BUC in
time space. �

2.9 Parabolic Theorem of Sums Revisited

We start some recalls on parabolic jets. If u : (0, T)×R
n → R its parabolic semijet

P2,+u is definedby (b, p, X) ∈ R× R
n×Sn lies inP2,+u (s, z) if (s, z) ∈ (0, T)×Rn

and

u (t, x) ≤ u (s, z)+ b (t − s)+ 〈p, x − z〉

+ 1

2
〈X (x − z) , x − z〉 + o

(
|t − s| + |x − z|2

)

as (0, T)×R
n � (t, x) → (s, z). Consider now u : Q → R where Q = (0, T ] ×R

n.
The parabolic semijet relative to Q, write P2,+

Q u, as used in Ref. [19] for instance, is

defined by (b, p, X) ∈ R× R
n×Sn lies in P2,+

Q u (s, z) if (s, z) ∈ (0, T)× R
n and

u (t, x) ≤ u (s, z)+ b (t − s)+ 〈p, x − z〉

+ 1

2
〈X (x − z) , x − z〉 + o

(
|t − s| + |x − z|2

)

asQ � (t, x) → (s, z). Note thatP2,+
Q u (s, z) = P2,+u (s, z) for (s, z) ∈ (0, T)×R

n.
Note also the special behaviour of the semijet at time T in the sense that

(b, p, X) ∈ P2,+
Q u (T , z) =⇒ ∀b′ ≤ b : (b′, p, X

) ∈ P2,+
Q u (T , z) . (31)

Closures of these jets are defined in the usual way; e.g.

(b, p, X) ∈ P̄2,+
Q u (T , z)

iff ∃ (tn, zn; bn, pn, Xn) ∈ Q× R× R
n×Sn : (bn, pn, Xn) ∈ P̄2,+

Q u (tn, zn) and

(tn, zn; u (tn, zn) ; bn, pn, Xn)→ (T , z; u (T , z) ; b, p, X) .

Recall the classical parabolic Theorem of Sums.

Theorem 8 [9, Theorem 7] Let u1, u2 ∈ USC ((0, T)× R
n) and w ∈ USC(

(0, T)× R
2n
)

be given by

w (t, x) = u1 (t, x1)+ u2 (t, x2)
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Suppose that s ∈ (0, T) , z = (z1, z2) ∈ R
2n, b ∈ R, p = (p1, p2) ∈ R

2n,

A ∈ S2n with

(b, p, A) ∈ P2,+w (s, z) . (32)

Assume moreover that there is an r > 0 such that for every M > 0 there is a C such
that for i = 1, 2

bi ≤ C whenever (bi, qi, Xi) ∈ P2,+w (t, xi) , (33)

|xi − zi| + |s− t| < r and |ui (t, xi)| + |qi| + ‖Xi‖ ≤ M.

Then for each ε > 0 there exists (bi, Xi) ∈ R×Sn such that

(bi, pi, Xi) ∈ P̄2,+ui (s, zi)

and

−
(
1

ε
+ ‖A‖

)
I ≤

(
X1 0
0 X2

)
≤ A+ εA2 and b1 + b2 = b. (34)

The proof of the above Theorem is usually reduced (cf. Lemma 8 in [9]) to the
case b = 0, z = 0, p = 0 and v1 (s, 0) = v2 (s, 0) = 0, where (in order to avoid
confusion) we write vi instead of ui. Condition (32) translates than to

v1 (t, x1)+ v2 (t, x2)− 1

2
〈Ax, x〉 ≤ 0 for all (t, x) ∈ (0, T)× R

2n; (35)

this also means that the left-hand-side as a function of (t, x1, x2) has a global max-
imum at (s, 0, 0). The assertion of the (reduced) Theorem is then the existence of
(bi, Xi) ∈ R×Sn such that (bi, 0, Xi) ∈ P̄2,+vi (s, 0) for i = 1, 2 and (34) holds
with b = 0.

We now give the main result of this subsection.

Theorem 9 Assume that ui has a finite extension to (0, T ] × R
n, i = 1, 2, via its

semi-continuous envelopes, that is,

ui (T , x) = lim sup
(t,y)∈(0,T)×Rn:

t↑T ,y→x

ui (t, y) <∞.

Then the above Theorem remains valid at s = T if

P2,+w (s, z) and P̄2,+ui (s, zi)

is replaced by

P2,+
Q w (T , z) and P̄2,+

Q ui (T , zi)
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and the final equality in (34) is replaced by

b1 + b2 ≥ b. (36)

Remark 5 If we knew (but we don’t!) that the final conclusion is (bi, pi, Xi) ∈
P2,+u (T , zi), rather than just being an element in the closure P̄2,+

Q u (T , zi), then we
could trivially diminish the bi’s such as to have b1 + b2 = b; cf. (31).

Remark 6 If one knows thatw is left-accessible in the sense of [7] it should be possi-
ble to simplify the proof by avoiding doubling in t (and thus the penalty parameterm)
and by using the classical parabolic (instead of elliptic) Theorem of Sums on (0, T)

in step 1 of the proof below. Left-accessibility is actually given in our application
since then u1,−u2 are viscosity sub-/supersolutions. In that case condition (33) is
also immediately satisfied, see e.g. Lemma V.6.1 in [14].

Proof Step 1: We focus on the reduced setting (and thus write vi instead of ui) and
(following the proof of Lemma 8 in [9]) redefine vi (ti, xi) as −∞ when |xi| > 1 or
ti /∈ [T/2, T ]. We can also assume that (35) is strict if t < s = T or x �= 0. For the
rest of the proof, we shall abbreviate (t1, t2) , (x1, x2) etc. by (t, x). With this notation
in mind we set

w (t, x) = v1 (t1, x1)+ v2 (t2, x2)− 1

2
〈Ax, x〉 .

By the extension via semi-continuous envelopes, there exist a sequence (tn, xn) ∈
(0, T)2 × (Rn)2, such that

(
tn, xn) ≡

(
t1,n, t2,n, x1,n, x2,n

)
→ (T , T , 0, 0)

and

w(t1,n, t2,n, x1,n, x2,n)→ w(T , T , 0, 0).

We now consider w with a penalty term for t1 �= t2 and a barrier at time T for
both t1 and t2.

ψm,n (t, x) = w (t, x)−
{

m

2
|t1 − t2|2 +

2∑
i=1

(
T − ti,n

)2
/ (T − ti)

}
,

indexed by (m, n) ∈ N
2, say. By assumption w has a maximum at (T , T , 0, 0)

which we may assume to be strict (otherwise subtract suitable forth order terms ...).
Define now

(
t̂, x̂

) ∈ argmaxψm,n over [T − r, T ]2 × B̄r (0)2
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where r = T/2 (for instance). When we want to emphasize dependence on m, n we
write

(
t̂m,n, x̂m,n

)
. We shall see below (Step 2) that there exists increasing sequences

m = m (k) , n = n (k) so that

(
t̂, x̂

) |m=m(k),n=n(k) → (T , T , 0, 0) . (37)

Using the (elliptic) Theorem of Sums in the form of [9, Theorem 1] we find that there
are

(bi, pi, Xi) ∈ P̄2,+vi
(
t̂i, x̂i

)

(where t̂i → T , x̂i → 0 as k →∞) such that the first part of (34) holds and

A

(
x̂1
x̂2

)
=

(
p1
p2

)
, bi = m (ti − t3−i)+

(
T − ti,ε

)2
/ (T − ti)

2 .

for i = 1, 2. Note that

b1 + b2 = m (t1 − t2)+ m (t2 − t1)+ (positive terms) ≥ 0;

since each bi is bounded above by the assumptions and the estimates on the Xi it
follows that the bi lie in precompact sets. Upon passing to the limit k → ∞ we
obtain points

(bi, pi, Xi) ∈ P̄2,+vi (T , 0) , i = 1, 2;

with b1 + b2 ≥ 0.
Step 2: We still have to establish (37). We first remark that for arbitrary (strictly)

increasing sequences m (k) , n (k), compactness implies that

{(
t̂m(k),n(k), x̂m(k),n(k)

) : k ≥ 1
} ∈ [T − r, T ]2 × B̄r (0)2

has limit points. Note also t̂1, t̂2 ∈ [T − r, T) thanks to the barrier at time T . The key
technical ingredient for the remained of the argument is and we postpone details of
these to Step 3 below:

w
(
t̂, x̂

)− ψm,n
(
t̂, x̂

) =
{

m

2

∣∣t̂1 − t̂2
∣∣2 +

2∑
i=1

(
T − ti,n

)2
/
(
T − t̂i

)}

→ 0 as
1

n
<<

1

m
→ 0. (38)

In particular, for every k > 0 there exists m (k) such that for all m ≥ m (k)

lim sup
n→∞

{...} <
1

k
.
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By making m (k) larger if necessary wemay assume that m (k) is (strictly) increasing
in k. Furthermore there exists n (m (k) , k) = n (k) such that for all n ≥ n (k) : {...}
< 2/k. Again, we may make n (k) larger if necessary so that n (k) is strictly increas-
ing. Recall t1,n(k) − t2,n(k) → T − T = 0 as k →∞. For reasons that will become
apparent further below, we actually want the stronger statement that

m (k)

2

∣∣∣t1,n(k) − t2,n(k)
∣∣∣
2 → 0 as k →∞ (39)

which we can achieve by modifying n (k) such as to run to∞ even faster. Note that
the so-constructed m = m (k) , n = n (k) has the property

[
w
(
t̂, x̂

)− ψm,n
(
t̂, x̂

)] |m=m(k),n=(k) = {...} |m=m(k),n=(k) → 0 as k →∞. (40)

By switching to a subsequence (kl) if necessarywemay also assume (after relabeling)
that

(
t̂m(k),n(k), x̂m(k),n(k)

)→ (
t̃, x̃

) ∈ [T − r, T ]2 × B̄r (0)2 as k →∞.

In the sequel we think of
(
t̂, x̂

)
as this sequence indexed by k. We have

w
(
t̃, x̃

) ≥ lim sup
k→∞

w
(
t̂, x̂

) |m=m(k),n=(k) by upper-semi-continuity

= lim sup
k→∞

ψm,n
(
t̂, x̂

) |m=m(k),n=(k) thanks to (40). (41)

On the other hand, thanks to the particular form of our time-T barrier,

ψm,n
(
t̂, x̂

) ≥ ψm,n
(
tn, xn)

= w
(
tn, xn)−

{
m

2

∣∣∣t1,n − t2,n
∣∣∣
2 +

2∑
i=1

(
T − ti,n

)}
.

Take now m = m (k) , n = n (k) as constructed above. Then

ψm,n
(
t̂, x̂

) |m=m(k),n=(k) ≥ w
(

tn(k), xn(k)
)

−
{

m (k)

2

∣∣∣t1,n(k) − t2,n(k)
∣∣∣
2 +

2∑
i=1

(
T − ti,n(k)

)}

The first term in the curly bracket goes to zero (with k → ∞ ) thanks to (39), the
other term goes to zero since ti,n → T with n →∞, and hence also along n (k). On
the other hand (recall xi,n → 0)

w
(

tn(k), xn(k)
)
→ v1 (T , 0)+ v2 (T , 0)− 1

2
〈A0, 0〉 = 0 as k →∞.
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(In the reduced setting v1 (T , 0) = v2 (T , 0) = 0.) It follows that

lim inf
k→∞ψm,n

(
t̂, x̂

) |m=m(k),n=(k) = 0.

Together with (41) we see that w
(
t̃, x̃

) ≥ 0. But w (T , T , 0, 0) = 0 was a strict
maximum in [T − r, T ]2 × B̄r (0)2 and so we must have

(
t̃, x̃

) = (T , T , 0, 0).
Step 3: Set

M (h) = sup
(t,x)∈[T−r,T)2×B̄r(0)2|t1−t2|<h

w (t1, t2, x1, x2) and M ′ = lim
h→0

M (h)

It is enough to show

lim sup
1
n << 1

m→0

w
(
t̂, x̂

) ≤ M ′ ≤ lim inf
1
n << 1

m→0
ψm,n

(
t̂, x̂

)
. (42)

since the claimed

w
(
t̂, x̂

)− ψm,n
(
t̂, x̂

) =
{

m

2

∣∣t̂1 − t̂2
∣∣2 +

2∑
i=1

(
T − ti,n

)2
/
(
T − t̂i

)}

→ 0 as
1

n
<<

1

m
→ 0.

follows from

lim sup
1
n << 1

m→0

{...} ≤ lim sup
1
n << 1

m→0

w
(
t̂, x̂

)− lim inf
1
n << 1

m→0
ψm,n

(
t̂, x̂

)

≤ 0 (and hence = 0).

Note that w
(
t̂, x̂

)
is bounded on [T − r, T ]2 × B̄r (0)2 so that

∣∣t̂1 − t̂2
∣∣2 = O (1/m) =⇒ w

(
t̂, x̂

) ≤ M
(
const/

√
m
)
.

On the other hand, from the very definition of M ′ as limh→0 M (h), there exists a
family (th, xh) so that

|t1,h − t2,h| ≤ h and w (th, xh)→ M ′ as h → 0 (43)

For everym, nwemay take (th, xh) as argument ofψm,n (which itself has amaximum
at t̂, x̂); hence

w(th, xh)− m

2
h2 −

2∑
i=1

(
T − ti,n

)2
/
(
T − ti,h

) ≤ ψm,n
(
t̂, x̂

)
. (44)
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Take now a sequence n = n (h), fast enough increasing as h ↘ such that(
T − ti,n

)2
/
(
T − ti,h

)→ 0 with h → 0. It follows that

M ′ = lim
h→0

w(th, xh)

= lim inf
h→0

(
w(th, xh)− m

2
h2 −

2∑
i=1

(
T − ti,n(h)

)2
/
(
T − ti,h

))

≤ lim inf
h→0

ψm,n(h)

(
t̂, x̂

) = lim inf
n→∞ ψm,n

(
t̂, x̂

)
by monotonicity of supψm,n in n.

(In the last equality we used that ti,n ↑ T ; this shows that supψm,n is indeed monoton
in n.) The proof is now finished. �

3 RPDEs: Existence, Uniqueness and Regularity

We start with a brief recall on rough path theory; [15, 29–31]. Given a collection
(V1, . . . , Vd) of (sufficiently nice) vector fields on R

n and z ∈ C1
(
[0, T ] ,Rd

)
one

considers the (unique) solution y to the ordinary differential equation

ẏ (t) =
d∑

i=1
Vi (y) żi (t) , y (0) = y0 ∈ R

n. (45)

The question is, if the output signal y depends in a stable way on the driving signal z.
The answer, of course, depends strongly on how to measure distance between input
signals. If one uses the supremum norm, so that the distance between driving signals
z, z̃ is given by |z − z̃|∞;[0,T ], then the solution will in general not depend contin-
uously on the input. If |z − z̃|∞;[0,T ] is replaced by the (much) stronger distance
(zs,t := zt − zs)

|z − z̃|1−Höl;[0,T ] = sup
0≤s<t≤T

∣∣zs,t − z̃s,t
∣∣

|t − s| ,

it is elementary to see that now the solution map is continuous (in fact, locally
Lipschitz); however, this continuity does not lend itself to push the meaning of (45):
the closure of smooth paths in this metric yields precisely C1. Lyons’ theory of rough
paths exhibits an entire cascade of α-Hölder type rough path (or, as a variation on
the scheme: (1/α)-variation) metrics, for each α ∈ (0, 1] on path-space under which
such ODE solutions are continuous (and even locally Lipschitz) functions of their
driving signal. For instance, the “rough path”α-Hölder distance between two smooth
R

d-valued paths z, z̃ is given by

max
j=1,...,[1/α] sup

0≤s<t≤T

∑
∣∣∣z(j)

s,t − z̃(j)
s, t

∣∣∣
|t − s|jα
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where z(j)
s,t =

∫
dzr1 ⊗ · · · ⊗ dzrj with integration over the j-dimensional simplex{

s < r1 < · · · < rj < t
}
. This allows to extend the very meaning of (45), in a unique

and continuous fashion, to driving signals which live in the abstract completion of
smooth Rd-valued paths (with respect to rough path α-Hölder metric). The space of
so-called α-Hölder rough paths8 is precisely this abstract completion. In fact, this
space can be realized as genuine path space,

C0,α−Höl ([0, T ] , G[1/α]
(
R

d
))

where G[1/α]
(
R

d
)
is the free step-[1/α] nilpotent group over Rd , equipped with

Carnot–Caratheodory metric; realized as a subset of 1+ t[1/α]
(
R

d
)
where

t[1/α]
(
R

d
)
= R

d ⊕
(
R

d
)⊗2 ⊕ · · · ⊕

(
R

d
)⊗[1/α]

is the natural state space for (up to [1/α]) iterated integrals of a smoothRd-valued
path. For instance, almost every realization of d-dimensional Brownian motion B
enhanced with its iterated stochastic integrals in the sense of Stratonovich, i.e. the
matrix-valued process given by

B(2) :=
⎛
⎝

·∫

0

Bi ◦ dBj

⎞
⎠

i,j∈{1,...,d}
(46)

yields a path B (ω) in G2
(
R

d
)
with finite α-Hölder, for any α < 1/2. (B is known as

Brownian rough path.) We remark that B(2) = 1
2B⊗ B+ A where A := Anti

(
B(2)

)
is known as Lévy’s stochastic area; in other words B (ω) is determined by (B, A),
i.e. Brownian motion enhanced with Lévy’s area. Turning to the main topic of
this section, we follow [25, 26, 28] in considering a real-valued function of time
and space u = u (t, x) ∈ BUC ([0, T ] × R

n) which solves the nonlinear partial
differential equation

du = F
(

t, x, Du, D2u
)

dt +
d∑

i=1
Hi (x, Du) dzi

≡ F
(

t, x, Du, D2u
)

dt + H (x, Du) dz (47)

in viscosity sense. When z : [0, T ]→ R
d is C1 then, subject to suitable conditions

on F and H, this falls in the standard setting of viscosity theory as discussed above.
This can be pushed further to z ∈ W 1,1 (see e.g. [25, Remark 4] and the references
given there) but, as was pointed out by various authors, the case when z = z (t) has

8 In the strict terminology of rough path theory: geometric α-Hölder rough paths.
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only “Brownian” regularity (just below 1/2-Hölder, say) falls dramatically outside
the scope of the standard theory. The reader can find a variety of examples (drawing
from fields as diverse as stochastic control theory, pathwise stochastic control, inter-
est rate theory, front propagation and phase transition in random media, ...) in the
articles [24, 26] justifying the need of a theory of (non-linear) stochastic partial dif-
ferential equations (SPDEs) in which z in (47) is taken as a Brownian motion.9 In the
same series of articles a satisfactory theory is established for the case of non-linear
Hamiltonian with no spatial dependence, i.e. H = H (Du). Our present discussion
follows [6] in that we consider non-linear F and H = H (x, Du), linear in Du. The
following condition may be considered as a global version of the corresponding
definition put forward by Lions–Souganidis.

Definition 1 Let φ denote the solution flow to the RDE dy = V (y) dz (t). (As is
well known, this yields is a C3-flow of diffeomorphisms provided V = (V1, . . . , Vd)

is a collection of Lipγ+2 (Rn;Rn) vector fields with γ > 1/α and if

z ∈ C0,α−Höl
(
[0, T ] , G[1/α]

(
R

d
))

.

A continuous function u is called a rough viscosity solution to

du = F
(

t, x, Du, D2u
)

dt − Du (t, x) · V (x) dz (t)

if v (t, ·) := u (t,φt (·)) is a viscosity solution to

∂tv − F̃
(

t, x, Dv, D2v
)
= 0

where F̃ (t, x, p, X) is given by

F
(

t,φt (x) ,
〈
p, Dφ−1t |φt(x)

〉
,
〈
X, Dφ−1t |φt(x) ⊗ Dφ−1t |φt(x)

〉

+
〈
p, D2φ−1t |φt(x)

〉)
. (48)

It should be noted that in the case when z arises from a smooth Rd-valued path z,
the definition is consistent with the interpretation

∂tu = F
(

t, x, Du, D2u
)
− Du (t, x) · V (x) ż (t) ;

this is verified in Ref. [6], for instance. The following result adds existence and
regularity to the main result of Ref. [6].

9 ... in which case (47) is understood in Stratonovich form.
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Theorem 10 Let α ∈ (0, 1] and (zε) ⊂ C∞
(
[0, T ] ,Rd

)
be Cauchy in (α-Hölder)

rough path topology with rough path limit z ∈ C0,α−Höl ([0, T ] , G[1/α]
(
R

d
))

.
Assume

uε
0 ∈ BUC

(
R

n)→ u0 ∈ BUC
(
R

n) ,

uniformly as ε → 0. Let F = F (t, x, p, X) be continuous, degenerate elliptic, and
assume that ∂t − F̃ where F̃ is given in (48) satisfies the assumptions of Sect.2.1
with assumption (2.1) strengthened to 10

∀R > 0 : F̃|[0,T ]×Rn×[−R,R]×BR×MR is bounded, uniformly continuous.

Assume that V = (V1, . . . , Vd) is a collection of Lipγ+2 (Rn;Rn) vector fields with
γ > 1/α. Then
(i) Existence, uniqueness: there exists unique BUC -solutions to the approximate
problems

duε = F
(

t, x, Duε, D2uε
)

dt − Duε (t, x) · V (x) dzε (t) , (49)

uε (0, ·) = uε
0 (50)

and the locally uniform limit u = limε→0 uεexists, and is the unique BUC
([0, T ] × R

n) rough viscosity solution (Definition 1) to

du = F
(

t, x, Du, D2u
)

dt − Du (t, x) · V (x) dz (t) ,

u (0, ·) = u0 ∈ BUC
(
R

n) .

In particular, u = uz only depends on z and u0 but not on the particular approximating
sequence {zε}.
(ii) Robustness: The solution map (z,u0) !→ uz from

C0,α−Höl ([0, T ] , G[p]
(
R

d
))
× BUC

(
R

n)→ BUC
([0, T ] × R

n)

is continuous.
(iii) Regularity: Make the additional assumption that F̃ has modulus θR which is
actually linear, and that F̃ has linear growth in the Hessian. Then, if u0 ∈ Lip1 (Rn),
i.e. bounded and Lipschitz continuous, then u is Lipschitz in space and min (α, 1/2)-
Hölder in time.

Proof By assumption, F (·,φ· (∗) ·, 0, 0) = F̃ (·, ∗, 0, 0) is bounded on [0, T ]×R
n,

and the assumption that uε
0 → u0 uniformly, as can be seen by comparison with

function of the type (t, x) !→ ±C (t + 1), with sufficiently large C, independent of

10 This may be expressed in terms of F; in particular F then satisfies �(3)-invariant comparison as
introduced in Ref. [6]; there it was also checked that these structural assumptions are satisfied by
many examples ; notably those arising from pathwise stochastic control theory.
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ε, that the family
{
uε
}

is locally uniformly bounded in ε. We also note that our structural assumptions imply
both existence and comparison (hence uniqueness) of the approximate problems.
Since RDE solution flows (as C3-flows of diffeomorphisms) depend continuously on
the rough driving signals [15, Theorem 11.12,11.13], the corresponding F̃ (ε) given
by (48), withφ give as the solution flow to dy = V (y) dzε, converge locally uniformly
to F̃ based on the RDE solution flow to dy = V (y) dz. Thanks to the Barles-Perthame
procedure (which we apply to the transformed equation, cf (iii) below) we see that

u = lim
ε→0

uε

exists locally uniformly and is a rough viscosity solution in the sense of Definition 1.
Since solutions to ∂t − F̃ with BUC initial data, are also BUC in space time, we see
that u ∈ BUC ([0, T ] × R

n). This settles (i).
The argument for (ii) is identical, one just considers approximate RDE problems
dy = V (y) dzε where each zε may be a genuine rough paths (rather than a smooth,
approximating path).
(iii) Since v (t, ·) := u (t,φt (·)) is a viscosity solution to

∂tv − F̃
(

t, x, Dv, D2v
)
= 0

it follows from the results in Sect. 2 that v is Lipschitz in space and (1/2)-Hölder in
time. Since the time-space regularity

(x, t) !→ φt (·) resp. φ−1t (·)
is well-understood [15], namely α-Hölder in time and Lipschitz (and more) in space,
the claimed regularity of the rough viscosity solution u follows. �

4 Examples

Let us verify in some detail that Theorem 10 applies to two concrete rough resp.
stochastic partial differential equations of interest.

4.1 Stochastic HJB Equation

Following [25] consider the following stochasticHamilton–Jacobi–Bellmanequation

du = inf
α∈A

Lα

(
t, x, Du, D2u

)
dt + Du (t, x) · Vi (x) ◦ dB.
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The case of constant vector fields V = (V1, . . . , Vd) was treated in the afore-
mentioned reference; one then has a truely pathwise theory, i.e. for every continuous
path B : [0, T ] → R

d . Moreover, the solution is robust in the sense that it is the
“Wong–Zakai” limit of approximate problems where B is replaced by (piecewise)
smooth Bε, uniformly convergent to B as ε → 0. This was extended with the aid
of rough path theory to non-constant vector fields in Ref. [6]. It was assumed that
all approximate problems have a unique (viscosity) solution, convergence then takes
places if (Bε) is Cauchy in rough path metric. Although existence is not an issue
here (one could use stochastic control theory and then the stability result of [6]),
Theorem 10 applies on purely analytical grounds and also gives provides informa-
tion about the regularity of the solution. To be a little more specific, one assumes

Lα (t, x, p, X) = Tr
[
σα (t, x) σα (t, x)T X

]
+ bα (t, x) · p,

where σα (t, x) : [0, T ] × R
n → R

n×n′ and bα (t, x) : [0, T ] × R
n → R

n are
bounded, continuous, and Lipschitz continuous in x, uniformly in t ∈ [0, T ]; with
all these properties valid uniformly in α ∈ A. Assume also that V1, . . . , Vd are in
Lip5 (Rn), say, reflecting the regularity need for a α-Hölder driving rough path, any
α < 1/2, such as Brownian motion enhanced to a rough path. A rigorous application
of Theorem 10 is easily justified, along the lines of [6] example 3 and 5 on pages 33,
35 respectively. (The only structural aspect of F̃ which was not verified explicitly in
that paper was boundedness of F̃, but this an easy consequence of the fact that the
auxilary (rough) flows have bounded derivatives.)

4.2 Zakai Equation

As iswell-known, the filtering problem for non-linear diffusion leads to the following
stochastic partial differential equation. To be precise, consider

dXt = b (Xt) dt + σ (Xt) dBt + V (Xt) dB̃t (51)

dYt = h (Xt) dt + dB̃t

where B and B̃ are independent, multidimensional Brownian motions. Note that the
generator of X is of the form

Lu = 1

2
Tr

[
σ (x)σ (x)T D2u

]
+ 1

2
Tr

[
V (x) V (x)T D2u

]
+ b (x) · Du

Define also the first order operators, V = (V1, . . . , Vd)

Nku = Vk (x) · Du+ h (x) u, k = 1, . . . , d
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and note that the (formal) adjoint N ∗
k u is of the form N ∗

k u = H (x, u, Du) with H
linear in u and Du. The goal is to compute for a given real-valued function ϕ

πt (ϕ) = E [ϕ (Xt) |σ (Yr, r ≤ t)]

and frombasic principles it follows that there exists amapφ
ϕ
t : C

(
[0, T ] ,RdY

)→ R

such that

φ
ϕ
t

(
Y |[0,t]

) = πt (ϕ) P− a.s. (52)

As pointed out by M. Clark in the late seventies, there is a problem here since a
basic (practical!) requirement of a filter is robustness, say in the form of continuous
dependence of the observation path. He then showed that in the case of uncorrelated
noise (σ ≡ 0 in (51)) (which corresponds to the case V = 0 above) there exists a
unique φ

ϕ
t : C ([0, T ] ,Rn) → R which is continuous in uniform norm and fulfills

(52), thus providing a version of the conditional expectation πt (ϕ) which is robust
under approximations in uniform norm of the observation Y . Unfortunately in the
correlated noise case this is no longer true! In Ref. [11] it was recently shown that
in this case robustness still holds in a rough path sense. Now recall that under well-
known conditions (e.g. [1]), πt can be written in the form

πt (ϕ) =
∫

RdX

ϕ (x)
ut (x)∫
ut (x̃) dx̃

dx (53)

where ut ∈ L1 (Rn) a.s. and (ut) is the L2-solution of the (dual) Zakai SPDE11

dut = L∗utdt +
∑

k

N ∗
k utdYk

t

=
(
L∗ − 1

2

∑
k

N ∗
k N ∗

k

)
utdt +

∑
k

N ∗
k ut ◦ dYk

t

≡ F
(

x, u, Du, D2u
)

dt + H (x, u, Du) ◦ dYi
t .

Note that L∗ has the “stochastic” parabolicity property which here means that F
is degenerate elliptic. The resulting stochastic PDE does not quite fall in the class
considered in Theorem 10, for H has additional dependence on u, but the method
still works. Amore complicated transformation, detailed in Ref. [16], allows to given
(rough)pathwise meaning to the above equation. Indeed, one can show that v (t, x)
= ψ−1 (t, u (t,φ (t, x)) , x) satisfies a parabolic equation of the form

∂tv − F̃
(

x, v, Dv, D2v
)
= 0

11 Consistency of L2-theory with RPDE theory has been established in Ref. [16].
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with initial data v (0, ·) = u (0, ·). Moreover, with this definition u will depend
continuously on the driving signal (i.e. the observationpathY ) in roughpath topology;
thereby solving the robustness problem for the (un-normalized) conditional density.

In fact, F̃ turns out to be linear in v, Dv, D2v and there is an explicit, if compli-
cated, expression. In particular then, if b,σ are bounded and Lipschitz, V ∈ Lipγ+2
and h ∈ Lipγ+1 for some γ > 2, F̃ is seen to meet the assumption of Sect. 2, neces-
sary to arrive at the same conclusions as those stated in Theorem 10. An appealing
feature here is that one can immediately handle degenerate situations (including the
case when F degenerates to a purely first order operator) and also that one gets auto-
matically continuous versions of solutions to the Zakai equation, without requiring
dimension-dependent regularity assumptions on the coefficients (as pointed out by
Krylov [23], a disadvantage of the L2 theory of SPDEs). On the other hand, our reg-
ularity assumption (in particular in the noise terms) are more stringent12 than what
is needed to ensure existence and uniqueness in the L2 theory of SPDEs.
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Time-Inconsistent Portfolio Investment
Problems

Yidong Dong and Ronnie Sircar

Abstract The explicit results for the classical Merton optimal investment/
consumption problem rely on the use of constant risk aversion parameters and expo-
nential discounting. However, many studies have suggested that individual investors
can have different risk aversions over time, and they discount future rewards less
rapidly than exponentially.While state-dependent risk aversions and non-exponential
type (e.g. hyperbolic) discountings align more with the real life behavior and house-
hold consumption data, they have tractability issues and make the problem time-
inconsistent.We analyze the caseswhere these problems can be closely approximated
by time-consistent ones. By asymptotic approximations, we are able to character-
ize the equilibrium strategies explicitly in terms of the corrections to solutions for
the base problems with constant risk aversion and exponential discounting. We also
explore the effects of hyperbolic discounting under proportional transaction costs.

Keywords Time-inconsistency · Portfolio optimization · Asymptotic methods ·
Stochastic control · Stochastic risk aversion

1 Introduction and Background

1.1 The Merton Problem of Portfolio Optimization

The portfolio optimization problem in a continuous-time diffusion model was first
introduced by Merton in the 1960s, with the original papers reprinted later in [24],
where he was able to derive explicit solutions for the value functions and optimal
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strategies in cases with geometric Brownianmotions and special types of utility func-
tions. Ever since then, there has been plenty of development aimed at generalizing
Merton’s results in different ways. To deal with market incompleteness is a direction
that a large proportion of the works have been dedicated to. For example, Campbell
and Viceira [4] and Wachter [31] studied the problem with stochastic drift returns.
For problems of partial hedgingwith a non-traded asset, as well as utility indifference
pricing, one could refer to the collection [5]. Meanwhile, stochastic volatility and
transaction cost are two topics that have received much attention and popularity. We
refer the reader to Chacko and Viceira [6] and Kraft [22] for some explicit results in
cases with stochastic volatility. For transaction costs, things are much more subtle as
the problem becomes less tractable. Davis and Norman [10] were able to solve the
problem numerically as a free-boundary ODE system, and Shreve and Soner [28]
treated it using the viscosity solution approach.

More recently, asymptotic methods have been used widely to solve the exten-
sions of Merton’s problem around their classical and well-established counterpart
problems. For example, Fouque et al. [15] have usedmultiscale expansions to approx-
imate the case with stochastic volatility around the constant volatility case. Bouchard
et al. [3] used asymptotics for small transaction costs to derive tractable models for
a partial hedging problem under expected loss constraints.

1.2 Time Inconsistency

The key to solvingMerton’s problem is the use of the Dynamic Programming Princi-
ple (hereinafterDPP) in order to formulate theHamilton-Jacobi-Bellman (hereinafter
HJB) equation. In a typical dynamic programming problem setup, when an agent
wants to optimize an objective function by choosing the best plan, he is only required
to decide his current action. This is because DPP assumes that one’s future selves are
going to solve the remaining part of today’s problem and act optimally when future
comes. However, in many problems, the DPP does not hold, and an agent does not
have such “commitment power” on their future selves, which is the ability to enforce
a course of plans obtained by repeatedly optimizing the same objective function over
time. In such problems, the future selves may have changed preferences or tastes,
or would want to make decisions based on different objective functions, effectively
acting as opponents of the current self.

The dilemma described above is called dynamic inconsistency, which has been
noted and studied by economists for many years, mainly in the context of non-
exponential type discount functions. In [29], Strotz demonstrated that when a dis-
count function was applied to consumption plans, one could favor a certain plan at
the beginning, but later switch preference to another plan. This would hold true for
most types of discount functions, the only exception being the exponential. Neverthe-
less, exponential discounting is “by default” in most literatures, as none of the other
types could produce explicit solutions. Results from experimental studies contradict
this assumption (see, for example, Loewenstein and Prelec [23]), indicating that the



Time-Inconsistent Portfolio Investment Problems 241

discount rates for the near future are much lower than the discount rates for the time
further away in future, and therefore a hyperbolic type discount function would be
more realistic.

Other types of time-inconsistencydo exist aswell. Bjork andMurgoci [1] listed out
three possible scenarios where time inconsistency would occur in typical Markovian
stochastic control problems. More specifically, given an objective function of the
following form:

J (t, x,π) = E

⎡
⎣

T∫

t

ϕ(s − t)F(Xπ
s , x)ds + G(Xπ

T , x)

⎤
⎦+ H(x,E

[
Xπ

T

]
),

where Xπ is some controlled diffusion process with Xπ
t = x and π being our control,

the optimization for J (t, x,π) is a time-inconsistent problem if:

1. the discount functionϕ(s−t) is not of exponential type, e.g. a hyperbolic discount
function;

2. x appears in the objective function, e.g. a utility function that depends on the
initial wealth x ;

3. H() is a nonlinear function of E
[
Xπ

T

]
, e.g. continuous-time mean-variance opti-

mization on Xπ
T .

In all the three cases, the standard HJB equations cannot be derived since the usual
formulation requires an argument about the value function (process) being a super-
martingale for arbitrary controls and being a martingale at optimum, which does not
hold here. In light of the non-applicability of DPP on these problems, some have
turned in a game-theoretic direction. By treating the problem as a game played with
one’s future selves, it is possible to derive a sub-game Nash equilibrium. In the next
section, we will discuss recent works on deriving equilibrium strategies in some of
the time-inconsistent problems.

1.3 Recent Literature on Time-Inconsistent Portfolio
Optimization

One of the earlier advances was made by Harris and Laibson who discussed the exis-
tence and uniqueness of an equilibrium consumption path in the case of hyperbolic
[16] and quasi-hyperbolic [17] discount functions in a discrete-time setup. They also
derived the Euler relation for the equilibrium path using the recursive property of
an equilibrium consumption plan. Ekeland and Lazrak [11] studied the problem in
continuous time with a more general non-exponential type discount function and
derived an equation for the equilibrium value function process, which was compa-
rable to Harris and Laibson’s results and resembles the classical HJB equation plus
a non-local term. Later, Ekeland et al. [13] looked at an investment/consumption
problem from life insurance with time-inconsistent discount functions. They solved
the non-local HJB-type equation numerically and were able to obtain a hump-shaped
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consumption path that agreed with the household consumption data, as opposed to
the monotone shape path produced by exponential discount functions.

Progresses have been made on other types of time inconsistent problems as well.
Bjork et al. [2] used the same technique to study the continuous time mean-variance
optimization problem with a state-dependent risk aversion parameter. They obtained
a system of HJB-type equations which they were able to reduce to an ODE system
and solve numerically if risk aversion had a special form. Their equilibrium strategy
was comparable to the utility-maximizing strategy in a Merton model statically, but
was able to capture some horizon effect as opposed to the Merton optimal strategy
which was constant in time. On the other hand, Hu et al. [18] derived an open-loop
equilibrium strategy, characterized by a system of forward-backward stochastic dif-
ferential equations, to solve a time-inconsistent stochastic linear quadratic control
problem, which is the generalized version of the mean-variance problem. Pirvu and
Zhang [26] have studied the problem of utility indifference pricing under a discrete
time model with a state-dependent risk aversion modelled by a two-state regime-
switching Markov chain.

The remaining part of this article is organized as follows. In Sect. 2, we study
the portfolio optimization problem with time-varying risk aversions that depend on
the wealth or volatility factor. A discrete-time example will be given to illustrate the
time inconsistency, followed by the derivation of the HJB-type equation in continu-
ous time. We will use asymptotic methods to derive the equilibrium strategies up to
first order. In Sect. 3, we look at hyperbolic discounting problems and use similar
methodologies to obtain tractable solutions in this case. An extension with propor-
tional transaction costs is also studied, and we provide some numerical results for
this problem. Section4 concludes.

2 Utility Maximization with Time-Varying Risk Aversion

In this section, we look at the classical Merton problem of portfolio optimization, but
with the risk aversion parameter being state-dependent.1 Our motivation is that, in
the classical case, we need to, at time 0, fix a (constant) risk aversion parameter for
expected utility at terminal time T . This value reflects our present conjecture about
our future attitude towards risk, and thus it would be unnatural for this conjecture
to be independent of the current state of the world, for example the wealth level
and economic conditions. There are many indicators in the market that can, at least
partially, measure investors’ risk aversion. As mentioned in Coudert and Gex [9],
the movement of risk aversion is often correlated with market indices, for example
the gold price and VIX. There are also aggregate indicators of risk aversion created
by financial institutions such as JP Morgan’s Liquidity, Credit and Volatility Index.
The consequence of incorporating such dependence is that the problem now becomes

1 These models can be seen as a particular example of the studies on state-dependent util-
ity/preference by Karni [20]. In this case the dependency has an explicit functional form as γ(·).
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time-inconsistent, as the risk aversion will likely to be different at a later time leading
to a different objective function to optimize. An example is provided in the next
section as an illustration. We will follow closely the methodology described in [1].
As we will see later, a system of equations of the HJB type can be obtained in
this manner, which admits the equilibrium solution via first order conditions. And
when the risk aversion is constant, this system will degenerate to the classical HJB
equation.

2.1 Time-Inconsistency and Wealth-Dependent Risk Aversion

To keep the dimension small, we start by describing the time-inconsistency problem
with the risk aversion being dependent on the current wealth level, Xt . Since the
current wealth level is an indicator on how much loss (downside risk) one is able to
bear, we believe this dependence is natural. We will illustrate the derivation of the
HJB-type system of equations in this case, which can be easily extended to cases
where risk aversion depends on other state variables.

2.1.1 An Illustration

We can use a simple two-period binomial tree to illustrate the time inconsistency that
results from the wealth-dependent risk aversion. Let k ∈ {0, 1, 2} denote the time
periods. Suppose there are two assets Sk and Bk , Bk being the risk free asset and Sk

being the risky one with u > 1, d < 1 and p ∈ [0, 1] as the usual parameters in a
binomial tree model. We also assume both assets have value equal to 1 at time 0 and
we have zero interest rate so Bk = 1 ∀ k.

S0 : 1

u

d

u2

ud

d2

1− p

p

B0 : 1 1 1

Let Xk denote our wealth at time k and suppose X0 = 1 for simplicity. We use
an exponential utility function U (x) = −e−γx here, and we let the risk aversion γ
be a function of the current wealth level (denoted as x here):
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γ(x) =
⎧⎨
⎩

a if x > 1
1 if x = 1
b if x < 1,

for a, b > 0.
Let 0 < π < 1 denote the amount ofwealth invested in Sk at time 0.At time k = 0,

with wealth X0 = 1, the expected utility of terminal wealth Xπ
2 := πS2 + (1−π)B2

can be written as:

E[U (Xπ
2 )] = −e−1

{
p2eπ(1−u2) + 2p(1 − p)eπ(1−ud) + (1 − p)2eπ(1−d2)

}

=: −e−1 f1(π),

where the risk aversion γ = 1. At time k = 1, depending on whether the stock price
goes up or down, the risk aversion will becomes γ = a or b because we have either
X1 > 1 or X1 < 1. The expected utility of Xπ

2 at time 1 is either

E[U (Xπ
2 ) | S1 = u] = −e−1

{
peπ(1−u2)a + (1 − p)eπ(1−ud)a

}
=: −e−1 f2(π),

or

E[U (Xπ
2 ) | S1 = d] = −e−1

{
peπ(1−ud)b + (1 − p)eπ(1−d2)b

}
=: −e−1 f3(π).

Remark 2.1 It is possible to choose p, u, d, π such that

∂

∂π
f1(π) > 0,

∂

∂π
f2(π) < 0 and

∂

∂π
f3(π) < 0.

For instance, if a = 0.5 and b = 2, then by choosing u = 2, d = 0.5, p = 0.5 and
π = 0.5 we can obtain the desired inequalities.

Suppose we have Portfolio #1 that has π in the stock and 1 − π in the bank, and
Portfolio #2 that has π − ε in stock and 1 − π + ε in the bank for an infinitesimal
positive amount ε. The signs of the first derivatives in Remark 2.1 tell us that, at the
second period, Portfolio #1 is always favored over Portfolio #2. However, at time
0, Portfolio #2 is the better one. We recall the definition of time consistent utility
function, such as in [7, 21]:

Definition 2.2 Adynamicutility function (Ut )
T
t=0 is time-consistent if for all X, Y ∈

L(FT ) and t ∈ 0, . . . , T − 1,

Ut + 1(X) ≥ Ut + 1(Y ) implies Ut (X) ≥ Ut (Y ).

We can see that in our case the preference between Portfolio #1 and #2 is “flipped”
in the two periods, which clearly violates the definition of time consistency.
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2.1.2 Formal Problem Setup in Continuous Time

We use the standard two-asset framework where we have a risky stock St and a risk-
free bond that we can invest our wealth in. By assuming zero interest rate or working
under the discounted unit, we only need to define the stock dynamics:

d St = μSt dt + σSt dWt , (1)

where Wt denotes a standardBrownianmotion, so St is a geometric Brownianmotion
(henceforth GBM). For the time being, we assume constant drift μ and volatility σ.
The case where the volatility is stochastic will be discussed in Sect. 2.3 when we
consider the volatility-dependent risk aversion as an extension of this problem.

Let Xt denote our wealth at time t , which consists of the cash amount πt invested
in the risky stock as well as the remaining part invested in the riskless bond. The
wealth process Xt follows the controlled diffusion:

d Xt = πt
d St

St
= πt [μ dt + σ dWt ]. (2)

The optimization problem is to maximize the expected utility of terminal wealth
at time T among all admissible strategies π, given the wealth level being Xt = x at
time t . This problem can be represented using the value function V (t, x)

V (t, x) := sup
π∈�

Et,x
[
U (Xπ

T , γ(Xt ))
]

= sup
π∈�

J(t, x,π),
(3)

where � is the set of all admissible strategies that are adapted to the filtration

(Fs) generated by the stock price process and which satisfy E

[∫ T
t π2

s ds < ∞
]
,

and γ(Xt ) is the risk aversion that we fix for our future self at time T based
on the current wealth level Xt . Here U (x1, γ(x2)) denotes the von Neumann-
Morgenstern utility function which is a twice differentiable, concave function in
x1 ∈ R

+.

Remark 2.3 Note that in U (x1, γ(x2)), x1 is the wealth at future for which we want
to compute the utility, with risk aversion computed using current wealth level x2. In
order to retain the differentiability and concavity at terminal time T when x1 and x2
coincide, we also require γ(x2) to be chosen such that

• U (x1, γ(x2)) is twice differentiable in x2;
• (Ux1x1 + Ux2x2 + 2Ux1x2

) | x2=x1 < 0 for all x1 > 0.

In the classical case, the risk aversion γ is constant sowe can suppress its argument
by denoting the utility function as U = Uγ(x). Then the optimal strategy can be
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computed from the HJB equation associated with the value function, and the DPP,
from which the HJB equation is derived, guarantees that the optimal strategy π∗
computed at the initial time will remain optimal at a later time. A rigorous proof of
the derivation of HJB equation from DPP can be found in, for example, Pham [25].
In this case, the optimal strategy takes the form:

π∗
t =

⎧⎪⎪⎨
⎪⎪⎩

λ

σ

1

γ
for exponential utility functions

λ

σ

x

γ
for log and power utility functions,

where Xt = x and λ is the Sharpe ratio defined by λ := μ
σ .

Now, as we have made the risk aversion wealth dependent, intuitively the opti-
mal strategy might be obtained by replacing the constant γ with γ(x) in the above
expressions. Is it really the case? It turns out that this is not so trivial, since we cannot
even formulate the HJB equation (in the classical DPP sense) once we allow the risk
aversion to change with the current wealth level. As our objective function changes
constantly, our future selves will not solve the “remaining” part of the optimization
problem that our current self is facing now.

Using a game-theoretic approach, we can think of it as a game played by a number
of ordered players (our selves at different times), each of whom has his own utility
function and has temporary control over the resource (wealth). For a particular player,
when the resource is in his possession (obtained from the previous player), he can
choose the strategy to be applied to the resource at this particular moment. After
that, the player has to pass on the resource to the next player and he will no longer
be able to apply strategies to it or control what other players’ strategies will be. As
the game is played by a continuum of players in the continuous time setting, each
player would have to play against all his future selves.

To define the equilibrium in this game, we follow the explanation given in [11], in
which it was assumed that the current self has the ability to commit all future selves
to his decision up to a small period ε > 0. Thus the player can form a small coalition
with players in the near future. Now supposeπ ≡ (πs)s ∈ [t,T ] is an admissible policy
(all strategies over time). Define another policy πε as:

πε =
{

π, s ∈ [t, t + ε]
πs, s ∈ (t + ε, T ], (4)

where π can be any strategy that makes πε admissible. Then the following from [11]
gives the definition of the equilibrium policy.

Definition 2.4 A policy π̄ : (t, x) → R is an equilibrium one if for any t, x > 0
and any arbitrary π,

lim
ε↓ 0

J(t, x, π̄) − J(t, x, π̄ε)

ε
≥ 0
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where J is our objective function.

This definition means that, if we are using the equilibrium policy π̄, then we will
not be better off by committing the immediate future selves to our action instead of
letting them choose the best strategy in their views. This also means that the equi-
librium policy computed at one time should coincide, from the next period onward,
with the equilibrium policy computed at the next period. The equilibrium policy is
therefore time-consistent as the future selves have no incentives to deviate from this
path. We refer the readers to the paragraphs following Definition 1 in Ekeland and
Lazrak [12] for a detailed explanation about the equilibrium strategy in discrete time
setting. The definition leads to the following result as appeared in, e.g. [1]:

Proposition 2.5 Assuming sufficient regularity, the equilibrium value function and
Markovian policy satisfy the following extended HJB-type system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
πt ∈R

(Aπt V (t, x) − Aπt f (t, x, x) + Aπt f w(t, x)
) = 0

Aπ∗
t f w(t, x) = 0

V (T, x) = U (x, γ(x))

f (T, x, w) = U (x, γ(w)),

(5)

whereAπt contains the infinitesimal generator of the wealth process taking the form:

Aπt g(t, x) = gt + μπt gx + 1

2
σ2π2

t gxx

Aπt h(t, x, x) = ht + μπt hx + μπt hw|w = x + 1

2
σ2π2

t hxx

+ 1

2
σ2π2

t hww|w = x + σ2π2
t hxw|w = x ,

and f w(t, x) means fixing the w variable of f (t, x, w) as constant.

Proof We need to define the following “auxiliary value function”:

f (t, x, w) = Et,x

[
U (Xπ∗

T , γ(w))
]
,

which is made from V (t, x) by making the initial wealth value in γ(·) vary indepen-
dently from Xt , and where π∗ denotes the equilibrium strategy. For every fixed w,
γ(w) can be treated as a constant, as w and x are independent. Thus f (t, x, w) is the
value function for a Merton problem with constant risk aversion parameter γ(w).

By construction of πε from the definition, we have the following equality:
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Et,x
[
J(t + ε, Xt + ε,πε)

] = Et,x
[

f (t + ε, Xt + ε, Xt + ε)
]

= Et,x
[

f (t + ε, Xt + ε, Xt + ε)
]+ J(t, x,π)

−Et,x
[
U (Xπ

T , γ(x))
]

= Et,x
[

f (t + ε, Xt + ε, Xt + ε)
]+ J(t, x,π)

−Et,x
[
E
[
U (Xπ

T , γ(x)) | Xt + ε, t
]]

= Et,x
[

f (t + ε, Xt + ε, Xt + ε)
]+ J(t, x,π)

−Et,x
[

f (t + ε, Xt + ε, x)
]
.

Since J(t + ε, Xt + ε,πε) = V (t + ε, Xt + ε), we can write the above equation as:

Et,x
[
V (t + ε, Xt + ε)

] = Et,x
[

f (t + ε, Xt + ε, Xt + ε)
]

+ J(t, x,π) − Et,x
[

f (t + ε, Xt + ε, x)
]
.

Taking the supremum and rearranging the equation, we get

sup
π∈�

(
Et,x

[
V (t + ε, Xt + ε)

]− V (t, x) + Et,x
[

f (t + ε, Xt + ε, x)
]

−Et,x
[

f (t + ε, Xt + ε, Xt + ε)
]) = 0.

Now we take the limit ε → 0,

sup
πt

(
Aπt V (t, x) − Aπt f (t, x, x) + Aπt f w|w = x (t, x)

)
= 0. (6)

Meanwhile, for every fixed w, f (t, Xt , w) corresponds to a martingale process
and thus it must satisfy the PDE

Aπ∗
t f w(t, x) = 0, (7)

where π∗ is the equilibrium policy appeared in the definition of f (t, x, w). In addi-
tion, there are two terminal conditions for V and f :

{
V (T, x) = U (x, γ(x))

f (T, x, w) = U (x, γ(w)).
(8)

We get the extended HJB-type system by combining Eqs. (6), (7) and (8).

The verification theorem provided by [1] holds here, we shall quote:

Theorem 2.6 (Bjork and Murgoci) Assume that (V (t, x), f (t, x, w)) is a solution
of the system defined in (5), and that the strategy path π∗ realizes the supremum
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in the equation. Then π∗ is an equilibrium policy, and V (t, x) is the corresponding
value function.

Proof See [1].

When writing out the first two equations in (5) explicitly, we get the following
two PDEs:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vt + sup
π

{
μπ(Vx − fw) + 1

2
σ2π2(Vxx − fww − 2 fxw)

}
= 0

ft + μπ∗ fx + 1

2
σ2π∗2 fxx = 0.

(9)

Note that all w partial derivatives are evaluated at the point w = x .
We can find the equilibrium strategy by the first order condition:

π∗ = −λ

σ

Vx − fw
Vxx − fww − 2 fxw

| w = x , (10)

where λ denotes the constant Sharpe ratio. Inserting (10) back into (9) and we obtain
the following two PDEs to solve for V (t, x) and f (t, x, w)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vt − 1

2
λ2 V 2

x − 2Vx fy + f 2w
Vxx − fww − 2 fxw

= 0

ft + λ2
[

fx ( fw − Vx )

Vxx − fww − 2 fxw

+ 1

2

(V 2
x − 2Vx fw + f 2w) fxx

(Vxx − fww − 2 fxw)2

]
= 0.

(11)

2.1.3 A Remark: Why Two Equations Instead of One?

As we can see from the above, we now face an HJB-type system of two equations
instead of solving one single HJB equation as in the time-consistent case. It turns
out this is essential for characterizing the equilibrium strategy and value function.
In the definition of the equilibrium strategy, coalition is allowed for an infinitesimal
period, during which we are actually solving a Merton problem with constant risk
aversion. That is what the function f (t, x, w) represents when settingw = x and it is
the time-consistent part of the problem. After this infinitesimal period, however, the
evolution of the value function cannot be characterized by this function f (t, x, w)

anymore, as the problem now is time-inconsistent. This is the reasonwe need V (t, x)

as our value function.
In Harris and Laibson [17], the dynamic consumption choice problem with quasi-

hyperbolic discountingwas also solved by the equilibrium strategy and value function
which were defined similarly using two functions. There is a continuation-value
function characterizing the dynamics of the true time-inconsistent value function and
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there is another current-value function. The current-value function is used locally at
the current point (t, x) to derive the equilibrium strategy. Our HJB-type system has
a strong analogy to the two functions in their work.

Another way of describing this is that the true value function V (t, x) cannot be
solved alone. For each point (t, x), the value of V (t, x) is determined by another
non-local function f (t, x, w) by setting w = x in its third argument, i.e. V (t, x) =
f (t, x, x). The first equation in (5) can be considered as a PDE of the non-local
type. For the non-exponential discounting problem in [11], a non-local integro-PDE
was obtained, where the dynamics of the value function depends on an integral of
the value function at all future time. In general, non-local PDEs are very difficult to
solve.

2.1.4 Asymptotic Expansions

If the time-inconsistent problem is close to a time-consistent one,we can approximate
thefirst problemvery effectively using the latter by asymptoticmethods.Herewe look
at the special case where the risk aversion only varies slowly with the wealth level,
i.e. it is close to the case of constant risk aversion. Mathematically, this corresponds
to

γ(x) = γ0 + εγ1(x) + · · ·

for positive ε 
 1. We look for an expansion of the form

V (t, x) = V0(t, x) + εV1(t, x) + · · · ,

and

f (t, x, w) = f0(t, x) + ε f1(t, x, w) + · · · ,

for the equations in (11).
We first introduce a few notations.

Definition 2.7 We define the risk tolerance to be

R := − V0,x

V0,xx
;

and use Dk to denote

Dk := Rk ∂k

∂xk
;

finally define the linear operator Lt,x as

Lt,x := ∂t + λ2D1 + 1

2
λ2D2.
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Collecting zeroth order terms in (11) we get

{
Lt,x V0 = 0

Lt,x f0 = 0,
(12)

with terminal conditions V0(T, x) = U (x, γ0) and f0(T, x) = U (x, γ0). Since f0
and V0 have the same terminal condition, we find V0(t, x) = f0(t, x) which is the
classical Merton value function with constant risk aversion parameter γ0.

At the first order, we have:

⎧⎪⎨
⎪⎩
Lt,x V1 = λ2R f1,w + λ2

2
R2 ( f1,ww + 2 f1,xw)

Lt,x f1 = 0,

(13)

with terminal conditions V1(T, x) = ∂U
∂γ (x, γ0)γ1(x) and f1(T, x, w) = ∂U

∂γ (x, γ0)
γ1(w). The following proposition will be useful for solving the order ε PDEs.

Lemma 2.8 We have
∂

∂γ
Lt,x V0 = Lt,x

(
∂V0

∂γ

)
. (14)

Proof For any function v,

∂

∂γ
Lt,xv = ∂

∂γ

(
vt + λ2Rvx + 1

2
λ2R2vxx

)

= Lt,x

(
∂v

∂γ

)
+ λ2 ∂R

∂γ
vx + λ2

(
R

∂R

∂γ

)
vxx .

The last two terms cancel out when v = V0 since R = − V0,x
V0,xx

.

Lemma 2.8 will lead us to the solutions of f1 and V1.

Proposition 2.9 The solution to the second equation in (13) is

f1(t, x, w) = γ1(w)
∂ f0
∂γ

.

Therefore the order ε value function is

V1(t, x) = γ1(x)
∂V0

∂γ
. (15)

Proof By direct substitution and verification.
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2.1.5 Effect on the Trading Strategy

Recall the equilibrium strategy from (10)

π∗ = −λ

σ

Vx − fw
Vxx − fww − 2 fxw

.

We plug in V = V0 + εV1 and f = f0 + ε f1,

π∗ = −λ

σ

V0,x + εhxγ1(x)

V0,xx + εhxxγ1(x)
+ O(ε2)

= λ

σ
R(1 + ε

hxγ1(x)

V0,x
)(1 − ε

hxxγ1(x)

V0,xx
) + O(ε2)

= λ

σ
R

[
1 + εγ1(x)

(
hx

V0,x
− hxx

V0,xx

)]
+ O(ε2), (16)

where we denote h := ∂V0
∂γ . Thus the equilibrium strategy will deviate from the

optimal strategy in the case of constant risk aversion γ0 by a fraction given by

εγ1(x)
(

hx
V0,x

− hxx
V0,xx

)
.

2.1.6 Power Utility Case

Recall that the power utility function with constant risk aversion parameter γ is:

U (x) = x1−γ

1 − γ
.

For the Merton problem with power utility and constant risk aversion, the value
function V (t, x) satisfies

Vt − 1

2
λ2 V 2

x

Vxx
= 0,

with terminal condition V (T, x) = x1−γ

1−γ . The solution for the PDE above is given
by

V (t, x) = x1−γ

1 − γ
e

λ2
2

(
1−γ
γ

)
(T −t)

.

This is our zeroth order value function V0(t, x) once we replace γ with γ0. We can
find the first order correction by taking the partial derivative w.r.t. γ and multiplying
by γ1(x):
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V1(t, x) = γ1(x)

[
1

1 − γ0
− log(x) − λ2(T − t)

2γ2
0

]
V0(t, x). (17)

The equilibrium trading strategy up to the first order is thus given by:

π∗ = λ

σγ0

[
1 + εγ1(x)

(
hx

V0,x
− hxx

V0,xx

)]

= λ

σγ0

[
1 + ε

γ1(x)

γ0

]
.

We have provided some plots for the power utility case. Figure1a compares
a power utility function with constant risk aversion γ = 2 to the one with
risk aversion slowly decreasing in wealth. For this illustration, we have chosen
γ1(x) = − tan−1(x − 10) and ε = 0.01 which retain the twice differentiability
and concavity of the utility function. Figure1b compares the Merton optimal strat-
egy with the equilibrium strategy up to the first order correction.
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Fig. 1 Plots of utility functions and equilibrium trading strategies (up to 1st order correction)
against wealth level in the case of power utility function. We chose μ = 0.15, r = 0, σ = 0.25,
γ0 = 2, γ1(x) = −tan−1(x − 10) and ε = 0.01. Risk aversion is modeled as slowly decreasing
with wealth level here and the corresponding utility function is still concave and slightly above
the utility function with constant risk aversion. Moreover, we see that the equilibrium strategy is
slightly above the Merton strategy due to a lower risk aversion. a Utility functions. b Equilibrium
Investment Strategies
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2.2 Utility-Indifference Pricing with Wealth-Dependent Risk
Aversion

One of the immediate applications of wealth-dependent risk aversion is indiffer-
ence pricing, where the (buyer’s) price of the option is set such that the buyer
has the same expected utility no matter he chooses to invest in a portfolio with-
out the option or to invest in another portfolio with the option but paying a price at
the beginning. In scenarios where the option is likely to cost a significant portion
of the investor’s wealth, for example constructing a power plant or start an R&D
project as often considered in real option valuation problems it is possible for the
investor to become more risk averse after he purchases the option. Wealth-dependent
risk aversion can be used to capture this change. Here we look at the indifference
pricing of an option written on a non-traded asset. The controlled wealth process
follows

d Xπ,x
t = πt d S(1)

t + r(Xπ,x
t − πt S(1)

t )dt,

where the price S(1)
t of the traded asset follows the geometric Brownian motion with

drift μ
d S1

t = μS(1)
t dt + σS(1)

t dW (1)
t .

The option written on the non-traded asset S(2)
t has payoff C(S(2)

T ) at terminal time

T . And S(2)
t follows the SDE

d S(2)
t = p dt + q dW (2)

t ,

where W (1)
t and W (2)

t have correlation ρ. Now assuming r = 0, the value function
for the Merton problem without the option is

V (x, 0) = − e−γ0x−λ2T/2 + εγ1(x)xe−γ0x−λ2T/2 + o(ε2)

= − e−γ0x−λ2T/2 (1 − εγ1(x)x) + o(ε2). (18)

Note that we are using exponential utility here to simplify the calculations. Now the
value function with a long position in k units of the option is given by

V (x − pk , k) = − e−γ0(x−pk )−λ2T/2 (1 − εγ1(x)x)

(
E Q0 [e−kγ0(1−ρ2)C(S(2)

T )(1 − kεγ1(x)(1 − ρ2)C(S(2)
T ))]

)1/(1−ρ2)

= − e−γ0(x−pk )−λ2T/2 (1 − εγ1(x)x)

(
E Q0 [e−kγ0(1−ρ2)C(S(2)

T )]
)1/(1−ρ2)

+ εkγ1(x)e−γ0(x−pk )−λ2T/2
(

E Q0 [e−kγ0(1−ρ2)C(S(2)
T )]

)ρ2/(1−ρ2)
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E Q0 [C(S(2)
T )e−kγ0(1−ρ2)C(S(2)

T )], (19)

where Q0 is the probability measure under which S(2)
t has a new drift p − ρλq but

the same diffusion q.
For the solution of pk we seek the following expansion:

pk = p(0)
k + εp(ε)

k + O(ε2)(ε2).

Consequently,

V (x − p(0)
k − εp(ε)

k , k) = V 0(x, 0)eγ0 p(0)
k �

1
1−ρ2

T

⎡
⎣1 + ε

⎛
⎝1 − γ1(x − p(0)

k )x

−
kγ1(x − p(0)

k )E Q0

[
C(S(2)

T )�T

]

�T

⎞
⎠
⎤
⎦+ O(ε2) (20)

where we have used the following notation

V 0(x, 0) := −e−γ0x−λ2T/2,

�T := e−kγ0(1−ρ2)C(S(2)
T ),

�T := E Q0 [�T ],

and that γ1(x − p(0)
k − εp(1)

k ) ≈ γ1(x − p(0)
k ). Now we just need to equate (18) and

(20). At the zeroth order,

−e−γ0x−λ2T/2 = −e−γ0(x−p(0)
k )−λ2T/2�

1/(1−ρ2)
T ,

from which we can find the zeroth order indifference price:

p(0)
k = − 1

(1 − ρ2)γ0
log�T .

At order ε, after substituting in p(0)
k , we have

−γ+
1 xV 0(x, 0) = p(ε)

k V 0(x, 0) − γ−
1 xV 0(x, 0)

− kγ−
1 �−1

T E Q0
[
C(S(2)

T )�T

]
V 0(x, 0),

from which we can get the order ε correction to the indifference price
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p(ε)
k = (γ−

1 − γ+
1 )x + kγ−

1 E Q0 [C(S(2)
T )�T ]

�T
.

As we have assumed the investor will become more risk averse when holding the
option, i.e. γ−

1 ≥ γ+
1 , the correction p(ε)

k above tells us that the true indifference price
will be higher than the constant risk aversion case for k > 0 and C(·) ≥ 0.

2.3 Stochastic Volatility Models with Volatility-Dependent Risk
Aversion

Since first introduced byHull andWhite [19] for pricing options, stochastic volatility
models have gained wide popularity as they could reproduce features about the
implied volatility surface which are missing in the standard Black-Scholes models.
Incorporating the stochastic volatility framework is also one of the many extensions
being studied recently for the classical Merton portfolio optimization problems.

One way to look at the problem is to use the timescale stochastic volatility asymp-
totics, which has been applied to many option pricing problems, see Fouque et al.
[14] and the references therein. In this framework, the volatility is assumed to have
a fast mean-reverting factor following a speeded-up diffusion process and/or a slow
factor following a slowed-down diffusion. The empirical evidence to support the
multiscale stochastic volatility model can be found in Chernov [8]. When Fouque
et al. [15] treated the Merton problem in this way, they obtained in explicit forms
both the fast and slow scale corrections to the value function, which resemble the
stochastic volatility corrections for pricing European-style options.

A natural question to ask is whether volatility, an indicator of investment risk,
would affect the risk aversion parameter, a measure of investor’s attitude towards
risk. This question is nontrivial when the assumption of constant volatility has been
dropped. Intuitively the answer should be yes, as investors would usually focus
on preserving capitals when the risky assets have high volatility, thus becoming
more risk averse. Empirical results also support this argument, which can be found
in Scheicher [27] and Tarashev et al. [30]. Scheicher [27] discovered a positive
relationship between the implied risk aversion in German equity market and the
implied volatility of the US market, and Tarashev et al. [30] concluded from results
obtained in different equity and fixed income markets that higher risk aversion is
linked to higher volatilities and this is more noticeable in the equity markets.

In the next section, we will look at the case where risk aversion is a function of
the slow scale volatility factor so it slowly varies. Our rationale is that the effect from
the fast scale factor would likely be averaged out over the investment horizon if it is
long enough; and it is the general trend of the volatility that would reflect the change
in investors’ risk aversion. We will derive the extended HJB system and carry out the
slow scale asymptotic expansion in this case to approximate the value function and
equilibrium strategy. Using power utility function, we will show that it is possible to
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obtain results similar to Fouque et al. [15] but with an additional correction term to
account for change in risk aversion.

2.3.1 Slow Scale Stochastic Volatility Model

Suppose that the volatility slowly fluctuates as a general diffusion process and the
stock price follows a geometric Brownian Motion:

{
d St = μSt dt + σ(Zt )St dWt

d Zt = δc(Zt ) dt + √
δg(Zt ) dW ′

t ,
(21)

where Wt and W ′
t are Brownian motions with correlation ρ′ ∈ (−1, 1). We have the

wealth process:
d Xt = πtμdt + πtσ(Zt )dWt , (22)

and the associated infinitesimal generator:

Aπt (t, x, z) = ∂t + πtμ(z)∂x + 1

2
π2

t σ(z)2∂2
x + δc(z)∂z

+ 1

2
δg(z)2∂2

z + √
δπtρg(z)σ(z)∂2

xz .

The portfolio optimization problem we consider here is:

V (t, x, z) = sup
π

Et,x,z
[
U (Xπ

T , γ(Zt ))
]
, (23)

where we make the risk aversion dependent on current level of the slow factor Zt .
The extended HJB system for the value function can be derived in the same way as
the wealth-dependent risk aversion case (with a two dimensional state process now),
which is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
πt

{Vt + πtμ(z)Vx + 1

2
π2

t σ(z)2Vxx + √
δρπt g(z)σ(z)(Vxz − fxw)

+δc(z)(Vz − fw) + 1

2
δg(z)2(Vzz − fww − 2 fwz)} = 0

ft + π∗
t μ(z) fx + 1

2
π∗2

t σ(z)2 fxx + δc(z) fz + 1

2
δg(z)2 fzz

+√
δρπ∗

t g(z)σ(z) fxz = 0,

(24)

with terminal conditions:
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{
V (T, x, z) = U (x, γ(z))

f (T, x, z, w) = U (x, γ(w)).
(25)

By the first order condition, the equilibrium strategy takes the form:

π∗
t = −μ(z)Vx + √

δρg(z)σ(z)[Vxz − fxw]
σ(z)2Vxx

| w = z . (26)

Plugging this equilibrium strategy back to the extended HJB system, we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vt − {μ(z)Vx + √
δρg(z)σ(z)[Vxz − fxw]}2
2σ(z)2Vxx

+ δ{c(z)(Vz − fw) + g(z)2

2
[Vzz − fww − 2 fzw]} = 0

ft − μ(z)Vx + √
δρg(z)σ(z)[Vxz − fxw]
σ(z)2Vxx

[μ(z) fx + √
δρg(z)σ(z) fxz]

+ {μ(z)Vx + √
δρg(z)σ(z)[Vxz − fxw]}2
2σ(z)2V 2

xx
fxx + δ[c(z) fz + g(z)2

2
fzz] = 0.

(27)

Now we assume the risk aversion γ(Zt ) takes the form:

γ(Zt ) = γ0 + √
δγ1(Zt ) + o(δ), (28)

thus slowly varies with the slow scale volatility factor. And we expand V and f as:

V (t, x, z) = V0(t, x, z) + √
δV1(t, x, z) + δV2(t, x, z) + o(δ

3
2 )

f (t, x, z, w) = f0(t, x, z, w) + √
δ f1(t, x, z, w)

+ δ f2(t, x, z, w) + o(δ
3
2 ).

(29)

Now introduce the risk tolerance function:

R := R(t, x, z) = − V0,x (t, x, z)

V0,xx (t, x, z)
,

and the differential operator:

Dk := Rk ∂k

∂xk
,
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as well as the linear operator:

Lt,x,z = ∂t + λ(z)2D1 + 1

2
λ(z)2D2,

where λ(z) := μ
σ(z) denotes the Sharpe ratio.

We can find that V0(t, x, z) = f0(t, x, z, z) is the Merton value function with
Sharpe ratio fixed at λ(z) and risk aversion parameter fixed at γ0. As a result, order√

δ equations become:

{
Lt,x,z V1 + ρg(z)λ(z)D1(V0,z −���f0,w) = 0

Lt,x,z f1 + ρg(z)λ(z)D1 f0,z = 0,
(30)

with terminal condition given by:

⎧⎪⎪⎨
⎪⎪⎩

V1(T, x, z) = γ1(z)
∂U

∂γ
(x, γ0)

f1(T, x, z, w) = γ1(w)
∂U

∂γ
(x, γ0).

Proposition 2.10 The solution to (30) is given by:

V1(t, x, z) = γ1(z)V0,γ + 1

2
(T − t)ρλ(z)g(z)D1V0,z . (31)

Proof Using the result from Lemma 2.8, we can see that γ1(w) f0,γ is a solution to
the PDE problem below:

⎧⎨
⎩

Lt,x,z f1 = 0,

f1(T, x, z, w) = γ1(w)
∂U

∂γ
(x, γ0),

which is the original order
√

δ PDE problem without the source term. Now if we
can find the solution to the full PDE problem with zero terminal condition, we can
find the full solution satisfying the original terminal condition by combining the two
partial solutions. This can be done by making use of the “Vega-Gamma” relation in
Lemma 3.1 of Fouque et al. [15], which states

f0,z = −(T − t)λ(z)λ′(z)D2 f0.

The second problem can be rewritten as follows

{
Lt,x,z f1 = (T − t)ρg(z)λ(z)2λ′(z)D1D2 f0

f1(T, x, z, w) = 0.
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Using the commutativity property ofLt,x,z withD1 and the equalityD1 f0 = −D2 f0
from [15], we find that

f1(t, x, z, w) = −1

2
(T − t)2ρg(z)λ(z)2λ′(z)D1D2 f0

= 1

2
(T − t)ρλ(z)g(z)D1 f0,z

is the solution. We get the solution for V (t, x, z) by combining the two partial
solutions and replacing the w variable with z.

Once we get the solution of V1, the equilibrium trading strategy up to order o(
√

δ)
can be computed:

π∗ = λ(z)

σ(z)
R − √

δ

{
ρg(z)

σ(z)

V0,xz

V0,xx
+ λ(z)

σ(z)

[
V1,x

V0,xx
+ R

V1,xx

V0,xx

]}
. (32)

Power Utility Case

For a power utility function:

U (x, γ(z)) = 1

1 − γ(z)
x1−γ(z), (33)

we have the zeroth order value function given by:

V0(t, x, z) = x1−γ0

1 − γ0
e

λ(z)2
2

1−γ0
γ0

(T −t)
. (34)

Thus the explicit form of the first order value function is:

V1(t, x, z) =
{

(T − t)2ρg(z)λ(z)2λ′(z)(1 − γ0)
2

2γ2
0

+ γ1(z)

[
1

1 − γ0
− log(x) − λ(z)2(T − t)

2γ2
0

]}
V0(t, x, z).

(35)

The strategy is given by:

π∗ = λ(z)x

σ(z)γ0
+ √

δ

[
ρg(z)λ′(z)λ(z)(1 − γ0)(T − t)

σ(z)γ2
0︸ ︷︷ ︸

slow factor adjustment in [15]

− λ(z)

σ(z)

γ1(z)

γ0
(1 + 1

γ0
)

]

︸ ︷︷ ︸
risk aversion adjustment

x .

(36)
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Fig. 2 Plots of the equilibrium strategies, in terms of the proportion of total wealth, against the
slow stochastic volatility parameter z, in the case of power utility function. We chose the stochastic

volatility model to be slow scale CIR(Heston), with μ = 0.15, r = 0,σ(z) = √
z, γ(z) =

√
z
2 , ρ =

0.2, T = 5, γ0 = 2, γ1 = tan−1(z) and the time scale is δ = 0.1

We now compare theMerton optimal strategy, the optimal strategy with first order
correction for the slow volatility factor appeared in [15] and our equilibrium strategy
with first order correction.Note that the second strategy is equivalent to (36)with only
the first fractional term inside the square bracket. We notice that for different levels
of the slow factor, the proportions that the two adjustment factors would contribute
to the first order correction are different. Figure2 contains the plots of the three
strategies for different ranges of the slow factor. Figure2a, c show that for small z,
the main contributor of the first order correction is the first fractional term inside
the square bracket of (71), whereas for larger values of z, as Fig. 2b, d suggest, an
increasing risk aversion plays the major role instead. The direction to which the first
adjustment factor affects the strategy depends on the sign of the correlation factor ρ.
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2.4 Comparison with Mixture of Power Utility Functions

A mixture of power utility functions takes the following form:

U mix (x) = c1
x1−γ1

1 − γ1
+ c2

x1−γ2

1 − γ2
,

as introduced in Fouque et al. [15], where γ1 �= γ2 and c1, c2 are positive constants.
Under this utility function, the relative risk aversion is not constant any more but
decreases in x . Now let us look at a power utility function with wealth-dependent
risk aversion:

U (x) = x1−γ(x)

1 − γ(x)
. (37)

We can choose γ(x) to make U mix (x) = U (x), but in the case of power utility
the solution will be a complex-valued function due to the presence of γ(x) in the
exponent of x . (In contrast, for a mixture of exponential utility functions, γ(x) will
be real-valued).

For the case of small wealth-dependence, we have the following expansion:

U (x) = x1−(γ0+εγ1+O(ε2))

1 − (γ0 + εγ1 + O(ε2))

= x1−γ0 − εγ1log(x)x1−γ0 + O(ε2)

1 − γ0
(1 + ε

γ1

1 − γ0
+ O(ε2))

= x1−γ0

1 − γ0
+ ε

{
− x1−γ0

1 − γ0
γ1log(x) + x1−γ0

1 − γ0

γ1

1 − γ0

}
+ O(ε2)

where γ1 ≡ γ1(x) can be chosen in such a way that the expansion is also a mixture
of power utility functions. For example, we can set γ1(x) to be:

γ1(x) = c1xk1 + c2xk2

−log(x) + 1
1−γ0

then for x belonging to the region where γ1(x) is bounded, the expansion above
becomes:

x1−γ0

1 − γ0
+ ε

x1−γ0

1 − γ0

(
c1xk1 + c2xk2

)
+ O(ε2)

= x1−γ0

1 − γ0
+ εc1

x1−γ0+k1

1 − γ0
+ εc2

x1−γ0+k2

1 − γ0
+ O(ε2)
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= x1−γ0

1 − γ0
+ εc1

1 − γ0 + k1
1 − γ0

x1−γ0+k1

1 − γ0 + k1
+ εc2

1 − γ0 + k2
1 − γ0

x1−γ0+k2

1 − γ0 + k2
+ O(ε2)

i.e. a mixture of three power utility functions up to order ε.
Despite the similarity between the two types of utility functions, i.e. the terminal

conditions for the two problems, the portfolio optimization under a mixture of power
utility functions remains time-consistent as the risk aversion always depends on the
terminal wealth, which is a random variable revealed at time T . In our problem here,
we have made γ(·) dependent on the instantaneous level of wealth which becomes
the source of time inconsistency.

3 Investment/Consumption Problems with Non-exponential
Discounting

In the previous sectionwe have looked at the utilitymaximization for terminal wealth
with time-varying risk aversions by using the method of asymptotic expansions.
Here we want to study the investment/consumption problem under non-exponential
discounting. We adopt the same two-asset diffusion model (1) for this problem thus
we have our wealth process being

d Xt = [πt (μ − r)Xt + (r Xt − ct )] dt + πtσXt dWt , (38)

where the additional term ct denotes our instantaneous consumption rate and πt is
the proportion of wealth invested in the risky asset. We define the objective function
as:

J (t, x,π, c) = Et,x

⎡
⎣

T∫

t

ϕ(s − t)U (cs)ds + ϕ(T − t)U (Xπ,c
T )

⎤
⎦ , (39)

where U (·) is some appropriate utility function to be chosen and ϕ(·) is the discount
function for the utility derived from consumption. We do not require ϕ(·) to be
exponential which is the source of time inconsistency for this problem. As usual, the
value function is defined as:

V (t, x) = sup
π, c

J (t, x,π, c). (40)

Similar to the utility maximization for terminal wealth case, we have the following
result as a consequence of Definition 2.4:

Proposition 3.1 The value function V (t, x) satisfies the following HJB-type
equation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
π,c∈R×R+

{∂V

∂t
+ [πx(μ − r) + (r x − c)]∂V

∂x
+ π2

2
σ2x2

∂2V

∂x2
+ U (c)}

= −Et,x [
T∫

t

ϕ′(s − t)U (c∗
s )ds + ϕ′(T − t)U (Xπ,c∗

T )]

V (T, x) = 0

V (t, 0) = 0,

(41)

where c∗
s denotes the equilibrium consumption in the future time s ≥ t .

Proof For this proof we ignore the ϕ(T − t)U (Xπ,c∗
T ) term for simplicity. Using

the definition of equilibrium strategies in (4), let us define:

πε
s =

{
π for s ∈ [t, t + ε]
π∗ for s ∈ (t + ε, T ] and cε

s =
{

c for s ∈ [t, t + ε]
c∗ for s ∈ (t + ε, T ].

i.e. our policy u := (πε
s, cε

s

)
s ∈ [t, T ] is defined such that it is a uniform and arbitrary

perturbation from u∗ for the period [t, t + ε] and the two strategy will coincide after
t + ε. Therefore we have

J (t + ε, Xt + ε, u) = V (t + ε, Xt + ε),

which we take the expectation conditional on (t, x) and plug into the following
inequality:

V (t, x) ≥ J (t, x, u)

= J (t, x, u) − Et,x [J (t + ε, Xt + ε, u)] + Et,x
[
V (t + ε, Xt + ε)

]

= Et,x

⎡
⎣

T∫

t

ϕ(s − t)U (cε
s)ds −

T∫

t + ε

ϕ(s − t − ε)U (c∗
s )ds

⎤
⎦

+ Et,x
[
V (t + ε, Xt + ε)

]

≈ εEt,x

⎡
⎣U (cε

t + ε) −
T∫

t + ε

ϕ′(s − t − ε)U (cε
s)ds

⎤
⎦+ Et,x [V (t + ε, Xt + ε)],

which in turn is a result of the following simple Taylor expansion for point t around
(t + ε):

T∫

t

ϕ(s − t)U (cε
s)ds ≈

T∫

t + ε

ϕ(s − t − ε)U (cε
s)ds + (−ε)



Time-Inconsistent Portfolio Investment Problems 265

⎛
⎝−U (cε

t + ε) −
T∫

t + ε

ϕ′(s − t − ε)U (cε
s)ds)

⎞
⎠+ o(ε2).

Dividing the inequality by ε and taking the limit ε → 0, we obtain:

Gπ,cV (t, x) + U (ct ) + Et,x

⎡
⎣

T∫

t

ϕ′(s − t)U (c∗
s )ds

⎤
⎦ ≤ 0,

where Gπ,c denotes the infinitesimal generator for V (t, x). If we take the supremum
over π and c, the inequality above becomes equality and we recover the HJB-type
equation for V (t, x) less the E[ϕ′(T − t)U (Xπ,c∗

T )] term, which can be obtained
using the same argument as above. The boundary conditions are straightforward.

Remark 3.2 Afirst lookmay suggest that the result (41) above contradicts the remark
made in Sect. 2.1.3 regarding the two-equation characteristics for time inconsis-
tency, since this time we only have one HJB-type equation. In fact, the two-equation
feature is masked in the term Et,x [

∫ T
t ϕ′(s − t)U (c∗

s )ds], which characterizes the
difference between how one’s current self and his immediate future self would
value future consumption. This is equivalent to saying the derivative character-
izes the difference on the current value function and the continuation value func-
tion. If we take the discounting function to be of exponential type, then the term
Et,x [

∫ T
t ϕ′(s − t)U (c∗

s )ds] will simply reduce to −r V (t, x) where r is the expo-
nential discount rate, and the HJB-type equation will reduce to the classical HJB
equation for an investment/consumption problem. However, for all non-exponential-
type discounting functions,Et,x [

∫ T
t ϕ′(s−t)U (c∗

s )ds]makes the equation non-local
and thus hard to solve. See Ekeland et al. [13] for a numerical treatment of a similar
problem using backward integration.

3.1 Approximating a Hyperbolic Discount Function

On one hand, the exponential discounting produces explicit solutions but is less
realistic. On the other hand, a hyperbolic discount function becomes less tractable
but will be more in accordance with how people behave. There is a clear trade-off
between tractability and realisticity. Consider the following discount function:

ϕα(τ ) = e(α−1)δ0τ−α log(1+δ1τ ) (42)

for α ∈ [0, 1]. When α = 0, this is an exponential discount function with discount
rate δ0. When α = 1, this is a hyperbolic discount function with rate δ1. For α ∈
(0, 1), the discount function will have partial amount of the features that a hyperbolic
discount function has.
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Fig. 3 A comparison of discount functions exp(−δ0τ ), 1/(1 + δ1τ ) and the one defined by (43)
with δ0 = δ1 = 0.15 for various values of ε

Now we consider the case where α = ε > 0 is very small, then

ϕε(τ ) ≈ e−δ0τ
(
1 + ε�(τ ) + o(ε2)

)
, (43)

where�(τ ) = δ0τ − log(1+δ1τ ) (we can choose other forms of�(τ ) as well). This
discount function will allow us to solve the HJB-type equation (41) using asymptotic
expansions in the following subsection. Figure3 illustrates that this discount function
is close to the exponential discounting case for small ε while it bends towards the
hyperbolic discount function. Thus it mimics the hyperbolic discounting feature by
a small amount controlled by ε.

3.2 Solving the HJB-type Equation Using Asymptotic
Expansions

Let us go back to the HJB type equation (41). Using the first order conditions, the
maximizations over π and c can be done separately:

π∗ = −μ − r

xσ2

Vx

Vxx
and c∗ = (U ′)−1(Vx ), (44)

where Vx denotes the first derivative w.r.t x and so on. We can see that c∗ is the
Legendre transform of the utility function at Vx . From now on we will adopt a power
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utility function with risk aversion γ:

U (c) = c1−γ

1 − γ
,

thus we have c∗ = (Vx )
−1/γ . We plug π∗ and c∗ into (41) to obtain the following

nonlinear non-local PDE:

Vt − λ2

2

V 2
x

Vxx
+ γ

1 − γ
(Vx )

γ−1
γ + r xVx

= −Et,x

⎡
⎣

T∫

t

ϕ′(s − t)U (c∗
s )ds + ϕ′(T − t)U (Xπ,c∗

T )

⎤
⎦ , (45)

with boundary conditions V (T, x) = 0 and V (t, 0) = 0.
As a consequence of the expansion (43) for the discount function, we seek a

similar expansion for the value function:

V (t, x) = V0(t, x) + εV1(t, x) + o(ε2), (46)

which we plug into (45). After grouping terms of different orders, we have the
following PDEs for the first two orders:

V0,t − λ2

2

V 2
0,x

V0,xx
+ γ

1 − γ
(V0,x )

γ−1
γ + r xV0,x − δ0V0 = 0,

V1,t −
(

λ2 V0,x

V0,xx
+ (V0,x )

− 1
γ − r x

)
V1,x + λ2

2

V 2
0,x

V 2
0,xx

V1,xx − δ0V1 (47)

= −Et,x

⎡
⎣

T∫

t

�′(s − t) e−δ0(s−t)
[c∗

0,s(X (0)
s )]1−γ

1 − γ
ds + �′(T − t)

(X (0)
T )1−γ

1 − γ

]
,

where X (0)
s denotes the wealth process under the zeroth order equilibrium investment

and consumption strategies π∗
0 and c∗

0. The detail of the decomposition of (45) into
(47) can be found in the Appendix.
Note: The first equation in (47) can be solved in a fairly standard way with the
appropriate boundary conditions. Once this is solved, we obtain the zeroth order
value function as well as the zeroth order strategies that will give explicit forms for
the parameters of the second equation. As we will see later, the solution to the second
PDE can be found explicitly. We have therefore managed to bypass the “nonlocal”
issue in the HJB-type PDE by using asymptotic expansions. This allows us to avoid
the usual numerical procedures as seen for example, in [13].
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3.2.1 Zeroth Order Solution

The solution to the zeroth order equation with zero terminal/boundary conditions is
very well-known. Using separation of variables method, we seek solution V0(t, x)

of the following form:

V0(t, x) = x1−γ

1 − γ
[ f (t)]γ . (48)

The original PDE problem reduces to the following ODE problem

f ′(t) + 1 − γ

γ

(
λ2

2γ
+ r

)
f (t) + e

δ0
γ t = 0, (49)

with f (T ) = 1. Thus we have

f (t) = −eA2t + A3eA2T +A1(T −t)

A1 + A2
(50)

where A1 = 1−γ
γ

(
λ2

2γ + r
)
, A2 = δ0

γ and A3 = A1+A2+eA2T

eA2T . Therefore, We can

also compute the zeroth order equilibrium strategies:

π∗
0 = λ

σγ
and c∗

0 = f (t)−1x . (51)

3.2.2 First Order Solution

Using the preceding result, we can simplify the first order PDE from (47) into:

V1,t +
(

λ2

γ
+ r − 1

)
xV1,x + λ2

2γ2 x2V1,xx − δ0V1 (52)

= Et,x

⎡
⎣

T∫

t

�′(s − t)e−δ0(s−t)
[c∗

0,s(X (0)
s )]1−γ

1 − γ
ds + �′(T − t)

(X (0)
T )1−γ

1 − γ

⎤
⎦ .

In order to deal with the expectation term on the right side, we need the dynamics of
the zeroth order wealth process X (0)

t under zeroth order equilibrium strategies:

d X (0)
t =

(
π∗
0(μ − r) + r − f (t)−1

)
X (0)

t dt + π∗
0σX (0)

t dWt , (53)

which we notice is a lognormal process and we can write out the expectation term
explicitly.



Time-Inconsistent Portfolio Investment Problems 269

It follows that

E0,x

[
(X (0)

t )1−γ

1 − γ

]
= x1−γ

1 − γ
e(1−γ)

[
π∗
0 (μ−r)+r− f (t)−1− γ

2 π∗2
0 σ2

]
t . (54)

Therefore, (52) becomes

V1,t +
(

λ2

γ
+ r − 1

)
xV1,x + λ2

2γ2 x2V1,xx = δ0V1 + x1−γ

1 − γ
F(t), (55)

where F(t) denotes the integral:

F(t) :=
T∫

t

�′(s − t)e−δ0(s−t)e(1−γ)
[
π∗
0 (μ−r)+r− f (s)−1− γ

2 π∗2
0 σ2

]
sds.

The ansatz V1(t, x) = x1−γ

1−γ g(t) reduces (55) to a first order ODE problem:

g′(t) +
[(

λ2

2γ
+ r − 1

)
(1 − γ) − δ0

]
g(t) = F(t), (56)

with terminal condition g(T ) = 0, which has a solution given by:

g(t) =
T∫

t

F(s)eB1(s−t)ds, (57)

where B1 :=
(

λ2

2γ + r − 1
)

(1 − γ) − δ0.

3.2.3 First Order Corrections for Equilibrium Strategies

Proposition 3.3 We have the following respective first order corrections (to multiply
by ε) to the equilibrium strategies:

π∗
1 = 0 and c∗

1 = − 1

γ

g(t)

f (t)
c∗
0 . (58)

Proof We have

V0(t, x) = U (x) f (t) and V1(t, x) = U (x)g(t)

where U (x) is the power utility function with risk aversion γ. For the equilibrium
proportion of wealth invested in the risky asset, we have
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Fig. 4 μ = 0.15, r = 0.05, σ = 0.25, γ = 2, δ0 = δ1 = 0.15 and T = 5. We have included the
utility of wealth at time T here to fix the unbounded consumption rate near T

π∗ ≈ −μ − r

xσ2

V0,x + εV1,x

V0,xx + εV1,xx
= −μ − r

xσ2

U ′(x)

U ′′(x)

( f (t) + εg(t))

( f (t) + εg(t))
= μ − r

γσ2 ≡ π∗
0 ,

whereas for the equilibrium consumption rate, we have

c∗ ≈ (V0,x + εV1,x
)− 1

γ = (V0,x
)− 1

γ

[
1 − ε

γ

V1,x

V0,x
+ o(ε2)

]
= c∗

0

(
1 − ε

γ

g(t)

f (t)

)
.

We have found that adding a small amount of hyperbolic-discounting feature to
the discount function does not change the proportion of wealth invested in the risky
asset, while it will affect the consumption rate by a fraction depending on the ratio
g(t)
f (t) . Figure4 illustrates how the approximated equilibrium strategies change over
time compared to the optimal one in the exponential discounting case. In general, we
find that hyperbolic discountingwould encourage one to consume at a faster rate. The
fact that g(t) is negative alsomeans that the value function ismore negative compared
to the exponential discounting case, indicating a loss of welfare. For relatively larger
values of ε, the equilibrium strategy is clearly non-monotonic. More precisely, the
ideal consumption speed starts at some higher level compared to the exponential
discounting case and it has a decreasing trend at the beginning. But eventually the
consumption speed will start to increase monotonically once we are sufficiently far
away from the commencing point t = 0. In fact, this non-monotonicity feature agrees
with the consumption pattern observed in real-life household data, which is one of
the main reasons economists support the use of hyperbolic discounting. We also note
that similar results were obtained in [13] in which the authors made use of backward
numerical integration techniques to solve the full extended HJB equation analogous
to (41).
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3.3 A Bound for the Value Function: Infinite Horizon Case

In this section we want to illustrate some characteristics of the hyperbolic discount-
ing problem using Laplace transform. Suppose we have an infinite horizon invest-
ment/consumption problem instead:

V (x) = sup
c

E

⎡
⎣

∞∫

0

1

1 + δt

c1−γ
t

1 − γ
dt

⎤
⎦ . (59)

The following equation holds for the hyperbolic discount function by Laplace trans-
form:

1

1 + δt
=

∞∫

0

e−τ (t+ 1
δ )

δ
dτ .

Therefore we have

V (x) = sup
c

∞∫

0

E

⎡
⎣

∞∫

0

e−τ t c1−γ
t

1 − γ
dt

⎤
⎦ e− τ

δ

δ
dτ

= sup
c

∞∫

0

J̄ (x, c, τ )
e− τ

δ

δ
dτ

≤
∞∫

0

sup
c

J̄ (x, c, τ )
e− τ

δ

δ
dτ

= βC(x)

∞∫

0

e−βτ

(τ + α)γ
dτ , (60)

where C(x) := γγ x1−γ

1−γ , α := −δ(1−γ)− λ2(1−γ)
2γ , β = 1

δ and J̄ (x, c, τ ) denotes the
objective function for the infinite horizon investment problem under consumption
c and exponential discount rate τ , in which case the value function has an explicit
solution.

The second line of (60) best illustrates how time inconsistency arises from hyper-
bolic discounting. Loosely speaking, the integral can be seen as the weighted average
of a continuum of optimization problems parameterized by the (exponential-type)
discount rate τ . If there is a policy c∗ that can maximize all the objective functions,
then the inequality becomes an equality and we can say c∗ is the optimal-for-all
policy. Unfortunately, the optimal-for-all policy does not exist most of the time.
Nevertheless we can still find a policy c∗∗ that maximizes the integral, i.e. a lin-
earization of the objectives. And it turns out this particular policy c∗∗ is a Pareto
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optimum that corresponds to a point on the Pareto front of the multi-objective opti-
mization problem. Consequently, the difference between two sides of the inequality
corresponds to the distance between a strict optimal value and the Pareto-optimal
value under the particular linearization given.

The integral in the last line of (60) can be solved for positive-integer-valued
γ = n ∈ Z+ ∞∫

0

e−βτ

(τ + α)γ
dτ = −n!

n∑
j=0

α j

j ! .

Thus we have produced a bound for the value function in case γ is a positive integer

V (x) ≤ −βn!
n∑

j=0

α j

j ! C(x). (61)

3.4 Extension with Proportional Transaction Costs

We extend our study to the situation where proportional transaction cost exists. The
dynamics of the portfolio can be represented as below:

d X (b)
t = (r X (b)

t − ĉt )dt − (1 + κ)d L̂t + (1 − λ)d M̂t

d X (s)
t = μX (s)

t dt + σX (s)
t dWt + d L̂t − d M̂t , (62)

where X (b)
t and X (s)

t represent the wealth in the risk-free bank account and in the
risky asset (stock) respectively. Again ĉt is the rate of consumption and d L̂t := l̂t dt
and d M̂t := m̂t dt denote the purchase and sell of the risky asset which will incur
proportional transaction costs κ and λ respectively.

Our objective function has now been modified into maximizing consumption
utility over an infinite horizon because we want to make the analysis simpler. The
objective function is given by

J (x (b), x (s), ĉ, l̂, m̂) = E

⎡
⎣

∞∫

0

ϕ(s)U (cs)ds | X (b)
0 = x (b), X (s)

0 = x (s)

⎤
⎦ , (63)

given the current level of wealth x (b) in the bank account and x (s) in the stock as
well as the admissible controls ĉ, m̂, l̂, where the utility function U (.) is still chosen
to be the power type. Now define the value function:

V (x (b), x (s)) = sup
ĉ,m̂,l̂

J (x (b), x (s), ĉ, l̂, m̂). (64)
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Almost identical to the result from Proposition 3.1, the value function satisfies the
HJB-type equation:

sup
ĉ,m̂,l̂

(r x (b) − ĉ)Vx (b) + μx (s)Vx (1) + 1

2
σ2(x (s))2Vx (s)x (s) + [(1 − λ)Vx (b) − Vx (s))]m̂

+ [Vx (1) − (1 + κ)Vx (b) ]l̂ + U (ĉ) = −Ex (b)x (s)

⎡
⎣

∞∫

0

ϕ′(s)U (ĉ∗
s )ds

⎤
⎦ , (65)

only this time there is no time derivative.Whenϕ(·) is exponential type, this becomes
the HJB equation that was probably first derived by Davis and Norman [10], who
noticed that the desirable strategies for purchase and sell were “bang-bang” type
which only took place on the boundaries of the no-transaction region at maximum
possible rates.

The homothetic property holds for the value function since we have chosen to use
a power utility function, meaning that

V (ρx (b), ρx (s)) = ρ1−γV (x (b), x (s)), (66)

for any positive constant ρ. Thus we can write the value function V (x (b), x (s)) into

V (x (b), x (s)) = (x (s))1−γV (x (b)/x (s), 1) := (x (s))1−γ�(x (b)/x (s)). (67)

As a consequence, it is sufficient to study the transformed value function�(z)where
we use z to denote the ratio x (b)/x (s).

The problem reduces to a free boundary ODE problem:

(μ − 1

2
σ2γ)(1 − γ)�(z) + (r − μ + σ2γ)z�′(z) + 1

2
σ2z2�′′(z)

+ γ

1 − γ

[
�′(z)

]−(1−γ)/γ + Ez

⎡
⎣

∞∫

0

ϕ′(s)
[
�′(Zs)

]−(1−γ)/γ

1 − γ
ds

⎤
⎦ = 0, (68)

with free boundary conditions:

�′(l)(1 − λ + l) − (1 − γ)�(l) = 0

�′(u)(1 + κ + u) − (1 − γ)�(u) = 0, (69)

where the upper and lower boundaries u and l are to be determined. The ODE (68)
is difficult to solve because it involves a free boundary as well as a non-local term

Ez

[∫∞
0 ϕ′(s) [�

′(Zs )]−(1−γ)/γ

1−γ ds

]
that is the source of time inconsistency. Again let

us deal with it using the asymptotic approximation method. We assume the same
expansion for the discount function ϕ(·) as in (43). And we seek an expansion for
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the solution �(z) of the following form:

�(z) = �0(z) + ε�1(z) + o(ε2). (70)

At zeroth order, we need to solve the free boundary ODE:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β0�0 + β1z�′
0 + β2z2�′′

0 + γ

1 − γ

[
�′

0

] γ−1
γ = 0

�′
0(l0)(1 − λ + l0) − (1 − γ)�0(l0) = 0

�′
0(u0)(1 + κ + u0) − (1 − γ)�0(u0) = 0,

(71)

with l0, u0 to be determined, where β0, β1 and β2 are constant parameters defined as

β0 := (μ − 1

2
σ2γ)(1 − γ) − δ0, β1 := r − μ + σ2γ, β2 := 1

2
σ2.

At first order, we need to solve a fixed boundaryODEproblem, but with a nonlocal
term: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0�1 +
[
β1z + γ

1 − γ
(�′

0)
− 1

γ

]
�′

1 + β2z2�′′
1

+ Ez

⎡
⎣

∞∫

0

e−δ0s�′(s)
(�′

0)
γ−1
γ

1 − γ
ds

⎤
⎦ = 0

�′
1(l0)(1 − λ + l0) − (1 − γ)�1(l0) = 0

�′
1(u0)(1 + κ + u0) − (1 − γ)�1(u0) = 0,

(72)

from which we can compute the first order corrections to the NT boundary as

l1 = − (1 − λ + l0)�′′
1(l0) + γ�′

1(l0)

(1 − λ + l0)�′′′
0 (l0) + (1 + γ)�′′

0(l0)

u1 = − (1 + κ + u0)�
′′
1(u0) + γ�′

1(u0)

(1 + κ + u0)�
′′′
0 (u0) + (1 + γ)�′′

0(u0)
, (73)

which are derived from the original boundary equations.

3.4.1 Zeroth Order Solution

The zeroth order problem (71) is exactly the original problem in [10], which has
been shown to have a solution that can be written as

�0(z) = 1

1 − γ

[
1 − γ

γ
h1(z)

]−γ

(
z

h2(z)
)1−γ, (74)



Time-Inconsistent Portfolio Investment Problems 275

where h2(z) and h1(z) solve the system below

h′
2(z) = 1

β2z
[R(h2(z)) − h1(z)]

h′
1(z) = 1 − γ

γ

h1(z)

β2zh2(z)
[h1(z) − Q(h2(z))] , (75)

with boundary conditions

h2(l0) = l0
l0 + 1 − λ

, h1(l0) = Q

(
l0

l0 + 1 − λ

)
, h2(u0) = u0

u0 + 1 + κ
,

h1(u0) = Q

(
u0

u0 + 1 + κ

)
,

where we define Q(x) := − β0
1−γ − β1x + β2γx2 and R(x) := Q(x) + β2(1 −

x)x . This ODE system (75) can be solved numerically using a shooting method as
suggested by Davis and Norman [10].

3.4.2 First Order Solution

Recall (72), in order to obtain�1(z), we need to solve a fixed boundary ODE, which
is numerically straightforward except for the source term

Ez

⎡
⎣

∞∫

0

e−δ0s�′(s)
(�′

0(Zs))
γ−1
γ

1 − γ
ds

⎤
⎦ ,

which involves a path integral depending on the process Zt ≡ Xt
Yt
. Note that themajor

issue here is that we do not have an explicit form for�0 as it is computed numerically,
whereas the nonlocality issue has disappeared similar to the case without transaction
cost because of the expansion we have used. To approximate the source term we
reply on Monte Carlo method to generate a large number of sample paths for Zt

up to some time T and evaluate the truncated integral for each of these paths using
Riemann-sum approximation, after which the estimated expectation can be obtained
by taking the average. We first use Ito’s Lemma to get the dynamics for the process
Zs under the zeroth order equilibrium strategies c∗

0, d L∗
0 and d M∗

0 :

d Zt = [(r − μ + σ2

2
)Zt − c∗

0,t ]dt − σZt dWt

− (1 + κ + Zt )d L∗
0,t + (1 − λ + Zt )d M∗

0,t . (76)
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Fig. 5 Some realizations of Zs with zeroth order optimal consumption rate c∗
0 and boundaries l0

and u0. Note that each time the process hits the boundaries, it will be pushed back to the Merton
line inside the NT region. a. Zs , σ = 0.25. b Zs , σ = 0.35

To further simplify the problem we put restrictions on the “Bang-Bang” type strate-
gies d L∗

0 and d M∗
0 so that the process Zt diffuses within the zeroth order NT region

but whenever it hits the boundary l0 or u0, it will be pushed back to the Merton ratio
line in the NT region. Figure5 gives a few sample path of the controlled process Xs .
We repeat the approximations for a grid of initial values z and we can smooth out
the results using Fourier-type curve fitting method.

We are left with a second-order ODE with a mixed-type boundary condition to
solve. Numerical discretization makes it a linear system of equations Ax = b with
A being a tridiagonal matrix. Once we solve this, we can compute the first-order
corrections for the NT boundaries as well as for the equilibrium strategies.

3.4.3 Numerical Results

We have numerically solved the zeroth and first order ODE problems using the fol-
lowing set of parameter values: r = 0.05, μ = 0.15, γ = 2, κ = λ = 0.01,
δ0 = δ1 = 0.15 or 0.3 and σ = 0.25 : 0.02 : 0.35. Figure6 gives illustrations for
the zeroth order value function �0(z) and the zeroth order equilibrium consumption
rate c∗

0(z). For different volatility σ, the NT boundaries are different. Figure7 illus-
trates the NT region with/without first order corrections. We can see that hyperbolic
discounting has the effect of shrinking the NT region, which leads to more fre-
quent trading and rebalancing. This result matches the behavior of typical individual
investors who tend to be myopic and impatient and are therefore prone to excessive
rebalancing of their investment portfolios. However, whether this is a good or bad
thing requires further investigation on this problem.



Time-Inconsistent Portfolio Investment Problems 277

0.5 1 1.5 2

−55

−50

−45

−40

−35

−30

z

Φ
0

σ=0.25
σ=0.27
σ=0.29
σ=0.31
σ=0.33
σ=0.35

(a)

0.5 1 1.5 2

−20

−18

−16

−14

−12

−10

z

Φ
0

σ=0.25
σ=0.27
σ=0.29
σ=0.31
σ=0.33
σ=0.35

(b)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.15

0.2

0.25

0.3

0.35

z

C
0

σ=0.25
σ=0.27
σ=0.29
σ=0.31
σ=0.33
σ=0.35

(c)

0.5 1 1.5 2
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

z

C
0

σ=0.25
σ=0.27
σ=0.29
σ=0.31
σ=0.33
σ=0.35

(d)

Fig. 6 Plots of the zeroth value function �0(z) and optimal consumption rate c∗
0 for parameter

values r = 0.05, μ = 0.15, γ = 2 and k = λ = 0.01. a �0(z), δ0 = δ1 = 0.15. b �0(z),
δ0 = δ1 = 0.3. c c∗

0 , δ0 = δ1 = 0.15. d c∗
0 , δ0 = δ1 = 0.3
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Fig. 7 NT regions as function of volatility σ. a δ0 = δ1 = 0.15. b δ0 = δ1 = 0.3
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4 Conclusion

In this article, we have studied several time-inconsistent problems related to portfolio
optimization. By using asymptotic methods, we can handle the nonlocality issue
that arises from the game-theoretic methodology framework introduced to tackle
time-inconsistency. Tractable solutions have been obtained in situations where the
time-inconsistent problems can be closely approximated by time-consistent ones,
which can also provide a qualitative/directional characterization of the equilibrium
investment strategies in more general cases. Our results are intuitive and can describe
how differently investors behave in reality and in time-consistent settings.

5 Derivation of (47)

This part is to demonstrate that the expansion for (45) will lead to (47). The expansion
for the left hand of the equation is straightforward and therefore omitted. The main
challenge of the expansion is the term:

Et,x

⎡
⎣

T∫

t

ϕ′(s − t)U (c∗
s )ds

⎤
⎦ .

We start by introducing the following expansions:

c∗(·) = c∗
0(·) + εc∗

1(·) + o(ε2), Xt = X (0)
t + εX (1)

t + o(ε2),

ϕ(τ ) = e−δ0τ + ε�(τ )e−δ0τ + o(ε2),

which will be plugged into the equilibrium value function for power utility function:

V (t, x) = Et,x

⎡
⎣

T∫

t

ϕ(s − t)U (c∗(Xs))ds

⎤
⎦

≈ Et,x

⎡
⎣

T∫

t

ϕ(s − t)

(
c∗
0(X (0)

s )1−γ

1 − γ
+ εc∗

0(X (0)
s )−γc∗

0,x (X (0)
s ) X (1)

s

+ εc∗
0(X (0)

s )−γc∗
1(X (0)

s )

)
ds

⎤
⎦

= Et,x

⎡
⎣

T∫

t

e−δ0(s−t) c∗
0(X (0)

s )1−γ

1 − γ
ds

⎤
⎦
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+ εEt,x

⎡
⎣

T∫

t

�(s − t)e−δ0(s−t) c∗
0(X (0)

s )1−γ

1 − γ

+ e−δ0(s−t)c∗
0(X (0)

s )−γc∗
0,x (X (0)

s ) X (1)
s

+e−δ0(s−t)c∗
0(X (0)

s )−γc∗
1(X (0)

s )ds

⎤
⎦

=: V0(t, x) + εV1(t, x).

This leads to the expansion:

Et,x

⎡
⎣

T∫

t

ϕ′(s − t)U (c∗
s )ds

⎤
⎦

≈ −δ0Et,x

⎡
⎣

T∫

t

e−δ0(s−t) c∗
0(X (0)

s )1−γ

1 − γ
ds

⎤
⎦

−εδ0Et,x

⎡
⎣

T∫

t

�(s − t)e−δ0(s−t) c∗
0(X (0)

s )1−γ

1 − γ

+ e−δ0(s−t)c∗
0(X (0)

s )−γc∗
0,x (X (0)

s ) X (1)
s

+ e−δ0(s−t)c∗
0(X (0)

s )−γc∗
1(X (0)

s )ds

⎤
⎦

+ εEt,x

⎡
⎣

T∫

t

�′(s − t)e−δ0(s−t)
[c∗

0,s(X (0)
s )]1−γ

1 − γ
ds

⎤
⎦

= −δ0V0 − εδ0V1 + εEt,x

⎡
⎣

T∫

t

�′(s − t)e−δ0(s−t)
[c∗

0,s(X (0)
s )]1−γ

1 − γ
ds

⎤
⎦ ,

of which the zeroth order term will go into the RHS of the first equation in (47) and
the remaining two terms will go into the V1 equation.
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Decompositions of Diffusion Operators
and Related Couplings

David Elworthy

Abstract Results byCranston,Greven, andFeng-YuWang, on relationships between
coupling and shift coupling, and harmonic functions and space time harmonic func-
tions are reviewed. These lead to extensions of a result by Freire on the separate
harmonicity of bounded harmonic functions on certain productmanifolds. The exten-
sions are to situations where a diffusion operator is decomposed into the sum of two
other commuting diffusion operators. This is shown to arise for a class of foliated
Riemannian manifolds with totally geodesic leaves. A form of skew product decom-
position of Brownian motions on these foliated manifolds is obtained, as are gradient
estimates in leaf directions. Relationships between stochastic completeness of the
manifold itself and stochastic completeness of its leaves are established. Baudoin
and Garafola’s “sub-Riemannian manifolds with transverse symmetries” are shown
to be examples.

Keywords Foliations · Stochastic analysis · Coupling · Bounded harmonic func-
tions · Commuting diffusion operators · Non-explosion · Hypo-elliptic diffusions

1 Introduction

LetM be aC∞, connected, n-dimensional manifold without boundary. By a diffusion
operator on M we will mean a smooth semi-elliptic operator acting on functions on
M with no zero order term. The standard example, and the one of most interest
here, is the Laplace-Beltrami operator �M when M is a Riemannian manifold. We
take �Mf := div grad f , so Brownian motion on the Riemannian manifold M has
generator 1

2�
M . The smoothness of the coefficients ensure that such an operator has

associated to it a unique diffusion process, which is a solution of the corresponding
martingale problem, see [20].

Given a diffusion operator L on M we will consider “attainability” subsets, “con-
stancy” subsets, and the related notion of anisotropic gradient estimates.
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Definition 1.1 For a fixed diffusion operatorL onM, when x, y ∈ M write x ∼sc y if
there is a successful shift coupling (defined below) between theL-diffusions starting
from x and y, and write x ∼bH y if every bounded L-harmonic function h has
h(x) = h(y). A subset A of M will be called an attainability set if all its elements
are equivalent under ∼sc and a constancy set if they are for ∼bH.

An extreme example of anisotropic gradient estimates arises when M has a foli-
ation by immersed manifolds, “leaves”, each one of which is a constancy set, so
giving trivial gradients in the directions of the leaves.

We shall discuss these subsets in the context of decompositions L = A+B of L
into the sum of two diffusions, for example as in skew product decompositions. In the
first sections we review known results about coupling, harmonic functions and such
decompositions, bringing out their interpretation in terms of the notions above. Then
we consider a class of foliations of Riemannian manifolds, Riemannian foliations
with totally geodesic leaves, for which the Laplace-Beltrami operator decomposes
into commuting diffusion operators, the Laplacian along the leaves of the foliation
and a transverse diffusion operator. For such foliations we show how a coupling for
the leaf Laplacian diffusions starting from points on the same leaf gives a coupling
for the Brownian motions of M starting at these points with the same coupling time.

On the way, in Theorem 3.10, we give results on relationships between stochastic
completeness of the manifold and stochastic completeness of its leaves.

In two appendices we relate our situation to that considered by Baudoin and
collaborators from the viewpoint of Bakry-Emery theory; see [4–6, 10, 31].

Most of the observations about invariant diffusions on foliated manifolds come
from joint work with XueMei Li and Yves LeJan.

2 Shift Coupling, Coupling, and Harmonic Maps

Let C(M+) be the usual space of continuous paths into the one point compactification
M+ of M which once at infinity stay there. As usual {θt : t ≥ 0} denotes the shift
flow on C(M+), given by θt(σ)(s) = σ(t + s). The Borel sigma-algebra of C(M+)

has the two subalgebras: the invariant sigma-algebra I and the tail sigma-algebra T
defined by

I = {B ∈ Borel(C(M+)) : θ−1
t B = B, for all t ≥ 0}

and
T =

⋂
t≥0

θ−1
t Borel(C(M+)).

We recall the definition of shift couplings for general continuous time processes
from Thorisson [28].
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Definition 2.1 Let Z1 and Z2 be continuous processes with values in M. By a cou-
pling of Z1 and Z2 we mean a pair of continuous processes Ẑ1, Ẑ2 defined on the
same probability space {�,F , P}, with the same laws as Z1 and Z2 respectively.
Treating Ẑ1, Ẑ2 as C(M+)-valued random variables we then say a pair (T1, T2) of
random times Tj : � → [0,∞] is a shift-coupling if

1. {T1 < ∞} = {T2 < ∞}
2. θT1 Ẑ1 = θT2 Ẑ2 on {T1 < ∞}.
The shift coupling is successful if P{T1 < ∞} = 1. When T1 = T2 the common
value T , say, is called a coupling time and if this is almost surely finite we have a
successful coupling.

A basic result from [28], which only requires M to be a Polish space, is

Theorem 2.2 (Thorisson 1994) The following statements are equivalent:

1. There is a successful shift coupling of Z1 and Z2

2. For A ∈ I we have P{Z1 ∈ A} = P{Z2 ∈ A}.
For couplings the corresponding result holds with the tail sigma-algebra replacing
the invariant sigma-algebra.

Now fix a diffusion operator L on M. Let {Pt : t ≥ 0} be its associated semi-group,
and Px the law of the L-diffusion starting at a point x ∈ M. For simplicity assume
that L is conservative, i.e Pt1 = 1, or equivalently the L-diffusions do not explode.
A universally measurable function h : M → R is L-harmonic if Pth = h for all
t ≥ 0. When h is bounded this holds if and only if {h(σt) : t ≥ 0} is a martingale.
From Dynkin [14], such functions satisfy Lh = 0. Let bH, or bHL, be the vector
space of bounded L-harmonic functions.

The fundamental result relating bounded harmonic functions to the invariant
sigma-algebra as stated and proved in [27, p. 423], is

Theorem 2.3 The formula h(x) = Ex(F) gives a bijection between bH and Px-
almost sure equivalence classes of boundedI-measurable F : C(M) → R. Moreover
F(σ) = limt→∞ h(σt) almost surely.

Recall that the corresponding result holds for bounded space-time harmonic func-
tions, i.e. solutions of ∂

∂t h + Lh = 0, using the tail sigma-algebra.

From these theorems we immediately see that x ∼sc y if and only if ∼bH and
constancy and attainability are equivalent conditions.

Although we shall not use it we note a quantitative sharpening of Thorisson’s
theorem for the case of transient diffusions by Cranston and Greven [12]:
For x, y ∈ M there exists a shift coupling (T1, T2) between L-diffusions from x and
y such that

Prob{T1 = ∞} + Prob{T2 = ∞} = sup
h∈bH,|h|≤1

|h(x) − h(y)|.
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2.1 Examples

1. For an ellipticL, if M has a non-empty open attainability set then M is attainable,
since a harmonic function constant on a non-trivial open set is constant.

2. Let M be R3 with Heisenberg group structure and L the corresponding hypo-
elliptic diffusion operator. Then bH is trivial, [12].

3. Suppose M has the structure of a product of complete Riemannian manifolds,
M = F × Q. Take L = 1

2�M and observe

�Mf (x, y) = �F(f (−, y))(x) + �Q(f (x,−))(y).

Assuming that F admits only constant harmonic functions, or equivalently is
attainable for �F , we easily see that F × {y} is an attainable set for each y ∈ Q
and consequently every bounded harmonic function on M is constant on each
F × {y}. See [16]. This example will be generalised below.

2.2 Regular Diffusions

Under mild conditions there is the pleasant situation that one does not need to be
concerned about the difference between shift-coupling and coupling nor between tail
and invariant sigma-algebras. We will say that a diffusion operator L is regular if all
bounded space-time L-harmonic functions are constant in time and so L-harmonic.
In other words if every bounded solution f : [0,∞) × M → R to ∂

∂t h + Lh = 0, or
more precisely which satisfies Psf (t + s,−) = f (t,−) for s, t > 0, is independent
of time, and so L-harmonic. From above this is equivalent to the tail and invariant
sigma-algebras agreeing up to sets of measure zero. From [13] we have:

Theorem 2.4 (M.Cranston and F-Yu Wang) Suppose the operator L satisfies the
parabolic Harnack inequality

Ptf ≤ �(Pt+hf ) 0 ≤ f ≤ 1, (1)

for some t, h > 0 and some continuous increasing � : [0, 1] → R with �(0) < 1.
Then a successful shift coupling exists for any pair of initial distributions if and only
if so does a successful coupling. Equivalently L is regular.

Cranston andWang give a detailed discussion of the inequality (1) in [13]. In particu-
lar they show that it holds for a class of sub-elliptic operators, for�M forM complete
Riemannian with Ricci curvature bounded below, and in the following cases:

1. L = �M + Z for a complete Riemannian M, where Z is a smooth vector field
on M and we have the Bakry-Emery curvature dimension inequality CD(ρ, k):



Decompositions of Diffusion Operators and Related Couplings 287

�2(f , f ) ≥ ρ�(f , f ) + 1

k
(Lf )2 (2)

for all smooth compactly supported f : M → R and some ρ ∈ R, some 0 <

k < ∞. (See [3] or [2] for �2.)
2. L as in 1 above on a complete Riemannian manifold such that CD(ρ,∞) holds

for some ρ ∈ R together with

inf
x∈M

Pt1B(x,r)(x) > 0 for some t > 0 and some r > 0.

Here B(x, r) is the closed ball about x of radius r.
3. For M a unimodular Lie group and L = 1

2

∑k=m
k=1 (Xk)2 with X1, . . . , Xk left

invariant vector fields.

Also they show that if complete Riemannian manifolds M and N are roughly iso-
metric, e.g. see [21], and �N is regular, then so is �M .

2.3 Decompositions of Diffusion Operators

The following, simple but seemingly not well known result, was suggested by a result
of Freire [18]. Freire considered positive harmonic functions aswell as bounded ones,
on products of Riemannian manifolds.

Theorem 2.5 Suppose L is the sum of two commuting smooth diffusion operators
L = A1 + A2 with Pt = P1

t P2
t and P2

t P1
s = P1

s P2
t , all s, t ≥ 0, for the associated

diffusion semi-groups. Assume A1 is regular. Then every bounded L-harmonic h is
both A1-harmonic and A2-harmonic.

Proof Suppose h is bounded and L-harmonic. Then for s, t > 0

P1
t P2

t+sh = P2
s P1

t P2
t h = P2

s Pth = P2
s h.

Thus (s, x) 	→ P2
s h is space-time A1-harmonic. Since it is bounded and A1 is

regular it is independent of time and A1-harmonic. Thus P2
s h = h for all s ≥ 0, i.e.

h is A2-harmonic, and also h is A1-harmonic, as required. �

We go on to give examples of such decompositions.

3 Submersions and Foliations

Wewill describe a class of decomposable diffusion operators in increasing generality,
starting with now “classical” results.

For any C2 map p : M → N we say a diffusion operator L on M lies over a
diffusion operator A on N when L(f ◦ p) = A(f ) ◦ p for smooth f : N → R.
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If so we say L and A are intertwined by p. Following [17], a diffusion operator
B on M is along a sub-bundle S of TM if δB(φ) = 0 for any C1 section φ of the
annihilator sub-bundle S0 of S in T∗M. Here δB is the first order operator from one
forms to functions canonically associated to B, so Bf = δBdf , see [17]. If B has a
Hörmander form then B is along S iff all the vector fields involved are sections of
S. Also B is cohesive if its principle symbol σB : T∗M → TM has constant rank,
and so has image a sub-bundle E of TM, and moreover B is along E. Thus elliptic
diffusion operators are cohesive, with E = TM. Cohesive diffusion operators have
smooth Hörmander form representations, B = 1

2

∑k
j=1 XjXj + A say, and then for

each x ∈ M,

span{X1(x), . . . , Xk(x)} = Ex and A(x) ∈ Ex.

3.1 Riemannian Submersions

A smooth surjective map p : M → N of Riemannian manifolds is a Riemannian
submersion if its derivative maps Tup : TuM → Tp(u)N are orthogonal projections,
i.e. for each u ∈ M the map Tup(Tup)∗ : Tp(u)N → Tp(u)N is the identity.

Recall that a submanifold of M, such as a fibre p−1(y), is totally geodesic if any
geodesic of the submanifold with its induced Riemannian structure is also a geodesic
of M. This holds if and only if the second fundamental form of the submanifold van-
ishes identically. The submanifold is minimal if the trace of the second fundamental
form, the ‘mean curvature’, vanishes identically.

We have the following, see [17] for a detailed discussion,

1. �M lies over �N iff p has minimal fibres.
Equivalently p maps Brownian motion on M to Brownian motion on N iff p has
minimal fibres.

2. If the fibres are minimal there is a decomposition �M = �V + (�N )H where
(�N )H is horizontal, i.e along the horizontal sub-bundle of TM and over�N , and
�V is vertical, i.e. along the kernel of Tp. These commute iff�V commutes with
Lie differentiation by all horizontal lifts of vector fields on N , which holds iff the
fibres are totally geodesic. Herman [19], Berard-Bergery and Bourguignon [8].

3. For complete manifolds there is a skew-product decomposition of BM on M.
This is used to see the fibres are constancy sets for �M if they are availability
sets for �V and totally geodesic. Elworthy-Kendall [16]. See also [23].

3.2 Intertwined Diffusions

Suppose p : M → N is smooth and surjective with L on M over A on N . Assume
A is cohesive. From [17] we know that the principal symbols of L andA determine
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horizontal lift maps (a non-linear semi-connection) hu : Ep(u) → TuM, smooth in
u ∈ M, linear, and with Tup ◦ hu : Ep(u) → Ep(u) the identity. The image determines
the horizontal sub-bundle H of TM. Sections of H are called horizontal vector fields.
A diffusion operator is horizontal if it is along H and is a lift of A if it lies over A.
We have the following extension by Elworthy et al. [17], of the results of Hermann
and Berard-Bergery and Bourguignon.

Theorem 3.1 For smooth p : M → N intertwining L with a cohesive A on N:

[i] There is a unique decomposition L = AH + LV into the sum of two smooth
diffusion operators AH, the horizontal lift of A, and LV , a vertical diffusion
operator.

[ii] Assuming completeness and strong stochastic completeness of the semi-connection
determined by h, in this decomposition the operators commute and so do their
semigroups if and only if LV commutes with Lie differentiation along horizontal
lifts of all vector fields in any Hörmander form representation of A .

By completeness of the connection we mean that the horizontal lifts of C1 curves
in N along E can be defined for all time, while the strong stochastic completeness
means that horizontal lifts of the A-diffusion paths {xt}t from x0 ∈ N to M start-
ing at arbitrary points on p−1(x0) can not only be defined for all time but can be
chosen to give continuous maps of p−1(x0) into M which are diffeomorphisms of
//t : p−1(x0) → p−1(xt) almost surely. We consider this as a stochastic parallel
translation.

In the commuting case of part [ii] we have Pt = PV
t PH

t and PV
s PH

t = PH
t PV

s all
s, t ≥ 0, in an obvious notation. This comes [17], from the stochastic holonomy
invariance of LV :

//∗
s (LV ) = LV s ≥ 0.

If we have this we also obtain a skew-product decomposition of L-diffusions:
ut := //t(yt) is an L-diffusion if {yt}t is a LV -diffusion on the fibre p−1(x0).

When LV is regular and we have commutation we can apply Theorem 2.5 to
conclude that each fibre of p is a constancy set for L if all bounded LV -harmonic
functions are constant on such fibres. Alternatively one can use the skew-product
decomposition as in [16] and use a coupling argument, as we will do below for
foliations.

3.3 Invariant Diffusions on Foliated Manifolds

Definition 3.2 A Cr codimension s foliation F of M is defined by a maximal
collection of pairs {(Uα, pα),α ∈ I} of open subsets Uα of M and submersions
pα : Uα → U0

α onto open subsets of Rs satisfying

• ∪α∈I Uα = M
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• if Uα ∩ Uβ �= ∅, there exists a local Cr diffeomorphism gαβ of Rs such that
pα = gαβ ◦ pβ on Uα ∩ Uβ .

The map (pα) are called disintegrating maps of F . The connected components of
the sets p−1

α (c), c ∈ Rs are called the plaques of the foliation.

A foliation arises from an integrable sub-bundle ofTM, to be denoted byTL. These
are the tangent vectors to the leaves, the maximal connected integral sub-manifolds
of the sub-bundle. The leaves are unions of plaques, and are immersed manifolds of
dimension n − s. We shall restrict ourselves to smooth foliations.

Submersions p : M → N are foliations on M with disintegrating maps the
compositions of charts of N with restrictions of p to the inverse images under p of
the domains of those charts. The leaves are the connected components of the fibres
of p. Other examples to bear in mind include the foliations with one dimensional
leaves arising from irrational flows on a torus, with dense leaves, and the foliation of
a Möbius band by longitudinal circles. For the latter, note for future reference, that
one of these circles has half the circumference of the others.

Definition 3.3 Let M be a foliated manifold given by disintegrating maps pα :
Uα → U0

α ⊂ Rs. A diffusion operator L on M is said to be invariant for the
foliation F if there exists Aα on U0

α such that the restriction Lα of L over Uα lies
over Aα, that is

Lα(f ◦ pα) = Aα(f ) ◦ pα.

Suppose L is invariant for F and for any α the rank of the principle symbol
σAα(x) is constant, giving vector sub-bundles Eα → U0

α of the trivial bundles
U0

α × Rs over each U0
α. As described in Sect. 3.2 we have horizontal lift maps hα

y :
Eα

pα(y) → TyM, with Typα ◦ hα
y = Id . Set Hy = Image(hα

y ). It is independent of
α, see Proposition 2.1 of [17], and we obtain a sub-bundle H of TN. This will be
transverse to TL in TM if the Aα are elliptic. There is the following extension of
Theorem 3.1[i] to this situation:

Proposition 3.4 Suppose the Aα are cohesive. Then there is a unique diffusion
operator A along H whose restrictions to each Uα lie over Aα, and a decomposition
L = A + LF where LF is along the leaves of F , i.e. along TL. Moreover A is
cohesive.

Proof This comes from the uniqueness of the horizontal lifts of theAα over pα given
by Theorem 3.1[i]. �

Remark 3.5 The leaf componentLF restricts to give a smooth diffusion operator on
any leaf L. The corresponding diffusion process starting at a point x0 of L is seen,
via uniqueness of the martingale problems, to be an LF -diffusion when mapped
by the inclusion into M. The explosion time on the leaf is the same as that for the
LF -diffusion as can be seen by taking disintegrating charts.

When each Aα is cohesive we will call L transversely cohesive and the oper-
ators A and LF of Sect. 3.4 its transversal and leaf wise components. We would
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like conditions under which they and their semi-groups commute. For the operators
themselves to commute when acting on C2 functions is a local property, and so may
be shown by working in disintegrating charts. Commutation of their semigroups
does not follow and is not local, as can be seen from Nelson’s example, see [17].
It does follow under certain global regularity conditions on the operators and their
semigroups, [17, Proposition 6.1], [7]. Rather than proceeding that way we will seek
an analogue of the stochastic holonomy invariance used for submersions. We will
not pursue this in generality but will restrict ourselves to the Riemannian situation.

3.4 Riemannian Foliations

A foliation on M is said to be Riemannian when there is given a Riemannian met-
ric {〈, 〉y, y ∈ M} on the quotient bundle TM/TL such that there is an open cover
{Uα}∞α=1 of M with disintegrating maps pα : Uα → U0

α ⊂ Rs and a Riemannian
metric {〈, 〉αz , z ∈ U0

α} on U0
α, for which Typα induces an isometry of TMy/TLy, 〈, 〉y

with Tpα(y)U0
α, 〈, 〉αpα(y), each y ∈ Uα.

We follow the books by Molino [25], and by Tondeur [29, 30], to describe the
basic properties of Riemannian foliations.

We will be mainly concerned with foliations of Riemannian manifolds whose
metrics induce a Riemannian metric on the bundle E orthogonal to TL which when
identified with TM/TL gives a Riemannian foliation. These will be called bundle-
like metrics, following Bruce Reinhart. For these the disintegrating maps pα will be
Riemannian submersions onto U0

α with its given Riemannian structure. In particular
if the leaves of the foliation are minimal submanifolds of M the Laplacian, �M , will
be invariant and locally lies over the Laplacians of the U0

α. If the leaves are totally
geodesic we can apply the results of Herman and Berard-Bergery and Bourguignon
described in Sect. 3.1 to see that the leaf and transverse components of�M commute
on C2 functions.

From the local description it is easy to see that LF restricts to the Laplacian on
each leaf. Write it as �F .

To see when the semigroups of the two components commute we would like
to obtain an analogue of the parallel translation //t mapping leaf to leaf as in the
submersion case of Sect. 3.2. It would need to give isometries between the leaves in
order to leave the leaf-wise component �F invariant. However this is not in general
possible, as we see from the observation about theMöbius band above. This problem
will not arise on lifting to the transverse frame bundle, as we will now do.
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3.4.1 The Transverse Frame Bundle and Its Connection

For a Riemannian foliation there is a natural connection on the orthonormal frame
bundle of the quotient bundle TM/TL which extends the so called Bott connection.
This can be defined over a disintegrating chart. For such a chart pα : Uα → U0

α ⊂ Rs

observe that the derivative Tpα : TUα → TU0
α determines a mapping of orthonormal

frame bundles
O(pα) : O(TM/TL)|Uα → O(TU0

α).

When M is Riemannian with a bundle-like metric we can replace TM/TL by the
transverse bundle E, (which corresponds to the H of Proposition 3.4), and then
O(pα)(u) = Tpα ◦ u for u : Rs → Ex a frame at x ∈ Uα.

If we pull back O(TU0
α) by pα to get p∗

α(O(TU0
α)) we get from O(pα) an isomor-

phism of principal bundles O(TM/TL) → p∗
α(O(TU0

α)). This can be used to transfer
the pulled back Levi-Civita connections of TU0

α for each α, to obtain a metric con-
nection on O(TM/TL) or equivalently on TM/TL, or on E in the bundle-like metric
case. We will call this the transverse Levi-Civita connection, or just the transverse
connection.

The map O(pα) is a submersion and gives a disintegrating chart for a foliationFO

of O(TM/TL) or O(E). The leaves of this foliation are horizontal for the transverse
Levi-Civita connection and form coverings of the leaves of F .

The transverse connection determines the bundle mapping

X : O(TM/TL) × Rs → T (O(TM/TL)) (3)

defined by X(u)(e) = hu(u(e)) where hu : TxM/TxL → Tu (O(TM/TL)) is the
horizontal lift for the transverse connection, for u a frame at x ∈ M. We will use
this later, in Eq. (6), for the canonical SDE on O(E). As usual, by the equivariance
of h− under the right action of the orthogonal group O(s) on O(TM/TL), or on E, it
satisfies

X(u.g)(e) = TRgX(u)(ge) for e ∈ Rs, g ∈ O(s), (4)

where TRg : Tu (O(TM/TL)) → Tug (O(TM/TL)) is the derivative of right multi-
plication by g ∈ O(s).

Note that, by construction of the transverse connection, over any disintegrating
chart we have,

Tu (O(pα)) (X(u)(e)) = X0
α(O(pα)(u))(e) u ∈ O(TM/TL)|Uα , e ∈ Rs (5)

where X0
α : O(TU0

α) × Rs → TO(TU0
α) gives the canonical SDE for the Levi-Civita

connection on O(TU0
α), so

X0
α(u)(e) = h0α,u(u(e))
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for a frame u over y ∈ U0
α, where h0α,u : TyU0

α → Tu
(
O(TU0

α)
)
is the horizontal lift

given by the Levi-Civita connection of the Riemannian structure on U0
α.

Definition 3.6 The transverse connection is said to be complete if the vector fields
X(−)(e) on O(TM/TL) are complete (i.e. have trajectories for all time) for each
e ∈ Rs. It is said to be stochastically complete if the canonical SDE

dut = X(ut) ◦ dBt (6)

for {Bt}t≥0 a Brownian motion on Rs, has solutions for all time.

It is a standard result, [30], which follows from the equality (5), that the flows of each
of the vector fieldsX(−)(e), e ∈ Rs, map leaves of the foliationFO to leaves, and so if
the connection is complete the leaves are diffeomorphic to each other. Consequently,
in this situation, any two leaves of F have covers which are diffeomorphic; a result
of Reinhart [26].

3.4.2 The Transverse Diffusion and “Parallel Translation”

Suppose now thatM is Riemannian and complete and�M is invariant by the foliation.
In order for its leaf component �F to commute on C2 functions with its transverse
component A we have seen that the leaves of F must be totally geodesic. In this
situation, by the corresponding result for Riemannian submersions we know that
when f : M → R is C2

Af = �Ef := trace∇Edf |E . (7)

Consequently we shall call a 1
2�E-diffusion process onM a transversal Brownian

motion.
Since the leaves of FO(E) cover the leaves of F there is a uniquely defined lift

of �F to O(E) and it restricts to the Laplacian on each leaf of FO given their
induced covering Riemannian structure. Write it as �FO

. Write 1
2�H for the gener-

ator 1
2

∑s
k=1 XjXj where Xj is the vector field X(−)(ej) on O(E) for a basis {ej}s

j=1

of Rs. Then L := 1
2�H + 1

2�FO
is invariant by FO and 1

2�H is its transverse com-
ponent. In a disintegrating chart O(pα) for FO(E) we are in the situation discussed
in [17] with the operator L lying over the horizontal Laplacian of O(U0

α).
Our key observations come next. For them we first need to observe that each leaf

of FO inherits a Riemannian metric from the leaf of F which it covers and there is
the following standard Lemma:

Lemma 3.7 Suppose M is a Riemannian manifold with a bundle-like metric for a
foliation F with totally geodesic leaves. Then the, possibly only local, flows of the
vector fields X(−)(e) on O(E) defined above give local isometries between the leaves
of FO.



294 D. Elworthy

Proof We have already observed that the flows map leaf to leaf. The isometry prop-
erty is local so we can work over a disintegrating chart pα : Uα → U0

α, reducing the
situation to that of a Riemannian submersion with totally geodesic fibres.

For a detailed proof take a Hörmander form representation
∑

Y0,jY0,j for �U0
α

and let Yj be the horizontal lift of Y0,j over pα. Then
∑

YjY j is a Hörmander form
of �E . From the Riemannian submersion theory we know that the local flows of the
Yj map portions of leaves isometrically into leaves. It follows that their horizontal
lifts to O(E)|Uα map portions of leaves of FO isometrically to leaves of FO, since
these leaves isometrically cover those of F .

Thus if Ỹ j denotes the horizontal lift of Yj to O(E)|Uα using the transverse con-

nection, the Ỹ j commute with �FO
. These are horizontal lifts, over O(pα) of the

corresponding lifts of the Y0,j to O(U0
α) and they give another Hörmander form

representation of �H := ∑
XjXj, for Xj = X(−)(ej) as usual. Now �H is the hori-

zontal lift over O(pα) of the usual horizontal Laplacian on O(U0
α) and we can apply

Theorem 6.0.2 of [17] to see that �H commutes with �FO
and so each of the basic,

for O(pα), vector fields X(−)(e) commutes with �FO
, giving the required result. �

Parts [i] and [iii] of the following theorem came out of discussions with XueMei Li
and Yves LeJan. Part [iii] gives the appropriate analogue, for foliations, of the skew
product decomposition for submersions in [16].

Theorem 3.8 Suppose M is a complete Riemannian manifold with a bundle-like
metric for a foliation F with totally geodesic leaves.

[i] The solutions to the canonical SDE (6), project down to form transversal Brown-
ian motions on M.

[ii] If 1
2�E is conservative, i.e the transverse Brownian motions exist for all time,

then the connection is strongly stochastically complete in the sense that for each
leaf L of FO there is a version of the solution flow of the canonical SDE which
gives a continuous family of smooth maps

//t : L → O(E)

and maps L isometrically onto leaves of FO at each time t ≥ 0.
[iii] If {x̃t : 0 ≤ t < ζ} is the lift to a leaf of FO of a leaf Brownian motion

{xt : 0 ≤ t < ζ} on some leaf Lx0 of F which is independent of {//t}t≥0, and
if 1

2�E is conservative, then the O(E)-valued process {//t(x̃t) : 0 ≤ t < ζ}
projects to a Brownian motion on M.

Proof It is enough to check [i] over a disintegrating chart pα : Uα → U0
α, which

is a Riemannian submersion. Since the canonical SDE on O(E)|Uα lies over that of
O(TU0

α) via O(pα), the solutions to that SDE get mapped to the solutions of the one
for O(TU0

α). However it is standard that the latter projects down to Brownian motion
on U0

α. See [1, p. 144]. The projection of the solutions on O(E)|Uα down to Uα are
horizontal with respect to the map pα, in the sense of Riemannian submersions, see
Sect. 3.2. We now know they are lifts of Brownian motions on U0

α. Therefore their
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generator is the horizontal lift via pα of 1
2�U0

α , which is the transverse component
1
2�E of 1

2�M as required.
For part [ii] we first fix a point u0 ∈ O(E) above x0 ∈ M. By part [i] the solution

{ut}t of the canonical SDE, (6), starting at u0 is the horizontal lift of a transverse
Brownian motion which we are to assume exists for all time. It follows that the
canonical SDE (6) is complete. We will choose a local flow for it following [15],
as [1, 22]. For this there is a subset �0 of full measure in the probability space
� for the driving Brownian motion B. of our SDE (6), and stopping times ηu :
� → [0,∞], u ∈ O(E), together with a version of the (measurable) solution flow
//t : t ≥ 0 such that if we set O(E)(t,ω) = {u ∈ O(E) s.t. ηu > t} then for each
(t,ω) ∈ [0,∞) × �0 we have

(a) O(E)(t,ω) is open in O(E)

(b) //t(ω) : O(E)(t,ω) → O(E) is a smooth diffeomorphism onto an open subset
of O(E).

Moreover if for any K ⊂ O(E) we set ηK (ω) = inf{ηu(ω) s.t. u ∈ K}, then
(c) when K is compact, u0 ∈ O(E) and d(−,−) is a complete metric on O(E),

sup
u∈K

d(u0, //t(u,ω)) → ∞ as t ↑ ηK (ω) almost surely on ηK < ∞. (8)

Since the Riemannian metric on M is assumed complete we can take d(−,−) to
come from the natural equivariant Riemannian metric of O(E) which lies over that
of M, using the splitting TO(E) = HTO(E)

⊕
VTO(E) of the tangent space of the

frame bundle into horizontal and vertical parts given by the transverse connection.
Then if u, v lie in a leaf L of FO we have d(u, v) ≤ dL(u, v) for dL the leaf metric.

By Wong-Zakai approximation [15], Lemma 3.7 implies that //∗
t (�O(F)) =

�O(F) for t ≥ 0, almost surely, where defined, c.f. [17, p. 109]. Also each //t(ω)

maps the intersections of leaves of FO with O(E)(t,ω) to leaves because the Xj are
basic, as described after Definition 3.6. It follows that it does this isometrically.

Now fix u0 ∈ O(E) and let K be a compact subset of the leaf Lu0 of FO through
u0, with u0 ∈ K . Let {ut}0≤t<ηu0 be the solution to our SDE from u0. Then if
0 ≤ t < ηK (ω) we have, almost surely,

sup
u∈K

d(u0, //t(u,ω)) ≤ d(u0, ut(ω)) + sup
u∈K

d(ut(ω), //t(u,ω))

≤ d(u0, ut(ω)) + sup
u∈K

dLut (ut(ω), //t(u,ω))

≤ d(u0, ut(ω)) + R

where R is the diameter of K in the leaf metric.
From [c] above we see that ηK ≥ ηu0 almost surely and so ηK is almost surely infinite
if �E is conservative. Since Lu0 is a countable union of such compact sets K we see
[ii] holds.
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To prove [iii] it suffices to show that {//t(x̃t)}t solves the martingale problem for
1
2 (�H +�FO

) since that operator lies over 1
2�M . For this take f : O(E) → R which

is smooth and of compact support. Then, for t < ζ, writing ut := //t(x̃t)

f (ut) = f (u0) +
t∫

0

(df )us T//s ◦ dx̃s +
t∫

0

(df )us X(us) ◦ dBs

= martingale +
t∫

0

1

2
�FO

(f ◦ //s)(x̃s) ds +
t∫

0

1

2
�H(f )(us) ds

=
t∫

0

1

2
(�FO + �H)(f )(us) ds,

because �FO
(f ◦ //s) = �FO

(f ) ◦ //s by part [ii].

Remark 3.9 If we only assume the transversal BM from x0 exists up to an explosion
time ξx0 then the decomposition of Brownian motion on M given by part [iii] holds
up until ξx0 ∧ ζ. Note also that, from the proof of part [ii] of the theorem, ξx0 can be
chosen to depend only on the leaf of F containing x0, not x0 itself.

The following result is useful because the transversal Laplacian may be hypoel-
liptic, as in Examples C below, or more degenerate, and it is generally easier to check
non-explosion for elliptic diffusions. The first part seems to be a new result even for
the special case of Riemannian submersions with totally geodesic fibres: for them the
transversal process is just the horizontal lift of Brownian motion on the base space
which is itself the projection of Brownian motion on M. Metric completeness of M
is needed as can be seen from considering a standard projection from R3 to R and
restricting it to obtain p : R3 − {0} → R.

Theorem 3.10 Suppose M is a complete Riemannian manifold with a bundle-like
metric for a foliationF with totally geodesic leaves. Then the stochastic completeness
of M implies that of the leaves of F and also that the transversal process exists for
all time.

As a partial converse: if there is a dense leaf L of F which is stochastically
complete then so is M. Moreover on any stochastically complete leaf L of F the heat
semigroup {PM

t }t≥0 of M has PM
t (1) constant on L for each t.

Proof We will use the notation of the proof of Theorem 3.8. Set zt = //t x̃t and
η := ηu0 = ηLu0 , the explosion time from any point on the leaf of FO through
u0 = x̃0. Assume M is stochastically complete. We will show that η is almost surely
equal to the explosion time ξu0 of x̃. and so equal to the explosion time of the leaf
Brownian motion on Lu0 starting at any point on that leaf. Since η is independent of
these explosion times it follows that they are all equal to some non-random constant
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c say. By Remark 3.5 we know this implies that Brownian motion on the leaf has
explosion time c for each starting point. By considering the heat semigroup for Lu0
acting on the identically one function we see that we must have c = ∞, giving the
main result. To show equality of η and ξu0 first suppose 0 ≤ t < η < ξuo ≤ ∞. By
the previous theorem, using the leaf metric dL:

dL(ut, zt) = dL(ut, //t x̃t) = dL(u0, x̃t). (9)

But as t ↗ η we have dL(ut, zt) → ∞ since zt → zη , while

dL(u0, x̃t) → dL(u0, x̃η) < ∞,

so ξuo ≤ η almost surely. Here we have used the fact that if M is stochastically
complete then any horizontal lift of its Brownian motion to O(E) exists for all time;
for example see [15, Theorem13C, p. 175].

On the other hand suppose 0 ≤ t < ξu0 < η ≤ ∞. Again the equalities (9) hold.
As t ↗ ξu0 this time

dL(ut, zt) → dL(uξu0 , zξu0 ) < ∞

while dL(u0, x̃t) → ∞ . Therefore η ≤ ξu0 almost surely, as required.
For the partial converse suppose that the leaf Lu0 ofFO covers a leaf L ofF which

is dense in M and is stochastically complete with its induced Riemannian structure.
From part [iii] of the previous theorem we know that Brownian motion on M starting
from x0 has lifetime ζx0 , say, with ζ ≥ η. However using the Eq. (9) consider t ↗ η
on the event η < ζx0 :

dL(ut, zt) → ∞ while dL(u0, x̃t) → dL(u0, x̃η).

By Eq. (9) this shows the event has measure zero so η = ζx0 almost surely. Since we
know η = ηu0 is independent of the point u0 of Luo this shows that ζ

x0 is independent
of x0 ∈ L. Since PM

t (1)(x0) = P{t < ζx0} we see PM
t (1) is constant on L. If L is

dense then PM
t (1) will be constant on M and so identically one, giving stochastic

completeness of M.

Theorem 3.11 Suppose M is a complete Riemannian manifold with a bundle-like
metric for a foliation F with totally geodesic leaves, and for which the transverse
Brownian motion exists for all time. Then the leaf and transverse Laplacians, 1

2�F
and 1

2�E commute together with their semigroups PF
. and PE

. : for s, t ≥ 0

PE
s PF

t = PF
t PE

s (10)

PE
t PF

t = PM
t . (11)
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Indeed the corresponding results hold for the semigroups PFO

. and PH
. generated by

1
2�FO

and 1
2�H.

Proof Bypart [ii] of the previous theoremwe seePFO

t (f ◦//s) = PFO

t (f )◦//s so taking
expectations gives the result for the semigroups acting on functions f : O(E) → R.
Applying this to functions which factorize through the projection O(E) → M yields
the commutation (10). �

From Theorem 2.5 we immediately have:

Corollary 3.12 Under the conditions of the Theorem, if also one of �F or �E is
regular in the sense of Sect.2.2, then any bounded harmonic function on M is both
leaf harmonic and transversely harmonic. In particular if further every bounded leaf
harmonic function is constant on the leaves of F then the leaves are constancy sets.
Also every compact leaf is a constancy set.

3.4.3 Examples

(A) One of the simplest non-trivial examples of aRiemannianmanifoldwith bundle-
like metric for a foliation with totally geodesic fibres is that of the open Möbius
band foliated by “horizontal circles”. Thus

M = R × [0, 1]/ ∼ where (x, 0) ∼ (τ (x), 1) for τ (x) = −x,

and the leaves are given by {a} × [0, 1].
There is then a transverse foliation consisting of the “vertical lines”. Looked
at the other way round, as is more common, we have a Riemannian submer-
sion, with totally geodesic fibres, the vertical lines, and integrable horizontal
subspaces, the circles.

(B) A more interesting example potential theoretically is

M = Hyperbolic 3-space × [0, 1]/ ∼

where (x, 0) ∼ (τ (x), 1) for τ (x) = −x using the disc model of hyperbolic
space. Again we take can take F to consist of the “horizontal” circles. The
bounded harmonic functions on M are h : M → R of the form h(x, θ) = h̃(x)
for h̃ bounded harmonic on hyperbolic 3-space with h̃(τ (x)) = h̃(x). Such
harmonic functions correspond to bounded measurable functions on the sphere
at infinity of hyperbolic space which are invariant under the antipodal map.

(C) There are wide classes of examples when the leafs are one dimensional, so we
have a flow. An important but familiar one is when M = R3 with its Heisen-
berg group structure. It can be given a left invariant Riemannian metric. Take
the foliation by vertical lines {(a, b, z)}z∈R. The transverse operator is then the
usual sub-Riemannian operator associated to the Heisenberg group, e.g. see
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[17, Example 2.2.11]. Generalisations of this are the manifolds with K-contact
structures, including the Sasakian manifolds [9]. The transverse Laplacians of
these have been analysed in [6], with Jing Wang discussing the case of the CR
hyperbolic space, a circle bundle over complex hyperbolic space in [31], and
Bonnefont that of SL(2, R) considered as a circle bundle over the hyperbolic
plane, and its universal cover [10].

In general the trajectories in a complete Riemannian manifold of a Killing
vector field of unit length form the leaves of a Riemannian foliation with totally
geodesic leaves, see [29, p. 137].

(D) Baudoin and Garofalo [5] give a generalisation of the examples in (C) above.
These they call sub-Riemannian manifolds with transverse symmetries. In
Appendix B below we show that they also give rise to Riemannian foliations
with totally geodesic fibres.

(E) A general discussion of foliations with totally geodesic leaves can be found in
Tondeur’s book [29].

Remark 3.13 Itwould be interesting to find a useful definition of a non-trivial decom-
position of a diffusion operator into commuting diffusion operators, and examine the
resulting geometry to see whether such decompositions necessarily come from, pos-
sibly non-integrable, versions of Riemannian foliations with totally geodesic fibres.

4 Coupling and Gradient Estimates for Riemannian
Foliations

We now can see how couplings of Brownian motions on a leaf of F determine
couplings of Brownian motions on M, extending the construction in [16].

Proposition 4.1 Assume that M is a complete Riemannian manifold with a bundle-
like metric for a foliationF with totally geodesic leaves, and for which the transverse
Brownian motion exists for all time.

Let x1. , x2. be coupled leaf Brownian motions on a leaf L of F with a coupling
time T ≤ ∞ so that on T < ∞ we have x1T = x2T . Take lifts x̃1. , x̃2. of them to a
leaf L̃ of FO above L. Choose transverse flows //t : L̃ → O(E) as in Theorem 3.8,
and independent of x1. , x2. . Then, using the right action of O(s) on O(E), there is a
(random) γ ∈ O(s) with the equality in law

//T (x̃1T ) =Law //T (x̃2T ) · γ T < ∞ (12)

Consequently the projections of //.(x̃1. ) and //.(x̃1. ) on M are coupled Brownian
motions on M having the same law at time T, on T < ∞.

In fact the map γ takes values in the holonomy group, the group of covering
transformations of L̃ → L.
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Proof We can suppose that our canonical SDE on O(E), Eq. (6), is driven by the
canonical Brownian motion Bt(ω) = ωt of Rs. Then the transverse flow //t : L̃ →
O(E), t ≥ 0, can be chosen to satisfy

//t(u.g,ω) = //t(u, gω) · g for all s ≥ 0 and all covering transformations g ∈ O(s).
(13)

This can be seen, using Eq. (4), from its construction in the proof of Theorem 3.8.
It is a standard result for such canonical SDE on frame bundles, see for example the
proof of Theorem 4C, Chap.2 of [1].

Since x̃1. , x̃2. cover x1. , x2. we know there exists a random γ ∈ O(E), measurable
with respect to σ{x1s , x2s , 0 ≤ s ≤ T} with values in the covering transformations of
L̃ → L such that

x̃1T = x̃2T · γ T < ∞.

Then by (13)

//T (x̃1T ,ω) = //T (x̃2T · γ,ω) = //T (x̃2T , γω) · γ T < ∞ (14)

giving (12).
Also from Theorem 3.8 we know that, if π : O(E) → M is the projection, the

processes π//.(x̃1. ) and π//.(x̃2. ) are Brownian motions on M. Now observe that on
T < ∞

π//T (x̃1T ,ω) = π//T (x̃2T , γω) · γ = π//T (x̃2T , γω) =Law π//T (x̃2T ,ω),

proving our claim. �
A key result concerning couplings of Brownian motions concerns the “reflection

coupling” described by Kendall:

Theorem 4.2 (Kendall-Cranston [11]) For a complete Riemannian manifold N with
Ricci curvature RicN bounded below by −K some K ≥ 0 there is a coupling of
Brownian motions from given points x10, x20 with coupling time T satisfying

P{T = ∞} ≤ 2
√

K(dim N − 1)dN (x10, x20). (15)

From this we are able to apply Proposition 4.1 and follow Cranston’s argument
in [11] to get

Theorem 4.3 Suppose M is a complete and stochastically complete n-dimensional
Riemannian manifold with a bundle-like metric for a codimension s foliation F with
totally geodesic leaves and whose leaves have Ricci curvatures bounded below by
−K some K ≥ 0, using the leaf metric. Let h : M → R be a non-negative bounded
harmonic function. Then at each x ∈ M its gradient in leaf directions ∇Fh satisfies

|∇Fh(x)| ≤ 2
√

K(n − s − 1)|h|∞. (16)
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Proof Since the leaves have Ricci curvatures bounded below the leaf Brownian
motions exist for all time. By Remark 3.9 the same holds for the transverse Brownian
motion, since M is assumed stochastically complete. We can therefore apply Propo-
sition 4.1 to a Cranston-Kendall coupling for a given leaf L of F , as in Theorem 4.2,
starting from points x10, x20 in L.

In the notation of Proposition 4.1 we can assume that π//.(x̃1. ) and π//.(x̃2. ) have
the same laws after t ≥ T . Therefore following the standard argument:

|h(x10) − h(x20)| = |E{h(π//t(x̃
1
t )) − h(π//t(x̃

2
t ))}|

= |E{h(π//t(x̃
1
t )) − h(π//t(x̃

2
t )), t < T}|

≤ |h|∞P{t < T}
→ |h|∞P{T = ∞} as t → ∞.

The result follows by Eq. (15).
Alternatively the theorem is seen to hold by applying Cranston’s result [11]

directly to each leaf of F using Corollary 3.10. �

Remark 4.4 For a Riemannian foliation whose leaves are not necessarily totally
geodesic there is still a skew-product decomposition of its Brownian motion, as
in the foliation of R2 − {0} by spheres about the origin. To obtain a coupling of
Brownianmotions on themanifolds using couplings on the leaves would then require
considering couplings on manifolds with varying metrics. A special case of this is
discussed by Lindvall and Rogers in the last section of [24].

5 Appendix A: �A+B

Recall that for a diffusion operatorL on M in Bakry-Emery theory there is the square
field operator �L given by

2�L(f , g) := L(fg) − fLg − gLf for C2 functions f , g : M → R.

Thus if L has a decomposition L = A + B we have

�L = �A + �B. (17)

Now suppose L is invariant by a foliation F for which it is transversely cohesive
as in Proposition 3.4 and that the corresponding decompositionL = A+LF is such
that the transversal and leaf-wise operatorsA andLF commute on C2 functions. For
example we could be in the situation of a Riemannian foliation with totally geodesic
fibres considered above. For completeness we show that the basic assumption, e.g.
Hypothesis 1.2 of Baudoin and Garofalo [5], used by Baudoin and collaborators to
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augment the square field operator of certain sub-Riemannian operators, holds in our
more general situation. See also [4, 6]. Write B for LF .

Proposition 5.1 For any C2 function f : M → R we have

�A(f , �B(f , f )) = �B(f , �A(f , f ))

and
�A(f , �L(f , f )) = �L(f , �A(f , f )). (18)

Proof From Eq. (17)

�A(f , �L(f , f )) − �L(f , �A(f , f )) = �A(f , �B(f , f )) − �B(f , �A(f , f )) (19)

and so it suffices to prove the first equation of the proposition.
We can take Hörmander form representations

A =
k∑

j=1

XjXj + A

B =
K∑

b=1

YbYb + B

though the Yb may only be locally Lipschitz, e.g. see [17, Sect. 9.2].
Then �A(f , f ) = ∑

j(X
jf )2 and similarly for B. Thus

�A(f , �B(f , f )) =
∑
j,b

(Xjf )Xj(Ybf )2 (20)

= 2
∑
j,b

(Xjf )(Ybf )(XjYbf ), (21)

giving

�A(f , �B(f , f )) − �B(f , �A(f , f )) = 2
∑
j,b

(Xjf )(Ybf )[Xj, Yb](f ). (22)

The claim is local so we can work in a disintegrating chart for F and so assume our
foliation comes from a submersion. Then we can take the vector fields Xj to be basic,
i.e. horizontal lifts of vector fields on the base space, in the sense of Theorem 6.0.2
of [17]. By that theorem Xj then commutes with B for each j. Therefore

2Xj�B(f , f ) = B(Xjf 2) − 2(Xjf )Bf − 2f (BXjf ) (23)

= 4�B(f , Xjf ) (24)
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as can also be seen from the fact that B is invariant under the flow of Xj. Equivalently
for each j

Xj
∑

b

(Ybf )2 = 2
∑

b

(Ybf )(YbXjf ) (25)

giving ∑
b

(Ybf )[Xj, Yb]f = 0 for each j. (26)

proving our result via Eq. (22). �

Remark 5.2 Commutativity was not used to prove Eq. (22).

6 Appendix B: Diffusion Operators with Transverse
Symmetries

Following Baudoin and Garofalo [5] consider a manifold M with a sub-bundle E of
TM, and a smooth cohesive diffusion operator A along E whose principal symbol
determines a Riemannian metric on E. Then A will be said to have transverse sym-
metries if there is a Lie algebra V of vector fields which are infinitesimal isometries
of E with its given metric i.e. if Z ∈ V then

1. Lie differentiation by Z maps C1 sections of E to sections of E and
2. Lie differentiation by Z annihilates the metric on E

and which has the property that there is the direct sum decomposition for each x ∈ M

Ex

⊕
V(x) = TxM,

where V(x) denotes the vector space obtained by evaluating the elements of V at
x ∈ M.

It follows that if we let F be the sub-bundle of TM with fibres V(x) then F
is integrable and so determines a foliation transverse to E. Here we do not make
Baudoin and Garofalo’s assumption that E is bracket generating, so A may not be
hypo-elliptic.

Let Z : M × V → TM be the evaluation map Z(x)V = V(x). It is a surjection
onto F . (In [4] it is assumed to be injective also.) Take any inner product on V and
use Z to project it to a Riemannian metric on F . Give TM the metric which is the
direct sum of this and the one given on E. Let e1, . . . , ek be an orthonormal base for
V and set Za(x) = Z(x)(ea) for x ∈ M and a = 1, . . . , k. Take a local orthonormal
framing by smooth local sections X1, . . . , Xp of E. Continuing to follow [5] we have
commutation relations:

[Xi, Xj] =
∑

�

ω
ij
� X� +

∑
a

γij
a Za (27)
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[Xj, Za] =
∑

�

δ
ja
� X� (28)

for smooth functions ω
ij
� , γ

ij
a , δ

ja
� with ω

ij
� = −ω

ji
� and γ

ij
a = −γ

ji
a . The infinitesimal

isometry property of the Za gives:

δ
ja
� = −δ�a

j . (29)

We can now quickly deduce the following proposition.

Proposition 6.1 The vertical foliationF of a manifold with a cohesiveAwith trans-
verse symmetries, furnished with a Riemannian metric as above, is a Riemannian
foliation with bundle-like metric and totally geodesic leaves.

Proof According to [29, Theorem 5.19, p. 56], F is Riemannian and the metric is
bundle-like if and only if

〈[Z, X], X〉 = 0 for all sections Z ∈ C1�F , X ∈ C1�E, ||X|| = 1. (30)

Now from formulae (28) and (29) above

〈[Za, Xj], X�〉 = −δ
ja
� 〈Xj, X�〉 = 0.

Equation (30) follows when Z = Za for any a = 1, . . . , k, since we can take
X1 = X if ||X|| = 1. It therefore holds for any Z ∈ C1�F .

On the other hand a condition given in [29, Theorem 5.23, p. 58], for F to have
totally geodesic fibres is that

〈[Z, X], Z〉 = 0 for all Z ∈ C1�F with ||Z|| = 1, X ∈ C1�E. (31)

We can assume X = Xj above. Then from formula (28) above

〈[Za, X], Zb〉 = 0

For a general Z ∈ C1�F with ||Z|| = 1 write Z = ∑
a faZa for C1 functions

fa : M → R. Then

〈[Z, X], Z〉 =
∑
a,b

fafb〈[Za, X], Zb〉 −
∑
a,b

dfa(X)fb〈Za, Zb〉 (32)

= 0 −
∑

a

dfa(X)fa (33)

= 0 (34)

since 1 = ||Z|| = ∑
a(fa)

2. �
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Spatial Risk Measures: Local Specification
and Boundary Risk

Hans Föllmer and Claudia Klüppelberg

Abstract We study a mathematical consistency problem motivated by the interplay
between local andglobal risk assessment in a largefinancial network. In analogy to the
theory ofGibbsmeasures in StatisticalMechanics, we focus on the structure of global
convex risk measures which are consistent with a given family of local conditional
risk measures. Going beyond the locally law-invariant (and hence entropic) case
studied in [11], we show that a global risk measure can be characterized by its
behavior on a suitable boundary field. In particular, a global risk measure may not
be uniquely determined by its local specification, and this can be seen as a source
of “systemic risk”, in analogy to the appearance of phase transitions in the theory of
Gibbs measures. The proof combines the spatial version [10] of Dynkin’s method
for constructing the entrance boundary of a Markov process with the non-linear
extension [14] of backwards martingale convergence.

Keywords Spatial riskmeasure ·Convex riskmeasure · Phase transition · Systemic
risk

1 Introduction

In a large network of financial institutions, the risk at a given node of the network is
usually assessed in terms of some monetary risk measure that involves the marginal
distribution at that node. But such an approach neglects the interactive effects that
are not captured by the family of marginal distributions. This suggests to take a
conditional approach, where the risk measure applied at a given node takes into
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account the situation at the other nodes of the network; see, for example [1]. The
question is whether these conditional risk measures can be aggregated in a consistent
manner to a global risk measure, and whether the global risk measure is uniquely
determined by the local specification.

With this motivation in mind, we are going to focus on some of the purely math-
ematical problems which arise in such a spatial setting, and which can be viewed as
non-linear analogues to some classical problems in the theory of Gibbs measures. In
Dobrushin’s probabilistic approach to the analysis of phase transitions in Statistical
Mechanics, Gibbs measures are specified by a consistent family of local conditional
probability distributions; cf. [6] or [18]. In an infinite spatial network, the global
Gibbs measure may not be uniquely determined by the local specification. Non-
uniqueness is interpreted as a phase transition, and in that case Gibbs measures can
be described as mixtures of phases, defined as extreme points in the convex set of all
Gibbs measures.

In analogy toDobrushin’s approach,we start with a given family (ρV )V ∈V of local
conditional risk measures indexed by the class V of finite subsets of some infinite
set of nodes. These conditional risk measures are convex, and they are assumed to
be consistent in the usual sense, that is, ρW (−ρV ) = ρW if V ⊆ W . Our aim is to
clarify the structure of the setR of global convex risk measures which are consistent
with this local specification.

To this end, we assume that the local conditional risk measures ρV are absolutely
continuous with respect to the local conditional probability distributions πV in the
local specification of a Gibbs measure. Under the stronger assumption of local law
invariance, the conditional risk of a financial position X would only depend on the
distribution of X under the conditional probability measure πV . As shown in [11],
the local risk measures must then be entropic, and the representation of global risk
measures can be described in a rather explicit manner.

In this paper we go beyond the special case of local law invariance. But then the
main difficulty consists in extending the local specification (ρV )V ∈V to a sufficiently
regular conditional risk measure with respect to the tail field. We solve this problem
by combining two methods. On the one hand, we use the supermartingale properties
implied by local consistency, and in particular the non-linear extension of backwards
martingale convergence developed in [14]. On the other hand, we use Dynkin’s
method [8, 9] of constructing the entrance boundary of a Markov process, adapted
to our spatial setting as in [10]. In this way, the set of phases can be described
as a spatial “boundary”, defined by a sub-σ-field F̂ of the tail field. As our main
result, we show that a sufficiently regular global risk measure ρ in R is uniquely
determined by its behavior on the boundary field F̂ . In particular, we show that
we have non-uniqueness of the global risk measure if the underlying probabilistic
structure admits a phase transition. From a financial point of view, this can be viewed
as one mathematical aspect of the much broader issue of “systemic risk”.

The paper is organized as follows. In Sect. 2 we recall some basic facts from
the theory of convex risk measures, and in particular the notion of a convex risk
kernel introduced in [11]. In Sect. 3 we describe our spatial setting and the local
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specification of convex risk measures in terms of local risk kernels. The extension
of this local specification to a sufficiently regular convex risk kernel with respect to
the tail field is done in two steps. In Sect. 4 we use a straightforward definition of a
limiting kernel ρ∞ and show that it has good properties with respect to any given
Gibbs measure P . But this kernel does not behave well enough simultaneously for
all such Gibbs measures. To overcome this difficulty, we introduce an additional
regularization that involves Dynkin’s boundary construction. This second step is
carried out in Sect. 5, and the resulting risk kernel ρ̂∞ is shown to be the key to the
structure of global risk measures.

2 Preliminaries on Convex Risk Kernels

In this section we recall some basic definitions and facts from the theory of convex
risk measures initiated in [2, 16, 17], and also the notion of a convex risk kernel
introduced in [11]. For more details see, for example [12, 15].

Let (�,F ) be a measurable space, and denote by M := Mb(�,F ) the space
of all bounded measurable functions on (�,F ). A real-valued functional ρ on M
is called a monetary risk measure if it is monotone, i.e., ρ(X) ≥ ρ(Y ) whenever
X ≤ Y , cash-invariant, i.e., ρ(X +m) = ρ(X)−m for constants m, and normalized,
i.e., ρ(0) = 0. If a monetary risk measure ρ is also convex on M , then ρ will be
called a convex risk measure. A convex risk measure is called coherent if it is also
positively homogeneous, that is, ρ(λX) = λρ(X) for any positive constant λ. We
denote byA := {X ∈ M | ρ(X) ≤ 0} the acceptance set of ρ; in the convex case the
acceptance set is convex, in the coherent case a convex cone.

Typically, a convex risk measure has a dual representation

ρ(X) = sup
Q∈Q

(
EQ[−X ] − α(Q)

)
, (1)

in terms of some setQ of probabilitymeasures on (�,F ) and some penalty function
α : Q → [0,∞]. In this case, the representation also holds if we choose

α(Q) = sup
X∈A

EQ[−X ], (2)

and this is the minimal penalty function such that (1) holds.
A necessary condition for (1) is the Fatou property of ρ, that is,

lim
k→∞ Xk = X pointwise =⇒ ρ(X) ≤ lim inf

k→∞ ρ(Xk) (3)

for any uniformly bounded sequence (Xk)k=1,2,... in M ; cf. [15], Lemma 4.21. We
say that ρ has the Lebesgue property if (3) is replaced by the stronger condition
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lim
k→∞ Xk = X pointwise =⇒ ρ(X) = lim

k→∞ ρ(Xk). (4)

This condition is sufficient for the dual representation of ρ, and it implies that the
supremum in (1) is actually attained; cf. [15, Theorem 4.22, Exercise 4.22].

Now let P be a probability measure on (�,F ).

Definition 1 If ρ is a monetary risk measure on M such that ρ(X) = ρ(Y )whenever
X = Y P-almost surely, then we say that ρ is absolutely continuous with respect to
P , and we write

ρ 	 P.

In this case, ρ can also be considered as a monetary risk measure on the Banach
space L∞(�,F , P). Such a risk measure is called law-invariant with respect to P
if ρ(X) = ρ(Y ) whenever X and Y have the same distribution under P .

If ρ 	 P then the Fatou property is both necessary and sufficient for the dual
representation (1) of ρ, regarded as a convex risk measure on L∞(�,F , P). In this
case we have Q 	 P for any Q such that α(Q) < ∞, and so we can restrict Q
to the class of probability measures which are absolutely continuous with respect
to P; see Theorem 4.33 in [15]. If ρ satisfies the stronger Lebesgue property, then
the supremum in (1) is actually attained by some Q 	 P depending on X ; see
Corollary 4.35 in [15], and also [5] for a converse result.

Example 1 Let P be a probability measure P on (�,F ), and consider the entropic
risk measure eβ with parameter β ∈ [0,∞), defined by

eβ(X) = 1

β
log EP [e−βX ]; (5)

for β = 0, this will be interpreted as the limiting linear case

e0(β) := lim
β↓0

eβ(X) = EP [−X ]. (6)

An entropic risk measure is clearly convex and law-invariant. It has the Lebesgue
property, and the minimal penalty function in its dual representation (1) is given by

α(Q) = 1

β
H(Q|P),

where H(Q|P) denotes the relative entropy of Q with respect to P; for β = 0 the
penalty function is to be read as 0 if Q = P and as +∞ if not.

Let F0 ⊆ F be a sub-σ-field of F , and denote by M0 the space of bounded
measurable functions on (�,F0). Let us first recall the definition of a stochastic
kernel π(ω, dη) from (�,F0) to (�,F ): For any ω ∈ �, π(ω, ·) is a probability
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measure on (�,F ), and for any A ∈ F , the functionπ(·, A) on� isF0-measurable.
For a probabilitymeasure P on (�,F0)we denote by Pπ the probabilitymeasure on
(�,F ) defined by Pπ[A] = ∫

π(ω, A)P(dω). The stochastic kernel will be called
regular if π(ω, ·) = δω onF0. For two such kernels πi (i = 0, 1), their composition
π0π1 is defined as the stochastic kernel given byπ0π1(ω, A) = ∫

π1(η, A)π0(ω, dη).
Let us now extend the classical definition of a stochastic kernel in the following

manner.

Definition 2 A monetary risk kernel from (�,F0) to (�,F ) is a real-valued func-
tion ρ0 on � × M such that

(i) for each ω ∈ �, the functional ρ0(ω, ·) is a monetary risk measure on M ;
(ii) for each X ∈ M , the function ρ0(·, X) belongs to M0.

Such a monetary risk kernel ρ0 will be called convex if all risk measures ρ0(ω, ·) are
convex. It will be called regular if

ρ0(ω, f (X0, X)) = ρ0(ω, f (X0(ω), X)) (7)

for ω ∈ �, X0 ∈ M0, X ∈ M , and for any bounded measurable function f on R2.
We will say that the risk kernel ρ0 has the Fatou property, or the Lebesgue property,
if condition (3) or condition (4) holds for each risk measure ρ0(ω, ·).

Note that regularity of a monetary risk kernel ρ0 from (�,F0) to (�,F ) implies
the following local property:

ρ0(ω, IA0 X + IAc
0
Y ) = IA0(ω)ρ0(ω, X) + IAc

0
(ω)ρ0(ω, Y ) (8)

for ω ∈ �, X, Y ∈ M , and any A0 ∈ F0.
The composition ρ0(−ρ1) of two monetary risk kernels ρ0 and ρ1 is defined as

the monetary risk kernel given by

(ρ0(−ρ1))(ω, X) := ρ0(ω,−ρ1(·, X)).

If ρ0 and ρ1 are both convex, then their composition ρ0(−ρ1) is again convex.
If ρ0 is a regular convex risk kernel from (�,F0) to (�,F ) such that the risk

measures ρ0(ω, ·) satisfy the condition

ρ0(ω, ·) 	 P P-a.s., (9)

then it is easy to check that ρ0 can be regarded as a conditional convex risk measure
in the usual sense, as specified by the following definition.

Definition 3 Amapρ0 from L∞(�,F , P) to L∞(�,F0, P) is called a conditional
monetary risk measure with respect to F0 and P , if it satisfies the following three
properties for any X, Y ∈ L∞(�,F , P):
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(i) Monotonicity: ρ0(X) ≥ ρ0(Y ) P-a.s. whenever X ≤ Y P-a.s.;

(ii) Conditional cash invariance: ρ0(X + m) = ρ0(X) − m P-a.s. for all
m ∈ L∞(�,F0, P);

(iii) Normalization: ρ0(0) = 0 P-a.s.

Such a conditional risk measure ρ0 is called convex if

ρ0(λX + (1 − λ)Y ) ≤ λρ0(X) + (1 − λ)ρ0(Y ) P − a.s.

for anyF0-measurable function λ such that 0 ≤ λ ≤ 1 P-a.s. It is said to have the
Fatou property if

lim
k→∞ Xk = X P-a.s. =⇒ ρ(X) ≤ lim inf

k→∞ ρ(Xk) P-a.s.

for any uniformly bounded sequence (Xk)k=1,2,.. in L∞(�,F , P); the Lebesgue
property is defined in the same manner.

Note that the Fatou or the Lebesgue property of the risk measures ρ0(ω, ·) in (9)
implies the corresponding property of ρ0, regarded as a conditional risk measure
with respect to P .

If a convex conditional risk measure ρ0 with respect to F0 and P has the Fatou
property, then it admits a conditional version of the dual representation (1). Denoting
by

A0 := {X ∈ L∞(�,F , P) | ρ0(X) ≤ 0 P-a.s.}

the acceptance set of ρ0, the dual representation takes the form

ρ0(X) = ess sup (EQ[−X |F0] − α0(Q)
)
, (10)

where the essential supremum is taken with respect to P and over all probability
measures Q 	 P such that Q ≈ P on the σ-field F0, and where the minimal
penalty function is given by

α0(Q) = ess supX∈A0
EQ[−X |F0], (11)

see [7] or [16, Theorem 11.2]. For a general Q 	 P , (11) is defined as an essential
supremum under Q. But if Q satisfies the additional condition Q ≈ P on F0 as in
(10), then it can as well be read as an essential supremum under P .
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3 Local Specification of Spatial Risk Measures

Let I be a countable set of sites, and let S be some Polish state space with Borel
σ-fieldS . We assume that each site i ∈ I can be in some state s ∈ S, and we denote
by � = SI the set of possible configurations ω : I → S. For any subset J ⊆ I ,
we denote by ωJ the restriction of ω to J , byFJ the σ-field on � generated by the
projection maps ω → ω(i) for any i ∈ J , and we write F = FI . A probability
measure P on (�,F ) is also called a random field.

Let V denote the class of non-empty finite subsets V ⊆ I . For a given set V ∈ V ,
the σ-fieldFV describes what is observable on V , whileFV c describes the situation
on V c := I \ V , also called the environment of V .

Definition 4 Acollection (ρV )V ∈V of regular convex riskkernelsρV from (�,FV c )

to (�,F ) is called a local specification of a convex risk measure if it satisfies the
consistency condition

ρW (−ρV ) = ρW (12)

for any V, W ∈ V such that V ⊆ W , and if each risk kernel ρV is regular in the
sense of (7) and has the Fatou property.

From now on we fix a local specification (ρV )V ∈V of a convex risk measure.

Definition 5 Let R denote the set of all convex risk measures ρ on M which are
consistent with the local specification (ρV )V ∈V , that is,

ρ(−ρV ) = ρ for any V ∈ V . (13)

Our aim is to clarify the structure of the global risk measures inR. At the general
level of Definition 4 there is not much to be said. The situation becomes more
transparent if we introduce an underlying probabilistic structure, described by the
local specification of a random field; cf. [6, 18].

Definition 6 A collection (πV )V ∈V of regular stochastic kernels πV from (�,FV c )

to (�,F ) is called a local specification of a random field if it satisfies the consistency
condition

πW πV = πW (14)

for any V, W ∈ V such that V ⊆ W .

Definition 7 We denote by P the convex set of all random fields P which are
consistent with this local specification in the sense that

PπV = P for any V ∈ V . (15)
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A random field P ∈ P is also called a Gibbs measure. The case |P| > 1, where the
global random field is not uniquely determined by the local specification (πV )V ∈V ,
is often referred to as a phase transition.

For any V ∈ V , the stochastic kernel πV serves as a conditional probabil-
ity distribution with respect to FV c which is common to all probability measures
P ∈ P , and so we can write

EP [ f |FV c ](ω) =
∫

f (η)πV (ω, dη) (16)

for any P ∈ P and any measurable function f ≥ 0 on (�,F ).
Let us now fix a local specification (πV )V ∈V of a random field such that

P �= ∅. (17)

We connect our local specification (ρV )V ∈V of a convex risk measure with the local
specification (πV )V ∈V by the following assumption:

Assumption 1. For any ω ∈ � and any V ∈ V , the convex risk measure ρV (ω, ·)
has the following two properties:

(i) ρV (ω, ·) 	 πV (ω, ·)
(ii) If X is acceptable for ρV (ω, ·) then the expected loss under the measure πV (ω, ·)

is uniformly bounded from above, i.e., there is a constant c ≥ 0 such that

ρV (ω, X) ≤ 0 =⇒
∫

(−X)(η)πV (ω, dη) ≤ c. (18)

Remark 1 The local specification (ρV )V ∈V is called law-invariant if Assump-
tion 1(i) is replaced by the much stronger assumption that each convex risk mea-
sure ρV (ω, ·) is law-invariant with respect to the probability measure πV (ω, ·). This
implies

ρV (ω, X) ≥
∫

(−X)(η)πV (ω, dη)

for any X ∈ M , and so condition (18) is satisfied with c = 0; see Corollary 4.65
in [16]. Actually much more is true: Under mild regularity conditions, local law
invariance together with consistency of the family (ρV )V ∈V implies that the risk
measures ρV (ω, ·) must be entropic; see [10] and also [19]. More precisely, the risk
kernel ρV takes the form

ρV (ω, X) = 1

β∞(ω)
log

∫
e−β∞(ω)X (η)πV (ω, dη) (19)
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with β∞(ω) ∈ [0,∞), as in Example 1. Due to consistency, the parameter β∞(ω)

does not depend on V , and this implies that the function β∞(·) is measurable with
respect to the tail field F∞ introduced in Sect. 4 below; see [10] for more details.

Lemma 1 For any P ∈ P , the risk kernel ρV can be regarded as a conditional risk
measure

ρV : L∞(�,F , P) → L∞(�,FV c , P),

and this conditional risk measure has the Fatou property with respect to P.

Proof Take X and Y in M such that X = Y P-a.s. We have to show that ρV (·, X) =
ρV (·, Y ) P-a.s. Indeed, the consistency condition P = PπV implies πV (·, X) =
πV (·, Y ) P-a.s., hence ρV (·, X) = ρV (·, Y ) P-a.s. due to part i) of our Assumption
1. The Fatou property of the conditional risk measure with respect to P follows from
the Fatou property of the risk kernel ρV . �

Wenow take a closer look at our consistency condition (12). For a givenprobability
measure P ∈ P , this can be read as a consistency condition for two conditional risk
measures with respect to P , as shown by Lemma 1. As such, it can be characterized
at the level of the corresponding acceptance sets and also at the level of penalty
functions; see, for example [4, 13]. For our purposes, however, we will need an
alternative characterization in terms of the following supermartingale property; see
[13] and [3, Theorem 2].

Proposition 1 For any P ∈ P and any V, W ∈ V such that V ⊆ W , the consis-
tency condition ρW (−ρV ) = ρW yields the supermartingale inequality

ρW (X) + αW (Q) ≥ EQ[ρV (X) + αV (Q) |FW c ] P-a.s. (20)

for any X ∈ L∞(�,F , P) and any probability measure Q 	 P.

4 Passing to the Tail Field

Our aim is to clarify the structure of the class R of global convex risk measures
which are consistent with our local specification (ρV )V ∈V , in analogy to the classical
analysis of the class P of global random fields which are consistent with the local
specification (πV )V ∈V .

This problem is trivial if I is finite: In this case we have I ∈ V andFI c = {∅,�},
and so ρI (ω, ·) does not depend on ω. Thus there is exactly one risk measure ρ ∈ R,
namely ρ = ρI .

From now we assume |I | = ∞, and so (�,F ) is an infinite product space.
Here we will proceed in two steps. In this section we are going to extend the local
specification (ρV )V ∈V in a consistent manner to a risk kernel ρ∞ with respect to the
tail field
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F∞ :=
⋂

V ∈V
FV c ,

and we shall describe the properties of ρ∞ as a conditional risk measure with respect
to any given measure P ∈ P . The second step will be done in the next section.
It involves a regularization of the initial kernel ρ∞, and this will be the key to the
structure of global risk measures.

Let us fix a sequence (Vn) ⊆ V increasing to I , and let us use the notation

ρn := ρVn , n = 1, 2, . . .

for the corresponding sequence of convex risk kernels. Now consider the risk kernel
ρ∞ defined by

ρ∞(ω, X) := lim sup
n→∞

ρn(ω, X) (21)

for any X ∈ M and any ω ∈ �. We denote by

M∞ := Mb(�,F∞)

the space of all bounded measurable functions on (�,F∞). For any X ∈ M , the
function ρ∞(·, X) belongs to M∞, since it is bounded by ||X || and clearlymeasurable
with respect to the tail field F∞.

Lemma 2 The functional ρ∞ : M → M∞ defined by (21) is a regular convex risk
kernel from (�,F∞) to (�,F ), and it satisfies the consistency condition

ρ∞(−ρV ) = ρ∞ (22)

for any V ∈ V .

Proof For any ω ∈ �, the functional ρ∞(ω, ·) on M inherits from the sequence
(ρn) the properties of a convex risk measure and also the regularity property (7).
Moreover, we have

ρ∞(−ρV (X)) = lim sup
n→∞

ρn(−ρV (X)) = lim sup
n→∞

ρn(X) = ρ∞(X)

for any V ∈ V , since ρn(−ρV (X)) = ρn(X) as soon as V ⊂ Vn , due to the
consistency condition (12). �

For the rest of this section we fix a probability measure P ∈ P . We are going to
show that the limit superior in (21) is P-almost surely a limit, and that ρ∞ has good
properties as a conditional risk measure with respect to P .

Lemma 1 shows that each risk kernel ρn can be regarded as a conditional risk
measure under P with respect toFV c

n
, and that it has the Fatou property with respect

to P . We denote by
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An(P) := {X ∈ L∞(�,F , P) | ρn(X) ≤ 0 P − a.s.}

its acceptance set and by

αn(Q) = ess supX∈An(P)EQ[−X |FV c
n
].

its penalty function. It follows that ρn admits the dual representation

ρn(X) = ess sup
(
EQ[−X |FV c

n
] − αn(Q)

)
, (23)

where the essential supremum is taken over all Q 	 P such that Q ≈ P on FV c
n
.

Let us also introduce the set

Q(P) := {Q ∈ M1(P)|Q = P on F∞, sup
n

EQ[n(Q)] < ∞}.

As we shall see in the proof of the following Proposition, we have P ∈ Q(P), hence
Q(P) �= ∅.
Lemma 3 For any Q ∈ Q(P), the limit

α∞(Q) = lim
n→∞ αn(Q) (24)

exists P-a.s. and satisfies

EP [α∞(Q)] < ∞. (25)

Proof Take Q ∈ Q(P). Applying Proposition 1 for X = 0, we see that the
consistency condition ρn+1 = ρn+1(−ρn) implies the backwards supermartingale
inequality

αn+1(Q) ≥ EQ[αn(Q)|FV c
n
], n = 1, 2, . . .

with respect to the decreasing σ-fields (FV c
n
)n=1,2.... Since Q ∈ Q(P), it follows

that (αn(Q))n=1,2... is a non-negative backwards supermartingale under Q which
is bounded in L1(Q). It is thus convergent, Q-a.s. and in L1(Q), to a finite limit
α∞(Q) such that

EQ[α∞(Q)] = lim
n→∞ EQ[αn(Q)] < ∞.

This implies (25) and also the P-almost sure convergence in (24), since Q = P on
F∞. �

Combining Lemma 3 with the supermartingale inequality (20), we obtain the first
part of the following Proposition. The second part will follow by applying the results
in [14] on the behavior of consistent conditional risk measures along decreasing
σ-fields.
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Proposition 2 We have

ρ∞(·, X) = lim
n→∞ ρn(·, X) P-a.s.

for any X ∈ M, and the kernel ρ∞ defines a conditional convex risk measure

ρ∞ : L∞(�,F , P) → L∞(�,F∞, P) (26)

under P with respect to the tail-field F∞. This conditional risk measure has the
Fatou property, and its dual representation is given by

ρ∞(X) = ess supQ∈QP
(EQ[−X |F−∞] − α∞(Q)), X ∈ M, (27)

where α∞(Q) is given by (24). Moreover, α∞ coincides with the minimal penalty
function of ρ∞, i.e.,

α∞(Q) = ess supX∈A∞(P)EQ[−X |F∞] (28)

for any Q ∈ Q(P), where

A∞(P) := {X ∈ L∞(�,F , P) | ρ∞(X) ≤ 0 P − a.s.}.

Proof (1) Take any X ∈ M and consider the process

Sn(P, X) = ρn(X) + αn(P), n = 1, 2, . . .

This process is bounded frombelow by−||X ||, and the consistency condition ρn+1 =
ρn+1(−ρn) implies the backward supermartingale inequality

Sn+1(P, X) ≥ EP [ Sn(P, X)) |FV c
n
];

see Proposition 1 for Q = P .

(2) Take any X ∈ An(P). Since ρn(·, X) ≤ 0 P-a.s., we have

ρn(·, X) ≤ 0 πn(ω, ·) − a.s.

for P-almost all ω. Using (16) and our assumption (18), this implies

EP [−X |FV c
n
](ω) =

∫
(−X)(η)πn(ω, dη) ≤ c

for P-almost all ω. In view of (11), this yields the estimate

αn(P) ≤ c P-a.s..
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This bound is valid for any n, and so we have P ∈ Q(P).
(3) Since P ∈ Q(P), the process (Sn(P, X))n=1,2,... is a backwards supermartingale
with respect to P and bounded in L1(P), hence convergent P-a.s. to some finite limit
S∞(P, X). Combined with Lemma 3, this yields P-almost sure convergence of the
sequence

ρn(X) = Sn(P, X) + αn(P), n = 1, 2, . . .

to ρ∞(X) and the equality

ρ∞(X) = S∞(P, X) + α∞(P) P − a.s..

(4) Since the backwards supermartingale (αn(P))n=1,2,... is bounded in L1(P), we
can now apply the results of [14] on the limiting behavior of consistent conditional
riskmeasures along decreasing σ-fields under a fixed referencemeasure P . Lemma 2
in [14] shows that ρ∞ has the Fatou property under P , and Theorem 4 in [14] yields
the dual representation (27) and the identification of α∞ as the minimal penalty
function of ρ∞. �

5 Dynkin Boundary and Boundary Risk

In this section we are going to modify the risk kernel ρ∞ in such a way, that the
resulting kernel ρ̂∞ has good properties in terms of the classP of Gibbs measures.
To this end, we use a method developed by E.B. Dynkin [8] for the construction of
the entrance boundary of a Markov process, as it was applied in [10] to the integral
representation of the class P . This involves an extension of the local specification
(πV )V ∈V to a conditional probability distributionπ∞ with respect to the tail fieldF∞
which is common to all probability measures P ∈ P . The following Proposition
summarizes the results of [8–10] which are relevant for our purpose.

Proposition 3 There exists a stochastic kernel π∞ from (�,F∞) to (�,F ) with
the following properties:

(i) For any ω ∈ �, the random field π∞(ω, ·) belongs to P and is actually an
extreme point of the convex set P . In particular we have

π∞πV = π∞ for any V ∈ V . (29)

(ii) For any ω ∈ �, the probability measure π∞(ω, ·) is ergodic on the tail field,
that is, π∞(ω, A) ∈ {0, 1} for any A ∈ F∞, and this implies

π∞(η, ·) = π∞(ω, ·) π∞(ω, ·) − a.s.. (30)
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(iii) The kernel π∞ serves, simultaneously for all P ∈ P , as a conditional distrib-
ution with respect to the tail field F∞, that is,

EP [ f |F∞ ](ω) =
∫

f (η)π∞(ω, dη) (31)

P-a.s. for any P ∈ P and for any measurable function f ≥ 0 on (�,F ).

We endow the set P with the canonical σ-field B generated by the maps P →
P[A] (A ∈ F ). Then the kernel π∞ can be viewed as a measurable map from
(�,F∞) to (P,B). We denote by

F̂ := σ(π∞) ⊆ F∞

the σ-field on � generated by this map, and by

M̂ := Mb(�, F̂ ) ⊆ M∞

the corresponding space of bounded measurable functions. We will call (�, F̂ )

the Dynkin boundary of the local specification (πV )V ∈V , and F̂ will be called
the boundary field. Thus, any random field P ∈ P admits a representation by a
probability measure on the Dynkin boundary, namely

P = P̂π∞ :=
∫

π∞(ω, ·) P̂ (dω), (32)

where P̂ denotes the restriction of P to the σ-field F̂ . Conversely, any probability
measure P̂ on (�, F̂ ) defines via (32) a random field P ∈ P , due to (29). In this
way, we obtain an integral representation of the convex setP that is coupled to the
tail field by the kernel π∞:

P = {P̂π∞| P̂ is a probabilitymeasure on (�, F̂ )}. (33)

In particular, a phase transition |P| > 1 occurs if and only if the Dynkin boundary
is non-trivial in the sense that the kernel π∞ really depends on the tail field, that is,
not all measures π∞(ω, ·) coincide, and so F̂ does not reduce to the trivial σ-field
{∅,�}.
Remark 2 The integral representation (32) shows that the set of extreme points of
the convex set P is given by

Pe := {π∞(ω, ·)|ω ∈ �}.

In particular,Pe is a measurable subset ofP . Denoting by μP the image of P under
the map π∞ : � → Pe, the representation (32) takes the form
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P =
∫

Pe

Q μP (d Q). (34)

Conversely, any probabilitymeasureμ onPe defines via (34) a randomfield P ∈ P ,
and we have μ = μP . Thus we obtain a Choquet type integral representation of the
convex setP , that is, any P ∈ P is barycenter of a unique probability measure μP

on the setPe of extreme points; see [8–10].

Let us now regularize the kernel ρ∞ by introducing the risk kernel ρ̂∞ = π∞ρ∞
defined by

ρ̂∞(ω, X) =
∫

ρ∞(η, X)π∞(ω, dη) (35)

for ω ∈ � and X ∈ M . In order to describe its properties, we first take a closer look
at the functions in the space M̂ .

Lemma 4 For any function X ∈ M∞ and any ω ∈ �, we have

X (·) = X̂(ω) π∞(ω, ·) − a.s., (36)

where X̂ denotes the function in M̂ defined by

X̂(ω) :=
∫

X (η)π∞(ω, dη). (37)

Moreover, X belongs to M̂ if and only if X coincides with X̂ .

Proof Since π∞(ω, ·) is 0-1 on the tail fieldF∞, the function X ∈ M∞ is constant
π∞(ω, ·)-a.s., and this implies (36). The function X̂ defined by (37) clearly belongs
to M̂ , and so the identity X = X̂ yields X ∈ M̂ . Conversely, assume that X ∈ M̂ ,
that is, X is F̂ -measurable. Since F̂ is generated by the map π∞ : � → P , there
is a measurable function f onP such that X̂(ω) = f (π∞(ω, ·)) for all ω ∈ �. This
implies, for any ω ∈ �,

X̂(ω) =
∫

f (π∞(η, ·))π(ω, dη) = f (π∞(ω, ·)) = X (ω),

since π∞(η, ·) = π∞(ω, ·) for π(ω, ·)-almost all η, due to (30). �

Proposition 4 ρ̂∞ is a regular convex risk kernel from (�, F̂ ) to (�,F ), and it
satisfies the consistency condition

ρ̂∞(−ρV ) = ρ̂∞ (38)

for any V ∈ V . For fixed ω ∈ �, we have
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ρ̂∞(ω, ·) 	 π∞(ω, ·), (39)

and the convex risk measure ρ̂∞(ω, ·) has the Fatou property with respect to the
probability measure π∞(ω, ·).
Proof For any X ∈ M , the function ρ̂∞(·, X) is clearly F̂ -measurable. For fixed
ω ∈ �, the functional ρ̂∞(ω, ·) on M inherits from ρ∞ the properties of a convex
risk measure and also the consistency condition:

ρ̂∞(ω,−ρV (X)) =
∫

ρ∞(η,−ρV (X))π∞(ω, dη)

=
∫

ρ∞(η, X)π∞(ω, dη)

= ρ̂∞(ω, X).

Thus, ρ̂∞ is a convex risk kernel from (�, F̂ ) to (�,F ) such that ρ̂∞(ω, ·) ∈ R
for any ω ∈ �. To check its regularity, take X̂ ∈ M̂ , X ∈ M , and any bounded
measurable function f on R2. Since ρ∞ is regular by Lemma 2, and since X̂(η) =
X̂(ω) for π∞(ω, ·)-almost all η by (36), we obtain

ρ̂∞(ω, f (X̂ , X)) =
∫

ρ∞(η, f (X̂ , X))π∞(ω, dη)

=
∫

ρ∞(η, f (X̂(η), X))π∞(ω, dη)

=
∫

ρ∞(η, f (X̂(ω), X))π∞(ω, dη)

= ρ̂∞(ω, f (X̂(ω), X)).

It remains to verify the Fatou property of ρ̂∞(ω, ·) with respect to the measure
P := π∞(ω, ·). Take any uniformly bounded sequence (Xk)k=1,2,... in M such that
Xk converges P-a.s. to some X ∈ M . Since P ∈ P , Proposition 2 implies

ρ∞(·, X) ≤ lim inf
k→∞ ρ∞(·, Xk) P-a.s..

Applying Fatou’s lemma, we obtain

ρ̂∞(ω, X) = EP [ρ∞(·, X)]
≤ EP [lim inf

k→∞ ρ∞(·, Xk)]
≤ lim inf

k→∞ EP [ρ∞(·, Xk)]
= lim inf

k→∞ ρ̂∞(ω, Xk).
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In the special case Xk ≡ Y we see that ρ̂∞(ω, X) ≤ ρ̂∞(ω, Y ) whenever X ≤ Y
π∞(ω, ·)-a.s., and this implies ρ̂∞(ω, ·) 	 π∞(ω, ·). �

Definition 8 Let us say that a monetary risk measure ρ on M has the Lebesgue
property with respect to the classP if limk→∞ ρ(Xk) = ρ(X)whenever (Xk)k=1,2,...
is a uniformly bounded sequence in M such that

lim
k→∞ Xk = X P − almost surely,

that is, the convergence takes place P-a.s. for any P ∈ P . We denote by RL the
class of all risk measures ρ ∈ R which have the Lebesgue property with respect
toP .

Remark 3 For amonetary riskmeasure ρ̂on M̂ , theLebesguepropertywith respect to
P is equivalent to the Lebesgue property with respect to pointwise convergence, that
is, limk→∞ ρ̂(X̂k) = ρ̂(X̂) whenever (X̂k)k=1,2,... is a uniformly bounded sequence
in M̂ such that limk→∞ X̂k(ω) = X̂(ω) for any ω ∈ �. Indeed, if limn→∞ X̂n = X̂
P-a.s. then the sequence converges π∞(ω, ·)-a.s. for each ω ∈ �, and this amounts
to pointwise convergence on �, due to Lemma 4.

The following theorem shows that any risk measure ρ ∈ RL is uniquely deter-
mined by its behavior on the Dynkin boundary, that is, by its restriction ρ̂ to the
space M̂ .

Theorem 1 Any risk measure ρ ∈ RL has the form

ρ = ρ̂(−ρ̂∞), (40)

where ρ̂ denotes the restriction of ρ to M̂.

Proof Take ρ ∈ RL and any X ∈ M . Since ρ ∈ R, we have

ρ(−ρn(X)) = ρ(X)

for any n ≥ 1. The sequence (ρn(X))n=1,2,... is uniformly bounded by ||X ||, and
Proposition 2 shows that

lim
n→∞ ρn(·, X) = ρ∞(·, X) P − almost surely.

Now note that, for any ω ∈ �, the equality

ρ∞(·, X) =
∫

ρ∞(η, X)π∞(ω, dη) = ρ̂∞(ω, X) = ρ̂∞(·, X)

holds π∞(ω, ·)-almost surely, due to Lemma 4. In view of the integral representation
(32), this implies ρ∞(·, X) = ρ̂∞(·, X) P-a.s. for any P ∈ P , and so we get
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lim
n→∞ ρn(·, X) = ρ̂∞(·, X) P − almost surely.

Applying the Lebesgue property of ρ with respect toP , we obtain

ρ(X) = lim
n→∞ ρ(−ρn(·, X)) = ρ(−ρ̂∞(·, X)) = ρ̂(−ρ̂∞(·, X)),

and this proves the representation (40). �

Remark 4 If a risk measure ρ ∈ R has the Fatou property with respect toP but not
the Lebesgue property, then the preceding proof yields the inequality ρ ≤ ρ̂(−ρ̂∞).

Now suppose that the risk kernel ρ̂∞ is such that each risk measure ρ̂∞(ω, ·) has
not only the Fatou property but also theLebesgue propertywith respect to themeasure
π∞(ω, ·); this condition is clearly satisfied in the entropic case of Remark 1. In such
a situation we have RL �= ∅, and there is a one-to-one correspondence between the
classRL and the class R̂L of all convex risk measures ρ̂ on M̂ that have the Lebesgue
property with respect to pointwise convergence:

Corollary 1 If each risk measure ρ̂∞(ω, ·) has the Lebesgue property with respect
to the measure π∞(ω, ·), then we have

RL = {ρ(−ρ̂∞)|ρ̂ ∈ R̂L}, (41)

and in particular RL �= ∅.

Proof The inclusion “⊆” follows from the preceding theorem.Conversely, if ρ̂ ∈ R̂L

then ρ := ρ̂(−ρ̂∞) clearly defines a convex risk measure on M which belongs to
the class R. To see that ρ has the Lebesgue property with respect to P and thus
belongs to RL , take a uniformly bounded sequence (Xn) in M such that Xn → X
P-a.s. In particular, the convergence holds π∞(ω, ·)-a.s. for any ω ∈ �, and this
implies limn→∞ ρ̂∞(ω, Xn) = ρ̂∞(ω, X). Thus we have pointwise convergence of
the uniformly bounded sequence (ρ̂∞(·, Xn))n=1,2,... in M̂ . Since ρ̂ belongs to R̂L ,
we get

lim
n→∞ ρ(Xn) = lim

n→∞ ρ̂(−ρ̂∞(·, Xn)) = ρ̂(−ρ̂∞(·, X)) = ρ(X).

This proves the converse inclusion “⊇”. In particular we haveRL �= ∅, since R̂L �=
∅. Indeed, any probability measure P̂ on the Dynkin boundary induces via

ρ̂(X) =
∫

(−X)d P̂ (42)

a convex risk measures ρ̂ ∈ R̂L . �

Corollary 2 A risk measure ρ ∈ RL is uniquely determined by the local speci-
fication (ρV )V ∈V if and only if the local specification (πV )V ∈V admits no phase
transition, i.e.,
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|RL | = 1 ⇐⇒ |P| = 1. (43)

Proof If |P| = 1 then F̂ is trivial, M̂ can be identified with R1, and there is
only one monetary risk measure on M̂ given by ρ̂(m) = −m. Thus (41) implies
|RL | = 1. Conversely, if |P| > 1 then we can choose ω1,ω2 ∈ � such that
π∞(ω1, ·) �= π∞(ω2, ·). Taking

A = {ω ∈ � | π∞(ω1, ·) = π∞(ω2, ·)} ∈ F̂ ,

we obtain π∞(ω1, A) = 1 and π∞(ω2, A) = 0 due to (30). But ρ̂∞(ωi , ·) 	
π∞(ωi , ·) for i = 1, 2 by Proposition 4, and so we get ρ̂∞(ω1,−IA) = 1 and
ρ̂∞(ω2,−IA) = 0. This shows that the two risk measures ρ̂i := ρ̂i (ω, ·) ∈ RL do
not coincide, and so we have |RL | > 1. �

The absence of a phase transition at the underlying probabilistic level implies
|RL | = 1, but not |R| = 1, as illustrated by the following remark on the entropic
case.

Remark 5 Let us return to the special case of local law invariance inRemark 1,where
the local risk measures ρV (ω, ·) are of the entropic form (19) with some parameter
β∞(ω) which depends on the tail fieldF∞. For fixed ω ∈ �, the measure π∞(ω, ·)
is ergodic on F∞, and so we have

β∞(η) = β̂(ω) :=
∫

β∞(ζ)π∞(ω, dζ)

for π∞(ω, ·)-almost all η ∈ �. Thus the risk kernel ρ̂∞ = π∞ρ∞ in (35) takes the
form

ρ̂∞(ω, X) = 1

β̂(ω)
log

∫
e−β̂(ω)X (η)π∞(ω, dη). (44)

Clearly, the convex risk measure ρ̂∞(ω, ·) has not only the Fatou property but also
the Lebesgue property with respect to the probability measure π∞(ω, ·). Thus we
can apply Corollaries1 and 2.

In the absence of a phase transition we have P = {P} for a single random field
P . In this case, the F̂ -measurable function β̂ reduces to the constant

β :=
∫

β∞(ω)P(dω) ∈ [0,∞),

and the unique risk measure ρ in RL is given by the entropic risk measure (5)
with respect to P and β. In particular we obtain ρ(X) = EP [−X ] for any function
X ∈ M∞, since X (·) = EP [X ] P-almost surely, due to the ergodicity of P on
F∞. On the other hand, the convex risk measures ρ∞(ω, ·) in (21) all belong to R
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due to (22), and they are different from ρ since regularity of the kernel ρ∞ implies
ρ∞(ω, X) = −X (ω) for any X ∈ M∞.
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On Villat’s Kernels and BMD Schwarz Kernels
in Komatu-Loewner Equations

Masatoshi Fukushima and Hiroshi Kaneko

Abstract The classical Loewner differential equation for simply connected domains
is attracting new attention since Oded Schramm launched in 2000 the stochastic
Loewner evolution (SLE) based on it. The Loewner equation itself has been extended
to various canonical domains of multiple connectivity after the works by Y. Komatu
in 1943 and 1950, but the Komatu-Loewner (K-L) equations have been derived rig-
orously only in the left derivative sense. In a recent work, Z.-Q. Chen, M. Fukushima
and S. Rhode prove that the K-L equation for the standard slit domain is a genuine
ODE by using a probabilistic method together with a PDE method, and that the right
hand side of the equation admits an expression in terms of the complex Poisson kernel
of the Brownian motion with darning (BMD). In the present paper, K-L equations for
the annulus and circularly slit annili are investigated. For the annulus, we establish a
K-L equation as a genuine ODE possessing a normalized Villat’s kernel on its right
hand side by using a variant of the Carathéodory convergence theorem for annuli
indicated by Komatu. This method is also used to obtain the same K-L equation
in the right derivative sense on annulus for a more general family of growing hulls
that satisfies a specific right continuity condition usually adopted in the SLE theory.
Villat’s kernel is then identified with a BMD Schwarz kernel for the annulus. Finally
we derive K-L equations for circularly slit annuli in terms of their normalized BMD
Schwarz kernels, but only in the left derivative sense when at least one circular slit
is present.

Keywords Komatu-Loewner equations ·Annulus ·Circularly slit annulus ·Villat’s
kernel · Brownian motion with darning · BMD Schwarz kernels

Dedicated to Professor Terry Lyons on the occasion of his 60th birthday.

M. Fukushima (B)

Branch of Mathematical Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
e-mail: fuku2@mx5.canvas.ne.jp

H. Kaneko
Department of Mathematics, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
e-mail: stochos@rs.kagu.tus.ac.jp

© Springer International Publishing Switzerland 2014
D. Crisan et al. (eds.), Stochastic Analysis and Applications 2014,
Springer Proceedings in Mathematics & Statistics 100,
DOI 10.1007/978-3-319-11292-3_12

327



328 M. Fukushima and H. Kaneko

1 Introduction

The celebrated Loewner differential equation for the planar unit disk has been
extended to various canonical domains of multiple connectivity, first by Komatu
[14] to the annulus, then by Komatu [17] to the circularly slit annulus, much later by
Bauer and Friedrich [2] to the circularly slit disk, and further by Bauer and Friedrich
[3] to the circularly slit annulus as well as to the standard slit domain, namely, a
domain obtained from the upper half plane by removing a finite number of disjoint
line segments parallel to the x-axis. However, theKomatu-Loewner differential equa-
tion has been derived only in the left derivative sense. Recall that, even in the case of
the classical Loewner equation for a disk, its derivation in the right derivative sense
is harder (cf.[1, Sect. 6.2]).

In a recent paper by Z.-Q. Chen et al. [7], the Komatu-Loewner equation (the
K-L equation in abbreviation) for the standard slit domain is established to be a
genuine differential equationwith the kernel appearing on its right hand side being the
complex Poisson kernel of the Brownianmotionwith darning (BMD in abbreviation)
on the standard slit domain. In order to obtain the right differentiability in t of
the family of conformal mappings gt (z) involved in the equation, a probabilistic
representation of �gt (z) in terms of the BMD as well as a Lipschitz continuity of the
BMD complex Poisson kernel under the perturbation of the standard slit domains
are utilized.

The purpose of the present paper is to investigate the counterparts ofK-L equations
for the annulus and circularly slit annuli.

In Sect. 3, we consider an annulus whose outer boundary component is the unit
circle and establish the K-L equation for it as the genuine differential equation (3.10)
with a normalized Villat’s kernel on its right hand. The right differentiability of
g.(z) will be shown by using a variant of Carathéodory kernel convergence theorem
for annuli formulated in Appendix. In Komatu [14], K-L equations for the annulus
were obtained in terms of the Weierstrass zeta function and Jacobi’s elliptic function
instead of Villat’s function. The stated variant of Carathéodory theorem for annuli
was also presented in [14] without proof to ensure the continuity of the modulus
of the domain with respect to the parameter of the Jordan arc being removed. But
the proof of the stated differentiability was not as rigorous as in the present paper.
Villat’s kernel was adopted 8years later by Goluzin [12] to derive a K-L equation in
a different setting (for annuli located outside the unit disk).

In Sect. 4, we consider a general family of growing hulls in annulus that satisfies a
specific right continuity condition usually adopted in the SLE theory (cf. [18]) and in
SKLE aswell (cf. [6]).We show that the samemethod as in Sect. 3works to derive the
associated K-L equation (3.10) in the right derivative sense. Zhan presented in [22,
Proposition 2.1] a variant of Corollary 4.2 without proof for his study of an annulus
SLE that was defined based on the unnormalized Villat’s kernel. One may formulate
an annulus SLE based directly on the K-L equation (3.10) or its reparametrization
(3.21) driven by the Brownian motion (with constant drifts) on the outer circle of the
annulus.
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The Brownian motion with darning (BMD) for an (N + 1)-connected planar
domain is defined as follows, A closed connected subset of C containing at least
two points is called a continuum. Let E be a domain in C such that C\E is
an unbounded continuum and {A1, . . . , AN } be a collection of mutually disjoint
compact continua contained in E . We write E0 = E\⋃N

j=1 A j and consider the
topological space E∗ = E0∪{a∗

1 , . . . , a∗
N } obtained from E by rendering each ‘hole’

A j of E into a single point a∗
j .Extend the Lebesguemeasurem on E0 to E∗ by setting

m(a∗
j ) = 0, 1 ≤ j ≤ N . There exists then a unique m-symmetric diffusion process

Z∗ on E∗ admitting no killing at a∗
1 , . . . , a∗

N whose part (killed) process Z0 on E0 is
just the absorbing Brownian motion on E0 (cf. [5, Sect. 7.7]). We call Z∗ the BMD
for E0. Informally we may say that Z∗ is the diffusion process on E∗ obtained from
the absorbing Brownian motion on E by rendering each hole A j into a single point
a∗

j (darning).
A simple way to conceive the BMD Z∗ is to consider the Dirichlet form (E∗,F∗)

defined by
F∗ = {u ∈ H1

0 (E) : ũ is constant q.e. on each A j }

E∗(u, v) = 1

2

∫

E

∇u(x) · ∇v(x)dx,

where ũ denotes a quasi-continuous version of u. Then (E∗,F∗) turns out to be a
regular Dirichlet form on L2(E∗, m) and the associated diffusion process on E∗ is
nothing but the BMD for E0 (cf. [7]).

The notion of a BMD-harmonic function for E0 is well defined to be a func-
tion on E∗ satisfying a usual probabilistic averaging property with respect to the
BMD Z∗ (cf. [7]). Thus a BMD-harmonic function is harmonic on E0 in the clas-
sical sense but it has an additional important property that its period around each
hole A j vanishes, and accordingly it admits a unique harmonic conjugate on E0
up to the addition of a constant. If ∂E is smooth, every bounded BMD-harmonic
function u on E∗ with continuous boundary value on ∂E admits an expression
u(z) = ∫

∂E K ∗(z, ζ)u(ζ)ds(ζ), z ∈ E∗, in terms of the uniquely determined kernel
K ∗(z, ζ), z ∈ E∗, ζ ∈ ∂E, called the BMD-Poisson kernel.

Since K ∗(z, ζ) is BMD-harmonic in z for each ζ ∈ ∂E , it admits an analytic
function �(z, ζ), z ∈ E0, with ��(z, ζ) = K ∗(z, ζ) uniquely up to the addition
of a real constant. �(z, ζ) with the normalization limz→∞ �(z, ζ) = 0 is called a
BMD complex Poisson kernel for E0 and it appears on the right hand side of the K-L
equation for the standard slit domain (cf. [7]).

There exists also a function S(z, ζ), z ∈ E0, ζ ∈ ∂E, analytic in z with

S(z, ζ) = K ∗(z, ζ) uniquely up to the addition of an imaginary constant. We
call S(z, ζ) a BMD Schwarz kernel for E0 because its counterpart for the unit disk is
the classical Schwarz kernel 1

2π
ζ+z
ζ−z . We may expect that the BMD Schwarz kernel

would play important roles in the K-L equations for the annulus and circularly slit
annuli.
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Indeed we shall show in Sect. 5 that, in the case of the annulus Aq = {z ∈ C :
q < |z| < 1}, 1 < q < 1, (E = D, A = {z ∈ C : |z| ≤ q} and E0 = Aq in the
preceding notation), Villat’s kernel for Aq coincides with a BMD Schwarz kernel
for Aq up to a constant factor.

In Sect. 6, we shall consider more generally a circularly slit annulus and derive
a K-L differential equation possessing a normalized BMD Schwarz kernel on its
right hand side by making computations similar to [7]. Such a representation of the
equation in terms of a BMD Schwarz kernel was obtained neither in [17] nor in [3].
But, when at least one circular slit is present, the equation will be shown to hold only
in the sense of left derivative and the problem to make it a genuine ODE is left open.

In this connection, we mention a recent work by C. Boehm andW. Lauf [4] where
a K-L equation for a circularly slit disk is obtained as a genuine ODE by using an
extended version of the Carathéodory convergence theorem.

2 Villat’s Kernel Representing Analytic Functions on
Annulus

Define an annulus by Aq = {z ∈ C : q < |z| < 1} for q ∈ (0, 1). Sometimes Aq is
written as A by omitting q. Define Villat’s function by

Kq(z) = lim
N→∞

N∑
n=−N

1 + q2nz

1 − q2nz

= 1 + z

1 − z
+ lim

N→∞

N∑
n=1

(
1 + q2nz

1 − q2nz
+ 1 + q−2nz

1 − q−2nz

)
, z ∈ Aq . (2.1)

It holds that

Kq(z) = 1 + z

1 − z
+ 2

∞∑
n=1

q2n

q2n − z
+ 2

∞∑
n=1

q2nz

1 − q2nz
, z ∈ Aq , (2.2)

both sums on the righthand side being convergent. This is because

q2n

q2n − z
+ q2nz

1 − q2nz
= 1

1 − q2nz
+ z

q2n − z
, n ≥ 1.

For z ∈ Aq and ζ ∈ ∂Aq , define Villat’s kernel by

Kq(z, ζ) = Kq(z/ζ) = ζ + z

ζ − z
+ 2

∞∑
n=1

(
q2nζ

q2nζ − z
+ q2nz

ζ − q2nz

)
. (2.3)
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The following representation by Villat’s kernel of any analytic function on A that
is continuous on A has been known:

Theorem 2.1 If f is analytic on A and f ∈ C(A,C), then it holds that

f (z) = 1

2πi

∫

∂A


 f (ζ)Kq(z, ζ)
dζ

ζ
− 1

2πi

∫

|ζ|=q


 f (ζ)
dζ

ζ
+ ic, z ∈ A, (2.4)

where

c = 1

2πi

∫

|ζ|=q

� f (ζ)
dζ

ζ
.

Furthermore

1

2πi

∫

∂A


 f (ζ)
dζ

ζ
= 0, namely,

2π∫

0


 f (eiθ)dθ =
2π∫

0


 f (qeiθ)dθ. (2.5)

This theorem is taken from PhD thesis by Vaitsiakhovich [19] that is quoted in a
paper [8] of M.D. Contreras et al. Denote by L(z, ζ) the infinite sum in (2.3). For
z ∈ A, L(z, ζ) and L(1/z, ζ) are both analytic in ζ ∈ A and continuous on A, and
the expression (2.4) is an easy consequence of the Cauchy theorem and the Cauchy
integral formula. Using expression (2.4), we get

lim
r↑1 
 f (reiθ) = 
 f (eiθ), lim

r↓q

 f (reiθ) = 
 f (qeiθ) + 1

2πi

∫

∂A


 f (ζ)
dζ

ζ
, (2.6)

which yields (2.5).
This theorem goes back to Villat [21]. In page 12–20 of this book, the expression

like (2.4) was obtained in terms of the kernel (2.3) by matching the coefficients in the
Laurent expansion of f and in Fourier expansion of φ

∣∣
∂A

. In fact, (2.3) for |ζ| = 1
coincides with 1+ 2S for the kernel S in [21]. (2.3) for |ζ| = q is also related to the
kernel T in [21]. The expressions of S and T were then rewritten in [21] to derive
the celebrated Villat’s formula to represent an analytic function f on A in terms of
the Weierstrass zeta functions. Apparently it was in G.M. Goluzin [12] where the
sum (2.2) was first rewritten as a sum (2.1) in the principal value sense.

The next proposition will be utilized in Sects. 3 and 5. We adopt the notations
D = {z ∈ C : |z| < 1}, Dq = {z ∈ C : |z| < q}.
Proposition 2.2 (i) Suppose that f is analytic on A, f ∈ C(A,C) and


 f is equal to a real constant A on ∂Dq . (2.7)
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Then

1

2π

2π∫

0


 f (eiθ)dθ = A, (2.8)

and moreover f can be expressed as

f (z) = 1

2π

2π∫

0


 f (eiθ) Kq(z, eiθ)dθ + ic, z ∈ A, (2.9)

for some real constant c.
(ii) Conversely, for any φ ∈ C(∂D,R) and c ∈ R, define f (z), z ∈ A, by (2.9) and

A by (2.8) with φ in place of 
 f , respectively. Then

lim
r↓q


 f (reiη) = A for any η ∈ [0, 2π), lim
r↑1 
 f (reiθ) = φ(eiθ), θ ∈ [0, 2π).

(2.10)

Proof (i) Condition (2.7) implies (2.8) by Theorem 2.1. Under the condition (2.7),
the contribution of the integral on the inner circle |ζ| = q to the right-
hand side of (2.4) is − A

2πi

∫
|ζ|=q Kq(z, ζ)

dζ
ζ − A, which vanishes because

1
2πi

∫
|ζ|=q Kq(z.ζ)

dζ
ζ = −1 on account of (2.3) and

Res{ζ=0} ζ+z
ζ−z · 1

ζ = −1,
∫
|ζ|=q

dζ
ζ−q−2n z

= 0, Res{ζ=0} q2n z
ζ−q2n z

· 1
ζ = −1,

Res{ζ=q2n z}
q2n z

ζ−q2n z
· 1

ζ = 1.

(ii) By (2.3), we readily have limr↓q 
Kq(reiη, eiθ) = 1 boundedly, yielding the
first identity of (2.10). Then f admits the expression (2.4) by the observation
made in (i) and so the second identity of (2.10) is nothing but the first one in
(2.6). �

The following extension of Proposition 2.2 (i) will be utilized in Sect. 4.

Proposition 2.3 Suppose that f is analytic and bounded on A, and


 f admits a constant limit A at each point of ∂Dq . (2.11)

Then the limit
φ(eiθ) = lim

r↑1 
 f (reiθ) (2.12)

exists for a.e. θ ∈ [0, 2π) and

1

2π

2π∫

0

φ(eiθ)dθ = A. (2.13)
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Furthermore f can be expressed as

f (z) = 1

2π

2π∫

0

φ(eiθ) Kq(z, eiθ)dθ + ic, z ∈ A, (2.14)

for some real constant c.

Proof Since 
 f is a bounded harmonic function on A = Aq , the Fatou theorem
(cf. [11]) yields its boundary limit (2.12) on ∂D. On account of the assumption
(2.11), f can be extended to be an analytic function on {z : q2 < |z| < 1} denoted
by f again across ∂Dq by the mirror reflection. For any Q ∈ (q, 1), the function
fQ(z) = f (Qz) is analytic on Aq continuous on Aq so that (2.4) and (2.5) hold for
fQ . By letting Q ↑ 1,weget (2.13) and also (2.4)with
 f

∣∣
∂D

= φ and
 f
∣∣
∂Dq

= A,

which is reduced to (2.14) as in the proof of Proposition 2.2. �

3 Komatu-Loewner Equation on Annulus
in Terms of Villat’s Kernel

Fix an annulus AQ for 0 < Q < 1, and a Jordan arc γ = {γ(t) : 0 ≤ t ≤ tγ}
satisfying γ(0) ∈ ∂D, γ(0, tγ] ⊂ AQ .

According to [13, Chap.5, Sect. 1], there exists then a strictly increasing function
α : [0, tγ] �→ [Q, Qγ] (α(tγ) = Qγ < 1) with the following property: if α(t) =
q, then there is a unique conformal map gq from AQ \ γ[0, t] onto Aq with the
normalization condition

gq(Q) = q. (3.1)

We shall prove the continuity of α eventually, but we do not assume it presently.
Nevertheless we can reparametrize the curve γ as {̃γ(q) : q ∈ dom(̃γ)} by setting
γ̃(q) = γ(α−1(q)) where dom(̃γ) = α[0, tγ] ⊂ [Q, Qγ].

Take 0 ≤ t∗ < t ≤ tγ and put q = α(t), q∗ = α(t∗), then Q ≤ q∗ < q ≤ Qγ .

Define
gq∗q = gq∗ ◦ g−1

q , Sq∗q = gq∗γ[t∗t]. (3.2)

gq∗q is a conformal map from Aq onto Bq∗q = Aq∗\Sq∗q such that

gq∗q(q) = q∗. (3.3)

Let
λ(q) = gq (̃γ(q)) (3.4)
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be the image of the tip of the curve γ[0, t] under gq , which is a unique point on the
outer circle of Aq . The pre-image δq∗q = g−1

q∗q(Sq∗q) is a subarc {eiθ : β1(t∗, t) <

θ < β2(t∗, t)} of the outer circle of Aq containing the point λ(q).

We consider the function

�(w) = log
gq∗q(w)

w
, w ∈ Aq , �(q) = log

q∗

q
, (3.5)

which is a well defined analytic function on Aq , continuously extendable to Aq with


�(w) = log
q∗

q
for any w ∈ ∂Dq . (3.6)

Since 
�(eiθ) = log |gq∗q(eiθ)|, we have by Proposition 2.2 (i),

1

2π

2π∫

0

log |gq∗q(eiθ)|dθ = log
q∗

q
. (3.7)

and, for some real constant c,

log
gq∗q(w)

w
= 1

2π

2π∫

0

log |gq∗q(eiθ)|Kq(w, eiθ)dθ + ic. (3.8)

We now substitute w = gq(z), z ∈ AQ \ γ[0, t] in (3.8) to get

log
gq∗(z)

gq(z)
= 1

2π

2π∫

0

log |gq∗q(eiθ)|Kq(gq(z), eiθ)dθ + ic.

We next put z = Q and obtain from the normalization condition (3.5) that

log
q∗

q
= 1

2π

2π∫

0

log |gq∗q(eiθ)|Kq(q, eiθ)dθ + ic,

and consequently

c = − 1

2π

2π∫

0

log |gq∗q(eiθ)|�Kq(q, eiθ)dθ.
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Thus we arrive at

log
gq∗(z)

gq(z)
= 1

2π

2π∫

0

log |gq∗q(eiθ)|
[
Kq(gq(z), eiθ) − i�Kq(q, eiθ)

]
dθ. (3.9)

Theorem 3.1 q = α(t) is a strictly increasing continuous function from [0, tγ] onto
[Q, Qγ]. gq(z), z ∈ AQ\γ[0, t], is continuously differentiable in q ∈ [Q, Qγ] and
satisfies the differential equation

∂ log gq(z)

∂ log q
= Kq(gq(z),λ(q)) − i�Kq(q,λ(q)), Q ≤ q ≤ Qγ, gQ(z) = z.

(3.10)

Proof (I) We first prove that α(t), t ∈ [0, tγ), is left continuous in t , gq(z) is
left-differentiable in q and the Eq. (3.11) holds in the left-derivative sense.
Wemaintain the notations in the above. Every point on the outer circle ofAq off
the set δq∗q is sent by gq∗q to a point on the outer circle ofAq∗ .Accordingly the
domain [0, 2π] of the integration in both Eqs. (3.7) and (3.9) can be replaced
by a smaller interval [β1(t∗, t),β2(t∗, t)].
We fix t and let t∗ ↑ t. Denote by γ+(t∗), γ−(t∗) the points of ‘both sides of
the Jordan arc γ corresponding to γ(t∗). Then as t∗ ↑ t, γ+(t∗) → γ(t) =
γ̃(q), γ−(t∗) → γ(t) = γ̃(q) so that

{
β1(t∗, t) = gq(γ−(t∗)) ↑ gq (̃γ(q)) = λ(q),

β2(t∗, t) = gq(γ+(t∗)) ↓ gq (̃γ(q)) = λ(q).
(3.11)

Since the integrand in the left hand side of (3.7) is bounded, we have q∗ ↑ q
the left continuity of α. We divide the both hand sides of the Eq. (3.9) by the
both hand sides of (3.7) and let t∗ ↑ t to obtain the left-differentiablility of
gq(z) in q together with the Eq. (3.10) holding in the left-derivative sense.

(II) We use the following notations: for r > 0, 0 < s < t < ∞,

D(z, r) = {w ∈ C : |w − z| < r}, As,t = {w ∈ C : s < |w| < t}.

The mirror reflection with respect to the circle ∂D(0, r)will be denoted by�r .

For 0 ≤ t∗ < t ≤ tγ, q∗ = α(t∗), q = α(t) as before, we consider the inverse
conformal map

hq∗q = g−1
q∗q = gq ◦ g−1

q∗ : Aq∗ \ Sq∗q �→ Aq .

hq∗q satisfies hq∗q(q∗) = q and it sends the inner circle ∂D(0, q∗) of Aq∗ onto
the inner circle ∂D(0, q) of Aq . It further sends ∂D \ {λ(q∗)} onto ∂D \ δq∗q .

Hence we can extend hq∗q by the mirror reflection �q∗ to a univalent function
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(denoted by hq∗q again) on

Aq∗2 \ (Sq∗q ∪ �q∗ Sq∗q) (⊃ Aq∗ \ Sq∗q).

Furthermore, by means of the mirror reflection �1, we can extend hq∗q to a
univalent function (denoted by hq∗q again) on

Aq∗2,(q∗)−2 \ (Sq∗q ∪ �q∗ Sq∗q) \ �1(Sq∗q ∪ �q∗ Sq∗q). (3.12)

By fixing t∗, we claim that

lim
t↓t∗

q = q∗, namely, α is right continuous, (3.13)

lim
t↓t∗

hq∗q(z) = z locally uniformly on Aq∗2,(q∗)−2 \ {λ(q∗)}. (3.14)

As t ↓ t∗, the domain of definition of the univalent function hq∗q increases to
Aq∗2,(q∗)−2 \ {λ(q∗)}. Obviously {hq∗q : t ∈ (t∗, tγ]} is a uniformly bounded
family of univalent functions. Take any sequence {tn} decreasing to t∗ andwrite
hn = hq∗qn , qn = α(tn). By taking a subsequence if necessary, hn converges
to a function h locally uniformly on Aq∗2,(q∗)−2 \ {λ(q∗)}.
To prove the claims (3.13) and (3.14), Let us consider the restriction of hn to
En for En = Aq∗ \ Sq∗qn , which is denoted by hn again. Then {hn} satisfies
all the conditions (i) ∼ (iv) of Corollary 7.2, yielding (3.13) and also (3.14)
holding on Aq∗ . Obviously (3.14) then holds on Aq∗2,(q∗)−2 \ {λ(q∗)} as well.
We note that, since hq∗q(gq∗(z)) = gq(z), (3.14) implies

lim
t↓t∗

gq(z) = gq∗(z), z ∈ AQ \ γ[0, t∗ + δ], δ > 0. (3.15)

(III) The continuity ofα has been established by (I) and (3.13).Keeping the notations
in (I), we shall prove that

lim
t↓t∗

β1(t
∗, t) = λ(q∗), lim

t↓t∗
β2(t

∗, t) = λ(q∗), lim
t↓t∗

λ(q) = λ(q∗). (3.16)

Once (3.16) is established, thenwe can combine itwith (3.15) and the continuity
of the Villat’s kernelKq in q to prove the following readily from (3.7) and (3.9)
with the domain of the integration being [β1(t∗, t),β2(t∗, t)] in place of [0, 2π] :
gq(z) is right differentiable in q ∈ [Q, Qγ), the equation (3.10) holds in the
right-derivative sense and the right hand side of (3.10) is right continuous.
Just as in [10], (3.16) can be obtained from (3.14) in the following way. For
any ε > 0 with ε < 1 − q∗, choose δ > 0 such that

Sq∗q ∪ �1Sq∗q ⊂ D(λ(q∗), ε) for any t ∈ (t∗, t∗ + δ). (3.17)
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Let C = ∂D(λ(q∗), ε) and χ = hq∗q(C). Then δq∗q ⊂ ins χ. By virtue of
(3.14), we have for a sufficiently small δ > 0

|hq∗q(z) − z| < ε, for any z ∈ C and t ∈ (t∗, t∗ + δ), (3.18)

which particularly means that diam χ < 3ε. By taking any z ∈ C , we then get
for any t ∈ (t∗, t∗ + δ)

|λ(q∗) − λ(q)| ≤ |λ(q∗) − z| + |z − hq∗q(z)| + |hq∗q − λ(q)| < 5ε,

|λ(q∗) − βi (t
∗, t)| ≤ |λ(q∗) − z| + |z − hq∗q(z)| + |hq∗q − βi (t

∗, t)| < 5ε,

for i = 1, 2.
(IV) We finally show that λ(q) is left continuous:

lim
q∗↑q

λ(q∗) = λ(q), (3.19)

which implies the left continuity of the right hand side of the equation (3.10)
completing the proof of Theorem 3.1.
It follows from (3.9) that, for z ∈ Aq ,

log
gq∗q(z)

z
= 1

2π

β2(t∗,t)∫

β1(t∗,t)

log |gq∗q(eiθ)|
[
Kq(z, eiθ) − i�Kq(q, eiθ)

]
dθ.

For any ε > 0, we can choose δ > 0 such that {eiθ : β1(t∗, t) < θ <

β2(t∗, t)} ⊂ D(λ(q), ε) for t∗ ∈ (t − δ, t) by (3.12). For such t∗, we can
therefore see from the expression (2.3) of the Villat’s kernel Kq(z, ζ) that the
integrand in the right hand side of the above identity is bounded uniformly in
z ∈ Aq \ D(λ(q), ε) and in q∗ = α(t∗). Thus we deduce from (3.11)

lim
q∗↑q

gq∗q(z) = z, locally uniformly in z ∈ Aq \ {λ(q)}. (3.20)

By the mirror reflection �1, we further extend gq∗q to Aq,q−1 \ δt∗t across
∂D(0, 1). Then (3.20) is still valid locally uniformly in z ∈ Aq,q−1 \{λ(q)} and
we can repeat the same argument as in (III) for gq∗q in place of hq∗q to obtain
(3.19). �

Remark 3.2 For the function gq ◦ g−1
Qγ

in place of gq in the above, Komatu [14,
16] derived the Eq. (3.10) in terms of the Weierstrass zeta function as well as
Jacobi’s elliptic function in place of the present Villat’s function. A variant of the
Carathéodory kernel convergence theorem for annuli as Theorem 7.1 of the present
paper was also stated there without proof, that implicitly implied the continuity of the
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correspondenceα : t �→ q (as is shown in step (II) in the above proof). But the proof
of the right differentiability of gq ◦ g−1

Qγ
in q was not given as rigorously as in steps

(II), (III) of the present one. Goluzin [12] obtained a counterpart of Theorem 3.1 in
terms of Villat’s kernel under a different setting for annuli located outside the unit
disk D. �

Remark 3.3 Since α is shown to be continuous, the Jordan arc γ can be reparame-
trized in terms of q as {γ(q) : Q ≤ q ≤ Qγ} by redefining γ(α−1(q)) as γ(q) so
that gq is a conformal map from AQ \ γ[0, q] onto Aq with the normalization (3.1).
gq(z) satisfies the ODE (3.10) for z ∈ AQ \ γ[0, q].

It is sometimes convenient to reparametrize the curve γ further in terms of the
modulus p of the annulus Aq : p = − log q, q = e−p. Denote by P, Pγ the
modulus of AQ, AQγ , respectively. Villat’s kernel is denoted in terms of p as
Sp(z, ζ) = Ke−p (z, ζ). We further change the parameter q to s in a way that
q = e−P es, 0 ≤ s ≤ sγ = Pγ − P. Since the module of Aq equals P − s,
(3.10) reads for z ∈ Aq \ γ[0, s] and s ∈ [0, sγ]

∂ log gs(z)

∂s
= SP−s(gs(z),λ(s)) − i�SP−s(e

s−P ,λ(s)), g0(z) = z, (3.21)

for the conformal mapping gs fromAQ \γ[0, s] ontoAQes with gs(Q) = Qes .Here
λ(s) = gs(γ(s)). Zhan defined in [22] an annulus SLE based on the equation (3.21)
with the second normalization term of its right hand side being dropped however.
One may formulate an annulus SLE based directly on (3.10) or (3.21) driven by
the Brownian motion (with constant drifts) on the outer circle of AQ by making
analogous considerations to the case of standard slit domains in [6]. �

4 K-L Equation on Annulus for Right Continuous Growing
Hulls

We consider an annulus AQ for a fixed Q ∈ (0, 1). A closed subset F of AQ is
called a hull in AQ if the set AQ\F is doubly connected possessing ∂DQ as one of
its boundary components. A strictly increasing family {Ft : 0 < t ≤ T } of hulls in
AQ is said to be a family of growing hulls in AQ . A typical example of a family of
growing hulls in AQ is {Ft = γ(0, t]; t ∈ (0, tγ]} for a Jordan arc γ considered in
the preceding section.

Let {Ft ; 0 < t ≤ T } be a family of growing hulls in AQ . We define F0 = ∅
by convention. According to [13, Chap.5, Sect. 1] again, there exists then a strictly
increasing function α : [0, T ] �→ [Q, QT ](β(T ) = QT < 1) with the following
property: if α(t) = q, then there is a unique conformal map gq from AQ\Ft onto
Aq with the normalization condition

gq(Q) = q. (4.1)
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Needless to say, the function α is determined depending on {Ft } and it is different in
general from α in the preceding section.

Take 0 ≤ t∗ < t ≤ tγ and put q = α(t), q∗ = α(t∗), then Q ≤ q∗ < q ≤ Qγ .

Define
gq∗q = gq∗ ◦ g−1

q , Sq∗q = gq∗(Ft \ Ft∗). (4.2)

gq∗q is a conformal map from Aq onto Aq∗\Sq∗q such that

gq∗q(q) = q∗. (4.3)

We also consider the inverse map hq∗q = g−1
q∗q(= gq ◦g−1

q∗ ). hq∗q is a conformal map
from Aq∗\Sq∗q onto Aq sending the inner circle of Aq∗ onto the inner circle of Aq

homeomorphically.
Denote by δq∗q(⊂ C) the set of accumulation points of hq∗q(z) as z approaches

to Sq∗q . δq∗q is then a closed subset of the outer circle of Aq so that we can write
δq∗q = {eiθ : θ ∈ �q∗q} for a closed subset �q∗q of [0, 2π). Observe that any point
on the outer circle of Aq∗ off the closure of Sq∗q is a simple boundary point of
Aq∗\Sq∗q in the sense of [9]. In view of [9, Theorem 15.3.6], the map hq∗q extends
to a continuous one-to-one map (denoted by hq∗q again) from Aq∗\Sq∗q into Aq .

We show that

hq∗q(Aq∗ \ K ) = Aq \ δq∗q for K = Sq∗q . (4.4)

Denote the outer circle of Aq∗ (resp. Aq ) by C∗ (resp. C). For any z ∈ C∗\K , take
a crosscut γ of Aq∗ separating z and K . Then hq∗q(γ) separates hq∗q(z) ∈ C from
δq∗q so that we have the inclusion ⊂ in (4.4). Next, take any sequence wn ∈ Aq

converging to w ∈ C\δq∗q . Then zn = gq∗q(wn) ∈ Aq∗\Sq∗q converges to a point
z ∈ C∗ ∪ K by taking a suitable subsequence if necessary. If z ∈ K , then wn =
hq∗q(zn) accumulates to δq∗q that is absurd. Hence z ∈ C∗\K . Since z is simple, wn

converges to a point w′ ∈ C that must equal w by the assumption, yielding (4.4).
Analogously to Sect. 3, we consider the function

�(w) = log
gq∗q(w)

w
, w ∈ Aq , �(q) = log

q∗

q
, (4.5)

which is a well defined bounded analytic function on Aq with


�(w) = log
q∗

q
for any w ∈ ∂Dq . (4.6)

Hence, by virtue of Proposition 2.3, the limit

φ(eiθ) = lim
r↑1 log |gq∗q(reiθ)| (4.7)
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exists for a.e. θ ∈ [0, 2π), and the identities (2.13) with A = log q∗
q and (2.14)

hold true. But, by the observation made above, limr↑1 |gq∗q(reiθ)| = 1 for any
θ ∈ [0, 2π)\�q∗q so that the domain of integration [0, 2π) in those identities can be
replaced by �q∗q , yielding as in Sect. 3

1

2π

∫

�q∗q

φ(eiθ)dθ = log
q∗

q
. (4.8)

log
gq∗(z)

gq(z)
= 1

2π

∫

�q∗q

φ(eiθ)
[
Kq(gq(z), eiθ) − i�Kq(q, eiθ)

]
dθ. (4.9)

We now state a specific right continuity condition on a family of growing hulls.
Let {Ft ; t ∈ (0, T ]} be a family of growing hulls in the annulus AQ . We keep the
related notations introduced above. Let q∗ = α(t∗) for t∗ ∈ [0, T ). The family is
called right continuous at t∗ with limit λ(q∗) if there exists a point λ(q∗) on the outer
boundary of Aq∗ such that ⋂

t>t∗
Sq∗q = λ(q∗), (4.10)

for Sq∗q defined by (4.2). This condition is obviously satisfied when the hulls are
generated by a Jordan arc γ, in which case λ(q∗) = gq∗(γ(t∗)). But such a condition
is also satisfied by more general families of growing hulls arising in SLE (cf. [18])
and in SKLE (cf. [6]) as well.

Theorem 4.1 Let {Ft ; t ∈ (0, T ]} be a family of growing hulls in the annulus AQ

that is right continuous at t∗ ∈ [0, T ) with limit λ(q∗). Then q = α(t) is right
continuous at t = t∗, gq(z) is right differentiable at q = q∗ and

∂+ log gq(z)

∂ log q

∣∣∣∣
q=q∗

= Kq∗(gq∗(z),λ(q∗)) − i�Kq∗(q∗,λ(q∗)), (4.11)

for z ∈ AQ\Ft∗+δ, δ > 0, where the left hand side denotes the right derivative.

Proof It suffices to repeat the steps (II) and (III) in the proof of Theorem 3.1 almost
word for word.

Indeed we have verified in the above that the conformal map hq∗q extends to a
continuous one-to-one map from Aq∗\Sq∗q onto Aq\δq∗q . Accordingly, using the
mirror reflections �q∗ and �1, it can be further extended to a conformal map from
the region specified by (3.12) that increases to Aq∗2,(q∗)−2\{λ(q∗)} as t ↓ t∗ owing
to the current condition (4.10). The functions hn and regions En defined in the
paragraph above (3.15) satisfy all the conditions (i)–(iv) of Corollary 7.2 again owing
to condition (4.10). Hence we get the right continuity (3.13) of α and a local uniform
convergence (3.14) of hq∗q together with the right continuity (3.15) of g.(z).
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For any ε > 0 with ε < 1− q∗, we can choose δ > 0 such that (3.17) is valid due
to condition (4.10). Let C = ∂D(λ(q∗), ε) and χ = hq∗q(C). By virtue of (3.14),
we have for a sufficiently small δ > 0 the property (3.18) which particularly means
that diam χ < 3ε. Since δq∗q ⊂ ins χ, we get for every ζ ∈ δq∗q

|λ(q∗) − ζ| < 5ε, for any t ∈ (t∗, t∗ + δ). (4.12)

By taking the continuity of Villat’s kernel Kq(z, ζ) and (3.15) into account, we
can now deduce the desired conclusion of Theorem 4.1 from (4.8), (4.9) and (4.12).

�

Corollary 4.2 Let {Ft ; t ∈ [0, T ]}, F0 = ∅ be a family of growing hulls in the
annulus AQ satisfying the following conditions:

(1) α is continuous on [0, T ] so that α[0, T ] = [Q, QT ].
(2) There exists a continuous map λ from [Q, QT ] to ∂D and Ft is right continuous

at each t ∈ [0, T ] with limit λ(q) for q = α(t).
(3) gq(z) is continuous in q ∈ [Q, QT ] for each z ∈ AQ\FT .

Then gq(z), z ∈ AQ \FT , is continuously differentiable in q ∈ [Q, QT ] and satisfies
the differential equation

∂ log gq(z)

∂ log q
= Kq(gq(z),λ(q)) − i�Kq(q,λ(q)), gQ(z) = z. (4.13)

In fact, under the stated conditions, (4.13) holds in the right derivative sense by virtue
of Theorem 4.1. As the right hand side of (4.13) is continuous in q, it becomes a
genuine ODE.

5 Villat’s Kernel Is a BMD Schwarz Kernel

The Schwarz kernel on a planar domain is by definition an analytic function with its
real part being the Poisson kernel to represent harmonic functions by their values on
the boundary. But we need to specify which class of harmonic functions and which
part of the boundary are involved.Weconsider aBMDSchwarzkernelS(z, ζ)defined
in Introduction.
S(z, ζ), z ∈ Aq , ζ ∈ ∂D, for the annulusAq thus represents BMD
harmonic functions for Aq by their boundary values on ∂D. We now deduce from
Proposition 2.2 (ii) that the Villat’s kernel Kq(z, ζ) for z ∈ Aq , ζ ∈ ∂D, is equal to
a BMD Schwarz kernel S(z, ζ) for Aq up to a constant factor.

The BMDonAq is the diffusion process onAq ∪{a∗} obtained from the absorbing
Brownian motion on D by rendering the inner concentric disk Dq = {z : |z| < q}
into a single point a∗.TheBMD-Poisson kernel K ∗(z, eiθ), z ∈ Aq , 0 ≤ θ < 2π, to
representBMD-harmonic functions by their values on∂D admits the same expression
as (5.2) of [7]:
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K ∗(z, eiθ) = −1

2

d

dr
G0(z, reiθ)

∣∣
r=1 − ϕ(z)p−1 d

dr
ϕ(reiθ)

∣∣
r=1,

where G0 is the Green function (the 0-order resolvent density) of the ABM onAq , ϕ
is the hitting probability ofDq for the ABMonD, and p is the period ofϕ aroundDq .

Due to the rotational symmetry, the second term of the right hand side is independent
of θ, and K ∗(z, ζ) is a harmonic function in z ∈ Aq taking a constant 1/(2π) on
∂Dq for each θ ∈ [0, 2π).

Consider any non-negative continuous functionφ on [0, 2π)with
∫ 2π
0 φ(θ)dθ = 1

and let u(z) = ∫ 2π
0 K ∗(z, eiθ)φ(θ)dθ, z ∈ Aq . Then u is harmonic on Aq , taking a

constant 1/(2π) on ∂Dq and taking the value φ(θ) at each eiθ ∈ ∂D. By virtue of

Proposition 2.2 (ii), f (z) = 1
2π

∫ 2π
0 φ(θ)Kq(z, eiθ)dθ is an analytic function on Aq

whose real part 
 f (z) possesses the same boundary value on ∂Aq as u. Therefore

 f (z) = u(z), z ∈ Aq . By making φ → δθ0 for a fixed θ0 ∈ [0, 2π), we conclude
that 1

2π 
Kq(z, eiθ0) = K ∗(z, eiθ0), that is to say, 1
2πKq(z, eiθ0), 0 ≤ θ0 < 2π, is

nothing but a BMD-Schwarz kernel for the annulus Aq .

6 K-L Equation on Circularly Slit Annulus in Terms of
BMD Schwarz Kernel

A domain D of the form D = Aq\⋃N−1
j=1 C j is called a circularly slit annulus if

Aq = {z ∈ C : q ≤ |z| < 1} is an annulus for some q ∈ (0, 1) and C j are mutually
disjoint concentric circular slits contained inAq .We denote byD the collection of all
circularly slit annuli. The Komatu-Loewner equation for D has been formulated by
Komatu [17] and Bauer-Friedrich [3]. In this section, we make their descriptions of
the equation more precise in terms of a normalized BMD Schwarz kernel introduced
below.

We fix D = AQ\⋃N−1
j=1 C j ∈ D and consider a Jordan arc γ : [0, tγ] �→ D with

γ(0) = ∂D, γ(0, tγ] ⊂ D. According to [17], we can then find a strictly increasing
function α : [0, tγ] �→ [Q, Qγ], (α(tγ) = Qγ) such that, for q = α(t), there exists
a unique conformal map

gq : D \ γ[0, t] �→ Dq = Aq \
N−1⋃
j=1

C j (q) ∈ D, with gq(Q) = q.

α may not be continuous as in the annulus case of Sect. 3. Nevertheless we can
reparametrize the curve γ as {̃γ(q) : q ∈ dom(̃γ)} by setting γ̃(q) = γ(α−1(q)),

where dom(̃γ) = α[0, tγ] ⊂ [Q, Qγ].
For D = Aq\⋃N−1

j=1 C j ∈ D, let K ∗
D(z, ζ), z ∈ D, ζ ∈ ∂D, be the BMD

Poisson kernel for D. A BMD Schwarz kernel SD(z, ζ) for D is by definition a
function analytic in z ∈ D satisfying 
SD(z, ζ) = K ∗

D(z, ζ). For each ζ ∈ ∂D,
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SD(·, ζ) exists uniquely up to an imaginary additive constant owing to the zero
period property of a BMD harmonic function (cf. [7]). Let us denote by ŜD(z, ζ) the
BMD Schwarz kernel subjected to a normalization

�ŜD(q, ζ) = 0, for any ζ ∈ ∂D. (6.1)

Any BMD Schwarz kernel SD(z, ζ) gives rise to a normalized one by

ŜD(z, ζ) = SD(z, ζ) − i�SD(q, ζ), z ∈ D, ζ ∈ ∂D. (6.2)

If D is just an annulus Aq with no circular slit, then we see by virtue of the result in
the preceding section that its normalized BMDSchwarz kernel equals the normalized
Villat’s kernel multiplied by 1

2π :

ŜD(z, ζ) = 1

2π
[Kq(z, ζ) − i�Kq(q, ζ)]. (6.3)

Take 0 ≤ t∗ < t ≤ tγ and put q = α(q), q∗ = α(t∗). Then Q ≤ q∗ < q ≤ Qγ .

Define gq∗q = gq∗ ◦ g−1
q which maps Dq conformally onto Dq∗\Sq∗q and satisfies

gq∗q(q) = q∗, (6.4)

where Sq∗q = gq∗γ[t∗, t]. Let

λ(q) = gq (̃γ(q)) (6.5)

that is located on an outer circle of Dq . The pre-image g−1
q∗q(Sq∗q) of Sq∗q is a subarc

{eiθ : β1(t∗, t) < θ < β2(t∗, t)} of the outer circle of Dq containing the point λ(q).

Now log

∣∣∣∣
gq∗q(z)

z

∣∣∣∣ , z ∈ Dq , is harmonic on Dq as the imaginary part of the

well defined analytic function log
gq∗q(z)

z
on Dq and takes a constant value on each

circular slit C j (q). Therefore we can verify just as in [7, Sect. 6.3] that

log

∣∣∣∣
gq∗q(z)

z

∣∣∣∣ =
∫

∂D

∣∣∣∣log
gq∗q(ζ)

ζ

∣∣∣∣ K ∗
q (z, ζ)s(dζ), z ∈ Dq , (6.6)

where K ∗
q (z, ζ) is the BMD Poisson kernel for the circularly slit annulus Dq . Hence

we get

log
gq∗q(z)

z
=

β1(t∗,t)∫

β0(t∗,t)

log |gq∗q(eiϕ)|Ŝq(z, eiϕ)dϕ + ic, (6.7)

for the normalized BMD Schwarz kernel Ŝq and for some real constant c.
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By substituting z = q in (6.7), we obtain from (6.4)

log
q∗

q
=

β1(t∗,t)∫

β0(t∗,t)

log |gq∗q(eiϕ)|Ŝq(q, eiϕ)dϕ + ic,

which implies that c = 0 on account of (6.1).
On the other hand, the Cauchy integral theorem applied to the analytic function

log
gq∗q(z)

z
on the circularly slit annulus Dq yields just as in [3, Sect. 3.2]

log
q∗

q
=

β1(t∗,t)∫

β0(t∗,t)

log |gq∗q(eiϕ)|dϕ. (6.8)

The integrand on the right hand side of (6.8) being uniformly bounded, we get
the left continuity of q = α(t) by letting t∗ ↑ t in (6.8).

We next substitute z = gq(w) into the identity (6.7) with c = 0. We then divide
the resulting the both hand sides of the resulting identity by those of (6.8) and let
t∗ ↑ t in getting the following theorem.

Theorem 6.1 q = α(t) is left continuous in t ∈ (0, tγ].
gq(z) is left-differentiable in q and it holds for z ∈ D\γ[0, t] that

∂− log gq(z)

∂ log q
= 2πŜq(gq(z),λ(q)), q ∈ α(0, tγ] ⊂ (Q, Qγ], gQ(z) = z, (6.9)

where the left hand side denotes the left derivative.

Remark 6.2 In the special case that N = 1, D is just an annulusAQ and the equation
(6.9) is reduced to

∂− log gq(z)

∂ log q
= Kq(gq(z),λ(q)) − i�Kq(q,λ(q)). q ∈ α(0, tγ], gQ(z) = z,

(6.10)
by virtue of (6.3), which actually holds in the true derivative sense as has been
proved in Theorem 3.1 by making use of the kernel convergence theorem for annuli
formulated in Appendix.

In the case where N > 1 so that the degree of the multiplicity of the circularly slit
annulus D is equal or greater than 3, the problem of proving the equation (6.9) to be
a genuine ODE remains open, although Komatu [17] tried to do so by an induction
in N ≥ 1 not quite successfully.
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7 Appendix: Carathéodory-Komatu Convergence
Theorem for Annuli

As in Sect. 3, we use the notations D(z, r) = {w ∈ C : |w − z| < r}, A(s, t) =
{w ∈ C : s < |w| < t} for r > 0, 0 < s < t.

Consider the following two conditions on a doubly connected domain D in C :

(i) D ⊂ A(1, a) for some a > 1,
(ii) D admits ∂D(0, 1) as one of the boundary components of D.

We let D = {D : D is a doubly connected domain satisfying (i) and (ii)}.
For a sequence {Dn} in D, we define its kernel as follows. Suppose that D0 ⊂

∩∞
n=1Dn for some D0 ∈ D. Then the kernel of {Dn} is defined as the maximal doubly

connected domain D in D(0, 1)c such that D satisfies (ii) and any compact subset
of D is contained in Dn for sufficiently large n. Otherwise, the kernel is defined to
be ∂D(0, 1). A sequence {Dn} in D is said to be convergent to D in the sense of
kernel convergence, if D is the kernel of {Dn} and the kernel of any subsequence of
{Dn} coincides with D. A sequence {Dn} in D is said to be uniformly bounded if
Dn ⊂ A(1, a), n ≥ 1, for some a > 1.

It is known that if there exists a conformal map from D onto D′ with D, D′ ∈ D,
then D and D′ admit an identical modulus and the map extends homeomorphically
from ∂D(0, 1) ∪ D onto ∂D(0, 1) ∪ D′.

A version of the following theorem was presented in [14, 16] without proof only
bymentioning its similarity to a proof of Carathéodory’s kernel convergence theorem
for a disk. But we give a proof for completeness.

Theorem 7.1 (Carathéodory-Komatu Convergence Theorem) Let {Dn} be a
uniformly bounded sequence of doubly connected domains in D and let {Rn} be
a sequence with Rn > 1, n ≥ 1, such that there is a conformal map Fn from
A(1, Rn) onto Dn satisfying Fn(1) = 1 for every n. Then the kernel convergence of
{Dn} to a doubly connected domain D inD implies that the sequence {Rn} converges
to R yielding the modulus of D to be log R and that the sequence {Fn} converges
locally uniformly to a conformal map F from A(1, R) onto D.

Proof The assumption of the uniform boundedness of {Dn} and the kernel conver-
gence of {Dn} to D ∈ D imply that ∂Dn ⊂ A(1, a) \A(1, b), n ≥ 1, for some a, b
with 1 < b ≤ a. Due to the monotonicity of the moduli (cf. [13, 5,1,Theorem 3]),
we then have b ≤ Rn ≤ a.

As {Fn} is a normal family, there exist a positive number R′ > 1 and a sub-
sequence {nk} of {n} such that limk→∞ Rnk = R′ and {Fnk } converges locally
uniformly to some analytic function F on A(1, R′), which is non-constant because
1

2πi

∫
|z|=(R′+1)/2 d log F(z)dz = limk→∞

1

2πi

∫
|z|=(R′+1)/2 d log Fnk (z)dz =

limk→∞
1

2π

∫
|z|=(R′+1)/2 d arg Fnk (z) = 1. By virtue of Hurwitz’s theorem, we can
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deduce from the univalence of {Fnk } that F is an injective map from A(1, R′) to its
image F(A(1, R′)).

It holds that F(A(1, R′)) ⊂ D. In fact, for any ζ ∈ A(1, R′), there exists δ > 0
with D(ζ, δ) ⊂ A(1, R′). Then D(ζ, δ) ⊂ A(1, Rn) from some n on. Since the
univalence of the function F implies that the coefficient c1 in the Taylor expansion
of F(z) − F(ζ) = c1(z − ζ) + · · · around ζ does not vanish, we can deduce
|F ′

nk
(ζ)| ≥ c holding for some c > 0 and for sufficiently large k from the local

uniform convergence of {Fnk } to F combined with Cauchy’s integral expressions of
F ′(ζ) and F ′

nk
(ζ). Hence there existsρ > 0 such thatD(Fnk (ζ), ρ) ⊂ Fnk (D(ζ, δ)) ⊂

Dnk from some k on by Koebe 1/4 theorem. Since limnk→∞ Fnk (ζ) = F(ζ), we
have D(F(ζ), ρ/2) ⊂ Dnk from some k on, and consequently F(A(1, R′)) ⊂ D
because D is also the kernel of Dnk .

Denote by Hn the inverse of Fn . Since the family {Hn} is uniformly bounded,
we may assume that {Hnk } is a locally uniformly convergent sequence by tak-
ing a suitable subsequence of {nk} if necessary. Since D is also the kernel of
{Dnk }, we can see that, for any w ∈ D, w ∈ Dnk for sufficiently large k and
H(w) = limk→∞ Hnk (w) is well defined with 1 ≤ |H(w)| ≤ R′. Further H is non-

constant because of
1

2πi

∫
|w|=r d log H(w) = limk→∞

1

2πi

∫
|w|=r d log Hnk (w) =

limk→∞
1

2π

∫
|w|=r d arg Hnk (w) = 1 for some r > 1 satisfying ∂D(0, r) ⊂

∩∞
n=1Dn .
Therefore, by applying the open mapping theorem to the analytic function H

together with the pointwise convergence of {Hnk } to H as k → ∞, we see that, for
any fixedw ∈ D, there exists a positive number δ such that Hnk (w) ∈ D(H(w), δ) ⊂
A(1, R′) for sufficiently large k.

If F omits the value w, we have the following contradiction:

0 = 1

2πi

∫

CH(w),δ

F ′(z)
F(z) − w

dz = lim
k→∞

1

2πi

∫

CH(w),δ

F ′
nk

(z)

Fnk (z) − w
dz = 1,

where CH(w),δ = ∂D(H(w), δ) with counterclockwise orientation. Accordingly, F
takes thevaluew at somepoint inD(H(w), δ). By combining thiswith F(A(1, R′)) ⊂
D and the univalence of F , we conclude that F is a conformal map from A(1, R′)
onto D.

Owing to the uniqueness of the modulus of the domain D, we have R =
limk→∞ Rnk independently of the choice of {nk}. Further, F = limk→∞ Fnk gives
a conformal map from A(1, R) onto D. As F(1) = 1, F is uniquely determined
independently of the choice of {nk} (cf. [13, 5,1, Theorem 2]), yielding the desired
conclusion. �

Consider q∗ with 0 < q∗ < 1 and a sequence {qn} satisfying q∗ < qn < 1 for
each n.
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Corollary 7.2 Let {hn} be a sequence of univalent functions satisfying the following
conditions:

(i) Each hn is a surjective map from a domain En to A(qn, 1) with En ⊂ A(q∗, 1).
(ii) En ⊂ En+1 for every n and ∪∞

n=1En = A(q∗, 1).
(iii) Each En has ∂D(0, q∗) as one of its boundary components.
(iv) hn(q∗) = qn for every n.

Then limn→∞ qn = q∗ and {hn} converge locally uniformly to the identity map
on A(q∗, 1).

Proof We denote the inverse function of hn by gn and define a conformal map Fn

from A(1,
1

qn
) onto Dn satisfying Fn(1) = 1 by Fn(z) = 1

q∗ gn(qnz) for each n,

where Dn = { z

q∗ ∈ C : z ∈ En} ∩ A(1,
1

q∗ ). Then the kernel convergence of

the sequence {Dn} in D to A(1,
1

q∗ ) ∈ D follows from (ii). Since the modulus of

A(1,
1

q∗ ) equals q∗, we can apply Theorem7.1 to deduce that limn→∞ qn = q∗ and

that {Fn} converges to a conformalmap F fromA(1, 1
q∗ ) onto itself locally uniformly

onA(1, 1
q∗ ). Since F(1) = 1,we get F(z) = z, z ∈ A(1, 1

q∗ ), that yields the desired
conclusion. �
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Skew-Unfolding the Skorokhod Reflection
of a Continuous Semimartingale

Tomoyuki Ichiba and Ioannis Karatzas

Abstract The Skorokhod reflection of a continuous semimartingale is unfolded, in
a possibly skewed manner, into another continuous semimartingale on an enlarged
probability space according to the excursion-theoretic methodology of [14]. This is
done in terms of a skew version of the Tanaka equation, whose properties are studied
in some detail. The result is used to construct a system of two diffusive particles with
rank-based characteristics and skew-elastic collisions. Unfoldings of conventional
reflections are also discussed, as are examples involving skew Brownian Motions
and skew Bessel processes.

Keywords Skorokhod and conventional reflections · Skew and perturbed Tanaka
equations · Skew Brownian and Bessel processes · Pure and Ocone martingales ·
Local time · Competing particle systems · Asymmetric collisions

AMS 2000 Subject Classifications: Primary 60G42; Secondary 60H10

1 The Result

On a filtered probability space (�,F , P), F = {F(t)}0≤t<∞ satisfying the so-called
“usual conditions” of right continuity and augmentation by null sets, we consider a
real-valued continuous semimartingale U (·) of the form

U (t) = M(t) + A(t) , 0 ≤ t < ∞ (1.1)
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with M(·) a continuous local martingale and A(·) a process of finite first variation
on compact intervals. We assume M(0) = A(0) = 0 for concreteness.

There are two ways to “fold”, or reflect, this semimartingale about the origin. One
is the conventional reflection

R(t) := |U (t)| , 0 ≤ t < ∞; (1.2)

the other is the Skorokhod reflection

S(t) := U (t) + max
0≤s≤t

( − U (s)
)
, 0 ≤ t < ∞ . (1.3)

The following result, inspiredbyProkaj [14], showshow thefirst canbeobtained from
the second, by suitably unfolding the Skorokhod reflection in a possibly “skewed”
manner.

Theorem 1 Fix a constant α ∈ (0, 1). There exists an enlargement
(
�̃, F̃ , P̃

)
,

F̃ = {F̃(t)}0≤t<∞ of the filtered probability space (�,F , P), F = {F(t)}0≤t<∞
with a measure-preserving map π : � → �̃ , and on this enlarged space a continuous
semimartingale X (·) that satisfies

∣∣X (·)∣∣ = S(·) , L X (·) = α L S(·) ,

X (·) =
·∫

0

sgn
(
X (t)

)
dU (t) + 2α − 1

α
L X (·) . (1.4)

Here and throughout this paper, we use the notation

LU (·) := lim
ε↓0

1

2 ε

·∫

0

1{0≤U (t)<ε} d〈U 〉(t) , L̂U (·) := 1

2

(
LU (·) + L−U (·)

)

(1.5)

respectively for the right and the symmetric local time at the origin of a continuous
semimartingale as in (1.1), and the conventions

sgn(x) := 1(0,∞)(x)− 1(−∞,0)(x) , sgn(x) := 1(0,∞)(x)− 1(−∞,0](x) , x ∈ R

for the symmetric and the left-continuous versions, respectively, of the signum func-
tion. We also denote by F

U = {FU (t)}0≤t<∞ the “natural filtration” of U (·) , that
is, the smallest filtration that satisfies the usual conditions and with respect to which
U (·) is adapted; we set FU (∞) := σ

(⋃
0≤t<∞ FU (t)

)
. Equalities between sto-

chastic processes, such as in (1.4), are to be understood throughout in the almost sure
sense.
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Theorem 1 constructs a continuous semimartingale X (·) whose conventional
reflection coincides with the Skorokhod reflection of the given semimartingale U (·),
and which satisfies the stochastic integral equation in (1.4). We think of this equation
as a skew version of the celebrated Tanaka equation driven by the continuous semi-
martingale U (·), whose “skew-unfolding” it produces via the parameter α . When
there is no skewness, i.e., with α = 1/2, the integral equation of (1.4) reduces to the
classical Tanaka equation; in this case Theorem 1 is just the main result in the paper
[14], which inspired our work.

We shall prove Theorem 1 in Sect. 3, then use it in Sect. 5 to construct a system
of two diffusive particles with rank-based characteristics and skew-elastic collisions.
Section4 discusses a similar skew-unfolding of the conventional reflection R(·)
= |U (·)| of U (·) . In the section that follows we discuss briefly some properties of
the skew Tanaka equation in (1.4).

2 The Skew Tanaka Equation

A first question that arises regarding the stochastic integral equation in (1.4), is
whether it can be written in the more conventional form

X (·) =
·∫

0

sgn
(
X (t)

)
dU (t) + 2α − 1

α
L X (·) , (2.1)

in terms of the asymmetric (left-continuous) version of the signum function.
For this, it is necessary and sufficient to have

·∫

0

1{X (t)=0} dU (t) ≡ 0 , or equivalently

·∫

0

1{S(t)=0} dU (t) ≡ 0 (2.2)

in the context of Theorem 1. Now from (1.1), (1.3) it is clear that M(·) is the local
martingale part of the continuous semimartingale S(·), so we have 〈S〉(·) = 〈U 〉(·)
= 〈M〉(·) and

∞∫

0

1{S(t)=0} d〈M〉(t) = 0 (2.3)

(e.g., Karatzas and Shreve [9], Exercise 3.7.10). This gives
∫ ·
0 1{S(t)=0} dM(t) ≡ 0 ,

so (2.2) will follow if and only if

·∫

0

1{S(t)=0} dA(t) ≡ 0 (2.4)
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holds; and on the strength of (2.3), a sufficient condition for (2.4) is that A(·) be
absolutely continuous with respect to the quadratic variation process 〈M〉(·). We
have the following result.

Proposition 1 For a given continuous semimartingale U (·) of the form (1.1) the
stochastic integral equation of (1.4) can be cast equivalently in the form (2.1),
if and only if (2.4) holds; and in this case we have the identification L S(t)
= max0≤s≤t

( − U (s)
)

and the filtration comparisons

F |X |(t) = FU (t) ⊆ F X (t) , 0 ≤ t < ∞ . (2.5)

Whereas, a sufficient condition for (2.4) to hold, is that there exist an F−progressively
measurable process p(·), locally integrable with respect to 〈M〉(·) and such that

A(·) =
·∫

0

p(t) d〈M〉(t) . (2.6)

Proof The first and third claims have already been argued. As for the second, we
observe that the Itô-Tanaka formula applied to (2.1) gives

S(·) = ∣∣X (·)∣∣ =
·∫

0

sgn
(
X (t)

)
dX (t) + 2L X (·) = U (·) − 2α − 1

α
L X (·) + 2 L X (·)

= U (·) + L S(·)

on the strength of the second equality in (1.4). It is clear from this expression that
the filtration comparison FU (t) ⊆ F S(t) holds for all 0 ≤ t < ∞ ; whereas the
reverse inclusion and the claimed identification are direct consequences of (1.3). �

Remark 1 More generally (that is, in the absence of condition (2.4)), the local
time at the origin of the Skorokhod reflection S(·) is L S(t) = max0≤s≤t (−U (s))
+ ∫ t

0 1{S(u)=0} dA(u) , 0 ≤ t < ∞ .

2.1 Uniqueness in Distribution for the Skew Tanaka Equation

A second question that arises regarding the skew-Tanaka equation of (1.4), is whether
it can be solved uniquely. It is well-known that we cannot expect pathwise uniqueness
or strength to hold for this equation. Such strong existence and uniqueness fail already
with α = 1/2 and U (·) a standard Brownian motion, in which case we have in
(2.5) also the strict inclusion FU (t) � F X (t) for all t ∈ (0,∞) (e.g., [9, Example
5.3.5]). The Skorokhod reflection of U (·) can then be “unfolded” into a Brownian
motion X (·), whosefiltration is strictly finer than that of the originalBrownianmotion
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U (·): the unfolding cannot be accomplished without the help of some additional
randomness.

The issue, therefore, is whether uniqueness in distribution holds for the skew-
Tanaka equation of (1.4), under appropriate conditions.We shall address this question
in the case of a continuous localmartingale U (·) with U (0) = 0 and 〈U 〉(∞) = ∞ .
Let us recall a few notions and facts about such a process, starting with its Dambis-
Dubins-Schwarz representation

U (t) = B
(〈U 〉(t)), 0 ≤ t < ∞ (2.7)

(cf. [9, Theorem 3.4.6]); here B(θ) = U (Q(θ)), 0 ≤ θ < ∞ is standard Brownian
motion, and Q(·) the right-continuous inverse of the continuous, increasing process
〈U 〉(·).

We say that this U (·) is pure, if each 〈U 〉(t) is F B(∞)-measurable; we say
that it is an Ocone martingale, if the processes B(·) and 〈U 〉(·) are independent
(cf. [4, 12], Appendix). As discussed in [17], a pure Ocone martingale is a Gaussian
process.

Proposition 2 Suppose that U (·) is a continuous local martingale with U (0) = 0
and 〈U 〉(∞) = ∞ . Then uniqueness in distribution holds for the skew-Tanaka
equation of (1.4), or equivalently of (2.1), provided that either

(i) U (·) is pure; or that
(ii) the quadratic variation process 〈U 〉(·) is adapted to a Brownian motion �(·)

:= (�1(·), . . . , �n(·))′, with values in some Euclidean space R
n and indepen-

dent of the real-valued Brownian motion B(·) in the representation (2.7).

Proof Let us consider a continuous local martingale U (·) with U (0) = 0 , and any
continuous semimartingale X (·) that satisfies the stochastic integral equation in (1.4).
Then X (·) also satisfies the equation of (2.1), as the condition (2.6) holds in this case
trivially with p(·) ≡ 0. In fact, the Eq. (2.1) can be written then in the form

X (Q(s)) =
s∫

0

sgn
(
X (Q(θ))

)
dB(θ) + 2α − 1

α
L X (Q(s)) , 0 ≤ s < ∞ ,

with Q(·) the right-continuous inverse of the continuous, increasing process 〈U 〉(·);
cf. Proposition 3.4.8 in [9]. Setting

X̃(s) := X
(
Q(s)

)
, it is straightforward to check L X̃ (s) = L X (

Q(s)
)
,

0 ≤ s < ∞;

for this, one uses the representation (1.5) for the local time at the origin, along with
the fact that the local martingale part of the continuous seminartingale X (·) in (2.1)
has quadratic variation process 〈U 〉(·) . Thus, the time-changed process X̃(·) satisfies
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the stochastic integral equation

X̃(s) =
s∫

0

sgn
(
X̃(θ)

)
dB(θ) + 2α − 1

α
L X̃ (s) , 0 ≤ s < ∞ . (2.8)

This can be cast as the Harrison and Shepp equation of [7], namely

X̃(·) = W̃ (·) + 2α − 1

α
L X̃ (·) (2.9)

for the skew Brownian motion, driven by the standard Brownian motion

W̃ (·) :=
·∫

0

sgn
(
X̃(θ)

)
dB(θ) . (2.10)

It is well-known from the theory of [7] that the Eq. (2.9) has a pathwise unique,
strong solution; in fact, the skew Brownian motion X̃(·) and the Brownian motion
W̃ (·) generate the same filtration. Since

X (t) = X̃
(〈U 〉(t)) , 0 ≤ t < ∞ (2.11)

holds with X̃(·) adapted to F
W̃ , the distribution of X (·) is uniquely determined

whenever

the Brownian motion W̃ (·) of (2.10) is independent of the process 〈U 〉(·) , (2.12)

or whenever

〈U 〉(t) is F W̃ (∞)-measurable, for every t ∈ [0,∞) . (2.13)

But (2.13) holds when U (·) is pure (case (i) of the Proposition); this is because
from (2.10) we have B(·) = ∫ ·

0 sgn
(
X̃(θ)

)
dW̃ (θ), therefore F B(t) ⊆ F W̃ (t) for

all t ∈ [0,∞) and thus F B(∞) ⊆ F W̃ (∞).
On the other hand, (2.12) holds under the condition of case (ii) in the Proposition,

as 〈U 〉(·) is then adapted to the filtration generated by the n-dimensional Brownian
motion �(·) ; this, in turn, is independent of W̃ (·) on the strength of the P. Lévy
Theorem (e.g., Karatzas and Shreve [9], Theorem 3.3.16), since

〈W̃ , � j 〉(·) =
·∫

0

sgn
(
X̃(θ)

)
d〈B, � j 〉(θ) ≡ 0 , ∀ j = 1, . . . , n .

The proof of the proposition is complete. �
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Remark 2 It would be interesting to obtain sufficient conditions for either (2.12) or
(2.13) to hold, which are weaker than those of Proposition 2. As Example 2 shows,
however—and contrary to our own initial guess—we cannot expect the conclusions
of Proposition 2 to remain true for general Ocone martingales.

Example 1 From Brownian Motion to Skew Brownian Motion: Suppose that U (·)
is standard, real valued Brownian motion. Then the conditions of Propositions 1 and
2 are satisfied rather trivially; uniqueness in distribution holds for the skew-Tanaka
equation of (2.1) (equivalently, of (1.4)); and every continuous semimartingale X (·)
that satisfies (2.1) is of the form

X (·) = W (·) + 2α − 1

α
L X (·) with W (·) :=

·∫

0

sgn
(
X (t)

)
dU (t) ,

or equivalently

X (·) = W (·) + 2
(
2α − 1

)
L̂ X (·)

in terms of the symmetric local time as in (1.5). Of course W (·) is standard Brownian
motion by the P. Lévy theorem, and the Harrison-Shepp theory [7] once again charac-
terizes X (·) as skew Brownian motion with parameter α . The processes W (·) and
X (·) generate the same filtration, which is strictly finer than the filtration generated
by the original Brownian motion U (·) = ∫ ·

0 sgn
(
X (t)

)
dW (t).

Example 2 Failure of Uniqueness in Distribution for General Ocone Martingales:
We adapt to our setting a construction of Dubins-Emery-Yor from [4, p. 131]. We
start with a filtered probability space (�,F , P), F

B = {F B(t)}0≤t<∞ where B(·)
is standard Brownian motion with B(0) = 0, and define the adapted, continuous and
strictly increasing process

A(t) := t · 1{t≤1} + {
1 + (

u · 1{B(1)>0} + v · 1{B(1)≤0}
)
(t − 1)

} · 1{t>1},
0 ≤ t < ∞ (2.14)

where u > 0 and v > 0 are given real numbers with u = v, as well as the processes

X (·) := B(A(·)) , �(·) := −X (·) . (2.15)

The Lévy transform

β(·) :=
·∫

0

sgn(B(t)) dB(t)

of B(·) is a standard Brownian motion adapted to the filtration F
|B|

= {F |B|(t)}0≤t<∞, which is strictly coarser than F
B ; in particular, it can be seen
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that β(·) is independent of sgn(B(1)) = 2 1{B(1)>0} − 1 , and thus of the process
A(·) as well.
On the other hand, the process X (·) is a martingale of its natural filtration

F
X = {F B

(
A(t)

)}0≤t<∞ ; therefore, so is its “mirror image” �(·) , and more impor-
tantly its Lévy transform

U (·) :=
·∫

0

sgn
(
X (t)

)
dX (t) = β

(
A(·)) with 〈U 〉(·) = A(·) ,

which is thus seen to be an Ocone martingale. Now clearly, both X (·) and �(·)
satisfy the Eq. (2.1) with α = 1/2 driven by U (·), so pathwise uniqueness fails for
this equation. We also note that the conditions of Proposition 2 fail too in this case.

We claim that uniqueness in distribution fails as well. In a manner similar to the
treatment in [4], we shall argue that the distributions of X (·) and �(·) at time
t = 2 are different. Now if the random variables

X (2) = B(1 + u) · 1{B(1)>0} + B(1 + v) · 1{B(1)≤0} and �(2) = −X (2)

had the same probability distributions, that is, if the distribution of the random vari-
able X (2) were symmetric about the origin, we would have E[(X (2))3] = 0.
However, let us note the decomposition

X (2) = B(1) + (
B(1 + u) − B(1)

) · 1{B(1)>0} + (
B(1 + v) − B(1)

) · 1{B(1)≤0} ,

which gives

E
[
(X (2))3

] = 3E

[
B(1)

(
B(1 + u) − B(1)

)2 1{B(1)>0}
]

+ 3E

[
B(1)

(
B(1 + v) − B(1)

)2 1{B(1)≤0}
]

= 3E

[(
B(1)

)+ ] (
u − v

) = 0 .

This contradiction establishes the claim.

2.2 The Perturbed Skew-Tanaka Equation Is Strongly Solvable

The addition of some independent noise can restore pathwise uniqueness, thus also
strength, to weak solutions of the stochastic equation in (1.4) or (2.1). In the spirit
of [15] or [6], we have the following result.

Proposition 3 Suppose that the continuous semimartingale U (·) as in (1.1) satisfies
the conditions of Proposition 1, where now the F-progressively measurable process
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p(·) of (2.6) is locally square-integrable with respect to 〈M〉(·) ; and that

V (·) = N (·) + �(·)

is another continuous semimartingale, with continuous local martingale part N (·)
and finite variation part �(·) which satisfy N (0) = �(0) = 0 and

〈M, N 〉(·) ≡ 0 , 〈M〉(·) =
·∫

0

q(t) d〈N 〉(t)

for some F-progressively measurable process q(·) with values in a compact interval
[0, b] .

Then pathwise uniqueness holds for the perturbed skew-Tanaka equation

X (·) =
·∫

0

sgn
(
X (t)

)
dU (t) + V (·) + 2α − 1

α
L X (·) , (2.16)

provided that either

(i) α = 1/2 , or that
(ii) U (·) and V (·) are independent, standard Brownian motions. In this case a weak

solution to (2.16) exists, and is thus strong.

The claim of case (i) is proved in Theorem 8.1 of [6], and the claim of case (ii)
in an Appendix, Sect. 6. In case (ii) of Proposition 3 the Eq. (2.16) can be written
equivalently as

X (·) =
·∫

0

1{X (t)>0} dW+(t) +
·∫

0

1{X (t)<0} dW−(t) + 2α − 1

α
L X (·) .

Here W±(·) := V (·)±U (·) are independentBrownianmotionswith local variance 2;
one of them governs the motion of X (·) during its positive excursions, the other
during the negative ones, whereas these excursions get skewed when α = 1/2.

3 Proof of Theorem 1

We shall follow very closely the methodology of [14], with some necessary modi-
fications related to the skewness. The enlargement of the filtered probability space
(�,F , P), F = {F(t)}0≤t<∞ is done in terms of a sequence {ξk}k∈N of independent
random variables with common Bernoulli distribution
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P
(
ξ1 = +1

) = α , P
(
ξ1 = −1

) = 1 − α (3.1)

(thus with expectation E(ξ1) = 2α − 1), which is independent of F(∞)

= σ
(⋃

0≤t<∞ F(t)
)
. On the enlarged probability space

(
�̃, F̃ , P̃

)
we have all

the objects of the original space, so we keep the same notation for them. We denote
by

Z := {
t ≥ 0 : S(t) = 0

}
(3.2)

the zero set of the Skorokhod reflection S(·) in (1.3), and enumerate as {Ck}k∈N the
disjoint components of [0,∞) \ Z , that is, the countably-many excursion intervals
of the process S(·) away from the origin. This we do in a measurable manner, so
that

{
t ∈ Ck

} ∈ F(∞), ∀ t ≥ 0, k ∈ N .

In order to simplify notation, we set

C0 := Z , ξ0 := 0 . (3.3)

We define now

Z(t) :=
∑
k∈N0

ξk 1Ck (t) , F̃(t) := F(t) ∨ F Z (t) (3.4)

for all t ∈ [0,∞) ; this gives the enlarged filtration F̃ = {F̃(t)
}
0≤t<∞ . We posit

the following two claims.

Proposition 4 The process M(·) of (1.1) is a continuous local martingale
of the enlarged filtration F̃ . Consequently, both U (·) and S(·) are continuous
F̃-semimartingales.

Proposition 5 In the notation of (1.3) and (3.4), we have

Z(·) S(·) =
·∫

0

Z(t) dS(t) + (
2α − 1

)
L S(·) . (3.5)

Taking the claims of these two propositions at face-value for a moment, we can
proceed with the proof of Theorem 1 as follows. We define the process

X (·) := Z(·) S(·) (3.6)

and note

Z(·) = sgn
(
X (·)) ,

∣∣X (·)∣∣ = S(·) (3.7)
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thanks to (3.3) and (3.4), as well as

X (·) −
·∫

0

sgn
(
X (t)

)
dS(t) = Z(·) S(·) −

·∫

0

Z(t) dS(t) = (
2α − 1

)
L S(·) (3.8)

thanks to (3.6), (3.5). In particular, X (·) is an F̃-semimartingale, and we note the
property

2 L X (·) − L S(·) = 2 L X (·) − L |X |(·) =
·∫

0

1{X (t)=0} dX (t)

of its local time at the origin (cf. Sect. 2.1 in [8]). In conjunction with (3.8) and the
fact that X (·), S(·), and Z(·) all have the same zero set Z as in (3.2), (3.3), we get
from this last equation

2 L X (·) − L S(·) =
·∫

0

1{X (t)=0}
[
sgn

(
X (t)

)
dS(t) + (

2α − 1
)
L S(t)

]

= (
2α − 1

)
L S(·), (3.9)

thus

L X (·) = α L S(·) , (3.10)

establishing the second equality in (1.4). Back in (3.8), this leads to

X (·) =
·∫

0

sgn
(
X (t)

) [
dU (t) + dC(t)

] + (
2α − 1

)
L S(·) , (3.11)

where C(·) is the continuous, adapted and increasing process

C(t) := S(t) − U (t) = max
0≤s≤t

( − U (s)
)
, 0 ≤ t < ∞ .

From the theory of the Skorokhod reflection problemwe know that this process C(·)
is flat off the set {t ≥ 0 : S(t) = 0} = Z , so the skew-Tanaka equation of (1.4)
follows now from (3.11), (3.10).

The proof of Theorem 1 is complete. �
Proof of Proposition 4: By localization if necessary, it suffices to show that if M(·)
is an F-martingale, then it is also an F̃-martingale; that is, for any given 0 < θ
< t < ∞ and A ∈ F̃(θ) we have

E
[ (

M(t) − M(θ)
)

1A
] = 0 . (3.12)
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It is clear from (3.4) that we need to consider only sets of the form A = B ∩ D ,
where B ∈ F(θ) and

D =
n⋂

j=1

{
Z(t j ) = ε j

} =
n⋂

j=1

{
ξκ(t j ) = ε j

}
(3.13)

for n ∈ N , 0 < t1 < t2 < · · · < tn < θ < t and ε ∈ {−1, 0, 1} . Here we have
denoted by κ(u) the (random) index of the excursion interval Ck to which a given
u ∈ [0,∞) belongs.

For such choices, and because

E
[ (

M(t) − M(θ)
)

1A
] = E

[ (
M(t) − M(θ)

)
1B · E

(
1D |F(∞)

) ]
,

we see that, in order to prove (3.12), it is enough to argue that

E
(
1D |F(∞)

)
is F(θ) − measurable. (3.14)

But the random variables κ(t j ) in (3.13) are measurable with respect to F(∞) ,
whereas the random variables ξ1 , ξ2 , . . . are independent of this σ-algebra. There-
fore, we have

E
(
1D |F(∞)

) = P

⎡
⎣

n⋂
j=1

{
ξκ(t j ) = ε j

} ∣∣∣F(∞)

⎤
⎦

= P
(
ξk1 = ε1, . . . , ξkn = εn

)∣∣∣
k1=κ(t1),...,kn=κ(tn)

. (3.15)

For given indices (k1, . . . , kn) and (ε1, . . . , εn) , let us denote by m the number
of distinct non-zero indices in (k1, . . . , kn) , by λ the number from among those
distinct indices of the corresponding ε j ’s that are equal to 1, and observe

P
(
ξk1 = ε1, . . . , ξkn = εn

) = 0 , if (ε1, . . . , εn) contradicts (k1, . . . , kn) ;
= αλ

(
1 − α

)m−λ
, otherwise . (3.16)

Here “(ε1, . . . , εn) contradicts (k1, . . . , kn)” means that we have either

• ki = k j but εi = ε j for some i = j ; or
• ki = 0 but εi = 0 , for some i ; or
• ki = 0 but εi = 0 , for some i .

We note now that when k1 = κ(t1) , . . . , kn = κ(tn) , the value of m (that is,
the number of excursion intervals in [0, s] \ Z that contain some ti ), the value of
λ (i.e., the number of such excursion intervals that are positive) and the statement
“ (ε1, . . . , εn) contradicts (k1, . . . , kn) ”, can all be determined on the basis of the
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trajectory S(u), 0 ≤ u ≤ θ ; that is, the quantity on the right-hand side of (3.15) is
F S(θ)-measurable. As a consequence, the property (3.14) holds. �
Proof of Proposition 5: For any ε ∈ (0, 1) we define recursively, starting with
τε
0 := 0 , a sequence of stopping times

τε
2�+1 := inf

{
t > τε

2� : S(t) > ε
}
, τε

2�+2 := inf
{
t > τε

2�+1 : S(t) = 0
}

for � ∈ N0 . We use this sequence to approximate the process Z(·) of (3.4) by

Zε(t) :=
∑
�∈N0

Z(t) 1 (τε
2�+1,τ

ε
2�+2](t) , 0 ≤ t < ∞ .

Let us note that the resulting process Zε(·) is constant on each of the indicated
intervals; that the sequence of stopping times just defined does not accumulate on
any bounded time-interval, on account of the fact that S(·) has continuous paths; and
that the process Zε(·) is of finite first variation over compact intervals. We deduce

Zε(T ) S(T ) =
T∫

0

Zε(t) dS(t) +
T∫

0

S(t) dZε(t) , 0 ≤ T < ∞ . (3.17)

The piecewise-constant process Zε(·) tends to Z(·) pointwise as ε ↓ 0, and we
have

lim
ε↓0

T∫

0

Zε(t) dS(t) =
T∫

0

Z(t) dS(t) , in probability (3.18)

for any given T ∈ [0,∞) ; all the while, |Zε(·)| ≤ 1 . On the other hand, the second
integral in (3.17) can be written as

T∫

0

S(t) dZε(t) =
∑

{� : τε
2�+1<T }

S
(
τε
2�+1

)
Z
(
τε
2�+1

) = ε
∑

{� : τε
2�+1<T }

Z
(
τε
2�+1

)

= ε

N (T,ε)∑
j=1

ξ � j = ε N (T, ε) · 1

N (T, ε)

N (T,ε)∑
j=1

ξ � j ,

where
{
ξ� j

}N (T,ε)
j=1 is an enumeration of the values Z

(
τε
2�+1

)
and

N (T, ε) := #
{
� : τε

2�+1 < T
}
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is the number of downcrossings of the interval (0, ε) that the process S(·) has
completed by time T . From [16, Theorem VI.1.10], we have the representation of
local time limε↓0 ε N (T, ε) = L S(T ) ; whereas the strong law of large numbers
gives

lim
ε↓0

1

N (T, ε)

N (T,ε)∑
j=1

ξ � j = E
(
ξ1

)
.

Back into (3.17) and with the help of (3.18), these considerations give

Z(T ) S(T ) =
T∫

0

Z(t) dS(t) + E
(
ξ1

) · L S(T ) , 0 ≤ T < ∞ ,

that is, (3.5). �

4 Conventional Reflection

In a similar manner one can establish the following analogue of Theorem 1, which
uses the conventional reflection in place of the Skorokhod reflection.

Theorem 2 Fix a constant α ∈ (0, 1). There exists an enlargement
(
�̂, F̂ , P̂

)
,

F̂ = {F̂(t)}0≤t<∞ of the filtered probability space (�,F , P), F = {F(t)}0≤t<∞ ,
with a measure-preserving map π : � → �̂ , and on this enlarged space a continuous
semimartingale X̂(·) that satisfies

∣∣X̂(·)∣∣ = ∣∣U (·)∣∣ , L X̂ (·) = α L |U |(·) ,

X̂(·) =
·∫

0

sgn
(
X̂(t)

)
dÛ (t) + 2α − 1

α
L X̂ (·) . (4.1)

Here

Û (·) :=
·∫

0

sgn
(
U (t)

)
dU (t) (4.2)

is the Lévy transform of the semimartingale U (·) , and the classical reflection R(·)
= |U (·)| of U (·) coincides with the Skorokhod reflection of the process Û (·) in
(4.2), namely

Ŝ(t) := Û (t) + max
0≤s≤t

( − Û (s)
)
, 0 ≤ t < ∞ .
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Indeed, most of the argument of the proof in Sect. 3 goes through verbatim, with
S(·), X (·) replaced here by R(·), X̂(·) , up to and including the display (3.10). But
now we have

R(·) = |U (·)| =
·∫

0

sgn
(
U (t)

)
dU (t) + L |U |(·) = Û (·) + L R(·) (4.3)

from the Itô-Tanaka formula, so (3.11) is replaced by

X̂(·) =
·∫

0

sgn
(
X̂(t)

) [
dÛ (t) + dL R(t)

] + (
2α − 1

)
L R(·) .

The property L X̂ (·) = α L R(·) is established exactly as in (3.10), so the stochastic
integral equation in (4.1) follows from this last display. On the other hand, since the
local time L R(·) grows only on the set {t ≥ 0 : R(t) = 0} = {t ≥ 0 : X̂(t) = 0}, the
equality of the first and last terms in (4.3) identifies R(·) as the Skorokhod reflection
Ŝ(·) of the Lévy transform Û (·), as claimed in the last sentence of Theorem 2. It is
well-known (see, for instance [2]) that the processes |U (·)| and Û (·) generate the
same filtration.

Remark 3 Let us note that the stochastic integral equation in (4.1) can always be
written in the more conventional form

X̂(·) =
·∫

0

sgn
(
X̂(t)

)
dÛ (t) + 2α − 1

α
L X̂ (·) , (4.4)

without any additional conditions on U (·). This is because the analogue ∫ ·
0 1{X̂(t)=0}

dÛ (t) ≡ 0 of the property in (2.2) is now satisfied trivially, on account of (4.2).

Example 3 From One Skew Brownian Motion to Another: Suppose that U (·) is a
skew Brownian motion with parameter γ ∈ (0, 1), i.e.,

U (·) = B(·) + 2 γ − 1

γ
LU (·)

for some standard, real-valued Brownian motion B(·). We have in this case∫ ∞
0 1{U (t)=0} dt = 0 as well as the local time property

2 LU (·) − L |U |(·) =
·∫

0

1{U (t)=0} dU (t) = 2 γ − 1

γ
LU (·) ,
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thus LU (·) = γ L |U |(·) and therefore R(·) = ∣∣U (·)∣∣ = ∫ ·
0 sgn

(
U (t)

)
dU (t)

+ L |U |(·) = W (·) + L |U |(·) . Here we have denoted the Lévy transform of (4.2) as

W (·) := Û (·) =
·∫

0

sgn
(
U (t)

) (
dB(t) + 2γ − 1

γ
dLU (t)

)
=

·∫

0

sgn
(
U (t)

)
dB(t),

andobserved that it is another standardBrownianmotion.Thus, the stochastic integral
equation of (4.4) becomes

X̂(·) =
·∫

0

sgn
(
X̂(t)

)
dW (t) + 2α − 1

α
L X̂ (·) = Ŵ (·) + 2α − 1

α
L X̂ (·)

with Ŵ (·) = ∫ ·
0 sgn

(
X̂(t)

)
dW (t) yet another standard Brownian motion.

The Harrison and Shepp [7] theory characterizes now X̂(·) as skew Brownian
motion with skewness parameter α . The processes X̂(·) and Ŵ (·) generate the same
filtration, as do the processes

Û (·) =
·∫

0

sgn
(
X̂(t)

)
dŴ (t) = W (·) and R(·) = |U (·)| ;

and the first filtration is finer than the second.

4.1 Skew Bessel Processes

In this subsection suppose that U 2(·) is a squared Bessel process with dimension
δ ∈ (1, 2) , i.e., U 2(·) is the unique strong solution of the equation

U 2(t) = δ t + 2

t∫

0

√
U 2(t) dB(t) , 0 ≤ t < ∞

for some standard, real-valued Brownian motion B(·) . When δ ∈ (1, 2) , the square
root R(·) := |U (·)| ≥ 0 of this process is a semimartingale that keeps visiting the
origin almost surely, and can be decomposed as

R(·) =
·∫

0

δ − 1

2 R(t)
· 1{R(t) =0}dt + B(·) with L R(·) ≡ 0 ,

·∫

0

1{R(t) = 0}dt ≡ 0 .

(4.5)
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For the study of the stochastic differential equation (4.5) with δ ∈ (1, 2) see, for
example, [3].

Given α ∈ (0, 1) , following again the argument of the proof in Sect. 3 verbatim,
with S(·) , X (·) replaced respectively by R(·) , X̂(·) , we unfold the nonnegative
Bessel process R(·) to obtain

X̂(·) = Z(·)R(·) =
·∫

0

Z(t)dR(t) + (2α − 1)L R(·)

=
·∫

0

δ − 1

2 X̂(t)
· 1{X̂(t) =0}dt + β̂(·) , (4.6)

with Z(·) = sgn(X̂(·)) and with β̂(·) := ∫ ·
0 Z(t)dB(t) another standard Brownian

motion on an extended probability space, as a consequence of Theorem 4.1 and of
the properties in (4.5). We note that the semimartingale X̂(·) does not accumulate
local time at the origin, because of L R(·) ≡ 0 .

We claim that the process X̂(·) constructed here in (4.6) is the δ -dimensional
skew Bessel process with skewness parameter α . This process was introduced and
studied in [1].

Indeed, let us consider the functions g(x) := |x |2−δ/(2 − δ) and G(x) :=
sgn(x) · g(x) for x ∈ R , and examine g(X̂(·)) and G(X̂(·)) . This scaling is a right
choice to measure the boundary behavior of X̂(·) around the origin. By substituting
q = 2− δ , p = (2− δ) / (1− δ) , ν = −1 / 2 in Proposition XI.1.11 of Revuz and
Yor [16], we find that there exists a (nonnegative) one-dimensional Bessel process
ρ(·) on the same probability space, such that ρ(0) = (2 − δ)δ−1g(X̂(0)) and

g(X̂(t)) = 1

2 − δ

∣∣X̂(t)
∣∣2−δ = 1

(2 − δ)δ−1
ρ
(
�(t)

)
, 0 ≤ t < ∞ ,

where

�(t) := inf{s ≥ 0 : K (s) ≥ t} , K (s) :=
s∫

0

(
ρ(u)

) 2δ−2
2−δ du ;

that is, g(X̂(·)) is a time-changed, conventionally reflected Brownian motion with
the stochastic clock �(·) . Thus the local time of g(X̂(·)) accumulates at the origin
with this clock �(·) .

In the same manner as in the construction of Z(·)R(·) in Theorem 4.1, we obtain
here

G(X̂(T )) = sgn(X̂(T ))g(X̂(T )) =
T∫

0

sgn(X̂(t))d
(
g(X̂(t))

)+(2α−1) Lg(X̂)(T )
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as well as

LG(X̂)(·) − L−G(X̂)(·) = (2α − 1)
(
LG(X̂)(·) + L−G(X̂)(·)) (4.7)

and

(1 − α) LG(X̂)(·) = α L−G(X̂)(·) , Lg(X̂)(·) = 1

2

(
LG(X̂)(·) + L−G(X̂)(·))

in the notation of (1.5). From these relationships (4.7), and on the strength of [1,
Theorem 2.22], we identify the process of (4.6) as the δ -dimensional skew Bessel
process. Here the process G(X̂(·)) and its local time LG(X̂)(·) correspond to Y (·)
and L X

m(·) , respectively, in the notation of [1].
For various properties and representations of this process, we refer the study of [1],

in particular, Remark 2.26 there.

5 An Application: Two Diffusive Particles with Asymmetric
Collisions

In the paper [6], the authors construct a planar continuous semimartingale X (·) =
(X1(·), X2(·)) with dynamics

dX1(t) = (
g1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)}

)
dt (5.1)

+ (
ρ1{X1(t)>X2(t)} + σ1{X1(t)≤X2(t)}

)
dB1(t) ,

dX2(t) = (
g1{X1(t)>X2(t)} − h1{X1(t)≤X2(t)}

)
dt (5.2)

+ (
ρ1{X1(t)≤X2(t)} + σ1{X1(t)>X2(t)}

)
dB2(t) ,

for arbitrary real constants g, h and ρ > 0 , σ > 0 with ρ2 + σ2 = 1. They show
that, for an arbitrary initial condition (X1(0), X2(0)) = (x1, x2) ∈ R

2 and with
(B1(·), B2(·)) a planar Brownian motion, the system of (5.1), (5.2) has a pathwise
unique, strong solution.

This is a model for two “competing” Brownian particles, with diffusive motions
whose drift and dispersion characteristics are assigned according to the particle’s
ranks.

• In another recent paper [5], a planar continuous semimartingale X̃ (·) = (X̃1(·),
X̃2(·)) is constructed according to the dynamics

dX̃1(t) = (
g1{X̃1(t)≤X̃2(t)} − h1{X̃1(t)>X̃2(t)}

)
dt

+(
ρ1{X̃1(t)>X̃2(t)} + σ1{X̃1(t)≤X̃2(t)}

)
dB̃1(t)

+ 1 − ζ1

2
dL X̃1−X̃2(t) + 1 − η1

2
dL X̃2−X̃1(t) , (5.3)
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dX̃2(t) = (
g1{X̃1(t)>X̃2(t)} − h1{X̃1(t)≤X̃2(t)}

)
dt

+(
ρ1{X̃1(t)≤X̃2(t)} + σ1{X̃1(t)>X̃2(t)}

)
dB̃2(t)

+ 1 − ζ2

2
dL X̃1−X̃2(t) + 1 − η2

2
dL X̃2−X̃1(t) , (5.4)

Here again g, h are arbitrary real constants, ρ > 0 and σ > 0 satisfy ρ2 + σ2 = 1,
whereas ζi , ηi are real constants satisfying

0 ≤ α := η

η + ζ
≤ 1 , ζ := 1+ ζ1 − ζ2

2
, η := 1− η1 − η2

2
, ζ+η = 0 .

This new system is a version of the previous competing Brownian particle system,
but nowwith elastic and asymmetric collisionswhose effect ismodeled by the local
time terms L X̃2−X̃1(·) and L X̃2−X̃1(·) . Every time the two particles collide, their
trajectories feel a “drag” proportional to these local time terms, whose presence
makes the analysis of the system (5.3), (5.4) considerable more involved than that
of (5.1), (5.2).

It is shown in [5] under the above conditions that, for an arbitrary initial condition
(X̃1(0), X̃2(0)) = (x1, x2) ∈ R

2 , and with (B̃1(·), B̃2(·)) a planar Brownian
motion, the system of (5.3), (5.4) has a pathwise unique, strong solution.

• We shall show how to use the unfolding of Theorem 1, in order to construct the
planar process X̃ (·) = (X̃1(·), X̃2(·)) of (5.3), (5.4) with skew-elastic collisions,
starting from the planar diffusion X (·) = (X1(·), X2(·)) of (5.1), (5.2). For
simplicity, we shall take the initial condition (x1, x2) = (0, 0) from now on.

Theorem 3 Suppose we are given a planar continuous semimartingale X (·)
= (X1(·), X2(·)) that satisfies the system of (5.1), (5.2) on some filtered probability
space

(
�,F , P

)
, F = {F(t)}0≤t<∞ with a planar Brownian motion (B1(·), B2(·)).

There exists then an enlargement
(
�̃, F̃ , P̃

)
, F̃ = {F̃(t)}0≤t<∞ of this filtered

probability space, with a planar Brownian motion
(
B̃1(·), B̃2(·)

)
, and on it a planar

continuous semimartingale X̃ (·) = (X̃1(·), X̃2(·)) that satisfies the system of (5.3),
(5.4) with skew-elastic collisions, as well as

(
X1(t) − X2(t)

) + sup
0≤s≤t

(
X1(s) − X2(s)

)+ = ∣∣X̃1(t) − X̃2(t)
∣∣ , 0 ≤ t < ∞ .

In other words, the size of the gap between the new processes X̃1(·) , X̃2(·)
coincides with the Skorokhod reflection of the difference X1(·) − X2(·) of the
original processes about the origin. We devote the remainder of this section to the
proof of this result.
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5.1 Reduction to Symmetric Local Times

First, some preparatory steps. We define the averages ζ := (ζ1 + ζ2) / 2 , η :=
(η1 + η2) / 2 , and introduce yet another parameter

β := α · ζ1 + ζ2

2
+ (1 − α) · η1 + η2

2
= α ζ + (1 − α) η . (5.5)

For notational simplicitywe shall write all the processes related to the skew collisions
with a tilde, e.g., Ỹ (·) := X̃1(·) − X̃2(·) . From the relation between the right
local time LỸ (·) and the symmetric local time L̂ Ỹ (·) as in (1.5), we obtain the
relations

ζLỸ (·) = ηL−Ỹ (·), LỸ (·) = 2αL̂ Ỹ (·), LỸ−(·) := L−Ỹ (·) = 2(1 − α)L̂ Ỹ (·)
(5.6)

as in [5]. This way, the system (5.3), (5.4) can be re-cast as

dX̃1(t) = (
g1{X̃1(t)≤X̃2(t)} − h1{X̃1(t)>X̃2(t)}

)
dt

+(
ρ1{X̃1(t)>X̃2(t)} + σ1{X̃1(t)≤X̃2(t)}

)
dB̃1(t) + (2α − β)dL̂ Ỹ (t), (5.7)

dX̃2(t) = (
g1{X̃1(t)>X̃2(t)} − h1{X̃1(t)≤X̃2(t)}

)
dt

+ (
ρ1{X̃1(t)≤X̃2(t)} + σ1{X̃1(t)>X̃2(t)}

)
dB̃2(t)

+ (2 − 2α − β)dL̂ Ỹ (t). (5.8)

We shall construct the system (5.7), (5.8) first, and then obtain from it the system
(5.3), (5.4).

5.2 Proof of Theorem 3

By applying a Girsanov change of measure twice, we can remove the drifts from both
of the systems (5.1), (5.2) and (5.7), (5.8). Then, in the following, let us construct
the two-dimensional Brownian motion with rank-based dispersions and skew-elastic
collisions

dX̃1(t) = (
ρ1{X̃1(t)>X̃2(t)} + σ1{X̃1(t)≤X̃2(t)}

)
dB̃1(t) + (2α − β) dL̂ Ỹ (t) , (5.9)

dX̃2(t) = (
ρ1{X̃1(t)≤X̃2(t)} + σ1{X̃1(t)>X̃2(t)}

)
dB̃2(t) + (2 − 2α − β) dL̂ Ỹ (t)
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from the solution ((X1(·), X2(·)), (B1(·), B2(·))) of the system

dX1(t) = (
ρ1{X1(t)>X2(t)} + σ1{X1(t)≤X2(t)}

)
dB1(t) , (5.10)

dX2(t) = (
ρ1{X1(t)≤X2(t)} + σ1{X1(t)>X2(t)}

)
dB2(t) ,

which is known from [6] to be strongly solvable.
Since there is no drift in these last equations, the difference Y (·) := X1(·) −

X2(·) between the two components of the system (5.10) is given by the real-valued
Brownian motion

Y (·) = W (·) := ρW1(·) + σW2(·) . (5.11)

Here

W1(·) :=
·∫

0

1{X1(t)>X2(t)}dB1(t) −
·∫

0

1{X1(t)≤X2(t)}dB2(t) ,

W2(t) :=
·∫

0

1{X1(t)≤X2(t)}dB1(t) −
·∫

0

1{X1(t)>X2(t)}dB2(t)

are independent Brownian motions. As in [6], let us recall also the Brownian motion

V (·) := ρV1(·) + σV2(·) ,

where again

V1(·) :=
·∫

0

1{X1(t)>X2(t)}dB1(t) +
·∫

0

1{X1(t)≤X2(t)}dB2(t) ,

V2(·) :=
·∫

0

1{X1(t)≤X2(t)}dB1(t) +
·∫

0

1{X1(t)>X2(t)}dB2(t)

are independent Brownian motions. For a given number α ∈ (0, 1), there exists by
Theorem 1 an adapted, continuous process Ỹ (·) which satisfies

Y (t) + sup
0≤s≤t

(−Y (s))+ = ∣∣Ỹ (t)
∣∣ , 0 ≤ t < ∞
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as well as

Ỹ (·) =
·∫

0

sgn
(
Ỹ (t)

)
dY (t) + 2α − 1

α
LỸ (·)

=
·∫

0

sgn
(
Ỹ (t)

)
dW (t) + 2(2α − 1)L̂ Ỹ (·), (5.12)

where the last equality follows from Proposition 1 and (5.6). Thus, the “unfolded
process” Ỹ (·) is a skew Brownian motion, with skewness parameter α .

Now let us define the new planar Brownian motion
(
B̃1(·), B̃2(·)

)
as

dB̃1(·) := (
1{Y (·)>0,Ỹ (·)>0} − 1{Y (·)≤0,Ỹ (·)≤0}

)
dB1(·)

+(
1{Y (·)>0,Ỹ (·)≤0} − 1{Y (·)≤0,Ỹ (·)>0}

)
dB2(·) ,

dB̃2(·) := (
1{Y (·)>0,Ỹ (·)≤0} − 1{Y (·)≤0,Ỹ (·)>0}

)
dB1(·)

+(
1{Y (·)>0,Ỹ (·)>0} − 1{Y (·)≤0,Ỹ (·)≤0}

)
dB2(·) ,

and, with the number β ∈ R as in (5.5), the processes �̃(·) , (
X̃1(·), X̃2(·)

)
and(

Ṽ (·), W̃ (·)) by

�̃(·) := Ṽ (·) + 2(1 − β)L̂ Ỹ (·), X̃1(·) := �̃(·) + Ỹ (·)
2

, X̃2(·) := �̃(·) − Ỹ (·)
2

,

(5.13)

dṼ (·) := (
ρ1{Ỹ (·)>0} + σ1{Ỹ (·)≤0}

)
dB̃1(·) + (

ρ1{Ỹ (·)≤0} + σ1{Ỹ (·)>0}
)
dB̃2(·) ,

dW̃ (·) := (
ρ1{Ỹ (·)>0} + σ1{Ỹ (·)≤0}

)
dB̃1(·) − (

ρ1{Ỹ (·)≤0} + σ1{Ỹ (·)>0}
)
dB̃2(·) .

Then by (5.11) and (5.13) we obtain

sgn(Ỹ (·))dW (·) = sgn(Ỹ (·))
[(

ρ1{X1(·)>X2(·)} + σ1{X1(·)≤X2(·)}
)
dB1(·)

− (
ρ1{X1(·)≤X2(·)} + σ1{X1(·)>X2(·)}

)
dB2(·)

]

= sgn(Ỹ (·))
[(

ρ1{Y (·)>0} + σ1{Y (·)≤0}
)
dB1(·)

− (
ρ1{Y (·)≤0} + σ1{Y (·)>0}

)
dB2(·)

]
,
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dW̃ (·) = (
ρ1{Ỹ (·)>0} + σ1{Ỹ (·)≤0}

)
dB̃1(·)

− (
ρ1{Ỹ (·)≤0} + σ1{Ỹ (·)>0}

)
dB̃2(·)

= 1{Ỹ (·)>0}
(
ρdB̃1(·) − σdB̃2(·)

) + 1{Ỹ (·)≤0}
(
σdB̃1(·) − ρdB̃2(·)

)
.

Because of the relationship between (B1(·), B2(·)) and (B̃1(·), B̃2(·)) , it can be
shown that

dW̃ (·) = sgn
(
Ỹ (·)) dW (·) . (5.14)

In fact, these identities can be verified formally via the following table:

Signs of
(Y (·), Ỹ (·))

dB̃1(·) dB̃2(·) dW̃ (·) = sgn(Ỹ (·))dW (·)

(+,+) dB1(·) dB2(·) ρ dB̃1(·) − σ dB̃2(·) = ρ dB1(·) − σ dB2(·)
(−,+) −dB2(·) −dB1(·) ρ dB̃1(·) − σ dB̃2(·) = σ dB1(·) − ρ dB2(·)
(+,−) dB2(·) dB1(·) σ dB̃1(·) − ρ dB̃2(·) = −ρ dB1(·) + σ dB2(·)
(−,−) −dB1(·) −dB2(·) σ dB̃1(·) − ρ dB̃2(·) = −σ dB1(·) + ρ dB2(·)

Substituting this relation (5.14) into (5.12) and recalling (5.13), we obtain

d
(
X̃1(t) − X̃2(t)

) = dỸ (t) = dW̃ (t) + 2(2α − 1) dL̂ Ỹ (t) . (5.15)

Moreover, because of the correspondence between (Ṽ (·), W̃ (·)) and (V (·), W (·))
and the relation (5.13), we obtain

1

2
d
(
Ṽ (t) + W̃ (t)

) = (
ρ1{Ỹ (t)>0} + σ1{Ỹ (t)≤0}

)
dB̃1(t) , (5.16)

1

2
d
(
Ṽ (t) − W̃ (t)

) = (
σ1{Ỹ (t)>0} + ρ1{Ỹ (t)≤0}

)
dB̃2(t) .

Therefore, by calculating the coefficients in front of the local time terms and by
combining (5.13), (5.15) and (5.16), we can verify that (X̃1(·), X̃2(·)) satisfies

dX̃1(t) = (
ρ1{X̃1(t)>X̃2(t)} + σ1{X̃1(t)≤X̃2(t)}

)
dB̃1(t) + (2α − β)dL̂ Ỹ (t) , (5.17)

dX̃2(t) = (
ρ1{X̃1(t)≤X̃2(t)} + σ1{X̃1(t)>X̃2(t)}

)
dB̃2(t) + (2 − 2α − β)dL̂ Ỹ (t)

that is, (5.9) with the new Brownian motion (B̃1(·), B̃2(·)) .
By the Girsanov theorem, we obtain (5.7), (5.8); whereas the relationship (5.6)

between the left local time L−Ỹ (·) and the right local time LỸ (·) allows us now to
recover the dynamics of (5.3), (5.4) from those of (5.1), (5.2). �
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6 Appendix: Proof of Proposition 3

Given a planar Brownian motion (B1(·), B2(·)) on a probability space (�,F , P)

and real constants α ∈ (0, 1) , x0 ∈ R , we shall construct a process X (·) := q(Y (·))
from the solution Y (·) of the stochastic differential equation

Y (·) = p(x0) +
·∫

0

s
(
Y (t)

)
d
(
B1(t) + B2(t)

)
, (6.1)

where p(·) , q(·) and s(·) are defined by

p(x) := (1 − α) x 1(0,∞)(x) + α x 1(−∞,0](x) ,

q(x) := 1

1 − α
1(0,∞)(x) + 1

α
1(−∞,0)(x) ,

s(x) := (1 − α) 1(0,∞)(x) + α 1(−∞,0](x) ; x ∈ R .

From the work of Nakao in [11] we know that the Eq. (6.1) has a pathwise unique,
strong solution.

Since q(p(x)) = x , x ∈ R , by applying the Itô-Tanaka formula to the process
X (·) = q(Y (·)) we identify the dynamics of X (·) as those of the skew Brownian
motion [7], namely

X (·) = x0 + (
B1(·) + B2(·)

) + 2α − 1

α
L X (·) , (6.2)

driven by the Brownian motion B1(·) + B2(·) . We rewrite this equation in the form

X (·) − x0 −
·∫

0

sgn
(
X (t)

)
dU (t) − V (·) = 2α − 1

α
L X (·) = 2

(
2α − 1

)
L̂ X (·)

of (2.16), driven by a new planar Brownian motion (U (·), V (·)) with components

U (·) :=
·∫

0

1{X (t)>0}dB1(t) −
·∫

0

1{X (t)≤0}dB2(t) , (6.3)

V (·) :=
·∫

0

1{X (t)≤0}dB1(t) +
t∫

0

1{X (t)>0}dB2(t) . (6.4)

Therefore, the perturbed skew Tanaka equation (2.16) has the weak solution (X (·),
(U (·), V (·))) just constructed.
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Conversely, supposewe start with an arbitraryweak solution (X (·), (U (·), V (·)))
of the equation (2.16),with (U (·), V (·)) a planarBrownianmotion. Thenwe can cast
this equation in the form (6.2) in terms of the planar Brownianmotion (B1(·), B2(·))
whose components are given by “disentangling” in (6.3), (6.4), namely

B1(·) =
·∫

0

1{X (t)>0}dU (t) +
·∫

0

1{X (t)≤0}dV (t) ,

B2(·) =
·∫

0

1{X (t)>0}dV (t) −
·∫

0

1{X (t)≤0}dU (t) .

But this shows that X (·) is skew Brownian motion, so its probability distribution is
determined uniquely.

In other words, the equation of (2.16) admits a weak solution, and this solution is
unique in the sense of the probability distribution.
• Now we shall see that we have not just uniqueness in distribution, but also

pathwise uniqueness, for the equation (2.16) driven by the planar Brownian motion
(U (·), V (·)) . The argument that follows is based on [10, Lemma 1], and is almost
identical to the proof of Theorem 8.1 of [6] except for the evaluation of the additional
local times. Note that Le Gall’s Lemma 1 in [10] works for general continuous
semimartingales.

Suppose that there are two solutions X1(·) and X2(·) of (2.16), defined on the
same probability space as the driving planar Brownian motion (U (·), V (·)) . We
shall check that their difference D(·) := X1(·) − X2(·) satisfies (c.f. (6.4) in [6]) :

E

[ T∫

0

d〈D〉(s)
D(s)

1{D(s)>0}
]

< ∞ , 0 < T < ∞ , (6.5)

where

〈D〉(·) =
·∫

0

(
sgn(X1(t)) − sgn(X2(t))

)2dt ≤ 2

·∫

0

∣∣sgn(X1(t)) − sgn(X2(t))
∣∣ dt .

We approximate the signum function by a sequence { fk}k∈N ⊂ C1(R) which con-
verges to the function f∞(·) = sgn(·) pointwise and satisfies limk→∞‖ fk‖T V

= ‖ f∞‖T V . Now the parametrized process

Z (u)(t) := (1 − u)X1(t) + u X2(t) , 0 ≤ u ≤ 1 , 0 ≤ t < ∞
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takes the form of

Z (u)(·) = x0 +
·∫

0

(
(1 − u)sgn(X1(t)) + u sgn(X2(t))

)
dU (t)

+ V (·) + 2α − 1

α

(
uL X1(·) + (1 − u)L X2(·)) .

The local times in the last term do not affect the size of 〈Z (u)〉(·) , for which we have
the estimate E

(〈Z (u)〉(T )
) ≤ 2T . Proceeding as in [6] we obtain for every δ > 0

the bound

E

[ T∫

0

| fk(X1(s)) − fk(X2(s))|
X1(s) − X2(s)

1{X1(s)−X2(s)>δ}dt
]

≤ c‖ fk‖T V · sup
a,u

E
(
2L(u)(T, a)

)
,

where L(u)(T, a) is the right local time of the continuous semimartingale Z (u)(·)
accumulated at a ∈ R and c is a constant chosen independently of k, u, δ . Letting
k ↑ ∞ and δ ↓ 0 , we estimate

E

[ T∫

0

d〈D〉(s)
D(s)

1{D(s)>0}
]

< 2 c ‖ f∞‖T V · sup
a,u

E
(
2L(u)(T, a)

)
.

Finally, we estimate E(L(u)(T, a)) using Tanaka’s formula

|Z (u)(T ) − a| = |Z (u)(0) − a| +
T∫

0

sgn
(
Z (u)(t) − a

)
dZ (u)(t) + 2L(u)(T, a) ,

and a combination of the Cauchy-Schwartz inequality and the Itô’s isometry:

E
(
2L(u)(T, a)

) ≤ E|Z (u)(T ) − Z (u)(0)| + {
E(〈Z (u)〉(T ))

}1/2

+ 2α − 1

α

(
u E(L X1(T )) + (1 − u) E(L X2(T ))

)

≤ 2
[{

E
(〈Z (u)〉(T )

)}1/2

+ 2α − 1

α

(
u E(L X1(T )) + (1 − u) E(L X2(T ))

)]
.
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The last term E(L Xi (T )) is evaluated by the same procedure: by Tanaka’s formula

1

α
L Xi (T ) = |Xi (T )| − |X1(0)| −

T∫

0

sgn
(
Xi (t)

)
dV (t) − U (T ) ,

and hence

E
(
L Xi (T )

) ≤ 2α
{
E(〈Xi 〉(T ))

}1/2 ≤ 23/2 α T 1/2 , i = 1, 2 .

Therefore,weobtain (6.5), andby [10,Lemma1]weverify L D(·) = L X1−X2(·) ≡ 0 .
• Final step: By exchanging the rôles of X1(·) and X2(·) , we obtain L−D(·)
= L X2−X1(·) ≡ 0 as well as L̂ D(·) ≡ 0 . Furthermore, by [13, Corollary 2.6], we
obtain

L̂ X1∨X2(t) =
t∫

0

1{X2(s)≤0} dL̂ X1(s) +
t∫

0

1{X1(s)<0} dL̂ X2(s) ; 0 ≤ t < ∞ .

Combining these results with Tanaka’s formula, we obtain the dynamics of M(·)
:= X1(·) ∨ X2(·) :

dM(t) = 1{X1(t)≥X2(t)}dX1(t) + 1{X1(t)<X2(t)dX2(t) + dL X1−X2(t)

= 1{X1(t)≥X2(t)}
(
sgn(X1(t))dU (t) + dV (t) + 2(2α − 1)dL̂ X1(t)

)

+ 1{X1(t)<X2(t)

(
sgn(X2(t))dU (t) + dV (t) + 2(2α − 1)dL̂ X2(t)

)

= sgn(M(t))dU (t) + dV (t) + 2(2α − 1)dL̂ M (t) ; 0 ≤ t < ∞ .

In other words, each of the continuous semimartingales X1(·) , X2(·) and
M(·) = X1(·) ∨ X2(·) satisfies the equation (2.16); but uniqueness in the sense
of the probability distribution holds for this equation, so all three processes have
the same distribution. Since M(·) ≥ Xi (·) , this forces M(·) = Xi (·) , i =
1, 2 , thus pathwise uniqueness. By the theory of Yamada and Watanabe (e.g., [9,
Sect. 5.3.D]), the solution to (2.16) is therefore strong. The proof of Proposition3
is complete. �
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Normal Approximation on a Finite Wiener
Chaos

David Nualart

Abstract The purpose of this note is to survey some recent developments in the
applications of Malliavin calculus combined with Stein’s method to derive central
limit theorems for random variables on a finite sum of Wiener chaos. Starting from
the fourth moment theorem by Nualart and Peccati [23], we will discuss several
related topics such as conditions for the convergence in total variation, absolute
continuity of probability laws and uniform convergence of densities under suitable
non degeneracy assumptions. The fact that the random variables belong to a fixed
Wiener chaos (or to a finite sum of Wiener chaos) will play a fundamental role in the
results.

Keywords Malliavin calculus · Wiener chaos · Total variation distance · Stein’s
method
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1 Introduction

The Malliavin calculus is a stochastic calculus of variations in a Gaussian space,
developed from the probabilistic proof of Hörmander’s hypoellipticity theorem by
Malliavin [11]. The main application of this calculus is to establish the regularity
of the probability distribution of functionals of an underlying Gaussian process.
Basic references for the Malliavin calculus and its applications are the monographs
by Malliavin [12] and Nualart [21]. Recently, the integration by parts formula of
Malliavin calculus, combined with Stein’s method for normal approximations, has
proved to be a powerful approach to derive quantitative versions of central limit

This work is supported by the NSF grant DMS1208625.

D. Nualart (B)

Department of Mathematics, University of Kansas, 405 Snow Hall, Lawrence, KS, USA
e-mail: nualart@ku.edu

© Springer International Publishing Switzerland 2014
D. Crisan et al. (eds.), Stochastic Analysis and Applications 2014,
Springer Proceedings in Mathematics & Statistics 100,
DOI 10.1007/978-3-319-11292-3_14

377



378 D. Nualart

theorems, in the case of random variables belonging to a fixedWiener chaos. A basic
reference for this methodology is the monograph by Nourdin and Peccati [17].

The aim of this note is to survey some recent developments in this field. After
recalling some basic facts on theMalliavin calculus and the application of the Stein’s
method to derive the fourth moment theorem, we discuss some advances in this field.
More precisely, for random variables in a fixed sum of Wiener chaos, we analyze
under which conditions the convergence in law implies the convergence in total
variation, we discuss criteria for absolute continuity, and we present some recent
results on the the uniform convergence of densities.

2 Elements of Malliavin Calculus

2.1 Gaussian Analysis

Suppose that H is a real separable Hilbert space. Let X = {X (h), h ∈ H} be an
isonormal Gaussian process over H . Thismeans that X is a centeredGaussian family
of random variables on some probability space (�,F , P)with a covariance given by

E(X (h)X (g)) = 〈h, g〉H , h, g ∈ H.

Weassume thatF is the P-completion of theσ-field generated by X . For every integer
q ≥ 1, we letHq be the qth Wiener chaos of X defined as the closed linear subspace
of L2(�) generated by the random variables {Hq(X (h)), h ∈ H, ‖h‖H = 1}, where
Hq is the qth Hermite polynomial

Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2

)
.

We also denote by H⊗q and H�q , respectively, the qth tensor product and the qth
symmetric tensor product of H . For any q ≥ 1, the mapping Iq(h⊗q) = q!Hq(X (h))

provides a linear isometry between H�q (equipped with the modified norm
√

q!‖ ·
‖H⊗q ) and Hq (equipped with the L2(�) norm). For q = 0. we set H0 = R, and I0
is the identity map.

Any square integrable random variable F ∈ L2(�) can be decomposed into an
orthogonal sum

F = E(F) +
∞∑

q=1

Iq( fq), (2.1)

where the fq ∈ H�q are uniquely determined by F . This is called the Wiener chaos
expansion.
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For example, let B = {Bt , t ∈ [0, 1]} be a Brownian motion. Then, if we take
H = L2([0, 1]) and define X (h) = ∫ 10 ht d Bt , the family {X (h), h ∈ H} is an
isonormal Gaussian process. In this case, for any q ≥ 2, H�q = L2

sym([0, 1]q) is
the space of symmetric and square integrable functions and Iq is the iterated Itô
stochastic integral:

Iq(h) = q!
1∫

0

. . .

t2∫

0

h(t1, . . . , tq)d Bt1 , . . . , d Btq , h ∈ L2
sym([0, 1]q).

Let {ei , i ≥ 1} be a complete orthonormal system in H . Given f ∈ H�p and
g ∈ H�q , for every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the
element of H⊗(p+q−2r) defined by

f ⊗r g =
∞∑

i1,...,ir =1

〈 f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r .

Note that, f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for p = q,
f ⊗p g = 〈 f, g〉H⊗p . The contraction f ⊗r g is not necessarily symmetric, and we
denote by f ⊗̃rg its symmetrization.

2.2 Malliavin Calculus

Let us now introduce some elements of the Malliavin calculus of variations with
respect to the isonormal Gaussian process X . Let S be the set of all smooth and
cylindrical random variables of the form

F = f (X (h1), . . . , X (hn)) , (2.2)

where n ≥ 1, f : Rn → R is an infinitely differentiable function which is bounded
together with all its partial derivatives, and hi ∈ H . The Malliavin derivative of F
is the element of L2(�; H) defined as

DF =
n∑

i=1

∂ f

∂xi
(X (h1), . . . , X (hn)) hi .

By iteration, one can define the qth derivative Dq F for every q ≥ 2, which is an
element of L2(�; H�q). For any integer q ≥ 1 and any real number p ≥ 1, Dq,p

denotes the closure of S with respect to the norm ‖ · ‖Dq,p , defined by the relation
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‖F‖p
Dq,p = E

[|F |p]+
q∑

i=1

E
(
‖Di F‖p

H⊗i

)
.

We denote by δ the adjoint of the operator D, also called the divergence operator.
A random element u ∈ L2(�; H) belongs to the domain of δ, denoted by Domδ, if
and only if it verifies ∣∣E(〈DF, u〉H

)∣∣ ≤ cu

√
E(F2),

for any F ∈ D
1,2, where cu is a constant depending only on u. If u ∈ Domδ, then

the random variable δ(u) is defined by the duality relationship

E(Fδ(u)) = E
(〈DF, u〉H

)
, (2.3)

which holds for every F ∈ D
1,2. Formula (2.3) extends to the multiple Skorohod

integral δq , and we have

E
(
Fδq(u)

) = E
(〈

Dq F, u
〉
H⊗q

)
, (2.4)

for any element u in the domain of δq and any random variable F ∈ D
q,2. Moreover,

δq(h) = Iq(h) for any h ∈ H�q .
We will make use of the following factorization property. For every F ∈ D

1,2 and
every u ∈ domδ such that Fu and Fδ(u)−〈DF, u〉H are square integrable, one has
that Fu ∈ domδ and

δ(Fu) = Fδ(u) − 〈DF, u〉H . (2.5)

A random variable F with the Wiener chaos expansion given in (2.1) belongs
to D

1,2 if and only if
∑∞

q=1 qq!‖ fq‖2H⊗q < ∞, and, in this case, E
(‖DF‖2H

) =∑∞
q=1 qq!‖ fq‖2H⊗q .

The operator L is defined on a randomvariable F with theWiener chaos expansion
(2.1) as L F = ∑∞

q=1(−q)Iq( fq), and is called the infinitesimal generator of the

Ornstein-Uhlenbeck semigroup. The domain of this operator in L2(�) is the set

DomL = {F ∈ L2(�) :
∞∑

q=1

q2q!2 ∥∥ fq
∥∥2

H⊗q < ∞} = D
2,2.

There is an important relationship between the operators D, δ and L (see [21, Propo-
sition 1.4.3]). A random variable F belongs to the domain of L if and only if
F ∈ Dom (δD) (i.e. F ∈ D

1,2 and DF ∈ Domδ), and in this case

δDF = −L F. (2.6)
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The operator L−1 defined by L−1F = ∑∞
q=1(−1/q)Iq( fq) is the pseudo inverse

of L .
The following integration by parts formula is the key ingredient in the applications

of Malliavin calculus to normal approximation combined with Stein’s method.

Theorem 2.1 Let F ∈ D
1,2 be such that E[F] = 0, and let f : R → R be a C1

function with a bounded derivative. Then

E[F f (F)] = E[ f ′(F)〈DF,−DL−1F〉H ]. (2.7)

Proof Taking into account that E[F] = 0 and using (2.6), we obtain F = L L−1F =
−δ(DL−1F). Then, the result follows from the duality relationship (2.3)

E[F f (F)] = −E[ f (F)δ(DL−1F)] = E[〈D( f (F)),−DL−1F〉H ]
= E[ f ′(F)〈DF,−DL−1F〉H ]. (2.8)

This completes the proof of the theorem. �

In the particular case where F ∈ Hq , with q ≥ 1, then DL−1F = − 1
q DF and

(2.8) yields

E[ f (F)F] = 1

q
E[ f ′(F)‖DF‖2H ]. (2.9)

3 Stein’s Method for Normal Approximation

We denote by φ the density of the standard normal distribution N (0, 1) on the real
line:

φ(x) = 1√
2π

e−x2/2.

From the fact that φ satisfies the differential equation φ′(x) = −xφ(x), it follows
that a real-valued random variable Z has the normal probability distribution N (0, 1),
if and only if for every differentiable function f : R → R such that x f (x) and f ′(x)

are integrable with respect to N (0, 1),

E[Z f (Z)] = E[ f ′(Z)].

Given a general random variable F , if the expectation E[F f (F)]−E[ f ′(F)] is close
to zero for a large class of smooth functions f , then we should be able to conclude
that the law of F is close to N (0, 1) in some sense. This is the heuristics of Stein’s
method (see [27]). To make this argument rigorous, given a measurable function
h : R → R such that E[|h(Z)|] < ∞, where Z has the distribution N (0, 1), we
introduce the Stein’s equation
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f ′(x) − x f (x) = h(x) − E[h(Z)]. (3.1)

The function

fh(x) = ex2/2

x∫

−∞
[h(y) − E[h(Z)]]e−y2/2dy (3.2)

turns out to be the unique solution to Eq. (3.1) satisfying limx→±∞ e−x2/2 f (x) = 0.
Substituting x by F in Eq. (3.1) and taking the expectation yields

E[h(F)] − E[h(Z)] = E[ f ′
h(F) − F fh(F)]. (3.3)

One can show that if ‖h‖∞ ≤ 1, then ‖ fh‖∞ ≤ √
π/2 and ‖ f ′

h‖∞ ≤ 2. So, taking
h = 1B , we obtain the following estimate for the total variation distance between
the law of a random variable F and the standard normal distribution

dT V (F, Z) = sup
B∈B(R)

|P(F ∈ B) − P(Z ∈ B)|

≤ sup
f ∈CT V

|E[ f ′(F) − F f (F)]|, (3.4)

where CT V is the class of functions f , which are piece-wise differentiable and satisfy
‖ f ‖∞ ≤ √

π/2 and ‖ f ′‖∞ ≤ 2.

4 Central Limit Theorem for Multiple Stochastic Integrals

Consider the context of an isonormal Gaussian process X over a Hilbert space H .
Suppose that F is a random variable in a Wiener chaos Hq for some q ≥ 2 and
E(F2) = 1. Then from (3.4) and (2.9) we can write

dT V (F, Z) ≤ sup
f ∈CT V

|E[ f ′(F) − F f (F)]|

= sup
f ∈CT V

∣∣∣∣E
[

f ′(F)

(
1 − 1

q
‖DF‖2H

)]∣∣∣∣ .

Taking into account that E(‖DF‖2H ) = q and ‖ f ′‖∞ ≤ 2 for any f ∈ CT V , we
obtain

dT V (F, Z) ≤ 2

q

√
Var
(‖DF‖2H

)
.

Using (2.9) with f (x) = x3 yields
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E(F4) = 3

q
E[F2‖DF‖2H ]. (4.1)

Then, applying (4.1) and the product formula together with orthogonality properties
of multiple stochastic integrals, one can show that

Var
(
‖DF‖2H

)
≤ (q − 1)q

3
(E(F4) − 3) ≤ (q − 1)Var

(
‖DF‖2H

)
.

We refer to the monograph by Nourdin and Peccati [17] for a detailed account
on the application of Stein’s method combined with Malliavin calculus to normal
approximations. This methodology leads to a simple and quantitative proof of the so
called Fourth moment theorem (see Nualart and Peccati [23] and Nualart and Ortiz-
Latorre [22]), which represents a drastic simplification of the method of moments
and cumulants to prove convergence to the normal distribution.

Theorem 4.1 ( FourthMoment Theorem) Fix q ≥ 2. Let Fn = Iq( fn) ∈ Hq , n ≥ 1
be a sequence of elements in the qth chaos, such that

lim
n→∞ E(F2

n ) = 1.

The following conditions are equivalent:

(i) Fn ⇒ N (0, 1), as n → ∞.
(ii) E(F4

n ) → 3, as n → ∞.
(iii) For all 1 ≤ r ≤ q − 1, fn ⊗r fn → 0, as n → ∞.
(iv) ‖DFn‖2H → q in L2(�), as n → ∞.

In [25] Peccati and Tudor obtained a multidimensional extension of this result,
which can also be derived by Stein’smethod andMalliavin calculus. There has been a
large number of applications of this central limit theorem and its generalizations. We
refer the reader to the monograph by Nourdin and Peccati [17] for a detailed account
of applications and further developments. As an illustration of the power and wide
range of applications of this topic, let us mention the following contributions.

1. A central limit theorem for the renormalized self-intersection local time of the
d-dimensional fractional Brownian motion with Hurst parameter H ∈ [ 3

2d , 3
4

)
was proved by Hu and Nualart [8].

2. Quantitative Breuer-Major theorems for functionals of Gaussian stationary
sequences have been obtained in a series of works (see, for instance, Nourdin
and Peccati [15], Nourdin, Peccati and Podolskij [18] and Breton and Nourdin
[3]). A typical example where this methodology is successful is the asymptotic
behavior of the p-variation of a fractional Brownian motion.

3. Exact Berry-Esséen asymptotics for functionals of Gaussian processes have been
obtained by Nourdin and Peccati [16]. The main result of this paper is the follow-
ing theorem.
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Theorem 4.2 Let {Fn, n ≥ 1} be a sequence of variables in a fixed Wiener chaos

Hq , q ≥ 2, such that E(F2
n ) → 1. Let ϕ(n) =

√
E

[(
1 − 1

q ‖DFn‖2H
)2]

, and

assume that limn→∞ ϕ(n) = 0 and there exists m ≥ 1 such that ϕ(n) > 0

for all n ≥ m. Suppose that the two-dimensional vector

(
Fn,

1−‖DFn‖2H /q
ϕ(n)

)
con-

verges in distribution to a centered two-dimensional Gaussian vector (Z1, Z2) with
E(Z1Z2) = ρ. Then,

ϕ(n)−1[P(Fn ≤ z) − P(Z ≤ z)] → ρ

3
�(3)(z),

as n → ∞, where �(z) = ∫ z
−∞

1√
2π

e−x2/2dx.

5 Convergence in Law on a Finite Sum of Wiener Chaos

The convergence in law for real-valued random variables is metrizable by the Fortet-
Mourier distance:

dF M (F, G) = sup
ϕ

|E[ϕ(F)] − E[ϕ(G)]| ,

where the supremum is taken over all functions ϕ : R → R such that ‖ϕ‖Lip ≤ 1
and ‖ϕ‖∞ ≤ 1. Here ‖ϕ‖Lip denotes the Lipschitz norm

‖ϕ‖Lip = sup
x �=y

|ϕ(x) − ϕ(y)|
|x − y| .

We have seen that in Theorem 4.1 the convergence is in the total variation dis-
tance, which is stronger than the Fortet-Mourier distance. Then, a natural question is
whether this remains true whenever we have a sequence of random variables belong-
ing to a finite sum of Wiener chaos which converges in law. An affirmative answer
to this question, with a quantitative estimate, has been given by Nourdin and Poly
[20] using techniques of Malliavin calculus and the following inequality established
by Carbery and Wright [6].

Lemma 5.1 There is a universal constant C > 0 such that, for any polynomial
Q : Rn → R of degree at most d and 0 < q < ∞, one has that

E[Q(X1, . . . , Xn)
q
d ] 1

q P(|Q(X1, . . . , Xn)| ≤ α) ≤ Cqα
1
d , (5.1)

for all α > 0, where X1, . . . , Xn are independent random variables with law N (0, 1).
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The next theorem, proved in [20], says that on a finite sum Wiener chaos, the
convergence in law to a non-degenerate limit implies convergence in total variation.

Theorem 5.2 Let Fn ∈ ⊕p
k=1Hk be a sequence of random variables converging in

law to F∞, and suppose that F∞ is not identically zero. Then, there is a constant
c > 0, depending on p, such that

dT V (Fn, F∞) ≤ cdF M (Fn, F∞)
1

2p+1 .

A multidimensional extension of this theorem has been proved by Nourdin et al.
[14], using an integration-by-parts formula based on the Poisson kernel developed by
Bally and Caramelino [1]. In the multidimensional case a lower bound on the expec-
tation of the determinant of theMalliavinmatrix of the random vector is required.We
recall that given a random vector (F1, . . . , Fd) whose components belong to D

1,2,
its Malliavin matrix is the random matrix defined by � = (〈DFi , DFj 〉H )1≤i, j≤d .

Theorem 5.3 Let Fn = (F1,n, . . . , Fd,n) be a sequence of d-dimensional random
vectors such that Fi,n ∈ ⊕p

k=1Hk , i ∈ {1, . . . , d}, n ≥ 1. Suppose that Fn converges
in law to F∞, and

E[det �n] ≥ β > 0, (5.2)

where �n is the Malliavin matrix of Fn. Then for any γ < [(d +1)(4d(q −1)+3)+
1]−1, there is a constant cγ > 0 such that

dT V (Fn, F∞) ≤ cγdF M (Fn, F∞)γ .

Sketch of the Proof

(i) By a truncation argument, we can assume that Fn is bounded, that is, |Fn| ≤
M for some constant M > 0. Let ϕ : R

d → R be a measurable function
with support in [−M, M]d such that ‖ϕ‖∞ ≤ 1. We regularize ϕ with an
approximation of the identity of the form ρα(x) = α−dρ(x/α), where 0 <

α ≤ 1 and ρ is a nonnegative function in C∞
c with integral equal to one. Then,

|E[ϕ(Fn) − ϕ(Fm)]| ≤ |E[ϕ ∗ ρα(Fn) − ϕ ∗ ρα(Fm)]|
+ 2 sup

n
|E[ϕ(Fn) − ϕ ∗ ρα(Fn)]|

≤ 1

α
dF M (Fn, Fm) + 2Rα,

where
Rα = sup

n
|E[ϕ(Fn) − ϕ ∗ ρα(Fn)]|.

(ii) Let hα = ϕ − ϕ ∗ ρα. For any ε > 0,
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|E[hα(Fn)]| =
∣∣∣∣E
[

hα(Fn)

(
ε

det �n + ε
+ det �n

det �n + ε

)]∣∣∣∣

≤ 2εE[(det �n + ε)−1] +
∣∣∣∣E
[

hα(Fn)
det �n

det �n + ε

]∣∣∣∣ .

(iii) For the first term, using the Carbery-Wright inequality (5.1) and the condition
E[det �n] ≥ β, we obtain the estimate

2εE[(det �n + ε)−1] ≤ cε
1

2(q−1)d+1 .

(iv) For the second term we use Malliavin calculus and the representation

hα =
d∑

i=1

∂i hα ∗ ∂i Qd ,

where Qd is the Poisson kernel in R
d , to obtain for any p ≥ 1,

∣∣∣∣E
[

hα(Fn)
det �n

det �n + ε

]∣∣∣∣ ≤ cε−2 sup
i

∥∥∥∥
∫

Rd
φ(Fn − y)(∂i Qd − ρα ∗ ∂i Qd )(y)dy

∥∥∥∥
L p(�)

,

which implies

∣∣∣∣E
[

hα(Fn)
det �n

det �n + ε

]∣∣∣∣ ≤ cε−2α
1

d+1 M
d

d+1 .

(v) Therefore

|E[ϕ(Fn) − ϕ(Fm)]| ≤ 1

α
dF M (Fn, Fm) + cε

1
2(q−1)d+1 + cε−2α

1
d+1 M

d
d+1 ,

and the desired result follows by letting m → ∞ and optimizing in α, ε
and M . �

Here are some sufficient conditions for condition (5.2) to hold:

(i) If �n → M∞ in law and E[det M∞] > 0, then (5.2) holds.
(ii) If F∞ is normal Nd(0, C) with det(C) > 0, then (5.2) holds, because �n → C

in L2(�), as it has been proved by Nualart and Ortiz-Latorre [22].
(iii) If F∞ has independent and non degenerate components, then (5.2) holds.

The convergence in total variation has also been established in the case where
the limit is Gaussian, using techniques from information theory in a recent work by
Nourdin, Peccati and Swan [19]. The main ingredient in this paper is the so-called
Csiszar-Kullback-Pinsker inequality

dT V (F, Z) ≤ √2D(F ||Z),
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where D(F ||Z) = ∫
Rd f (x) log f (x)

φd (x)
dx is the relative entropy of the density f of

F , with respect to the density φd of Z ∼ Nd(0, I ).
Consider a sequence Fn = (F1,n, . . . , Fd,n) of d-dimensional random vectors,

such that Fi,n ∈ Hqi , with 1 ≤ q1 ≤ q2 ≤ · · · ≤ qd , E(F2
i,n) = 1, E(Fi,n Fj,n) = 0

for i �= j . The main result of [19] says that if

�n := E[‖Fn‖4 − ‖Z‖4] → 0,

then
D(Fn||Z) ≤ C�n| log�n|.

The proof is based on the Carbery-Wright inequality, the Malliavin calculus and
techniques of information theory.

6 Absolute Continuity of Random Vectors on a Finite Chaos

Abasic criterion inMalliavin calculus states that if a randomvectorF = (F1, . . . , Fd),
whose components belong to D1,2, satisfies det � > 0 almost surely (where � is the
Malliavin matrix of F), then the law of F is absolutely continuous with respect
to the Lebesgue measure on R

d . In a recent work, Nourdin, Nualart and Poly (see
[14]) proved the stronger result that for random vectors whose components belong
to a finite sum of Wiener chaos, P(det � = 0) is zero or one; as a consequence,
P(det � > 0) = 1 turns out to be equivalent to the absolute continuity of F . This
is also equivalent to the existence a nonzero polynomial H in d variables such that
H(F) = 0, which was established by Kusuoka [10]. More precisely, the following
result was proved in [14]:

Theorem 6.1 Let F = (F1, . . . , Fd) be such that Fi ∈ ⊕q
k=1Hk . Let � be the

Malliavin matrix of F. Then P(det � = 0) is zero or one and the following assertions
are equivalent:

(a) The law of F is not absolutely continuous with respect to the Lebesgue measure
on R

d .
(b) There exists H ∈ R[X1, . . . , Xd ]\{0} of degree at most dqd−1 such that, almost

surely,
H(F1, . . . , Fd) = 0.

(c) E[det �] = 0.

In dimension one it is known that E[det �] = 0 is equivalent to F = E(F) = 0.
It would be interesting to know what happens in the multidimensional case, that is,
under which conditions we have E[det �] = 0. Let us denote by C the covariance
matrix of the random vector F . Clearly, if det C = 0, then the components of F are
linearly dependent and the law of F is not absolutely continuous, which implies that
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E[det �] = 0. The converse of this implication is not true if d ≥ 3. For instance,
the vector (F1, F2, F1F2), where F1 and F2 are two non-zero independent random
variables in the first chaos, satisfies det � = 0 but det C �= 0. However, in dimension
2 the converse implication is true for random variables in the second chaos. In fact,
we have the following result.

Lemma 6.2 Let (F, G) = (I2( f ), I2(g)), and denote by � and C the Malliaivn
matrix and the covariance matrix of the vector (F, G), respectively. Then,

E[det �] ≥ 4 det C.

Proof We have DF = 2I1( f ) and DG = 2I1(g). As a consequence,

‖DF‖2H = 4‖ f ‖2 + 4I2( f ⊗1 f ),

‖DG‖2H = 4‖g‖2 + 4I2(g ⊗1 g),

〈DF, DG〉H = 4I2( f ⊗1 g) + 4〈 f, g〉.

This implies

E[det �] = 16
(
‖ f ‖2‖g‖2 − 〈 f, g〉2

)

+32
(
‖ f ⊗1 g‖2 − ‖ f ⊗̃1g‖2

)
≥ 4 det C. �

Here are some immediate consequences of this lemma:

(i) If E[det �] = 0, then det C = 0 and F and G are linearly dependent.
(ii) If det C > 0, then E[det �] > 0 and the law of (F, G) is absolutely continuous.
(iii) If (Fn, Gn) ⇒ (F∞, G∞), and det C∞ > 0, then the convergence is in total

variation.

The equivalence between E[det �] = 0 and det C = 0 in the particular case of a
two-dimensional random vector (F, G) whose components are multiple stochastic
integrals of the same order n has been recently proved by Nualart and Tudor in
[24]. This implies that the random vector (F, G) has an absolutely continuous law
with respect to the Lebesgue measure on R

2 if and only if its components are not
proportional, as in the Gaussian case. This result was previously established for
n = 2 in [14], and for n = 3, 4 in [28]. The proof starts from the decomposition of
the determinant of the Malliavin matrix into a sum of squares:

det � = 1

2

∞∑
i, j=1

(〈DF, ei 〉H 〈DG, e j 〉H − 〈DF, e j 〉H 〈DG, ei 〉H
)2

,

where {ei , i ≥ 1} is a complete orthonormal system of H . Then, a basic ingredient
of the proof in the general case of 2-dimensional vectors in a fixed Wiener chaos of
order n, is the inequality
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[
n−1
2

]
∑
k=2

n(n − 2k)

k!2 E[det �(k)] + (n − 1)2E[det �(1)] ≥ n2 det C,

where �(k) is the k-iterated Malliavin matrix of the vector (F, G) defined by

�(k) =
( ‖D(k)F‖2

H⊗k 〈D(k)F, D(k)G〉H⊗k

〈D(k)F, D(k)G〉H⊗k ‖D(k)G‖2
H⊗k

)
,

As a consequence, if det C > 0 then that (F, G) has an absolutely continuous law,
and the convergence in law of a sequence (Fn, Gn) to a non-degenerate limit would
imply the convergence in total variation.

7 Convergence of Densities

Consider the framework of an isonormal Gaussian process X over a Hilbert space H
on a probability space (�,F , P), whereF is the completion of the σ-field generated
by X . We have seen that for random variables belonging to a finite sum of Wiener
chaos the convergence in law implies convergence in total variation under some
suitable non degeneracy assumptions. Notice that the total variation distance between
the law of two random variables F and G with densities pF and pG coincides with
the L1(R) distance between the densities:

dT V (F, G) =
∫

R

|pF (x) − pG(x)|dx .

On the other hand, a sufficient condition for a random variable F in D
1,2 to have a

density is ‖DF‖H > 0 almost surely, and the density if smooth if E(‖DF‖−p) < ∞
for all p ≥ 1. Then, we can expect that imposing uniform boundedness of negative
moments of the Malliavin norm (or the determinant of the Malliavin matrix) one can
deduce uniform convergence of the corresponding densities. Results of this type have
been established in the recent work byHu et al. [7]. In particular, for one-dimensional
random variables in a fixed Wiener chaos one can show the following theorem.

Theorem 7.1 Suppose that F is a random variable in Hq , q ≥ 2, such that
E(F2) = 1 and E(‖DF‖−6

H ) ≤ M. Let pF be the density of F, and let Z be a
N (0, 1) random variable. Then,

sup
s∈R

|pF (x) − φ(x)| ≤ CM,q

√
E(F4) − 3,

where φ is the density of the law N (0, 1).
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Sketch of the Proof
The proof given in [7] is based on the techniques of Malliavin calculus together

with Stein’s method. The main steps of the proof are as follows.

(i) A basic result in Malliavin calculus is the following formula for the density of
the random variable F :

pF (x) = E

[
1{F>x}δ

(
DF

‖DF‖2H

)]
.

Using the factorization property (2.5) and the relation (2.6) we can write

pF (x) = E

[
1{F>x}

q F

‖DF‖2H

]
− E[1{F>x}〈DF, D(‖DF‖−2

H )〉H ]

= E[1{F>x}F] + E[q‖DF‖−2
H − 1] − E[1{F>x}〈DF, D(‖DF‖−2

H )〉H ].

(ii) Using the assumption E(‖DF‖−6
H ) ≤ M togetherwithWiener chaos expansions

one can show that the terms E[|q‖DF‖−2
H − 1|] and E[|〈DF, D(‖DF‖−2

H )〉H |]
can be estimated by a constant times

√
E(F4) − 3.

(iii) Taking into account that φ(x) = E[1{Z>x}Z ], it suffices to estimate the differ-
ence

E[1{F>x}F] − E[1{Z>x}Z ],

which can be done by Stein’s method and Malliavin calculus. �
Using the notion of Fisher information, Nourdin and Nualart [13], provided an

alternative proof to Theorem 7.1 under the weaker assumption E(‖DF‖−4−ε
H ) ≤ M

for some ε > 0. We recall that the Fisher information J (F) of F is given by
J (F) = E[sF (F)2] if the random variable sF (F) is square-integrable and
J (F) = +∞ otherwise, where sF (F) denotes the score associated to F , which
is the F-measurable random variable uniquely determined by the integration by
parts

E[ϕ′(F)] = −E[sF (F)ϕ(F)] for all test function ϕ : R → R.

We have J (F) ≥ 1 = J (Z) with equality if and only if F is standard Gaussian.
Then, the gap between J (F) and 1 = J (Z) is a measure of how the law of F is
close to the standard Gaussian distribution N (0, 1). A quantitative version of this
statement is given by the Shimizu’s inequality [26]:

‖pF − pN ‖∞ ≤ √J (F) − 1, (7.1)

which is the main ingredient in the proof of Theorem 7.1 given in [13].
The following extensions of Theorem 7.1 have been also established in [7]:
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(i) One can show the uniform approximation of the mth derivative of pF by the
corresponding mth derivative of the Gaussian density φ(m). For this approxima-
tion to hold one needs the stronger assumption E(‖DF‖−β

H ) < ∞ for some
β > 6m + 6

(�m
2 � ∨ 1

)
.

(ii) Consider a d-dimensional vector F , whose components are in a fixed chaos, and
such that E[(det �)−p] < ∞ for all p, where � denotes the Malliavin matrix of
F . In this case for any multi-index β = (β1, . . . ,βk), 1 ≤ βi ≤ d, one can show

sup
x∈Rd

∣∣∂β fF (x) − ∂βφd(x)
∣∣ ≤ c

(
|C − I | 12 +

d∑
j=1

√
E[F4

j ] − 3(E[F2
j ])2
)
,

where C is the covariance matrix of F , φd is the standard d-dimensional normal
density, and ∂β = ∂k

∂xβ1 ...∂xβk
.

It would be interesting to check whether one can apply Theorem 7.1 to differ-
ent examples of central limit theorems for random variables in a fixed chaos. The
challenge is to verify the condition E(‖DF‖−p

H ) ≤ M for some p > 4. So far the
following examples of applications have been developed.

7.1 Example 1

Let q = 2. A random variable F in the secondWiener chaos can be always expressed
as

F =
∞∑

i=1

λi (X (ei )
2 − 1),

where {ei , i ≥ 1} is a complete orthonormal system in H and λi is a decreasing
sequence of positive numbers such that

∑∞
i=1 λ2

i < ∞. Then, if λN �= 0 for some
N > 4, we obtain (see [7])

sup
x∈R

|pF (x) − φ(x)| ≤ CN ,λN

√√√√
∞∑

i=1

λ4
i .

7.2 Example 2

Our second example is given by the weighted quadratic variation of the fractional
Brownian motion. The fractional Brownian motion B H = {B H

t , t ≥ 0} with Hurst
parameter H ∈ (0, 1) is a zero mean Gaussian process with covariance
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E(B H
t B H

s ) = 1

2

(
t2H + s2H − |t − s|2H

)
.

Consider the sequence

Fn = 1√
n

n∑
j=1

[(nH � j B H )2 − 1],

where� j B H = B H
j
n

− B H
j−1
n

. Then, if H ∈ (0, 3
4 ) it is well-known that Fn converges

in law to N (0,σ2
H ), where σ2

H = 2
∑

z∈Z ρH (z)2 and

ρH (z) = 1

2
(|z + 1|2H + |z − 1|2H − 2|z|2H ). (7.2)

If we consider the normalized sequence Gn = Fn√
VarFn

, Biermé, Bonami and León

[5] obtained the following result:

√
E(G4

n) − 3 ≤ cH

⎧⎪⎨
⎪⎩

n− 1
2 if H ∈ (0, 5

8 ),

n− 1
2 (log n)

3
2 if H = 5

8 ,

n4H−3 if H ∈ ( 58 ,
3
4 ).

Using the quantitative version of the fourth moment theorem obtained by Nourdin
and Peccati by means of Stein’s method, this gives the rate of convergence to zero
for the total variation distance dT V (Gn, Z), where Z is a standard normal random
variable.

In this context, Nourdin and Nualart [13], obtained the following result:

Proposition 7.2 For any p ≥ 1 there exists n0 (depending on p) such that

sup
n≥n0

E(‖DGn‖−2p) < ∞.

As a consequence, for n large enough

sup
x∈R

|pGn (x) − φ(x)| ≤ C
√

E(G4
n) − 3 ≤ CcH

⎧⎪⎨
⎪⎩

n− 1
2 if H ∈ (0, 5

8 ),

n− 1
2 (log n)

3
2 if H = 5

8 ,

n4H−3 if H ∈ ( 58 ,
3
4 ).

A similar estimate can be obtained for the uniform norm of all the derivatives of the
density. The proof of Proposition 7.2 is inspired in the following basic lemma, which
is obtained by a decomposition in blocks and the application of Carbery-Wright
inequality.
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Lemma 7.3 Let Gn be a sequence of random variables in H2. Fix N > 2p ≥ 2
and suppose that we have a decomposition of the form

‖DGn‖2 =
N∑

i=1

A2
i,n,

where the Ai,n are random variables in the first Wiener chaos. LetFi,n = σ{A j,n, 1 ≤
j ≤ i}. Suppose that for each i = 1, . . . , N

lim inf
n→∞ Var

(
Ai,n|Fi−1,n

)
> 0. (7.3)

Then,
sup
n≥n0

E(‖DGn‖−2p) < ∞.

Proof We can write

‖DGn‖−2p =
(

N∑
i=1

A2
i,n

)−p

≤
N∏

i=1

A
− 2p

N
i,n .

Then,

E

[
A

− 2p
N

N ,n |FN−1,n

]
≤ 1 + p

N

∫ 1

0
P(A2

N ,n < x |FN−1,n)x− p
N −1dx,

and applying the Carbery-Wright’s inequality with d = q = 2 (5.1) we obtain

P(A2
N ,n < x |FN−1,n) ≤ C

√
x
[

E
(

A2
N ,n|FN−1,n

)]−1/2

≤ C
√

x
[
Var
(

AN ,n|FN−1,n
)]−1/2

.

We can conclude the proof taking into account that N > 2p and using condition
(7.3). �

7.3 Example 3

In a recent paper Hu et al. [9] have derived an application of Theorem 7.1 in the
framework of the Breuer-Major theorem (see [4] or Theorem 7.2.4 in [17]) using
the approach outlined in Lemma 7.3. Fix q ≥ 2 and consider a sequence of random
variables of the form
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Vn = 1√
n

n∑
j=1

Hq(X j ), (7.4)

where X = {Xk, k ≥ 1} is a centered Gaussian stationary sequence with unit
variance. For all v ≥ 0, we set ρ(v) = E[X1X1+v] and ρ(−v) = ρ(v) if v < 0. The
main result of [9] is the next theorem.

Theorem 7.4 Let X = {Xk, k ≥ 1} be stationary Gaussian sequence whose spectral
density fρ satisfies fρ ∈ L1/2([−π,π]) and log( fρ) ∈ L1([−π,π]). Let Vn be
the random variable defined by (7.4), and assume that

∑
v∈Z |ρ(v)|q < ∞. Set

σ2 := q!∑v∈Z ρ(v)q < ∞. Then for any p ≥ 1, there exists n0 such that

sup
n≥n0

E
[‖DVn‖−p] < ∞. (7.5)

Therefore, if Fn = Vn/
√

E[V 2
n ], we have

sup
x∈R

|pFn (x) − φ(x)| ≤ c
√

E[F4
n ] − 3.

A particular example of stationary sequence satisfying the assumptions of Theo-
rem 7.4 is {Xk = B H

k − B H
k−1 , k ≥ 1}, where {B H

t , t ≥ 0} is a fractional Brownian
motion of Hurst parameter H ∈ (0, 1). In this case, the covariance function ρ = ρH
is given by (7.2) In this case, the spectral density (see e.g. [2], Eq. (2.17)) given by

f (λ) = 1

2π

∞∑
k=−∞

ρ(|k|)eiλ = 2c f (1 − cos(λ))

∞∑
j=−∞

|2π j + λ|−2H−1 , λ ∈ [−π,π]

satisfies the required conditions. As a consequence, we obtain the uniform conver-
gence of densities (and their derivatives) for the sequence of Hermite variations

Fn = 1√
n

n∑
j=1

Hq(nH � j B H ), q ≥ 2.
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An Overview of Viscosity Solutions
of Path-Dependent PDEs

Zhenjie Ren, Nizar Touzi and Jianfeng Zhang

Abstract This paper provides an overview of the recently developed notion of
viscosity solutions of path-dependent partial differential equations. We start by a
quick review of the Crandall-Ishii notion of viscosity solutions, so as to motivate the
relevance of our definition in the path-dependent case.We focus on thewellposedness
theory of such equations. In particular, we provide a simple presentation of the cur-
rent existence and uniqueness arguments in the semilinear case. We also review the
stability property of this notion of solutions, including the adaptation of the Barles-
Souganidis monotonic scheme approximation method. Our results rely crucially on
the theory of optimal stopping under nonlinear expectation. In the dominated case,
we provide a self-contained presentation of all required results. The fully nonlinear
case is more involved and is addressed in [12].
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1 Introduction

Let � := {ω ∈ C0([0, T ],Rd) : ω0 = 0} be the canonical space of continuous paths
starting from the origin, B the canonical process defined by Bt(ω) := ωt , t ∈ [0, T ],
and F := {F t, t ∈ [0, T ]} the corresponding filtration. Following Dupire [10], we
introduce the pseudo-distance

d
(
(t,ω), (t′,ω′)

) := |t − t′| + ‖ω∧t − ω′
∧t′ ‖∞ (1.1)

for all t, t′ ∈ [0, T ], ω, ω′ ∈ �.

Then, any process u : [0, T ] × � −→ R, continuous with respect to d, is
F−progressively measurable, so that u(t,ω) = u

(
t, (ωs)s≤t

)
.

The goal of this paper is to provide a wellposedness theory for the path-dependent
partial differential equation (PDE):

− ∂tu(t,ω) − G
(
t,ω, u(t,ω), ∂ωu(t,ω), ∂2

ωωu(t,ω)
) = 0,

t < T , ω ∈ �. (1.2)

with boundary condition u(T ,ω) = ξ(ω). Here, ξ : (�,FT ) −→ (R,BR) is a
bounded uniformly continuous function, and G : [0, T ] × � ×R×R

d × Sd −→ R

is continuous in (t,ω), Lipschitz-continuous in the remaining variables (y, z, γ), and
satisfies the ellipticity condition:

γ ∈ Sd 	−→ G(t,ω, y, z, γ) is non-decreasing. (1.3)

The unknown process u(t,ω) is required to be F-progressively measurable, and
the derivatives ∂tu, ∂ωu, ∂2

ωωu are F-progressively measurable processes valued in
R,Rd,Sd , respectively, which will be defined later. Notice in particular that, as
R

d- and Sd-valued process, the derivatives ∂ωu, ∂2
ωωu do not correspond to some

(infinite-dimensional) gradient and Hessian with respect to the path. Consequently,
the Eq. (1.2) is a PDE parameterized by the path, and not a general PDE on the paths
space. For this reason, the name path-dependent PDE is more relevant than PDE on
the paths space.

There are three particular examples of such equations which can be related to the
existing probability theory literature, namely

1. When the nonlinearity G is linear:

Glin(., y, z, γ) := � − ky + 1

2
Tr(γ), (1.4)

for some functions �, k defined on [0, T ]×� the natural solution of the equation
(1.2) is given by any regular version of the conditional expectation
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ulin(t,ω) := E
P0

[ T∫

t

e
−

s∫
t

krdr
�sds + e

−
T∫
t

krdr
ξ
∣∣∣Ft

]
(ω), (1.5)

where P0 is the Wiener measure. Similar results hold for more general linear
equations.

2. When the nonlinearity G is semilinear:

Gs-lin(., y, z, γ) := 1

2
Tr(γ) + F(., y, z), (1.6)

for some function F : [0, T ] × � × R × R
d −→ R, the natural solution of

the equation (1.2) is given by any regular version of the backward stochastic
differenttial equation:

us-lin(t,ω) = Yt(ω) where Ys = ξ +
T∫

s

Fr(Yr, Zr)dr −
T∫

s

ZrdBr, P0-a.s.

3. The theory of second order backward stochastic differential equations introduced
in [5, 29] provides a similar representation of the natural solution of the path-
dependent PDE (1.2) for a class of fully nonlinearities G.

Another important particular example, which plays the role of a benchmark, is the
so-calledMarkovian casewhen ξ(ω) = h(ωT ), andG(t,ω, y, z, γ) = g(t,ωt, y, z, γ)

for some functions g and h defined on the corresponding finite-dimensional spaces. In
this context, we expect that u(t,ω) = v(t,ωt) for some function v : [0, T ]×R

d −→
R, and the path-dependent PDE (1.2) reduces to the standard PDE:

− ∂tv(t, x) − g
(
t, x, v(t, x), Dv(t, x), D2v(t, x)

) = 0, t < T , x ∈ R
d, (1.7)

where∂t, D, D2 denotes respectively the standard timederivative, the gradient and the
Hessianwith respect to the space variable. In this case, it iswell-known that the theory
of viscosity solutions introduced by Crandall and Lions [7, 8] is a powerful notion of
weak solution for which a solid existence and uniqueness theory has been developed,
and which proved its relevance for various applications. Viscosity solutions gained
importance by the contributions of Barles and Souganidis [1] to the convergence of
numerical schemes, and the work of Cafarelli and Cabre [4] which makes a crucial
use of viscosity solutions to obtain sharp regularity results.

Our main concern is the adaptation of the notion of viscosity solutions to the
context of our path-dependent PDE (1.2). However, the fact that our underlying
space, namely [0, T ] × �, is not locally compact raises a major difficulty which
needs to be addressed. Indeed, the stability and the uniqueness results in the theory
of viscosity solutions is based on the existence of a local maximizer for an arbitrary
upper semicontinuous function.
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In order to by-pass this difficulty, we introduce a convenient modification of the
definition. To explain our definition, let us focus on the notion of viscosity subsolu-
tion, the case of a viscosity supersolution is symmetric. For a viscosity subsolution
u, the standard definition considers as test functions some point (t0, x0) all those
functions ϕwhich are pointwisely locally tangent from above to u with contact point
(t0, x0):

(ϕ − u)(t0, x0) = min
Or(t0,x0)

(ϕ − u), for some r > 0,

where Or(t0, x0) denotes the open ball in Rd+1 centered at (t0, x0), with radius r.

1. For simplicity, we first consider the case of a nonlinearity G = Glin as in (1.4),
or G = Gs-lin as in (1.6), with F(t,ω, y, z) independent of the z-component.
Our definition follows exactly the spirit of viscosity solutions, but replaces the
pointwise tangency by the corresponding notion in mean:

(ϕ − u)(t0,ω0) = min
τ

E
P
[
(ϕ − u)τ∧h|Ft0

]
(ω0),

for some stopping time h > t0,

where the min is over all stopping times τ ≥ t0.
2. For amore general nonlinearityG, our definition replaces the expectation operator

E
P by a the sublinear expectation operator E := supP∈P E

P for some convenient
family P of probability measure. We observe that P can be chosen to be a dom-
inated family of measures in the semilinear case G = Gs-lin. However, in the
general nonlinear case, the family P is not dominated.

Themain purpose of this paper is to provide an overview of the available results on
the wellposedness of the path-dependent PDE under this notion of viscosity solution.
In particular, we highlight that our definition induces a richer family of test function
in the Markovian case. Consequently,

(i) the existence may be more difficult to achieve under our definition; however,
we shall see that the traditional examples from the applications raise no special
difficulty from the existence side; in fact, in contrast with the standard notion of
viscosity solution, our definition is tight,

(ii) the uniquenessmay be easier under our definition because our notion of viscosity
solution is constrained by a bigger set of test functions; indeed recently com-
parison results were obtained in the semilinear case G = Gs-lin with relatively
simple arguments avoiding the Crandall-Ishii’s lemma of the standard viscosity
solution in the Markovian case; in particular, the comparison result for the linear
path-dependent PDE G = Glin follows from the equivalence between our notion
of viscosity subsolution and the (pathwise) submartingale property, whose proof
is a simple consequence of the theory of optimal stopping.

This paper also pays a special attention to the stability of our notion of viscos-
ity solutions, which is an essential property of standard viscosity solutions in the
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Markovian case, and is responsible for the denomination of this notion. We shall
present the present state of stability results, together with the corresponding conver-
gence results of numerical schemes à la Barles and Souganidis [1].

2 Standard Viscosity Solution in the Markovian Case

In this short section, we recall the standard definition of viscosity solutions in the
Markovian case, and we review the corresponding existence and uniqueness results.
In order for our notations to be consistent with the path-dependent case, our functions
will be defined on cl(Q) = [0, T ] × R

d , where Q := [0, T) × R
d .

2.1 Definitions and Consistency with Classical Solutions

For (t, x) ∈ Q, u ∈ USC(Q), and v ∈ LSC(Q), we denote:

Au(t, x) := {
ϕ ∈ C1,2(Q) : (ϕ − u)(t, x) = min

Q
(ϕ − u)

}
, (2.1)

Av(t, x) := {
ϕ ∈ C1,2(Q) : (ϕ − v)(t, x) = max

Q
(ϕ − v)

}
. (2.2)

Definition 2.1 (i) u ∈ USC(Q) is a viscosity subsolution of Eq. (1.7) if:

{ − ∂tϕ − g(., u, Dϕ, D2ϕ)
}
(t, x) ≤ 0 for all (t, x) ∈ Q, ϕ ∈ Au(t, x).

(ii) v ∈ LSC(Q) is a viscosity supersolution of Eq. (1.7) if:

{ − ∂tϕ − g(., u, Dϕ, D2ϕ)
}
(t, x) ≥ 0 for all (t, x) ∈ Q, ϕ ∈ Au(t, x).

(iii) A viscosity solution of (1.7) is a viscosity subsolution and supersolution of
(1.7).

From the last definition, it is clear that one may add a constant to the test function
ϕ so that the minimum and the maximum values in (2.1), (2.2) are zero. Then, the
pictorial representation of a test function ϕ ∈ Au(t, x) is a smooth function tangent
from above to u with contact point at (t, x). The symmetric pictorial representation
holds for a test function ϕ ∈ Av(t, x). Notice that Av(t, x) may be empty, and in this
case the subsolution property at (t, x) holds trivially.

We also observe that we may replace the minimum and maximum in (2.1), (2.2)
by the corresponding local notions. Moreover, by the continuity of the nonlinearity
g, we may also assume the minimum (reps. maximum) or local minimum (resp. local
maximum) to be strict, and we may restrict attention to C∞(Q) test functions.



402 Z. Ren et al.

The following consistency property is an easy consequence of the ellipticity con-
dition on g. We state it only for subsolution, but the result can be similarly stated for
supersolutions.

Proposition 2.2 Assume g(t, x, y, z, γ) is non-decreasing in γ. Then, for a function
u ∈ C1,2(Q), we have

u is a classical subsolution of (1.7) iff u is a viscosity subsolution of (1.7).

2.2 The Heat Equation Example

In this subsection, we consider the equation

− Lu(t, x) := −∂tu(t, x) − b(t, x)Du(t, x) − 1

2
σ2(t, x) :

D2u(t, x) = 0, (t, x) ∈ Q. (2.3)

where the coefficients b : Q −→ R
d andσ : Q −→ Sd are continuous and Lipschitz-

continuous in x uniformly in t. The purpose from studying this simple example is to
gain some intuition in view of our extension to the path-dependent case.

Under the above conditions on b andσ, wemay consider the unique strong solution
{Xt, t ∈ [0, T ]} of the stochastic differential equation

Xt = X0 +
t∫

0

b(s, Xs)ds +
t∫

0

σ(s, Xs)dBs, P0−a.s. (2.4)

for some given initial data X0. Then, given a boundary condition u(T , .) = ψ for
some ψ : Rd −→ R, the natural solution of (2.3) is given by:

u0(t, x) := E
P0

[
ψ(XT )|Xt = x

]
, (t, x) ∈ Q.

In the remaining of this section, we verify that u0 is a viscosity solution of the heat
Eq. (2.3), and we make crucial observations which open the door for enlarging the
set of test functions.

(a) Tower property The first step is to use the Markov feature of the process X in
conjunction with the tower property to deduce that

u(t, x) = E
P0

[
u(τ , Xτ )|Xt = x

]

for all stopping time τ with values in [t, T ]. (2.5)
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We shall use this identity with stopping times τ = τh := (t + h) ∧ inf{s >

t : |Xs − x| ≥ 1}. For the next development, notice that τh > t, a.s., (s, Xs) is
bounded on [t, τh], and τh −→ t, a.s. when h ↘ 0.
Also,we avoid to discuss the regularity issues of the functionu0. For instance, ifψ
is Lipschitz-continuous, then u0 is immediately seen to be Lipschitz-continuous
with respect to the x-variable, uniformly in t, and we verify that u0 is 1

2–Hölder-
continuous with respect to the t variable, uniformly in x, by using the identity
(2.5).

(b) u0 is a viscosity subsolution Let (t, x) ∈ Q and ϕ ∈ Au(t, x) be given. We
denote by {Xt,x

s , s ∈ [t, T ]} the solution of (2.4) started from Xt,x
t = x. By

definition, we have

(ϕ − u)(t, x) ≤ (ϕ − u) on Q,

and then (ϕ − u)(t, x) ≤ E
P0

[
(ϕ − u)(τh, Xt,x

τh
)
]
, (2.6)

for all h > 0. From the last inequality in mean, together with the identity (2.5),
we get

ϕ(t, x) ≤ E
P0

[
ϕ(τh, Xt,x

τh
)
]
.

Since the test function ϕ is smooth, it follows from Itô’s formula that

−E
P0

[ τh∫

t

Lϕ(r, Xt,x
r )dr

]
≤ 0.

Dividing by h and sending h ↘ 0, we deduce from the mean value theorem
together with the dominated convergence theorem that

−Lϕ(t, x) ≤ 0.

(c) u0 is a viscosity supersolution For (t, x) ∈ Q and ϕ ∈ Au(t, x), notice that we
have the analogue of (2.6):

(ϕ − u)(t, x) ≥ (ϕ − u) on Q,

and then (ϕ − u)(t, x) ≥ E
P0

[
(ϕ − u)(τh, Xt,x

τh
)
]
. (2.7)

Following the same line of argument as in (b), it follows that Lϕ(t, x) ≥ 0, as
required.

Crucial observation Notice that only the right-hand sides of (2.6) and (2.7) have
been useful to prove that u0 is a subsolution and supersolution, respectively, of the
heat equation (2.3). The right-hand sides of (2.6) and (2.7) express that the test
function ϕ is tangent to u in mean, locally along the trajectory of the underlying
process (s, Xt,x

s ). Of course, the set of smooth functions which are tangent from
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above (reps. from below) in mean is larger than Au (resp. Au). Consequently, we
may have used an alternative definition of viscosity solution with a richer family of
test functions (defined by the right-hand sides of (2.6) and (2.7)), and still get the
same existence result. The benefit from such a stronger definition may be that the
uniqueness theory can be simplified by suitable use of the additional test functions.

Remark 2.3 The C1,2 smoothness of the test function ϕ is only needed in order to
apply Itô’s formula

ϕ
(
τh, Xt,x

τh

) − ϕ(t, x)

=
τh∫

t

Lϕ(r, Xt,x
r )dr +

τh∫

t

Dϕ(r, Xt,x
r )σ(r, Xt,x

r )dBr, P0 − a.s.

Motivated by this observation, we shall take Itô’s formula as a starting point for the
definition of smooth processes in the path-dependent case.

2.3 Existence for HJB Equations

In this subsection, we show that the crucial observation from the previous subsection
holds in the context of the fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation:

− ∂tu − sup
k∈K

{
b(., k)Du + 1

2
σ2(., k) : D2u

}
= 0, (t, x) ∈ Q. (2.8)

Here, for simplicity, we consider the case of a bounded set of controls K . The con-
trolled coefficients b : Q × K −→ R

d and σ : Q × K −→ Sd are continuous in t,
Lipschitz-continuous in x uniformly in (t,κ). The controls set is denoted by K, and
consists of all F-progressively measurable process with values in K . For all control
process κ ∈ K, we introduce the controlled process Xκ as the unique strong solution
of the SDE

Xκ
t = X0 +

t∫

0

b(s, Xκ
s ,κs)ds +

t∫

0

σ(s, Xκ
s ,κs)dBs, P0-a.s.

and we denote by Xκ,t,x the solution corresponding to the initial data Xκ,t,x
t = x. The

Dynkin operator associated to Xκ is denoted:

Lk := ∂t + b(., k)D + 1

2
σ2(., k) : D2.
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Given a boundary condition u(T , .) = ψ for someψ : Rd −→ R, the natural solution
of (2.8) is given by:

u1(t, x) = sup
κ∈K

E
P0

[
ψ(Xκ,t,x

T )
]
, (t, x) ∈ Q.

In the remaining of this section, we verify that u1 is a viscosity supersolution of the
HJB equation (2.8), and we focus on the crucial observation that only the tangency
condition in mean is used for this purpose. The subsolution property can be obtained
by similar standard arguments, and the reader can verify that only tangency in mean
is needed, again.

(a) Dynamic programming principle In the present nonlinear case, the substitute
for the tower property identity (2.5) is the following dynamic programming
identity:

u(t, x) = sup
κ∈K

E
P0

[
u(τκ, Xκ,t,x

τκ )
]

for all stopping times τκ with values in [t, T ]. (2.9)

This identity will be used with stopping times τκ = τκ
h := (t + h) ∧ inf{s > t :

|Xκ,t,x
s − x| ≥ 1}. For the next development, notice that τh > t, a.s., (s, Xκ

s ) is
bounded on [t, τκ

h ], and τκ
h −→ t, a.s. when h ↘ 0.

The proof of (2.9) is a difficult task relying on involved measurable selections
techniques, see [29] for the regular case (which does not require measurable
selection arguments), [18, 19] for the general irregular case, and [2] for a weak
dynamic programming principle which is sufficient for the task of deriving the
viscosity property, while by-passing the measurable selection arguments.
We also avoid here to discuss the regularity issues of the function u1. For instance,
if ψ is Lipschitz-continuous, then u1 is immediately seen to be Lipschitz-
continuous with respect to the x-variable, uniformly in t, and we verify that
u1 is 1

2 -Hölder-continuous with respect to the t- variable, uniformly in x, by
using the identity (2.9).

(b) u1 is a viscosity supersolution Let (t, x) ∈ Q and ϕ ∈ Au(t, x) be given. Fix
an arbitrary control process κ ∈ K. For the purpose of the present argument,
we may take this control porcess to be constant κs = k for all s ∈ [t, T ]. By
definition, we have

(ϕ − u)(t, x) ≥ (ϕ − u) on Q,

and then (ϕ − u)(t, x) ≥ E
P0

[
(ϕ − u)(τκ

h , Xκ,t,x
τκ

h
)
]
, (2.10)

for all h > 0. From the last inequality in mean, together with the identity (2.9),
we get

ϕ(t, x) ≥ E
P0

[
ϕ(τh, Xκ,t,x

τh
)
]
.
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Since the test function ϕ is smooth, it follows from Itô’s formula that

−E
P0

[ τh∫

t

Lϕ(r, Xκ,t,x
r )

]
≥ 0.

Dividing by h and sending h ↘ 0, we deduce from the mean value theorem
together with the dominated convergence theorem that

−Lkϕ(t, x) ≥ 0.

By the arbitrariness of k ∈ K , this proves the required supersolution property.

Crucial observation Here again, only the right-hand side of (2.10) has been useful
to prove that u1 is a supersolution of the HJB equation (2.8). The right-hand side
of (2.10) expresses that the test function ϕ is tangent to u in mean, locally along
the trajectory of the underlying process (s, Xκ,t,x

s ), for all possible control process
κ ∈ K. The latter is a new feature which appears in the present nonlinear case: while
the linear case involves the tangency condition under the expectation operator EP0 ,
the present nonlinear case requires the use of a sub linear expectation defined by
an additional maximization with respect to all possible choices of control process
κ ∈ K.

This additional feature however does not alter the observation that the set of
smooth functions which are tangent from below in (sublinear) mean is larger than
Au. Consequently, we may have used an alternative definition of viscosity solution
with a richer family of test functions (defined by the right-hand side of (2.10)), and
still get the same existence result. Similar to the case of the linear heat equation,
the benefit from such a stronger definition may be that the uniqueness theory can be
simplified by suitable use of the additional test functions.

2.4 Comparison of Viscosity Solutions

The uniqueness result of viscosity solution of second order fully nonlinear elliptic
PDEs is usually obtained as a consequence of the comparison result, which corre-
sponds to the maximum principle.

Definition 2.4 We say that the Eq. (1.7) satisfies comparison of bounded solutions
if for all bounded viscosity subsolution u, and bounded viscosity supersolution v,
we have

(u − v)(T , .) ≤ 0 on R
d implies u − v ≤ 0 on cl(Q).
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Comparison results for viscosity solution are available for a wide class of
equations. The most accessible results are for the case of first order equations where
the beautiful trick of doubling variables is remarkably efficient.

For second order equations, comparison results are more difficult and require to
introduce a convenient regularization, typically by inf-convolution. Themost general
approachwhich covers possibly degenerate equations relies crucially on theCrandall-
Ishii Lemma which provides the substitute of first and second order conditions at a
local maximum point when the objective function is only upper semicontinuous.

In the context of uniformly elliptic equations, the argument of Caffarelli andCabre
[4] avoids the technique of doubling variables, but still relies crucially on the inf-
convolution regularization. We refer to Wang [30] for the extension to the uniformly
parabolic case which requires a more involved regularization technique.

All available comparison results for second order elliptic and parabolic equations
use the restriction of test functions to paraboloids. This leads to the notion of superjets
and subjets. For notations consistency, we continue our discussion with the parabolic
case.

For q ∈ R, p ∈ R
d , and γ ∈ Sd , we introduce the paraboloid function:

φq,β,γ(t, x) := qt + p · x + 1

2
γx · x, (t, x) ∈ Q.

For u ∈ USC(Q), let (t0, x0) ∈ Q, ϕ ∈ Au(t0, x0), define q := ∂tϕ(t0, x0), p :=
Dϕ(t0, x0), and γ := D2ϕ(t0, x0). Then, it follows from a Taylor expansion that:

u(t, x) ≤ u(t0, x0) + φq,p,γ(t − t0, x − x0) + ◦(|t − t0| + |x − x0|2
)
.

Motivated by this observation, we introduce the superjet J+u(t0, x0) by

J+u(t0, x0) := {
(q, p, γ) ∈ R × R

d × Sd : for all (t, x) ∈ Q (2.11)

u(t, x) ≤ u(t0, x0) + φq,p,γ(t − t0, x − x0)

+ ◦ (|t − t0| + |x − x0|2
)}

.

Then, it can be proved that a function u ∈ USC(Q) is a viscosity subsolution of the
equation (1.7) if and only if

F(t, x, u(t, x), p, γ) ≤ 0 for all (q, p, γ) ∈ J+u(t, x).

The nontrivial implication of the previous statement requires to construct, for every
(q, p, A) ∈ J+u(t, x), a smooth test function ϕ such that the difference (ϕ − u) has
a local minimum at (t, x).

Similarly, we define the subjet J−v(t0, x0) of a function v ∈ LSC(Q) at the point
(t0, x0) ∈ Q by
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J−v(t0, x0) :=
{
(q, p, γ) ∈ R

d × Sd : for all (t, x) ∈ Q

v(x) ≥ v(t0, x0) + φq,p,γ(t − t0, x − x0)

+ ◦ (|t − t0| + |x − x0|2
)}

, (2.12)

and v ∈ LSC(Q) is a viscosity supersolution of the equation (1.7) if and only if

F(t, x, v(t, x), p, γ) ≥ 0 for all (q, p, γ) ∈ J−u(t, x).

By continuity considerations, we can even enlarge the semijets J± to the following
closure

J̃±w(t, x) :=
{
(q, p, γ) ∈ R

d × Sd : (tn, xn, w(tn, xn), qn, pn, γn)

−→ (t, x, w(t, x), q, p, γ) for some sequence

(tn, xn, qn, pn, γn)n ⊂ Graph(J±w)
}
,

where (tn, xn, qn, pn, γn) ∈ Graph(J±w) means that (qn, pn, γn) ∈ J±w(tn, xn).
The following result is obvious, and provides an equivalent definition of viscosity
solutions.

Proposition 2.5 Let u ∈ USC(Q), and v ∈ LSC(Q).

(i) Assume that g is lower-semicontinuous. Then, u is a viscosity subsolution of
(1.7) iff:

−q − g(t, x, u(t, x), p, γ) ≤ 0

for all (t, x) ∈ Q and (q, p, γ) ∈ J̃+u(t, x).

(ii) Assume that g is upper-semicontinuous. Then, v is a viscosity supersolution of
(1.7) iff:

−q − g(t, x, v(t, x), p, γ) ≥ 0 for all (t, x) ∈ Q and (q, p, γ) ∈ J̃−v(t, x).

2.5 Stability of Viscosity Solutions

We conclude this section by reviewing the stability property of viscosity solutions.
The following result is expressed in the context of our parabolic fully-nonlinear equa-
tion. However, the reader can see from its proof that it holds for general degenerate
second order elliptic equations. We consider a family of equations parameterized by
ε > 0:

− ∂tu − gε(x, u, Du, D2u) = 0 on Q, (2.13)
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and we consider the convergence problem of a corresponding family of subsolutions
(uε)ε>0. The main ingredient for the stability result is the notion of relaxed semi
limits introduced by Barles and Perthame [3]:

u(t, x) := lim sup
(ε,t′,x′)→(0,t,x)

uε(t′, x′) and g(ζ) := lim sup
(ε,ζ ′)→(0,ζ)

gε(ζ ′),

where ζ = (t, x, y, z, γ). Notice that the semilimits here are takenboth in the variables
and the small parameter ε, and are finite whenever the functions of interest are locally
bounded in the corresponding variables and the small parameter ε.

Theorem 2.6 Let uε ∈ USC(Q) be a viscosity subsolution of (2.13) for all ε > 0.
Suppose that the maps (ε, x) 	−→ uε(x) and (ε, ζ) 	−→ gε(ζ) are locally bounded.
Then, u ∈ USC(Q) is a viscosity subsolution of the equation

− ∂tu − g(x, u, Du, D2u) = 0 on Q, (2.14)

A similar statement holds for supersolutions.
Proof The fact that u is upper semicontinuous is an easy exercise. Let ϕ ∈ Au(t, x).
Without loss of generality, we may assume that the test function ϕ is strictly tangent
from above to u at the point (t, x), i.e.

(ϕ − u)(t, x) < (ϕ − u)(t′, x′) for all (t′, x′) ∈ Q, (t′, x′) �= (t, x). (2.15)

By definition of u, there is a sequence (εn, xn) ∈ (0, 1] × R
d such that

(εn, tn, xn) −→ (0, t, x) and uεn(tn, xn) −→ u(t, x).

LetO be anopen subset ofQ containing (t, x) and (tn, xn)n. Let (t̄n, x̄n)be aminimizer
of ϕ − uεn on cl(O). We claim that

(t̄n, x̄n) −→ (t, x) and uεn(t̄n, x̄n) −→ u(t, x) as n → ∞. (2.16)

Before verifying this, let us complete the proof. We first deduce that (t̄n, x̄n) is an
interior minimizer of the difference (ϕ − uεn). Then, it follows from the viscosity
subsolution property of uεn that:

0 ≥ { − ∂tϕ − gεn
(
., uεn , Dϕ, D2ϕ

) }
(t̄n, x̄n).

Then, taking limits on both sides, we see that

0 ≥ −∂tϕ(t, x) − lim sup
n→∞

gεn
(
., uεn , Dϕ, D2ϕ

)
(t̄n, x̄n)

≥ { − ∂tϕ − g
(
., u, Dϕ, D2ϕ

) }
(t, x),

by (2.16) and the definition of g.
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It remains to prove Claim 2.16. Recall that (t̄n, x̄n)n is valued in the compact
set cl(O). Then, there is a subsequence, still named (t̄n, x̄n)n, converging to some
(t̄, x̄) ∈ cl(O). We now prove that (t̄, x̄) = (t, x) and obtain the second claim in 2.16
as a by-product. By the fact that (t̄n, x̄n) is a minimizer of (ϕ−uεn) on cl(O), together
with the definition of u, we see that

0 = (ϕ − u)(t, x) = lim
n→∞

(
ϕ − uεn

)
(tn, xn)

≥ lim sup
n→∞

(
ϕ − uεn

)
(t̄n, x̄n)

≥ lim inf
n→∞

(
ϕ − uεn

)
(t̄n, x̄n)

≥ (ϕ − u)(t̄, x̄).

We now obtain 2.16 from the fact that (t, x) is a strict minimizer of the difference
(ϕ − u). �

3 Viscosity Solution of Path-Dependent PDEs

We now turn to the main purpose of this paper, namely the theory of viscosity
solutions for path-dependent PDEs 1.2:

−∂tu(t,ω) − G
(
t,ω, u(t,ω), ∂ωu(t,ω), ∂2

ωωu(t,ω)
) = 0, t < T , ω ∈ �.

where the generator G : [0, T ] × � × R × R
d × Sd −→ R is a continuous map

satisfying the ellipticity condition 1.3. We recall that � := {ω ∈ C0([0, T ],Rd) :
ω0 = 0} is the underlying canonical space, Bt(ω) := ωt , t ∈ [0, T ], is the canonical
process, P0 is the Wiener measure, F := {Ft, t ∈ [0, T ]} with Ft = σ(Bs, s ≤ t) is
the natural filtration equipped with the pseudo-distance d defined in 1.1. Moreover,
denote

� := [0, T) × �, � := [0, T ] × �,

and C0(�) is the set of continuous processes on �. We note that any u ∈ C0(�) is
F-progressively measurable, namely u(t,ω) = u

(
t, (ωs)s≤t

)
.

3.1 Differentiability

Before introducing the notion of viscosity solutions for this path-dependent PDE,
we first need to specify the meaning of the time derivatives ∂tu(t,ω) and the spatial
derivatives ∂ωu(t,ω) and ∂2

ωωu(t,ω). Once these derivatives are clearly defined,
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we would have, on one hand a natural definition of classical solutions for the
path-dependent PDE, and on the other hand a natural set of smooth functions to
serve as test functions for our notion of viscosity solutions.

These path derivatives were first introduced by Dupire [10]. In particular, [10]
defines the vertical derivatives (our spatial derivatives) by bumping the path at time t.
While such a definition is natural in the larger space of discontinuous paths, our paths
space�would require an extension of themap u to the set of discontinuous paths.We
refer to Cont and Fournié [6] for this approach, where it is proved in particular that
such a vertical derivative, if exists, does not depend on the choice of the extension of
u to the set of discontinuous paths. Motivated by Remark 2.3, we adopt the following
notion of smoothness.

Definition 3.1 [Smooth processes] LetP be a set of probability measures on�with
B a P-semimartingale for all P ∈ P . We say that u ∈ C1,2

P (�) if u ∈ C0(�) and there
exist processes α, Z, � ∈ C0(�) valued in R, Rd and Sd , respectively, such that:

dut = αtdt + 1

2
�t : d〈B〉t + ZtdBt, P − a.s. for all P ∈ P.

The processes α, Z and � are called the time derivative, spacial gradient and spatial
Hessian, respectively, and we denote ∂tu := α, ∂ωut := Zt , ∂2

ωωut := �t .

We observe that any C1,2 process in the Dupire sense is in C1,2
P (�). This is an

immediate consequence of the functional Itô formula proved in Dupire [10] and [6].
In particular, our notion of smooth processes is weaker than the corresponding one
in [10]. We also note that, when P is rich enough, our path derivatives are unique.

Remark 3.2 The previous definition does not require that ∂2
ωωut be the derivative

(in some sense) of ∂ωut . This is very well illustrated by the following example
communicated by Mete Soner. Let d = 2, and ut := ∫ t

0 B1
s dB2

s which is defined
pathwise due to the results of Karandikar [23].
• Clearly ∂tu = 0. Since dut = B1

t dB2
t , under any semimartingale measure, we also

deduce that ∂ωut = (0, B1
t )

T, and ∂2
ωωut = 0S2 . Hence u ∈ C1,2

P (�) for any subset
P of the collection of all semimartingale measures for B.
• Let ∂D

ω ut and ∂D2

ωωut denote the vertical first and second derivatives in the Dupire
sense. Direct calculation reveals that ∂D

ω ut = (0, B1
t )

T = ∂ωut . However,

∂D2

ωωut =
(
0 0
1 0

)
,

which is not symmetric !
• However, we need to point out that in this example u does not belong to C0(�).
• We complement this example by the following observation from a private com-
munication with Bruno Dupire. By considering the Dupire vertical derivative as
originally defined on the set of discontinuous paths, we see by direct calculation that
∂D2

ωωut = 0S2 = ∂2
ωωut .
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Definition 3.3 [Classical solution] LetP be a set of probability measures on�with
B a P-semimartingale for all P ∈ P .

(i) u ∈ C1,2
P (�) is a P-classical subsolution of the path-dependent PDE (1.2) if

−∂tu − G
(
., u, ∂ωu, ∂2

ωωu
) ≤ 0 on �.

(ii) v ∈ C1,2
P (�) is a P-classical supersolution of the path-dependent PDE (1.2) if

−∂tv − G
(
., v, ∂ωv, ∂2

ωωv
) ≥ 0 on �.

(iii) A P-classical solution of (1.2) is both classical subsolution and supersolution.

Example 3.4 Let u(t,ω) := E
P0 [ξ|Ft] for some ξ ∈ L

1(P0,FT ), and assume u ∈
C1,2
P0

(�). By definition, this implies that

dut = (
∂tut + 1

2
∂2

ωωut
)
dt + ∂ωutdBt, P0 − a.s.

Since the process u is a martingale, it follows that:

∂tut + 1

2
∂2

ωωut = 0, (t,ω) ∈ �.

In other words, u is a P0- classical solution of the path-dependent heat equation.

Example 3.5 For ξ ∈ L
2(P0,FT ), consider the backward stochastic differential

equation:

dut = −Ft(ω, ut, Zt)dt + ZtdBt, uT = ξ, P0 − a.s.

where F : [0, T ] × � ×R×R
d −→ R is continuous, uniformly Lipschitz in (y, z),

with F(0, 0) a square integrable process. Assume u ∈ C1,2
P0

(�). By definition, this
implies that

dut = (
∂tut + 1

2
∂2

ωωut
)
dt + ∂ωutdBt = −Ft(ω, ut, Zt)dt + ZtdBt, P0 − a.s.

Identifying the martingale terms, we see that ∂ωut = Zt . Next, identifying the drift
term, it follows that u is a P0-classical solution of the path-dependent semilinear
PDE:

−∂tut − 1

2
∂2

ωωut − Ft(ω, ut, ∂ωut) = 0, (t,ω) ∈ �.

Remark 3.6 (i) In the Markovian case, strong regularity results are induced by the
ellipticity of the underlying diffusion coefficient. The simplest example is when
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the diffusion is the identity matrix. Let u(t, x) := E
P0 [h(BT )|Bt = x]. Then

u ∈ C∞([0, T) × R
d).

(ii) The path-dependency induces specific non-smoothness as outlined by the fol-
lowing example. Let u(t,ω) := E

P0 [B T
2
|Ft] = ωt∧ T

2
for all t ∈ [0, T ]. Clearly,

∂tut = 0, and dut = 1t≤ T
2

dBt implying that ∂ωut is not continuous. Hence

u �∈ C1,2(�).

3.2 Viscosity Solutions of Path-Dependent PDEs

3.2.1 Notations

First recall our canonical setting (�, B,F,P0). We denote by T the set of all
F-stopping times, T + ⊂ T the collection of all strictly positive stopping times,
and T t ⊂ T the subset of the F-stopping times larger than t.

For ω,ω′ ∈ � and t ∈ [0, T ], we define

(ω ⊗t ω′)s := ωs1{s<t} + (ωt + ω′
s−t)1{s≥t}.

Let ξ : � → R be FT -measurable random variable. For any (t,ω) ∈ �, define

ξt,ω(ω′) := ξ
(
ω ⊗t ω′) for all ω′ ∈ �.

Clearly, ξt,ω isFT−t-measurable, and thusFT -measurable. Similarly, given a process
X defined on �, we denote:

Xt,ω
s (ω′) := Xt+s(ω ⊗t ω′), for s ∈ [0, T − t].

Clearly, if X is F-adapted, then so is Xt,ω .
Let P be a family of probability measures on �. We also introduce the sublinear

and superlinear expectation operators associated to P:

EP := sup
P∈P

E
P and EP := inf

P∈P
E
P.

3.2.2 Definition of Viscosity Solutions

We recall that the nonlinearityG satisfies the ellipticity condition in (1.3).We assume
in addition that it is L0-Lipschitz with respect to the arguments (y, z, γ), uniformly
in (t,ω):

∣∣G(t, ω, y, z, γ) − G(t, ω, y′, z′, γ′)
∣∣ ≤ L0

(|y − y′| + |z − z′| + |γ − γ′|) (3.1)

for all y, y′ ∈ R, z, z′ ∈ R
d , γ, γ′ ∈ Sd , (t,ω) ∈ �.
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Ou Definition 3.1 of smooth processes involves a family of probability measures
that we intentionally did not discuss so far. We now introduce a specific family of
semimartingale measures which will be needed for our notion of viscosity solutions.

Definition 3.7 By PL we denote the collection of all continuous semimartingale
measures P on � whose drift and diffusion characteristics are bounded by L and√
2L, respectively.

We refer to [12] for properties of this class. In our subsequent analysis, the family
of probability measures P is a subset of PL for some L > 0.

Motivated by the crucial observations of Sects. 2.2 and 2.3, we introduce the sets
of test processes: a

APut(ω) :=
{
ϕ ∈ C1,2

P (�) : (ϕ − ut,ω)0 = min
τ∈T

EP[
(ϕ − ut,ω)τ∧h

]

for some h ∈ HP+
}
,

AP
vt(ω) :=

{
ϕ ∈ C1,2

P (�) : (ϕ − vt,ω)0 = max
τ∈T

EP[
(ϕ − vt,ω)τ∧h

]

for some h ∈ HP+
}
,

where HP+ ⊂ T + satisfies the following properties, for all h,h′ ∈ HP+ :

H1 (stability by minimization) h ∧ h′ ∈ HP+ ,

H2 (stability by localization) h ∧ hε ∈ HP+ ,

where hε := ε ∧ inf
{
t > 0 : |B|t ≥ ε

}
.

(3.2)

Later, we will call h the localizing stopping time (or the localization) of the corre-
sponding test process ϕ.

Definition 3.8 [Viscosity solution of path-dependent PDE] Let u, v ∈ C0(�).

(i) u is a P-viscosity subsolution of (1.2) if:

{ − ∂tϕ − G
(
., u, ∂ωϕ, ∂2

ωωϕ
)}

(t,ω) ≤ 0 for all (t,ω) ∈ �, ϕ ∈ APut(ω).

(ii) v is a P-viscosity supersolution of (1.2) if:

{ − ∂tϕ − G
(
., v, ∂ωϕ, ∂2

ωωϕ
)}

(t,ω) ≥ 0 for all (t,ω) ∈ �, ϕ ∈ AP
vt(ω).

(iii) A P-viscosity solution of (1.2) is both a P-subsolution and a P-supersolution.

Remark 3.9 in the Markovian case, we may as well use the last definition as an
alternative to the standard notion of viscosity solutions. Compared to the standard
notion reviewed in Sect. 2, we see that any φ ∈ Au(t, x) induces a process ϕ(t,ω) :=
φ(t,ωt) which obviously lies in APut(ω). However, even in the Markovian case
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ut(ω) = u(t,ωt), a test process inAPut(ω) does not necessarily induce a test function
in Au(t,ωt). Thus, our notion of viscosity solution involves more test functions than
the standard notion. A viscosity subsolution/supersolution in sense of Definition 3.8
is restricted by a richer family of test functions. Consequently:

• under our definition, we may hope to take advantage of the richer family of test
functions in order to obtain an easier uniqueness proof,

• under our definition, the existence problem is more restricted than under the stan-
dard theory of viscosity solutions.

Remark 3.10 Due to the stability property of the setHP+ by localization, the viscosity
property introduced in Definition 3.8 is a local property. Indeed, in order to check
the viscosity property of u at (t,ω), it suffices to know the value of ut,ω on [0,hε]
for an arbitrarily small ε > 0. In particular, since u and ϕ are locally bounded, there

is no integrability issue in the definition of the set of test functions AP and AP
.

3.3 Semijets Definition and Punctual Differentiability

Similar to the standard notion of viscosity solutions in finite-dimensional spaces, we
will now prove that we may reduce our Definition 3.8 to paraboloids:

φq,p,γ
s (ω) := qs + p · ωs + 1

2
γ : ωsω

T
s , s ∈ [0, T − t], ω ∈ �,

for some (q, p, γ) ∈ R × R
d × Sd . We then introduce the corresponding subjet and

superjet:

J Put(ω) := {
(q, p, γ) ∈ R × R

d × Sd : φq,p,γ ∈ APut(ω)
}
,

J P
vt(ω) := {

(q, p, γ) ∈ R × R
d × Sd : φq,p,γ ∈ AP

vt(ω)
}
.

Proposition 3.11 Let P ⊂ PL for some L > 0. A process u ∈ C0(�) is a
P-viscosity subsolution of (1.2) if and only if:

− q − G(t,ω, ut(ω), p, γ) ≤ 0

for all (t,ω) ∈ �, (q, p, γ) ∈ J Put(ω). (3.3)

The corresponding statement holds for supersolutions.

Proof We focus on the nontrivial direction, assuming that (3.3) holds. For (t,ω) ∈ �

and ϕ ∈ APut(ω), we have to prove that −q − G(t,ω, ut(ω), p, γ) ≤ 0, where

q := ∂tϕ(t,ω), p := ∂ωϕ(t,ω), γ := ∂2
ωωϕ(t,ω).
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Without loss of generality, we take (t,ω) = (0, 0). For ε > 0, we denote qε :=
q + ε(1+ 2L), and φ := φqε,p,γ . By the smoothness of ϕ, we may find δε > 0, such
that

|∂tϕ − q| ≤ ε, |∂ωϕ − p − γωt | ≤ ε, and |∂2
ωωϕ − γ| ≤ ε

on Qε := {(t,ω) : t ≤ δε, |ω|t ≤ δε}.

Let h be the stopping time corresponding to ϕ, and set hε := h∧ inf{t > 0 : (t,ω) �∈
Qε}. Then, for all stopping time τ ∈ T0:

(φ − u)0 − EP[
(φ − u)τ∧hε

]

≤ (ϕ − u)0 − EP[
(ϕ − u)τ∧hε

] + EP[
(ϕ − ϕ0 − φ)τ∧hε

]

≤ EP
[ τ∧hε∫

0

(∂tϕs−qε)ds + (∂ωϕs−p−γBs)dBs + (∂2
ωωϕs−γ)d〈B〉s

]
.

Since P ⊂ PL , it follows that the integral term inside the nonlinear expectation

EP is non-positive, implying that (φ − u)0 − EP[
(φ − u)τ∧hε

] ≤ 0. Consequently
(qε, p, γ) ∈ J Pu0 and therefore −qε − G(t,ω, ut(ω), p, γ) ≤ 0 by (3.3). The
required result follows by sending ε ↘ 0. �

Proposition 3.12 For ui, vi ∈ C0(�̄), i = 0, 1, we have

J Pu0t (ω) + J Pu1t (ω) ⊂ J P (u0 + u1)t(ω) and

J P
v0t (ω) + J P

v1t (ω) ⊂ J P
(v0 + v1)t(ω)

Proof We only report the argument for the subjets. Let θi = (qi, pi, γi) ∈ J Pui
t(ω),

i = 0, 1. By definition, this means that the corresponding paraboloids φθi ∈
APui

t(ω), i.e. there is hi ∈ HP+ such that

−ui
t ≤ E

P
[
(φθi − (ui)t,ω)

τ∧hi

]
for all τ ∈ T and P ∈ P.

With h := h0 ∧ h1 ∈ HP, this implies that

−(u0 + u1)t ≤ E
P
[(

φθ0 + φθ1 − (u0 + u1)t,ω)
τ∧h

]
for all τ ∈ T and P ∈ P.

Since φθ0 + φθ1 = φθ0+θ1 , this shows that θ0 + θ1 ∈ J P (u0 + u1)t(ω). �
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3.4 Punctual Differentiability

The following notion is adapted from Caffarelli and Cabre [4].

Definition 3.13 A process u is P-punctually C1,2 at some point (t,ω) ∈ � if

J Put(ω) := cl
(J Put(ω)

) ∩ cl
(J P

ut(ω)
) �= ∅.

The next (immediate) result states that the viscosity property reduces to a point-
wise property at points of punctual differentiability.

Proposition 3.14 Assume that the nonlinearity G is continuous in (z, γ), and let
u ∈ C0(�) be a P-viscosity solution of (1.2). Then, if u is P-punctually C1,2 at
some point (t,ω) ∈ �, we have

−q − G(t,ω, u(t,ω), p, γ) = 0 for all (q, p, γ) ∈ J Put(ω).

For our subsequent analysis, we need the following additivity property of punctual
differentiability, which is a direct consequence of Proposition 3.12.

Proposition 3.15 Let u, v be two processes which are P-punctually C1,2 at some
point (t,ω) ∈ �. Then, u + v is P-punctually C1,2 at (t,ω), and

J Put(ω) + J Put(ω) ⊂ J P (u + v)t(ω).

3.5 Consistency of Path-Dependent Viscosity Solutions

We conclude this definition subsection by proving consistency of our notion of vis-
cosity solution with classical solutions.

Proposition 3.16 Let G be continuous, elliptic and uniformly L0-Lipschitz- contin-
uous in (y, z, γ). Let PL0 ⊂ P ⊂ PL for some L ≥ L0. Then, for u ∈ C1,2

P (�), the
following are equivalent:

(i) u is a P-classical subsolution (reps. supersolution) for some L > 0,
(ii) u is a P-viscosity subsolution (reps. supersolution).

Proof We only report the proof of the subsolution property. The supersolution prop-
erty follows by the same line of argument. If u is a P-viscosity subsolution and
u ∈ C1,2

P (�), then it is clear that ut,ω ∈ APut(ω) for all t < T and ω ∈ �, and
therefore u is a P-classical subsolution.

We next assume that u is a classical subsolution, andwe assume to the contrary that
5c := −∂tϕ − G(., u, ∂ωϕ, ∂2

ωωϕ) > 0 for some t < T , ω ∈ �, and ϕ ∈ APut(ω).
Without loss of generality, we may assume (t,ω) = (0, 0). Let ᾱ ∈ R

d , β̄ ∈ Sd be
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arbitrary constants with |ᾱ| ≤ L0 and 1
2Tr[β̄2] ≤ L0, to be fixed later, and denote by

P̄ := P
ᾱ,β̄ the corresponding probability measure inP , and L̄ := ᾱ ·∂ω + 1

2 β̄
2 : ∂2

ωω .
By the continuity of G, and the fact that u,ϕ ∈ C1,2,

−∂tϕ − G0(u0, ∂ωϕ0, ∂
2
ωωϕ0) ≥ 4c, |L̄ϕ − L̄ϕ0| ≤ c,

and
∣∣G(u, ∂ωu, ∂2

ωωu) − G0(u0, ∂ωu0, ∂2
ωωu0)

∣∣ ≤ c, |L̄u − L̄u0| ≤ c, on [0,hε],

for ε > 0 sufficiently small, where hε := ε ∧ inf{s > 0 : |ωs| ≥ ε}. Since u is a
P-classical subsolution, we compute for every τ ∈ T that

(ϕ − u)0 − E
P̄
[
(ϕ − u)τ∧hε

] = E
P̄
[ τ∧hε∫

0

d(u − ϕ)s

]

= E
P̄
[ τ∧hε∫

0

{
∂t(u − ϕ)s + L̄(u − ϕ)s

}
ds

]

≥ E
P̄
[ τ∧hε∫

0

{
G0(u0, ∂ωϕ0, ∂

2
ωωϕ0)

−G0(u0, ∂ωu0, ∂
2
ωωu0) + L̄(u − ϕ)0

}
ds

]

+cP̄[τ ∧ hε].

By the definition of P , we may find ᾱ so that G0(u0, ∂ωϕ0, ∂
2
ωωϕ0) − G0(u0, ∂ωu0,

∂2
ωωu0) + L̄(u − ϕ)0 = 0. Then, whenever τ > 0, P̄-a.s., we have (ϕ − u)0 >

E
P̄
[
(ϕ − u)τ∧hε

]
, contradicting the fact that ϕ ∈ APu0. �

4 Wellposedness of the Path-Dependent Heat Equation

In this section, we consider the heat equation

− ∂tu − 1

2
Tr

[
∂2

ωωu] = 0 (4.1)

where, for simplicity, the diffusion matrix is taken to be the identity matrix.We recall
that P0 denotes the Wiener measure. In addition to the previous notations, we denote
F

∗ as the filtration augmented by all P0-null sets. Also, denote T∗ (resp. T t∗ ) as the set
of all F∗-stopping times taking values in [0, T ] (resp. [t, T ]). In this section, we take

P := {P0} and HP+ := T +.
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In this section about the heat equation, the relevant space for our comparison result is

C0
2,P0

(�,R) :=
{

u ∈ C0(�̄,R) : EP0
[

sup
t+s≤T

∣∣ut,ω
s

∣∣2] < ∞

for all (t,ω) ∈ �
}
.

4.1 Facts from Optimal Stopping Theory

Let X ∈ C0
2,P0

(�,R). Our main result uses the Snell envelope characterization of
the optimal stopping stopping problem:

V0 := sup
τ∈T∗

E
P0 [Xτ ],

The standard characterization of this problem uses the dynamic formulation of this
problem:

Y0
t := ess sup

τ∈T t∗
E
P0

[
Xτ∧T

∣∣Ft
]
, 0 ≤ t ≤ T ,

so that Y0
0 = V0 by the Blumenthal zero-one law. In this context, an optimal stopping

rule is well-known to be defined by the first hitting time

τ∗ := inf
{
t ≥ 0 : Y0

t = Xt
}
.

In addition to the standard result, we need an additional refinement by introducing
the variable:

Yτ (ω) := sup
θ∈T∗

E
P0

[
Xτ (ω),ω

θ

]
, for all τ ∈ T∗,ω ∈ �.

Theorem 4.1 Let X ∈ C0
2,P0

(�,R). Then, there exists an F-adapted version Y of

Y0 satisfying:

Yτ∧T = Yτ∧T , P0-a.s. for all τ ∈ T∗.

Moreover, Y is a pathwise continuous P0-supermartingale, Y∧τ∗ is a P0-martingale,
and τ∗ is an optimal stopping rule.

This result follows from the more general Theorem 5.2 below.
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4.2 Existence, Comparison, and Uniqueness

Definition 4.2 An F-progressively measurable process m is a pathwise P0-submar
tingale (resp. supermartingale) if, for any (t,ω) ∈ �, we have

mt(ω) − E
P0

[
mt,ω

τ

] ≤ 0 (resp. ≥ 0) for all τ ∈ T .

Lemma 4.3 Let u ∈ C0
2,P0

(�,R), (t,ω) ∈ �, and h ∈ T +, be such that ut(ω)

> E
P
[
ut,ω
h

]
. Then,

0 ∈ AP0ut+t∗(ω ⊗t ω∗)
for some (t∗,ω∗) with the localization h∗ := ht∗,ω∗ − t∗ ∈ T +.

Proof Without loss of generality, we may assume that (t,ω) = (0, 0). Consider the
optimal stopping problem V0 := supτ∈T∗ E

P0
[
uτ∧h

]
. Set Xs := us∧h and let Y be the

F-adaptedSnell envelope as introduced inTheorem4.1, τ∗ the corresponding optimal
stopping rule. From the strict inequality u0 > E

P0
[
uh

]
, it follows that P0[τ∗ < h] >

0. By Theorem 4.1, we also have Yτ∗ = Yτ∗ , P0-a.s. We may then find ω∗ such that
t∗ := τ∗(ω∗) < h(ω∗), and:

ut∗(ω
∗) = Yt∗(ω

∗) = max
τ∈T

E
P0

[
(uh∧·)t∗,ω∗

τ

]
,

By definition of AP0u, this is exactly the required result. �

The main result of this section is the following.

Theorem 4.4 For a process u ∈ C0
2,P0

(�,R), the following are equivalent:

(i) u is a pathwise P0-submartingale (resp. supermartingale),
(ii) u is P0-viscosity subsolution (resp. supersolution) of the path-dependent heat

equation (4.1).

Proof (i) =⇒ (ii): For arbitrary (t,ω) ∈ � and ϕ ∈ AP0ut(ω), we have for some
h ∈ T+:

ϕ0 − ut(ω) ≤ E
P0

[
ϕτ∧h − ut,ω

τ∧h
]

for all τ ∈ T .

For all ε > 0, define hε(ω
′
) := h(ω

′
) ∧ inf{s ≥ 0 : |ω′

s| ≥ ε}. Then, since u is a
pathwise P0-submartingale, it follows that

0 ≥ ut(ω) − E
P0

[
ut,ω
hε

] ≥ ϕ0 − E
P0

[
ϕhε

] = E
P0

[ hε∫

0

(−∂tϕ − 1

2
:∂2

ωωϕ)sds
]
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by the smoothness of ϕ. Sending ε ↘ 0, we see that (−∂tϕ − 1
2σ

2:∂2
ωωϕ)0 ≤ 0, as

required.
(ii) =⇒ (i): Clearly, it is sufficient to prove that the process ū := uε

t := ut + εt
is a pathwise P0-submartingale for all ε > 0, as the required claim will follow by
sending ε to zero. By (ii), we deduce immediately that ū is a P0-viscosity subsolution
of the equation ε − ∂t ū − 1

2Tr[∂2
ωω ū] ≤ 0 on �. In particular, this implies that

0 �∈ AP0 ūt(ω) for all (t,ω) ∈ �. (4.2)

Suppose to the contrary that ū is not a pathwise P0-submartingale, i.e. ūt(ω) >

E
P0

[
ūt,ω
h

]
for some (t,ω) ∈ � andh ∈ T+. Then, Lemma 4.3 induces a contradiction

of (4.2). �

As an immediate consequence of Theorem 4.4, we obtain the wellposedness of
the path-dependent heat equation.

Theorem 4.5 [Comparison and existence for the heat equation]

(i) Let u, v ∈ C0
2,P0

(�,R) be P0-viscosity subsolution and supersolution, respec-
tively, of the path-dependent heat equation (4.1), with uT ≤ vT on �. Then
u ≤ v on [0, T ] × �.

(ii) For anFT r.v. ξ such that ut(ω) := E
P0 [ξt,ω] ∈ C0

2,P0
(�,R), the process u is the

unique P0-viscosity solution of the path-dependent heat Eq. (4.1) with boundary
condition uT = ξ on �.

Proof (i) By Theorem 4.4, we have ut(ω) ≤ E
P0 [(uT )t,ω] and E

P0 [(vT )t,ω] ≥
vt(ω) for all (t,ω) ∈ �. Then uT ≤ vT on � implies that u ≤ v on [0, T ] × �.

(ii) Uniqueness is a direct consequence of the comparison result of (i). Clearly the
process ut(ω) := E

P0
[
ξt,ω

]
is uniformly continuous on [0, T ] × �. Since u is a

P0-martingale, it follows fromTheorem 4.4 that it is both a viscosity subsolution
and supersolution. �

5 Wellposedness of Semilinear Path-Dependent PDEs

In this section, we consider the equation

− ∂tu − 1

2
Tr

[
∂2

ωωu
] − F(., u, ∂ωu) = 0 on �. (5.1)

The nonlinearity F : � × R × R
d −→ R is assumed to satisfy the following

assumptions which consists with the general assumption as (3.1).

Assumption 5.1 The nonlinearity F : (t,ω, y, z) ∈ � × R × R
d 	−→ F(t,ω, y, z)

∈ R satisfies the following conditions:
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(i) F is uniformly continuous in (t,ω),
(ii) F is uniformly L0-Lipschitz continuous in (y, z), for some L0 ≥ 0, i.e.

|F(·, y, z) − F(·, y′, z′)| ≤ L0
(|y − y′| + |z − z′|) for ally,

y′ ∈ R, z, z′ ∈ R
d .

(iii) The process F(·, 0, 0) is bounded.
For all bounded F-progressively measurable process λ, we denote:

dPλ := Zλ
T · dP0 on FT , where Zλ

T := e

T∫
0

λt ·dBt− 1
2

T∫
0

|λt |2dt
.

In this section, we take

P :=
{
Pλ : λ bounded by L

}
, (5.2)

where L ≥ L0 is arbitrary. Notice that P0 is a dominating measure for the family
P . For simplicity, we say Pλ ∈ P by implying that λ is the corresponding bounded
process. Similar to the section of the heat equation, we denoteF∗ as the filtration aug-
mented by all P0-null sets. Also, we consider the set of localizing stopping times as:

HP+ := T +.

In this section about the semilinear equation, the relevant space for our comparison
result is

C0
2,P (�,R) :=

{
u ∈ C0(�,R) : EP

[
sup

t+s≤T

∣∣ut,ω
s

∣∣2] < ∞ for all (t,ω) ∈ �
}
.

5.1 Optimal Stopping Under Dominated Nonlinear
Expectation

For X ∈ C0
2,P (�,R), we consider the optimal stopping stopping problem under

dominated nonlinear expectation:

V0 := sup
τ∈T∗

EP [Xτ ].

The corresponding dynamic formulation is defined by:

Y0
t := ess sup

τ∈T t∗
EP[

Xτ∧T
∣∣Ft

]
, 0 ≤ t ≤ T .



An Overview of Viscosity Solutions of Path-Dependent PDEs 423

with first hitting time:

τ∗ := inf
{
t ≥ 0 : Y0

t = Xt
}
.

Since the dominating measure P satisfies the Blumenthal zero-one law, it follows
that Y0

0 = V0. We also introduce the pointwise optimal stopping problem:

Yt(ω) := sup
τ∈T∗

EP[
Xt,ω

τ∧(T−t)

]
, for all (t,ω) ∈ �̄.

Theorem 5.2 Let X ∈ C0
2,P (�,R). Then, there exists an F-adapted version Y of

Y0 satisfying:

(i) for all τ ∈ T , we have Yτ∧T = Yτ∧T , P0-a.s.
(ii) Y is a pathwise continuous P-supermartingale for all P ∈ P , and τ∗ is an

optimal stopping rule,
(iii) Yt = ess supτ∈T t∗ E

P∗[
Xτ∧T |Ft

]
for all t ∈ [0, T ], P0-a.s. for some P

∗ ∈ P ,
and

Y = Y0 + M∗ − K∗ with M∗
0 = K∗

0 = 0, and
∫
(Y − X)dK∗ = 0, P0-a.s.

for some pathwise continuous martingale M∗ and predictable nondecreasing
process K∗.

This result can be proved by referring to the corresponding literature in the theory
of reflected backward stochastic differential equations, see Remark 7.3 in [13]. For
the convenience of those readers who are not familiar with this literature, we report
in Sect. 8 a proof purely based on arguments from optimal stopping theory.

5.2 Punctual Smoothness of Submartingales

In this subsection, we prove that a process u ∈ C0
2,P (�,R)which isP-submartingale

for some P ∈ P is punctually C1,2
P -Leb⊗P-a.e. This is our natural extension of the

well-known result that anynon-decreasing function is differentiable a.e. andour proof
builds on the corresponding standard results in analysis that we quickly review. For
a function f : [0, T ] −→ R with finite variation, we use the following notations for
the left-semigradients:

ḟ
�
(t) := lim inf

ε↑0
f (t + ε) − f (t)

ε
and ḟ

�
(t) := lim sup

ε↑0
f (t + ε) − f (t)

ε
.

The right-semigradients ḟ
r
and ḟ

r
are defined similarly by sending ε ↓ 0.The function

f is differentiable at a point t if
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ḟ (t) = lim
ε→0

f (t + ε) − f (t)

ε
exists, and therefore ḟ (t) = ḟ

�
(t) = ḟ

�
(t) =

ḟ
r
(t) = ḟ

r
(t).

Our smoothness results uses crucially the two following properties:

FV1 The set of points of differentiability of f has full Lebesgue measure.
FV2 If f is absolutely continuous, then limε→0

1
ε

∫ t+ε
t |ḟ (s)− ḟ (t)|ds = 0, Leb-a.e.

on [0, T ].
For a subset �0 ⊂ �̄, we denote T

�0 := {t : (t,ω) ∈ �0 for some ω ∈ �} and
�

�0
t := {

ω : (t,ω) ∈ T
�0

}
.

Theorem 5.3 Let Pθ ∈ P and u ∈ C0
2,P (�,R) be Pθ-submartingale. Then u is

P-punctually C1,2 on �0, for some �0 with

Leb
[
T

�0
] = T and P0

[
�

�0
t

] = 1 for all t ∈ T
�0 . (5.3)

Sketch of the proof. For a proof in more details, we refer to [28]. We proceed in
two steps.
Step 1: By the Doob-Meyer decomposition, we have u = u0 + M + A, P0-a.s. for
somePθ-martingaleM and nondecreasing predictable processA, withM0 = A0 = 0.

Then, process M0 := M −
·∫
0

θsd〈M, B〉s defines a P0-martingale.

Since all P0-martingale have the martingale representation, it follows that t 	−→
Ht := 〈M, B〉t = 〈M0, B〉t is absolutely continuous on [0, T ], P0 − a.s., i.e.

ht := Ḣ
�

t = Ḣt for a.e. t ∈ [0, T ], P0 − a.s.

By the above property FV2 together with the Fubini theorem, we see that

Leb ⊗ P0[�1] = T where �1 := {
(t,ω) : limε→0

1
ε

t+ε∫
t

|hs − ht |ds = 0
}
. (5.4)

Further, applying property FV1 to the finite variation process Aθ := A+
.∫
0

θsdHs,

and using again the Fubini theorem, we see that:

Leb ⊗ P0[�2] = T where �2 := {
(t,ω) : at(ω) := Ȧθ

t (ω) exists
}
. (5.5)

Step 2: In this step, we prove that for (t,ω) ∈ �0 := �1 ∩ �2.

(qε, p, 0) ∈ J Put(ω), where qε := at(ω) − ε(1 + L), p := ht(ω). (5.6)
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We define

h(ω
′
) := inf

{
s > 0 : (Aθ)t,ω

s (ω
′
) − Aθ

t (ω) ≤ (at(ω) − ε)s or
s∫

0

|ht,ω
r (ω

′
) − ht(ω)|dr ≥ εs

}
.

Since ω ∈ �0, we have h ∈ T +. Also, note that Mλ,t
s := Mt,ω

s − Mt(ω) −
s∫
0
(θ −

λ)rhrdr defines a Pλ-martingale. Further, rewriting the Doob-Meyer decomposition,
we have

ut,ω
s = ut(ω) + (Aθ)t,ω

s − Aθ
t (ω) + Mλ,t

s −
s∫

0

λrhrdr, Pλ-a.s.

So, for all τ ∈ T , Pλ ∈ P:

E
Pλ

[(
φqε,p,0 − ut,ω)

(τ∧h)t,ω

]

= −ut(ω) + E
Pλ

[
(at(ω) − ε)(τ ∧ h) − Aθ

τ∧h + Aθ
t (ω) − εL(τ ∧ h)

+
τ∧h∫

0

(hs − ht)λsds
]

≤ −ut(ω),

by the definition of h. Then (5.6) holds.
Step 3: From the previous step, it follows that

(
at(ω), ht(ω), 0

) ∈ cl
(J Put(ω)

)
. By

a similar argument, we may show that
(
at(ω), ht(ω), 0

) ∈ cl
(J P

ut(ω)
)
. Conse-

quently,
(
at(ω), ht(ω), 0

) ∈ J Put(ω), and u is punctually C1,2
P . �

5.3 Comparison

In this subsection, we are going to show the comparison principle for the semilinear
path-dependent equation.

Theorem 5.4 Let Assumption 5.1 hold true. Let u, v ∈ C0
2,P (�,R) be P-viscosity

subsolution and supersolution, respectively, of the Eq. (5.1). Assume further that
uT ≤ vT on �. Then u ≤ v on �̄.

To show Theorem 5.4, we need some preparation. The following lemma is the
analog of Lemma 4.3 in the context of the semilinear path-dependent PDEs.We omit
the proof, since it is similar to that of Lemma 4.3.
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Lemma 5.5 Let u ∈ C0
2,P (�,R), (t,ω) ∈ �, and h ∈ T +, be such that ut(ω) >

EP[
ut,ω
h

]
. Then,

0 ∈ APut+t∗(ω ⊗t ω∗) for some (t∗,ω∗) with the localization

h∗ := ht∗,ω∗ − t∗ ∈ T +.

The next main ingredient is the partial comparison result.

Proposition 5.6 In the setting of Theorem 5.4, assume in addition that v ∈ C1,2
P (�).

Then u ≤ v on �.

Proof First, by possibly transforming the problem to the comparison of ũt := eλtut

and ṽt := eλtvt , it follows from the Lipschitz property of the nonlinearity F in y that
we may assume without loss of generality that F is decreasing in y.

Suppose to the contrary that c := (u − v)t(ω) > 0 at some point (t,ω) ∈ �. Let
c0 := c

2T , and define fs := (u − v)+s + c0(s − t), s ∈ [t, T ]. Since (u − v)T ≤ 0,

it follows that ft(ω) > EP [f t,ω
T−t]. By Lemma 5.5, we may find a point (t∗,ω∗) such

that t∗ ∈ [t, T) and 0 ∈ AP ft∗(ω∗). In particular, this implies that

−(u − v)+t∗(ω
∗) − c0(t

∗ − t) ≤ EP[− ((u − v)+T )t∗,ω∗− c0(T − t)
] = −c0(T − t),

so that (u − v)+t∗(ω∗) ≥ c0(T − t∗) > 0. Then, since (u − v)+ ≥ u − v, we deduce
from 0 ∈ AP ft∗(ω∗) that

(ϕ − u)t∗(ω
∗) ≤ EP[

(ϕ − u)
t∗,ω∗
τ∧T

]
for all τ ∈ T ,

where ϕs(ω) := vs(ω) − c0(s − t).

Since v ∈ C1,2
P (�), this means that ϕt∗,ω∗ ∈ APut∗(ω∗). Then, by the viscosity

subsolution property of u, and the classical supersolution property of v, we deduce
that

0 ≥ { − ∂tϕ − 1

2
Tr

[
∂2

ωωϕ
] − F(., u, ∂ωϕ)

}
(t∗,ω∗)

= c0 + { − ∂tv − 1

2
Tr

[
∂2

ωωv
] − F(., u, ∂ωv)

}
(t∗,ω∗)

≥ c0 + {F(., v, ∂ωv) − F(., u, ∂ωv)}(t∗,ω∗) ≥ c0,

where the last inequality follows from the non-increase of F in y and the fact that
ut∗(ω∗) ≥ vt∗(ω∗). Since c0 > 0, this is the required contradiction. �

Definition 5.7 An F-progressively measurable process m is an E-submartingale
(resp. E-supermartingale), if, for any (t,ω) ∈ �, we have

ut(ω) ≤ E[ut,ω
Z ] (resp. ≥ E[ut,ω

Z ]) for all τ ∈ T .
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Lemma 5.8 Under Assumption 5.1, there is a constant C such that

(i) the process
{
ut + ∫ t

0 |us|ds + Ct, t ∈ [0, T ]} is a pathwise P
u submartingale,

for some P
u ∈ P ,

(ii) the process
{
vt − ∫ t

0 |vs|ds − Ct, t ∈ [0, T ]} is a pathwise Pv supermartingale,
for some P

v ∈ P ,
(iii) u and v are P-punctually C1,2 on �u and �v , respectively, where �u and �v

satisfy (5.3).

Proof Assertion (iii) is a direct consequence of (i) and (ii) togetherwith Theorem5.3.
By Assumption 5.1, we may find a constant C such that:

|F(t,ω, y, z)| ≤ C − 1 + L0(|y| + |z|)

Then, it is easy to verify that ūt := ut + Ct and v̄t := vt − Ct are P-viscosity
subsolution and supersolution, respectively of:

−Lū − L0(|ū − Ct| + |∂ω ū|) + 1 ≤ 0 and

−Lv̄ + L0(|v̄ + Ct| + |∂ω v̄|) − 1 ≥ 0 on [0, T) × �. (5.7)

In the rest of this proof, we shall show that ū and v̄ are EP-submartingale and EP-
supermartingale, respectively. In addition, we prove in Appendix (Proposition 9.2)

that a continuous EP-submartingale is a P-submartingale for some P ∈ P . This leads
to the desired result.

We only prove that ū is EP-submartingale, as the corresponding statement for v̄

follows from the same line of argument.

Suppose to the contrary that ūt(ω) > EP [ūt,ω
h ] for some (t,ω) ∈ [0, T) × � and

some stopping time h ∈ T +. Then, it follows from Lemma 5.5 that there exist t∗
and ω∗ such that 0 ∈ AP ūt∗(ω∗), i.e. there exists h′ ∈ T + such that

−ūt∗(ω
∗) ≥ EP

[
− ūt∗,ω∗

τ∧h′ − L0

τ∧h′∫

0

|ut∗,ω∗
s |ds

]
.

As a result, functionϕt := −L0
∫ t
0 |ut∗,ω∗

s |ds is inAPut∗(ω∗). Since ū is aP-viscosity
subsolution of the left equation of (5.7), this leads to

L0|ut∗(ω
∗)| − L0|ut∗(ω

∗)| + 1 ≤ 0,

which is the required contradiction, thus completing the proof of (i). �
We are now ready for the key-result for the proof of the comparison result. We

observe that this statement is an adaptation of the approach of Caffarelli and Cabre
[4] to the comparison in the context of the standard theory of viscosity solutions in
finite dimensional spaces.
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Proposition 5.9 Let Assumption 5.1 hold, and consider the L in the definition of
P (recall that L ≥ L0). Let u, v ∈ C0

2,P (�,R) be P-viscosity subsolution and
supersolution, respectively, of the path-dependent PDE (5.1). Then, w := u − v is a
P-viscosity subsolution of

− Lw(t,ω) − L|wt(ω)| − L|∂ωwt(ω)| ≤ 0. (5.8)

Sketch of Proof Without loss of generality, we only check the viscosity property
at (t,ω) = (0, 0). For an arbitrary (a,β, 0) ∈ J P (u − v)0, we have to prove that

− a − L |(u − v)0| − L|β| ≤ 0. (5.9)

1. Denote as usual by φa,β = φa,β,0 the corresponding paraboloid process.
By definition, there exists h ∈ T + such that

c0 := −(u − v)0 = min
τ∈T

EP[
(φa,β − u + v)τ∧h

]
.

For δ > 0, r > 0, and hr := h ∧ inf{t : |ωt | ≥ r}, define the Snell envelop:

m̂t := ess inf
τ∈T t∗ ,P∈P

E
P

[
mτ∧hr

|Ft
]
, t ∈ [0, T ], where m := φa+δ,β − u + v.

Clearly,

m0 = c0, EP [
mhr

]
> c0, m̂0 ≤ m0, and m̂hr

= mhr
, P0-a.s. (5.10)

Further, from Theorem 5.2, we have that:

m̂t = ess inf
τ∈T t∗

E
Pλ∗ [

mτ∧hr
|Ft

]
,P0 − a.s. for some‖λ∗‖ ≤ L. (5.11)

2. By classical optimal stopping theory, m̂ is aPλ∗–submartingale with Doob-Meyer
decomposition

m̂ = m̂0 + Â + M̂, withÂ =
.∫

0

1{m=m̂}(s)dÂs, Pλ∗ -a.s.

for some Pλ∗ -martingale M̂, and some nondecreasing process Â. In addition, we
may prove that Â is absolutely continuous P0-a.s. (see Step 4 in the proof of
Proposition 7.3 in [28]). Then, it follows from (5.10) that:

0 < EP [
mhr

− m0
] ≤ EP [

m̂hr
− m̂0

]
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≤ E
Pλ∗

⎡
⎢⎣

hr∫

0

1{m=m̂}(t)dÂt

⎤
⎥⎦

= lim
M→∞E

Pλ∗

⎡
⎢⎣

hr∫

0

1{m=m̂}(t)1{| ˙̂At |≤M}
˙̂At dt

⎤
⎥⎦

≤ lim
M→∞ M E

Pλ∗

⎡
⎢⎣

hr∫

0

1{m=m̂}(t)dt

⎤
⎥⎦ .

This implies that Leb⊗P0
[
t < hr, m = m̂

]
> 0, so that, with the subsets�u,�v

from Proposition 5.8, we have:

Leb ⊗ P0
[{t ∈ [0,hr), m = m̂} ∩ �u ∩ �v

]
> 0.

Further, by taking in account (i) of Theorem 5.2, we may find a point (t∗,ω∗)
such that

ht∗,ω∗
r − t∗ ∈ T +, mt∗(ω∗) = m̂t∗(ω∗) = infτ∈T∗ EP [mt∗,ω∗

τ∧(ht∗,ω∗
r −t∗)

],
and u, v are P-punctually C1,2 at (t∗,ω∗).

(5.12)

3. By Proposition 3.15, it follows that m is P-punctually C1,2 at (t∗,ω∗), and
(am,βm) := (a + δ − au + av,β − βu + βv) ∈ J Pm(t∗,ω∗) for any
(au,βu) ∈ J Pu(t∗,ω∗) and (av,βv) ∈ J Pv(t∗,ω∗). Then, by using the vis-
cosity subsolution property of u together with Proposition 3.14 and the Lipschitz
property of F from Assumption 5.1, we see that:

0 ≥ −au − F(t∗,ω∗, ut∗(ω
∗),βu)

= (−av + am) − a − δ − F(t∗,ω∗, (u − v + v)t∗(ω
∗),β + βv − βm)

≥ am − L|βm| − a − δ − L
∣∣(u − v)t∗(ω

∗)
∣∣ − L|β| − av

− F(t∗,ω∗, vt∗(ω
∗),βv)

We shall prove in Step 5 below that

am − L|βm| ≥ 0. (5.13)

Together with the viscosity supersolution property of v, this provides:

0 ≥ −a − δ − L
∣∣(u − v)t∗(ω

∗)
∣∣ − L|β|.
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Since t∗ → 0 as r → 0, and u, v ∈ C0, this provides−a−δ−L |(u − v)0| − L|β|
≤ 0, which implies (5.9) by sending δ → 0.

4. It remains to prove (5.13). For the sake of simplicity, we set t∗ = 0. Recall that

(am,βm) ∈ J Pm0 and m0 = m̂0 = infτ∈T EP [mτ∧Hr ]. Suppose to the contrary
that am − L|βm| < 0. Then, there exists (â, β̂) ∈ J Pm0 such that â − L|β̂| < 0.
By definition of J Pm0, we have

m0 = sup
τ

EP
[

m
τ∧ĥ − φ

â,β̂

τ∧ĥ

]
for someĥ ∈ T + with ĥ ≤ hr .

Then, considering the process λ := −Lsgn(β̂), we see that:

m̂0 = m0 ≥ E
Pλ

[
m
ĥ

− φ
â,β̂

τ∧ĥ
] = E

Pλ
[
m
ĥ

] − (â − Lβ̂)EPλ [ĥ] > E
Pλ

[
m
ĥ

]
.

Since ĥ ≤ hr and Pλ ∈ P , this is in contradiction with the definition of m̂0. �
The previous proposition, together with the partial comparison result of Proposi-

tion 5.6, lead directly to the comparison result.

Proof of Theorem 5.4 By Proposition 5.9, u − v ∈ C0
2,P (�,R) is a P-viscosity

subsolution of the path-dependent equation (5.8). Clearly, 0 is a classical superso-
lution of the same equation. Since (u − v)T ≤ 0, we conclude from the partial
comparison result of Proposition 5.6 that u − v ≤ 0 on �. �

5.4 Existence

To establish an existence result of P-viscosity solutions of the equation (5.1)
under the above Assumption 5.1, we consider a terminal condition defined by an
FT -measurable r.v. ξ. Then, the PPDE 5.1 with terminal condition u(T ,ω) = ξ(ω)

is closely related to the following backward stochastic differential equation (BSDE):

Y0
t = ξ +

T∫

t

F(s, B, Y0
s , Z0

s )ds −
T∫

t

Z0
s dBs, 0 ≤ t ≤ T , P0-a.s. (5.14)

We refer to the seminal paper by Pardoux and Peng [24] for the wellposedness of
such BSDEs. On the other hand, for any (t,ω) ∈ [0, T ] × �, by [24] the following
BSDE on [t, T ] has a unique solution:

Y0,t,ω
s = ξt,ω +

T∫

s

Ft,ω(r, Bt, Y0,t,ω
r , Z0,t,ω

r )dr −
T∫

s

Z0,t,ω
r dBt

r, P
t
0-a.s. (5.15)
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By the Blumenthal 0–1 law, Y0,t,ω
t is a constant and we thus define

u0(t,ω) := Y0,t,ω
t . (5.16)

Theorem 5.10 Let ξ ∈ UCB(�) be an FT -measurable r.v. Then, under Assump-
tion 5.1, u0 is a viscosity solution of PPDE 1.2 with terminal condition u0T = ξ.

Proof Under our assumptions on the nonlinearityF, it follows from the boundedness
and uniform continuity of ξ that u0 is uniformly continuous on [0, T ] × �, see [11].
We show that u0 is a P-viscosity subsolution, the same line of argument allows to
prove that u0 is a P-viscosity subsolution. We proceed by contradiction, assuming
that u0 is not a viscosity subsolution. Then, there exist (t,ω) ∈ [0, T) × � and
ϕ ∈ APu0t (ω) such that:

2c := −∂tϕ0 − 1

2
Tr

[
∂2

ωωϕ0
] − Ft(ω, u0t (ω), ∂ωϕ0) > 0.

Without loss of generality, we assume ut(ω) = ϕ0, and we set (t,ω) = (0, 0).
Denote:

φs := ∂tϕs + 1
2Tr

[
∂2

ωωϕs
] + Fs(ϕs, ∂ϕs) so that φ0 = −2c,

and Ỹs := ϕs, Z̃s := ∂ωϕs, δYs := Ỹs − Ys, δZs := Z̃s − Zs, , s ∈ [0, T ].

Applying Itô’s formula, we have

d(δYs) = (
∂tϕs + 1

2
Tr

[
∂2

ωωϕs
])

ds + Z̃s · dBs + Fs(Ys, Zs)ds − Zs · dBs

= [
φs + Fs(Ys, Zs) − Fs(Ỹs, Z̃s)

]
ds + δZs · dBs, P0 − a.s.

Since δY0 = 0, it follows from the L0—Lipschitz property of F that for all stopping
time τ ∈ T :

0 ≥ (ϕ − u)τ −
τ∫

0

(
φs − L0|δYs|

)
ds +

τ∫

0

(
δZs · dBs + L0|δZs|ds

)
, P0 − a.s.

Define hε := ε∧ inf{s > 0 : |Bs| ≥ ε}∧ inf{s > 0 : φs −L0|δYs| ≥ −c}, and notice
that hε > 0, P0-a.s. since δY0 = 0. Then,

0 ≥ (ϕ − u)hε
+ c hε +

hε∫

0

(
δZs · dBs + L0|δZs|ds

)
, P0 − a.s.
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By the Girsanov theorem, we may find a probability measure P̄ ∈ PL0 ⊂ P such
that B + L0

∫ .

0 sgn(Zs)ds is a P̄-Brownian motion. Then, it follows from the previous

inequality thatEP̄
[
(ϕ−u)h

] ≤ −c E
P̄[h] < 0, contradicting the fact thatϕ ∈ APu00.

6 Wellposedness of Fully Nonlinear Path-Dependent PDEs

In this section, we outline the main results established in [14] in the context of the
fully nonlinear path-dependent PDE:

Lu := −∂tu − G
(
., u, ∂ωu, ∂2

ωωu
) = 0 on [0, T) × �. (6.1)

Assumption 6.1 The nonlinearity G satisfies:

(i) The process G(., y, z, γ) is continuous, and G(., 0, 0, 0) is bounded.
(ii) G is elliptic, i.e. nondecreasing in γ.
(iii) G is L0-Lipschitz in (y, z, γ), uniformly in (t,ω).

In the present fully nonlinear context, we shall consider Definition 3.8 of viscosity
solutions with the sets of test processes A and A defined by means of

P := PL for some L ≥ L0, and H : = {h = t ∧ hO : t ∈ [0, T ], 0 ∈ O ⊂ R
d,

bounded convex},

where hO := inf{t > 0 : Bt �∈ O}. Observe that, unlike the semilinear case, the set
PL of Definition 3.7 is a non-dominated family of probability measures.

Following the same line of argument as in the semilinear case, it is shown in [13]
that the following partial comparison results hold true.

Theorem 6.2 Let u, v ∈ UCB(�) be viscosity subsolutions and supersolution,
respectively of the Eq. (6.1), with uT ≤ vT on �. Assume further that either one
of them is in C1,2

P (�). Then, under Assumption 6.1, u ≤ v on �.

We next report the wellposedness result from [14] which requires further condi-
tions on the path-frozen PDE:

(E)t,ω
ε gt,ω

(
s, v(s, x), Dv(s, x), D2v(s, x)

) = 0, (s, x) ∈ Qε
t := [t, T ] × BRd (ε),

where BRd (ε) is the centered open ball of Rd with radius ε. We denote the parabolic
boundary of the domain Qε

t by ∂Qε
t := [t, T) × BRd (ε) ∪ {T} × cl

[
BRd (ε)

]
.

Assumption 6.3 (i) The process G(·, y, z, γ) is uniformly continuous, uniformly
in (y, z, γ);
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(ii) For all ε > 0, (t,ω) ∈ �, and h ∈ C0
(
∂Qε

t

)
, we have v = v, where:

v(s, x) := inf
{

w(s, x) : w classical supersolution of (E)t,ω
ε and w ≥ h on ∂Qε

t

}
,

v(s, x) := sup
{

w(s, x) : w classical subsolution of (E)t,ω
ε and w ≤ h on ∂Qε

t

}
.

(6.2)

Remark 6.4 The following sufficient condition for the nonlinearity g := gt,ω to
satisfy Assumption 6.3(ii) is reported from Proposition 8.2 of [14]:

(i) The nonlinearity g
(
s, y, z, γ

)
is continuous in s, uniformly Lipschitz in

(y, z, γ), and non-decreasing in γ,
(ii) The PDE (E)t,ω

ε satisfies existence and comparison in the sense of viscosity
solutions within the class of bounded functions,

(iii) Either one of the following conditions holds:
(iii-1) g is convex in (y, z, γ), gδ(., γ) := infA∈Sd ,A≥0

{
g(., γ +A)−Tr[A]} > −∞

for 0 ≤ δ ≤ c0, for some c0 > 0, and gδ −→ g as δ ↘ 0,
(iii-2) g is convex in γ and uniformly elliptic: for some constant c0 > 0,

g(., γ) − g(., γ′) ≥ c0Tr[γ − γ′] for any γ ≥ γ′.

(iii-3) g is uniformly elliptic and d ≤ 2.

Wefinally formulate a technical condition on the final condition ξ.We shall denote
ω := maxs≤t ωs, ω := mins≤t ωs, and ωt

s := ωs − ωt for all 0 ≤ t ≤ s ≤ T .

Assumption 6.5 ξ = g
((

ωti ,ωti ,ωti

)
1≤i≤n,ω

)
for some 0 = t0 < · · · < tn = T

and some function g ∈ UCB(R3dn × �) satisfying for all θ ∈ R
3dn, i < n, and

ω,ω′ ∈ �, there exist some p > 0 and continuity modulus ρ such that:

|g(θ,ω) − g(θ,ω′)| ≤ ρ
(∥∥(ω − ω′)

∥∥p
Lp([ti,ti+1])

)

whenever ω∧ti = ω′∧ti and ωti+1 = ω′ti+1 .

We are now able for the wellposedness result proved in [14].

Theorem 6.6 Let Assumptions 6.1, 6.3, 6.5 hold true.

(i) Let u, v ∈ UCB(�) be P-viscosity subsolution and supersolution, respectively,
of PPDE (6.1) with uT ≤ ξ ≤ vT . Then u ≤ v on �.

(ii) The PPDE 6.1 with terminal condition ξ has a unique viscosity solution u ∈
UCB(�).
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7 Stability of Viscosity Solutions of Path-Dependent PDEs

7.1 Stability

We shall establish the stability in the context of fully nonlinear PPDE, and thus we
use the setting in Sect. 6. We first report the fully nonlinear analogue of Lemmas 4.3
and 5.5.

Lemma 7.1 Let u ∈ UCB(�), (t,ω) ∈ �, and h ∈ H, be such that ut(ω) >

EP[
ut,ω
h

]
. Then,

0 ∈ APut+t∗(ω ⊗t ω∗) for some (t∗,ω∗) with the localization h∗ := ht∗,ω∗ − t∗ ∈ H.

We remark that in this case P has no dominating measure, and consequently the

Dominated Convergence Theorem fails under EP . The proof of Lemma 7.1 relies
on the theory of optimal stopping under nondominated nonlinear expectation. The
Snell envelop approach in this context is rather technical, and makes crucially use of
the regularity of X and the special structure of h, see [12].

We now present the stability result. Fix P = PL and simplify the notations:

E := EP , E := EP .
Theorem 7.2 Let G, Gε satisfy Assumption 6.1 with a common L0 ≤ L, and u, uε ∈
UCB(�), for each ε > 0. Assume

(i) for each ε > 0, uε is a viscosity subsolution (resp. supersolution) of PPDE 6.1
with generator Gε;

(ii) as ε → 0, (Gε, uε) converge to (G, u) locally uniformly.

Then u is a viscosity subsolution (resp. supersolution) of PPDE 6.1with generator G.

Proof Without loss of generality we shall only prove the viscosity subsolution
property at (0, 0). Let ϕ ∈ APu(0, 0) with corresponding h ∈ H, δ0 > 0 be
a constant such that hδ0 ≤ h and limε→0 ρ(ε, δ0) = 0, where ρ(ε, δ0) is the
bound of |Gε − G| + |uε − u| on the δ0-neighborhood of (0, 0, y0, z0, γ0) :=
(0, 0, u0, ∂ωϕ0, ∂

2
ωωϕ0).

Now for 0 < δ ≤ δ0, denote ϕδ(t,ω) := ϕ(t,ω) + δt. One can easily show that
E0[hδ] > 0, see [13]. Then we have

(ϕδ − u)0 = (ϕ − u)0 ≤ E
[
(ϕ − u)hδ

]
= E

[
(ϕδ − u)hδ

− δhδ

]

≤ E
[
(ϕδ − u)hδ

]
− δE[hδ] < E

[
(ϕδ − u)hδ

]
.

By the local uniform convergence of Gε and uε, there exists εδ > 0 small enough
such that
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(ϕδ − uε)0 < E
[
(ϕδ − uε)hδ

]
, ∀ε ≤ εδ. (7.1)

By Lemma 7.1, we may find a point (t∗,ω∗) such that

0 ∈ AP (uε − ϕδ)t∗(ω
∗) with the localization h∗ := ht∗,ω∗

δ − t∗ ∈ H.

It is straightforward to check that ϕt∗,ω∗
δ ∈ APuε(t∗,ω∗). Since uε is a viscosity

subsolution of PPDE 6.1 with generator Gε, we have

0 ≥
[

− ∂tϕδ − Gε(·, uε, ∂ωϕδ, ∂
2
ωωϕδ)

]
(t∗,ω∗)

=
[

− ∂tϕ − δ − Gε(·, uε, ∂ωϕ, ∂2
ωωϕ)

]
(t∗,ω∗). (7.2)

Note that t∗ < hδ(ω
∗), then |uε − u|(t∗,ω∗) ≤ ρ(ε, δ) ≤ ρ(ε, δ0). By local

uniform convergence, we may set δ small enough and then ε small enough so that
(·, uε, ∂ωϕ, ∂2

ωωϕ)(t∗,ω∗) is in the δ0-neighborhood of (0, 0, y0, z0, γ0). Thus, 7.2
and Assumption 6.1 lead to

0 ≥
[

− ∂tϕ − G(·, uε, ∂ωϕ, ∂2
ωωϕ)

]
(t∗,ω∗) − δ − ρ(ε, δ0)

≥
[

− ∂tϕ − G(·, u, ∂ωϕ, ∂2
ωωϕ)

]
(t∗,ω∗) − δ − ρ(ε, δ0) − Cρ(ε, δ)

≥ Lϕ0 − sup
(t,ω):t<hδ(ω)

∣∣∣G(·, u, ∂ωϕ, ∂2
ωωϕ)(t,ω) − G(·, u, ∂ωϕ, ∂2

ωωϕ)(0, 0)
∣∣∣

−δ − Cρ(ε, δ0).

Now by first sending ε → 0 and then δ → 0 we obtain Lϕ0 ≤ 0. Since ϕ ∈
APu(0, 0) is arbitrary, we see that u is a viscosity subsolution of PPDE 6.1 with
generator G at (0, 0) and thus complete the proof. �

7.2 Monotone Scheme for PPDEs

As an important application of the above stability result (in spirit), in this subsection
we study discretization schemes for PPDEs. For any (t,ω) ∈ � and h ∈ (0, T − t),
we denote F t,ω

t+h := Ft+h ∩ {Bt∧· = ωt∧·}. Let Tt,ω
h be an operator on L0(F t,ω

t+h). For

n ≥ 1, denote h := T
n , ti := ih, i = 0, 1, . . . , n, and define:

uh(tn,ω) := ξ(ω), uh(t,ω) := T
t,ω
ti−t

[
uh(ti, ·)

]
, (7.3)

t ∈ [ti−1, ti), i = n, . . . , 1.
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where we abuse the notation that:

T
t,ω
h [ϕs] := T

t,ω
h [ϕt,ω

s−t] for process ϕ.

Assumption 7.3 Assumption 6.1 holds, and

(i) ξ : � → R is bounded and uniformly continuous.
(ii) Comparison principle for PPDE 1.2 holds in the class of bounded viscosity

solutions.

Assumption 7.4 The descritization operatorTt,ω
h satisfies the following conditions:

(i) Consistency: for any (t,ω) ∈ � and ϕ ∈ C1,2(�),

lim
(t′,ω′,h,c)→(t,0,0,0)

[c + ϕ](t′,ω′) − T
t′,ω⊗tω

′
h

[[c + ϕ](t′ + h, ·)]
h

= Lϕ(t,ω).

where (t′,ω′) ∈ �, h ∈ (0, T − t), c ∈ R.
(ii) Monotonicity: for some constant L ≥ L0 and any ϕ,ψ ∈ UCB(F t

t+h),

EP [(ϕ − ψ)t,ω] ≤ 0 implies T
t,ω
h [ϕ] ≤ T

t,ω
h [ψ].

(iii) Stability: uh is uniformly bounded and uniformly continuous in ω, uniformly
on h. Moreover, there exists a modulus of continuity function ρ, independent
of h, such that

|uh(t,ω) − uh(t′,ω·∧t)| ≤ ρ
(
(t′ − t) ∨ h

)
, for anyt < t′and any ω ∈ �.

We now report the result from [32], which extends the seminal work Barles and
Souganidis [1] to our path dependent case.

Theorem 7.5 Let Assumptions 7.3 and 7.4 hold. Then PPDE 6.1 with terminal
condition u(T , ·) = ξ has a unique bounded viscosity solution u, and uh converges
to u locally uniformly as h → 0.

Proof By the stability, uh is bounded. Define

u(t,ω) := lim inf
h→0

uh(t,ω), u(t,ω) := lim sup
h→0

uh(t,ω). (7.4)

Clearly u(T ,ω) = ξ(ω) = u(T ,ω), u ≤ u, and u, u are bounded and uniformly
continuous. We shall show that u (resp. u) is a viscosity supersolution (resp. subso-
lution) of PPDE 6.1. Then by the comparison principle we see that u ≤ u and thus
u := u = u is the unique viscosity solution of PPDE 6.1. The convergence of uh is
obvious now, which, together with the uniform regularity of uh and u, implies further
the locally uniform convergence.
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Without loss of generality, we shall only prove by contradiction that u satisfies the vis-

cosity supersolution property at (0, 0). Assume not, then there existsϕ0 ∈ AP
u(0, 0)

with corresponding h ∈ H such that −c0 := Lϕ0(0, 0) < 0. Denote

ϕ(t,ω) := ϕ0(t,ω) − c0
2

t. (7.5)

Then

Lϕ(0, 0) = −c0
2

< 0. (7.6)

Denote X0 := ϕ − u, Xh := ϕ − uh, hε := h0ε ∧ ε5 := inf{t : |Bt | ≥ ε} ∧ ε5, and
cε := 1

3c0ε5. Note that hε ≤ h for ε small enough, and by [13] (2.8),

sup
P∈PL

P(hε �= ε5) = sup
P∈PL

P(h0ε < ε5) ≤ CL4ε−4ε10 ≤ Cεcε. (7.7)

Then

E[ε5 − hε] ≤ E[
ε51{hε �=ε5}

] ≤ Cεcε.

Thus, for ε small, it follows from ϕ0 ∈ AL
u(0, 0) that

X0
0 − E[X0

hε
] = [ϕ0 − u]0 − E

[
(ϕ0 − u)hε

− c0
2
hε

]

≥ E
[
(ϕ0 − u)hε

]
− E

[
(ϕ0 − u)hε

− c0
2
hε

]

≥ E
[c0
2
hε

]
= c0ε5

2
− c0

2
E[ε5 − hε]

≥ 3cε

2
− Cεcε ≥ cε > 0. (7.8)

Let hk ↓ 0 be a sequence such that

lim
k→∞ uhk

0 = u0, (7.9)

and simplify the notations: uk := uhk , Xk := Xhk . Then (7.8) leads to

cε ≤ [ϕ0 − lim inf
h→0

uh
0] − E

[
ϕhε

− lim inf
h→0

uh
hε

]

≤ [ϕ0 − lim
k→∞ uk

0] − E
[
ϕhε

− lim inf
k→∞ uk

hε

]
.

Note that Xk is uniformly bounded. Then by (7.7) we have
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E
[
|Xk

hε
− Xk

ε5
|
]

≤ Cεcε.

Since uh is uniformly continuous, applying themonotone convergence theoremunder
nonlinear expectation E , see e.g. [12] Proposition 2.5, we have

cε ≤ lim
k→∞[ϕ0 − uk

0] − E
[
lim sup

k→∞
[ϕhε

− uk
hε

]
]

≤ lim
k→∞ Xk

0 − E
[
lim sup

k→∞
Xk

ε5

]
+ Cεcε = lim

k→∞ Xk
0 − E

[
lim

m→∞ sup
k≥m

Xk
ε5

]
+ Cεcε

= lim
k→∞ Xk

0 − lim
m→∞ E

[
sup
k≥m

Xk
ε5

]
+ Cεcε ≤ lim

k→∞ Xk
0 − lim sup

k→∞
E
[
Xk

ε5

]
+ Cεcε

≤ lim
k→∞ Xk

0 − lim sup
k→∞

E
[
Xk
hε

]
+ Cεcε = lim inf

k→∞

[
Xk
0 − E[

Xk
hε

]] + Cεcε.

Then, for all ε small enough and k large enough,

Xk
0 − E[

Xk
hε

] ≥ cε

2
. (7.10)

Now, applying Lemma 7.1, we obtain that

0 ∈ APXk
tk∗
(ω∗) for some (tk∗,ω∗) with the localization hk

ε := htk∗,ω∗
ε − tk∗.

Moreover, in this case, we may prove that

sup
P∈P

P
[
hk

ε ≤ δ
] ≤ Cδ2 (7.11)

for all δ ≤ hk (see [32]). Let {tk
i , i = 0, . . . , nk} denote the time partition corre-

sponding to hk , and assume tk
i−1 ≤ tk∗ < tk

i . Note that

Xk
tk∗
(ωk) = Yk

tk∗
(ωk) ≥ E

[
(Xk)

tk∗,ωk

τ∧hk
ε

]
, ∀τ ∈ T .

Set δk := tk
i − tk∗ ≤ hk and τ := δk . Combine the above inequality and 7.11 we have

[ϕ − uk](tk∗,ωk) ≥ E
[
(ϕ − uk)

tk∗,ωk

δk∧hk
ε

]
≥ E

[
(ϕ − uk)

tk∗,ωk

δk

]
− Cδ2k .

This implies

E
[(

ϕ
tk∗,ωk

δk
− [ϕ − uk](tk∗,ωk) − Cδ2k

)
− (uk)

tk∗,ωk

δk

]
≤ 0.

By the monotonicity condition (Assumption 7.4 (ii)) we have
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uk(tk∗,ωk) = T
tk∗,ωk

δk
[uk

tk
i
] ≤ T

tk∗,ωk

δk

[
ϕtk

i
− [ϕ − uk](tk∗,ωk) − Cδ2k

]
. (7.12)

We next use the consistency condition (Assumption 7.4 (i)). For (t,ω) = (0, 0),
set

t′ := tk∗, ω′ := ωk, h := δk, c := −[ϕ − uk](tk∗,ωk) − Cδ2k .

By first sending k → ∞ and then ε → 0, we see that

d((tk∗,ωk), (0, 0)) ≤ hε + sup
0≤t≤hε

|ωk
t | ≤ 2ε → 0, h ≤ hk → 0,

which, together with 7.5, 7.9, and the uniform continuity of ϕ and uk , implies

|c| ≤
∣∣∣[ϕ − uk](tk∗,ωk) − [ϕ − uk](0, 0)

∣∣∣ + |uk
0 − u0| + Cδ2k → 0.

Then, by the consistency condition, we obtain from 7.12 that

0 ≤
uk(tk∗,ωk) − T

tk∗,ωk

δk

[
ϕtk

i
− [ϕ − uk](tk∗,ωk) − Cδ2k

]

δk

=
[c + ϕ](tk∗,ωk) − T

tk∗,ωk

δk

[
[c + ϕ]tk

i

]

δk
+ Cδk → Lϕ(0, 0).

This contradicts with 7.6.

8 Optimal Stopping Under Dominated Nonlinear
Expectation

The objective of this section is to provide a self-contained proof of Theorem 5.2.
We follow the setting in Sect. 5. In particular, the family P of equivalent probability
measures is defined as in (5.2).

We emphasize that the main results of this section are available in the literature
in reflected backward stochastic differential equations, see [16, 21, 27]. We collect
them here for the convenience of the readers who might not be familiar with this
literature. Our presentation in Sect. 8.3 and 8.2 is inspired from El Karoui [15] and
Appendix D of Karatzas and Shreve [22], which are focused on the standard optimal
stopping under linear expectation.
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8.1 Preliminaries

For ease of notation,we simplywriteE := EP.We start by the dominated convergence
theorem under E which holds by the fact that P is dominated by P0.

Lemma 8.1 Let Xn be a sequence of random variables. Assume that X1+α
n are

uniformly integrable under probability P0 and Xn → X P0-a.s. Then, we have
E[|Xn − X|] → 0.

Proof For any Pλ ∈ P , we have

E
Pλ [|Xn − X|] = E

P0
[
e

T∫
0

λsdBs− 1
2

T∫
0

|λs|2ds
|Xn − X|

]

≤ (
E
P0 [e

T∫
0

qλsdBs−
T∫
0

q
2 |λs|2ds

]) 1
q
(
E
P0 [|Xn − X|p]) 1

p ,

where p = 1 + α and 1
p + 1

q = 1. Since λ is bounded, we know that EP0

[
e
∫ T
0 qλsdBs−

∫ T
0

q
2 |λs|2ds

]
is bounded. Then, by the convergence theorem, we obtain

that EP0 [|Xn − X|1+α] → 0. The proof is complete. �

Lemma 8.2 If X ≥ 0 P0-a.s. and E[X] = 0, then X = 0 P0-a.s.

Proof Since E[X] = 0, for any ε > 0 there exists Pε ∈ P such that EPε [X] < ε.
Also, by Cauchy-Schwarz inequality, we have the estimate:

E
P0 [X 1

2 ] = E
Pε

[
e
−

T∫
0

λεdBs− 1
2

T∫
0

|λε|2ds
X

1
2

]
≤ CE

Pε[X] 12 < Cε
1
2 .

Since ε is arbitrary, we get EP0 [X 1
2 ] = 0. So, we conclude that X = 0 P0-a.s. �

Finally, we state the following lemma, which is a direct consequence of Proposi-
tion 3.1. in El Karoui et al. [17].

Lemma 8.3 Let ξ ∈ L
2(P0), and vt := ess supP∈P E

P[ξ|Ft]. Then, vt = E
P̄[ξ|Ft]

P0-a.s. for all t ∈ [0, T ] for some P̄ ∈ P .

8.2 RCLL Version of the F
∗-Snell Envelop

Throughout this section, we consider a process X : [0, T ] × � −→ R satisfying the
following condition.
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Assumption 8.4 The process X is piecewise pathwise continuous F-adapted on
[0, T ], and supt∈[0,T ] |Xt | ∈ L

2(P), i.e.

E
P
[

sup
t∈[0,T ]

|Xt |2
]

< ∞, for all P ∈ P.

Our starting point is the classical Snell envelop process:

Yt := ess sup
τ∈T t∗ ,P∈P

E
P[Xτ |Ft], t ∈ [0, T ].

Clearly, Yt is F∗
t -measurable for all t ∈ [0, T ].

Lemma 8.5 For any t ∈ [0, T),
{
E
P[Xτ |Ft]; (τ ,P) ∈ T t∗ × P}

satisfies the lattice
property.

Proof Let τ1, τ2 ∈ T t∗ and P1, P2 ∈ P . Let A := {EP1[Xτ1 |Ft] ≥ E
P2 [Xτ2 |Ft]},

and define

τ̄ := τ11A + τ21Ac and P̄(D) := E
P1

[
E
P1 [1A∩D|Ft] + E

P2 [1Ac∩D|Ft]
]
, D ∈ FT .

Clearly, τ̄ ∈ T t∗ , P̄ ∈ P , and we immediately verify that

E
P̄[Xτ̄ |Ft] ≥ max{EP1[Xτ1 |Ft],EP2 [Xτ2 |Ft]}, P0-a.s. �

Wenext introduce the concatenationP1⊗tP2 of twoprobabilitymeasuresP1,P2 ∈
P by:

(P1 ⊗t P2)(D) := E
P1

[
E
P2 [1D|Ft]

]
for all D ∈ FT ,

and we observe that P1 ⊗t P2 ∈ P .

Lemma 8.6 Y is anE-supermartingale with supt∈[0,T ] EP0
[|Yt |2

]
< ∞ andE[Yt] =

supτ∈T t∗ E[Xτ ] for all t ∈ [0, T ].
Proof Denote |X|∗T := supt∈[0,T ] |Xt |. By the definition of Y , we have

sup
t∈[0,T ]

E
P0

[|Yt |2
] ≤ E

P0
[
ess sup
P∈P

E
P
[
(|X|∗T )2

∣∣Ft
]] ≤ sup

P∈P
E
P
[
(|X|∗T )2

]
< ∞.

For arbitrary P ∈ P and s ≤ t, it follows from Lemma 8.5 and the property of the
ess sup that:

E
P[Yt |Fs] = ess sup

τ∈T t∗ ;P′∈P
E
P⊗P′ [Xτ |Fs]

≤ ess sup
τ∈T t∗ ;P′∈P

E
P′ [Xτ |Fs] ≤ ess sup

τ∈T s∗ ;P′∈P
E
P′ [Xτ |Fs] = Ys, P0 − a.s.
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which proves that Y is an E-supermartingale.
We finally prove the last claim. For all τ ∈ T t∗ and P ∈ P , we have Yt ≥

E
P[Xτ |Ft], P0-a.s. Hence, we obtain for any τ ∈ T t∗ and P, P

′ ∈ P that E[Yt] ≥
E
P

′ [Yt] ≥ E
P

′⊗P[Xτ ], and therefore E[Yt] ≥ supτ∈T t∗ E[Xτ ]. On the other hand, it
follows from Lemma 8.5 that:

E
P[Yt] = sup

τ∈T t∗ ,P
′ ∈P

E
P⊗P

′ [Xτ ] ≤ sup
τ∈T t∗

E[Xτ ] for all P ∈ P. �

Proposition 8.7 (Dynamic programming principle) For all t ∈ [0, T) and θ ∈ T t∗ :

Yt = ess sup
τ∈T t∗ , P∈P

E
P
[
Xτ1{τ<θ} + Yθ1{τ≥θ}

∣∣Ft

]
, P0-a.s.

Proof Since X ≤ Y , we have for all θ ∈ T t∗

Yt ≤ ess sup
τ∈T t∗ ,P∈P

E
P[Xτ1{τ<θ} + Yτ1{τ≥θ}|Ft]

≤ ess sup
τ∈T t∗ ,P∈P

E
P[Xτ1{τ<θ} + Yθ1{τ≥θ}|Ft], P0 − a.s.

where the last inequality is due to the E-supermartingale property of Y of Lemma
8.6. On the other hand, since Y is E-supermartingale, we have for all τ ∈ T t∗ and
P ∈ P:

Yt ≥ E
P[Yθ∧τ |Ft] = E

P[Yθ1{τ≥θ} + Yτ1{τ<θ}|Ft]
≥ E

P[Yθ1{τ≥θ} + Xτ1{τ<θ}|Ft], P0-a.s.

The proof is completed by taking ess sup over τ ∈ T t∗ and P ∈ P . �

Lemma 8.8 Y has aP0-a.s. RCLLF
∗-adapted version. Moreover, there exists P̄ ∈ P

such that EP̄[supt∈[0,T ] |Yt |2] < ∞.

Proof Step 1. Let {tn} ⊂ [0, T ] be such that tn ↘ t. By Lemma 8.6, we know
that E[Ytn ] = supτ∈T tn∗ E[Xτ ] ≤ supτ∈T t∗ E[Xτ ] ≤ E[Yt]. On the other hand, for any
τ ∈ T t∗ , denoting τn := τ ∨ tn, it follows from the continuity of X and the P0-uniform
integrability of {X2

τn
, n ≥ 1} that E[Xτ ] = limn→∞ E[Xτn ] ≤ lim infn→∞ E[Ytn ].

Using again Lemma 8.6, we obtain that E[Yt] ≤ lim infn→∞ E[Ytn ]. Hence,

E[Yt] = lim
s↓t

E[Ys].

Step 2. It follows from Lemma 8.6 that Y is a P0-supermartingale in the right-
continuous filtration F

∗. By classical martingale theory, we know that for any t ∈
[0, T),
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Yt+ := lim
s�t,s∈Q

Ys exists P0-a.s.

Note that Yt+ is F∗
t -measurable. Also, we have the properties that {Yt+}t is RCLL

and Yt+ = E[Yt+|F∗
t ] ≤ Yt , P0-a.s.

We now show that Yt+ = Yt , P0-a.s. Suppose to the contrary that P0[Yt+ < Yt] >

0. Then, we have EP0
[√

Yt − Yt+
]

> 0, implying that E[Yt − Yt+] > 0. Then, there
exists δ > 0 such that:

E
P[Yt − Yt+] ≥ δ > 0 for all P ∈ P. (8.1)

By the definition of Yt+ and the fact that {Y
3
2

t } are uniformly integrable (by Lemma
8.6), we obtain by Lemma 8.1 that E[Yt] = lims↓t E[Ys] = E[Yt+]. This means that

for all P ∈ P and ε > 0, there exists P
′ ∈ P such that EP[Yt] − ε ≤ E

P
′ [Yt+].

Together with (8.1), this implies that EP[Yt] − ε ≤ E
P

′ [Yt] − δ ≤ E[Yt] − δ, and
therefore E[Yt] − ε ≤ E[Yt] − δ. By arbitrariness of ε > 0, this provides that
E[Yt] ≤ E[Yt] − δ, which is the required contradiction. So, we have proved that Yt+
is an F

∗-adapted RCLL version of Yt .
Step 3. With |X|∗T := supt∈[0,T ] |Xt |, we have:

sup
t∈[0,T ]

|Yt |2 ≤ sup
t∈[0,T ]

ess sup
P∈P

E
P
[(|X|∗T

)2|Ft
]
.

By Lemma 8.3, there exists P̄ ∈ P such that EP̄[X∗|Ft] = ess supP∈P E
P[X∗|Ft]

for all t, P0-a.s. Then, it follows from the Doob inequality that:

E
P̄
[

sup
t∈[0,T ]

|Yt |2
]

≤ E
P̄
[

sup
t∈[0,T ]

E
P̄
[
(|X|∗T )2

∣∣Ft
]] ≤ 4EP̄

[
(|X|∗T )2

]
,

which provides the desired result by Assumption 8.4. �

8.3 Doob-Meyer Decomposition of the RCLL F
∗-Snell Envelop

From now on, we consider Y in its F∗-adapted RCLL version of Lemma 8.8. For a
vector x = (x1, . . . , xd) ∈ R

d , we denote |x|1 := ∑d
i=1 |xi|.

Proposition 8.9 There exist H ∈ Hloc and a non-decreasing previsible process K
such that

Yt = Y0 + (H · B)t − L

t∫

0

|Hs|1ds − Kt, t ∈ [0, T ], P0 − a.s.,
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with E
P0

[
supt∈[0,T ] |(H · B)t |

]
< ∞.

Proof 1. By Lemma 8.6, Y is a P-supermartingale, with Doob-Meyer decomposi-
tion,

Y = Y0 + MP − AP, P0 − a.s. for all P ∈ P, (8.2)

for some P-martingale MP and some non-decreasing previsible process AP. By the
martingale representation property, MP0 = (H · B), P0-a.s. for some H ∈ Hloc. By
the Girsanov theorem, the process M̃Pλ := MP0 − ∫ .

0 λT
s Hsds defines a Pλ-local

martingale. Then, it follows from the uniqueness of the Doob-Meyer decomposition
that M̃Pλ is a Pλ-martingale, and

M̃Pλ = MPλ and

·∫

0

λT
s Hsds − AP0 = −APλ , P0 − a.s.

We next introduce the process λ∗ with ith component proportional to the sign of the
ith component of H, so that λ∗H = L|H|1. Note that Pλ∗ ∈ P . Then the required
decomposition holds with K := APλ∗ .
2. By Itô’s formula, we have

AP
t Yt −

t∫

0

YsdAP
s =

t∫

0

AP
s dYs =

t∫

0

AP
s dMP

s − 1

2
(AP

t )2, for all P ∈ P.

Let (τn)n be a localizing sequence for the P-local martingale
∫ ·
0 AP

s dMP
s . Then,

1

2
E
P[(AP

τn
)2] ≤ 2EP[ sup

t∈[0,T ]
|Yt | · AP

τn
] ≤ 2

(
E
P
[

sup
t∈[0,T ]

|Yt |2
]
E
P
[
(AP

τn
)2

]) 1
2
.

For P = P̄ as in Lemma 8.8, we conclude that EP̄[(AP̄
T )2] < ∞. Then, one may

easily verify that EP̄
[
supt∈[0,T ] |MP̄|2] < ∞, and therefore EP̄[〈MP̄〉T ] < ∞ by the

Burkholder-Davis-Gundy inequality. Then, it follows from the Cauchy-Schwartz
inequality that

E
P[〈MP〉

1
2
T ] = E

P[〈MP̄〉
1
2
T ] ≤ C(EP̄[〈MP̄〉T ]) 1

2 < ∞, for all P ∈ P,

and we conclude that EP
[
supt∈[0,T ] |MP

t |] < ∞, by the Burkholder-Davis-Gundy
inequality. �

We next provide some further properties of the previsible nondecreasing process
K , and we derive an optimal stopping rule.
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Proposition 8.10 The processes Y and K are pathwise continuous,
∫ T
0 1{t:Xt<Yt}

dKt = 0, P0-a.s. and the F
∗-previsible stopping time τ∗ := inf{t : Xt = Yt} is an

optimal stopping rule.

In order to prove this result, we introduce the stopping times

Dε
t := inf{s ≥ t : Ys ≤ Xs + ε} for all t ∈ [0, T), ε > 0.

By the right-continuity of Y and the continuity of X, it is clear that Dε
t ∈ T t∗ . The

following two lemmas prepare for the proof of Proposition 8.10.

Lemma 8.11 For all t ∈ [0, T), we have E[
YDε

t
− Yt

] = 0.

Proof Since Y is P-supermartingale and Dε
t ≥ t, we have E[YDε

t
− Yt] ≤ 0. On the

other hand, by the dynamic programming principle of Proposition 8.7, we have

Yt = ess sup
τ∈T t∗ ,P∈P

E
P
[
Xτ1{τ<Dε

t } + YDε
t
1{τ≥Dε

t }|Ft

]
, P0 − a.s.

Here, we may prove the lattice property similar to Lemma 8.5, so that

E
P[Yt] = sup

τ∈T t∗ ,P′∈P
E
P⊗tP

′[
Xτ 1{τ<Dε

t } + YDε
t
1{τ≥Dε

t }
]

for all P ∈ P.

Then, there exists (τn)n ⊂ T t∗ such that

E
P[Yt] ≤ E

P⊗tPn
[
Xτn 1{τn<Dε

t } + YDε
t
1{τn≥Dε

t }
] + 1

n

≤ E
P⊗tPn

[
Yτn∧Dε

t
− ε1τn<Dε

t

] + 1

n
≤ E

P⊗tPn
[
Yt − ε1τn<Dε

t

] + 1

n
,

where the last inequality follows from the E-supermartingale property of Y . Note
that

E
P⊗tPn [Yt] = E

P⊗Pn
[
E
P⊗tPn [Yt |Ft]

]
= E

P
[
E
P⊗tPn [Yt |Ft]

]
= E

P[Yt].

Then ε(P ⊗ Pn)[τn < Dε
t ] ≤ 1

n , and it follows from the previous estimate that:

E
P[Yt] ≤ E

P⊗Pn
[
(Xτn − YDε

t
)1{τn<Dε

t } + YDε
t

] + 1

n

≤ C(P ⊗ Pn)
[
τn < Dε

t ]
1
2 + E

P⊗Pn [YDε
t
] + 1

n
≤ C√

nε
+ 1

n
+ E

P⊗Pn
[
YDε

t

]
,

by the fact that supt∈[0,T ] |Xt | and YDε
t
∈ [XDε

t
, XDε

t
+ ε] are both in L

2(P). Finally,
we obtain
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EP[
YDε

t
− Yt

] ≥ E
P⊗Pn

[
YDε

t
− Yt

] ≥ −
( C√

nε
+ 1

n

)
−→ 0 as n → ∞. �

Lemma 8.12 The processes {Kt, t ∈ [0, T ]} and {KDε
t
, t ∈ [0, T ]}t are indistin-

guishable.

Proof By the decomposition of Proposition 8.9, we have

YDε
t
− Yt = +

Dε
t∫

t

HsdBs −
Dε

t∫

t

L|Hs|1ds − KDε
t
+ Kt, t ∈ [0, T ], P0-a.s.

Since E[YDε
t
− Yt] = 0 by Lemma 8.11, we may find a sequence (Pn)n≥1 ⊂ P such

that

−1

n
≤ E

Pn
[
YDε

t
− Yt

] ≤ −E
Pn

[
KDε

t
− Kt

] ≤ −E[
KDε

t
− Kt

]
.

Then, it follows from the non decrease of K that E[
KDε

t
− Kt

] = 0, and therefore

KDε
t

= Kt, P0-a.s. for all t ∈ [0, T ].

Consequently, P0[�′] = 1, where �′ := {
KDε

t
= Kt, for all t ∈ [0, T ] ∩ Q

}
.

Further, for any t ∈ [0, T), let {tn}n ⊂ Q and tn ↓ t. Since K is nondecreasing, we
see that Kt ≤ KDε

t
≤ KDε

tn
= Ktn on �′. Since K inherits the RCLL property of Y ,

this shows that KDε
t
is right continuous on �′, and implies that {Kt}t and {KDε

t
}t are

indistinguishable.

Proof of Proposition 8.10

(i) We first prove that
∫
(Y − X)dK = 0, P0-a.s. From Lemma 8.12, we have

P0[�] = 1, where � = {ω : Kt(ω) = KDε
t
(ω) for all t ∈ [0, T ]}. Next,

consider the decomposition of the process Y into a continuous and a purely
discontinuous part Y = Yc + Yd . From the decomposition of Proposition 8.9
and the fact that K is increasing, we deduce that P0[�′] = 1, where �′ := {ω :
�Yd

t (ω) ≤ 0 for all t ∈ [0, T ]}.
Now fix any ω ∈ � ∩ �′. For any t0 ∈ {t : Xt(ω) < Yt(ω)}, denote 2c :=
Yt0(ω) − Xt0(ω) > 0. Since Y(ω) is RCLL with negative jumps, and X(ω) is
continuous, there exists δ such that for all t ∈ (t0 − δ, t0] we have Yt(ω) −
Xt(ω) > c, and

t0 is an interior point of (t0 − δ, Dc
t0−δ(ω)) ⊂ {t : Xt(ω) < Yt(ω)}.

Further, it is easy to prove that {t : Xt(ω) < Yt(ω)} can be covered by a countable
number of open intervals in the form of (tn, Dεn

tn (ω)). Finally, we have
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0 ≤
T∫

0

1{t:Xt(ω)<Yt(ω)}dKt(ω) ≤
∞∑

n=1

(KDεn
tn (ω)(ω) − Ktn(ω)) = 0.

(ii) We next prove that Y and K are continuous. Consider the decomposition K =
Kc +Kd into a continuous and a purely discontinuous part, and let us show that
P0

[
Kd

t = 0 for all t ∈ [0, T ]] = 1.
Since K is previsible and �Kd

t = Kt − Kt−, �Kd is also previsible. In the
following we set inf ∅ = ∞. By Theorem 12.3 in Chapter 6 of [31] (p. 333),
we know that τδ = inf{t ∈ (0, T ] : �Kd

t > δ} is a previsible stopping time
(defined inDefinition 12.1 inChapter 6 of [31]), for all δ > 0. Then, byTheorem
12.6 in Chapter 6 of [31], τδ can be announced by a sequence of stopping time
τn, i.e. τn < τδ and τn ↑ τδ ,P0-a.s. Then, sinceKt andKDε

t
are indistinguishable

by Lemma 8.12, it follows from the definition of τδ that Kd
Dε

τn
= Kd

τn
< Kd

τδ .

Then, τn ≤ Dε
τn

< τδ , P0-a.s. Hence

P0[�0] = 1, where �0 := {
τn ↑ τδ and τn ≤ Dε

τn
< τδ

}
.

For all ω ∈ �0, we can find a sequence tn such that Dε
τn

(ω) ≤ tn < τδ(ω) and
Ytn(ω) ≤ Xtn(ω) + ε. Sending n → ∞, we get Yτδ(ω)−(ω) ≤ Xτδ(ω)(ω) + ε.
So, Yτδ− ≤ Xτδ + ε, P0-a.s. Choosing ε < δ, we see that, whenever τδ ≤ T ,
Yτδ ≤ Yτδ− − δ < Xτδ , which is the required contradiction. Hence τδ = ∞ for
all δ > 0, implying that Kd = 0, P0-a.s.

(iii) We now show that τ∗ is an optimal stopping rule. The results of (i) and (ii)
lead to Kτ∗ = 0 P0-a.s. Recall the generalized Doob-Meyer decomposition in
Proposition 8.9. Take λ∗ such that ‖λ∗‖ ≤ L and λ∗H = L|H|1. Then, by
taking expectation under Pλ∗ , we obtain that

Y0 = E
Pλ∗ [Yτ∗

] = E
Pλ∗ [Xτ∗

]
.

The last equality is due to the definition of τ∗. Finally, it is clear that Y0 =
EP [Xτ∗ ]. Hence, τ∗ is an optimal stopping rule. �

8.4 Reduction to a Standard Optimal Stopping Problem

As a consequence of the decomposition in Proposition 8.9 together with Lemma
8.12, we obtain the following reduction.

Proposition 8.13 There exists a probability P
∗ ∈ P such that



448 Z. Ren et al.

Yt = ess sup
τ∈T t∗

E
P∗ [Xτ |Ft], P0-a.s.

In particular, there exists a P
∗-martingale M∗ such that Y = Y0 + M∗ − K, P0-a.s.

Proof First, for any τ ∈ T t∗ and P ∈ P , we have Yt ≥ E
P[Xτ |Ft], P0-a.s. Hence,

Yt ≥ ess supτ∈T t∗ E
P[Xτ |Ft], P0-a.s.

On the other hand, let λ∗ be defined by its ith entry L sgn(Ht)i. From Proposition
8.9, we know that (H · B) − ∫ ·

0 L|Hs|1ds is a Pλ∗ -martingale. Then, it follows from
the decomposition of Proposition 8.9, together with Lemma 8.12, that

Yt = E
Pλ∗ [YDε

t
+ KDε

t
− Kt |Ft

] = E
Pλ∗ [YDε

t
|Ft

] ≤ E
Pλ∗ [XDε

t
|Ft

] + ε.

Since Dε → Dt := inf{s ≥ t : Yt− = Xt}, as ε → 0, this implies that

Yt ≤ E
Pλ∗ [XDt |Ft

] ≤ ess sup
τ∈T t∗

E
Pλ∗ [Xτ |Ft], P0-a.s. �

8.5 The F-adapted Snell Envelop

Given the continuity ofY in Proposition 8.10,we now reduce to anF-adapted version.

Proposition 8.14 There is an F-adapted pathwise continuous indistinguishable
version of Y.

Proof Define

YF
t = E

P0 [Yt |Ft] for t ∈ [0, T ] ∩ Q, and YF
t := lim

s�t,s∈Q
Ỹs for t ∈ [0, T ] \ Q.

The last limit exists by the pathwise continuity of Y , P0-a.s., see Proposition 8.10.
Clearly,YF

t isFt-measurable. SinceY isF∗-adapted, we haveP0
[
Y = YF on [0, T ]∩

Q
] = 1, and by the pathwise continuity of Y , we deduce that P0

[
Y = YF

] = 1.
Hence Y and YF are indistinguishable. �

In this section, we consider the process Y in its version of Proposition 8.14, which
we call the F-adapted Snell envelop of X. We next define:

Zτ (ω) := sup
θ∈T∗

E[Xτ (ω),ω
θ ], for all τ ∈ T .

Clearly, Y0 = Z0. The main result of this subsection is the following.

Proposition 8.15 Let Y be the F-Snell envelop of X. Then, Yτ = Zτ , P0-a.s. for all
τ ∈ T∗
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In preparation for the proof of this result, we prove two lemmas.

Lemma 8.16 Let Ŷ be a continuous F-adapted process such that, for some
P0-martingale M̂ and nondecreasing process K̂:

(i) Ŷ = Y0 + M̂t − max|λ|≤L〈M̂,
∫ ·
0 λsdBs〉 − K̂, P0-a.s.

(ii) Ŷ ≥ X, P0-a.s.
(iii)

∫ T
0 1{t:Xt<Ŷt}dK̂t = 0, P0-a.s.

Then, Ŷt = ess supτ∈T t∗ ,P∈P E
P[Xτ |Ft], P0-a.s.

Proof By martingale representation and the Property (i), there exists Ĥ ∈ Hloc
such that Ŷ = Ŷ0 + (Ĥ · B) − L

∫ .

0 |Hs|1ds − K̂ ,P0-a.s. By Girsanov theorem,

M̂λ := ∫ ·
0 ĤsdBs−

∫ ·
0 λT

s Ĥsds isPλ-localmartingale, and it follows from the previous

decomposition that there exists increasing process K̂λ such that

Ŷ = Ŷ0 + M̂λ − K̂λ, P0 − a.s. (8.3)

By the uniqueness of the Doob-Meyer decomposition, we deduce that M̂λ is a Pλ-
martingale, and it follows from (8.3) and Property (ii) that

Ŷt ≥ E
Pλ

[
Ŷτ

∣∣Ft
] ≥ E

Pλ
[
Xτ

∣∣Ft
]
for all τ ∈ T t∗ , Pλ ∈ P.

Hence, Ŷt ≥ ess supτ∈T t∗ ,P∈P E
P[Xτ |Ft]. For the reverse inequality, consider the

stopping time Dt := inf{s ≥ t : Ŷs = Xs} ∈ T t∗ . Let λ∗ be the process defined by its
ith entry L sgn(Ĥi). Note that K̂λ∗ = K̂ in (8.3), and therefore

Ŷt = E
Pλ∗ [ŶDt + K̂Dt − K̂t

∣∣Ft
]
.

By property (iii) and the definition of Dt , it follows that K̂Dt = K̂t , P0-a.s., so that

Ŷt = E
Pλ∗ [ŶDt

∣∣Ft
] = E

Pλ∗ [XDt

∣∣Ft
] ≤ ess sup

τ∈T t∗ ,P∈P
E
P[Xτ |Ft]. �

Lemma 8.17 Let M be a pathwise continuous P0-martingale with E
P0

[
supt∈[0,T ]

|Mt |
]

< ∞. Then, there exists an F-adapted indistinguishable version M̃ such that:

P0
[
ω : M̃τ ,ω is a P0 − martingale

] = 1 for all τ ∈ T .

Proof 1. Let M̃T := MT , and for all ω ∈ �:

M̃s(ω) := E
P0

[
Ms,ω

T

]
for s ∈ Q and M̃t(ω) := lim sup

s↑t,s∈Q
M̃s(ω) for t ∈ [0, T ] \ Q.
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Clearly, M̃ is F-adapted, and P0
[
M = M̃ on Q

] = 1. Since M is continuous, it
is easy to verify thatP0[M = M̃] = 1, i.e. M̃ is an indistinguishable version ofM.

2. Denote |M̃|∗t := sups≤t |M̃s|, and

Iτ :=
{
ω ∈ � : M̃τ (ω) = E

P0
[
M̃τ ,ω

T

]
, E

P0
[|M̃|∗τ ,ω

t

]
< ∞,

and P0{M̃τ ,ω is continuous} = 1
}
.

Since M̃ and M are indistinguishable, M̃ is a P0-martingale and P0[Iτ ] = 1. For
η ∈ T with η ≥ τ , we define a sequence of stopping times ηn := [2nη]+1

2n . Note
that ηn only take rational values. By the tower property and the definition of M̃s

for s ∈ Q, we obtain for ω ∈ Iτ :

M̃τ (ω) = E
P0 [M̃τ ,ω

T ] = lim
n→∞

∫

�

E
P0 [M̃ηn,ω⊗τ ω′

T ]P0(dω′) = lim
n→∞E

P0 [M̃τ ,ω
ηn

].

Since EP0
[|M̃|∗τ ,ω

t

]
< ∞, it follows that the family {M̃τ ,ω

ηn
}n∈N is P0-uniformly

integrable. Then, it follows from the P0-a.s. pathwise continuity of M̃τ ,ω that
M̃τ (ω) = limn→∞ E

P0 [M̃τ ,ω
ηn

] = E
P0 [M̃τ ,ω

η ]. By the arbitrariness of η ∈ T , this

proves that M̃τ ,ω is a P0-martingale. �

Proof of Proposition 8.15 Notice that Y ≥ X, P0-a.s., and by Propositions 8.9 and
8.10, there exists H ∈ Hloc and nondecreasing previsible process K such that, with
M := (H · B):

Y = Y0 + M − max
|λ|≤L

〈M,

·∫

0

λsdBs〉 − K and

T∫

0

1{t:Xt<Yt}dKt = 0, P0 − a.s.

The process M is a pathwise continuous P0-martingale with EP0
[
supt∈[0,T ] |Mt |

]
<

∞, by Proposition 8.9. By Lemma 8.17, we may consider M as the version for which
Mτ ,ω is a P0-martingale, for P0-a.e. ω ∈ �.

Let T ′ := T − τ (ω), and define M̃τ ,ω
t (ω′) := Mτ ,ω

t (ω′) − Mτ (ω) for t ∈
[0, T ′]. Then, M̃τ ,ω is P0-martingale for P0-a.e. ω ∈ �. We now observe that
(Y τ ,ω, M̃τ ,ω, Kτ ,ω) satisfies the following properties for P0-a.e. ω ∈ �:

(i) Y τ ,ω = Yτ (ω)(ω)+M̃τ ,ω−max|λ|≤L〈M̃τ ,ω,
∫ ·
0 λsdBs〉−Kτ ,ω , on [0, T ′],P0-a.s.

(ii) Y τ ,ω ≥ Xτ ,ω on [0, T ′], P0-a.s.
(iii)

∫ T ′
0 1{t:Xτ ,ω

t <Y τ ,ω
t }dKτ ,ω

t = 0, P0-a.s.

Then, it follows from Lemma 8.16 that Yτ = Zτ , P0-a.s. �
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9 Appendix: On E-submartingales

Definition 9.1 An F-progressively measurable process m is an E-submartingale
(resp. E-supermartingale), if, for any (t,ω) ∈ �, we have

ut(ω) ≤ E[ut,ω
Z ] (resp. ≥ E[ut,ω

Z ]) for all τ ∈ T .

The main result of this section is the following.

Proposition 9.2 Let u ∈ C0
2,P (�,R) be a E-submartingale. Then, there exists P∗ ∈

P such that u is a P
∗-submartingale.

Proof 1. We shall prove in Step 2 below that

E[
ut,ω

s−t
] = ess sup

P∈P
E
P[us|Ft] for P0 − a.e. ω ∈ �, for all t < s ≥ T − t. (9.1)

Let tn
k := kT2−n, k ≥ 0, and In := {T ∧ tn

k : k ≥ 0}. Since P is weakly compact
and u ∈ C0

2,P (�,R), we deduce from (9.1) that, for all pair (n, k) with tn
k ≤ T ,

there exists P
n,k ∈ P such that utn

k
≤ E

Pn,k [utn
k+1

|Ftn
k
], P0-a.s. Defining P

n :=
P

n,0 ⊗tn
1
P

n,1⊗tn
2
, · · · , this implies that

utn
i ∧T ≤ E

Pn [utn
j ∧T |Ftn

i ∧T ] P0 − a.s. for all 0 ≤ i ≤ j ≤ n.

Since P is weakly compact, Pn converges weakly to some P∗ ∈ P , after possibly
passing to a subsequence. Observe that, for m ≥ n, we have E

Pn[
utn

j ∧T |Ftn
i ∧T

] =
E
Pm[

utn
j ∧T |Ftn

i ∧T
] −→ E

P∗[
utn

j ∧T |Ftn
i ∧T

]
, as m → ∞, by the fact that u ∈

C0
2,P (�,R). Hence, ut ≤ E

P∗ [us|Ft], P0-a.s. for all t ≤ s ≤ T − t with s, t ∈ In.
By the density of In in [0, T ], we further conclude that u is a P∗-submartingale.
2. It remains to prove (9.1). For t ≤ s, define a process:

vs
t := ess sup

P∈P
E
P[us|Ft] for t ∈ [0, T ], 0 ≤ s ≤ T − t.

Similar to Lemma 8.5, we may check that the family {EP[us|Ft];P ∈ P} satisfies
the lattice property. Then, for t1 ≤ t2 ≤ s, we have for all P ∈ P:

E
P[vs

t2 |Ft1] = ess sup
P′∈P

E
P⊗t2P

′ [us|Ft1] ≤ ess sup
P′∈P

E
P⊗t1P

′ [us|Ft1] = vs
t1 .

proving that vs is P-supermartingale on [0, s] for all P ∈ P . Similar to Lemma 8.8,
we may consider vs in its F∗-adapted RCLL version.

Following the line of argument in the proof of Proposition 8.9, there exists Hs ∈
Hloc and increasing process Ks such that
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vs = vs
0 + (Hs · B) − L

.∫

0

|Hs
r |1dr − Ks, P

0 − a.s.

We next prove that Ks ≡ 0, P0-a.s. Indeed, assuming to the contrary that P0[Ks
s >

0] > 0, it follows that E[Ks
s ] > 0. Following the line of argument in Lemma 8.6, it

can be checked that E[vs
t ] = E[us] for all t ≤ s. Then, since vs

s = us, it follows from
the previous decomposition that

E
P[vs

0] ≥ E
P[us + Ks

s ] ≥ E
P[us] + E[Ks

s ] for all P ∈ P,

and therefore E[vs
t ] > E[us], which is the required contradiction. This reduces the

decomposition of vs to:

vs = vs
0 + (Hs · B) − L

.∫

0

|Hs
r |1dr, P

0 − a.s.

so that, with λs the process with ith entry L sgn(Hi), we obtain vs
t = E

Pλs [us|Ft].
We finally prove that (9.1) holds true by following the line of argument in the proof
of Proposition 8.15. �
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Abstract We consider the family of stochastic partial differential equations indexed
by a parameter ε ∈ (0, 1],

Luε(t, x) = εσ(uε(t, x))Ḟ(t, x) + b(uε(t, x)),

(t, x) ∈ (0, T ] ×R
d with suitable initial conditions. In this equation, L is a second-

order partial differential operator with constant coefficients, σ and b are smooth
functions and Ḟ is a Gaussian noise, white in time and with a stationary correlation
in space. Let pε

t,x denote the density of the law of uε(t, x) at a fixed point (t, x) ∈
(0, T ] × R

d . We study the existence of limε↓0 ε2 log pε
t,x (y) for a fixed y ∈ R. The

results apply to classes of stochastic wave equations with d ∈ {1, 2, 3} and stochastic
heat equations with d ≥ 1.
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1 Introduction

In this article, we consider the family of stochastic partial differential equations
(SPDEs) indexed by a parameter ε ∈ (0, 1] defined by

Luε(t, x) = εσ(uε(t, x))Ḟ(t, x) + b(uε(t, x)), (1.1)

(t, x) ∈ (0, T ]×R
d , d ≥ 1, with suitable initial conditions. Here L is a second-order

partial differential operator, typical examples are the wave and the heat operators;
σ, b : R → R

d are smooth functions; Ḟ is a Gaussian noise, white in time and with
a stationary correlation in space.

Equation (1.1) describes a nonhomogeneous initial value problem subject to non-
linear small random fluctuations. The results of this paper are a contribution to the
study of the behavior of (1.1) as ε ↓ 0 and therefore, when the random perturbations
disappear. More precisely, denote by pε

t,x the density of the random variable uε(t, x)

at a given point (t, x) ∈ (0, T ] × R
d . We will determine the set of points y ∈ R

for which one can derive upper and lower bounds for limε↓0 ε2 log pε
t,x (y). We will

identify these bounds and refer to them as Varadhan estimates or logarithmic esti-
mates. We will consider examples of stochastic wave equations with d = {1, 2, 3}
and stochastic heat equations with d ≥ 1.

For solutions to stochastic differential equations driven by a standard Brownian
motion, {Xt , t ≥ 0}, this question is equivalent to the analysis of the density of Xt ,
when t ↓ 0. Under ellipticity conditions and with analytical methods, it has been
firstly studied in [34, 35]. Using Malliavin calculus and large deviation estimates,
Varadhan’s results have been extended in [15, 16] under hypoelliptic assumptions.

The method of [15, 16] has been applied in [17] to establish Varadhan estimates
for an example of hyperbolic SPDE: an Itô equationwith two-dimensional parameter.
In [24, Propositions 4.4.1 and 4.4.2], a general formulation of that method is given,
providing a systematic approach to the study of Varadhan estimates for families of
Wiener functionals subject to small perturbations of their sample paths. For example,
it has been used in [14] to extend the results of [17], and in [21] for a stochastic heat
equation with boundary conditions.

Similarly as in [18], the aim of this paper is to study Varadhan estimates for
the class of SPDEs defined by (1.1). However, in comparison with this reference,
there are two additional substantial contributions in our results. Firstly, the scope of
application of the theory presented in this article is larger. Indeed, we are able to
deal with cases where the fundamental solution corresponding to the operator L is a
measure, like for example, the stochastic wave equation in spatial dimension d = 3.
Secondly, in [18, Theorem 1.2] it is not clear for what values of y ∈ R the claim
limε↓0 ε2 log pε

t,x (y) = −I (y), where I is the rate function, holds. This statement
requires pε

t,x (y) > 0 for ε small enough, but this problem is not discussed in [18].
Also in [18, Proposition 5.1], it is assumed that the interior of the topological support
of the law of uε(t, x) is described in a way that we do not see justified. In this paper,
these issues are rigorously addressed.
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We now describe the contents of this article. In Sect. 2, we formulate the basic
assumptions used throughout the paper, we give a rigorous formulation of (1.1)
and quote two fundamental results concerning the existence of a unique random
field solution to (1.1), and on the existence and smoothness of the density pε

t,x (see
Theorems 2.2, 2.3, respectively). In Theorem 2.4 we state themain result of the paper
on the logarithmic estimates.

Section3 is devoted to the proof of Theorem 2.4. To obtain the upper bound, we
check that uε(t, x) isMalliavin differentiable of any order, and that the corresponding
Malliavin-Watanabe norm is uniformly bounded in (t, x) and ε. We also prove a
quantitative result on the dependence on ε of the L p norm of the inverse of the
Malliavin matrix corresponding to uε(t, x). Notice that in Theorem 2.4, the upper
bound still makes sense if limε↓0 ε2 log pε

t,x (y) = −∞.
To establish the lower bound, we prove that the mapping ε �→ u(t, x;ω + ε−1h),

where h is an admissible shift for the space of paths �, is differentiable in the D∞
topology of Malliavin calculus, and that the mapping given in (2.6) is onto. Then, in
order to give full meaning to the lower bound (2.4), it is relevant to know for which
set of y ∈ R, pε

t,x (y) is strictly positive for ε small enough, and whether the function
I is finite. In the analysis of these questions, the characterization of the topological
support of the law of the random variables uε(t, x), ε ∈ (0, 1] plays a crucial role.
Each one of these random variables are a nonlinear functional � (not depending
on ε) of the driving Gaussian noise εF . Hence, one should expect the support to
be independent of ε. We postpone the proof of a characterization of the support of
uε(t, x), which in particular shows its independence of ε, to Sect. 4.

The regularity (in the Malliavin sense) of uε(t, x) established in Lemma 3.3,
combined with [24, Propositions 4.1.1 and 4.1.2] imply that the support of uε(t, x)

is a nonempty closed interval and that pε
t,x (y) > 0 for all y in the interior of that set.

We also prove in Proposition 3.9 that, in these points, I (y) < ∞, and also that if the
function b is bounded then {y ∈ R : I (y) < ∞} = R (see Proposition 3.10).

Section4 is devoted to the characterization of the topological support of the law of
uε(t, x) (see Theorem 4.1). The relevant reference is [10], where a characterization
of the support of the law of a stochastic wave equation in spatial dimension d = 3
with vanishing initial conditions in Hölder norm is established. In comparison with
that work, here the SPDE is more general but, instead of considering the sample
paths of the solution to (2.1), we take its value at a fixed point (t, x). This makes the
analysis significantly easier.

In Sect. 5, we give two examples where the main result is applied: a class of
stochastic wave equations with d ∈ {1, 2, 3} and a class of stochastic heat equation
with d ≥ 1. For the former, owing to results on large deviations, we have I = J and
therefore the equality between the upper and lower bounds.

Throughout the paper, we have to deal with different types of evolution equations,
including some classes of Hilbert space-valued equations. To provide the suitable
background, we prove in the Appendix a result on the existence and uniqueness of
random field solution for a very general class of SPDEs.
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2 Preliminaries and Statement of the Main Result

Let C∞
0 (R+ × R

d) denote the space of infinitely differentiable functions defined on
R+×R

d with compact support. On a given probability space (�,F ,P), we consider
a Gaussian stochastic process F = (F(φ); φ ∈ C∞

0 (R+ ×R
d)) with mean zero and

covariance functional

J (φ,ψ) := E[F(φ)F(ψ)] =
∞∫

0

∫

Rd

(
φ(t) � ψ̃(t)

)
(x)�(dx)dt,

where ψ̃(t, x) := ψ(t,−x), the symbol “�” denotes the convolution operator on Rd ,
and � is a nonnegative, nonnegative definite, tempered measure on Rd . We know by
[32, Chap. 7, Théorème XVIII] that there exists a nonnegative tempered measure μ
on Rd such that Fμ = �, where F denotes the Fourier transform operator given by

Fφ(ξ) =
∫

Rd

φ(x)e−2πi〈ξ,x〉dx .

Following [4], the process F can be extended to aworthymartingalemeasure M =
(Mt (A); t ∈ R+, A ∈ Bb(R

d)) where Bb(R
d) denotes the bounded Borel subsets

ofRd . This is achieved by approximating indicator functions 1A, A ∈ Bb(R+ ×R
d)

by functions in C∞
0 (R+ × R

d), and thus extending the functional φ �→ F(φ) to an
L2(�)-valued measure A �→ F(1A). Then we define

Mt (A) := F(1[0,t]×A),

for all t ∈ R+ and A ∈ Bb(R
d).

Throughout this article we use the filtration

Ft := σ
(

Ms(A); s ∈ [0, t], A ∈ Bb(R
d)
)

∨ N ,

t ∈ R+, where N is the σ-field generated by the P-null sets.
The SPDE (1.1) is expressed in the mild formulation, as follows,

uε(t, x) = w(t, x) + ε

t∫

0

∫

Rd

�(t − s, x − z)σ(uε(s, z))M(ds, dz)

+
t∫

0

∫

Rd

�(t − s, x − z)b(uε(s, z))dzds, (2.1)
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(t, x) ∈ (0, T ] × R
d , where � denotes the fundamental solution to the associated

PDE, Lu = 0, and w is the contribution of the initial conditions. For ε = 1, we will
write u(t, x) instead of u1(t, x).

We will consider the following assumptions:

(A1) The mapping t �→ �(t) is a deterministic function with values in the space of
non-negative tempered distributions with rapid decrease such that

T∫

0

∫

Rd

(
�(s) � �̃(s)

)
(x)�(dx)ds =

T∫

0

∫

Rd

|F�(s)(ξ)|2μ(dξ)ds < ∞.

Moreover, for all t ∈ (0, T ], �(t) is a nonnegative measure, and there exists
δ > 0 such that

t∫

0

�(s)(Rd)ds ≤ Ctδ. (2.2)

(A2) The mapping (t, x) �→ w(t, x) is deterministic, continuous and

sup
(t,x)∈[0,T ]×Rd

|w(t, x)| < ∞.

Remark 2.1 Later on, we will refer to [5] and also to [7] for results on the stochastic
integral in (2.1), and on the existence and uniqueness of solution. These are proved
assuming that supt∈[0,T ] �(t)(Rd) < ∞. It can be easily checked that they also hold
assuming (2.2).

Throughout the paper the followingnotationwill be used.Let�be as in hypothesis
(A1). For any s ∈ [0, T ], set

J1(s) :=
∫

Rd

(
�(s) � �̃(s)

)
(z)�(dz) =

∫

Rd

|F�(s)(ξ)|2μ(dξ),

J2(s) := �(s)(Rd),

g1(t) :=
t∫

0

J1(s)ds.

Notice that (A1) implies g1(T ) < ∞.
In (2.1), the last integral denotes the convolution

∫ t
0 (�(t − s) � b(u(s, ·))(x)ds

defined pathwise. As for the stochastic integral (also termed stochastic convolution),
we refer to the construction given in [5] (see [7, Section2.3] for a summary).

Let S(Rd) be the set of Schwartz functions and denote by H the Hilbert space
obtained by completion of the set S(Rd) with the inner product
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〈φ,ψ〉 =
∫

Rd

(φ � ψ)(x)�(dx) =
∫

Rd

Fφ(ξ)Fψ(ξ)μ(dξ).

SetHT := L2([0, T ];H). The Gaussian process F can be extended to an isonormal
process F = (F(φ); φ ∈ HT ) in the sense of [25, Definition 1.1.1].

It is useful to identify the isonormal process F with a H-valued cylindri-
cal Wiener process. As shown in [4], by an approximation procedure we define
Wt (φ) = F(1[0,t]φ), t ∈ [0, T ], φ ∈ H. Consider a complete orthonormal system
(CONS) of H denoted by (ek)k∈N. Then,

W = {W k(t) := Wt (ek), t ∈ [0, T ], k ∈ N}

defines a sequence of independent standard Brownian motions. Conversely, the
process (F(φ) = ∑

k∈N
∫ T
0 〈φ(t), ek〉HdW k(t),φ ∈ HT ) is an isonormal Gaussian

process.
As has been established in [7], there is an equivalence between the stochastic

integral in the sense of [5] and the stochastic integral with respect to the cylindrical
Wiener process W (see e.g. [9]). In particular, the stochastic integral in (2.1) is
equal to

∑
k∈N

t∫

0

〈�(t − s, x − ∗)σ(uε(s, ∗)), ek〉HdW k(s).

Appealing to [7, Theorem 4.3] and to Remark 2.1, for any fixed ε ∈ (0, 1], there
exists a stochastic process {uε(t, x), (t, x) ∈ [0, T ] × R

d} such that (2.1) holds for
any (t, x) ∈ [0, T ] × R

d a.s. This is termed a random-field solution to (2.1). More
precisely, we have the following result.

Theorem 2.2 If Hypotheses (A1) and (A2) are satisfied and σ and b are Lipschitz
continuous functions, then (2.1) has a unique random-field solution. Among other
properties, this solution is L2-continuous and for any p ∈ [1,∞)

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×Rd

E
[|uε(t, x)|p] < ∞.

We are interested in the family of densities of the probability law of the solution
uε(t, x), ε ∈ (0, 1] at every fixed point (t, x) ∈ (0, T ] × R

d . For this, we describe
the abstract Wiener space that will be used as framework for the application of the
Malliavin Calculus (see [25]).

Let (�̄, Ḡ, μ̄) be the canonical space of a standard real-valued Brownian motion
on [0, T ]. With the equivalence shown before, we can identify the canonical prob-
ability space of the stochastic process F with that corresponding to a sequence of
independent standard Brownian motions (�,G,P) = (�̄N, Ḡ⊗N, μ̄⊗N). This will
be the underlying probability space in this article.
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Consider the Hilbert space H consisting of sequences (hk)k∈N of functions hk :
[0, T ] → R which are absolutely continuous with respect to the Lebesgue measure
and such that ‖h‖2H = ∑k∈N

∫ T
0 |ḣk(s)|2ds < ∞, where ḣk refers to the derivative

of hk defined almost everywhere. There is an isometry I : H → HT defined by
i(h)(t) = ∑

k∈N ḣk(t)ek . In the sequel we will identify the Hilbert spaces H and
HT and by an abuse of notation, we will write i(h) = h. The triple (�, H,P) is the
abstract Wiener space that we shall use as framework for the Malliavin calculus.

Let us introduce some additional assumptions:

(A3) There exist positive constants C, γ > 0 and t0 ∈ (0, T ] such that for all
t ∈ [0, t0],

Ctγ ≤
t∫

0

J1(s)ds = g1(t).

(A4) The functions σ and b are infinitely differentiable with bounded derivatives of
any order greater or equal than one.

(A5) The function σ satisfies infx∈R |σ(x)| = σ0 > 0.

The following result in [26] establishes the existence and regularity of the densities
for the solution to (2.1) at any point (t, x) ∈ (0, T ] × R

d .

Theorem 2.3 Fix (t, x) ∈ (0, T ] × R
d and ε ∈ (0, 1]. Assume (A1), (A2), (A3),

(A4) and (A5). Then the law of uε(t, x) is absolutely continuous with respect to the
Lebesgue measure on R and its density, denoted by pε

t,x , is an infinitely differentiable
function.

The last relevant assumption is the following.

(A6) For every (t, x) ∈ (0, T ] × R
d the family (uε(t, x))ε∈(0,1] satisfies a large

deviation principle on R with rate function J .

We refer the reader to [11] for notions and results on large deviations.
We are now in a position to formulate the main result of this paper. It is about the

behaviour of the density pε
t,x (y) at every fixed (t, x) ∈ (0, T ] × R

d and y ∈ R, as
ε → 0. It will be proved by using the method introduced in [15, 16] (see [24] for a
general formulation).

Theorem 2.4 (i) Fix (t, x) ∈ (0, T ]×R
d and assume (A1), (A2), (A3), (A4), (A5)

and (A6). Then for any y ∈ R,

lim
ε↓0 ε2 log pε

t,x (y) ≤ −J (y). (2.3)

(ii) Let (t, x) ∈ (0, T ] × R
d . Assume (A1), (A2), (A3), (A4) and (A5). Fix y ∈ R

in the interior of the topological support of the law of u(t, x). Then,
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lim
ε↓0 ε2 log pε

t,x (y) ≥ −I (y), (2.4)

with

I (y) = inf

{
1

2
‖h‖2HT

; h ∈ HT ,�h
t,x = y

}
, (2.5)

and where �h
t,x ∈ R is defined by

�h
t,x = w(t, x) + 〈�(t − ·, x − ∗)σ(�h·,∗), h

〉
HT

+
t∫

0

∫

Rd

�(t − s, x − z)b(�h
s,z)dzds. (2.6)

We end this section with some important comments on these statements. The
existence and uniqueness of a solution to (2.6) follows from Theorem A.1 in the
Appendix. Theorem 2.4 makes sense for those y ∈ R such that pε

t,x (y) > 0 for all ε
sufficiently small, and the lower bound in (2.4) is nontrivial only if I (y) < +∞. In
the last part of Sect. 3.2, we show the connection between these properties and the
topological support of the law of uε(t, x).

Under some additional assumptions, in Sect. 4 we will prove a characterization of
the topological support of uε(t, x),S, that exhibits its independence on ε. Proposition
3.10 shows that if b is bounded, S = R.

We prove in Proposition 3.10 that I (y) in (2.5) is finite for any y in the interior
of S. This uses the characterization of the support.

Assume that y belongs to the interior of S. Then, [24, Proposition 4.1.2] yields
that pε

t,x (y) > 0 for all ε ∈ (0, 1].
In Sect. 5 we show that for a class of stochastic wave equations, the hypotheses of

Theorem 2.4 are satisfied, and J and I in (2.3) and (2.4) respectively, are identical.
Hence, for any y in the interior of the support of the law we have

lim
ε↓0 ε2 log pε

t,x (y) = −I (y),

with I defined in (2.5). With some restrictions, Theorem 2.4 also applies to the
stochastic heat equation.

Throughout this article we use the notation C for generic constants that may
change from one expression to another. As for the notations and notions of Malliavin
calculus, we refer to [24, 25].
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3 Proof of the Main Result

The two parts of Theorem 2.4 will be established separately, applying the methods
introduced in [15, 16] and extended to an abstract setting in [24] (see Propositions
3.1, 3.2).

By ‖ · ‖k,p, k ∈ N, p ∈ [1,∞), we will denote the norm in the space Dk,p (the
Watanabe-Sobolev spaces), and by ‖ · ‖p, the L p(�) norm. We say that a random
variable X : � → R is non-degenerate if X ∈ D

∞ = ⋂k∈N
⋂

p∈[1,∞) D
k,p and the

random variable γX := ‖DX‖2HT
satisfies γ−1

X ∈⋂p∈[1,∞) L p(�), were D denotes
the Malliavin derivative. The law of a non-degenerate random variable possesses an
infinitely differentiable density.

For the upper bound (2.3), we rely on the following result.

Proposition 3.1 ([24, Proposition 4.4.2]) Let (Fε)ε∈(0,1] be a family of
non-degenerate random variables satisfying

(i) supε∈(0,1] ‖Fε‖k,p < ∞ for all k ∈ N and p ∈ [1,∞);

(ii) for any p ∈ [1,∞) there exists Np ∈ [1,∞) such that ‖γ−1
Fε ‖p ≤ ε−Np ;

(iii) (Fε)ε∈(0,1] obeys a large deviation principle on R with rate function J .

Then
lim sup

ε↓0
ε2 log pε(y) ≤ −J (y),

where pε denotes the density of Fε.

We denote by C1(HT ;R) the set of all Fréchet differentiable real functions F
defined on HT . For such deterministic functions, we shall use the notation D̄F for
its Fréchet derivative and set γ̄F = ‖D̄F‖2HT

.
The lower bound (2.4) will be established using the following Proposition.

Proposition 3.2 ([24, Proposition 4.4.1]) Let (Fε)ε∈(0,1] be a family of
non-degenerate random variables. Let ψ ∈ C1(HT ;R) be such that for all h ∈ HT

lim
ε↓0

Fε(ω + ε−1h) − ψ(h)

ε
= N (h) (3.1)

in the D
∞-topology, where N is a random variable belonging to the first Wiener

chaos with variance γ̄ψ(h) = ‖D̄ψ(h)‖2HT
. Then

lim inf
ε↓0 ε2 log pε(y) ≥ −1

2
d2

R(y)

:= −1

2
inf
{‖h‖2HT

; h ∈ HT ,ψ(h) = y, γ̄ψ(h) > 0
}
,

where pε denotes the density of Fε.
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Let us point out that in the proof of this proposition it is implicitly assumed that
pε(y) > 0 for any 0 < ε < ε0, with ε0 small enough.

3.1 Upper Bound

The objective of this section is to apply Proposition 3.1 to the family of random
variables Fε := uε(t, x), ε ∈ (0, 1], given in (2.1), where (t, x) ∈ (0, T ] × R

d is
fixed. We will assume that (A6) holds and check that (A1)–(A5) imply the validity
of (i) and (ii) in Proposition 3.1. This will prove the statement (i) in Theorem 2.4.

Lemma 3.3 Under the conditions (A1), (A2) and (A4) the Assumption (i) in Propo-
sition 3.1 holds. More precisely, we have

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×Rd

E

[∥∥Dkuε(t, x)
∥∥p

HT
⊗k

]
< ∞.

Proof This follows along the same lines as in [26, Proposition 6.1]. The difference is
that here we are considering a family of SPDEs depending on a parameter ε ∈ (0, 1],
and obtain that the norm is uniformly bounded in ε. �

For its further use we recall that for every ε ∈ (0, 1], the Malliavin derivative
of the process {uε(t, x), (t, x) ∈ [0, T ] × R

d} is an HT -valued stochastic process
{Duε(t, x), (t, x) ∈ [0, T ] × R

d}, solution to

Duε(t, x) = ε�(t − ·, x − ∗)σ(uε(·, ∗))

+ ε

t∫

0

∫

Rd

�(t − s, x − y)σ′(uε(s, y))Duε(s, y)M(ds, dy)

+
t∫

0

∫

Rd

�(t − s, x − y)b′(uε(s, y))Duε(s, y)dyds. (3.2)

For the background on the Hilbert-valued stochastic and pathwise integrals in the
preceding equation, we refer the reader to [26] (see also [7]).

Lemma 3.4 Fix (t, x) ∈ (0, T ] × R
d and assume (A1), (A2), (A3), σ, b ∈ C1 with

bounded derivatives and (A5). Then for every p ∈ [1,∞) there exists C p > 0 such
that ∥∥γ−1

uε(t,x)

∥∥
p ≤ C pε

−2,

for any ε ∈ (0, 1].
Proof Fix ε ∈ (0, 1] and q ≥ 2. We will prove that there exists ζ0 := ζ0(q) > 0
such that for all ζ ∈ (0, ζ0)
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Pε(ζ) := P

{
ε−2‖Duε(t, x)‖2HT

≤ ζ

}
≤ C

(
ζq + ζ

2qδ
γ

)
, (3.3)

where C is a constant not depending on ζ. Then, by the formula

E(Y ) =
∞∫

0

P{Y ≥ ζ}dζ,

valid for nonnegative random variables Y , the assertion will follow.
For any 0 ≤ s < t , let Hs,t = L2([s, t],H). Let t0 be as defined in (A3). We

consider ρ > 0 satisfying ρ < t ∧ t0. From (3.2) and the triangular inequality, we
clearly have

‖Duε(t, x)‖2HT
≥ ‖Duε(t, x)‖2Ht−ρ,t

≥ 1

2
‖ε�(t − ·, x − ∗)σ(uε(·, ∗))‖2Ht−ρ,t

− ‖Xε(t, x)‖2Ht−ρ,t
,

where
Xε(t, x) := Duε(t, x) − ε�(t − ·, x − ∗)σ(uε(·, ∗)). (3.4)

The assumption (A5) yields

‖ε�(t − ·, x − ∗)σ(uε(·, ∗))‖2Ht−ρ,t
≥ ε2σ2

0g1(ρ).

Hence,

P

{
ε−2‖Duε(t, x)‖2HT

≤ ζ

}
≤ P

{
ε−2‖Xε(t, x)‖2Ht−ρ,t

≥ σ2
0

2
g1(ρ) − ζ

}

≤
(

σ2
0

2
g1(ρ) − ζ

)−q

ε−2q
E
[‖Xε(t, x)‖2q

Ht−ρ,t

]
,

(3.5)

where in the last inequality we have applied Chebyshev’s inequality.
Our next objective is to find an upper bound for E

[‖Xε(t, x)‖2q
Ht−ρ,t

]
. From (3.2)

we have
E
[‖Xε(t, x)‖2q

Ht−ρ,t

] ≤ C
(
T1(t, x; ρ, q) + T2(t, x; ρ, q)

)
,

with

T ε
1 (t, x; ρ, q) = E

⎡
⎢⎢⎣

∥∥∥∥∥∥∥
ε

t∫

0

∫

Rd

�(t − s, x − y)σ′(uε(s, y))Duε(s, y)M(ds, dy)

∥∥∥∥∥∥∥

2q

Ht−ρ,t

⎤
⎥⎥⎦ ,
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T ε
2 (t, x; ρ, q) = E

⎡
⎢⎢⎣

∥∥∥∥∥∥∥

t∫

0

∫

Rd

�(t − s, x − y)b′(uε(s, y))Duε(s, y)dyds

∥∥∥∥∥∥∥

2q

Ht−ρ,t

⎤
⎥⎥⎦ .

The Malliavin derivative Dr,∗uε(s, y) vanishes if r ∈ (s, T ]. Thus, if r ∈ [t − ρ, t],
the domain of integration of the s variable in the terms T ε

1 (t, x; ρ, q), T ε
2 (t, x; ρ, q)

can be replaced by [t − ρ, t]. Moreover, following the proof of [31, Lemma 8.2], we
have

sup
ε∈(0,1]

sup
s∈[0,ρ]

sup
y∈Rd

E
[‖Dt−·,∗uε(t − s, y)‖2q

Hρ

] ≤ C(g1(ρ))q . (3.6)

By applying Burholder’s inequality for Hilbert valued martingales (see for instance
[20]), we obtain

T ε
1 (t, x; ρ, q) ≤ Cε2q(g1(ρ))q sup

ε∈(0,1]
sup

s∈[t−ρ,t]
sup

y∈Rd
E
[‖Duε(s, y)‖2q

Ht−ρ,t

]

≤ Cε2q [g1(ρ)]2q , (3.7)

where in the last inequality we have used (3.6).
We proceed now to the study of the term T ε

2 (t, x; ρ, q). For this, we use (3.4) and
Minkovski’s inequality for the norm ‖·‖H. Sowe are leftwith two terms thatwe study
separately. For the first one, we use that Xr,∗(s, y) vanishes for r ∈ (s, T ], Hölder’s
inequalitywith respect to thefinitemeasure�(t−s, x−y)dsdy := �(t−ds, x−dy),
the boundedness of b′ and (2.2). We obtain

E

⎡
⎢⎢⎣

∥∥∥∥∥∥∥

t∫

0

∫

Rd

�(t − s, x − y)b′(uε(s, y))Xε(s, y)dyds

∥∥∥∥∥∥∥

2q

Ht−ρ,t

⎤
⎥⎥⎦

≤ E

⎡
⎢⎣

⎛
⎜⎝

t∫

t−ρ

∫

Rd

�(t − s, x − y)|b′(uε(s, y))|‖Xε(s, y)‖Ht−ρ,t dyds

⎞
⎟⎠

2q⎤
⎥⎦

≤ Cρδ(2q−1)

t∫

t−ρ

sup
y∈Rd

E
[‖Xε(s, y)‖2q

Ht−ρ,t

]
J2(t − s)ds

≤ Cρδ(2q−1)

t∫

t−ρ

sup
y∈Rd

E
[‖Xε(s, y)‖2q

Hs−ρ,s

]
J2(t − s)ds, (3.8)

where the last inequality follows from the property ‖ · ‖Ht−ρ,t ≤ ‖ · ‖Hs−ρ,t , for any
0 ≤ s ≤ t ≤ T .
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Next we consider the second contribution from T ε
2 (t, x, ρ, q). The Lipschitz con-

tinuity of σ together with Theorem 2.2 imply

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×Rd

E
[|σ(uε(t, x))|q] ≤ C

(
1+ sup

ε∈(0,1]
sup

(t,x)∈[0,T ]×Rd
E
[|uε(t, x)|q]

)
,

for any q ∈ [1,∞). This yields

sup
y∈Rd

E

[
‖�(s − ·, y − ∗)σ(uε(·, ∗))‖2q

Hs−ρ,s

]
≤ C(g1(ρ))q .

Using this estimate and proceeding in a similar way as in the study of the previous
term, we obtain

E

⎡
⎢⎢⎣

∥∥∥∥∥∥∥

t∫

0

∫

Rd

�(t − s, x − y)b′(uε(s, y))ε�(s − ·, y − ∗)σ(uε(t, x))dyds

∥∥∥∥∥∥∥

2q

Ht−ρ,t

⎤
⎥⎥⎦

≤ Cε2qρ2qδ(g1(ρ))q . (3.9)

With (3.7), (3.8) and (3.9), we have proved

sup
x∈Rd

E
[‖Xε(t, x)‖2q

Ht−ρ,t

] ≤ C

(
ε2q
(
(g1(ρ))2q + ρ2qδ(g1(ρ))q

)

+ ρδ(2q−1)

t∫

t−ρ

sup
y∈Rd

E
[‖Xε(s, y)‖2q

Hs−ρ,s

]
J2(t − s)ds

)
.

Applying Gronwall’s lemma in [5, Lemma 15] to the function

f (t) = sup
x∈Rd

E
[‖Xε(t, x)‖2q

Ht−ρ,t

]
,

we have

sup
x∈Rd

E
[‖Xε(t, x)‖2q

Ht−ρ,t

] ≤ Cε2q
(
(g1(ρ))2q + ρ2qδ(g1(ρ))q

)
.

Plugging this estimate in (3.5) we obtain

P

{
ε−2‖Duε(t, x)‖2HT

≤ ζ

}
≤ C

(
σ2
0

2
g1(ρ) − ζ

)−q(
(g1(ρ))2q + ρ2qδ(g1(ρ))q).
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Let 0 < ρ = ρ(ζ) ≤ t ∧ t0 be such that g1(ρ) = 4
σ2
0
ζ, which by (A3) implies

ρ ≤ Cζ1/γ . With this choice of ρ, the preceding inequality yields (3.3).

The proof of Theorem 2.4(i) is now complete. �

3.2 Lower Bound

The purpose of this section is to prove that the family of random variables
(Fε)ε∈(0,1] = (uε(t, x))ε∈(0,1], with fixed (t, x) ∈ (0, T ]×R

d , satisfies the assump-
tions of Proposition 3.2, with ψ(h) = �h

t,x (see (2.6)), and we will identify the
random variable N . We will also prove that for any h ∈ HT , γ̄�h

t,x
> 0.

Lemma 3.5 Assume (A1), (A2) and that σ, b ∈ C1 with Lipschitz continuous and
bounded derivatives. Then, for all (t, x) ∈ [0, T ]×R

d , the mappingHT � h �→ �h
t,x

defined in (2.6) is Fréchet differentiable.

Proof Fix (t, x) ∈ [0, T ]×R
d , h ∈ HT . We use Cauchy-Schwarz’ inequality, (A2),

(A1) and the Lipschitz continuity of σ and b to obtain

|�h
t,x |2 ≤ C

{
1 + ‖h‖2HT

‖�(t − ·, x − ∗)σ(�h
t,x )‖2HT

+
∣∣∣∣

t∫

0

∫

Rd

�(t − s, x − z)b(�h
s,z)dzds

∣∣∣∣
2 }

≤ C(‖h‖2HT
+ 1)

t∫

0

(
1 + sup

(r,y)∈[0,s]×Rd
|�h

r,y |2
)(

J1(t − s) + J2(t − s)
)
ds.

Gronwall’s Lemma yields

sup
(t,x)∈[0,T ]×Rd

|�h
t,x |2 ≤ C(‖h‖2HT

+ 1)

T∫

0

(
J1(s) + J2(s)

)
ds < ∞, (3.10)

where the constant C is independent of h ∈ HT . Now fix h0 ∈ HT and note that

�
h+h0
t,x − �h

t,x = 〈�(t − ·, x − ∗)σ(�h+h0·,∗ ), h0
〉
HT

+ 〈�(t − ·, x − ∗)
(
σ(�h+h0·,∗ ) − σ(�h·,∗)

)
, h
〉
HT

+
t∫

0

∫

Rd

�(t − s, x − z)
(
b(�h+h0

s,z ) − b(�h
s,z)
)
dzds.
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With the same arguments as for the proof of (3.10), we get that for all h0 ∈ HT

|�h+h0
t,x − �h

t,x |2 ≤ C‖h0‖2HT
‖�(t − ·, x − ∗)σ(�h+h0·,∗ )‖2HT

+ C
(‖h‖2HT

+ 1
) t∫

0

sup
(r,y)∈[0,s]×Rd

|�h+h0
r,y − �h

r,y |2
(
J1(t − s) + J2(t − s)

)
ds.

Due to (3.10) and (A1), the first term is bounded (up to a constant depending on h
and h0) by ‖h0‖2HT

. Then applying Gronwall’s Lemma we obtain

sup
(t,x)∈[0,T ]×Rd

|�h+h0
t,x − �h

t,x | ≤ Ch,h0‖h0‖HT . (3.11)

Note that the constant Ch,h0 does not blow up as ‖h0‖ → 0. With (3.10) and (3.11),
we can prove the existence of the Fréchet derivative of the map h �→ �h

t,x . First, we
provide a candidate for it at the point g ∈ HT , as follows:

D̄�h
t,x (g) = 〈�h(t, x), g

〉
HT

= 〈�(t − ◦, x − •)σ(�h◦,•), g
〉
HT

+ 〈�(t − ·, x − ∗)σ′(�h·,∗)
〈
�h(·, ∗), g

〉
HT

, h
〉
HT

+
t∫

0

∫

Rd

�(t − s, x − z)b′(�h
s,z)
〈
�h(s, z), g

〉
HT

dzds, (3.12)

where �h(t, x) is defined by the integral equation onHT :

�h◦,•(t, x) = �(t − ◦, x − •)σ(�h◦,•) + 〈�(t − ·, x − ∗)σ′(�h·,∗)�h◦,•(·, ∗), h
〉
HT

+
t∫

0

∫

Rd

�(t − s, x − z)b′(�h
s,z)�

h◦,•(s, z)dzds. (3.13)

According to Theorem A.1, this equation has a unique solution. Note that in the
previous two formulas (◦, •) is the argument in [0, T ] × R

d which interacts with
g ∈ HT (the element at which �h(t, x) is evaluated) and (·, ∗) is the argument in
[0, T ]×R

d that interacts with h ∈ HT which is the point where the Fréchet derivative
is taken.

From (3.12) and (3.13), we clearly have
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�
h+h0
t,x − �h

t,x − D̄�h
t,x (h0)

‖h0‖HT

= 1

‖h0‖HT

〈
�(t − ◦, x − •)

(
σ(�h+h0◦,• ) − σ(�h◦,•)

)
, h0
〉
HT

+
〈
�(t − ·, x − ∗)

(
σ(�

h+h0·,∗ ) − σ(�h·,∗) − σ′(�h·,∗)D̄�h·,∗(h0)

‖h0‖HT

)
, h

〉

HT

+
t∫

0

∫

Rd

�(t − s, x − z)
b(�

h+h0
s,z ) − b(�h

s,z) − b′(�h
s,z)D̄�h

t,x (h0)

‖h0‖HT

dzds.

(3.14)

Our aim is to have an upper bound for the absolute value of each term on the
right-hand side of (3.14). By applying Cauchy-Schwarz’ inequality, the fact that σ
is Lipschitz continuous, (A1) and (3.11), we have

1

‖h0‖2HT

∣∣〈�(t − ◦, x − •)(σ(�h+h0◦,• ) − σ(�h◦,•)
)
, h0
〉2
HT

∣∣

≤ ∥∥�(t − ·, x − ∗)
(
σ(�h+h0·,∗ ) − σ(�h·,∗)

)∥∥2HT

≤ sup
(r,y)∈[0,T ]×Rd

∣∣σ(�h+h0
r,y ) − σ(�h

r,y)
∣∣2‖�(t − ·, x − ∗)‖2HT

≤ Ch,h0‖h0‖2HT
.

For the second term, we first use Cauchy-Schwarz’ inequality and apply the usual
procedure involving the Fourier transformation. Thenweuse themean-value theorem
to obtain

∣∣∣∣
〈
�(t − ·, x − ∗)

(
σ(�

h+h0·,∗ ) − σ(�h·,∗) − σ′(�h·,∗)D̄�h·,∗(h0)

‖h0‖HT

)
, h

〉

HT

∣∣∣∣
2

≤ ‖h‖2HT

t∫

0

sup
(r,y)∈[0,s]×Rd

∣∣∣∣
σ(�

h+h0
r,y ) − σ(�h

r,y) − σ′(�h
r,y)D̄�h

r,y(h0)

‖h0‖HT

∣∣∣∣
2

J1(t − s)ds

= ‖h‖2HT

t∫

0

sup
(r,y)∈[0,s]×Rd

∣∣∣∣
σ′(ξh,h0

r,y )(�
h+h0
r,y − �h

r,y) − σ′(�h
r,y)D̄�h

r,y(h0)

‖h0‖HT

∣∣∣∣
2

J1(t − s)ds

≤ ‖h‖2HT

t∫

0

sup
(r,y)∈[0,s]×Rd

∣∣∣∣
(
σ′(ξh,h0

r,y ) − σ′(�h
r,y)
)�h+h0

r,y − �h
r,y

‖h0‖HT

∣∣∣∣
2

J1(t − s)ds

+ ‖h‖2HT

t∫

0

sup
(r,y)∈[0,s]×Rd

∣∣∣∣σ′(�h
r,y)

�
h+h0
r,y − �h

r,y − D̄�h
r,y(h0)

‖h0‖HT

∣∣∣∣
2

J1(t − s)ds,

where ξh,h0
r,y is a real number in the convex hull of �

h+h0
r,y and �h

r,y .
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Using (3.11) and the Lipschitz continuity property of σ′, along with (A3), the first
term on the right-hand side of the last inequality can be bounded from above by

C‖h‖2HT
sup

(t,x)∈[0,T ]×Rd

∣∣ξh,h0
t,x − �h

t,x

∣∣2,

and therefore also by Ch,h0‖h0‖2HT
‖h‖2HT

.
We are assuming that σ′ is bounded. Hence, we have proved

∣∣∣∣
〈
�(t − ·, x − ∗)

(
σ(�

h+h0·,∗ ) − σ(�h·,∗) − σ′(�h·,∗)D̄�h·,∗(h0)

‖h0‖HT

)
, h

〉

HT

∣∣∣∣
2

≤ Ch,h0‖h0‖2HT
+ Ch

t∫

0

sup
(r,y)∈[0,s]×Rd

∣∣∣∣
�

h+h0
r,y − �h

r,y − D̄�h
r,y(h0)

‖h0‖HT

∣∣∣∣
2

J1(t − s)ds.

A similar estimate, with J1(t − s) replaced by J2(t − s) holds for the last term on
the right-hand side of (3.14).

Summarizing, we have proved that

∣∣∣∣
�

h+h0
t,x − �h

t,x − D̄�h
t,x (h0)

‖h0‖HT

∣∣∣∣
2

≤ Ch,h0‖h0‖2HT
+ Ch

t∫

0

sup
(r,y)∈[0,s]×Rd

∣∣∣∣
�

h+h0
r,y − �h

r,y − D̄�h
r,y(h0)

‖h0‖HT

∣∣∣∣
2

× (J1(t − s) + J2(t − s)
)
ds.

Since for any h ∈ HT , sup‖h0‖HT ≤1 Ch,h0 < ∞, by Gronwall’s Lemmawe conclude

lim‖h0‖HT →0

∣∣∣∣
�

h+h0
t,x − �h

t,x − D̄�h
t,x (h0)

‖h0‖HT

∣∣∣∣ = 0.

This ends the proof of the Lemma. �

Remark 3.6 Assume (A4). By further differentiating the term�h(t, x) in (3.13) and
repeating the calculation involving the definition of higher-order Fréchet differentia-
bility, it can be shown that �t,x is Fréchet differentiable of any order.

Now we are in position to check (3.1).

Lemma 3.7 Fix (t, x) ∈ [0, T ] × R
d and assume (A1), (A2), (A3) σ, b ∈ C1 with

Lipschitz continuous and bounded derivatives, and (A5). Then, for all h ∈ HT , (3.1)
holds with Fε = uε(t, x), ψ(h) = �h

t,x and Nt,x (h) given by the SPDE
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Nt,x (h) =
t∫

0

∫

Rd

�(t − s, x − y)σ(�h
s,y)M(ds, dy)

+ 〈�(t − ·, x − ∗)σ′(�h·,∗)N·,∗(h), h〉HT

+
t∫

0

∫

Rd

�(t − s, x − y)b′(�h
s,y)Ns,y(h)dyds. (3.15)

Proof First we note that by Theorem A.1 there exists a unique solution to (3.15).
The integrand in the stochastic integral term of this equation is deterministic, con-
sequently, the random variable Nt,x (h) is Gaussian and therefore it belongs to the
first Wiener chaos. Its variance is given by ‖DNt,x (h)‖2HT

, where D denotes the
Malliavin derivative.

The Malliavin derivative of Nt,x (h) satisfies the equation

DNt,x (h) = �(t − ·, x − ∗)σ(�h·,∗) + 〈�(t − ·, x − ∗)σ′(�h·,∗)DN·,∗(h), h〉HT

+
t∫

0

∫

Rd

�(t − s, x − y)b′(�h
s,y)DNs,y(h)dyds. (3.16)

Comparing this equation with the one for D̄�h
t,x in (3.12), (3.13) and invoking the

uniqueness of solution, we see that, for any h ∈ HT , the HT -valued stochastic
processes {DNt,x (h), (t, x) ∈ [0, T ] × R

d} and {D̄�h
t,x , (t, x) ∈ [0, T ] × R

d} are
indistinguishable. In particular, the variance of Nt,x (h) is ‖D̄�h

t,x‖2HT
.

Set uε,h(t, x) := u(t, x;ω + ε−1h). According to Lemma A.2, the process
(uε,h(t, x), (t, x) ∈ [0, T ] × R

d) satisfies (A.6). By uniqueness of solution we
clearly have uε,0(t, x) = uε(t, x) and u0,h(t, x) = limε↓0 uε,h(t, x) = �h

t,x , for
any (t, x) ∈ [0, T ] × R

d .
Next, we prove in our context the convergence (3.1) in L p(�) norm, for p ∈

[2,∞). Set
Zε,h

t,x = ε−1(uε,h(t, x) − �h
t,x ) − Nt,x (h).

By using the equations satisfied by each one of the terms on the right hand-side of
that expression, we see that

E
[|Zε,h

t,x |p] ≤ C
3∑

i=1

T ε,h,i
t,x ,

where
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T ε,h,1
t,x = E

[∣∣∣∣
t∫

0

∫

Rd

�(t − s, x − z)
(
σ(uε,h(s, z)) − σ(�h

s,z)
)
M(ds, dz)

∣∣∣∣
p]

,

T ε,h,2
t,x = E

[∣∣∣∣
〈
�(t − ·, x − ∗)

(
σ(uε,h(·, ∗)) − σ(�h·,∗)

ε
− σ′(�h·,∗)N·,∗(h)

)
, h

〉

HT

∣∣∣∣
p]

,

T ε,h,3
t,x = E

[∣∣∣∣
t∫

0

∫

Rd

�(t − s, x − z)

(
b(uε,h(s, z)) − b(�h

s,z)

ε
− b′(�h

s,z)Ns,z(h)

)
dzds

∣∣∣∣
p]

.

We will prove that each one of these terms tends to zero as ε ↓ 0.
By the usual estimates on moments of stochastic and pathwise integrals, we have

sup
(r,y)∈[0,t]×Rd

E
[|uε,h(r, y) − �h

r,y |p]

≤ Cεp
(
1 + sup

ε∈(0,1]
sup

(t,x)∈[0,T ]×Rd
E
[|uε,h(t, x)|p]

)

+ C

t∫

0

sup
(r,y)∈[0,s]×Rd

E
[|uε,h(r, y) − �h

r,y |p](J1(t − s) + J2(t − s)
)
ds.

By Gronwall’s Lemma this yields

lim
ε↓0

(
sup

(t,x)∈[0,T ]×Rd
E
[|uε,h(t, x) − �h

t,x |p]
)

= 0. (3.17)

Since
T ε,h,1

t,x ≤ C sup
(t,x)∈[0,T ]×Rd

E
[|uε,h(t, x) − �h

t,x |p],

we deduce

lim
ε↓0

(
sup

(t,x)∈[0,T ]×Rd
T ε,h,1

t,x

)
= 0. (3.18)

Next, we deal with the term T ε,h,2
t,x . Cauchy-Schwarz’s inequality and themean-value

theorem applied to σ yield

E

[∣∣∣∣
〈
�(t − ·, x − ∗)

(
σ(uε,h(·, ∗)) − σ(�h·,∗)

ε
− σ′(�h·,∗)N·,∗(h)

)
, h

〉

HT

∣∣∣∣
p]

≤ C‖h‖p
HT

×
t∫

0

sup
(r,y)∈[0,s]×Rd

E

[∣∣∣∣
σ(uε,h(r, y)) − σ(�h

r,y)

ε
− σ′(�h

r,y)Nr,y(h)

∣∣∣∣
p]

J1(t − s)ds
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≤ C

⎧⎨
⎩

t∫

0

sup
(r,y)∈[0,s]×Rd

E

[∣∣∣∣σ′(ξε,h
r,y )

(
uε,h(r, y) − �h

r,y

ε
− Nr,y(h)

)∣∣∣∣
p]

J1(t − s)ds

+ sup
(t,x)∈[0,T ]×Rd

E

[∣∣(σ′(�h
t,x ) − σ′(ξε,h

t,x )
)Nt,x (h)

∣∣p]
t∫

0

J1(t − s)ds

⎫⎬
⎭ , (3.19)

where ξε,h
r,y (ω) is a point lying in the open interval determined by �h

r,y and
uε,h(r, y;ω).

From Theorem A.1 and the Lipschitz continuity of σ′ we have

sup
(t,x)∈[0,T ]×Rd

E

[∣∣(σ′(�h
t,x ) − σ′(ξε,h

t,x )
)Nt,x (h)

∣∣p]

≤ sup
(t,x)∈[0,T ]×Rd

(
E

[∣∣σ′(�h
t,x ) − σ′(ξε,h

t,x )
∣∣2p
]) 1

2
sup

(t,x)∈[0,T ]×Rd

(
E

[∣∣Nt,x (h)
∣∣2p
]) 1

2

≤ C sup
(t,x)∈[0,T ]×Rd

(
E
[∣∣�h

t,x − uε,h
t,x

∣∣2p])1/2
.

Consequently,

T ε,h,2
t,x ≤ C sup

(t,x)∈[0,T ]×Rd

(
E
[∣∣�h

t,x − uε,h
t,x

∣∣2p])1/2

+ C

t∫

0

sup
(r,y)∈[0,s]×Rd

E

[∣∣∣∣
uε,h(r, y) − �h

r,y

ε
− Nr,y(h)

∣∣∣∣
p]

J1(t − s)ds,

(3.20)

With similar arguments, one can check that

T ε,h,3
t,x ≤ C sup

(t,x)∈[0,T ]×Rd

(
E
[∣∣�h

t,x − uε,h
t,x

∣∣2p])1/2

+ C

t∫

0

sup
(r,y)∈[0,s]×Rd

E

[∣∣∣∣
uε,h(r, y) − �h

r,y

ε
− Nr,y(h)

∣∣∣∣
p]

J2(t − s)ds,

(3.21)

Thus from (3.18), (3.20), (3.21) it follows that



Logarithmic Asymptotics of the Densities of SPDEs Driven … 475

sup
(r,y)∈[0,t]×Rd

E
[|Zε,h

r,y |p]

≤ Cε + C

t∫

0

sup
(r,y)∈[0,s]×Rd

E
[|Zε,h

r,y |p](J1(t − s) + J2(t − s)
)
ds,

where Cε converges to zero as ε ↓ 0. Applying Gronwall’s Lemma we see that Zε,h
t,x

converges to zero in L p as ε ↓ 0 for all h ∈ HT , uniformly in (t, x) ∈ [0, T ] × R
d .

The next step consists of proving the convergence to zero of Zε,h
t,x in the D

1,p

norm, for any p ∈ [2,∞). Since �h
t,x is deterministic this reduces to show that

ε−1Duε(t, x;ω + h) − DN (h) converges to zero as ε ↓ 0 in L p(�;HT ).
By applying the Malliavin derivative operator to Eq. (A.6), one can show that the

process Duε,h(t, x) satisfies the SPDE

Duε,h(t, x) = ε�(t − ·, x − ∗)σ(uε,h(·, ∗))

+ ε

t∫

0

∫

Rd

�(t − s, x − z)σ′(uε,h(s, z))Duε,h(s, z)M(ds, dz)

+ 〈�(t − ·, x − ∗)σ′(uε,h(·, ∗))Duε,h(·, ∗), h〉HT

+
t∫

0

∫

Rd

�(t − s, x − z)b′(uε,h(s, z))Duε,h(s, z)dzds. (3.22)

For its further use, we remark that

lim
ε↓0

(
sup

(t,x)∈[0,T ]×Rd
E
[‖Duε,h(t, x)‖p

HT

]) = 0. (3.23)

Indeed, this follows from the estimate

E
[‖Duε,h(t, x)‖p

HT

] ≤ Cεp
(
1 + sup

ε∈(0,1]
sup

(t,x)∈[0,T ]×Rd
E
[|uε,h(t, x)|p]

)

+ C

t∫

0

sup
ε∈(0,1]

sup
(r,y)∈[0,s]×Rd

E
[‖Duε,h(r, y)‖p

HT

]

× (J1(t − s) + J2(t − s)
)
ds,

along with Gronwall’s lemma.
By (3.16) and (3.22) we easily obtain
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E
[‖ε−1Duε,h(t, x) − DNt,x (h)‖p

HT

]

≤ CE
[∥∥�(t − ·, x − ∗)

(
σ(uε,h(·, ∗)) − σ(�h·,∗)

)∥∥p
HT

]

+ CE

[∥∥∥∥
t∫

0

∫

Rd

�(t − s, x − z)σ′(uε,h(s, z))Duε,h(s, z)M(ds, dz)

∥∥∥∥
p

HT

]

+ CE

[∥∥∥∥
〈
�(t − ·, x − ∗)

(
ε−1σ′(uε,h(·, ∗))Duε,h(·, ∗) − σ′(�h·,∗)DN·,∗(h)

)
, h
〉
HT

∥∥∥∥
p

HT

]

+ CE

[∥∥∥∥
t∫

0

∫

Rd

�(t − s, x − z)
(
ε−1b′(uε,h(s, z))Duε,h(s, z) − b′(�h

s,z)

× DNs,z(h)
)
dzds

∥∥∥∥
p

HT

]
. (3.24)

Each term on the right-hand side of (3.24) converges to zero as ε ↓ 0. Indeed, for
the first and second terms, this is a consequence of (3.17) and (3.23), respectively.
For the analysis of the last two ones, we use the argument involving the mean-value
Theorem as in (3.19). Then Gronwall’s Lemma yields the assertion.

In order to finish the proof, we must check the convergence of Zε,h
t,x in the Dk,p

norm, for any k ≥ 2, p ∈ [2,∞). SinceNt,x (h̄) is a Gaussian random variable, this
reduces to show that ε−1Dkuε,h(t, x) converges to zero in L p(�;HT

⊗k), which is
proved recursively on k ≥ 2. We leave the details to the reader. �

Thanks to Proposition 3.2, the results proved so far establish the lower bound in
(2.4) with

I (y) = inf

{
1

2
‖h‖2HT

; h ∈ HT ,�h
t,x = y, γ̄�h

t,x
> 0

}
.

In the next lemma it is shown that under the standing assumptions, the condition
γ̄ψ(h) > 0 is satisfied. Hence, I (y) is as in (2.5).

Lemma 3.8 Fix (t, x) ∈ (0, T ] × R
d and assume (A1), (A2), (A3), σ, b ∈ C1 with

bounded derivatives and (A5). Then γ̄�h
t,x

> 0 for all h ∈ HT .

Proof The proof follows the same strategy as in Lemma 3.4, the difference being
that here we use deterministic arguments.

Fix h ∈ HT and let 0 < ρ < t ∧ t0, with t0 as in (A3). Remember that γ̄�h
t,x

=
‖D̄�h

t,x‖2HT
, where D̄ stands for the Fréchet derivative. Using (3.12) and (3.13) we

clearly obtain

γ̄�h
t,x

= ‖�h◦,•(t, x)‖2HT
≥ ‖�h

r,•(t, x)‖2Ht−ρ,t
≥ 1

2
A1

t,x (ρ) − A2
t,x (ρ),
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with

A1
t,x (ρ) = ‖�(t − ◦, x − •)σ(�h◦,•)‖2Ht−ρ,t

,

A2
t,x (ρ) = ‖χ◦,•(t, x)‖2Ht−ρ,t

and
χ◦,•(t, x) = �h◦,•(t, x) − �(t − ◦, x − •)σ(�h◦,•).

Using (A3), we have
A1

t,x (ρ) ≥ σ2
0g1(ρ), (3.25)

and this bound is uniform in (t, x) ∈ [0, T ] × R
d and in h ∈ HT .

Our next aim is to prove that there exists ζ > 0 and 0 < ρ < t ∧ t0 such that
σ2
0
2 g1(ρ) − A2

t,x (ρ) ≥ ζ, or equivalently,

(
σ2
0

2
g1(ρ) − ζ

)−1

A2
t,x (ρ) ≤ 1. (3.26)

For this, we will find a suitable upper bound for A2
t,x (ρ). By using the definition of

χ◦,•(t, x) and (3.13), we have

A2
t,x (ρ) ≤ C

(
N 1

t,x (ρ) + N 2
t,x (ρ)

)
,

with

N 1
t,x (ρ) =

∥∥∥〈�(t − ·, x − ∗)σ′(�h·,∗)�h◦,•(·, ∗), h
〉
HT

∥∥∥
2

Ht−ρ,t
,

N 2
t,x (ρ) =

∥∥∥∥∥∥∥

t∫

0

∫

Rd

�(t − s, x − z)b′(�h
s,z)�

h◦,•(s, z)dzds

∥∥∥∥∥∥∥

2

Ht−ρ,t

.

Remember that, similarly as in (3.13), (◦, •) is the argument in [t −ρ, t]×R
d relevant

for the Ht−ρ,t norm, while (·, ∗) interacts with h in the HT norm.
From the definition of �(s, y) given in (3.13) and Proposition A.3, we deduce

the estimate
sup

y∈Rd
‖�h◦,•(s, y)‖2Hs−ρ,s

≤ Cg1(ρ).

By applying first Schwarz’s inequality to the inner product in HT , the preceding
estimate yields

N 1
t,x (ρ) ≤ C(g1(ρ))2. (3.27)
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(See (3.7) for an analogous result).
By similar arguments, we have

N 2
t,x (ρ) ≤ Cρ2δg1(ρ). (3.28)

(Notice the analogy with (3.8)).
With (3.27), (3.28), we see that the left-hand side of (3.26) is bounded by

C

(
σ2
0

2
g1(ρ) − ζ

)−1(
g1(ρ)2 + ρ2δg1(ρ)

)
.

Fix ρ = ρ(ζ) > 0 such that g1(ρ) = 4
σ2
0
ζ which by (A3) implies that ρ ≤ Cζ1/γ .

Then the previous expression is bounded by C(ζ + ζ
2δ
γ ). Hence, (3.26) holds for a

suitable choice of ζ > 0. This ends the proof. �

The results established so far show that Theorem 2.4(ii) holds for the set y ∈ R

such that pε
t,x (y) > 0 for all ε small enough. The next objective is to analyze when

this condition is satisfied and also whether the function I defined in (2.4) is finite.
Both questions are related to the characterisation of the topological support of the
law of the random variable uε(t, x), with ε ∈ (0, 1] and (t, x) ∈ (0, T ] × R

d fixed.
Under suitable conditions, we prove in Theorem 4.1 that the support of uε(t, x)

does not depend on the parameter ε and is given by

S := supp(P ◦ [uε(t, x)]−1) = {�h
t,x ; h ∈ HT }.

In particular, S is the topological support of the law of the random variable u1(t, x),
that we denote by u(t, x).

Since for any p ∈ [2,∞), uε(t, x) ∈ D
1,p (see Lemma 3.3), we can apply Fang’s

result quoted in [24, Proposition 4.1.1] to deduce thatS is a closed interval.Moreover,
applying [24, Proposition 4.1.2], we obtain that for all points in the interior of S,
denoted by S̊, we have pε

t,x (y) > 0. Therefore, log pε
t,x (y) is well-defined for all

y ∈ S̊. Notice that S̊ �= ∅.
The next statements provide results on the finiteness of I , defined in (2.5).

Proposition 3.9 The hypotheses are the same as in Theorem 4.1. In addition, we
suppose that σ, b ∈ C1 are Lipschitz continuous and have bounded derivatives. Then,
for all z ∈ S̊, I (z) < ∞.

Proof Let z ∈ S̊ and ρz := dist(z, ∂S). Define z∗
1 := z − ρz/2 and z∗

2 := z + ρz/2.
Since the set S1 := {�h

t,x ; h ∈ HT } is dense in S, there exists z1 ∈ S1 ∩ Bρz/4(z∗
1)

and z2 ∈ S1 ∩ Bρz/4(z∗
2). By definition of I in (2.5), I (z1) and I (z2) are finite. The

function h �→ �h
t,x is continuous (see Lemma 3.5). Hence, by the intermediate value

theorem [23, Theorem 24.3], we conclude that for all z̄ ∈ (z1, z2) there exists an
hz̄ ∈ HT such that �hz̄

t,x = z̄ and therefore I (z) < ∞. �
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If the function b is bounded, one can show that {z ∈ R; I (z) < ∞} = R.
Therefore supp(P ◦ [uε(t, x)]−1) = R, pε

t,x (y) > 0 for all y ∈ R and (2.4) holds
for any y ∈ R. This is a consequence of the following Proposition.

Proposition 3.10 Assume (A1), (A2), (A5), and that σ and b are Lipschitz contin-
uous. Suppose also that b is bounded. Then {z ∈ R; I (z) < ∞} = R.

Proof Fix (t, x) ∈ (0, T ] × R
d . Owing to (A1), for every h ∈ HT ,

∣∣∣∣
t∫

0

∫

Rd

�(t − s, x − z)b(�h
s,z)dzds

∣∣∣∣ ≤ |b|∞
t∫

0

�(s)(Rd)ds =: I2. (3.29)

Note that this bound does not depend on h ∈ HT . Moreover, (A5) and (A1) imply

I1 := σ2
0‖�(t − ·, x − ∗)‖2HT

< ∞. (3.30)

Fix α > 0, z ∈ R, h ∈ HT , and set

hz,α(·, ∗) := |z| + α + I2 + |w(t, x)|
I1

�(t − ·, x − ∗)σ(�h·,∗).

Using (3.10) one can easily check that hz,α ∈ HT . From (3.29), (3.30), along with
(A5), we obtain

�
hz,α
t,x = w(t, x) + |z| + α + I2 + |w(t, x)|

I1

× 〈�(t − ·, x − ∗)σ(�
hz,α·,∗ ),�(t − ·, x − ∗)σ(�h·,∗)〉HT

+
t∫

0

∫

Rd

�(t − s, x − z)b(�
hz,α
s,z )dzds

≥ −|w(t, x)| + |z| + α + I2 + |w(t, x)|
I1

I1 − I2

> z,

and similarly,

�
−hz,α
t,x = w(t, x) − |z| + α + I2 + |w(t, x)|

I1

× 〈�(t − ·, x − ∗)σ(�
−hz,α·,∗ ),�(t − ·, x − ∗)σ(�h·,∗)〉HT

+
t∫

0

∫

Rd

�(t − s, x − z)b(�
−hz,α
s,z )dzdt
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≤ |w(t, x)| − |z| + α + I2 + |w(t, x)|
I1

I1 + I2

< z.

Thus, for all z ∈ R there exists hz,α ∈ HT such that �
−hz,α
t,x < z < �

hz,α
t,x . By

the intermediate value theorem [23, Theorem 24.3] together with Lemma 3.5, there
exists some hz ∈ HT such that �hz

t,x = z. This finishes the proof. �

Assume as in the previous proposition that (A1), (A2), (A5) hold and that σ and b
are Lipschitz continuous. Suppose thatσ is bounded. Then, for all y ∈ R, pt,x (y) > 0
(see [27, Theorem 5.1]) and therefore S = R.

4 Support Theorem

In this sectionweprove a characterization of the topological support of the probability
law of the random variable uε(t, x), for a fixed (t, x) ∈ (0, T ]×R

d , defined by (2.1).
This is the smallest closed subset X ε ⊆ R satisfying P ◦ (uε(t, x))−1(X ε) = 1.
Under stronger assumptions than in Theorem 2.2, we prove in Theorem 4.1 that

X ε = {�h
t,x ; h ∈ HT } and therefore also that X ε does not depend on ε. This will be

a consequence of two approximation results, as follows.
Fix ε ∈ (0, 1] and consider a sequence (vn,ε)n∈N ofHT -valued random variables

such that

(C1) limn→∞ P
[∣∣uε(t, x) − �vn,ε

t,x

∣∣ > η
] = 0,

(C2) for any h ∈ HT , limn→∞ P
[∣∣u(t, x;ω − vn,ε + h) − �h

t,x

∣∣ > η
] = 0,

for any η > 0.

By Portmanteau’s Theorem, (C1) implies that X ε ⊆ {�h
t,x ; h ∈ HT }. From

(C2) together with Girsanov’s theorem, we deduce the converse inclusion X ε ⊇
{�h

t,x ; h ∈ HT }. Without loss of generality, we may assume that ε = 1 and write
u(t, x) and vn instead of uε(t, x) and vn,ε, respectively.

It is easy to see that both convergences (C1) and (C2) (with ε = 1) can be
formally derived from a single convergence result. Indeed, let A, B, G, b : R → R,
w : [0, T ] × R

d → R and h ∈ HT . We consider the SPDEs

X (t, x) = w(t, x) +
t∫

0

∫

Rd

�(t − s, x − y)(A + B)(X (s, y))M(ds, dy)

+ 〈�(t − ·, x − ∗)G(X (·, ∗)), h〉HT

+
t∫

0

∫

Rd

�(t − s, x − y)b(X (s, y))dyds, (4.1)
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and, for all n ∈ N

Xn(t, x) = w(t, x) +
t∫

0

∫

Rd

�(t − s, x − y)A(Xn(s, y))M(ds, dy)

+ 〈�(t − ·, x − ∗)B(Xn(·, ∗)), vn〉HT

+ 〈�(t − ·, x − ∗)G(Xn(·, ∗)), h〉HT

+
t∫

0

∫

Rd

�(t − s, x − y)b(Xn(s, y))dyds. (4.2)

Suppose we can prove that the sequence (Xn(t, x))n∈N converges in probability to
X (t, x), for fixed (t, x) ∈ (0, T ]×R

d . Then with the choice A = G = 0 and B = σ,
we obtain (C1). By taking A = G = σ and B = −σ, we get (C2).

The sequence (vn)n∈N will consist of smooth approximations of the stochastic
process F . As has been described in Sect. 2, F can be identified with a sequence of
independent standard Brownian motions W = {W k(t), t ∈ [0, T ], k ∈ N}.

Fix n ∈ N and consider the partition of [0, T ] determined by iT
2n , i = 0, 1, . . . , 2n .

Denote by �i the interval [ iT
2n ,

(i+1)T
2n [ and by |�i | = T 2−n its length. We write

W j (�i ) for the increment W j (
(i+1)T

2n ) − W j (
iT
2n ), i = 0, . . . , 2n − 1, j ∈ N. Define

differentiable approximations of (W j , j ∈ N) as follows:

W n =
⎛
⎝W n

j =
·∫

0

Ẇ n
j (s)ds, j ∈ N

⎞
⎠ ,

where for j > n, Ẇ n
j = 0, and for 1 ≤ j ≤ n,

Ẇ n
j (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n−2∑
i=0

2nT −1W j (�i )1�i+1(t) if t ∈ [2−nT, T ],

0 if t ∈ [0, 2−nT [.

Then, let
vn(t, x) =

∑
j∈N

Ẇ n
j (t)e j (x).

By Theorem A.1, Eq. (4.1) has a unique random-field solution, and this solution
possesses moments of any order, uniformly in (t, x). That theorem cannot be applied
to Eq. (4.2), because the HT -valued random variable vn does not satisfy (A.3). For
this reason (but also for others that will become clear later), we fix a parameter θ > 0
and introduce a localization on � defined by
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Ln(t) =
{

sup
1≤ j≤n

sup
0≤i≤�2n tT −1−1�+

|W j (�i )| ≤ 2n(θ−1)
}
,

where n ∈ N and t ∈ [0, T ]. Notice that Ln(t) decreases with t . Similarly as in [22,
Lemma 2.1], one can prove that if θ > 1

2 ,

lim
n→∞P

(
Ln(t)c) = 0, t ∈ [0, T ]. (4.3)

It is easy to check that
‖vn(t, ∗)1Ln(t)‖H ≤ Cn2nθ,

and for 0 ≤ t < t ′ ≤ T ,

‖vn1Ln(t ′)1[t,t ′]‖HT ≤ Cn2nθ|t − t ′| 12 . (4.4)

On each Ln(t), the assumptions ofTheoremA.1 are satisfied. Thus, by localization
we can prove the existence of a unique solution to (4.2), and that this solution is
bounded in probability.

For the formulation of the main result, it is necessary to introduce an additional
assumption:

(A7) As in (A1), the mapping t �→ �(t) is a deterministic function with values in
the space of non-negative tempered distributions with rapid decrease, and for any
t ∈ [0, T ], �(t) is a non-negative measure. Moreover, there exist η, δ > 0 such that

(i)
∫ t
0

∫
Rd

|F�(s)(ξ)|2μ(dξ)ds ≤ Ctη , for any t ∈ (0, T ],
(ii) sup0≤s≤T

∫
Rd |F�(s)(ξ)|2μ(dξ) = sup0≤s≤T J1(s) < ∞,

(iii)
∫ t
0 �(s)(Rd)ds ≤ Ctδ , for any t ∈ (0, T ].

Clearly, (A7) is stronger than (A1).
Let �(dx) = |x |−βdx , β ∈ (0, d ∧ 2), and therefore μ(dξ) = |ξ|−(d−β)dξ. In

Sect. 5, we will see that the fundamental solution to the wave equation with d =
{1, 2, 3} satisfies (A7).

The main result of this section is the following.

Theorem 4.1 The hypotheses are (A2) and (A7). We also suppose that σ and b
are Lipschitz continuous functions. Let uε(t, x) be the solution to (2.1) at a given
point (t, x) ∈ (0, T ] × R

d . Then the topological support of the probability law
P ◦ (uε(t, x))−1 is the closure of the set {�h

t,x ; h ∈ HT }, where �h
t,x is defined in

(2.6).

By the preceding discussion, the theorem is a corollary of the next Proposition.

Proposition 4.2 Assume that A, B, G, b : R → R are Lipschitz continuous func-
tions and that assumptions (A2) and (A7) are satisfied. Fix (t, x) ∈ (0, T ]×R

d and,
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in the definition of Ln(t), fix θ > 1
2 such that

( η
2 − θ + 1

2

) ∧ δ − θ > 0. Then, for
any p ∈ [1,∞),

lim
n→∞

∥∥(Xn(t, x) − X (t, x))1Ln(t)
∥∥

p = 0, (4.5)

where ‖ · ‖p denotes the L p(�)-norm.

Indeed, owing to (4.3), the convergence (4.5) yields limn→∞ Xn(t, x) = X (t, x)

in probability.

The rest of the section is devoted to the proof of Proposition 4.2. First we introduce
some additional notation.

For any n ∈ N, t ∈ [0, T ], set

t n = max
{
k2−nT, k = 0, . . . , 2n − 1 : k2−nT < t

}
,

and define tn = max{t n − 2−nT, 0}. To strengthen the Ft -measurability properties
of X (t, x) and Xn(t, x), we consider stochastic processes defined by a modification
of Eqs. (4.1), (4.2), respectively, as follows:

X (t, tn, x) =w(t, x) +
tn∫

0

∫

Rd

�(t − s, x − y)(A + B)(X (s, y))M(ds, dy)

+ 〈�(t − ·, x − ∗)G(X (·, ∗))1[0,tn ](·), h〉HT

+
tn∫

0

∫

Rd

�(t − s, x − y)b(X (s, y))dyds, (4.6)

and

X−
n (t, x) =w(t, x) +

tn∫

0

∫

Rd

�(t − s, x − y)A(Xn(s, y))M(ds, dy)

+ 〈�(t − ·, x − ∗)B(Xn(·, ∗))1[0,tn ](·), vn〉HT

+ 〈�(t − ·, x − ∗)G(Xn(·, ∗))1[0,tn ](·), h〉HT

+
tn∫

0

∫

Rd

�(t − s, x − y)b(Xn(s, y))dyds.

In the proof of Proposition 4.2, wewill use the following facts: for any p ∈ [1,∞)

and every integer n ≥ 1,

(P1)
sup

(t,x)∈[0,T ]×Rd
‖X (t, x) − X (t, tn, x)‖p ≤ C2−n(

η
2∧δ), (4.7)
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(P2)
sup
n∈N

sup
(t,x)∈[0,T ]×Rd

‖X (t, tn, x)‖p ≤ C, (4.8)

(P3)

sup
(t,x)∈[0,T ]×Rd

‖(Xn(t, x) − X−
n (t, x))1Ln(t)‖p ≤ Cn2−n([( η

2−θ+ 1
2 )∧δ]. (4.9)

The estimate (4.7) can be easily obtained by adapting the arguments of the proof of
[10, Lemma 4.1] and applying the assumption (A7). From (4.7) and Theorem A.1
applied to the Equation (4.1), we obtain (4.8). Finally, (4.9) is proved adapting the
arguments of the proof of [10, Lemmas 4.2 and 4.3], and assuming (A7).

Proof of Proposition 4.2.

Using (4.1), (4.2),wewrite the difference Xn(t, x)−X (t, x)grouped into comparable
terms and prove their convergence to zero. Themain difficulty lies in the convergence
of 〈�(t−·, x−∗)B(Xn(·, ∗)), vn〉HT to

∫ t
0

∫
Rd �(t−s, x−y)B(X (s, y))M(ds, dy).

We write

X (t, x) − Xn(t, x) =
10∑

i=1

Ui
n(t, x),

where

U 1
n (t, x) =

t∫

0

∫

Rd

�(t − s, x − y) [A(X (s, y)) − A(Xn(s, y))] M(ds, dy),

U 2
n (t, x) = 〈�(t − ·, x − ∗)[G(X (·, ∗)) − G(Xn(·, ∗))], h〉HT ,

U 3
n (t, x) =

t∫

0

∫

Rd

�(t − s, x − y)[b(X (s, y)) − b(Xn(s, y))]dyds,

U 4
n (t, x) =

t∫

tn

∫

Rd

�(t − s, x − y)B(X (s, y))M(ds, dy),

U 5
n (t, x) = 〈�(t − ·, x − ∗)[B(X (·, ∗)) − B(Xn(·, ∗))]1[tn ,t](·), vn〉HT ,

U 6
n (t, x) = −〈�(t − ·, x − ∗)B(X (·, ∗))1[tn ,t](·), vn〉HT ,

U 7
n (t, x) =

tn∫

0

∫

Rd

�(t − s, x − y)[B(X (s, y)) − B(X−(s, y))]M(ds, dy),

U 8
n (t, x) =

tn∫

0

∫

Rd

�(t − s, x − y)B(X−(s, y))M(ds, dy)
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− 〈�(t − ·, x − ∗)B(X−(·, ∗))1[0,tn ](·), vn〉HT ,

U 9
n (t, x) = 〈�(t − ·, x − ∗)[B(X−(·, ∗)) − B(X−

n (·, ∗))]1[0,tn ](·), vn〉HT ,

U 10
n (t, x) = 〈�(t − ·, x − ∗)[B(X−

n (·, ∗)) − B(Xn(·, ∗))]1[0,tn ](·), vn〉HT .

Here, we have used the abridged notation X−(·, ∗) for the stochastic process
X (t, tn, x) defined in (4.6). Notice that although not apparent in this new notation,
X−(·, ∗) does depend on n.

Fix p ∈ [2,∞[. Clearly,

E
(|Xn(t, x) − X (t, x)|p 1Ln(t)

) ≤ C
10∑

i=1

E

(∣∣∣Ui
n(t, x)

∣∣∣
p
1Ln(t)

)
.

We start by analyzing the contribution of Ui
n(t, x), i = 1, 2, 3 on the left-hand side

of this expression.
Burkholder’s and Hölder’s inequalities yield

E

(∣∣∣U 1
n (t, x)

∣∣∣
p
1Ln(t)

)
≤ C

t∫

0

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds.

(4.10)
Schwarz’s inequality implies

E

[∣∣U 2
n (t, x)

∣∣p1Ln(t)

]

≤ ‖h‖p
HT

E

(∥∥�(t − ·, x − ∗)[G(X (·, ∗)) − G(Xn(·, ∗))]1Ln(t)
∥∥2HT

)p/2
.

Then, by using Hölder’s inequality we obtain

E

(∣∣∣U 2
n (t, x)

∣∣∣
p
1Ln(t)

)
≤ C

t∫

0

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds.

(4.11)
We apply Hölder’s inequality to U 3

n (t, x) and obtain

E

(∣∣∣U 3
n (t, x)

∣∣∣
p
1Ln(t)

)
≤ C

t∫

0

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J2(t − s)ds.

(4.12)
Next we consider the terms Ui

n(t, x) for i = 4, 5, 6. Let i = 4. Hölder’s inequal-
ities and assumption (A7) yield
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E

(∣∣∣U 4
n (t, x)

∣∣∣
p
1Ln(t)

)

≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
E
[|X (t, x)|p]

)( t∫

tn

J1(t − s)ds

)p/2

≤ C2−pnη/2. (4.13)

Using Hölder’s inequality, (4.4) and Assumption (A7), we have

E

(∣∣∣U 5
n (t, x)

∣∣∣
p
1Ln(t)

)

≤ Cn p2np(θ−1/2)
E
[‖�(t − ·, x − ∗)[B(X (s, y)) − B(Xn(·, ∗))]
1[tn ,t](·)1Ln(t)‖p

HT

]

≤ Cn p2np(θ−1/2)
( t∫

tn

J1(t − s)ds

)p/2−1

×
t∫

tn

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds

≤ Cn p2−n[p(
η
2−θ+ 1

2 )−η]
t∫

0

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds.

(4.14)

Since η
2 −θ+ 1

2 > 0, for p > η(
η
2 −θ+ 1

2 )
−1, we clearly have p(

η
2 −θ+ 1

2 )−η > 0.
For U 6

n (t, x), we proceed in a similar manner as for U 5
n (t, x) applying the fact

that X (t, x) has uniformly bounded moments of all orders. We obtain

E

(∣∣∣U 6
n (t, x)

∣∣∣
p
1Ln(t)

)

≤ Cn p2pn(θ−1/2)
(
1 + sup

(t,x)∈[0,T ]×Rd
E
[|X (t, x)|p]

)( t∫

tn

J1(t − s)ds

)p/2

≤ Cn p2−pn(η/2−θ+1/2). (4.15)

Finally, we study Ui
n(t, x), i = 7, 8, 9, 10. The arguments based on Burkholder’s

and Hölder’s inequalities and (4.7) give
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E

(∣∣∣U 7
n (t, x)

∣∣∣
p
1Ln(t)

)
≤ C

t∫

0

sup
y∈Rd

E

(∣∣∣X−(s, y) − X (s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds

≤ C2−np[ η
2∧δ]. (4.16)

In the following, let τn be the operator defined on functions f : [0, T ]×R
d → R

by τn( f )(t, x) := f ((t + 2−n) ∧ T, x). Since tn < T − 2−n , the restriction ‘∧T ’ is
not active on t ∈ [0, tn]. Let πn be the projection operator fromHT onto the Hilbert
subspace generated by the set of functions

{2nT −11�i (·) ⊗ ek(∗), i = 0, . . . , 2n − 1, k = 1, . . . , n}.

Note that πn ◦ τn is a uniformly bounded operator in n ∈ N and πn ◦ τn converges
to IHT strongly, where IHT denotes the identity operator on HT . Moreover, ϒt :=(
πn ◦ τn

)− IHT is a contraction operator on HT .
Since X−

n (s, ∗), X−(s, ∗) are Fsn -measurable random variables, by using the
definition of vn one checks that

U 9
n (t, x) =

tn∫

0

∫

Rd

(πn ◦ τn)
[
�(t − s, x − y)

(B(X−
n (s, y)) − B(X−(s, y)))

]
M(ds, dy).

Thus, after having applied Burkholder’s inequality, we obtain

E

[(∣∣∣U 9
n (t, x)

∣∣∣
p)

1Ln(t)

]

≤ CE

(∥∥∥(πn ◦ τn)
[
�(t − ·, x − ∗)(B(X−) − B(X−

n ))
]
(·, ∗)1[0,tn ](·)1Ln(·)

∥∥∥
p

HT

)

≤ CE

⎛
⎝

tn∫

0

∥∥�(t − s, x − ∗)(B(X−(s, ∗)) − B(X−
n (s, ∗)))1Ln(s)

∥∥2H ds

⎞
⎠

p
2

.

Then similarly as for U 2
n (t, x), we have

E

[(∣∣∣U 9
n (t, x)

∣∣∣
p)

1Ln(t)

]

≤ C

tn∫

0

sup
y∈Rd

E

(∣∣∣X−(s, y) − X−
n (s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds.



488 M. Sanz-Solé and A. Süß

This clearly implies

E

[(∣∣∣U 9
n (t, x)

∣∣∣
p)

1Ln(t)

]

≤ C

( tn∫

0

sup
y∈Rd

E

(∣∣∣X−(s, y) − X (s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds

+
tn∫

0

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds

+
tn∫

0

sup
y∈Rd

E

(∣∣∣Xn(s, y) − X−
n (s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds

)
.

Recall that X−(s, y) = X (s, sn, y). By applying (4.7) and (4.9), we obtain

E

[(∣∣∣U 9
n (t, x)

∣∣∣
p)

1Ln(t)

]

≤ C

t∫

0

sup
y∈Rd

E

(∣∣∣X (s, y) − Xn(s, y)

∣∣∣
p
1Ln(s)

)
J1(t − s)ds

+ Cn p2−np[( η
2−θ+ 1

2 )∧δ]. (4.17)

For the study of U 10
n (t, x), we first apply Schwarz’s inequality. Then (4.4) and

(4.9) yield

E

[(∣∣∣U 10
n (t, x)

∣∣∣
p)

1Ln(t)

]
≤ Cn2p2−np[( η

2−θ+ 1
2 )∧δ−θ]. (4.18)

Finally, we consider U 8
n (t, x). We are assuming that t > 0. Hence, for n big

enough, tn − 2−n > 0 and tn + 2−n < t . Define

U 8,1
n (t, x) =

tn∫

0

∫

Rd

πn

(
�(t − ·, x − ∗)B(X−(·, ∗))

− τn
[
�(t − ·, x − ∗)B(X−(·, ∗))

)
(s, y)M(ds, dy),

U 8,2
n (t, x) =

tn∫

0

∫

Rd

(
�(t − s, x − y)B(X−(s, y))

− πn
[
�(t − ·, x − ∗)B(X−(·, ∗))

])
M(ds, dy).
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Clearly,
U 8

n (t, x) = U 8,1
n (t, x) + U 8,2

n (t, x).

To facilitate the analysis, we write U 8,1
n (t, x) more explicitly, as follows.

U 8,1
n (t, x) =

tn∫

0

∫

Rd

(
πn
[
�(t − ·, x − ∗)B(X−(·, ∗))

]
(s, y)

− πn
[
�(t − ·, x − ∗)B

(
X−(·, ∗))](s + 2−n, y)

)
M(ds, dy). (4.19)

For the second integral on the right-hand side of (4.19) we perform a change of
variable s + 2−n �→ s. Therefore we obtain

E

(∣∣∣U 8,1
n (t, x)

∣∣∣
p
1Ln(t)

)
≤ C

(
V 8,1

n (t, x) + V 8,2
n (t, x)

)
,

where

V 8,1
n (t, x) := E

[∣∣∣∣
tn+2−n∫

tn

∫

Rd

πn
[
�(t − ·, x − ∗)B(X−(·, ∗))

]
(s, y)

× M(ds, dy)

∣∣∣∣
p

1Ln(t)

]
,

V 8,2
n (t, x) := E

[∣∣∣∣
2−n∫

0

∫

Rd

πn
[
�(t − ·, x − ∗)B

(
X−(·, ∗))](s, y)

× M(ds, dy)

∣∣∣∣
p

1Ln(t)

]
.

By the usual procedure involving Burkholder’s andHölder’s inequalities and (4.8)
we have

V 8,1
n (t, x) ≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
E
[|X−(t, x)|p]

)( tn+2−n∫

tn

J1(t − s)ds

) p
2

≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
E
[|X−(t, x)|p]

)( 2−n+1∫

0

J1(s)ds

) p
2

≤ C2−np η
2 , (4.20)
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where in the last inequality, after a change of variable, we have applied (i) of assump-
tion (A7).

Notice that for s ∈ [0, 2−n], X−(s, y) = X (s, sn, y) = w(s, y). Therefore,
condition (ii) in (A7) implies,

V 8,2
n (t, x) ≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
|w(t, x)|p

)⎛
⎜⎝

2−n∫

0

J1(t − s)ds

⎞
⎟⎠

p
2

≤ C2−n p
2 . (4.21)

Thus, by (4.20) and (4.21) we have proved the convergence

lim
n→∞ sup

(t,x)∈[0,T ]×Rd
E

(∣∣∣U 8,1
n (t, x)

∣∣∣
p
1Ln(t)

)
= 0. (4.22)

Let us now consider U 8,2
n (t, x). After applying Burkholder’s inequality we have

E

(∣∣U 8,2
n (t, x)

∣∣p1Ln(t)

)

≤ CE

(∥∥∥(πn − IHT

)[
�(t − ·, x − ∗)B(X−(·, ∗))

]
1Ln(·)1[0,tn ](·)

∥∥∥
p

HT

)
.

We want to prove that the right-hand side of this inequality tends to zero as n → ∞.
Set

Zn(t, x) =
∥∥∥(πn − IHT

)[
�(t − ·, x − ∗)B(X−(·, ∗))

]
1Ln(·)1[0,tn ](·)

∥∥∥HT
.

Since πn is a projection on the Hilbert space HT , the sequence {Zn(t, x), n ≥ 1}
decreases to zero as n → ∞ and can be bounded from above by
supn∈N ‖�(t − ·, x − ∗)B(X−(·, ∗))‖HT . Remember that X−(s, y) stands for
X (s, sn, y), defined in (4.6), and therefore it depends on n.

Assume that

E

(
sup

n

∥∥�(t − ·, x − ∗)B(X−(·, ∗))
∥∥p
HT

)
< ∞, (4.23)

for any p ∈ [1,∞). Then, by bounded convergence theorem, we can conclude that
limn→∞ E[(Zn(t, x))p] = 0.

Let us sketch the main arguments for the proof of (4.23). By considering first a
convolution in the space variable of�(t−·, x−∗)B(X−(·, ∗))with an approximation
of the identity, and then passing to the limit, we prove
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E

(
sup

n
‖�(t − ·, x − ∗)B(X−(·, ∗))‖p

HT

)

≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
E

(
sup

n
|X (t, tn, x)|p

))⎛
⎝

t∫

0

J1(s)ds

⎞
⎠

p
2

(4.24)

(see [26, Proposition 3.3] for the arguments).
From the definition of X (t, tn, x), we see that for the second and third terms in

(4.6), the supremum in n can be easily handled, since they are defined pathwise. For
the stochastic integral term, we consider the discrete martingale

⎧⎪⎨
⎪⎩

tn∫

0

∫

Rd

�(s0 − s, x − y)(A + B)(X (s, y))M(ds, dy),Ftn , n ∈ N

⎫⎪⎬
⎪⎭

,

where s0 ∈]0, T ] is fixed. By applying first Doob’s maximal inequality and then
Burkholder’s inequality, we obtain

E

⎛
⎜⎝sup

n

∣∣∣∣∣∣∣

tn∫

0

∫

Rd

�(s0 − s, x − y)(A + B)(X (s, y))M(ds, dy)

∣∣∣∣∣∣∣

p⎞
⎟⎠

≤ C E

⎛
⎜⎝

∣∣∣∣∣∣∣

t∫

0

∫

Rd

�(s0 − s, x − y)(A + B)(X (s, y))M(ds, dy)

∣∣∣∣∣∣∣

p⎞
⎟⎠

≤ C E

(
‖�(s0 − ·, x − ∗)(A + B)(X (·, ∗))‖

p
2
HT

)
.

Finally, we take s0 := t . Using the property sup(t,x)∈[0,T ]×Rd E (|X (t, x)|p), we
obtain that the expression (4.24) is finite.

Hence, we have proved that

lim
n→∞ E

(
|U 8,2

n (t, x)|p1Ln(t)

)
= 0, (4.25)

and from (4.22) and (4.25), we conclude

lim
n→∞E(|U 8

n (t, x)|p1Ln(t)) = 0. (4.26)

Taking into account (4.10)–(4.18) and (4.26), we see that
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E
(|X (t, x) − Xn(t, x)|p 1Ln(t)

)

≤ Cn + C

t∫

0

sup
y∈Rd

E
(|X (s, y) − Xn(s, y)|p 1Ln(s)

) (
J1(t − s) + J2(t − s)

)
ds,

where (Cn, n ≥ 1) is a sequence of real numbers satisfying limn→∞ Cn = 0. By
applying a version of Gronwall’s lemma, see [5, Lemma 15], we finish the proof of
the Proposition. �

5 Examples

In this section we illustrate Theorem 2.4 with some examples.

Stochastic wave equation

Let F be the Gaussian process introduced in Sect. 2. Consider the family of sto-
chastic wave equations indexed by ε ∈ (0, 1],
(

∂2

∂t2
− �d

)
uε(t, x) = εσ(uε(t, x))Ḟ(t, x) + b(uε(t, x)), (t, x) ∈ (0, T ] × R

d ,

uε(0, x) = u0(x),
∂uε

∂t
(0, x) = u1(x), (5.1)

where �d stands for the d-dimensional Laplacian, and d ∈ {1, 2, 3}.
We write (5.1) in the mild form (2.1) with

w(t, x) =
∫

Rd

�(t, x − y)u1(y)dy + ∂

∂t

∫

Rd

�(t, x − y)u0(y)dy,

where � is the fundamental solution to the wave equation.
For any t ∈ (0, T ], �(t) is a measure with support included in Bt (0) (the closed

ball of Rd centered at zero and with radius t), and �(t)(Rd) = t . For example, if
d = 3, it is the uniform surface measure on ∂Bt (0), normalized by the factor 1

4πt . It

is also well-known that the Fourier transform of � is F�(t)(ξ) = sin(2πt |ξ|)
2π|ξ| for any

d (see e.g. [13, Chap.5]).
For the sake of illustration, we will assume that the covariance measure of F is

given by �(dx) = |x |−βdx , with β ∈ (0, d ∧ 2), although a deeper analysis might
allow to go beyond this case (see [6]). Then μ(dξ) := F−1(�)(dξ) = |ξ|−(d−β)dξ
and ∫

Rd

|F�(s)(ξ)|2μ(dξ) =
∫

Rd

sin2(2πs|ξ|)
4π2|ξ|d−β+2

dξ.
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With the change of variable ξ �→ (2πs)ξ, we easily obtain that the last integral is
equal to Cs2−β , with C > 0. Thus,

t∫

0

∫

Rd

|F�(s)(ξ)|2μ(dξ)ds = Ct3−β, t ∈ [0, T ].

Consequently, the assumptions (A3) and (A7) hold with γ = η = 3 − β, η̄ = 1,
δ = 2 and t0 ∈ (0, T ].

In this setting, we have the following result on (5.1).

Theorem 5.1 Assume (A2), (A4) and (A5). Then for all (t, x) ∈ (0, T ] × R
d ,

lim
ε↓0 ε2 log pε

t,x (y) = −I (y), (5.2)

for all y in the interior of the support of u(t, x), where I is defined in (2.5). If in
addition, either b or σ is bounded, then (5.2) holds for any y ∈ R.

Notice that under the standing hypotheses, Theorems 2.2, 2.3 and 4.1 hold. We
refer to [7, Lemma 4.2] for sufficient conditions on the functions u0, u1 implying
(A2).

Next we comment on the validity of assumption (A6). The sample paths of the
random field solution to Eq. (5.1) belong to the space Cα([0, T ] × R

d) of α-Hölder
continuous functions of degree α ∈ (0, 2−β

2 ) (see [8, Sect. 2.1] for a summary of
results and references). In the present framework, and for spatial dimension d = 3,
a large deviation principle (LDP) for (5.1) in the space Cα([0, T ] × R

d), with rate
function J ≡ I , is established in [28, Theorem 1.1] (see also [29]). Its proof is
carried out following the variational approach of Budhiraja and Dupuis in [1] (see
also [12]). By the classical contraction principle of LDP ([11, Theorem 4.2.1]), this
implies (A6). The proof in [28, Theorem 1.1] also applies to d ∈ {1, 2}. For d = 2
and with a different method, Chenal [3] establishes the same LDP. For d = 1, the
reduced form of the stochastic wave equation driven by space-time white noise is
considered in [17], and logarithmic estimates for the density are proved.
Proof of Theorem 5.1. From the preceding discussion, we infer that the random field
solution to the stochastic wave Equation (5.1) at a fixed point (t, x) ∈ (0, T ] × R

d

satisfies the assumptions of Theorem 2.4, and that J = I . �

Stochastic heat equation

Consider the family of stochastic heat equations indexed by ε ∈ (0, 1],
(

∂

∂t
− �d

)
uε(t, x) = εσ(uε(t, x))Ḟ(t, x) + b(uε(t, x)), (t, x) ∈ (0, T ] × R

d ,

uε(0, x) = u0(x), (5.3)
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where the process F is the same as in the example of the stochastic wave equation,
and d ∈ N.

As in the preceding example, we interpret (5.3) in the mild form (2.1) with

w(t, x) =
∫

Rd

�(t, x − y)u0(y)dy,

and

�(t, x) = 1

(4πt)d/2 exp

(
− |x |2

4t

)
, (t, x) ∈ [0, T ] × R

d .

Hence, �(t)(Rd) = 1 for any t ∈ (0, T ].
Let� be as in the previous example. Then, using the change of variable ξ �→ √

sξ,
we have

t∫

0

∫

Rd

|F�(s)(ξ)|2μ(dξ)ds =
t∫

0

∫

Rd

exp(−4π2s|ξ|2)|ξ|β−ddξds = Ct
2−β
2 . (5.4)

Hence, the assumptions (A1), (A3) hold with γ = 2−β
2 and δ = 1.

Theorem 5.2 Assume (A2), (A4), (A5), (A6). Then for all (t, x) ∈ (t0, T ] × R
d ,

lim
ε↓0 ε2 log pε

t,x (y) ≤ −J (y),

lim
ε↓0 ε2 log pε

t,x (y) ≥ −I (y).

The upper bound holds for all y ∈ R, while the lower bound (with I defined in (2.5))
holds for any y in the interior of the support of u(t, x). If in addition σ is bounded,
then the lower bound holds for any y ∈ R.

Suppose that the function u0 is bounded and Hölder continuous with exponent
α ∈ (0, 1]. Then Lemma 4.2 in [7] implies (A2).

Finally, we give some remarks on the hypothesis (A6). In the literature, there are
several results on large deviations for different types of stochastic heat equations
with boundary conditions. For example, [2] deals with a heat equation with d = 1
on a bounded domain with either Neumann or Dirichlet boundary conditions, driven
by a space-time white noise. In [19], the dimension d is arbitrary, the boundary
conditions are of Dirichlet type, and the noise is spatially correlated. Additional
relevant references are [33], where non-Gaussian noises are considered; [30] in the
framework of evolution equations; [1] illustrates the variational method on reaction-
diffusion equations. In [21], Varadhan estimates have been obtained for the stochastic
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heat equation in spatial dimension one with space-time white noise on bounded
domains.

We are not aware of any reference on large deviations for Eq. (5.3) in the present
setting. Nevertheless, we believe that using a similar approach as in [28], such a
result could be proved and that the rate function coincides with I . If this intuition is
correct, the assumption (A6) of Theorem 5.2 could be removed and we will have an
equality like (5.2).

Appendix

This section is devoted to the proof of some auxiliary results used in the paper. In the
first part, we state a theorem on existence and uniqueness of a random field solution
to a class of SPDEswhich applies to the different types of equations that appear in the
paper. In the second part, we prove an estimate on theHT -norm of the deterministic
Malliavin matrix.

A.1 A Result on Existence and Uniqueness of Solution

Let H1 and H2 be separable Hilbert spaces. Consider mappings

Ã, B̃, G̃ : H2 × H1 → H1

satisfying

• for all y, y′ ∈ H1,

sup
x∈H2

(
‖ Ã(x, y) − Ã(x, y′)‖H1 + ‖B̃(x, y) − B̃(x, y′)‖H1

+‖G̃(x, y) − G̃(x, y′)‖H1

)
≤ C‖y − y′‖H1 .

• There exists q ∈ [1,∞), and for all x ∈ H2,

‖ Ã(x, 0)‖H1 + ‖B̃(x, 0)‖H1 + ‖G̃(x, 0)‖H1 ≤ C
(
1 + ‖x‖q

H2

)
.

Combining these two estimates yields

‖ Ã(x, y)‖H1 + ‖B̃(x, y)‖H1 + ‖G̃(x, y)‖H1 ≤ C
(
1 + ‖y‖H1 + ‖x‖q

H2

)
. (A.1)

Let V = (V (t, x), (t, x) ∈ [0, T ] × R
d) be a predictable H2-valued stochastic

process such that for all p ∈ [1,∞),
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sup
(t,x)∈[0,T ]×Rd

E
[‖V (t, x)‖p

H2

]
< ∞. (A.2)

Let U0 = (U0(t, x), (t, x) ∈ [0, T ] × R
d) be a predictable H1-valued stochastic

process such that for all p ∈ [1,∞),

sup
(t,x)∈[0,T ]×Rd

E
[‖U0(t, x)‖p

H1

]
< ∞.

Let h be an HT -valued random variable such that

sup
ω∈�

‖h(ω)‖HT < ∞. (A.3)

Consider the equation on H1,

U (t, x) = U0(t, x) +
t∫

0

∫

Rd

�(t − s, x − y) Ã(V (s, y), U (s, y))M(ds, dy) (A.4)

+ 〈�(t − ·, x − ∗)G̃(V (·, ∗), U (·, ∗)), h
〉
HT

+
t∫

0

∫

Rd

�(t − s, x − y)B̃(V (s, y), U (s, y))dyds.

The following statement is a generalization of [7, Theorem 4.3] and [31, Theorem
6.2].

Theorem A.1 Assume (A1) and let Ã, B̃, G̃, V , U0, h, be given as above. There
exists a unique predictable stochastic process (U (t, x), (t, x) ∈ [0, T ] × R

d) with
values in H1 satisfying (A.4) for all (t, x) ∈ [0, T ] ×R

d , a.s. This solution satisfies

sup
(t,x)∈[0,T ]×Rd

E
[‖U (t, x)‖p

H1

]
< ∞, (A.5)

for all p ∈ [1,∞) and is continuous in L2(�).

Proof We use the classical approach based on Picard’s iterations, as in [31, The-
orem 6.2], and similar ideas as in [7, Theorem 4.3], extended to a Hilbert space
setting. In comparison with [31, Theorem 6.2], Equation (A.4) has the extra term〈
�(t −·, x −∗)G̃(V (·, ∗), U (·, ∗)), h

〉
HT

. We illustrate with an example how to deal
with it.

Fix p ∈ [1,∞). The Cauchy-Schwarz inequality and (A.1) yield
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E

[
‖〈�(t − ·, x − ∗)G̃(V (·, ∗), U (·, ∗)), h

〉
HT

‖p
H1

]

≤ sup
ω∈�

‖h(ω)‖p
HT

E
[‖�(t − ·, x − ∗)G̃(V (·, ∗), U (·, ∗))‖p

H1⊗HT

]

≤ C

t∫

0

(
1 + sup

(r,y)∈[0,s]×Rd
E
[‖U (r, y)‖p

H1

]+ sup
(r,y)∈[0,s]×Rd

E
[‖V (r, y)‖pq

H1

])

× J1(t − s)ds

≤ C

t∫

0

(
1 + sup

(r,y)∈[0,s]×Rd
E
[‖U (r, y)‖p

H1

])
J1(t − s)ds,

where in the second inequality we have applied (A.1), and in the last one (A.2). We
leave it to the reader to complete all the details of the proof. �

In the preceding sections, the following particular cases of Eq. (A.4) have been
considered.

(1) H1 = H2 = R, h = 0, Ã = εσ and B̃ = b do not depend on the first coordinate,
U0 = w. Then U = uε (see (2.1)).

(2) H1 = H2 = R, Ã = 0, G̃ = σ and B̃ = b do not depend on the first coordinate,
U0 = w. Then U := �h (see (2.6)).

(3) H1 = HT , H2 = R, h = 0, Ã(x, y) = εσ′(x)y, B̃(x, y) = b′(x)y, U0 =
xε�(t − ·, x − ∗)σ(uε(·, ∗)), V = uε. Then U := Duε (see (3.2)).

(4) H1 = HT , H2 = R, Ã = 0, G̃(x, y) = σ′(x)y, B̃(x, y) = b′(x)y, U0 =
�(t − ·, x − ∗)σ(�h·,∗), V = �h . Then U := �h (see (3.13)).

(5) H1 = H2 = R, Ã = σ does not depend on the second coordinate, G̃(x, y) =
σ′(x)y, B̃(x, y) = b′(x)y, U0 = 0, V = �h . Then U := N (h) (see (3.15)).

There is yet another particular case of Eq. (A.4) that we met in the proof of Lemma
3.7. It is obtained by shifting the sample paths ω by ε−1h, where h ∈ HT , as it is
shown in the next Lemma.

Lemma A.2 The hypotheses are (A1), (A2), that σ, b are Lipschitz continuous. Let
h ∈ H and set uε,h(t, x;ω) := uε(t, x;ω + ε−1h), (t, x) ∈ [0, T ] × R

d , where uε

is the solution to (2.1). Then (uε,h(t, x), (t, x) ∈ [0, T ] × R
d) satisfies the equation

uε,h(t, x) = w(t, x) + ε

t∫

0

∫

Rd

�(t − s, x − z)σ(uε,h(s, z))M(ds, dz)

+
t∫

0

∫

Rd

�(t − s, x − z)b(uε,h(s, z))dzds

+ 〈�(t − ·, x − ∗)σ(uε,h(·, ∗)), h〉HT . (A.6)
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The Lemma relies on the formula

( t∫

0

∫

Rd

�(s, y)Y (s, y)M(ds, dy)

)
(ω + h)

= 〈�(·, ∗)Y (s, y)(ω + h), h〉HT

+
⎛
⎜⎝

t∫

0

∫

Rd

�(s, y)Y (s, y)(ω + h)M(ds, dy)

⎞
⎟⎠ (ω),

where h ∈ HT and (Y (s, y), (s, y) ∈ [0, T ] × R
d) is a predictable stochastic

processes such that (�(s, y)Y (s, y), (s, y) ∈ [0, T ]×R
d) is integrable with respect

to the martingale measure M (see [5, 7] for details). This is proved by considering
first step processes g, given by g(t, x,ω) = 1(a,b](t)1A(x)X (ω) for 0 ≤ a < b ≤ T ,
A ∈ Bb(R

d) and X a bounded, Fa-measurable random variable, and then passing to
the limit.

A.2 Analysis of the Deterministic Malliavin Matrix

In this section we derive an assertion similar to [31, Lemma 8.2] for the Fréchet
derivative of the function �, defined in (3.12), (3.13).

Proposition A.3 The assumptions are (A1), σ, b ∈ C1 with bounded Lipschitz con-
tinuous derivatives. Then, for all ρ ∈ [0, t] and t ∈ [0, T ],

sup
(r,z)∈[0,t]×Rd

‖D̄�h(r, z)
∥∥2p
Ht−ρ,t

≤ C
(
g1(ρ)

)p
.

Proof Fix p ∈ [1,∞), t ∈ [0, T ], ρ ∈ [0, t] and (r, y) ∈ [0, t] × R
d . Recall that

D̄�h(r, y) is an HT -valued random variable given by

D̄◦,•�h(r, y) = �(r − ◦, y − •)σ(�h◦,•)
+ 〈�(r − ·, y − ∗)σ′(�h·,∗)D̄◦,•�h(·, ∗), h

〉
HT

+
r∫

0

∫

Rd

�(r − s, y − z)b′(�h
s,z)D̄◦,•�h(s, z)dzds

(see (3.12) and (3.13)).
We analyze each one of the three terms on the right-hand side of this equation

separately.
For the first term, we have



Logarithmic Asymptotics of the Densities of SPDEs Driven … 499

∥∥�(r − ◦, y − •)σ(�h◦,•)
∥∥2p
Ht−ρ,t

≤
( r∫

t−ρ

J1(r − s)ds

)p−1 r∫

t−ρ

sup
(v,z)∈[0,s]×Rd

E
[|σ(�h

v,z)|2p]J1(r − s)ds

≤ C(g1(ρ))p,

where in the last inequality we have used that σ is Lipschitz continuous and also
that for each h ∈ HT , the function (t, x) ∈ [0, T ] × R

d �→ �h(t, x) is uniformly
bounded. Indeed, this is a consequence of (A.5), since �h(t, x) is deterministic.

For the second term,we apply first Schwarz’ inequality and thenHölder’s inequal-
ity. Using that σ′ is bounded, we obtain

∥∥〈�(r − ·, y − ∗)σ′(�h(·, ∗))D̄◦,•�h(·, ∗), h〉HT ‖2p
Ht−ρ,t

≤ C‖h‖2p
HT

r∫

0

sup
(v,z)∈[0,s]×Rd

‖D̄◦,•�h(v, z)‖2p
Ht−ρ,t

J1(r − s)ds.

Finally, for the last term we apply Hölder’s inequality with respect to the finite
measure �(r − s, x − z)dzds along with the boundedness of b′. We obtain,

∥∥∥∥
r∫

0

∫

Rd
�(r − s, y − z)b′(�h

s,y)D̄◦,•�h(s, z)dzds

∥∥∥∥
2p

Ht−ρ,t

≤ C

r∫

0

sup
(v,z)∈[0,s]×Rd

‖D̄◦,•�h(v, z)‖2p
Ht−ρ,t

J2(r − s)ds.

By applying Gronwall’s lemma to the real function

s �→ sup
(r,z)∈[0,s]×Rd

‖D̄�h◦,•(r, z)‖2p
Ht−ρ,t

,

we have

sup
(r,z)∈[0,t]×Rd

‖D̄◦,•�h(r, z)‖2p
Ht−ρ,t

≤ C

( ρ∫

0

J1(s)ds

)p

= C (g1(ρ))p ,

for all t ∈ [0, T ]. This yields the assertion. �
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