
Genetic Programming with Dynamically

Regulated Parameters for Generating
Program Code

Tomasz �Lysek and Mariusz Boryczka

Institute of Computer Science, University of Silesia,
ul.Bȩdzińska 39, Sosnowiec, Poland

{tomasz.lysek,mariusz.boryczka}@us.edu.pl

Abstract. Genetic Programming (GP) is one of the Evolutionary Algo-
rithms. There are many theories concerning automatic code generation.
In this article we present the latest research of using our dynamic scaling
parameter in Genetic Programming to create a code. We have created
practically functioning program code with the dynamic instruction set
for L language. For testing we have chosen the best known problems.
Our investigations of the best range of each parameter were based on
our preliminary experiments.

Keywords: Genetic Programming, Linear Genetic Programming, Dy-
namic Parameters, Code generation

1 Introduction

Genetic Programming (GP), one of Evolutionary Algorithms has been devel-
oped mainly by John Koza and Wolfgang Banzhaf between 1992 and 2007 [4].
The greatest improvement of the algorithm has been suggested by Banzhaf and
Bremaier approach to Linear Genetic Programming. They have proposed an pro-
prietary solution that depends on tournament selection and strict machine code
for individuals structure. Genetic Programming is an extension of Genetic Al-
gorithm, and one of the population algorithms based on the genetic operations.
The main difference between those two is the representation of the structure they
manipulate and the meanings of the representation. Genetic Algorithms usually
operate on a population of fixed-length binary strings, GP typically operates on
a population of parse trees that usually represent computer programs [5]. There
are various models of an individual structure in GP population as well as various
methods to modify an individual - by crossing-over or mutation. It is common
that higher value of the crossover probability will result in better exploitation
and high mutation will improve the exploration. Based on our previous research
we have created a possibility of dynamic regulation of the parameters, responsi-
ble for the probability of the certain manner of modify an individual, in a way
that it will increase the speed of finding better results and earlier detect stagna-
tion of population at the same time [2]. We created a dynamic control parameter

D. Hwang et al. (Eds.): ICCCI 2014, LNAI 8733, pp. 363–372, 2014.
c© Springer International Publishing Switzerland 2014



364 T. �Lysek and M. Boryczka

- responsible for the course of the algorithm that in fewer iterations receives
better value of the fitness function, comparing to the results known from the
literature. We have managed to reduce the length of a code of the individual as
well. Our aim is to adapt the dynamic control parameter so that it will generate
a program code which would be capable of solving programming issues depend-
ing on collection of input-output vectors. This article is organized as follows:
first we analyse related works and ideas of creating most effective GP in the lit-
erature. Afterwards, we present the GP theory, that is the base to our research
and experiments. The fourth section is dedicated to our idea of the dynamic
control parameter and experiments proving its effectiveness. In the last section
we describe the course of the experiment associated with a program code gener-
ating and we present its applicability. We compare our proposal with the results
achieved by classical GP algorithms. We summarize with short conclusions.

2 Related Work

Genetic Programming was applied to various domains by Koza. Further devel-
opment of this method involves modify of the population structure, of the type
of an individual structure and introducing new methods of genetic operations
[1]. Classical approach assumes representation of an individual by tree structure
(Tree-based GP). There are also some modifications in which an individual is
represented through Rule-based GP (Rule-based GP), which is gene expression
for Genotype-Phenotype Mappings (GPM) by Ferreira [8], which assumes that
individual’s structure is a string with a head and a tail. The head is a list of
expressions (functions and symbols) and the tail is a list of the arguments. Lin-
ear Genetic Programming (LGP) algorithm proposed by Koza and improved by
Banzhaf and Bremaier turned out to be the breakthrough. LGP is based on
presenting an individual in a graph structure, which vertices are the program
instructions. Brameier introduced population divided into two groups and the
leaders of those groups are crossed [7]. This is a huge leap from the classical
approaches with tree-based code. For the purposes of the experiments classical
approach TBGP and linear approach LGP has been tested. An individual mod-
ifications (mainly through different mutation types) has been taken from the
literature and implemented according to given patterns. Experiments regarding
effectiveness of modification and setting probability intervals of choosing control
parameters has been conducted in 2012 and 2013.

3 Genetic Programming and Linear Genetic
Programming

Genetic Programming described by John Koza is an algorithm processing test
input vectors into their corresponding output vectors. Koza has defined as well
five steps to be performed in order to solve a problem using GP:



GP with Dynamically Regulated Parameters for Generating Program Code 365

1. Define the terminal set,
2. The function set,
3. Define fitness measure,
4. Select control parameters,
5. Define termination and result designation.

Individuals in GP are build with instructions made in defined L language.
Collection of programs in L language is called genotype G. Phenotype P is
defined as a set allowing reflection of input vector into output vector.

fgp : In → Om : fgp ∈ P
gp ∈ G

The defined approximation target is to find the best T from the given collection
using the evolution process:

T = {(i,o)|i ∈ I ′ ⊆ In,o ∈ O′ ⊆ Om, f(i) = o}
Evaluating of the fitness function is determined by detection of the error size
made by each individual. In order to exacerbate selection requirements of the
best individual, to the fitness function we add modifications as a penalty e.g.
late iterations or a tree depth/length of the generated code. A popular way of
determining errors in approximation tasks is the sum of squared errors (SSE)
[3]. The mean square error for SSE is evaluated from equation:

MSE(gp) = 1
n

∑n
k=1(gp(ik) − ok)2

LGP algorithm differs from the classical approach mainly in an individual
construction, a population structure and the number of parameters improving
its effectiveness. An individual in LGP algorithm is build in the way resembling
a program code in the machine language. LGP structure is a combination of
the idea of creating a genotype with the binary code and the idea of program-
ming using genes. Genotype in the form of the binary code (RBGP - Rule-based
genetic programming) presents coding the set of symbols (terminals) and oper-
ations by means of appropriate binary values. Each individual of the population
consists of many classifiers processing In into Om. In this algorithm a crossover
and a mutation are performed in a classical way, whereas the fitness function
is based exclusively on the high value of comparing an individual’s genotype
with encoded version o ∈ O′ ⊆ Om. Individual’s structure presented by genes
connections (GPM Genotype-phenotype programming) has been presented by
Ferreira. He based it on dividing genotype into two groups: a head and a tail. The
head is a list of functions and operators used in an individual. The tail is a list
of arguments provided program as a component of the L language. Additional
symbols introduced in functional part resemble registers used in LGP algorithm.
The algorithm of the linear Genetic Programming combines features of RBGP
and GPM, because the structure of the individual based on the programming
code contains encoded values in form of registrations. In some modifications, at
the beginning of each individual appears a headline containing functions and



366 T. �Lysek and M. Boryczka

symbols used in the certain genotype. Thanks to graph-like structure of an indi-
vidual even at the very first tests conducted by Banzhaf it has been demonstrated
that LGP is a better method for solving more elaborated problems. An ultimate
advantage of LGP over the classical approach has been revealed in Bremaiers
scientific work. In the TBGP there is only a limit of the tree depth. There are
two basic parameters restrictive creating genotypes in LGP, these are maximal
length of the code (number of code’s lines) and maximal length of the single
code line (determined on the base of the number of operators and symbols).
Main features of LGP are:

– the structure of command list (that can be presented in the form of directed
graph), instead of classical approach based on a tree,

– the linear structure of the program performed as a processor machine code,
– acquired values are saved in the dynamic registers which behaves like inner

processor registers,
– subgraphs formed inside of an individual, used as functions, registers, are

treated as variables,
– inner algorithm searching and deleting inefficient code through individual’s

evaluation, based on their fitness function,

Assuming that fulfilment of the four out of five point out of five Koza’s steps is
being represented by the collection of the parameters:

– probability of crossover differs two individuals by crossing-over chooses
parts,

– probability of mutation changes part of an individual with by specified way,
– maximum numer of individuals in population restricts the number of indi-

viduals,
– maximum tree depth/maximum code lines restrict individual size,
– probability of changing function/terminal chenges function or terminal to

other from L in tree node/line of code,
– probability of permutation swap over pieces of the tree (TBGP),
– probability of inserting / deleting adding randomly generated part from L

to individual/deleting random part of individual,
– probability of encapsulation protection part of individual against further

changes,
– probability of automated defined function (ADF) - Recognition of useful

fragments of genotype and transfer the parts to the set of available features.

In the classical TBGP, as well as in each modification there is a number of pa-
rameters influencing the quality of obtained results. Various parameters and their
values can be used depending on the studying problem. Most of the parameters
are flexible and can be used in the TBGP algorithm as well as in the LGP. How-
ever there are prepared special parameters, that can only be used in the particular
versions of genetic programming. For the GP based on tree structure there is a pos-
sibility of the mutation through lifting a fragment of the tree for selected number
of levels, and putting it in other node’s place, while in LGP there is a possibil-
ity of limiting the number of the registers. Those solutions cause the loss of some



GP with Dynamically Regulated Parameters for Generating Program Code 367

parts of the genotype, shortening its length. Combining that with encapsulation
or automatic defined functions leads to improving the results.

4 Dynamic Parameters in Genetic Programming

In Luke’s and Spector’s experiments it has been demonstrated that simple mu-
tation and standard crossover in case of genetic programming algorithms affects
results to the same degree [5]. However the crossover works well for large popu-
lations, while the mutation allows to obtain better outcomes for smaller popu-
lations with a larger number of iterations of the algorithm. When the crossover
and the mutation is used the most important problem is selecting a node. A
mutation needs to have specified a node to which it is applied, and a crossover
needs to have chosen two nodes, from which it starts the operation. In the
literature, the most frequently discussed is an example of a random selection.
The research was used Weise method, where the base is factor defining the
weight of a subtree of the test fragment [8]. Weise weighting factor is based on
the assumption that the best selection will be selecting all nodes c and n tree
t, with the same probability distribution as in the case of random select, eg.
P (nodeSelection(t) = c) = P (nodeSelection(t) = n)∀s, n ∈ t. Weight node n is
obtained by the number of nodes in the subtree of n:

W (n) = 1 +
∑l(succ(n))−1

i=0 W (succ(n)i),

where W is function that determines weight of node n, succ(n) is function that
determines set of child nodes of n, and l is function determines the lenght of the
n subtree.

Algorithm 1: Setting node weight

begin
1 flag = true; c = t;
2 while flag do
3 r = �random(0,W (c))�;
4 if r ≥ W (c) − 1 then
5 b = false;

else
6 i = l(succ(c)) − 1;
7 while i >= 0 do
8 r = r −W (succ(c)i);
9 if r < 0 then

10 c = succ(c)i; i = −1;

else
11 i = i− 1;

12 return c;



368 T. �Lysek and M. Boryczka

The evaluation function has a major impact on the structure of the popu-
lation in subsequent iterations. We propose the construction of the evaluation
function based on the MSE and the additional penalty rates for a large number
of iterations of the algorithm and the length of the code of individual:

FO(gp) = MSE(gp) + KI + KW(gp)

where:

– KI designated punishment for a long iteration
– KW(gp) designated penalty for a large depth of the tree (TBGP) / large

number of lines of code (LGP)

Dynamic parameters involves adding to the algorithm scaling factor based on the
results of studies on the extent to which the crossover and mutation parameters
allows to get the best possible result. In addition, studies have been carried out
concerning the designation of a minimum number of iterations that achieve the
high value of fitness function [2]. In table 1 and 2 we present test results (F
function value tending to 0; G depth of generated tree for TBGP; D length of
generated program for LGP).

Table 1. Setting the parameters for the best intervals TBGP and LGP (part 1)

function change terminal change permutation inserting
TBGP LGP TBGP LGP TBGP LGP TBGP LGP

Value F G F D F G F D F G F D F G F D
0.1 13.9 19 4.7 192 14.9 20 4.3 200 15.2 20 6.2 200 14.5 17 4.7 189
0.3 13.6 17 3.7 185 13.8 17 3.8 186 14.5 18 4.9 186 14.9 19 5.1 194
0.5 13.5 17 3.7 191 13.7 18 3.7 194 14.3 19 5.1 194 15.2 20 5.3 198
0.7 14.1 20 5.4 200 14.1 20 4.9 200 14.9 20 5.7 200 15.7 20 6.4 200

Table 2. Setting the parameters for the best intervals TBGP and LGP (part 2)

cutting encapsulation ADF lifting
TBGP LGP TBGP LGP TBGP LGP TBGP

Value F G F D F G F D F G F D F G
0.1 14.9 16 4.2 186 14.1 16 4.2 188 14.2 18 4.7 193 13.8 18
0.3 15.1 18 4.9 189 14.4 17 4.6 193 13.8 14 4.2 186 13.6 16
0.5 15.6 18 5.3 194 15.3 19 4.9 197 14 14 5.4 182 13.9 17
0.7 15.9 19 5.4 197 15.8 20 5.1 199 14.5 14.5 9.6 179 14.3 20

On the basis of these studies was created scaling parameter γ, that value at
the beginning of solving the problem is 1, and in subsequent iterations oscillates
between the values that (0, 1〉 [2]. If the parameter is set to a value of 1 or close
to, then occurs the exploitation of searched space solution and the value of the
fitness function of the population will converge. If the value of the parameter γ
would be closer 0, then the population will be a subject of a greater number of
mutations and there will be a greater exploration of the solution space. Fitness
function value of individuals in successive iterations of the algorithm may get
closer to the results from the initial sampling algorithm or possess a better result.



GP with Dynamically Regulated Parameters for Generating Program Code 369

In such a case, the parameter γ is changed to the exploratory character not to
allow an excessive convergence, and acquired results can be add to the collection
of output vectors. In case of a deterioration the γ parameter is transformed into
the exploitation form.

PM(Mi) =

⎧
⎪⎨

⎪⎩

SW(Mi)
γ if encapsulation or inserting

SW(Mi) · γ , for other cases
where:

– M is collection of the possible mutations,
– PM is the function giving a new value of probability for drawing the M

mutation,
– SW is a weighted average based on values of the fitness function FO, upper

and lower edges of the best range of the values of probability for mutation Mi.

Algorithm 2: The algorithm for determining the value of a new mutation

1 Determine the degree of the population stagnation
2 Establish a new γ value in (0, 1〉 (progressing stagnation of the population

involves γ parameter is getting closer to 0),
3 Designate a weighted average of the lower and upper edge of the best range of

values for a set of mutation probabilities
4 Fixing a new probability values for each mutation

Example:

– The m stagnation appears,

– A new γ value is calculated γ =

{
γ − 0.1 , γ > 0.1

0.1 , γ = 0.1
,

– Cutting mutation value according to table 2 SW = 0.2 must be replaced by
PM = SW · γ in order to achieve new probability.

– For each Mi element it is necessary to determine a new PM .

5 Experiments and Results

The purpose of experiments was to compare effectiveness of GP and LGP in
C++ to the same algorithms written and compiled in authors’ platform [6].
To make our algorithm more efficient we added smart code completion that
checks if used function in generated individual needs to add functions library
from programming language. This mechanism will provide smaller start collec-
tion of terminals in language L and in further point of iteration will decrease
consumption of adding new libraries. Classical GP-like algorithm with proposed
modification and smart code mechanism is as follow:



370 T. �Lysek and M. Boryczka

Algorithm 3: Modified Genetic Programming algorithm

1 Generate population P with random composition of defined functions;
2 while stop criterion is not met do
3 Parse generated individuals (programs) to set value of fitness function;
4 Copy the best individual;
5 Calculate the weight of the obtained results to determine the degree of

convergence of the population;
6 Change the value of γ;
7 Calculate the Weise weight for selected fragments of individuals;
8 Create new programs using mutation and crossover;
9 Check the length of the algorithm;

10 Check the length function;
11 Check the depth of nesting;
12 Append missing libraries;

13 An individual whose genotype achieved the best result of the adaptation
function can be exact or approximate solution.

Test problems:

– Loop Input vector: value that determine loop stop, value that determine
loop step. Output: collection of values generated by loop,

– Factorial - Input vector: value for factorial. Output: factorial for value,
– Fibonacci - Input vector: value of Fibonacci number. Output: value of Fi-

bonacci number,
– GCD - Input vector: number 1, number 2. Output: GCD for two numbers,
– Bubble sort - Input vector: collection on values. Output: sorted collection of

numbers,
– Distinct roots Input vector: values of delta, b and a. Output: distinct roots

values.

Parameters for experiments were:

– the size of population N = 500,
– the crossover parameter CR = 0.9,
– the mutation parameter F = 0.1,
– the maximum number of iterations is equal to 500,
– the maximum tree depth (TBGP) is equal to 20,
– the maximum operator nodes is equal to 200,
– the maximum program length (LGP) is equal to 200,
– for every testable function the algorithm was run 10 times,
– the maximum algorithm length: algLen = 100,
– the maximum function length: funLen = 10,
– the maximum depth of nesting: maxDepth = 2,
– percent of the population of test subjects: testBoids = 5.



GP with Dynamically Regulated Parameters for Generating Program Code 371

Table 3. Medium percentage errors of best individuals in the population (part 1)

Loop Factorial Fibonacci
TGP TGP (γ) LGP LGP (γ) TGP TGP (γ) LGP LGP (γ) TGP TGP (γ) LGP LGP (γ)

50 28.3 29.9 21 22.1 57.9 59.1 55.9 56.8 70.3 76.1 66.1 66.4
100 28 28.1 20.3 19.2 56.4 58.4 54.1 54.2 65.1 67.9 65 64.7
150 27.8 27.9 19.7 17.6 53.1 55.9 49.8 50.7 61.8 63.8 59.4 59.3
200 27.4 25.3 19.4 16.1 49.1 49.3 46.2 46.6 56.2 55.9 53.1 53.7
250 26.5 24.1 18.9 14.9 43.9 43.4 41.6 39.3 49.6 49.5 47.6 46.2
300 25.2 22.3 18.2 14.1 41 39.2 38.4 33.9 47.3 45.1 44.4 40.9
350 24.3 21.6 17.8 13.5 38.4 32.8 33.9 29.1 45 40 39.6 37.1
400 23.6 21.4 17.1 13.2 32.6 28.4 29.1 25 42.9 37.4 37.5 33.8
450 23.1 21.4 16.8 12.9 30.2 26.1 27.8 23.4 41.2 36.1 35.1 31.4
500 22.8 21.4 16.7 12.9 29.4 25.9 26.1 22.5 40.3 35.7 34.9 30.2

Table 4. Medium percentage errors of the best individuals in the population (part 2)

GDC Bubble sort Distinct roots
TGP TGP (γ) LGP LGP (γ) TGP TGP (γ) LGP LGP (γ) TGP TGP (γ) LGP LGP (γ)

50 91.6 91.4 84.7 88.2 96.4 98.6 83.7 88.9 90.2 93.9 89.4 91.6
100 90.9 89.6 79.1 81 84.5 85.7 79.9 81.3 85.2 89.4 83.1 85
150 89.1 81.2 73.5 75.9 82.6 82.1 76.6 75.4 80.1 80.6 73.9 74.2
200 84.9 74.7 67.9 68.1 80.1 76.4 72.9 70.2 76.7 78.1 64.8 61.9
250 70.6 61.9 55.6 55.3 76.5 72.2 68.5 62.3 72.8 72.5 59 56.4
300 62.7 51.8 49.4 46.8 69.8 68.5 62 58.6 66.2 64.9 56.7 52.8
350 53.8 45.5 45.3 42.3 65.2 63.8 58.3 53.8 61.9 58.7 50.3 48.9
400 49.2 39.4 42.5 38.5 61.4 60.2 56.7 52.1 54.3 50.1 48.7 46.7
450 46.3 37.9 40 36.2 59.7 58.9 52.1 51.3 49.8 44.6 45.1 42.5
500 44 36.1 39.1 34.9 58.4 58.1 51.6 50.9 48.3 42.1 44.5 39.8

Fig. 1. Median error (left) and minimum error (right) in individual

Tables 3 and 4 show the results of the best individuals in a given iteration
of the algorithm. Adding a γ parameter allowed improving the results obtained
in each test. In addition, our algorithm acquires a better result long before the
classical approach. As expected from previous studies, when more than 500 iter-
ations stagnation of the results appears[2]. In fig. 1 we presented that the median
results of the algorithm with use of γ parameter does better than the classical
approach (with the exception of bubble sort algorithm). In fig. 1 you can also
notice that the minimal error of the best individual is significantly reduced com-
paring to the classical GP algorithms. In the box plot it an be noticed that
in most cases the population is concentrated around better solutions, and indi-
viduals with large error are marginalized. Furthermore we have noticed a strong



372 T. �Lysek and M. Boryczka

Fig. 2. Box plot of iteration 500

tendency of the population with good solutions to concentrate while maintaining
the margin to the possibility of exploration.

6 Conclusions and Future Work

We have provided a better algorithm for generating a program code. By applying
the proposed modification created program code is usable as a template code or
the initial solution generator. Proposed γ parameter allows significant acceler-
ation for better performance and reduces the size of individuals. The proposed
algorithm in accordance with earlier experiments confirms the validity of the
application of the populations of not less than 300, but not more than 500 be-
cause of constant stagnation results. LGP algorithm is definitely better adapted
to the problem of the program code generation, mostly due to the structure of
the individual. Future research will be based on checking whether the proposed
genetic programming algorithm can be adapted to solve the hashing problem.

References

1. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming - An In-
troduction, pp. 133–134. Morgan Kaufmann Publishers (1998)

2. �Lysek, T., Boryczka, M.: Dynamic parameters in GP and LGP. In: Nguyen, N.T.,
Trawiński, B., Katarzyniak, R., Jo, G.-S. (eds.) Adv. Methods for Comput. Collec-
tive Intelligence. SCI, vol. 457, pp. 219–228. Springer, Heidelberg (2013)

3. Brameier, M., Banzhaf, W.: Linear Genetic Programming, pp. 130, 183–185, 186.
Springer (2007)

4. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

5. Luke, S., Spector, L.: A Comparison of Crossover and Mutation in Genetic Pro-
gramming (1997)

6. �Lysek T.: Dedicated language and MVC platform for Genetic Programming algo-
rithms. Journal of Information, Control and Managament Systems (2012)

7. Nedjah, N., Abraham, A., de Macedo Mourelle, L.: Genetic Systems Programming:
Theory and Experiences, pp. 16–17. Springer-Verlag (2006)

8. Weise, T.: Global Optimization Algorithms: Theory and Application, pp. 169–174,
191–195, 207–208 (2009)


	Genetic Programming with Dynamically
Regulated Parameters for Generating
Program Code

	1 Introduction
	2 Related Work
	3 Genetic Programming and Linear Genetic Programming
	4 Dynamic Parameters in Genetic Programming
	5 Experiments and Results
	6 Conclusions and Future Work
	References




