
Chapter 2

Climbing the “Stairway to Heaven”:

Evolving From Agile Development

to Continuous Deployment of Software

Helena Holmström Olsson and Jan Bosch

Abstract Software-intensive systems companies need to evolve their practices

continuously in response to competitive pressures. Based on a conceptual model

presented as the “Stairway to Heaven,” we present the transition process when

moving from traditional development towards continuous deployment of software.

Our research confirms that the transition towards agile development requires a

careful introduction of agile practices into the organization, a shift to small devel-

opment teams, and a focus on features rather than components. The transition

towards continuous integration requires an automated test suite, a main branch to

which code is continually delivered, and a modularized architecture. The move

towards continuous deployment requires internal and external stakeholders to be

fully involved and a proactive customer with whom to explore the concept. Finally,

the transition towards R&D as an innovation system requires careful ecosystem

management in order to align internal business strategies with the dynamics of a

competitive business ecosystem. Characteristic for all transitions is the critical

alignment of internal and external processes in order to fully maximize the benefits

as provided by the business ecosystem of which a company is part.

2.1 Introduction

Today, software development is conducted in increasingly dynamic environments

characterized by inter-organizational relationships and dependencies. From being

an activity defined by an organization’s internal processes and practices, software

H.H. Olsson (*)

Department of Computer Science, Malmö University, Malmö, Sweden

e-mail: helena.holmstrom.olsson@mah.se

J. Bosch

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_2

15

mailto:helena.holmstrom.olsson@mah.se
mailto:Jan@JanBosch.com


development is transitioning towards becoming an activity characterized by open

innovation and co-creation of value in which an ecosystem of stakeholders

co-evolves capabilities around new innovations [1, 2]. Typically, fast-changing

and unpredictable market needs, complex and changing customer requirements,

and pressures of shorter time-to-market are challenges that face most business

ecosystems. To address this situation, the vast majority of companies have started

adopting agile development methods with the intention to enhance the organiza-

tion’s ability to respond to change. In emphasizing flexibility, efficiency, and speed,

agile practices have led to a paradigm shift in how software is developed [3–5].

However, while the adoption of agile practices has enabled companies to shorten

development cycles and increase customer collaboration, there is an urgent need to

learn from customers also after deployment of the software product. The concept of

continuous deployment, i.e., the ability to deliver software more frequently to

customers and benefit from frequent customer feedback, has become attractive to

companies. If this is achieved, companies could benefit from even shorter feedback

loops, more frequent customer feedback, and the ability to more accurately validate

whether the functionality that is developed corresponds to customer needs and

behaviors. While the ability to continuously deploy new software functionality

creates new business opportunities and extends the concept of agile practices, it

presents a number of challenges.

In this chapter, we present a multiple-case study in which we explore four

software development companies that are currently moving towards continuous

deployment of software. We present the challenges these companies face when

transitioning towards continuous deployment and beyond. Also, we identify actions

companies need to take to address, and overcome, these challenges. As our theo-

retical framework for analysis, we use the ESAO model [6]. The model provides

dimensions for assessing the end-to-end dimensions of business, technology, and

organization with considerations especially taken to external stakeholders and the

business ecosystem of which a company is part.

2.2 Background

2.2.1 The “Stairway to Heaven”

Companies evolve their software development practices over time. Typically, there

is a pattern that most companies follow as their evolution path and that we have

reported on in previous studies [5]. We refer to this evolution as the “Stairway to

Heaven,” and it is presented in Fig. 2.1. The phases of the “Stairway to Heaven” are

discussed in more detail in the remainder of this section. As a summary, companies

evolving from traditional development start by experimenting with one or a few

agile teams. Once these teams are successful, agile practices are adopted by the

R&D organization. As the R&D organization starts showing the benefits of working

16 H.H. Olsson and J. Bosch



agile, system integration and verification becomes involved and the company

adopts continuous integration. Once continuous integration runs internally, lead

customers often express an interest to receive software functionality earlier than

through the normal release cycle. They want continuous deployment of software.

The final step is where the software development company collects data from its

customers and uses the installed customer base to run frequent feature experiments.

Step 1: As the first step in our model, and the starting point for most embedded

systems development companies, there is traditional development. We refer to

traditional development as an approach to software development characterized

by slow development cycles, sequential phases, and a rigorous planning phase in

which requirements are frozen upfront [7]. Typically, the approach is character-

ized by a waterfall-style interaction between product management, product

development, system test, and the customer. Projects adopting this development

approach suffer from long feedback cycles and difficulties to integrate customer

feedback into the product development process [5, 7]. Typically, delivery to the

customer takes place in the end of the project life cycle, and it is not until then

that customers can provide feedback on the software functionality they have

received.

Step 2: As a way to address the many challenges experienced in the traditional

development approaches, most companies start adopting agile development

practices. Agile practices are characterized by small cross-functional develop-

ment teams, short development sprints resulting in working software, and

continuous planning in which the customer is involved to allow for continuous

customer feedback [4, 8]. In agile organizations, however, product management

and system verification still work according to the traditional development

approach [5].

Step 3: The third step in our model is where a company succeeds in establishing

practices that allow for frequent integration of work, daily builds, and fast

commit of changes, e.g., automated builds and automated test. At this point,

both product development organization and test and verification organization

work according to agile practices with short feedback cycles and continuous

Fig. 2.1 The “Stairway to Heaven” evolution model

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 17



integration of work. Humble and Farley [9] define continuous integration as a

software development practice where members of a team integrate their work

frequently, leading to multiple integrations per day.

Step 4: Continuous deployment implies that you continuously push out changes to

the code instead of doing large builds and having planned releases of large

chunks of functionality. This allows for continuous customer feedback, the

ability to learn from customer usage data, and to eliminate work that doesn’t
produce value for the customer. At this point, R&D, product management, and

customers are all involved in a rapid, agile development cycle in which response

time is short [10].

Step 5: The fifth and final step in the “Stairway to Heaven” evolution model is

where the development organization responds based on instant customer feed-

back and where actual deployment of software functionality is seen as a way of

validating functionality. The intention is to expose customers to partial imple-

mentation of functionality and use their feedback for determining the value of

that particular functionality [11].

2.2.2 The ESAO Model

One of the most common models to provide a holistic perspective of the dimensions

of business, technology, and organization is the BAPO model [12, 13]. The BAPO

model defines four concerns, i.e., business, architecture, process, and organization,

which can be used for the mapping of roles and responsibilities and for understand-

ing organizational structures [13]. The model is frequently applied for analysis and

assessment in both academia and industry.

More recently, the ESAO model has been proposed as an extension to the BAPO

model [6]. The ESAO (Ecosystem, Strategy, Architecture and Organizing) model

consists of six interdependent dimensions that are important to take into account for

software development companies when assessing the alignment between their

business, their technologies, their processes, and their internal and external inter-

actions. The six dimensions concern an internal and an external company perspec-

tive, and it is helpful for understanding the interdependency between a company

and the ecosystem of which it is part. In this study, we apply the external dimen-

sions, i.e., the ecosystem dimensions, in our analysis of the challenges and the

actions involved in the transition between each of the steps in the “Stairway to

Heaven” model.

In Fig. 2.2, we present the ESAO model. The model emphasizes that the internal

and external perspective on each dimension need to be aligned with each other, i.e.,

ecosystem strategy and internal strategy, ecosystem architecture and internal archi-

tecture, and ecosystem organizing and internal organizing. The ESAO model

focuses on achieving and maintaining alignment between internal and external

dimensions, and therefore, we find it useful in our analysis of how actions required

by a company interplay with the ecosystem of which the company is part.

18 H.H. Olsson and J. Bosch



2.2.2.1 The Ecosystem Perspective

In the ESAO model, the ecosystem perspective emphasizes the role of an organi-

zation in a larger context and the implications this has on business strategy. As

illustrated in the model, it is critical to align internal processes with external

processes and to align internal change initiatives with strategic options that are

within the business ecosystem of which the organization is part. Below, we describe

each dimension as presented in [6]:

Ecosystem Strategy: The strategy dimension of a company is related to the

business ecosystem of the organization and the strategic options that it has available

in its role in this ecosystem. Depending on the strategic choices made by the

company, there are significant implications on the system and software develop-

ment practices of the organization.

Ecosystem Architecture: The architecture dimension defines the interface

between an organization’s internal architecture and the solutions that are provided

by suppliers, firms that build software on top of a product or platform, and other

roles that have an impact on the product and its architecture. In addition to the focus

on interfaces between different stakeholders, focus is also on the architecture

strategy. In being part of a business ecosystem, commoditization and innovation

of new functionality are ongoing processes that have an impact on long-term

architectural planning.

Ecosystem Organizing: The organizing dimension deals with how firms work

with their customers, suppliers, and ecosystem partners in terms of processes, tools,

and ways of organizing the communication and collaboration. For example, many

companies have internally adopted agile ways for working while they have sup-

pliers that still use traditional development, causing a disruption in the internal

Architecture

Organizing

Strategy

Fig. 2.2 The ESAO model

[6]

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 19



development processes. In the ESAO model, the organizing dimension emphasizes

the importance of aligning internal and external development and release processes.

2.3 Research Method and Sites

This study builds on a six months multiple-case study [14], involving four software

development companies. All four companies are moving towards continuous

deployment of software. In representing different stages in this transition, we find

these companies of particular interest for understanding the challenges involved, as

well as the actions to take, in this process.

The main data collection method used is semi-structured interviews with open-

ended questions [15]. In total, 18 interviews were conducted. In companies A

and B, we conducted five interviews in each company, involving software and

function developers, software architects, system engineers, configuration managers,

and project leaders. In companies C and D, we conducted four interviews in each

company, involving software developers, component/system integrators, project/

release managers, product line maintenance, and a product owner. All 18 interviews

were conducted in English and each interview lasted for about 1 h. In addition to

summarizing notes, all interviews were recorded in order for the research team to

have a full description of what was said [14]. Each interview was transcribed and

the transcriptions were shared among the researchers to allow for further elabora-

tion on the empirical material. In addition to the interviews, documentation review

and field notes were complementary data collection methods, including software

development documents, project management documents, and corporate websites

and brochures. The four companies involved in our study are described below:

Company A is involved in developing systems for military defense and civil

security. The systems focus on surveillance, threat detection, force protection, and

avionics systems. Internally, the company is organized in different departments

with systems engineering (SE) and quality assurance (QA) being the two depart-

ments included in this study. In relation to the model presented in Fig. 2.1, this

company is best described as a company doing traditional development but moving

towards an agile R&D organization.

Company B is an equipment manufacturer developing, manufacturing, and

selling a variety of products within the embedded systems domain. The company

structure is highly distributed with globally distributed development teams. Also,

suppliers do a significant part of the development. In relation to the model presented

in Fig. 2.1, this company is described as a company close to continuous integration.

Still, parts of the organization are traditional, but there are a number of teams that

operate in a highly agile manner and that have continuous integration in place.

Company C is a manufacturer and supplier of transport solutions for commer-

cial use. Similar to company B, the development organization is largely dependent

on supplier organizations. In relation to the model presented in Fig. 2.1, this

company can be described as a company with parts of its development organization

20 H.H. Olsson and J. Bosch



being traditional and parts of it being highly agile and with continuous integration

practices in place.

Company D is a provider of telecommunication systems and equipment, com-

munications networks, and multimedia solutions for mobile and fixed network

operators. The organization is highly distributed with globally distributed develop-

ment. In relation to the model presented in Fig. 2.1, this company is described as a

company with established practices for continuous integration and with initiatives

to continuous deployment in place.

2.4 Findings and Analysis

In this section we present our case study findings and analysis. In our presentation,

we outline the challenges our interviewees experience when transitioning between

each of the steps in the “Stairway to Heaven” (Fig. 2.1). In our analysis, we use the

ESAO framework (Fig. 2.2) and the dimensions of (1) ecosystem strategy, (2) eco-

system architecture, and (3) ecosystem organizing, to describe each transition and

what actions the companies need to take to address these challenges.

2.4.1 From Traditional to Agile R&D

All companies involved in our study are transitioning towards agile development

practices. Either small parts of the organization are agile or, as in some companies,

the majority of the development teams work according to agile practices. One of the

challenges that the companies experience when transitioning towards agile prac-

tices is that current processes and ways of working are often difficult to align with

the agile parts of the organization. Also, while internal processes and structures are

agile, it is not necessarily so that external stakeholders, such as suppliers and

customers, transition towards agile practices. To be part of a larger business

ecosystem has implications on processes as well as tools, and this is something

that all companies experience as a true challenge when going agile. Another

challenge is the business model that is usually traditional in character and based

on yearly releases and long development cycles. This gives a conservative impres-

sion with expectations set upfront rather than being flexible and responsive towards

evolving customer needs.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from traditional to agile development. To do this, we use

the ESAO ecosystem dimensions [6] emphasizing the importance of aligning

internal company dimensions with external ecosystem dimensions.

Ecosystem Strategy: The business strategy is critical when establishing a culture
and support for a new development approach. Our study emphasizes the importance

of introducing agile development as an approach that allows for new business

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 21



opportunities in terms of frequent releases, shorter time-to-market, and close

collaboration to customers. While this creates new opportunities in terms of busi-

ness value, it might upset other stakeholders in the ecosystem. Therefore, compa-

nies need to strategically position themselves to maximize revenue while at the

same time contribute to the business ecosystem.

Ecosystem Architecture: When transitioning towards agile development, an

important initiative is to make sure that feature teams are supported by an architect

who “safeguards” the team and the integrity of the architecture. Our study empha-

sizes the importance of having appointed architects that work closely with the

development teams and help in protecting the architecture. Also, these architects

play an important role in aligning the internal architecture with the dynamics of an

external ecosystem.

Ecosystem Organizing: The introduction of agile working practices is important

and requires strong managerial support. Agile development implies small, cross-

functional teams working on parts of the functionality. One important initiative

when moving towards agile development is therefore to have mechanisms for team

formation and for teams to empower and self-direct themselves. Also, renegotiating

supplier contracts to facilitate for agile development might be necessary and, if so,

needs to be a highly prioritized activity.

2.4.2 From Agile to Continuous Integration

Several of the companies involved in this study have continuous integration

practices in place in at least parts of the organization. While the adoption of

automated tests is diverse, it is seen as the way forward and as one highly prioritized

activity to achieve more frequent delivery of software. According to our inter-

viewees, there are a number of challenges to address when transitioning from agile

to continuous integration. First, the dependency to other ecosystem stakeholders

such as suppliers makes development complex, and most interviewees experience

this dependency as having a negative effect on development speed. In addition,

several of the interviewees mention that fitting different components from different

suppliers takes time, so it is not only the development lead-time that is long but also

the integration of components that is time-consuming and costly. One challenge

that is often mentioned is the dependency between components and component

interfaces. This makes modularization difficult and hence, development teams are

highly dependent on each other. Another challenge is the testing activities. All

companies emphasize the need for automatic testing and daily builds, while at the

same time finding this is difficult in an embedded system involving hardware with

slow development cycles.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from agile to continuous integration. To do this, we use the

ESAO ecosystem dimensions [6] emphasizing the importance of aligning internal

company dimensions with external ecosystem dimensions.

22 H.H. Olsson and J. Bosch



Ecosystem Strategy: When transitioning to continuous integration, the business

perspective needs to shift from the “milestone perspective” with yearly releases to a

perspective in which delivery and release are viewed as continuous activities and

where there is always a shippable product. This requires support, not only from the

internal business models but also from other stakeholders in the business ecosys-

tem, such as external suppliers as well as customers.

Ecosystem Architecture: To reap the benefits of continuous integration, devel-

opment needs to be modularized into smaller units, i.e., the build process needs to

be shortened so that tests can be run more frequently on particular parts of the

system. Our study shows that development lead-time is efficiently reduced once the

architectural concerns are modularized. This allows for more frequent deliveries,

the opportunity to learn more frequently from feedback, but also for efficient

decoupling of dependencies to other ecosystem stakeholders.

Ecosystem Organizing: The transition towards continuous integration requires a
cultural shift and a transformation of previous traditions and values. Companies

need to organize themselves to allow for short cycles between the development

organization and validation and verification. To align these two is critical to benefit

from daily builds and frequent tests. Also, companies need to adopt test-driven

development practices and processes that support automated tests. In order to

reduce complexity, companies should strive for a process in which code is checked

into one main development branch, i.e., the production line, to avoid having several

branches since that will only add to complexity and lead-time.

2.4.3 From Continuous Integration to Continuous
Deployment

In several of the companies involved in this study, continuous integration is a well-

established practice, and there are attempts to involve proactive customers in

continuous deployment of software functionality. However, there are a number of

barriers that need to be addressed to succeed in this endeavor. What is most evident

from our interviews is the complexity that arises in different network configurations

at customer sites. While the product has its standard configurations, there are

always customized solutions as well as local configurations that add complexity.

In a business ecosystem involving a large number of stakeholders, this becomes a

major task to manage for the company deploying the software. A common chal-

lenge is when a customer wants a new feature but has an old version of the product

to which this new feature has to be configured. From the interviews it is clear that

customers still regard upgrades and new features as a challenge due to the risk of

interfering with legacy. Furthermore, the internal verification loop needs to be

significantly shortened to not only develop functionality fast but to also deploy it

as fast at customer site.

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 23



In the transition towards continuous deployment, all corporate functions need to

be involved. Similar with introducing agile practices to different parts of the

organization as the very first step when moving from traditional development to

agile development, the transition towards continuous deployment requires involve-

ment of different organizational units in order to fully succeed. Especially, product

management needs to be involved as they are the interface towards customers.

Finally, finding a proactive customer who is willing to explore the concept of

continuous deployment is found critical.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from continuous integration towards continuous deploy-

ment. To do this, we use the ESAO ecosystem dimensions [6] emphasizing the

importance of aligning internal company dimensions with external ecosystem

dimensions.

Ecosystem Strategy: When moving towards continuous deployment of software,

companies need to identify a proactive customer within the ecosystem who is

willing to explore the concept. When having identified a “lead customer,” the

development organization can start building a continuous deployment culture and

capability, in which fast customer feedback serves as direct input to improved

software functionality. The lead customer serves as a role model to other customers

in the ecosystem and benefits from the opportunity to get new software function-

ality as soon as the development organization has something to deliver. To achieve

this, companies need to adapt their business model and strategy to support contin-

uous deployment of functionality. Also, continuous deployment of software will

allow companies to move closer to its customers, and therefore, current relation-

ships and dependencies within the ecosystem need to be strategically reconfigured.

Ecosystem Architecture: When deploying software on a continuous basis,

companies need efficient mechanisms to roll back unsuccessful deployments and

mechanisms to deploy parts of the system rather than the entire system. In terms of

architecture, complexity arises when different customers have different network

configurations to which software is deployed. While the product has its standard

configurations, there are always customized solutions as well as local configura-

tions that cannot be fully accounted for. Therefore, companies need to carefully

align the internal architecture with the ecosystem of which it is part.

Ecosystem Organizing: To succeed with continuous deployment, all corporate

functions need to work in short cycles and with the intention to deliver smaller

features more frequently to customers. This requires that not only the development

and testing organizations work in short cycles but that product management and

release, as well as customers, engage in this. Similar with introducing agile prac-

tices, the transition towards continuous deployment requires involvement of differ-

ent organizational units in order to fully succeed. In addition, external ecosystem

stakeholders are affected which requires companies to manage increased complex-

ity and competitiveness.

24 H.H. Olsson and J. Bosch



2.4.4 From Continuous Deployment to R&D as
an “Innovation System”

In one of the companies involved in this study, agile processes have been around for

several years, and they have become widespread within the company. A large part

of the organization is familiar with continuous integration, and the company is

pushing towards continuous deployment for parts of the product and for a selected

segment of its customers. The fast feedback loop to customers is regarded as the

major benefit. According to the company, faster feedback means cheaper develop-

ment since the development organization can spend time on developing things

customers want instead of correcting mistakes in functionality that is not necessar-

ily what the customer asked for. In advancing towards R&D as an “innovation

system,” the company foresees that their product needs to be instrumented so that

customer data can be automatically collected from the installed product base. To

identify relevant metrics is a highly prioritized activity in order to collect data that

will work as a basis for product improvements and new feature development.

Second, the company needs to develop the capability to effectively use the collected

data to test new ideas with customers. In the transition towards R&D as an

innovation system, the company will move closer to its customers. This might

upset other stakeholders in the ecosystem who have previously been the ones

interacting with customers. To carefully manage this tension, while at the same

time generate business revenue, is a challenge identified as critical for successful

co-creation of customer value.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from continuous deployment to R&D as an “innovation

system.” To do this, we use the ESAO ecosystem dimensions [6] emphasizing the

importance of aligning internal company dimensions with external ecosystem

dimensions.

Ecosystem Strategy: To have R&D as an innovation system that responds

directly based on customer feedback, companies need to establish a strategy and

culture in which they continuously innovate in synergy with its customers. Instead

of having requirements frozen before development starts, this approach allows for

evolving requirements once the system is taken into use by its customers. To

achieve this, strategic collection and analysis of customer data are critical, as well

as mechanisms that allow for quick response to customers. Also, business and

pricing models need to support short-cycle and customer data-driven innovation

processes in the ecosystem.

Ecosystem Architecture: To support a viable ecosystem architecture, infrastruc-

tures need to be established that support run-time variation of functionality. This is

required to allow for continuous innovation and experimentation with customers.

For example, the architecture needs to support A/B testing which is one technique

that is applied by companies when experimenting with customers. Also, instrumen-

tation of code for data collection purposes is necessary which usually requires an

extension of current architectures.

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 25



Ecosystem Organizing: For achieving short cycles and rapid response to cus-

tomer feedback, requirements, development, validation, and release functions need

to work together. Initiatives that facilitate for aligning and integrating internal and

external corporate functions need to be prioritized. Companies need to develop the

capability to effectively use data collected from other ecosystem stakeholders in

order to improve current system versions, develop new functionality, and innovate

entirely new products. This requires careful collaboration with other ecosystem

stakeholders and an organization that allows external contributions.

Conclusions

In this study, we explore how software development companies evolve their

practices over time. Based on a conceptual model presented as the “Stairway

to Heaven,” we present the transition process when moving from traditional

development towards continuous deployment of software.

Based on our analysis, and in accordance with previous research, we see

that the transition towards agile development requires a careful introduction

of agile practices into the organization, a shift to small development teams,

and a focus on features rather than components [16]. The transition towards

continuous integration requires an automated test suite, a main branch to

which code is continually delivered, and a modularized architecture [9]. The

move towards continuous deployment requires internal and external stake-

holders to be fully involved and a proactive customer with whom to explore

the concept [9]. Finally, the transition towards R&D as an innovation system

requires careful ecosystem management in order to align internal business

strategies with the dynamics of a competitive business ecosystem [6,

11]. Characteristic for all transitions is the critical alignment of internal and

external processes in order to fully maximize the benefits as provided by the

business ecosystem of which a company is part.

References

1. Moore, J.F.: Predators and prey: a new ecology of competition. Harv. Bus. Rev. 71(3), 75–86

(1993)

2. Iansiti, M., Levien, R.: Strategy as ecology. Harv. Bus. Rev. 82(9), 69–78 (2004)

3. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile principles on

market-driven software product development. J. Softw. Maintenance Evol.: Res. Pract. 22, 53–

80 (2010)

4. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change.

Computer 36(6), 39–43 (2003)

5. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”—A multiple-case

study exploring barriers in the transition from agile development towards continuous deploy-

ment of software. Software Engineering and Advanced Applications (SEAA), 38th

EUROMICRO conference, pp. 392–399. IEEE Press (2012)

26 H.H. Olsson and J. Bosch



6. Bosch, J., Bosch-Sijtsema, P.: ESAO: A holistic ecosystem-driven analysis model. In: Pro-

ceedings of the 5th International Conference on Software Business (ICSOB), Cyprus, 15–

18 June 2014

7. Sommerville, I.: Software Engineering, 6th edn. Pearson Education, Essex (2001)

8. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation. Com-

puter 34(9), 120–127 (2001)

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test

and Deployment Automation. Addison-Wesley, Boston (2011)

10. Shalloway, A., Trott, J.R., Beaver, G.: Lean-Agile Software Development: Achieving Enter-

prise Agility. Addison-Wesley, Boston, MA (2009)

11. Bosch, J.: Building products as innovation experiment systems. In: Proceedings of the 3rd

International Conference on Software Business (ICSOB), MIT, Cambridge, 18–20 June 2012

12. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A general model

of software architecture design derived from five industrial approaches. J. Syst. Softw. 80(1),

106–126 (2007)

13. Van der Linden, F., Bosch, J., Kamsteries, E., Kansala, K., Obbink, H.: Software product

family evaluation. In: 3rd International Conference of Software Product Lines, SPLC 2004,

pp. 110–129. Springer, Boston (2004)

14. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J. Inf. Syst. 4,

74–81 (1995)

15. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

16. Larman, C., Vodde, B.: Scaling Lean and Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. Pearson Education, Boston (2009)

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 27


	Chapter 2: Climbing the ``Stairway to Heaven´´: Evolving From Agile Development to Continuous Deployment of Software
	2.1 Introduction
	2.2 Background
	2.2.1 The ``Stairway to Heaven´´
	2.2.2 The ESAO Model
	2.2.2.1 The Ecosystem Perspective


	2.3 Research Method and Sites
	2.4 Findings and Analysis
	2.4.1 From Traditional to Agile RandD
	2.4.2 From Agile to Continuous Integration
	2.4.3 From Continuous Integration to Continuous Deployment
	2.4.4 From Continuous Deployment to RandD as an ``Innovation System´´

	Conclusions
	References


