
Jan Bosch Editor

Continuous
Software
Engineering

Continuous Software Engineering

ThiS is a FM Blank Page

Jan Bosch

Editor

Continuous
Software
Engineering

Editor
Jan Bosch
Chalmers University of Technology
Gothenburg, Sweden

ISBN 978-3-319-11282-4 ISBN 978-3-319-11283-1 (eBook)
DOI 10.1007/978-3-319-11283-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014956014

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to

Lars Pareto

who unexpectedly passed away in 2013.

We miss your passion,
your creativity and
your dedication to research,
but above all we miss you
as a friend and colleague.

ThiS is a FM Blank Page

Foreword

Engineering complex software systems is a true engineering challenge mostly

based on human-based approaches! Transferring leading-edge software engineer-

ing approaches into practice is a challenging task and requires close—laboratory-

style—collaboration between research and practice.

This thesis is based on frequent lessons learned in the past, where innovative

software engineering approaches were introduced in practice without close collab-

oration with research and did not produce sustainable improvements. What had

happened? New development approaches were introduced without measuring their

effects, adapting them to specific company needs, and without continuously

improving them. As a result, software developers were not convinced about the

benefits for their work and tended to fall back to previous practice. In that sense, the

investment into new development approaches did not show any return on

investment.

Best practice examples for appropriate technology transfer—based on close

collaboration, measurement of effects, and continuous improvement—are the Soft-

ware Engineering Laboratory (SEL) at NASA’s Goddard Space Flight Center in the
USA under the leadership of Victor Basili, Frank McGarry, and Jerry Page and the

Fraunhofer Institute for Experimental Software Engineering (IESE) in Germany

under the leadership of Dieter Rombach and Peter Liggesmeyer.

NASA’s SEL was a close collaboration between the University of Maryland

(research), NASA’s Goddard Space flight Center (owner of the satellite control

software systems), and Computer Science Corporation (software contractor to

NASA). In close collaboration, strengths and weaknesses of development practices

were analyzed quantitatively, and new development approaches were prepared by

research and introduced by means of a controlled technology transfer process

(accompanied by controlled experiments and case studies). As a result of this

approach, innovative approaches such as formal reviews, Cleanroom development,

and systematic reuse were introduced sustainably, and as a result the KPIs in terms

of quality, effort, and time were improved by orders of magnitude over a number of

years. The SEL can be considered the “mother” of all research and technology

vii

transfer organizations based on close research-practice collaboration. The SEL

received the first International Process Improvement award from IEEE and the

Software Engineering Institute at Carnegie Mellon University.

Fraunhofer’s IESE has established close collaborations with companies from all

sectors of industry in Germany, Europe, and beyond. Its competence is in software

and system engineering. It is considered a leader in applied research and technology

transfer related to scalable software engineering approaches, guaranteeing certain

qualities, and being applicable for all software-enabled innovations. Most of the its

customers are companies (large, medium, and small) from embedded system

domains (e.g., automotive, aerospace, medical devices), software and information

system domains (e.g., banking), or combinations of both (e.g., so-called smart

ecosystems in the areas of mobility, health, and energy management). Companies

receive sustained improvements of their software and system development capa-

bilities as well as ideas and concepts for new product ideas and business models.

Fraunhofer IESE is known foremost for its technologically sound and practically

applicable approaches for requirements engineering, architecture and software

product lines, automated testing, safety and security analysis and engineering,

and user experience generation.

The Software Center presented in this book is another remarkable organization

aimed at excellent applied research and technology transfer based on close collab-

oration between research and practice. The specific focus of the Software Center is

on continuous deployment of software.

The traditional process-based software development based on life cycle phases

with well-defined milestones has been challenged by so-called agile development

approaches aiming at development time reduction without sacrificing the resulting

product quality. We have learned as a community that agile development

approaches cannot replace process-based development approaches as a whole.

Instead we have learned that depending on application domain, criticality, size,

and qualification of people, either model may be the most appropriate. This has

been a revolution in that people began to understand that there is no silver bullet

process model, but the process model is a variable. Since then technology advances

such as Web 2.0 or SaaS have required a significant increase of releases in order to

optimize customer benefits. The Software Center explores the requirements and

processes most beneficial for such contexts. I am convinced, we have learned and

will continue to learn that—similar to the situation when agile complemented

process-based approaches—there will continue to be a justification for each

approach, depending on objectives and project context.

I expect the Software Center to continue to successfully complement other

existing research and technology transfer centers such as Fraunhofer IESE with a

specific focus on software development in the context of Web 2.0 and SaaS. This

book is an excellent introduction into the principles and works of the Software

Center. I wish the organizers of the center continued success not only for their own

sake but also for the sake of the European software development industry.

Kaiserslautern, Germany Dieter Rombach

July 2014

viii Foreword

Preface

As the rate of change and risk of disruption increase relentlessly, companies are

constantly battling to proactively adopt new innovations, be it business, technology,

or process innovations. No field is more intensely subject to this than the software-

intensive systems industry. Ranging from automotive, defense, and telecommuni-

cations systems to large, complex installed software solutions, the companies in this

industry have been subject to business model innovations, e.g., the transition from

products to services; to technology innovations, such as cloud computing and real-

time connectivity; and to process innovations, such as agile development practices,

continuous integration, and continuous deployment. The challenge for software-

intensive systems companies is how to maintain or even improve their competitive

position while responding to these disruptions to the normal way of doing things.

Similarly, software engineering research is experiencing its own set of forces in

that during the last decades, very few major, industry-changing new innovations

have originated in academia. Instead, industry has taken over the role of introducing

and driving large-scale adoption of new innovations. For instance, a business model

innovation such as open-source software originated in industry. Similarly, technol-

ogy innovations such as programming languages, ranging from Java to Scala, as

well as integrated development environments, such as Eclipse, find their roots in

industry. And finally, process innovations such as agile development and continu-

ous integration originate in industry, rather than in academia.

Universities are the homes of numerous highly intelligent, well-trained, and well-

intended individuals that are committed to making an impact, and software engi-

neering research groups and departments are no exception. What can then be the

reason for the lack of major innovations originating from academia? There are, I

believe, three main reasons: First, for a variety of reasons, discussed below, software

engineering researchers often have difficulty to gain access to their research envi-

ronment, which are the large-scale software R&D organizations where software

engineering happens. As a consequence, researchers instead focus on small-scale

problems that can be studied in a university context, such as studying student

projects or otherwise studying simulated, rather than real, environments. Second,

ix

especially over the last decade, the software engineering research community has

increasingly demanded empirical data to back up any research claims. This had the

intention of reducing the amount of “advocacy research,” i.e., researchers presenting

claims and providing logically sounding arguments why these claims could be

assumed to be true but without any real evidence that the intended outcomes

would be seen in reality as well. Although the demand for data accomplished the

intended effect, there was an additional effect: software engineering researchers

increasingly studied and reported on the current state at software companies as this

was the only way to collect relevant data. However, they were no longer innovating

on how to improve the current state of practice as the results would not be publish-

able anyway. Instead, this task increasingly fell to industry. Third, and perhaps most

important, academic researchers are not exposed to the market forces experienced

by software-intensive systems industries and consequently focus their efforts pre-

dominantly on addingmore detail, more steps, more activities, more documentation,

more intermediate artifacts, more specialization of roles, etc. This focus runs counter

on the pressures experienced by industry where the focus is on translating identified

customer needs to solutions in the hands of customers as rapidly as possible with as

little detail, as few steps and activities, as little or no documentation, and as few

artifacts except code as possible, preferably accomplished by anyone who is avail-

able for the task at hand. This easily causes a certain level of arrogance among

software engineering researchers and a belittling of the accomplishments of numer-

ous outstanding engineers in industry as the goals that these engineers are, con-

sciously or unconsciously, working towards are not properly understood by

researchers who project their own goals on industrial practice.

As one may understand from the above, it has proven to be notoriously difficult

to build effective, scalable, and long-term software engineering research collabo-

rations between industry and academia. Of course, there are many examples of

individual researchers or small groups collaborating for years with a company. And

there are examples of companies that have gone out of their way to build relation-

ships with researchers that have lasted for extended periods of time. However,

examples of collaborations between sizable groups of relatively diverse software

engineering researchers and groups of companies with similar challenges are few

and far between. In fact, one of the few long-standing examples of a collaboration

of this type is the Fraunhofer Institute for Experimental Software Engineering, and

consequently, I am grateful that Professor Dieter Rombach has graciously agreed to

provide a foreword for this book.

It was with this understanding of the challenges of collaboration between industry

and academia in the area of software engineering that we started the Software Center

in 2011. Initially the collaboration started with four founding companies, i.e., Erics-

son, AB Volvo, Volvo Car Corporation, and Saab Electronic Defense Systems, and

the combined software engineering division between Chalmers University of Tech-

nology and Gothenburg University, with three projects and a handful of researchers.

Three years later, at the time of writing, we have eight companies and three univer-

sities, 15 research projects, and dozens of researchers involved in the Software Center.

Based on the above, it’s clear we are on to something. So, what are the

mechanisms that have made Software Center successful? There are at least three

x Preface

basic principles that are worth sharing here: First, all research takes place in

6-month sprints. A sprint starts in January or July and runs for 6 months. During

a sprint, the project goes through a full cycle of defining the research problem,

designing the research, collecting data or conducting the experiment or trial,

analyzing the results and presenting the results to the companies involved, as well

as publishing the research outcomes. Each project has a long-term goal and runs for

multiple or many sprints, but every sprint results relevant to the companies have to

be presented. Second, the technical experts at the companies decide what research

is conducted. At the end of every sprint, each ongoing project, as well as each newly

proposed project, presents a plan for what to study next. A task force consisting of

technical experts at the Software Center companies decides on a ranking of research

projects and potentially “kills” projects that are not delivering results relevant to the

member companies. This puts an equal balance on academic excellence and

industrial relevance. Finally, the longitudinal nature of projects allows researchers

to study current state at the member companies, but subsequently to propose

improvements. If the improvements are sufficiently appealing, some or all of the

software center companies will experiment with the improvement and, if success-

ful, deploy it broadly in the respective companies. This allows software engineering

researchers to be involved in and report on improvements in the way software

engineering is conducted in world-class companies. The advantage to researchers,

obviously, is that it is possible to study more than “current state” as well as the

ability to validate innovations at multiple companies, increasing the validity as well

as the ease of publication of research conducted in the scope of the Software Center.

Concluding, Software Center is an experiment to establish an effective, scalable,

and long-term software engineering research collaboration between academia and

industry. The book that you’re holding presents the results from the first 3 years. The

experiment, so far, is successful in that more companies, universities, and

researchers are joining the initiative. Also, many of the results, including the

Stairway to Heaven model, the CAFFEA model, the CIViT model, the HYPEX

model, as well as many other results, have been adopted or are in the process of being

adopted by the partner companies. Finally, over the last 3 years, the partner compa-

nies have progressed from experimenting with agile work practices to broad deploy-

ment of continuous integration in an agile teams context and the experimentation

with continuous deployment of software with selected customers for some compa-

nies. As Software Center, our goal is to help companies change faster than without

our involvement, and the evidence to date is that we’re delivering on that goal.

This book presents the results of the first phase of the Software Center, but it also

celebrates the great progress accomplished at the partner companies due to the

tireless efforts of the researchers in the Software Center and the champions at

partner companies. As director, I am humbled and grateful to everyone involved.

All have stepped up to the challenge and actively collaborated to create something

that is so much more than the sum of its parts.

Gothenburg, Sweden Jan Bosch

June 2014

Preface xi

ThiS is a FM Blank Page

Contents

Part I Introduction

1 Continuous Software Engineering: An Introduction 3

Jan Bosch

2 Climbing the “Stairway to Heaven”: Evolving From Agile

Development to Continuous Deployment of Software 15

Helena Holmström Olsson and Jan Bosch

3 Academia–Industry Collaboration: Getting Closer is the Key! 29

Anna Sandberg

Part II Agile Practices

4 Role of Architects in Agile Organizations . 39

Antonio Martini, Lars Pareto, and Jan Bosch

5 Teams Interactions Hindering Short-Term and Long-Term

Business Goals . 51

Antonio Martini, Lars Pareto, and Jan Bosch

6 A Framework for Speeding Up Interactions Between Agile Teams

and Other Parts of the Organization . 67

Antonio Martini, Lars Pareto, and Jan Bosch

7 Customer-Specific Teams for Agile Evolution of Large-Scale

Embedded Systems . 83

Helena Holmström Olsson, Anna B. Sandberg, and Jan Bosch

xiii

Part III Continuous Integration

8 The CIViT Model in a Nutshell: Visualizing Testing Activities

to Support Continuous Integration . 97

Agneta Nilsson, Jan Bosch, and Christian Berger

9 Continuous Integration Flows . 107

Daniel Ståhl and Jan Bosch

10 Towards Continuous Integration for Cyber-Physical Systems

on the Example of Self-Driving Miniature Cars 117

Christian Berger

11 Industrial Application of Visual GUI Testing: Lessons Learned . . . 127

Emil Alégroth and Robert Feldt

Part IV R&D as an Innovation System

12 Post-deployment Data Collection in Software-Intensive

Embedded Products . 143

Helena Holmström Olsson and Jan Bosch

13 The HYPEX Model: From Opinions to Data-Driven Software

Development . 155

Helena Holmström Olsson and Jan Bosch

Part V Organizational Performance Metrics

14 Profiling Prerelease Software Product and Organizational

Performance . 167

Vard Antinyan, Miroslaw Staron, and Wilhelm Meding

15 Industrial Self-Healing Measurement Systems 183

Miroslaw Staron and Wilhelm Meding

Part VI Industry Best Practices and Case Studies

16 Experiences from Implementing Agile Ways of Working

in Large-Scale System Development . 203

Jonas Wigander

17 Scaling Agile Mechatronics: An Industrial Case Study 211

Jonn Lantz and Ulf Eliasson

Index . 223

xiv Contents

Part I

Introduction

This part introduces the concepts underlying the entire book. It consists of three

chapters. The first chapter introduces the concept of continuous software engineer-

ing as well as the Software Center where the research reported on in this book took

place. The second chapter introduces the “Stairway to Heaven,” the basic frame-

work underlying the book. The framework defines the typical evolution path that

companies evolve through in response to competitive pressures and the need to

become more agile and responsive to customer needs. The third chapter captures

our learnings, accumulated during the first phase of the software center as well as

before, in the effective collaboration between industry and academia. We consider

accomplishing tangible industrial impact as equally important as academic publi-

cations (or, more accurately, as necessary for relevant academic publications).

Consequently, it is critically important for us to establish the most effective

collaboration mechanisms between industry and academia.

Chapter 1

Continuous Software Engineering: An

Introduction

Jan Bosch

Abstract Software-intensive industries are experiencing an unprecedented evolu-

tion of, among others, business models, architectures, ways of working, tooling, and

deployment. This transformation allows companies to respond much quicker to

changes in the market and to build solutions that much more accurately align with

customer needs. The Nordic software-intensive systems industry recognized this

challenge and partnered with academia to form the Software Center. The role of the

Software Center is to significantly accelerate the rate of adoption of these new

approaches at the partner organizations. In this chapter, we discuss the industry

trends, introduce the Software Center, and provide an overview of the remainder of

the book. This book presents the core results of the first phase (2011–2013) of the

Software Center.

1.1 Introduction

The software industry is in a state of transition. Up to some years ago, the

development life cycle of software was slow and measured in yearly release cycles

for on-premise software. In the embedded systems industry, the development cycle

of software was dictated by the development cycle for the hardware and the

mechanics of the systems. Software was treated as one of the technology compo-

nents that went into a product, and the system-level life cycle treated all compo-

nents equally.

During the last decade, this has started to change considerably. In the Web 2.0

and Software-as-a-Service (SaaS) world, the frequency of software release had

been increasing since the early 2000s, and 10 years later, several companies were

releasing new software multiple times per day. Initially these were companies that

could afford to have failed updates as the consequences to users would be limited,

J. Bosch (*)

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_1

3

mailto:Jan@JanBosch.com

but over time systems with more and more critical functionality also started to

release with the same multiple times per day frequency.

The Web 2.0 and SaaS companies realized that if something is difficult and hard,

such as releasing software to customers without quality issues, one should do it

often. This forces the organization to fix all the points where “it hurts.” The R&D

organization might be able to accept a yearly verification cycle where staff spends

many hours during a limited period to fix errors and get the quality up to release

levels. However, this becomes infeasible when the release frequency goes up and

consequently these tasks become automated and iteratively improved.

Once the release frequency of software went up, a second phenomenon surfaced:

Web 2.0 companies were starting to adopt A/B testing as technique to determine the

optimal implementation of features and functionality in products. A/B testing is

concerned with presenting one version of the software to some users and another

version to other users. The behavior of both groups of users is compared in order to

determine which version (A or B) leads to more desirable outcomes for the

company providing the product. Although Web 2.0 and SaaS solutions provide

significant advantages over on-premise software, such as removal of computing

infrastructure cost and system maintenance, a major advantage often not recognized

is that the experimental approach of A/B testing allowed online companies to

optimally align their software with customer needs in unprecedented ways. As

made popular by the 2002 Standish Group Chaos report [1], in most software

systems half of all the features are never used. This inefficiency provides a major

explanation of the advantages of SaaS over on-premise software, as SaaS solutions

are able to collect data on what customers actually use orders of magnitude more

easy than traditional software.

1.2 Software-Intensive Systems Industry

Over the last decade, a quiet revolution has taken place in the world of embedded

systems. Whereas for the longest time, software was either nonexistent or a very

small part of embedded systems, now company after company is adjusting its R&D

investment towards software. Today, companies in the telecom space, such as

Ericsson, spend more than 80% of their R&D budget in software. Even in the

automotive space, upwards of 70% of all innovation in products is software related.

A second trend that affects these industries is the transition from products to

services or at least products and services. Whereas the vast majority of companies

in the embedded systems space traditionally sold products, now more and more

companies are transitioning to offer their products as a service. In the telecom

space, operators frequently outsource the management of their telecom networks to

companies such as Ericsson. In the automotive space, the transition from car

ownership to having access to a car as a service is gradually taking shape, especially

in large cities where parking problems and congested roads severely diminish the

mobility value of owning a car. Famously, the Rolls-Royce company no longer sells

4 J. Bosch

jet engines but instead offers its engines as a service where airlines pay by the

flight hour.

When a company that traditionally sold products transitions to offering these

products as a service, the value patterns for that company change quite fundamen-

tally. In the case of a products business, maximizing product sales is the key

revenue driver. This causes a variety of different strategies, including planned

obsolescence, driving customers to buy more instances of a product and to discour-

age upgrading of already sold products. When the company offers its products as a

service, the revenue and profit drivers change fundamentally. The fewer products

can be deployed to satisfy the terms of the service contract, and the longer the

lifetime of these products, the higher the profitability of the company. One impor-

tant key factor in extending the life of a software-intensive product is to deploy new

versions of software that increase the capabilities of products already deployed in

the field.

A development that has seen enormous hype over the last 15 years, but that is

finally arriving for real, is the Internet of Things concept. All embedded systems

that are somewhat valuable are now connected to the Internet. In the telecom space,

products such as base stations and mobile phones have been connected due to the

very nature of these products. In the automotive space, trucks have been Internet

connected for more than a decade, but the connection was mostly used for fleet

management. However, now also cars are becoming connected and much more

aware of their surroundings. Also in the consumer electronics space, everything

from televisions to cameras has network capabilities. Over the coming years, the

price point at which it makes economic sense to connect a product will continue to

decrease.

Connected software-intensive products obviously allow for the deployment of

new software after the product leaves the factory. However, it also allows for a new

trend to develop: embedded systems are now able to collect data about their

functioning and the way in which they are used by customers that allows for

unprecedented insight into product performance, use, and the context in which

products are deployed. Often referred to as “Big Data,” the software-intensive

systems industry is at the forefront of a transition as large as the transition from

on-premise software to SaaS in the pure software world.

In addition to the increased awareness and intelligence of connected products,

embedded systems companies will now be able to use the same techniques as Web

2.0 and SaaS companies, including A/B testing. Over time, our world will see cars

that get safer, more energy efficient, and more user-friendly as the R&D department

will continuously deploy new implementations of functionality in groups of cars to

test which leads to better outcomes in the real world, rather than in the lab. This also

means that the product R&D process will see a fundamental split between anything

“atoms” and anything “bits.” Products start to hit the market with only a basic set of

software features that will grow and improve over time.

Of course, many obstacles to realizing this future exist. These include security

and safety of potentially life-threatening products, certification of safety-critical

systems that will slow down the frequency at which software can be updated,

1 Continuous Software Engineering: An Introduction 5

bandwidth constraints, as well as many others. However, in time these obstacles

will be overcome and the future as we outline here will materialize.

The software-intensive systems industry stands at the beginning of fundamental

shift in business models, architectures, technologies, ways of working, and cus-

tomer interaction. As with every industry transformation, there will be winners and

losers among the incumbents and major opportunities for new entrants. It’s going to
be interesting.

1.3 The Changing Practice of Building Software

As the Web 2.0 and SaaS world started to exploit the new capabilities of continu-

ously deploying software on their servers and were able to collect data on how

customers were using the data, the practices around software development started to

change as well. These changes coincide to a large extent with the agile development

practices around teams, verification and validation, and deployment.

Traditional software development is organized sequentially, handing over inter-

mediate artifacts such as requirements, architecture designs, software, testing

results, etc. between different functional groups in the organization. This caused a

significant number of handover points to exist in the organization that caused three

main problems: First, there are significant time delays associated with the hand-

overs between different groups in the organization that provide the intermediate

artifacts. Second, significant amounts of resources are applied to creating these

intermediate artifacts that, to a large extent, are replacements of human-to-human

communication. Third, the functional organization tends to cause significant local

optimization in the respective teams and, especially when clear data and feedback

from the customer are missing, may result in a politicized organization.

In agile software development, the notion of cross-functional, multidisciplinary

teams plays a central role. These teams have the different roles necessary to take a

customer need all the way to a delivered solution or solution extension delivered to

a customer. Depending on the maturity in the organization (in the next section we

present a model), the team may have product management, software architecture,

development, user experience, testing, delivery, as well as customer service skills

present, although individuals may combine multiple roles and bring multiple skills

to the team.

In the area of software release, a similar transformation has taken place. In the

waterfall development process, the final stages before the release of software are

dictated by weeks and sometimes months of verification and validation activities.

Significant numbers of staff are taken out of their normal jobs and dedicated to the

effort of getting the product out the door and in the hands of customers. Especially

in the area of software-intensive embedded systems, the cost of errors surfacing in

the field after the product has left the factory can be very high, and consequently,

companies spend significant amounts of time and effort to minimize the risk.

Obviously, considering the cost and effort, companies are inclined to release

6 J. Bosch

software as infrequently as possible, resulting in slow release cycles with major

chunks of new functionality being deployed at every release.

One of the memes in agile software development is “if it hurts, do it often.”

Consequently, the incredibly painful process of releasing new software falls under

that motto. This led to the development of continuous integration and continuous

delivery practices. There are two main changes in this approach. First, the devel-

opers themselves, rather than testers, are responsible for creating the test cases for

their software and providing these test cases to the continuous integration environ-

ment. This meshes very nicely with test-driven development practice in most agile

development practices. Second, increasing the frequency of integration and release

requires a major increase in the level of automation. Although many organizations

insist on a final human-in-the-loop check before deploying new software, much of

the process can be automated with proper prioritization by R&D management.

1.4 A Systematic Evolution Model

As we outlined in the previous sections, there are fundamental changes on the

horizon for the software-intensive systems industry. Also, as we discussed in the

previous section, the Web 2.0 and SaaS industries have incorporated major changes

in the way software is developed. Many organizations that we have worked with,

however, struggle with the correct order in which to implement the changes in the

organization. Especially for management that has very strong domain knowledge,

but is perhaps no expert in the intricate details of software engineering, it can be

difficult to determine how to transition from the current state to the bright new

future approach that is presenting itself to temptingly on the horizon. In many ways,

it is easy to know where to go, but it is hard to determine the optimal path to getting

there.

In response to this challenge, we have developed a model that describes the

typical successful evolution of a company from traditional development to cus-

tomer data-driven development. We named the model the “Stairway to Heaven.” A

lofty name but one that has become a meme in the companies that have adopted the

model for their change journey. In Fig. 1.1, the model is shown graphically.

The Stairway to Heaven model is described in detail in the next chapter, so in

this chapter we provide a high-level introduction into the model. The model

Fig. 1.1 The “Stairway to Heaven” evolution model

1 Continuous Software Engineering: An Introduction 7

consists of five steps. Starting with traditional development, the first step is the

adoption of agile work practices in the R&D organization. These practices include,

among others, the notion of small, empowered teams, the backlog, and daily stand-

ups and sprints.

Once agile work practices have been adopted, typically the teams will start to

express their frustration with their inability to test the code that they build in the

broader context of the system. This leads to the adoption of continuous integration

as the next set of practices in the organization. These practices include test-driven

development by agile teams, an automated build and test environment, and clear

definition of functional, legacy, and quality requirements of the system or system

family.

During our work with the software-intensive systems industry, we have, at

several occasions, experienced a situation where a B2B client of a company

realized the maturity of the continuous integration approach employed by the

company. Upon realizing this, the client then requests or, depending on the power

relationship, demands more frequent releases of software for the hardware that it

acquired from the company. This is when the company starts to prepare to enter the

next stage: continuous deployment where software, at the end of agile sprints or

even more frequently and after passing the continuous integration testing activities,

is deployed at customers. One important transition at this point is that whereas

earlier the client decided when to install a new version of the software, when

adopting continuous deployment, it is the company that decides when its customers

move to the newer version of the software. This requires a level of quality control in

most companies that was not in place in earlier stages of the Stairway to Heaven

model.

The final stage is where the company realizes that the frequent deployment of

software to its customers can be used for the continuous testing of new features as

well as the optimization of existing features. This is where software-intensive

systems companies start to realize that the benefits so far exclusive to Web 2.0

and SaaS companies have also become available to them. As we mentioned earlier

in this chapter, half of the features companies put in products are not used. Finally,

also software-intensive systems companies have mechanisms available to them to

determine which of the features are used and which are waste and might as well be

removed.

We have described the five stages of the Stairway to Heaven model in sequence

and, based on our experience of the dozens of companies that we have worked with,

we have strong evidence that organizations evolve their software engineering

practices in this order. Even reasoning logically allows one to determine that this

order is the only suitable order: adopting A/B testing and other approaches to test

functionality with customers cannot be accomplished without continuous deploy-

ment of software. No company will adopt continuous deployment without having

its continuous integration practices, tooling, and automation in place. Continuous

integration has no business value if the organization does not adopt agile work

practices. Traditional waterfall development assumes late, “big-bang” integration

of software by different component teams, invalidating the relevance of continuous

8 J. Bosch

integration. Consequently, adopting agile work practices is the starting point for

any adoption of new software engineering practices.

1.5 Software Center

During the summer of 2011, after more than a year of preparation, the Software

Center kicked off its research activities. The Software Center started as a partner-

ship between two universities and four companies but has over the first years of its

existence grown to ten partners. At the time of writing, these partners include seven

companies and three universities. The companies are Ericsson, Volvo, Volvo Car

Corporation, Saab Electronic Defense Systems, Axis Communications, Grundfos,

and Jeppesen, a daughter of Boeing. The universities are Chalmers University of

Technology, University of Gothenburg, and Malmö University. Chalmers is for-

mally the host of the Software Center.

The center was formed on the request by the founding companies: Ericsson, the

Volvo companies, and Saab. These companies realized that software was becoming

an increasingly important and differentiating part of their respective products. This

requires software engineering to become a core capability for these companies. By

definition, a core capability requires world-class proficiency, and although the

companies were successful in developing the software part of their products,

engineering software needed to become a stronger skill at these companies. A

second realization of these companies was that the amount of software in their

products was growing by an order of magnitude every 5–10 years, depending on the

industry, and it was not feasible to hire that many software engineers, neither from a

practical hiring perspective nor from an economic perspective. Consequently, the

ability to develop high-quality software that was growing continuously with current

or slowly growing staff numbers and much faster than the companies had required

up to that point was recognized as critical.

The goal of the Software Center, consequently, can be summarized as “10X in

10 years,” i.e., ten times the productivity in 10 years. The Software Center helps

companies to accelerate the adoption of best practices in software engineering, a

field where best practices are evolving rapidly.

The center consequently has a dual goal, i.e., academic excellence and tangible

impact at the partner companies. Academic excellence was demanded by the

companies, as there is little point in working with researchers that are not at the

forefront of their field. This would cause the companies to adopt practices that were

not in their best interest and might cause them to get behind their competitors. At

the same time, tangible impact at the partner companies was demanded as knowing

the best software engineering practices, but not employing these practices at the

companies would do nothing to improve the competitive position of the companies.

Over the last years, the researchers in the Software Center have partnered closely

with the practitioners at the partner companies to study a number of topics, and the

results are presented in this book. The overall conceptual model for the center has

1 Continuous Software Engineering: An Introduction 9

been the Stairway to Heaven, described in the previous section. As the companies in

the center are in different points in the model, this has meant that the companies had

different challenges to address. However, there was sufficient overlap in the

challenges of the companies to allow the researchers to study each challenge at

multiple companies.

Research in the center was performed using sprints. Although sprints in agile

software development are 4 weeks or less, in the research activities we have

adopted a 6 month heartbeat. This means that each research project operates on a

6 month life cycle where during the 6 months, the project goes through all the stages

of formulating the next part of the research problem to study, designing the study,

collecting data at the companies, analyzing the data, reporting results to the

industrial partners, and reporting to the academic community. Although adopting

a sprint model raised concerns with some of the researchers, interestingly enough

we found similar benefits of using agile practices in research as one finds in

industry: as researchers study a smaller slice of a large, complex problem, we

learned more about the large problem iteratively, which allowed for more frequent

steering of research by both the companies and the researchers alike.

The advantages of the model that we have adopted in the Software Center are

multiple. For companies, the approach provides a more consistent, integrated focus

on their key change initiatives. In addition, the research takes a holistic approach

including technical, organizational, and business aspects, rather than narrowly

focusing on a technical area. Also, companies receive value from their participation

in the center every 6 months and have the opportunity to steer projects frequently.

For researchers, the primary advantage is that the close partnership with industry

allows one to implement and study new approaches to software engineering empir-

ically. As software engineering research is becoming increasingly empirical in

nature, the danger is that only the status quo at companies can be studied, as no

data exists for novel approaches. Research in the context of the center allows

researchers to introduce and experiment with novel approaches in the context of

software development organizations and to collect empirical data on the benefits

that these approaches might offer.

1.6 Structure of This Book

This book reports on the results of the Software Center research and collaboration

during its first phase, 2011–2013. It captures the evolution and changes in the

Software Center companies, and as such it provides an insightful perspective on

the adoption of modern software engineering practices in large, software-intensive

systems companies where hundreds or even thousands of engineers collaborate to

deliver on new systems and new versions of already deployed systems.

Although Web 2.0 and SaaS companies often are ahead of other industries, it is

important to realize that many of these companies are much smaller in terms of staff

and hence experience fewer scaling problems. In addition, the software at these

10 J. Bosch

companies is deployed at the company’s own servers instead of the physical

product that is in the hands of customers. This simplifies the practical as well as

organizational, legal, and customer relation constraints experienced by companies

that put a physical product in the hands of customers.

Many software-intensive system companies are on the same change journey as

the Software Center companies or about to embark on the change journey outlined

in the section on the Stairway to Heaven. This book is intended for the practitioners

at those companies and provides concrete models, frameworks, and case studies

that show the specific challenges that the partner companies experienced as well as

the solution approaches employed and the outcomes of using those approaches.

The book is structured primarily based on the Stairway to Heaven model. The

first part, in which this chapter is part of, is concerned with the introductory parts.

The next chapter describes the Stairway to Heaven in much more detail. The

chapter after that, by Anna Sandberg, describes our learnings from collaboration

between industry and academia. These learnings are based on the experiences in the

Software Center as well as the engagements between Ericsson and Chalmers

University of Technology in the years before. In total more than a decade of

industry-academia collaboration is captured in that paper.

Part II is concerned with step 2 in the Stairway to Heaven where R&D is in the

process of adopting agile work practices. One of the key challenges in large-scale

agile is that although teams are, ideally, as independent and empowered as possible,

in practice significant amount of interaction takes place between teams. Our

research shows that especially these inter-team interactions slow development

down, and one of the chapters studies this and provides a set of tactics to minimize

inter-team delays. A second major area in large-scale agile development is to

maintain the architecture as cross-functional feature teams are mostly concerned

with developing their features and less with the long-term viability of the architec-

ture. A second chapter studies the current role of architects in agile teams and

improvements that can be implemented to empower architects in agile develop-

ment. Large-scale development, agile or traditional, typically uses platforms and

other forms of software reuse to focus the development effort on the most differ-

entiating functionality for customers. The challenge is that teams working with

reusable software tend to be less focused on speed, causing the teams reusing the

software platform to be slowed down as the software platform organization is

unable to keep up with the requests from agile teams. This easily results in a

situation where the overall development speed of the organization, measured

from the identification of a customer need to the delivery of a solution meeting

that need to customers, is not improved. The third chapter in this part studies

enablers and inhibitors for combining development speed with high levels of

reuse. The final chapter in part II studies a team-based approach to increasing

responsiveness to individual customers while maintaining high throughput of

road map features to the entire customer base. The paper describes the notion of

customer-specific teams where some of the dozens of agile teams are dedicated to

specific customers. These customer-specific teams only implement features

requested by “their” customer, but the software built by the team is integrated

1 Continuous Software Engineering: An Introduction 11

into the main software baseline and the same quality procedures are applied to this

code as to road map features.

Part III of the book combines two phases of the Stairway to Heaven, i.e.,

continuous integration (CI) and delivery (CD) as the two phases are highly

interconnected. The part is concerned with four aspects concerning CI and delivery.

First, techniques to develop an understanding of and for visualizing end-to-end

testing activities across the organization. In our research, it became clear that few of

the staff at the Software Center companies had a full, end-to-end understanding of

all the testing activities that took place in the organization. The first paper presents a

visualization technique that clearly shows all testing activities, the scope of testing,

as well as the frequency of testing. Second, our research showed that the build

system infrastructure and the integration flows differed significantly between dif-

ferent partner companies but that there was limited insight into the consequences of

different approaches. The second paper aims to categorize the dimensions of

variation and the consequences of different choices. As it is clear from our research

that testing takes place in many stages and scopes during software development, we

need to study how to perform partial testing while reaching conclusions concerning

quality that are reliable. The third paper is concerned with partial testing and its

consequences. Finally, the last paper in part III is concerned with automatic testing

of graphical user interfaces. This is a notoriously difficult and effort-consuming

area of testing as GUIs tend to change frequently, and traditionally, test cases were

extremely brittle. This causes a level of test case maintenance cost that did not

warrant for automated testing. However, as the field progresses, novel approaches

have evolved that address these limitations, and the final paper in this part describes

these approaches.

Part IV is concerned with the highest level of the Stairway to Heaven, referred to

R&D as an innovation system. As described earlier in this chapter, once continuous

deployment and data collection are in place, companies can start to experiment with

new features rather than build everything in slow, product management-driven road

maps. The part holds two chapters. The first describes the current state of data

collection in the Software Center companies as well as the use of this data in R&D.

The second paper presents the hypothesis/experiment approach to software devel-

opment, i.e., the HYPEX model. This paper codifies many of the concepts that we

have discussed in this chapter in a systematic approach and discusses some cases

from companies applying some or all of the practices of the HYPEX model.

Part V of the book addresses a topic that is orthogonal to the Stairway to Heaven

and yet critically important in large organizations: organizational performance

metrics that capture data and visualizations of the status of software assets, defects,

and teams. The first chapter describes approaches to profiling software products as

well as profiling R&D organizations. The data collected for profiling as well as the

profiles themselves can be used to direct R&D effort, testing activities, perform risk

assessments, as well as a variety of other purposes. The second chapter is concerned

with implementing measurement systems in software-intensive systems companies

that can stand the eroding effect of time. Over time, changes in the organization

occur, causing traditional measurement systems to break down or to present

12 J. Bosch

unreliable data. The chapter introduces the notion of self-healing systems that

adjust themselves to architectural, infrastructural, and organizational changes.

The final part of the book captures the perspective of two of the partner

companies. The first chapter captures the experiences of the change journey at

Ericsson. The team writing the chapter has worked with dozens of R&D teams

across the company and has distilled the learnings from those teams. The second

chapter sheds light on the experiences at Volvo Cars, especially concerning the

adoption of model-driven engineering in the context of climbing the Stairway to

Heaven as well as the changing relationship between the company and its

supplier base.

Conclusions

Software engineering for software-intensive embedded systems is in a major

state of change. Trends such as the growing importance of software, the

customer expectation of responsiveness, the connectivity becoming available

to virtually all embedded systems, as well as modern, agile software engi-

neering practices are about to fundamentally disrupt how we build large

systems. A transformation similar to the transition from on-premise software

to SaaS and Web 2.0 is about to disrupt the embedded systems industry.

Software Center, a partnership between seven global companies and three

universities, aims to proactively support this transformation and to accelerate

the change that the partner companies go through with the intent of

maintaining and extending the competitive position of these companies.

This book captures the key learnings from the first phase of the Software

Center as the companies climb the Stairway to Heaven. The book captures the

models, frameworks, and tools developed by the researchers and practitioners

in the center as well as the experiences from the partner companies in

applying these novel software engineering techniques.

Reference

1. http://theagileexecutive.com/2010/01/11/standish-group-chaos-reports-revisited/

1 Continuous Software Engineering: An Introduction 13

Chapter 2

Climbing the “Stairway to Heaven”:

Evolving From Agile Development

to Continuous Deployment of Software

Helena Holmström Olsson and Jan Bosch

Abstract Software-intensive systems companies need to evolve their practices

continuously in response to competitive pressures. Based on a conceptual model

presented as the “Stairway to Heaven,” we present the transition process when

moving from traditional development towards continuous deployment of software.

Our research confirms that the transition towards agile development requires a

careful introduction of agile practices into the organization, a shift to small devel-

opment teams, and a focus on features rather than components. The transition

towards continuous integration requires an automated test suite, a main branch to

which code is continually delivered, and a modularized architecture. The move

towards continuous deployment requires internal and external stakeholders to be

fully involved and a proactive customer with whom to explore the concept. Finally,

the transition towards R&D as an innovation system requires careful ecosystem

management in order to align internal business strategies with the dynamics of a

competitive business ecosystem. Characteristic for all transitions is the critical

alignment of internal and external processes in order to fully maximize the benefits

as provided by the business ecosystem of which a company is part.

2.1 Introduction

Today, software development is conducted in increasingly dynamic environments

characterized by inter-organizational relationships and dependencies. From being

an activity defined by an organization’s internal processes and practices, software

H.H. Olsson (*)

Department of Computer Science, Malmö University, Malmö, Sweden

e-mail: helena.holmstrom.olsson@mah.se

J. Bosch

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_2

15

mailto:helena.holmstrom.olsson@mah.se
mailto:Jan@JanBosch.com

development is transitioning towards becoming an activity characterized by open

innovation and co-creation of value in which an ecosystem of stakeholders

co-evolves capabilities around new innovations [1, 2]. Typically, fast-changing

and unpredictable market needs, complex and changing customer requirements,

and pressures of shorter time-to-market are challenges that face most business

ecosystems. To address this situation, the vast majority of companies have started

adopting agile development methods with the intention to enhance the organiza-

tion’s ability to respond to change. In emphasizing flexibility, efficiency, and speed,

agile practices have led to a paradigm shift in how software is developed [3–5].

However, while the adoption of agile practices has enabled companies to shorten

development cycles and increase customer collaboration, there is an urgent need to

learn from customers also after deployment of the software product. The concept of

continuous deployment, i.e., the ability to deliver software more frequently to

customers and benefit from frequent customer feedback, has become attractive to

companies. If this is achieved, companies could benefit from even shorter feedback

loops, more frequent customer feedback, and the ability to more accurately validate

whether the functionality that is developed corresponds to customer needs and

behaviors. While the ability to continuously deploy new software functionality

creates new business opportunities and extends the concept of agile practices, it

presents a number of challenges.

In this chapter, we present a multiple-case study in which we explore four

software development companies that are currently moving towards continuous

deployment of software. We present the challenges these companies face when

transitioning towards continuous deployment and beyond. Also, we identify actions

companies need to take to address, and overcome, these challenges. As our theo-

retical framework for analysis, we use the ESAO model [6]. The model provides

dimensions for assessing the end-to-end dimensions of business, technology, and

organization with considerations especially taken to external stakeholders and the

business ecosystem of which a company is part.

2.2 Background

2.2.1 The “Stairway to Heaven”

Companies evolve their software development practices over time. Typically, there

is a pattern that most companies follow as their evolution path and that we have

reported on in previous studies [5]. We refer to this evolution as the “Stairway to

Heaven,” and it is presented in Fig. 2.1. The phases of the “Stairway to Heaven” are

discussed in more detail in the remainder of this section. As a summary, companies

evolving from traditional development start by experimenting with one or a few

agile teams. Once these teams are successful, agile practices are adopted by the

R&D organization. As the R&D organization starts showing the benefits of working

16 H.H. Olsson and J. Bosch

agile, system integration and verification becomes involved and the company

adopts continuous integration. Once continuous integration runs internally, lead

customers often express an interest to receive software functionality earlier than

through the normal release cycle. They want continuous deployment of software.

The final step is where the software development company collects data from its

customers and uses the installed customer base to run frequent feature experiments.

Step 1: As the first step in our model, and the starting point for most embedded

systems development companies, there is traditional development. We refer to

traditional development as an approach to software development characterized

by slow development cycles, sequential phases, and a rigorous planning phase in

which requirements are frozen upfront [7]. Typically, the approach is character-

ized by a waterfall-style interaction between product management, product

development, system test, and the customer. Projects adopting this development

approach suffer from long feedback cycles and difficulties to integrate customer

feedback into the product development process [5, 7]. Typically, delivery to the

customer takes place in the end of the project life cycle, and it is not until then

that customers can provide feedback on the software functionality they have

received.

Step 2: As a way to address the many challenges experienced in the traditional

development approaches, most companies start adopting agile development

practices. Agile practices are characterized by small cross-functional develop-

ment teams, short development sprints resulting in working software, and

continuous planning in which the customer is involved to allow for continuous

customer feedback [4, 8]. In agile organizations, however, product management

and system verification still work according to the traditional development

approach [5].

Step 3: The third step in our model is where a company succeeds in establishing

practices that allow for frequent integration of work, daily builds, and fast

commit of changes, e.g., automated builds and automated test. At this point,

both product development organization and test and verification organization

work according to agile practices with short feedback cycles and continuous

Fig. 2.1 The “Stairway to Heaven” evolution model

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 17

integration of work. Humble and Farley [9] define continuous integration as a

software development practice where members of a team integrate their work

frequently, leading to multiple integrations per day.

Step 4: Continuous deployment implies that you continuously push out changes to

the code instead of doing large builds and having planned releases of large

chunks of functionality. This allows for continuous customer feedback, the

ability to learn from customer usage data, and to eliminate work that doesn’t
produce value for the customer. At this point, R&D, product management, and

customers are all involved in a rapid, agile development cycle in which response

time is short [10].

Step 5: The fifth and final step in the “Stairway to Heaven” evolution model is

where the development organization responds based on instant customer feed-

back and where actual deployment of software functionality is seen as a way of

validating functionality. The intention is to expose customers to partial imple-

mentation of functionality and use their feedback for determining the value of

that particular functionality [11].

2.2.2 The ESAO Model

One of the most common models to provide a holistic perspective of the dimensions

of business, technology, and organization is the BAPO model [12, 13]. The BAPO

model defines four concerns, i.e., business, architecture, process, and organization,

which can be used for the mapping of roles and responsibilities and for understand-

ing organizational structures [13]. The model is frequently applied for analysis and

assessment in both academia and industry.

More recently, the ESAO model has been proposed as an extension to the BAPO

model [6]. The ESAO (Ecosystem, Strategy, Architecture and Organizing) model

consists of six interdependent dimensions that are important to take into account for

software development companies when assessing the alignment between their

business, their technologies, their processes, and their internal and external inter-

actions. The six dimensions concern an internal and an external company perspec-

tive, and it is helpful for understanding the interdependency between a company

and the ecosystem of which it is part. In this study, we apply the external dimen-

sions, i.e., the ecosystem dimensions, in our analysis of the challenges and the

actions involved in the transition between each of the steps in the “Stairway to

Heaven” model.

In Fig. 2.2, we present the ESAO model. The model emphasizes that the internal

and external perspective on each dimension need to be aligned with each other, i.e.,

ecosystem strategy and internal strategy, ecosystem architecture and internal archi-

tecture, and ecosystem organizing and internal organizing. The ESAO model

focuses on achieving and maintaining alignment between internal and external

dimensions, and therefore, we find it useful in our analysis of how actions required

by a company interplay with the ecosystem of which the company is part.

18 H.H. Olsson and J. Bosch

2.2.2.1 The Ecosystem Perspective

In the ESAO model, the ecosystem perspective emphasizes the role of an organi-

zation in a larger context and the implications this has on business strategy. As

illustrated in the model, it is critical to align internal processes with external

processes and to align internal change initiatives with strategic options that are

within the business ecosystem of which the organization is part. Below, we describe

each dimension as presented in [6]:

Ecosystem Strategy: The strategy dimension of a company is related to the

business ecosystem of the organization and the strategic options that it has available

in its role in this ecosystem. Depending on the strategic choices made by the

company, there are significant implications on the system and software develop-

ment practices of the organization.

Ecosystem Architecture: The architecture dimension defines the interface

between an organization’s internal architecture and the solutions that are provided

by suppliers, firms that build software on top of a product or platform, and other

roles that have an impact on the product and its architecture. In addition to the focus

on interfaces between different stakeholders, focus is also on the architecture

strategy. In being part of a business ecosystem, commoditization and innovation

of new functionality are ongoing processes that have an impact on long-term

architectural planning.

Ecosystem Organizing: The organizing dimension deals with how firms work

with their customers, suppliers, and ecosystem partners in terms of processes, tools,

and ways of organizing the communication and collaboration. For example, many

companies have internally adopted agile ways for working while they have sup-

pliers that still use traditional development, causing a disruption in the internal

Architecture

Organizing

Strategy

Fig. 2.2 The ESAO model

[6]

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 19

development processes. In the ESAO model, the organizing dimension emphasizes

the importance of aligning internal and external development and release processes.

2.3 Research Method and Sites

This study builds on a six months multiple-case study [14], involving four software

development companies. All four companies are moving towards continuous

deployment of software. In representing different stages in this transition, we find

these companies of particular interest for understanding the challenges involved, as

well as the actions to take, in this process.

The main data collection method used is semi-structured interviews with open-

ended questions [15]. In total, 18 interviews were conducted. In companies A

and B, we conducted five interviews in each company, involving software and

function developers, software architects, system engineers, configuration managers,

and project leaders. In companies C and D, we conducted four interviews in each

company, involving software developers, component/system integrators, project/

release managers, product line maintenance, and a product owner. All 18 interviews

were conducted in English and each interview lasted for about 1 h. In addition to

summarizing notes, all interviews were recorded in order for the research team to

have a full description of what was said [14]. Each interview was transcribed and

the transcriptions were shared among the researchers to allow for further elabora-

tion on the empirical material. In addition to the interviews, documentation review

and field notes were complementary data collection methods, including software

development documents, project management documents, and corporate websites

and brochures. The four companies involved in our study are described below:

Company A is involved in developing systems for military defense and civil

security. The systems focus on surveillance, threat detection, force protection, and

avionics systems. Internally, the company is organized in different departments

with systems engineering (SE) and quality assurance (QA) being the two depart-

ments included in this study. In relation to the model presented in Fig. 2.1, this

company is best described as a company doing traditional development but moving

towards an agile R&D organization.

Company B is an equipment manufacturer developing, manufacturing, and

selling a variety of products within the embedded systems domain. The company

structure is highly distributed with globally distributed development teams. Also,

suppliers do a significant part of the development. In relation to the model presented

in Fig. 2.1, this company is described as a company close to continuous integration.

Still, parts of the organization are traditional, but there are a number of teams that

operate in a highly agile manner and that have continuous integration in place.

Company C is a manufacturer and supplier of transport solutions for commer-

cial use. Similar to company B, the development organization is largely dependent

on supplier organizations. In relation to the model presented in Fig. 2.1, this

company can be described as a company with parts of its development organization

20 H.H. Olsson and J. Bosch

being traditional and parts of it being highly agile and with continuous integration

practices in place.

Company D is a provider of telecommunication systems and equipment, com-

munications networks, and multimedia solutions for mobile and fixed network

operators. The organization is highly distributed with globally distributed develop-

ment. In relation to the model presented in Fig. 2.1, this company is described as a

company with established practices for continuous integration and with initiatives

to continuous deployment in place.

2.4 Findings and Analysis

In this section we present our case study findings and analysis. In our presentation,

we outline the challenges our interviewees experience when transitioning between

each of the steps in the “Stairway to Heaven” (Fig. 2.1). In our analysis, we use the

ESAO framework (Fig. 2.2) and the dimensions of (1) ecosystem strategy, (2) eco-

system architecture, and (3) ecosystem organizing, to describe each transition and

what actions the companies need to take to address these challenges.

2.4.1 From Traditional to Agile R&D

All companies involved in our study are transitioning towards agile development

practices. Either small parts of the organization are agile or, as in some companies,

the majority of the development teams work according to agile practices. One of the

challenges that the companies experience when transitioning towards agile prac-

tices is that current processes and ways of working are often difficult to align with

the agile parts of the organization. Also, while internal processes and structures are

agile, it is not necessarily so that external stakeholders, such as suppliers and

customers, transition towards agile practices. To be part of a larger business

ecosystem has implications on processes as well as tools, and this is something

that all companies experience as a true challenge when going agile. Another

challenge is the business model that is usually traditional in character and based

on yearly releases and long development cycles. This gives a conservative impres-

sion with expectations set upfront rather than being flexible and responsive towards

evolving customer needs.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from traditional to agile development. To do this, we use

the ESAO ecosystem dimensions [6] emphasizing the importance of aligning

internal company dimensions with external ecosystem dimensions.

Ecosystem Strategy: The business strategy is critical when establishing a culture
and support for a new development approach. Our study emphasizes the importance

of introducing agile development as an approach that allows for new business

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 21

opportunities in terms of frequent releases, shorter time-to-market, and close

collaboration to customers. While this creates new opportunities in terms of busi-

ness value, it might upset other stakeholders in the ecosystem. Therefore, compa-

nies need to strategically position themselves to maximize revenue while at the

same time contribute to the business ecosystem.

Ecosystem Architecture: When transitioning towards agile development, an

important initiative is to make sure that feature teams are supported by an architect

who “safeguards” the team and the integrity of the architecture. Our study empha-

sizes the importance of having appointed architects that work closely with the

development teams and help in protecting the architecture. Also, these architects

play an important role in aligning the internal architecture with the dynamics of an

external ecosystem.

Ecosystem Organizing: The introduction of agile working practices is important

and requires strong managerial support. Agile development implies small, cross-

functional teams working on parts of the functionality. One important initiative

when moving towards agile development is therefore to have mechanisms for team

formation and for teams to empower and self-direct themselves. Also, renegotiating

supplier contracts to facilitate for agile development might be necessary and, if so,

needs to be a highly prioritized activity.

2.4.2 From Agile to Continuous Integration

Several of the companies involved in this study have continuous integration

practices in place in at least parts of the organization. While the adoption of

automated tests is diverse, it is seen as the way forward and as one highly prioritized

activity to achieve more frequent delivery of software. According to our inter-

viewees, there are a number of challenges to address when transitioning from agile

to continuous integration. First, the dependency to other ecosystem stakeholders

such as suppliers makes development complex, and most interviewees experience

this dependency as having a negative effect on development speed. In addition,

several of the interviewees mention that fitting different components from different

suppliers takes time, so it is not only the development lead-time that is long but also

the integration of components that is time-consuming and costly. One challenge

that is often mentioned is the dependency between components and component

interfaces. This makes modularization difficult and hence, development teams are

highly dependent on each other. Another challenge is the testing activities. All

companies emphasize the need for automatic testing and daily builds, while at the

same time finding this is difficult in an embedded system involving hardware with

slow development cycles.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from agile to continuous integration. To do this, we use the

ESAO ecosystem dimensions [6] emphasizing the importance of aligning internal

company dimensions with external ecosystem dimensions.

22 H.H. Olsson and J. Bosch

Ecosystem Strategy: When transitioning to continuous integration, the business

perspective needs to shift from the “milestone perspective” with yearly releases to a

perspective in which delivery and release are viewed as continuous activities and

where there is always a shippable product. This requires support, not only from the

internal business models but also from other stakeholders in the business ecosys-

tem, such as external suppliers as well as customers.

Ecosystem Architecture: To reap the benefits of continuous integration, devel-

opment needs to be modularized into smaller units, i.e., the build process needs to

be shortened so that tests can be run more frequently on particular parts of the

system. Our study shows that development lead-time is efficiently reduced once the

architectural concerns are modularized. This allows for more frequent deliveries,

the opportunity to learn more frequently from feedback, but also for efficient

decoupling of dependencies to other ecosystem stakeholders.

Ecosystem Organizing: The transition towards continuous integration requires a
cultural shift and a transformation of previous traditions and values. Companies

need to organize themselves to allow for short cycles between the development

organization and validation and verification. To align these two is critical to benefit

from daily builds and frequent tests. Also, companies need to adopt test-driven

development practices and processes that support automated tests. In order to

reduce complexity, companies should strive for a process in which code is checked

into one main development branch, i.e., the production line, to avoid having several

branches since that will only add to complexity and lead-time.

2.4.3 From Continuous Integration to Continuous
Deployment

In several of the companies involved in this study, continuous integration is a well-

established practice, and there are attempts to involve proactive customers in

continuous deployment of software functionality. However, there are a number of

barriers that need to be addressed to succeed in this endeavor. What is most evident

from our interviews is the complexity that arises in different network configurations

at customer sites. While the product has its standard configurations, there are

always customized solutions as well as local configurations that add complexity.

In a business ecosystem involving a large number of stakeholders, this becomes a

major task to manage for the company deploying the software. A common chal-

lenge is when a customer wants a new feature but has an old version of the product

to which this new feature has to be configured. From the interviews it is clear that

customers still regard upgrades and new features as a challenge due to the risk of

interfering with legacy. Furthermore, the internal verification loop needs to be

significantly shortened to not only develop functionality fast but to also deploy it

as fast at customer site.

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 23

In the transition towards continuous deployment, all corporate functions need to

be involved. Similar with introducing agile practices to different parts of the

organization as the very first step when moving from traditional development to

agile development, the transition towards continuous deployment requires involve-

ment of different organizational units in order to fully succeed. Especially, product

management needs to be involved as they are the interface towards customers.

Finally, finding a proactive customer who is willing to explore the concept of

continuous deployment is found critical.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from continuous integration towards continuous deploy-

ment. To do this, we use the ESAO ecosystem dimensions [6] emphasizing the

importance of aligning internal company dimensions with external ecosystem

dimensions.

Ecosystem Strategy: When moving towards continuous deployment of software,

companies need to identify a proactive customer within the ecosystem who is

willing to explore the concept. When having identified a “lead customer,” the

development organization can start building a continuous deployment culture and

capability, in which fast customer feedback serves as direct input to improved

software functionality. The lead customer serves as a role model to other customers

in the ecosystem and benefits from the opportunity to get new software function-

ality as soon as the development organization has something to deliver. To achieve

this, companies need to adapt their business model and strategy to support contin-

uous deployment of functionality. Also, continuous deployment of software will

allow companies to move closer to its customers, and therefore, current relation-

ships and dependencies within the ecosystem need to be strategically reconfigured.

Ecosystem Architecture: When deploying software on a continuous basis,

companies need efficient mechanisms to roll back unsuccessful deployments and

mechanisms to deploy parts of the system rather than the entire system. In terms of

architecture, complexity arises when different customers have different network

configurations to which software is deployed. While the product has its standard

configurations, there are always customized solutions as well as local configura-

tions that cannot be fully accounted for. Therefore, companies need to carefully

align the internal architecture with the ecosystem of which it is part.

Ecosystem Organizing: To succeed with continuous deployment, all corporate

functions need to work in short cycles and with the intention to deliver smaller

features more frequently to customers. This requires that not only the development

and testing organizations work in short cycles but that product management and

release, as well as customers, engage in this. Similar with introducing agile prac-

tices, the transition towards continuous deployment requires involvement of differ-

ent organizational units in order to fully succeed. In addition, external ecosystem

stakeholders are affected which requires companies to manage increased complex-

ity and competitiveness.

24 H.H. Olsson and J. Bosch

2.4.4 From Continuous Deployment to R&D as
an “Innovation System”

In one of the companies involved in this study, agile processes have been around for

several years, and they have become widespread within the company. A large part

of the organization is familiar with continuous integration, and the company is

pushing towards continuous deployment for parts of the product and for a selected

segment of its customers. The fast feedback loop to customers is regarded as the

major benefit. According to the company, faster feedback means cheaper develop-

ment since the development organization can spend time on developing things

customers want instead of correcting mistakes in functionality that is not necessar-

ily what the customer asked for. In advancing towards R&D as an “innovation

system,” the company foresees that their product needs to be instrumented so that

customer data can be automatically collected from the installed product base. To

identify relevant metrics is a highly prioritized activity in order to collect data that

will work as a basis for product improvements and new feature development.

Second, the company needs to develop the capability to effectively use the collected

data to test new ideas with customers. In the transition towards R&D as an

innovation system, the company will move closer to its customers. This might

upset other stakeholders in the ecosystem who have previously been the ones

interacting with customers. To carefully manage this tension, while at the same

time generate business revenue, is a challenge identified as critical for successful

co-creation of customer value.

Based on the experiences from our study, we outline actions companies need to

take when transitioning from continuous deployment to R&D as an “innovation

system.” To do this, we use the ESAO ecosystem dimensions [6] emphasizing the

importance of aligning internal company dimensions with external ecosystem

dimensions.

Ecosystem Strategy: To have R&D as an innovation system that responds

directly based on customer feedback, companies need to establish a strategy and

culture in which they continuously innovate in synergy with its customers. Instead

of having requirements frozen before development starts, this approach allows for

evolving requirements once the system is taken into use by its customers. To

achieve this, strategic collection and analysis of customer data are critical, as well

as mechanisms that allow for quick response to customers. Also, business and

pricing models need to support short-cycle and customer data-driven innovation

processes in the ecosystem.

Ecosystem Architecture: To support a viable ecosystem architecture, infrastruc-

tures need to be established that support run-time variation of functionality. This is

required to allow for continuous innovation and experimentation with customers.

For example, the architecture needs to support A/B testing which is one technique

that is applied by companies when experimenting with customers. Also, instrumen-

tation of code for data collection purposes is necessary which usually requires an

extension of current architectures.

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 25

Ecosystem Organizing: For achieving short cycles and rapid response to cus-

tomer feedback, requirements, development, validation, and release functions need

to work together. Initiatives that facilitate for aligning and integrating internal and

external corporate functions need to be prioritized. Companies need to develop the

capability to effectively use data collected from other ecosystem stakeholders in

order to improve current system versions, develop new functionality, and innovate

entirely new products. This requires careful collaboration with other ecosystem

stakeholders and an organization that allows external contributions.

Conclusions

In this study, we explore how software development companies evolve their

practices over time. Based on a conceptual model presented as the “Stairway

to Heaven,” we present the transition process when moving from traditional

development towards continuous deployment of software.

Based on our analysis, and in accordance with previous research, we see

that the transition towards agile development requires a careful introduction

of agile practices into the organization, a shift to small development teams,

and a focus on features rather than components [16]. The transition towards

continuous integration requires an automated test suite, a main branch to

which code is continually delivered, and a modularized architecture [9]. The

move towards continuous deployment requires internal and external stake-

holders to be fully involved and a proactive customer with whom to explore

the concept [9]. Finally, the transition towards R&D as an innovation system

requires careful ecosystem management in order to align internal business

strategies with the dynamics of a competitive business ecosystem [6,

11]. Characteristic for all transitions is the critical alignment of internal and

external processes in order to fully maximize the benefits as provided by the

business ecosystem of which a company is part.

References

1. Moore, J.F.: Predators and prey: a new ecology of competition. Harv. Bus. Rev. 71(3), 75–86

(1993)

2. Iansiti, M., Levien, R.: Strategy as ecology. Harv. Bus. Rev. 82(9), 69–78 (2004)

3. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile principles on

market-driven software product development. J. Softw. Maintenance Evol.: Res. Pract. 22, 53–

80 (2010)

4. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change.

Computer 36(6), 39–43 (2003)

5. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”—A multiple-case

study exploring barriers in the transition from agile development towards continuous deploy-

ment of software. Software Engineering and Advanced Applications (SEAA), 38th

EUROMICRO conference, pp. 392–399. IEEE Press (2012)

26 H.H. Olsson and J. Bosch

6. Bosch, J., Bosch-Sijtsema, P.: ESAO: A holistic ecosystem-driven analysis model. In: Pro-

ceedings of the 5th International Conference on Software Business (ICSOB), Cyprus, 15–

18 June 2014

7. Sommerville, I.: Software Engineering, 6th edn. Pearson Education, Essex (2001)

8. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation. Com-

puter 34(9), 120–127 (2001)

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test

and Deployment Automation. Addison-Wesley, Boston (2011)

10. Shalloway, A., Trott, J.R., Beaver, G.: Lean-Agile Software Development: Achieving Enter-

prise Agility. Addison-Wesley, Boston, MA (2009)

11. Bosch, J.: Building products as innovation experiment systems. In: Proceedings of the 3rd

International Conference on Software Business (ICSOB), MIT, Cambridge, 18–20 June 2012

12. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A general model

of software architecture design derived from five industrial approaches. J. Syst. Softw. 80(1),

106–126 (2007)

13. Van der Linden, F., Bosch, J., Kamsteries, E., Kansala, K., Obbink, H.: Software product

family evaluation. In: 3rd International Conference of Software Product Lines, SPLC 2004,

pp. 110–129. Springer, Boston (2004)

14. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J. Inf. Syst. 4,

74–81 (1995)

15. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

16. Larman, C., Vodde, B.: Scaling Lean and Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. Pearson Education, Boston (2009)

2 Climbing the “Stairway to Heaven”: Evolving From Agile. . . 27

Chapter 3

Academia–Industry Collaboration: Getting

Closer is the Key!

Anna Sandberg

Abstract Our greatest developers in industry do not typically view top researchers

in academia as people who they can learn particularly much from, and our top

researchers in academia do not typically view top developers as people who can

contribute much to their research (except supply them with raw data). While

researchers have spent years on post-university studies to learn the profession of

data collection, data analysis, and data sensemaking, developers are trained to

produce and deliver in time based on current best thinking. Taking different paths

after the university studies soon ends up in different governing variables for

developers and researchers of what brings value. This is a well-known phenome-

non, and numerous articles and books are describing why this is the case (Barnes

et al., Eur Manag J 20(3):272–285, 2002; Mathiassen, Inf Technol People 14

(4):321–345, 2002; Mora-Valentin et al., Res Policy 33(1):17–40, 2004; Gorschek

et al., IEEE Softw 23(6):88–95, 2006; Rombach and Achatz, Research collabora-

tion between academia and industry. In: Proc. Future of Software Eng. (FOSE 07),

IEEE CS Press, pp. 29–36, 2007; Van den Ven, Engaged Scholarship: A Guide for

Organizational and Social Research. Oxford Univ. Press, 2007). In the Software

Center we have found practical ways on how to make developers and researchers

appreciate the same values and by that join forces to solve complex software

engineering issues. A key instrument is to “get close” on all levels from steering

groups to reference groups and research teams. In the following chapter, we

describe how we in the Software Center work in practice to stimulate a close

collaboration and what is required to make this work over time.

3.1 Learning from Pre-software Center Collaborations

The telecom company Ericsson has collaborated with academia since the early

2000s. It started up as a local initiative between the two partners in the city of

Gothenburg, Sweden, where a few researchers and industry practitioners came

A. Sandberg (*)

Ericsson, Gothenburg, Sweden

e-mail: anna.sandberg@ericsson.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_3

29

mailto:anna.sandberg@ericsson.com

together to join forces on challenging software engineering topics. This local

initiative became a strategic global initiative between the two partners in 2006. In

2010, three of the involved researchers and industry practitioners came together and

started to deeply analyze to understand what was making this collaboration working

and not. This resulted in a model explaining the dependencies of ten different

collaboration success factors and an IEEE Software publication [7]. Figure 3.1

describes that paying equal attention to the research activity and the research result

enables in the end innovativeness and continuity of the research topic.

When the Software Center was started in 2011, two partners now became six

(four industry partners and two academia partners). Two years later, another four

industry partners had joined and several new researchers joined the center (and a

few left). All these changes during a rather short time period have made it

challenging to institutionalize what was learned from prior collaborations and

deploy these. However, as this center’s vision is about “10 x productivity in

10 years for the Nordic software industry,” there has been a constant focus from

the Software Center leads to guard and further emphasize factors making the

including partners more successful. Doing so, the first phase of the Software Center

RESEARCH
RESULT

E
N
A
B
LE

S E
N
A
B
LE

S
Need

Orientation

Industry
Benefit

Innovativeness

Industry
Goal

Allignment

Deployment
Impact

RESEARCH
ACTIVITY

Management
Engagement

Network
Access

Communication
Ability

Continuity

Collaborator
Match

Fig. 3.1 Success factor model for academia–industry collaboration

30 A. Sandberg

(2011–21013) has further contributed to the body of knowledge on successful

collaboration, and it can all be summarized into one short statement: getting closer

is key!

3.2 Getting Closer: On All Levels

Most studies about what makes change successful shows that management com-

mitment is always in the top three of identified success factors [8, 9]. Viewing the

Software Center as a change when it comes to getting academia and industry work

closer, the learning about management commitment is indeed highly valid. Man-

agement commitment must start from the top, and the Software Center has a

steering group consisting of representatives from all partners, both from industry

and academia. This group has the overall responsibility to jointly decide on what

the Software Center should focus on (e.g., research themes) and the forms for how

to run its activities (e.g., type and length of the research). Everything is described in

a contract where all partners engage to make sure we have a joint and solid

collaboration foundation. The steering group has a task force group with represen-

tatives from all partners, both from industry and academia. This group has the

responsibility to jointly dig deeper into the “what” decided by the steering group

(e.g., research topics and questions within the research themes) and also propose on

the “how” in more details (e.g., project proposals with collaborating partners and

names). Research teams are then organized with partners from both industry and

academia and started after a steering group decision. While the steering group and

task force is fairly stable over time, the research teams can vary depending on how

different partners choose to engage in different projects (Fig. 3.2).

Key to success at each level is of course depending on the software engineering

competence and the effort all partners are willing to put into the different collab-

oration levels. Competence and effort combined with having the industry and

academia partners working close help to view the software engineering challenges

with the same goggles as well as strive towards reaching the same results. Acade-

mia sees the value of doing research on topics truly challenging for industry, while

industry sees the value of the thorough way to understand and make sense of the

challenges. The collaborating partners, at each level, start to respect each other’s
strengths, and over time their governing principles grow together. One example of

getting the same governing principles is how the Software Center today views the

publishing of papers. For academia this is the way to make a career, but for industry

this has become a way of making the knowledge formally accepted and last over

time. Another example is related to the deployment of the research findings. For

industry this is everything as this is the way to improve practice, but for academia

this has become a way to get reflections on the research results and inspiration for

new research directions and topics. Again, what is required is to get the partners

working close.

3 Academia–Industry Collaboration: Getting Closer is the Key! 31

3.3 Embracing Identified Success Factors

The Software Center is still in its cradle when it comes to leverage on its potential.

The way forward is to continuously embrace identified success factors [7] and make

them happen in practice. Sandberg et al. developed ten action principles to facilitate

academia–industry collaborations in general, and below we describe how the

Software Center embraces these to continuously improve its collaboration forms.

Fig. 3.2 Getting close—at all levels

32 A. Sandberg

3.3.1 Address Activities to Ensure Results

Paying attention to both the research activity and the research result enables each

other. The Software Center pays attention to management engagement within both

industry and academia and the access to skilled researchers and practitioners as well

as actual industry needs and goals and deployment impact. Once there is skilled

people coming together to solve a true need, the foundation for successful research

collaboration is in place.

3.3.2 Ensure Management Engagement

A structured setup exists (type of meetings, participants, meetings dates well ahead,

well-prepared meeting agendas, etc.), which helps busy managers to engage in the

activity that is typically not their normal full-time item to handle. The Software

Center has defined a steering committee and a task force, where managers and

leaders meet to discuss prepared agendas. In today’s busy working environment, a

meeting in outlook well ahead in time and an email with an agenda well ahead in

time are two key enablers to have busy managers coming together at the same time

to discuss the same topics.

3.3.3 Embrace Research Negotiations

Industry and academia lean on different governing variables. Therefore, it is vital

that the industry and academia organize joint work which satisfies both parts. The

research negotiation should therefore be embraced rather than viewed as something

cumbersome. The Software Center has the goal to do world-class research in areas

which helps improve the software industry productivity. Some brilliant research

ideas are rejected if not being of enough relevance for industry, while some industry

challenges are rejected if not contributing to be a frontline and world-class research.

3.3.4 Organize Get-Togethers

Opportunities for skilled engineers and researchers to meet and communicate are

crucial for facilitating productive matches between researchers and practitioners.

Normally, they work in different environments where they seldom meet, and when

they meet, they do not necessarily appreciate each other’s strengths. The Software
Center organizes opportunities for the industry to come and present their key

challenges to the researchers, who then based on their research interest and skills

3 Academia–Industry Collaboration: Getting Closer is the Key! 33

come together in teams and start proposing research topics and projects for the

industry. The Software Center also organizes these kinds of meeting on a more

regular basis when the task force come together to evaluate propose research

projects for the steering committee.

3.3.5 Fund Small Research Projects

Industry should distribute funding in small portions to keep research projects well

aligned with its needs and goals. This approach also supports the frequent course

changes needed to be agile. The Software Center organizes their research in

6 months sprints, where a project proposal should be able to deliver results each

sprint. The results are not expected to have immediate industry impact, but the

result should clearly show the path towards that.

3.3.6 Communicate Both Progress and Result

Research projects normally do not have immediate deployment impact, so

maintaining organizational interest in them requires finding ways to visualize

progress as well as results. Within the Software Center, we today have at least

three different research topics that have stayed current for more than 3 years having

new project proposals on the same topic in the same theme. These research teams

have managed to communicate and visualize their progress in a way to attract the

steering committee to decide on continuation.

3.3.7 Attend to Both Needs and Goals

Research projects that target an industry need and involve a dedicated business unit

with an immediate goal related to this need are more likely to succeed than those

that address only general needs. The Software Center assures every research project

to have dedicated industry representatives willing to engage and spend time in the

research project. This way the research project becomes equipped with practitioners

who have real problems to solve now (otherwise, they will not be willing to spend

particularly much time on it).

34 A. Sandberg

3.3.8 Be Agile

Just as in other industrial projects, research projects must deal with an ever-

changing business environment. To facilitate results that have deployment impact,

projects must accept and respect that industry goals and research directives change.

The Software Center runs its research projects in relatively short sprints (6 months),

which allows for changing direction for a research topic without interrupting the

ongoing activities. One researcher explained this as “waltzing with industry to be

more like a quick-step dance,” but once he embraced this fact, he did very well with

his research projects.

3.3.9 Allow Innovation to Emerge from Needs

High attention to both deployment impact and industry benefits facilitates innova-

tiveness. Research that reflects on industry practice, working closely with its

prioritized needs and goals, is a recipe for success. The Software Center has the

industry problem and its solutions as priority one. In this way, researchers start with

a problem in need of innovativeness to have its problem solved. Such a start will in

itself facilitate innovativeness.

3.3.10 Realize that Collaborative Research Involves
Learning

It takes time for both parties to understand each other’s needs. Researchers must

learn to be agile towards industry needs, and practitioners must learn to appreciate

research rigor. Such learning requires time, perseverance, and conscious reflection.

The Software Center has via a number of internal meetings started to reflect on how

research is best executed in their context.

3.4 The Next Step Towards Increased Collaboration

Getting closer and appreciating each other’s strengths are a precondition for having
successful academia–industry collaborations. When getting closer the involved

partners come to understand what brings value at each side and how these values

can be combined in joint research projects. Paying attention to identified success

factors improves the collaboration in general and more specifically appreciating the

joint work and its outcome. Moving forward, the Software Center will need to

continuously nurse and understand more about the factors that make them

3 Academia–Industry Collaboration: Getting Closer is the Key! 35

successful. The Software Center is fully committed to do so, but the practical

methods to continuously come together and embrace the collaboration factors

need to be even more prioritized and further fine-tuned.

References

1. Barnes, T., Pashby, I., Gibbons, A.: Effective university–industry interaction: a multi-case

evaluation of collaborative R&D projects. Eur. Manag. J. 20(3), 272–285 (2002)

2. Mathiassen, L.: Collaborative practice research. Inf. Technol. People 14(4), 321–345 (2002)

3. Mora-Valentin, E.M., Montoro-Sanchez, A., Guerras-Martin, L.A.: Determining factors in the

success of R&D cooperative agreements between firms and research organizations. Res. Policy

33(1), 17–40 (2004)

4. Gorschek, T., Wohlin, C., Carre, P., Larsson, S.: A model for technology transfer in practice.

IEEE Softw. 23(6), 88–95 (2006)

5. Rombach, D.H., Achatz, R.E.: Research collaboration between academia and industry. In: Proc.

Future of Software Eng. (FOSE 07), IEEE CS Press, Washington, pp. 29–36 (2007)

6. Van den Ven, A.: Engaged Scholarship: A Guide for Organizational and Social Research.

Oxford University Press, Oxford (2007)

7. Stelzer, D., Mellis, W.: Success factors for organizational change in software process improve-

ment. Softw. Process Improv. Pract. 4(4), 227–250 (1998)

8. Grady, R.B.: Successful Software Process Improvement. Prentice Hall, Upper Saddle River

(1997)

9. Stelzer, D., Mellis, W.: Success factors of organizational change in software process improve-

ment. Softw. Process – Improv. Pract. 4(4), 227–250 (1998)

36 A. Sandberg

Part II

Agile Practices

This part discusses the second step on the Stairway to Heaven, i.e., the adoption of

agile development practices. There are four chapters in this part. The first chapter is

concerned with the role of the software architect in a large-scale agile development

organization. The chapter introduces a set of architect roles and a set of activities

that need to be performed by these different architect roles. The second chapter

studies the inhibitors to speed that agile teams experience because of the depen-

dencies on both other agile teams and other teams and departments in other

functions in the organization. The subsequent chapter uses the problem analysis

in the aforementioned chapter to present a validated framework, including a set of

practices, to optimize for different types of speed in product development. The final

chapter in this part is concerned with improving customer responsiveness in large-

scale development organizations. The approach employs customer-specific teams

where selected agile teams work with prioritized customers while merging the

solutions requested by their customer into the main product code base. The

approach balances the need for scale, i.e., getting many features out in the general

product, with the need for responsiveness to prioritized customers.

Chapter 4

Role of Architects in Agile Organizations

Antonio Martini, Lars Pareto, and Jan Bosch

Abstract Agile software development is broadly adopted in industry and works

well for small-scale projects. In the context of large-scale development, however,

there is a need for additional structure in the form of roles and practices, especially

in the area of software architecture. In this chapter, we introduce the CAFFEA

framework that defines a model for architecture governance. The framework

defines three roles, i.e., chief architect, governance architect, and team architect,

as well as a set of practices and responsibilities assigned to these roles. The

CAFFEA framework has been developed and validated in close collaboration

with several companies.

4.1 Background

Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and

the delivery of a solution. Support for such goals is given by Agile software

development (ASD), which has been proven successful in small software projects

in the last decade [1].

Some frameworks including sets of practices have been proposed for

implementing Agile principles of which few are suitable for large projects (e.g.,

Scrum). However, a major gap in such frameworks is the lack of activities to

enhance agility in the task of developing and maintaining a reference architecture,

necessary for the development of portfolios of products sharing large amount of

software (e.g., platforms) [1, 2]. This lack might lead to an underdeveloped or

quickly eroded architecture, which is needed to coordinate large software projects,

to enhance future development (future features), and to assure cost reduction

(through software reuse). The key need, for the companies, is to reach the ability

of Agile architecting and therefore to redefine the role of the software architects in

an Agile organization, which means understanding which activities related to

A. Martini (*) • L. Pareto • J. Bosch

Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden

e-mail: antonio.martini@chalmers.se; Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_4

39

mailto:antonio.martini@chalmers.se
mailto:Jan@JanBosch.com

software architecture are necessary to be carried out and by whom. We have

therefore redefined the key roles for architects, with the responsibilities of archi-

tecture management that were missed in large Agile organizations: chief architect,

governance architect, and team architect.

• Chief architects, responsible for the whole overall portfolio architecture, which

might include more products and more than one system.

• Governance architects, responsible for areas of the architecture, related to single

products or systems or sub-systems, but not related to only one team.

• Team architects, the usually most experienced developer in a team who have the

most knowledge about the architecture and support/lead the team on such area.

Different levels in the hierarchy are usually connected with the level of abstrac-

tion of the software architecture and design for which the architects are

accountable.

Such generic architecture roles might change from company to company, but

important questions are: What are they actually doing? What should they do? How

should they spend their time?

There are many activities suggested by the research community that need to be

done to develop and maintain a sound software architecture [3–12]. However, little

is said about who is responsible for which activities in a large Agile software

development organization. This gap is especially important where ASD is

employed, and the organization tends to avoid big time investments in upfront

design in favor of a shorter time to market.

In our previous studies, we have shown that the Agile teams need to communi-

cate and coordinate, and the need for strategic input is of utmost importance [13,

14]. Also, in [15] the authors introduce Agile in an SPL setting but report an open

issue as:

the management of architecture evolution and refactoring without sacrificing the principles

of agility and self-managed teams.

Leffingwell [16] introduced the concept of architecture runway as an

existing or planned infrastructure sufficient to allow incorporation of current and anticipate

requirements without excessive refactoring.

We will use such concept when we will explain the need for a Runway Team,

which in [16] has been identified as a Prototyping Team. Leffingwell also mentions

the possibility, for large systems, to have architects outside of the teams. However,

no specific roles and activities have been mentioned for the architects: on the

contrary, Leffingwell advocates the current impossibility of placing traditional

architect roles (e.g., system architects) present in many organizations (especially

in products with embedded software) into Agile frameworks. We have therefore

collected roles with specific responsibilities in a framework called CAFFEA (con-

tinuous architecture framework for embedded software and Agile).

40 A. Martini et al.

4.2 Research Design

We planned a multiple-case embedded case study involving seven sites in five large

software development companies. For confidentiality reasons, we will call the

companies A, B, C, D, and E. The main rationale for selecting the cases was that

they needed to be developing software product lines and they had adopted or at least

been in transition to ASD.

Companies A–D had extensive in-house embedded software development, while

company E was developing general-purpose software. The choice for including

company E was to compare the results with non-embedded software development.

We involved three different units within the same company, C, and we will refer to

them as C1, C2, and C3. We used this approach in order to assess the variance within

the same company. The companies studied were to have some years of experience

of ASD. The companies chosen were situated in the same geographical area

(Scandinavia) but were active on different international markets.

4.2.1 Cases Description

Company A is involved in the automotive industry. Part of the development is

carried out by suppliers and some by in-house teams following Scrum. The sur-

rounding organization follows a stage-gate release model for product development.

Business is driven by products for mass customization. The specific unit studied

provides a software platform for different products.

Company B is a manufacturer of recording devices. Teams work in parallel in

projects: some of the projects are more hardware oriented, while others are related

to the implementation of features developed on top of a specific Linux distribution.

The software involves in-house development with the integration of a substantial

amount of open-source components. Despite the Agile setup of the organization,

the iterations are quite long compared to the other companies involved in the study.

Company C is a manufacturer of telecommunication system product lines. Their

customers receive a platform and pay to unlock new features. The organization is

split into different units and then into cross-functional teams, most of which have

feature development roles. Most of the teams use their preferred variant of ASD

(often Scrum). Features were developed on top of a reference architecture, and the

main process consisted of a pre-study followed by few (ca. 3) sprint iterations. The

embedded cases studied slightly differed: C3 involved globally distributed teams

(Europe) while the other unit (C1 and C2) teams were co-located in the same city.

Company D is a manufacturer of a product line of devices for the control of

urban infrastructure. The organization is divided into teams working in parallel.

The organization has also adopted principles of software product line engineering,

such as the employment of a reference architecture.

4 Role of Architects in Agile Organizations 41

Company E is a company developing software for calculating optimized solu-

tions. The software is not deployed in embedded systems. The company has

employed ASD with teams working in parallel. The product is structured in a

platform entirely developed by E and a layer of customizable assets for the

customers to configure. E supports also a set of APIs for allowing development

on top of their software.

All the companies have one or more product lines and have adopted a

component-based software architecture, where they reuse a substantial part of the

system, such as several components or a shared platform. The language that is

mainly used is C and C++, with some parts of the system developed in Java and

Python. Company A uses a domain-specific language (DSL) to generate C code,

while company E uses a DSL for specifying rules to be converted into libraries. The

development at C3 involves extensive XML.

4.2.2 Data Collection and Analysis

First we conducted a literature review to find the main state-of-the-art architecture

activities that need to be done to develop and maintain a sound software architec-

ture [3–12]. During the interactive workshops, we mapped such activities into roles

with the help of the informants. With such process we found which activities were

already covered by the Agile process employed at the companies and which ones

were not. The workshops were recorded and transcribed. The analysis was done

following an approach based on grounded theory [17], mixing inductive and

deductive techniques and using a tool for qualitative analysis, to keep track of the

links between the codes and the quotations they were grounded to. The overall

process is shown in Fig. 4.1.

Architecture ac vi es

…

RolesMapped to

Risk Management

Decisions and changes

Architectural knowledge

Monitoring the current
system

TA

GA

CA
Literature

Review

Dis lled

Providing
Documenta on

Fig. 4.1 CAFFEA framework and its components. The arrows show the analysis steps leading to

the results

42 A. Martini et al.

4.3 Roles and Activities

4.3.1 Chief Architect

The main role of the Chief Architect (CA) is to take high-level decisions and to

drive and support governance architects and teams in order to reach strategic goals

such as the development and maintenance of a sound architecture that would

support the business goals of the organization. In many cases such goals include

the support for multiple products or product lines, which assures multiple incoming

to the company. All of the cases that we have analyzed have such portfolio of

multiple customers. The main activities for the CA are described in the following,

grouped by the main areas.

4.3.1.1 Risk Management

The CA should drive the activities connected to risk management related to product

and architecture evolution. Such an activity is done usually on a 2–3-year scope.

The CA is usually not directly involved in the detailed development; however, in

order to take feasibility decisions, the CA needs to elicit the information about the

current status of the system from the governance architects and team architects by

the institution of a virtual architecture team. The presence of CAs in estimation is

usual, but the involvement of the GA and TA is not often applied, although many

informants reported that such roles are important for understanding the feasibility

of deliveries that require commitment. The virtual team should also involve Product

Owners since risks in terms of cost related to the architecture need to be matched

with the business model and goals of the company.

4.3.1.2 Managing Decisions and Changes

The CA takes decisions that affect more products, for example, tools and frame-

works (e.g., libraries) that need to be used cross-company, or high-level design

decisions (e.g., architectural styles, archetypes). Such decisions cannot be taken by

development teams alone but need to be taken by architects with high experience

and overall picture of the system.

Decisions on the adoption of frameworks, tools, and high-level design need to be

followed by decisions to support them by educating the development teams. Such

decisions involve the budget, so they need to be taken by (or in combination with)

product management.

4 Role of Architects in Agile Organizations 43

4.3.1.3 Pattern Distillation

The chief architect should participate in the learning activity with the governance

architects (described later) on distilling patterns. Such retrospective activity is not

done per feature, but it involves the architectural analysis of the system for a whole

product or product line. It’s not a frequent activity, but it’s usually performed before

high-level patterns are chosen and product-wise (and therefore cost-impacting)

decisions need to be taken, for example, the starting of a complete new product

or its inclusion in the organization portfolio.

4.3.1.4 Providing Architecture Documentation (Communication

Output)

One of the main tasks for the CA should be to communicate the overall architecture

and the purpose of it. The best way, according to the informants, is to broadcast

such information in a visual way and in person. The mentioned means for this

activity are videos, “road shows,” and plenary sessions with all the consumers of the

architecture.

The CA needs to “order” education for the consumers after a decision is made to

change infrastructures, high-level design patterns, or processes. It’s not likely that

the CA alone is able to take care of such education. For what concerns the

architecture, the CA should delegate most of the documentation creation and

education to the GAs.

4.3.1.5 Receiving Input About the Current Status of the System

(Communication Input)

According to the informants, the current communication practices lack good mech-

anisms for providing input to the CAs. In fact, CAs cannot go around the organi-

zation and talk to every consumer of the architecture. Input is fundamental for the

CA in order to take informed decision and to be aware of bad decisions taken

previously that need to be addressed (e.g., about tool chains not working as

expected). Some of the means for such communication input are:

• Plenary sessions

• Questionnaires

• Forums

44 A. Martini et al.

4.3.2 Governance Architect

The Governance Architect (GA) is an intermediate role in the organization and the

key for scalability of the architecture development and maintenance in a large Agile

setting. Such role should function as a link among several teams that need to be

coordinated and supported when developing features within a (evolving) system

architecture. The main activities for the CA are described in the following, grouped

by the main areas.

4.3.2.1 Inter-features Architecting (Architecture Decision)

The GA should be responsible for decisions about inter-feature architecting. The

development of certain features might require adding design patterns or making

sure that the architecture is optimal not just for one feature but for more, for

example, to support features planned for the near future. This is something that

requires a wider view of the system architecture than the view focused on a single

feature typical of the Agile team. These decisions are usually taken considering also

high-level architecture. An example of such architecture is the production of a

meta-model for the understanding of the system components and their connectors

(relationships).

Besides the technical integration of the features, the GA needs to monitor and

drive an architecture that would minimize or make clear the inter-team effects or

the development of each team on the other. For this purpose, there is also the need

to define the boundaries for the teams, i.e., the critical points in the architecture in

which the risk is high for the team to interact with the others (see also documen-

tation [*]). GAs need to take architecture decisions involving at least 2 or more

teams, although the more teams are involved, the more coordination effort needs to

be spent on such activities.

The GA needs to take product-oriented decisions, but also to monitor and

support the team in following such decisions. With the focus of the team on the

features, someone needs to be able to “protect” the whole product, for example, in

terms of quality or pattern distillation (see CA [*]). In order to have such a mind-set

and information, there is the need to maintain a strong and iterative communication

link with the CA.

4.3.2.2 Architecting for Testability

An important point made by the informants is the need to architect to achieve

testability. The continuous integration team, responsible of the integration at (sub-)

system level, is a stakeholder of the team. Decisions about patterns and measure-

ment mechanisms to be embedded in the code for testing and quality management

need to be taken by the GAs.

4 Role of Architects in Agile Organizations 45

4.3.2.3 Risk Management

One of the main needs in a large organization is to balance the prioritization of

short-term and long-term goals. Such risk management activity is done on different

levels, and the GA should be a connector between the levels by participating in the

relative risk management activities. The GAs need to plan long-term product

development and architecture evolution with CAs and Product management

(High-level Product Owners), while they also need to be involved in the prioriti-

zation of features and architecture improvements at lower levels (closer to design

and implementation) with the TA and, if present, a lower-level Product Owner. In

two of the cases studied, belonging to the same large organization but being quite

disconnected sites, there was the presence of a so-called Operational Product

Owner, who was responsible for the feature prioritization directly with the team.

4.3.2.4 Controlling Erosion

The GAs are the main drivers for monitoring and reacting to architecting erosion.

Such activity is quite complex, and the shift to Agile has also led to a shift from a

document-centric architecture monitor to the more iterative and in-person partici-

pation of the architects. Controlling erosion needs also the support within the team

by the TAs, but the information provided by the team lead to decisions that have to

be taken with large perspective (see [*] decisions). On the other hand, the CA

cannot monitor the whole system to understand what is happening (see [*] CA

controlling erosion).

Consequently, the GAs are needed to lead architecture erosion control by

coordinating sub-activities, such as:

• Retrospective sessions: the topic of the retrospective sessions (e.g., postmortem

analysis) suggested by Agile practices is team performance. From such activity,

the team learns how to be more efficient. However, specific sessions or

sub-sessions need to be organized and led by the GAs, in order to focus also

the retrospective towards architecture. Such sessions might be organized at the

end of:

• Sprint

• Project

• Code reviews: a usual practice is to peer-review the code. However, such

practice seems to be quite a costly one and is not always possible because of

the time constraints due to the low number of GAs present in the organization

compared to the amount of code and the time invested in the other activities

listed also in this section. For this reason, the GA should be able to order

automation for such code-reviews.

• Order automation: to facilitate the monitor of erosion, the inconsistencies with

respect to the desired architecture or architecture principles and requirements

46 A. Martini et al.

need to be visualized by analyzing the system. The GAs should be able to

“order” (allocate the budget and resources) automation to an infrastructure

team (or third party vendor) that could put in place a tool for visualizing and

monitoring some erosion.

4.3.2.5 Architecture Education for the Teams (Communication

Output)

Although the chief architect is responsible for the production and communication of

high-level architecture guidelines and decisions, the governance architect should be

responsible for the capillary spreading of knowledge to all the teams. In such role,

the governance architect, in the organization, needs to have enough overview and

architecture knowledge to express the important concepts.

The main means for communicating architecture and educating the teams is

maintaining architecture documentation (inter-team, inter-feature): although the

transition to ASD has questioned the need for the maintenance of superfluous

architecture documentation, part of it is critical and needs to be very well created

and kept updated. Such documentation is the one concerning architectural patterns

and requirements that are shared by more than one team. As an example, there

might be patterns that involve temporal requirements (e.g., involving the access to a

centralized database) that need to be expressed (and verified) in order to keep the

teams from hindering each other. An important requirement for the architecture

documentation is that it should be well navigable by the team members, meaning

that the link between the documents and the actual source code should be well

maintained.

4.3.2.6 Knowledge of the Status of the System (Communication Input)

Another important point in architecture communication is that the architect should

be able to have knowledge of the status of (part of) the system. The main problem

that would arise without having such knowledge would be to have architects who

define and evolve a system architecture that is completely different from what is

actually implemented. Such situation obviously hinders the decisions when risk

analysis is done for the augmentation of the products, e.g., the implementation of

new features. It is of utmost importance, therefore, that the architects continuously

and iteratively check the actual status of the system. For doing so, there might be

tools, but, according also to the Agile view of the importance of face-to-face

communication, architects should organize and participate in events including

experienced members of the teams. Such events are in line with the continuous

learning principle and with the practice, suggested in some Agile frameworks, of

conducting retrospective. In order for the architecture to be correctly communicated

to the governance architect, architecture retrospectives (i.e., retrospective sessions

4 Role of Architects in Agile Organizations 47

focused on reflecting on the current status of the architecture) have been found to be

a good means.

4.3.3 Team Architect

The Team Architect (TA) is the actual executor of the architecture in the FT. The

role is important for the capillary spreading of architecture knowledge and for

collecting input from the FT. However, this role is not a dedicated role in the team

but rather a set of responsibilities that need to be mapped to a member of the team,

who might change from time to time.

4.3.3.1 Risk Management

As mentioned in the previous sections, the TA should participate in risk manage-

ment activities with the CA, GA, and P in order to represent the interest of the teams

in feasibility discussions.

4.3.3.2 Managing Decisions and Changes

The TA leads detailed architecture decisions on a detailed design level.

4.3.3.3 Providing Architecture Documentation (Communication

Output)

The TA takes input from the GA and should be able to communicate the architec-

ture to support the FT education packages created by the GAs.

4.3.3.4 Monitoring the Current Status of the System (Communication

Input)

The TA is responsible for collecting FT’s input, to be communicated to the

GA. This way, the TA lifts decisions for architecture evolution and decisions that

might affect other FTs.

4.3.4 Gap in the Current Practices

The main groups of practices that have been recognized as currently missing are:

48 A. Martini et al.

• Architecture risk management (prioritization of short-term and long-term tasks)

• Architecture decision and changes

• Communication of architecture, composed by two-way directions:

• Providing architecture directions

• Monitoring the current status of the system

The combination of the previous components leads to the identification of a

major gap in the current organizations, the lack of architecture technical debt

management. Such phenomenon is recently being studied from different angles

[18, 19] and is concerned with the organizations taking risk-informed architecture

decisions about which architecture changes, such as refactoring or evolution (con-

sidered the actual debt if not done) need to be conducted for having an acceptable

ratio of investment/effort. The lack of architecture technical debt management

might quickly lead the companies to crisis points where adding new business

value to the software product lines (new features or new products) incur in major

efforts, paralyzing the long-term responsiveness [20].

Conclusion

Agile software development is broadly adopted in industry and works well for

small-scale projects. In the context of large-scale development, however,

there is a need for additional structure in the form of roles and practices,

especially in the area of software architecture.

In this chapter, we introduced the CAFFEA framework that defines a

model for architecture governance. The framework defines three roles, i.e.,

chief architect, governance architect, and team architect, as well as a set of

practices and responsibilities assigned to these roles. For the chief architect,

these practices include risk management, managing decisions and changes,

pattern distillation, providing architecture documentation, and receiving

input about the current status of the system. The governance architect is

concerned with inter-features architecting (architecture decisions),

architecting for testability, risk management, controlling erosion, architecture

education for the teams, and maintaining knowledge of the status of the

system. Finally, the team architect focuses on risk management, managing

decisions and changes, providing architecture documentation, and monitoring

the current status of the system.

The CAFFEA framework has been developed and validated in close

collaboration with several companies. Currently, most of the companies in

the Software Center have adopted or are in the process of adopting the

CAFFEA framework.

Although the framework has brought significant benefit for the companies,

there still are some open items, as presented earlier in the chapter, and in

future work, we aim to address those as well as validate the framework with

other companies in other industries.

4 Role of Architects in Agile Organizations 49

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards

explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)

2. Daneva, M., van der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R., Ajmeri, N.,

Ramteerthkar, U., Wieringa, R.: Agile requirements prioritization in large-scale outsourced

system projects: an empirical study. J. Syst. Softw. 86(5), 1333–1353 (2013)

3. Kruchten, P.: What do software architects really do? J. Syst. Softw. 81(12), 2413–2416 (2008)

4. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M.: A comparative study of

architecture knowledge management tools. J. Syst. Softw. 83(3), 352–370 (2010)

5. Pareto, L., Eriksson, P., Ehnebom, S.: Architectural descriptions as boundary objects in system

and design work. Model Driven Eng. Lang. Syst. 6395, 406–419 (2010)

6. Williams, B.J., Carver, J.C.: Characterizing software architecture changes: a systematic

review. Inf. Softw. Technol. 52(1), 31–51 (2010)

7. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: a survey. J. Syst.

Softw. 85(1), 132–151 (2012)

8. Qumer, A.: Defining an integrated agile governance for large agile software development

environments. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) Agile Processes in

Software Engineering and Extreme Programming, pp. 157–160. Springer, Berlin, Heidelberg

(2007)

9. Drury, M., Conboy, K., Power, K.: Obstacles to decision making in Agile software develop-

ment teams. J. Syst. Softw. 85(6), 1239–1254 (2012)

10. Zimmermann, O., Miksovic, C., Küster, J.M.: Reference architecture, metamodel, and model-

ing principles for architectural knowledge management in information technology services.

J. Syst. Softw. 85(9), 2014–2033 (2012)

11. Unphon, H., Dittrich, Y.: Software architecture awareness in long-term software product

evolution. J. Syst. Softw. 83(11), 2211–2226 (2010)

12. McAvoy, J., Butler, T.: The impact of the Abilene Paradox on double-loop learning in an agile

team. Inf. Softw. Technol. 49(6), 552–563 (2007)

13. Martini, A., Pareto, L., Bosch, J.: Enablers and inhibitors for speed with reuse. In: Proceedings

of the 16th International Software Product Line Conference, vol. 1, pp. 116–125. New York,

USA (2012)

14. Martini, A., Pareto, L., Bosch, J.: Communication factors for speed and reuse in large-scale

agile software development. In: Proceedings of the 17th International Software Product Line

Conference, pp. 42–51. New York, USA, (2013)

15. Bosch, J., Bosch-Sijtsema, P.M.: Introducing agile customer-centered development in a legacy

software product line. Softw. Pract. Exp. 41(8), 871–882 (2011)

16. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Pearson

Education (2007)

17. Strauss A., Corbin, J.M.: Grounded Theory in Practice. SAGE (1997)

18. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. J. Syst. Softw. 86(6), 1498–

1516 (2013)

19. Nord, R.L., Ozkaya, I., Kruchten, P., Gonzalez-Rojas, M.: In search of a metric for managing

architectural technical debt. In: 2012 Joint Working IEEE/IFIP Conference on Software

Architecture (WICSA) and European Conference on Software Architecture (ECSA), pp. 91–

100 (2012)

20. Martini, A., Bosch, J., Chaudron, M.: Architecture technical debt: understanding causes and a

qualitative model. Presented at 40th Euromicro Conference on Software Engineering and

Advanced Applications, Verona, pp. 85–92 (2014). doi:10.1109/SEAA.2014.65

50 A. Martini et al.

http://dx.doi.org/10.1109/SEAA.2014.65

Chapter 5

Teams Interactions Hindering Short-Term

and Long-Term Business Goals

Antonio Martini, Lars Pareto, and Jan Bosch

Abstract A known problem in large software companies is to balance the return on

investment coming from short-term and long-term business goals dependent on the

responsiveness of the companies. We have conducted an investigation on three

large product line companies employing Agile software development (ASD) to

better understand this problem: we have recognized several challenges that were

hindering one or both kinds of business goals. Interaction challenges were quite

critical among the Agile teams but also between the Agile team and other parts of

the organization, such as architects and product management. We also further

investigated which root factors were behind the interaction challenges, what symp-

toms can be recognized in the organization to spot the interaction challenges, and

how they were related to the recent employment of ASD in the companies.

5.1 Background

Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and

the delivery of a solution. The trend in the last decade has been the employment of

Agile software development (ASD) [1]. At the same time, the responsiveness in the

short-term deliveries should not lead to less responsiveness in the long run.

There are three relevant goals dependent on speed ([2], visible in Fig. 5.1): the

speed with which customer needs lead to new product offers (first deployment

speed), the speed with which new features are replicated in new products (replica-

tion speed), and the speed with which change requests to an existing product are

realized (evolution speed).

Increasing the speed in each of these goals contributes to the return on invest-

ment of the companies. However, there might be challenges [3, 4] decreasing the

speed (which in turn affects negatively the ROI of R&D). Such challenges need to

be identified and mitigated through dedicated practices.

A. Martini (*) • L. Pareto • J. Bosch

Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden

e-mail: antonio.martini@chalmers.se; Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_5

51

mailto:antonio.martini@chalmers.se
mailto:Jan@JanBosch.com

We investigated such challenges in three partners of the Software Center,

described below as companies A, B, and C.

5.1.1 The Participating Companies

We investigated the previously mentioned challenges in three large product-

developing companies, all with extensive in-house embedded software develop-

ment. All of them were situated in the same geographical area (Sweden), but they

were active on different international markets.

Company A was involved in the automotive industry. Part of the development

was done by suppliers, some by in-house teams following Scrum. The surrounding

organization was following a stage-gate release model. Business was driven by

products for mass customization.

Company B was a manufacturer of product lines of utility vehicles. In this

environment, the teams were partially implementing ASD (Scrum). Some compe-

tences were separated, e.g., system engineers sat separately. Special customers

requesting special features drove the business, and speed was important for the

business goals of this company.

Company C was a manufacturer of telecommunication systems product lines.

Their customers receive a platform and pay to unlock new features. The organiza-

tion was split into cross-functional teams, most of which have feature development

roles. Some of the teams had special supporting roles (technology, knowledge,

architecture, etc.). Most of the teams used their preferred variant of ASD (often

Scrum). Features were developed on top of a reference architecture, and the main

process consisted of a pre-study followed by few (ca. 3) sprint iterations before the

feature was deployed.

Fig. 5.1 Challenges in

different kinds of speed may

hinder the reaching of

business goals and therefore

return on investment

52 A. Martini et al.

5.2 Challenges Hindering Business Goals Based on Speed

The first step in the investigation was to gather in-depth qualitative data from few

cases in order to understand the challenges. We analyzed the data through the

grounded theory approach, which is useful for understanding emerging factors and

to create theories to model complex phenomena embedded in real contexts.

The qualitative investigation brought to light 114 challenges [2]. After a careful

categorization is achieved through the application of grounded theory, we obtained

a distribution of the challenges in several areas of improvement. Such distribution is

showed in the bar charts in Fig. 5.1. These diagrams suggest which areas the

informants were most concerned with in each case and among all.

The even distribution of the 30 challenges in the Interaction column of Fig. 5.2

(12, 10, 8, for cases A, B, and C, respectively) emphasizes that interaction is a

common concern at all sites. More specifically, the detailed bar charts outline how

interaction between teams involved with a common asset (e.g., when reusing a

component or an entire platform) should be well supported, as should interaction

across projects related to the same product. Good interaction infrastructure is also

necessary among the development teams, between teams, and the units these

depend on, e.g., systemization and business units. Without adequate interaction,

reuse risks being unorganized and ineffective (ad hoc reuse), or it will cause a huge

penalty in terms of speed.

The data from this study provided us with sufficient motivation for further

studying intraorganizational interaction challenges. The category containing such

challenges was the most populated one, which showed its importance, and it was

the category with the most evenly distributed challenges among the studied sites,

which suggested a high degree of generalizability of such challenges.

Fig. 5.2 Distribution of the challenges in cases and categories

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 53

5.3 Interaction Challenges in Depth: Which Parts

of the Organization Do the Agile Teams Struggle

to Interact With?

Through a quantitative investigation among 36 participants [5], we produced an

ordered table of the 23 interaction challenges previously investigated, their recog-

nition in terms of frequencies, and their perceived spread in the companies.

Furthermore, we managed to highlight challenges recognized by the respondents

in some contexts (studied companies) but not in others and to outline the ones that

were recognized by some roles but not by others. The challenges are listed in

Table 5.1 and the results are summarized in Fig. 5.3, which shows the overall

recognition of the challenges, coded by Q01–Q23 in the leftmost column.

Below we provide a more detailed description of the content in Fig. 5.3. The

second column from the left (Recognition) displays the percentage of respondents
(calculated on the valid answers provided) that have recognized that challenge. All

the challenges are recognized at least by 29% of the participants. In the middle

column we highlighted the level of recognition (strongly, strongly but controver-

sial, weakly but controversial, and weakly recognized), and a bold border groups

the rows of the challenges included in each level. Nine challenges, with more than

75%, are strongly recognized. The challenges with more than 50%, other 11, are

strongly recognized but controversial, which means that even if there are more

“yes” than “no,” there is a clear contrast in the answers. The last three challenges

are weakly recognized but controversial, which means that the number of “no” is

more than the number of “yes,” but the percentage of the latter ones is close to the

former ones. We don’t have any weakly recognized challenge.

In the middle column (Rank with Spread) we have showed the spread calculated
using the means of the answers weighted from 0 to 4: such results show, together

with the recognition, how much the respondents perceive the spread of the chal-

lenge around them. This changes partially the order of the challenges, as we can see

for Q14 and Q01: the former one has a higher recognition rate, but the latter one is

evaluated to be more spread through the company, and the two aspects are sum-

marized in the means. Notice that the spread doesn’t influence the previous cate-

gorization of the challenges (strongly, weakly, etc.).

In the last two columns from the left (Depends on Context andDepends on Role),
we have marked the challenges with an “x” when we have statistical evidences that

the challenge has the property and with “!” when we have evidences that have to be

further confirmed. Such results are further explained in the following sections.

5.3.1 Challenges Related to Different Companies

The distribution of the answers for the challenges rarely changes with respect to the

respondents’ company. However, for three of them (Q03 Q07 Q23), we found a

54 A. Martini et al.

significant difference among the participants’ responses. The identified challenges

are reported in Table 5.1 with “x” on the column Depends on Context. In the

following we describe the differences among the companies:

Table 5.1 Challenges ordered by their recognition and spread, annotated if dependent on context

or role

Q01 The processes/ways of working that you have to follow are not suited for the kind of

product that you are developing

Q02 The processes/ways of working that you have to follow are not suited for the project

management

Q03 Project-related bugs or defects

Q04 Developers and system engineers are not co-located, which causes interaction problems in

requirement agreement

Q05 There is an upcoming product. Erroneous assumptions have been made on what part of

the existing software can be reused and/or adjusted, causing inaccurate budget or

resources allocation

Q06 Evaluation of costs and feasibility of new features don’t take into account

implementations and constraints, causing inaccuracy in budget and resources allocation

Q07 There is no time to improve parts of software shared among projects

Q08 A satellite unit is “invisible”: for example, it’s difficult to consult them, there is no clear

information on their work, or it cannot be guided properly

Q09 A development unit has to build a component to be integrated in other units’ (projects’)
system, but the interaction with them is not sufficient

Q10 A development unit was forced to integrate a common component

Q11 Reuse is not supported by the Product Line Management; it’s an individual initiative

Q12 Different attitudes and values of distributed (not co-located) teams (or units, projects)

caused interaction problems

Q13 Team’s (or unit, project) lack of will to integrate a common component

Q14 Lack of understandable documentation or of proper interaction causing long warming-up

periods for consultancy or for new employees to understand the system

Q15 Documentation is abundant but it doesn’t help to understand the code

Q16 Leaders’ mind-set is not open to listen and they are not able to recognize strengths and

weaknesses. This hinders the development of improvements

Q17 Different favorite programming languages in the same team create interaction

Q18 Different favorite tools in the same team create interaction problems

Q19 Artifacts received from the system engineers are not clear enough because they were

created with inappropriate tools

Q20 Developers are too constrained by system engineers on design (e.g., developers receive

white box/very detailed specification)

Q21 An internal interface had to be exposed to other units to allow their development. The

interface documentation provided didn’t help to understand the code

Q22 Disagreement between different development units (or projects) about what set of func-

tionalities a common component should provide

Q23 Loss of knowledge about a reused framework’s variation points, for example, a frame-

work created some years earlier

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 55

Q03: Project-related bugs or defects.
For challenge Q03 there is a great difference between companies B and C: the

respondents in company C don’t recognize the challenge, while the ones in

company B strongly recognize it.

Q07: There is no time to improve parts of software shared among projects.
For challenge Q07 the respondents in company B strongly recognize it, while the

other ones stand in the middle. This shows that this challenge is very present in

company B while controversial in the other companies. With respect to

Table 5.1, this partially weakens the strong recognition of Q07 since the mean

is influenced by company B.

Q23: Loss of knowledge about a reused framework’s variation points, for example,
a framework created some years before.
Company B recognizes this challenge more than company C.

5.3.2 Different Roles’ View on Some Challenges

We found that only few of the answers for the challenges changed when given by

different respondents with different roles. These are marked with “x” in Fig. 5.3 in

the column Depends on Roles.

Fig. 5.3 Challenges

ordered by their recognition

and spread, annotated if

dependent on context or role

56 A. Martini et al.

Q05: There is an upcoming product. Erroneous assumptions have been made on
what part of the existing software can be reused and/or adjusted, causing
inaccurate budget or resources allocation (e.g., time or workload).
For this challenge, managers and system engineers show a clear propensity to

recognize the issue, while designers and testers gave more controversial

answers.

Q10: A development unit was forced to integrate a common component (shared
with other units). This caused communication problems, and now the unit is not
willing to integrate new common components.
Some results from the ANOVA tests have highlighted interesting differences

among the means of the respondents on the following challenges. These evi-

dences, though, have to be read with care: they can be considered hints for

further research more than strong evidences. For this reason we have marked

these challenges with “!” in Fig. 5.3.

Q06: Evaluation of costs and feasibility of new features don’t take into account
implementation issues and constraints, causing inaccuracy in budget and
resources (e.g., time or workload) allocation.
The recognition of this challenge changed greatly between system engineers and

designers, while the other roles stand in the middle.

Q12: Different attitudes and values of distributed (not co-located) teams (or units,
projects) caused communication problems (tensions, synchronization problems,
overheads, delays, misunderstandings, etc.).
For this challenge, some designers seem to not recognize the challenge, while

the other roles show agreement in its recognition.

Q13: Team’s (or unit, project) lack of will to integrate a common component (a
component shared with other development units).
For this challenge, designers and testers don’t recognize the challenge, while

managers and especially system engineers have experienced the problem (even

if there are controversial opinions).

5.3.3 Prioritization of Interaction: Selection of Critical
Organizational Boundaries in Need for Intergroup
Interaction Improvement

From the challenges and their prioritization, it’s possible to identify which

intergroup boundaries needed attention for increasing or decreasing interaction

(depending on the challenge/boundaries, we wanted to maximize or minimize

interaction through selected practices).

The strongly recognized challenges highlight different interaction problems

affecting the interfaces between the development team and other parts of the

organization. ASD requires frequent feedback in order to keep the development

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 57

iterative. These results show that in large organizations, there is the need to improve

the following interfaces between Agile teams and other organizational entities:

• Team—System engineers: Q04 is the most recognized challenge, almost by all

the respondents (93%, which include many system engineers): system require-

ments should be continuously discussed between system engineers and the Agile

team. Software reuse has to be recognized at a system level to be implemented

also in software components. According to the qualitative data, (partial)

co-location between system engineers and the Agile team would mitigate or

solve this challenge: the Agile team needs explanation and agreement on the

requirements, for example, in understanding which ones are fixed and which

ones are not (and could be changed by system engineers to ease software

development). Since we have studied only companies producing embedded

systems, we can infer that this challenge is generalizable in this context, but

we can’t generalize it for pure software developing companies.

• Team—Product development and management: the respondents’ answers about
challenges Q01 and Q02 (processes-related interaction) contrast visibly. It seems

that ASD suffers particularly when it has to interface to the product development

rather than with the project one. This aspect might be connected with the kind of

developed product (i.e., embedded systems): hardware’s design and develop-

ment process follow a more waterfall-oriented model, which conflicts with the

iterative one claimed by ASD. In general, software development might be bound

to the surrounded product development process, which hinders the quickness

that would be gained by employing ASD. However, we cannot say if this is a real

constraint or a challenge related to the legacy of the product development in

place. In the latter case, we hypothesize (supported by the qualitative answers)

that a change in the product development process to make it more ASD-friendly

would foster the teams, e.g., by providing frequent interfaces for strategic input.

• Team—Distributed teams (Q08): dependencies with not co-located teams might

hinder the speed of the Agile one. This includes outsourced components but also

teams distributed in different buildings. Especially, when the quantity and the

channels of interaction are constrained by contract terms such as time intervals

or approval requirement, strong delays occur hindering speed. The same, but less

drastic, problems occur by mismatches in processes, practices, and attitudes and

values. Frequent meetings on-site and social network activities would ease this

interface.

• Team—Other projects’ teams: Q07, Q03, and Q09 are strongly recognized, but

the results have been stronger for a specific context (Q07, Q03 for case B). The

isolation of the projects, especially in terms of budget and resources, creates

silos that hinder the reuse across the projects. The exclusive focus on one project

by the team leads also to hindering the interaction (and speed) among teams in

different projects: this creates inefficiencies, especially if there are dependencies

among the projects, and strategic reuse always brings such dependencies. Solu-

tions such as relocation in different projects have been proposed in the

58 A. Martini et al.

qualitative answers, to spread knowledge of the system and to gain acquaintance

among the employees.

• Team—Sales unit: challenge Q05 shows that software reuse can be erroneously

considered during the selling process (or the marketing scope). In the qualitative

answers, respondents specified that no resource allocation was estimated when

reusing similar components. However, the business value of identical compo-

nents seems to be much higher than of the similar ones. This suggests that full

reusability of components should be checked by the sales unit. This would

encompass interaction with the involved teams responsible for the components.

The strong recognition of this challenge mainly by management and systemiza-

tion shows that designers and testers are not fully aware of strategic and

business-related goals. This suggests that if the Agile team is not guided

continuously by strategic inputs, it might incur in not optimal decisions.

5.4 Root Factors for Interaction Speed Hindering Business

Goals

The previous challenges can be gathered under the name of interaction speed
challenges. As outlined in the first section, we found that such challenges were

impacting different business goals related to speed [6] (Fig. 5.4).

By managing the factors influencing interaction speed, we indirectly aimed at

facilitating the achievement of three business goals connected with speed

(explained in the beginning of this chapter) and influencing, in the end, return on

investments. First we explain how interaction speed influences other kinds of speed

(and related business goals):

• 1st Deployment Speed: when a set of features is released for the first time, the

speed is affected by the interaction speed among the teams that have to integrate

the features. This kind of speed helps hitting the market fast to anticipate the

competitors. Fast deployment speed also shortens the loop in market testing.

Fig. 5.4 Three kinds of end-to-end speed (influencing return on investments) and their depen-

dency on interaction speed

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 59

• Replication Speed: when a feature is embedded in a previous release, interac-

tions are needed between the team responsible for the new features and the teams

that had developed the former ones. Replication increases ROI when the effort

made for the 1st deployment speed is spread on the release of new products and
services based on the existing software.

• Evolution Speed: when a feature needs to be changed after its release, such

changes will affect other features, requiring interactions again. The speed in

reacting upon a change request can be critical for gaining the trust of the

customers.

We conducted a root factor analysis and we have found root factors causing

different challenges (symptoms). In addition, we identified the information content

that was involved in the challenges. Finally, we also captured the influence of ASD.

Our findings are described in Table 5.2.

Conclusion

Responsiveness and speed are major challenges for large software industries.

These companies are challenged by the demand to minimize the time between

the identification of a customer need and the delivery of a solution. ASD is

broadly viewed as a solution to this challenge, but we questioned whether the

focus on short-term deliveries negatively affects responsiveness in the

long run.

In this chapter, we identify three types of speed in development:

• First Deployment Speed: when a set of features is released for the first

time, the speed is affected by the interaction speed among the teams that

have to integrate the features. This kind of speed helps hitting the market
fast to anticipate the competitors. Fast deployment speed also shortens the
loop in market testing.

• Replication Speed: when a feature is embedded in a previous release,

interactions are needed between the team responsible for the new features

and the teams that had developed the former ones. Replication increases

ROI when the effort made for the first deployment speed is spread on the

release of new products and services based on the existing software.
• Evolution Speed: when a feature needs to be changed after its release, such

changes will affect other features, requiring interactions again. The speed

in reacting upon a change request can be critical for gaining the trust of

the customers.

In this chapter, we studied the root factors causing different challenges

(symptoms), which information content was involved, and what was the

influence of ASD. By managing the factors influencing interaction speed,

we indirectly aimed at facilitating the achievement of the business goals

(continued)

60 A. Martini et al.

Table 5.2 List of root factors for interaction challenges

F1. Lack of knowledge availability Symptoms: If a team doesn’t have all the knowledge to
develop a feature independently, they will try to interact

with an expert outside the team, creating interactions.

They may have to wait for the expert to be available, and

if the expert is overloaded, this might create waste of

time (waiting). The team may alternatively decide to

make assumptions on the answers that lead to redoing

most of the work

Content involved: The expertise may encompass dif-

ferent kinds of knowledge: domain knowledge is espe-

cially requested in embedded systems where software is

specific for the device; product architecture, technical

knowledge, tool, and process knowledge are also quite

requested

ASD influence: This factor is connected to ASD and the

trend of defining small and self-sufficient teams: the

more independent they are, the more isolated, the less

effective inter-team interactions might be

F2. Expert’s reputation Symptoms: If an employee has a high reputation of

having a specific knowledge, the person will be contacted

often. This causes frequent interactions and requests for

intervention: the expert is therefore forced to reduce

his/her productivity to give support to other teams, and

tasks switching might worsen it even more. Loss in

expert productivity can be considered a waste, since the

value added by an expert to the product is often high and

produced quickly. An important point to make is that

reputation is not only based on the real knowledge of an

employee but rather on his or her social reputation.

Consequently the social and informal aspect is what

differentiates this factor from F1, where availability

depends on the allocation of time formally decided for

the expert

Content involved: The same expertise described in F1

ASD influence: ASD principles value social interactions

over formal knowledge, amplifying the effects of this

factor on interaction speed (as also hypothesized in).

Thus, some experts might be more consulted than others

because of their social status: this might unbalance the

interactions among the teams

F3. Unclear requirements in the
beginning of development

Symptoms: The team receives requirement specifica-

tions for the features. They may have two interaction

problems: the long waiting time before the team is able to

receive the specification or the continuous interaction for

clarification of the requirements afterwards. The two

problems are connected, according to the interviewees:

the time spent on the feature preparation seems to deter-

mine the quality of the specification, which influences the

elaboration time by the team

Content involved: Requirement specification and

requirement agreement, input for the final value to

deliver to the customer

(continued)

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 61

Table 5.2 (continued)

ASD influence: This factor might be connected to the

declared support, in ASD, to deal with volatile require-

ments, i.e., the ones that change often. However, reacting
to changing requirements and starting the development
on non-clear requirement are not the same thing and

should be clear when employing ASD

F4. Unexpected feature
dependencies

Symptoms: Two features may be designed to interact

with each other through APIs or through a component. In

some cases, dependencies pop up unexpectedly, e.g., due

to indirect (software) interactions or because of socio-

technical reasons. The team needs to negotiate APIs or to

frequently merge changes on a shared component

Content involved: Change management, change agree-

ment, task distribution

ASD influence: The dependencies problem is not cov-

ered by any known Agile practice. The only mitigation

practice already present in Scrum is the presence of a

Scrum master for the facilitation of the communication

with other teams (through other Scrum masters)

F5. Lack of understanding (stake-
holders’ needs)

Symptoms: Large organizations are forced to spread

teams in space and co-location is not often possible. The

distance and lack of communication between employees

with different knowledge and tasks hinder the awareness

of each other, which consequently decreases the under-

standing about each other’s needs and alters expecta-

tions. This usually causes corrupted communication and

corrupted value, and long waiting time (for not recog-

nized urgent tasks)

Content involved: Communication of needs

ASD influence: The trend of creating small, self-

managed teams strengthens the group development

among few individuals, but risks to isolate them from

other parts of the organization

F6. Lack of common time Symptoms: Teams may need to synchronize in meetings,

which requires common available time. If a team decides

to not allocate time for interaction or the allocated time

slots don’t match, there is a lack of communication or

long waiting times. Causes may be the different loca-

tions, different time zones (or with different slots of

working hours), calendar interferences, or low prioritized

interaction

Content involved: Synchronization, several other kinds

ASD influence: As for F5, the team might tend to focus

on their work only (isolation), disregarding intergroup

interaction and not allocating time for such activity

F7. Mismatch of team’s styles of
communication

Symptoms: Different teams may have different “styles”

of communication, which may cause delays: e.g., one

team mainly uses e-mails and doesn’t want to meet in

person, while the other doesn’t reply often to e-mails and

is used to communicate through face-to-face meetings.

(continued)

62 A. Martini et al.

Table 5.2 (continued)

The effect is a lack of communication. Another issue

may be the different uses of knowledge containers such

as boundary objects (e.g., wikis)

Content involved: Intergroup generic communication

ASD influence: The Agile culture of letting teams have

their customized processes somehow encourages this

mismatch

F8. Slow resource indexing (lack of
knowledge accessibility)

Symptoms: When a member of a team needs to interact,

he or she needs to find the correct person or team to

interact with. The time spent on such activity (tN,

Fig. 5.1) may be long and therefore delaying

Content involved: Knowledge about the needed infor-

mation

ASD influence: The informality suggested in ASD seems

to work as an amplifier for this factor. The choice of

consulting people over formal documents creates

“Backpacking” (see E5)

F9. Low prioritized interaction
(commitment)

Symptoms: Once an interaction is needed, the involved

parts (single employees or whole teams) have to priori-

tize the interaction as an ongoing task. If the interaction is

considered as “low priority,” the team will delay tasks

and communication, hindering the other team

(s) involved

Content involved: All

ASD influence: Isolation of the teams, as explained in

F4–5

F10. Interpersonal conflicts Symptoms: Two employees in different teams (or even

the whole teams) may consider each other “enemies” (for

personal or political reasons). Interactions between these

employees may be strongly hindered by delays and

corrupted information

Content involved: All

ASD influence: A work environment strongly built on

social interactions (as ASD suggests) may amplify this

factor

F11. Lack of understanding (system
architecture)

Symptoms: The understanding of the overall architec-

ture might be misinterpreted or miscommunicated by/to

the developers. The architecture works as a coordination

mechanism, and it’s particularly important for

connecting hardware and software in embedded systems.

The misunderstanding of architecture might cause a lack

of architecture conformance, which may lead to

unpredictable events causing frequent interactions (see

F4, unexpected feature dependencies) during develop-

ment and maintenance

Content involved: Architecture knowledge

ASD influence: The lack of support and explicit practice

for architecture focus and management in ASD might

lead the team to privilege quick solutions to

(continued)

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 63

Table 5.2 (continued)

conformance, which might speed up the development

locally but not globally (e.g., for the whole project/

product)

F12. Lack of understanding (design,
technical)

Symptoms: Some roles in the organization, which are

not in continuous contact with software designers and

programmers, might lack the understanding of specific

implementation (e.g., managers or system responsible/

architects). Decisions made ignoring such knowledge

might be the prioritization of features or the choices of

architectural mechanisms. Such decision creates extra

work and extra interactions for the development team

(against the ASD principle of optimizing the output) or

they might even prove unfeasible

Content involved: Design and technical knowledge

ASD influence: The self-management of teams and the

trend to avoid documentation might lead to disregard

technical and design documentation (at a suitable level of

abstraction) influencing other social groups

F13. Lack of awareness (wrong
expectations)

Symptoms: Large organizations are forced to spread

teams in space, and co-location is not often possible. The

distance and lack of communication between employees

with different knowledge and tasks hinder the awareness

of each other, which consequently alters expectations

Content involved: Expectations about the capability of

stakeholders

ASD influence: Isolation, again, is an amplifier

F14. Lack of personal acquaintance Symptoms: The lack of opportunities for co-location

decreases the acquaintance existing between two persons

in the social network. Such lack creates delayed com-

munication in many situations

Content involved: All

ASD influence: ASD is focused in creating and

reinforcing such personal acquaintance within the teams

but lacks practices for intergroup interactions

F15. Mismatch of processes Symptoms: Embedded software development depends

on different processes connected to different parallel

engineering practices not software related. As an exam-

ple, in hardware design usually a V model is used, while

stage gates are usually set by product development. Agile

teams usually follow short iterations and delivery of

software. If the activities involved within the iterations

rely on interactions with other groups and other pro-

cesses, this might cause communication challenges, for

example, waiting for feedback dependent on tasks that

are not contemplated at that time in other processes

Content involved: All

ASD influence: ASD’s short iterations are not wide-
spread in other processes followed for other engineering

activities and in product management, which cause the

proliferation of this factor

64 A. Martini et al.

connected with speed (explained in the beginning of this chapter) and

influencing, in the end, return on investments.

In future work we aim to expand our research to other companies beyond

the ones studied in this chapter in order to validate the results. In addition, we

seek to develop a framework for companies to proactively design their

organizational setup for optimal speed.

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards

explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012). doi:10.1016/j.jss.

2012.02.033

2. Martini, A., Pareto, L., Bosch, J.: Enablers and inhibitors for speed with reuse. In: Proceedings

of the 16th International Software Product Line Conference – Volume 1, SPLC’12, pp. 116–
125. ACM, New York. doi:10.1145/2362536.2362554

3. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of software

product lines, global development and ecosystems. J. Syst. Softw. 83, 67–76 (2010). doi:10.

1016/j.jss.2009.06.051

4. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile practices

on communication in software development. Empir. Softw. Eng. 13, 303–337 (2008). doi:10.

1007/s10664-008-9065-9

5. Martini, A., Pareto, L., Bosch, J.: Communication factors for speed and reuse in large-scale

agile software development. In: Proceedings of the 17th International Software Product Line

Conference, SPLC’13, pp. 42–51. ACM, New York. doi:10.1145/2491627.2491642

6. Martini, A., Pareto, L., Bosch, J.: Improving businesses success by managing interactions

among agile teams in large organizations. In: Herzwurm, G., Margaria, T. (eds.) Software

business. From physical products to software services and solutions, lecture notes in business

information processing, pp. 60–72. Springer, Berlin (2013)

5 Teams Interactions Hindering Short-Term and Long-Term Business Goals 65

http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2009.06.051
http://dx.doi.org/10.1016/j.jss.2009.06.051
http://dx.doi.org/10.1007/s10664-008-9065-9
http://dx.doi.org/10.1007/s10664-008-9065-9

Chapter 6

A Framework for Speeding Up Interactions

Between Agile Teams and Other Parts

of the Organization

Antonio Martini, Lars Pareto, and Jan Bosch

Abstract A known problem in large software companies is to balance the return on

investment coming from short-term and long-term business goals dependent on the

responsiveness of the companies. In the previous chapter we have found challenges

in interactions between the Agile team and other parts of the organization. We have

conducted an investigation on three large product line companies employing Agile

software development in order to find practices that would mitigate the challenges.

6.1 Background

In the previous chapter we have shown the problem of interaction challenges

between the Agile teams and other teams or other parts of the organization

[1, 2]. Such challenges decrease speed of the companies, hindering the achievement

of business goals [3]. In this study we have defined a framework for the mitigation

of such interaction challenges. We have asked, through a survey, 36 practitioners

about how they (would) mitigate each challenge.

First, it’s important to explain the main idea (Fig. 6.1) behind the application of

the practices: the development team exchange information content (e.g., clarifica-

tion of requirements or architecture patterns) via two-way communication with

other social groups in the organization (they might be other teams or other roles,

like product managers or system architects). The information exchange might be

hindered by one or more challenges (exhaustively described in the previous chap-

ter). Such challenges are caused by root factors: by applying practices that change

these factors, we aim at improving the information flow. However, we have found

during our investigation that the application of the practices might incur in obsta-

cles, which we call barriers.

A. Martini (*) • L. Pareto • J. Bosch

Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden

e-mail: antonio.martini@chalmers.se; Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_6

67

mailto:antonio.martini@chalmers.se
mailto:Jan@JanBosch.com

6.2 Improvement Framework for Mitigating Interaction

Challenges and a Use-Case Scenario

The main purpose of our framework is to support a combined effort of managers,

teams, and other social groups in detecting visible symptoms, investigating root

factors, and applying practices with the aim of improving the achievement of

business goals based on speed, as outlined in Fig. 6.2. We propose what might be

a typical scenario, where managers want to reach the business goals dependent on

speed (first deployment speed, replication speed, and evolution speed described in

the previous section) and practices need to be put in place.

In such scenario, delays over the schedules are due to speed wasted in interac-

tions. Managers may recognize it but they need the team(s) and/or the other social

group to observe the visible effects (communication challenges). Since each effect

is related to one or more root factors, managers can immediately investigate the

status of such factors in the teams to find which one is the cause for the effect. The

catalog of factors and their connections to visible effects are intended to reduce the

solution space for the investigating manager, who saves time and resources. In case

the factors are recognized, both the team and the manager (depending on the factor)

may decide to apply improvement practices. This overall process is outlined in

Fig. 6.2.

We also provide a table (Table 6.1, in the end of this chapter) for the consultation

of which practices should be used by which groups in order to mitigate which root

factors. This way, the reader can quickly select the suited practices for a given

problem. In such table, the “X” means that the practice has been explicitly men-

tioned by the respondents, while the “+” represent the authors’ interpretation that

the practice would be useful also for the given factor and roles.

Fig. 6.1 Improvement framework for communication challenges

68 A. Martini et al.

6.3 Improvement Practices for Mitigating Interaction

Challenges

We present a catalog of practices: they don’t consist of a complete process

description, but rather represent activities to be integrated in (or removed from)

an existing process. Our main assumption is that the existing development process

is transitioning or an already established version of ASD that needs to be

complemented with our practices. For each practice, we list:

Description: which critical boundaries (standing between the team and another

social group) are involved, the main activities of the practice, and the connection

to the process.

Benefits: a number of positive effects that the practices bring what kind of content is

communicated between the social groups and the main underlying negative

factors that the practice was supposed to mitigate.

Barriers: the application of the practice might be hindered by some factors. In some

cases we omit barriers: this means that we didn’t find any clear obstacle in

our data.

6.3.1 Practice 1: Integrate Workshops and Meetings
at the Start of the Project with the Milestones Defined
by the Processes

Members of different teams, with different competences and with different roles,

should meet in the beginning of the development for a new software project. The

Fig. 6.2 Framework for the management of interaction speed

6 A Framework for Speeding Up Interactions Between Agile Teams and Other. . . 69

T
a
b
le

6
.1

P
ra
ct
ic
es

ad
d
re
ss

so
m
e
o
f
th
e
fa
ct
o
rs
an
d
in
v
o
lv
e
sp
ec
ifi
c
so
ci
al

g
ro
u
p
s

P
ra
ct
ic
es

1.
M
ee
ti
ng

s

at
th
e
st
ar
t
of

th
e
pr
oj
ec
t

2.
A
rc
hi
te
ct
u
re

an
d

re
qu

ir
em

en
ts
in

cr
os
s-
fu
nc
ti
on

al

te
am

s

3.
C
F
T
fo
r

es
ti
m
at
io
n

du
ri
ng

pr
od

uc
t
sa
le

ph
as
e

4.
M
ee
ti
ng

s

w
it
h
ar
ch
it
ec
ts
,

sy
st
em

re
sp
on

si
bl
e,

an
d
te
st
er
s

5.
M
ee
ti
ng

s

w
it
h
pr
oj
ec
t

m
an

ag
em

en
t

6.
Is
ol
at
io
n
by

pr
og

ra
m
m
in
g

co
m
m
on

av
ai
la
bl
e
ti
m
e

7.
T
ai
lo
r
th
e

pr
oc
es
se
s

(w
it
h
O
SS

P
)

fo
r
si
m
il
ar
it
y

8.
C
re
at
e

co
m
m
un

ic
at
io
n

pr
ox
ie
s
fo
r

m
is
m
at
ch
in
g

pr
oc
es
se
s

9.
M
on

it
or

an
d

de
fin

e

re
sp
on

si
bi
li
ti
es

fo
r
in
te
gr
at
ed

pa
rt
s

10
.
In
cl
ud

e

in
te
r-
te
am

do
cu
m
en
ta
ti
o
n

in
to

th
e
ba

ck
lo
g

st
or
ie
s

1
1
.

C
re
a
te

in
d
ex
es

a
n
d

b
ro
ke
rs

1
2
.
N
a
vi
g
a
b
le

d
o
cu
m
en
ta
ti
o
n

1
3
.
D
efi
n
e

in
te
rg
ro
up

d
o
cu
m
en
ta
ti
o
n

re
q
u
ir
em

en
ts

1
4
.
P
a
rt
-

ti
m
e
ex
p
er
ts

se
rv
in
g

d
if
fe
re
n
t

te
a
m
s

1
5
.
T
o
o
ls

fo
r

a
w
a
re
n
es
s

1
6
.

A
rc
h
i-

te
ct
u
ra
l

ru
le
s
fo
r

A
S
D

S
o
c
ia
l

g
ro
u
p

in
v
o
lv
ed

S
y
st
em

en
g
in
ee
rs
/

ar
ch
it
ec
ts

X
X

X
X

+
X

X
X

X
X

X
X

X

P
ro
d
u
c
t

m
an
ag
em

e
n
t

X
X

+
X

X

P
ro
je
ct

m
an
ag
em

e
n
t

+
X

X
X

+
X

X
X

B
u
si
n
es
s
u
n
it

+
X

+
+

+
+

D
is
tr
ib
u
te
d

te
am

X
X

X
X

X
X

X
X

X
X

X

S
u
p
p
li
er

+
+

X
X

X
X

X
X

X
X

T
es
t
u
n
it

X
X

X
+

X
X

+
X

X
X

X
X

N
ew

em
p
lo
y
ee

X
X

+
X

X
+

X
X

R
o
o
t

fa
ct
o
rs

a
d
d
re
ss
ed

S
lo
w

re
so
u
rc
e

in
d
ex
in
g
(l
ac
k

o
f
k
n
o
w
le
d
g
e

ac
ce
ss
ib
il
it
y
)

X
X

X
X

X
X

X
X

X
X

X
X

L
ac
k
o
f
k
n
o
w
l-

ed
g
e

av
ai
la
b
il
it
y

X
+

X
X

+
X

+
+

X
+

E
x
p
er
t’
s

re
p
u
ta
ti
o
n

+
+

X
X

X

L
ac
k
o
f
u
n
d
er
-

st
an
d
in
g
(s
ta
k
e-

h
o
ld
er
s’

n
ee
d
s)

X
X

X
X

+
X

X
X

X
X

X
+

L
ac
k
o
f
u
n
d
er
-

st
an
d
in
g
(s
y
s-

te
m

ar
ch
it
ec
tu
re
)

+
X

X
X

X
X

X
X

L
ac
k
o
f
u
n
d
er
-

st
an
d
in
g

(d
es
ig
n
,

te
ch
n
ic
a
l)

X
X

+
X

X
X

X
X

(c
o
n
ti
n
u
ed
)

T
a
b
le

6
.1

(c
o
n
ti
n
u
ed
) P
ra
ct
ic
es

1.
M
ee
ti
ng

s

at
th
e
st
ar
t
of

th
e
pr
oj
ec
t

2.
A
rc
hi
te
ct
u
re

an
d

re
qu

ir
em

en
ts
in

cr
os
s-
fu
nc
ti
on

al

te
am

s

3.
C
F
T
fo
r

es
ti
m
at
io
n

du
ri
ng

pr
od

uc
t
sa
le

ph
as
e

4.
M
ee
ti
ng

s

w
it
h
ar
ch
it
ec
ts
,

sy
st
em

re
sp
on

si
bl
e,

an
d
te
st
er
s

5.
M
ee
ti
ng

s

w
it
h
pr
oj
ec
t

m
an

ag
em

en
t

6.
Is
ol
at
io
n
by

pr
og

ra
m
m
in
g

co
m
m
on

av
ai
la
bl
e
ti
m
e

7.
T
ai
lo
r
th
e

pr
oc
es
se
s

(w
it
h
O
SS

P
)

fo
r
si
m
il
ar
it
y

8.
C
re
at
e

co
m
m
un

ic
at
io
n

pr
ox
ie
s
fo
r

m
is
m
at
ch
in
g

pr
oc
es
se
s

9.
M
on

it
or

an
d

de
fin

e

re
sp
on

si
bi
li
ti
es

fo
r
in
te
gr
at
ed

pa
rt
s

10
.
In
cl
ud

e

in
te
r-
te
am

do
cu
m
en
ta
ti
o
n

in
to

th
e
ba

ck
lo
g

st
or
ie
s

1
1
.

C
re
a
te

in
d
ex
es

a
n
d

b
ro
ke
rs

1
2
.
N
a
vi
g
a
b
le

d
o
cu
m
en
ta
ti
o
n

1
3
.
D
efi
n
e

in
te
rg
ro
up

d
o
cu
m
en
ta
ti
o
n

re
q
u
ir
em

en
ts

1
4
.
P
a
rt
-

ti
m
e
ex
p
er
ts

se
rv
in
g

d
if
fe
re
n
t

te
a
m
s

1
5
.
T
o
o
ls

fo
r

a
w
a
re
n
es
s

1
6
.

A
rc
h
i-

te
ct
u
ra
l

ru
le
s
fo
r

A
S
D

L
ac
k
o
f

aw
ar
en
e
ss

(w
ro
n
g

ex
p
ec
ta
ti
o
n
s)

X
X

X
X

X
+

+
+

X

L
ac
k
o
f
p
er
-

so
n
al

ac
q
u
ai
n
ta
n
ce

X
X

+
X

X
+

+

M
is
m
at
ch

o
f

p
ro
ce
ss
e
s

+
+

X
X

X
+

+
+

L
o
w

p
ri
o
ri
ti
ze
d

in
te
ra
ct
io
n

(c
o
m
m
it
m
en
t)

X
X

X
X

X

L
ac
k
o
f
co
m
-

m
o
n
ti
m
e

X
X

X
X

X
X

X

M
is
m
at
ch

o
f

te
am

’s
st
y
le
s
o
f

co
m
m
u
n
ic
at
io
n

+
+

+
X

+

In
te
rp
e
rs
o
n
al

co
n
fl
ic
ts

+

U
n
cl
ea
r

re
q
u
ir
e
m
en
ts
in

th
e

b
eg
in
n
in
g
o
f

d
ev
el
o
p
m
en
t

X
X

X
+

U
n
ex
p
ec
te
d

fe
at
u
re

d
ep
en
d
en
ci
es

X
X

X
X

+
+

X

practice consists of organizing workshops and meetings between the team and the

system engineers (architects), other development teams (distributed, suppliers), and

with the sales team discussing the expectations of each other for the project. The

creation of such opportunities has to be integrated into the defined process: mile-

stones and deliveries have to be adjusted with the definition of time allocated for

several kinds of interaction. As suggested directly by one respondent: “Everyone

start off being very busy with their own stuff and don’t have time to talk to others.

Eventually this leads to a crisis in the project where the schedule slips and

integrations fails.”

Benefits: the practice has the following benefits:

• The programmed events will avoid delays in the integration phase.
• All the following communications are facilitated.
• Increases organizational awareness. Helps in adjusting the expectations of the

team and its stakeholder: everyone will have information about who are the other

stakeholders involved, their capabilities, and needs.

• Increases awareness of the product. Increases the information about business

goals, architecture guidelines, and an overall picture about the product.

Barriers: this practice needs an upfront investment in terms of time. Since there

is no clear evidence that the time spent in the beginning would be gained at the end

of the project, it’s difficult to convince managers for resource allocation. However,

short workshops require less time than re-doing work and re-aligning in the

integration phase at the end.

6.3.2 Practice 2: Include Employees with Knowledge
of the (Sub-)System Architecture and Requirements
in Cross-Functional Teams

A cross-functional team (CFT) consists of a small collection of individuals from

diverse functional specializations within the organization. These types of teams

may work together for a limited time and their members may also be members of

other teams. This is a generic well-known practice that brings many advantages:

CFTs are usually employed for feature or component development, in which the

team is responsible from the beginning to the end of the development. Therefore,

the team needs enough knowledge to elaborate both requirements and quality

attributes of the architecture.

Benefits: placing people with this knowledge in the team is the best solution for

having the following benefits:

• More precise estimation of work. The daily contact with architects, testers, and

system responsible makes different roles aware of each other’s needs. This

avoids superfluous work. Developers and architects become also aware of the

effects of their work on each other’s work.

72 A. Martini et al.

• Chain tool synchronization. Different tools that are used for different tasks tend

to be aligned. This avoids time spent on integrate artifacts from different tools.

6.3.3 Practice 3: Implement Dedicated Temporary CFT
for Estimation During Product Sale Phase

ASD usually includes the customer on site and the continuous feedback. However,

in large products (especially if delivered on the market and not to specific cus-

tomers), this is not often the case. Production decisions have to be made and

contracts have to be negotiated in advance. In such cases, an option mentioned by

many respondents is a temporary CFT for estimation: a team of main stakeholders,

i.e., experienced personnel from different disciplines (representatives from archi-

tects, developers, testers) should be involved in the discussions about business

goals, contract negotiation with the customers, and market scoping.

Benefits: the consultation of such “task force” would:

• Inform the business unit about the estimated feasibility of the business goals.
• Avoid wrong assumptions in the scope analysis.

• Increase information about business strategies in the development team.

Barriers: the major barrier is the willingness of the specialists from different

disciplines to accept to sit together with the others. This denotes the presence of

“classes” between the disciplines. CFTs could help in mitigating such barrier, but

on the other hand, there is the risk of obtaining non-efficient teams. A possible

barrier is the feasibility of the integration of this practice in the contract negotiation

process or scoping analysis.

6.3.4 Practice 4: Formal and Informal Meetings Between
the Development Team and Architects, System
Responsible, and Separated Testers

Co-location of system engineers, architects, and testers is not always possible. In

such case, meetings are a good practice suggested in many Agile software devel-

opment approaches such as Scrum. However, often meetings are meant to be within

the same team or among the Scrum masters of various teams (e.g., Scrum of

Scrums). This practice suggests the participation of system engineers, architects,

and testers belonging to a separate unit to formal Scrum meetings in order to reach

agreement on requirements. However, formal meetings are not always enough.

More than one respondent suggests the actual creation of a social link between the

system engineers and the development team.

6 A Framework for Speeding Up Interactions Between Agile Teams and Other. . . 73

Benefits:

• Avoid the mismatch of overall (reference) architecture and Agile deliveries: in
large projects, architecture is important for reuse, replication, and evolution of

the product. Clearly, there is a need to avoid a mismatch between the Agile

team’s deliveries and the overall architecture.

• Facilitate the integration of roles with broad responsibilities with ASD. Roles
such as architects and system responsible are not quite emphasized in Agile

practices. However, such roles are important to manage complex and large

projects.

• Decrease the written documentation. Agile suggests the minimization of the

documentation: the respondents strongly recommended meetings instead.

Barriers: the main barriers to the implementation of this practice are, as men-

tioned for the previous practice, political boundaries related to the disciplines.

6.3.5 Practice 5: Formal and Informal Meetings with Project
Management

The management team needs to know the delivery progress, the performance of the

team, and what decisions have been taken and why. ASD prescribes informal

communication and self-organization of the team. One of the informants says:

“We have a lot of documents that we produce to keep the management (project,

product and line) happy. We then have a completely different set of documents that

we produce to remember what we were doing with the code. We usually spend a

considerable amount of energy to try to avoid writing the first kind of document and

we generally have to hide the writing of the latter documents.” The communication

should be carried out face-to-face rather than by the delivery of extensive docu-

mentation. Management and teams need to define bidirectional communication

through meetings in their process, instead of the one-way one provided by the

documentation.

Benefits: this practice has the following effects:

• Decreases the amount documentation for the Agile team
• Boosts self-directed teams
• Increases the personal acquaintance between the managers and the teams
• Increases the strategic awareness of the teams
• Increases the awareness of the real current status of the team by the managers

Barriers: a major barrier to the application of this practice is the mismatch of

competences and knowledge between managers and team members: for a manager

it might be difficult to catch technical details, which could affect the strategic

decisions.

74 A. Martini et al.

6.3.6 Practice 6: Provide Isolation by Programming
Common Available Time (Workshops) with the Critical
Groups

Teams need to focus. Despite the importance of face-to-face communication,

periods of isolations are strongly claimed as important for the development by

the respondents. Therefore, face-to-face communication has to be regulated by

programming a regular period of available time common to the groups that are

supposed to meet (according to the critical boundaries).

Benefits:

• Allow teams to focus in the remaining time.
• Provide opportunities for meeting with target groups.
• Facilitate the management of face-to-face interactions.

Barriers: the main barrier of this practice is mismatch of calendars and the usual

focus of the teams and the other groups on the business goal at hand. Pressure might

in fact cause the opposite effect, i.e., the complete isolation of the team, which

would be an anti-ASD effect.

6.3.7 Practice 7: Tailor the Processes to Achieve Similarity

Literature and the respondents suggest to tailor the interfaces between the devel-

opment team and groups with the mismatching processes. “Review interfaces

between different processes e.g. System design – SW Design to enable a more

continuous flow of information.” This practice suggests the involved parties to

explicitly meet and adapt their processes in order to make them more similar to each

other (not necessarily the same). This could be done, for example, by a formal

meeting with the purpose of defining common milestones or of creating communi-

cation proxies (see next practice).

Benefits:

• Increase opportunities for communication. There are usually at least two levels

in the hierarchy of the processes, organization (focused on the development of

the product with embedded software), and projects. With ASD the teams are

meant to be self-organized and following their own processes. Also, processes

between different development teams may mismatch. In all these cases, the

mismatch of the processes creates lack of communication opportunities: the

more similar the processes, the better synchronization and alignment and there-

fore better chances of communication (Fig. 6.3).

• Avoid overregulation of team processes. The Agile manifesto suggests “people

over processes”: in large organization, where some high-level processes need to

6 A Framework for Speeding Up Interactions Between Agile Teams and Other. . . 75

be in place, the support for ASD could be given by the adaptation of the

processes to particular needs.

Barriers: well-established and complex processes are already running in a large

organization, and many products depend on them. The tailoring of OSSP, even if

gradual, represents a big effort involving a large number of employees, which

brings costs in terms of time and resources. Different mind-set and political

dynamics would also hinder the application of this practice.

6.3.8 Practice 8: Create Communication “Proxies” Between
Mismatching Processes

In the previous practice we propose to tailor the processes. Another

(complementing) idea is to provide a “proxy process” responsible for the commu-

nication between the mismatching processes (Fig. 6.4). This can be achieved by

having an Agile facilitator responsible for handling the communication with the

Agile team in the other groups or by defining generic regular interactions between

the two groups. This concept is already suggested in GSD literature, where a

member of a team (Scrum master or team leader) is responsible to communicate

to the same role in the other team. However, a requirement in this practice is that the

Agile facilitator should know ASD.

6.3.9 Benefits:

• Separation of tasks synchronization and communication needs. In different

processes with different phases, needs for communication can be satisfied, at

least partially.

• Faster feedback for the Agile teams. They don’t have to wait according to the

different processes.

• The Agile facilitator or the meetings contribute to spread process knowledge
(ASD) to the other parties involved.

Barriers: the main challenge is to find a person in the non-Agile group that is

aware of ASD and can “translate” the needs of Agile to the rest of the group. The

person also needs to understand both parties’ needs. In some cases, such role would

need to be trained, which would take time. Another barrier is represented by the

mind-set of the groups and by diverging “political” dynamics.

76 A. Martini et al.

6.3.10 Practice 9: Monitor and Meet to Define
Responsibilities for Integrated Parts of the Software

Citing the respondents: “Take responsibility for ‘your’ product,” “[. . .] very clear

who is doing what and when everybody is supposed to deliver what and to whom.

The overall objective of each delivery and the limitations (not implemented func-

tionality) should also be communicated to all involved parties,” “Promote the

attitude of taking responsibility for the WHOLE chain of functionality.” The

respondents suggest that responsibility for integrated parts of the software has to

be recognized by the involved parties. The integrated “whole” might be a compo-

nent (in case of features spread to different components) or a set of connected

functionalities. The practice consists in monitoring and recognizing such situations

in which responsibility could “fall between the chairs” and reacting by defining

responsibilities through a meeting with the involved actors.

Benefits:

• A clear reference for bug fixes and improvement needs
• A clear reference for explanations of decisions, especially in lack of other kinds

of documentation

Fig. 6.3 Different flows of communication between different team’s processes

6 A Framework for Speeding Up Interactions Between Agile Teams and Other. . . 77

Barriers: one challenge for the implementation of this practice is the tendency in

Agile to disregard formal documents. Moreover, in some cases the code has to be

touched by so many teams that it might be too difficult to define who is clearly

responsible.

6.3.11 Practice 10: Include Inter-team Documentation
(Integration-Related) Into the Backlog Stories

“Bring in documentation stories into the backlog. Include documentation into

definition of done.” The backlog should contain stories of documentation describ-

ing the interaction of integrated parts.

Benefits:

• The prioritization of the documentation production
• The increment of technical documentation provided by the team for the external

stakeholders

Fig. 6.4 Processes need interfaces for ASD continuous communication

78 A. Martini et al.

Barriers: the barriers are related to the responsibilities and commitment of such

practice: who should be responsible for updating the backlog? The main hypothesis

would be the team leader or Scrum master, after the collection of feedback from

other teams. Another hypothesis would be an architect, aware of the possible

challenges due to integration.

6.3.12 Practice 11: Create Indexes and Brokers

The practice proposed by the respondents is to keep an index of key people with the

role of brokers. Such brokers should, in turn, be able to identify the most knowl-

edgeable person for a requested information. “The biggest problem is that it is

usually impossible to find the documentation. It should be easily accessible and

there should be people (‘librarians’) who can help you find relevant information or

know who are the experts to ask.”

Benefits:

• Avoids unnecessary communication and wasted time in trying to retrieve knowl-
edge from the wrong persons

• Decrease the amount of documentation to be maintained for the Agile team

Barriers: the major threats for the implementation of this practice are the need

for the explicit allocation of employees for the given role and the loss of knowledge

due to such employees leaving the organization.

6.3.13 Practice 12: Navigable Documentation

Whenever documentation is motivated, it should be made navigable. Many respon-

dents suggest structured documentation: different levels of details for different

levels of understanding: “have less complimentary documentation, in best case

only some pictures to explain the overall idea.” This is referred to code: “All

diagrams that directly describes code should be generated from the code as they

only serve as another view of the code, they should also be interactive to enable

developers to easily switch between a diagram based view of the code and the

actual code.” The same principle holds for requirements and for context knowledge.

Benefits:

• The structure should provide a quicker access to requirements, code, and context
knowledge.

Barriers: the major barrier for this practice is the introduction of a suitable tool

that should be integrated with the rest of the infrastructure without creating

conflicts.

6 A Framework for Speeding Up Interactions Between Agile Teams and Other. . . 79

6.3.14 Practice 13: Define Documentation Requirements
for Groups Across Organizational Boundaries

This practice suggests the creation of a set of requirements expressed in terms of

goals. Such requirements should be provided for each frequent consumer of a kind

of documentation: for example, technical documentation shouldn’t be provided for

managers, but it would be useful for checking architecture compliance and avoid

erosion: therefore, the architects should define requirements for the documentation

produced by the team for them. The definition, according to the Agile principles,

should take place through a meeting between the involved parties to discuss the

requirements.

Benefits:

• Defines clear constraints for the documentation, avoiding the explanation of not
relevant details.

• The producer of the documentation gains awareness of the needs of the
stakeholders.

Barriers: the major barrier for this practice is that such documentation require-

ments are not well known and there is a need for guidelines to define documentation

requirements, but further research has to be carried out to provide them with respect

to different interfaces.

6.3.15 Practice 14: Make Available Part-Time Experts
Serving Different Teams and Covering Critical
Knowledge (The Most Requested One)

The idea is to decrease the workload in the actual team that is not related to the

critical expertise from the expert and make him/her an inner consultant serving the

other teams. This involves a process of identifying the critical knowledge, allocat-

ing time to the expert broadcasting the information of such availability to the teams.

Benefits:

• Grouping interactions in a defined time box would avoid high frequency of
interactions.

• Provides every Agile team with a clear and dedicated resource of knowledge.

6.3.16 Practice 15: Increase the Tools for Awareness

Agile teams would benefit from the visualization of social network flows, knowl-

edge location and availability, and time availability.

80 A. Martini et al.

Benefits:

• Knowledge visualization would increase the awareness of the environment

surrounding the involved Agile teams, avoiding isolation.
• Shared calendars would provide a good way to check the availability of the

employees with the knowledge and therefore increases the opportunities for
creating interaction when needed.

Barriers: such visualization tools have to be integrated with current tools, e.g.,

mailing services, which might not have such features. Such integration might not be

available or easy to apply and maintain.

6.3.17 Practice 16: Implement Architectural Rules for ASD

Agile teams developing different components (or features) need to be decoupled as

much as possible. This suggests the need of architectural design rules to match the

organizational (Agile) structure with the architectural components. With the intro-

duction of feature-oriented teams, the component-oriented architecture might cause

loss of responsibility for components, causing loss of architectural care. For com-

ponent teams, the spread of features across different teams would increase the

number of interactions among the teams for requirements and design agreement.

Benefits: the informants suggest the need for new architectural solutions to

combine the following goals:

• Allow the teams to focus on the customer value.
• Avoid organizational dependencies caused by the architectural ones (loose

coupled teams).

• Satisfy system requirements but adapt and take into account information about

software design.

Barriers: the implementation of a suitable architecture compatible with ASD

remains an open issue in research and industry.

Conclusion

In this chapter we presented a framework for the mitigation of interaction

challenges between Agile teams and other teams or other parts of the orga-

nization. As a research method we employed a survey where we received

responses from 36 practitioners about how they (would) mitigate each type of

identified interaction challenge.

The main purpose of our framework is to support a combined effort of

managers, teams, and other social groups in detecting visible symptoms,

investigating root factors and applying practices with the aim of improving

(continued)

6 A Framework for Speeding Up Interactions Between Agile Teams and Other. . . 81

the achievement of business goals based on speed. We propose what might be

a typical scenario, where managers want to reach the business goals depen-

dent on speed (first deployment speed, replication speed, and evolution speed

described in the previous chapter) and practices need to be put in place.

In such scenario, delays over the schedules are due to speed wasted in

interactions. Managers may recognize it but they need the team(s) and/or the

other social group to observe the visible effects (communication challenges).

Since each effect is related to one or more root factors, managers can

immediately investigate the status of such factors in the teams to find which

one is the cause for the effect. The catalog of factors and their connections to

visible effects are intended to reduce the solution space for the investigating

manager, who saves time and resources. In case the factors are recognized,

both the team and the manager (depending on the factor) may decide to apply

improvement practices. We also provide a table (Table 6.1, in the end of this

chapter) for the selection of the practices that should be used by each group in

response to identified root factors.

In future work, we aim to broaden the scope of the study to include more

companies and respondents as well as explore if there are additional practices

to be considered.

References

1. Martini, A., Pareto, L., Bosch, J.: Enablers and inhibitors for speed with reuse. In: Proceedings

of the 16th International Software Product Line Conference – Volume 1, SPLC’12, pp. 116–
125. ACM, New York (2012). doi:10.1145/2362536.2362554

2. Martini, A., Pareto, L., Bosch, J.: Communication factors for speed and reuse in large-scale

agile software development. In: Proceedings of the 17th International Software Product Line

Conference, SPLC’13, pp. 42–51. ACM, New York (2013). doi:10.1145/2491627.2491642

3. Martini, A., Pareto, L., Bosch, J.: Improving businesses success by managing interactions

among Agile teams in large organizations. In: Herzwurm, G., Margaria, T. (eds.) Software

Business. From Physical Products to Software Services and Solutions, Lecture Notes in

Business Information Processing, pp. 60–72. Springer, Berlin (2013)

82 A. Martini et al.

Chapter 7

Customer-Specific Teams for Agile Evolution

of Large-Scale Embedded Systems

Helena Holmström Olsson, Anna B. Sandberg, and Jan Bosch

Abstract Companies serving multiple customers or a segmented mass market

often struggle with two conflicting forces. On the one hand, companies need to

deploy a constant stream of new features to their customer base. On the other hand,

individual customers demand rapid feedback to their request for dedicated func-

tionality. Although the conflict of achieving scale and at the same time staying

responsive to individual customers has been recognized by others, it is particularly

challenging in large-scale software development. In this paper, we study the

concept of customer-specific teams (CSTs) as an answer to this challenge. The

CST notion builds upon agile values and is an effective means to shorten feedback

loops and increase customer responsiveness, customer satisfaction, and feature

quality. Also, the approach allows for more innovative feature development bring-

ing with it new business opportunities in a market where competition is fierce. We

illustrate and validate the approach in the context of one of the business units of

Ericsson.

7.1 Introduction

For more than a decade, agile development methods have proved successful for

establishing flexible development processes with short feedback loops and close

customer collaboration [1, 2]. Due to successful accounts [3, 4], these methods have

become attractive to a broad variety of companies. Currently, large software-intensive

H.H. Olsson (*)

Department of Computer Science, Malmö University, Malmö, Sweden

e-mail: helena.holmstrom.olsson@mah.se

A.B. Sandberg

Ericsson AB, Gothenburg, Sweden

e-mail: anna.sandberg@ericsson.com

J. Bosch

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_7

83

mailto:helena.holmstrom.olsson@mah.se
mailto:anna.sandberg@ericsson.com
mailto:Jan@JanBosch.com

organizations are in the process of deploying agile methods, and a number of

attempts to scale agile methods can be identified [5, 6]. However, to apply these

methods in large-scale development of products intended for a mass market is not

without challenges. In large-scale software development, there is typically a con-

flict between responsiveness to individual customers and scale in terms of deliver-

ing a high number of features to as many customers as possible. Most often,

organizations focus on scale, and individual customer requests are viewed as

problematic since they add complexity to product variation and version control.

In our study, we focus on how to increase responsiveness to individual customers

in large-scale software development without losing focus on scale. We do so by

studying CSTs at Ericsson, i.e., development teams that work exclusively with

prioritized customers to quickly respond to their particular needs. The intention

with these teams is to help the organization to shorten feedback loops and increase

responsiveness as advocated by agile methods. At the same time, the teams

contribute to scale as soon as the value they produce in customer-specific collab-

orations is transferred into the main product branch and made available to the larger

customer base.

7.2 Large-Scale Software Development

For more than a decade, agile development methods have demonstrated their

success in increasing flexibility and reducing development lead time [1, 2]. Due

to successful accounts [3, 4], agile methods have become attractive to a broad

variety of companies. Currently, large software-intensive organizations are in the

process of deploying agile methods, and attempts to scale agile methods are

common [5–7]. However, the applicability of these methods is not without chal-

lenges in large-scale software development [8]. As recognized by Badampoudi

et al. [9], organizations often discover misalignments between methods when

attempting to apply agile methods in a large-scale setting. The reason for this is

that the translation of the original agile ideas to a large-scale setting is very difficult.

Also, the shift towards agile is difficult for companies that are used to heavyweight

sequential processes and that have interdependent teams and stakeholders located at

different locations [9]. Often, distributed development teams lack a shared under-

standing due to communication and coordination challenges, lack of documenta-

tion, and complex decision-making processes.

Another difficulty is the challenge related to cross-functional team creation

[8]. To create generalist teams that can implement features in all software compo-

nents has shown difficult in large systems with high complexity. Often, organiza-

tions realize that many components in a large-scale system are technically very

difficult and interdependent and require years of experience to be fully understood

by developers. As a result, many large-scale organizations experience long lead

times before the development teams can implement anything useful in a

84 H.H. Olsson et al.

component, and to identify who has the required extensive expertise to perform a

task is still a challenge in a large-scale adoption of agile methods.

7.2.1 Scale Versus Responsiveness in Large-Scale Agile

Companies involved in large-scale software development deliver systems to a

significant number of customers. Typically, these customers have different ideas

on how the product can serve their particular needs. The role of product manage-

ment is to inventory these needs; to combine, merge, and prioritize among these;

and to present a roadmap with a set of requirements for the next release of the

system. In this process, strategic customers are looking to include those require-

ments that are important to them. This leads to a tension between two conflicting

interests. On the one hand, the development organization needs to achieve scale in

terms of implementing as many new features to as many customers as possible. On

the other hand, the development organization needs to show responsiveness to

strategic customers and minimize the delay between a customer request and the

deployment of a solution that meets this request. Most organizations focus on

achieving scale, and customers that ask for unique solutions are viewed as

problematic [10].

To better understand the tension between scale and responsiveness, we introduce

two concepts, i.e., “customer-unique features” and “customer-first features.” A

customer-unique feature is a feature that has relevance to one specific customer,

and the likelihood of any other customer requesting the same feature is low. A

customer-first feature, on the other hand, is a feature requested by one customer, but

that has relevance for other customers and therefore can be transferred into generic

functionality as part of the product main branch.

7.2.2 Customer-Specific Team Development

Customer-specific teams are cross-functional teams that work closely with priori-

tized customers. The notion of CSTs is well established in areas such as product

sales [11], customer relationship management [12], and customer support [13], and

these teams have proven useful for improving long-term relationships and for

adding value to customers. Customer-specific teams in software development

typically include competencies ranging from architects and system designers to

software developers and testers. With end-to-end responsibility for feature devel-

opment, CSTs allow for an autonomous development organization that rapidly

responds to individual customer needs. While these teams do not alter the planned

release cycle, they can rapidly develop new features and insert these in the release

process, allowing for significant improvement in response time to customer-specific

requests. Also, CSTs allow the development organization to tap into valuable

7 Customer-Specific Teams for Agile Evolution of Large-Scale Embedded Systems 85

customer knowledge and to learn about the specifics of individual customers. If

successfully used, this knowledge can help companies understand not only one

customer but also other customers with similar needs.

7.3 Research Site and Method

This study was carried out in close collaboration with Ericsson AB, a world-leading

provider of telecommunication systems. Ericsson has been transforming its devel-

opment organizations towards agile development since 2005, and today agile

practices have become the de facto way of working for several of the product

development units. Ericsson has cross-functional development teams that are

accountable for a feature from the formulation of requirements until release to

customers. As a result of this autonomous team structure, a team can work as a

customer-specific team for a period of time. From being more of an experiment a

few years ago, CSTs have become a natural part of Ericsson’s development

organization. Today, the development organization consists of roadmap teams

producing features for the generic product with scale being the primary metric of

success and CSTs operating to increase responsiveness to individual customers. As

a result of a successful balance of roadmap teams and CSTs, the development

organization has the ability to do (1) roadmap development, i.e., features for the

generic product; (2) customer-unique development, i.e., features customized for

one customer; or (3) customer-first development, i.e., features requested by one

customer but with relevance to the main product branch.

The development organization involved in this study has 30 cross-functional

teams, located at two different sites in different time zones. Each cross-functional

team consists of 7–8 members. To manage releases, program management, feature

integration management, and release management support the teams. All teams are

involved in the development of one of the nodes in the 3G networks that includes

customer-requested features as well as support for mobility management. For

Ericsson, finding a balance between roadmap and CSTs is important. Today, this

balance depends on the amount of customer-first requests. Still, development of

customer-first features is limited, and roadmap teams are still in majority. From a

development perspective, it should be noted that most cross-functional teams prefer

development of new roadmap features for the generic product, over development of

a new feature on an old configuration for a specific customer. Due to this, most

cross-functional team members do not favor customer-specific development more

than classical roadmap development although the common view is often that

customized development is more attractive due to its short-term focus.

In total, we conducted 17 interviews and one group interview. In the interviews,

we met with a team leader, a system manager, a system designer, and a function

tester from three CSTs, as well as people at two customer units with which these

CSTs interact. Furthermore, we conducted interviews with a program manager, a

product manager, and an integration manager at the main development site. In

86 H.H. Olsson et al.

addition, and as a follow-up to the interviews, we conducted a group interview in

which we met with three managers at the main development site. All the inter-

viewees have significant experience from Ericsson. For the purpose of our study,

they provided a rich account on benefits as well as challenges with customer-

specific team development, and due to their extensive experience, they were all

able to compare today’s situation with the time before CSTs. In Table 7.1, we

summarize our interview findings.

Table 7.1 Summary of the advantages with having customer-specific teams

Customer

responsiveness Customer satisfaction Feature quality

Team A Short feedback cycles

Closer to a specific cus-

tomer

Direct communication

Strong support after

delivery

Regular meetings with

customers

Improved interaction

with customer units

Continuous discussion

about requirements

More frequent acceptance

tests

More frequent usability

tests

Team B Give important cus-

tomers what they want

Bypass the normal

release process

Better understanding

of feature usage

Anticipate problems

Increased customer

control

Opportunity to test in

advance

Test in field—learn more

about specific customer

needs

Team C Increased flexibility

Faster deliveries

Adapt faster to customer

needs

Customize features

Improved understanding

of feature usage

Customers get what they

want when they want it

More adapted and flexible

processes and testing

procedures

Customer

Unit A

Closer to developers

Direct communication

Short feedback loops

Customers get extra

attention

Test directly in the field

with a specific customer

Customer

Unit B

Faster deliveries

Customers decide when

to get a feature

Better understanding

of feature usage

Learn what requirements

mean instead of having

assumptions

Product

Manager

Improved interaction

between developers and

customers

Better understanding

of customers

Learn about specific

customer needs

Facilitate good testing

Program

Manager

Increased responsive-

ness

Less disruptive

Only value-adding

development

Bundle customer-specific

features

Integration

Manager

Special treatment for

important customers

Bypass release cycles

Better understanding

of customers

Develop the right things

Better understanding of

quality

7 Customer-Specific Teams for Agile Evolution of Large-Scale Embedded Systems 87

7.4 Findings

Customer-specific teams increase responsiveness to individual customers by

enabling fast development of “customer-first” and “customer-unique” features.

This is difficult to achieve in traditional roadmap development where features are

released in planned release cycles adapted to generic needs and requests. During the

interviews, one of the product managers refers to CSTs as twice as fast as roadmap

teams. The reason for this significant improvement of speed is that CSTs don’t need
to package their features into the regular bi-yearly release cycle in which admin-

istration and coordination aspects are time-consuming.

In relation to customer satisfaction, the opportunity to learn about feature usage

is valuable. Our respondents emphasize the opportunity to understand what features

that are used and those that are not and why. Furthermore, CSTs enhance customer

satisfaction by allowing customized functionality for prioritized customers. While

customer satisfaction is as important in traditional roadmap development, it is

difficult to evaluate since direct customer contact is scarce.

Finally, CSTs improve feature quality by facilitating continuous feedback and

daily communication with customers. Such a dialogue is difficult to achieve in

traditional roadmap development and especially in a large-scale setting where

frequent dialogue with a large number of customers is difficult to establish and

maintain. In Table 7.1, we summarize our interview findings.

Overall, the experiences of CSTs are positive. Our interviewees are familiar with

classic roadmap team development where focus is on scale, and in comparison with

this, CSTs allow for significantly faster responsiveness to individual customers. In

particular, CSTs prove beneficial when a customer wants a regular feature fast and

is willing to pay for it. Also, CSTs are used to provide extra support to prioritized

customers.

However, our study shows on three main concerns that need to be considered

when adopting CSTs. First, there are challenges related to resource allocation.

While a customer-specific team can always start working on a roadmap feature if

not busy with a customer-specific request, this will be on cost of speed if a

customer-specific request occurs. Second, by establishing a close relationship to

customers, the development organization exposes itself in ways not experienced in

traditional development. As a result, customers might view CSTs as a general

support function to which they turn for discussing any problem that might occur.

For a customer-specific team, this has a negative impact on development speed for

the feature they develop. Third, agile practices such as continuous integration and

continuous regressions testing are vital. If these mechanisms are not fully in place,

there is cumbersome manual work to do whenever features need to be integrated

into the main code base.

88 H.H. Olsson et al.

7.5 Discussion

7.5.1 Feature Development Approaches

As a result of our study, we identified three approaches in which to organize feature

development (see Fig. 7.1):

Customer
Unit A

Product Management

Verification

Customer nCustomer BCustomer A

Customer
Unit B

Customer
Unit n

Generic
Need

‘Roadmap’

Generic
Need
‘First’

Specific
Need

‘Unique’

Release

Customer Specific Release

k

L
o
o
p

F
e
e
d
b
a
c

Fig. 7.1 Three approaches for feature development in large-scale Agile development

7 Customer-Specific Teams for Agile Evolution of Large-Scale Embedded Systems 89

1. The first approach is classic roadmap development where the focus is on scale.

We name this approach “generic need roadmap,” characterized by development

according to planned release cycles.

2. The second approach is “customer first” and represents the opportunity to have

CSTs develop features for individual customers that soon transfer to generic

product functionality. This approach has a huge business potential as the com-

pany gets paid when the feature is delivered to the customer that requested it, as

well as when delivered as generic functionality as part of a roadmap release.

3. The third approach is “customer unique” and reflects a situation in which CSTs

develop features unique for one customer, but without relevance to the generic

product.

7.5.2 Customer-Specific Team Approaches

To further understand how CSTs complement already established practices and the

way in which they can be used to advance the practices of large-scale software

development organizations, we suggest focusing on the dimension of responsive-
ness and how this contributes to innovativeness. Both responsiveness and innova-

tiveness [1–3] are key attributes for successful team output. Similar with our

findings on team responsiveness (see Sect. 7.4), we refer to responsiveness as

“the ability to respond to customer requests.” Also, and as suggested by our

interviewees, CSTs enable the organization anticipate future requests. In this

discussion, we refer to this as innovativeness and “the ability to actively learn

about new feature needs.”

In Fig. 7.2, we illustrate the dimensions of responsiveness and innovativeness

and the different approaches to customer-specific team development that an orga-

nization can choose: (1) feature-boxed development, (2) opportunity-based devel-

opment, (3) backlog building development, and (4) continuous innovative

development.

Feature-boxed development is when a customer-specific team develops a

feature in close collaboration with one specific customer. In this collaboration,

the focus is on one feature only, and there is no systematic process in place to

respond and act on requests outside the assigned featured. There is also no system-

atic process in place to actively search for new features. While it is fair to assume

that the close collaboration between the development team and the customer has

potential to identify opportunities for new feature development, the lack of struc-

tured processes to cater for this hinders teams from acting in that way. Although

CSTs have detailed knowledge about customers and what could be an opportunity

for new feature development, this knowledge must be captured in structured

processes so that ideas can be efficiently incorporated into the development and

release process. In customer-specific development as referred to here, responsive-

ness is prioritized over innovativeness, and therefore, teams focus on delivering

90 H.H. Olsson et al.

what has been assigned to them and processes support them in doing this as fast as

possible.

Opportunity-based development is when the customer’s need for new business

opportunities, made possible by new features, is the primary focus. In such collab-

orations, the customer-specific team is responsive to any request or need that

appears during the development process, and there is process support for managing

new feature development in place. While the development team does not actively

search for what could be new features, they adjust to whatever opportunity that

emerges during the collaboration in order to start development of new features as

soon as they have completed the original assignment. When choosing this

approach, the overall assignment given to the customer-specific team is to focus

on supporting the customer’s overall business needs over developing a single

feature.

Backlog building development has the potential to identify new features. In this

approach, a systematic process to actively search for new features is established.

Teams work proactively with customers to identify new feature opportunities that

can support the customer’s business goals. However, while the teams have the

ability to identify new features, a systematic process for translating these opportu-

nities into software functionality is still missing. As a result, this approach allows

development teams to do “innovative feature-boxed development,” but without fast

responsiveness due to the lack of processes support. If choosing this approach,

organizations use CSTs to generate innovative ideas for new feature development,

rather than prioritizing fast development of these.

Continuous innovative development is the “ideal” approach to customer-

specific team development in which both responsiveness and innovativeness are

present. In such collaboration, the development team actively identifies opportuni-

ties for new feature development and responds to these as soon as they have

completed development of the previous one. Both the customer-specific team and

the customer are open to, and aware of, the processes to actively respond to new

Responsiveness

In
no

va
tiv

en
es

s

Feature Boxed
Development

Opportunity
Based

Development

Continuous
Innovative

Development

Backlog
Building

Development

Fig. 7.2 Four variants of customer-specific team development

7 Customer-Specific Teams for Agile Evolution of Large-Scale Embedded Systems 91

needs and requests. During the collaboration, there is a constant sharing of infor-

mation between the team and the customer, and this information works as the

foundation for short development cycles and idea generation.

To maximize the potential of CSTs to be both responsive and innovative as

suggested by the “continuous innovative development” approach, it is important to

put systematic process support in place. Such a process needs to include (1) methods

for how to identify new features, and (2) an assignment process which allows teams

to continue development as new features are identified. With such process support

in place, organizations can benefit from efficient development characterized by

both responsiveness and innovativeness. For example, when combining continuous

innovative development with the concept of “customer-first” feature development,

the potential is endless for both the customer and the development organization.

Conclusion

While the conflict of achieving scale and at the same time staying responsive

to individual customers is nothing new, it is particularly challenging in large-

scale software development. The notion of CSTs builds upon agile values and

is an effective means to shorten feedback loops and increase customer

responsiveness, customer satisfaction, and feature quality. Also, the approach

allows for more innovative feature development bringing with it new busi-

ness opportunities in a market where competition is fierce.

References

1. Larman, C., Vodde, B.: Scaling Lean and Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. Pearson Education Inc., Boston (2009)

2. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation. Softw.

Manag. 34(9), 120–122 (2001)

3. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on Agile methods: A

comparative analysis. In: Proceedings of the 25th International Conference on Software

Engineering, pp. 244–254. Springer, Portland (2003)

4. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”: A multiple-case

study exploring barriers in the transition from agile development towards continuous deploy-

ment of software. In: Proceedings of the 38th Euromicro Conference on Software Engineering

and Advanced Applications, IEEE, Cesme, 5–7 September 2012

5. Kerievsky, J.: Industrial XP: Making XP work in large organizations. Executive report in Agile

Project Management, vol. 6, no. 2

6. McMahon, P.E.: Extending agile methods: A distributed project and organizational improve-

ment perspective. In: Proceedings of the 17th Annual Systems and Software Technology

Conference, Salt Lake City, 18–21 April 2005

7. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The impact of agile

principles and practices on large-scale software development projects: a multiple-case study

of two projects at Ericsson. In: ESEM, 2013 ACM/IEEE International Symposium on Empir-

ical Software Engineering and Measurement (ESEM), pp. 348–356 (2013). doi:10.1109/

ESEM.2013.53

92 H.H. Olsson et al.

http://dx.doi.org/10.1109/ESEM.2013.53
http://dx.doi.org/10.1109/ESEM.2013.53

8. Heikkilä, V., Paasivaara, M., Lassenius, C., Engblom, C.: Continuous release planning in a

large-scale scrum development organization at Ericsson. In: Baumeister, H., Weber, B. (eds.)

Agile Processes in Software Engineering and Extreme Programming, vol. 149, pp. 195–209.

Springer, Berlin (2013)

9. Badampudi, D., Fricker, S., Moreno, A.: Perspectives on productivity and delays in large-scale

Agile projects. In: Baumeister, H., Weber, B. (eds.) Agile Processes in Software Engineering

and Extreme Programming, vol. 149, pp. 180–194. Springer, Berlin (2013)

10. Bosch, J.: Maturity and evolution in software product lines: Approaches, artefacts and orga-

nization. In: Proceedings of the Second Software Product Line Conference (SPLC2), pp. 257–

271, Springer-Verlag London, UK (2002). ISBN:3-540-43985-4

11. Arnett, D.B., Badrinarayanan, V.: Enhancinf customer needs-driven CRM strategies: core

selling teams, knowledge management competence and relationship marketing competence.

J. Pers. Sell. Sales Manag. 25(4), 1015–1024 (2005)

12. Chalmeta, R.: Methodology for customer relationship management. J. Syst. Softw. 79(7),

1015–1024 (2006)

13. Rathnam, S., Mahajan, V., Whinston, A.B.: Facilitating coordination in customer support

teams: a framework and its implications for the design of information technology. Manag. Sci.

41(12), 1900–1921 (1995)

7 Customer-Specific Teams for Agile Evolution of Large-Scale Embedded Systems 93

Part III

Continuous Integration

This part discusses the third step on the Stairway to Heaven, i.e., the implementa-

tion of continuous integration as a practice for the entire R&D organization. There

are four chapters in this part. The first chapter introduces the Continuous Integration

Visualization Technique (CIViT) model. CIViT provides a mechanism for visual-

izing all testing activities in a product R&D organization, ranging from frontline

engineers to the release of the product to customers, in one simple graph. This

allows teams to communicate about the end-to-end testing activities as well as

prioritize the improvements to the continuous integration environment. The second

chapter is concerned with the build and integration flows in large software systems

where dozens of subsystems need to be integrated into one product. The build

systems and the integration flow of part into the final product need to become

continuous in a CI context, and the focus of the chapter is this particular challenge.

The third chapter is concerned with another challenge in continuous integration: the

testing of software in cyber-physical systems where the system contains mechanical

and hardware parts in addition to the software. Continuous integration of software is

then concerned with using different techniques to accomplish testing without the

presence of the physical mechanics and hardware. Finally, the fourth chapter is

concerned with an area of testing that has been notoriously hard to automate: visual

graphical user interfaces. The chapter discusses industrial experiences and lessons

with visual GUI testing as well as the various generations visual GUI testing that

have resulted in a third generation that is well applicable in a wide range of

industrial applications.

Chapter 8

The CIViT Model in a Nutshell: Visualizing

Testing Activities to Support Continuous

Integration

Agneta Nilsson, Jan Bosch, and Christian Berger

Abstract Nowadays, innovations in many products ranging from customer elec-

tronics to high-end industry electric/electronic components are driven by software.

Thus, new or extended features to software and mechatronic products can be

realized and deployed to the market much faster. While the use of software enables

an enormous flexibility, mastering the ever-growing complexity of the resulting

products to meet the quality goals required for the market is getting more and more

challenging. Continuous development combined with continuous testing is a suc-

cessful method that actively incorporates the customer to get feedback for the

feature to be deployed early, and thus, product owners, developers, and testers

can collaborate more effectively to meet the market’s needs. From literature, setting

up such an agile development process is clear; the individual situation in terms of

organization, processes, and development and test tooling however is depending on

the company—many of the aforementioned aspects have grown over the years and

cannot be easily changed. In this article, we present the CIViT model, which allows

companies to get an explicit understanding and overview of their current testing and

integration activities. With CIViT’s intuitive representation of the current status,

companies are able to identify bottlenecks and derive actions points to evolve their

processes, methods, and development and test tooling towards a more agile and

continuous deployment-oriented organization. Thus, they will be able to develop,

integrate, evaluate, and deploy new features faster to the end user, hence strength-

ening their own market position.

A. Nilsson (*) • J. Bosch • C. Berger

Division for Software Engineering, Department of Computer Science and Engineering,

Chalmers University of Gothenburg, Gothenburg, Sweden

e-mail: agneta.nilsson@chalmers.se; Jan@JanBosch.com; christian.berger@chalmers.se

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_8

97

mailto:agneta.nilsson@chalmers.se
mailto:Jan@JanBosch.com
mailto:christian.berger@chalmers.se

8.1 Introduction

Software-driven products enable nowadays more flexible product innovations and

shorter product development cycles to serve the markets needs. Thus, companies

can react on changing customer requirements by extending and evolving the

software over time—even in growing product families. While software drives this

enormous flexibility for today’s companies, mastering the required development

and test organization around such a potentially ever-growing product family is an

important and urgent challenge for today’s companies to avoid the erosion of

software, for example.

The development of complex software-driven electric/electronic systems for

example is usually broken down into developing software components, integrating

them with hardware components to subsystems, before these subsystems comprise

the entire product. These different stages are conducted by separate departments

within an organization, which in many cases have diverse test methods and test

systems to evaluate the quality of their individual contribution.

To shorten product development cycles for reacting faster on the market needs,

the overall testing strategy for the entire product needs to be adjusted in such a way

that they enable faster feedback—at least twofold: (a) are the evolved product

features meeting the customer requirements (acceptance tests)? And (b) when

changing and integrating new features starting on the software component level,

is the existing functionality preserved or did they introduce unwanted and eventu-

ally faulty side effects?

These two questions can be addressed with a thoroughly implemented continu-

ous integration strategy, where developers get fast feedback whether their contri-

butions are working as expected. However, implementing such a continuous

integration strategy is challenging—especially for electric/electronic systems

where also hardware components are involved in different tests. Furthermore,

besides technical aspects, which need to be tackled to realize a fast continuous

integration strategy, all “building blocks” of a company’s test strategy at the various
aforementioned levels need to be coordinated, harmonized, and finally speeded up.

In this article, we are presenting our visualization approach “CIViT model” as a

tool to intuitively map the current status of the various test efforts around a specific

product and the characteristics of the tests at the various stages. Thus, developers,

tests, and managers can easily spot the current quality of a product’s test strategy
and identify where the test strategy needs to be better coordinated and harmonized

to speed up the product development and deployment cycles.

The rest of the article structured as follows: In Sect. 8.2, related work is

presented and discussed. In Sect. 8.3, we describe the foundations and goals for

our visualization approach “CIViT model.” Section 8.4 presents results from

applying the CIViT model to one of the companies in the Software Center, while

Sect. 8.5 describes its evaluation. Section 8.5 summarizes the article and gives an

overview of potential future work.

98 A. Nilsson et al.

8.2 Related Work

Speeding up the development and deployment of high-quality products needs a

well-adjusted test and integration strategy. The realization of such a strategy is

called continuous integrations, which enables developers to realize new features or

improve existing ones, while his or her contributions are directly subject to fur-

ther—and in the best case automated—testing on the various product stages. Such

test-driven development (TDD, cf. [1]) is reported to be successfully

implemented—even in large-scale companies like Google [2], which has

implemented a whole department dedicated to take care of the required tools and

processes and to coach the product development teams.

While the test strategy towards TDD is described well in literature, the specific

situation in a given company needs to be analyzed first before concrete actions can

be initiated to improve a company’s concrete test, integration, and deployment

system. Therefore, the very first step is the identification of the company’s status
quo in terms of listing and presenting their current test initiatives. Therefore, related

approaches are described briefly. For further information, we refer the reader to

Ståhl and Bosch [3] and Nilsson et al. [4].

In [5], Stolberg describes an approach to compare the situation before and after

applying Fowler’s checklist for introducing continuous integration. However, an

intuitive and integrated visualization in terms mapping the company’s current

situation for testing a product is not proposed.

Guidelines for monitoring systems for software builds are provided and

discussed by Downs et al. [6]. While they are focusing on how to utilize results

from broken builds during the software development, a visualization chart as

proposed by the “CIViT model” is missing.

Experience reports from using existing tools like CruiseControl to realize con-

tinuous integration and to get feedback in an automated manner from software

builds are presented in different works like Sturdevant (cf. [7]) and by Kim

et al. (cf. [8, 9]).

Another experience report provided by Hoffman et al. in [10] outlines the use of

the commercially supported toolchain around CMake in a governmentally driven

research lab. In contrast to the CIViT model, they are focusing on the technical

introduction of the toolchain and not on deficiencies of current test strategies and

quality assurance processes.

As evident from literature, an intuitive approach that helps the involved stake-

holders to explicate the current situation in their company regarding processes,

methods, and tooling to unveil bottlenecks is not available. Thus, our work

presented in [4] systematically evaluated for the first time in a large-scale setting

the needs and requirements for an intuitive visualization approach of a company’s
current situation of testing and integration efforts. Furthermore, that report evalu-

ates the applicability of the CIViT model with five development sites from four

companies that are partners of the Software Center. This article now gives an

overview about the CIViT model and serves as a practitioner’s guide.

8 The CIViT Model in a Nutshell: Visualizing Testing Activities to Support. . . 99

8.3 Continuous Integration Visualization Technique

The Continuous Integration Visualization Technique (CIViT) model is concerned

with four types of testing: new functionality, legacy functionality, quality attributes,

and edge cases. New functionality testing refers to testing the functionality of the

system currently under development. Legacy functionality testing refers to the

functionality that was already built and to ensure it still operates according to its

specification. Quality attributes testing refers to, e.g., performance, reliability,

safety, and security and intends to ensure that the system continues to satisfy the

specified quality requirements. Lastly, edge case testing refers to testing unlikely or

weird situations that, often, originate from faults that slipped through to customers

and that were discovered after significant investigative effort. This type of testing is

not often mentioned in the literature, but from the interviews in this study, it became

obvious that this is an important type of testing.

Figure 8.1 outlines four squares forming a bigger square. The “F” represents new

functionality, the “L” represents legacy functionality, the “Q” represents quality

attributes, and the “E” represents edge cases. Each of these squares can have one of

three colors: red, orange, or green. The color of the square indicates the level of

coverage of test cases in the specific square. The mapping between coverage and

color-coding is shown in the upper right in Fig. 8.1. The line surrounding the four

squares indicates the level of automation and again uses the same color-coding. The

mapping between colors and level of automation is shown in the lower right part of

the figure.

The CIViT model has two dimensions: scope and periodicity. The scope of

testing refers to the segment of the overall system that is being tested. The scope of

Fig. 8.1 Four types of testing in the CIViT model

100 A. Nilsson et al.

testing dimension is divided into five levels: component, subsystem, partial product,

full product, on-site release, and customer-site release. Below we describe each

scope in more detail:

Component or module refers to a part of the system that would usually be the

scope of an individual engineer or a small team and typically involves unit testing.

Subsystem refers to the scope of responsibility for a team or a small set of teams,

and the types of test cases are broader in the area of covered functionality and less

white box than at the previous level.

Partial product refers to system level testing in which some parts of the

mechanics and hardware of the system are available and other parts are simulated.

Typically, test rigs that combine the most important aspects in a structure that

allows for testing the primary functional and quality requirements.

Product refers to the full product with all parts present, including mechanics,

hardware, and all software. The challenge with product-level testing is that the cost

of providing the full product is often quite high, and in cases where hardware and

mechanics are developed in parallel with the software, the full product typically

becomes available late in the development process.

Release refers to the full product for all aspects that are of importance to the

customer and is concerned with the completeness of testing, including edge cases

and all quality attributes of secondary priority, ensuring the expected functionality

and quality at the customer site.

Customer refers to installing the system or product at the customer site and

performing testing activities to ensure the correct operation of the system in the

context of the customer.

The second dimension of the CIViT model is concerned with the periodicity of

testing. We define periodicity as the combination of the frequency of a testing

activity and the time between the start of the testing activity and the availability of

feedback from that testing activity. We identify three levels of periodicity: “in the

development workflow” (minutes and hours), “disrupting the development

workflow” (days and weeks), and “outside the development workflow” (months

and once per release).

While feedback within days or one or a few weeks was perceived as relatively

good periodicity among the companies, this would still often be experienced as

disruptive to the development workflow. Typically, the team working on a feature

has moved on to other tasks, and feedback about errors returned after days or weeks

requires the team to stop their current work and return to the previous work, i.e., a

context switch, make the change, submit, and then return to the task they were

working on before the returned feedback.

The even longer periodicity, i.e., months or once per release, often results in

high-level system errors that usually are quite complex and difficult to analyze and

understand where and what the actual root causes are. In this case, any defects that

are found are typically resolved by engineers different from those that introduced

these defects.

The CIViT model aims to indicate the order of magnitude of the feedback loop,

rather than providing the exact length. For instance, “hours” indicates from one to a

8 The CIViT Model in a Nutshell: Visualizing Testing Activities to Support. . . 101

small number of hours, but clearly less than a day, and similarly regarding days,

weeks, and months.

In Fig. 8.2 an example instantiation is shown. Each composite square indicates a

distinct point of testing in the end-to-end testing activities. At each point of testing,

one or more of the four types of testing is conducted. For each type of testing, the

coverage is indicated by the color-coding introduced earlier. In addition, the line

around the four smaller squares indicates the level of automation for testing at that

point in the quality assurance process.

8.4 Applying CIViT Model: An Experience Report

In this section, we report about applying the CIViT model to one of the companies

from the Software Center. The company we are presenting here operates in the

telecom space and is in the process of transitioning from biannual releases to more

deployment of software, i.e., at the end of every agile sprint. The company has used

the CIViT model to outline its current state of testing along the software develop-

ment lifecycle and, based on the current state analysis, identify and prioritize the

most important improvements to implement.

In Fig. 8.2, we show the CIViT model from this company. As this company is

quite advanced compared to other case study companies where we have applied the

model, one of the key observations is that code from developers and teams becomes

Fig. 8.2 An example instantiation of the CIViT model from one of the participating companies

102 A. Nilsson et al.

part of the product baseline very quickly, typically within minutes. This is visible in

the vertical set of squares at the left side of the figure.

The second area of interest is the four squares next to each other horizontally at

the full product level. These squares indicate increasing scopes of testing that is

conducted less and less frequently:

• The most right square in the lowest corner is an automated test activity that runs

every time new code is checked in to the developer base line. The duration of the

testing is less than a minute. The purpose of this testing effort is to remove the

most obvious errors.

• The square above the aforementioned square is an automated test suite for the

team base line and tests the checked in functionality in the broader team context.

The test runs for a couple of minutes and is intended primarily for functional

requirements.

• The highest square at the right is the automated test suite at the base line for the

product. Any new code first needs to pass this test suite before becoming part of

the base line of the product. In practice, the test suite focuses on functional

requirements but also includes some legacy functionality and rudimentary qual-

ity attribute test cases.

• The next square to the left is an automated test suite that runs every two hours

(assuming new code has been checked in). The duration of the testing effort is

two hours as well. The R&D organization selects the highest priority tests that fit

in a 2-hour test window. The tests cover all four types of testing but still focus

more on functionality and legacy.

• The third square is nightly testing effort that takes about 10 h to execute.

Whereas the other testing efforts primarily focus on functionality and legacy,

the nightly testing has a stronger focus on the quality attributes of the system

including performance, robustness, throughput, etc. Similar to earlier, the R&D

organization selects the highest priority test cases for the nightly test.

• The most left square is a very elaborate test suite that runs over the weekend and

takes around 50 h to complete. The focus of testing is especially on those

qualities and configurations that can only be tested over longer testing periods

such as stability, memory leaks, and other more subtle errors.

The third area of interest is the testing activities at the release and customer level.

The organization has a separate release testing team that takes the product baseline

at the end of every agile sprint and performs testing on it. For the version selected

for release to customers, the release testing organization performs a very elaborate

testing effort, followed by a testing effort at the customer site in a live telecom

network. When these testing efforts have been successfully concluded, the product

is made available to all customers. Whereas the testing by the R&D organization is

entirely automated, the release testing organization performs virtually all its testing

in a manual capacity.

8 The CIViT Model in a Nutshell: Visualizing Testing Activities to Support. . . 103

8.5 Evaluating the CIViT Model

The CIViT model was developed in response to a set of challenges that we

identified as part of our work with the Software Center companies. In an earlier

paper [4], we discussed these challenges and resolution that the CIViT model

provides. In this section, we provide a brief overview of these challenges and the

way that the CIViT model addresses these.

No end-to-end overview of testing in companies: The primary concern that we

identified in our research is that few companies have a comprehensive overview of

all testing activities between a front-line developer and the deployed system at a

customer. The CIViT model was explicitly developed to provide this overview. As

a first validation step, together with representatives from each company, we devel-

oped CIViT models for each participating company. As a second validation step,

we used the model for each company to identify what testing activities in their

model that they would like to focus on to improve. Each company selected a

specific box in their model and explicated in what way they aimed to improve the

selected testing activities, for example, by increasing periodicity from, e.g., month

to week or by increasing scope from, e.g., subsystem to partial product.

Significant duplicate testing efforts: During the elaboration of end-to-end

testing activities, representatives from different groups in the company were

brought together. As part of the workshops, it became abundantly clear that

different groups performed significant duplicate effort due to the lack of under-

standing of what was tested in earlier stages. The overview provided by the CIViT

model enables useful discussions that reveal what type and quality of testing that

are performed within the settings. Our research shows that this is helpful to identify

unintended and undesired duplicate testing efforts, as well as to ensure that suffi-

cient testing efforts are in place at the various levels of the end-to-end process.

Slow feedback loops: In a similar way, the CIViT model both visualizes directly

the periodicity of the involved testing activities and consequently reveals their feedback

loops in the settings and enables useful discussions aboutwhatwould be reasonable and

desired times of feedback loops within the end-to-end process of testing activities.

Late testing of quality attributes: Several of the companies involved in the

research raised as a concern that quality requirement violations were often identi-

fied late in the testing process, were very costly to correct at that stage, and caused a

significant lack of predictability. The CIViT model also directly visualizes what

different types of testing that are dealt with in the involved testing activities. For

example, the study shows that this helps to reveal to what extent the testing of

quality attributes, e.g., performance and robustness, takes place and when.

Ad hoc, tactical improvement efforts: When we reviewed the improvements in

testing performed at the companies before the start of our research, it became clear

that improvements were selected in a rather ad hoc fashion. We identified several

cases where improvements were clearly suboptimal in that alternative improve-

ments would have resulted in significantly more relevant benefits. Based on the

overview that the CIViT model provides, it also enables useful discussions of the

104 A. Nilsson et al.

testing activities that are performed within the settings regarding what areas would

be suitable to improve and how. This helps the companies to move away from the

typical ad hoc approach towards improvement efforts and have a better understand-

ing of the end-to-end verification process and the key issues when they make

decisions about what to do and how.

Summary and Conclusions

In this article, we have described the CIViT model, which is an intuitive

visualization technique to explicate a company’s current situation regarding

testing and integration efforts. Therefore, we have identified a

two-dimensional chart that relates the dimensions periodicity from minutes

based, over hourly, weekly, monthly to once per release on its x-axis and

scope of testing on the y-axis ranging from software components only to full-

scale product.

On the intersection points in this chart, boxes are placed that describe the

methods and scopes are applied for the considered combination of periodicity

and scope of testing. These boxed describe in a compact manner the level of

automation for the considered dimensions: functional code, legacy code, edge

cases, and quality aspects (nonfunctional requirements). Thus, it is intuitively

and clearly visible, where the bottlenecks towards continuous testing and

continuous integration arise concerning automation.

Furthermore, it is evident from the overall placement of these boxes, how

“well” the testing and integration process performs: The longer it takes to

integrate and test a more complete product, the slower is the final deployment

to the market. Thus, the product owners and the various process owners for

the functional development and feature testing can easily spot those related

boxes, where an improvement regarding information flow, for instance, is

required to reduce the integration and testing effort.

The CIViT model addresses several challenges identified in earlier work

[4]. These challenges include the lack of an end-to-end overview of testing

activities in the company, the duplication of testing efforts, the slow feedback

on new code, the late testing of quality attributes, and the ad hoc test

improvement activities engaged on by many companies. We have evaluated

the CIViT model with several companies, and we have seen significant

improvements in the aforementioned areas. The ability to visualize testing

activities in an intuitive, illustrative model that summarizes the key areas

provides significantly improved understanding and an excellent basis for

identifying the most important improvement areas.

As future work, domain-specific guidelines regarding improvement initia-

tives are of clear interest. Thus, domain expert would be able to learn from

experiences of companies in similar or related domains when considering to

adapt and evolve the own processes, methods, and development and testing

tooling.

8 The CIViT Model in a Nutshell: Visualizing Testing Activities to Support. . . 105

Acknowledgments The authors would like to thank all engineers, testers, and managers who

were involved in our work towards the CIViT model.

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional, Boston

(2002)

2. Whittaker, J.A., Arbon, C., Carollo, J.: How Google Tests Software. Addison-Wesley Profes-

sional, Boston (2012)

3. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry software

development. J. Syst. Softw. 87, 48–59 (2014)

4. Nilsson, A., Bosch, J., Berger, C.: Visualizing testing activities to support continuous integra-

tion: A multiple case study. In: Proceedings of the 15th International Conference on Agile

Software Development (2014)

5. Stolberg, S.: Enabling agile testing through continuous integration. In: Proceedings of the

Agile Conference, pp. 369–374 (2009)

6. Downs, J., Hosking, J., Plimmer, B.: Status communication in agile software teams: A case

study. In: Proceedings of the Fifth International Conference on Software Engineering

Advances, pp. 82–87 (2010)

7. Sturdevant, K.: Cruisin’ and Chillin’: Testing the java-based distributed ground data system

‘Chill’ with CruiseControl. In: Aerospace Conference, pp. 1–8 (2007)

8. Kim, E.H., Na, J.C., Ryoo, S.M.: Implementing an effective test automation framework. In:

Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference, pp. 534–538 (2009)

9. Kim, E.H., Na, J.C., Ryoo, S.M.: Test automation framework for implementing continuous

integration. In: Proceedings of the Sixth International Conference on Information Technology:

New Generations, pp. 784–789 (2009)

10. Hoffman, B., Cole, D., Vines, J.: Software process for rapid development of HPC software

using CMake. In: Proceedings of the DoD High Performance Computing Modernization

Program Users Group Conference, pp. 378–382 (2009)

106 A. Nilsson et al.

Chapter 9

Continuous Integration Flows

Daniel Ståhl and Jan Bosch

Abstract While the agile practice of continuous integration has gained increasing

traction in industry since its popularization in the 1990s, there is considerable

diversity in terms of actual implementation. The term has been used to describe

what may in practice be described as rather different practices, with subsequently

varying outcomes. This diversity, typically camouflaged by common terminology,

not only prevents effective comparison and therefore learning from industry cases

but also hinders practitioners in making informed choices as to how continuous

integration is best implemented in their particular context. To facilitate analysis and

experience exchange, we present a descriptive model of automated software inte-

gration flows. Then, helping software professionals with their ability to proactively

and consciously build integration system suitable to their needs, we propose an

iterative method for integration flow design.

9.1 Defining Continuous Integration

Continuous integration is one of the most popular and commonly aspired agile

practices in the software development industry. Unlike other practices, such as

retrospectives, burndown charts, or backlogs, it is one whose implementation itself

requires considerable software engineering efforts. Furthermore, in literature as

well as among practitioners, continuous integration is quite loosely defined, with

ample room for interpretation concerning its implementation and little consensus

with regard to its scope, characteristics or effects. To illustrate this, we can consider

the often-quoted definition of continuous integration put forward by Martin Fowler:

D. Ståhl (*)

Ericsson AB, Linköping, Sweden

e-mail: daniel.stahl@ericsson.com

J. Bosch

Chalmers University of Technology, Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_9

107

mailto:daniel.stahl@ericsson.com
mailto:Jan@JanBosch.com

Continuous Integration is a software development practice where members of a team

integrate their work frequently; usually each person integrates at least daily—leading to

multiple integrations per day. Each integration is verified by an automated build (including

test) to detect integration errors as quickly as possible [1].

Such a definition is ostensibly straightforward and clear-cut, but once that

surface is scratched, numerous questions arise. What if there is more than one

team? How and when do they integrate with one another? What is the scope of the

automated testing? What is it the team members are integrating with: a develop-

ment branch, a release branch, or perhaps a feature branch? How are results of the

automated builds fed back to the interested parties, and who are they? How is

component integration handled in a modularized product architecture? These are

just some of the questions with which professionals in the industry wrestle with on a

daily basis—and come up with different answers to. Indeed, when we study

continuous integration as it is employed in practice, we find that not only are

perceptions as to its effects wildly different, or even diametrically opposed, but

the actual continuous integration systems themselves also diverge at a large number

of variation points. Consequently, the term continuous integration is in practice

used to describe a disparate family of measures which revolve around the concepts

of automation and frequent repetition.

In this light the tendency of business leaders and managers to proclaim either

that they have adopted continuous integration, or declaring that it shall be adopted,

is highly intriguing. Given the diversity present in industry, simply saying that one

is to implement continuous integration without defining in any greater detail what

that is understood to mean, or what one expects to achieve by doing so, can be

likened to rolling a die and hoping that something useful will turn up, that is, if we

assume that any effects of continuous integration are positive effects: in reality,

software integration systems can have severe negative consequences for the devel-

opment effort, whether they are continuous or not, particularly in large-scale pro-

jects. In other words, as we roll that die, we also hope that we won’t accidentally
implement anything harmful. Those of us who would rather design our integration

systems consciously and proactively, rather than gamble, will look for methods for

designing continuous integration to suit best further our goals, given our particular

circumstances.

To get there, let us first return to the question of what continuous integration is,

and how it is that it adds value. We already learned how people place different

meanings in the term and in reality perform very different activities. We also find

that generally speaking, whichever activities they do perform, they’re happy about

them being “continuous” and derive value from that, while the continuous integra-

tion system itself is of little interest except to those who are tasked with developing

and maintaining it. In other words, continuous integration as it is employed in

industry becomes much more easily comprehensible if we think of it not as a fixed

and well-defined practice, with some expected benefits. Instead, it should be

thought of as an enhancer of other value-adding activities which we may or may

108 D. Ståhl and J. Bosch

not already be performing in our software development projects: unit testing, code

analysis, performance testing, system testing, packaging deployment, and so

on. These are all beneficial or even necessary activities which may potentially be

enhanced by being made “continuous,” that is, by automating them and striving to

perform them more frequently.

To exemplify, having a unit test suite may be a great asset in that it allows

developers to locally verify any changes they make, repeatedly executing that test

suite on the project’s main branch whenever changes are checked in and then

broadcasting the results for all to see can significantly increase its value. That

value can still only be as great as the quality and scope of the test suite, however.

A suite of vapid, meaningless tests will never be useful to anyone, no matter how

“continuously” one executes it. Again, it is not continuous integration that adds

value; it is the activities we apply it to that are enhanced by it.

One might object to this view by arguing that this only addresses the “automated

build” side of the practice—the essential practice is that of integrating often and

frequently and that in theory this can be accomplished without any automation at

all. While this is technically true, what we find in practice is quite different: one of

few common denominators of industry implementations is automation of some set

of activities following that integration, and through investigation and interviews

with software professionals, one finds that it is these continuously performed

activities that provide value.

This is not surprising if one would imagine a development project where

developers integrated ever so frequently, but no feedback as to the functionality

or quality of the resulting source code revision was provided; the benefits derived

from this integration would be limited. This should not be taken to mean that the act

of frequent integration is irrelevant. On the contrary, it is a prerequisite for

frequently executing the activities from which the development project benefits.

From this perspective of continuous integration as an enhancer of other activi-

ties, of their own intrinsic value, the fact that different organizations and individuals

experience disparate effects and report varied implementations can easily be

explained: different sets of activities have been included in the context of contin-

uous integration, with varying internal relationships between them.

This does not imply that how we construct our continuous integration systems

is without consequence, however. As experiences differ, with some being more

positive than others, what we make “continuous” and how we do it clearly

matters, prompting us to investigate any relationships between continuous inte-

gration flavors and their outcome. This requires a less superficial understanding of

the practice: one that goes beyond the buzz word level and allows us to accurately

and unambiguously describe both concrete and theoretical software integration

systems so that they may be documented, compared, and evaluated an essential

capacity if we are to draw any conclusions from past experiences and evolve as an

industry.

9 Continuous Integration Flows 109

9.2 Modeling Software Integration Systems

To achieve a more profound understanding of the actual individual case, we have

developed a method of modeling software integration systems. It is based on the

concept of interconnected and interdependent activities, or “builds,” as a directed

acyclic graph [2] and is designed to cover all continuous integration variation points

uncovered in literature [3]. Its meta-model is shown in Fig. 9.1. Activities, software

input, and external triggering factors are represented as nodes, while triggering and

input relationships constitute edges.

The model has subsequently been applied multiple times to software develop-

ment projects in the industry, allowing us to build a knowledge base of existing

implementations. In combination with testimonies of professionals involved in

those projects, not only does this afford us a much improved understanding of

actual continuous integration implementations and their effects but has also turned

out to be a valuable tool for the participating engineers to better understanding their

own systems: once it has been mapped out and the modeled representation is

constructed, the paths along which software “flows” between activities become

discernible. In short, software revisions or artifacts traverse, or flow through, the

graph of automated activities, and as they are subjected to these activities, our

knowledge about and confidence in the software increase. In applying the model to

Fig. 9.1 Software integration system meta-model

110 D. Ståhl and J. Bosch

industry cases, our experience is that the professionals responsible for designing

and maintaining the studied continuous integration systems are not used to thinking

of them in these terms but soon adopt the concept as it highlights concerns in the

existing systems. For this reason, we use the term integration flows to describe these
systems of interconnected automated activities processing software revisions.

Analysis of the data gathered through these case studies further reveals a set of

guidelines, or best practices, which increase the value derived from integration

flows.

– Comprehensive Activities. As discussed above, various activities can be placed
in a continuous integration context, and as a general rule, their benefits to the

development project increase as a consequence. What we see in practice,

however, is that most practitioners only perform a small subset of these activ-

ities—they might, for instance, execute unit test suites, but no system level

tests—causing them to miss out. The rule of thumb here is that the more of the

project’s activities can be made continuous, the greater the rewards.

– Effective Communication. Even the most ambitious integration flow falls short

of its potential if the results it produces are not clearly communicated to its

stakeholders, such as developers, managers, and product owners. Different

stakeholders may require different information—the developer might primarily

be interested in whether the latest check-in has passed all tests, whereas a project

manager rather looks for acceptance test results in a certain release track or

which product versions have been deployed to which customers. All this is

information which a continuous integration flow may potentially provide, but

in practice we see examples where even if such data is produced it’s not

accessible by those who would benefit from it or it is provided in such a cryptic

format that only a handful of specialized individuals are able to make sense of

it. Consequently, communication is an important aspect to consider when

designing continuous integration flows: who are the stakeholders, what type of

information do they require, and on which format do they need it?

– Immediacy. Not all continuous integration flows we see in industry are what one
might consider continuous from the perspective of the individual developer.

While new revisions of the product are repeatedly built and tested many times a

day, the frequency and speed at which the developer gets feedback are very low.

Large projects in particular are susceptible to this phenomenon: even though the

continuous integration flow builds as quickly and frequently as possible, there

are simply too many project members for all of them to be granted the instant

feedback they seek on their individual changes.

– Accuracy. As previously discussed, software revisions or artifacts “flow”

through continuous integration systems, whereupon our level of confidence in

them increases as the automated activities successfully process them. This

requires that we know well the identity of the artifact being processed: if this

is uncertain or vague, the concept of successively growing confidence becomes

meaningless. We see examples of this in the industry, where an automated

activity is triggered by the successful conclusion of an upstream activity, but

9 Continuous Integration Flows 111

does not consume its output. Instead, it checks out its own source code revision.

The consequence of this is that what is processes is now “an artifact revision

which has passed such and such tests,” but rather “an artifact close in time, and

possibly identical, to one which has passed such and such tests.” In other words,

it is important to keep accurate track of the software revisions and artifacts

produced—arguably a crucial practice regardless of one’s integration strategy.

– Lucidity. Once a continuous integration flow is in place, it’s not necessarily

understood by all the project members or even the engineers responsible for

designing and maintaining it, exactly how its activities relate to each other, and

which paths a given software artifact may take in traversing it. In studying

industry cases, we find that in projects of all sizes, developers can be ignorant

of what happens to a software revision after they check it in and that they

consequently don’t know what feedback they can expect or where to look for

it, thereby being deprived of its potential benefits. Even those responsible for the

integration flows can in some cases find it difficult to answer questions such as

which tests must have been passed for an artifact to reach a certain point in the

flow, or what happens downstream of a given activity depending on its outcome.

Feedback received in such situations shows us that building a model of the

integration flow is a helpful exercise to make its behavior visibly clear where

uncertainty exists.

– Appropriate Dimensioning. Our final guideline is that of dimensioning of the

integration flow. It has been pointed out in literature [4, 5] that continuous

integration can be difficult to scale. In our case studies, we have been able to

confirm this—indeed, when some of the problems discussed above emerge in

large projects, they seem to be caused to some extent by the failure to ensure

sufficient capacity in the continuous integration flow. This is because larger

projects tend to imply not only larger products and longer build and test times

but also a higher pace of changes or software artifacts to be integrated. In

addition, the larger the project, the greater the consequences when difficulties

arise, exacerbating the problem. What we mean by integration flow capacity is

thus the amount of software artifacts that can be handled without adverse effects

growing out of hand—effects which can include build fragility, queuing, and

long feedback times. Finally, we also find that an integration flow can be

overdimensioned: being too modularized, with too many parallel paths in the

flow, can cause overhead and unnecessarily high maintenance costs.

Based on our research and experience, we consider all of these guidelines

important in maximizing one’s benefits from continuous integration flows. A few

factors set the question of dimensioning apart from the others, however. First, the

problem of scaling continuous integration is inherent in the practice, as opposed to

the relatively superficial concerns of, e.g., how to communicate the results or how

to make the flow more comprehensive or easily accessible. Also, while these latter

aspects can be addressed in existing systems with relative ease, we find that tuning

the capacity of the integration flow can be both costly and fraught with risk for the

project. This is because the flow capacity is tightly linked to its modularity: as a rule

112 D. Ståhl and J. Bosch

of thumb, the more parallel paths in the integration flow, the greater its capacity.

This, in turn, is linked to the modularity of the product itself. A highly modular

product architecture can easily be translated into a modular, high capacity integra-

tion flow. The integration of a monolithic product, on the other hand, is difficult to

parallelize and consequently to scale up. Conversely, an overly modular product

architecture soon becomes unwieldy and difficult to develop. This leads us to the

conclusion that any ability to foresee the capacity needs of a given project, enabling

proactive appropriate dimensioning of its integration flow, would be of great value.

9.3 Proactive Analysis

To devise a method of proactive analysis of software integration systems, we return

to our modeling technique: if we are able to determine the capacity of a modeled

integration flow—real or hypothetical—and compare that to a project’s estimated

capacity requirements, this will tell us whether that integration flow is appropriately

dimensioned or not. To this end, we introduce the concept of artifacts per potential

executions (APPE) ratio. The APPE ratio signifies how many software artifacts

(e.g., product revisions) need to be handled per execution of an automated activity,

if that activity would execute at maximum frequency. To illustrate this, imagine an

automated activity which compiles a product component. Due to its execution time,

it’s able to run a maximum of 20 times a day. If, on an average day, five new

revisions of the component are pushed by its developers, there are four potential

executions for every artifact (i.e., an APPE ratio of 0.25). When this ratio

approaches one, however, one expects to see intermittent queuing and/or batching

of artifacts, as developer pushes more frequently coincide in time. If the APPE ratio

is much higher than one, on the other hand, either because the number of artifacts is

very high or because the number of executions is very low, increasingly negative

effects manifest: large numbers of artifacts are batched in single activity execu-

tions, leading to more integration faults as well as difficulty in analyzing and

recovering from those faults.

By applying this capacity estimation method to actual integration flows, its pain

points can be identified so that improvement efforts can target the parts of the flow

that will provide the greatest benefit. Meanwhile, applying it to hypothetical

integration flows allows for proactive design of one’s integration flow in order to

ensure suitable capacity for the project’s estimated needs. We propose that this

capacity estimation is applied as part of an iterative integration flow design process,

depicted in Fig. 9.2.

The first step is to create an initial model of the planned integration flow. This is

not intended to be the final version, so it doesn’t have to be perfect. A good starting

point is to list the automated activities (e.g., compilation, linking, various tests,

packaging, and deployment) one would like to include in the flow, estimate their

duration, and connect them as shown in Fig. 9.1. The resource requirements for

realizing this flow must then be estimated: what competencies and manpower

9 Continuous Integration Flows 113

would be needed to implement and maintain the flow and what hardware would be

needed to execute the activities.

Having come this far, it’s time to look for needed improvements. There are

mainly three tools at our disposal to identify such improvements. First, are the

resource requirements acceptable? Perhaps the projected integration flow would be

too expensive to implement or require too much hardware? Second, does it conform

to the integration flow guidelines of comprehensive activities, effective communi-

cation, immediacy, accuracy, and lucidity? Finally, is the capacity sufficient? By

estimating the pace of development, the APPE ratio of the automated activities can

be calculated and a qualified decision made as to whether the project’s needs will
be met.

If needed improvements have been identified, the model is revised by, e.g.,

changing the activity relationships or their characteristics, and a new iteration of the

process begins, with resource requirements estimation. If not, the process is com-

plete, and work can begin on implementing the modeled integration flow.

Fig. 9.2 An iterative design process for software integration flows

114 D. Ståhl and J. Bosch

To exemplify, it might be found that the projected duration of an activity is

unacceptable. The model is revised, with the duration being shortened to an

acceptable level. In the next iteration of the process, it is concluded that additional

hardware is required in order to achieve this shorter duration. Whether this extra

cost is acceptable or prompts additional changes to the integration flow is then

discussed in the subsequent improvement finding step.

We recommend that only a few improvements are addressed each iteration of the

process: it is better to improve the model in small increments than to try to fix

everything at once and make too drastic changes. It should also be pointed out that

this exercise might conclude that the product architecture needs to be changed to

achieve a better integration flow. In other words, integration engineers must be

allowed to influence architecture—not just be presented with a fait accompli and try

to make the best of it, as is typically the case in the industry projects we have

witnessed and been part of.

In conclusion, our understanding of continuous integration is rapidly improving

and with it our ability to make deliberate, proactive, and conscious choices to

maximize the value we derive from the practice. Not only can we establish that

some implementations add more value than others, but we have guidelines for

reproducing their success. And not only do we find that continuous integration can

be problematic, but we can foresee those problems beforehand and prescribe

solutions to avoid them. Looking ahead, we anticipate that these tools and insights

will be honed further, as our practical experience from applying them increases

even further.

References

1. Continuous Integration. http://martinfowler.com/articles/continuousIntegration.html. Accessed

10 Dec 2013

2. Beaumont, O., Bonichon, N., Courtès, L., Hanin, X., Dolstra, E.: Mixed data-parallel scheduling

for distributed continuous integration. In: 26th International Parallel and Distributed Processing

Symposium Workshops & PhD Forum, pp. 91–98. IEEE, Shanghai (2012)

3. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry software

development. J. Syst. Softw. 87, 48–59 (2014)

4. Rogers, R.O.: Scaling continuous integration. In: 6th International Conference on Extreme

Programming and Agile Processes in Software Engineering, pp. 68–76. Springer, Sheffield

(2005)

5. Roberts, M.: Enterprise continuous integration using binary dependencies. In: 5th International

Conference on Extreme Programming and Agile Processes in Software Engineering,

pp. 194–201. Springer, Garmisch-Partenkirchen (2004)

9 Continuous Integration Flows 115

http://martinfowler.com/articles/continuousIntegration.html

Chapter 10

Towards Continuous Integration

for Cyber-Physical Systems on the Example

of Self-Driving Miniature Cars

Christian Berger

Abstract Today’s consumer life is already pervasively supported by visible and

unnoticeable technology. We are consuming information flows, contributing within

social webs, and integrating our virtual communities into an interconnected life-

style. This interconnected and assisted way of living is realized by various products

ranging from consumer electronics products like smartphones and wearable com-

puting up to safety-critical systems like intelligent cars, which aim for unnoticeably

protecting the user and its surroundings in critical situations. And at the end of this

decade, the technology of a self-driving car is reported to be available for con-

sumers enabling various opportunities for new businesses.

From consumer-level technology like smartphones, smart TVs, or laptops, users

are used to feature extensions and evolution over time by having automated

application and operating system updates. Thus, further system features are con-

tinuously rolled out on a large user base enabling new use cases. Nowadays, the

digitally connected lifestyle integrates components like wearable computing and

smart mobility, where an OEM could hardly anticipate the nearly limitless variety

of complex combinations.

The trend of a continuously evolving user-experience in terms of new features

and functionalities puts further challenges, requirements, and constraints on a

system provider to maintain the expected high quality of the product and in the

future of the interconnected and integrated product network.

This article presents the design of a simulation-based testing and integration

approach for cyber-physical systems by using self-driving miniature cars as the

running example.

C. Berger (*)

Department of Computer Science and Engineering, Chalmers University of Gothenburg,

Gothenburg, Sweden

e-mail: christian.berger@chalmers.se

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_10

117

mailto:christian.berger@chalmers.se

10.1 Introduction

Self-driving vehicles are expected to be available for customers by the end of this

decade from several major vehicle original equipment manufacturers (OEMs)

[1]. Thus, the technology has significantly improved from vehicles reportedly

addressing safer travelling [2] over the recent robotic challenges like the DARPA

Grand Challenges from 2004, 2005, and 2007, as well as the Grand Cooperative

Driving Challenge from 2011. These practical showcases were mainly focusing on

engineering challenges (cf. [3–6]) to demonstrate the technological state of the art.

While this technology continuously finds its way into today’s cars as adaptive
cruise control, lane departure warning, or self-parking assistants, testing and inte-

grating these software systems with the hardware like sensors and actuators are

challenging. Some reasons for that are the increasing complexity of the traffic

scenarios addressed by such systems, ensuring the repeatability of the tests to

evaluate the fulfillment of the expected behavior, and the time-consuming test

execution on proving grounds or in field tests.

In this regard, virtual test environments do not only allow interactive validations

of such algorithms on the developers’ and testers’ desk; additionally, such environ-

ments can support a continuous integration to tackle the increasing testing load

caused by growing product families and more scenarios to be supported by such

systems. As a running example, this article uses an autonomous box-parking system

to describe the design of such a simulation-based virtual test environment to enable

continuous integration for cyber-physical systems (CPS).

The rest of the article is structured as follows: In Sect. 10.2, the functionality of

autonomous box parking used as running example in this article is outlined com-

prising the sensor layout and one possible state machine that is used to realize such

functionality. In Sect. 10.3, the design of a simulation-based testing and integration

approach for cyber-physical systems on the example of a self-driving miniature car

is outlined. The article concludes in Sect. 10.4.

10.2 Autonomous Box Parking

In the following, the exemplary traffic scenario for parking autonomously between

several cars is depicted alongside a sensor layout and a possible state machine

realizing the parking behavior.

10.2.1 Exemplary Parking Scenario

A “box”-parking scenario as depicted in Fig. 10.1. A self-driving and autonomously

parking car is initially located at the origin of the coordinate system at the bottom of

118 C. Berger

the image heading towards to the upper part of the image. The car is driving on the

right-hand side of the straight road following the lane markings while continuously

observing its right-hand side to find a parking spot. Once it has found a spot, which

is sufficiently wide enough, the car stops, steers at maximum to the right, and drives

backwards into the parking spot, where it comes to a stop.

10.2.2 Perceiving the Surroundings

A self-driving car exhibits several sensors to perceive its surroundings [5].

Figure 10.2 depicts such a sensor layout, which has proven to be successful during

an international competition for self-driving miniature cars for the vehicle “Meili”

from Chalmers University and University of Gothenburg that won the Junior

Edition in 2013 [7]. The competition required participants to develop a vehicular

robotic platform in 1/10 scale, which is able to autonomously follow lane markings,

overtaking stationary and dynamic obstacles, yielding right of way at intersections,

and realizing sideways parking.

Box 1

Box 2

Box 3

Box 4

Box 5

Box 6

Box 7

Empty box 8

Box 9

Box 10

Box 11

Box 12

Box 13

Empty box 14

Box 15

Box 16

Box 17

Starting position

Parking spot
expected to be
taken.

Fig. 10.1 Exemplary

box-parking scenario

10 Towards Continuous Integration for Cyber-Physical Systems on the Example. . . 119

For the functionality for the autonomous box parking within a self-driving car,

we are focusing only on those aspects relevant for finding a parking spot that is

sufficiently wide enough while excluding further parts from a self-driving car like

image processing for lane following for the sake of clarity.

Autonomous self-parking as described in this paper considers a box-parking

approach, where the car is finally oriented in an orthogonal direction. For measuring

the size of a parking gap, the travelled distance over time together with information

about distances between the car and its right-hand side is required. In Fig. 10.2, the

distance sensor mounted at the rear/right corner and pointing towards the vehicle’s
right-hand side is highlighted. Using this sensor in comparison with another sensor

that is mounted further at the front side of the vehicle has the advantage that the car

already passed a parking spot, which is sufficiently wide enough, and thus, further

correcting maneuvers are not required to put the vehicle in a valid starting position

for the subsequent parking trajectory. Furthermore, a hall effect sensor (labelled

HE) is used to determine the travelled distance over time. Combining both allows

for determining the size of possible parking gaps.

Figure 10.3 shows the distances to obstacles on the vehicle’s right-hand side

returned from the rear/right distance sensor over time during a simulation run for

the scenario depicted in Fig. 10.1: whenever the distance sensor does not perceive

Infrared

Infrared

Ultr
a s

onic

HE

L

L

L

L

L

Camera

Ultra sonic

Ultra sonic

L

L

Infrared

Fig. 10.2 Experimental sensor layout to find a parking spot consisting of a sensor to determine the

travelled path (HE) and a distance-based sensor to measure the distance to obstacles to the right-
hand side (infrared) highlighted in green

120 C. Berger

an obstacle, the distance d¼ �1 is returned; otherwise, the measured distance is

returned. The empty spot between box 7 and box 9 can be clearly identified.

10.2.3 State Machine for Box Parking

Based on the measurement profile depicted in Fig. 10.3, the concept for a state

machine realizing a box-parking behavior can be derived. It is apparent that a

parking gap is described by the following event sequence: d> 0 ! d< 0 followed by

d< 0 ! d> 0. Between both events, the travelled distance needs to be observed to

determine the size of the parking gap. If the size is wide enough, the parking

trajectory can be initiated.

Figure 10.4 shows a state machine realizing the aforementioned event observer.

Firstly, necessary variables are initialized before the state machine continues to the

0 500 1000 1500 2000

1
0

1
2

3

t

[m
]

infrared rear/right
B

ox
 1

B
ox

 2

B
ox

 3

B
ox

 4

B
ox

 5

B
ox

 6

B
ox

 7

B
ox

 9

Searching for parking spot.

Distances to box 9
while turning
(ignored).

Parking trajectory.

Fig. 10.3 Distances over time for the exemplary parking scenario for the distance sensor mounted

at the rear/right corner during an experimental run in the simulation environment

10 Towards Continuous Integration for Cyber-Physical Systems on the Example. . . 121

moving state. In this state, the vehicle continues following the current lane. Next,

the hysteresis variable distanceOld is set by the current value from the distance

sensor.

In the next cycle, the currently measured value is compared to the previously

mentioned event sequence to identify the first part. Once it has been found, the

currently travelled path is saved in findBeginningOfGap. Subsequently, the second

part of the event sequence is awaited to fire the transition to the state findEndOfGap.

Once this state is activated, the currently travelled distance is compared to the

previous value to eventually initiate the static parking trajectory in state parkGap if

the found parking gap is wide enough.

10.3 Virtual Testing for the Box-Parking State Machine

for Continuous Integration

While the automated parking algorithm can be integrated and tested in reality by

using an experimental platform of a miniature car [8], such tests that depend on real

hardware environments are time consuming and error prone. Furthermore, ensuring

the repeatability of the conditions of the test environment to analytically investigate

and understand potentially unexpected behavior is challenging.

As an intermediate step, the integrated software system can be systematically

investigated in a virtual test environment. Such an environment replaces hardware

components like sensors and actuators with virtual counterparts. These virtual

components are used to stimulate the data processing chain of a CPS, for example,

and to imitate physical interactions within the surroundings like driving according

to a physical motion model.

Fig. 10.4 Parking state machine with a static parking trajectory

122 C. Berger

10.3.1 Design Considerations

Figure 10.5 depicts the general concept that was used to evaluate the self-parking

algorithm. The concept consists of two phases, where the first one is the design time

and the second one is the testing time.

In the former phase, the virtual test case is either manually defined or created

from a model-based description of the scenario and situation that should be handled

by the system. Furthermore, the parameters for the virtualized sensors of the CPS

are defined like type of sensor, virtual mounting position in the 3D environment

(e.g., on the car in the running example), pointing direction, and opening angle; for

ray-based sensors, the viewing distance and resolution need to be modeled as well.

Next, the virtual actuators of the CPS need to be modeled; in the running

example, this comprises the physical motion model of the vehicle and the interface

to the higher software layers. As outlined in [8], platform-independent data struc-

tures in the processing chain in combination with a proxy layer/component that

maps them to platform-specific representations enable the encapsulation of the

concrete hardware interfaces for the virtual test environment.

We evaluated the box-parking algorithm in a simulation environment as origi-

nally described in [7]. This experimentation and development environment was

adapted from a development environment that was already successfully used for the

development of a real-scale self-driving car [9]; some of the concepts that are

Distance
sensor

simulation

Scenario
modeling

Automated
parking

V
al

id
at

io
n

System under test

A B

C D

Sensor
parameters

Fault model
parameters

Camera
simulation

Actuator
parameters

Vehicle motion
simulation

Virtual system components

Design Time

R
ec

or
di

ng

Evaluation

Visualization

Testing Time

Fig. 10.5 Layers in a virtual test environment for simulation-based testing of a complex cyber-

physical system

10 Towards Continuous Integration for Cyber-Physical Systems on the Example. . . 123

realized in this experimentation and development environment were already devel-

oped and tested in the international competition 2007 DARPAUrban Challenge [5].

As depicted in Fig. 10.5, the core for this simulation environment is a domain-

specific language (DSL) for the description of the stationary surroundings and

dynamic parts of a situation. Instances of this DSL are used in a model-based

virtual testing process to generate data structures for the virtual counterparts of the

sensors, for example, as depicted by the dotted arrows; for the virtualized automo-

tive use case, this includes a 3D representation in OpenGL to realize a monocular

camera and ray-based distance sensors that are using the description of the sur-

roundings to return measured distances to objects over time to imitate ultrasonic-

and infrared-based distance sensors.

While these virtual counterparts are used to stimulate the data processing chain

of the CPS, the virtual counterparts of the actuator layer of the real hardware

environment are needed to close the feedback loop of the CPS. In the running

example of a self-driving miniature car, the minimum turning radii in both turning

directions as well as the wheel base are determined to create a vehicle motion model

based on a linear bicycle system to simulate the vehicle movements. This feedback

loop is shown in the center of Fig. 10.5 depicted by the solid arrows.

10.3.2 Automating Virtual Tests

To automate the evaluation of this feedback loop for many different scenarios, an

additional layer shown as evaluation is needed. The components that are used in this

layer do not interfere with the previously mentioned feedback loop. However, they

also use the stimuli for the system under test (SUT) and its responses to validate if

SUT behaves as expected; in the running example, the expected behavior is that the

vehicle is following the lane on the right-hand side, identifies the first sufficiently

wide parking gap, and parks backwards in the parking spot without touching any

obstacles at any time.

This feedback loop in combination with the validation component, which returns

true or false depending on the fulfillment of the expected behavior, would be

enough to automate the simulation of the available scenarios in a continuous

integration approach, for instance, in a cloud-based environment [10]. However,

basing the defect localization and correction only on a Boolean result is not helpful

when many different scenarios are used that test the same algorithm from various

perspectives. Therefore, a recording component is required that additionally

records all stimuli and response data. For a failing test in a continuous integration

environment, replaying and visualizing the stimuli in a visualization tool while

monitoring the state machine in the SUT facilitate the defect localization.

Such a layered architecture of the virtual test environment also enables the

systematic and automated analysis of the system reliability and robustness of the

CPS. In the running example, faults can be injected to the sensors, for example, to

evaluate the system’s behavior in cases of missing or unplausible sensor data.

124 C. Berger

Thus, the same set of scenarios that is used to test the expected behavior of the

SUT can be reused with a model-based description of the faults to be injected.

Summary and Conclusion

In this article, the design of a virtual test environment to test cyber-physical

systems is described. The specific challenge for such systems is their depen-

dency on volatile data perceived from the surroundings by using sensors like

cameras and radars; furthermore, these systems interact with the environment

by using actuators. As a running example, automated box parking for a self-

driving miniature car is described.

Testing such systems on real proving grounds or in field tests is time and

Resource consuming. Furthermore, the repeatability of a specific scenario is

already challenging on proving ground and hardly possible in random tests on

public roads. Additionally, growing product families increase the need to

address these challenges already at earlier test phases to make a more efficient

use of the existing test resources.

In this regard, a virtual test environment can complement such real-world

tests by replacing real hardware like sensors and actuators with virtual

counter-parts. These counterparts enable a closed-loop simulation of various

scenarios that stimulate the data processing chain of the system under test. To

fully automate such simulations, validating components are needed that

observe the behavior of the system under test over time to determine whether

a given scenario is fulfilled. Furthermore, the layered architecture of such a

test environment also enables systematic reliability and robustness analysis

by reusing the set of existing scenarios while injecting faults from a model-

based representation. In combination with a data logging interface and a

visualization tool, the unexpected system behavior—even when it is identi-

fied during continuous integration in automated system tests—can be ana-

lyzed systematically later.

References

1. Hirsch, J.: Self-driving cars inch closer tomainstream availability. LosAngelesTimes.URLhttp://

www.latimes.com/business/autos/la-fi-adv-hy-self-driving-cars-20131013,0,5094627.story. Last

accessed 14 Oct 2014

2. Ulmer, B.: VITA - an autonomous road vehicle (ARV) for collision avoidance in traffic. In:

Proceedings of the Intelligent Vehicles ‘92 Symposium, pp. 36–41 (1992)

3. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J.,

Halpenny, M., Homann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband,

S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,

E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.:

Stanley: the robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)

4. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D.,

Hilden, T., Homann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski, A.,

Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M.,

10 Towards Continuous Integration for Cyber-Physical Systems on the Example. . . 125

http://www.latimes.com/business/autos/la-fi-adv-hy-self-driving-cars-20131013,0,5094627.story
http://www.latimes.com/business/autos/la-fi-adv-hy-self-driving-cars-20131013,0,5094627.story

Stanek, G., Stavens, D., Vogt, A., Thrun, S., Artificial, S., Cs, S., Hähnel, D.: Junior: the

Stanford entry in the urban challenge. In: The DARPA Urban Challenge. Number October

2005, pp. 91–123 (2009)

5. Rauskolb, F.W., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Eertz, J., Form, T., Graefe,

F., Ohl, S., Schumacher, W., Wille, J.M., Hecker, P., Nothdurft, T., Doering, M., Homeier, K.,

Morgenroth, J., Wolf, L., Basarke, C., Berger, C., Gülke, T., Klose, F., Rumpe, B.: Caroline: an

autonomously driving vehicle for urban environments. J. Field Robot. 25(9), 674–724 (2008)

6. Augusto, B., Ebadighajari, A., Englund, C., Hakeem, U., Irukulapati, N.V., Nilsson, J., Raza,

A., Sadeghitabar, R.: Technical aspects on team Chalmers solution to cooperative driving.

Technical report, Chalmers University of Technology, Göteborg (2011)

7. Berger, C., Chaudron, M., Heldal, R., Landsiedel, O., Schiller, E.M.: Model-based,

composable simulation for the development of autonomous miniature vehicles. In: Proceed-

ings of the SCS/IEEE Symposium on Theory of Modeling and Simulation, San Diego, CA,

USA (Apr 2013)

8. Berger, C.: From a competition for self-driving miniature cars to a standardized experimental

platform: concept, models, architecture, and evaluation. J Softw. Eng. Robot. 5(1), 63–79

(2014)

9. Berger, C.: Automating acceptance tests for sensor- and actuator-based systems on the

example of autonomous vehicles. In: Aachener Informatik-Berichte. Software Engineering,

Band 6. Shaker Verlag, Aachen, Germany (2010)

10. Berger, C.: Cloud-based testing for context-aware cyber-physical systems. In: Tilley, S.,

Parveen, T. (eds.) Software Testing in the Cloud: Perspectives on an Emerging Discipline,

pp. 68–95. IGI Global, Hershey (2012)

126 C. Berger

Chapter 11

Industrial Application of Visual GUI Testing:

Lessons Learned

Emil Alégroth and Robert Feldt

Abstract A large body of academic knowledge has been devoted to automated

software testing in order to support the software market’s demands for continuous

software delivery. However, most of these automated techniques approach testing

from lower levels of system abstraction, e.g., component level, which limit their

applicability for high-level regression testing of, for instance, system and accep-

tance tests, thus forcing companies to perform these test activities manually, which

is considered time consuming, tedious, and error prone.

In this book chapter, we present visual GUI testing (VGT), a tool driven test

technique that uses image recognition in order to interact and assert the correctness

of a system under test (SUT) through the bitmap graphical user interface (GUI) that

is shown to the user on the computer monitor. This approach makes VGT flexible

and applicable to any SUT with a GUI but also allows VGT tools to emulate

end-user behavior and therefore automate previously manual system and accep-

tance test cases. In addition to presenting the technique itself, this chapter will also

present some VGT tools and empirically identified problems with the technique and

how these problems can be mitigated in practice. Finally we will discuss how VGT

can be used in the context of continuous software development in order to support

market demands for quicker software delivery.

E. Alégroth (*)

Software Engineering and Technology, Chalmers University, Gothenburg, Sweden

e-mail: Emil.Alegroth@Chalmers.se

R. Feldt

Software Engineering and Technology, Chalmers University, Gothenburg, Sweden

Department of Software Engineering, Blekinge University of Technology, Karlskrona, Sweden

e-mail: Robert.Feldt@bth.se

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_11

127

mailto:Emil.Alegroth@Chalmers.se
mailto:Robert.Feldt@bth.se

11.1 Introduction and Background

The time available between releases of software in industry is becoming shorter due

to growing market demands for continuous software delivery. This trend is both

facilitated and spurred on by agile and lean development processes, e.g., Scrum and

Kanban, and in extension the practices of continuous integration and deployment

[1]. However, the faster development pace can also have detrimental effects on

software quality, e.g., since less time is available for software testing.

To mitigate such detrimental effects, a large body of research has been devoted

to test automation techniques and tools. A majority of this research has focused on

test automation on lower levels of system abstraction, e.g., unit testing [2]. Lower-

level testing is powerful for verification of software components, but for higher

levels such as system testing, these techniques become cumbersome, complex, and

costly [3, 4]. Automated techniques for high-level testing exist but are infrequently

used in practice due to a lack of or immature tooling and because companies have

faulty expectations on the test automation, e.g., that automation will lower the cost

of testing [3]. Therefore, common industrial practice is still to use mainly manual

system test practices, often performed through the system under test (SUT)’s
graphical user interface (GUI) following predefined system usage scenarios

[3]. However, scenario-based manual testing is time consuming and is therefore

not a practical option to facilitate the market’s need for faster software delivery [3].
Visual GUI testing (VGT) is a novel1 automated test technique that helps fill the

gap for automated GUI-based system testing [5–8]. The technique is tool driven and

uses image recognition in order to identify and interact with a SUT’s GUI as it is
represented graphically to the end user. As such, VGT can be used to emulate

end-user behavior and automate tests that previously had to be performed manually.

Consequently it can lower test execution costs which facilitates higher test fre-

quency and thus leads to more and more frequent feedback on the SUT’s quality to
developers. Our previous research has shown that VGT is applicable in industrial

practice, but only limited information exist about the technique’s long-term feasi-

bility [5–8]. As such, it is unclear if VGT is a suitable technique to improve

companies’ continuous integration and deployment practices.

11.2 Software Testing

Software testing refers to the practice of verifying or validating an SUT’s confor-
mance to its requirements. We define a system as verified if it operates according to

its requirements.2 We define a system as validated if it operates according to its

1 Even though the general idea has been around for long, it has only been made possible through

recent advances in computer power.
2 An additional complication is that not all requirements might have been (correctly) elicited, i.e.,

might not properly represent the actual needs of the users; however, in the following, we do not go

further into this distinction.

128 E. Alégroth and R. Feldt

requirements and as intended by the customer. Hence, there is an important

distinction between verification and validation that also separates scenario-based

system tests from acceptance tests. While system tests can be any scenario that

verifies the systems functionality, an acceptance test must follow a scenario of how

a user will actually use the system. Scenario-based testing is as such one of the

primary ways of ensuring software quality and can also be performed automatically

through GUI-based testing [9].

11.2.1 Manual Testing

Still, manual practices are the most common for system and acceptance testing in

industry, either with guiding scenarios or using exploratory approaches [10]. While

exploratory tests are aimed at identifying previously unknown defects, scenario-

based manual tests are aimed at verifying continued conformance to the system’s
requirements, i.e., regression tests. Regression tests thereby aim to verify that

changes to the SUT have not broken functionality that was previously functional.

Manual test scenarios generally define user interaction with the SUT or its

environment through specification of inputs and expected outputs to said inputs,

thus limiting the defect finding ability of these tests to defects that are explicitly

asserted by the scenario. This limitation imposes a need for scenario-based testing

to be complemented with exploratory tests, regardless if the scenario-based tests are

manual or automated.

In addition, manual testing is slow, resource intensive, and, in the context of

continuous integration and deployment, a potential bottleneck, hence enforcing the

need for test automation to remove or mitigate the need for manual tests.

11.2.2 Automated Testing

There is a plethora of automated test techniques and tools for different testing

purposes [11], but we will only briefly cover a few techniques in this section for the

continued discussion. In contrast to manual testing, the execution of automated tests

are not associated with any large cost, which facilitates frequent feedback to the

developers. The main benefit of frequent feedback is that defects are found quicker

and their root cause sought in a smaller part of the software code base. In this way,

there is less accumulation of defects and a lesser chance of synergistic effects, e.g.,

failure masking, that can result in higher overall development cost. To explain,

assume that manual tests are run once every three weeks of development. During

the development, it is possible that several defects are introduced in the SUT and

that there are dependencies among the said defects. These dependencies can make

defect analysis and identification problematic because the source of one defect can

obscure the source of another defect. With continuous automated testing, it is

11 Industrial Application of Visual GUI Testing: Lessons Learned 129

possible to find the individual defects quicker, and the synergy effects can be

averted. This can lower the overall cost spent on testing and corrective actions.

However, there are other costs associated with automated testing, i.e., develop-

ment and maintenance costs. These costs are affected by several different factors

that differ from the development and execution of manual test cases, such as a need/

want for tester technical knowledge and experience, test and tool complexity, etc.

Furthermore, the humans can use their cognitive ability to determine how to

perform a test case. As such, a manual test case can be written on a higher level

of abstraction and be less formal than an automated test, i.e., the automated test

requires the exact instructions that it should execute in order to test the SUT.

Therefore, automated tests are prone to need more continuous maintenance than

manual test cases.

However, keeping automated tests up to date is imperative to ensure SUT quality

but also for the automated test technique in question’s longevity. To explain, test

suites that are not continuously maintained quickly degrade, and a critical point is

quickly reached when the cost of maintenance outweighs the benefits of the tests

[3]. As such, companies that end up in this scenario often revert back to previous

test practices, e.g., manual testing.

As previously discussed, we separate automated testing into levels of system

abstraction. Low-level tests are generally white box that means that they require

access to the source code or information about the SUT’s implementation. An

example of such a technique is unit testing with xUnit [2]. These tests are dependent

on the programming language and operate by asserting code components with

inputs and expected outputs. For instance, a method that increments a variable by

one could be tested by setting a variable to a value x, e.g., three, and then verified

against the expected value x+ 1, i.e., four in this case. Such a test could be

considered simplistic, but given a large test suite with assertions with a wide

range of input and output pairs, it has been shown to be a powerful tool in finding

defective system behavior. However, it has also been shown that these tests are ill

suited for higher-level tests, e.g., system tests [3]. The reason is because system

tests written with XUnit quickly become complex because the tests need to consider

both the logical and chronological dependencies between the software components

of the SUT.

Another approach to automated testing is based around test case generation, e.g.,

with model-based testing. Theoretically, test case generation can be applied for all

abstraction levels of testing, but focus in research has primarily been on lower-level

tests. One plausible reason for this focus is because higher-level tests become more

intricate and require more knowledge about the system, which makes it difficult to

create the test generation and oracle algorithms. The work of Memon et al. does

however show that test generation of GUI-based tests is possible [12, 13].

High-level tests, on the contrary to low-level tests, test the system’s components

as a whole and how they work together. As such, these tests require less knowledge

about a system’s inner workings and are therefore often gray box or even black box.
Gray-box tests are tests that require limited access to source code or properties of

the source components, e.g., properties from the GUI accessed through the SUT’s

130 E. Alégroth and R. Feldt

GUI libraries. Black-box tests in contrast require no access and can test a compo-

nent or system without knowing any of its inner workings.

11.2.3 GUI-Based Testing and the First Generation

Graphical user interface (GUI)-based testing refers to system-level testing through

a system’s GUI. Hence, it does not refer to testing of the GUI but rather the system’s
functionality through its GUI. This distinction is important but generally

misconceived in practice. As we have previously discussed in Sect. 11.2.2, testing

can be performed on different levels of system abstraction. GUI-based tests are

performed on a high level of abstraction and therefore allow the user to automate

more intricate scenarios that stimulate a larger subset of the SUT’s components.

Thus, even short test cases on high level of abstraction can be equivalent to many

low-level tests. However, at the same time, this property dislodges the tests from the

source code. To explain, while low-level tests, e.g., XUnit, can tell the user what

exact component or even line of code is defective, higher-level tests can only

present what feature is defective in the system. As such, the results of these tests

require the tester to analyze the SUT in order to find the source code responsible for

the defect.

There are several techniques for GUI-based testing, which we refer to as

generations of GUI-based testing. The first generation, also known as coordinate-

based GUI-based testing, used exact coordinates on the screen to interact with the

SUT’s GUI. This approach was beneficial for test script recording, but because

GUIs are prone to change, these tests also required a lot of maintenance. Because of

the high maintenance costs, this technique has been abandoned and replaced with

what we refer to as the second-generation GUI-based testing.

11.2.4 Second-generation GUI-Based Testing

Property or widget-based GUI-based testing is a commercially used technique that

can be used for system-level testing [3]. The technique is gray box and uses the

properties of GUI components in order to identify and interact with them. To

explain, consider the GUI as shown to the user as a representation of the GUI

code components on a lower layer in the systems architecture. The code defines

information about the GUI components characteristics, such as size, color, labels,

etc., information that second-generation GUI-based testing tools use in order to

uniquely identify specific components and assert their state.

The benefits of this technique are that it can be used for test case recording but

also that it is robust to GUI layout change. Hence, both the GUI graphics and the

location of GUI objects can be changed without any need for maintenance of the

test scripts. However, since the scripts use underlying information of the GUI

11 Industrial Application of Visual GUI Testing: Lessons Learned 131

components, changes to the source code can cause the test scripts to fail. Further the

technique is limited to a set of programming languages, dependent on which

languages the tool in question supports. In addition, some types of GUIs cannot

be tested, for instance, dynamic GUIs where output is drawn on, for instance, a

canvas in runtime, thus limiting the technique’s applicability.
A common usage of this technique is for automated web testing with the tool

Selenium. Another commonly used tool is HP’s Quality Test Professional (QTP) or,
as it is now known, Unified Functional Testing (UFT).

11.2.5 Visual GUI Testing (VGT), the Third Generation

Visual GUI testing is an emerging technique in industrial practice that uses image

recognition in order to identify and interact with the GUI through the bitmap

graphics shown to the user during system runtime [5–8]. Interaction is then

performed using the operating systems mouse and keyboard functionality, emulat-

ing user interaction with the SUT. The use of image recognition also makes the

technique flexible and allows the technique to be used on any GUI-based system

regardless of implementation or even platform. As such, the technique is black box

and does not suffer from the applicability limitations presented for second-

generation testing. As an example, assume that we have an application that given

a dataset draws a graph on a canvas. If the said graph is deterministic, a VGT tool

can assert the SUT if the graph is drawn correctly or not, an assertion that was

previously not possible with other GUI-based tools.

VGT is a tool-driven technique, and several commercial and open-source tools

are currently available for practice. However, even though there are several tools

available, the use of the technique in industrial practice is low. Some reasons are

because the technique is still immature, because few companies know about it still,

and because there is little to no support about the feasibility of the technique for

long term. For instance, only limited information has been acquired regarding the

maintenance costs associated with VGT scripts. However, the information that does

exist is indicative of VGT being a suitable complement to other automated and

manual test practices in practice.

We state that VGT is a complement, not a replacement, to other techniques

because VGT still can only find defects in the assertions that are added to the VGT

scripts. To explain, assume that we have a defective calculator application that

when you click on the number 3 button the number 9 button is also highlighted that

it is being clicked. Thus, if we assume that we have a test case that asserts that when

the number 3 button is pressed it changes state, such a test case would not capture

the defective number 9 button and as such cause fault slip through. Hence, the VGT

scripts need to be complemented with explorative manual testing that can uncover

132 E. Alégroth and R. Feldt

defects that lie outside the scripted scenarios. VGT is therefore primarily a regres-

sion testing technique, even though proof-of-concept research shows that it can be

used also for random testing to find new defects.

11.3 VGT Tools

The first academically reported VGT tool was called Triggers, published in a paper

by Potter in the early 1990s [14]. However, because of performance issues, the tool

and the technique was not considered a feasible approach in practice.

Since then, advances in hardware and image recognition algorithms have

resulted in a renewed interest in the technique, and several tools are currently

available in the market. In the following section, we present two VGT tools and

their core features.

11.3.1 Sikuli

Sikuli3 is an open-source VGT tool developed originally by researchers at the

Massachusetts Institute of Technology (MIT) and was presented by Yeh et al. in

2009 [15]. The tool uses Python as its primary scripting language but with an

extended application programming interface (API) that makes use of the tool’s
image recognition capabilities. As such, the entire Python language is at the

disposal of the user in the tool’s integrated development environment (IDE).

Furthermore, since the Sikuli API methods take images as input, the tool’s IDE

implementation displays the said images in the script files, thus making scripts more

readable and making it easier to perform VGT. Figure 11.1 shows a screenshot of

what the IDE with a short Sikuli script looks like. The tool also has a JAVAAPI, but

at the time of writing this book, it was not as developed as the Python API.

However, the tool’s use of these script/programming languages provides the user

with support to write more advanced test applications, e.g., random and explorative

testing. The tool also supports optical character recognition, which is valuable for

testing of applications with non-deterministic textual output and for the creation of

reusable data-driven scripts, i.e., scripts that can be executed with different input

and expected output taken from a source file or database.

However, the tool is quite immature and associated with some quality concerns

in regard to robustness [8]. Furthermore, the tool does not support script recording

and only has limited support for test case management. The latter limitation

originates in Sikuli primarily being an automation tool rather than a testing tool.

3More information available at www.sikuli.org.

11 Industrial Application of Visual GUI Testing: Lessons Learned 133

http://www.sikuli.org/

However, the lacking support for testing can easily be developed because of the

tool’s available APIs.

11.3.2 JAutomate

JAutomate4 is a commercial tool developed by the company Swifting in Gothen-

burg [7]. The tool supports both recording and manual development of scripts

through a custom scripting language designed to be as easy to use as possible for

novice programmers. Furthermore, the scripts can be viewed in different modes,

with different levels of detail, to suit also more experienced script developers.

Figure 11.2 shows a screenshot of the tool’s IDE.
The tool also supports the inclusion of manual test steps in a test script and

includes several image recognition algorithms. The most basic algorithm only

checks that the pixels in the sought image are the same as the found image, using

a random search pattern. A second algorithm does post-capture work of the sought

Fig. 11.1 Screenshot of Sikuli’s IDE after a small script has been executed that opens a web

browser and navigates to a search engine

4More information available at www.jautomate.com.

134 E. Alégroth and R. Feldt

http://www.jautomate.com/

image and extrapolates the areas in the image with the highest contrast. During

script playback, the algorithm searches for the extrapolated areas which have been

shown to improve execution speed. Finally the tool has a more robust algorithm that

uses more information in the sought image but also its surrounding bitmaps, i.e.,

context information where the sought image is located in the GUI, to find a match.

This algorithm is useful when searching for objects with non-deterministic output

given that the surrounding bitmaps remain deterministic.

In contrast to Sikuli, JAutomate was originally designed for testing and therefore

has support for both test suite creation and management. Additionally, the tool

includes support to be executable from a build server, i.e., it can be integrated into

an automated software build environment that is required for continuous integration

and deployment.

11.4 Development of VGT Scripts

There are different approaches to VGT script development. The most common, as

reported by research, is to translate manual test cases into automated scripts.

However, research also reports that there are several aspects to the development

that must be considered to make VGT as effective and cost-efficient as possible. In

the following section, we will briefly discuss some of these aspects.

Fig. 11.2 Screenshot of JAutomate’s IDE

11 Industrial Application of Visual GUI Testing: Lessons Learned 135

11.4.1 Development Guidelines

Test automation has several similarities to traditional software development, and

therefore, it is suitable to use similar practices when developing test code, for

instance, to use a coding standard, properly design the test framework/

architecture, etc.

However, there are also dissimilarities that must be considered. For instance,

VGT scripts need to be synchronized both logically and chronologically against the

state transitions of the SUT being tested. In order to do synchronization effectively,

it has been observed that the script developer needs to have a linear and systematic

mindset and sufficient knowledge of the purpose of the test case, the SUT’s
features, and the VGT tool’s capabilities. In addition, script linearity is important

to lower script complexity, i.e., it has been observed that scripts with loops and

branches quickly become more complex. Keeping the script complexity as low as

possible is paramount for script readability and in extension to mitigate mainte-

nance costs. Consequently, manual test cases should only be used as specification

for the VGT scripts if they define linear test scenarios.

Another favorable guideline to mitigate maintenance cost is to start by writing

tests for the SUT’s most stable features, i.e., test cases for features that are not likely

to change. Additionally, it is recommended that the implementation is performed

incrementally rather than big bang, especially in contexts where it is uncertain if

VGT is a suitable improvement to the development process.

11.4.2 Test Architecture and Design

In order to get the most benefit from VGT, it is important to consider the test

architecture and design it to be as modular as possible. Modularity improves

modifiability and reusability of test components that in turn improves the tests

flexibility and ability to respond to change, consequently mitigating both develop-

ment and maintenance costs. In addition, this design allows for the creation of

reusable support scripts, e.g., to start a simulator, which are required to run a test

scenario, but is not explicitly part of the said scenario.

For individual scripts, it is also suitable to define a guideline for how to create the

scripts in order to ensure consistency. Consistency relates both to coding standards,

i.e., the look and feel of the actual test code, but also how components within a test

script are structured. For instance, following the setup, test and teardown structure

commonly used by XUnit frameworks. Keeping the scripts consistent will improve

readability and therefore mitigate maintenance costs.

In summary, it is important to plan and structure the VGT test architecture prior

to development in order to maximize its use and minimize cost. Furthermore, in a

context where continuous integration and/or deployment is requested, it is also

important to consider how the architecture can support such a practice.

136 E. Alégroth and R. Feldt

11.5 Challenges with Applying VGT

VGT is still, despite its benefits, an immature technique, and its practical applica-

tion is associated with several challenges, problems, and limitations (CPLs). In this

section we will discuss some of the core CPLs that have been collected through

empirical work in industrial practice [8].

11.5.1 Expectations

The first core CPL is not associated with just VGT but automated testing in general.

A common misconception with automated testing is that it will lower the cost/time

spent on testing. This is however generally false because even though automated

tests are not associated with any execution cost, they still require maintenance.

Maintenance that can be equal to or even greater than the costs of running the tests

manually. However, in order to evaluate the value of automated testing, one also

needs to consider the increased number of executions and resulting quality gains, a

statement supported by empirical work where industrial practitioners state that the

value of automation outweighs the maintenance costs.

11.5.2 Synchronization

The second core CPL is not general to all automated testing but general to all

GUI-based test techniques and refers to the synchronization between test script and

SUT state transition. In the case of VGT, this means that the tools need to use

graphical output from the SUT’s GUI to verify that the SUT is ready to receive

input. To explain the problem, consider a webpage with several pages. If a link on

the page is clicked, it can take several seconds before the next page is loaded

(depending on network latency). A human will automatically wait for the webpage

to load but the scripts need to be told to do so. Therefore, all VGT tools include

methods to wait for images on the screen in addition to static waits.

However, verifying that a script executes correctly can only be done by viewing

it during execution, and for long test scenarios, this practice can become quite

tedious, especially if the script fails in its final stages due to incorrect timing. This

problem enforces the guideline that VGT scripts should be kept linear but also as

short as possible to lower the required time to verify script correctness.

11 Industrial Application of Visual GUI Testing: Lessons Learned 137

11.5.3 Image Recognition

The third core problem is VGT specific and relates to the image recognition of the

currently available tools. It has been empirically observed that VGT tools some-

times without reason fail to find an image, thus leading to false-positive test results.

The only strategy that has been found to mitigate this problem is to add redundan-

cies in the script code such that if the image recognition fails, it is automatically

rerun or executed with another sought image. However, as the tools of the technique

mature, this problem is perceived to dissipate.

11.5.4 Others

VGT tools also suffer from other immaturity problems, e.g., lack of functionality or

instability. These problems have been encountered in several empirical studies but

have been reported as manageable either with script development practices, e.g.,

how screenshots are taken and coding standards, or technical solutions, e.g., adding

layers of failure mitigation in the script architecture. However, no detailed guide-

lines or practices have been identified that are applicable in all contexts for all

systems.

Furthermore, because of the immaturity, the amount of support available to

script developers online is limited, e.g., communities focused on VGT. However,

as the tools and usage of VGT improves, this is considered to become less of a

problem.

Another empirically found problem is that VGT scripts based on manual test

specifications are also reliant on the said specifications being correct and up to date,

i.e., that they are properly aligned and up to date with the system under test. This

problem is general to all testing and is caused by improper documentation man-

agement during the evolution of a software system.

11.6 VGT for Continuous Integration

VGT is perceived to be applicable to support continuous integration and deploy-

ment, but no research results exist to support this statement.

Automated testing is an essential part of continuous integration and deployment

to quickly ensure software quality before release. As such, the execution speed is

one of the most important properties for continuous automated testing, i.e., the tests

should preferably be executed every build. This property is however a potential

problem for VGT scripts that cannot execute faster than the system can respond, as

discussed in Sect. 11.5.2. As such, a VGT suite generally has an execution time in

the order of hours, compared to a unit test suite with an execution time in the order

138 E. Alégroth and R. Feldt

of seconds. Consequently, it might not be feasible to run the VGT suite every build

but rather only once a day. Thus, VGT would not be applicable for hourly

continuous integration and/or deployment. However, further research is required

to evaluate this statement.

Another potential problem in a continuous testing context is the amount of

maintenance that would be required to keep the VGT suite up to date. Since

continuous integration and deployment infer that the software changes frequently,

it is further important to prioritize what features the tests are developed for first, as

discussed in Sect. 11.4.

The benefit of using VGT in a continuous integration build chain is perceivably

that test results from the unit testing can be combined with the VGT test results to

find not just what feature is defective but what component is the source of the said

defect, thus shortening the defect analysis and identification time by providing the

developer with test feedback on several levels of system abstraction simulta-

neously. In addition, the GUI level feedback itself is valuable for continuous

integration and deployment and perceivably mitigates the need for manual testing,

i.e., less manual testing is required.

In summary, VGT is perceived to be applicable for continuous integration and

deployment but only if integration is done on a daily basis and assuming that the

maintenance costs can be kept feasible. However, further research is required to

verify these statements and to find support for VGT’s use in a continuous integra-

tion and deployment context.

Summary and Conclusions

Visual GUI testing (VGT) is a technique for automated system and accep-

tance testing that has recently been made practical for industrial application.

It uses image recognition to interact with the graphical user interface of a

software system and can thus emulate actual use of the system, regardless of

its technical implementation. Our research has shown that VGT can be a

valuable addition to current automated test techniques, especially for contin-

uous integration and deployment, and we provide detailed guidelines and

support for practitioners that want to apply it. However, currently no research

has explored the benefits of using VGT for continuous testing, which is

therefore a subject of future research.

References

1. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven” – a multiple-case

study exploring barriers in the transition from agile development towards continuous deploy-

ment of software. In: 2012 38th EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), pp. 392–399. EUROMICRO, IEEE (2012)

2. Olan, M.: Unit testing: test early, test often. J. Comput. Sci. Coll. 19(2), 319–328 (2003)

11 Industrial Application of Visual GUI Testing: Lessons Learned 139

3. Berner, S., Weber, R., Keller, R.: Observations and lessons learned from automated testing. In:

Proceedings of the 27th International Conference on Software Engineering, pp. 571–579.

ICSE, ACM (2005)

4. Grechanik, M., Xie, Q., Fu, C.: Creating GUI testing tools using accessibility technologies. In:

International Conference on Software Testing, Verification and Validation Workshops, 2009.

ICSTW’09, pp. 243–250. ICST, IEEE (2009)

5. Börjesson, E., Feldt, R.: Automated system testing using visual GUI testing tools: A compar-

ative study in industry. In: 2012 I.E. Fifth International Conference on Software Testing,

Verification and Validation (ICST), pp. 350–359. ICST, IEEE (2012)

6. Alegroth, E., Feldt, R., Olsson, H.: Transitioning manual system test suites to automated

testing: An industrial case study. In: 2013 I.E. Sixth International Conference on Software

Testing, Verification and Validation (ICST), pp. 56–65. ICST, IEEE (2013)

7. Alegroth, E., Nass, M., Olsson, H.: JAutomate: A tool for system-and acceptance-test auto-

mation. In: 2013 I.E. Sixth International Conference on Software Testing, Verification and

Validation (ICST), pp. 439–446. ICST, IEEE (2013)

8. Alégroth, E., Feldt, R., Ryrholm, L.: Visual GUI testing in practice: challenges, problems and

limitations. Empir. Softw. Eng. 1–51. Springer US (2014)

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build, Test,

and Deployment Automation. Book, Pearson Education (2010)

10. Itkonen, J., Rautiainen, K.: Exploratory testing: A multiple case study. In: 2005 International

Symposium on Empirical Software Engineering, 10 pp. (Nov 2005)

11. Dustin, E., Rashka, J., Paul, J.: Automated Software Testing: Introduction, Management, and

Performance. Book, Addison-Wesley Professional (1999)

12. Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated test oracles for GUIs. In: ACM

SIGSOFT Software Engineering Notes, vol. 25, pp. 30–39. ACM (2000)

13. Memon, A.: An event-flow model of GUI-based applications for testing. Softw. Test. Verif.

Rel. 17(3), 137–157 (2007)

14. Potter, R.: In: Triggers: GUIding Automation with Pixels to Achieve Data Access,

pp. 361–382. Center for automation research, University of Maryland (1992)

15. Yeh, T., Chang, T., Miller, R.: Sikuli: Using GUI screenshots for search and automation. In:

Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technol-

ogy, pp. 183–192. ACM symposium of UI software and technology, ACM (2009)

140 E. Alégroth and R. Feldt

Part IV

R&D as an Innovation System

This part discusses the final step on the Stairway to Heaven, i.e., the use of

continuous deployment to build a capability for R&D to continuously validate the

development of new features by collecting data on the use of these features by

customers. The fourth step in the stairway to heaven, continuous deployment, is not

present explicitly in this book as it often evolves automatically as a natural

extension of continuous integration. There are two chapters in this part. The first

chapter presents the results of case studies at several Software Center companies

concerning the current state of customer data collection. One of the key findings is

that these companies today already collect terabytes of data but are unable to

answer even the most basic questions concerning feature usage. The second chapter

introduces the Hypothesis-Experiment (HYPEX) model. The HYPEX model

explicitly outlines how to organize R&D in much faster iterations where thin slices

of a feature are built and tested with customers. The HYPEX model allows

companies to validate the value of building a feature by constantly measuring, as

the feature evolves, how customers are using the feature.

Chapter 12

Post-deployment Data Collection

in Software-Intensive Embedded Products

Helena Holmström Olsson and Jan Bosch

Abstract Companies collect terabytes of data about their products in the field, but

research shows that R&D makes little use of this data, i.e., it is an untapped

resource. In this paper, we explore collection and usage of post-deployment product

data. We highlight the existing limitations in post-deployment data usage and the

untapped resource that post-deployment product data remains. Based on a multiple

case study at three software development companies, we collected three main

findings. First, post-deployment data is used as input to the next pre-development

phase, but not for improvement of existing product versions. Second, post-

deployment data is used for troubleshooting and support activities, but not for

innovation of new features. Third, post-deployment data provides a system-level

understanding of operation and performance, but does not provide insight in

individual feature usage. Finally, we propose a framework in which we outline

what development practices and organizational mechanisms that need to be in place

for advancing the usage of post-deployment data and advance the development of

software-intensive embedded products.

12.1 Introduction

Today, products within telecommunication, transportation, consumer electronics,

home automation, security, etc., involve an increasing amount of software. As a

result, organizations that have a tradition within hardware development are

transforming to become software-intensive organizations with software being

responsible for a majority of the functionality, as well as for a majority of the

development costs and investments. In this transition, the ability to learn about

H.H. Olsson (*)

Department of Computer Science, Malmö University, Malmö, Sweden

e-mail: helena.holmstrom.olsson@mah.se

J. Bosch

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_12

143

mailto:helena.holmstrom.olsson@mah.se
mailto:Jan@JanBosch.com

customers, and especially the way in which customers use software functionality,

becomes increasingly important. Hence, agile software development practices that

are flexible, responsive, and adaptive to customers [1, 2] are gaining momentum. In

advocating customer collaboration and the importance of test-driven development

practices [2], agile practices have attracted not only small software development

companies but also companies involved in large-scale development of software-

intensive embedded products.

However, while many companies have succeeded in applying agile practices

and, as a result, leveraged the benefits of close customer collaboration and contin-

uous validation of functionality in pre-deployment phases, there are few examples

of companies that have succeeded in maintaining this close relationship to cus-

tomers also after product deployment. One technique that has emerged due to the

online nature of most software-intensive products is the opportunity to collect post-

deployment data, i.e., data generated by the product after commercial deployment.

This data can be operational data reflecting product performance, it can be diag-

nostic data recording product behavior, and it can be data indicating feature usage.

For online technologies such as Web 2.0 software and software-as-a-service (SaaS)

systems, the collection of post-deployment data is a well-established technique. In

this domain, companies like Microsoft [3] and Intuit [4] successfully collect post-

deployment data and use this as a basis for continuous improvement of existing

products, as well as for input to innovation and new product development.

Interestingly, the opportunity to collect post-deployment data extends also to

software-intensive embedded products [5]. Today, these products are increasingly

connected, bringing with it the opportunity to collect data from real-time usage. For

example, companies developing products within the telecom and automotive

industry, i.e., mobile phones and cars, are starting to explore the advantages of

collecting data from their products in the field.

In this chapter, we present a multiple case study on three companies developing

software-intensive embedded products. While in different domains, all companies

develop products consisting of an increasing amount of software, and they all

collect large amounts of data from the products they release. In our study, we

explore the following research questions:

• What post-deployment data do the companies involved in our study collect?

• For what purposes is this data used?

The contribution of the paper is twofold. First, we identify what data companies

collect and the current limitations in data usage. We also outline the key opportu-

nities that improved data usage would bring with it. Second, we propose a frame-

work for organizations interested in advancing their usage of post-deployment data.

Our framework reflects the different levels of post-deployment data usage, as well

as the mechanisms needed for improving post-deployment data usage.

144 H.H. Olsson and J. Bosch

12.2 Background

12.2.1 Agile Software Development

During the last decade, agile development methods have dramatically changed the

way software development is performed. Agile methods are characterized by short

development cycles, close customer collaboration, rapid feedback loops, and con-

tinuous evaluation of functionality [2, 6]. In comparison to plan-driven develop-

ment methods, agile methods operate on the principle of “just enough method” and

seek to avoid processes that add little value to the customer. While the agile

principles were initially developed for smaller software development organizations,

evidence show that large software-intensive organizations operating in complex

global development environments are in the process of deploying agile methods as

part of their de facto approaches to software development.

Typically, agile methods focus on collecting customer feedback during

pre-deployment phases, i.e., before and during development. Techniques such as

use cases, scenarios, prototyping, stakeholder interviews, joint requirements ses-

sions, joint application design sessions, etc., are common. Likewise, techniques

such as alpha and beta testing, observation, expert reviews, and prototyping are

efficiently used during development in order to continuously validate that the

functionality that is developed is of value to the customers. As can be seen in

previous research [2, 7–9], these techniques are successfully used to capture generic

customer needs for mass-market products [10]. In addition, large-scale develop-

ment companies often use product management as a proxy for communicating

customer feedback to the development organization before and during development

of the system [11].

However, while agile development practices are conducive to close customer

collaboration and continuous validation of functionality in the early phases of

development [6, 12], there is less evidence on companies that have succeeded in

establishing techniques for continuously collecting customer feedback also after

commercial deployment of the product.

12.2.2 Post-deployment Customer Feedback

As product use evolves over time, product characteristics need to be adjusted,

adapted, and updated according to emerging customer behaviors and needs. This

implies that mechanisms for post-deployment customer feedback are as important

as those used during the pre-development and development phases of a product.

Recently, and with the increasing number of software products being Internet

connected, new opportunities for observing and measuring post-deployment prod-

uct behavior and use have emerged [3, 4]. The most well-known examples of this

are Web 2.0 technologies, social network systems, and software-as-a-service (SaaS)

12 Post-deployment Data Collection in Software-Intensive Embedded Products 145

systems. Due to the online nature of these systems, data is generated and can be

collected as soon as customers use the systems, and the cost of collecting data from,

and about, the customer is low [4, 5]. Examples include the amount of time a user

spends using a feature, the frequency of feature selection, the path that a customer

takes through product functionality, etc. If continuously collected and analyzed,

product data can be used as efficient input for improvement of the existing product

and as a basis for new product development and innovation. As a result, these online

systems allow for an approach where instead of freezing the requirements before

development starts, requirements evolve in real time based on data collected from

the products.

Interestingly, and as the focus of this paper, these benefits extend also to

software-intensive embedded products. Today, companies developing connected

embedded products, from mobile phones to cars, are starting to exploit the advan-

tages of continuous collection of product data. For example, connected cars can

collect diagnostic data such as fuel efficiency and energy consumption data,

whereas telecom equipment can collect performance data such as real-time band-

width, restarts, outages, upgrade success rate, etc. Therefore, although the first area

of post-deployment data collection can be found in online services such as web

technologies, the techniques can be applied to any software product that is

connected to the Internet for data access and retrieval. This includes software-

intensive embedded products intended for a mass market for which evolving needs

might be difficult to capture during pre-deployment phases.

12.3 Research Sites and Method

12.3.1 Research Sites

This chapter presents research based on a multiple case study conducted at three

software development companies. Today, all the companies are collecting large

amounts of data from the products they release to customers.

Company A is a provider of telecommunication systems and equipment, com-

munications networks, and multimedia solutions for mobile and fixed network

operators. The company has a number of post-deployment data collection mecha-

nisms in place and is currently collecting data related to system operation and

performance. For the purpose of this study, we met with key stakeholders at two

company sites in two different countries. The first site is involved in the develop-

ment and maintenance of nodes within the 3G networks, and at this site, we

conducted group interviews with a total of 19 people, including product managers,

project managers, support managers, product specialists, integration leaders, devel-

opers, and system architects. Also, a workshop was held in which we met with all

people from the group interview, as well as with a few additionally invited

managers, to discuss and confirm our findings. The second site is involved in the

146 H.H. Olsson and J. Bosch

development, supply, and support of media gateways for mobile networks. At this

site, we conducted a group interview with six people involving two department

managers, a support manager, a senior specialist, a product manager, and an

integration leader.

Company B is a manufacturer and supplier of transport solutions for commer-

cial use. The company has a number of sophisticated data collection mechanisms

implemented in their products, and the majority of the data they collect is diagnostic

data. For the purpose of this study, we met with two attribute leaders, two devel-

opers, and one software expert focusing on software process improvement. In

addition, we met with a group of managers and developers focusing on the

human machine interface of the vehicles.

Company C is world leading in network video and offers products such as

network cameras, video encoders, video management software, and camera appli-

cations for professional IP video surveillance. The company has a number of post-

deployment data collection mechanisms in place in their products. The data they

collect is primarily performance data related to operational use of their products.

For the purpose of this study, we conducted five group interviews in which we met

with developers, testers, system architects, product owners, project managers, and

product specialists. In total, we met with 44 people.

12.3.2 Research Method

Our study reports on a multiple case study [13]. The main data collection method

used was semistructured group interviews with open-ended questions [14]. In total,

eight group interviews were conducted. All group interviews were conducted in

English and lasted for 2 hours. In total, we have 18 hours of recorded interviews and

58 pages of summarizing notes. During analysis, the summary notes were used

when coding the data, and as soon as any questions or potential misunderstandings

occurred, the recordings were used to replay the discussion and capture all inter-

view details.

In terms of data analysis, a qualitative grounded theory approach was adopted

[15]. In this process, open coding principles were used, and clusters and categories

emerged as a result of reading the transcribed data to identify similarities in the

respondents’ experiences. A problem that has been identified in relation to quali-

tative research is that different individuals may interpret the same data in different

ways [16]. This problem was addressed in two ways. First, the coding processes

provide an audit trail of the process by which conclusions are reached. Second, we

used a “venting” method, i.e., a process whereby interpretations are discussed with

professional colleagues [17]. By sharing notes and by discussing the results of each

group interview, we could develop an accurate understanding of the different

contexts and explore the research questions guiding this study.

12 Post-deployment Data Collection in Software-Intensive Embedded Products 147

12.4 Post-deployment Data Collection and Usage

Our interviews reveal that huge amounts of post-deployment data are collected in

all companies. In company A, data is collected in relation to system operation and

performance. Information on restarts, system outage, faults, card re-booting, and

upgrade success rate is collected and used for assessing system performance and

behavior. In addition, dimensioning data such as CPU load, licenses sold, etc., serve

as important input for system configuration and capacity, as well as for producing

sale statistics and market assessments. As mechanisms for collecting this data,

company A reports on a number of support logs and counters, monitoring systems,

customer satisfaction indexes, and tools for collecting and storing trouble reports,

trouble tickets, and customer requests. While all respondents agree that post-

deployment data is important, they experience difficulties when it comes to getting

an overview on what is collected and for what purpose. Typically, statistical

analysis and trend analysis are done based on the collected data, and there is the

opportunity to learn about system performance and future dimensioning needs.

However, while performance data, such as upgrade success and downtime reports,

is collected, company A reports on difficulties to use the data. As it seems, customer

data is used for troubleshooting and for maintaining the current version of the

system but very seldom for improving functionality or as a base for developing new

functionality. When asking what the key opportunities with increased usage of post-

deployment data would be, the interviewees in company A all emphasize the ability

to continuously validate what functionality customers value and to improve require-

ments prioritization.

In company B, post-deployment data is continuously collected in order to assess

system behavior of the vehicle. Performance data such as speed, fuel efficiency,

energy consumption, acceleration, road conditions, etc., is collected for evaluation

purposes. In addition, diagnostic data such as trouble codes, failure reports, etc., is

collected by the electronic nodes in the vehicle in order to help troubleshoot a

problem whenever the vehicle is handed in for service. Finally, data is collected in

order to fulfill legislation purposes since company B is involved in development of

products where safety regulations are immense. All respondents agree that the

challenge is not to collect data but to make it useful within the organization.

Based on the data collected, data mining techniques are used to learn about system

performance. However, while this data is useful for the next version of the product

family, it is collected with long intervals and is not used for improving the current

version of the product. Also, integrating and visualizing the data are found difficult.

In company B, all interviewees see the ability to continuously validate what

functionality customers value and especially to optimize customer use of the

product, as the two main opportunities with increased usage of post-

deployment data.

In company C, post-deployment data is collected for assessing system perfor-

mance. Data on frames per second, stability, and usage hours is important, as well

as configuration data on product models and number of sites. The interviewees find

148 H.H. Olsson and J. Bosch

post-deployment data useful for answering to customer requests and for system

support. However, there are no established techniques for post-deployment data

usage. While large amounts of data are generated in the systems, this is not used to

systematically improve current versions of the products. As a result, interviewees

feel that they have limited knowledge on what features of their products that are

used, and they feel that whenever post-deployment data is used, a problem has

already occurred. In company C, increasing delivery frequency of functionality and

increasing the ability to anticipate future customer needs are regarded as the two

key opportunities with increased usage of post-deployment data.

While still in the process of establishing techniques for post-deployment data

usage, all companies view this activity as critical for continuous validation of their

development efforts. In Table 12.1, we summarize our findings and outline the

opportunities the companies foresee.

Our study shows that post-deployment data constitutes an enormous asset for

companies. However, data usage is limited, and while all companies report on this

data as useful for troubleshooting and support, they recognize that mechanisms for

continuous improvement of existing product versions, as well as for innovation of

new functionality, are not in place.

Table 12.1 Summary of post-deployment data collection and usage and the challenges and

opportunities the companies experience

Company

Data

collection Data usage Challenges Opportunities

A System opera-

tion and per-

formance data

Dimensioning

data

Statistical and

trend analysis

Dimensioning

needs

Trouble shoot-

ing

System

maintenance

Limited overview over

collected data

No use of data for

improvements and

new feature develop-

ment

No understanding of

feature usage

To continuously val-

idate what function-

ality customers value

To improve require-

ments prioritization

B Diagnostics

data

Performance

data

System perfor-

mance

Troubleshooting

Difficulties in integra-

tion and visualization

of data

No use of data for

improving the current

version of the system

No understanding of

feature usage

To continuously val-

idate what function-

ality customers value

To optimize cus-

tomer use of the

product

C System opera-

tion and per-

formance data

Customer

requests

System support

No understanding of

feature usage

To increase delivery

frequency of func-

tionality

To increase the abil-

ity to anticipate

future customer

needs

12 Post-deployment Data Collection in Software-Intensive Embedded Products 149

12.5 Discussion

Everyone involved in development of a software product has ideas on how to make

it better. Typically, these ideas are collected and prioritized during the requirements

engineering process. Often, the selection and prioritization of ideas are based on

previous experiences and opinions and on predictions by product management

[4]. However, with a growing number of products being Internet connected, the

opportunity to collect post-deployment data has significantly increased [5]. Due to

the online nature of most systems, data can be collected as soon as customers use

them, and the cost of collecting data from, and about, the customer is low [4, 18,

19]. These benefits apply to software-intensive embedded products such as telecom

equipment and vehicles. With the majority of functionality being software and with

the opportunity to be connected to the Internet, these products are now increasingly

interesting from a data collection perspective. Therefore, although the first area of

post-deployment data collection can be found in online services and Web 2.0

systems [5], the techniques can be transferred to any product that is able to collect

and provide data about its real-time usage. From a product development perspec-

tive, this is interesting as it opens up for continuous improvement of existing

products.

12.5.1 The “Post-deployment Data Usage Pyramid”

On the basis of qualitative interviews, we see that usage of this data is limited. In all

companies, data related to system operation and performance, and diagnostics, is

collected. This data is used for troubleshooting and support activities when the

system experiences a problem or an error. According to our interviewees, this

reflects a re-active use of the data and difficulties in using the data for more

advanced purposes such as for understanding how individual features are used,

for improvement of existing features, or for development of new features. In

Fig. 12.1, this shortcoming is illustrated in the “post-deployment data usage

pyramid.”

In our model, we outline the different levels of post-deployment data usage, i.e.,

different purposes for which data is used. At the first level, operational and

performance data represents data that helps companies understand how the system

is performing, i.e., data generated during real-time use and that is collected in order

for companies to get a system-level understanding. At most companies, operational

data is collected without a clear purpose of how to analyze and use it, and therefore,

primarily a high-level understanding of the system is obtained. At the second level,

diagnostic data represents data that is collected with the specific purpose of

supporting troubleshooting activities. Here, data is collected for bug fixing and

error correction purposes and for providing input for maintenance. At this level, a

more systematic collection of data is required, and companies make use of effective

150 H.H. Olsson and J. Bosch

data storage in order to document and trace troubleshooting and maintenance

processes. The third level represents a level at which companies collect data that

helps them understand the usage of individual features. In comparison to the high-

level system understanding that is provided by collection of operational data, this

level requires mechanisms and tools that allow for a more sophisticated data

analysis in which usage patterns of specific features can be discerned. At the two

most advanced levels, data is collected in order to support continuous improvement

of current functionality and as a basis for development of new features. To achieve

these levels, advanced development practices that allow for new software function-

ality to be easily tested and integrated are required.

In showing that usage of post-deployment data is limited, our study confirms

previous research [4, 5, 18, 19] in that even though collection of post-deployment

data is increasing, there is a range of opportunities still to explore. Our interviews

show that the post-deployment data that is collected, i.e., the operation and perfor-

mance, and diagnostics data as illustrated in Fig. 12.1 support primarily three

purposes, i.e., (1) pre-development input, (2) troubleshooting input, and (3) -

system-level understanding. In Table 12.2 we summarize the different purposes

that post-deployment data supports.

Fig. 12.1 The “post-deployment data usage pyramid”

Table 12.2 A summary of the different purposes that post-deployment data supports

Purpose of data

collection Description

Pre-development

input

Post-deployment data is used as input to the next pre-development phase,

but not for improvement of existing system versions

Troubleshooting

input

Post-deployment data is used for troubleshooting and support activities,

but not for innovation of new functionality

System-level

understanding

Post-deployment data provides a system-level understanding of opera-

tion and performance, but does not provide insight in individual feature

usage

12 Post-deployment Data Collection in Software-Intensive Embedded Products 151

12.5.2 The “Post-deployment Data Usage Framework”

As a result of our study, we propose a framework that supports companies inter-

ested in advancing their usage of post-deployment data (Fig. 12.2). Based on

insights acquired during our study, as well as on our previous work on how to

advance beyond agile development practices [12], our framework suggests mech-

anisms (see the boxes to the right in the figure) that are needed for climbing the

different levels and move towards more advanced data usage. These mechanisms

are related to organizational processes and development practices and will allow a

company to use post-deployment data for more advanced purposes such as an

understanding of feature usage, improvement of existing features, and development

of new features.

Conclusions

In this paper, we explore collection and usage of post-deployment product

data. We highlight the existing limitations in post-deployment data usage and

the untapped resource that post-deployment product data remains. Based on a

multiple case study at three software development companies, we present the

following findings:

(continued)

Fig. 12.2 The “post-deployment data usage framework”

152 H.H. Olsson and J. Bosch

• Pre-development input: Post-deployment data is used as input to the next

pre-development phase, but not for improvement of existing product

versions.

• Troubleshooting input: Post-deployment data is used for troubleshooting

and support activities, but not for innovation of new features.

• System-level understanding: Post-deployment data provides a system-

level understanding of operation and performance, but does not provide
insight in individual feature usage.

Finally, we propose a framework in which we outline what development

practices and organizational mechanisms that need to be in place for advanc-

ing the usage of post-deployment data and advance the development of

software-intensive embedded products.

References

1. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile principles on

market-driven software product development. J. Softw. Maint. Evol.: Res. Pract. 22, 53–80

(2010)

2. Highsmith, J., Cockburn, A.: Agile software development: The business of innovation.

Software Management, September, IEEE Computer Society Press Los Alamitos, CA, USA,

pp. 120–122 (2001)

3. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the

web: survey and practice guide. Data Min. Knowl. Disc. 18(1), 140–181 (2009)

4. Bosch, J.: Building products as innovations experiment systems. In: Proceedings of 3rd

International Conference on Software Business, 18–20 June, Cambridge (2012)

5. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment systems.

In: Leveraging Applications of Formal Methods, Verification and Validation. Technologies for

Mastering Change, pp. 19–31. Springer, Berlin (2012)

6. Mishra, D., Mishra, A.: Complex software project development: agile methods adoption.

J. Softw. Maint. Evol.: Res. Pract. 23, 549–564 (2011)

7. Abrahamsson, P., Conboy, K., Wang, X.: ‘Lots done, more to do’: the current state of agile

systems development research. Eur. J. Inf. Syst. 18(4), 281–284 (2009)

8. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley, Boston,

MA (2004)

9. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77 (1999)

10. Bennett, K.H., Rajlish, V.T.: Software maintenance and evolution. In: Proceedings of the 22nd

International Conference on Software Engineering (ICSE), Limerick, Ireland, 4–11 June,

(2000)

11. Larman, C., Vodde, B.: Scaling Lean & Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. Addison-Wesley, Boston, MA (2008).

12. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”: A multiple-case

study exploring barriers in the transition from agile development towards continuous deploy-

ment of software. In: Proceedings of the 38th Euromicro Conference on Software Engineering

and Advanced Applications, 5–7 September, Cesme, Izmir, Turkey (2012)

13. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J. Inf. Syst. 4,

74–81 (1995)

12 Post-deployment Data Collection in Software-Intensive Embedded Products 153

14. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

15. Corbin, J., Strauss, A.: Basics of Qualitative Research: Grounded Theory Procedures and

Techniques. Sage, California (1990)

16. Kaplan, B., Duchon, D.: Combining qualitative and quantitative methods in IS research: a case

study. MIS Q. 12(4), 571–587 (1988)

17. Goetz, J., LeCompte, D.: Ethnography and Qualitative Design in Educational Research.

Academic, Orlando (1984)

18. Olsson Holmström, H., Bosch, J.: Post-deployment data collection in software-intensive

embedded products. In: Proceedings of the 4th International Conference on Software Business,

11–14 June 2013, Potsdam, Germany (2013)

19. Olsson Holmström H., Bosch J.: Towards data-driven product development: a multiple case

study on post-deployment data usage in software-intensive embedded systems. In: Proceedings

of the Lean Enterprise Software and Systems Conference (LESS), 1–4 December, 2013,

Galway, Ireland (2013)

154 H.H. Olsson and J. Bosch

Chapter 13

The HYPEX Model: From Opinions

to Data-Driven Software Development

Helena Holmström Olsson and Jan Bosch

Abstract While innovation, such as development of new features, is critical for

any organization, it is hard to get right. In both our case companies, the selection of

ideas is usually driven by previous experiences, and very often the process becomes

politicized and based on peoples’ opinions. To address this, we present the Hypoth-
esis Experiment Data-Driven Development (HYPEX) model. Our model is an

alternative development process that helps companies shorten the feedback loop

to customers. The model supports companies in running feature experiments and

advocates development of small parts of features that are continuously evaluated

with customers. In our study we validate the model in two software development

companies. Although the companies involved in the study have not yet completed a

full experiment cycle, we see that feature experiments are beneficial for improving

at least four activities within the companies: (1) data-driven development (the ease

of collecting customer feedback allows for a real-time connection between the

quantified business goals of the organization and the operational metrics collected

from the installed customer base), (2) customer responsiveness (the ease of

collecting customer feedback allows product management to respond rapidly and

dynamically to any changes to the use of the products, as well as to emerging

customer requests), (3) R&D efficiency (the ease of collecting customer feedback

gives the development teams a real-time goal and metrics to strive for and provides

focus for their work), and (4) R&D accuracy (the ease of collecting customer

feedback enables the development teams to align their efforts with what the

customers appreciate the most). The HYPEX model is a development process

that helps software development companies move away from building large chunks

of functionality with little feedback from customers and instead continuously

validate with customers that the functionality under development is of value to

customers.

H.H. Olsson (*)

Department of Computer Science, Malmö University, Malmö, Sweden

e-mail: helena.holmstrom.olsson@mah.se

J. Bosch

Department of Computer Science and Engineering, Chalmers University of Technology,

Gothenburg, Sweden

e-mail: Jan@JanBosch.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_13

155

mailto:helena.holmstrom.olsson@mah.se
mailto:Jan@JanBosch.com

13.1 Introduction

In most software development companies, the road mapping and requirements

prioritization process are a complex endeavor in which product management

experiences difficulties in getting timely and accurate information [1, 2]. The

feedback loop from customers is slow, and often there is a lack of mechanisms

that allow for efficient customer data collection and analysis. As a result, most

companies build large chunks of functionality without getting feedback from

customers, and the value of the features they prioritize is not efficiently validated

with customers. What often happens is that requirements prioritization becomes an

opinion-based and politicized process rather than a data-driven process in which

customer data guide future R&D investments [3]. Also, without the opportunity to

continuously confirm customer value, there is the risk of lack of alignment of

product and customer needs during the road mapping of new software features [2].

To address this problem, we develop the “Hypothesis Experiment Data-Driven

Development” (HYPEX) model. Our model is a fundamentally new development

process that supports companies in running feature experiments to shorten feedback

loops and to continuously validate functionality with customers. While experimen-

tation with customers is a well-established practice in theWeb 2.0 and SaaS domain

[4], it has not been applied extensively in relation to large-scale development of

embedded systems. We validate the model in two software development compa-

nies, and we provide evidence on how feature experiments increase the opportunity

for data-driven software development.

13.2 Background

13.2.1 From Traditional to Data-Driven Development

In our previous research [5], we outline the typical evolution path that software

development companies follow when moving from traditional development to

customer data-driven development. We named the model the “Stairway to

Heaven,” and it has proven useful for identifying what actions companies need to

take to advance its practices [5, 6]. In our model, the final stage is where the

company realizes that frequent deployment of software to customers can be used

for continuous testing of new features, as well as for optimization of existing

features. This is where large-scale embedded systems companies start realizing

that many of the benefits that have so far been exclusive to Web 2.0 and SaaS

companies have become available also to them [3, 5, 7]. At this step, the entire

R&D organization responds and acts based on instant customer feedback, and

deployment of software is seen as a way of validating what the customer needs.

Recently, the concept of R&D as experiment systems has been defined as an

experiment-centric approach to product development with the purpose of

156 H.H. Olsson and J. Bosch

accelerating innovation through systematic and continuous collection of customer

feedback [3, 7]. Common for experiment systems is that requirements evolve in

real-time based on customer usage data, instead of being frozen early based on the

opinions of product management [3].

13.2.2 Data-Driven Software Engineering Practices

Data-driven practices are not new to the software engineering field, and there are a

number of practices that reflect the sincere interest to find metrics that continuously

validate success in terms of customer value. One example is data-driven software

engineering [8]. Here, continuous collection of data is used to understand the

successful development of software systems [8]. During the development cycle,

different metrics related to product quality are continuously collected. The goal is to

use such metrics to make estimates of post-release failures early in the software

development cycle, as well as during the implementation and testing phases. Such

estimates can help focus testing, code, and design reviews and affordably guide

corrective actions and decision-making activities.

Another example is value-based software engineering, which is a practice

focused on increasing a company’s business value by improving the economic

efficiency of the software they develop [9]. This is achieved by continuous gather-

ing of feedback on the current expenses and the expected profits of a project and

then making adjustments and corrective actions based upon these values. Value-

based software engineering models are meant to show how each project will impact

the value of the business by continuous collection and analysis of relevant data

points [10]. Only components and software projects that are deemed economically

viable will be developed [9].

Finally, and of particular interest for our research, A/B testing is possibly the

most fundamental of mechanisms to capture product use and customer behavior

[3]. A/B testing is concerned with presenting one version of the software to some

customers and another version to other customers. The behavior of both groups is

compared in order to determine which version (A or B) that leads to more desirable

outcomes for the company providing the product. In online offerings, the notion of

A/B testing is used extensively as a mechanism to measure customer behavior and

determine what version customers appreciate the most [4]. As a result, these

systems evolve continuously, and whereas earlier this was achieved by yearly

releases of new software, we see a trend where continuous testing of new, innova-

tive functionality in deployed systems is increasingly applied in online systems

[3]. In this way, requirements evolve in real time based on data collected from

customers, instead of being frozen early based on the opinions of product

management.

13 The HYPEX Model: From Opinions to Data-Driven Software Development 157

13.3 Research Method

13.3.1 Case Study Research

This study builds on a multi-case study in which the authors of the paper interacted

with two software development companies. Case study research focuses on pro-

viding deeper understanding of a particular phenomenon and is typically used to

explore contemporary phenomena in its natural context [11, 12]. Since research in

software engineering is to a large extent a multidisciplinary area aimed at investi-

gating how development, implementation, use, and maintenance of software are

conducted, we found the case study approach appropriate for our study [11]. Our

study involves two software development companies, referred to as company A

and B.

Company A is a software company specializing in navigational information,

operations management and optimization solutions, crew and fleet management

solutions, and flight training products and services. In company B, the feature

experiment is part of a strategic move from manual planning to optimization with

formalized business metrics. As part of the experiment, a new feature is developed

that allows the user to tune input parameters in correspondence to the business

metrics and to send new optimization runs based on these. As part of the experi-

ment, the company collects metrics on how their customers interact with the new

feature. For the company, the desired outcome is a situation in which the users

launch more optimization jobs based on high-level, and agreed-upon, business

metrics.

Company B is world leading in network video and offers products such as

network cameras, video encoders, video management software, and camera appli-

cations for professional IP video surveillance. In company B, the feature experi-

ment concerns remote access of cameras. While remote access has become one of

the most critical features in surveillance, it is also one of the most difficult to

implement. For the company, the desired outcome is to provide users with a

solution that allows for easier access to their cameras regardless of their network

environment. During the experiment, data is collected continuously by pattern

matching in log files. As a start, the company has chosen a limited set of target

users with whom the experiment will be initially run.

13.3.2 Data Collection and Analysis

Our research is based on a mix of group interviews and workshops at the two case

companies. The group interviews worked as input to our understanding of each

company and the problems they experience. Following these interviews, workshops

sessions were held to initiate feature experiments with the purpose to help the

158 H.H. Olsson and J. Bosch

companies shorten feedback loops to customers. In total, five group interviews and

three workshops were held with key stakeholders from the companies.

In company A, we have so far conducted one group interview and one workshop

including key stakeholders such as chief architects, project managers, and software

developers. Additional activities are planned, and the evaluation of the experiment

will involve a number of interviews. For the purpose of this study, company A is an

example of a software company engaging in its first feature experiment with

customers.

In company B, we conducted five group interviews including key stakeholders in

the organization. In addition to these interviews, two workshop sessions were held.

In these workshops, project managers as well as developers and architects were

present in order to cover all aspects of the intended feature experiment. For the

purpose of this study, company B is an interesting example of a company involved

in large-scale development of embedded systems and starting its first feature

experiment.

All group interviews and workshops were in English and lasted for 2–3 h. In

addition to the interview notes, all interviews were recorded in order for the

researchers to have a full description of what was said [13]. Each interview was

transcribed, and the transcriptions were shared between the researchers to allow for

further elaboration on the empirical material. During analysis, all transcribed

interviews were carefully read with the intention to identify recurring elements

and concepts. During the workshops, notes were taken to capture the discussions,

and white board illustrations were documented using a camera. Also, presentations

held by company representatives were shared with the researchers to help create a

common understanding for the feature they selected for their experiments, as well

as for the organizational units the experiment would involve.

13.4 Findings

The focus of this paper is to find mechanisms that help companies shorten feedback

loops to customers and allow companies to continuously validate software func-

tionality with customers. In the case study companies, we identified a number of

problems that emerge as a result of slow feedback loops. Below we discuss these

problems in more detail before proposing a model that helps companies address

these problems.

Feature Development Without a Confirmed Value for Customers: While there is

significant investment and effort put into new feature development, there are no

established practices for validating whether new features correspond to customer

needs. For product management, the lack of confirmation from customers leads to a

situation in which decision making and prioritization are made based on opinions

rather than data, and there is the risk that the prioritizations are not aligned with

customer needs.

13 The HYPEX Model: From Opinions to Data-Driven Software Development 159

Politicized Prioritization Process: Our case companies experience the feature

prioritization process as highly politicized. Due to lack of customer data, there is no

efficient way to determine whether a feature will generate customer value. Typi-

cally, the selection process of what features to develop is driven by previous

experiences and beliefs. Also, it is often the opinions of the more senior people in

the organization, rather than data, that have the greatest impact on the selection and

prioritization process.

Lack of Clarity of Feature Content: The lack of customer feedback results in

development teams guessing what content that should go into a feature. This results

in a situation where development teams experience frustration when not knowing

what generates value for customers. From an organizational perspective, the situ-

ation causes inefficiency as well as an expensive development organization.

Lack of Alignment of Product with Customer Needs: Our case companies

recognize the risk of having a product that deviates from what their customers

need. While an individual feature can always be improved, the cost of having a

product that doesn’t align with customer needs is a major risk.

13.5 The HYPEX Model

In response to the problems mentioned above, we developed the Hypothesis

Experiment Data-Driven Development (HYPEX) model. The model is an alterna-

tive development process model that helps companies shorten feedback loops to

customers. The model is presented in Fig. 13.1.

Feature Backlog Generation: The first practice in the HYPEX model is the

generation of features that may potentially bring value to customers. Product

Strategic product goal

Feature: expected behavior (Bexp)
select

implement MVF

actual behavior (Bact)

generate

Bexp

Experimentationrelevant gap (Bact ≠ Bexp)

no gap (Bact = Bexp)

Business strategy and goals
Feature
backlog

Gap
analysis

Develop
hypotheses implement alternative MVF

Product

extend MVF

Fig. 13.1 The Hypothesis Experiment Data-Driven Development (HYPEX) model

160 H.H. Olsson and J. Bosch

management and development teams base the generation of features on strategic

business goals and their understanding of customer needs. The features are entered

into a feature backlog. At this point, the feature backlog is a list of potential features

that may or may not be selected for implementation.

Feature Selection and Specification: The selection of what feature to experi-

ment with can be done based on a number of reasons including (1) it addresses an

area of functionality with a big gap between expected and actual behavior, (2) it

concerns development of new functionality in an area where there is little previous

experience, or (3) it concerns development of new functionality in an area where

there is multiple alternatives of implementing the feature. Once the feature is

selected, the expected behavior of the feature is defined, i.e., how the feature adds

value to a customer and how it supports strategic business goals. The definition of

the expected behavior allows for quantitative analysis and for an organizational

dialogue about feature behavior.

Implementation and Instrumentation: The third practice is concerned with

implementing and instrumenting the first “slice” of the feature. In the model we

refer to this as minimal viable feature (MVF) with the intention to identify the

smallest possible part of a feature that adds value to a customer. A feature is

implemented in multiple iterations starting from the most important functionality.

Instrumentation will allow the organization to measure the actual behavior of the

feature when in the hands of a customer. Once the functionality is deployed, data

collection starts allowing the team to collect statistically relevant data about the

actual behavior.

Gap Analysis: During gap analysis, the expected behavior is compared with the

actual behavior to determine whether the current implementation of the feature is

sufficient to achieve the expected behavior. In case the gap is sufficiently small, the

development team finalizes the feature. In case there is a significant gap, the team

starts developing hypotheses to explain the gap. The third outcome is that the team

decides to abandon the feature altogether as the expected benefit from the feature is

not achieved and the current implementation may show no or even a negative effect

on the actual behavior. The gap analysis is central for shortening the feedback loop.

Rather than guessing the benefits of a feature, the organization gets data on its

behavior. As a result, informed decisions can be taken instead of opinion-based and

politicized decisions.

Hypothesis Generation and Selection: If the team identifies the gap in

expected and actual behavior and decides to continue development, the next step

is to generate hypotheses that explain the gap. There are two main categories of

hypotheses. The first is that the slice of the feature implemented is not sufficient for

the customer to experience the benefits. In this case, the MVF is extended so that

more accurate metrics can be collected. The second category is concerned with the

belief that an alternative implementation of the MVF will yield a different outcome.

Alternative Implementation: In case the outcome of the previous step is that

the implementation of the MVF does not meet the needs of customers, the team

decides to build an alternative implementation. This is often referred to as A/B

testing [2]. In deployed embedded systems, a first version (A) is deployed and data

13 The HYPEX Model: From Opinions to Data-Driven Software Development 161

is collected. Subsequently, version (B) is deployed and again data is collected.

Based on the difference in actual behavior between the two versions, the hypothesis

can be validated. Once sufficient data has been collected, the team returns to the gap

analysis.

13.6 Industrial Experiences

In our study, each company engaged in feature experiments with the intention to

shorten feedback loops and increase their understanding of feature usage. So far,

both case companies have adopted the first three practices, i.e., feature backlog

generation, feature selection and specification, and implementation and instrumen-

tation. They are both in the middle of running their first experiment, and we have

not yet been able to validate the full experiment cycle with them. However,

although the companies haven’t benefitted from a full experiment cycle yet, there

are already a number of interesting lessons learned in relation to the problems

identified earlier in this chapter.

Both companies share with us that only by initiating the discussion about feature

experiments, and by starting the process of feature selection and specification, they

benefit from an improved understanding of why certain organizational assumptions

exist. To select a feature, and to specify the expected behavior when in the hands of

a customer, adds to the organizational awareness of why certain problems exist. As

a result, both companies now have a clear understanding for the desired outcome of

their experiments, as well as ideas on how to conduct the gap analysis and

hypothesis generation. Also, the discussion about what potential features to work

with, and the definition about the expected behavior of these, reflects the company

culture as well as the current, but insufficient, understanding of their customers. In

helping different stakeholders to pinpoint existing problems or uncertainties related

to feature usage, the HYPEX model has already improved the situation in both

companies, and they are both eager to proceed with the full experiment cycle. The

benefits and challenges that the companies have experienced so far are summarized

in Table 13.1.

Table 13.1 Lessons learned in company A and B

Benefits Challenges

Company A

and B

Improved communication between organi-

zational units

Rewarding definition of metrics

Improved understanding of how to collect

data

Improved understanding of what data to

collect

Improved understanding of quality issues

Better understanding of the benefits with

early user involvement

Establish an “experiment mind-

set” among employees

Identify a feature to experiment

with

Develop smaller parts of a feature

Identify customers to work with

Define metrics and what data to

collect

Customer support and training

162 H.H. Olsson and J. Bosch

Conclusions

While innovation, such as development of new features, is critical for any

organization, it is hard to get right. In both our case companies, the selection

of ideas is usually driven by previous experiences, and very often the process

becomes politicized and based on peoples’ opinions. To help solve this

situation, we present the Hypothesis Experiment Data-Driven Development

(HYPEX) model. Our model is an alternative development process that helps

companies shorten the feedback loop to customers. The model supports

companies in running feature experiments and advocates development of

small parts of features that are continuously evaluated with customers.

In our study, we validate the model in two software development compa-

nies. Although the companies involved in the study have not yet completed a

full experiment cycle, we see that feature experiments are beneficial for

improving the following activities within the companies:

• Data-driven development: The ease of collecting customer feedback

allows for a real-time connection between the quantified business goals

of the organization and the operational metrics collected from the installed

customer base.

• Customer responsiveness: The ease of collecting customer feedback

allows product management to respond rapidly and dynamically to any

changes to the use of the products, as well as to emerging customer

requests.

• R&D efficiency: The ease of collecting customer feedback gives the

development teams a real-time goal and metrics to strive for and provides

focus for their work.

• R&D accuracy: The ease of collecting customer feedback enables the

development teams to align their efforts with what the customers appre-

ciate the most.

The HYPEX model is a development process that helps software devel-

opment companies move away from building large chunks of functionality

with little feedback from customers. When adopting the HYPEX practices,

companies allow for continuous validation with customers resulting in data-

driven software development practices.

References

1. Olsson, H.H., Bosch, J.: Post-deployment data collection in software-intensive embedded

products. In: Proceedings of the 4th International Conference on Software Business, Potsdam,

11–14 June 2013

2. Olsson, H.H., Bosch, J.: Towards data-driven product development: A multiple case study on

post-deployment data usage in software-intensive embedded systems. In: Proceedings of the

Lean Enterprise Software and Systems Conference (LESS), Galway, 1–4 December 2013

13 The HYPEX Model: From Opinions to Data-Driven Software Development 163

3. Bosch, J.: Building products as innovations experiment systems. In: Proceedings of 3rd

International Conference on Software Business, Cambridge, 18–20 June 2012

4. Kohavi, R., Crook, T., Longbotham, R.: Online experimentation at Microsoft. In: van der

Putten, P., Melli, G., Kitts, B. (eds.) Proceedings of the Third International Workshop on Data

Mining Case Studies, held at the Fifteenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining in Paris, France, pp. 11–23 (2009)

5. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”: A multiple-case

study exploring barriers in the transition from agile development towards continuous deploy-

ment of software. In: Proceedings of the 38th Euromicro Conference on Software Engineering

and Advanced Applications, Cesme, 5–7 September 2012

6. Olsson, H.H., Bosch, J.: Towards R&D as innovation experiment systems: A framework for

moving beyond Agile software development. In: Proceedings of the IASTED, pp. 798–805

(2013)

7. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment systems.

In: Proceedings of International Symposium on Leveraging Applications, Crete, 15–

18 October 2012

8. Bird, C., Murphy, B., Nagappan, N., Zimmermann, T.: Empirical software engineering at

Microsoft research. In: Proceedings of CSCW, Hangzhou, 19–23 March 2011

9. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grunbacher, P. (eds.): Value-Based Software

Engineering. Springer, Berlin Heidelberg (2006)

10. Madachy, R.: Integrated modeling of business value and software processes. In: Proceedings

of the International Software Process Workshop, SPW 2005, Beijing, 25–27 May 2005.

Revised Selected Papers, pp. 389–402. Springer, Berlin (2006)

11. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

12. Yin, R.K.: Case Study Research. Design and Methods, 3rd edn. Sage, London (2003)

13. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J. Inf. Syst. 4,

74–81 (1995)

164 H.H. Olsson and J. Bosch

Part V

Organizational Performance Metrics

Whereas the earlier parts discussed specific steps on the Stairway to Heaven, this

part is concerned with developing effective quantitative techniques to assess the

performance of a development organization. There are two chapters in this part.

The first chapter presents a method for developing product and organizational

performance profiles. These profiles can be used to quantify properties of products

before release as well as to quantify performance of software development pro-

cesses. The approach is illustrated with case studies from several Software Center

companies. The second chapter focuses on the challenge of keeping an automated

measurement system operational in a constantly changing environment and intro-

duces the concept of self-healing. The approach is illustrated through the infra-

structure developed at Ericsson.

Chapter 14

Profiling Prerelease Software Product

and Organizational Performance

Vard Antinyan, Miroslaw Staron, and Wilhelm Meding

Abstract Background: Large software development organizations require effec-

tive means of quantifying excellence of products and improvement areas. A good

quantification of excellence supports organizations in retaining market leadership.

In addition, a good quantification of improvement areas is needed to continuously

increase performance of products and processes.

Objective: In this chapter we present a method for developing product and

organizational performance profiles. The profiles are a means of quantifying

prerelease properties of products and quantifying performance of software devel-

opment processes.

Method: We conducted two case studies at three companies—Ericsson, Volvo

Group Truck Technology, and Volvo Car Corporation. The goal of first case study

is to identify risky areas of source code. We used a focus group to elicit and evaluate

measures and indicators at Ericsson. Volvo Group Truck Technology was used to

validate our profiling method.

Results: The results of the first case study showed that profiling of product

performance can be done by identifying risky areas of source code using combina-

tion of two measures—McCabe complexity and number of revisions of files. The

results of second case study show that profiling change frequencies of models can

help developers identify implicit architectural dependencies.

Conclusions: We conclude that profiling is an effective tool for supporting

improvements of product and organizational performance. The key for creating

useful profiles is the close collaboration between research and development

organizations.

V. Antinyan (*) • M. Staron

University of Gothenburg, Gothenburg, Sweden

e-mail: vard.antinyan@gu.se; miroslaw.staron@gu.se

W. Meding

Ericsson Software Research, Ericsson AB, Sweden

e-mail: wilhelm.meding@ericsson.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_14

167

mailto:vard.antinyan@gu.se
mailto:miroslaw.staron@gu.se
mailto:wilhelm.meding@ericsson.com

14.1 Introduction

Continuous assessment of product and development performance is a means to

support developers in visualization of product status and proactive decision making.

In modern software development organizations, this assessment process is usually a

complex activity. Glass [1] observed that for every 25% increase in problem

complexity, there is 100% complexity increase in software solution. The assess-

ment of contemporary software products is difficult because there are no explicit

properties of software which can be directly used to quantify excellence, as unlike

other products software products are intangible and require visualization.

The focus of our research project in Software Center is to identify and develop

methods and tools for profiling excellence of software products together with the

collaborating companies. The goal of this chapter is to present a process for

profiling prerelease software product performance. This goal has been accom-

plished by conducting action research at Ericsson, Volvo Cars Corporation,

Volvo Group Truck Technology (GTT), and Saab Electronic Defense Systems.

By collaborating closely with industrial partners, we developed different profiling

tools and evaluated them for industrial use. The results show that close collabora-

tion with developers facilitates creating useful profiling tools. Two profiling tools

that are developed in companies are presented in this chapter.

The rest of the chapter is organized as follows: firstly, we introduce the concept

of profiling in the context of large software development organizations; next we

present two case studies about prerelease product and process profiling; and finally,

we describe the experiences and learning of companies and draw conclusions from

this chapter.

14.2 Profiling

To make quick and optimal decisions, managers, architects, designers, and devel-

opers need to have good insights on how the developed product or development

processes are implemented and how they evolve over time. Mere subjective esti-

mates and opinions might be good enough for small application’s development, but

for large complex products, quantitative measures are required. Example of mea-

sures for profiling could be the ratio of executed tasks and planned tasks, system

testing queue over time, throughput trend, architectural dependencies between

components, complexity of code, etc.

Generally “assessment” and “evaluation” are widely used by researchers when it

comes to discussing product excellence—for example, when conducting

benchmarking [2, 3]. However, these concepts are focused on the evaluation of

software products. The terms “assessment” or “evaluation” are intended to deter-

mine the degree of excellence of a particular entity; examples of entity can be a
single source code function, a model, architecture of product, etc.

168 V. Antinyan et al.

The term profiling opens a different perspective when considering about product
excellence; it is a neutral concept and regards an entity as a composition of

elements. Such examples can be software code composed by source code functions,

software architecture composed by architectural components, etc. When profiling

the excellence of code instead of merely assessing how good the code is, the

functions are assessed and presented in one picture. In Fig. 14.1 we can see that

the source code can be assessed to be good (left-hand picture) or profiled in terms of

a defined criterion for the excellence of functions (right-hand picture). For example,

if the criterion is the maintainability of functions, then three levels of maintainabil-

ity may be defined and represented by colors; in Fig. 14.1 red represents functions

that are hard to maintain, orange color represents functions with moderate main-

tainability, and green represents functions that are easy to maintain (right-hand

picture).

Generalizing we can state that profiling the excellence of an entity is a repre-

sentation of elements comprising that entity, where the assessments of all elements

are available. Although each function can be assessed separately, the essence of

profiling assumes that the whole source code, its functions, and their assessments

are represented just in one picture. This property is opening a new dimension for

evaluation, which is the comparison of functions in one picture or comparison of

two products’ source code with equivalent representation.

In this paper we define profiling as:

Definition 1 Profiling prerelease software product performance is the measure-

ment and representation of such properties of product, which enables evaluation of

that product’s excellence before delivery.

This definition emphasizes profiling related to prerelease product properties

(e.g., internal quality attributes such as complexity) and post-release success of

the product (excellence).

We define profiling organizational performance in similar terms:

Definition 2 Profiling software organizational performance is the measurement

and representation of such properties of organizational processes that enables

evaluation of organizational performance in product development.

Fig. 14.1 Difference of assessment and profiling of source code

14 Profiling Prerelease Software Product and Organizational Performance 169

According to definitions, profiling must enable evaluation of excellence. An

example of profiling is measuring size, complexity, trend of reported defects, and

visualizing them for designers so that problem areas are easily visible.

14.3 Profiling Prerelease Product and Process

Performance in Large Software Development

Organizations

The software development companies, which we collaborate with, use Lean/Agile

principles to assure quick response on customers’ requirements. This kind of

development usually comprises diverse activities with complex tasks as the product

itself is big and complex.

Developing these products is characterized by such challenges as mixed long-

term planning for main release, short time planning for service releases, distributed

decision making by software development teams, communication between teams,

or multisite development. Figure 14.2 presents an overview on how the functional

requirements (FR) and nonfunctional requirements (NFR) are prioritized and pack-

aged into work packages by product management (PM), then systemized by system

management (SM), and at last implemented and tested by design management

(DM) and test teams. Each team delivers their code into the main branch.

Before the release, the development teams are concerned with how good the

developed artifacts are and how well the development processes are carried out.

Prerelease product profiling is concerned with representing the excellence of

developed artifacts and development processes. Improvements of artifacts and

processes have a twofold effect: decreasing internal development costs and efforts

and implicitly ensuring better quality of released software. The ultimate goal of

development teams is to release a product that is complete by functionality and

fulfills all the requirements of quality (reliability, usability, efficiency, etc.). There-

fore, prerelease improvements of software artifacts and well-designed processes

create a high likelihood for a high-quality product.

Fig. 14.2 Feature development in Lean/Agile methods

170 V. Antinyan et al.

14.4 Establishing the Process of Profiling

In this section we define the process of profiling and provide examples. Before

starting the profiling process, it is important to consider what exactly should be

profiled and what should be achieved by that—i.e., elicit the information need for

the profile [4]. In order to develop a profile of the excellence of prerelease software,

the profiling process can be designed as follows:

1. Identify measurable properties of the product artifacts that allow the assessment
of the product’s excellence: Well-known artifacts are software requirements

specification, architecture, components, source code files, functions, etc. Well-

known properties are ambiguity of requirements, architectural dependencies,

code complexity, etc.

2. Identify measurement tool and measure the specified properties of the artifact:
Example measures for properties are lines of code (LOC) as size measure,

McCabe complexity number as complexity measure, structural fan-out as depen-

dency measure, ambiguity ratings in a scale of one to five for requirements, etc.

3. Identify the influence of measure on artifact’s excellence, analytically or empir-
ically established thresholds for measures by which the developers can assess
the excellence of the artifact. For example, a threshold for fan-out as a depen-

dency measure could be seven. If a component has more than seven fan-outs,

then it is considered too vulnerable to external changes.

4. Reduce/optimize the number of measured properties by using statistical
methods: Several properties can be related to each other, or metrics might

show weak influence on product excellence. For example, number of statements

and number of LOC are showing the same property of code and size; thus, one

measure should be used. Another example is that the number of functions in a

file has weak influence on maintainability and fault proneness of code so it

cannot be used to assess maintainability of code.

5. If possible, combine the remaining independent measures using statistical or
mathematical methods in a way that they jointly characterize the excellence of
the artifact: For example, requirements ambiguity and complexity ratings can be

mixed to jointly represent the difficulty that developers have in understanding

the requirements.

6. Define thresholds for the joint measure to separate a number of artifacts by their
excellence. For example, if a function has greater than 20 cyclomatic number

and is called by other functions more than 50 times, then it is considered to be a

badly designed function.

7. Represent the artifact as it is composed by elements, where elements are
assessed by combining the measure and thresholds: For example, the source

code (artifact) of product with its files (elements) can be represented by mea-

sured sizes (characteristic) of files. Files having more than 1,000 (threshold)

LOC (measure) are considered big (assessment); the rest are considered normal

(assessment).

14 Profiling Prerelease Software Product and Organizational Performance 171

Before implementing these steps, there are two essential considerations about

the quality of measures:

• Accuracy: How accurately the measure counts the property of an artifact?

• Appropriateness: Does the measure support in decision making?

In our previous work [5], we showed that effective use of measures, as support

for decision processes, requires about 20 measures at the top management level.

The risk of developing wrong profile for an artifact is high as the developers not

always know what selected measures actually show and how profound basis the

established thresholds have. That is why the researchers in the field of software

engineering should work beside practitioners in order to guarantee that measure-

ment methods and tools have scientific basis.

In the next two sections, we are giving an overview of how two example

measures are developed and selected at large software development companies.

One measure is designed for profiling prerelease product performance; the second

one is designed to profile the development process.

14.5 Case Study: Developing Risk Profile of Software Code

An action research project was conducted at two companies, Ericsson AB and

Volvo GTT, with the aim to create a profile that visualizes the risk of source files. In

this context we define the code to be risky if it is fault prone, potentially difficult to

maintain, or difficult to manage. As result of conducted project, we developed a

method and tool that locate risky source code files. An overview on how the method

was created and its usage is presented beneath.

The profiling process starts with identification of code properties that should be

measured. According to Definition 1 these properties must enable assessment and

representation of product excellence. In our case, a specific measure of excellence

is the riskiness of the code. The more risk-free, the better excellence the code has.

Identifications of these properties should have either scientific or intuitive basis.

Thus, we measured properties of code that:

• Are manifested in literature to have influence on fault proneness or maintain-

ability of code.

• Are confirmed by many experienced developers to have correlation with their

difficulty of managing code.

The measured properties are divided into categories and presented in Fig. 14.3.

The Δ letter in the figure indicates the change of the metric over a specified time

interval.

We followed action research principles for measurement and selection of met-

rics. Close collaboration with a reference group of designers at Ericsson, which was

administered by the line manager of developed product, allowed us to discuss

intermediate results. During the period of 8 months, we conducted analyses and

172 V. Antinyan et al.

met biweekly with reference group to get feedback on presented results. Figure 14.4

illustrates the applied research method that is compliant to the process described in

Sect. 14.4.

The more detailed information of what research activities have been carried out,

what results were obtained and presented in each step, and the feedback of

designers are presented in Table 14.1.

The table illustrates the short feedback loops and changes in the focus of the

project/profile over time—aligned with the model presented by Sandberg

et al. [6]. While the discussions with designers allowed us to select metrics and

understand reasons why certain files can be very complex or much changed, the

statistical techniques were used to limit the number of measures. It is common that

when having many different measures, some of them might be strongly correlated

and, in fact, show the same property of code. For example, if we measure the

number of statements and the number of lines of source code files, we can find that

they are strongly correlated. The reason is they both measure the same property of

Fig. 14.3 Measured properties

Fig. 14.4 Overview of profiling process carried out at Ericsson

14 Profiling Prerelease Software Product and Organizational Performance 173

Table 14.1 Biweekly analyses of results and reference group’s feedback at Ericsson

Week Presented Feedback

1 Size, complexity, and their evolution

between two main releases of the product

is observed and presented

Strong correlation of size and complexity

is found

Skip measuring size

Measure the evolution of complexity

between four main releases to find out if

the complexity increases constantly

Observe complexity difference between

C and C++ code

3 The complexity of the product increases

constantly through four releases

C code generally contains more complex

functions then C++ code

The overall complexity of the product

should increase because it is inherent to

increasing functionality.

Instead it is important to measure if the

number of complex functions is

increasing

5 The number of complex functions is

increasing over development time

Investigate top functions with highest

complexity increase.

Find patterns associated with complexity

increase and trigger action if necessary

7 The causes of top 30 functions with com-

plexity increase are investigated

The causes are discussed.

The reference group decides upon how

change report policy should be

9 Similar measurements are carried out on

code generated from models

Develop an initial measurement system

for tracking complexity increases.

Measure other proposed properties that

might have influence on fault proneness

and maintainability

11 Number of revisions of source files is

measured

Clustering technique is introduced

Thus measure the number of designers as

they might have stronger influence

13 Number of designers is measured

Strong correlation is found with number of

revisions

Skip measuring number of designers

15 Correlation of revisions and error reports

is moderate positive: Not all files with

high revisions are problem

Combine available independent metrics

to obtain stronger indicator of problem-

atic files

17 Fan-out, block depth are measured

Strong correlation between complexity

and fan-out is presented

No particular feedback

Fan-out and block depth are skipped

19 Different clustering techniques are applied

to combine complexity and revisions.

None of them is suitable

No particular feedback

Waiting for successful combination of

metrics

21 The product of complexity and revisions is

proposed as combined metric

Two thresholds are defined for

distinguishing low-, moderate-, and high-

risk-containing files

The method is intuitive and should be

evaluated.

The reference group decides to conduct

6 weeks evaluation period

23–27 Evaluation and replication of analysis at

Volvo Trucks

Evaluation shows that the proposed

method is a good metric for giving risk

profile of source code files

174 V. Antinyan et al.

code and size. With pairwise correlation analyses and discussing the relations of

measures with designers, we could reduce the number of measures to two indepen-

dent ones, thus avoiding redundant measures.

One of the examples of correlation is illustrated in Fig. 14.5. In the figure every

dot represents a c function of telecom software.

The scatterplot of functions shows that not all big functions are complex; there

are many functions along with “LOC” axis showing zero complexity, and many

functions are in the left uppermost corner of graph showing big size and small

complexity. Conversely, there is no function in down most side showing that there

is no complex function with small size. This means that if we chose size as a

measure for risk identification, we might omit the complexity aspect of code, as not

all big functions are complex, whereas choosing complexity as a measure, we know

that size is also involved in this measure, as complex functions are also big.

Doing similar analysis with all metrics and discussing results with designers,

we could reduce the number of measures to two independent ones—McCabes

cyclomatic complexity and number of revisions of files. We combined these two

metrics to obtain their joint magnitude as an indication of risk. Denoting the risk as

the product of complexity and number of revisions of files, we get:

Risk ¼ Complexity � Revisions

This formula permits to assess the riskiness of files. Then two thresholds were

established for risk level. For example, the files that have risk> 400 score are

considered very risky, 200< risk< 400 are moderately risky, etc. One simple

example of grouping files according to their risk level is shown in Fig. 14.6. The

figure presents the risk profile of source code as a composite of files. All the files of

product are divided into three groups:

• The round dots on the scatterplot are files with high risk.

• The squares are files with moderate risk.

• The triangles are files with no or little risk.

The established threshold can vary from company to company, depending on

how much complexity developers can tolerate, what the number of revisions show,

and how many risky files the developers can manage to refactor or test. The

thresholds vary, but, as evaluation showed, the fact that files having many revisions

and high complexity are risky is not likely to change.

After assessment, we evaluated the method for 6-week period with designers.

The method was confirmed to be accurate and relevant for risk assessment. Both

designers’ feedback and correlation between risk and error reports show that the

method is viable in systematic industrial use for risk assessment. After evaluation,

the measurement system was developed to give continuous feedback to designers

and management on risky files (Fig. 14.7).

During the research, we measured 12 properties of code (Fig. 14.3), identified

relevant properties to select, discussed the intermediate results with experts to assure

that the research is going to right direction, created the method, and evaluated it.

14 Profiling Prerelease Software Product and Organizational Performance 175

Fig. 14.5 Correlation of complexity and size

Risk = 400

Risk = 200

Fig. 14.6 Risk profile of source code files

Fig. 14.7 Information product

176 V. Antinyan et al.

14.6 Case Study: Profiling Change Frequency of Models

over Time

In this section we discuss a case study of a specific process profiling carried out at

Volvo Cars Corporation. The development team of one of the electronic control

units at Volvo was concerned with how to profile the changes of product develop-

ment models over time. The motivation was that if it is possible to visualize how

frequently models change over time with respect to continuous development and

maintenance, designers can draw conclusions on which models the most develop-

ment efforts are focused on and if development of one model triggers changes in

other models. This information can help designers to understand if they consume

their development efforts as it is distributed in their time plan and if the dependen-

cies between models are compliant with the designed architecture. In this case the

profiling process described in Sect. 14.4 is much simpler as there is only one

property that should be measured—number of changes.

Figure 14.8 visualizes the change frequency of Simulink models over develop-

ment weeks described in Feldt et al. [7]. Every line in the figure corresponds to a

model, while columns are development weeks. The darker spots in the figure are

models with more frequent changes within the same week. This kind of profile of

changes enables developers to focus on most frequent changes and explore the

reasons of them. Several reasons can be behind frequent changes: these can be new

functionality development, error corrections, or complex models requiring rela-

tively much time for maintenance. Depending on the reason of changes, the actions

are different, such as “no action required,” “redesigning unwanted architectural

dependencies,” etc.

Another benefit of this specific representation is that change patterns between

models can be identified. For example, one can observe that every time changing

model A after 2 weeks, model B is changed. Intrinsic dependencies that might be

among A and B can be identified and managed.

As we see, this kind of profiling does not require explicit establishment of

thresholds, but it does not mean that the thresholds do not exist, and no action is

required. The figure visualizes models’ change frequency which means that there

are always a few models that are changed most frequent (darkest ones in the figure).

In practice software designers are aware of what changes are expected, and by

checking these few models, they can make sure if any unwanted changes have

occurred. In case of occurrence, designers can do architectural conformity check

and redesign models if necessary.

Change frequency profiles of models are used at Volvo Cars Corporation for

systematically monitoring the compliance of developed models with architecture

and finding hidden dependences between models.

14 Profiling Prerelease Software Product and Organizational Performance 177

14.7 Related Work

Robillard et al. [8] is one of the early studies that attempts to profile the prerelease

software product by means of calculating and visualizing all available metrics at the

time. They organize the visualization in a compact and simple way so stakeholders

with different backgrounds can easily grasp the info. Kitson and Masters [9]

investigate possibilities of profiling software processes and categorizing according

to their maturity. While software products are becoming more and more complex

over years, more sophisticated techniques are required to enable holistic profiling of

the performance of prerelease product and processes. Today there are numerous

studies that are providing methods and tools for profiling different aspects of

organizational performance [10–13]. But before introducing how our research is

concerned with profiling, we need to define what is profiling the performance of

prerelease product and processes.

Profiling of prerelease product and organization performance can support two

types of decisions: (1) related to the economics of software product development

[14], referred to as managerial in this paper, and (2) decisions related to technology
used in product development [15], referred to as technical in this paper. Ruhe [15]

Fig. 14.8 Change frequency profile of models

178 V. Antinyan et al.

recognizes a wider spectrum of decisions in software engineering—e.g., project

planning and control, architectural and design decisions, and requirements. How-

ever, in the studied organization, it was found that it is easier to discuss metrics and

decisions in the chosen two categories without any loss of generalizability while

putting stress onto the interplay between decisions and metrics.

Lawler and Kitchenham [16] provided an approach for aggregating measures

across organizations and presenting aggregated measures for managers—which is

similar to profiling. Although the approach in itself is similar to ISO/IEC 15939

[17], the studied organizations do not use aggregated measures as they do not

provide the possibility to quickly guide improvements in the organizations—and

in the extreme cases led to measures and indicators that were hard to interpret and

backtrack which events caused the indicators to change status, e.g., [11]. Lawler

and Kitchenham’s approach is similar to the approach used in modern business

intelligence tools which aim at providing stakeholders with all available informa-

tion on request. Although this approach is promising and used in mature disciplines,

like mechanical engineering, with established metric systems and theoretically

well-grounded measures, the approach has high risks in software development

organizations. The risks are related to the potential misinterpretation of data across

different projects and products (e.g., even the simplest measures like LOC can be

measured in multiple ways).

Organizations starting to use business intelligence tools often face the problem

of using these tools in an efficient way after overcoming the initial threshold of

establishing the infrastructure for the tools. Elbashir et al. [18] studied the problems

of measuring the value that business intelligence tools bring into organizations in a

longer run and concluded that these tools are spreading from strategic decision

support to support decisions at the operational levels in the company. The value of

measures from these tools, according to Elbashir et al., calls for more research.

Profiling presented in this chapter supports organizations in effective use of busi-

ness intelligence.

Balanced scorecards and corporate performance management tools are often

considered at top management level as methods and tools for controlling the

performance of organization [19–22]. The traces of the balanced scorecard

approach were observed at the top management level in our previous work

[23]. The studied organization took these measures one step further—making

them precise, operational, and automated (in many cases). Profiling helps the

organizations in choosing the right measures for each scorecard.

Completeness of information is an important aspect in profiling. It is often a part

of the overall information quality and its evaluation. The basis for our research is

one of available frameworks for assessing information quality—AIMQ [24]. The

framework contains both the attributes of information quality and methods for

measuring it and has been successfully applied in industry in the area of data

warehousing. In our research we have taken the method one step further and

developed a method for automatic and run-time checking of information quality

in a narrowed field: measurement systems [25]. In this work we present a method

for assessing how complete the information products are; this is a part of

14 Profiling Prerelease Software Product and Organizational Performance 179

requirements for having high-quality metrics. There exist several alternative

(to AIMQ) frameworks for assessing information quality, which we also investi-

gated, for example, Kahn et al. [26], Mayer and Willshire [27], Goodhue [28], and

Serrano et al. [29]. The completeness of information is present in all of them in

different forms. The AIMQ framework was chosen as it was previously used in our

research on information quality—where the information completeness is a part of.

Burkhard et al. [30] found that although the indicators are presented visually,

people are surrounded by overwhelming information and miss the big picture. This

“bigger picture” in the context of monitoring of software product development

means that the stakeholders need to monitor entities that they formally do not

manage. For example, project managers monitor projects but also need to under-

stand how the “product has it,” for example, what the quality of the developed

product is. For stakeholders responsible for parts of product development, that

means that they need to understand what the situation “upstream” is—i.e., whether

there are any potential problems that might affect their work after a period of time.

Conclusions

Profiling product and organizational performance is concerned with assessing

and representing the whole product and process excellence in one picture,

where comprising elements of the product are visible in that picture. The

method for developing profiles presented in this paper addresses such issues

as what the profile should show, which elements should be profiled as

building blocks of product, and how the profile of product or process will

help in decision making. In this chapter we presented a method which

addresses these issues. We presented two industrial experience report on

how we developed risk profile of product at Ericsson and change frequency

profile of models at Volvo Car Corporation. Both reports are relying on the

profiling method presented in this chapter.

The elements that comprise the product are different depending on product

characteristics—e.g., source code functions, architectural components,

models, requirements specification, etc. At Ericsson, the elements that com-

prise the product were source code fileswhich led to one set of elements in the

profile, whereas at Volvo Car Corporation the main elements were Simulink
models which resulted in a different set of elements in the profile.

The developed risk profiles helped designers to detect the most risky few

files out of thousands and refactor them. The change frequency profile helped

to detect hidden architectural dependencies and redesign models if necessary.

The next step in our research is to expand the set of available measures to

requirements specifications, architecture level metrics, and test metrics. The

expansion could provide the possibility to include a wider spectrum of

stakeholders in the decision making and analysis of particular profiles.

180 V. Antinyan et al.

References

1. Glass, R.L.: Sorting out software complexity. Commun. ACM 45, 19–21 (2002)

2. Kahn, B.K., Strong, D.M., Wang, R.Y.: Information quality benchmarks: product and service

performance. Commun. ACM 45, 184–192 (2002)

3. Issaverdis, J.: The pursuit of excellence: Benchmarking, accreditation, best practice and

auditing. In: The Encyclopedia of Ecotourism, pp. 579–594. CAB International, Oxon (2001)

4. Staron, M., Meding, W., Karlsson, G., Nilsson, C.: Developing measurement systems: an

industrial case study. J. Softw. Maint. Evol. Res. Pract. 23, 89–107 (2010)

5. Staron, M.: Critical role of measures in decision processes: managerial and technical measures

in the context of large software development organizations. Inf. Softw. Technol. 54, 887–899

(2012)

6. Sandberg, A., Pareto, L., Arts, T.: Agile collaborative research: action principles for industry–

academia collaboration. IEEE Softw. 28, 74–83 (2011)

7. Feldt, R., Staron, M., Hult, E., Liljegren, T.: Supporting software decision meetings: Heatmaps

for visualising test and code measurements. Presented at the 39th Euromicro conference on

software engineering and advanced applications, Santander, 2013

8. Robillard, P.N., Coupal, D., Coallier, F.: Profiling software through the use of metrics. Softw.

Pract. Exp. 21, 507–518 (1991)

9. Kitson, D.H., Masters, S.M.: An analysis of SEI software process assessment. In: Proceedings

of the 15th International Conference on Software Engineering, pp. 68–77 (1993)

10. Petersen, K., Wohlin, C.: Software process improvement through the Lean Measurement

(SPI-LEAM) method. J. Syst. Softw. 83, 1275–1287 (2010)

11. Staron, M., Meding, W., Söderqvist, B.: A method for forecasting defect backlog in large

streamline software development projects and its industrial evaluation. Inf. Softw. Technol.

52, 1069–1079 (2010)

12. Wettel, R., Lanza, M.: Visual exploration of large-scale system evolution. In: 15th Working

Conference on Reverse Engineering, pp. 219–228 (2008)

13. Voinea, L., Lukkien, J., Telea, A.: Visual assessment of software evolution. Sci. Comput.

Program. 65, 222–248 (2007)

14. Boehm, B.W.: Software engineering economics. IEEE Trans. Softw. Eng. SE-10, 4–21 (1984)

15. Ruhe, G.: Software engineering decision support – A new paradigm for learning software

organizations. In: Henninger, S., Maurer, F. (eds.) Advances in Learning Software Organiza-

tions, vol. 2640, pp. 104–113. Springer, Berlin (2003)

16. Lawler, J., Kitchenham, B.: Measurement modeling technology. IEEE Softw. 20, 68–75

(2003)

17. International Standard Organization and International Electrotechnical Commission. ISO/IEC

15939 Software Engineering – Software Measurement Process. International Standard Orga-

nization/International Electrotechnical Commission, Geneva (2007)

18. Elbashir, M.Z., Collier, P.A., Davern, M.J.: Measuring the effects of business intelligence

systems: the relationship between business process and organizational performance. Int.

J. Account. Inf. Syst. 9, 135–153 (2008)

19. Milis, K., Mercken, R.: The use of the balanced scorecard for the evaluation of information and

communication technology projects. Int. J. Proj. Manag. 22, 87–97 (2004)

20. Visser, J.K., Sluiter, E.: Performance measures for a telecommunications company. In:

AFRICON Conference, pp. 1–8 (2007)

21. Bourne, M., Franco-Santos, M., Cranfield School of Management. Centre for Business Per-

formance: Corporate Performance Management. SAS Institute, Cary (2004)

22. Wade, D., Recardo, R.J.: Corporate Performance Management: How to Build a Better Orga-

nization ThroughMeasurement-Driven Strategic Alignment. Butterworth–Heinemann, Boston

(2001)

14 Profiling Prerelease Software Product and Organizational Performance 181

23. Staron, M.: Critical role of measures in decision processes: managerial and technical measures

in the context of large software development organizations. Inf. Softw. Technol. 54(8), 887–

899 (2012)

24. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information

quality assessment. Inf. Manag. 40, 133–146 (2002)

25. Staron, M., Meding, W.: Ensuring reliability of information provided by measurement sys-

tems. In: Software Process and Product Measurement, pp. 1–16. Springer, Berlin (2009)

26. Kahn, B.K., Strong, D.M., Wang, R.Y.: Information quality benchmarks: product and service

performance. Commun. ACM 45, 184–192 (2002)

27. Mayer, D.M., Willshire, M.J.: A data quality engineering framework. In: International Con-

ference on Information Quality, pp. 1–8 (1997)

28. Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS Q. 19,

213–237 (1995)

29. Serrano, M., Calero, C., Trujillo, J., Lujan-Mora, S., Piattini, M.: Empirical validation of

metrics for conceptual models of data warehouses. In: International Conference on Informa-

tion Systems Engineering CAiSE, pp. 506–520 (2004)

30. Burkhard, R., Spescha, G., Meier, M.: “A-ha!”: how to visualize strategies with complemen-

tary visualizations. In: Conference on Visualising and Presenting Indicator Systems, pp. 1–9

(2005)

182 V. Antinyan et al.

Chapter 15

Industrial Self-Healing Measurement

Systems

Miroslaw Staron and Wilhelm Meding

Abstract Automated measurement programs (i.e., placeholders for large number

of measurement systems) are an efficient way of collecting, processing, and visu-

alizing measurements in large software development companies. The measurement

programs rely both on the software for data collection, analysis, and visualization—

measurement systems—and humans for reporting of the data, design, and mainte-

nance of the measurement systems. As the outcome of the measurement program—

visualized measurement data—is an important input for decision making in the

companies, it needs to be trustworthy and up to date. In this paper we present an

experience report on development, deployment, and use of a self-healing measure-

ment systems infrastructure at Ericsson AB. The infrastructure has been in use for a

number of years and handles over 4,000 measurement systems in a fully automated

way. Monitoring and self-healing of the infrastructure lead to the availability of

measurement systems 24/7 and reducing the costs of managing them.

15.1 Introduction

Software metrics provide a foundation for fact-based decisions regarding, for

example, software projects, products, and resources. Modern software development

organizations utilize them to get insight into the performance of their products or

efficiency of the organization. Over time this could lead to companies collecting

large amount of data which has to be processed efficiently in order to visualize the

data, get an overview, and ultimately support decision making. However, there are

two challenges towards efficient use of metrics—lack of standard reusable metrics

(base and derived measures) [1] and lack of mechanisms for securing the quality of

the information provided to the stakeholders at all times. One of the attempts to

M. Staron (*)

University of Gothenburg, Gothenburg, Sweden

e-mail: miroslaw.staron@gu.se

W. Meding

Ericsson Software Research, Ericsson AB, Sweden

e-mail: wilhelm.meding@ericsson.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_15

183

mailto:miroslaw.staron@gu.se
mailto:wilhelm.meding@ericsson.com

address the first challenge is the ISO/IEC 15939:2007 standard [2] which specifies

how measurement processes in software and systems engineering should be struc-

tured and how measures and indicators should be defined.

The key elements of the standard is the notion of measurement system which is a

set of measuring elements assembled together in order to measure a specific

quantity. Quantities could vary from application to application (or rather from

information need to information need), and examples of these are number of defects

in a component, average productivity, and process efficiency. The quantities can

either be simple metrics (called base measures in the standard) or more complex

ones (called derived measures). A key element in the application of a measurement

system is the stakeholder who is a person (or a group of persons) who has an

information need. Stakeholders are roles who need to monitor certain aspects of

projects, organizations, or products (addressing their information needs). An exam-

ple of a stakeholder can be the test manager, whose information need is the test

progress in the project (e.g., the ratio between executed and planned test cases). The

information need is realized by an indicator with associated decision criteria (e.g.,

progress indicator can notify the test manager about a problematic situation if the

execution [base measure] does not meet the expectations [another base measure]).

The decision criteria reflect the required values of indicators—e.g., the test progress

indicator might have an “unacceptable” level (red) defined when the test execution

is too slow (below 80%) and an “acceptable” level (green) when the execution is up

to 90% of the plan, leaving the interval 80–90% remaining to be the “warning” level

(yellow) of the indicator. The indicator and the associated decision criteria are

packaged together with measures into the information product.
One of the ways to address the challenge of providing highly reliable measure-

ments is the use of information quality [3] which helps the stakeholder to assess

whether the information can be trusted or not. However, this is only an intermediate

step towards a more advanced mechanism—a self-healing measurement system.
Such a measurement system can be defined as a measurement system which can

automatically recover from a set of failures, in a manner which is transparent for the

stakeholders. In order to achieve self-healing, a number of mechanisms need to be

in place as presented in Fig. 15.1.

Each element of the ladder to achieve self-healing is discussed in this paper with

particular focus on the top level—self-healing. In this paper the self-healing

measurement systems address the following research problem:

Fig. 15.1 Layers of

mechanisms enabling self-

healing

184 M. Staron and W. Meding

How to ascertain continuous delivery of reliable and up-to-date measurement information

products?

This research question was posed in order to improve measurement systems by

increasing the availability of the measurement data online with high reliability. The

research question can be partially addressed through automation of measurement

systems, but the continuous delivery and reliability require mechanisms for self-

healing.

The paper is structured as follows. Section 15.2 presents the bottom four layers

of mechanisms enabling self-healing: ISO/IEC 15939, infrastructure, automated

execution environment, and information quality. Section 15.3 presents the top two

layers—starter and self-healing. Section 15.4 presents the related work, and

Sect. 15.5 presents recommendations for other companies. Section 15.6 concludes

the paper.

15.2 Mechanisms Foregoing Self-Healing

Delivering measurement information across organizations can be done in multiple

ways. The concepts of information radiators [4], metric tools [5], business intelli-

gence [6], or visual analytics [7] were coined for this purpose. The work presented

in this standard is compatible with these concepts as self-healing is important for all

of them. In order to standardize the discussions and put self-healing in the context,

we use the internationally adopted standard for developing measurement pro-

grams—ISO/IEC 15939 (Software and Systems Engineering—measurement pro-

cesses). The definitions of the notion of measurement systems which we use in this

paper and in the measurement systems built at Ericsson are taken from ISO/IEC

15939:2007 (Systems and Software Engineering—measurement processes, [2]) and

ISO/IEC VIM (Vocabulary in Metrology, [8]). ISO/IEC 15939 has also been

adopted by IEEE as IEEE 15939–2007 [9].

15.2.1 ISO/IEC 15939

Measurement systems at Ericsson are defined based on the measurement informa-
tion model defined in the international standard ISO/IEC 15939:2007—outlined at

Fig. 15.2. The ISO/IEC 15939:2007 contains a meta-model with the types of

measures, which classifies measures into base and derived measures and indicators.

This standard is used at Ericsson for defining, designing, implementing, and

maintaining measurement systems—e.g., [10].

The ovals in Fig. 15.2 are transitions of the measurement data, while the

rectangles are the types of measurement data—different forms of measures and

an indicator. This model forms a vocabulary for designing measurement systems.

15 Industrial Self-Healing Measurement Systems 185

A measurement system is a set of measurement instruments assembled in order

to measure a quantity of a specified type [8]. The measurement instruments are

metric tools which are used to measure a specific entity, for example, a program or a

model, and collect a number of metrics from one entity. The measurement system

uses the values of metrics from one or several metric tools and calculates indicators

from them. These indicators are signals for attracting attention of the stakeholder

and are usually calculated from a significant number of data points—values of

metrics collected from metric tools. It is not uncommon that in the case of Ericsson,

there are over 10,000 data points used to calculate a single indicator.

15.2.1.1 Example of a Measurement System

An example of a design of a measurement system for monitoring test progress is

presented in Fig. 15.3—it is a more detailed description of the example presented in

the introduction.

Attribute Attribute

Measurement
method

Measurement
method

Base

Measure

Base

Measure

Measurement
Function

Derived

Measure

Derived

Measure

(analysis)
Model

Indicator

Interpretation

Information

Product

Raw data Raw data

ISO/IEC
15939:2007
information
model

Stakeholder with Information
Need

Fig. 15.2 Information model from ISO/IEC 15939, data sources and the stakeholder

186 M. Staron and W. Meding

The top of the figure shows an MS Sidebar Gadget which is used as a means of

visualizing the information to the stakeholders—it is available on their desktop and

is updated at regular intervals, e.g., every minute [10].

15.2.2 Infrastructure

Measurement systems at Ericsson are built based on the standard pipes and filters

architecture, where the information (values of measures) is processed sequentially.

The information flow in measurement systems is presented in Fig. 15.4.

The infrastructure of the measurement systems comprises elements from source

files to gadgets, as presented in Fig. 15.4. It defines the structure of files and folders,

the databases, and the access interfaces.

The structure of the source files and raw data is standardized based on the

organization of the measurement program. It is the structure of folders on the

shared network drives and the procedures to store data about product, people, or

processes in files or databases. These storage procedures could be version control

repositories, defect databases, product performance databases, or central data

warehouses common for multiple organizations within Ericsson (e.g., time-

reporting database). In addition to the databases, a number of metric tools are

used to harvest data directly from products—e.g., [10].

Fig. 15.3 Example instantiation of measurement information model for test progress

15 Industrial Self-Healing Measurement Systems 187

15.2.2.1 Visualization of Measurement Products

The measurement systems at Ericsson are implemented using standard tools like

MS Excel and MS Sidebar Gadgets for MS Vista or MSWindows 7. This choice of

implementation environment has an impact on the visualization of the information

products. For example, using D3 library [11] can provide more interactive visual-

izations than MS Excel. Figure 15.5 shows an example of the same information

product visualized as MS Excel and as MS Sidebar Gadget.

As presented in the previous section, this measurement system is updated daily

and is available as a gadget which contains a link to the MS Excel file with the

details. The visualization—the gadget and the excel file—forms the information

product as defined in ISO/IEC 15939.

15.2.3 Automated Execution Environment

The automated execution environment consists of a mechanism to execute the

measurement system—at this level no control of the execution process is defined.

In the case of Ericsson, this execution environment was task scheduler in MS

Windows and a list of files tied to it, to execute in MS Excel.

Fig. 15.4 Information flow in measurement systems

Indicator

Title

Validity information
Defect backlog (predicted)
Predicted week

Date of prediction
Defect backlog (current)

Current week

Information product

Fig. 15.5 Example of a measurement product—MS Sidebar Gadget (to the left) and the MS Excel

file with detailed data, structured according to ISO/IEC 15939

188 M. Staron and W. Meding

In addition to the list of files to execute and the task scheduler, the execution

environment consists of:

• Web server to provide the measurement data to MS Sidebar Gadgets.

• Log files storing the information about the execution of the measurement

systems.

These elements provide a rudimentary mechanism for spreading the files (infor-

mation) and monitoring the measurement systems.

15.2.3.1 Measurement Team

The infrastructure and the automated execution environment form a measurement

program together with the measurement systems, source files, raw data, databases,

and stakeholders. The measurement program is maintained by a measurement team

which consists of designers and measurement agents.

The designers are responsible for design, implementation, and maintenance of

the measurement systems. The measurement agents are responsible for contacts

with stakeholders to elicit information needs in the organization [12] and keep the

design of the existing indicators up to date.

15.2.4 Information Quality

Information quality is important to assess whether the information provided by

measurement systems can be trusted or not [3]. The annex D of ISO/IEC 15939 with

the methods for assessing the quality of measurement systems provides a basic set

of criteria. However, we use the AIMQ framework [13] instead, as it provides a

quality model of information quality which is more extensive and measurable. The

AIMQ framework defines 15 quality attributes of information such as accessibility,

completeness, and correctness. In our research we refined this list by identifying

two kinds of information quality:

• External quality—how the information is perceived by the stakeholder (semiot-

ics of information: accessibility, appropriate amount, believability, concise

representation, consistent representation, ease of operation, interpretability,

objectivity, relevancy, reputation, and understandability).

• Internal quality—how the information is obtained and composed (internals of
measurement systems: timeliness, free of error, completeness, and security).

The external information quality defines the quality of the “design” of the

information, e.g., whether a given metric measures what it is supposed to measure.

Methods used for empirical metric validation are used to assess the external infor-

mation quality, e.g., case studies or experiments conducted together with the stake-

holders. The following work is particularly useful for this purpose: [14–17].

15 Industrial Self-Healing Measurement Systems 189

The questions of the external information quality are handled when building the

measurement systems—choosing metrics and indicators—as described in [10]. This

is done by the measurement team.

For the purpose of triggering self-healing, however, the internal information

quality is more suitable than the external. It defines whether the information is

properly calculated and whether it is up to date. This internal information quality

can be checked during the run-time operation of measurement systems. Figure 15.6

shows the checkpoints which the information quality algorithms perform to diag-

nose problems—we check states and transitions. The red rectangles in the figure

show examples of problems with the information quality—e.g., checking that the

Attribute Attribute

Measurement
method

Measurement
method

Base

Measure

Base

Measure

Derived

Measure

Derived

Measure

(analysis)
Model

Indicator

Interpretation

Information

Product

Check the sorting criteria

Check the structure of the source files

Check that there is a value

Check that the value is within the correct limits

Check access to BM:s

Check that there is a value

Check that the value is within the correct limits

Boundary conflicts / model consistency

Check that there is a value
Check that the value is within correct limits

Check that the color was set

Check access to the DM:s

Stakeholder s
Information Quality indicator

Check that the raw data file was created

Check the structure of the raw data file

Measurement
Function

Indicator

Interpretation

Information

Product

Fig. 15.6 Visualization of information quality checks on the information model (adopted from

ISO/IEC 15939:2007)

190 M. Staron and W. Meding

raw data file was created. The green rectangles show that these steps have no

problems.

The checks are independent from each other, and it is enough with only one

rectangle to be red to trigger the repair process.

15.3 Self-Healing

In order to address the part of the research question which is concerned with

ascertaining the continuous delivery, we used the concept of self-healing from

[18] and adapted it to the context of measurement systems. Thus, we define self-
healing as the ability of a measurement system to autonomously recover from an
abnormal execution. The self-healing process is conducted in the context of exe-

cution environment with multiple measurement systems and addresses the chal-

lenges of self-managing systems as described by Kramer and Magee [19].

15.3.1 Self-Healing Process

The self-healing as recovery from the abnormal execution is realized by two

elements of the measurement program—starter.exe (see Sect. 15.3.2) and each

measurement system. This program can also be referred to as the adaptation/healing

system in the terminology of De Lemos et al. [20]. The self-healing is organized

around three states of the measurement system:

• Normal execution: execution and monitoring of the status of the measurement

system.

• Diagnosis: triggered by the error in the measurement system, setting a diagnose

what has to be repaired.

• Repairing: repairing the measurement system/s.

As an addition to these three states, the infrastructure logs the statistics on how

many times each measurement system was repaired to flag the need for corrective

maintenance to the designers of the measurement system—outlined in Fig. 15.7.

This type of self-healing is a special case of the distributed control pattern of

self-reconfiguration as presented by Gomaa and Hassan [21] and is based on two

main states—execution (which is the normal execution of the measurement sys-

tems) and the self-healing (which comprises diagnosis and repair of the measure-

ment system). All states are fully automated and are distributed over the two

processes—starter.exe and the measurement system.

15 Industrial Self-Healing Measurement Systems 191

15.3.2 Realization at Ericsson: Starter

The placement of the self-healing mechanism in the larger context of the measure-

ment program is illustrated in Fig. 15.8. The measurement systems are a part of the

larger context—measurement program—which contains the software which calcu-

lated indicators and measures according to ISO/IEC 15939, technical infrastructure,

raw data files, and finally the information products which communicate the infor-

mation to the stakeholders.

The technical infrastructure supporting self-healing is an execution environment

in form of MS Windows Enterprise Edition equipped with two main programs—

starter.exe and killer.exe (in the bottom half of the figure). The former is the

execution and self-healing software for the measurement systems, and the latter is

an auxiliary program to kill a measurement system and recover the whole infra-

structure in case of a major failure. Each measurement system is realized in MS

Excel file with VBA scripts to calculate the indicators according to ISO/IEC 15939,

Fig. 15.7 State machine for

self-healing measurement

systems

Fig. 15.8 Self-healing (grayed background) as a part of the measurement program

192 M. Staron and W. Meding

to update the information product, and to monitor the information quality of the

indicators.

Starter.exe is a stand-alone program implemented in C#, responsible for execu-

tion of measurement systems. The execution is done as a multi-threaded execution

process. Starter.exemonitors the execution time for each measurement system. The

algorithm in the starter.exe checks that each measurement system is executed

within a given time limit, and if not, then it masks the measurement system for a

re-execution. The re-execution is done after all other measurement systems have

been executed and is limited to three re-executions. If three consecutive

re-executions fail, the self-healing process begins.

Figure 15.7 presents the state machine for the process annotated with how the

states are visible to the measurement team.

15.3.3 Triggering of the Self-Healing Process

The process of self-healing of the measurement system is triggered by one of two

events—non-availability of the measurement system or deficient information qual-

ity [3]. Starter.exe also monitors the availability of the web server and through that

monitors that the information product from each measurement system is available

to the stakeholders [12].

Starter is the program which monitors the execution and triggers the diagnosis

process. Starter.exe summarizes the current execution status in the form of MS

Sidebar Gadget (MS Status in Fig. 15.7) and as a report (accessible by mouse click

on the gadget) as presented in Fig. 15.9.

Each line in the report represents a measurement area—one or more measure-

ment systems. The status is represented by the dots and their color—green repre-

sents success and red represents failure. The status represents the result of the

diagnosis if clicked upon. Different dots represent different checks—execution,

update of log files, information quality, and the sum (total). Not all measurement

systems have the same diagnostics mechanisms—hence different number of dots.

15.3.4 Diagnosis

After the self-healing has been triggered (i.e., one of the dots becomes red), the first

step is to automatically diagnose the problem. Starter.exe is responsible for the

process of diagnosis and communicates with the measurement system during

the process. There are two parts of the diagnosis process—checking whether the

execution of the measurement systems was correct and checking whether

the information is correct and up to date.

The mechanism to monitor the quality of the information provided by the

measurement systems is based on monitoring a subset of information quality.

15 Industrial Self-Healing Measurement Systems 193

In the case of Ericsson, we use the AIMQ framework [13] as presented in [3]. The

diagnosis concludes with one of the two possible outcomes—the measurement

system should be rerun or the measurement system should be repaired.

15.3.5 Repairing

Healing of the measurement system is done in two steps—re-execution of the

measurement system and (if the re-execution fails) recovery of the last successfully

executed copy of the measurement system.

The re-execution happens if the execution of the measurement system failed, or

information quality indicates that there was a problem with the information pro-

vided by the measurement system. As there could be numerous reasons for that (see

[3]), starter.exe re-executes the measurement system and checks whether the

execution was successful or not. The process is repeated three times.

If the execution of the measurement system was not correct, starter.exe repairs
the measurement system by recovering the last validly executed measurement

system. This is done by copying either the latest working copy of the measurement

system from the archive or by using the original copy of the measurement system

(i.e., the first execution copy) from the archive.

Fig. 15.9 Report from

starter.exe with the outcome

of the execution of the

measurement systems

194 M. Staron and W. Meding

After the system has been healed (repaired), the algorithm re-executes the

system to test whether the self-healing was successful. If it was not successful, it

is re-tried, and if it is unsuccessful, once more the measurement team is notified.

15.4 Scalability

The methods presented in Sect. 15.3 scale to the needs of large organizations—

multiple indicators, large data sets of base measures, and a variety of decision

criteria. Although the focus of measurement programs should be on the quality of

the measures instead of the quantity, the technology behind the measurement

programs should allow using any number of measures.

This way of presenting the information is very efficient as it allows to spread

measurement systems across the company. Together with the ease of access of

information, standard tools and ability to easily combine measures led to a growth

of the number of automated measurement systems from ca. 10 in the beginning of

2007 till over 4,000 in 2012. In 2007 the majority of measurement systems were

manual, and data collection was costly; in 2012 the majority of measurement

systems were automated, and the focus of the organization was on indicators,

visualizations, and decision making.

As each MS Excel file contains indicators, based/derived measures, charts, and

tables, the number of worksheets which are updated daily is over 35,000. The

majority of measurement systems have over ten worksheets and VBA modules, and

there are measurement systems which have over 40 worksheets and VBA projects.

In total the number of VBA modules in all measurement systems which handle the

calculations and updates is ca. 40,000 with ca. four million lines of VBA code.

Figure 15.10 presents the statistics over the number of lines of code per measure-

ment system.

Fig. 15.10 Number of lines of code per measurement system. Each line represents one measure-

ment system

15 Industrial Self-Healing Measurement Systems 195

Given these relatively large numbers of measurement systems, the company has

to use novel methods for controlling the quality of the information in the measure-

ment systems—the self-healing mechanisms. Without these mechanisms, it would

be impossible to monitor and control the delivery of measurement information

products to stakeholders. Since each measurement system has one stakeholder, we

can see how widely the measurement systems are spread across the development

unit within the company.

15.4.1 Impact on the Company

The measurement program described in this paper has evolved over a longer period

of time. The program started in 2003 with manual measurement processes and data

collection to support visualization and decisions about status and progress projects

and products [10, 12]. After the introduction of automated measurement systems in

2007, the needs for solid and reliable infrastructure have increased. The needs of the

organization for new indicators increased over the time, and the needs for efficiency

in handling the data became evident.

The introduction of self-healing mechanisms allowed the metrics team to shift

focus from the constant trade-off between maintenance and new development of

measurement systems. For the company, which is operating in highly competitive

market, such as telecom equipment manufacturers, the need for new insights is

constant and must be addressed promptly—the development organization cannot

wait for a measurement system to be ready.

On the other hand, maintenance of the existing measurement systems is crucial

for having the right insight to make decisions based on the right facts [22]. The

introduction of self-healing flipped the coin in the favor of new development—the

time spent on solving problems with measurement systems decreased significantly

from daily effort to relevant weekly walk-through of problems.

The introduction of self-healing has impacted the stakeholders as well—instead

of monitoring the information quality, they could focus on the content of measures

as the number of problems visible to them decreased significantly. Without the self-

healing mechanisms, each problem could take hours to address (failure, notifica-

tion, maintenance, re-execution) as all failures required manual intervention of a

limited number of human resources. After the introduction of self-healing, the

diagnosis and repair processes took minutes, which made it almost invisible for

the stakeholders (the “red” information quality status is removed after a few

minutes).

The dependency between the measurement systems also made the measurement

systems vulnerable to failure propagation—if one measurement system failed, a

number of other, dependent measurement systems failed, e.g., refined raw data file.

This impacted a number of stakeholders. After the introduction of self-healing

mechanisms, the failure propagation is reduced as measurement systems are

196 M. Staron and W. Meding

repaired and if the failure propagates—so does the self-healing. This leads to

potentially non-repairable failures that impact only single stakeholders.

15.5 Recommendations for Other Companies

Based on the experiences with developing self-healing measurement systems, we

identified the following best practices for other companies:

• To elevate the metrics competence of the organization, e.g., moving from

measuring to addressing information needs, the company should focus on

indicators, information needs, and measurement systems—not on metric tools.

The relevant indicators provide the organization with the right facts to formulate

decisions.

• Use information quality in the initial steps to learn about the most common

failures and failure propagations. The knowledge about the propagation of

failures is also important for the development of the initial self-healing mecha-

nisms. The danger with starting to develop self-healing without this initial step is

that the mechanism gets too complex and handles the “wrong” types of fail-

ures—i.e., failures which in practice do not affect the measurement program

significantly.

• When deploying the infrastructure, build-in the mechanisms for (simple) self-

healing. Once the initial learning threshold has been overcome, the company

should focus on introducing the automated mechanisms for handling the most

common failures of measurement systems—and in this way move towards a

more rigorous self-healing infrastructure.

The above recommendations can help companies to smoothly start with cus-

tomized self-healing mechanisms for measurement systems.

15.6 Related Work

The approach to self-healing described in this chapter is similar to the component-

based self-healing algorithm described by Shin [23]. Shin describes a layered

architecture of a self-healing system where the decision about repairing is done in

the self-healing layer, while in our case the decision about initiating the self-healing

can be triggered by the self-healing mechanisms (starter.exe) or the measurement

system itself. The approach presented in this paper is simpler and based on archival

measurement systems (components); hence, the testing phase is simplified to a

rerun only. The natural extension to this work is self-reconfiguration and graceful

degradation [24].

An example of using models when designing software metrics is provided by a

recent work of Monperrus et al. [25] where the authors propose a modeling notation

15 Industrial Self-Healing Measurement Systems 197

for modeling measures. Although the approach is interesting and model driven

(in the sense that it provides possibilities to “model metrics and to define metrics for

models” [25]), the approach is not compatible with the ISO/IEC 15939 and regards

the resulting measure specification as the final artifact. In our approach we consider

the measurement system to be of the core focus in the process, i.e., we take it one

step further. A similar approach to modeling of measures is presented by Garcia

et al. [26] where models are used to catalogue measures and manage software

measurement processes—as opposed to our approach where we focus on generating

measurement systems and cataloguing measures in the second place. Garcia et al.’s
approach was later extended into a modeling language (similar to ours) which

allow modeling arbitrary sets of measures (not only ISO/IEC 15939:2007

compatible) [27].

An alternative to ISO/IEC 15939 method for defining measures was presented

by Chirinos et al. [28], which is based on a meta-model for measures proposed by

authors created by combining certain aspects of GQM (goal question metric,

[29, 30]) into ISO/IEC 15939. One of the reasons for their work was the assumption

that neither ISO/IEC 15939 nor GQM has a solid meta-model which can ease the

adoption of these approaches. Our work contradicts these results since we show that

it is possible and efficient to use a modeling notation directly based on ISO/IEC

15939 and its information model.

In our previous work, we evaluated how much impact the framework for

developing the measurement systems had in the organization [10]. The results

from the evaluation of the framework showed that it shortened the time required

to build a measurement system. The study presented in this paper focuses on how to

make the process of developing measurement systems more efficient through

introducing graphical notations and automated transformations.

Conclusions

In this chapter we addressed the problem of continuously delivering reliable

measurement products. We explored mechanisms for providing self-healing

capabilities for measurement systems. We also explored mechanisms that are

the basis for achieving self-healing, exemplified on the case of a measurement

program at Ericsson.

We presented a study of measurement systems at Ericsson where the

mechanisms of self-healing have been applied to provide 24/7 availability

of measurement systems for the organization. The mechanisms decreased the

cost of maintenance of the measurement program and allowed the company

to focus on developing relevant measures, supporting company leadership in

their core business areas. It also increased the trust to measurement systems

and their use.

The mechanisms of self-healing described in this paper helped the com-

pany to increase the responsiveness to problems; many of the failures in

(continued)

198 M. Staron and W. Meding

measurement systems can be handled automatically, and the human involve-

ment is minimized to only the most severe problems which often require a

degree of redesign of the measurement system failing, often due to the

changed premises or environment.

The further development of the self-healing measurement systems is to

address the problem of changing environment and build mechanisms for self-

adaptation of measurement systems. This would allow the measurement

program to evolve autonomously over longer periods of time and further

decrease the need for human involvement in the maintenance of the mea-

surement program.

References

1. Pfleeger, S.L., Jeffery, R., Curtis, B., Kitchenham, B.: Status report on software measurement.

IEEE Softw. 14(2), 33–43 (1997)

2. International Standard Organization and International Electrotechnical Commission: ISO/IEC

15939 software engineering – software measurement process. In: International Standard

Organization/International Electrotechnical Commission, Geneva (2007)

3. Staron, M., Meding, W.: Ensuring reliability of information provided by measurement sys-

tems. In: Software Process and Product Measurement, pp. 1–16. Springer, Berlin, Heidelberg

(2009)

4. Robinson, H., Sharp, H.: Organisational culture and XP: three case studies. In: Proceedings of

Agile Conference, pp. 49–58 (2005)

5. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, vol.

2. International Thomson Computer Press, London (1996)

6. Williams, S., Williams, N.: Business intelligence readiness: prerequisites for leveraging

business intelligence to improve profits. The Profit Impact of Business Intelligence, pp. 44–

64. Morgan Kaufmann, San Francisco (2007)

7. Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph. Appl. 26, 10–13

(2006)

8. International Bureau of Weights and Measures: International vocabulary of basic and general

terms in metrology ¼ Vocabulaire international des termes fondamentaux et généraux de

métrologie, 2nd edn. International Organization for Standardization, Genève (1993)

9. Association, I.S.: IEEE Std 15939–2007 I.E. Systems and Software Engineering—Measure-

ment Process. IEEE–SA (2007)

10. Staron, M., Meding, W., Nilsson, C.: A framework for developing measurement systems and

its industrial evaluation. Inf. Softw. Technol. 51, 721–737 (2008)

11. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput.

Graph. 17, 2301–2309 (2011)

12. Staron, M., Meding, W., Karlsson, G., Nilsson, C.: Developing measurement systems: an

industrial case study. J. Softw. Maint. Evol. Res. Pract. 23, 89–107 (2010)

13. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information

quality assessment. Inf. Manag. 40, 133–146 (2002)

14. Bellini, P., Bruno, I., Nesi, P., Rogai, D.: Comparing fault-proneness estimation models. In:

Proceedings of 10th IEEE International Conference on Engineering of Complex Computer

Systems, (ICECCS 2005), pp. 205–214 (2005)

15. Raffo, D.M., Kellner, M.I.: Empirical analysis in software process simulation modeling.

J. Syst. Soft. 53, 31–41 (2000)

15 Industrial Self-Healing Measurement Systems 199

16. Stensrud, E., Foss, T., Kitchenham, B., Myrtveit, I.: An empirical validation of the relationship

between the magnitude of relative error and project size. In: IEEE Metrics, 2002, pp. 3–12

(2002)

17. Yuming, Z., Hareton, L.: Empirical analysis of object-oriented design metrics for predicting

high and low severity faults. IEEE Trans. Soft. Eng. 32, 771–789 (2006)

18. Keromytis, A.D.: Characterizing self-healing software systems. In: Proceedings of the Com-

puter Network Security: Fourth International Conference on Mathematical Methods, Models,

and Architectures for Computer Network Security, MMM-ACNS 2007, St. Petersburg,

September 13–15, 2007, pp. 22–33 (2007)

19. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-

ware Engineering, 2007. FOSE’07, pp. 259–268 (2007)

20. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., et al.: Software
engineering for self-adaptive systems: a second research roadmap. In: Software Engineering

for Self-Adaptive Systems II, pp. 1–32. Springer, Berlin, Heidelberg (2013)

21. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of software

architectures. In: Proceedings of Fourth Working IEEE/IFIP Conference on Software Archi-

tecture, 2004. WICSA 2004, Oslo, Norway, pp. 79–88 (2004)

22. Staron, M.: Critical role of measures in decision processes: managerial and technical measures

in the context of large software development organizations. Inf. Softw. Technol. (2012)

23. Shin, M.E.: Self-healing components in robust software architecture for concurrent and

distributed systems. Sci. Comput. Program. 57, 27–44 (2005)

24. Shin, M.E., An, J.H.: Self-reconfiguration in self-healing systems. In: Proceedings of the Third

IEEE International Workshop on Engineering of Autonomic and Autonomous Systems, 2006.

EASe 2006, pp. 89–98 (2006)

25. Monperrus, M., Jezequel, J.-M., Champeau, J., Hoeltzel, B.: A model-driven measurement

approach. Presented at the Model Driven Engineering Languages and Systems (MODELS),

Tolouse (2008)

26. Garcia, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Pattini, M., ALARACOS Research Group:

Managing software process measurement: a meta-model based approach. Inf. Sci. 177, 2570–

2586 (2007)

27. Mora, B., Garcia, F., Ruiz, F., Piattini, M.: SMML: Software Measurement Modeling Lan-

guage. Presented at the 8th OOPSLA workshop on domain-specific modeling, 2008

28. Chirinos, L., Losavio, F., Boegh, J.: Characterizing a data model for software measurement.

J. Syst. Softw. 74, 207–226 (2005)

29. van Solingen, R.: The Goal/Question/Metric Approach: A Practical Handguide for Quality

Improvement of Software Development. McGraw-Hill (1999)

30. van Solingen, R., Berghout, E.: Integrating goal-oriented measurement in industrial software

engineering: industrial experiences with and additions to the Goal/Question/Metric method

(GQM). In: 7th International Software Metrics Symposium, 2001, pp. 246–258 (2001)

200 M. Staron and W. Meding

Part VI

Industry Best Practices and Case Studies

The last part of the book consists of contributions by practitioners at Software

Center companies. The chapters report on the experiences at some of the companies

while implementing transitions from one step on the Stairway to Heaven to the next

step. There are two chapters in this part. The first chapter discusses experiences at

Ericsson in implementing agile development in large-scale development of

software-intensive systems with very high reliability and uptime requirements.

The second chapter is concerned with adopting agile practices and continuous

integration in the automotive domain. Due to the nature of the domain, techniques

such as modeling and domain-specific languages are used extensively, requiring

different agile and testing approaches. Both chapters capture lessons learned and

best practices collected and developed in at large, world-class companies and as

such are incredibly valuable in terms of industrial validation as well as relevance of

the insights.

Chapter 16

Experiences from Implementing Agile Ways

of Working in Large-Scale System

Development

Jonas Wigander

Abstract Ericsson is operating in a continuously changing business and techno-

logical environment. So far, we have as a company been very successful in what we

do and are today providing hundreds of different products and solutions to hundreds

of different customers.

The prevailing development methodology platform has, up to recently, been our

own PROPS project management model combined with various waterfall develop-

ment methods (e.g., our own methodology for development of the AXE telephony

platform, MEDAX).

However, in the last 5 or so years, we have seen a massive transition of our ways

of working from waterfall-based methods to Agile (and recently also Lean) devel-

opment methods.

We will in this story not tell you the details on how we implemented Agile ways

of working, but rather share the challenges we have seen moving from one type of

development culture (waterfall) to a new, rather different (Agile).

The story is based on a study made by our CTO office, Group Function

Technology. The results and conclusions drawn from this study are backed up by

other studies made by different Ericsson organizations.

To keep the story short, one can say that the transformation to Agile ways of

working was a bottom-up movement from the start. It began in several different

product development units independent from each other and with various reasons

for why they wanted to change.

As more and more units could show successful results, Agile ways of working

became noticed in senior ranks, and finally it was officially exclaimed that we were

to become “an Agile company.” Thus, the units so far not having implemented

Agile ways of working were told they were expected to start doing so.

In these different initial starting points, we find the major reason for why some

units gained such a momentum implementing Agile ways of working, and some

units still struggle with even leaving the starting blocks; if you have a well-defined

objective, your staff will know what is expected and why, whereas if you “are

J. Wigander (*)

Group Function Technology, Ericsson AB, Stockholm, Sweden

e-mail: jonas.wigander@ericsson.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_16

203

mailto:jonas.wigander@ericsson.com

ordered to,” the expected end result is unclear. In the first case, the effect of the

change is what matters. In the second case, it is very easy to focus on the exact

implementation of different practices, as the end goal is unclear.

After a couple of years of active transition, we now see a pattern in the

movement of change. The experiences gained by observing this pattern are what

we would like to share with you in this story.

16.1 Introduction

A short, and somewhat simplified, business analysis is needed, in order to under-

stand why the shift of ways of working at Ericsson was seen as very much needed

and why Agile methods were chosen.

The telecom business arena changed dramatically in the late 1990s and early

2000s, with new types of operators emerging with new needs and ways of looking at

business, often replacing or transforming the traditional PTTs. The traditional

telecoms industry rapidly moved towards an IP-influenced technical environment.

As a result, new competitors rose, with new (at the least for the telecoms

industry) ground rules and behavior.

Although SW had become increasingly important in our systems over the last

decades, Ericsson product development still very much used waterfall methods and

processes, built on the knowledge and experiences from HW and system develop-

ment. Our PROPS project management process had been extremely successful

since the mid-1990s, and most of our large-scale system development was orga-

nized in massive projects with even more massive total projects keeping the pro-

jects together, developing complicated networks.

However, with the changed customer base and new competitors came a more

shifting business environment. This was initially handled through a rigorous change

management system, consuming much energy from the project management teams.

The complexity of the projects also often resulted in slippage of the internal time

schedule, which resulted in ripple effects affecting the projects after the delayed

project, with, e.g., delayed entrance of key personnel, test environments, etc. Many

development units realized the problem, and new ways of working were introduced,

e.g., the Ericsson development pattern “Streamline Development,” focusing on

managing the changing environment through flexibility and speed in analysis of

requirements and decision making.

Two final pieces of the puzzle are still needed to understand the situation that

arose in the massive transformation towards an Agile culture in Ericsson’s product
development: the diversity of technical implementations and the culture in how

ways of working are organized.

Even though telecom networks often are very complex, truly being systems of

systems, this does not necessarily mean that all the contributing nodes are complex,

204 J. Wigander

or even complicated. There is a rather large diversity in the level of complexity

between different nodes but also a large diversity in technologies chosen and

distribution of HW vs. SW.

As a result of this, Ericsson has for a long period of time believed in that

development units must have the freedom of picking the methodology that supports

their business and technology needs. As a company, we have not had one common

way of working for many years, other than PROPS.

Ericsson was at that point in time divided into functional areas, e.g., sales,

product management, product development, supply, customer integration services,

etc. All these functions were tuned together over years of cooperation on providing

solutions to the customers, and the main factor keeping the development flow

together was the project management model PROPS.

Summarizing the above, when the more massive transformation towards Agile

ways of working began, Ericsson’s product development was in a situation where it

had to manage rapidly changing business needs and requirements in a flexible

manner, using a wide diversity of technical solutions, utilizing many different

ways of working. Product development is mostly organized in project form, using

the project management model PROPS.

16.2 Scaling Agile: A Matter of Change Management

16.2.1 Why Change?

Several different types of reason for introducing Agile development methods and

transforming into and Agile culture were identified.

Early adaptors looked at Agile as a vehicle for becoming even more efficient in

developing products. One example of this would be a development unit stating “we

are rather good at what we do today, and things are going fine; this is the time to

consciously look into how we could become even more efficient, as we understand

that our business situation is changing.” A good quote capturing the need for change

even though things are going fine is a consultant talking to an Ericsson development

manager: “You guys are brilliant in playing chess; it’s a pity though that most of

your competitors are starting to play Counterstrike!”

Actively involving their staff, e.g., by discussing what was meant with “effi-

ciency,” created a common view of what should be achieved, set objectives

accordingly, and then carried on finding and implementing solutions that would

meet the objectives set. It should be mentioned that these development units often

were smaller, SW centric units. But there are also examples of rather large units

doing this as well.

A second category was early followers, units which had problems with, e.g.,

efficiency. One example would be a development unit with severe quality issues

and having ended up with inefficient ways of working. They spent a lot of time

16 Experiences from Implementing Agile Ways of Working in Large-Scale System. . . 205

correcting faults and acting on problems, so much that as a matter of fact this

specific, very central and important, unit phased the devastating future of having the

next release without any business value, as almost all staff and resources were spent

on addressing quality issues and system maintenance.

The specific unit exemplifying this category of units then identified the problems

they were facing and defined where they needed to be efficiency-wise. They set

clear goals on what they expected to fulfill, such as “10 times higher quality,” “2

times higher speed in development,” or similar (N.B. these are fictional goals,

provided as examples, and were complemented with specifications of what was

meant with, e.g., “speed”). Then they proceeded by looking inside Ericsson for

units that seemed to have managed what they wanted to achieve, but also outside

Ericsson for inspiration.

In both the above cases, the commonality was a broad understanding within the

development staff of what was the reason for the change and that the objectives set

were results of this reason.

But now something interesting happened! As the successful Agile

implementations were notice higher up in the hierarchies, it was more or less

outspoken that all development units in the largest Business Unit were to adopt

the Agile culture and mind-set and implement Agile practices. And in some cases,

this was more or less the instruction given: “Off you go, sort it ASAP and report

back when you have become Agile!”

And honestly, yes there was support with Agile frameworks, inspirational good

practices, lessons learned, etc. But when you don’t know why you are to “become

Agile,” it turned out that all this doesn’t matter. The problem ended up not in

implementing Agile practices such as Scrum, continuous integration, cross-

functional development teams, etc. (Ericsson’s developers and leaders are excellent
technicians; implementing a practice is not a practical problem). Instead, it was

clear that in those units who did not have a clear understanding of what they wanted

to achieve with transforming to Agile, Agile practices were often implemented by

the book, sometimes almost with a religious twist. The implementation then

actually became a means in itself and not necessarily a change to solve a specific

problem or build a certain capacity or behavior.

In these organizations, it was more common that the transformation was more

questioned and challenged, especially when the internal culture was “Why change a

winning concept; this way of working has led us to the leading position where we

are now!”

16.2.2 Understanding the Greater Picture

As said in the introduction, Ericsson as a company at this point in time was divided

into functional areas (e.g., product management, product development, supply,

customer integration services, etc.). In this setup, it is very important to understand

how all aspects of the development flow work together and that there are numerous

206 J. Wigander

dependencies to cater for. An interesting observation was that as the initial imple-

mentation of Agile practices often started as a bottom-up movement, the

implementations didn’t necessarily cover all aspects of the development flow.

This resulted in a mismatch in behavior between different functions, with frustra-

tion as a result. Units without a clear objective of the transformation were notably

having more problems in succeeding in implementing practices from a holistic

view, i.e., to make sure the complete development flow is actually kept together.

When combined with either a lack of understanding of what was to be achieved

or a lack of willingness to change, hick-ups and problems inevitably arose, and

Agile was blamed as not working for large-scale system development.

Lacking a clear view on what problem one is solving, combined with a focus on

the implementation of Agile practices such as Scrum, continuous integration, or

continuous analysis, seems to have had an unwanted and unexpected negative effect

on the understanding of the greater picture, the “holistic view” of the development

system. Ericsson as a company has known how practices add together and how

functions and roles interact to produce a well-functioning, efficient development

system. Yet, in the situation described above, experiences, knowledge, and old

truths were forgotten. This behavior was reported from many organizations, even-

tually leading to a large work to recapture our experiences on how to develop

complicated large-scale systems using large complex organizations.

16.2.3 Proof Points

For several reasons, Ericsson initially had few measurements that give a direction

on whether Agile ways of working solved problems or not. Ericsson of course

measures a lot of aspects of product development, but these measurements are

mostly as locally defined as the ways of working. Thus, there was no common

baseline to measure against; we simply did not know what “good” was! For the

skeptics, this meant that there was no “solid” proof that the new Agile ways of

working were actually performing!

However, there were examples of organizations having had a clear vision on

what effects were wanted, which had defined a set of goals supporting the vision,

and then started to measure accordingly. Later, several of these measurements have

proven that the transformation had started to result in the effects aimed for.

16.2.4 Cross-Functional Cooperation

In some cases, it was difficult for some people who had spent their complete work

life working individually to move into the cross-functional mind-set of Agile

development. Many remained stuck in the functional silos even though they were

organized in XFTs (cross-functional teams). It was not uncommon for people that

16 Experiences from Implementing Agile Ways of Working in Large-Scale System. . . 207

have been allowed to have an introvert behavior (“you must understand, they are

engineers. . .”) having problems all off a sudden and adopting ways of working that

require close cooperation with many different persons and roles. A complicating

factor here is that some of these persons were highly skilled engineers, with deep

competence that we as a company relied on.

Some organizations did not allow different behaviors, whereas others did.

Lessons learned are that there is no one easy fix to this problem, but rather the

solution seems so far to lie in good leadership and perhaps also to, in some

individual cases, allow a pragmatic solution rather than fundamentally force every-

one into XFTs.

However, cross-functional does not only mean organizing system engineers,

designers, and testers into XFTs. In a large company as Ericsson, cross-functional

also means working across functional boarders (see examples above). A clear

lesson learned was that if the product management (i.e., the business people) was

not actively involved in the transformation, the bigger positive effects would be

difficult to achieve. On the contrary, there were also good examples on where there

was a close cooperation between product management and product development. It

was actually here where the most successful implementations of large-scale Agile

system development were found.

The two functional units, HR and finance, were not seen as actively taking part

of the transformation and, in some cases, actually were seen as not understanding

where product development were moving and what they strived to achieve. This

resulted in a disturbing chasm between product development and especially HR,

which has taken a lot of time and energy to counteract. The lesson learned here is

that when doing such a major change of way of working, completely changing

behavior and culture, all functions of the company need to be involved as early as

possible. It is easy to blame HR for not having understood the transformation, but

they were not necessarily actively included early enough either.

16.2.5 Leadership

Traditional leadership roles have changed or even been challenged as a result of

transforming to an Agile culture. The “old” line manager and project managers

were two roles that saw a lot of change.

Projects were no longer the prevailing way of organizing the work, so what to do

with the project managers who often were skilled and experienced people? In some

organizations, this uncertainty led to the unwanted effect that project managers left

the organization, or even Ericsson. The lesson learned here was the importance of

understanding why the change is happening, the expected results, and that people’s
skills and competence still are valid. Then let people take an active part of the

transformation activities, finding new roles for themselves if possible. But then

again, in some cases one has to let go as well. Respect people that do not support the

208 J. Wigander

new culture and ways of working, and try to come to a separation that is beneficial

for both parties.

The leadership culture needed to be transformed from the old command and

control style to a style more suitable in an Agile culture, a supporting style that

builds engagement and motivation and unleashes creativity and innovation. This

change was one of the more difficult changes in the transformation for many units,

and it has usually taken a lot of focus and energy to build the new leadership culture.

The connection between understanding the reason of the transformation is once

again critical, with much more problems in transforming leadership culture in units

with low understanding of the objectives, e.g., leaders neither having understood

nor bought into the Agile culture. And it was very clear that “command- and

control-” oriented leadership still was the prevailing leadership style in several

organizations, regardless of the transformation to Agile ways of working or not.

I apologize, but here ends our sharing in this topic. However, we do want to share

that leadership culture is key to the successful transformation to any new culture

and will need a lot of focus and effort if you are to change the behavior in large

development organizations. Not the least is the honest attention of the most senior

managers, as people tend to act as they see their leaders do, not necessarily as the

leaders say!
But we will give you one insight though: transparency (i.e., an open climate with

open information on status, problems, etc.) is the key to the successful transforma-

tion of leadership culture.

16.2.6 Effects on the Development Staff

Many people brought forward that after having implemented Scrum-ish ways of

working and executing them for a while, it felt as if the method gave developers

means to control and affect their daily life better. Combined with a well-balanced

backlog, there was a feeling that one is working with the right things (i.e.,

effective).

Another positive effect was that some development units managed to involve

customer even further in the development, introducing, e.g., demos as part of their

ways of working.

The new roles were challenging, not only for leaders but also for developers. The

expectations on deep technical competences and broad craftsmanship were some-

times seen as almost overwhelming. There was also (obvious perhaps) a trend

towards a need for higher social skills than before, including communication and

collaboration.

An interesting observation is this quote from a developer that has moved from a

smaller unit with close, rapid customer interaction to a larger organization with

higher focus on product quality: “The increased focus on product quality has,

among other things, the effect that developers are allowed to take pride in what

they have developed, but a negative effect is that there is less flexibility, less of try

16 Experiences from Implementing Agile Ways of Working in Large-Scale System. . . 209

and do something new.” The initial experience was that teams in which the team

members were more stable over time were perceived as more efficient and more fun

to work in. This was also true with regard to geographical co-location of team

members. Yes, it is possible to have geographically distributed teams. But in terms

of efficiency, XFTs were seen as more efficient when co-located.

16.2.7 Thoughts Around “One Size Fits All!” Including
Cultural Differences

In Ericsson, we believe that our ways of working must be adapted to the specific

challenges the product development organization is operating in, such as technol-

ogies, legacy system architecture, customer behavior and expectations, etc. Thus,

there will be no “one size fits all” on practice/methodology level. However, the

basic foundation such as behavior, principles, and terminology could and should be

the same!

But in the case of the earlier implementation of Agile practices, this seemed to be

forgotten! Agile development practices were forced upon all units, and in many

cases, they were expected to implement a standardized view on practical imple-

mentation of practices chosen, regardless of which type of product they were

working with. This had a clear negative impact on how Agile ways of working

were perceived.

Please note that we are not talking about the Agile culture, which mostly actually

was seen as something new and positive.

After a while, the insight that practices of course had to be adjusted to each unit’s
situation once again was recognized, and the religious discussions have been

dramatically played down in most cases.

16.3 Summary

The transformation towards an Agile culture and Agile ways of working (now lately

combined with Lean culture and practices) has fundamentally changed Ericsson

product development.

How the actual practices have been implemented, and how we have started to

manage large-scale Agile system development, is not revolutionary (well, ok in

some cases, probably they are). However, the scale of the change has been extraor-

dinary, in terms of the number of units and people involved, but also in the change

in culture.

With this chapter, we hope you have appreciated us sharing some of the insights

we have gained in managing very large-scale change endeavors.

It all boils down to the old truth: you have to understand what you are leaving

and where you are heading and what you aim to achieve.

210 J. Wigander

Chapter 17

Scaling Agile Mechatronics: An Industrial

Case Study

Jonn Lantz and Ulf Eliasson

Abstract The automotive industry is currently in a state of rapid change. The

traditional mechanical industry has, forced by electronic revolution and global

threats of climate change, transformed into a computerized electromechanical

industry. A hybrid or electric car of 2013 can have, in the order of 100 electronic

control units, running gigabytes of code, working together in a complex network

within the car as well as being connected to networks in the world outside. This

exponential increase of software has posed new challenges for the R&D organiza-

tions. In many cases the commonly used method of requirement engineering

towards external suppliers in a waterfall process has shown to be unmanageable.

Part of the solution has been to introduce more in-house software development and

the new standardized platform for embedded software, AUTOSAR.

During the past few years, Volvo Cars has focused on techniques and processes

for continuous integration of embedded software for active safety, body functions,

and motor and hybrid technology. The feedback times for ECU system test have

decreased from months to, in the best cases, hours.

Domain-specific languages (DSL), for both software and physical models, have

been used to great extent when developing in-house embedded software at Volvo

Cars. The main reasons are the close connection with mechatronic systems (motors,

powertrain, servos, etc.), the advantage of having domain experts (not necessarily

software experts) developing control software, and the facilitated reuse of algo-

rithms. Model-driven engineering also provides a method for agile development

and early learning in projects where hardware and mechanics usually are available

only late. Model-based testing of the software is performed, both as pure simulation

(MIL) and in hardware-in-the-loop (HIL) rigs, before it is deployed in real cars.

This testing is currently being automated for several rigs, as part of the continuous

integration strategy.

The progress is, however, not without challenges. Details of the work split with

Tier 1 suppliers, using the young AUTOSAR standard, and the efficiency of

AUTOSAR code are still open problems. Another challenge is to manage the

complex model framework required for virtual verification when applied on system

level and numerous DSLs have to be executed together.

J. Lantz (*) • U. Eliasson

Volvo Car Group, Gothenburg, Sweden

e-mail: jonn.lantz@volvocars.com; ulf.eliasson@volvocars.com

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1_17

211

mailto:jonn.lantz@volvocars.com
mailto:ulf.eliasson@volvocars.com

17.1 An Industry in Change

During the last 20 years, the automotive industry has been challenged by consid-

erable changes politically and environmentally due to the contribution to climate

change, and technically in line with the embedded software revolution. The result is

cleaner and there are more advanced and highly computerized cars. The amount of

software in cars grows nearly exponentially with time [5].

As the challenge of computerization is present in other businesses as well, e.g.,

IT industries, one might ask: what is different with cars? The answer is: at least

threefold, considering the market today. First, the expected lifetime of a car, about

15 years, is longer than for most other consumer goods, e.g., mobile phones. This

puts different constraints on hardware and software than for products with shorter

lifetime. The driver of a car expects to have full IT capability even when the car is a

few years old. The second part concerns safety and robustness; the car is a real-time

system that is always in a safety-critical situation where human lives are at stake.

An airplane in the air usually has time to reboot a malfunctioning system during

flight. A few seconds without control is not critical. A car is always on the ground

and hence always in risk of collision. The third part is size. As in the airplane the

mechatronics is spread over a large vehicle, creating a multi-ECU system with

numerous dependent subsystems and functions. Finally, one should not forget the

psychology of automotive. We are still steering cars mechanically, although the

technology for “drive-by-wire” is available and might even be cheaper. This is

since the industry not only has to fulfill legal requirements but also the expectations

and opinions of customers. A mechanical steering train feels safe.

The automotive market will continue to evolve towards more computerized

mechatronics. If the main challenges currently are zero CO2 emission and scaling

of mechatronic systems, the challenges in the near future will probably involve an

enormous increase in connectivity, between cars and between cars and other

systems, and autonomous driving. The challenge for any OEM will be adopted.

17.2 The Volvo Way

At present day, R&D at VCG is an interesting mixture of traditional automotive

requirement engineering using waterfall strategy and agile in-house development.

The in-house initiatives started in groups responsible for product features domi-

nated by software functionality, such as active safety, motor control systems, body

electronics, and hybrid technology. Nevertheless, the majority of systems in the car

are still developed using a waterfall process, with requirement engineering

followed by outsourced development of components and software. Then the ECU

is finally delivered, whereas physical integration, rig, and finally system level

testing can be conducted at the OEM. One should also note that the overall

communication architecture is still developed using waterfall practices

212 J. Lantz and U. Eliasson

[6]. Hence, we are considering agile development inside ECUs only, which often

translates to creation of agile feature or function groups. The ECU is usually tailor-

made for its domain, which gives the associated teams a partial freedom to choose

their own strategies. Only when the interface towards other ECUs needs to be

updated that the development turns non-agile. This distributed process evolution is

ongoing, and it is unwise to speculate in future directions, although details will be

discussed below.

The new standard for automotive software architecture, AUTOSAR [9], has

improved and facilitated distributed development in many ways, although the

standard is still not 100% developed and comes with some teething problems.

AUTOSAR defines applications (compared with, e.g., mobile applications) for

embedded ECUs, introducing some degree of platform independence. An

AUTOSAR application need not be ECU specific, and its format is the same even

for very different ECU platforms, hence, facilitating post-deployment and stan-

dardized updates of software. It is also important that AUTOSAR helps suppliers to

develop standardized solutions for common tasks, as IO, diagnostics, and commu-

nication. Finally, AUTOSAR defines a standard for integrating applications and

eventually also configuring the ECU services, which can be automated. This is

extremely powerful since it opens a door to continuous integration, test, and

deployment.

17.3 Agile Domain-Driven Development

The development of in-house software at VCG involves several different platforms

and external suppliers. The associated physical systems and requirements are also

very different. Hence, the development of software in an HMI system is very

different from that on a brake ECU, which in turn is different from developing

the software controlling the coupe climate system. This demonstrates the main

challenge of developing a complex optimized real-time system distributed over

multiple ECUs connected in a complex network. Not only the hardware and ECU

platforms are different but also the domains.

A car platform is the base of the vehicle, electronically and mechanically. On top

of the platform, different car products are built. Significant parts of the software,

hardware, and mechanical construction are reused among the products, and the

number of software variants can hence be minimized. A new platform is developed

as a project, spanning over several years. The present product platform at VCG is

currently in the final stages of development, and the first products are being

finalized. This is also the first platform where considerable amounts of software

in several ECU systems are developed in-house.

Since the new platform is developed as one single project, almost all systems are

developed or redeveloped in parallel. There is indeed reuse of knowledge and

solutions from previous platforms, but only while the same supplier is kept when

switching platform. Otherwise, the knowledge will be limited by the documentation

17 Scaling Agile Mechatronics: An Industrial Case Study 213

stored at VCG, in the form of requirements. The most striking consequence of this

parallel development is the late learning associated with the waterfall process.

Faulty assumptions and bugs are discovered at the first real integration [10], leading

to numerous task force initiatives and enormous workload near the project deadline.

Consequently, complexity and its associated problems drive VCG towards more

in-house software development.

Changing to in-house software development is however nontrivial. The car

involves multiple and quite different ECU platforms, although AUTOSAR has

initiated a process of standardization. Moreover, each ECU platform typically has

an IO connecting it to sensors and actuators. Consequently, an overall R&D

decision has been to restrict in-house development to feature or controller applica-

tions (following the AUTOSAR definition [1]), leaving the platform software and

IO to the Tier 1 supplier. This work split will also give the in-house developers

access to the car network, which is designed by VCG.

However, as associated mechanics, hardware, and software are developed in

parallel for each ECU subsystem, there is still a substantial part of the development

being outsourced, based on requirements, also for the in-house ECU. In some cases

the mechatronics is outsourced to other suppliers than the ECU platform, which is

demonstrated in Fig. 17.1. It is common to have these three parallel development

lines for each function, which are merged late in the project. Thus, there is still a

significant risk of problems caused by late learning. The first integration of software

in an ECU, or the integration of the ECU itself in the mechatronic system, is then an

extremely important event during the development.

One should note that more thoroughly, requirement development or analysis

upfront might not solve the issues associated with this waterfall process. This is

since it is extremely difficult to foresee details of a solution before it is developed,

which is also the main reason for agile development overall. The VCG solution,

which is popular in automotive industries, is a combination of methods where we

distinguish between domain-driven development (DDD) and model-driven engi-

neering (MDE). The idea of MDE is to develop models of not yet existing, not

delivered, or just unmanageable physical parts. These models can be combined with

models of the control software, creating an executable model of the complete

subsystem. Development and verification of embedded software can then be

conducted on the developers’ regular PCs. DDD is a method to involve domain

experts directly in software development. Domain-specific languages (DSL) can be

specialized for different domains and provide tailor-made abstraction also of rather

advanced code. The gain is speed and considerable simplified reuse of easy-to-read

models. Software development by domain experts through DDD is an important

enabler for agile development, as short loops are facilitated. MDE will boost this

process even further in mechatronic subsystems, where plant models can be used

for reliable virtual verification. Early learning is thus possible (Fig. 17.2). Finally, it

is believed at VCG that software development, testing, and documentation will be

most efficient if the same tool or language is used for all three purposes. The

motivation is simply the minimized tool chain, which is easier to learn. Thus, we are

214 J. Lantz and U. Eliasson

currently trying to integrate as much as possible in the Simulink platform used by

the developers to develop AUTOSAR applications.

Obviously, while trying to predict or create models of parts, communication, or

IO which are not yet realized, assumptions are made [7], of which several will be

faulty. Nevertheless, there is a strong consensus and research results [8] suggesting

that the overall speed will benefit from this approach although the risk of anomalies

C
om

po
ne

nt
Su

b
sy

st
em

Sy
st

em

E1 E2 E3 P

Application Software Development

ECU hardware & software development

M
echanical system development

Vehicle
Test

High-level
Requirements

Fig. 17.1 The V-model as it looks at VCG for a car development project. Software, hardware, and

mechanical development happens in parallel and is integrated at certain points during the project

k
n
ow

el
ed

g
e

time

Knowledge needed

Decision Integration

2

1

Fig. 17.2 Using DDD and MDE techniques, it is possible to boost early learning although real

integration is not yet possible. (1) Demonstrates the typical knowledge curve for waterfall

development using requirement engineering, where no learning is possible from simulations.

(2) Demonstrates the corresponding curve using virtual verification and plant models. Much is

learned using the models, although some faulty assumptions may still cause some late learning

17 Scaling Agile Mechatronics: An Industrial Case Study 215

due to faulty assumptions is always present. The risk of finding serious bugs in late

integration, without previous modeling, is too large.

As described above, the methods differ between different sections of R&D.

Nevertheless, the overall process is roughly the same. A common system model

manages the complete architecture with all its networks, ECUs, and application

software components. The system model provides the ECU with interfaces,

whereas agile development can be conducted at each ECU on a more flexible

internal architecture. Changes in the inter-ECU communication are, however, still

rather slow due to the complexity and manual configuration of the network.

The interfaces of AUTOSAR applications are defined using an AUTOSAR

meta-model and can be stored in the main system model. These AUTOSAR models

are described and exchanged as XML. This AUTOSAR XML is the main format for

communicating architectural data, both between groups at VCG and with suppliers.

VCG is presently using AUTOSAR 4.0.3 [9].

The use of a system model and DSLs forces VCG to maintain several model

transformations. Efficient and automated model transformations are generally

believed as a key to efficient DDD or MDE. But they are also considered as the

main bottleneck. Automation and robustness are essential. At VCG the AUTOSAR

XML, being the main exchange format part from C-code, is involved in all model

transformations, communicating the architectural information about the system.

Examples of these automated transformations are as follows: code generation,

which is the creation and maintenance of the interfaces of AUTOSAR application

in the form of Simulink models [2], and virtual integration, in which larger

Simulink models representing complete ECUs or even larger subsystems are

generated from application models and architecture XML. It is important to notice

that all these transformations are developed in-house, although big parts are also

bought off the shelf, as the C-code generation.

Before a change or a new function can be deployed in a vehicle, it has to pass

three levels of testing: the developers unit test, MIL test, and HIL test. The HIL

testing, where the ECU with controller software is running in a model environment,

is widely used. This is since it represents the first chance to test Tier l software,

eventually in combination with in-house software. The MIL test is not yet fully

utilized at R&D, but state of the art is to generate Simulink ECU models which are

tested against plant models (mainly physical and environmental models). These

MIL tests can also be extended to full-scale virtual cars running complete drive

cycles. Comparing MIL and HIL, the latter is important for configuration, integra-

tion, and performance test. Detailed temporal testing is however difficult as the HIL

rig runs in real time. The MIL test is a white box test technique, offering full insight

in the system model while running. This is a powerful technique to test temporal

functions and for edge testing, although it requires large computers and tedious

maintenance.

216 J. Lantz and U. Eliasson

17.4 The Art of Virtual Verification

The idea of virtual verification at VCG is to find functional and communication

errors early, preferably in a fully controlled white box MIL environment. Regres-

sion tests on virtual cars can detect issues on system level, without expensive rigs or

prototypes. Moreover, it is extremely useful for edge testing of potentially danger-

ous maneuvers as for tedious (simulated) long time wear and tear test. Continuous

integration in a virtual verification environment can provide very fast and reliable

feedback, although the full system (car) is far from ready.

The final tests before deployment in cars are done in HIL rigs and in rigs

combining simulated environment with real devices (e.g. engines, lamps or other

mechatronics). Regression tests are automated here as well, although the feedback

time is generally longer. State of the art for HIL test is feedback within 24 h. Thus,

using the existing framework and avoiding changes in the inter-ECU communica-

tion, we can in principle deploy a new software version in a test car within 24 h.

Considering the in-house teams at VCG which are active in virtual verification

development, we note that domain-specific languages (DSL) in physical domains

tend to be very specialized. Since several domains (both physical and software) are

modeled, tools and languages can be very different. DSLs facilitate modeling and

enable reuse and readability but make integration and model transformations

(as code generation) trickier. Since modules in different languages also have

different interfaces, or even interface semantics, it is difficult to agree about

common interfaces. The same holds for exchange and integration formats. A

common conclusion today is that C-code is the natural model exchange format

for executable models. All modern tools for software modeling and the leading

tools for physical modeling are shipped with C-code generation capability. The

challenge is however to communicate interfaces and variable formats from different

tools and domains, as well as to integrate different paradigms of modeling in a super

model which is executable. Today at VCG, executable full vehicle models are

constructed using subsystem models from different domains delivered as Simulink

models or as generated C-code which is manually harnessed in Simulink. It is a

tedious work to ensure that all parts of this super model compile and run correctly

together.

An important challenge which one soon realizes after integrating a few different

physical or software models in a virtual verification environment is the lack of good

architecture tools. In the coming years, much effort will be spent both on

constructing repositories for various plant models and on architecture solutions.

The architecture challenge is complicated even more since different plant models of

the same part or device are used for different purposes. Moreover, the plant model

of a device may also be replaced by a real device, using a rig, while other parts of

the system remains virtual. There are numerous combinations, and in all cases the

architecture has to describe both the software system and the mechanical or

electrical system such that the system model is executable.

17 Scaling Agile Mechatronics: An Industrial Case Study 217

17.5 Continuous Integration at VCG

During the past 2 years and the startup of the research-industry collaboration

Software Center, continuous integration initiatives have been initiated at several

in-house software groups at VCG. Although the R&D as a whole still defines itself

as a traditional waterfall process requirement engineering organization, several

groups, driven by the need for speed in software innovation-oriented areas, have

successfully implemented local agile processes and ad hoc tool chains. Hence, the

common consensus is that the single ECU can be agile [6], although changes

involving other ECUs or supplier technology are still required to follow the

waterfall workflow. The majority of the car software is still developed by Tier

1 contractors. Nevertheless, the trend during the past years has been an ambitious

increase of the in-house software, with all the challenges that follow in the highly

distributed mechatronic vehicles.

Considering the agile ECU the main challenge for continuous integration has

been to adopt the tool chain used for domain-driven development for automation.

Several tools as well as the newborn standard AUTOSAR 4.0.3 are immature and

require numerous workarounds and hacks. Problems occur because of varying

interpretations of the AUTOSAR standard. This forces the integration teams to

design scripts for automated translation of the AUTOSAR exchange documents

between different interpretations. The maintenance and quality assurance of these

scripts are considered to be great challenges. Another challenge is the incorporation

of DDD transformations in the AUTOSAR tool chain and the automation of

software builds. It has been shown that the DDD+MDE workflow is very efficient

at VCG regarding speed and reuse in in-house software development, as it provides

tools both for directly involving domain experts in the software development and

since it facilitates simulation of, e.g., mechatronic subsystems before the real

hardware and mechanics is present [8]. The latter enables early unveiling of faulty

assumptions regarding mechanics and the surrounding system, assumptions which

in a waterfall process would have been discovered first at the first real integration.

Continuous integration is currently defined at VCG as automated file collection

and build of ECU software followed by regression tests in HIL rig and in some

cases MIL environment (running a model of the ECU in a virtual environment). The

HIL tests require nightly testing to complete. The feedback time is 24 h at best. One

should note that some ad hoc reconfiguration is usually needed to integrate new

versions of the supplier part of the software in an ECU, or if the ECU interface

towards the cars network is updated. Nevertheless, automated builds with feedback

on ECU level can be executed in about an hour, without the time-consuming

regression test execution.

The development towards continuous integration at different groups has

followed the outsourced development of the used platform. Hence, true integration

has not been possible until real ECU hardware has been available. Moreover, an

agreement with the ECU supplier has to be made, establishing a common build

218 J. Lantz and U. Eliasson

environment (including the automated RTE generation and other support services

in AUTOSAR [1]).

Agile development does not follow the waterfall model. Obviously, architecture,

applications, and models are always under development. This is why continuous

integration, virtual or real, is so essential for agile development. In an agile process

at VCG, the requirement, which was earlier used to order Tier 1 software, may now

be written after the software has been implemented. The traceability (required by

the automotive ISO 26262 standard [4]) between requirement, model, test, and code

artifacts must however be complete in the end.

17.6 Process and Organizational Aspects of Agile

The most striking change, apart from the increased speed, when a group used to

requirement engineering moves on and start developing in-house software is the

natural breakdown of the waterfall process, which is translated into an agile

process, as far as the tools and the organization allows (Fig. 17.3).

In a waterfall process, the key is complete and the requirements and specifica-

tions are well written. Another key is to have long development cycles, such that

faulty assumptions and diverging design decisions among the developing parties,

e.g., due to incomplete specifications, can be redeveloped in time. This works as

long as the systems involved are not too complicated and possible to design without

reliable testing and while the market allows the long development cycles required.

The most common reason to switch to in-house development is not time to

market, but frustration over slow progress and high prices when updates are

required. Costly updates of an existing outsourced software which is not working

as expected are a common and strong driver.

When the decision is made and the group finally has built up the competence for

in-house development and stable ECU builds, the process and workflow utilized by

the development teams usually change towards more agile methods. There are

examples of formation of “supplier groups,” i.e., keeping the waterfall workflow

with requirement design followed by handover to software developers, but the most

common way is to use existing groups and introduce ad hoc collaboration and

“function teams.” Since the groups at VCG responsible for functions or features

usually are cross-functional (i.e., involves hardware, software, and mechanics) and

since testing groups and facilities are usually located nearby, there is a natural

formation of “cross-functional” development teams, or at least closely collaborat-

ing individuals. When an integration team is finally established and the ECU

supports in-house integration (usually require supplier negotiations), continuous

integration (virtual or real) and an agile process will be feasible.

One should note that agile development is and will be difficult as long as the

outsourced development of the hardware is parallel with the software development

17 Scaling Agile Mechatronics: An Industrial Case Study 219

in the same project. This parallel development can be facilitated and early learning

can be boosted using MDE [8]. Nevertheless, it is clear that improved planning of

hardware and software projects could improve the software development.

An important aspect of the in-house development is the construction of devel-

opment teams and roles. Considering the complete needs of architecture, software

development (i.e., software modeling by domain experts), requirement develop-

ment, and integration/automation, different groups at R&D have chosen slightly

different strategies. It is common to assign one integration team, managing tool

chains, integration, and “secondary software” (required for model transformations,

code generation, integration configuration, etc.). The idea is to let domain experts

focus on modeling the domain software and not bother with the usually much more

code-oriented tools of integration and build environments. Nevertheless, at least

one large group has intentionally distributed the integration responsibility among

some of the developers. This will require larger investments in increased compe-

tence but will lower the risk of “dependence of the few,” e.g., when integration

falls when the experts are gone. The complete integration team is still located in

the same group.

Attempts have also been made to outsource the development of the secondary

software. Nevertheless, it appears at least from initial studies that this is hazardous.

In an organization utilizing DSLs for agile development, the secondary software

will be in constant change, driven by tool version updates, new features, new

agreements, etc. Thus, the development of the application software and the sec-

ondary software has to be equally agile.

At all in-house developing groups, there has been a natural grouping of devel-

opers contributing to the secondary software in the integration teams, mainly since

1. Waterfall 2. Agile DDD/MDE

time

D
evelopm

ent

Te
st

C
om

po
ne

nt
Sy

st
em Te

st

Fig. 17.3 Illustration of the changed workflow when moving to an agile process. While the

waterfall process (1) consists of successive handovers, a function team using agile methods (2),

DDD and perhaps MDE, can conduct fast successive loops spanning from system level to

component development. The agile process is finalized by the “standard” handovers of solutions

for final tests on the subsystem (rig) and system (car) levels

220 J. Lantz and U. Eliasson

the software engineering competence required for integration is similar to that of

model transformations and code generation. The formation of integration teams

also follows the physical car architecture, as does the R&D organization. One ECU

is managed by one integration team. The only exception is the “Electric Propulsion

System” Department, where one integration team supports four ECUs. These ECUs

are, however, rather small. As a consequence it is straightforward to move or reuse

software components between EPS ECUs, but difficult to move an application from

active safety to the ECU running the body functionality. This is since modeling

strategies and integration environments differ between different integration teams.

Nevertheless, this is currently not a problem. Usually there is no point in moving

around applications, since the ECUs are domain oriented. Having different Tier1

suppliers also makes reuse or relocalization difficult. Hence, we see an organization

reflecting the mechanical and functional architecture.

It is natural to argue that centralized, larger ECUs collecting the vast majority of

the in-house software then would save integration personnel and money. The case

is, however, not that simple, which is discussed in the next section.

17.7 Optimizing Automotive Mechatronics

Judging from the previous sections, some readers might find the car architecture

with the order of 100 ECUs overcomplicated. Why not facilitate software devel-

opment by replacing several ECUs by one and adopt a standardized and easy-to-

maintain tool chain? The answer is, however, nontrivial although it may be worth-

while in some cases.

The cost of producing a vehicle is still dominated by the vehicle production. The

R&D cost is hence relatively small and the software share of this R&D cost is

generally believed to be less than 1/3, although this number increases rapidly. Exact

numbers for the software-related parts of the development cost are however diffi-

cult to find, and no numbers will be mentioned here. Nevertheless, the software part

of the development cost is increasing for modern vehicles and will continue to

increase. Moreover, the cost of recalled vehicles due to software bugs can be

enormous [3]. One could also argue that the slow pace of software development,

at system level, which is implied by the complex network and mechanical optimi-

zation may not work in a future more software feature-driven car market.

The common understanding in the automotive business is, correct or not, that the

bulk of vehicle cost is hardware and mechanics. This has several important impli-

cations. First, standardization of automotive ECUs is held back, with very few

exceptions. It is almost always considered as worth the effort to switch to a lighter

or cheaper platform. It is not unusual that platforms are built from scratch. Second,

the cabling represents an important contribution to the total vehicle cost. Hence,

centralization of functionality in a mechatronic system may not be profitable,

although the development would be facilitated a lot. Numerous ECUs in the car

have extensive and sensitive cabling to sensors and actuators. Moreover, it is not

17 Scaling Agile Mechatronics: An Industrial Case Study 221

uncommon that timing requirements on the functionalities implemented in these

ECUs requires the software to run locally. Motor controllers are a good example. If

key customer functionality is included, it cannot be centralized and the develop-

ment will have to struggle with the disadvantages of nonstandard platforms.

The AUTOSAR initiative has raised the issues of reuse and portability of

software. However, these needs are not yet visible in the industry, mainly since

the organization of automotive OEMs as VCG is reflecting the ECU architecture.

However, when the power and markets of post-delivery updates of car software are

recognized in large scale, the situation may be different.

References

1. AUTOSAR. http://autosar.org/

2. AUTOSAR support in MATLAB and simulink – automotive industry standards – MathWorks

nordic. http://www.mathworks.se/automotive/standards/autosar.html

3. Toyota recalling 1.9 million prius cars. http://www.usatoday.com/story/money/cars/2014/02/

12/toyota-prius-recall/5414055/

4. ISO/DIS 26262 road vehicles – functional safety. Tech. rep. (2011)

5. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. IEEE Comput. 42(4),

42–52 (2009)

6. Eklund, U., Bosch, J.: Archetypical approaches of fast software development and slow

embedded projects. In: 2013 39th EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Sep 2013, pp. 276–283

7. Eliasson, U., Burden, H.A.: Extending agile practices in automotive MDE. In: XM 2013-

Extreme Modeling Workshop, p. 11 (2013). http://ceur-ws.org/Vol-1089/proceedings.

pdf#page¼19

8. Eliasson, U., Heldal, R., Lantz, J., Berger, C.: Agile model-driven engineering in mechatronic

systems – an industrial case study (2014), Models 2014 ACM/IEEE 17th International

Conference on Model Driven Engineering Languages and Systems

9. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper, P., Kinkelin,

G., Nishikawa, K., Lange, K.: AUTOSAR–A worldwide standard is on the road. In: 14th

International VDI Congress Electronic Systems for Vehicles, Baden-Baden (2009). http://

www.win.tue.nl/~mvdbrand/courses/sse/0809/papers/AUTOSAR.pdf

10. Mellegard, N., Staron, M., Torner, F.: A light-weight defect classification scheme for embed-

ded automotive software and its initial evaluation. In: 2012 I.E. 23rd International Symposium

on Software Reliability Engineering (ISSRE), Nov 2012, pp. 261–270

222 J. Lantz and U. Eliasson

http://autosar.org/
http://www.mathworks.se/automotive/standards/autosar.html
http://www.usatoday.com/story/money/cars/2014/02/12/toyota-prius-recall/5414055/
http://www.usatoday.com/story/money/cars/2014/02/12/toyota-prius-recall/5414055/
http://ceur-ws.org/Vol-1089/proceedings.pdf#page=19
http://ceur-ws.org/Vol-1089/proceedings.pdf#page=19
http://ceur-ws.org/Vol-1089/proceedings.pdf#page=19
http://www.win.tue.nl/~mvdbrand/courses/sse/0809/papers/AUTOSAR.pdf
http://www.win.tue.nl/~mvdbrand/courses/sse/0809/papers/AUTOSAR.pdf
http://www.win.tue.nl/~mvdbrand/courses/sse/0809/papers/AUTOSAR.pdf

Index

A
A/B testing, 4, 157

Academic excellence, 9

Active safety, 212

Agile development, 15–26

Agile development practices, 6

Agile evolution, 83–92

Agile organizations, 39–49

Agile software development (ASD), 6, 39

Agility, 40

Alternative implementation, 161–162

Architects, 11, 39–49

Architectural rules, 81

Architecture

documentation, 44

education, 47

evolution and refactoring, 40

runway, 40

Artifacts per potential executions (APPE), 113

“Automated build”, 109

Automated measurement, 183

Automated testing, 129–131

Automated test suite, 15

Automotive industry, 211

Automotive mechatronics, 221–222

Autonomous box parking, 118–122

AUTOSAR, 216

Axis Communications, 9

B
Backlog building development, 90

BAPO model, 18

“Big-bang” integration, 8

Big data, 5

Burndown charts, 107

Business, 16

ecosystem, 15

goals, 51–65

C
CAFFEA framework, 39

Chalmers University of Technology, 9

Change frequency, 177–178

Chief architect, 39

Civil security, 20

CIViT, 97–105

Co-creation, 16

Code reviews, 46

Collaboration, 29–36

Collaborative research, 35

Communications networks, 21

Configuration managers, 20

Consumer electronics, 143

Continuous assessment, 168

Continuous deployment, 8, 15–26

Continuous innovative development, 90

Continuous integration, 8, 18, 97–105

Continuous integration environment, 7

Continuous software engineering, 3–13

Cross-functional, 6

Cross-functional development teams, 17, 206

Cross-functional teams (XFTs), 86, 207

Customer

collaboration, 16, 83

feedback, 16, 145

first-features, 85

relationship management, 85

requests, 84

© Springer International Publishing Switzerland 2014

J. Bosch (ed.), Continuous Software Engineering,
DOI 10.1007/978-3-319-11283-1

223

Customer (cont.)
responsiveness, 155

satisfaction, 88

support, 85

unique-features, 85

Customer-specific teams, 83–92

Cyber-physical systems, 125

D
Data analysis, 29

Data collection method, 20, 29

Data-driven development, 155

Data-driven software development, 155–163

Data sense-making, 29

1st Deployment Speed, 59

Diagnosis, 193–194

Diagnostic data, 150

Directed Acyclic Graph, 109

Distributed teams, 58

Domain driven development (DDD), 214

Domain specific languages (DSL), 211

E
Ecosystem, 16

architecture, 19

management, 15

organizing, 19

strategy, 19

Efficiency, 16

Engine control unit (ECU), 218

Ericsson, 9, 84, 203

Erosion, 46–47

ESAO model, 16

Evolution, 49

Evolution speed, 60

Exploratory tests, 129

F
Feature, 161

Feature backlog, 160–161

Feature-boxed development, 90

Feature dependencies, 62

Feature experiments, 17

Feature usage, 152

Feedback loops, 16, 83

Flexibility, 16

Force protection, 20

Forums, 44

G
Gap analysis, 161

Governance architect, 39

Graphical user interface (GUI), 12, 127

Grounded theory, 42, 147

Grundfos, 9

H
Hardware-in-the-loop (HIL), 211

Home automation, 143

HYPEX model, 12, 155–163

Hypothesis generation, 161

I
“If it hurts, do it often”, 7

Innovations, 16, 35

Innovation system, 25–26

Innovativeness, 90

Integration flows, 110

Interaction challenges, 51

Interaction speed, 59–64

Internet of Things, 5

Inter-organizational relationships, 15

Inter-personal conflicts, 63

Inter-team documentation, 78–79

J
JAutomate, 134

Jeppesen, 9

L
Large-scale embedded systems, 83–92

Legacy functionality, 100

M
Malmö University, 9

Manual testing, 129

Measurement information model, 185

Mechatronics, 211–222

Meta-model, 110

Military defense, 20

Model based testing, 130, 211

Model driven engineering (MDE),

13, 214

Multi-disciplinary teams, 6

Multiple case study, 147

224 Index

N
Navigable documentation, 79

Non-functional requirements (NFR), 170

O
Open innovation, 16

Operational data, 150

Operators, 204

Opportunity-based development, 90

Organization, 16

Organizational boundaries, 57–59, 80

Organizational performance metrics, 12

P
Paradigm shift, 16

Pattern distillation, 44

Performance profiles, 167

Periodicity of testing, 101

Platforms, 11, 213

Plenary sessions, 44

Politicized prioritization process, 160

Post-deployment data collection, 143–153

Practices, 15

Pre-release properties, 167

Processes, 15

Product

management, 17, 85

performance, 167

sales, 85

variation, 84

Project

leaders, 20

management, 74

PROPS, 205

Q
Quality assurance (QA), 20

Quality attributes, 100, 104

Questionnaires, 44

R
R&D accuracy, 155

R&D efficiency, 155

Refactoring, 49

Reference architecture, 74

Release cycle, 85

Repairing, 194–195

Replication speed, 60

Requirements engineering, 150

Research design, 41–42

Responsiveness, 49, 85

Retrospective sessions, 46, 107

Risk management, 43

Roadmap teams, 86

Root factor analysis, 60

Root factors, 60

S
Saab Electronic Defense Systems, 9

Scale, 85

Scope of testing, 100

SCRUM, 73

Scrum, 39, 206

Security, 143

Self-driving car, 117

Self-healing measurement systems, 183–199

Self-managed teams, 40

Semi-structured interviews, 20

Sikuli, 133

Simulation-based testing, 123

Simulink, 216

Social network systems, 145

Software architects, 20

Software-as-a-Service (SaaS), 3, 145

Software center, 9–10, 31

Software engineering, 13

Software-intensive organizations, 143

Software-intensive systems industry, 4–6

Software platform, 11

Software reuse, 11

Speed, 11, 16

Sprints, 10, 17, 46

Stairway to Heaven, 7, 15–26

Stakeholders, 16

Steering Committee, 31

Steering group, 31

Streamline development, 204

Surveillance, 20

System engineers, 20

System management (SM), 170

Systems engineering (SE), 20

System under test (SUT), 127

T
Task force group, 31

Team architect, 39

Team interactions, 51–65

Technical debt, 49

Technology, 16

Telecommunication, 143

Index 225

Telecommunication systems, 21

Telecom networks, 204

Testability, 45

Test automation, 128

Test case generation, 130

Test-driven development (TDD), 7, 99

Test strategy, 98

Threat detection, 20

Transportation, 143

Transport solutions, 20

U
Unit test suite, 109

University of Gothenburg, 9

V
Validation, 6

Verification, 6

Version control, 84

Virtual test environments, 118

Virtual testing, 122–125

Virtual verification, 217

Visual GUI testing (VGT),

127–139

Volvo, 9

Volvo Car Corporation, 9, 180

W
Waterfall, 17

Waterfall process, 219

Ways of working, 203–210

Web 2.0 technologies, 3, 145

Widget based GUI based testing, 131

X
“10X in 10 years”, 9

226 Index

	Foreword
	Preface
	Contents
	Part I: Introduction
	Chapter 1: Continuous Software Engineering: An Introduction
	1.1 Introduction
	1.2 Software-Intensive Systems Industry
	1.3 The Changing Practice of Building Software
	1.4 A Systematic Evolution Model
	1.5 Software Center
	1.6 Structure of This Book
	Conclusions
	Reference

	Chapter 2: Climbing the ``Stairway to Heaven´´: Evolving From Agile Development to Continuous Deployment of Software
	2.1 Introduction
	2.2 Background
	2.2.1 The ``Stairway to Heaven´´
	2.2.2 The ESAO Model
	2.2.2.1 The Ecosystem Perspective

	2.3 Research Method and Sites
	2.4 Findings and Analysis
	2.4.1 From Traditional to Agile RandD
	2.4.2 From Agile to Continuous Integration
	2.4.3 From Continuous Integration to Continuous Deployment
	2.4.4 From Continuous Deployment to RandD as an ``Innovation System´´

	Conclusions
	References

	Chapter 3: Academia-Industry Collaboration: Getting Closer is the Key!
	3.1 Learning from Pre-software Center Collaborations
	3.2 Getting Closer: On All Levels
	3.3 Embracing Identified Success Factors
	3.3.1 Address Activities to Ensure Results
	3.3.2 Ensure Management Engagement
	3.3.3 Embrace Research Negotiations
	3.3.4 Organize Get-Togethers
	3.3.5 Fund Small Research Projects
	3.3.6 Communicate Both Progress and Result
	3.3.7 Attend to Both Needs and Goals
	3.3.8 Be Agile
	3.3.9 Allow Innovation to Emerge from Needs
	3.3.10 Realize that Collaborative Research Involves Learning

	3.4 The Next Step Towards Increased Collaboration
	References

	Part II: Agile Practices
	Chapter 4: Role of Architects in Agile Organizations
	4.1 Background
	4.2 Research Design
	4.2.1 Cases Description
	4.2.2 Data Collection and Analysis

	4.3 Roles and Activities
	4.3.1 Chief Architect
	4.3.1.1 Risk Management
	4.3.1.2 Managing Decisions and Changes
	4.3.1.3 Pattern Distillation
	4.3.1.4 Providing Architecture Documentation (Communication Output)
	4.3.1.5 Receiving Input About the Current Status of the System (Communication Input)

	4.3.2 Governance Architect
	4.3.2.1 Inter-features Architecting (Architecture Decision)
	4.3.2.2 Architecting for Testability
	4.3.2.3 Risk Management
	4.3.2.4 Controlling Erosion
	4.3.2.5 Architecture Education for the Teams (Communication Output)
	4.3.2.6 Knowledge of the Status of the System (Communication Input)

	4.3.3 Team Architect
	4.3.3.1 Risk Management
	4.3.3.2 Managing Decisions and Changes
	4.3.3.3 Providing Architecture Documentation (Communication Output)
	4.3.3.4 Monitoring the Current Status of the System (Communication Input)

	4.3.4 Gap in the Current Practices

	Conclusion
	References

	Chapter 5: Teams Interactions Hindering Short-Term and Long-Term Business Goals
	5.1 Background
	5.1.1 The Participating Companies

	5.2 Challenges Hindering Business Goals Based on Speed
	5.3 Interaction Challenges in Depth: Which Parts of the Organization Do the Agile Teams Struggle to Interact With?
	5.3.1 Challenges Related to Different Companies
	5.3.2 Different Roles´ View on Some Challenges
	5.3.3 Prioritization of Interaction: Selection of Critical Organizational Boundaries in Need for Intergroup Interaction Improv...

	5.4 Root Factors for Interaction Speed Hindering Business Goals
	Conclusion
	References

	Chapter 6: A Framework for Speeding Up Interactions Between Agile Teams and Other Parts of the Organization
	6.1 Background
	6.2 Improvement Framework for Mitigating Interaction Challenges and a Use-Case Scenario
	6.3 Improvement Practices for Mitigating Interaction Challenges
	6.3.1 Practice 1: Integrate Workshops and Meetings at the Start of the Project with the Milestones Defined by the Processes
	6.3.2 Practice 2: Include Employees with Knowledge of the (Sub-)System Architecture and Requirements in Cross-Functional Teams
	6.3.3 Practice 3: Implement Dedicated Temporary CFT for Estimation During Product Sale Phase
	6.3.4 Practice 4: Formal and Informal Meetings Between the Development Team and Architects, System Responsible, and Separated ...
	6.3.5 Practice 5: Formal and Informal Meetings with Project Management
	6.3.6 Practice 6: Provide Isolation by Programming Common Available Time (Workshops) with the Critical Groups
	6.3.7 Practice 7: Tailor the Processes to Achieve Similarity
	6.3.8 Practice 8: Create Communication ``Proxies´´ Between Mismatching Processes
	6.3.9 Benefits:
	6.3.10 Practice 9: Monitor and Meet to Define Responsibilities for Integrated Parts of the Software
	6.3.11 Practice 10: Include Inter-team Documentation (Integration-Related) Into the Backlog Stories
	6.3.12 Practice 11: Create Indexes and Brokers
	6.3.13 Practice 12: Navigable Documentation
	6.3.14 Practice 13: Define Documentation Requirements for Groups Across Organizational Boundaries
	6.3.15 Practice 14: Make Available Part-Time Experts Serving Different Teams and Covering Critical Knowledge (The Most Request...
	6.3.16 Practice 15: Increase the Tools for Awareness
	6.3.17 Practice 16: Implement Architectural Rules for ASD

	Conclusion
	References

	Chapter 7: Customer-Specific Teams for Agile Evolution of Large-Scale Embedded Systems
	7.1 Introduction
	7.2 Large-Scale Software Development
	7.2.1 Scale Versus Responsiveness in Large-Scale Agile
	7.2.2 Customer-Specific Team Development

	7.3 Research Site and Method
	7.4 Findings
	7.5 Discussion
	7.5.1 Feature Development Approaches
	7.5.2 Customer-Specific Team Approaches

	Conclusion
	References

	Part III: Continuous Integration
	Chapter 8: The CIViT Model in a Nutshell: Visualizing Testing Activities to Support Continuous Integration
	8.1 Introduction
	8.2 Related Work
	8.3 Continuous Integration Visualization Technique
	8.4 Applying CIViT Model: An Experience Report
	8.5 Evaluating the CIViT Model
	Summary and Conclusions
	References

	Chapter 9: Continuous Integration Flows
	9.1 Defining Continuous Integration
	9.2 Modeling Software Integration Systems
	9.3 Proactive Analysis
	References

	Chapter 10: Towards Continuous Integration for Cyber-Physical Systems on the Example of Self-Driving Miniature Cars
	10.1 Introduction
	10.2 Autonomous Box Parking
	10.2.1 Exemplary Parking Scenario
	10.2.2 Perceiving the Surroundings
	10.2.3 State Machine for Box Parking

	10.3 Virtual Testing for the Box-Parking State Machine for Continuous Integration
	10.3.1 Design Considerations
	10.3.2 Automating Virtual Tests

	Summary and Conclusion
	References

	Chapter 11: Industrial Application of Visual GUI Testing: Lessons Learned
	11.1 Introduction and Background
	11.2 Software Testing
	11.2.1 Manual Testing
	11.2.2 Automated Testing
	11.2.3 GUI-Based Testing and the First Generation
	11.2.4 Second-generation GUI-Based Testing
	11.2.5 Visual GUI Testing (VGT), the Third Generation

	11.3 VGT Tools
	11.3.1 Sikuli
	11.3.2 JAutomate

	11.4 Development of VGT Scripts
	11.4.1 Development Guidelines
	11.4.2 Test Architecture and Design

	11.5 Challenges with Applying VGT
	11.5.1 Expectations
	11.5.2 Synchronization
	11.5.3 Image Recognition
	11.5.4 Others

	11.6 VGT for Continuous Integration
	Summary and Conclusions
	References

	Part IV: RandD as an Innovation System
	Chapter 12: Post-deployment Data Collection in Software-Intensive Embedded Products
	12.1 Introduction
	12.2 Background
	12.2.1 Agile Software Development
	12.2.2 Post-deployment Customer Feedback

	12.3 Research Sites and Method
	12.3.1 Research Sites
	12.3.2 Research Method

	12.4 Post-deployment Data Collection and Usage
	12.5 Discussion
	12.5.1 The ``Post-deployment Data Usage Pyramid´´
	12.5.2 The ``Post-deployment Data Usage Framework´´

	Conclusions
	References

	Chapter 13: The HYPEX Model: From Opinions to Data-Driven Software Development
	13.1 Introduction
	13.2 Background
	13.2.1 From Traditional to Data-Driven Development
	13.2.2 Data-Driven Software Engineering Practices

	13.3 Research Method
	13.3.1 Case Study Research
	13.3.2 Data Collection and Analysis

	13.4 Findings
	13.5 The HYPEX Model
	13.6 Industrial Experiences
	Conclusions
	References

	Part V: Organizational Performance Metrics
	Chapter 14: Profiling Prerelease Software Product and Organizational Performance
	14.1 Introduction
	14.2 Profiling
	14.3 Profiling Prerelease Product and Process Performance in Large Software Development Organizations
	14.4 Establishing the Process of Profiling
	14.5 Case Study: Developing Risk Profile of Software Code
	14.6 Case Study: Profiling Change Frequency of Models over Time
	14.7 Related Work
	Conclusions
	References

	Chapter 15: Industrial Self-Healing Measurement Systems
	15.1 Introduction
	15.2 Mechanisms Foregoing Self-Healing
	15.2.1 ISO/IEC 15939
	15.2.1.1 Example of a Measurement System

	15.2.2 Infrastructure
	15.2.2.1 Visualization of Measurement Products

	15.2.3 Automated Execution Environment
	15.2.3.1 Measurement Team

	15.2.4 Information Quality

	15.3 Self-Healing
	15.3.1 Self-Healing Process
	15.3.2 Realization at Ericsson: Starter
	15.3.3 Triggering of the Self-Healing Process
	15.3.4 Diagnosis
	15.3.5 Repairing

	15.4 Scalability
	15.4.1 Impact on the Company

	15.5 Recommendations for Other Companies
	15.6 Related Work
	Conclusions
	References

	Part VI: Industry Best Practices and Case Studies
	Chapter 16: Experiences from Implementing Agile Ways of Working in Large-Scale System Development
	16.1 Introduction
	16.2 Scaling Agile: A Matter of Change Management
	16.2.1 Why Change?
	16.2.2 Understanding the Greater Picture
	16.2.3 Proof Points
	16.2.4 Cross-Functional Cooperation
	16.2.5 Leadership
	16.2.6 Effects on the Development Staff
	16.2.7 Thoughts Around ``One Size Fits All!´´ Including Cultural Differences

	16.3 Summary

	Chapter 17: Scaling Agile Mechatronics: An Industrial Case Study
	17.1 An Industry in Change
	17.2 The Volvo Way
	17.3 Agile Domain-Driven Development
	17.4 The Art of Virtual Verification
	17.5 Continuous Integration at VCG
	17.6 Process and Organizational Aspects of Agile
	17.7 Optimizing Automotive Mechatronics
	References

	Index

