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Chapter 1
Multiple Criteria Decision Analysis

Abstract A probabilistic approach to multicriteria decision problems can take in
due account the uncertainty that is inevitably present in preference evaluations.
Translating the preference measurements according to different criteria into prob-
abilities of being chosen as the best alternative has two advantages. First, it makes
comparable preference evaluations that come in entirely different scales. Besides, it
opens probabilistic ways to automatically combine the evaluations according to the
multiple criteria.

Keywords Criterion - Multicriteria decision - Preference relation

1.1 Preference Relations

The multi-criteria decision problem consists of deriving a unique preference relation
between certain alternatives from evaluations of these alternatives according to a set
of different criteria.

To evaluate alternatives according to a criterion means, by considering some
attribute, to associate a value to each of them. According to each criterion, a
different preference relation can be stated, and the problem is to derive from them a
unique combination of such preference relations.

To establish a preference relation means to rank the alternatives in such a way as
to be able to say if each of them is preferable to each other or not.

1.2 Classes of Decision Problems

A particular class of decision problems is that of choice. Instead of a full ranking,
what is then sought is to determine among the alternatives that which is the best for
a particular purpose. This is a multi-criteria decision problem if there are different
criteria according to which it is possible to compare the alternatives.

© Springer International Publishing Switzerland 2015 1
A. Parracho Sant’ Anna, Probabilistic Composition of Preferences,

Theory and Applications, Decision Engineering,

DOI 10.1007/978-3-319-11277-0_1



2 1 Multiple Criteria Decision Analysis

Another case of decision problems is that of sorting, which consists of selecting
from among some predetermined classes the most suitable to place an alternative.
This can be seen as a choice problem in which what is chosen is, for each alter-
native, the most suitable from among a small number of classes. In this sorting
problem, a preference between the alternatives is established whenever the prede-
termined classes, where such alternatives are classified, are previously ranked.

Each class is previously identified by a small set of representative alternatives. In
the case of multi-criteria analysis, the vector of the evaluations of each of the class
representative alternatives using the multiple criteria forms what is called a class
reference profile.

1.3 Probabilities of Choice

In a probabilistic framework, attention is given to subjective aspects of the decision
problem that make it impossible to evaluate the alternatives precisely. In the fol-
lowing chapters, an approach to take into account the presence of uncertainty in the
assessments of preference and thereby to generate rules for ranking or sorting the
alternatives based on probabilities of choice is presented for each decision problem.

The fact that the main interest of the decision maker—and often the sole interest—
is to choose the best alternative offers a path to simplify the probabilistic modeling of
the problem. In such an approach, the vectors of values of the attributes of interest
give way to vectors of probabilities for presenting the best value for these attributes.
Even if a ranking of all the options is desired, a better idea of the possibilities of
ranks’ inversion can be provided if the final ranking is derived from probabilities of
being the best alternative.

Additionally, the importance of the different criteria for the choice becomes
clearer if the corresponding evaluations are given in terms of probabilities of being
the best according to each of them. Moreover, with all the evaluations given in the
same terms, the problem of combining evaluations generated by employing dif-
ferent measurement standards is eliminated.

The next two chapters prepare the presentation of this probabilistic approach.
After being fully developed in Chaps. 4-38, it is applied in the three last chapters in
specific contexts.

1.4 Applications of the Probabilistic Approach

This probabilistic approach is applied, for instance, to the evaluation of risks,
helping to detect the risks that are of higher priority. In this case, the application
consists of combining risk ratings according to different sources of risk. The
probabilistic composition can be applied to combine the scores of risk according to
the factors of Failure Modes and Effects Analysis (FMEA): severity, frequency, and
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difficulty of detection of the modes of failure to generate one-dimensional risk
priority probabilities.

In this context, the probabilistic approach has the advantage of allowing for
flexible rules for aggregating risks generated by different factors. To increase dis-
crimination between modes of failure related to those factors for which the scores
are concentrated in a small interval, the probabilistic distributions may be modeled
with a range varying with the observed range. However, to give the evaluators the
option of spacing the scores only to discriminate according to factors that they
judge more relevant, the probabilistic approach allows for modeling the distribution
of the evaluations according to the three factors with the same range, determined by
extremes previously established.

Another field of application is the assessment of productivity. The probabilistic
approach can be applied in the context of evaluating the efficiency of production
units employing compositions of sets of inputs to generate sets of outputs. In the
probabilistic approach to this problem, the criteria can be the output/input ratios for
the different pairs of input-output.

The decision may also be based on maximizing each output variable and min-
imizing each input variable separately. Then, a criterion will be associated with
each input and each output. In this last form of modeling, the probabilities of
preference according to each criterion to be computed will be, respectively, those
of maximizing the revenue from the sale of each product and of minimizing the cost
of the acquisition of each resource. Different treatments can then be applied to the
aggregation of the two separate sets of evaluations, according to inputs and
according to outputs.

The uniformization provided by the probabilistic transformation may be used to
extend the possibility of application of capacities. In fact, to combine evaluations
according to different criteria by the integral of Choquet with respect to a capacity
in the set of criteria, the evaluations enter the computation ordered according to the
values taken. This does not make sense unless the evaluations are set in a same
framework. The transformation into probabilities of being the best provides this
common framework.

The transformation into probabilities of being the best also has an effect of
approximating to identical values the preferences for the alternatives less preferred.
This feature makes the probabilistic approach useful in other contexts. For instance,
it can be used to provide rough measurements to the decision attributes in appli-
cations of Rough Sets Theory with Dominance There, it allows for reducing con-
tradictions and extracting simpler decision rules.



Chapter 2
Approaches to Criteria Combination

Abstract Two main approaches to consider the importance of the criteria in a
multicriteria decision may be employed. The preferences according to each of them
may be combined into a global preference by a weighted average where the
importance of the criteria enters separately as weights. Otherwise the interaction
between the evaluations by the multiple criteria must be taken into account when
combining them and the importance of sets of criteria taken together must be
computed. A simple procedure to determine the importance in the first case can be
based on pairwise comparison of the criteria. A procedure to compute the impor-
tance of the sets of criteria to apply the Choquet integral in the second case may be
based on pairwise comparison of preferences between distributions of probability
on the space of criteria.

Keywords Weighted average - Analytic hierarchy process - Pairwise compari-
son - Capacity - Choquet integral

2.1 Uncertainty About Preferences

The combination of multiple criteria to decide on alternatives of action is a practical
problem that every person could face at any moment. Moreover, at different times,
even if the problem is formulated in the same way, the solution chosen by the same
decision maker may be different. Preference depends on the criteria that are taken
into account, on the importance assigned to each of them, on the relations assumed
between them and, aside from all these and other features of the problem that can be
objectively modeled, on subjective disturbances, which change quickly and cannot
be accurately determined.

Inaccuracy affects even the simplest criteria, based on registering the presence or
absence of traits considered relevant to describe each element of the set of alter-
natives, as in the double-entry tables of Bourdieu (1992).
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Bourdieu suggests using double-entry tables to comparatively identify objects
such as different types of educational institutions, martial arts or newspapers. One
row in the table is assigned to each institution. In an inductive initial stage, a new
column is opened whenever a property needed to characterize one of the individuals
is found. This results in posing the issue of the presence or absence of such property
for all the others. In a final stage, repetitions possibly introduced are eliminated.

By proceeding in this way, a functional or structural feature is associated with
each column in such a way to retain all the features—and only those—that allow for
discriminating more or less rigorously the different institutions. In these instances,
preference will be related to the presence of desirable features or to the absence of
undesirable ones.

In this framework, a numerical representation for the preference according to
each criterion may be built by assigning the value 1 to the presence of a desirable
attribute, —1 to the presence of an undesirable one and 0 to absence of the attribute,
whatever its type.

When we use it for comparison purposes, this evaluation will be inaccurate
because the presence or absence of even the simplest attributes may be subject to
discussion. It will vary, for instance, the value that the presence or absence of a
feature may have to make the object useful for the evaluator.

2.1.1 General Criteria Features

The decision becomes a bit more complex when the comparison, rather than being
based on the ability to satisfy certain conditions, is based on the usefulness for a
particular purpose to have different amounts of a certain attribute, where utility
grows with the amount possessed. Thus, applying a criterion consists in evaluating
such ability or utility.

Keeney (1992) suggests that for a candidate to effectively become a criterion an
analysis of its properties should be conducted. In this examination, the criterion
candidate must prove to be controllable, measurable, operational, isolable, concise,
and understandable within the decision context. These and other properties must be
judged with respect to the alternatives to be evaluated. These alternatives may have
a high level of complexity, formed, for instance, by considering distinct results from
the same experiment as more or less satisfactory.

2.1.2 Criteria Combination

Different relationships between the criteria determine different algorithms for the
combination of the assessments according to them. The final results depend on the
combination algorithm chosen as much as on the evaluations according to the
multiple criteria.
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The set of criteria must be both exhaustive, in the sense of enabling the decision
maker to take into account all relevant aspects of the alternatives, and non-redundant,
with each one adding some relevant aspect to discriminate between alternatives.

Roy (1996, 2005) adds to these two properties a third, called cohesiveness, as a
necessary condition to have a coherent family of criteria. A family of criteria would
present cohesion if a move that is not for the better in the evaluation according to
any particular criteria would never lead to a move for a better general evaluation.

These and other properties are required of the set of criteria, and all have to do
with the general fact that the model must represent as approximately as possible the
reality, no model being able to ever completely cover all features of the decision
problem. A gamma of different approaches to reduce the reality to a multi-criteria
model is developed, for instance, in Greco and Ehrgott (2005) and in Ehrgott et al.
(2010).

However, besides that, the form of combining the criteria depends on the goal
that the decision maker has in mind. This adds to the difficulty of adequately
making clear the composition rules. Modeling should not only enhance the ability
to conduct the evaluation to produce an outcome that achieves the requirements of
the evaluator but also the ability to explain how the values declared by the evaluator
lead to the final outcome. The composition rules should allow for relating as clearly
as possible the final preferences to previously exposed motives.

2.2 Weighted Averages

The classic criteria composition form, developed precisely in Keeney and Raiffa
(1976), is conducted by assigning weights to the criteria and obtaining final scores
as weighted averages of the measurements of preferences according to each of
them. These final scores are sometimes called expected utilities.

From the point of view of making the rules clear, this form of composition has
the advantage of simplicity. The model is built by defining the criteria to be taken
into account and, through the weights, the importance assigned to each of them.

The idea behind this form of composition is that the decision maker starts by
choosing one objective from among multiple options. Here, choosing an objective
means preferring one among the multiple criteria. This choice may be not univocal
but randomized, i.e., it can be given by a probability distribution of preference
among the criteria.

The concept of a probability distribution will be formulated more clearly in the
Appendix. This term is used here in the context of a lottery where each possible
prize has a different chance of being won. In the present case, the criteria will be
thought of as the prizes and the weights as their chances. This corresponds to the
decision maker running a possibly biased roulette game to pick the preferred
criterion.

Another way to look at this form of composition is by associating each criterion
with a different evaluator and considering the averaging as a rule to satisfy the
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group of evaluators, with the weights corresponding to the importance assigned to
each different evaluator.

A strategy to reach a distribution of weights for the criteria is to ask the decision
maker to compare the criteria pairwise and, afterwards, extract from the results of
these comparisons a probability for the choice of each isolated criteria.

Even establishing preferences between the elements of a pair of criteria is not
free of error. However, limiting the object of each evaluation to a pair and limiting
the set of outcomes of the comparison to a small set of possible results (indifference
of preference for one or another, or a little more in cases where a few different
degrees of preference are employed) presents considerably less difficulty than
evaluating each criterion directly against some fixed pattern.

2.2.1 The Analytic Hierarchy Process

Saaty (1980) developed an elegant, though laborious, method to find the weights for
the desired criteria as part of a methodology named Analytic Hierarch Process
(AHP). It involves the pairwise comparison of the criteria using a scale of values for
this comparison, with a criterion being at most 9 times more important than any
other.

When performing this pairwise comparison, one must keep in mind that the
effect of the weights depends on the different scales on which the evaluations
according to the two criteria will be measured. Thus, the comparison between the
weights implicitly involves a comparison between these scales. This inner scale
adjustment may be avoided only if the application of all the criteria is conceived in
such a way as to involve the same scale.

To tackle this problem, Saaty proposes to start the modeling by prioritizing
criteria conceived in an abstract form instead of derived from the analysis of the
observed attributes of the alternatives. He first defines the criteria and compares
their importance. Arranging the goals, attributes, issues, and stakeholders in a
hierarchy, AHP provides an overall view of the complex relationships inherent to
the situation and helps the decision maker assess whether the issues in each level
are of the same order of magnitude so that he can compare homogeneous elements
accurately (Saaty 1990). By this approach, only when the criteria are applied to
compare the alternatives by the values of its attributes do the scales on which these
attributes are effectively measured appear.

A different way to address this problem of scaling is to replace each vector of
attribute measurements that appear naturally with the probabilities of the different
alternatives presenting the best value for such measurements. When establishing, in
the next step, the priorities for the use of each of these vectors of probabilities, we
have, at the same time, values measured on the same scale and conceptual criteria
built on a concrete basis to compare the alternatives. The prioritization of the
criteria thus defined can be made on a sounder basis than if we start from abstract
concepts.
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2.2.2 AHP Tools

The most noticeable feature of AHP is the form employed to address the incon-
sistencies arising from the pairwise comparisons. The relative preferences are
registered in a square matrix M, where the ij-th entry, m;;, measures the ratio
between the preference for the j-th and the i-th criterion. Thus, the m;; are positive
numbers with

mij = l/mj,‘.

A square matrix with these properties is called a positive reciprocal matrix.
This matrix of preference ratios is consistent if and only if, not only

mj * mj = my =1
for every pair (i, j) but also, for every triple (jy, j, j3),
mjip * Myz = myjj3.

Obviously, given a row or a column of a reciprocal matrix, consistency deter-
mines the rest of the matrix. However, when informing the preference ratios for
each pair of criteria on the scale from 1 to 9, the difficulty in evaluating abstract
criteria leads to inaccuracies in such a way that it is not expected that these reci-
procal matrices will be consistent in practice.

The Analytic Hierarchy Process (AHP) is designed to allow for inconsistencies
due to the fact that, in making judgments, people are more likely to be cardinally
inconsistent than cardinally consistent (Saaty 2003). The decision makers are not
able to estimate precisely measurement values even with a tangible scale, and the
difficulty is worse when they address abstract concepts.

If a reciprocal matrix is consistent, all its rows and columns are proportional to
each other. This means that they span a linear space of dimension 1. In other words,
the rank of consistent reciprocal matrices is equal to 1.

By the rank of a matrix we mean the dimension of the space generated by their
columns (or their rows), i.e., the maximal number of linear independent columns (or
IOWS).

In addition to the concept of rank, the concepts of the trace of a square matrix
and their eigenvalues and eigenvectors play an important role in the weighting of
the criteria in AHP.

The eigenvalues of a matrix M are the real or complex numbers 4 such that, for
some vector v,

Mv = Av.
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The eigenvectors are those vectors v such that, for some eigenvalue 4,
My = Av.

The trace of a matrix is the sum of its eigenvalues. It is also equal to the sum of
the diagonal elements. For reciprocal matrices, since all diagonal elements are equal
to 1, the trace is equal to the number of rows or columns. Because the rank of any
consistent reciprocal matrix is 1, its non-null eigenvectors are all in the same
direction and, consequently, the non-null eigenvalue is that number of rows or
columns. In particular, it is a real number.

In contrast, if the matrix is inconsistent, it has negative eigenvalues; thus, its
highest eigenvalue is larger than the number of rows and columns. A detailed proof
of this result may be found in Saaty (1990).

If the matrix of pairwise preferences between criteria is consistent, the vector of
weights is the normalized eigenvector of the matrix. Saaty proposes then, to deal
with inconsistency, to take as the vector of weights the unitary eigenvector asso-
ciated with the highest eigenvalue, employing the value of this highest eigenvalue
to decide if the level of inconsistency in the matrix is sufficiently small.

For high levels of inconsistency, the pairwise comparison of the criteria must be
revised.

Saaty employs a measure of consistency called the Consistency Index, which is
based on the deviation of the highest eigenvalue to m, the number of criteria:

CI = (Zmax —m)/(m — 1).

This index may also be seen as the negative average of the other eigenvalues of
the inconsistent matrix.

After knowing the Consistency Index, the next question is how to use it. Saaty
proposed to use this index by comparing it with an appropriate threshold. To
determine such an appropriate threshold, one can employ the Random Consistency
Index, RI, an index obtained by examining reciprocal matrices randomly generated
by Vargas (1982) using the scale 1/9, 1/8 ... 1, ... 8, 9. The random consistency
index, computed as the average of a sample of 500 matrices, for a number of criteria
varying from 3 to 10, is shown in Table 2.1.

Then, Saaty employs what is called the Consistency Ratio, which is a com-
parison between the observed Consistency Index and the Random Consistency
Index, or, formally,

CR = CI/RL

Table 2.1 Random consistency index
n 3 4 5 6 7 8 9 10
RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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If the value of the Consistency Ratio is smaller or equal to 10 %, the incon-
sistency is acceptable. If the Consistency Ratio is greater than 10 %, the subjective
judgment must be revised.

2.2.3 Example of AHP Application

This subsection deals with the problem of choice of a car model. Suppose the space
of alternatives formed of 20 models and six criteria based on a satisfactory answer
for the presence or absence of seven attributes: beauty, comfort, gas consumption,
power, acquisition price, reliability and safety.

Table 2.2 presents the ratios a given decision maker consider to more adequately
reflect the preference between the seven criteria corresponding to the presence or
absence of each of the seven attributes.

The highest eigenvalue for this positive reciprocal matrix is 7.335. So, its
consistency index is (7.335 — 7)/(7 — 1) = 0.056. The consistency ratio is 0.056/
1.32 = 0.042 < 0.1. So, the inconsistency is acceptable and a unitary eigenvector
corresponding to this eigenvalue will be used as the vector of weights. Given by
this unitary eigenvector, the weights are those in Table 2.3.

Table 2.4 describes the evaluation of 20 models according to the seven criteria
directly based on these attributes.

Table 2.2 Criteria pairwise evaluation

Beauty Comfort Consumption Power Price Reliability Safety
Beauty 1 1/3 1/5 1 173 1/9 1/9
Comfort 3 1 1/3 3 3 1/5 1/5
Consumption | 5 3 1 3 5 1/3 173
Power 1 1/3 1/3 1 1/3 1/9 1/9
Price 3 1/3 1/5 3 1 1/7 117
Reliability 9 5 3 9 7 1 1
Safety 9 5 3 9 7 1 1
Table 2.3 Criteria weights
Beauty Comfort Consumption Power Price Reliability Safety
0.03 0.08 0.15 0.03 0.05 0.33 0.33
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Table 2.4 Cars evaluations

Beauty Comfort Consumption Power Price Reliability Safety
Carl 1 1 1 0 1 1 0
Car2 1 1 1 0 1 0 1
Car3 1 1 1 0 0 1 1
Car4 1 1 0 1 0 1 1
Car5 1 1 0 1 0 1 0
Car6 1 1 0 1 0 0 1
Car7 1 1 0 0 1 1 1
Car8 1 1 0 0 1 1 0
Car9 1 1 0 0 0 1 1
Carl0 |1 0 1 1 0 1 1
Carll |1 0 1 0 1 0 1
Carl2 1 0 0 1 1 1 1
Carl3 |1 0 0 1 0 1 1
Carld |1 0 0 0 1 1 1
Carl5 |0 1 1 1 1 1 0
Carl6 |0 1 1 1 0 1 1
Carl7 | 1 1 0 1 1 1
Carl8 |0 1 0 1 0 1 1
Carl9 | 0 1 1 0 1 1
Car20 0 0 0 1 1 1 1

Comparing the weighted averages generated multiplying the value O or 1
assigned to the model according to each criterion by the weight of the criterion and
adding the products, Car 17, with a score of 0.94, would be chosen.

2.3 Capacities

The classical approach to the composition of multiple criteria, described in the
preceding section, employs weighted averages of the evaluations according to the
multiple criteria. This form of composition is justified if the decision can be thought
of as a two-stage structure: first, one of the criteria is chosen, with the chance of
being chosen depending on the importance that the decision maker wants to give it;
then, the chosen criterion is applied alone. In that case, the probability of an
alternative being chosen is determined by the Total Probability Theorem, provided
in the Appendix, as the weighted average of its probabilities of being chosen
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according to each criterion with weights given by the probabilities of the criteria
being chosen in the first stage.

In this case, to build the composition algorithm, possible correlations between
the events corresponding to being preferred by the different criteria need only be
taken into account in determining the distribution of weights among the criteria.
That is, this correlation must be taken into account in the initial stage of weighting
the criteria: the probability of each one being chosen must reduce the likelihood of
choosing all others positively correlated with it.

However, the problem cannot always be formulated in this manner and in
general the determination of weights for the weighted average is inefficient by not
taking into account these correlations. A more general form of composition that
draws attention to the need to consider the possible presence of correlations is to
replace the weighted average of a probability distribution by the Choquet integral
with respect to a capacity (Choquet 1953).

To use this new form of composition of preferences the criteria must be com-
parable, i.e., the preference measurement according to the various criteria must
employ the same scale, or scales between which a precise relationship is known.
This problem of comparability is eliminated if the preferences are given as prob-
abilities of being the best alternative, the scale, then, being always that of the
probability of being the best.

2.3.1 Choquet Integral

To make expected utility models more flexible, additive subjective probabilities are
replaced by non-additive probabilities, or capacities.

Capacities may be used to model different types of behavior. Most decision
makers, for example, overestimate small and underestimate large probabilities.
Furthermore, most decision makers prefer decisions where more criteria are com-
bined rather than decisions based on less available information. These behaviors
cannot be expressed through an additive model.

A (normalized) capacity on the finite set of criteria S is a set function p: 25 — [0,
1] satisfying the three properties:

(1) p(@) = 0 (a set function satisfying this property is also called a cooperative
game),

(2) u(S) =1 (normality),

(3) VA, B € 2N [A CB = p(A) < p(B)] (monotonicity).

Thus, a capacity is a monotonic (normalized) cooperative game.
The capacity p on S is said to be additive if
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W(AUB) = u(A) + R(B)

for all disjoint subsets A and B of S.

Capacities generalize probabilities in the sense that an additive capacity is a
probability.

The Choquet integral of x = (X1, ... , X;y), an R™ valued function, with respect to
the capacity p on S = {1, ..., m} is defined as:

) = D20xe(i) — xei ~ DG, <(m))),

Jj=1
for t, a permutation on S such that

xt(1) < x1(2) < - < xt(m — 1) < xt(m)and x1t(0) = 0.
Let x: S — R* and p a capacity. The Choquet integral of x with respect to p
satisfies

= 3 x(el) In(AT() — w(AT(i + 1)]

i=1

for At(i) = {t(i), ..., T(m)} for every i from 1 to m, and At(m + 1) = ¢.
A fundamental property of the Choquet integral is that

Cu(1a) = n(A), VA CS,
for 1,, the indicator of A, the function x defined by
x(i)=1if i € A and x(i) = O otherwise.

The expected value of a function x with domain S with respect to a probability P
in the finite space S is the weighted average

D s XHP().

Thus, the Choquet integral with respect to a capacity extends the expected value
with respect to a probability.

But this definition makes sense only if Xy and X, for the different possible
values of i and j are commensurable. Commensurability of the measures of pref-
erence according to different criteria means that they make us able to compare the
results of the evaluations according to the different criteria. This property holds for
the case of evaluations according to the criteria in S given in terms of probabilities
of being the best.
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To compute a capacity p, the modeler needs to define the 2" coefficients cor-
responding to the capacities of the 2" subsets of S. Modeling the capacity by means
of its Moebius transform may simplify this task.

For p a capacity on S, the Moebius transform of p is the function v: P(S) — R
defined by

v(A) =Y (=D Plu(B),vA €2°

BCA

The Moebius transform determines the capacity by:

w(A) = Y v(B).

BCA

The determination of the capacity may employ the Penrose-Banzhaf or Shapley
interaction indices (Grabisch and Roubens 1999) for limited levels of iteration.

Given a capacity p on S, the Penrose-Banzhaf joint index for any subset A C S is
given by (Penrose 1946; Banzhaf 1965)

Banzhaf(A) = 27 #') 3™ S (P uL),
KCS\A LCA

for # the cardinality function, i.e., the function that associates to each set the number
of elements in it.
Analogously the Shapley joint index is defined by

Su(A) = D [(# (S\AVK)!# (K)/(# (S\A) + 1) Y ()" Pu(KuL)

(KCS\A) LCA

For an isolated criterion i, Sy({i}) is called the Shapley value (Shapley 1953).
The capacity p is said to be k-additive, for a positive integer k, if its Moebius
transform v satisfies (Grabisch 1997):

(1) VT €25v(T) = 0 if #(T) > k,
(2) 3B € 25such that #(B) = kandv(B) # 0.

By assuming 2-additivity, the complexity of the problem of determining the
capacity is reduced. The capacity can then be determined employing only the
coefficients n({i}) and p({i, j}) fori and j € S.

Necessary and sufficient conditions for 2-additivity are:

M > n(ij}) = (m=2)3 s n({i}) = l(normality),
{i.j}cs

(2) p({i}) > 0,vi € S (nonnegativity) and

() VA C S with #(A) 22,Vk € A, Y ica g (KL K}) = n({i}) = (#(A) = 2)u({k})
(monotonicity).
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For a 2-additive capacity p, the Shapley value of an isolated criterion i is given by

Su{i = D [F#(S\K) = DIFEK))/#(S)nK U {i}) — n(K)

KCS\ {i}

Su({i}) = n({i}) +1/2 Zjes\{i} T
for
I = p({i, j}) — n({i}) — n({i})-

I represents an interaction between i and j, in the sense that

Ipij = O corresponds to independence between i and j;

Ipj; > 0 means some complementarity between i and j, i.e., for the decision
maker, both criteria have to be satisfactory in order to get a satisfactory alternative;
and

In;j < 0 means some substitutability or redundancy between i and j, i.e., for the
decision maker, the satisfaction of one of the two criteria is sufficient to have a
satisfactory alternative.

With this notation, for any x = (Xi, ..., X), the Choquet integral of x with
respect to the 2-additive capacity y is given by:

m

Cu(xy, ..., Xm) = Zsu(z’)xi - 1/2Zmij|xi — Xjl.

i=1 ijes
2.3.2 Example of Application of the Choquet Integral

An example of application of the concept of capacity and the Choquet integral may
be constructed by revising the car models choice problem presented to show how to
use the AHP approach.

Essentially, a car has no value if it does not move. Thus a model evaluated as
unsatisfactory from the point of view of power suffers from a basic limitation. In
that sense, the value of the presence of any of the other attributes depends on the
presence of power. To take this into account, a capacity might be employed to
improve that study. It would derive from the weights there employed, which
assumed additivity, the capacity of any set of criteria that includes power, but would
assign a null capacity to any set that does not include power. This would result in a
final score of zero for those cars which were assigned a value of zero with respect to
power.
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Table 2.5 Combined Car Scores

Capacity score Rank Additive score Rank
Carl 0 16 0.64 15
Car2 0 16 0.64 15
Car3 0 16 0.92 2.5
Car4 0.8 4 0.8 7
Car5 0.47 10.5 0.47 19.5
Car6 0.47 10.5 0.47 19.5
Car7 0 16 0.82 6
Car8 0 16 0.49 18
Car9 0 16 0.77 9
Carl0 0.87 2 0.87 4
Carl 1 0 16 0.56 17
Carl2 0.77 5.5 0.77 9
Carl3 0.72 8 0.72 13
Carl4 0 16 0.74 115
Carl5 0.64 9 0.64 15
Carl6 0.92 1 0.92 2.5
Carl7 0 16 0.94 1
Carl8 0.77 55 0.77 9
Carl9 0.84 3 0.84 5
Car20 0.74 7 0.74 11.5

After this change, Carl7 would no longer be chosen on the basis of the eval-
uations in Table 2.4. It would be replaced by Carl6. The score of Carl6 would be
0*(0.08)+1* (1 —0.08) =0.92.

Table 2.5 presents the final scores for the composition employing this capacity.

2.3.3 Pairwise Comparisons in the Space of Sets of Criteria

The strategy of pairwise comparisons of sets of criteria may be employed to
determine the capacity. This strategy becomes more feasible if it is not needed to
quantify the preference, but only to tell whether there is indifference between the
elements of the pair, and, otherwise, which one is preferred.

This simplification in the comparison can be applied at the cost of complicating
the objects of comparison, the decision maker being called to compare not pairs of
criteria, but pairs of distributions of weights on the set of criteria. Under these
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conditions and certain conditions of rationality that constitute the basis of the
Expected Utility Theory of von Neumann and Morgenstern (1944), the relation of
preference between pairs uniquely determines the distribution of weights desired.

The work of von Neumann and Morgenstern extends that of Daniel Bernoulli, in
the 18th century for the utility of money, and has further extensions designed to
deal with much complex sets than the finite set of criteria that is the object of
analysis here.

To clarify the hypotheses of von Neumann and Morgenstern is first necessary to
formulate precisely the concepts. The necessary concepts are made clear in the next
section. Immediately after, is presented the simple version of the result of von
Neumann and Morgenstern (1944) here employed.

2.3.4 Binary Relations

A binary relation } on a set C is any subset of the Cartesian product C X C, i.e., any
set of ordered pairs of elements of C. To denote that an ordered pair (c;, c;) of
elements of C belongs to the binary relation }, we write ¢ }cz and say that ¢,
precedes c,.

A binary relation } is complete on C if and only if, for all ¢, and c; of C, at least
one of the ordered pairs (cy, ¢,) and (c,, ¢;) belongs to }, that means, ¢; }cz or ¢, }c 1-

A binary relation } i s anti-symmetric if and only if

¢,fc, and ¢, re, only if ¢ =c,.

A binary relation } on C is transitive if and only if,

forallc, c,and c, of C, if ¢, }cz and c, }cz, then c, Fc3.

A binary relation } is an order relation on C if it is anti-symmetric, transitive and
complete on C.

A binary relation }is apreference relation on C if it is transitive and complete on C.
So, order relations are preference relations, but these need not be anti-symmetric. For
those criteria for which ¢, }02 and ¢, }cl, it will be said that according to } the decision
maker is indifferent between c; and ¢, and it will be used the notation ¢; ~ }02.

A distribution of weights on a set C is any positive function # with domain C,
i.e., any subset of the Cartesian product CXR™ such that for every element x of C
there is a unique positive number y for which (x, y) € u. Instead of (X, y) € u is
usually employed the notation y = u(x) or is said that y is the weight of x, the
preference value of x or the utility of x. To simplify the arguments, is usually
assumed that u is a probability.

The von Neumann and Morgenstern theory involves extending the preference
relations on C to preference relations on the set D(C) of distributions of weights on
C. Let us denote by } the extension of } to D(C). For the theorem to hold, these
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relations must present, besides transitivity and completeness, other properties of
continuity, monotonicity, substitutability and decomposability.

Continuity means that for any weight distributions p, q and r on C, with p }q and
q }r, there is a real a€[0, 1] such that q(c) = a p(c) + (I — a)r(c) for any c € C.

Monotonicity means that if p and q are weight distributions concentrated on {c;,
c,} (that means, such that p(c;) + p(c,) = q(cy) + q(c,) = 1), for a pair of criteria (c,
C,), if ¢ }cz and p(c;) > q(cy), then p }q.

Substitutability means that if p(c;) = q(c,) and p and q assign the same value for
any other criterion c, then c; ~ }02 implies p ~ }q.

Decomposability employs the definition of p,: for any distribution @ on D(C),
Po denotes the distribution on C determined by

Po(€) =D e, @(P) D).
Decomposability holds if and only if
®; = ;s equivalent top,; = Pg2-

These properties are not as natural as they may seem to be. But to determine
weights for preference criteria, what is going to be useful from Expected Ultility
Theory is the representation theorem asserting that for any set of criteria C and any
preference relation } on C for which there exists an extension } to D(C) with some
properties, } identifies a unique distribution of weights u on C such that

u(c,) 2u(c,) if and only if ¢, fc,

and a unique distribution of weights u on D(C) such that, for ®, concentrated in
¢; and m, concentrated in c,,

u(w,) 2u(w,) if and only if c, }Cz.

This u is defined on D(C) by

u(o) = Zw(c_,-)u(c_,-) for any o € D(C).

If there is an outcome ¢y such that

u(co) = Zﬁ)(cj)u(cj),
]

this outcome c, may be seen as the certainty equivalent of ®, in the sense that a
distribution of weights with the unique outcome c,, has the same expected utility of ®.

When the outcomes in C have numerical values, besides computing the expected
utility we can compute the expected outcome
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Z o(c)c.

Sometimes we can compute also the utility of the expected outcome

u(z w(c)c).

A concave utility means risk aversion and a convex utility means risk proclivity,
in the sense that the utility of the distribution on D(C) that gives probability 1 to the
expected outcome is, respectively, greater and smaller than its expected utility.
Thus concavity represents a utility-decreasing evaluation of pure risk-bearing and
convexity the contrary.

To understand the concept, suppose there are two lotteries, one that pays the
expected value with certainty and another that pays the different values with their
different probabilities. The utility of the first lottery is larger than the utility of the
second for a risk-averse evaluation. On the other hand, giving risk a positive value
would lead to a convex utility. Finally, neutrality with respect to risk would make
indifferent the choice between the certain outcome and the same outcome in the
average, so that

u(z co(x)x) =3 o)u(x).

2.3.5 Example of Capacity Determination

Von Newmann and Morgenstern representation theorem provides the basis for the
design of complex tools to derive the capacity of each set. Accepting the above
listed conditions, instead of directly assigning a value to the set, its capacity may be
derived from preferences between distributions. The evaluator will find easier to
compare simple distributions involving the set than choosing a numeric value for
the capacity of that set. The key idea consists of asking the decision maker
appropriate questions about extreme distributions involving the set, to determine if
its capacity is closer to one of two extreme values than to the other.

The procedure starts by determining the capacities of unitary sets {c}. For each
such set, the evaluator answers a question about preference between two distribu-
tions: one of them assigns the value 1 to {c}; the other, a free choice between the
distributions assigning the value 1 to any other unitary set in C (and consequently O
to {c}).

If the evaluator prefers the first distribution, we conclude that the decision maker
assigns to {c} a value closer to 1 than to 0, that means a value larger than ; if the
other is preferred, we conclude that the decision maker assigns to {c} a value
smaller than '%; in the case of indifference, the quest ends, with the value ' assigned
to {c}.

Suppose the answer to this first question is a preference for the distribution that
assigns the value 1 to {c}. Then we proceed by asking the preference between the



2.3 Capacities 21

distribution assigning the value 1 to {c} and another assigning the value % to {c}
and freely assigning the value Y% to other element of C. If the evaluator prefers the
first of these distributions, assigns to {c} a value closer to 1 than to 2, that means a
value larger than %. If the other distribution is preferred, then that value is smaller
than %. Indifference means that % is the value assigned and this will be the capacity
of {c}.

If the Von Neumann and Morgenstern assumptions are satisfied, indifference
will appear after a while. After the capacities of the unitary sets are obtained,
capacities for the sets of size two will be determined.

Suppose, for instance, the capacities of {c;} and {c,} are found to be 0.3 and
0.2. Then the capacity of {c, c,} is between 0.3 and 1. To determine this capacity,
the decision maker will be asked about preference between a distribution assigning
the value 1 to that set and another assigning the value 0.7 to a freely chosen subset
of its complement. From preference for the value 0.7 for the complement follows
that the capacity of {c;, c,} for the decision maker is closer to 0.3 than to 1, what
means that it is between 0.3 and 0.65. From preference for the other distribution
follows a capacity from 0.65 to 1. From indifference, follow the final value of 0.65.

So, if, for instance, the interval from 0.3 to 0.65 follows from the answer
obtained, the next choice will be between a distribution assigning to the set a value
of 0.3 and another assigning the value 0.65. If the preference is for that assigning
0.65, we get a restriction to the interval between 0.475 and 0.65. If the preference is
for the other, the capacity is between 0.3 and 0.475. If the answer is indifference,
the value is 0.475. And so on.

After a logical sequence of such questions, we would eventually find a capacity
representing the preference of the decision maker.
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Chapter 3
The Probabilistic Approach to Preferences
Measurement

Abstract As the value of an attribute only signals the position of a probability
distribution of the preference, the preference for an alternative according to any
criterion can be given in terms of probability of it being chosen. Composition of
these probabilities to obtain a global preference combining the multiple criteria can
then be performed in probabilistic terms.

Keywords Preference probability - Probability of being the best - Fuzzy logic -
Fuzzy sets

3.1 Probability of Preference

This chapter presents the mechanisms for the transformation of measurements of an
attribute, initially evaluated using a proper scale, into measurements of preference
on a general probabilistic scale.

A natural way of evaluating the preference for an alternative is by means of the
probability of this alternative being chosen from among all available alternatives.

To simplify calculations, this probability of being the best among all can be
approximated by the probability of being better than a particular set of competing
alternatives.

If there are many attributes, the probabilities of being better than the other
alternatives according to different attributes must be combined. However, before
developing the composition ideas, a framework for the identification of probabili-
ties of preference according to each attribute must be developed. This basic
framework may be similar to that of Fuzzy Sets Theory.
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3.2 Fuzzy Sets and Fuzzy Logic

A process to derive probability distributions from punctual measurements has been
employed in the Theory of Fuzzy Sets since Zadeh (1965). The idea is to replace
exact numbers by intervals around them, with the pertinence of each point to the
interval decreasing as these points veer away from the initial measurement. Later, to
combine the probabilistic preferences, operations similar to those of Fuzzy Logic
(Zadeh 1978) may be employed.

The concept of a fuzzy set was created by Lofti Zadeh in Zadeh (1965). Let X be
a space of points, with a generic element of X denoted by x. A fuzzy set A in X is
characterized by a membership function pa(x) which associates to each point in X a
real number in the interval [0, 1], with the values of p(x) representing the degree
of membership of x to A. Thus, the nearer the value of p,(y) to unity, the higher the
degree of membership of y to A.

This definition of a fuzzy set extends the definition of a set in the ordinary sense
of the term. The degrees of membership of 0 and 1 correspond to the two possi-
bilities of truth and false pertinence to an ordinary set, called a crisp set in the
Theory of Fuzzy Sets.

3.2.1 Fuzzy Numbers

Membership functions for fuzzy sets can be defined in any form as long as they
follow the rules of the definition of a fuzzy set. The shape of the membership function
used defines the fuzzy set. For instance, a triangular membership function to deter-
mine a fuzzy interval with extremes a and b around a point M will have the form

0, x<a
X-a 3<x<M

Ha(x, a, M, b) = 1\61:;? M<x<b
h-M> Y SES
0 b<x

Other way to represent a fuzzy set is by a-cuts. The membership function
Uy : R —[0,1] of a fuzzy set A is determined by its family of a-cuts{Aq}ueo. 13,
which are the intervals

Aoz = [AL(OC),AU(O()L

for

AM(@) = inf{z € R piy(2) > o}
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and
AY(0) = sup{z € R : u,(z) > o}

3.2.2 Fuzzy Logic

A way to define a distance between two fuzzy numbers A and B is by their a-cuts:

1 1
ﬂmm=¢loww—meM+A(erwwm%a

Other operations involving fuzzy sets are generalizations of the crisp sets
operations of complementation, intersection and union and are called standard
fuzzy set operations. The complement of a fuzzy set A with membership function
Wy is the fuzzy set A® with membership function p,C defined by

HAC(x) = 1 — py(x)

The intersection ANB between the fuzzy sets A and B with membership func-
tions s and pg has the membership function defined by

Ranp(x) = min[py (x), pg(x)].

The union AUB of the fuzzy sets A and B with membership functions p, and pg
has the membership function defined by

Paup(X) = max[py (x), pp(x)].

This corresponds to the idea that to belong to the union is sufficient to belong to
one of the sets and to belong to the intersection is necessary to belong to all the sets
intersected. There are other possible generalizations.

3.3 Computation of Probabilities of Preference

In the probabilistic composition, the initial point value of an attribute is seen not as
a measure of definitive preference but as signaling the position of the location
parameter of a probability distribution of the preference that would occur if the
value of the attribute were observed under similar circumstances in a series of
evaluations of the alternative over time.

Thus, the key idea of the transformation of measurements of attributes using
natural scales into probabilities of preference is to translate each measurement of the
basic attribute into an interval of possible satisfaction evaluations that may occur if



26 3 The Probabilistic Approach to Preferences Measurement

the alternative is evaluated in successive assessments of the preference based on
that attribute.

For this notion to make sense, it is necessary to take into account the imprecision
that follows from the subjectivity implicit in the application of any criterion of
choice. The application of the criterion is based on the measurement of the attribute
and on the possibility of an error in the transposition of that measurement into an
evaluation of the satisfaction of the evaluator with the presence of the attribute at
the level that the measurement indicates.

3.3.1 Computation of the Probability of Being the Best

After associating the measurements of the attribute for the n alternatives with a
vector of n random variables X1, ..., Xn, the next step is to derive from this vector
the probabilities of being the best. From a joint distribution of n random variables,
software like R (R© Core Team 2014) or MATLAB (Mathworks 2014) immedi-
ately produces the probability of each X, presenting a value higher than the value of
any other X,

A few general assumptions help to determine the joint distributions of the ran-
dom variables informing the evaluations according to n criteria. One assumption
that considerably simplifies the modeling of joint distribution is that of indepen-
dence. It is reasonable to consider as independent the errors in the measurement of
the satisfaction of the criterion resulting from each of the observed values of the
attribute considered.

Other assumptions have to do with shape. Continuous distributions avoid jumps
in isolated points, which are usually difficult to address. In addition to indepen-
dence, the limitation to continuous distributions is recommended at this point.

Among the continuous distributions, the normal distribution is employed to
represent the effect of subjective measurement deviations. With easier forms to
visualize shape and allowing for simpler computation, triangular and uniform
distributions may replace the normal (Sant’Anna and Sant’Anna 2001; Sant’Anna
2002). For numerical evaluations on a scale of few alternatives, a lognormal dis-
tribution for the absolute deviations has also been recommended (Martino 1970).

3.3.2 Example of Probability of Being the Best

To fix ideas consider the evaluation of gas consumption by the 20 cars of the
previous chapter. Nine of them were evaluated as presenting the attribute of low gas
consumption and eleven not presenting it. The randomized criterion will assign to
each car measure of satisfaction by gas consumption a probability distribution that
will have a mode of one for the first nine cars and of zero for the other eleven. The
important point is that this will be a probability distribution, not a constant.
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Let us take for this distribution the triangular form. To make the translation
precise, the exact value 1 will be replaced by a triangular probability distribution on
[0, 1] with mode 1 and the exact value O by a triangular probability distribution on
[0, 1] with mode 0. The probability of a car of the first group presenting the highest
value in a draw of evaluations of the 20 cars by this criterion will then be the
probability of [X, = X, for all b # a from 1 to 20] for X, and X, independent
random variables. For triangular distributions on [0, 1], corresponding to the 19
values of b, eight of them with mode 1 and eleven with mode 0, this value is
0.1054.

3.4 Combination of Probabilities of Preference

To combine the probabilities of preference according to multiple criteria into a
unique score of preference, different computations of probabilities of events may be
employed.

The most common way is through weighted averages. Taking the probabilities
of preference according to multiple criteria as conditional probabilities and
assuming a distribution of preferences among the criteria, the Theorem of Total
Probability gives a final probability as a linear combination of the probabilities of
choice of the alternative by the criteria with weights given by the probabilities of
choice of the criteria.

The formula for the final probability of preference by alternative A will then be

m

p(A) = pi(A)p(By),
=1

where p;(A) denotes the probability of the choice of A according to the j-th criterion
and p(B;) denotes the probability of the choice of the j-th among the m criteria.
To better account for the interactions between the criteria, instead of the
weighted average, the Choquet integral may be employed. Determining the pref-
erences among the criteria by a capacity p, the final score will be given by

CuA) = e (A)—prgny (A({(), - <(m)})
=

for 1, a permutation of {1, ... , m} such that

pf(j)(A) >P7071)(A) for every j
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and
P+(0) (A)=0.

Other more intuitive forms of compositions of the preferences do not depend on
weighting neither the isolated criteria nor sets of them. For instance, the global
score may be given by the probability of being the preferred alternative according to
every criterion or by the probability of being preferred by at least one criterion.

The event of being the preferred alternative according to every criterion is the
intersection of the events of being the best according to each criterion and the event
of being the preferred according to at least one criterion is the complement of the
union of the events of not being preferred.

Assuming independence, the final score for alternative A is then given, in the first
case, by the product m;p;(A) of the probabilities of choice according to isolated criteria.

In the second case, treating the union as the complement of the intersection of the
complements, the final score under independence will be given by 1 — m;(1 — p;(A)).

To check the importance of the assumption of independence, these scores may
be compared to those obtained by replacing the product by the minimum, what
corresponds to assuming the hypothesis of maximum dependence or, equivalently,
to the fuzzy operation of intersection described in the previous section.

Since min;j(1 — pj(A)) equals 1 — max;pj(A), in the case of employing the
probability of being the best according to at least one, the score for maximal
dependence will be max;pj(A), what also corresponds to the operation of fuzzy
union of the last section.

3.5 Example of Choice of a Car

The transformation into probabilities of being the best may be employed to replace
the indicator of presence and absence of the attributes for the cars with values 0 and
1 in Table 2.4 by fractionary numbers in such a way that the sum of the values in
any column equals 1.

This will make those criteria contemplating rarer attributes assign higher values
for the presence of that attribute. For instance, to the presence in nine models of low
gas consumption, assuming the independent triangular distributions with modes
zero and one, corresponds a value of 0.1054, larger than the value of 0.096 assigned
to the presence of low acquisition price, what occurs in ten models.
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Table 3.1 Cars probabilities

Beauty |Comfort | Consumption | Power Price Reliability | Safety
Carl 0.0705 | 0.0756 0.1054 0.0034 | 0.0960 |0.0585 0.0018
Car2 0.0705 | 0.0756 0.1054 0.0034 | 0.0960 |0.0016 0.0621
Car3 0.0705 | 0.0756 0.1054 0.0034 | 0.0040 |0.0585 0.0621
Car4 0.0705 | 0.0756 0.0047 0.0881 | 0.0040 |0.0585 0.0621
Car5 0.0705 | 0.0756 0.0047 0.0881 | 0.0040 |0.0585 0.0018
Car6 0.0705 | 0.0756 0.0047 0.0881 | 0.0040 |0.0016 0.0621
Car7 0.0705 | 0.0756 0.0047 0.0034 | 0.0960 |0.0585 0.0621
Carg 0.0705 | 0.0756 0.0047 0.0034 | 0.0960 |0.0585 0.0018
Car9 0.0705 | 0.0756 0.0047 0.0034 | 0.0040 |0.0585 0.0621
Carl0 | 0.0705 | 0.0025 0.1054 0.0881 | 0.0040 |0.0585 0.0621
Carll | 0.0705 |0.0025 0.1054 0.0034 | 0.0960 |0.0016 0.0621
Carl2  |0.0705 |0.0025 0.0047 0.0881 | 0.0960 |0.0585 0.0621
Carl3 | 0.0705 |0.0025 0.0047 0.0881 | 0.0040 |0.0585 0.0621
Carl4  |0.0705 |0.0025 0.0047 0.0034 | 0.0960 |0.0585 0.0621
Carl5  0.0022 |0.0756 0.1054 0.0881 | 0.0960 |0.0585 0.0018
Carl6  0.0022 |0.0756 0.1054 0.0881 | 0.0040 |0.0585 0.0621
Carl7  0.0022 |0.0756 0.1054 0.0034 | 0.0960 |0.0585 0.0621
Carl8 0.0022 |0.0756 0.0047 0.0881 | 0.0040 |0.0585 0.0621
Carl9  |0.0022 |0.0025 0.1054 0.0881 |0.0040 |0.0585 0.0621
Car20 | 0.0022 |0.0025 0.0047 0.0881 | 0.0960 |0.0585 0.0621

Table 3.1 presents the results of the seven probabilistic transformations to the
columns of Table 2.4.

The weighted average scores generated multiplying by the weight of the criterion
the value assigned to each model by each criterion and adding the products of the
multiplications, along with those generated combining by the Choquet integral with
respect to the capacity employed in Chap. 2, are given in Table 3.2.

The scores are followed in this table by the ranks derived from them. There is a
considerable agreement between the present ranks and those of Chap. 2, but a
discrepancy could be noticed in the rank of Car2, which passes from 15 to 9. In the
middle of the ranking, the differences between probabilistic scores are small, what
generates large differences in the ranks. If the probabilistic scores were approxi-
mated to the second decimal, then the probabilistic rank of Car2 would be 11,
reflecting a tie between eleven models, from the 6th to the 16th.
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Table 3.2 Probabilistic scores

Capacity score Rank Additive score Rank

Carl 0.0029 17.5 0.0488 13
Car2 0.0028 19 0.0499 9
Car3 0.0034 13 0.0641

Car4 0.0515 4 0.0515 7
Car5 0.0316 11 0.0316 20
Car6 0.0327 10 0.0327 19
Car7 0.0034 13 0.0536 6
Car8 0.0029 17.5 0.0337 18
Car9 0.0034 13 0.0490 12
Carl0 0.0582 2 0.0608 4
Carll 0.0027 20 0.0440 17
Carl2 0.0499 5 0.0503 8
Carl3 0.0457 9 0.0457 16
Carl4 0.0033 16 0.0477 15
Carl5 0.0463 8 0.0493 11
Carl6 0.0620 1 0.0646 2
Carl7 0.0034 15 0.0666 1
Carl8 0.0495 6 0.0495 10
Carl9 0.0561 3 0.0587 5
Car20 0.0478 7 0.0482 14
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Chapter 4
Computation of Probabilities of Preference

Abstract The starting point to the computation of preferences by multiple criteria
are vectors of objective measurements of attributes of the alternatives or evaluations
in a Likert scale, or even approximate rankings. These initial values are treated as
location parameters of probability distributions, for instance as modes of triangular
distributions or means of normal distributions. For each criterion, the probability of
a realization of the distribution representing each alternative being the best in a
sample can then be computed. The final score of an alternative is obtained com-
bining its multiple probabilities of being the best.

Keywords Preference in a Likert scale - Preference distribution modeling - Joint
preference distribution + Comparison to a representative sample

4.1 Preferences Quantification

A precise measure of the preference for an alternative in a problem of choice is
given by the probability of it being chosen. When using only one criterion, a
strategy of three stages may be followed to compute this probability.

The first consists of obtaining for each alternative an exact measurement of an
attribute that provides a basis for the choice.

In a second stage, a probability distribution is determined around each of these
exact measurements, taking into account that, when a person responds to external
stimuli produced by objective attributes, in order to build and organize his or her
level of knowledge, the interpretation that is given to any particular stimulus is
subjective and varies from person to person (Roy 2005).

The diffuse evaluations of the diverse alternatives interweave in such a way that
no one of them must be preferred without consideration of its varying position with
respect to each of the others. In the final step, the probabilistic decision will be
taken on the basis of the probability of each alternative presenting the best mea-
surement in a sample with an entry drawn from each of these distributions.
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This chapter is directed to the discussion of practical aspects of each of these
three stages.

4.2 The Initial Quantification of Attributes

The preference for an alternative is given by the probability of its choice. However,
the measurement of preferences need not be made directly in probabilistic terms.
For each criterion, there is a most natural initial form of explaining the position of
each alternative with respect to the others. This natural form is sometimes based on
the value of an attribute measured objectively in terms of quantity, weight, cost,
speed, etc. For other criteria, it will be based on evaluations of abstract concepts and
expressed in ordinary language, in terms of small, moderate or large preference.

Any form of measurement may be employed to obtain initial evaluations.
However, some properties of the initial data may improve the effectiveness of the
probabilistic transformation. For instance, initial standardization procedures may
simplify the computation and the future interpretation of the results.

Handling data measured on the same scale facilitates comparisons. Although the
probabilistic transformation standardizes the scale, a general rule for the formula-
tion of the initial assessments also facilitates uniformization. To establish a general
rule, the initial evaluations may be set on a Likert (1932) scale of five linguistic
positions: “very small”, “small”, “moderate”, “large” and “very large”, represented
in the sequence by the numbers 1, 2, 3, 4 and 5. This scale may be amplified to a
scale of nine positions with inclusion of a position close to each extreme position
and two positions flanking the central position. When the attribute is measured by a
continuous variable, a discretization to such a Likert scale may be realized.

Otherwise, a starting point may be ranking the alternatives, ties allowed, and
reducing subsequently the number of classes by deciding to either consider some
alternatives in adjacent ranks as tied or increase distances between some others. A
systematic procedure to make experts in each attribute revise the distances between
adjacent alternatives, possibly reducing them to zero, may be made available to
improve the quality of the initial evaluations.

4.3 Modeling the Probability Distribution

To obtain probabilistic distributions, randomness is introduced by adding distur-
bances with null expected values to the exact initial values. This makes the initial
value a central measure, a location parameter of the distribution. The determination
of the other parameters is simplified by assuming independence between distur-
bances affecting different alternatives and equal dispersion.

As errors in measurement due to the conceptual distance between the concrete
attributes observed and the subjective satisfaction extracted from them are the
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source of the random disturbances, it is reasonable to model the distributions as
normal distributions. However, simplifications may be considered.

If the attributes that give rise to the preferences are represented by discrete
variables, the approach of Fuzzy Sets Theory, of replacing exact values by mem-
bership functions, is naturally taken. A triangular distribution will then be able to
model the randomness.

However, even if continuous distributions are assumed from the beginning and
no discretization of the initial values is performed, triangular distributions may be
assumed instead of normal distributions.

Discretization may be avoided to explore the accuracy of the measurements
when the alternatives are compared by weight, volume or other physical features.
Imprecision in the preference derived from such accurate measures is still due to the
subjectivity of the evaluator in evaluating the benefit or cost that results from them.
In that case, as the centers of distinct distributions may be closer than in the discrete
case, to maintain small the distance between distributions with close centers, a
normal distribution is more adequate than a triangular distribution.

Another point to take into account in the choice of the shape of the distributions
is the dependence or not of the disturbance on the value observed for the attribute.
The basic approach is modeling the random component as resulting from identically
distributed measurement errors, as in classical statistical models. A symmetric
distribution around the location parameter will then appear.

It may be more realistic, however, to make the dispersions depend on the
location, to compensate for a possible excessive deviation in the initial measure-
ment towards the preferred side. The distributions centered closer to the maximum
or the minimum observed value can spread more to the side where there is a larger
range of other possible values.

To obey this principle, the modeler may employ asymmetric triangular distri-
butions with the steepest slope for the side where the extreme is closer and a milder
decline for the side where the extreme is more distant. This may be done, for
instance, in the case of the Likert scale of nine levels from 1 to 9 by adopting
extremes of 0 and 10 for all distributions.

Alternatively, to reduce the importance of unobserved values in one of the
possible extremes, different bounds may be used for the different criteria. If the

vector of observed values for the j-th attribute is (el T e,,j), extremes for the
triangular distributions will then be fixed at eq = min{elj, ey e,,j} —1 and
ent+lj = max{elj, Ce en_,-} + 1.

In the symmetric case, if a normal distribution is assumed, the observed values
for the other alternatives may also be taken as a basis to model a dispersion
parameter, which is enough to determine a normal distribution after the mean is
known. To give a reasonable chance of occurrence in any distribution for all the
observed values, the standard deviation of the vector (elj, A e,,j), given by

1/2
((Z::l (e — Dby ebj/n)2> /n) , or some transformation of it, may be used

as a common dispersion parameter for all of them.
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4.4 Transformation in Probabilities of Being the Best

The association of distributions of possible values to exact measurements makes it
possible to replace, by means of a simple computation, the vector of measurements
of an attribute in a set of alternatives with a vector of probabilities of each of these
alternatives being the best.

After associated a probability distribution for the evaluation of each of a set of n
alternatives, the measure of preference for the a-th of these alternatives is given by
the probability of, in a sample formed by taking a random realization of each of the
n distributions, the value obtained for the a-th distribution being larger than all the
other n — 1 values.

This development assumes that an alternative is better than other if its value is
higher. If the opposite occurs, i.e., the criterion associates a larger value of the
attribute with a lower preference for the alternative, instead of the score being the
probability of presenting the highest value in the sample, it will be the probability of
presenting the lowest one.

This may be put more formally, with ¢; = (elj, e enj) representing again the
vector of measurements of the j-th attribute in the n alternatives and p; =
(p TR pnj) representing the vector of probabilities of preference. In the triangular
model, the probabilistic preference p,; is given by the probability that, in an
eventual vector of observations of n random variables (Eyj, ..., E,;) with inde-
pendent triangular distributions with extremes ej; and e,,; and with modes
respectively at ey, .. ., ey,

E, > Ep; forallbfrom1ton.

Assuming, without loss of generality, the extremes ep; = 0 and ¢, , ; = 1 and
assuming independence between the disturbances that affect the evaluation of dif-
ferent alternatives, the probability of maximization, for that alternative with eval-
uation e,; is directly given by

i /’{ﬁ{l —(1—x?/(1 - ebj):| I (x*/ew)) }fa(x)dx.

=0 b=1 b=l
el

In these products, replace by 1 the factors with b = a, as well as the first product
if [ =0 or 1 and the second if [ = n or n + 1. The integration is with respect to the
triangular density f, given by

fa(x) =2(1 —x)/(1 —ey) fora<l
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and
fa(x) =2x/ey fora > 1.

The transformation in probabilities of maximizing the preference allows for
translating from the linear scale of ranks to a more realistic scale with concentration
of significant preferences on a small number of alternatives. While a few most-
preferred alternatives receive clearly distinct probabilistic evaluations, probabilities
of preference close to zero are given to the other alternatives.

Thus, the transformation from ranks to probabilities of being the best or the
worst alternative brings an additional benefit, besides those advantages inherent to
taking uncertainty into account: it increases the distance between the most impor-
tant alternatives. This answers to the practical need of the evaluators to distinguish
the most important alternatives with higher accuracy, while distinctions between the
least preferred ones may be less reliable. Barzilai et al. (1987), Tryantaphilou et al.
(1994) and Brugha (2000), among others, present good reasons to prefer nonlinear
scales with such form.

4.5 Comparison to a Sample

The calculation of probabilities of being the most preferred alternative involves
comparison to all the competing alternatives, even to those with the worst ratings.
This ensures greater resistance to the influence of errors in the evaluation of some
alternatives, but, if the number of alternatives is too large, the probabilities of
preference become too small. If the comparison were made to a representative
sample with a small number of alternatives, the computation would be simplified.

An undesirable side effect of this sampling approach is that then the sum of the
scores will no longer be 1, as will happen if they are given by the probabilities of
being the best in the whole population of alternatives. In fact, as a result of com-
parison to a smaller sample, all the scores become higher. But a comparatively
higher score still means higher preference.

The simplification may be performed without losing the desired robustness. For
that, the small sample must be built in a representative way. It may be constituted,
for instance, of the deciles or the quartiles of the set of evaluations observed.

Table 4.1 Sample of three reference alternatives

Quartiles | Beauty | Comfort | Consumption |Power |Price |Reliability | Safety

Ist 0 0 0 0 0 1 1
quartile
Median 1 1 0 1 0.5 1 1

3rd 1 1 1 1 1 1 1
quartile
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An advantage of comparing to a sample of quantiles is that, by fixing the kind of

quantile, the scale of the evaluations is standardized. For instance, in the case of the
nine deciles, forming with the alternative being evaluated a total of ten, it may be

Table 4.2 Sample of nine reference alternatives

Deciles Beauty Comfort Consumption Power | Price Reliability Safety
1 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0.5

3 0.5 0 0 0 0 1 1

4 1 1 0 0 0 1 1

5 1 1 0 1 0.5 1 1

6 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1
Table 4.3 Probabilities of maximization in a sample of 4

Beauty Comfort Consumption Powerer Price Reliability Safety

Carl 03214 |0.3214 0.4405 0.3214 04153 025 0.25
Car2 03214 | 0.3214 0.4405 0.0595 04153 | 0.25 0.0357
Car3 03214 | 0.3214 0.4405 0.0595 04153 | 0.0357 0.25
Car4 03214 |0.3214 0.4405 0.0595 0.093 0.25 0.25
Car5 03214 | 0.3214 0.1119 0.3214 0.093 0.25 0.25
Car6 03214 [0.3214 0.1119 0.3214 0.093 0.25 0.0357
Car7 03214 | 0.3214 0.1119 0.3214 0.093 0.0357 0.25
Car8 03214 | 03214 0.1119 0.0595 04153 025 0.25
Car9 03214 | 0.3214 0.1119 0.0595 04153 025 0.0357
Carl0 {03214 |0.3214 0.1119 0.0595 0.093 0.25 0.25
Carll 103214  |0.0595 0.4405 0.3214 0.093 0.25 0.25
Carl2 103214  |0.0595 0.4405 0.0595 04153 | 0.0357 0.25
Carl3 103214 |0.0595 0.1119 0.3214 04153 |0.25 0.25
Carld 103214 |0.0595 0.1119 0.3214 0.093 0.25 0.25
Carl5 03214  {0.0595 0.1119 0.0595 04153 025 0.25
Carl6 {00595 |0.3214 0.4405 0.3214 04153 025 0.0357
Carl7 10,0595 |0.3214 0.4405 0.3214 0.093 0.25 0.25
Carl8 100595 [0.3214 0.4405 0.0595 04153 025 0.25
Carl9 10,0595 |0.3214 0.1119 0.3214 0.093 0.25 0.25
Car20 10,0595 |0.0595 0.4405 0.3214 0.093 0.25 0.25
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taken as a standard for comparison that, for a completely homogeneous population,
the probabilities of preference will be equal to 0.1, this number becoming a pattern
for comparison of easy memorization.

To explain the possibility of loss in information due to the reduction of the size
of the sample, the example of 20 cars of Chap. 2 may be enlightening. With 20
alternatives there is no need to simplify the analysis, as the sample of 20 is perfectly
manageable. But it is interesting to verify that if the reduction to nine deciles is
applied no substantial difference occurs. On the other side, comparing only to the
quartiles, the result is considerably changed.

The samples of three and nine reference units for each criterion are, respectively,
the quartiles given in Table 4.1 and the deciles given in Table 4.2. The probabilities of
maximization of the preference when the comparison is to the quartiles are presented
in Table 4.3 and the probabilities of preference with respect to the deciles in Table 4.4.

The correlation between the vector of ranks resulting from the comparison to the
reduced sample, shown in Table 4.5, and that resulting from the comparison to the
full sample in Chap. 3 reaches a value of 0.98 if the reduction is for the sample of

Table 4.4 Probabilities of maximization in a sample of 9

Beauty |Comfort |Consumption |Power Price Reliability Safety
Carl 0.1383 | 0.1394 0.1866 0.0134 |0.1843 |0.1105 0.0079
Car2 0.1383 | 0.1394 0.1866 0.0134 |0.1843 | 0.0064 0.1226
Car3 0.1383 | 0.1394 0.1866 0.0134 |0.0174 |0.1105 0.1226
Car4 0.1383 | 0.1394 0.0181 0.1599 |0.0174 | 0.1105 0.1226
Car5 0.1383 | 0.1394 0.0181 0.1599 |0.0174 |0.1105 0.0079
Car6 0.1383 | 0.1394 0.0181 0.1599 |0.0174 | 0.0064 0.1226
Car7 0.1383 | 0.1394 0.0181 0.0134 |0.1843 |0.1105 0.1226
Car8 0.1383 | 0.1394 0.0181 0.0134 |0.1843 | 0.1105 0.0079
Car9 0.1383 | 0.1394 0.0181 0.0134 |0.0174 |0.1105 0.1226
Carl0  [0.1383 |0.0102 0.1866 0.1599 |0.0174 |0.1105 0.1226
Carll [0.1383 |0.0102 0.1866 0.0134 |0.1843 |0.0064 0.1226
Carl2  0.1383 |0.0102 0.0181 0.1599 |0.1843 |0.1105 0.1226
Carl3  [0.1383 |0.0102 0.0181 0.1599 |0.0174 | 0.1105 0.1226
Carl4  0.1383 |0.0102 0.0181 0.0134 |0.1843 |0.1105 0.1226
Carl5 | 0.01 0.1394 0.1866 0.1599 |0.1843 |0.1105 0.0079
Carl6 | 0.01 0.1394 0.1866 0.1599 |0.0174 |0.1105 0.1226
Carl7 | 0.01 0.1394 0.1866 0.0134 |0.1843 |0.1105 0.1226
Carl8 |0.01 0.1394 0.0181 0.1599 |0.0174 |0.1105 0.1226
Carl9 | 0.01 0.0102 0.1866 0.1599 |0.0174 |0.1105 0.1226
Car20 | 0.01 0.0102 0.0181 0.1599 |0.1843 | 0.1105 0.1226
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Table 4.5 Final scores and ranks

Scores by deciles Ranks by deciles Scores by quartiles Ranks by quartiles

Carl 0.0920 15 0.2968 1
Car2 0.0955 11 0.2183 14
Car3 0.1215 3 0.2183 14
Car4 0.1006 7 0.2729 3.5
Car5 0.0628 20 0.2314 8
Car6 0.0663 19 0.1607 19.5
Car7 0.1046 6 0.1607 19.5
Car8 0.0667 18 0.2397 7
Car9 0.0962 10 0.1690 18
Carl0  |0.1155 4 0.2236 10.5
Carll |0.0851 17 0.2598 5
Carl2  |0.0986 8 0.1973 17
Carl3  |0.0903 16 0.2266 9
Carld | 0.0942 13 0.2105 16
Carl5  |0.0925 14 0.2187 12
Carl6 | 0.1220 2 0.2183 14
Carl7 | 0.1260 1 0.2729 3.5
Carl8 | 0.0968 9 0.2811 2
Carl9  |0.1117 5 0.2236 10.5
Car20 | 0.0948 12 0.2519 6

nine deciles and becomes negative (with a value of —0.06) if the reduction is to the
sample of three quartiles.

References

Barzilai, J., Cook, W. D., & Golany, B. (1987). Consistent weights for judgements matrices of the
relative importance of alternatives. Operations Research Letters, 6(1), 131-134.

Brugha, C. M. (2000). Relative measurement and the power function. European Journal of
Operational Research, 121, 627-640.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140,
1-55.

Roy, B. (2005). Paradigms and challenges. In J. Greco & S. Ehrgott (Eds.), Multicriteria decision
analysis: state of the art survey (pp. 3—24). Boston: Springer.

Tryantaphilou, E., Lootsma, F. A., Pardalos, P. M., & Mann, S. H. (1994). On the evaluation and
application of different scales for quantifying pairwise comparisons in fuzzy sets. Journal of
Multicriteria Decision Analysis, 3, 133—155.



Chapter 5
Composition by Joint Probabilities

Abstract The difficulty involved in the composition of the criteria by weighted
average, due to the difficulty of assigning weights to criteria and to sets of criteria,
was already signaled in the preceding chapters. The probabilistic approach allows
forgo the weighting of the criteria and get overall scores of preference by calcu-
lating joint probabilities.

Keywords Being the best - Being the worst - Conservative - Progressive -
Optimist - Pessimist - All the criteria - At least one criterion

5.1 Approaches by Joint Probabilities

The choice between possible forms of composition of preferences in terms of joint
probabilities is facilitated by its probabilistic character. For example, the alterna-
tives can be ordered according to the probability of being the best by all the criteria
simultaneously. To calculate this probability, assuming that the random compo-
nents involved in the application of the different criteria are independent, it is
enough to multiply the probabilities of being the best according to each criterion.
The form to obtain joint probabilities of preference depends on the point of view
taken by the decision maker. Four forms of composition can be obtained according
to the position taken by the decision maker on two questions, the first about
conservatism and the second about pessimism. It is much easier to identify which of
these views should guide the decision than choosing a set of weights to the criteria.
In the first aspect, the decision maker in the progressive side pays attention to
maximize the probabilities of preference according to the criteria examined, while
for that in the conservative side the odds that matter are of not minimizing such
preferences. The progressive decision maker pays attention to the differences
between the alternatives near the frontier of excellence; for the conservative one
what is important is to differentiate those near the frontier of worst performance.
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The term conservative, in this terminology, is associated to the idea of avoiding a
losses, of concern on avoiding the negative extremes. On the other hand, the term
progressive is associated to the desire to achieve the best gains.

With respect to optimism and pessimism, in the optimistic point of view it is
enough to reach satisfactory results on at least one criterion. All the criteria are
taken into account, but the composition uses the connective “or”. What will be
computed are the probabilities of maximizing (or not minimizing, if the view on the
other axis is conservative) preference according to at least one among the multiple
criteria. From the pessimistic point of view, the preference will be measured by the
probability of maximizing (or not minimizing) the preference according to all the
criteria.

So, four kinds of composition without the use of weights may be considered: (1)
by the probability of being the best according to all the criteria considered, (2) by
the probability of being the best according to at least one of the criteria, (3) by the
probability of not being the worst by all the criteria considered, (4) the probability
of not being the worst by at least one of the criteria.

In the progressive and pessimistic composition is used the joint probability of the
intersection with respect to all the criteria of the events corresponding to the
alternative receiving the best evaluation.

In the progressive and optimistic composition, the global preference score is
given by the probability of the complement of the intersection of the events cor-
responding to not achieving the best evaluation.

In the conservative and pessimistic composition is used the joint probability
corresponding to the intersection of the events of not receiving the worst rating.

In the conservative and optimistic composition is used the probability of the
complement of the intersection of events corresponding to receiving the worst
ratings.

By dividing the criteria into groups, these four joint probabilities can be com-
puted for subsets of the set of criteria. After that, a choice between the optimistic
and the pessimistic approaches will be applied to determine how to combine the
groups to derive from the probabilities of preference inside each group a general
score of preference.

The criteria may be divided, for example, into a group related to attributes of
highest importance and another associated with secondary attributes, or into a group
of inputs and other of outputs. The composition of the criteria of high priority
would be taken from a pessimistic point of view, while secondary criteria would be
seen from an optimistic point of view. The outputs would be treated from a pro-
gressive perspective, while inputs suggest a conservative treatment. In both cases,
as the two groups cannot be thought as replaceable, a pessimistic approach must be
taken to combine them and the final score will be given by the product of the
probabilities of preference according to each group.

For instance, if the criteria are ranked as in the Analytic Network Process (ANP)
of Saaty (1996), on criteria of benefits, opportunities, costs and risks, or of
strengths, opportunities, weaknesses and threats, of the SWOT analysis of
Humphrey (2005), for the first group, given its priority and positive feature, a
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progressive and pessimistic approach would apply. Opportunities, with a lower
priority, would receive a progressive and optimistic approach. Similarly, to costs or
weaknesses a conservative and pessimistic approach would be applied while to
risks or threats a conservative but optimistic approach might be applied.

As a general rule, to compose the groups the product will be employed and for
the rule of composition inside the groups, whenever the goal is to choose the best
alternative, the progressive and pessimistic approach is what is needed. First,
because the progressive approach focuses on the alternatives most likely to be
chosen according to each criterion separately and it is natural that these are the
alternatives more carefully measured. And the pessimistic approach leads to give
more importance to good performances according to the highest number of criteria,
while the optimistic presents a highest chance of good performances on isolated
criteria determining the outcome.

Even if the decision maker is not able to choose a point of view to decide on the
basis of joint probabilities, computing the preferences by every point of view and
comparing the results of applying such different points of view can be employed to
help identifying isolated criteria that favor certain alternatives, guiding a possible
review of the application of the criteria, in a subsequent step.

5.2 Different Assumptions About Correlation

Another aspect to consider is the modeling of the correlation between disturbances
affecting the evaluations according to different criteria.

If such correlation can be quantified, it can be introduced in the computation of
the joint probabilities. However, quantifying correlations is difficult. For instance,
in the choice of more efficient production units, correlation between the criteria may
be expected, as the disturbances affecting the quantities of inputs used in the pro-
duction process come to affect the volumes of product. But, how does one quantify
the reciprocal influence between errors in the measurement of inputs and outputs?

The presence of correlation should be quantified only in the case of positive
dependence. Negative correlation might also be considered in the case of contra-
dictory features, but the choice between satisfying opposite preference motivations
should be solved in the modeling of the criteria before entering the modeling of the
disturbances affecting them.

In the absence of a means to directly calculate the correlations, an approach that
can be taken is to compute the joint probabilities under hypotheses of independence
and of maximal dependence between all the events of the same type, i.e., between
all the events of the type ‘maximizing preference according to different criteria’,
between all the events of the type ‘not maximizing’, between all the events of the
type ‘minimizing’ and between all the events of the type ‘not minimizing’.

If the difference between the scores obtained assuming independence and
assuming maximal dependence reaches significant levels, research to determine the
effect of intermediary levels of dependence must be undertaken.



42 5 Composition by Joint Probabilities

In case of a lack of strong reasons to consider correlation, the assumption of
independence should be preferred. This happens because, while the hypothesis of
independence leads to calculating the probability of the intersection using the
product of the probabilities of the events that are intersected, the hypothesis of
maximal dependence, because the probability of the intersection cannot be larger
than the probability of the events intersected, leads to calculating this probability
using the minimum of the probabilities of such events. Thus, the assumption of
independence, by involving the computation of the product of the exact values of
the factors, employs more of the available information.

It is interesting to notice here that the composition by the minimum is equivalent
to the application of the principle of necessity in Fuzzy Logic (Zadeh 1978).

Moreover, the hypothesis of maximal dependence provides a basis to establish a
relation between the composition by joint probabilities and that by integration, as
the combination by the minimum is equivalent to the application of a Choquet
(1953) integral with respect to the capacity p with p(A) = 1 for every unitary set A.

When the number of criteria is large, the joint probability under the assumption
of independence will present small values as the product of a large number of
factors between zero and one. Under the assumption of maximal dependence,
determining the joint probability using the smallest of the probabilities according to
each criterion, the result will not be so small. However, simple procedures may be
employed to avoid small final scores. It is enough to substitute for the product the
geometric mean, or to standardize the final probabilities to sum one, dividing each
product by the sum of all of them.

To illuminate the effect of the assumptions on dependence, the following for-
mulae show the result of application to the different points of view of the extreme
hypotheses of maximal dependence and independence. Here, M; and m; denote,
respectively, the probability of the alternative maximizing and minimizing the
preference according to the j-th criterion, n denotes the product, min denotes the
minimum and max denotes the maximum.

5.2.1 Progressive and Pessimistic Point of View

independence: 1t; Mj;
maximal dependence: min;M;.

5.2.2 Progressive and Optimistic Point of View

independence: 1 — nj(l — Mj);

maximal dependence: max;M,;.
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These formulae follow from the fact that the event of being preferred according
to at least one criterion is the complement of the intersection of the events of not
being preferred and, in the case of maximum dependence,

1-— minj(l — Mj) =1- (1 — maijj) = max;M;.

5.2.3 Conservative and Pessimistic Point of View

independence: 7; (1 — m);
maximal dependence: 1 — max;m;,

Notice that there are two equivalent forms of computation under the assumption of
maximal dependence, as the intersection of the probabilities of not being the worst
can be given by mini(1 — m;), as well as by 1 — max;m;.

5.2.4 Conservative and Optimistic Point of View

independence: 1 — mjmy;
maximal dependence: 1 — minjm;.

This follows from the fact that not being the worst by at least one criterion is the
complement of being the worst by all of them.

To compare in a more practical context the effect of the two assumptions of
independence and maximal dependence, let us formally represent the application of
them to the model derived from ANP. Denoting by P,; the probability of preference
by the a-th alternative according to the j-th criterion and indexing by b, o, ¢ and r,
respectively, the criteria of the four types, benefits, opportunities, costs and risks,
the joint probability of preference by the a-th alternative would be given, assuming
independence between events of maximizing preference according to different
criteria, by:

TpPab (1 — To (1 — Py ) )T (1 — Pye) (1 — 7, Py;)
and, assuming maximal positive dependence, by
minyPapymax,Pyomin (1 — Py ) (1 — min,Py;),

for b varying along all benefits, o varying along all opportunities, ¢ varying along
all costs and r varying along all risks.
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Another possible way to address the case of dependence is by conditional rea-
soning. After somehow ordering the criteria, measures of preference for each
alternative can be calculated successively according to each criterion conditionally
on the preference according to the previously applied criteria. This calculation may
follow the same pattern of calculation of probabilities of being the best according to
the isolated criterion by randomizing ranks. The conditional probabilities of pref-
erence thus obtained can be combined with the previous vector of preferences to
derive a new joint probability of preference and so on until a joint preference by all
the criteria is obtained.

5.3 Examples

Table 5.1 presents the results of the composition of the preferences for car models
treated in the preceding chapters considering now the criteria divided into two

Table 5.1 Preferences assuming independence, priority to reliability and safety

Models Scores Standardized Scores Ranks Weighted average ranks
Carl 0.00003238 0.0032 15 13
Car2 0.00003055 0.0030 16 9
Car3 0.00086102 0.0859 5 3
Car4 0.00081111 0.0810 7 7
Car5 0.00002351 0.0023 19 20
Car6 0.00002218 0.0022 20 19
Car7 0.00083387 0.0832 6 6
Carg 0.00002417 0.0024 13 18
Car9 0.00054902 0.0548 13 12
Carl0 0.00089604 0.0894 3 4
Carll 0.00002511 0.0025 17 17
Carl2 0.00086922 0.0868 4 8
Carl3 0.00058797 0.0587 12 16
Carl4 0.00061253 0.0611 10 15
Carl5 0.00003367 0.0034 14 11
Carl6 0.00091023 0.0908 2 2
Carl7 0.00093219 0.0930 1 1
Carl8 0.00060376 0.0603 11 10
Carl9 0.00069493 0.0694 8 5
Car20 0.00066615 0.0665 9 14
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groups. Reliability and safety form a group of two criteria of high priority and the
other five criteria are considered of lower priority.

The criteria of high priority are combined by a progressive and pessimistic point
of view and those of lower of priority are combined by a progressive and optimistic
point of view. The two groups are finally combined pessimistically, so that the final
score is given by the probability of being preferred by the two groups.

Thus, the five criteria of low priority are combined in terms of probability of
being the best by at least one of them and, assuming independence, the final score is
obtained multiplying this joint probability by the product of the probabilities of
preference by the two other criteria.

Beside the joint probability scores, is presented in Table 5.1 a column with the
vector of scores standardized to sum 1 and a column with the ranks. For com-
parison, in a last column are repeated the ranks obtained by weighted average with
the weights of Table 2.3.

It can be seen in Table 5.1 that the ranking obtained by joint probabilities is
similar to that obtained by weighted average with higher weights for the criteria
receiving now high priority, with the final choice of cars 17 and 16. The concor-
dance between the results of application of these two approaches is confirmed by a
ranks correlation coefficient of 0.88.

The joint probabilities in Table 5.1 are calculated assuming independence. The
results of analogous computation assuming the hypothesis of maximal dependen-
cies are presented in Table 5.2. It can be noticed how the hypothesis of maximal
dependence considerably reduces the variation. In fact, only four different values
are observed for the final scores there.

In this example of car models, as the evaluations by each criterion present only
two possible values, minimizing is equivalent to not maximizing. The next example
has a larger set of possible values.

In this second example are compared the performances of drivers of a fleet of
urban buses. The drivers are grouped by the shifts of the bus line they work for.
Four criteria are employed to assess individual performance: based on two process
attributes and on two output attributes.

The process attributes are related to the speed kept in various parts of the route to
avoid large spacing between two buses of the same line, which would increase the
chance of passengers taking buses of competing companies. To build these process
attributes, the times each vehicle passes by previously determined points are
recorded. These attributes, denoted T; and T,, are, respectively, the number of
passages at each of these points before a predetermined small time threshold and
after another higher one.

The output attributes, denoted by P; and P,, are the number of passengers
transported by the driver and by the whole shift of the driver.

Table 5.3 shows the weekly improvement in each of these attributes referring to
ten drivers of the three shifts of a bus line. The attributes are measured in terms of
weekly variation, what means, for instance, that a positive value of 3 in T, signifies
that the driver presented this week less 3 transgressions of the passage thresholds
relatively to the previous week.
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Table 5.2 Preferences Models Scores Standardized scores Ranks

assuming dependence, prior-

ity to reliability and safety Carl 0.0585 0.1289 4
Car2 0.0016 0.0035 19
Car3 0.004 0.0088 12
Car4 0.004 0.0088 12
Car5 0.004 0.0088 12
Car6 0.0016 0.0035 19
Car7 0.0585 0.1289 4
Car8 0.0585 0.1289
Car9 0.004 0.0088 12
Carl0 0.004 0.0088 12
Carll 0.0016 0.0035 19
Carl2 0.0585 0.1289 4
Carl3 0.004 0.0088 12
Carl4 0.0585 0.1289
Carl5 0.0585 0.1289
Carl6 0.004 0.0088 12
Carl7 0.0034 0.0075 17
Carl8 0.004 0.0088 12
Carl9 0.004 0.0088 12
Car20 0.0585 0.1289 4

Table 5.3 Bus Drivers Data T, T, P, P,
Dy 0 -2 3
Dy, -3 1 2 3
D, 0 0 -4 3
Dy, 0 0 4 9
Dy, 0 0 3 o
Ds, 0 0 2 9
Dis -1 -1 4 8
Das -1 -3 3 8
Ds3 -2 -4 1 8
D3 0 0 0 8

The first two shifts, serving morning and afternoon periods of the day, have three
buses, while the third, the evening shift, has four. D, names the a-th driver of the
s-th shift.
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A first exploratory analysis of this data set highlights the best weekly evolution
of the performance of the drivers of Shift 2, regarding both the final output and the
process attributes.

Tables 5.4 and 5.5 show the result of the transformation into probabilities of
reaching the upper and lower ranks in each attribute, assuming triangular distri-
butions with extremes given by the lowest and highest values observed in Table 5.3,
that means, —3 and O for Ty, —4 and O for T,, —4 and 5 for P, and 3 and 9 for P,.
Very similar results are obtained if larger ranges are assumed for these distributions.

In Table 5.5, the high values—above 0.3—for the probabilities of driver Dy,
minimizing T;, driver D33 minimizing T, and driver D3; minimizing P; deserve
attention. This is an illustration of the ability of the probabilistic transformation
to detach the extreme alternatives by considering the two frontiers, of best and
worst performances. Looking only at Table 5.4 the values of the maximization

Table 5.4 Probabilities of being the best

T, T, P, P,
Dy 0.1532 0.0373 0.2606 0.0140
Dy, 0.0092 0.0574 0.0632 0.0140
Ds; 0.1532 0.1159 0.0200 0.0140
Dz 0.1532 0.1159 0.1594 0.2045
Do, 0.1532 0.1159 0.0955 0.2045
D3, 0.1532 0.1159 0.0632 0.2045
D3 0.0289 0.2763 0.1594 0.0861
D»3 0.0289 0.0277 0.0955 0.0861
Ds; 0.0140 0.0220 0.0465 0.0861
Du3 0.1532 0.1159 0.0367 0.0861

Table 5.5 Probabilities of being the worst

T, T, Py P,
Dy, 0.0472 0.1013 0.0449 0.2691
D5, 0.4146 0.0648 0.0693 0.2691
Ds, 0.0472 0.0475 0.4038 0.2691
Dj, 0.0472 0.0475 0.0508 0.0246
D,, 0.0472 0.0475 0.0586 0.0246
D, 0.0472 0.0475 0.0693 0.0246
D3 0.0731 0.0376 0.0508 0.0298
D»; 0.0731 0.1922 0.0586 0.0298
D33 0.1563 0.3664 0.0848 0.0298
Dy 0.0472 0.0475 0.1090 0.0298
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Table 5.6 Scores for drivers by maximal dependence between outputs

PP OP PC oC

Dy, 0.00013609 0.38264182 0.62736682 0.9994297

D5, 0.00000814 0.12933471 0.39821755 0.99879157
D5, 0.00003245 0.1817541 0.41506386 0.99487113
D, 0.00377803 0.43374713 0.88187182 0.99994102
D), 0.0022635 0.39070221 0.87462509 0.99993196
D3, 0.00149794 0.36894398 0.86468405 0.99991953
D 0.00039663 0.44403605 0.85359504 0.99994308
Ds; 0.00022777 0.19726684 0.73780113 0.99987235
D33 0.00005605 0.14776723 0.56259057 0.99960502
Dy 0.00036623 0.25451126 0.82338691 0.99984669

Table 5.7 Scores for drivers by independence

PP OP PC oC

Dy 0.00002085 0.40566928 0.59775511 0.99994223
D5, 0.00000047 0.13734483 0.37241305 0.99949898
D3 0.00000497 0.2765888 0.39547284 0.99975638
D> 0.00057879 0.49937583 0.84024747 0.9999972

Da» 0.00034677 0.46131982 0.83334278 0.99999677
D3, 0.00022948 0.44208337 0.82387097 0.99999618
D3 0.00010959 0.4601034 0.82149987 0.99999584
D3 0.00000658 0.21950255 0.68386786 0.99997547
D33 0.00000123 0.15969849 0.47465767 0.99985528
Das 0.00005611 0.34091341 0.78452305 0.99999272

probabilities for the other drivers would not call so much attention due to the ties in
the frontier.

Tables 5.6 and 5.7 present the probabilistic scores obtained by joint probabilities,
for the composition under different points of view: PP stands for pessimistic and
progressive, OP for optimistic and progressive, PC for pessimistic and conservative
and OC for optimistic and conservative.

Thus, for instance, in Table 5.6, the a-th entry of the column headed by PP
presents the product of the minimum between the entries corresponding to T; and
T, in the a-th line of Table 5.4 by the minimum between the other two entries of the
same row, while in Table 5.7 it presents the product of the 4 entries of the a-th row
of Table 5.4.

Analogously, the a-th entry of the column headed by PC presents, in Table 5.6,
the difference to 1 of the product of the minimum between the differences to 1 of
each of the entries corresponding to T; and T in the a-th row of Table 5.4 mul-
tiplied by the product of the differences to 1 of each of the other two entries of the
a-th row of that Table, while in Table 5.7 it presents the difference to 1 of the
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product of the differences to 1 of the four entries corresponding to T1, T2, P1 and
P2 in that same row.

If the goal of the evaluation is to determine the values of bonuses to be paid to
motivate drivers to increase output, a progressive point of view may be the most
appealing. Besides, a pessimistic point of view may be more appropriate to make
the drivers pay attention to both output and process attributes. This approach may
nevertheless be sometimes replaced by an optimistic approach that would make
easier to the drivers improve performance by focusing attention on a simple goal.

In the present study these distinctions may become irrelevant as high correlations
can be noticed between all the vectors of final scores.

An even stronger concordance can yet be found between the scores in Tables 5.6
and 5.7 for the same composition point of view. This demonstrates the resistance of
the composition assumptions to the effects of dependence. In fact, changing the
assumption from maximal dependence to independence would result in significant
change only in the ranks of D3 for the optimistic approaches.

This last change is due to the greater importance given to the outputs if inde-
pendence is assumed. To avoid giving higher weight to a group with a larger
number of independent criteria, the probabilistic composition may be applied first
within the groups, replacing the products of the probabilities of preference by
criteria in the same group by geometric means.

In the present example, slightly different results are obtained if this procedure is
adopted. For the scores for the group of two process criteria, assumed as inde-
pendent, computed using square roots of the products while the scores for the group
of output criteria, assumed dependent, composed using the minimum, the final
scores in Table 5.8 are obtained. Comparing the ranks derived from Table 5.8 to
those from the previous tables, again the few changes observed are small.

Table 5.8 Scores for equal group weights and dependence

PP op PC oC
Dy, 0.0023 0.2770 0.7509 0.9948
D, 0.0003 0.0941 0.4828 0.9912
D5, 0.0019 0.1676 0.6288 0.9844
Di» 0.0209 0.3075 0.9165 0.9983
D,, 0.0162 0.2817 0.9127 0.9982
D3, 0.0132 0.2690 0.9075 0.9981
D 0.0034 0.3657 0.8895 0.9985
Ds; 0.0025 0.1171 0.7720 0.9969
D33 0.0009 0.0870 0.5970 0.9921
Dy 0.0065 0.2055 0.8856 0.9973
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Chapter 6
Composition by DEA Distance
to the Frontier

Abstract In the preceding chapter the composition of the preferences according to
the different criteria was made by rules that do not weight the criteria. These rules
were based on different points of view formulated in terms of joint probabilities. A
different approach to avoid a previous determination of weights, based on multi-
variate distances to the frontiers, is considered in this chapter.

Keywords Data envelopment analysis « Frontier - Human development index

6.1 Data Envelopment Analysis

Data Envelopment Analysis (DEA) emerged in the late 1970s, with the work of
Charnes et al. (1978). The basic idea behind DEA consists of comparing the
alternatives corresponding to production units by evaluating their efficiency in
terms of ratios between linear combinations of the values of outputs and inputs,
with coefficients varying freely.

If there is only one product from a unique resource, the efficiency is naturally
measured by the ratio between the amount of output produced and the amount of
resource employed to produce it. In the case of multiple inputs combined to produce
different amounts of different products, a similar ratio can be employed if it is
possible, by means of unitary prices or any other type of coefficients, to obtain a
unique aggregate measure of output produced and another unique aggregate mea-
sure of input employed.

DEA is employed to measure the efficiency when there is freedom of choice of
coefficients to combine outputs and inputs. The efficiency of a production unit is then
measured by the distance between the ratio obtained applying to its outputs and inputs
the most favorable coefficients and the highest ratio that would be obtained applying
the same coefficients to outputs and inputs observed in some competing alternative.

A mathematical programming algorithm is employed to determine this optimal
distance from the productivity ratio associated with the alternative under evaluation
to the productivity ratios in the frontier of highest productivities. An alternative is
considered efficient and receives an efficiency score of 1 if its vector of inputs and
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outputs belongs to this excellence frontier. Otherwise, it is said to be inefficient and
receives a score of relative efficiency determined by the quotient between such
productivity ratios.

There are two classic models in DEA. The first is called CCR, in reference to
Charnes et al. (1978). The second, called BCC, was proposed by Banker et al.
(1984). Later successive developments led to the construction of a series of DEA
models, considering, for instance, restrictions to the vector of weights, as well as
randomness. However, when establishing a setup to combine probabilistic prefer-
ences, it is convenient to not deviate from a fixed pattern. For this reason, only the
two general optimization procedures of the CCR and BCC models will be
employed here in the probabilistic composition of criteria.

In both these procedures, the distance from the vector of values of the inputs and
outputs in the alternative being evaluated to a piecewise linear frontier generated by
linearly combining observed inputs of other alternatives is minimized. In the BCC
approach, the coefficients of the linear combinations that form the frontier are
forced to sum to 1. In the CCR approach, they can present a sum smaller than 1.

This flexibility in the sum of coefficients of the CCR model corresponds to
allowing for introducing in the composition of the frontier an alternative of null
inputs and null outputs. This is equivalent to allow for reducing the use of inputs
and production of outputs in any unit in the frontier on a proportional basis, as if
returns to scale were constant.

In the BCC model, the frontier of excellence is formed only by points inter-
mediary between those representing observed alternatives. That means that the
scores of efficiency of the alternatives cannot be reduced by comparison to fictitious
production units of smaller dimensions.

The efficiency of each alternative is calculated by solving an optimization
problem proper for that alternative. The CCR optimization problem has as objective
function to maximize the quotient between the efficiency ratio of that alternative
and the best efficiency ratio with the same multipliers in the entire set of alterna-
tives. By fixing the value 1 for the linear combination of the inputs that constitutes
the denominator of the ratio, this fractionary optimization problem can be formu-
lated in the following linear form:

Maximize eao = Z Hrorao
T

subject to

Z VelSao = 1,
S
Z WOra — Z vslsa <0, for every alternative a, from 1 to n
T a

p, > 0 and vy > O for all r and s,
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for r varying from 1 to m; and s varying from 1 to m;, m; denoting the number of
outputs and m, denoting the number of inputs, O, denoting the value of the r-th
output at the a-th alternative, I;; denoting the value of the s-th input at the a-th
alternative and i, denoting the alternative being evaluated.

This problem is equivalent to its dual linear programming problem of mini-
mizing the fraction by which the values of the inputs of the production unit eval-
uated can be reduced in such a way as to keep its output/input ratio lower than that
obtained from any combination of all the alternatives.

The score for the a,-th alternative is the fraction 60,, such that, for some set of
coefficients A, ... A,,, for every input, the linear combination with these coefficients
of the values of the input in the n alternatives is smaller than the fraction of the
value of that input for the a,-th alternative, while the linear combination with these
same coefficients of the n values of every output is larger than the value of that
output for that a,-th alternative. This dual problem may be formulated in precise
terms, with the same notation, as:

Minimize 0,,
subject to

Z Aalsi—0a0L520 <0,  for all s from 1 to my,
a

Orao — Z /a0 <0,  for all r from 1 to my,
a

A2 <0, for all a from 1 to n.

To avoid the hypothesis of constant returns to scale, in the BCC model the
constraint £,A, = 1 is added to this formulation

The CCR model is completely symmetric with respect to fixing an upper bound
for inputs and maximizing outputs or fixing a lower bound for outputs and mini-
mizing inputs, in the sense that, by taking this second approach, the score given by
the lower bound obtained is precisely the inverse 1/0,, of the upper bound 0,
determined by solving the problem presented above.

In the BCC model, there is no such precise relation. Two different vectors of
scores are then obtained according to minimization of inputs or maximization of
outputs.

Thus, two more algorithms are available: the BCC model oriented to the min-
imization of inputs and the BCC model oriented to the maximization of outputs.
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6.1.1 BCC Model Oriented to the Minimization of Inputs

Minimize 0,,
subject to

Zzalm—e&olm <0, for all s from 1 to my,
a

Orao — Z 2420, <0, for all r from 1 to my,
a

Ziazl,

Aa >0, for all a from 1 to n.

6.1.2 BCC Model Oriented to the Maximization of Outputs

Maximize 0,,
subject to

0,000 — Z £420r, <0, for all r from 1 to my,
a

Z Jalsa — o <0, for all s from 1 to my,

S =1,

4o >0, for all a from 1 to n.

For multiple criteria composition, the more natural mode of use of the DEA
approach is to measure all the criteria in an increasing form and treat them as
outputs generated by a constant input. With constant input, there is no reason to
consider variable returns to scale, and the model takes the simpler form:

Maximize eao = Z Hrorao
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subject to

Z 1O, <1, for every alternative a, from 1 to n,
T

pr > 0 for all r, r varying from 1 to m, the number of criteria, O,, denoting the
evaluation of the a-th alternative by the r-th criterion and a, denoting the alternative
being evaluated.

6.2 Use of DEA Scores

The composition of probabilities of preference according to multiple criteria may
employ the DEA multidimensional distances to the frontiers of best or worst per-
formance. The scores of efficiency generated by the algorithms of DEA take the role
of global scores of preference. DEA models are based on efficiency ratios between
input and output variables, but they can be applied to any situation by treating all
criteria as outputs generated by an input of identical values along all the
alternatives.

This approach may be applied even in the problem of comparing production
units. In that case, the output/input productivity ratios may be treated as outputs of
constant input.

Changing signs if necessary, the evaluations according to every criterion can be
oriented in such a way that higher evaluations correspond to better alternatives.
With this, a DEA model with a constant input and with the probabilities of max-
imizing preference according to each criterion as outputs can always be employed.

DEA scores do not depend on the scales of measurement and do not involve
weighting variables. Nevertheless, they are heavily affected by outliers. Any
alternative with an extreme low value in only one input or an extreme high value in
only one output will be necessarily evaluated as fully efficient. Its extreme value
will also strongly affect the score of inefficient units.

By taking into account distances to other alternatives besides those in the
frontier, the probabilistic transformation into probabilities of being the best
increases the resistance of the scores of the alternatives outside the frontier against
the influence of such outliers. However, if the DEA algorithm is used, even with the
probabilistic transformation, care must be taken to detect the possibility of an
extreme value in some variable leading to an efficiency score equal to 1.

In addition to the model with constant input, the probabilistic composition can
also use DEA algorithms to evaluate efficiency of production units employing
combinations of inputs to generate sets of outputs. The probabilistic approach to
this problem can take as criteria the output/input ratios for the different pairs of
input and output or take each input and each output as individual criteria.

In this latter form of modeling, the individual probabilities of preference will be
the probabilities of maximizing some measure of revenue from the sale of each
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output and the probabilities of minimizing some measure of cost of acquisition of
each input. In the other form, which takes as criteria the output/input ratios, the final
scores will measure efficiency in a manner more similar to that traditionally used in
DEA.

Preference scores for the cars in the example models in the preceding chapters
can be obtained by employing DEA algorithms to combine the probabilities of
preference according to the different criteria. As there are not causal relationships
between the attributes considered in this model, a constant inputs DEA model with
one output for each attribute must then be used. However, the result of the appli-
cation of the DEA algorithm will present as fully efficient, i.e., with a global score
of preference of 1, all the alternatives. This follows from the fact that, with a large
enough number of criteria, it becomes possible to find for each alternative one
criterion for which the alternative is better than all the others, which is enough to
guarantee full efficiency.

A similar situation is that of the bus schedules example. Because the goal
intended in that case is raising quality and not productivity in the use of any inputs,
the process variables T, and T, should be maximized in the frontier of excellence,
as well as the outcome variables. This may be dealt with again inside the DEA
framework by applying the constant inputs approach.

In that case, a majority of the alternatives will again be fully efficient. It is easy to
see, for instance, that the drivers of the second shift, which maximizes the last
output, will be in the frontier and, consequently, have an efficiency score equal to 1.

It may be noticed anyway, even in the simple examples above, that the con-
stancy of the results is limited to the conceptual approach taken. It would be
confirmed if, for instance, criteria to globally evaluate the performance of each shift
with respect to the process variables already in the analysis were added. If, on the
contrary, the change extends beyond the scope of this analysis to take into account
other variables, such as contribution to vehicle maintenance or careful driving, for
instance, the results might be entirely altered. In that case, the simplicity of the
vector of scores generated by the DEA approach may be an advantage.

6.3 A Human Development Index

This example shows how, even with the same criteria, the form of composition may
be employed to stress different points of view. Here, the probabilistic composition
is employed to offer diversified options of computation to the Human Development
Index—HDI (UNDP 2014). This index was designed to provide a single counter-
point to the per capita Gross National Product (GNP) as a development measure, as
this does not take into account important aspects of quality of life that do not
depend on the volume of goods traded in the market.

Social values are complex and cannot be measured directly. Social indicators are
objective measures of simple attributes that are supposed to be in some way
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correlated with the qualities that matter. Therefore, there is a risk in the use of social
indicators. Used to set goals, they can divert initiatives from the true values to false
representatives.

This is what happens with the gross national product or the national income.
Even when computed on a per capita basis they deviate the focus of promoting
social development to isolated economic goals. The HDI was created to try to
reduce the importance attached to strictly economic indicators. In turn, to be a
simple indicator with the properties of direct and objective communication, it also
faces the same risk of moving away from the dimensions to be measured.

While, by one side, it is important to have a single indicator to substitute for per
capita GNP, on the other side it is important to validate and refine this new indicator
by comparing to other complex indicators in the same way as other economic
indices are compared to per capita GNP.

In 2010 the form of computation of HDI was changed. From the viewpoint of
the calculation algorithm, the main change is that, instead of a weighted arithmetic
mean, a geometric mean is now employed. This approximates the algorithm to the
joint probabilities approach for probabilistic composition.

Other measures using the same components of HDI, but using probabilistic
composition to combine them into a single measure can be built with different
properties. A feature that all the measures discussed here share is taking as their
starting point the preliminary transformation of the partial indicators of preference
into probabilities of reaching the frontier of best or of worst performance in each of
them.

By 2009, the partial indicators combined in the HDI were:

Life expectancy at birth, as an indicator of development on the dimension of
health;

Literacy, weighing 2/3, combined with the gross school enrolment rate (ratio
between the total number of students attending school in the three levels of edu-
cation and the total number of persons of school age), weighing 1/3, as indicator of
development in the dimension of education;

Neperian logarithm of the per capita gross domestic product, as measured in
terms of PPP—purchase power parity (World Bank 2014), as an indicator of
economic welfare of the population of the country.

Each of these indicators was transformed to a scale from O to 1 by subtracting an
absolute minimum and dividing by an absolute amplitude. The maximum and
minimum for longevity in a country were then fixed in 25-85 years. For the per
capita GDP, the extremes were 100 and 40,000.

Finally, the HDI was calculated as the arithmetic mean of the measures of
development in the three directions.

Currently slightly different partial indicators and composition rule are employed.
The three dimensions remain.

The health indicator is still life expectancy at birth, measured as before, but with
limits of 20-83.57 years. As an indicator of income the Neperian logarithm of per
capita GDP was replaced by that of per capita Gross National Income, with limits of
100 and 87478 PPP.
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The biggest change occurred in the evaluation of development in the educational
dimension, whose indicator is now the geometric mean between two measures: the
average number of years that a person 25 years old now attended school and the
expected value of the number of years that a person 6 years old now will attend
school. This second parameter is estimated from the present distribution of school
enrolment provided by censuses and national sample surveys and employing the
estimation methodology of Barro and Lee (2010).

Before calculating their geometric mean, these two indicators are standardized to
values between zero and one. The average number of school years of the adult
observed in the country is divided by the observed maximum of 13.3 and the
expected number of school years of the child by the allowed maximum of 18.

By using, instead of the arithmetic mean of the three indicators, the geometric
mean, the analyst considers that the influence of the three factors accumulates in a
multiplicative basis. Thinking of each of the partial indicators as a probability to
meet a standard of welfare—which seems to be the real aim of building measures
between zero and 1—one may think HDI as the joint probability of reaching
excellence in the three dimensions.

Another interesting aspect is the application in the algorithm of the logarithmic
transformation to the income value. The logarithmic transformation is used to
reduce the importance of variations in the upper end of the indicator. A similar
effect may be obtained by applying the transformation into the probability of
reaching the lowest extreme.

In fact, the indicators developed below avoid two ad hoc transformations: the
logarithmic transformation and the prior determination of absolute maximum and
minimum for each component. The global indicator is constructed by a combination
of the probabilities of reaching the frontier of worst performance in each dimension.

HDI was created to emphasize the shortcomings in the today prevailing concept
of development. Employing the standardization in terms of probabilities of being
the worst has the advantage of calling attention to where the unattended features of
development are located by reducing the differences between the relatively satis-
factory performances and extending the differences between those countries in need
of larger improvement.

Table 6.1, presenting the probabilities of being the worst for 30 countries
selected among those of best and worst performance in each component of the
index, illustrates this feature of the probabilistic transformation. These scores were
obtained by calculating the probability of each country being the worst in the entire
population of 187 countries, employing the data of 2013 of the United Nations
Development Programme (UNDP 2014). This data set is available at http://hdr.
undp.org/en/reports.

The computation of the probabilities of being the worst is performed adopting
triangular distributions with equal amplitudes for all countries and extreme exten-
ded by 10 %, for all the criteria.

It can be seen in Table 6.1 that the first 17 countries of the list have equal scores
for longevity, if rounding to the third decimal place is employed. In the other
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Table 6.1 Probabilities of minimization of the HDI components

Country Longevity Observed Expected Income
schooling schooling

Switzerland 0.0026 0.0029 0.0034 0.0017
Australia 0.0026 0.0026 0.0026 0.0019
Israel 0.0026 0.0027 0.0034 0.0024
France 0.0026 0.0030 0.0033 0.0021
Sweden 0.0026 0.0027 0.0033 0.0019
Norway 0.0026 0.0025 0.0030 0.0014
Japan 0.0025 0.0027 0.0035 0.0020
Iceland 0.0026 0.0030 0.0028 0.0022
Netherlands 0.0027 0.0027 0.0031 0.0018
New Zealand 0.0027 0.0025 0.0026 0.0025
Germany 0.0027 0.0026 0.0032 0.0019
Hong Kong 0.0025 0.0032 0.0034 0.0015
United States 0.0028 0.0024 0.0031 0.0016
Singapore 0.0027 0.0029 0.0035 0.0018
Qatar 0.0029 0.0043 0.0047 0.0009
Liechtenstein 0.0028 0.0031 0.0048 0.0009
Kuwait 0.0032 0.0052 0.0038 0.0013
Mali 0.0134 0.0159 0.0096 0.0090
Equatorial Guinea 0.0144 0.0059 0.0088 0.0027
Chad 0.0185 0.0213 0.0098 0.0086
Burkina Faso 0.0086 0.0246 0.0111 0.0087
Mozambique 0.0160 0.0266 0.0069 0.0089
Central African 0.0218 0.0091 0.0114 0.0091
Republic

D. R. Congo 0.0239 0.0091 0.0078 0.0096
Sierra Leone 0.0279 0.0096 0.0100 0.0090
Papua New Guinea 0.0053 0.0081 0.0154 0.0077
Djibouti 0.0071 0.0083 0.0160 0.0077
Niger 0.0093 0.0228 0.0228 0.0091
Eritrea 0.0056 0.0093 0.0271 0.0093
Sudan 0.0057 0.0102 0.0288 0.0081

indicators, also, it can be seen that the evaluations of these 17 countries are much
closer together than the others.

The results of the application of four different forms of probabilities composition
to the data in Table 6.1 are shown in Table 6.2.
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62 6 Composition by DEA Distance to the Frontier

The first two scores are obtained by computing joint probabilities, assuming
maximal dependence between the components, what means using for the proba-
bility of the intersection the lowest probability. The first of these scores follows
from application of the pessimistic approach, i.e., evaluates the country by the
probability of not being the worst by any criterion. The second results from the
optimistic joint probability composition: assesses the country by the probability of
not being the worst by at least one of the criteria.

The third form of composition is also optimistic, but uses the DEA algorithm for
constant input. The score is given by the proximity to the DEA excellence frontier
in the component more favorable to the country.

Finally, the fourth score is given by Choquet integral, modeling the preference
among the criteria by a capacity with equal preference of 1/3 for each indicator,
assuming additivity for different dimensions but assuming for the two indicators in
the educational dimension, instead of additivity, full substitutability.

One can easily see in Table 6.2 the strong concordance between the evaluations
by the different approaches, with each other and with the HDI presently computed
by UNDP, whose ranks are in the last column of Table 6.2. If we consider the
vectors of evaluations of all the 187 countries, the lowest Spearman correlation
coefficient with the UN HDI ranking, obtained by optimistic joint probability, is
0.94. The others vectors of ranks present correlations with UN HDI ranks of 0.95
for DEA, 0.96 for the pessimistic composition and 0.99 for the composition by the
Choquet Integral with respect to the capacity above referred. For 165 of the 187
countries, the difference between the ranks by the current model and by the Choquet
integral is lower than 10. It is also 0.99 the rank correlation coefficient between the
HDI as currently computed and the result of applying the geometric mean algorithm
employed in it to the probabilities of reaching the extremes of worst performance
substituting for the partial components.

This close agreement demonstrates the robustness of the approach, the final
result not influenced by changes in the calculation. Nevertheless, it is possible to
notice some systematic differences between the classifications. Considering the goal
of taking into account all the dimensions considered, it is interesting to highlight the
differences caused by the use of the pessimistic approach, which maximizes this
feature.

Table 6.2 detaches, as examples of countries whose pessimistic score is
improved by performing well with respect to all the criteria, Switzerland, Israel,
France and Sweden, among those in the best positions. On the other hand, Sin-
gapore, Kuwait, Papua New Guinea and Djibouti are countries with worse ranks if
the pessimistic composition approach is taken. The first two have good performance
in terms of income, what is enough to place them in good position by some forms of
composition, not accompanied by good performance in educational indicators. The
other two, on the contrary, have poor performances with respect to income, con-
tradicting a better performance for the other indicators, especially longevity.

A strategy that encourages countries to seek escape from underdevelopment in
some special aspect may also be preferred, as advances in some dimension may
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have subsequent effects on the others. For such strategies, the optimistic joint
probability approach and the DEA algorithm may be contemplated.

Differences between these two last approaches must also be noticed. The use of
DEA corresponds to a more radical option for valorization of a marked advance in
one of the indicators isolated. In the optimistic probabilistic approach, less signif-
icant advances combined in two different dimensions have a positive effect on the
overall rating that does not appear in the composition by the DEA algorithm.

For example, countries like Liechtenstein and Qatar, which stand out for income,
but do not have such a good behavior in the educational dimension, have a better
evaluation when the efficiency in reaching DEA frontier is applied, but have a
worse evaluation by the optimistic joint probabilistic composition, though not as
bad as by the pessimistic composition.

It is also interesting to consider the cases of Japan and Iceland, which reach the
DEA frontier and are rated in the pessimistic approach that rewards consistency of
evaluations according to all criteria in a better rank than when evaluated by the
optimistic joint probability composition. Under this approach they are overtaken by
countries with scores close to the position of excellence in more than one criterion.

At the other extreme, call attention the positions of Eritrea and Sudan, with the
last positions in the pessimistic ranking, but escaping that position in the optimistic
probabilistic composition and in the assessment by the DEA algorithm, due to their
longevity scores. On the other hand, Sierra Leone, Congo and Central African
Republic, despite the worst performance by this criterion, have a relatively better
evaluation under the pessimistic assessment, due to a relatively better position by
other components.

The largest discrepancy between assessments for the same country in Table 6.2
is provided by Equatorial Guinea, a country for which the indicator of per capita
income ensures the fortieth position in the optimistic probabilistic classification,
while by the pessimistic classification, taking into account more strongly the
proximity to the frontier of worst performance in the other indicators, is placed
among the countries with the worst scores.
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Chapter 7
Dynamic Probabilistic Indices

Abstract A DEA approach to access the evolution of productivity along time
exploring the idea of the Malmquist index involves calculating the ratio between the
distances to the production frontier of 2 years of evaluation of the alternative being
evaluated: one representing the observed production during the year to which the
frontier is built and the other representing the observed production of the next or the
previous year. The same type of substitution is here applied with a probabilistic
composition algorithm to generate probabilistic Malmquist indices.

Keywords Malmquist index - DEA Malmquist index - Probabilistic Malmquist
index

7.1 Malmquist Indices

The Malmquist Index, as conceived by Malmquist (1953), aimed to assess the
evolution of consumer behavior. Caves et al. (1982) proposed the use of the same
idea in an index to assess the evolution of productivity. A DEA approach to the
Malmgquist index was developed by Fare et al. (1994).

The Malmquist DEA indices apply the algorithms of linear programming of
DEA to the calculation of the Malmquist evolution of productivity. The basic
concept involves calculating the ratio between the distances to the production
frontier of 2 years of evaluation of the alternative being evaluated: the first repre-
senting the observed production during the year to which the frontier is built, and
the other representing the observed production of the next or the previous year. The
same type of substitution can be applied with a probabilistic composition algorithm
instead of a DEA algorithm.
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7.2 Variants for the Computation of Malmquist Indices

To neutralize the effect of technological change, the comparison to the frontier of
excellence can be repeated, taking as reference, successively, the production
frontier of the two consecutive years between which the progress of the production
unit is being evaluated. This means realizing two computations: first, taking as
reference the frontier of the first year and dividing the distance to this frontier
(measured in terms of DEA efficiency score or of probability of being the best) of
the vector formed with the production figures of the subsequent year by that dis-
tance of the vector formed with the production figures of the initial year; then,
calculating the ratio between the distances of the same two vectors to the frontier of
the second year. The Malmquist index most used is formed by the geometric mean
between these two ratios.

Thus, to calculate the index, for each evaluated alternative, the computation of
four measures of distance to the frontier is required. Using the notation d(a, t, u) to
denote the distance of the vector of observations of the a-th alternative at instant t to
the frontier formed using the observations of the various alternatives at instant u,
these measures are:

(1) the distance to the production frontier of time t of the vector observed in the
a-th alternative at time t, denoted by d(a, t, t);

(2) the distance to the production frontier of time t of the vector observed in the
a-th alternative at time t + 1, denoted by d(a, t + 1, t);

(3) the distance to the production frontier of time t + 1 of the vector observed in
the a-th alternative at time t, denoted by d(a, t, t + 1);

(4) the distance to the production frontier of time t + 1 of the vector observed in
the a-th alternative at time t + 1, denoted by d(a, t + 1, t + 1);

By taking as reference only the frontier of time t, the index of productivity
evolution is defined by d(a, t +1, t)/d(a, t, t). By sticking to the frontier of time t + 1,
the index will be defined by d(a, t + 1, t + 1)/d(a, t, t + 1). To take into account the
evolution of the frontier, the geometric mean of these two indices in the geometric
mean Malmquist index is finally used:

[(d(a,t+ 1,0)/d(a,t,0))(d(a, t + 1,7+ 1)/d(a, t, t + 1))]"/*.

Here, the distance to the frontier is given in probabilistic terms. Thus, denoting
by P(a, t, u) the probabilistic evaluation of the a-th alternative when the values
observed at time t are introduced into the analysis, together with all the values
observed at time u, the Malmquist probabilistic rate of improvement is given by the
square root of the product of the ratios P(a,t+ 1,t)/P(a,t,t) and P(a,t+ 1,
t+ 1)/P(a,t,t+ 1):
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Mp = {[P(a,t + 1,1)/P(a, t,0)] [P(a,t + 1,t + 1)/P(a, t, t + 1)]} /2.

It should be noticed that, by conceiving the distance to the frontier of excellence
as a measure that is greater the farther the evaluated alternative is from the frontier,
the increase in this value indicates a worsening in the productivity of the alternative.
In the DEA-Malmquist index, the DEA efficiency score is used as a distance
measure, which is greater the shorter the distance to the frontier of excellence; thus,
the higher the value of the index is, the larger the improvement in the performance
of the production unit evaluated.

In the probabilistic approach, we have the possibility of a choice between a
progressive view, looking at distances to the frontier of excellence, and a conser-
vative one, considering distances to the frontier of worst performance. In DEA, this
last option corresponds to the inverted DEA concept proposed by Yamada et al.
(1994).

Concomitant analysis of the same problem by the DEA and Inverted DEA
models may indicate that an alternative is both efficient and inefficient according to
the approach taken. Entani et al. (2002) classify this type of alternative as peculiar
and suggest that the efficiency assessment be presented in terms of a range covering
both results.

In the probabilistic approach, it is also possible to combine progressive and
conservative evaluations in a compound Malmquist index.

By comparing to all other alternatives and not only to those at the frontier, the
probabilistic composition scores are naturally less vulnerable to the influence of
extreme values. The combination of scores relative to the two extremes provides
even more stable results.

When applying either a DEA algorithm or a joint probability, one must be
prepared to face the possibility of large variations from one year to the next in the
set of values of one or more attributes, reflecting very small values for DEA
efficiencies or probabilities of preference. Then, with denominators close to zero,
the Malmquist ratios can vary widely. In the case of probabilistic composition,
the occurrence of probabilities close to zero can be reduced by working with the
probability of not being the best instead of the probability of being the best (or not
being the worst instead of being the worst).

Thus, in the probabilistic approach, to avoid small values, a progressive index
will employ the probability of not being the best by every criterion. This will be a
negative score, decreasing as efficiency increases. It uses the formula for the
optimistic score without subtraction from the minuend of 1.

In the conservative case, the corresponding index will follow the pessimistic
composition, computing the probability of not being the worst by any criterion.

Assuming independence, the (decreasing) progressive index will be given by the
product of the probabilities of not being the best and the (increasing) conservative
index will be given by the product of the probabilities of not being the worst by
each criterion. The use of the product is another factor of improving resistance
against the influence of extreme values.
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Finally, a compound probabilistic Malmquist index can be obtained by calcu-
lating the square root of the quotient between the conservative index (calculated by
comparing efficiencies measured in terms of probabilities of not being the worst)
and the progressive index (calculated by comparing probabilities of not being the
best).

7.3 Malmgquist Analysis of a Production Model

The present analysis considers the search for efficient operational costs for elec-
tricity distributors. The electric industry is characterized as a network industry. The
joint and simultaneous action on three segments, generation, transmission and
distribution of electricity, determines the final product available to the consumer.

In network industries, segments of transport and distribution are natural
monopolies (Ramos-Real et al. 2009). To make the benefits of cost reduction due to
economies of scale in the natural monopoly components of the network flow to
price reduction for the consumer the interference of public power is employed.

To reduce appropriation by the monopolistic firms of extraordinary profits
appears the figure of the regulator. Regulation must however balance the goal of
reducing prices with encouraging economic efficiency and ensuring universality
and quality of service. This can be achieved by simulating market conditions.

In Brazil the activity of electricity distribution is authorized by the Union con-
ditioned upon signature of service contracts. Thus the electricity distributors serve
its captive consumers in a Regulated Contracting Environment. The National
Electric Energy Agency (ANEEL) regulates that market.

Among the regulatory powers of ANEEL is the Periodic Tariff Review, which is
one of the mechanisms for setting the value of energy paid by electricity consumers.
A review is held on average every 4 years. The Periodic Tariff Review repositions
the value of the portion of the price that covers the cost of the distribution activity
manageable by the distribution company. This mechanism should grant efficient
levels of operational costs and adequate remuneration of the investments of the
distributors. If formulated in a comparative basis, it may be able to replicate the
advantages of a market environment.

According to ANEEL (2010), the variation of prices in a competitive market has
three well-defined sources: technological change, economies of scale and scope and
inputs prices. The first two of these factors impact prices by altering productivity.
Thus, under the assumption of constant input prices, productivity increases must
generate lower tariffs to be passed on to consumers. The crucial matter for the
regulator is then establishing new standards of productivity.

Along the tariff cycles ANEEL has been refining the methodology used to
determine the efficient operational costs. In the first tariff review cycle, cost was
determined based on a reference company, a concept applied again in the second
cycle, but with the introduction of an analysis of global consistency. The reference
company is built as a mathematical representation of the distribution activity by
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defining the activities and processes of the distributors and the average cost of each
activity performed.

The third cycle introduced the use of benchmark models. To take into account
the evolution of efficiencies along time, in the benchmark models is common the
use of indices such as Malmquist index. Jasmab and e Pollit (2001), reporting such
increasing importance of benchmarking methods in the context of incentive regu-
lation of distribution and transmission of electricity and analyzing OECD and some
other countries, observe a preference for non-parametric methods.

ANEEL (2011) proposed to estimate the evolution of productivity using, as
inputs, operational cost and, as outputs, size of the market served, in MWh/year
offered, number of consumers in the region attended, and extent of the network, in
Km.

Operational costs have considerable variation with a magnitude of millions of
dollars per year for the larger Brazilian companies. The extension of the operated
network reaches hundreds of thousands of miles and is a proxy for the costs of
maintaining services. The number of consumers exceeds the total of a million in
many cases, capturing the business costs incurred by the distributors. Finally,
annual MWh captures the size of the distributor on issues where the voltage level
affects the costs.

In ANEEL (2011) was used a decreasing returns to scale and input orientation
DEA model. It is shown in the work of Andrade and Sant’Anna (2013), resumed
here, how to replace DEA by the probabilistic composition, using the probabilistic
Malmquist index to assess each company’s effort on improving through time,
taking into account its specific operating conditions.

The same variables in ANEEL (2011) study are employed here but the proba-
bilities of maximization and minimization are calculated for the vectors of quotients
of each output by the unique input. Thus, the variables employed are the v,; below,
Vi denoting the ratio between the j-th output O, of the a-th company and its
operational cost I;. It is assumed that, to measure efficiency, the v,; are modes of
independent random variables with triangular distribution of constant range.

Val = Oal/Ial,VaZ = Oa2/1a27va3 = Oa3/Ia3.

Table 7.1 shows the values of the three ratios for each of the 61 distributors in
the Brazilian electric system in the years 2008 and 2009. Table 7.2 presents first the
2009 efficiency scores for each company by the progressive and optimistic
approach, followed by the scores for the pessimistic and conservative approach.
Then comes the Malmquist index based on the frontier of excellence (the lower the
score, the higher the evolution in efficiency) followed by the Malmquist index
based on the lower frontier and finally the compound index.

Initially the probabilistic composition used is progressive and optimistic, which
is conceptually similar to the benevolent approach of traditional DEA. The measure
used for this approach is a measure of inefficiency, the probability of not being the
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Table 7.1 Entrance data for comparative evaluation of electricity distribution firms

7 Dynamic Probabilistic Indices

Firm 2008 2008 2008 2009 2009 2009
Network Consumers Market Network Consumers Market
ADESA 0.0697 3.3213 7.7000 0.0694 3.0625 7.0501
AES SUL 0.3772 5.6967 14.1911 0.3694 5.5817 13.5724
AMPLA 0.1130 5.2915 7.7431 0.1169 5.4190 8.1977
BANDEIRANTE | 00912 4.8205 15.0783 0.0959 5.1686 14.5826
BOA VISTA 0.0411 1.1557 3.6435 0.0427 1.2222 4.0580
CAIUA 0.1622 3.9706 9.5567 0.1857 4.5856 11. 3147
CEAL 0.1686 4.4931 4.9501 0.1451 3.7608 4.1373
CEB 0.0788 3.8795 9.7812 0.0769 3.7244 9.5560
CEEE 0.2055 43454 8.3704 0.1863 3.7257 7.2078
CELESC 0.1820 2.9631 8.4396 0.2008 3.1009 8.9545
CELG 0.3009 3.2537 53578 0.2885 3.2007 5.2983
CELPA 0.2426 4.6006 6.9274 0.2144 3.8586 5.4164
CELPE 0.3474 8.2711 10.4183 0.3434 8.5391 10.7434
CELTINS 0.4510 3.0114 4.9350 0.5054 3.3300 52151
CEMAR 0.4482 8.6068 9.4058 0.4657 8.7418 9.4780
CEMAT 0.3641 3.6479 8.0058 0.3707 3.4672 7.5837
CEMIG 0.2680 3.9361 8.0308 0.2736 4.0613 7.6902
CEPISA 0.2620 47348 47251 0.2350 43431 43234
CERON 0.0300 2.8660 57144 0.2217 27516 5.8000
CFLO 0.1281 35583 8.9636 0.1342 3.7480 9.2827
CHESP 0.3295 3.3022 5.4897 0.3251 3.0806 5.2834
CIE 0.0976 3.3652 21.8118 0.1071 37218 21.9248
CLEM 0.2126 5.1881 13.3765 0.2426 5.8507 14.7757
CLESC 0.2298 4.4782 9.6074 0.2926 57111 12.5027
CNEE 0.1171 37123 9.3567 0.1224 3.8679 9.7234
COCEL 0.1866 33913 9.7659 0.1898 33881 9.5943
COELBA 0.4818 10.5197 11.9412 0.4926 10.5904 122414
COELCE 0.3467 8.0908 8.80356 0.3805 8.6816 9.6473
COOPERALIA 0.1312 3.1812 7.3645 0.1215 2.9416 6.8429
COPEL 0.2512 4.0090 9.2544 0.2207 3.5610 8.2155
COSERN 0.3513 8.4784 12.2528 0.3518 8.7437 12.2163
CPEE 0.2054 3.9831 11.9606 0.2449 4.7358 135520
CPFL PAULIS 0.1830 7.0478 17.9329 0.1807 7.0438 17.6908
CSPE 0.2829 5.2156 12.2940 0.3577 6.5977 15.1041

(continued)
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Table 7.1 (continued)
Firm 2008 2008 2008 2009 2009 2009
Network Consumers Market Network Consumers Market
DEMEI 0.0583 3.7427 7.8974 0.0564 3.7179 8.0501
DMEPC 0.0651 3.1120 9.4744 0.0575 2.8019 8.5529
EBO 0.2052 6.5322 10.3428 0.1865 6.0426 9.2770
EDEVP 0.2015 42458 8.9604 0.1950 4.1366 9.1076
EEB 0.1691 3.4073 8.4280 0.1988 3.9827 93714
EFLIC 0.0386 1.8838 43331 0.0337 1.7263 3.9247
EFLUL 0.0527 1.1271 10.2583 0.0576 1.2127 10.1872
ELEKTRO 0.2573 5.0273 11.2661 0.2584 5.1222 11.2633
ELETROACRE 0.2312 4.4095 8.3245 0.1796 3.1314 5.9301
ELETROCAR 0.2263 3.1070 7.7140 0.2240 3.1009 7.3251
ELETROPAULO | 00430 5.5823 14.5719 0.0362 4.7936 12.3064
ELFSM 0.3639 42416 10.6615 0.3714 4.2840 10.8915
EMG 0.3571 5.2784 7.0163 0.3541 5.1888 6.9584
ENERSUL 0.3470 3.6609 6.8573 0.3680 3.8764 7.5527
ENF 0.0863 40119 7.8070 0.0897 4.1887 8.1142
EPB 0.3800 6.3672 6.7505 0.3852 6.2435 6.6706
ESCELSA 0.2423 5.0442 13.5212 0.2359 4.9100 11.3838
ESSE 0.2133 5.3986 8.4068 0.2408 5.7568 9.1493
FORCEL 0.0300 2.0570 5.8249 0.0300 2.0573 6.3503
HIDROPAN 0.0851 2.7421 8.1577 0.0857 2.8146 77477
IENERGIA 0.1385 1.8143 6.0646 0.1694 2.1160 7.2698
LIGHT 0.0953 5.8225 13.6933 0.1042 6.5329 14.8848
MUX-ENERGIA | 01090 5.5205 15.2488 0.1087 5.4569 15.8080
PIRATININGA 0.1118 6.8397 22.8694 0.1136 6.9845 22.1597
RGE 0.4481 6.3653 16.2286 0.4561 6.5792 16.4037
SULGIPE 0.3241 5.8333 4.7737 0.2802 47243 3.8948
UHENPAL 0.2716 2.2409 52213 0.2651 2.1906 5.2537
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Table 7.2 Static and dynamic indices for the Brazilian electric sector

7 Dynamic Probabilistic Indices

Firm 2009 2009 2008/ 2008/ 2008/2009
2009 2009
Optim. Pessim. Progr. Conser. Compound
progr. conser.
ADESA 0.0250 0.9335 1.0008 0.9953 0.9973
AES SUL 0.0520 0.9838 1.0036 0.9993 0.9979
AMPLA 0.0310 0.9663 0.9992 1.0036 1.0022
BANDEIRANTE | 0.0390 0.9673 1.0003 1.0039 1.0018
BOA VISTA 0.0220 0.7643 0.9998 1.0171 1.0086
CAIUA 0.0340 0.9755 0.9962 1.0062 1.0050
CEAL 0.0260 0.9042 1.0022 0.9648 0.9811
CEB 0.0280 0.9507 1.0005 0.9989 0.9992
CEEE 0.0290 0.9647 1.0026 0.9927 0.9950
CELESC 0.0300 0.9654 0.9989 1.0036 1.0024
CELG 0.0310 0.9467 1.0008 0.9983 0.9987
CELPA 0.0290 0.9507 1.0034 0.9816 0.9891
CELPE 0.0650 0.9846 0.9964 1.0005 1.0021
CELTINS 0.1570 0.9484 0.9214 1.0104 1.0471
CEMAR 0.1180 0.9845 0.9688 1.0003 1.0161
CEMAT 0.0410 0.9691 0.9988 0.9977 0.9995
CEMIG 0.0330 0.9708 1.0001 0.9995 0.9997
CEPISA 0.0300 0.9198 1.0020 0.9824 0.9902
CERON 0.0280 0.9477 0.9960 1.0914 1.0468
CFLO 0.0290 0.9647 0.9994 1.0017 1.0011
CHESP 0.0340 0.9459 1.0005 0.9943 0.9969
CIE 0.1590 0.9666 0.9939 1.0046 1.0054
CLFM 0.0450 0.9821 0.9939 1.0030 1.0045
CLFSC 0.0420 0.9821 0.9904 1.0072 1.0085
CNEE 0.0290 0.9643 0.9994 1.0014 1.0010
COCEL 0.0300 0.9682 1.0002 0.9997 0.9998
COELBA 0.2570 0.9882 0.9875 1.0004 1.0065
COELCE 0.0720 0.9839 0.9840 1.0022 1.0092
COOPERALIA 0.0260 0.9502 1.0008 0.9937 0.9965
COPEL 0.0300 0.9682 1.0028 0.9947 0.9959
COSERN 0.0720 0.9859 0.9945 1.0001 1.0028
CPEE 0.0390 0.9793 0.9949 1.0047 1.0049

(continued)
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Table 7.2 (continued)
Firm 2009 2009 2008/ 2008/ 2008/2009
2009 2009

Optim. Pessim. Progr. Conser. Compound

progr. conser.
CPFL PAULIS 0.0610 0.9818 1.0018 0.9999 0.9991
CSPE 0.0570 0.9856 0.9817 1.0048 1.0117
DEMEI 0.0270 0.9321 0.9999 1.0003 1.0002
DMEPC 0.0260 0.9258 1.0012 0.9857 0.9922
EBO 0.0360 0.9762 1.0037 0.9970 0.9966
EDEVP 0.0310 0.9720 1.0001 0.9998 0.9999
EEB 0.0310 0.9717 0.9975 1.0067 1.0046
EFLJC 0.0220 0.7805 1.0004 0.9513 0.9751
EFLUL 0.0260 0.8479 0.9998 1.0176 1.0089
ELEKTRO 0.0380 0.9794 0.9998 1.0002 1.0002
ELETROACRE 0.0270 0.9515 1.0053 0.9785 0.9866
ELETROCAR 0.0290 0.9622 1.0006 0.9982 0.9988
ELETROPAULO | 0.0330 0.9116 1.0064 0.9970 0.9953
ELFSM 0.0450 0.9787 0.9979 1.0005 1.0013
EMG 0.0410 0.9727 1.0017 0.9994 0.9989
ENERSUL 0.0410 0.9713 0.9959 1.0044 1.0043
ENF 0.0280 0.9548 0.9995 1.0016 1.0011
EPB 0.0500 0.9734 0.9981 0.9994 1.0006
ESCELSA 0.0360 0.9785 1.0035 0.9982 0.9973
ESE 0.0360 0.9777 0.9973 1.0033 1.0030
FORCEL 0.023 0.853 1.000 1.005 1.002
HIDROPAN 0.026 0.944 1.000 1.000 0.999
IENERGIA 0.026 0.940 0.998 1.026 1.013
LIGHT 0.044 0.969 0.994 1.001 1.003
MUX-ENERGIA 0.043 0.971 0.998 1.000 1.001
PIRATININGA 0.180 0.974 1.007 1.000 0.996
RGE 0.099 0.987 0.985 1.000 1.007
SULGIPE 0.033 0.900 1.006 0.959 0.976
UHENPAL 0.029 0.928 1.071 0.999 0.966
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best by every criterion given by the product of the probabilities of not being the best
according to each criterion. In this case, the value of the Malmquist index greater
than unity represents an increase of inefficiency compared to the previous period.
Instead, values below 1 indicate increased efficiency.

In Table 7.2 it can be seen that many companies present similar efficiency
values, both in the static and the dynamic evaluations. In the 2009 analysis, only
twelve companies present a score above the threshold of 0.05 in the progressive
approach and only eighteen present a score lower than 0.95 in the conservative
approach. From 2008 to 2009, according to neither calculation of the Malmquist
index there were more than twelve companies outside the interval from 0.975 to
1.025.

The difference between the two approaches is enlightened by the scores of
CELTINS, which, serving a small market spread on a large region, derives from its
ample network the best score when the optimistic progressive algorithm is applied
and bad scores when the pessimistic conservative approach looks for good per-
formance with respect to all the criteria.

As an example of how the calculation is developed, Table 7.3 presents values of
COELBA evaluations. This distributor showed remarkable growth along the first
decade of this century without raising operational costs. While the operational cost
fell 3.6 % from 2003 to 2009, its network expanded 67 %, the number of customers
increased 38 % and the market third variable grew 42 %.

In the first lines of Table 7.3, the entries 0.4818, 10.5197 and 11.9413 of
COELBA in Table 7.1 can be obtained dividing the absolute values of 201862,

Table 7.3 Computations in the determination of Malmquist indices for COELBA

Operational Cost (R$1,000.00) Network Consumers Market
(km) (MWh)

2008 absolute 418,981 201,862 4,407,561 5,003,158
2008 relative 0.4818 105.197 119.413
2009 absolute 436,436 215,001 4,622,046 5,342,574
2009 relative 0.4926 105.904 122.414
Probabilities relative to 2008 frontier
2008 max 0.1373 0.1629 0.0143
2008 min 0.0028 0.0037 0.0068
2009 max 0.1423 0.1635 0.0147
2009 min 0.0027 0.0037 0.0065
Probabilities relative to 2009 frontier
2009 max 0.1011 0.1617 0.0141
2009 min 0.0030 0.0035 0.0053
2008 max 0.0857 0.1610 0.0137
2008 min 0.0031 0.0036 0.0055
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4407561 and 5003158 of network, consumers and energy delivered in 2008 by the
operational cost of 418,981. Analogously for 2009.

The progressive efficiency score for 2009 of 0.2570 in Table 7.2 is the com-
plement to one of the product of the complements to one of the probabilities of
maximizing the outputs in 2009, given by 0.1011, 0.1617 and 0.0141. In fact,
0.02570 =1 — (1 — 0.1011)*(1 — 0.1617)*(1 — 0.0.141).

On the other hand, the conservative efficiency score of 0.9882 is the result of the
product (1 — 0.0030)*(1 — 0.0035)*(1 — 0.0053).

Analogously, for 2008, the progressive and conservative scores are derived,
respectively, from the probabilities of maximization, of 0.1373, 0.1629 and 0.0143
and of minimization, of 0.0028, 0.0037 and 0.0068.

The Malmquist progressive score is the square root of the product of two ratios.

The first ratio, relative to the frontier of 2008, is between the product
(1 — 0.1423)*(1 — 0.1635)*(1 — 0.0147) derived from the probabilities of the
entries 2009 reaching the frontier of 2008 and the product of the probabilities of not
maximizing in 2008, (1 — 0.1373)*(1 — 0.1629)*(1 — 0.0143).

The second ratio, relative to the frontier of 2009, is between the product
(1 — 0.1011)*(1 — 0.1617)*(1 — 0.0.141) and the product of the probabilities of
the entries of 2008 not reaching the frontier of 2009, given by (1 — 0.0857)*
(1 — 0.1610)*(1 — 0.0137).

Analogously, the Malmquist conservative scores are obtained applying the
probabilities of minimization.
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Chapter 8
Probabilities in the Problem
of Classification

Abstract Evaluation of alternatives may be derived from probabilistic comparisons
made with different sets of profiles which represent ordered classes. This may be
used to solve the problem of, instead of choosing the best or worst alternative,
identifying alternatives that correspond to each of a set of different levels of
performance.

Keywords Classification - Interval classification - Profile - PseudoF - IDH

8.1 Modeling the Problem of Classification

It was demonstrated in the preceding chapters that, while the computation of the
probabilistic scores of preference given by probabilities of being the best is easier if
the comparisons are made to a sample of fixed previously chosen representative
alternatives instead of to the entire population of alternatives, the efficiency of the
evaluation will increase with the number of comparisons made. For these reasons, it
is important to balance the goal of reducing the number of comparisons to simplify
computations with that of increasing it to improve reliability.

In the problem of classification, addressed in this chapter, a large number of
comparisons is made, but the decisions are taken successively based on compari-
sons to small sets of possible alternatives previously ordered.

As in the problem of choice of the best or the worst, in the problem of classi-
fication the probabilistic approach is based on treating the initial numerical eval-
uations as location parameters of probability distributions.

To formulate the problem of classification the following terms are employed.

e G={g ..., Zm}, a set of m criteria.

e A=(ay ..., ay) a vector of R™ which stores the evaluations according to the m
criteria of the alternative to be classified; the highest the value of the coordinate
aj, the better the alternative according to the criterion g;.

e C={C,,..., C.} asetof r classes, ordered from the worst to the best, so that the
alternative is better if classified in a class of higher index.
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To identify the class C;, for each i from 1 to r are employed n(i) representative
profiles, each of them formed by a vector of evaluations by the m criteria.

The hth representative profile of the ith class is given by a vector of evaluations
by the m criteria (Cipy, .., Cihm)-

The representative profiles are built in such a way that if i; < i,, then, for every j,
Cithj < Cipnj and, for at least one jo, Ciinjo < Cihjo-

So, according to no criterion a profile of a higher class may present an evaluation
lower than that of a profile of a lower class by that same criterion and by at least one
criterion the profile of the higher class presents evaluation higher than that of the
profile of the lower class.

To allow for the probabilistic comparison, the evaluations a; of the alternative
being classified are replaced by probability distributions centered at a;. To classify
the alternative what is going to be compared are the probabilities of the alternative
presenting evaluations according to such distributions above or below the profiles
of each class. The c;,; may be also replaced by random variables Xp;.

This characterization of the problem of classification follows that of Roy (1968)
and Yu (1992). The representative profiles approach follows Almeida Dias et al.
(2010, 2012). More details about such characterization are available in Sant’Anna
et al. (2012).

8.2 Computation of Probabilities of Preference

Following the principles of classical statistical modeling, it is reasonable to assume
here, as in the preceding chapters, not only a normal form, but also identical
distributions and independence between the disturbances causing the imprecision in
the evaluations according to any criterion. Alternatively, instead of normal, trian-
gular distributions may be a simpler starting point, like in the Theory of Fuzzy Sets
(Zadeh 1965). In advancing the analysis, the kind of evaluation involved may also
suggest a different distribution.

Since the mean of the normal distribution or the mode of the triangular distri-
bution are determined by the observed values, to complete modeling the distribu-
tions in these two cases it is enough to determine the values, respectively, of the
variance and of the extreme points. The available data are used to estimate these
parameters or other parameters that determine other distributions. If other infor-
mation on the parameters is available in advance, it can be used and will simplify
computations.

Assuming normality, for each j from 1 to m, the coordinates a; of the alternative
evaluated, for i from 1 to r, are considered as means of independent normal dis-
tributions with the same variance.

If the variance is small, is small the probability that an alternative with evalu-
ation a; according to the jth criterion may belong to the classes with profiles
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presenting for that criterion values more distant to a;. So, the variance must be large
enough to make that probability not so small that the information given by the other
criteria may become irrelevant, giving veto power to a single criterion.

This principle can be satisfied, in practice, if we estimate the variance of the
evaluations according to each criterion by the variance of the set of values by this
criterion in the various profiles offered as representative of the classes. This may
lead to overestimation, because the variance in such a sample combines the inner
variance in each class with the variance between classes and only the first of these
components must be attributed to the uncertainty inherent in each register. In fact,
each alternative should belong to a proper class and differences between classes are
not of a random nature. But a possible overestimation is welcome to avoid the
above mentioned risk of observations being deemed as too far away from some of
the reference profiles suggested.

Once replaced the exact measurements a; and Cj,; by distributions of random
variables X and Yj,; centered on these measurements, probabilities of outranking
can be calculated. Let us denote by Aj; and Ay the probabilities of the alternative A
presenting a value for X respectively above and below those associated to the jth
criterion in the ith class profiles. By independence between disturbances affecting
the evaluations by a given criterion of different alternatives and different profiles,

Al-; = HP[XJ > Yihj]
h

and

Aij = HP[XJ <Yihj] .
h

To make sure that the probability of an alternative being above the representative
profiles decreases as increases the order of the class as well as, conversely, the
probability of being below increases, it is necessary that the number of profiles be
the same in all classes, i.e., that, for all i, n(i) = k, for a constant k.

If the decision maker, when modeling the classes, offers different numbers of
profiles, additional profiles may be assigned to the classes with number of profiles
different of the maximum. To form these complementing profiles, median or mean
values may be employed.

8.3 Composition Rules

The Choquet integral with respect to a capacity that reflects an assessment of the
importance of the criteria can be used to compose global evaluations of the alter-
native being above and being below each class. Assuming linearity, this can be
reduced to a weighted average.
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If there is no way to differentiate the relative importance of the criteria, simpler
compositions, like those by joint probabilities, may be employed In that case the
extremes of independence and of maximal dependence result in simple formulae.

The assumption of maximal dependence leads to simpler calculations than that
of independence. The foundation for this assumption may be strengthened in the
problem of classification by the fact that the criteria are made to agree with the
ordering of the classes. However, it should be taken into account that correlation
between the vectors of evaluations of the different criteria does not imply depen-
dence between the disturbances that assign the random character to the
measurements.

On another direction, the agreement of the evolution of the values of the criteria
in the profiles along the classes, implying that the criteria confirm each other, is a
reason to take a pessimistic approach. In that case, the combination of the criteria by
joint probability will use, for the probability of the alternative being above the ith
class the formulae:

A" =min;Af, for the hypothesis of maximal dependence
or

Al =mA;, for the hypothesis of independence.

1
And for the probability of the alternative being below the ith class

A = min; Aij
or

A: = 7'[in]7-.

The composition formulae for the Choquet integral will be:

A= (Auisyr — Ao (), ot (m)))

j=1

and

A,_ :i(Airi(j) m (-1 ) ({Tl (.)7"" 1_(111)})

where p is the capacity,
Afiv0) = Aoy = 0, for all i,

and 1i" and ti~ are the permutations of the set of indices {1, ..., m} such that
+ + + +
A1n+( 1) = Am+( 2) = A1n+(n 1) = Am+( )
and
Auic() S AL S S A (o) S A (o)
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For weighted average:
Ai+ :SjoAa—
and

A; = SjoA

ij 2

for w; denoting the weight assigned to the jth criterion.

8.4 The Algorithm of Classification

The classification procedure is based on the comparison of the differences Af” — A} .

The classification rule is simple: alternative A belongs to the class i with the
smallest absolute value for A} — A; .

Since there is the possibility of ties, the alternative may be classified in two
adjacent classes. With the distributions and profiles constructed as above described,
no more than two classes can present the same absolute value for the difference
Af — Af.

If the criteria obey the principle of assigning values increasing with the pref-
erence for the alternative, these differences constitute a non-increasing sequence.
Then, an efficient algorithm for applying this rule can be developed in two steps. In
the first step, it identifies the smallest value of i for which the difference Af” — A; is
negative or null. If this difference is always positive, the alternative must belong to
the highest class. If it is never positive, this value is 1 and the alternative is placed in
the lowest class. If the difference is zero for the class with the smallest absolute
value, then the alternative is placed in that class.

If none of these cases happen, a second step consists in comparing the absolute
values of the differences A; — A; for the class with the first negative difference and
for that one preceding it. If these absolute values are the same, the alternative is
classified in these two classes. If they are different, it is placed in that one of these
two classes with the smallest absolute value for the difference.

Theoretically, due to continuity, possibility of ties can be neglected. But, if the
number of criteria and the number of values for each criterion is not too small, ties
may be bring to happen in practice if approximations make small the numerical
differences, specially when the minimum is used to combine evaluations, in the
joint probabilities composition under the assumption of dependence. The possibility
of allocation in a pair of classes or even in a larger interval of acceptable values of i
is a natural consequence of the imprecision of the subjective process of determining
preferences.

A procedure to automatically determine the extremes of such an interval may be
formalized by following a descending procedure that stops at the highest possible
point, to determine the highest extreme, and an ascending procedure that stops at
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the lowest possible point, to determine the lowest one. The ascending procedure
will be named in what follows the benevolent procedure, and the descending one
the hostile procedure.

Denoting by U(A) the class in the upper extreme of the set where alternative A is
classified and by L(A) the class in the lower extreme, let us start by the hostile
procedure.

The first step consists in assigning a provisional lower classification

LP(A) = min{i: A — A; <0}.

To determine this value, start with LP(A) =r; if A} — A <0, try r — 1 and keep
reducing the value of i until this is no longer true.

If A — A; > 0, then{i: A7 — Aj <0} is empty and the alternative belongs to
class C,, the highest class,

The classification is then punctual and the benevolent procedure needs no longer
be applied.
If LP(A) = 1, then the lower end of the interval is given by class C;,

L(A) =C,.

For {i: A{ — A{ <0} not empty and LP(A) > 1,
if AEP(A) - AEP(A) < AfP(A)—l - AEP(A)—l, then

L(A) = Crpa)-
Otherwise, if LP(A) — 1 = 1, then the process finishes with
L(A) =Cy,

and, if LP(A) -1> 1, compare AEP(A)*I - AI_,P(A)*I with AI-tP(A)f2 - AI_‘P(A)fZ-
If Afpa-1 = ALpar-1 < Alpa)-2 — ALpa)-2, then

L(A) = Crpa)-1-

If A{P(A)—l - AEP(A)—I = AEP(A)—Z - AEP(A)—Z’ then substitute LP(A) — 2 for
LP(A) — 1 as the provisional lower extreme and repeat the preceding step.

The benevolent procedure follows the same route, starting by a provisional upper
bound

UP(A) = max{i:A; — A" <0}.
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If {i: Af — A <0} is empty, then the alternative belongs to the lowest class,
U(A) = L(A) = Cy.
If UP(A) = r, then the upper end of the interval is given by class C,,
U(A) = C,.

For {i: Af A{ <0} not empty and UP(A) < r,
if ABP(A) - ABP(A) < AGP(A)+1 - AGP(A)H, then

U(A) = CUP(A)-

Otherwise,
if UP(A) + 1 =, then

U(A) =G,

and,
if UP(A) + 1<,
compare A{JP(A)—I — Aupay-1 with ABP(A)—Z — Aup@ay2-
If Aupayer ABP(A)H < Aupay2 ~ A?-_IP(A)+2, then

U(A) - CUP(A)-H .

If AETP(A)H - A]__jp(A)+1 = A{JP(A)+2 - A[_,TP(A)+2’ then substitute UP(A) + 2 for
UP(A) + 1 as the provisional lower extreme and repeat the preceding step.

It is easy to see that the benevolent procedure so defined will stop at a higher or
equal classification than the hostile one. In fact, the descending procedure stops at
the highest i minimizing A{” — A; and the ascending procedure stops at the lowest i
minimizing that difference.

As already explained, unless rough approximations are employed, the minimum
will be unique and the benevolent and the hostile classification will coincide. As
this uniqueness of the classification may be unsatisfactory, because uncertainty is a
feature of preference measurements, one way to provide more information on the
subjacent uncertainty consists in enlarging the interval by making more benevolent
the benevolent procedure and more hostile the hostile procedure.

More benevolent and more hostile classifications will be based respectively on
more stringent rules for classifying below and above the profiles of each class. Such
rules may be determined by applying fixed rates of reduction respectively to the
probability of being below the representative profiles of each class in the
descending procedure and to the probability of being above in the ascending
procedure.
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A benevolent classification with cutting points determined by the reduction
percent ¢ will place alternative A in the class C; for that i minimizing the absolute
value of the difference A — (1 — c)A;.

Analogously, a hostile classification for the same reduction percent will place
alternative A in that class C; for the i determined by the hostile procedure modified
by replacing the difference A7 — A; with (1 — c)Ai" — A;.

Another way to generate more benevolent and more hostile extremes without the
need to determine a rate of reduction may be applied if the combination of the
criteria is by joint probabilities. In that case, to obtain the benevolent classification,
the joint probability of being above all the profiles of the class may be replaced by
the probability of being above at least one of them. On the other end, in the
computation of the hostile extreme, the joint probability of being below all the
profiles of the class will be replaced by the probability of being below at least one
of them.

That means, assuming maximal dependence, to get the benevolent extreme in the
computation of A{, substituting max;Aj; for min;Af; and, to get the hostile extreme,
substituting max;A;; for min;A;;. In the case of independence, instead of max;Aj
and max;Aj, respectively, 1 — m ;(1 — A;}) and 1 — mj(1 — Aj) enter here.

To conclude this section a practical hint on the generation of profiles may be
useful. In practice, we have to classify not a unique alternative, but a set of different
alternatives, as in the ranking problem. This may be used in the process of gen-
erating profiles. For instance, central profiles for r classes would be formed with
coordinates given by the quantiles of order 1/2r, 3/2r, ..., (2r — 1)/2r, for every
criterion.

8.5 Classification of Car Models

The classification setup may be applied to the data of 20 car models studied in the
previous chapters. Suppose that there are five classes where they might be classified
each identified by four profiles, given in Table 8.1.

The probabilities of each alternative being above and below all the four profiles
for each of the 5 classes are presented in Table 8.2, assuming triangular distribu-
tions with extremes 0 and 1 and composing the criteria by a weighted average with
the weights derived in Chap. 2 from pairwise comparison: 0.03 for beauty and for
power, 0.05 for price, 0.08 for comfort, 0.15 for gas consumption and 0.33 for
reliability and for safety.

The last column of this table presents the classification obtained. Only Car3,
Carl6 and Carl7 are classified in the highest class and no alternative is classified in
the lowest.

If instead of triangular distributions, normal distributions with standard devia-
tions of 0.4—an approximate value for the observed standard deviations in the
samples of all the different criteria—are employed, the classification obtained is
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Table 8.1 Representative profiles for 5 categories

‘ Beauty ‘ Comfort Consumption ‘ Power ‘ Price ‘ Reliability Safety

cl

cll o 0 0 0 0 0 0
cl2 o 0 0 0 0 0.5 0
cl3 o 0 0 0 0 0 0.5
cld o 0 0 0 0 0.5 0.5
c2

2l o 0 0 0 0 1 0.5
€22 |05 0 0 0 0 0.5 0.5
€23 05 0 0 0 0 1 0.5
24 05 0 0 0 0 1 0.5
c3

31 |05 0 0 0 0 1 1
c32 05 0.5 0 0 0 1 1
¢33 1 0.5 0 0 0 1 1
¢34 05 1 0 0 0 1 1
c4

c41 1 1 0 0.5 0 1 1
42 |1 1 0 0 0.5 1 1
c43 1 1 0 0.5 0.5 1 1
c44 |1 1 0 1 0.5 1 1
c5

c51 1 1 0.5 1 0.5 1 1
52 1 1 0.5 1 1 1 1
c53 |1 1 1 1 0.5 1 1
c54 1 1 1 1 1 1 1

almost the same. Only Carll and Carl3 move, from the second and the fourth
class, respectively, to the 3rd class.

For the classification combining the criteria by joint probabilities, assuming
maximal dependence, instead of a unique class as in Table 8.2, interval classifi-
cations appear. Table 8.3 presents three interval classifications derived from the
probabilities of being above and below the profiles of each class calculated
employing the triangular distribution.

The first is the basic classification comparing the estimates Aj” and A; given,
respectively, by the minimum of the probabilities of being above and below by each
criterion. Then come the classifications resulting from application of rates of
reduction of 0.5. And, finally, those resulting from comparison of the minima by
one side to the maxima by the other.
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Table 8.3 Interval classifications by joint probabilities

Balanced Interval 0.5 Reductions Max and Min
Interval Interval
Lower Upper Lower Upper Lower Upper
Carl 3 4 3 4 1 5
Car2 3 4 2 4 1 5
Car3 4 4 4 5 2 5
Car4 4 4 4 5 2 5
Car5 3 3 3 3 1 5
Car6 3 3 2 3 1 5
Car7 4 4 4 4 2 5
Car8 3 3 3 4 1 5
Car9 4 4 3 4 2 4
Carl0O 4 4 4 4 2 5
Carll 3 4 2 4 1 5
Carl2 4 4 3 4 2 5
Carl3 3 3 3 4 2 5
Carl4 4 4 3 4 2 5
Carl5 3 4 3 4 1 5
Carl6 4 4 3 4 1 5
Carl7 4 4 3 4 1 5
Carl8 3 3 3 4 1 5
Carl9 4 4 3 4 1 5
Car20 3 3 3 4 1 5

It can be seen in Table 8.3, as the range of the intervals increases, that the
classification of some cars can move to a better or a worse class. For instance,
looking at the central columns, it can be detected a possibility of Car8, Carl3,
Carl8 and Car20 to improve their classifications from C; to C4 and a possibility of
Car9, Carl6, Carl7 and Carl9 to suffer a downgrade from C4 to Cs.

8.6 Classification of Countries by HDI Criteria

An example of generation of profiles by the sample of alternatives to be classified
may be given by revisiting the analysis of human development of countries on the
basis of the four criteria: longevity, mean years of schooling, expected years at
school and per capita income. Suppose that, instead of determining a distance to a
global frontier, we prefer to classify the countries in a small number of classes.
Fixing in five the number the classes, one profile for each class may be derived from
the deciles of the sample of observed values.

By similar procedures, other two profiles may be derived for each class. In
addition to the vectors of coordinates given by approximate values of the first, third,
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fifth, seventh and ninth deciles for each criterion separated, corresponding to the
ranks 19th, 56th, 93rd, 131st and 168th in the set of 187 countries, another set of
profiles is formed by the observed values of the criteria in five countries ranked in
these five positions by the IDH (Austria, Romania, Iraq, Algeria and Céte d’Ivoire).
A third set is formed with equally spaced values approximating the values observed
in these two sets of profiles.

The vectors of values according to each criterion in the set of profiles so gen-
erated, shown in Table 8.4, have standard deviations of approximately 7.5, 3.3 and
10,000. The classifications of the 30 countries of Table 6.2, obtained by combining
the criteria by joint probabilities, assuming maximal dependence and normal dis-
turbances with these standard deviations, are shown in Table 8.5.

The first is the basic classification, obtained comparing the estimates A} and A;
for the probabilities given by the minimum of the respective probabilities of being
above and below by each criterion. The ascending and descending procedures led
then to the same classifications.

After that is the classification resulting from application of rates of reduction of
0.5. And finally the classification resulting from comparison of the minima of being
by one side of the classes to the maxima of being by the other.

It can be seen in Table 8.5 that 20 of the 30 classifications are not subject to
variation. By the application of the proportional reduction, there is doubt only about
the classification of Equatorial Guinea, which may stay in the second class or be
moved to the third. Finally, in the enlargement associated to employing

Table 8.4 Profiles of 5 classes for countries sorting

Longevity Mean schooling Expected schooling Income
9th decile 81 12 16 34,000
Austria 81 11 15 36,000
Class 5 76 12 16 18,000
7th decile 76 10 14 14,000
Romania 74 10 15 11,000
Class 4 74 10 14 14,000
5th decile 73 8 13 8,000
Algeria 74 8 14 7,000
Class 3 72 8 12 10,000
3rd decile 68 6 11 3,000
Iraq 70 [ 10 4,000
Class 2 70 6 10 6,000
1st decile 55 3 9 1,000
Cote d’Ivoire 56 4 2,000
Class 1 68 4 8 2,000
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probabilities of outranking the profiles in at least one criterion, large intervals are
obtained for three more countries, Liechtenstein, Qatar and Kuwait.

All these results are explained by the construction of the sample. The four
countries with large intervals are those with strongly divergent classifications by
different criteria. The ten countries classified in the highest class without any doubt
are exactly those ten countries with the highest HDI. On the other end, the eight last
lines in the table, with coincident benevolent and hostile classification in the lowest
class, correspond to the countries with the eight lowest HDI values.

The results of the application of more complex forms of composition are pre-
sented in Table 8.6. The first applies the additive composition with constant
weights. In the second, is employed again a capacity built by assuming additivity
and equal importance, but treating as mutually interchangeable the two educational
indicators. In the third, this second capacity is modified, becoming interchangeable
not only the two educational components but also the two indicators of longevity
and income. Assuming equal importance for each of these two sets of two elements,
numerically the capacity is formed by each set with one element of each pair of
interchangeable components having a value of 1, while the unitary sets as well as
the sets of two elements of the same interchangeable pair have the value of 1/2.

For these three capacities, the balanced classification is punctual. The benevolent
and hostile classifications by reductions of 50 % are shown in Table 8.6 flanking the
balanced classification. There is again high agreement between classifications, a
divergence of more than one level never occurring between classifications in this
table or between a classification of this table and a composition by joint probability
in Table 8.5.

8.7 Evaluation of the Classification

To evaluate the homogeneity of the classes obtained after classifying a set of
alternatives, the measure proposed by Calinski and Harabasz (1974) may be
employed. It is based on the ratio between the sum of the variances within the
clusters, of the vectors of evaluations around a center of the cluster, and the vari-
ance of these centers around the mean of all evaluations. Due to the conceptual
similarity to the F distribution employed to evaluate normal regression, this mea-
sure is called PseudoF.

There are many different forms of determining the centers of the r classes and of
combining distances on the m criteria.

Let us consider the centers of the classes, for i varying from 1 to r, given by the
vectors (¢, . . ., Cim) Of averages of the evaluations of the alternatives in the classes
and the general center given by the vector

c=(¢1,...,Cm)

of the averages of all the evaluations.
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Table 8.5 Classification of countries by joint probabilities

Balanced 0.5 Reductions Max and Min
Interval Interval

Lower Upper Lower Upper

Norway

Australia
United States
Netherlands
Germany
New Zealand
Sweden

Switzerland

Japan

Hong Kong

Iceland

Israel

Singapore

France

Liechtenstein
Qatar
Kuwait

Equatorial Guinea

Papua New Guinea
Djibouti

Sudan

Sierra Leone
Central African R
Eritrea

Mali

Burkina Faso
Chad
Mozambique
D.R. Congo
Niger

Ll e e i e e e e R L A Y B AV R AV R RV, R RV R RV RV RV RV RV R AV RV RV RV, RV, RV RNV,

Ll e e e e e i e B B DAY AV RV R RV R RV RV RV RV RV RV RV RV RV RV, RV RN}

il il L el e el e e R B L R A N Y. AV RV RV R RV RV RV RV, RV RV, R RV, R RV, RV, RV, R R RV,
el e el e e el N N N N S R RS R RSV N N N S N, N I R N RV SRV RV, BV, RV RV, N RV, RV, RN,

i e e i e e e R L A R S AV R AV RV R AV RV RV, RV RV RV, RV, R EV RV, RV, RV RV, B RV, RV RNV,

Under this approach,

n(i)
Eij = E ciaj/ni
a=1

for n; the number of alternatives classified in the ith class and c;,; the evaluation of
the ath of these alternatives by the jth criterion. Analogously,
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Ej = Z (;Ciaj>/;ni

r
i=1

The PseudoF measure of quality of the classification is then given by the ratio
between B/(r — 1) and W/(n — r) for B denoting the variance of the conditional
expectation given the classification, W the expectation of the conditional variance, r
the number of classes and n the number of alternatives classified.

Thus,

PseudoF = (B/(r—1))/(W/(n—r))

for
-
B = Zni Z (Eij — Ej)z,
i=1 j
W= (ew—a)
=1 j a
and
.
n= Zl’li.
i=1
Thus,

~

i=1 J

PseudoF = ( n Z (cj — Z'j)z/ (Z Z Z (Ciaj — Eij)z) / <(r -1)/ (Z ni) - r) ) .
i=1 j a i
Given the decomposition of the variance,

S (LT » o ST 15 35w o ST (1) ol )

This construction does not take into account the possibility of different scales of
measurement of the different criteria. An alternative measure for the case of mea-
sures of importance for the criteria being available would compute the ratios sep-
arately for each criterion and weigh these ratios with weights that take into account
such scales:



94 8 Probabilities in the Problem of Classification

WPseudoF = 3w (8,/(r — 1))/ (Wi/(3 " m — 1)

J=1

for
w;j denoting the weight assigned to the jth criterion,

B; denoting the variance of the conditional expectation for the jth criterion and
W; denoting the expected value of the conditional variance for the jth criterion.

Thus,

WPseudoF = iw,- [(Z ni (¢ — zj)2> / (Z Z (ciaj — z,-j)w / ((r -1/ (Z n; — r))

=1 i=1 i=1 a=1

Table 8.7 presents, for the classification in Table 8.3, the means and sums of
squares for the four classes and the seven criteria—employed in the computation of W.
Presents also the general means and the sums of squares relatively to these global
means after replacing the original values by the means of the classes—employed in the

computation of B.

Table 8.8 presents the values of PseudoF and WPseudoF derived from the values
of Table 8.7 and for the case of Carl1 and Carl3 being moved from classes 2 and 4

Table 8.7 Means and sums of squares for cars classification

‘ Beauty ‘ Comfort ‘ Consumption ‘ Power ‘ Price ‘ Reliability Safety
Class 2
Means 1 0.75 0.25 0.5 0.5 0.5 0.5
Sums of 0 0.75 0.75
Squares
Class 3
Means 0.67 1.00 1.00 0.33 1.00 0.67 0.33
Sums of 0.67 0.00 0.00 0.67 0.00 0.67 0.67
Squares
Class 4
Means 0.70 0.40 0.20 0.70 0.40 1.00 1.00
Sums of 2.10 2.40 1.60 2.10 2.40 0.00 0.00
Squares
Class 5
Means 0.33 1 1 0.33 0.33 1 1
Sums of 0.67 0 0 0.67 0.67 0 0
Squares
Global 0.7 0.65 0.45 0.55 0.5 0.85 0.8
means
Interclasses 0.77 1.40 2.60 0.52 0.93 0.88 1.53
squares
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T"?"e 8.8 PseudoF and Statistics Triangular Normal
weighted Pse.udoF. values classification classification
for cars classification
PseudoF 222 1.84
WPseudoF | 3,19 2.44

to Class 3. The weights for the computation of PseudoF are those employed to
create the classifications.

Table 8.8 shows that, with a relatively larger between classes variance, the
statistics present better values for the first classification.
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Chapter 9
Capacities Determination

Abstract A capacity may be derived from the observed evaluations by following
the principle of maximizing posterior probabilities. By this choice, of the posterior
probability as paradigm, will be assigned highest capacity to those sets of criteria
for which is highest the probability of some alternative maximizing the preference.
Thus more importance is assured to those criteria with highest power of isolated
discriminating a best option and if criteria repeat each other their importance is not
magnified by such repetition.

Keywords Capacity - Choquet integral - Estimation - Preference by at least one
criterion « IDH

9.1 The Maximization Capacity

A capacity for a set of criteria is here derived from the probabilities of maximizing
preference according to them. The finality of adopting such form of derivation is to
assign highest capacity to those sets of criteria for which is highest the probability
of some alternative maximizing the preference.

The rule to derive the capacity from the probabilities of preference maximization
will consist of first computing, for each subset of the set of criteria, the probabilities
of maximization according to at least one of the criteria of the subset. The capacity
will be proportional to the maximum, along the alternatives, of these probabilities
of preference maximization. Its final value will be obtained by proportionally
rescaling this vector of maxima in such way to give the value 1 to the set of all the
criteria.

Formally, the capacity estimation algorithm to generate the capacity of a subset
{Cy, ..., C} of s criteria has the two following steps:

First compute

P{Cy, ...,Cs}) = mjlx(l — (1 =Py1)...(1 —Py)),
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for a varying along the set of alternatives and P,; denoting the probability of
alternative a maximizing the preference according to criterion j,
and finally compute

C({Cl) e aCS}) = P({Cla cee 7Cs})/P(U)7

for U denoting the set of all the criteria.

Thus, for subsets of more than one criterion, the capacity will be proportional to
the maximum, along the set of observed alternatives, of the complement to 1 of the
product of the probabilities of not maximizing the preference according to each
criterion in the subset.

By giving more importance in the composition of the preferences to the criteria
or sets of criteria with higher probabilities of choice of some alternative, this rule
guarantees the highest final preferences for the alternatives eventually chosen. This
agrees with the principle of Bayesian statistical inference (Box and Tiao 1973) of
assigning to the parameters a probability distribution that maximizes the posterior
probability of observing whatever has been observed.

This algorithm assumes independence between the disturbances affecting the
evaluations according to each criterion. The choice of the independence assumption
has the advantage of maximizing the attention given, in the estimation process, to
the numerical evaluation according to each criterion. It does not mean, as already
pointed out in preceding chapters, assuming unsubstitutability of criteria.

9.2 Use of the Capacity to Evaluate the Alternatives

With this construction of the capacity, to compute the aggregate probability of
maximizing the preference for a given alternative with respect to a set of criteria by
the Choquet integral (Choquet 1953), the following procedure may be followed.

First, to the lowest between the probabilities of maximizing the preference for
the alternative according to a single criterion, add the product of the difference
between the second lowest of such probabilities and the lowest by the capacity
derived from the maximum along all the alternatives of the probabilities of being of
the best according to at least one of those criteria different from that for which the
alternative presents its lowest probability. Then, to this sum add the product of the
difference between the third and the second probabilities by the capacity derived
from the maximum along all the alternatives of the probabilities of being of the best
according to at least one of the criteria in the set complementary to that formed by
those with the two lowest probabilities. And so on.

To make clearer the procedure, let us consider, for instance, the case of four
criteria and let us denote by P; the probability of the alternative being that one
maximizing the probability of preference by the j-th criterion and by t the per-
mutation of {1, 2, 3, 4} such that



9.2 Use of the Capacity to Evaluate the Alternatives
Pr1) < Pyo) < Py < Py

The fist summand will be P,
The second, the product of

Pra) = P
by
max (1 — (1= Py)) (1 = Paxy) (1= PMW))/mﬁx(l — (1 = Pa)(1 = Ppo)(1 — Pa3)(1 — Pu)).
The third, the product of
Pi3) = Pr)
by
max (1 — (I = Par) (1 - Par(4)))/m§1x(l = (1 =Pa1)(1 = Py2)(1 = P3)(1 — Pu)).
Finally, the fourth will be the product of
Pra) = Pra)

by

max (Par(4))/m§1x(l — (1= Pu)(1 = Po)(1 — Pu)(1 — Pa)).

9.3 Example of Capacity Estimation

Here will be studied again the problem of determining capacities for the con-
struction of an aggregate index of sustainable management of resources or of

sustainable development of regions or countries.

An index of sustainable development must compose evaluations of environ-
mental, social and economic risks (Stiglitz et al. 2009). As seen in the preceding
chapters, to cover all the necessary dimensions, the indicators composed may

intercept and some of them may be substitutable by others in the set considered.

The criteria will be the same considered in the preceding chapters. The alter-
natives will be the 187 countries and the initial probabilities of maximizing pref-
erence for each alternative according to isolated criteria will be those there

considered.
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The capacity derived from the probabilities of presenting the best scores on the
components of HDI assuming triangular distributions is given in Table 9.1, for L
denoting longevity, MS denoting mean schooling, ES denoting expected schooling
and I denoting income.

If the decision maker desires to pay more attention to the small values of the
attributes, the probabilities of minimizing may be used instead of the probabilities
of maximizing. The capacity derived from the probabilities of minimizing, shown
in Table 9.2, gives a much lower importance to income.

Table 9.3 presents the scores for the same 30 countries analyzed in preceding
chapters, obtained combining the probabilities of maximizing and minimizing
preference by the Choquet integral with respect to the respective capacities.

As the clearest extremes for the probability of maximizing are given by the
income component, the countries with best performance on this feature will reach
the best global score by the first approach. Thus, employing to combine the
probabilities of maximization the capacity in Table 9.1, the 17 first countries of the
list of 30 are those occupying the 17 first positions among the 187. Specially
noticeable are the positions of Qatar and Lichtenstein as the first and the third. The
evaluation based on the probabilities of minimization is much closer to those
obtained in the previous chapter and to the ranking by HDIL

Table 9.1 Capacity for IDH components derived from the probabilities of maximizing

Criterion Importance Criteria Importance Criteria Importance
L 0.3084 L or MS 0.5141 L or MS or ES 0.8204
MS 0.3887 L or ES 0.6098 LorMSorl 0.9334
ES 0.4304 Lorl 0.8727 LorESorl 0.9395
I 0.7533 MS or ES 0.6555 MS or ES or I 0.8816
MS or I 0.8145
ESorl 0.8206

Table 9.2 Capacity for IDH components derived from the probabilities of minimizing

Criterion Importance Criteria Importance Criteria Importance
L 0.4459 L or MS 0.674 L or MS or ES 0.8624
MS 0.4251 L or ES 0.6013 LorMSorl 0.8103
ES 0.4603 Lorl 0.5857 LorESorl 0.7393
1 0.1534 MS or ES 0.7205 MS or ES or I 0.8504
MS or I 0.5636
ESorl 0.5860
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Table 9.3 Scores by new capacities
IDH Country Maximization Minimization
Rank Score Rank Score Rank
1 Norway 0.009504 4 0.002451 2
2 Australia 0.01159 2 0.002493 3
3 United States 0.008827 5 0.002509 4
4 Netherlands 0.007694 11 0.002638 7
5 Germany 0.007587 12 0.002631 6
6 New Zealand 0.008155 8 0.002558 5
7 Sweden 0.007713 10 0.002648 8
8 Switzerland 0.008219 6 0.002365 1
9 Japan 0.008156 0.002658 9
10 Hong Kong 0.008106 9 0.002675 11
11 Iceland 0.007401 14 0.002674 10
12 Israel 0.007065 16 0.002744 12
13 Singapore 0.007455 13 0.002799 14
14 France 0.007115 15 0.002746 13
15 Liechtenstein 0.01149 3 0.002955 15
16 Qatar 0.012439 1 0.003249 16
17 Kuwait 0.005433 17 0.003521 17
18 Equatorial Guinea 0.003134 18 0.007462 18
19 Papua New Guinea 0.002961 19 0.008181 19
20 Djibouti 0.002834 21 0.009142 20
21 Sudan 0.002797 22 0.011429 23
22 Sierra Leone 0.002702 27 0.0122 26
23 C. African Rep. 0.002702 26 0.011566 24
24 Eritrea 0.002857 20 0.011027 22
25 Mali 0.002702 28 0.011732 25
26 Burkina Faso 0.00273 25 0.013164 27
27 Chad 0.002668 29 0.013946 29
28 Mozambique 0.002773 23 0.013678 28
29 D. R. Congo 0.002763 24 0.010653 21
30 Niger 0.00259 30 0.014862 30
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Chapter 10
Rough Sets Modeling

Abstract The transformation in probabilities of being the best can reduce the
number of possible values of the attributes. By this property, it may be used to
amplify the roughness of decision attributes in Rough Sets Theory applications.
This can be explored to increase the index of quality of approximation and simplify
the classification rules.

Keywords Rough sets - Reducts - Index of quality of approximation
Dominance - Probabilistic transformation

10.1 Roughness Modeling

Rough Sets Theory—RST (Pawlak 1982) is based on identifying approximately
classes determined by a set of attributes, named decision attributes, according to
another set of attributes, named condition attributes.

An important stage in the characterization of rough sets is the identification of
reducts, subsets of the set of condition attributes able to offer the same quality of
approximation as the whole set. The possibility of approximation and, conse-
quently, the number of reducts depend on the roughness of the sets, a concept
whose characterization has been centered, in previous developments, on properties
of the vector of values of the different attributes, but may consider also the precision
in the measurement of each attribute.

The approach here employed to simplify the approximation applies to the sit-
uation in which the attributes are ordered variables. For this situation was developed
the extension of RST called by Greco et al. (2001, 2002) Dominance-based Rough
Sets Approach—DRSA.

A form of easing the approximation on DRSA employing relaxation of the rules
for the entry of alternatives in the approximation by ignoring some contradictions is
Dominance-based Rough Sets with Variable Consistency VC—DRSA, developed
by Greco et al. (2005).
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New proposals in the same direction were presented in Sant’Anna and Moreira
Filho (2013) based on joining neighboring classes. While VC—DRSA and variants
of it are based on the size of the classes involved, this last approach is based on the
distance between the values of the decision attribute in the two classes. To evaluate
such distance the probabilistic transformation is used.

The idea behind this probabilistic approach is to reduce the numerical precision
in identifying according to the decision attributes by reducing the number of dif-
ferent possible values for them. This is made possible by the transformation of the
vector of initial observations of the attribute into a vector of probabilities of pre-
senting the highest (or lowest) value, because many alternatives have a very low
probability of being the best (or the worst).

In this development is considered the most frequent case, of a unique decision
attribute. The extension of the methods proposed for the case of more than one
decision attribute is simple, once a dominance relationship is established in
accordance with the set of all decision attributes together. To this end one can also
use the composition of probabilistic preferences.

10.2 Rough Sets Theory

If two alternatives have the same values for all condition attributes, they are con-
sidered indiscernible. It counts as an inconsistency two alternatives classified as
indiscernible having different classifications according to the decision attributes.

For each set of condition attributes P and each alternative x of the universe U of
alternatives to be classified, denote by P(x) the set of alternatives indiscernible of x
according to P:

P(x) = {y € U/x and y are indiscernible by P}.

For every subset X of U and every set of condition attributes P are defined two
approximations: the lower approximation of X by P and the upper approximation of
X by P, defined by

P(X) = {x € U |P(x) C X}
and
P(X)={xeU|P(x)NX #0}.
It is easy to see that

P(X) C X C P(X).
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The boundary of X according to P is defined by

Pawlak (1982) defines a set X as rough if its boundary is not empty and as crisp if it
is empty.

Pawlak (1991) defines an index of quality of approximation y by the set of
condition attributes P for the set of decision attributes D as the proportion of
alternatives whose classification according to D is not contradicted by indiscern-
ibilities according to P. y can be determined complementarily by the proportion of

D. Formally,

(D) = 1= 3

The goal of RST is to establish decision rules in terms of values of the condition
attributes to inform on the relevant classes determined by the decision attributes. By
a principle of parsimony, rules employing less condition attributes are preferable.

If a set of condition attributes P has the same index of quality of approximation
of a larger one, ie., if yp(D) = yo(D) for P € Q, this means that there is no
preference between two alternatives x and y according to attributes in Q\P that
might erase any indiscernibility increasing a boundary according to P. If that
happens, decision rules employing the attributes in Q can be replaced by rules
employing only the attributes in P.

Pawlak (1991) defines as a reduct a set of condition attributes P such that any
subset of P has a smaller quality of approximation than P. The smaller the number
of attributes in the reducts, the simpler the decision rules.

If the attributes determine dominance relationships, i.e., if each of them deter-
mines an order relation in U, it is easier to measure the quality of approximation.
The adaptation of RST for the case of dominance as set forth below was developed
by Greco et al. (2001).

Suppose the classes of the partition {Cl;},_, , determined by the decision
attributes ordered in such way that, if » > s, the alternatives in CI, are preferable to
those in Cl;. Then, it is enough to deal with the cumulative classes

Clg = U Cly or Clf=UCl; t=1,...n
s<t

For the condition attributes, x dominates y with respect to P, or “x P-dominates y”,
ory is “P-dominated by x” or “xDpy”, if the preference for x is higher or equal than
the preference for y according to all the elements of P.
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For dominance relations, it is interesting to consider the set of alternatives
dominating a given alternative X:

Dy (x) = {y € U : yDpx},
as well as the set of alternatives dominated by x:
Dy (x) = {y € U : xDpy}.

Once defined the classes and the entire list of the P-dominating and P-dominated
sets, it is possible to define the upper and lower approximations. Regarding the
definitions above, the difference is that now, dominance relationships are used
instead of indiscernibility.

The lower and upper approximations can be set respectively for the upper
cumulative classes by:

P(Cl7) ={xeU:Df(x)CCl7}
and
P(Cl7) ={xe U:Dy(x)NCl7 +J}.
Analogously for the lower cumulative classes:
P(Cl7)={xeU:Dy(x) CCI}
and
P(Cl7) ={xeU:Df(x)NCl> # T}
Boundaries and the index of quality of approximation can be defined as before,
being enough consider in the computation of the index of quality of approximation

the boundaries of cumulative classes. Likewise, it is enough formulating the
decision rules in terms of pertinence to cumulative classes.

10.3 VC-DRSA

VC-DRSA is based on a relaxation of the conditions for entrance in the approxi-
mations, controlled by a level of consistency /, which can vary from zero to one. In
the case of a lower class le, for an alternative x be included in the lower
approximation, the requirement of no alternative outside C/= being dominated by x
is relaxed and some alternatives outside C/=may be dominated by x, as long as the
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proportion of those not belonging to CL= does not exceed 1-I. Similarly, for an
upper class, the lower approximation of consistency level [ is:

+ >
P(c) = {x eCl” : M >l}
[Dp ()]

So, if the consistency level is fixed at / = 1, the result of application of VC-
DRSA will be the same as that of DRSA, but, for / < 1, more elements may belong
to the approximations and the boundaries may become smaller.

A difficulty with this rule is that it has the effect of, for instance, leading some
alternative x to be accepted in the lower approximation of a lower class while other
alternative, dominated by x, is not accepted because it dominates less alternatives.
This is not reasonable, as being dominated by x and not dominating other alter-
natives should be a stronger reason for this second alternative to belong to the lower
approximation of the lower class.

Changing the condition of being dominated by that of dominating, identical
inconsistencies may occur in the higher approximations of the upper classes.
Several alternatives (Blaszczynski et al. 2006, 2009; Inuiguchi and Yoshioka 2006;
Inuiguchi et al. 2009; Deng et al. 2011) have been proposed to avoid this contra-
diction, but all preserving the principle of establishing the level of consistency in
terms of proportion of inconsistencies, disregarding the distance involved in the
dominance.

10.4 Aggregation of Classes

In Sant’Anna and Moreira Filho (2013) is proposed the strategy of changing the
original data by augmenting the roughness in the measurements to avoid con-
tradictions that may increase the number of alternatives in the boundaries. The basic
idea of this strategy is to move alternatives in small classes with extreme values to
neighboring classes, by replacing such extreme values by approximations.

Increasing roughness in this way identifies alternatives with close values in the
decision attribute. With the values of the condition attributes unchanged this will
result necessarily in the possibility of reducing the number of contradictions,
increasing the quality of approximation and reducing the size of the reducts.

In fact, the quality of the approximation is increased whenever the cardinality of
the boundaries decreases and what reduces the boundaries is reducing, for each
alternative x, the number of alternatives indiscernible from x and located outside the
class in which the decision attribute locates x. If the values of the condition attri-
butes are not changed, the indiscernible objects remain the same. Thus, the increase
in the size of the classes determined by the decision attribute is forcefully associated
to reduction of the number of indistinguishable alternatives outside.

The shrinking of the reducts can be proved in two steps. First, it is easy to see
that no reduction is lost when joining the classes determined by the decision
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Table 10.1 Data aggregation

Alternatives D P, P, Dy
A 2 1 1 3
B 3 1 2 3
C 5 2 3 5
D 6 3 3 6
E 7 4 4 7
F 8 5 5 8

attribute. Indeed, if a set P, of condition attributes contained in the set of attributes
P is a reduct, then no indiscernibility according to attributes in P/P; is able to
withdraw alternatives from any boundary. With the expansion of the classes
determined by the decision attributes there is no way to raise the possibility of
occurrence of any such withdrawal. Thus the size of the reducts cannot increase.

On the other hand, joining classes opens the possibility of appearing new reducts
of smaller size. Indeed, if, before aggregation, P was a reduct and P; € P was not,
this is necessarily due to the existence of at least one indiscernible pair of alter-
natives (X, y) according to some element of P/P; that would place such alternatives
in a boundary situation. With the aggregation of classes, such alternatives may
become members of the same class.

The following example demonstrates concretely how the quality of the
approximation may increase and the size of the reducts decrease with the union of
classes.

In Table 10.1, Dy results from joining two classes at the lower end of the range
of values of D. With D as the decision attribute, P, and P, are needed to achieve the
maximum quality of approximation of 1. But replacing D by Dy, it is easy to see
that P, alone offers this quality of approximation of 1.

10.5 A Probabilistic Aggregation Algorithm

In this strategy, the values of the decision attribute are treated as the result of
distortion of unknown values by random disturbances. This allows, as in preceding
chapters, for replacing them by the probabilities of presenting an extreme value.
The probability of presenting the highest value for two alternatives with the same
evaluation will be the same and will be lower than that of an alternative belonging
to a higher class. This argument is reversed when the transformation is based on the
probability of presenting the lowest value.

What is explored to increase the index of quality of approximation is the fact that
the probability of maximizing (or minimizing) becomes so close to zero for alter-
natives in extreme classes that, with a suitable decimal approximation, values in
neighbor classes may be considered equal.
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As in VC-DRSA (where the index [ for input objects in the lower approximation
is not fixed), an approximation threshold can be determined according to the cir-
cumstances. The limit to the approximation, denoted by /* may be changed by the
analyst.

As in VC-DRSA, a very low value of /* may result in an excessive relaxation for
entering values in the approximation classes. On the other hand, a high value for [*
allows for the union of classes that are not classes of rare alternatives in the tail of
the classification.

As a rule, the approximation to the third decimal enables a satisfactory number
of unions. This corresponds to consider equal those evaluations differing by less
than 0.0005. With the probabilistic transformation, this means equaling to zero all
evaluations of the probability of being the best below 0.0005.

If the important distinctions are between the alternatives presenting large values,
the small probabilities will be assigned to the alternatives with low values for the
decision attribute. Similarly, if the important distinctions are between the alterna-
tives presenting large values, the small probabilities that will be considered equal
will appear in the classes with high evaluations.

Merging classes by performing changes only in the decision attribute, no pre-
mise for application of DRSA is violated. Only classes determined by the decision
attribute are pasted. Thus, the reduction of classes by the probabilistic transfor-
mation does not prevent the subsequent enforcement of any method of extraction of
rules or imposition of consistency and the method for reduction of the number of
classes can be applied in conjunction with any of the techniques developed to
improve the quality of the approximation starting from VC-DRSA.

A combination of RST with the probabilistic transformation was also performed
in the reverse direction in Sant’Anna (2004).

10.6 Example of Car Models

Consider the problem of choice among 20 car models. Assume that we intend to
explain the decision attribute D in Table 10.2 by the condition attributes C; and C,.

The quality of approximation is 0.4, as eight of the 20 alternatives are consis-
tently classified: Carl, Car2, Car3, Car4, Carl, Carl2, Carl6 and Carl7.

Applying the transformation of the decision variable into probabilities of pref-
erence (assuming a normal distribution with variance estimated by the observed
variance) and rounding to three decimal places, the decision attribute receives the
values in the last column. Thus, Carl8, Carl9 and Car20 are joined in the same
decision class, with the value of O for the decision attribute. With this reduction in
the number of classes, these three alternatives become consistently classified and
the quality of approximation increases to 0.55.
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Table 10.2 Cars evaluations Cars Cl o) D Do
Carl 5 6 5 0.373
Car2 4 5 4 0.071
Car3 4 0 4 0.071
Car4 4 0 4 0.071
Car5 3 0 4 0.071
Car6 3 0 4 0.071
Car7 0 4 4 0.071
Car8 0 3 4 0.071
Car9 0 2 4 0.071
Carl0 3 0 3 0.007
Carll 2 0 3 0.007
Carl2 2 0 3 0.007
Carl3 0 4 3 0.007
Carl4 0 2 3 0.007
Carl5 0 2 3 0.007
Carl6 0 1 3 0.007
Carl7 0 1 3 0.007
Carl8 0 0 2 0
Carl9 0 0 2 0
Car20 0 0 1 0
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Chapter 11
Application to FMEA Priority
Assessments

Abstract A risk priority probability, obtained by multiplying the probabilities of
being the mode of failure of higher risk simultaneously with respect to severity,
occurrence and detectability, is here employed instead of the classical priority risk
number of FMEA. A probabilistic classification of risks with respect to classes
previously determined is also discussed.

Keywords FMEA - Risk priority number - Risk priority probability - Severity -
Occurrence - Undetectability - Ordered classes of risk

11.1 Risk Priority Probabilities

A natural example of the composition of preferences by joint probabilities is the
calculation of priorities of the failure modes in Failure Modes and Effects Analysis—
FMEA (U.S. Defence Department 1949). An important feature of FMEA is the
assignment of a risk priority number (RPN) to each failure mode. To determine that
number, is assigned to each failure mode a score from 1 to 10, or from 1 to 5, with
respect to three features: severity, frequency and detectability. The RPN is simply
obtained by multiplying the values of the scores on these three features.

In Sant’Anna (2012) is proposed the replacement of the RPN by a risk priority
probability (RPP), obtained by multiplying the probabilities of being the mode of
failure of highest risk according to each of these criteria.

This multiplication may be justified in terms of probability theory by the com-
bination of conditional probabilities. To evaluate a failure mode, we must first
consider the likelihood of its cause. Conditionally on the occurrence of such cause,
the evaluation of the risk in the mode of failure must then consider the probability of
such occurrence not being detected in time to avoid its unwanted effects. Finally,
conditionally on occurrence and undetectability is that the probability of an
undesirable effect should enter the computation.
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In each of these steps, the comparative assessment in terms of probability of
being the most severe, the least detectable and the most frequent can be applied
under the conditional framework. Thus, a natural measure of risk is the product of
the probabilities of maximizing frequency by the conditional probability of maxi-
mizing undetectability given occurrence and the conditional probability of maxi-
mizing damage given undetectability and occurrence. Such multiplication
corresponds to the pessimist and progressive probabilistic composition of the three
criteria of FMEA.

Besides this theoretical reason, there is a practical reason to replace RPN by
RPP. In the classical calculation of RPN, a change from 1 to 2 in the evaluation of
frequency, for instance, corresponding to a change in the evaluation of the cause
from extremely rare to a little less frequent, doubles the product of the three factors,
so increasing the RPN much more than it would be reduced by a change from 10 to
9, from extremely common to a little less frequent. If the priority is determined by
the probability of being at the same time the least detectable, most frequent and
most serious, this distortion is limited, as the probability according to any criterion
that the risk is the highest varies among alternatives of high risks much more than
among alternatives of low risks.

To be able to perform the probabilistic transformation, one must model the
distributions of the random disturbances. In Sant’ Anna (2012) is set for FMEA with
scores ranging from 1 to 10 a triangular distribution with bounds at 0 and 11. With
the limits on the exact possible ends of 1 and 10, as well as with limits more distant,
spaced by a small fraction of these lower and upper ends, for instance to 0.9 and 11,
very close ranks have been obtained in practice.

On the other hand, by setting the ends of the distributions near the largest and the
smallest observed values, instead of the maximum and minimum possible values of
1 and 10, different results are obtained. Approaching the bounds to the observed
values corresponds to discarding the equal weighting of criteria implicit in the
multiplication formula and adopting the weighting implicit in the variability of the
evaluations given by experts.

A basic feature of FMEA is to let the experts the possibility of giving more
weight to one or another criterion by placing a greater distance between the scores
for the modes of failure according to the criterion that they believe to be more
important than the others. It may happen, on the other hand, that it is the greater
difficulty in assessing the importance of the modes of failure according to a criterion
that leads the evaluators to shorten distances in the evaluations according to such
criterion. If this is the case, setting the ends of the distribution next to the observed
values, by increasing the importance of the factors where there is less variability,
will unduly distort the composition.

Finally, instead of just ranking the modes of failure, experts on FMEA some-
times present the results of their evaluation in terms of classes of risk. The prob-
abilistic approach allows for directly classifying the modes of failure by the
trichotomic probabilistic measurements described in Chap. 8. For that, absolute
profiles for the classes may be derived. Basic profiles for each class may be
established with equal values for all the criteria.


http://dx.doi.org/10.1007/978-3-319-11277-0_8

112 FMEA 115

11.2 FMEA

FMEA is a tool to improve reliability. The basic objective of FMEA is to eliminate
potential causes of failures before they take place.

FMEA may be applied in the development of a product as well as in the
modeling of a manufacturing process. It is preferably applied before beginning
manufacture or assembly, but can be applied to processes in progress, on a cyclic
movement to raise quality. Once developed a product or process whatsoever, it
must be regularly reviewed, its output compared to that imagined, to the attention to
the expected faults added the focus on those really happening in the day-to-day
process management and product use.

Application of FMEA involves recording the possible failures and evaluating its
severity, frequency and detectability objectively in a document, the form of FMEA.
In the form of FMEA are initially recorded functions and main features of the
product or process, modes of potential failures for each function; causes and effects
of each mode of failure and current controls.

FMEA starts basically with the formation of a group of people to identify the
product or process in question, its functions, the types of failures that can occur, the
effects and the possible causes of each failure, to develop the form of FMEA. Then
the risks for each cause of failure are evaluated by means of the three indices. Based
on this assessment, are proposed actions able to reduce these risks by eliminating
the most important causes of failure, those whose combined priority index exceeds a
predetermined threshold, increasing in this way the reliability of the product or
process.

At the stage of risk assessment, evaluations are recorded in the form of indices of
severity (S), occurrence (O) and detectability (D) for each mode of failure, fol-
lowing previously defined patterns. The first of these indices measures the severity
of the consequences attributed to an undetected occurrence of the failure. The
second measures the probability of occurrence, i.e., the frequency of observation
expected for the failure. The third measures the difficulty of detecting the failure in
a timely manner. These indices are used in the traditional approach to calculate the
RPN by multiplying their three values.

The identification of the values for these indices is in principle performed in
meetings of the group of analysts. The development of communication tools in
recent years favors, however, the use of isolated assessments that can be revised
iteratively.

When the group is deciding on values according to one factor, the other indices
cannot be taken into consideration, i.e., the evaluation of each index is independent.
For example, when evaluating the level of severity of a particular effect, a low value
should not be assigned to this index only because the probability of detection is
high.

Further details and reviews of FMEA can be found in AIAG (2008) or
McDermott et al. (1996), for instance.
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11.3 Risk Indices

According to each of the criteria of severity, occurrence and detectability, the
modes of failure are classified into a certain number of levels, properly determined
previously. The previous description of levels based on the reality of the production
process is one of the most important recommendations for FMEA (Stamatis 1995;
Pfeifer 2002). Tables 11.1, 11.2 and 11.3 below provide an example of generic
descriptions for five levels indices.

The construction of the tables of identification of the levels and the association to
each mode of failure of a description in each table is an approximate process. Bad
results in the application of the technique are frequently associated to errors in the
construction and use of the scales. For this reason is important to take into account
the uncertainty inherent to the evaluations.

Uncertainty is common in risk evaluations. It is expected that the available data
are subject to fluctuations in their values if measurements are taken in different
instances. When the preferences, as in the case of assigning priorities to possible

Table 11.1 Levels of

; Level Importance Characterization
severity

1 Very low The use will not care

2 Low Light loss of performance

3 Moderate Real source of dissatisfaction

4 High Inoperative system

5 Very high Inoperative system menacing security

Table 11.2 Levels of Level |Importance | Characterization

undetectability 1 Very low Certainly will be detected
2 Low Most possibly detected
3 Moderate Median chance of passing undetected
4 High Most possibly undetected
5 Very high Certainly will not be detected

Table 11.3 Levels of

Level Importance Characterization
occurrence

1 Very low 1 in 1.000.000

2 Low 1 in 10.000

3 Moderate 1 in 1.000

4 High 1 in 1.00

5 Very high 1in 10
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failures, do not come from unified processes, but from application of personal value
systems, the treatment of uncertainty becomes even more difficult.

Modifications to FMEA practice have been proposed to account for uncertainty.
Unsatisfactory results of the application of these proposals can be attributed to the
direct form of composition of the specific indices rather than to the account of the
uncertainty taken in the calculation of these specific indices (Jin 2000; Lee 2001).

An often explored option is the use of fuzzy logic (Zadeh 1978) in the combi-
nation of the indices, whether or not these criteria are measured by fuzzy numbers
(Bowles and Pelaez 1995; Pillay and Wang 2003). This form of composition results
in prioritizing maximum or minimum values, disregarding the intermediate ones.
The use of the product, on the contrary, by considering all the values, provides
greater robustness to the final outcome of FMEA.

Other proposed changes are based on standardizing the values by dividing by the
amplitude observed in each index, to correct for the different variability in the three
components (Tay and Lim 2006; Keskin and Ozkan 2009). This may result in
neglecting the information provided by this variability, allowing for distortions
even more difficult to identify in the final outcome than those resulting from the
direct multiplication of the original values.

The transformation into probabilities of preference and the probabilistic com-
position by the product of the probabilities provide greater security to handle the
uncertainty in each factor and the differences in variability in the evaluations of the
different risk factors.

11.4 Practical Considerations

An example of modeling uncertainty is given by the analysis in Sant’Anna et al.
(2014) of the data of Chuang (2010) about 23 modes of failures in the services of a
hypermarket. That is a typical case of the service sector, where scales of equally
spaced values are employed with the identification of the importance levels in the
scale left open to the evaluators.

The importance of the modes of failure according to the three FMEA criteria was
determined in the study of Chuang (2010) by averages of evaluations by a team of
100 specialists. This approach allows for statistically estimating the dispersion in
the evaluations according to each criterion. For instance, an estimator for the range
of the distributions related to severity may be derived from the vector of 23 sample
ranges observed in the 23 sets of 100 evaluations of each mode of failure according
to severity.

Alternatively, the information on the dispersion within the samples of 100
evaluations may be left out of consideration to employ, instead, the variation of the
means of such samples along the 23 modes of failure. It can be argued that the
variation along the set of specialists does not correctly inform on the uncertainty in
the application of the criterion, as all of them may be not equally affected by this
uncertainty. The variability observed along the evaluations of the different modes of
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failure—i.e., the variability inter failures—may inform more on the variation on the
evaluation of each failure—the variability intra failure—than the outer information
brought by the variation between specialists.

11.5 Classification Example

A comparison of results of probabilistic composition with other approaches, based
on data of Tay and Lim (2006), is performed in Sant’Anna (2012). The modes of
failure are classified according to RPP into the five classes of Table 11.4 with
extremes derived from the number of modes of failure examined.

In Sant’Anna (2012), the combination of this automatic classification by global
probabilistic evaluations with another directly provided by experts is studied.

The data collected by Tay and Lim (2006) refer to three processes in semi-
conductors production. The first is the test handler process. It admits failures in
handling integrated circuits for testing through an interface unit. Table 11.5 presents
for this process the initial evaluations according to each factor of risk and the results
of the probabilistic composition. The fourth column presents the probabilities of
being the highest priority according to the three criteria together multiplied by 10°.
The fifth column presents the result of application of the thresholds in Table 11.5 to
discretize the values in the fourth column. The last column presents the minimum
between the values of the preceding column and the values assigned by experts.

For the three processes, the probabilistic classification is, in general, in lower
levels than the experts’ final classification, but the differences are small. Only once
the experts reduce the probabilistic level, even so only from “very high” to “high”,
what would keep the corresponding failure still indicated to provoke corrective
action in the process.

The failure object of reduction by the experts has values 9, 3 and 1 for severity,
frequency and undetectability, respectively. The rank inversion in the experts’
global evaluation was found to reflect a predilection for the application of the
occurrence criterion.

The discretization preserves the variability of the global probabilities, with the
classification of the modes of failure varying from 1 to 5 in all the three cases. The
discrete probabilistic classification is much more spread than that of the global
scores provided by the experts when asked to evaluate the whole set of potential
failures.

Table 11.4 Probabilistic classes

<33 >n /3 >2n"%/3 >n > >3n>/2
and <2n"%/3 and <n3 and <3n>/2

Very low risk Low risk Moderate risk High risk Very High risk
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Table 11.5 Process failures probabilistic evaluations
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Severity

Occurrence

Detectability

Risk

Discretized risk

Combined risk

10

12

13

15

13

12

13

15

13

18

18

15

15

13

17

27

27

15

20

17

35

56

63

71

62

97
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It can be noticed in Table 11.5 that the probabilistic priority of the failure with
score 4 for severity and 1 for the other two criteria is higher than that of the failures
with scores 1, 2 and 3 on different criteria. This is a consequence of the probabilistic
composition taking into account the smaller variation of the vector of evaluations
according to severity. This smaller variation makes the highest values with respect
to severity more important.

In general, in this study, probabilistic composition led to results close to those of
classic FMEA, but with important divergences. This may be seen as an assurance
that the improvement resulting from taking into account random variability when
combining the evaluations can be applied without risk of large deviations from the
traditional practice.



120 11 Application to FMEA Priority Assessments

In addition, the proposal to combine the probabilistic composition with the
evaluation by experts and place the failure mode in the lower of the two classes
appointed encourages the experts to center attention on the potential failures clas-
sified in high priority levels by the probabilistic composition. In those grounds, the
experts can decide more attentively on the need of effectively changing the process
under evaluation.
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Appendix
Basic Notions of Probability Theory

Abstract In this Appendix, the basic concepts of Probability Theory employed in
the book are explained and their main properties are discussed.

Keywords Probability, Expected value, Additivity, Variance, Covariance,
Independence, Conditional distribution

A.1 The Concept of Probability

A probability distribution, or, succinctly, a probability, on a finite set S, is an
additive function p, from the set of parts of S, P(S), to the interval [0, 1], satisfying
p(S) = 1. Additivity in a function whose arguments are sets means that, for any pair
of disjoint sets A; and A,,

p(A1UA2) = p(A1) +p(Az).

In a reference to statistics practice, the sets that enter as arguments of a
probability function are called events, the elements of S are called outcomes and S
is called a sample space.

This concept may be extended from finite sets to any set S, but the set of events
must present certain properties that sometimes may not be presented by the set P(S) of
all parts of S. In the general definition, the set of events may be any nonempty subset
A(S) of P(S) closed for complements and countable unions (a set of events satisfying
these probabilities is called a sigma algebra). More precisely, a sigma algebra is any
subset A(S) of P(S) satisfying: (1) if A € A(S) then S\A € A(S) and (2) if A; € A(S) for
every set A; of the sequence of sets {A;}ien, then Uien A; € A(S).

A function p with domain A(S) and satisfying p(S) = 1 is then a probability in
(S, A(S)) if and only if, for every sequence {A;};en of elements of A(S) satisfying

p(UienAj) = Z p(A).

ieN
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So, the concept of probability involves three elements: the sample space S, the
set of events A(S) and the probability function p. A triple (S, A, p), where A is a
sigma algebra of parts of S and p is a probability with domain A is called a
probability space.

Some properties follow immediately from the definition of probability. For
instance,

p(9) = 0, for any event A;
denoting by A€ the complement of A with respect to S,
p(A) =1 —p(A%);
for any two events A and B,

p(ANB) =p(A) — p
AgB—>p( )

(A\B),
<p (B)
and
p(AUB) = p(A\B) + p(ANB) + p (B\A).

For every probability p on (S, A(S)) and any event B of A(S) with p(B) >0, it is
possible to derive another probability on S that will coincide with p if and only if
p(B) = 1. This new probability is called the probability p conditional on B. This
probability is denoted p(|B) and the probability of any event A of A(S) by p(|B) is
given by

p(A[B) = p(AN B)/p(B).

An important use of conditional probabilities involves conditioning separately
on the elements of a partition. It employs the following property.

Total Probability Theorem
For any countable partition {B;};en of S with B; € A(S) and p(Bi) > O for all i, and

for any A € A(S),
= p(A[Bi) p(B;)
ieN

Here the reader must remember that a partition of a set S is any collection of
mutually excludent subsets of S whose union is S; sets are mutually excludent if
and only if they are pairwise disjoint, what means that the intersection of any pair of
them is empty.

Independence
With respect to a probability p for which p(A) # 0 # p(B),

two events A and B are independent < p(A|B) = P(A).
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Intuitively, independence means that the occurrence of B does not change the
probability of A occurring or not. An equivalent definition of independence of
events, simpler but less intuitive is:

A and B are independent <+ P(A N B) = P(A)P(B).

This definition has the advantage of being applicable also to pairs of events of null
probability. By this extension, events of null probability are independent of any other.

It is useful to consider the question about the independence of the members of a
partition. They are not independent of each other (except those of null probability,
which are unimportant for the applications of the Total Probability Theorem). In
fact two disjoint events of nonnull probability are never independent of each other,
as their conditional probabilities are null.

Another basic theorem, the Bayes Theorem, is used to discover the probability of
each element of a partition conditionally on an event A that may be found to have
occurred when is known the probability of A conditional on the events of the
partition.

Bayes Theorem
p(B|A) = p(A[B) p(B)/ p(A),

for any pair of events A and B.

In this context, p(B|A) is called the posterior probability of B and p(B) is called
its prior probability.

This result has important practical consequences for statistical inference. One of
the most important is to call attention to the importance of correctly evaluating prior
probabilities.

Consider, for instance, the case of an event B of low prior probability such as an
individual carrying the virus of a rare disease. That means, B is the set of members
of a population S with the rare disease. Suppose a very accurate blood test is
designed to detect the presence of such virus. Let A be the event that an individual
in the population is pointed by this blood test as infected by the virus, that means, A
is the set of the elements of S for which an application of the blood test gives a
positive result.

To make things more concrete, let us suppose p(A|B) = 0.99, p(A[B®) = 0.001
and p(B) = 0.0001. In that case, this prior being correct, you should not be very
worried if the test points you as having the disease. Even though the probability of
the test offering a wrong result is of only

p(A°[B) * p(B) + p(A[BS) x p(B) = 0.01 0.0001 + 0.001 * 0.9999
= 0.0010009

and the probability of it presenting the positive result that you received is of only

p(A) = p(AB) = p(B) + p(A|BS)  p(BS) = 0.99 x 0.0001 + 0.001 * 0.9999
= 0.0010989.
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In fact, the posterior probability, although much higher than the prior, is still
small:

p(BJA) = p(A|B) % p(B)/p(A) = 0.99 % 0.0001/0.0010989 = 0.09009.

Facing these results you may decide to change your prior to p(B) = 0.09 and take
the blood test a second time. If the result is the same, then you should become
worried. The posterior probability p(BJA) would now increase to around 0.99.

This underlines the importance of repetition to contest the prior, what was what
Rev. Thomas Bayes emphasized when using his theorem, in the first half of the 18th
century.

By combining Total Probability Theorem with Bayes Theorem posterior
probabilities of all the elements of a partition can be obtained:

p(A1|B) = [p(B|A1) p(A))]/ Y [p(B|A)) p(A))].
ieEN

Cumulative Distribution Functions

For the evaluation of preferences the most important attributes are evaluated by real
numbers, and the most important events are numerical intervals. In that case the
probabilities of preference will be defined in the sigma algebra of Borel, which is
the set B of all countable unions of intervals and complements of intervals in the
real line (that is, the sigma generated by the intervals—a sigma algebra generated
by a given basis is the smallest sigma algebra containing it). To identify a
probability p in this sigma algebra, it is enough to inform the probability of the
intervals of the form (—<, x] for every x € R.

Conversely, by p(—%, x) = F(x), any rightcontinuous nondecreasing function F
from R into [0, 1] satisfying limy—._«F(x) = 0 and lim,—.,«F(x) = 1 determines a
unique probability p on (R, B). Functions of this kind are called cumulative
probability functions or cumulative distribution functions (cdf).

Specially easy to use are the cdf which are not only rightcontinuous but
absolutely continuous. Absolutely continuous are those functions F in the real
domain for which there is another function in the real domain f such that, for all x,
x, F(x) = [*_ f(u)du.f. f is called the density of F.

If F, absolutely continuous, is the cdf of p, the density f o F is determined by

f(x) = {E?(p(x— e, X +¢€)/(2¢).
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A.2 Random Variables

Functions employed to translate probabilities p in (S, A) to (R, B) are called random
variables. A random variable in (S, A) is a function X with domain S such that the
inverse image by X of any interval is an event in A.

For any random variable X, the probability px in (R, B) determined by

px((a,b]) = p(X~'((a, b]))

is called the probability distribution of X and the cumulative probability function,
Fx defined by

Fx(x) =p(X~'((~ex, x])

is called the cumulative distribution of X. If Fx has a density, this is called also the
density of X.

Two main types of random variables are relevant: those with probabilities px for
which there is a countable set S, = {X;};en of values for which px(S,) = 1 and those
with an absolutely continuous cdf. In the first type, named discrete, the probability
distribution of X is determined by {px(x;)};en- In the second, it is determined by its
density.

To denote events in the Borel sigma algebra determined by values of a random
variable X defined on a probability space (S, A, p) is employed a proper notation:
for a phrase r(X) involving X, [r(X)] denotes the set {SES| r(X(s))} and p[f(X)]
denotes the probability of the set of elements s of the sample space S for which the
phrase f(X) is true when X is replaced by the real number X(s).

A.3 Expected Values

The expected value of a random variable X of the discrete type with

ZieN px({xi}) =1is
E(X) = ZXipx(Xi).
ieN
For a random variable X with density fx, the expected value of X is

E(X) = /x fx(x)dx.

This sum and this integral may naturally not converge. So, for some variables,
the expected value is not defined.

As a weighted average of the possible numerical values assumed by the random
variable, with weights given by the probability, the expected value, like a centre of
mass in a bar, is a number around which the probability distribution is spread. For
this reason it is called a location parameter.
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Other location parameters are, for continuous distributions, the median, that
value m for which Fx(m) = 2, and the quantiles, those values x, for which Fx(xq) =
g, and, for discrete distributions, the modes, those values M for which px(M) =
px(x) for any real x.

Similar to the location parameters, another kind of useful information about the
distribution is given by the dispersion parameters, from which the most frequently
used is the variance.

Variance of the random variable X is the nonnegative number

V(X) = E((X - EX)2>.

So the variance of X is the expected value of a measure of deviation of X from
its location parameter EX.
From this definition follow that

V(X) = E(X?) — (EX)".

The symmetric measure of deviation from EX employed in this definition is the
square function. To bring the measurement to the same scale of X, instead of the
variance, is used to measure dispersion the standard deviation, a parameter ¢(X)
defined as the square root of the variance. This means

5(X) = E((X - EX)2> "

A.4 Properties of the Expected Value and the Variance

The main property of the concept of expected value is linearity:
E(X+Y)=EX)+E®Y)
and
E(cX) = cE(X) for any real c.
For any event A of S and 1, the random variable defined by
IA(s) =1 if s€ A and 15(s) =0 if s € S\A,
E(1a) = p(A).

By this correspondence, the concept of expected value may replace the concept
of probability of an event.
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Effects on the variance of translation and change of scale:
for any real c,

V(X +c¢) = V(X)

and
V(cX) = c*VX.
A.5 Joint Distributions
The joint distribution of X = (X, ..., X,,), a vector of random variables on (S, A, p),

is the probability distribution px on (R", B") (where B" denotes the sigma algebra
generated by the products of intervals) determined by

pX(le' . ~XIn) = p(X1 el,.. . X, € In),

for any set of intervals (Iy, ..., I,).

In the same way, the concepts of joint cumulative distribution function and of
joint density extend the one-dimensional case. In the context of joint distributions
of vectors X, the distribution of each one-dimensional random variable X, is called
a marginal distribution. In the same way, its cdf is called a marginal cdf and its
density is called a marginal density.

A vector of random variables X = (X{, ..., X,,) has a continuous distribution if
and only if there is a positive function fx such that the, for Fx the joint cumulative
distribution function of X,

X1 Xn

Fx(X1,..,Xq) = [ fx(X1. . .Xq)dx;. . .dx,

—00 —00

The following concepts, of correlation and independence between random
variables, help to understand joint probability distributions.

Covariance of the pair of random variables X and Y is the expected value of the
product of their deviations to the respective means:

Cov(X,Y) = E[(X — EX)(Y — EY)]

So, if values above (or below) their expected values tend to occur together, then
X and Y have a positive covariance. If values above the expected value for one of
them tend to be accompanied by values below the expected value for the other then
they have a negative covariance.

Cov(X,Y) = E(XY) — E(X)E(Y)
and

VX +Y) = V(X) + V(Y) + 2Cov(X,Y)
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To make possible comparison by controlling for the effect of scales, instead of
covariance is employed the correlation coefficient.
The correlation coefficient between the random variables X and Y is

(X,Y) = Cov(X,Y)/(a(X)a(Y))

The following are the properties that make the coefficient of correlation
advantageous relatively to the covariance:

0<|pX,Y)|<1
Y =cX — | p(X,Y)| =1 for ¢=0,
p(X,Y)=+1ifc>0
and
p(X,Y)=—-1lifc < 0.
The random variables X and Y are independent <«
pla<X<b,c <Y <d]=pla<X<blplc<Y <d]

for every real numbers a, b, ¢ and d.
For X and Y discrete random variables, this definition may be put in simpler
terms:

X e Y are independent <> p[X =a,Y = b]
= p[X = a]p[Y = b] for every real a and b.

So the random variables 15 e 1g are independent < the events A and B are
independent.
For continuous variables, X and Y are independent if and only if

fXY = ffo
X and Y are independent if and only if
E[g(X)h(Y)] = E[g(X)]E[h(Y)] for all real functions g and h,

i.e., the expectation of the product of a function of X by a function of Y with respect
to the joint distribution of X and Y is equal to the product of the expectations of the
two random variables computed separately.

For continuous random variables X and Y with joint density fyxy and marginal
densities fx and f,, this means:

J[emttnxy)axdy = [ gtaax [ netx(r)ay
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So, X e Y independent —

and

A.6 Conditional Distributions

A more complete information on the dependence between random variables is
given by the conditional expectations.

For any p and any random variables X and Y defined on (S, A) and any x €
R for which p[X=x] > 0, the expected value of Y with respect to p conditional on
the event {s € S | X(s) = x}, that means with respect to the probability p(|[X = x])
can be computed. It is denoted E(Y|X = x).

If X is a discrete random variable, a function Y|x with domain S and codomain
R that for each s with p[X = X(s)] > 0 assigns Y|x(s) = E(Y[X = X(s)) is a random
variable and its expected value E(EY|x) equals the expected value EY of Y.

More generally, for any A € A, the expected value of the restriction of Y|x to A
coincides with the expected value of the restriction of Y to A, that means,

E(Y|X1A) =E(Yla).
Or extending yet a little more, for any random variable g(X, Y)

E(g(X,Y)) = E(g(X, EYx))-

This property is employed to extend the definition of conditional expectation.
For any X and Y and any Z that is constant in any set of A where X is constant and
satisfies E(g(X, Z)) = E(g(X, Y)), Z is a conditional expectation of Y given X.

This can be extended to conditioning on a vector of random variables. It is
enough to replace in the above formulation the random variable X by a vector X =
(X4, ..., X,) of random variables X, ..., X,.

Replacing Y by 1pyea;, for each event A, this definition of conditional
expectation can be used to define a distribution of Y conditional on X = x, denoted
by py(|X = x) such that a conditional expectation of Y given X can be obtained
computing, for each x, the expectation of Y with respect to this distribution of Y
conditional on X = Xx.

In the discrete case, the distribution of Y conditional on X = x is given by

py[AX =x] =p(X=x, Y € A)/p(X = x).

For continuous random vectors, the conditional density of Y given X is, for each
real x, the density of the conditional distribution of Y given X = x, that is the real
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function fyxx such that, for Fyx_x denoting the cumulative distribution function
of the conditional distribution of Y given the event [X = x],

FY\X:X(Y) = /ioc fy\x:x(u)du.

A better understanding of the information given by the conditional expectation on
the correlation between different variables is obtained by computing the variance of
the conditional expectation as the variance of a random variable whose variation is
limited by eliminating all dispersion of Y within any set determined by a fixed
value of X. The variance of Y can be decomposed into the sum of this variance of
the conditional expectation and the expectation of another variable, the variance of
the distribution of Y conditional on X.

VY = V(E(Y|X) + E(V(Y[X),

for V(Y|X) denoting the function that associates to each x the variance of the
distribution with cdf Fyjx—.

A.7 Basic Distributions

This section brings examples of probabilities of each kind that will be useful in the
development of the probabilistic determination of preferences.

A.7.1 Examples of Discrete Probability Distributions

A.7.1.1 The Bernoulli Distribution

The simplest sample space is that of the occurrence or not of a well specified fact, like
success in an experiment or acceptance of a proposal. The space of events has then
only 4 elements: {{yes}, {no}, @, S = {yes, no}}. A random variable has a Bernoulli
distribution when its range has only two values 1 and 0, 1 associated to the occurrence
of a given event of probability q and 0 associated to its complement. Thus

px(x) =qforx =1, px(x) =1 —q for x = 0 and pyx(x) = O for any otherreal x.
This implies that the cdf of X assumes the value 0 in R™, 1—q in the interval [0,1)
and 1 otherwise.

The expected value of arandom variable with the Bernoulli distribution 1 5 is p(A).
Since li = 1,4, the variance is

V(1a) = p(A)(1 —p(A)).
Thus, for small p(A), V(1,) is slightly smaller than E(14).
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A.7.1.2 Binomial Distribution

The binomial distribution is the distribution of the sum of a number of Bernoulli
variables with the same probability of the value 1. Two parameters determine a
binomial distribution: the probability q of 1 in each of the Bernoulli summands and
the number n of summands.

The classical example of a random variable with binomial distribution is the
number of successes in a number of independent trials each of them with the same
probability. Let S be the set of possible sequences of results of tossing n times a
coin that has the probability q of showing the side with a head and let X be the
number of heads observed. X has a binomial distribution with parameters n and q
(X~ Binomial(n,q)).

Since the expected value of a sum of random variables is the sum of the expected
values of the summands,

EX = nq.
By independence,
V(X) = nq(l —q).

Employing independence and a simple combinatorial computation, it may also
be proved that, for every integer k from O to n,

pIX =K = {n!/[Ki(n ~ K)}q"(1 —q)" "

From this and Newton Binomial Formula for the power of a sum follows

zn:p[X =k =1
k=0

A.7.1.3 Poisson Distribution

X has a Poisson distribution in the sample space N of the natural numbers, with
parameter A (X ~Poisson())) for a positive real A <

p[X = k] = e *AX/k!, for every k € N.

An example of random variable with Poisson distribution is given by the number
of particles emitted by a radioactive source in a given time.

Notice that Zk:o AKX /k! = ek, so that, in fact, if X has a Poisson distribution,
then

zn:p[xzk] =1
k=0
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Notice also that lim,_, ., (1 + %)n: e’. This implies that,

for X, ~ Binomial(n, 2/n) and X ~ Poisson(4), lim,_..p[X, = k] = p[X = k].

For X ~ Poisson(}),

and

A.7.2 Examples of Continuous Probability Distributions

A.7.2.1 Uniform Distribution

X has a Uniform distribution on the interval [a, b] (X ~ Uniform(a,b)) «+» X has the
density fy determined by

fx(x) = [1/(b —a)]ljp(x) for a<x<b and 0 otherwise.

That means, the density of x depends only on x being inside or outside the
interval [a, b]. So, this density has a rectangular graph and

EX = (a+b)/2.

A.7.2.2 Triangular Distribution

X has a triangular distribution on the interval [a, b] with mode M, for M € [a, b]
(X ~ Triangular(a,M,b)) <

fx(x) =[(x —a)/M —a)] x2/(b —a) fora<x <M,
fx(x) =[(b—x)/(b—M)] *2/(b—a) for M<x<b

and
fx(x) = 0 otherwise.

If X ~Triangular(a,M,b), the mode of X is M and if M = (a+b)/2, then X is
symmetric around M, that is with expected value, mode and median equal to M.
The expectation of X is

EX=(a+b+M)/3.



Appendix: Basic Notions of Probability Theory 133

A.7.2.3 Exponential Distribution
X ~ Exponential(a) < fx(x) = ae™ ™ 1g+(x).
For X with an exponential distribution,

EX =o L.

A.7.2.4 Pareto Distribution

X ~Pareto (0, B) < fx(x) = [BoP/(xP1)]1 1, o) (x)for o > 0 ep > 0.
For X with a Pareto distribution,
E(X)=aB/(B—1), for B > 1,
and
E(X) = + o, for < 1.

X ~Pareto («, f,) < In(X/o) ~Exponential(B).

A.7.2.5 Normal Distribution

X has a normal distribution with location parameter p and dispersion parameter ¢
(X~ Normal (1, 02)) < fx (x) = (v27) "o~ lexp[(1/2) (x — p)*/o?].
EX =p.
Var(X) = ¢
The normal distribution has the following useful properties:
X ~ Normal(y, 6?) < (X — pt)/c ~Normal(0, 1);

any linear combination of random variables with a normal distribution has a normal
distribution;
if X, is the sum of n random variables independent and identically distributed
with a distribution with expected value p and standard deviation o then the
distribution of (X, — np)/(o+/n) approaches a Normal(0,1) distribution as n—©o.
As a particular instance of this last property, for the summands with Bernoulli
distributions, we have

X ~ Binomial(n, q) — (X —nq)/+/[nq(1 — q)] = Normal(0, 1)
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A.7.2.6 The Lognormal Distribution

X has a lognormal distribution <> InX has a normal distribution.
The density of the distribution of X is then

fx(x) = (xv2m) "¢ exp[—(1/2)(In(x/€))* /IR (x),
for & the median of the distribution of X and { = Var(InX).

EX = & exp[(1/2)¢7],
Var(X) = (EX)’[exp(6%) — 1].

A.7.3 Examples of Multidimensional Distributions

For joint distributions, specially useful is to consider joint normal distributions.

A.7.3.1 Bidimensional Normal Distribution

The pair of random variables (X, Y) has a bidimensional normal distribution with
expected values px and py, variances ag( and o‘%{ and correlation coefficient pxv,
what is formally denoted by (X,Y) ~Normal(jiy, lty, %, 0%, Pxy) if and only if
their joint density has the form

fxy (x,y) = Crexp{Cal[(x — ux) /ox]* = 2p[(x — ux)/ox]((y — hy)/ov] + [y — ny) /ov)]’}

where
Ci = (2n oxoy) (1 — pyy) "
and
C2 = [_2(1 - p?(Y]il'
So,

if p=0, X and Y are independent.

This extends to vectors of random variables.
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A.7.3.2 Multidimensional Normal Distribution

The vector of random variables X= (Xj, ..., X,,) has a multidimensional normal
distribution with expected values p, . p, variances o'%, ...aﬁ and correlation

coefficients p;; for i # j from 1 to n (X ~ Normal(p,Y)) if and only if their joint
density has the form

tx(x) = [(2m)"det(2)]”Pexp{(—1/2)(x — )= (x — W)},

where p is the vector of coordinates p; and X is the matrix whose entry X; for i # j is

the covariance p;ioi0; and for i = j is the variance aﬁ.

A.7.3.3 Properties of the Multidimensional Normal Distribution

X ~ Normal(y,X) « for any matrix A, (AX)~ Normal(Ap, ATZA).
So,
X ~ Normal(y, X) for ¥ = ATA, for a square invertible matrix A «
A~ (X — n) ~Normal(0, 1), I denoting the identity matrix,
and, in particular,
X ~ Normal(y, X) for ¥ = ATA, for a square invertible matrix A, —

A™'X is a vector of independent coordinates.
The Chi-Squared distribution is the distribution of the sum of squares of normal
distributions.

X ~R o X = ZorZy, ..., Zyi. i. d. Normal(0, 1).
n
If X ~ %2, then EX = n,
so that,

if Xy,..., Xyare i. i. d. Normal(O, 0'2) and X = ZX?, then

E(X/o*) = n
and
E(X/n) = o>
It is easy to generalize this definition to:

YR oY =(X-p)' 2 (X—p
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for X ~Normal(y, X), for a square invertible matrix X.
Independence of quadratic forms is the subject of Cochran Theorem, employed
to determine the F distribution.

Cochran Theorem

For X ~ Normal(, Iixn), let Y; = (X — p)'%i(X — p) for ¥; symmetric idempotent
n

matrices of ranks r; such that Y r; =n and Y. | >, = Lixa. Then the Yi are
i1

1
independent N’r; random variables.
The distribution F is the distribution of a quotient:

F ~ Fm,n —~F = (Xl/m)/(X2/n)

for independent X; ~ X2 and X, ~ X2 .

A.8 Regression

The process of approximating the distribution of a random variable by a conditional
distribution is known as regression.

For normal distributions, the conditional expectation of Y conditional on X is a
linear function of X.

In the case of one-dimensional X, this linear regression function is given by

E(Y|X=x) = E(Y) + ok ovpxy(x — E(X)),

so that the variance of the conditional expectation is pyyG%.

Also, in the normal case, the conditional variance does not depend on X and is
given, for one-dimensional X, by (1 — p%y)o%.

Starting from a sample ((Y1, Xj), ..., (Y, X,)) of n independent random vectors,
the coefficients of this linear function can be approximated by those of the linear
projection operator in the sense that, for X = (X4, ..., Xn)T and Y = (Y, ..., Yn)T,

¥ = X(X"™X)"'X"Y ~ Normal (E(Y|X), X (X"X) 'X"}).
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From Cochran’s Theorem follows that the two random variables
AT ~ ~ N\NT/~ _
(Y — Y) (Y - Y) and (Y — Y) (Y — Y) are independent with distributions

Ni_m and Ni_l, respectively, for m the number of coordinates of each X;, so that

((-9)'(7-%) /m-0) /(v-3)"(x-9)) /0= m)~Fur0m
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