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Preface

The present book includes extended and revised versions of a set of selected papers from
the Fourth International Joint Conference on Computational Intelligence (IJCCI 2012).
Sponsored by the Institute for Systems and Technologies of Information, Control and
Communication (INSTICC), IJCCI 2012 held in Barcelona, Spain, from 5 to 7 October,
2012, and was organized in cooperation with the Association for the Advancement of
Artificial Intelligence (AAAI).

The purpose of International Joint Conference on Computational Intelligence (IJCCI)
is to bring together researchers, engineers and practitioners in computational technolo-
gies, especially those related to the areas of fuzzy computation, evolutionary computa-
tion and neural computation. IJCCI is composed of three co-located conferences, each
one specialized in one of the aforementioned - knowledge areas. Namely:

- International Conference on Evolutionary Computation Theory and Applications
(ECTA)

- International Conference on Fuzzy Computation Theory and Applications (FCTA)
- International Conference on Neural Computation Theory and Applications (NCTA)

Their aim is to provide major forums for scientists, engineers and practitioners in-
terested in the study, analysis, design and application of these techniques to all fields of
human activity.

In ECTA modeling and implementation of bioinspired systems namely on the evo-
lutionary premises, both theoretically and in a broad range of application fields, is the
central scope. Considered a subfield of computational intelligence focused on combina-
torial optimization problems, evolutionary computation is associated with systems that
use computational models of evolutionary processes as the key elements in design and
implementation, i.e. computational techniques which are inspired by the evolution of
biological life in the natural world. A number of evolutionary computational models
have been proposed, including evolutionary algorithms, genetic algorithms, evolution
strategies, evolutionary programming, swarm optimization and artificial life.

In FCTA, development and implementation of fuzzy systems, for modelling, control
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and decision making in a broad range of fields is the main concern. Fuzzy computa-
tion is a field that encompasses the theory and application of fuzzy sets and fuzzy logic
to the solution of information processing, system analysis and decision problems. The
continuous growth of fuzzy computation in recent years, associated with higher avail-
able computational power, has led to major applications in many fields ranging from
medical diagnosis and automated learning to image understanding and systems control.

NCTA is focused on modeling and implementation of artificial neural networks com-
puting architectures. Neural computation and artificial neural networks have seen an
explosion of interest over the last few years, and are being successfully applied across
an extraordinary range of problem domains, in areas as diverse as finance, medicine,
engineering, geology and physics, in problems of prediction, classification decision or
control. Several architectures, learning strategies and algorithms have been introduced
in this highly dynamic field in the last couple of decades.

IJCCI 2012 received 200 paper submissions from 53 countries, which demonstrates
the global dimension of this conference. 33 papers were published as full papers (16,5%
of submissions) and 49 were accepted for short presentation (24,5% of submissions).
Moreover, 26 were accepted for poster presentation. These ratios denote a high level
of quality which we aim to continue reinforcing in the next edition of this conference.
This book includes revised and extended versions of a strict selection of the best papers
presented at the conference.

On behalf of the Conference Organizing Committee, we would like to thank all par-
ticipants. First of all to the authors, whose quality work is the essence of the conference,
and to the members of the Program Committee, who helped us with their expertise and
diligence in reviewing the papers. As we all know, producing a post-conference book,
within the high technical level exigency, requires the effort of many individuals. We
wish to thank also all the members of our Organizing Committee, whose work and
commitment were invaluable.

December 2013 Kurosh Madani
António Dourado Correia

Agostinho Rosa
Joaquim Filipe
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An Approach to the POS Tagging Problem
Using Genetic Algorithms

Ana Paula Silva1, Arlindo Silva1, and Irene Rodrigues2

1 Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco,
Castelo Branco, Portugal

2 Universidade de Évora, Évora, Portugal
{dorian,arlindo}@ipcb.pt,

ipr@uevora.pt

Abstract. The automatic part-of-speech tagging is the process of automatically
assigning to the words of a text a part-of-speech (POS) tag. The words of a lan-
guage are grouped into grammatical categories that represent the function that
they might have in a sentence. These grammatical classes (or categories) are usu-
ally called part-of-speech. However, in most languages, there are a large number
of words that can be used in different ways, thus having more than one possible
part-of-speech. To choose the right tag for a particular word, a POS tagger must
consider the surrounding words’ part-of-speeches. The neighboring words could
also have more than one possible way to be tagged. This means that, in order to
solve the problem, we need a method to disambiguate a word’s possible tags set.
In this work, we modeled the part-of-speech tagging problem as a combinatorial
optimization problem, which we solve using a genetic algorithm. The search for
the best combinatorial solution is guided by a set of disambiguation rules that we
first discovered using a classification algorithm, that also includes a genetic al-
gorithm. Using rules to disambiguate the tagging, we were able to generalize the
context information present on the training tables adopted by approaches based
on probabilistic data. We were also able to incorporate other type of information
that helps to identify a word’s grammatical class. The results obtained on two
different corpora are amongst the best ones published.

Keywords: Part-of-speech Tagging, Disambiguation Rules, Evolutionary Algo-
rithms, Natural Language Processing.

1 Introduction

The part-of-speech tagging is a very important task in natural language processing
(NLP), because it is a necessary step in a large number of more complex processes
like parsing, machine translation, information retrieval, speech recognition, etc. In fact,
it is the second step in the typical NLP pipeline, following tokenization [1]. An impor-
tant aspect of this task is that the same word can assume different functions depending
on how it is used in the sentence, more specifically depending on it’s surrounding words
(context). For instance, the word fly can assume the function of a noun, or a verb, de-
pending on how we choose to use it on a sentence: The fly is an insect and How insects

c© Springer International Publishing Switzerland 2014 3
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 577, DOI: 10.1007/978-3-319-11271-8_1
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fly is a very complex subject. This means that in order to assign to each word of a
sentence it’s correct tag, we have to consider the context in which that word appears.

Traditionally, there are two groups of methods used to tackle this task. The first
group is based on statistical data concerning the different context possibilities for a
word [2,3,4,5,6,7], while the second group is based on rules, normally designed by
human experts, that capture the language properties [8,9,10].

Most current taggers are based on statistical models, defined on a set of parameters,
whose values are extracted from texts marked manually. The aim of such models is
to assign to each word in a sentence the most likely part-of-speech, according to its
context, i.e., according to the lexical categories of the words that surround it. In order
to do this, statistics on the number of occurrences of different contexts, for each word
part-of-speech assignment possibilities, are collected.

The simplest stochastic tagger, called the unigram tagger [1], makes decisions based
only on the word itself. It assigns the tag that is most likely for one particular token.
The training step just investigates all the words present in the training corpus, and saves
the most frequent tag for each word. The tagger then works like a simple lookup tagger,
assigning to each word the tag learned on the training step. A n-gram tagger [1] is a
generalization of a unigram tagger, whose context is the current word together with the
part-of-speech tags of the n − 1 preceding tokens. In this case, the training step saves,
for each possible tag, the number of times it appears in every different context present
on the training corpus.

Since the surrounding words can also have various possibilities of classification, it
is necessary to use a statistical model that allows the selection of the best choices for
marking the entire sequence, according to the model. These stochastic taggers, usually
based on hidden Markov models [11,12], neither require knowledge of the rules of
the language, nor try to deduce them. Therefore, they can be applied to texts in any
language, provided they can be first trained on a corpus for that language.

Other type of taggers are rule-based systems, that apply language rules to improve
the tagging’s accuracy. The first approaches in this category were based on rules de-
signed by human linguistic experts. There are also attempts to automatically deduce
those rules, with perhaps the most successful one being the tagger proposed by Brill
[8]. This system automatic extracts rules from a training corpus, and applies them in
a iterative way, in order to improve the tagging of the text. The results presented by
Brill on the Wall Street Journal (WSJ) data set, with a closed vocabulary assumption,
(97.2%), are among the bests results obtained so far in this task. The rules presented in
[8] are called transformation rules and are driven toward error correction.They allow to
consider not only the tags that precede one particular word, like the traditional proba-
bilistic taggers, but also the tags of the words that follow it. Brill conduced experiments
with two types of transformation rules: nonlexicalized transformation rules, which con-
template only the tags that surround one particular word, and lexicalized transformation
rules, which consider the words themselves.

Considering the work presented in [8], it seems that a model based on rules can be
more flexible, since it allows to consider not only the tags that precede, but also the tags
that follow one particular word. Information about the words themselves can also be
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used. Moreover, the format of the information collected, in the form of rules, is eas-
ier to analyze than a extremely high number of probabilistic values.

More recently, several evolutionary approaches have been proposed to solve the tag-
ging problem. These approaches can also be divided by the type of information used
to solve the problem, statistical information [3,4,5,6,7], and rule-based information [9].
Shortly, in the former, an evolutionary algorithm is used to assign the most likely tag
to each word of a sentence, based on a context table, that basically has the same infor-
mation that is used in the traditional probabilistic approaches. Notwithstanding, there is
an important difference related with the context’s shape, i.e. they also take into account
context information about the tags that follow a particular word.

On the other hand, the later are inspired by [8]. In this case a genetic algorithm (GA)
is used to evolve a set of transformations rules, that will be used to tag a text in much
the same way as the tagger proposed by Brill. While in [3,4,5,6,7] the evolutionary
algorithm is used to discover the best sequence of tags for the words of a sentence,
using an information model based on statistical data, in [9] the evolutionary algorithm
is used to evolve the information model, in the form of a set of transformation rules,
that will be used to tag the words of a sentence.

There are also some other aspects that can be used to determine a word’s category
beside it’s context in a sentence [1]. In fact, the internal structure of a word may give
useful clues as to the word’s class. For example, -ness is a suffix that combines with an
adjective to produce a noun, e.g., happy → happiness, ill → illness. Therefore, if we
encounter a word that ends in -ness, it is very likely to be a noun. Similarly, -ing is a
suffix that is most commonly associated with gerunds, like walking, talking, thinking,
listening. We also might guess that any word ending in -ed is the past participle of a
verb, and any word ending with ’s is a possessive noun.

In this work, we modeled the part-of-speech problem as a combinatorial optimization
problem and we investigate the possibility of using a classification algorithm to evolve
a set of disambiguation rules, that we then use as an heuristic to guide the search for the
best tags combination. These rules contemplate, not only context information, but also
some information about the words’ morphology. They are not oriented toward error
correction, like in [8,9], instead they are a form of classification rules, which try to
generalize the context information that is used by probabilistic taggers.

The discovery of the disambiguation rules was done by a classification algorithm
based on a covering approach that integrates a genetic algorithm (GA) to perform the
search for the best rules. For each rule found a quality value was saved. The classifica-
tion problem was divided into n different problems, with n the number of part-of-speech
tags that were pre-established for the experimental work. The selection of the predic-
tive attributes took into consideration, not only the context information, but also some
aspects about the words’ internal structure.

The tagging itself was performed by another genetic algorithm (witch we called GA-
Tagger). This algorithm searches for the best combination of tags for the words in a
sentence, guided by the disambiguation rules found earlier. Therefore, our system is
composed by two steps. First, a set of disambiguation rules are discovered by a classi-
fication algorithm, and than a GA-Tagger is used to tag the words of a sentence, using
the rules found in the first step.
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The rest of the paper is organized as follows: Section 2 describes the classification
algorithm used to discover the disambiguation rules. In section 3 we present the GA-
Tagger and the results achieved. Finally, Section 4 draws the main conclusions of this
work.

2 Classification Algorithm for Disambiguation Rules Discovery

In this section we describe the use of a classification algorithm, based on a covering
approach, to discover a set of disambiguation rules, that will be used as an heuristic
to solve the part-of-speech tagging problem. We chose to use a genetic algorithm to
perform the search of the best rule for each iteration of the covering algorithm. The
motivation for using a GA in this task, is that genetic algorithms are robust, adaptive
search methods that perform a global search in the space of candidate solutions. As
a result of their global search, they tend to cope better with attribute predictions than
greedy data mining methods [13].

2.1 The Covering Algorithm

The main steps of the implemented covering algorithm are presented in algorithm 1.
This algorithm was executed for each tag of a pre-defined tag set. As we can see, the
genetic algorithm (see algorithm 2) is invoked as many times as necessary to cover all
the positive examples of the training set, evolving a rule in each run. After each execu-
tion, the rule returned by the genetic algorithm is stored, along with its quality value.
This value is determined during the search process. The training set is then updated by
removing all the positive examples that were covered by the returned rule.

Algorithm 1. Covering Algorithm. sp and sn represent the sets of positive and negative examples.
ps and gm give the population size and the maximum number of generations.
Require: sp, sn, ps, gm
Ensure: set_of_rules

while sp �= ∅ do
best_rule ← GeneticAlgorithm(sp, sn, ps, gm)
sp ← RemoveExamples(sp,best_rule)
set_of_rules ← Add(set_of_rules, best_rule)

end while

Algorithm 2 outlines the genetic algorithm implemented. In the next sections we
will describe the main steps of this algorithm. We begin by selecting the predictive
attributes to be used in the antecedents’ rules, since they will determine the individuals’
representation. Then we will present the genetic operators, selection scheme, and the
fitness function used.

2.2 Attribute Selection

Our aim is to discover a set of rules that take into consideration not only context
information but also information about the words’ morphology. For the context, we
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Algorithm 2. Genetic Algorithm. sp and sn represent the sets of positive and negative examples.
ps and gm give the population size and the maximum number of generations.
Require: sp, sn, ps, gm
Ensure: bestRule

pop ← GenerateInitialPop(ps)
while gm �= 0 do

Evaluate(pop)
mating_pool ← Selection(pop)
new_pop ← Crossover(pop)
new_pop ← Mutation(new_pop)
best_old ← GetBestInd(pop)
worst ← GetWorstInd(new_pop)
pop ← Replace(worst, best_old, new_pop)
gm ← gm− 1

end while
best_ind ← GetBestInd(pop)
best_rule ← Fenotypel(best_ind)

decided to consider the same information that was used in [8,9]. Thus, we consider six
attributes:

– The lexical category of the third word to the left
– The lexical category of the second word to the left
– The lexical category of the first word to the left
– The lexical category of the first word to the right
– The lexical category of the second word to the right
– The lexical category of the third word to the right

For the words’ morphology information we decided to include the following
attributes:

– The word is capitalized
– The word is the first word of the sentence
– The word ends with ed or ing or es or ould or ’s or s
– The word has numbers or ’.’ and numbers

The possible values for each of the first six attributes are the values of the corpus tag
set from which the classification algorithm will extract the rules. This set will depend
on the annotated corpus used, since the set of labels will vary for different corpora. The
last nine attributes are boolean, and so the possible values are simply True and False.

2.3 Representation

Genetic algorithms for rule discovery can be divided into two dominant approaches,
based on how the rules are encoded in the population of individuals. In the Michigan
approach, each individual encodes a single rule (e.g. [14,15]), while in the Pittsburgh
approach each individual encodes a set of prediction rules (e.g. [16,17]). The choice
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between these two approaches depends strongly on the type of rules we want to find,
which in turn is related to the type of data mining task we are interested to solve. In the
case of classification tasks, we want to evaluate the quality of the rule set as a whole,
as opposed to the individual assessment of a rule. That is, the interaction between the
rules is important and therefore, for classification, the Pittsburgh approach seems to be
more natural [13].

In our work, we are interested in finding a set of rules that will be used, not as a
classifier, but as an heuristic to solve the combinatorial optimization problem that can
be formulated from the part-of-speech tagging problem. In this sense, the Pittsburgh’s
approach seems to be more appropriate. However, there is an important question to
consider when we adopt this type of representation, and that concerns the size of the
individuals. We could adopt a traditional fixed length representation, or we could adopt
a non standard variable length representation. In the first case, the problem is to define
which size to consider, since we usually don’t know how many rules are necessary for
a certain classification task. On the other hand, in the non standard variable length rep-
resentation, there is a difficult problem to deal with, which concerns the control of the
individuals’ length. Individuals tend to grow as the evolutionary algorithm generations
increase, making it progressively slower - the well known bloat problem [18].

Since we will have a very large training set, and therefore the algorithm will be very
time consuming, we have decided to adopt the Michigan’s approach, so that we don’t
have to deal with the bloat problem. However, we didn’t consider all the population as
a set of rules representing a solution to the classification problem. Instead, we adopted
a covering algorithm approach, i.e., we run the genetic algorithm as many times as
necessary to cover all the positive examples of the training set, evolving a rule in each
run.

In our approach each individual represents a rule of the form IF Antecedent THEN
Consequent, where Antecedent consists of a conjunction of predictive attributes and
Consequent is the predicted class. In the next sections we explain how we encode the
antecedent and consequent of a rule.

The Rule’s Antecedent. A simple way to encode the antecedent of a rule (a conjunc-
tion of conditions) in an individual is to use a binary representation. Let’s assume that a
given attribute can take k discrete values. We can encode these values using k bits. The
i-th attribute value, with (i = 1, ...., k), is part of the rule condition if and only if the
i-th bit equals 1.

For instance, let’s assume that we want to represent a rule antecedent that takes only
one attribute into consideration, let’s say, WeatherCondition, whose possible values are
Sunny, Raining, Foggy, and Windy. Thus, a condition involving this attributes may be
encoded at the expense of four bits. The interpretation of a sequence like 1001 would
result in the following antecedent:

IF WeatherCondition = "Sunny" OR WeatherCondition = "Windy"

As we have seen, this type of representation allows conditions with disjunctions. If
we want to include a new attribute, we just need to include the sequence of bits required
to encode the respective values. The representation can thus be extended to include
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any number of attributes, assuming that all are connected by logical conjunction. An
important feature of this type of representation concerns the situation where all bits of a
given attribute are 1. This means that any value is acceptable for that particular attribute,
which, in terms of interpretation, indicates that this attribute should be ignored.

As we saw above, for our particular problem, we have a relatively large number of
possible values for most of the attributes considered. Thus, a representation such as the
one described above would lead to very long individuals. For this reason we adopted a
slightly different representation, inspired by the representation used in [9].

For each of the first six attributes we used 1 + k bits. The first bit indicates whether
the attribute should or should not be considered, and the following k bits encode an
index to a table with as many entries as the number of elements of the tag set adopted.
If the value, d, encoded by the k bits exceeds the table’s size, m, we use as index the
remainder of the integer division of d by m. The extra bit for each attribute allow us
to ignore it, as in the previous representation when all the bits are 1. The remaining
attributes were encoded in a similar way by 2× 9 bits. In each pair of bits, the first one
indicates if the attribute should, or should not, be ignored, and the second represents the
logical value of the respective boolean attribute. In short, each individual is composed
by k × 6 + 2× 9 bits.

Like in the standard representation, the attributes are linked by logical conjunction.
However, the rules do not contemplate internal disjunctions between different allowable
values for a given attribute. Nevertheless, this knowledge can be expressed by different
rules for the same class.

The Rule’s Consequent. In general, there are three different ways to represent the pre-
dicted class in an evolutionary algorithm [13]. One way is to encode it into the genome
of the individual, opening the possibility of subjecting it to evolution [16,14]. Another
way is to associate all individuals of the population to the same class, which is never
modified during the execution of the algorithm. Thus, if we are to find a set of classifi-
cation rules to predict k distinct classes, we need to run the evolutionary algorithm, at
least k times. In each i-th execution, the algorithm only discover rules that predict the
i-th class [17]. The third possibility consists in choosing the predicted class in a more
or less deterministic way. The chosen class may be the one that has more representa-
tives in the set of examples that satisfy the antecedent of the rule [15], or the class that
maximizes the performance of the individual [19].

As we said before, we divided the classification problem into n different problems.
The object to classify in each problem, is one of the n tags belonging to the tag set
being considered, and the possible classes belong to a set of discrete values with only
two elements: Yes and No. Since we are only interested in positive rules, we adopted
the second possibility, this way we didn’t need to encode the rule’s consequent.

2.4 Initial Population

Half the individuals of the initial population were randomly generated and the other half
were obtained by randomly choosing examples from the set of positive examples. These
examples were first converted to the adopted binary representation and then added to
the population.
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2.5 Fitness Function

Rules must be evaluated during the learning process in order to establish points of ref-
erence for the genetic algorithm. The rule evaluation function must not only consider
instances correctly classified, but also the ones left to classify and the wrongly classified
ones.

The formula used to evaluate a rule, and therefore to set its quality, is expressed
in equation 1. This formula penalizes a individual representing a rule that ignores the
first six attributes (equation 2), which are related with the word’s context, forcing it to
assume a more desirable form. The others are evaluated by the well known Fβ-measure
(equation 3). The Fβ-measure can be interpreted as a weighted average of precision
(equation 4) and recall (equation 5). We used β = 0.09, which means we put more
emphasis on precision than recall.

Q(X) =

{
Fβ(X) If context(X) = True
−1 Otherwise

(1)

context(X) =

{
True If X tests at least one of the first six attributes
False Otherwise

(2)

Fβ(X) = (1 + β2)× precision(X)× recall(X)

β2 × precision(X) + recall(X)
(3)

precision(X) =
TP

TP + FP
(4)

recall(X) =
TP

TP + FN
(5)

where:

– TP - True Positives = number of instances covered by the rule that are correctly
classified, i.e., its class matches the training target class;

– FP - False Positives = number of instances covered by the rule that are wrongly
classified, i.e., its class differs from the training target class;

– FN - False Negatives = number of instances not covered by the rule, whose class
matches the training target class.

2.6 Genetic Operators and Selection

Since our representation is a typical binary representation, we didn’t need to use special
operators. We used a traditional two point crossover and binary mutation as genetic
operators. In the two point crossover operator, two crossover points were randomly
selected, and the inner segments of each parent were switched, thus producing two
offsprings. The mutation operator used was the standard binary mutation: if the gene
has the allele 1, it mutates to 0, and vice versa. We used a mutation probability of 0.01
and a 0.75 crossover probability. These values were empirically determined.

For the selection scheme, we used a tournament selection of size two with k = 0.8.
We also used elitism, preserving the best individual of each generation by replacing the
worst individual of the new population by the best of the old one (see algorithm 2).



An Approach to the POS Tagging Problem Using Genetic Algorithms 11

2.7 Pre-processing Routines - Data Extraction

We used the Brown corpus [20] to create the training sets that we provided as input to
the evolutionary algorithm. For each word of the corpus, we collected the values for
every attribute included in the rule’s antecedent, creating a specific training example.
Then, for each tag of the tag set, we built a training set composed by positive and nega-
tive examples of the tag. In this process we decided to use only the examples determined
by ambiguous words. The algorithm used to define each of the training sets was the fol-
lowing: for each example ei of the set of examples, with word w and tag t, if w is an
ambiguous word, with S the set of all its possible tags, then put ei in the set of positive
examples of tag t, and put ei in the set of negative examples of all the tags in S, except
t. It is worth noting that each example has associated the number of times it occurs in
the training corpus.

2.8 Experimental Results

We developed our system in Python and used the resources available on the NLTK
(Natural Language Toolkit) package in our experiences. The NLTK package provides,
among others, the Brown corpus and a sample of 10% of the WSJ corpus of the Penn
Treebank [21] . It also provides several Python modules to process those corpora. Since
different corpora use different formats for storing part-of-speech tags, the NLTK’s cor-
pus readers were very useful, by providing a uniform interface.

As we said before, tagged corpora use many different conventions for tagging words.
This means that the tag sets vary from corpus to corpus. To extract the disambiguation
rules from a set of annotated texts, we need to run our algorithm for each of the tags
belonging to the tag set. However, if we want to test the resulting rules in a different
corpus, we will not be able to measure the performance of our tagger, since the corpus
tag set may be different. To avoid this, we decided to use the simplify_tags=True option
of the tagged_sentence module of NLTK corpus readers. When this option is set to
True, NLTK converts the respective tag set of the corpus used to a uniform simplified
tag set, composed by 20 tags. This simplified tag set establishes the set of classes we
use in our algorithm. We ran the covering algorithm for each one of these classes and
built, for each one, the respective sets of positive and negative examples.

We processed 90% of the Brown corpus in order to extract the training examples,
and, for each word found, we built the corresponding instance. The total number of
examples extracted from the corpus equaled 929286. We used 6 subsets of this set (with
different cardinality) to conduct our experiments. We used sets of size: 30E3, 40E3,
50E3, 60E3, 70E3 and 80E3. The examples were taken from the beginning of the
corpus. For each subset adopted, we built the sets of positive and negative examples for
each ambiguous tag, using the process described in the previous section.

The genetic algorithm was run with a population size of 200 individuals for a max-
imum of 80 generations. These values were established after some preliminary experi-
ments. We run the algorithm for each of the defined sets of training examples. The best
tagging was achieved with the rules learned from the sets of positive and negative ex-
amples defined from the first 80E3 training examples. The rules set has a total of 4440
rules.
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3 GA-Tagger

Our GA-Tagger was designed to receive as input a sentence, S, made of n words; a
dictionary, D; and a set of sets of disambiguation rules, Ri, with i ∈ T, the tag set
adopted. As output it should return S, but now with each word, wi, associated with the
proper tag ti ∈ T.

Assuming we know the set of possible tags, Wi, for each word wi of S, the part-of-
speech tagging problem can be seen as a search problem with W0 ×W1 × ... ×Wn

as its state space. This means that we should be able to solve it by applying a search
algorithm designed to solve the intrinsic combinatorial optimization problem. In this
work we investigate the possibility of applying a genetic algorithm to search for the
best combination of tags for the words of a sentence, using as an heuristic the sets of
disambiguation rules Ri. The main aspects of the genetic algorithm implemented will
be presented in the following sections.

3.1 Representation

An individual is represented by a chromosome made of a sequence of genes. The num-
ber of genes in a chromosome equals the number of words in the input sentence. Each
gene proposes a candidate tag for the word in the homologous position. For example,
consider the input sentence: "The cat sat on the mat." A possible individual would be
represented by a chromosome made of six genes, such as the one of figure 1.

The               cat             sat            on             the            mat 

DDET N VD P DET N 

Chromosome with 6 genes 

g1 g2 g3 g4 g5 g6 

Fig. 1. A possible individual for the sentence The cat sat on the mat

The individual phenotype is the set of all pairs 〈xi, ti〉 determined by each gene, gi,
and its corresponding word wi. ti is the tag proposed by gi for the word wi and xi

is a 15-tuple with the values of the disambiguation rules’ attributes. When there is no
gene (no corresponding word) in one of the positions contemplated in the context, we
adopted an extra tag named ’None’. This can happen with the first three and last three
genes of the individual. We adopted a symbolic representation, i.e. the possible alleles
of a gene are the tags of the tag set adopted for the corpus in which the experiences will
be executed. However, the allowed alleles of a gene are only the ones that correspond
to the possible tags of the word the gene represents.

The initial population is generated by choosing randomly, for each gene gi, one of
the values presented in Wi. The input dictionary gives the possible tags for each word
of the input sentence. However, If some word, w is not in the dictionary, the algorithm
chooses randomly one of the tags whose rules set has a rule which covers the instance
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defined by the 15-tuple determined by w. If none of the rules cover the 15-tuple, the
algorithm chooses randomly one of the tags belonging to T.

3.2 Genetic Operators and Selection

We used a typical one point crossover with a 0.8 probability. The mutation operator
randomly chooses another allele from the set of possible alleles for the particular gene
and was applied with a 0.05 probability. Again, if the word is unknown, the sets of rules
will be used to determine which ones include a rule that covers the 15-tuple, and one of
the possibilities will be randomly chosen and assigned to the corresponding gene.

We adopted a tournament selection of size two with k = 0.7 and also used elitism,
replacing the worst individual of each new population with the best of the old one. All
the values were empirically determined in a small set of preliminary experiments.

3.3 Fitness Function

The performance of an individual with phenotype P is measured by the sum of the
quality values of the pairs 〈xi, ti〉 ∈ P. These quality values are obtained from the
disambiguation rules by applying equation 6. TheQuality(z) function gives the quality
value associated with rule z, which was computed by the classification algorithm.

F (〈xi, ti〉) =
{
Quality(rk) if rk ∈ Dti and rk covers xi

0 otherwise
(6)

The fitness of an individual with phenotype P is given by equation 7:

Fitness(P) =

n∑
i=1

F (〈xi, ti〉) (7)

3.4 Experimental Results

We tested our GA-Tagger with different population sizes and number of generations, on
a test set of the Brown corpus (different from the one used to learn the disambiguation
rules). We ran the algorithm 20 times with a population of 50 and 100 individuals during
10 and 20 generations. The test set was composed by 22562 words. The results achieved
are shown in table 1.

Table 1. Results achieved by the GA-Tagger, for the test set defined from the Brown corpus, after
20 runs with populations of 50 and 100 individuals, during 10 and 20 generations, with the best
set of rules found in step one

Population Generations Average Best Standard Deviation
50 10 0.9672170 0.9675561 1.9200E − 4

20 0.9672968 0.9674231 1.1707E − 4
100 10 0.9672591 0.9675561 1.4097E − 4

20 0.9672835 0.9675117 1.0978E − 4
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Although there are no significant differences between the average results achieved
with the different parameters’ combinations, the smallest standard deviation was
achieved with a population of 100 individuals during 20 generations. Nevertheless, we
can conclude from the experiments that the GA-tagger usually finds a solution very
quickly. In fact the difficulty level of the tagging task depends on the number of am-
biguous words of the sentence we want to tag. Although it is possible to construct
sentences in which every word is ambiguous [22], such as the following: Her hand
had come to rest on that very book, those situations are not the most common. After
counting the number of ambiguous words that appear in the sentences of the 10% of
the Brown corpus that we reserved for testing the tagger, we observed that, in average,
there are 6.9 ambiguous words per sentence. This explains the considerable low num-
ber of individuals and generations needed to achieve a solution. We could argue that in
those conditions the use of a genetic algorithm is unnecessary, and that an exhaustive
search could be applied to solve the problem. However, we can not ignore the worst
case scenario, where, like we see above, all the words, or a large majority of the words,
on a very long sentence may be ambiguous. Furthermore, we observed that the sen-
tence average size of the Brown corpus is of 20.25 tokens, with a maximum of 180.
The largest number of ambiguous words on a sentence belonging to this corpus is 68.
Even for the smallest degree of ambiguity, with only two possible tags for each word,
we have a search space of 268, which fully justifies the use of a global search algorithm
such as a GA.

We also tested the GA-tagger on a test set of the WSJ corpus of the Penn Treebank
that is available in the NLTK software package. The test set was made of 100676 words.
We ran the algorithm with 50 individuals during 10 generations, and the best output
had an accuracy of 96.66%. The results achieved show that there are no significant
differences on the accuracy obtained by the tagger on the two test sets used. At this
point, it is important to recall that the disambiguation rules used on the tagger were
extracted from a subset of the Brown corpus. This bring us to the conclusion that the
rules learned on step one are generic enough to be used on different corpora of the same
language, and are not domain dependent.

Table 2. Results achieved by the GA-Tagger on two different corpus, the Brown corpus and the
WSJ corpus of the Penn Treebank, along with the results achieved by the approaches more similar
to the one presented here (Araujo - [3]; GA - [7]; PGA - [7]; Wilson - [9]; Brill - [8]; Alba - [7])

Corpus Tagger Training set Test set Best
Brown GA-Tagger 80000 22562 96.76

Araujo 185000 2500 95.4
GA 165276 17303 96.67
PGA 165276 17303 96.75

WSJ GA-Tagger none 100676 96.66
Wilson 600000 none 89.8
Brill 600000 150000 97.2
Alba 554923 2544 96.63



An Approach to the POS Tagging Problem Using Genetic Algorithms 15

Table 2 presents the results achieved by the GA-tagger on the two corpora used in
the experiments performed, along with the results achieved by the approaches that are
more alike to the one presented here.To better understand the table information, we
would like to point out that the results presented in [9] were achieved for the set used to
perform the training, that is why we used ’none’ for this field of the table. Also, since
we learned the disambiguation rules from the Brown corpus, we didn’t presented any
value for the size of the training set for the WSJ corpus.

4 Conclusions and Future Work

We described a new approach to the part-of-speach tagging problem that defines it as
a combinatorial optimization problem. The results achieved are comparable to the best
ones found in the area bibliography (see table 2). Although there are other approaches
to this problem that use, in some way, evolutionary algorithms, as far as we know this is
the first attempt that uses these algorithms to solve all aspects of the task. In the previous
works the evolutionary approach was applied in two different ways:

– To perform the tagging [3]. Here the evolutionary algorithm was oriented by statis-
tical data, that was collected in much the same way as in the statistical approaches;

– To discover a set of transformation rules [9]. Here the tagging is not done by the
evolutionary algorithm. The author uses an evolutionary algorithm to discover a list
of transformations rules, that is then used to perform the tagging in a deterministic
way.

In our approach to the problem, we used an evolutionary algorithm to find a set of
disambiguation rules and then used those rules as an heuristic to guide the search for
the best combination of tags for the words of a sentence, using another evolutionary al-
gorithm to perform the search. We suggest a new way to collect and represent relevant
information to solve the part-of-speech tagging problem. The use of disambiguation
rules allows to generalize the information usually stored in training tables by the prob-
abilistic approaches. This generalization is reflected in a reduction of the information
volume needed to solve the problem, and also in a less domain dependent tagger. Also,
the flexible format of the rules used, easily adapts to the inclusion of new aspects, that
might be useful to solve the tagging problem. Moreover, the information is presented
in a way that could be easily interpreted by a human observer. All these aspects were
achieved without loosing the statistical information, represented here in the form of the
rules’ quality value. Another important contribution of this work is the formalization of
the part-of-speech tagging problem as a combinatorial optimization problem, allowing
the use of a global search algorithm like genetic algorithms to solve it.

We tested our approach on two different corpora: in a test set of the corpus used
to discover the disambiguation rules, and on a different corpus. The results obtained
are among the best ones published for the corpora used in the experiments. Also, there
were no significant differences between the results achieved in the subset belonging to
the same corpus from which we defined the training set, used to discover the rules, and
the results obtained on the sentences of the other corpus. This confirms our expectations
concerning the domain independence of the obtained rules.
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Although we consider our results very promising, we are aware of the necessity of
test our approach with a larger tag set, and to apply it to more corpora. We intend to test
the tagger on other languages, as well. We also think that this approach could be applied
to other natural language processing tasks, like noun phrase chunking and named-entity
recognition.
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Abstract. The aim of this work is to examine the possibility of using the out-
put of base learners as antecedents for fuzzy rule-based hybrid ensembles. We
select a flexible, grammar-driven framework for generating ensembles that com-
bines multilayer perceptrons and support vector machines by means of genetic
programming. We assess the proposed model in three real-world regression prob-
lems and we test it against multi-level, hierarchical ensembles. Our first results
show that for a given large size of the base learners pool, the outputs of some of
them can be useful in the antecedent parts to produce accurate ensembles, while
at the same time other more accurate members of the same pool contribute in the
consequent part.

1 Introduction

Using ensemble systems for real-world problems is nowadays considered a norm for
those cases where where single predictors or classifiers can overfit or provide weak
solutions. The use of individual prediction models been challenged in recent years by
combined prediction systems [6], [2], [5], [22], [4], [7], which demonstrate often better
performance and robustness to changing and noisy dimensional data and to inefficien-
cies related with the individual predictors classes, such as convergence issues and local
minima. Among the valuable properties of ensemble systems contributing to their abil-
ity to generalize better is their ability to combine single learners based on their individ-
ual performances and diversity [2]. Recently, fuzzy approaches have been considered
in order to combine learners within the ensemble framework [32]. The fuzzy infer-
ence tries to model human perception when imprecision is encountered. As a result, the
model often achieves equally good or better performance while at the same time main-
taining human readability. There are many ways to incorporate fuzziness into com-
putational intelligence models including evolutionary, neural and heuristic ones. The
evolutionary fuzzy models have some additional desirable properties, such as handling
multi-objective constraints [16], or implicit diversity promoting, which is desirable in
ensemble building [2].

There is a range of different evolutionary training schemes both at the learner level
and at the combinations. Evolutionary training of learners is demonstrated in [3], where
neural networks are trained using evolutionary algorithms, focusing on maintaining di-
versity among the learner pool. Training by evolutionary means at the combiner level is
shown in the GRADIENT model [31] for generating multi-level, multi-component en-
sembles, using grammar driven genetic programming. GRADIENT incorporates, among
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others, multilayer perceptrons and support vector machines, and its performance is suc-
cessfully compared with other state-of-the-art algorithms. The main advantage of the
aforementioned model is the versatility provided by its architecture which incorporates
a context-free grammar for the description of complex hierarchical ensemble structures.
Multi-component, hybrid ensemble systems are most commonly built utilising indepen-
dent training phases between the individual learners and their combinations. Building a
simple combination of trained learners does not require access to the training data for
the combination to be performed as only outputs of the base predictors are required.
When a fuzzy rule-based system is trained, the rule antecedents make use of the data at-
tributes. Consequently, a fuzzy rule-based system that combines learners is expected to
make use of the data attributes in its antecedents which would lead to a divide and con-
quer strategy, as it was illustrated in one of our previous papers [19] or is quite common
in some of the local learning approaches to build global predictors. However, there can
be cases where for security or other reasons, the data are not available at the combina-
tion training phase, but only base predictor outputs from the whole pool are accessible.
The idea of this paper, is to investigate the effectiveness of a system that produces a
fuzzy model for combining learners, but which also restricts itself to knowledge about
the underlying problem. Such a model, named hereinafter as PROFESS (PRedictor-
Output Fuzzy Evolving SyStem) uses trained learners to feed the fuzzy antecedents of
the rules whose consequents are evolved combined predictors. Based on GRADIENT’s
versatile framework, PROFESS extends the ensemble generation ability by providing a
model for the creation of fuzzy rule-based controlled ensembles, where the fuzzy an-
tecedent inputs are also the learners. To accomplish this, a new context-free grammar
is introduced which enables the creation of ensembles consisted of fuzzy rules having
learner combinations as a consequent part, and learners in their antecedent part.

The content of the paper is as follows. Next section describes the background on
related research. Section 3 includes a detailed description of the system. In section
4, we present our results from synthetic and real-world data domains, and a discussion
follows. Finally, section 5 includes our conclusions and suggestions for further research.

2 Background

Genetic programming (GP) is a successful branch of evolutionary computing with a
number of desirable properties [20]. The main advantage of GP resides in its ability
to express arbitrarily large hierarchical solutions representing functional equivalents.
Standard GP implementations derive simple tree structures that describe programs or
mathematical formulas. Later advances incorporated grammar systems to GP enabling
the production of more complex solution forms, like Mamdani fuzzy rule based systems
[1], multilayer perceptrons [29] or Takagi-Sugeno-Kang fuzzy rule based systems [30].

Other enhancements on GP include splitting the evolving population into semi-
independent subpopulations, in the so-called island models. These subpopulations, also
called demes, evolve independently for a requested interval and periodically exchange
a number of individuals [11]. The improved diversity levels apparent to island models
made them attractive means for the implementation of ensemble building systems. Such
a model is presented in [34], where GP is used to produce base classifiers which are then
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combined by majority voting. A similar approach is proposed in [15], however with the
learner combination taking into account the diversity of the classifiers. In an advanced
approach [12], a cellular GP is used to combine decision trees for classification tasks.

Incorporating fuzziness into ensembles can take the form of fuzzy application at
base level, at combination level, or both. At the combination level, a fuzzy inference
engine may be used for global selection of base learners or for complete ensembles [8].
A comparison between fuzzy and non fuzzy ensembles is presented in [21], where the
authors design combinations of classifiers using boosting techniques, in the AdaBoost
environment. In that work, the fuzzy ensembles are shown to achieve better performance
in most of the tasks addressed.Combining learners using fuzzy logic has been applied in
classification tasks in [10]. In that work, a fuzzy system aggregates the output of support
vector machines for binary classification, in an attempt to reduce the dimensionality of
the problems. The proposed model is tested on an intrusion detection problem, and the
authors conclude that it is promising and it can be applied to more domains. Another
work [18], presents three methods to apply selection in an ensemble system by using
fuzzy-rough features. The suggested models are shown to produce ensembles with less
redundant learners. Other promising methods to apply fusion using fuzziness include
fuzzy templates and several types of fuzzy integrals [26].

Although extended research has been accomplished for incorporating fuzziness into
ensemble building, most research deals with the application of fuzziness to either base
level, or to the combination level for global selection of base learners [28]. Hence, few
work has been done on fuzzy rule based selection of ensembles, and the use of base
learner output for the antecedent part of such systems has not been investigated yet.
Still, the potential of positive findings regarding the performance of an ensemble sys-
tem that creates combinations without explicit access to the original data - but only
through its learners - is significant. This work therefore, aims to explore this configura-
tion. Concluding the presentation of related background, we continue in the next section
by providing the system design details.

3 System Design

Following the principles of GRADIENT, three basic elements form the architecture of
PROFESS [31]:

– Base learner pool. These learners are individually trained at the beginning of the
run.

– Grammar. The grammar is responsible for the initial generation of combinations,
and the subsequent control during evolution, for the production of combined pre-
diction systems.

– Combination pool. The combination pool is implemented as the genetic program-
ming population and evolves guided by the grammar in the second phase of train-
ing.

Training in PROFESS includes the following steps:

1. Creation of a learner pool.
2. Training of individual learners.
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3. Creation of initial population of combined predictors.
4. Evolution of combined predictors until termination criterion is satisfied (combined

predictor search).

Step 1 allocates resources for the generation of the requested learner pool. In Step 2,
the available learners are trained, using standard training algorithms, such as backprop-
agation for neural networks. Step 3 generates the GP population, consisted of combined
prediction systems. One complete combined prediction system represents one individ-
ual in the GP population. The final step, Step 4, evolves the population until a specific
criterion is met. Considering the importance of the grammar as a descriptor of PRO-
FESS, we continue this section with a presentation of the adopted grammar. We then
describe the learner settings for this work and this section concludes with a presentation
of the evolutionary environment that is applied during the combined predictors search
phase.

N = { RL, RULE, IF, AND, THEN}
T = { LOW, MEDIUM, HIGH, ANN1, ANN2,..,ANNn,

SVM1, SVM2,..,SVMp }
P = {
<TREE> ::= <RL> | <RULE>
<RL> ::= RL <TREE><TREE>
<RULE> ::= RULE <COND><COMB>
<COND> ::= <IF > | <AND>
<IF > ::= IF <PRED><FSET><SLIDE><SKEW>
<AND> ::= AND <COND> <COND>
<FSET > ::= LOW | MEDIUM | HIGH
<COMB> ::= <FUNC><PRED><PRED> |

<FUNC><PRED><PRED><PRED> |
<FUNC><PRED><PRED><PRED><PRED>

<FUNC> ::= MEAN | MEDIAN | QUAD
<PRED> ::=ANN1 | ANN2 |..| ANNn |

SVM1 | SVM2 |..|SVMp
<SLIDE> ::=<NUMBER>
<SKEW> ::=<NUMBER>
<NUMBER> ::= Real value in [-L,L]
}
S = { RL }

Fig. 1. Context-free grammar for PROFESS

3.1 Grammar

The description of the grammar for PROFESS is shown in Fig. 1. The nodes shown in
the grammar support the following functionality:

– RL: This node has two child nodes as the input. This node performs the fuzzy
inference. It returns the firing strength and the function output of the node which
has the highest firing strength.
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– RULE: This takes two child nodes as its input. The first child node corresponds to a
fuzzy set and the second node to a combination of base predictors. The return value
is the firing strength as the first argument and the function output as the second
argument.

– AND: This node has two child nodes as input. It returns the firing strength and the
function output of the node which has the lowest firing strength.

– IF: This takes four child nodes as an input. It calculates the firing strength of the
rule. The first child node returns an attribute. The second returns the center of the
MF, which is Gaussian in this work.

– COMB: This node has two to four child nodes as the input. It combines the input
of the base predictors. Here it can be an arithmetic mean (MEAN) or a median
(MEDIAN).

– FSET: Returns a value corresponding to the center d of the MF. Input values are
rescaled in [0,1], hence this function returns a value from {0,0.5,1}.

– SLIDE: Returns a value in [−1,1]. This parameter (PSL) is used to adjust the center
of the MF.

– SKEW: Returns a value in [−1,1]. This parameter (PSK) is also used to modify
shape of the MF.

– The EXPR type of non-terminal functions corresponds to the elementary arithmetic
operations, including the protected division (%), to provide closure at GP tree.

The proposed grammar aims to restrict the search space and facilitate the generation of
a fuzzy rule base for the selection of ensembles. The fuzzy rules use the output of base
learners in the antecedent parts. The fuzzy membership functions are further tuned by
evolutionary means, using two parameters: skew SK and slide SL. The first parameter
(skew) extends or shrinks the shape of the membership function, while the second one
(slide) shifts the center of the membership function. The resulting function output zAk ,
for a Gaussian membership function Ak is calculated using Eq.1-3.

zAk = e

(
x−cAk

wAk

)2

(1)

cAk = cm f +αkSk (2)

wAL = wm f +αLSL (3)

where cm f ∈ {0,0.5,1}, wm f = 0.25, αL = 0.125, αK = 0.2, with the last two parameters
expressing the preferred sensitivity of tuning, their selection depending on the expres-
siveness preference of the resulted fuzzy rules. As base learners, multilayer perceptrons
and support vector machines are available. The rule is in the following form:

Ri : i f Fm is Ak1 [and Fp is Ak2 ...]

then y = Ei with C (4)

i = 1, ...,m, C ∈ [0,1]

where C is the certainty factor, Fm,Fp are selected predictors, Ei is a selected ensem-
ble, and Akn are fuzzy sets characterized by the membership functions Akn(Fn). In this
work, Gaussian membership functions were applied. Three fuzzy sets per attribute were
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available (Low, Medium, High). A grammar is defined by the quadruple N, T, P, S where
N is the set of non-terminals, T is the set of terminals, P is the set of production rules
and S is a member of N that corresponds to the starting symbol.

Table 1. Learners configuration (T : transfer function in hidden layers)

Parameter Value
MLP-NN #predictors 100

MLP-NN #hidden layers 2
MLP-NN sigmoid T prob. 0.5

MLP-NN stepwise sigmoid T prob. 0.1
MLP-NN gaussian T prob. 0.3

MLP-NN elliot T prob. 0.1
MLP-NN Iterations 3,000
SVM #predictors 100

SVM Max. Iterations 50,000
SVM RBF γ lowest 10−5

SVM RBF γ highest 1015

Predictors subset size 60%
Predictors subset domain Global

3.2 Learners Setup

From the available learner and pre-processing library of GRADIENT, for illustration
purposes we selected to include in PROFESS, multilayer perceptrons and support vec-
tor machines. The multilayer perceptrons consist of two hidden layers. The number of
neurons in every hidden layer Ni,i=1,2

k of a neural network K, is randomly set according
to Equation 5:

Ni
k = (0.5+U(1))nk (5)

where U(1) returns uniformly a random number in [0,1] and nk is the positive root of
Equation 6 for Pk attributes (network inputs), Tk training rows and l hidden layers (here
l = 2).

nk = (l− 1)x2 +(1+Pk)x− Tk

2
(6)

The transfer functions in hidden layers where also randomly set, selecting among Sig-
moidal, Gaussian and Elliot functions. The resilient backpropagation algorithm was
preferred for training. We trained a pool of 100 multilayer perceptrons. The support
vector machines incorporated a radial basis function kernel, and the γ parameter was
randomly selected from [10−5,1015]. In the learner pool, 100 support vector machines
were available. The training datasets for learners consist of randomly sub-sampled sets
of the available training data sets [31]. Table 1 summarizes the learner settings.

3.3 Evolutionary Setup

After the training phase of learners is completed in PROFESS, the next stage involves
creation and training of the pool of combined predictors. Individuals in the evolution-
ary population are created and trained under the constraints of the defined grammar.
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Each individual corresponds to one fuzzy rule base of ensembles. As combiners, the
arithmetic mean and the median were available. This training makes use of a multi-
population genetic programming framework. In this work, five subpopulations are used,
a value which is typical in multi-population models [11]. These subpopulations are
trained for a period of 7 generations, and they exchange 7 individuals, under a ring
scheme of migration. This process is repeated until 50 generations are completed. As
fitness function, the mean-square-error (MSE) is used. A summary of the parameters
for the evolutionary training of the combined predictors is shown in Table 2.

Table 2. Evolutionary parameters

Parameter Value / Value range
GP System Grammar-driven GP

Subpopulations 5
Subpopulation topology Ring

Isolation time 7 generations
Migrants number 7 individuals

Migrants type Elite individuals
Total population 150 individuals

Selection Tournament
Tournament size 7
Crossover rate 0.7
Mutation rate 0.3

Max.individual size 150/500 nodes
Max.generations 50

3.4 Data

We compared PROFESS with regression models using a synthetic data problem, and
with GRADIENT using three real-world datasets, taken from the UCI Machine Learn-
ing repository [13]. The properties of the datasets are shown in Table 3. We created
three data permutations for every real-world problem. In all cases, we used one third of
the data as a test set. The synthetic data task was the Jacobs data [17] that involves five
independent attributes x1, ...,x5. All attributes are uniformly distributed at random over
[0,1]. The function output is calculated by Equation 7.

y =
1

13
(10sin(πx1x2)+ 20

(
x3− 1

2

)2

+10x4 + 5x5)− 1+ ε (7)

where ε is Gaussian random noise with σ2
ε = 0.2. We generated a dataset consisting of

1,500 rows.

4 Results and Discussion

We applied PROFESS to the available datasets, using the configuration shown in Ta-
bles 1 and 2. Table 4 shows a comparison with WEKA [14] regression methods for
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Table 3. Datasets used

Domain Instances Attributes
Jacobs 1500 5

Slump test 103 7
CPU Performance 209 6

Boston housing 506 13

Table 4. Comparative results on Jacobs data

Model RMSE
RBF network1 .1659

Isotonic Regression1 .1469
Pace Regression1 .0966

SMO Regression1,2 .0960
PROFESS (this work) .0958

1. [14].
2. [27].

Table 5. Results in three real-world datasets. Values are average MSE from three permutations,
with 0.95% confidence intervals.

Domain GRADIENT PROFESS
Slump test 40.33 ± 19.23 39.83 ± 9.53

CPU 9575 ± 7789 9461 ± 6267
Boston housing 13.43 ± 1.04 10.68 ± 2.97

the synthetic data problem. The results of our experiments for real world data, as com-
pared to GRADIENT are shown in Table 5. In this table, the results are expressed in
average mean-square-error (MSE) with 0.95% confidence intervals. As it can be seen
in the table, PROFESS managed to achieve lower average MSE than GRADIENT in
the problems addressed. As an example of output, the evolved solution for the first per-
mutation of the Slump test problem is shown in Fig.2. This solution is corresponding to
the following rule base:

R1 : i f S006 is High(−0.06219,−0.22473) then

Median(S040,N063,N019,N092,S014,N032,N080)

R2 : i f N099 is Medium(−0.46393,−0.29883) then

Median(N032,N063,N087,S061,S060,S027,S087)

R3 : i f N099 is Medium(0.94855,−0.29883) then

Median(N070,S064,N087,N092,S060,S027,S087)

R4 : i f S035 is High(−0.06219,−0.22473) then

Median(S040,N063,N087,N092,S060,S027,S028)
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Fig. 2. Evolved combined system for the Slump test problem

where the first variable in the fuzzy set corresponds to the slide parameter of the mem-
bership function SL, and the second is the skew parameter SK . The evolved membership
functions are shown in Fig.3. It is worth noting, that the most common case observed
was that learners feeding the antecedent parts were not appearing in the consequent part
of any rule.
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Fig. 3. Evolved membership functions for Slump test problem

Tables 6, 7 and 8 compare the best obtained results using the proposed system to
results found in the literature.

Table 6. Slump test data comparison on unseen data. Results for PROFESS correspond to the
Pearson correlation coefficient of best model.

Model R2

Neural network1 .922
P2-TSK-GP (3 MF)2 .9127

GRADIENT(NN-30/Mean)3 .9694
PROFESS (this work) .8257

1. [33].
2. [30].
3. [31].

Table 7. CPU performance data comparison on unseen data. Results for PROFESS correspond
to the Pearson correlation coefficient of best model.

Model R2

Original Attributes
M51 .921

M5 (no smoothing)1 .908
M5 (no models)1 .803

GRADIENT (NN-30/Median)2 .970
PROFESS (this work) .978

Transformed Attributes
Ein-Dor3 .966

M51 .956
M5 (no smoothing)1 .957

M5 (no models)1 .853
1. [25].
2. [31].
3. [9].
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Table 8. Boston housing data comparison on unseen data. Results for PROFESS correspond to
the best model.

Model RMSE
GASEN1 10.68

Random Forest2 3.26
Fuzzy CART3 3.40

Fuzzy CART + PLM3 3.10
Fuzzy CART + Bagging3 3.26
Fuzzy CART + Smearing3 3.21

GRADIENT (NN-30/Mix)4 2.66
PROFESS (this work) 2.639

1. [35].
2. [23].
3. [24].
4. [31].

– In Slump test data, we compared the results using the Pearson correlation coeffi-
cient for compatibility with the results reported in the literature. In this case, the
best model resulting from PROFESS was not better than the other reported models,
with the best model of GRADIENT having the higher correlation coefficient.

– In CPU performance data, the Pearson correlation coefficient for PROFESS was
the highest among the compared approaches.

– In Boston housing data, the best model of PROFESS had lower error than the re-
ported literature ones.

Table 9 compares the evolved size, measured in the number of nodes, of the solu-
tions. The implementation of a grammar for fuzzy systems requires a large number of
intermediate functions to allow the incorporation of a similar number of base learners.
For this reason, we have set in our experiments the maximum possible solution size to
500 nodes for PROFESS, while for GRADIENT a maximum of 150 nodes was kept
since it could express similarly sized (in terms of learner participation) ensembles.

Although the maximum size was set high, PROFESS managed to evolve comparable
solutions, in terms of size, to GRADIENT’s. This resulted in producing rule bases with
a small number of rules, which we consider is a result of the expressiveness of PRO-
FESS’s grammar. The latter conclusion is more clearly depicted in Table 10, where the
average number of learner instances in a solution is shown. In this table, it is clear that
PROFESS required, on average, a significantly smaller number of learner participation
to evolve competitive results.

As expected, the values shown in Table 10 concern only the learner instances that
appear in combined predictors, and they don’t take into account the occurrence of the
learners in the antecedent part of PROFESS’s rules.
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Table 9. Average evolved solution size (in nodes)

Domain GRADIENT PROFESS
Slump test 106.1 181.5

CPU 101.6 165.9
Boston housing 72.6 75.0

Table 10. Average evolved solution size (in learner instances appearing in combinations)

Domain GRADIENT PROFESS
Slump test 67.6 40.4

CPU 35.2 22.6
Boston housing 71.6 54.8

5 Conclusions and Further Research Directions

This work presented a system for the generation of multi-component fuzzy rule-based
ensembles using base learners in the antecedent part of fuzzy rules. To accomplish this,
we have decided to modify the grammar of a versatile environment for the production
of multi-level, multi-component ensembles, named GRADIENT. The new proposed
model, named PROFESS, features a novel grammar that produces arbitrarily large fuzzy
rule bases that enable the selection of complete ensembles, using the output of base
learners as criterion. This approach can facilitate the development of combined pre-
dictors, in environments were only access to the base learners is possible, and any use
of the original training dataset is restricted to base learning level. To examine the ef-
fectiveness of the proposed model, we tested it on a synthetic data problem and three
real-world datasets. The results from our experiments show that the model is able to pro-
vide competitive performance as compared to the standard approach. This conclusion
facilitates the definition of environments were a set of trained learners may substitute
the original data in tasks were the formation of an ensemble is required. Applications
of this approach can include situations where for security or other reasons, the access
to the original data is not possible or highly restricted.

We consider that our initial findings presented in this paper deserve further investi-
gation. In the conducted experiments we observed that, commonly, selected learners in
the antecedent part were not included in consequent parts of the rules. We will there-
fore further investigate this case. It is clear that the complementary information resides
in the whole pool of base learners and while some of them are not accurate enough to
be used for prediction, they seem to play and important role in the selection process
of ensembles consisting of a number of other predictors from the pool. This finding is
completely novel and the analysis of the relationships between the ”selector” learners
used in the antecedents of the fuzzy rules and the ”combined predictors” which form
the consequent part of these rules is a fascinating subject to follow. Finally, further tun-
ing of the evolutionary parameters will take place, in an attempt to reduce the required
resources and increase the algorithmic efficiency.
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Abstract. This paper presents research into the unsupervised evolution of aes-
thetically pleasing images using measures for symmetry, compositional balance
and liveliness. Our evolutionary art system does not use human aesthetic evalu-
ation, but uses measures for symmetry, compositional balance and liveliness as
fitness functions. Our symmetry measure calculates the difference in intensity of
opposing pixels around one or more axes. Our measure of compositional balance
calculates the similarity between two parts of an image using a colour image dis-
tance function. Using the latter measure, we are able to evolve images that show
a notion of ‘balance’ but are not necessarily symmetrical. Our measure for live-
liness uses the entropy of the intensity of the pixels of the image. We evaluated
the effect of these aesthetic measures by performing a number of experiments in
which each aesthetic measure was used as a fitness function. We combined our
measure for symmetry with existing aesthetic measures using a multi-objective
evolutionary algorithm (NSGA-II).

1 Introduction

Symmetry is ubiquitous in everyday life; human beings show bilateral (or vertical) sym-
metry in the build of their bodies and faces and objects like cars, houses, gadgets, etc.
often show a reasonable degree of symmetry. Although most people have a notion of
the concept of symmetry, it is a concept with multiple meanings. First of all, there is
the most popular use of the notion of symmetry; reflectional symmetry. It refers to the
property that one half of an image is the reflection of the other part of the image; one
half is mirrored around an axis onto the other half. When using a vertical axis, this form
of symmetry is known as bilateral symmetry, left/ right symmetry, mirror symmetry or
horizontal symmetry. Bilateral symmetry is prevalent in design, architecture and na-
ture; it occurs in the design of cathedrals and other buildings, cars, vases, but also in the
human body and in most animal bodies. In the remainder of this paper, we will refer
to these types of symmetry as bilateral symmetry (vertical axis), top-down symmetry
(horizontal axis) and diagonal symmetry (diagonal axis). Besides the aforementioned
forms of symmetry, there are several other forms of symmetry, like rotational symmetry
(symmetry around a point), translational symmetry, radial symmetry, etc. These forms
of symmetry are all outside the scope of this paper.

A second meaning of symmetry is the notion of balance of proportion, or self-
similarity [27]. This notion of symmetry is less ‘strict’, less well-defined than bilateral
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symmetry. An image is visually balanced if an observer perceives two parts, divided by
an axis (not necessarily in the centre of the image), whereby the two parts have the same
‘weight’ [1]. The notion of weight in this context is not clearly defined; in some cases a
number of small items on one side of the image can have the same weight as one larger
object on the other side of the image. Or, a large group of bright items on one side of
the image may have the same weight as a small group of darker items on the other side
of the image. In the domain of design, the notion of (vertical) balance is an important
factor. White defines symmetric balance as ‘vertically centered, and equivalent on both
sides’ [28]. This raises the question; when are two sides ‘equivalent’? The notion of bal-
ance is used more frequently in design and the visual arts than the use of strict symmetry
(the strict use of symmetry in paintings is quite rare). However, the notion of balance is
not well defined, which makes it challenging to formalise in an aesthetic measure. Since
the notion of balance is difficult to formalise, and since we evolve mainly abstract im-
ages without composition or distinct representational elements (which makes it even
more difficult to calculate ‘balance’), we decided to develop an aesthetic measure based
on compositional balance (which is related to balance, but not the same); we calculate
image feature vectors for two parts of an image and calculate the difference between
these vectors (see Sect. 3).

Symmetry has often been associated with aesthetic preference, although its exact re-
lation remains unclear. The human visual system is very well equipped to perceive sym-
metry in an image; humans can detect whether an image is symmetric within 100ms,
which suggests that the perception of symmetry is ‘hard-wired’ in the visual percep-
tive system [15]. According to Reber et al aesthetic experience of a visual stimulus is
linked to the processing fluency of that stimulus [20]; the more fluently an observer can
process a stimulus, the more positive is the aesthetic response. One of the key variables
that Reber et al determine is symmetry. Bauerly and Liu showed symmetric images
and asymmetric images of web pages to test persons and measured the aesthetic re-
sponse [3,4]. They found that symmetry correlates positively with aesthetic preference
(of web pages) and bilateral symmetry correlates higher with aesthetic preference than
top-down symmetry. Aesthetic preference also correlates with bilateral symmetry in the
perception of human faces. Symmetry is one of the most salient features that mark per-
sonal attractiveness; but symmetry is more a necessary pre-condition than a guarantee
for attractiveness; the absence of symmetry (asymmetry) in the human body (especially
in the face) severely reduces personal attractiveness [11,13].

Aesthetic preference in art is less straightforward. In general, strict symmetric paint-
ings are rare, and usually considered boring [15]. In the visual arts, symmetry is often
used on a higher level, often in balancing elements of the composition [15]. Locher et
al refer to this notion as ‘dynamic symmetry’, others refer to this as ‘balance’. We used
an abstract version of ‘dynamic symmetry’ and balance, and in the remainder of this
paper we shall refer to this notion as ‘compositional balance’.

The development of the aesthetic measures is driven by our research in unsupervised
evolutionary art. In previous work we investigated the applicability of Multi-Objective
Evolutionary Algorithms (MOEA) to evolve art using multiple aesthetic measures [9].
One of the main conclusions of that work was that MOEA is suitable for unsuper-
vised evolutionary art, but only if the aesthetic measures cooperate; we performed
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experiments with a number of combinations of two aesthetic measures, and found that
some combinations work very well, and some combinations produced disappointing re-
sults. We concluded that it is very important to use a ‘right’ combination of aesthetic
measures, preferably a combination of aesthetic measures that work on different aspects
or ‘dimensions’ of an image. In this paper we want to add aesthetic measures that act on
two aspects, dimensions that have not yet been explored in unsupervised evolutionary
art; symmetry and compositional balance.

Our research questions are

1. is it possible to evolve interesting symmetric aesthetically pleasing images using a
measure for symmetry? (and is it possible to control the amount of symmetry in the
images?)

2. is it possible to evolve interesting ‘balanced’ aesthetically pleasing images using a
measure for compositional balance?

3. can the measures of symmetry and compositional balance be combined successfully
with other (existing) aesthetic measures to evolve aesthetically pleasing images;
we define the combination as ‘successful’ if the resulting images are aesthetically
pleasing or interesting, and preferably ‘new’, i.e. the style of the images should be
different from images from previous experiments.

The rest of the paper is structured as follows. First we discuss related work in Sect.
2, next we present our aesthetic measures for symmetry, compositional balance and
liveliness in Sect. 3. We shortly describe our evolutionary art system in Sect. 4. Next
we describe our experiments and their results with our aesthetic measures in single and
multi-objective evolutionary algorithm (MOEA) setups in Sect. 5. We finish our paper
with conclusions and directions for future work in Sect. 6.

2 Related Work

The use of methods and techniques from the field of computational aesthetics in evolu-
tionary art is relatively new. The first attempt to evolve art in an unsupervised manner
was described by Baluja et al [2]. Baluja et al built an unsupervised evolutionary art
system, and constructed a neural network to perform the aesthetic evaluation. The au-
thors concluded that the results were ‘not satisfactory’. Since Baluja et al a number of
other authors have developed unsupervised evolutionary art systems [17,24]. The aes-
thetic measure described in [16] builds on the relation between Image Complexity (IC)
and Processing Complexity (PC). Images that are visually complex, but are processed
easily have the highest aesthetic value. As an example, the authors refer to fractal im-
ages; they are visually complex, but can be described by a relatively simple formula.
The aesthetic measure by Ross & Ralph is based on the observation that many fine art
painting exhibit functions over colour gradients that conform to a normal or bell curve
distribution. The authors suggest that works of art should have a reasonable amount
of changes in colour, but that the changes in color should reflect a normal distribution
[24]. The Global Contrast Factor is an aesthetic measure that computes contrast (dif-
ference in luminance) at various resolutions. Images that have little or few differences
in luminance have low contrast and are considered ‘boring’, and thus have a low aes-
thetic value. Contrast is computed by calculating the (average) difference in luminance
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between two neighbouring super-pixels. Super-pixels are rectangular blocks in the im-
age. The contrast is calculated for several resolutions (2, 4, 8, 16, 25, 50, 100 and 200).
For more details on the Global Contrast Factor we refer to the original paper [18]. We
have implemented the Global Contrast Factor and will use it in combination with one
of our aesthetic measures in our experiment using the Non-dominating Sorting Genetic
Algorithm II, or NSGA-II (see Sect. 5.3).

In the field of Human-Computer Interaction research has been done on the automatic
evaluation of web pages. Ngo et al have developed a number of aesthetic measures to
evaluate screen design [19] and symmetry and balance are two of the measures. The
authors define symmetry as the balanced distribution of equivalent (screen) elements
around a common line; they divide the screen in four quadrants, assign a weight to
each quadrant based on the quadrant’s content, and define symmetry as the summed
difference between the quadrant weights. Bauerly and Liu have developed a metric for
symmetry to measure symmetry in a design context (with an emphasis on web pages)
[3,4]. Their metric calculates how often two pixels at the two sides of an axis have the
same value (Bauerly and Liu use binary values for pixels; black and white). The com-
parison between two pixels is multiplied by a weight factor that depends on the distance
of the pixels to the axis; if a pixel is close to the axis, it will result in a higher weight.
Our aesthetic measure for symmetry is similar to the one by Bauer and Liu, but there are
a few differences; we calculate the intensity value of the pixels (256 possible values),
and Bauer and Liu use binary images (a pixel is either black or white, so only 2 possible
values). Furthermore, we do not take the distance of the pixel to the axis into account.
The aesthetic measure for ‘balance’ by Ngo et al [19] is not applicable in our context;
Ngo et al used their aesthetic measures on user interfaces and web pages, which have
distinct compositional elements. Our evolutionary art system evolves abstract images
that have no distinct compositional elements, although one could argue that some im-
ages show distinct (non-representational) objects. This is the main reason we chose to
design and implement an aesthetic measure that calculates compositional balance.

3 Aesthetic Measures for Symmetry, Compositional Balance
and Liveliness

In this section we describe our aesthetic measures for symmetry, compositional balance
and liveliness.

3.1 Calculating Symmetry

We have designed and implemented an aesthetic measure that computes the reflectional
symmetry of an image. The calculation of symmetry is done as follows. First, we divide
the image in four quarters, cutting the image in half across the horizontal and vertical
axis (areas A1, A2, A3, A4), see Fig. 1). Left, right, top, and bottom areas are defined
as Aleft = A1 + A3, Aright = A2 + A4, Atop = A1 + A2 and Abottom = A3 + A4.
The horizontal reflectional symmetry of an image I is defined as the similarity between
its two area halves Aleft and Aright;

Sh(I) = s(Aleft, Aright) (1)
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Fig. 1. For the symmetry aesthetic measure we divide the area in four quadrants

and the vertical similarity is calculated as

Sv(I) = s(Atop, Abottom) (2)

and diagonal symmetry is defined as

Sd(I) =
s(A1, A4) + s(A2, A3)

2
(3)

The similarity between two areas s(A1, A2) is defined as

s(Ai, Aj) =

∑w
x=0

∑h
y=0(sim(Ai(x, y), A

m
j (x, y))

w · h (4)

where x and y are the coordinates of the pixel, w and y are the width and height of the
area (they are the same for all the areas in the calculations), and Am

j is the mirrored
area of Aj ; for horizontal symmetry we mirror Aj around the vertical axis, for vertical
symmetry we mirror Aj around the horizontal axis, and for diagonal symmetry we
mirrorAj around both axes. Next, we define the similarity between two opposing pixels
sim(Ai(x, y), Aj(x, y)) as

sim(Ai(x, y), Aj(x, y)) =

⎧⎨⎩
1 if |I(Ai(x, y))−

I(Am
j (x, y))| < α,

0 otherwise

(5)

where I(Ai(x, y)) refers to the intensity value of a pixel (x, y) in area Ai, and α is
a difference threshold. We tried a number of settings for α and chose α = 0.05 as a
setting in our experiments (where I(x, y) ∈ [0..1]). The intensity of a 24 bit RGB pixel
I(x, y) is defined as the average of its red, green and blue value;

I(x, y) =
r(x, y) + g(x, y) + b(x, y)

3
(6)

Note that intensity is not the same as brightness; brightness refers to the perceived
lightness, and uses different weights for the (r, g, b) components (in future work we
intend to experiment with brightness and luminosity instead of intensity). We define the
aesthetic measure for (strict) symmetry as

AMsym1(I) = Sm(I) (7)
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where m is horizontal, vertical or diagonal. For combinations, we calculate the average
of the distinct symmetries. For example, for combined horizontal, vertical and diagonal
symmetry (useful for evolving tiling patterns, wallpaper etc.), we calculate the aesthetic
value as

AMsym1(I) =
Sh(I) + Sv(I) + Sd(I)

3
(8)

As mentioned earlier in Sect. 1, the relation between symmetry and aesthetic prefer-
ence is not well defined; several publications suggest that a certain amount of symmetry
in visual arts is appreciated, but (especially in Western art) many people consider too
much symmetry (or ‘complete’ or ‘static’ symmetry) to be boring. This is consistent
with the processing fluency theory by Reber et al [20]; if there is too much symmetry
in an image, many people will process the image ‘too fluently’ since the complexity of
the image is below a certain threshold. In other words; images with too much symmetry
are often considered as simple and boring. With this observation in mind, we created
an alternative version of our first measure, that rewards images highest if they have a
symmetry value of T , where T is our ‘optimal amount of symmetry’. We did not find a
proper value in literature for this ‘optimal amount’ of symmetry, so we tried a number
of settings and found that a value of 0.8 resulted in images with an ‘agreeable’ amount
of symmetry (although we did not verify this on a group of test persons). In our adapted
version of the bilateral symmetry measure we calculate the actual symmetry value of
an image using the first symmetry measure, and multiply this with a gaussian function
with b = 0.8 (this is our chosen ‘optimal amount’ of symmetry) and c = 0.2 (the c
variable in a gaussian determines the width of the bell curve, and after a number of trial
experiments we decided to use c = 0.2);

AMsym2(I)= e
−
(

(x−T )2

2c2

)

= e
−
(

(AMsym1(I)−0.8)2

0.08

) (9)

The effect of this gaussian function is that this alternative or ‘relaxed’ measure of sym-
metry rewards images highest (score 1.0) if the amount of symmetry is 0.8. Images with
a higher symmetry value (higher than 0.8) score lower; see Fig. 2.
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Fig. 2. The relation between the amount of symmetry and fitness for our two symmetry aesthetic
measures
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3.2 Calculating Compositional Balance

We implemented a measure that calculates the horizontal (or left-right) compositional
balance of an image. Our measure use the Stricker & Orengo image distance function
[26]. This distance function dso computes the distance between two images Ia and Ib
by calculating the distance between the two image feature vectors va and vb, where

dso(Ia, Ib) =

∑i<N
i=0 wi · |vai − vbi |∑i<N

i=0 wi

(10)

where N is the number of image features (in our implementation N = 12, see Table
1 for the 12 image features). For the image features we used the average, standard
deviation and skewness of the hue, saturation, intensity and colourfulness of the colour
pixels of the image (in the HSV colour space). Each image feature is assigned a weight
w and the weights are shown in Table 1.

Table 1. Image features and their weights used in our Stricker & Orengo image distance function

Image feature Weight
Hue (avg) 4
Hue (sd) 4
Hue (skewness) 4
Saturation (avg) 1
Saturation (sd) 1
Saturation (skewness) 1
Intensity (avg) 2
Intensity (sd) 2
Intensity (skewness) 2
Colourfulness (avg) 2
Colourfulness (sd) 2
Colourfulness (skewness) 2

The amount of compositional balance of an image is calculated as

Mcb(I) = 1− dso(Ileft, Iright) (11)

Although we calculate only the horizontal or left-right compositional balance of an
image, it should be trivial to extend this measure to calculate top-down and diagonal
compositional balance (similar to our calculations of symmetry in Sect. 3.1).

3.3 Calculating ‘Liveliness’ Using Entropy

If we merely use a measure of symmetry as a fitness function to evolve images, we
would end up with many monotonous, maybe even monochrome images. A monotonous
image is relatively easy to evolve and often has a lot of left-right symmetry, and conse-
quently will score high on our fitness function. In order to evolve ‘interesting’ symmet-
ric images, we also need to incorporate a calculation of ‘interestingness’, or ‘liveliness’
of an image, and incorporate this notion into the calculation of the fitness function.
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There has been prior research into the calculation of complexity of images; Machado
and Cardoso use jpeg compression and wavelet compression to calculate the image
complexity and processing complexity with which they construct an aesthetic measure
to evolve images without human evaluation [16,17]. From our own observations we
have seen that images that are interesting or lively often exhibit variation in intensity
across the image. With this observation in mind we have developed a simple measure
that calculates the entropy of the intensity of the pixels of the image (analogous to the
work by Rigau et al [21]). Images that are very monotonous will little variation in the
intensity of the pixels and will have low entropy, and images with a lot of different in-
tensity values will have high entropy. We calculate the entropy for all possible intensity
values, and since we use 24 bit RGB images, we have 256 different intensity values.
The We define ‘liveliness’ as

Mliveliness(I) = −
n∑

i=1

p(xi)log(p(xi)) (12)

where xi ∈ [0, .., 255] refers to the intensity of the pixels, and p(xi) refers to the prob-
ability of the intensity value xi.

3.4 Summary of Our Aesthetic Measures

With the measure of symmetry and the measure of liveliness we construct our aesthetic
measure for symmetry as follows;

AM∗
sym1(I) = AMsym1(I) ·Mliveliness(I) (13)

and our measure of ‘relaxed’ symmetry is defined as

AM∗
sym2(I) = AMsym2(I) ·Mliveliness(I) (14)

and our aesthetic measure for compositional balance is defined as

AMcb(I) = Mcb(I) ·Mliveliness(I) (15)

Although we use two measures to calculate a single score, it’s not multi-objective op-
timisation (MOO). In MOO the two scores would be stored and optimised separately,
and in our aesthetic measures we merely use the product of the two separate measures.
In our first three experiments we will use the aesthetic measures defined in Equation
13, 14, 15 respectively.

4 Evolutionary Art

Evolutionary Computation (EC) is a field within Artificial Intelligence that uses meth-
ods obtained from evolution theory to solve problems and to perform optimisations
[12]. One of the subfields within EC is Genetic Programming (GP). GP investigates
how to evolve small computer programs that perform a certain task. To this end, GP
uses a population of these programs, and one or more fitness functions that evaluate
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Table 2. Function and terminal set of our evolutionary art system

Terminals x,y, ephem double,
golden ratio, pi

Basic Math plus/2, minus/2, multiply/2, div/2,
mod/2

Other Math log/1, sinh/1, cosh/1, tanh/1,
atan2/2, hypot/2, log10/1, sqrt/1,
cone2/2, cone3/2, cone4/2

Relational min/2, max/2, ifthenelse/3
Bitwise and/2, or/2, xor/2
Noise perlinnoise/2, fbm/2, scnoise/2,

vlnoise/2, marble/2, turbulence/2
Boolean lessthan/4, greaterthan/4
Other parabol/2

the ‘fitness’ of each program. Evolutionary art is a research field where methods from
Evolutionary Computation are used to create works of art [5,22]. Some evolutionary
art systems use IEC or supervised fitness assignment [23,25], and in recent years there
has been increased activity in investigating unsupervised fitness assignment [14,24].
Our aesthetic measures for symmetry, compositional balance and liveliness serve as fit-
ness functions in our evolutionary art system. Our system is a flexible framework built
in Java that supports a number of aesthetic measures, multi-objective optimisation us-
ing the Non-dominating Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto
Evolutionary Algorithm (SPEA2), with which multiple aesthetic measures can be com-
bined. NSGA-II finds an optimal Pareto front by using the concept of non-domination;
a solution A is non-dominated when there is no other solution that scores higher on all
of the objective functions. Furthermore, NSGA-II uses elitism and a mechanism to pre-
serve diverse solutions by using a crowding distance operator. For more details, we refer
to [6]. The system uses GP and supports symbolic expressions (or Lisp expressions) and
Scalable Vector Graphics (SVG) as genetic representations (we only use symbolic ex-
pressions in the experiments in this paper). It also supports multi-threading, whereby
multiple (usually 8) fitness evaluations can be calculated concurrently. Many functions
that we use in our GP function set are similar to the ones used in [25], [23] and [24].
Table 2 summarises the used functions (including their required number of arguments);

The function set has already been described in detail in previous work so refer to the
original papers for details [7,8,9].

5 Experiments and Results

We performed two experiments with three different measures; two for bilateral reflec-
tional symmetry and one for balance. The evolutionary parameters are given in Table 3.

5.1 Experiments 1 and 2: Evolving Images with Bilateral Symmetry

In our first experiment we evolved images using our measure for bilateral symmetry
(Sect. 3.1, Equation 13). The parameters of our experiment are given in Table 3. We
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Table 3. Evolutionary parameters of our evolutionary art system used in our experiments

Symbolic parameters
Representation Expression trees
Initialisation Ramped half-and-half (depth

between 2 and 5)
Survivor selection Tournament, Elitist (best 1)
Parent Selection Tournament
Mutation Point mutation
Recombination Subtree crossover
Fitness Aesthetic measure(s) based on
functions(s) Reflectional Symmetry

Compositional Balance
or a combination (NSGA-II)
(see Equations 13, 14 and 15
in Sect. 3.4)

Numeric parameters
Population size 200
Generations 20
Runs 10
Tournament size 3
Crossover rate 0.85
Mutation rate 0.15
Max. tree depth 8

performed 10 runs and saved the 25 ‘fittest’ images from each run (resulting in 250
images in total) and hand picked a portfolio (representative of the 250 images) that we
show in Fig. 3. From the images in the portfolio we can conclude that all images are ei-
ther perfectly or almost perfectly bi-lateral symmetric (with respect to the vertical axis);
evolving images with (near) perfect bi-lateral reflectional symmetry is not difficult to
achieve using our evolutionary art system. Next, we see that the images are diverse (not
only in the portfolio, also in the whole collection of 250 images that was saved after the
10 runs). We think this type of images could be useful in graphic design, either as back-
ground images for web pages, posters, or CD covers. The static symmetric properties
sometimes tend to give the images a simplistic flavour.

A portfolio of images from experiment 2 is given in Fig. 4. In this experiment we
used the ‘relaxed’ symmetry measure, that uses a gaussian function to favour images
with a symmetry of 0.8 (see Equations 9 and 15). We intended to evolve images that
were not entirely symmetrical, and from the images in Fig. 4 we can see that we suc-
ceeded; the images are more or less symmetrical from a ‘macro’ level, but less symmet-
rical when looking at close range. One could argue whether strict symmetric images are
better or worse looking than not-quite symmetric images, but the important conclusion
from this experiment is that the amount of symmetry can be a controllable parameter in
an evolutionary art system. This notion can be built into an automated image generation
system in which the user can specify to what degree the images should be symmetric.



Evolving Symmetric and Balanced Art 43

Fig. 3. Portfolio of images gathered from ten runs with the Bilateral Symmetry measure (Experi-
ment 1)

Fig. 4. Portfolio of images gathered from ten runs with the Bilateral Symmetry measure (Experi-
ment 2), using a gaussian function with μ = 0.8 and σ = 2

5.2 Experiment 3: Evolving Images with Compositional Balance

We also performed an experiment with our ‘Compositional Balance’ measure (Sect. 3.2,
Equation 15). The configuration for this third experiment was the same as the first two
experiments (see Table 3) except for the fitness function. Again, we saved the ‘fittest’
25 images from each run (resulting in 250 images in total) and hand picked a represen-
tative portfolio that we show in Fig. 5. If we look at the the portfolio in Fig. 5 we see a
number of symmetric images, but we can clearly see that not all images are symmetric.
The images differ in their degree of symmetry; some are perfectly horizontal symmetri-
cal, whereas a number of images show very little symmetry. We see differences between
the images from experiment 3 (Fig. 5) and the first two experiments (Fig. 3 and 4) but
these difference are not big. Since images with a lot of symmetry also display a lot
of compositional balance, and since we see a relatively large number of images with
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Fig. 5. Portfolio of images gathered from ten runs with the Compositional Balance measure
(Experiment 3)

symmetry using the aesthetic measure for compositional balance, we suspect that it is
‘easier’ for our evolutionary art system to evolve images with a lot of symmetry that
satisfy our compositional balance fitness function than to evolve images with composi-
tional balance but without a lot of symmetry. If we want to evolve images with balance
but without symmetry, we will probably have to incorporate a sort

5.3 Experiment 4; Combining Symmetry with Other Aesthetic Measures Using
NSGA-II

In our fourth experiment we combined three aesthetic measures to evolve symmetric
images. To this end we used the well known multi-objective evolutionary algorithm
NSGA-II [6]. Besides the use of NSGA-II and the fact that we used three aesthetic
measures instead of one, all the evolutionary parameters were kept the same as in the
previous experiments (Table 3). As the fitness functions we used the Global Contrast
Factor aesthetic measure [18], our Entropy measure for liveliness (Equation 12) and our
symmetry aesthetic measure, this time set to measure horizontal, vertical and diagonal
symmetry (see Equation 8). Note that we used the strict symmetry measure from Equa-
tion 8, and not the the symmetry measure from Experiment 1 (Equation 13), since the
latter aesthetic measure also incorporates the measure of liveliness, and in our MOEA
setup we want to keep these scores separate. of punishment score for too much symme-
try into our aesthetic measure for compositional balance; we intend to do so in future
research.

The portfolio of images that we gathered from 10 runs are presented in Fig. 6. From
the portfolio of images we can see that the measures combine fairly well; all images
show contrast and symmetry, and most (arguably) show a fair amount of liveliness.
When we compare these images to images from previous experiments [8], we see that
the images are not as dark. Experiments with only the Global Contrast Factor as a fit-
ness function produced images that had very deep contrast, often resulting a large black
areas in the images. We think that the liveliness/ entropy measure acts as an oppos-
ing force against the GCF, since the entropy measure rewards images with balanced
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Fig. 6. Portfolio of images gathered from ten runs with NSGA-II (Experiment 4), using Global
Contrast Factor, liveliness and symmetry (bilateral, top-down and diagonal)

brightness distributions, and does not favour images with ‘only’ black and white. To-
gether they result in images that are lively and have a fair amount of contrast. In our
fourth experiment we also used our symmetry aesthetic measure, and this time we used
it to evolve images that were symmetric horizontally, vertically and diagonally. Some
images show symmetry in all these three directions, and almost all show symmetry in
at least two directions. We think that the first three images in the bottom row of Fig. 6
resemble tiling patterns found in Islamic art.

6 Conclusions

Our first research question was whether it is possible to evolve images with symmetry
using an aesthetic measure. Our first experiment confirms this. Our evolutionary art
systems has no problems evolving symmetric images. We suspect that symmetry is
an image feature that is relatively easy to satisfy using genetic programming and our
current function set.

In previous work we did experiments with an alternative genotype representation,
Scalable Vector Graphics or SVG [10]. We think that it will be more challenging to
evolve pure symmetric images using SVG than with symbolic expressions, but future
research will have to verify this hypothesis. From our first and second experiments we
can conclude that it is not only possible to evolve symmetric images, it is also possible
to control the amount of symmetry in the resulting images. This is encouraging, since
several studies have shown that people tend to have an aesthetic preference for sym-
metry, but (especially in Western art) people tend to find too much symmetry boring,
especially in an art context. The amount of 0.8 for our ‘optimal amount of symmetry’
was chosen by us, but we think the actual threshold value is less important in our ex-
periment; it is important to know that symmetry can be a controllable parameter in an
evolutionary art system.

Our second research question was whether it was possible to evolve aesthetically
pleasing images using our aesthetic measure for compositional balance. Our third
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experiment resulted in a number of interesting images, but many images were ‘just
symmetrical’ and relative few were ‘balanced and not symmetrical’. We think our aes-
thetic measure for balance using an image distance function is a good starting point,
but this aesthetic measure would benefit from an additional constraint, like a penalty
function for having too much symmetry. We also think that our aesthetic measure for
balance might be more useful in images with composition; the images that we evolved
using our symbolic expression genotype are all abstract images, with no representa-
tional content.

We intend to do further research in the application of this aesthetic measure in our
evolutionary art system using our SVG genotype, in which the resulting images have
objects, composition and representational content.

Our third research question was whether it was possible to combine our aesthetic
measure for symmetry with other, existing aesthetic measures to produce new and sur-
prising images. Our fourth experiment confirms this. The images of the fourth experi-
ment show the effects of the different aesthetic measures. The images from Fig. 6 show
(in varying degrees) contrast, symmetry and liveliness. From these experiments we can
conclude that an aesthetic measure for symmetry combines relatively easy with exist-
ing aesthetic measures. Furthermore, we think that aesthetic measures for symmetry
and compositional balance should be combined with other aesthetic measures; evolving
images with only a measure for symmetry of compositional balance would most likely
result in monotonous, often monochrome images.
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Abstract. This paper uses the emergent properties of a Self-Organized 
Criticality (SOC) system for controlling the inertia weight of the Particle 
Swarm Optimization (PSO) algorithm. The strategy is based on the SOC Bak-
Sneppen model of co-evolution. In this model, an ecosystem is simulated by a 
population of species with random fitness connected in a ring topology. In each 
time-step, the worst species and its neighbors are randomly mutated. The 
threshold fitness of the model, which is the highest level the lowest fitness has 
reached, is used in this paper for controlling the inertia weight. The resulting 
algorithm is named Bak-Sneppen threshold PSO (BSt-PSO). An experimental 
setup compares the new algorithm with versions of the PSO with varying inertia 
weight, including a state-of-the-art algorithm with dynamic variation of the 
parameters. The results demonstrate that the BSt-PSO is clearly faster than the 
other algorithms in meeting the convergence criteria.  

Keywords: Particle Swarm Optimization, Self-organized Criticality, Parameter 
Control. 

1 Introduction 

The Particle Swarm Optimization (PSO) algorithm is a meta-heuristic for binary and 
real-valued function optimization inspired by the social behavior of organisms in bird 
flocks and fish schools [11]. Since its inception, PSO has been applied with success to 
a number of problems and motivated several lines of research that investigate its 
working mechanisms. One of these research lines deals with the parameters of the 
algorithm, namely, the acceleration coefficients and the inertia weight, which control 
the balance between global and local search. 

As in other population-based metaheuristics, the parameter values of PSO may be 
hand-tuned for optimal performance or adjusted during the run. There are different 
types of strategies for varying the parameters during the run: deterministic (the values 
change according to pre-defined rules), adaptive (the values depend on the state of the 
search) or self-adaptive (the parameters evolve with the solutions) — see [6] for a 
review on parameter control strategies. The theory of Self-Organized Criticality 
(SOC), introduced in [2], provides interesting schemes that can be easily tailored for 
deterministic and adaptive control of PSO’s working mechanisms. In fact, SOC has 
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been used in the past in population-based metaheuristics, like Evolutionary 
Algorithms (see, for instance, [7] and [15]) and even PSO [16]. This paper proposes a 
SOC-based method for controlling the inertia weight of the PSO. 

The algorithm uses the SOC model known as the Bak-Sneppen model of co-
evolution between interacting species [3], which is simply a population of randomly 
initialized fitness values (species) connected in a ring topology that evolve towards 
higher average fitness under a simple stochastic rule: in each time-step, the worst 
fitness value and its two neighbors are mutated. A threshold value is defined as the 
highest value the lowest fitness in the population has reached. This value tends to 
grow with time, with periods of stasis between improvements. The Bak-Sneppen 
threshold PSO (BSt-PSO) runs a Bak-Sneppen model online with the PSO and uses 
the threshold value for controlling the inertia weight of the algorithm.  

The investigation reported in this paper extends the study on the Bak-Sneppen 
PSO (BS-PSO) [9] and simplifies the algorithm. The BS-PSO dynamically controls 
the inertia weight, the acceleration coefficients  and , and also a perturbation of 
the particles’ positions, using the fitness values of each species, which are directly 
linked to each particle of the swarm. The algorithm requires a constant pre-defined 
value for limiting the mutation cycles of the model. BSt-PSO only controls the inertia 
weight (a wider control range is left for future work) and uses a global variable of the 
system for that purpose. Such a scheme does not require additional parameters or pre-
defined constants and results in a fast and efficient algorithm.  

A simple experimental setup was designed as a proof-of-concept. The modified 
algorithm performs consistently throughout the test set and is faster than all the other 
algorithms in the test set in meeting the stop criteria. BSt-PSO is compared with 
deterministic and adaptive control methods, as well as with a state-of-the-art PSO that 
adapts not only the inertia weight values, but also the acceleration coefficients. The 
results demonstrate the validity of the approach and show that BSt-PSO, without 
requiring the hand-tuning of the inertia weight, acceleration coefficients or any other 
parameter, is at least competitive with other PSOs. Furthermore, the base-model is 
simple and well-studied by the SOC theory, and can be treated as a black-box system 
that outputs batches of values for the parameter. 

The present work is organized as follows. The next section describes PSO; Section 
3 introduces SOC and gives some examples of the application of this theory in bio-
inspired computation; Section 4 describes the proposed BSt-PSO; Section 5 describes 
the experiments and discusses the results. Finally, Section 6 concludes the paper and 
outlines future lines of research. 

2 Particle Swarm Optimization 

The PSO algorithm is a swarm intelligence algorithm in which a group of solutions 
travels through the search space according to a set of rules that favor their movement 
towards optimal regions of the space. A simple set of equations that define the 
velocity and position of each particle. The position vector of the i-th particle is given 
by , , , , … , ), where  is the dimension of the search space. The velocity 
is given by , , , , … , ). The particles are evaluated with a fitness function 

 in each time step and then their velocities and positions are updated by: 
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, , 1 , , 1 , , 1  (1) 

, , 1 ,  (2) 

where  is the best solution found so far by particle ,  is the best solution found so 
far by the neighborhood, and  are vectors of random numbers uniformly 
distributed in the range 0,1] and and  are acceleration coefficients that tune the 
relative influence of each term of the formula. The first, influenced by the particles 
best solution, is known as the cognitive part, since it relies on the particle’s own 
experience. The last term is the social part, since it describes the influence of the 
community in the velocity of the particle.  

Two typical sociometric principles may define the population network structure, 
which defines neighborhood of each particle, although other structures are possible. 
The first connects all the members of the swarm to one another. It is called , 
where  stands for global. The second, called  (  stands for local), creates a 
neighborhood that comprises the particle itself and its  nearest neighbors. In order to 
prevent particles from stepping out of the limits of the search space, the positions ,  of the particles are limited by constants that, in general, correspond to the 
domain of the problem: , , . Velocity may also be limited within 
a range in order to prevent the explosion of the velocity vector: , , . ω 

Although the basic PSO may be very efficient on numerical optimization, it 
requires a proper balance between local and global search. If we look at equation 1, 
we see that the last term on the right-hand side of the formula provides the particle 
with global search abilities, while the first and second terms act as a local search 
mechanism. Therefore, by weighting these two parts of the formula it is possible to 
balance local and global search. In order to achieve a balancing mechanism, Shi and 
Eberhart [18] introduced the inertia weight  , which is adjusted — usually within the 
range [0, 1.0] — together with the constants  and   in order to achieve the desired 
balance. The modified velocity equation is:  

, , 1 , , 1 , , 1  (3) 

The parameter may be used as a constant that is defined after an empirical 
investigation of the algorithm’s behaviour. Another possible strategy, introduced in 
[19], is to use time-varying inertia weights (TVIW-PSO): starting with an initial and 
pre-defined value, the parameter value decreases linearly with time, until it reaches 
the minimum value. Later, Eberhart and Shi [5] found that the TVIW-PSO is not very 
effective on dynamic environments and proposed a random inertia weight for tracking 
dynamic systems. In the remainder of this paper, this method is referred to as 
RANDIW-PSO. 

An adaptive approach is proposed in [1]. The authors describe a global local best 
inertia weight PSO (GLbestIW-PSO), which uses an on-line variation strategy that 
depends on the  and  values. The strategy is defined in a way that better solutions 
use lower inertia weight values, thus increasing their local search abilities. The worst 
particles are modified with higher  values and therefore tend to explore the search 
space. 



52 C.M. Fernandes, J.J. Merelo, and A.C. Rosa 

Ratnaweera et al. [17] describe new parameter automation strategies that act upon 
several working mechanisms of the algorithm. The authors propose the concept of 
time-varying acceleration coefficients. They also introduce the concept of mutation, 
by adding perturbations to randomly selected modulus of the velocity vector. Finally, 
the authors describe a self-organizing hierarchical particle swarm optimizer with 
time-varying acceleration coefficients (HPSO-TVAC), which restricts the velocity 
update policy to the influence of the cognitive and social part, reinitializing the 
particles whenever they are stagnated in the search space. Ratnaweera et al. show that 
the HPSO-TVAC outperforms other methods in a specific test set. Variations of the 
algorithm, such as the time-varying acceleration coefficients PSO (TVAC-PSO) and 
the Particle Swarm Optimizer with „mutation‰ and time-varying acceleration 
Coefficients (MPSO-TVAC) are also tested. In Section 5, the TVAC-PSO is compared 
to the BSt-PSO.  

Another method for controlling  is given by Suresh et al. [20]: the inertia-
Adaptive PSO (IA-PSO). The authors use the Euclidean distance between the particle 
and  for computing  in each time-step for each particle. Particles closer to the 
best global solution tend to have higher  values, while particles far from  are 
modified with lower inertia. The algorithm introduces a parameter  that restricts the 
inertia weight to working values. In addition, Suresh et al. also uses a perturbation 
mechanism of the particles’ positions that introduces a random value in the range 1, , where  is a new parameter for the algorithm (see equation 4, which replaces 
equation 2). However, the magnitude of the perturbation scheme depends on the 
position of the particles and it may favour the algorithm when solving functions with 
origin-centred solutions. 

The authors report that the IA-PSO outperforms several other methods in a 12-
function benchmark, including the above referred state-of-the-art HPSO-TVAC. The 
algorithm is simple and easy to implement and it inertia weight variation scheme is 
included in the test set described in Section 4 in order to evaluate the performance of 
the BS-PSO.  

, 1 . , 1 ,  (4) 

Like HPSO-TVAC and IA-PSO, the method proposed in this paper also aims at 
controlling the balance between local and global search by dynamically varying the 
parameters, while introducing perturbations in the particles’ positions (like IA-PSO, 
but with  controlled by the SOC model). The main objective is to construct a simple 
scheme that does not require complex parameter tuning or pre-established strategies. 
In addition, each particle’s inertia weight, acceleration coefficients and perturbation  
are controlled by the same species of the BakSneppen model, which simplifies the 
algorithm’s design and links the four parameters to a common variation strategy. 
Section 3 describes SOC, the Bak-Sneppen model and new method for controlling the 
parameters. 

3 Self-Organized Criticality 

SOC systems are dynamical system with a critical point in the transition region 
between order and chaos as an attractor. While order means that the system is 



 A Time-Varying Inertia Weight Strategy for Particles Swarms 53 

working in a predictable regime where small disturbances have only local impact, 
chaos is an unpredictable state very sensitive to initial conditions or small 
disturbances. In complex adaptive systems, complexity and self-organization usually 
arise in that region. However, and unlike many physical systems, which have a 
parameter that needs to be tuned in order to reach criticality, SOC systems are able to 
self-tune to that critical state.  

Small disturbances in a SOC system that is in the critical state can lead to the so-
called avalanches, i.e., chain reactions that are spatially or temporally spread through 
the system. This happens independently of the initial state. Moreover, the same 
perturbation may lead to small or large avalanches, which in the end show a power-
law proportion between their size and abundance. This means that large events may 
hit the system periodically and reconfigure it.  

The first model in which SOC was identified was the sandpile model, introduced 
by Bak et al. [2]. Later, another SOC model was devised in order to describe the 
relationship between extinction events and their frequencies, and explain some 
features of the fossil record. The system is named after the scientists who first 
described it as the Bak-Sneppen model [3]. 

The Bak-Sneppen is a model of co-evolution between interacting species in an 
ecological environment. Different species in the same eco-system are related through 
several features (food chains, for instance); they co-evolve, and the extinction of one 
species affects the other species that are related to it, in a chain reaction that can affect 
large segments of the population. Each species has a fitness value assigned to it and it 
is connected to other species (neighbors) in a ring topology (i.e., each species has two 
neighbors). Every time step, the species with the worst fitness and its neighbors are 
eliminated from the system and replaced by individuals with random fitness. Such an 
event is recorded as an avalanche of size 1; if the next mutation involves one of the 
newly created species, then the size is incremented. When plotting the size of the 
extinctions over their frequency in a local segment of the population and below a 
certain threshold close to a critical value, a power-law behavior is observed.  

This description may be translated to a mathematical model. The system is defined 
by  fitness numbers  arranged on a -dimensional lattice (ecosystem) with  
cells. At each time step, the smallest  value and its 2  neighbours are replaced by 
uncorrelated random values drawn from a uniform distribution. The system is thus 
driven to a critical state where most species have reached a fitness value above a 
certain threshold. The coevolutionary activity gives rise to chain reactions or 
avalanches: large (non-equilibrium) fluctuations in the configuration of the fitness 
values that rearrange major parts of the system. 

The dynamics of the numerical values of the Bak-Sneppen model — power-law 
relationships between mutation events and their frequency, increasing average fitness 
of the population, periods of stasis in segments of the population punctuated by 
intense activity — are the motivation behind the investigation described in this paper. 
By linking a Bak-Sneppen model to the population of the PSO and then using the 
species’ fitness values as input for controlling the algorithm’s parameters, it is 
expected that the resulting strategy is able to control the inertia weight of the 
algorithm. To the extent of our knowledge, this is the first proposal of a scheme 
linking the Bak-Sneppen model and PSO in such a way. However, SOC has been 
applied to this field of research in the past.  
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Proposed by Boettcher and Percus [4], Extremal Optimization is a computational 
paradigm for numerical optimization based on the Bak-Sneppen model. Extremal 
Optimization does not work with a population of individuals; instead it evolves a 
single solution to the problem by local search and modification. The algorithm 
removes the worst components of the solution and replaces them with randomly 
generated material. By plotting the fitness of the solution, it is possible to observe 
distinct stages of evolution, where improvement is disturbed by brief periods of 
dramatic decrease in the quality of the solution.  

In the Evolutionary Algorithms research field, Krink et al. [14] proposed SOC-
based mass extinction and mutation operator schemes — later extended to cellular 
GAs [15]. The sandpile equations are previously computed in order to obtain a record 
of values with a power-law relationship. Those values are then used during the run to 
control the number of individuals that will be replaced by randomly generated 
solutions (SOC mass extinction model) or the mutation probability of the 
Evolutionary Algorithm (SOC mutation model).  

Tinós and Yang [21] were also inspired by the Bak-Sneppen model to create a 
sophisticated Random Immigrants Genetic Algorithm (RIGA) [10], called Self-
Organized Random Immigrants GA (SORIGA). The authors apply the algorithm to 
time-varying fitness landscapes and claim that SORIGA is able to outperform other 
Genetic Algorithm in the proposed test set. By plotting the extent of extinction events 
(individuals replaced by random solutions), the authors argue that the model exhibits 
SOC behavior, that is, there is a power-law proportion between the size of the 
extinction events and their frequency. This means that from time to time the 
population is almost completely replaced by random immigrants. 

Fernandes et al. [7] describe an Evolutionary Algorithm attached to a sandpile 
model. Later [8], the system was improved and its working mechanisms were studied. 
The model evolves along with the algorithm and its avalanches – system’s reaction 
events to perturbations, which show a power-law relationship between their size and 
their frequency – dynamically control the algorithm’s mutation operator with simple 
local rules. The authors use the proposed scheme for optimizing time-varying fitness 
functions and claim that the sandpile mutation Genetic Algorithm is able to 
outperform other state-of-the-art methods in a wide range of dynamic problems. 

Finally, Løvbjerg and Krink [16] apply SOC to PSO in order to control the 
convergence of the algorithm and add diversity to the population. The authors 
introduce a critical value associated with each particle and define a rule that 
increments that value when two particles are closer than a threshold distance. When 
the critical value of a particle exceeds a globally set criticality limit, the algorithm 
responds by dispersing the criticality of the particle within a certain surrounding 
neighborhood and also by mutating the particle (i.e., the particle is “relocated”). In 
addition, the algorithm uses the particle’s critical value to control the inertia weight. 
The authors claim that their method is faster and attains better solutions than the 
standard PSO. However, the algorithm introduces some parameters and working 
mechanisms that can complicate the design of the PSO. Overall, there are five 
parameters that must be tuned or set to constant ad hoc values. 

In [9], Fernandes et al. introduced the BS-PSO. The algorithm uses the evolving 
fitness values of the Bak-Sneppen model for controlling the inertia weight, the 
acceleration coefficients and a perturbation of the particles’ positions. BS-PSO does 
not add parameters to the basic PSO, except an upper limit for the size of the 
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avalanches, a practical limitation due to the nature of the Bak-Sneppen model and the 
requirements of a numerical optimization algorithm. The perturbation scheme is taken 
from the IA-PSO [20]. However, as stated above, this perturbation scheme bias the 
algorithm when the optimal solution is at the origin. Furthermore, the upper limit for 
the size of the avalanches may affect the algorithm’s performance. Therefore, this 
paper proposes as simplified version of the algorithm, in which the upper limit is not 
required, and the perturbed scheme removed. The BSt-PSO is based only in the 
threshold value of the model and it is described in the following section.  

4 The Bak-Sneppen Threshold Particle Swarm 

The BS-PSO [9] uses a Bak-Sneppen model without modifying any of its rules and 
underlying structure, or introducing complex control mechanisms and rules. The only 
exception is an upper limit for the size of the mutation events that are allowed during 
a time-step of the main PSO algorithm. This limit is used in order to avoid long cycles 
of mutations in the end of the runs that could compromise the speed of convergence 
of the algorithm. Besides that, the model is executed in its original form, during the 
run of the PSO, feeding the later with values between 0 and 1.0 (the species’ fitness 
values) that are then used by the algorithm to control the parameters.  

BSt-PSO is based on the same principles, but it updates the Bak-Sneppen model 
only once in each iteration; therefore, it does not require limit for the mutations 
cycles. Furthermore, it uses the global threshold instead of the fitness of each species.  

Algorithm 1. (Bak-Sneppen Model) 

1. Find the index  of the species  with lowest bak-sneppen fitness  

2. If  then set  
3. Replace the fitness of individuals with indices , 1, and 1 by random values in 

the range [0,1.0] 

Algorithm 2. (BS-PSO) 

1. Initialize velocity and position of each particle. 
2. Evaluate each particle:   

3. Initialize bak-sneppen fitness values: 0 
4. Set 0 
5. Update Bak-Sneppen Model (Algorithm 1). 
6. For each particle : 

7. Set 1  
8. Update velocity and position 

9.  If (stop criteria not met) return to 5; else, end. 
 

Please note that if PSO does not interact directly with the model — which is the 
case studied in this paper —, the Bak-Sneppen model can be executed prior to the 
optimization process and its fitness values stored in order for them to be used later in 
any kind of problem. However, in order to generalize the system and describe a 
framework that can easily be adapted to another level of hybridization of the SOC 
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model and the PSO, the description of the BSt-PSO in this section assumes that the 
model evolves on-line with the swarm. 

In the Bak-Sneppen model, a population of individuals (species) is placed in a ring 
topology and a random real number (between 0 and 1) is assigned to each individual. 
In the BSt-PSO, the size of this ecosystem (number of species) is equal to the size of 
the swarm. Therefore, the algorithm may be implemented just by assigning a second 
(random) fitness value, called bak-sneppen fitness value (bs_fitness) to each 
individual in the swarm. This way, each individual is both the particle of the PSO and 
the species of the co-evolutionary model, with two independent fitness values: the 
quality measure fitness value , computed as usual by the objective function, and 

the bak-sneppen fitness value , which is modified according to Algorithm 1. 
The main body of the BSt-PSO is very similar to the basic PSO algorithm. The 

differences are: algorithm 1 is called in each time-step, modifying three bak-sneppen 
fitness values; the inertia weight of is defined in each time-step (and for each particle 
) using equation 5.  1 (5) 

Algorithm 1 is executed in each time-step of the BSt-PSO. At   0, the bak-
sneppen fitness values are set to 0. This strategy differs from the original model, in 
which the fitness is initialized within the range 0,1], derives from the well 
established knowledge that a time-varying and decreasing inertia weight starting with 
values around 1 improves the performance of the PSO. TVIW-PSO, for instance, uses 
a linear decreasing inertia weight, typically from 0.9 to 0.4. In the BSt-PSO, the 
inertia weight starts at 0 1 and then decreases during the run until reaching 0 0.34, since the threshold fitness rises rapidly at first and then slows as it 
approaches fitness about 0.66. The threshold may rise above 0.66, but it takes 
exponentially longer periods of time for each incremental step upward. Therefore, in 
practice, the inertia weight of the BSt-PSO, varies between 1 and 0.34, with 
a fast decreasing rate in the beginning of the run and slower decreasing behaviour, 
with longer periods of stasis, by the end of the run. This behaviour is independent of 
the stop criteria, unlike TVIW-PSO, which depends in the maximum number of 
iterations (and requires a value for maximum number of iterations in order to compute 
the inertia weigh in each time-step).  

During the run, the algorithm searches for the worst individual in the population 
(lowest bs_fitness), and mutates that individual by replacing the bs_fitness by a 
random uniformly distributed value in the range 0, 1 . In addition, the neighbors of 
the worst species are also mutated (please remember that a ring topology connects the 
population and each species with index  to its two neighbors with indexes 1 and 1). The threshold fitness is updated in each time-step: if the lowest fitness in the 
current population is above the threshold, then the threshold is set to the lowest 
fitness. This is the standard working update mechanism of the Bak-Sneppen model.  

Using the threshold value for controlling the inertia weight results in a simple 
strategy that does not require additional parameters or complicated rules. The scheme 
is solely based on the dynamics of the Bak-Sneppen model. The algorithm is very fast 
and performs consistently. The following section presents the experiments with the 
BSt-PSO and demonstrates that the algorithm is clearly faster than the other 
approaches in meeting stop criteria. 
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Table 1. Benchmarks for experiments. Dynamic and initialization range. 

function mathematical representation 

Range of search/ 

Range of 
initialization 

stop 

Sphere 

f1 
 

100, 100  

(50, 100  
0.01 

Rosenbrock 

f2 
100 1  

100, 100  15, 30  
100 

Rastrigin 

f3 
10 cos 2 10  

10, 10  2.56, 5.12  
100 

Griewank 

f4 
1 14000 cos √  

600, 600  300, 600  
0.05 

Schaffer 

f5 
0.5 sin 0.51.0 0.001  

100, 100  15, 30  
0.00001 

5 Experiments and Results 

In order to test the BSt-PSO and compare it to other PSOs, an experimental setup was 
constructed with five unimodal and multimodal benchmark functions that are 
commonly used for investigating the performance of this class of algorithms. The 
functions are described in Table 1. The optimum (minimum) of all functions is 
located in the origin with fitness 0. The dimension of the search space is set to 30 (except Schaffer, with 2 dimensions). TVIW-PSO, RANDIW- PSO, IA-PSO 
and TVAC-PSO were included in the tests in order to evaluate the performance of the 
BSt-PSO. Every algorithm possesses an inertia weight dynamic control scheme. In 
addition to the control of the inertia weight, the TVAC-PSO also uses a control 
scheme for the acceleration coefficients. In order to make fair comparisons, the IA-
PSO only uses the inertia weight control scheme. The perturbation scheme was 
removed also because, as stated in Section 2, it biases the comparisons towards the 
algorithm when the best solution is in the origin of the axis.  

The population size  is set to 40 for all algorithms. The acceleration coefficients 
were set to 1.9 (except for TVAC-PSO, which uses a dynamic control strategy). 

 is defined as usual by the domain’s upper limit and   . TVIW-
PSO uses linearly decreasing inertia weight, from 0.9 to 0.4. In the RANIW-PSO, the 
inertia weigh in each iteration is a random number with uniform distribution in the 
range 0,1 . A total of 50 runs for each experiment are conducted. Asymmetrical 
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initialization was used (the initialization range for each function is given in (Table 1) 
and the topology selected for every algorithm is . 

Two sets of experiments were conducted. In the first one, the algorithms were run 
for a limited amount of iterations (3000 for  and , 10000 for ,  and ) and 
the fitness of the best solution found was averaged over the 50 runs. In the second set 
of experiments the algorithms were all run for 20000 iterations or until meeting a 
stop criterion. The criteria were taken from [13] and are given in (Table 1). The 
number of iterations required to meet the criterion was recorded and averaged over 
the 50 runs. A success measure was defined as the number of runs in which an 
algorithm attains the fitness value established as the stop criterion. These experiments 
are similar to those described in [13]. 

Table 2. Average and standard deviation of the averaged optimal solution for 50 trials 

 BS-PSO TVIW RANDIW IA-PSO TVAC-PSO 

f1 
1.54e-32 3.29e-12 1.23e-12 1.20e-10 5.66e-29

±3.43e-32 ±3.08e-12 ±1.40e-12 ±3.08e-10 ±6.53e29

f2 
1.90e+01 3.48e+01 1.65e+01 5.58e+01 1.06e+01

±2.87e+01 ±4.61e+01 ±2.35e+01 ±8.11e+01 ±1.95e+01

f3 
7.29e+01 3.78e+01 7.72e+01 2.96e+01 4.23e+01

±1.73e+01 ±7.52e00 ±2.20e+01 ±1.44e+01 ±1.04e+01

f4 
3.85e-03 4.48e-03 3.60e-03 3.87e-03 3.75e-03

±2.94e-03 ±4.35e-03 ±2.64e-03 ±2.57e-03 ±3.30e-03

f5 
0.00e00 0.00e00 3.25e-04 3.26e-04 0.00e00

±0.00e00 ±0.00e00 ±1.64e-03 ±1.64e-03 ±0.00e00

Table 3. Average number of evaluations to a solution for 50 trials and success rate 

 BS-PSO TVIW RANDIW IA-PSO TVAC-PSO

f1 

604.36 8700.82 1120.88 1027.50 4585.92

±28.18 ±129.74 ±62.17 ±82.58 ±85.49

(50) (50) (50) (50) (50)

f2 

2259.28 9963.12 2207.20 3644.02 5520.44

±2871.88 ±704.84 ±1293.84 ±3811.11 ±990.34

(50) (50) (50) (46) (50)

f3 

667.18 7174.58 2610.85 2876.30 4166.68

±702.76 ±516.26 ±4210.68 ±1102.93 ±264.06

(49) (50) (46) (50) (50)

f4 

579.48 8565.94 1049.66 820.46 4598.62

±31.90 ±232.93 ±98.94 ±90.11 ±135.80

(50) (50) (50) (50) (50)

f5 

473.72 546.88 899.38 832.60 148.69

±633.69 ±721.98 ±898.02 ±991.56 ±94.65

(50) (50) (50) (50) (50)
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Table 2 gives the best solution found by each algorithm in each function, averaged 
over the 50 runs. Table 3 gives the averaged number of evaluations required for 
meeting the stop criteria, as well as the success rate (the number of runs in which the 
criterion was met). There is no algorithm that clearly outperforms all the others when 
considering the best solutions found. However, the BSt-PSO is clearly the best 
strategy when measuring and comparing the evaluations required for meeting the stop 
criteria: it is only outperformed by PSO-TVAC on the  function.  

Table 4 summarizes the results attained by the algorithms by comparing BSt-PSO 
results with the other algorithms using non-parametric statistical tests. Kolmogorov-
Smirnov statistical tests with 0.05 level of significance were used. The null 
hypothesis states that the datasets from which the offline performance and standard 
deviation are calculated are drawn from the same distribution. A ‘+’ sign means that 
BSt-PSO is statistically better than the other algorithm, ‘≈’ means that the PSOs are 
equivalent, and ‘–’ means that BSt-PSO is worse than the other algorithm. Both the 
averaged best solutions and the averaged number of evaluations to a solution are 
compared in Table 4. BSt-PSO is indeed clearly better the other PSO in all the 
functions when considering the evaluations criteria, except for RANIW on , and 
TVIW and TVAC-PSO on . As for the best solution criteria, BSt-PSO is better or at 
least competitive with TVIW, RANDIW and IA-PSO in every function except . 
When compared to PSO-TVAC, BSt-PSO is better with , worse in  and , and 
equivalent in  and . However, please remember that PSO-TVAC uses a dynamic 
scheme for controlling the acceleration coefficients, while BSt-PSO uses a fixed value 
for both coefficients.  

The above discussed results are not definitive but they demonstrate the validity of 
the algorithm. The following step is to understand why the proposed scheme works 
well with PSO. This is not a trivial task and further research is required in order to 
recognize all the effects of SOC-generated inertia weight in the behaviour of the 
algorithm. However, a simple experiment may shed some light on the dynamics of the 
SOC-generated parameters. 

Table 4. Statistical tests comparing BSt-PSO with the other algorithms. The first symbol refers 
to the best solution, the second symbol compares the number of evaluations to a solution.  

 TVIW RANDIW IA-PSO TVAC-PSO 

f1 ++ ++ ++ ++ 
f2 ++ ≈≈ ++ −+ 

f3 −+ ≈+ −+ −+ 

f4 ++ ≈+ ≈+ ≈+ 
f5 ≈≈ ++ ++ ≈− 
 
Fig. 1 shows the inertia weight of the BSt-PSO in a typical run. The initial  

values are around 1 and then decrease fast in the first stage of the search to values 
around 0.4. The value keeps decreasing but at slower rate, and finally stabilizes 
around 0.36. The range of values is similar to the typical range used in the TVIW, 
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which is 0.4, 0.9 . However, TVIW variation is linear, while BSt-PSO experiences a 
different variation pace. Such a variation scheme is possibly a more efficient 
alternative to the control scheme given by the TVIW-PSO.  

One possible limitation of the current BSt-PSO is that the values do not depend on 
the state of the search. For that, other levels of hybridization between the Bak-
Sneppen model and the PSO should be devised. These schemes would incorporate 
information from the search into the  update, so that time and the fitness 
distribution of the swarm could influence the parameter. Although this can be 
achieved with a deterministic strategy, letting the model and the PSO interact and 
self-adjust the averaged growth rate of the parameters keeps the method simple and 
avoid the hand-tuning of extra parameters. Such hybridization is the main target for a 
future research. 

 
 

 

Fig. 1. Inertia weight of a typical run of the BSt-PSO 

6 Conclusions 

This paper describes the Bak-Sneppen threshold Particle Swarm Optimization (BSt-
PSO). The algorithm uses the Self-Organized Criticality (SOC) Bak-Sneppen model 
for computing the inertia weight of the algorithm, without requiring hand-tuning and 
additional parameters. Being a SOC system, The Bak-Sneppen model is able to self-
tune to a critical state and it may be treated as a black-box that that outputs batches of 
values for the parameters. 

An experimental setup with five functions demonstrates the validity of the 
algorithm. BSt-PSO is compared with other methods with promising results. In 
particular, the algorithm is competitive with a state-of-the-art PSO with dynamic 
control of the inertia weight and acceleration coefficients. The dynamics of the 
parameter values, induced by the attached model, are investigated and hypotheses that 
try to explain the performance of the algorithm are put forward.  

In a future work, more functions will be included in the test set. A scalability 
analysis is intended. In order to introduce information from the search into the 
variation scheme of the parameter values, different levels of hybridization between 
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the Bak-Sneppen model and PSO will also be tested. Finally, it is our intention to 
extend the algorithm to time-varying aceleration coefficients and perturbation of the 
particles’ velocity and position. 
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Abstract. Swarm art is a subfield of a contemporary digital art trend, called 
generative art, which uses swarm intelligence for creative purposes. Swarm 
intelligence is a computational paradigm that relies on a population of simple 
entities that interact with each other and/or with the environment by means of 
simple rules. KANTS consists of a population of input data vectors that 
communicate through a 2-dimensional heterogeneous grid of vectors, updating 
those vectors in the process. The algorithm was originally designed for data 
analysis. This paper describes recent swarm art experiments with an ant-based 
clustering algorithm called KANTS, which is noved here from its scientific 
framework and used as a stochastic generator of coloured paintings. Different 
types of data have been used as input vectors and two different approaches for 
initializing the grid of vectors were tested, each one leading to different types of 
images: figurative and abstract. The paper gives an overview on the application 
of KANTS to swarm art, and describes the most recent experiments with the 
algorithm in photo rendering. Data from the red, green and blue (RGB) color 
representation data of photographs are used as input and grid vectors in order to 
generate realistic versions of those same photos. We call the images pherogenic 
paintings, since the output vectors used for generating them are the pheromone 
maps of the ant algorithm. As a creative tool, the method is contextualized 
within the swarm art field. 

Keywords: Swarm Art, Generative Art, Ant Algorithms, Stigmergy, 
Pherogenic Paintings. 

1 Introduction 

Generative art is a contemporary trend that uses autonomous systems for generating 
artworks or ornamental objects. There may be any amount of human interaction with 
the process, but, in general, the core of a generative artwork is the result of a 
computational and sometimes emergent procedure. Swarm Intelligence [3] is one of 
the techniques used in this field, whether as computational simulations for creating 
digital art that can be later translated to a physical medium, or as guiding rules for 
groups of agents (robots, for instance) that act directly and physically on a canvas. 
Within the swarm intelligence computation paradigm, social insects and the concept 
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of stigmergy have inspired significant artworks that question the borders and nature of 
creativity. This paper focuses on a digital approach and describes the use of swarm 
intelligence algorithm based on social insects called KANTS as a swarm art tool.  

KANTS is an ant-based algorithm proposed by Mora et al. [18] for data clustering 
and classification. The method is loosely inspired by the Ant System [4], a model of 
an ant colony that is described by a set of equations and parameters that, when 
properly tuned, guide the swarm towards a self-organized state in which complex 
patterns of global behavior emerge. Instead of the 2-dimensional homogeneous lattice 
used in Ant System as a habitat for the swarm, KANTS works on a 2-dimensional 
lattice with one vector of real-valued variables mapped to each cell, i.e., the 
environment is a grid of vectors. The agents also differ from the Ant System, since 
KANTS uses input data vectors (with the same size as the environmental vectors) as 
artificial ants. The ants travel trough the grid, adjusting the vectors they visit towards 
their own vector. At the same time, the ants are attracted to similar vectors. The 
swarm communicates via the environment, an ability that is a fundamental part of a 
process known as stigmergy [4]: communication via an environment, with possible 
modification of that same environment. The model’s simple set of rules leads to a 
global behavior in which clusters of similar ants/vectors tend to emerge.  

KANTS has been used in recent years by the authors for generating 2-dimensional 
non-figurative images of different types of correlated data sets, such as 
electroencephalogram (EEG) signals [9] or red, green and blue (RGB) values of 
digital copies of famous abstract paintings, an artwork that won the 2012 
Evolutionary Art, Design and Creativity Competition [11]. In this paper, the work 
presented in [9] is extended and the behavior of KANTS when the input data vectors 
are the RGB values of photographs is studied. Furthermore, instead of the random 
initialization strategy used in the previous artworks, the environment is now 
initialized with the data from the same photograph that generates the input data.  

As stated above, the ants change the environmental vectors when moving on the 
grid: the grid of vectors is as a kind of pheromone map that is shaped by the ants. The 
maps are used in this paper for generating 2-dimensional RGB colored images that we 
call pherogenic paintings. The vectors are directly translated into the R, G, and B 
values. Since the ants tend to cluster, thus adjusting the vectors in the region of the 
habitat were they stand, it is expected that the pheromone map, after a certain number 
of iterations, shows non-random patterns, like a kind of a fuzzy patchwork.  

Two projects are described in this work. The first one, introduced in [9], uses a set 
of features extracted from sleep electroencephalogram signals as input data. The 
stochastic nature of the process and the size and range of the data samples, make these 
sleep signatures unique, not only for each patient, but also for each patient’s night 
sleep. We argue that these pherogenic paintings (or drawings) not only represent an 
interesting imagery related to human sleep, but could also be a basis for a conceptual 
framework for artists and scientists to work with. The second experiment is main new 
proposal of this paper. It uses data from colored photographs, not only as the source 
of input data vectors, but also for initializing the grid vectors. Therefore, the ants 
move on an environment that is biased towards the original form and color structure 
of the photo. The resulting image is a kind of filtered version of the photograph, so 
that KANTS can be used as a filtering tool for creative purposes. The effects of 
varying KANTS’ parameters are investigated.    
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The paper is organized as follows. Section 2 discusses generative art and swarm 
art. Section 3 describes the version of the KANTS algorithm used in this paper. 
Section 4 shows the images generated by the algorithm with a set of sleep data vectors 
and input vectors taken from the RGB values of photographs. Finally, Section 5 
concludes the paper and suggests future lines of work. 

2 Background Review 

Swarm art, which refers to artworks or ornamental objects generated by swarm 
intelligence systems, is a subfield of generative art, a term used to classify artistic 
creations that are primarily created with artificial intelligence systems or other 
computational models. There is a large amount of work in the area, and generative art 
is even gradually dividing itself into subfields, such as artificial music, and 
evolutionary art. From the several works proposed in the last decades, we will 
describe just a few, more related to the pherogenic paintings, technically or 
metaphorically. 

As in KANTS, Leonel Moura’s swarm paintings [20] are also based on Chialvo 
and Millonas’ Ant System. The author started by experimenting on-screen computer 
drawings, using the Ant System. However, the results were disappointing until he 
used a CAD machine and a brush to create physical objects. Since then, Moura has 
been experimenting with swarms, self-organization and robotics [21]. 

Like Moura, Monmarché et al. [17] also use ants for their research on the 
potentialities of swarms as “non-human artists”. The authors discuss the ant paradigm 
as a tool for generating music and painting.  

Using a common terminology in the History of Art, Moura and Monmarché’s 
swarm paintings may be categorized as abstract, while the proposal by Collomosse 
[5], for instance, which uses Evolutionary Computation to evolve aesthetically 
appealing techniques for photo rendering, is more related to figurative art. Semet et 
al. [24] also investigated the automatic generation of rendering. The authors propose a 
method for non-photorealistic rendering based on artificial ants. The ants move and 
sense the environment (image) and deposit “ink” on an output image, according to 
their location and the state of a short term memory. The user interacts with the ant 
colony, by choosing the parameters, defining “importance maps” and deciding when 
the rendering is finished.  

In 2001, Ramos and Almeida [22] proposed a modification of the Ant System 
described in [4]. In this variant, the ants move around a greyscale image, detecting its 
edges while generating pheromone maps that are sketches of the image. Later, 
Fernandes et al. 7 described an evolutionary extension to the model. In 2010, 
Fernandes [7] proposed the term pherographia (meaning drawing with pheromones) 
as a designation for the resulting pheromone maps of the system, and projected a line 
of creative pherographia-based projects that resulted in several artworks. These 
artworks have been exhibited to a heterogeneous audience — see [6] and [21].  

In a sense, the pherogenic paintings described in this paper are also pherographs, 
since KANTS comes from the same base-system, and the images are actually the 
pheromone maps of the algorithm. However, we use here the term pherogenic 
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drawings in order to differentiate from the images in [22] and [7], which are closely 
related to photographia, the inspiration of the term pherographia.  

In fact, pherographia, as used by Fernandes, results in typical figurative artworks, 
while, for instance, the sleep swarm paintings presented in this paper are purely 
abstract. The pherographs are created using a photograph as a base-image; KANTS 
uses correlated data, which interacts in a heterogeneous environment, “shaping” that 
same environment. Of course, pherographia, since it imitates the base-image, may 
also be used for creating non-figurative works, as long as such kind of image is 
chosen as a base-image. That is, pherographia relies much more on the human 
decision, while the results given by KANTS, as shown in Section 4, are more 
unpredictable, since they depend on large quantities of data, gathered from natural 
phenomena.  

Pherographia and the above referred works do not rely on an explicit objective 
function to guide the exploration of the environment, but other approaches require a 
fitness function that must be optimized. These approaches, usually termed as 
evolutionary art, may be divided in two classes: automated and interactive 
evolutionary art. The latter is based on interactive Evolutionary Algorithms (EA) [26]. 
Interactive EAs use human evaluation for determining the quality of the solutions 
described by the population: i.e., one or more humans evaluate every solution and 
provide the algorithm with some measure of quality of the correspondent individual 
or guide the search by interacting with the reproduction process (human-guided EAs).  

Interactive evolutionary art relies on human evaluation of phenotype fitness within 
an otherwise standard EA. Karl Sims [25], for instance, used a human-guided EA for 
generating 2-dimensional abstract forms. Sims has an extensive body-of-work on 
artificial and evolutionary art. Since then, several researchers and artists have been 
working on interactive evolutionary art, which has been also used in combination with 
swarm art. Aupetit et al. [2], for instance, use an interactive EA for evolving the 
parameters of an artificial ant colony that interacts with the environment (canvas). 
Each ant competes with the other ants for colour placement. Given a set of 
parameters, the ants are able to draw complex images, and they can even paint for 
several hours, giving a different painting in each moment. The sensory mechanism of 
the ants in [2] was modelled in such a way that they are responsive only to the 
luminance values of the colours. Greenfield [13] follows a different approach and 
uses ants that are responsive to tristimulus colour values. Furthermore, he uses a non-
interactive EA by designing fitness functions for evolving ant behaviour. Later, the 
author increased the complexity of his model and designed ants that are responsive to 
both environmental stimulus and other ants’ direct stimulus, thus increasing the role 
of stigmergy in the model [14].  

These are just a few examples of swarm and evolutionary art, more related to the 
work described in this paper. There are many variants of generative art and other 
authors have been providing interesting compilations and state-of-the art reviews. 
Please check Lewis [16] for an exhaustive review on the state of the art, not only on 
interactive and human-guided generative art, but also on other types of generative art. 
There is also a book edited by Romero and Machado [23] that gathers some of the 
most relevant generative art investigations of the past decade.   

In this paper, we aim at contributing this field by using the KANTS clustering 
algorithm as a swarm art creative tool. For describing the paintings generated by 
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KANTS we have coined the term pherogenic paintings. Pherogenic means generated 
by pheromone. In a sense, the pherogenic paintings are an extension of the 
pherographs [8], since KANTS derives from the same base-system, and the images 
are actually the pheromone maps of the algorithm. However, we use here the term 
pherogenic in order to differentiate them from the scheme proposed in [22]. 
Furthermore, pherographia, as used by Fernandes [8], results in typical figurative 
artworks, while the swarm paintings, if the grid vectors is randomly initialized, are 
purely abstract. KANTS uses correlated data that interacts stochastically in a 
heterogeneous environment. The results are unpredictable, since they depend on large 
quantities of data gathered from natural phenomena. However, figurative images are 
also possible with KANTS if a non-random strategy for initializing the grid vector is 
followed. Section 4 introduces a swarm art project based on photographs of which the 
resulting pherogenic paintings are photo-realistic. But first, the following section 
describes the algorithm. 

3 KANTS 

The KANTS algorithm is an ant-based method for data clustering and classification. 
The term KANTS derives from Kohonen Ants, since the algorithm was partially 
inspired by Kohonen’s Self-Organizing Maps [15]. However, KANTS is also based 
on the Ant System [4] and its working mechanisms are similar to that algorithm 
model. The way the concept of pheromone is implemented is the main difference 
when comparing KANTS with Ant System. In addition, instead of the 2-dimensional 
homogeneous or square grid used by the Ant System as the habitat for the ants, 
KANTS swarm moves on a square grid of vectors. 

For KANTS, the equations in [4] were adapted so that ants (input data vectors) 
tend to move towards similar vectors in the grid. Then, when visiting a specific site in 
the grid, the ants update that grid vector and its neighbours towards their own vector, 
i.e., the Euclidean distance between the grid vectors on the local neighbourhood of the 
ant, and the input data vector (which remains constant throughout the run) is reduced. 
This approach is inspired by SOM. However, other characteristics of the algorithm 
make him rather distinct from SOM. In KANTS, there is a limitation of the mobility 
inherent to the system, since the data vectors move “physically” on the finite grid and 
have only a short range of action. The patterns (inputs) in SOM choose the Best 
Matching Unit (neuron) without any topological limitation. Furthermore, KANTS is 
stochastic, while in SOM an input vector always elects the Best Matching Unit. 

This section describes a simplified version of KANTS. Since performance is not 
an issue here, the algorithm has been deprived of some parameters that can be useful 
for fine-tuning its behaviour, but are not fundamental for swarm art. The reader is 
referred to [18] for a detailed description of the original KANTS.  

3.1 The Algorithm 

KANTS is based on the emergent properties of a set of simple units that travel 
through a 2-dimensional grid. In KANTS, this habitat is mapped to an array with size 
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, in which  is the dimension of the data vectors of the target-problem, and 
 is the dimension of the grid. That is, each cell in the habitat is mapped to a -

dimensional vector. In addition, the ants also “carry” a -dimensional vector that 
corresponds to a data sample: each ant is in fact one data sample of the data set. The 
main idea of the algorithm is having data samples (ants) moving on (and updating a) 
an array of real-valued vectors with the same size of the samples. The dimension of 
the habitat affects the performance. In general, a ratio between the number of data 
samples and the size of the habitat (measured in number of cells) in the range 1: 3, 1: 2  provides a good basis for KANTS clustering ability. 

The grid vectors are initially set to a random value with uniform distribution in the 
range 0, 1.0 . Then, the ants are randomly placed in the grid (after the vectors they 
“carry” are also normalized within the range 0, 1.0 ). In each iteration, each ant is 
allowed to move to a different cell of the habitat and modify that cell’s vector values.  
The ants move to neighboring cells using equations 1 and 2, taken from the Ant 
System. 1 1  (1) j . r j∑ j.  (2) 

Equation 1 measures the relative probability of moving to a cell  with pheromone 
density . The parameter  ( 0  is associated with the osmotropotaxic sensitivity. 
Osmotropotaxis has been recognized by Wilson (1971) as one of two fundamental 
types of an ant’s sensing and processing of pheromone, and it is related to 
instantaneous pheromone gradient following. In other words, parameter  controls the 
degree of randomness with which the ants follow the gradient of pheromone. The 
parameter  ( 0  defines the sensory capacity (1⁄ ), which describes the fact that 
each ant’s ability to sense pheromone decreases somewhat at high concentrations. 
This means that an ant will eventually tend to move away from a trail when the 
pheromone reaches a high concentration, leading to a peaked function for the average 
time an ant will stay on a trail, as the concentration of pheromone is varied.  

Equation 2, which models the probability of an ant moving to a specific cell in the 
habitat  belonging to the current cell’s Moore neighbourhood, is defined after a 
discretization of time and space:  is the probability of moving from cell  to , 

 is given by equation 1 and  is set to 1 if the cell  is within a user-defined 
radius centered on the cell  (or any other type of permitted target-region defined by 
the user) and 0 otherwise. The pheromone density  in equation 3 is defined as the 
inverse of the Euclidean distance ,  between the vector carried by ant   
and the vector in cell ,  at time-step t, . 1,  (3) 

This way, an ant tends to travel to cells that are mapped to vectors which are more 
similar to its own vector. (Please note that  is a data sample and therefore constant, 
while the vectors mapped by the grid are modified by the ants). The ants update the 
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cell’s vector where they are currently on, according to equation 4, where 0,1.0  
is a learning rate that controls how fast the cells’ vectors acquire the information 
carried by the ants. 

Equation 4 is the one that modifies the environment and shapes the images given 
in Section 5. Please note that this reinforcement action is proportional to the 
Euclidean distance between the input vector (ant) and the grid vector: an ant tends to 
travel to regions of the grid with vectors more similar to its own, and, at the same 
time, they change those vectors values, adjusting them towards their own, at a rate 
that is proportional to the distance between the vectors. 

 1  1 , . 1  (4) .  (5) 

Finally, the grid vectors are all evaporated in each time step. Evaporation, in KANTS, 
is done by updating the values according to Equation 5, where 0,1.0  (usually a 
small value, in the range 0.001, 0.1 ) is the evaporation rate and  is the vector’s 
initial state (at 0). Basically, the evaporation step adjusts the vectors towards their 
initial values. 

With this set of equations and swarm/environment structure, the ants shape the 
environment, communicate via that environment, self-organize, and, after a certain 
number of iterations, congregate in clusters that more or less represent each class in 
the data set. As a non-supervised clustering algorithm [18], KANTS uses the 
pheromone maps (i.e., the grid) only for the ants to communicate. The important 
components of KANTS as a problem solver are the clusters and the classification 
maps. Section 4 shows how the grid can be visualized as a kind of data’s fingerprint.  

4 Swarm Art with KANTS 

The first application of KANTS in a swarm art context is described in [9]. The project 
is called pherogenic sleep drawings, and it uses input data extracted from EEG 
signals recorded from sleeping patients. The signals were originally processed for 
testing automatic sleep classifiers [1]. In fact, KANTS’s abilities to classify sleep 
stages have been previously tested with the same data sets [19]. However, in [9], the 
sleep data vectors have been used only with the purpose of generating abstract 
representations of human sleep.  

For generating the sleep paintings, a set of three-dimensional vectors describing the 
sleep EEG signal of one night is used as input data vectors. The grid is randomly 
initialized and the data vectors are left to interact and travel on the grid for a number 
of iterations. The resulting grid of vectors is then translated into RGB values. Some of 
these results are in Fig. 1. The images reflect the interaction of the ants with the 
environment and with each other. It has been also shown in [9] that data sets with 
atypical data distribution generate radically different images (an example is the image 
on the left in Fig. 1). However, even if some paintings have similar chromatic 
distribution, each one is unique as representation of person’s night sleep. The 
experiments, results and details on the data used for generating the pherogenic sleep 
paintings are described in [9]. 



70 C.M. Fernandes et al. 

 

  

Fig. 1. Pherographic sleep paintings generated by four data sets extracted from the EEG signals 
of four different patients 

Being an art project, there is an unavoidable (and desired) subjectivity in this work. 
However, for the authors, the results were motivating, not only creatively, but also as 
a science-art experience. For long, sleep was a mysterious state that science and 
philosophy tried to study and interpret. In addition, dreams, an inseparable feature of 
human sleep, added a mystic aura to this physiological state. Having the opportunity 
of generating representations of sleep with a bio-inspired and self-organized 
algorithm is surely inspiring. Furthermore, the whole process is based on a kind of 
distributed creativity, i.e., the drawings are in part generated by the patient, since the 
data samples shape the environment, and in part created by the swarm and its local 
rules, from which global and complex behaviour emerges. 

After the pherogenic sleep paintings, the authors of this paper developed a project 
called Abstracting the Abstract, which uses as input data the RGB values of digital 
reproductions of famous abstract paintings. The grid vectors are randomly initialized 
and the vectors/ants travel through the grid, changing the environment and giving 
their own “interpretation” of the original artworks. This work won the 2012 
Evolutionary Art, Design and Creativity Competition [11].  

A similar concept is used in the study proposed in this paper: the chromatic 
information (RGB vectors) from colored photographs is used as input data for 
KANTS. However, and unlike Abstracting the Abstract, in this photo-rendering 
project the grid is initialized with the same input photo. Section 4.1 describes in detail 
the experiments, the parameter setting and the effects of varying the parameters. 

4.1 Photo-rendering with KANTS 

Until now, KANTS has been used as a swarm art tool for generating abstract 
representations of data vectors and their interaction and interdependence. The abstract 
nature of the resulting pheromone maps emerge solely from the structure of the 
original algorithm. No bias is externally imposed to the grid. The patterns in Fig. 2, 
for instance, arise as a result of the action of the swarm on a randomly initialized grid 
of 3-dimensional vectors. However, an alternative approach is possible. The outcome 
could be biased by a non-random initialization procedure. In this paper, we propose 
the initialization of the grid with the RGB values of coloured photographs. In fact, the 
grid is the photograph, represented by an array of RGB vectors. Then, a smaller sized 
version of the same photo is used for generating the input data vectors. The outcome 
is the consequence of the interaction of the input data vectors with the environmental 
image. It is expected that the swarm painting is a sketch of the original photograph. 
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To test the hypothesis, the environmental grid is initialized with the RGB values of 
a 200 200 sized photo. That is, at 0, the grid is an exact copy of the original 
photo. The input data vectors are extracted from a 120 120 sized version of  
the same photo. Therefore, there are 40000 grid vectors and 14400 input vectors. 
The ratio between the number of input vectors and the number of grid vectors is 
within the range suggested in [19], which is 1: 3, 1: 2 . 
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Fig. 2. Pherogenic paintings with a photograph as the initial grid and the RGB values of the 
same photo as input data vectors. Results for three different  values. 
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Fig. 3. Progress of the pherogenic painting. Parameters: 16; 0.2; 0.1; 1 50; 2 2. 

Since at 0 the ants are in an environmental grid that is a copy of the photo, 
they will easily find regions with similar vectors towards which they quickly move, 
thus converging to the original form and colour structure of the photo. As seen in Fig. 
2, the resulting pheromone maps, after 50 iterations, are watercolour-like sketches of 
the original photo. They are not copies of the photo because the data samples, 
although they tend to move to regions with similar vectors, are ruled by a stochastic 
scheme and they eventually change vectors which are not similar. The swarm has its 
roadmap in the form of the initial configuration of the grid, but then the complex 
interactions of the ants give their own interpretation of the image. 

Fig. 2 shows several examples using photos with different characteristics 
(landscape, seascape, urbanscape, mixed and still life). Results are given for three 
different  values in the range suggested in [18]. This is the range in which the self-
organized patterns of clusters emerge, and it lies between ordered and random 
behavioural regions where complexity and cooperative structures are absent. 

Increasing  (which means that the random factor in the pheromone following 
scheme is decreased) generates pherogenic paintings with more detail. However, in 
some images important details of the photo cannot be reproduced by the swarm. 
Photo 2 is an example: the lamp post disappears in the pherogenic paintings. The 
details in the urbanscape of photo 3 are also lost. On the other hand, the simple 
structure of photo 1, with its well defined chromatic regions and simple forms, is used 
by the swarm to give an interesting result, in the style of an impressionist watercolour. 
According to the authors’ experience with the system, simple landscapes give the best 
results. However, this is mainly a subjective evaluation of the results.  

Fig. 3 describes the progress of the grid during the run. At 1, the swarm has 
already added some “noise” to the original picture. As  advances, the details fade 
away. At 50, the grid is a sketch of the original photo, reproducing only the main 
forms and colours. 

 1 10 1 25 1 50 1 100 

  
Fig. 4. Pherogenic drawing of the same photo with different 1 values 
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KANTS version used in this paper has six parameters that can be tuned in order to 
control the results. Parameters ,  and 1 control the movement of the ants, while , 

 and 2 tune the grid vectors update scheme. However, ,  and 1 also affect, even 
if indirectly, the grid. Range 1, for instance, which controls the radius of action of 
each ants (the size of the region from which chooses the next grid vector to move to), 
strongly affects the patterns. Fig. 4 shows the pherogenic paintings with photograph 
n.1 using different 1 values. When r1 is set to 10, the resulting painting, in terms of 
forms, is independent of the base-photo visual reference. In fact, the result is purely 
abstract. This happens because the ants have a reduced range of action and quickly 
cluster in their local neighbourhood. Since those regions of the grid do not necessarily 
contain similar vectors, the ants update the existing ones, changing radically the 
structure of the photo. As range 1 is increased, the general aspect of the photo is 
more realistically reproduced by the ants. Ants have a larger range of action and they 
quickly move towards regions with similar vectors. 
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Fig. 5. Pherogenic paintings of the same photo when varying the learning rate  and 
evaporation rate . Results after 50 iterations. Parameters: 16; 0.2; 1 50: 2 2.  
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Fig. 6. Pherogenic painting of photos 2, 3 and 4. Parameters: 16; 0.2; 0.01; 0.001; 1 50; 2 2. Grid after 50 iterations.  

Updating the grid vectors is tuned by the parameters  (which controls the 
reinforcement, or learning, stage) and  (which controls the evaporation). A 
combination of a small evaporation rate and a small learning rate is expected to 
maintain the characteristics of base-photo, at least for a longer time. Large  and 
intense evaporation are expected to quickly change the initial grid, leading to a 
pherogenic painting that is more independent of the reference. Fig. 5 confirms these 
assumptions. With 0.0001 and 0.01 the resulting pherogenic painting at 50 is very similar to the original photo because the update step is less intense 
(less reinforcement and less evaporation). The action of the swarm on the 
environment is soft and slow. When both parameter values increase, the system is 
driven towards a state that generates abstract images. The system with high  and  
values is very disruptive. The environment is quickly reconfigured by the ants, which 
then depend much more on their interaction with the grid than on the initial 
configuration.   

With the knowledge acquired by the investigations on the parameters and their 
effect on the results, photos 2, 3 and 4 were again used for generating pherogenic 
paintings, but this time with a different parameter setting:  is set to 0.01. The 
images, shown in Fig. 6, now display details that were lost in the paintings of Fig. 2. 
Reducing the learning rate reduced the disruption imposed by the ants on the initial 
grid and the details are reproduced in the pherogenic paintings. Again, please note 
that the evaluation of the images is purely subjective and the paintings in Fig. 6 are by 
no means better than those in Fig. 3, only different and more realistic. 

The images above describe KANTS ability for photorealistic rendering. The results 
can be tuned using the set of parameters of the algorithm. When adjusting the 
parameters, the images range from an ultra-realistic interpretation of the photo to an 
abstract representation of the chromatic values. In-between, the KANTS is able to 
generate watercolor-like sketches of the photos, showing uniform and large “brush 
strokes”. After being used for abstract swarm art, this paper demonstrates KANTS 
utility as a figurative swarm art tool and photorealistic rendering generative system.  

5 Conclusions 

This paper describes a set of swarm art experiments conducted with an ant-based 
clustering algorithm called KANTS. The algorithm is able to create clusters of data 
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samples by letting those samples (ants) travel trough a heterogeneous environment. 
The ants communicate via the environment and modify it. The environment is a grid 
of vectors that is used here for generating the pherogenic paintings. The pherogenic 
paintings are therefore 2-dimensional color representations of the interaction of the 
input data vectors (modeled as ants) with the environment and with each other.  

This paper describes two different approaches. In the first one, input data vectors 
extracted from sleep electroencephalogram signals are used as a swarm that interacts 
on a randomly initialized grid of vectors. The resulting images are aesthetically 
interesting, with dynamic patterns and colors that spread through the canvas in a 
balanced way. They also have the interesting characteristic of being unique 
representations of a person’s night sleep. The pherogenic paintings of human sleep are 
fingerprints of a person’s night sleep. Furthermore, they are the result of a distributed 
creativity, in part generated by the person’s sleep data, and in part created by the swarm and 
its local rules, from which global and complex behaviour emerges. 

The second project, introduced in this paper, uses the RGB vectors of a colour 
digitalized photograph as input data vectors. The grid vectors are initialized with the 
same photograph (a larger sized version is used). The resulting images, after adjusting 
the parameters, are figurative paintings of the scene depicted by the photo. The style 
of the image may be tuned, from ultra-realistic to abstract. A study on the effects of 
the parameters is also given.  

In the future, the memory of system will be investigated. The grid (and the ant 
algorithms’ pheromone maps in general) may be considered as the memory map of 
KANTS. It is reinforced (it learns) and it is evaporated (it forgets). Therefore, we may 
explore these characteristics and use several different images to initialize and 
reinitialize the grid, or as input data vectors. The maps are expected to acquire mixed 
features of the different images. Such a framework could be a way of exploring the 
swarm’s aptitude in dealing with multiple image synthesis. 
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Abstract. In the non-attacking n-queens problem the goal is to place n queens 
on an n×n chessboard such that no two queens are in the same row, column, or 
diagonal. In the non-dominating n-queens problem, n queens are placed on an 
n×n chessboard such that the number of non-attacked squares is maximized. 
Both of these problems are classical combinatorial optimization problems 
which have been proved to be NP-hard. In this paper, the Imperialist Competi-
tive Algorithm (ICA), which is a recent evolutionary metaheuristic method, has 
been applied for solving both the non-attacking and non-dominating n-queens 
problems. As a new variation, the ICA was combined with a local search, re-
sulting in Hybrid ICA (HICA). Extensive experimental results showed that the 
proposed HICA outperformed the basic ICA in terms of average runtimes and 
average number of fitness function evaluations for both the n-queens problems. 
The ICA and HICA were also compared to the Cooperative PSO (CPSO) algo-
rithm, which is currently the best algorithm in the literature for finding the first 
valid solution to the non-attacking n-queens problem, and the results showed 
that the HICA required less number of fitness function evaluations than the 
CPSO. 

Keywords: Non-attacking n-Queens problem, Non-dominating n-queens  
problem, Imperialist Competitive Algorithm, Hybrid Imperialist Competitive 
Algorithm, Effective Swap Operator. 

1 Introduction  

In the classic n-queens problem the objective of the problem is to place n non-
attacking queens on an n×n chessboard by considering the chess rules. The problem is 
a well-known combinatorial optimization problem in Artificial Intelligence [11], and 
although has an uncomplicated structure, it has been broadly utilized to develop  
new intelligent problem solving approaches. Despite the fact that the n-queens prob-
lem is often studied as a ‘mathematical recreation’, it has found several real-world 
applications such as practical task scheduling and assignment, computer resource 
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management (deadlock prevention and register allocation), VLSI testing, traffic con-
trol, communication system design, robot placement for maximum sensor coverage, 
permutation problems, parallel memory storage schemes, complete mapping prob-
lems, constraint satisfaction, and other physics, computer science and industrial appli-
cations [14]; [34]; [32] The variety of these applications indicates the reason of the 
wide interest on this well-known problem. 

Probably the earliest form of the non-attacking n-queens problem was the 8-
queens variant, originally proposed in 1848 by the chess player Max Bezzel, pub-
lished in the German chess newspaper Berliner Schachzeitung [7] It was republished 
in 1850 and attracted the attention of the famous mathematician Carl Friedrich Gauss 
for finding all possible solution, though he found only 72 of the 92 possible answers. 
Nauck found all the 92 solutions in the same year [31], one of which is shown in Fig-
ure 1(a), with the permutation presented as [5, 1, 8, 4, 2, 7, 3, 6]. The earliest paper on 
the general n-queens problem was presented by [25], and the first proof of the possi-
bility of placing n non-attacking queens on an n×n chessboard is credited to [28]. A 
thorough review on the problem and its applications is presented in [6]. The n-queens 
problem belongs to the class of Constraint Satisfaction Problems (CSP), and is known 
as an NP-hard problem [17]. 

There are three variants of the non-attacking n-queens problem [1]: (1) finding all 
solutions of a given n×n chessboard, (2) generating one or more, but not all solutions, 
and (3) finding only one valid solution. In the first variant, finding all solutions may 
be possible for small sizes, but the number of feasible solutions increases exponential-
ly with the problem size, such that the largest instance solved to date is for n = 26 
with a total number of 2.23×1016 solutions, calculated within 271 days on parallel 
supercomputers in 2009 [33]. 

The non-dominating n-queens is another problem which received attention as 
another interesting chessboard problem. In this problem, n queens are placed on an 
n×n chessboard such that the number of non-attacked squares is maximized. The 
problem was first introduced by Walter W. Rouse (1896). He found the optimal solu-
tion for placing 8 non-dominating queens, but did not prove its optimality. Without 
considering solutions generated by rotation and symmetry, it is showed that there are 
7 ‘basic’ solutions for 8 queens [24]. The non-dominating queens problem was also 
mentioned by other authors: [2]; [15]; [13] and [3]. Solutions for various sizes of the 
problem have been found and reported, as in [8] which found 18 non-attacked squares 
for size 9, and Kurchan (1993) that reported 30 un-attacked squares for 11 queens. 
Also solutions for sizes 13, 15 and 26 are reported in the Argentinian review Revista 
El Acertijo in 1993, 1996 and 1997 [8]; [23]. Velucchi proved the optimality of the 
solutions found for sizes 17 to 22 and reported the best solutions found for sizes 22 to 
30. [24] represented the best-known solutions found for sizes 31 to 45. 

An optimal solution is illustrated in Figure 1(b) where there are at most 11 un-
attacked squares (shown by U’s). To encode a solution, first we can assign each 
chessboard square a number from 1 to n2 starting from bottom-left corner to top-right 
corner, and then enqueue the number of queens placed on the chessboard in a linear 
string, as [2, 7, 9, 11, 15, 18, 49, 50] for the solution in Figure 1(b). 

According to the extensive bibliography of n-queens problems in [21], a wide range 
of exact, heuristic and metaheuristic optimization methods have been implemented by  
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many researchers [29]; [26]; [12]. The main advantage of metaheuristics compared to 
exact methods is their ability in handling large-scale instances in a reasonable time 
[36], but at the expense of losing a guarantee for achieving the optimal solution. There-
fore, due to the NP-hardness of the n-queens problem, metaheuristic techniques are 
appropriate choices for solving it. In fact, a number of papers have implemented meta-
heuristics for this problem, including Simulated Annealing (SA) [35]; [10], Tabu 
Search (TS) [26], Genetic Algorithms (GA) [16], Differential Evolution Algorithm 
(DEA) [11], and Ant Colony Optimization (ACO) [19]. 

 
 

   
(a)     (b) 

Fig. 1. (a) A solution to the non-attacking 8-queens problem; (b) An optimal solution to the 
non-dominating 8-queens problem (out of 7 ‘basic’ solutions, without considering rotation and 
symmetry) 

In this paper two evolutionary algorithms have been developed for solving both 
the no-attacking and non-dominating n-queens problems. The Imperialist Competitive 
Algorithm (ICA) evolutionary method developed in 2007 is applied for the first time 
to solve the third variant of the non-attacking n-queens problem, that is, to find the 
first encountered valid solution. Also, the ICA was combined with a local search, 
resulting in the Hybrid ICA (HICA) method, which outperformed the original ICA in 
terms of average runtimes and average number of fitness function evaluations. These 
two methods were also applied to finding a solution for the non-dominating queens 
problem. Experimental results show that HICA converge to better solutions than ICA 
in this problem. 

The rest of the paper is organized as follows: section 2 presents the basic ICA and 
its components for solving the non-attacking n-queens problem, section 3 presents the 
details of the HICA method, and section 4 provides experimental results on the per-
formance of the basic and Hybrid ICA methods and provides comparisons with the 
Cooperative PSO method for various sizes of the n-queens problem. Implementations 
of ICA and HICA for placing n non-dominating queens are presented in section 5, 
where comparisons are also provided. Finally, conclusions are in section 6. 
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2 The BASIC Imperialist Competitive Algorithm 

The Imperialist Competitive Algorithm (ICA) was first introduced by [5] as an Evolu-
tionary Computation method based on social-political evolution. The ICA begins with 
generating an initial population of ‘countries’ (counterparts of chromosomes in GAs 
or particles in PSO). Then, according to a fitness function value, some of the best 
countries are determined as ‘imperialists’, and the remaining ones as the ‘colonies’ of 
these imperialists, which altogether form some ‘empires’. 

Assimilation and Revolution are the two main operators of this algorithm: the co-
lonies of each empire get closer to its imperialist by the Assimilation operator (a con-
cept akin to the recombination operator in other evolutionary algorithms), and random 
changes happen to the colonies according to the Revolution operator (a concept akin 
to the mutation operator in other evolutionary algorithms) which may modify the 
position of colonies in the search space. These operators may improve the solutions of 
the problem and increase the power of the colonies to take the control of the entire 
empire. If so, they swap their positions with their imperialists.  

Imperialistic competition among these empires is another part of the ICA algo-
rithm, which forms the basis of this evolutionary algorithm. During this competition, 
powerful empires survive and take possession of the colonies of weaker empires. This 
procedure eliminates all the imperialists except for one, which yields the final solu-
tion. The flowchart of the ICA is illustrated in Figure 2, and details of the algorithm’s 
steps tailored for the non-attacking and non-dominating n-queens problems are  
described below. 

 

Fig. 2. Flowchart of the Imperialist Competition Algorithm 
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2.1 Generating Initial Empires 

In the non-attacking n-queens problem, each country is represented by a solution en-
coded in the form of a permutation [π(1), π(2), ..., π(n)], in which the value of π(i) 
indicates the row number and i specifies the column number of a queen on the chess-
board (see Figure 1(a)). Through this scheme, we can easily generate initial solutions 
with no two queens on the same row or column, letting the conflicts occur merely 
along the diagonals of the chessboard. 

The algorithm starts by producing a population of countries, which for the sake of 
improving the quality of initial solutions, a large number of them are created and then 
sorted in order of their objective function values to form the initial population with a 
desired size. From this new list, a number (say N) of them with the highest qualities 
are considered as imperialists, and the remaining solutions are sequentially assigned 
to the imperialists as their colonies. In our problem the value of a solution is equal to 
the number of queen attacks (conflicts) and so lower values mean higher quality. 

As an example, assuming that the sorted initial population of size 16 with N = 3 
imperialists is: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], the resulting three 
empires with their imperialists shown in bold will be {[1, 4, 7, 10, 13, 16]; [2, 5, 8, 
11, 14]; [3, 6, 9, 12, 15]}. 

2.2 Assimilation within an Empire 

In the real political world, imperialists try to promote the life standards of their colo-
nies by assimilating and absorbing them. In the ICA, this fact is simulated by moving 
each colony toward its respective imperialist. For the assimilation phase, we have 
utilized the Partially Matched Crossover (PMX) operator. 

In this binary operator, in general, two genotypes (solution encodings) are selected 
as parents, and two crossover positions are picked randomly along the solutions. 
Then, all chromosomes of Parent A lying between these two points are exchanged 
with the chromosomes of Parent B at the same positions, and vice versa. 

For example, for the 8-queens strings in Figure 3, taking the Parents A and B, the 
two crossover limits are fixed at 4th and 6th positions, and the dark area indicates the 
pairs which must undergo exchange. As a result, in both parents, the following swaps 
take place: 7↔4, 3↔1, and 8↔2, which create two new children. 

Now in our method, the first parent is permanently assumed to be the imperialist 
solution, and the second parent rotates among all colonies. Thus, the generated 
offspring will somewhat inherit the nature and power of their imperialist parent, 
which can be interpreted as a kind of assimilation. The next generation will be se-
lected from the best solutions of the pool, with the size of the population maintained. 
 

 

Fig. 3. An example of parents and children in the Partially Matched Crossover (PMX) 

Parent A: 2 4 6 7 3 8 5 1 
Parent B: 8 5 3 4 1 2 7 6 

 
Child 1: 8 7 6 4 1 2 5 3 
Child 2: 2 5 1 7 3 8 4 6 
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2.3 Revolution within an Empire 

The Revolution operator brings about radical changes in a colony in hope for a better 
fitness value and diversifying the population. This unary operator is applied to colo-
nies with a constant rate (Revolution Rate, RR) and acts like the mutation operator in 
GAs. In our method the Revolution operator is implemented by randomly swapping 
the values of chromosomes at one or two positions. The colony is updated if a better 
fitness value is obtained. Figure 4 shows an example of this operator for the 8-queens 
problem. 

 

 

Fig. 4. An example of the Revolution operator 

2.4 Power Struggle 

While moving toward the imperialist, a colony may achieve a position with lower cost 
(or equivalently, higher power) than its imperialist. In such a case, the imperialist will 
be toppled and superseded by that colony. The colony becomes the new imperialist 
starting from the next iteration. This act is similar to shifting the best global expe-
rience (gbest) in the swarm from a particle to another particle in the PSO method. 

2.5 Imperialistic Competition 

Through the imperialistic competition step, weaker empires lose their power further 
by losing their colonies, and powerful empires become more powerful by owning new 
colonies. The total power of an empire is calculated by adding the power (i.e., fitness 
function value) of the imperialist country to a percentage of the mean power of its 
colonies. Mathematically, 
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in which P(Ei) is the power of Empire i, P(Ii) is the power of the Imperialist country 
of Empire i, P(C j

i) is the power of the j-th colony of Empire i, ni is the number of 
colonies in Empire i, and 0 < ξ < 1 is a constant determining the importance and im-
pact of the colonies in each empire. We found ξ = 0.1 a proper values suggested by 
[27]. 

For a minimization problem, the normalized total power of Empire i is obtained by 
subtracting the lowest power among all empires from its power, as in (2). Note that a 
high power corresponds to a low cost. 

{ }( ) ( ) min ( )
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NP E P E P E= − . (2) 

Thus, the normalized total power of the weakest empire will be zero, and for others, a 
positive value. 

Colony (state 0) 8 7 2 5 1 4 6 3 
Colony (state 1): 8 7 3 5 1 4 6 2
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The Possession Probability (PP) of each Empire is based on its total power and 
should be calculated at the start of the imperialistic competition step, according to (3), 
in which N is the total number of empires: 
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The Possession Probability is used to update the distribution of the colonies among 
the empires. For each empire i, by subtracting a uniform random number randi ∈ U(0, 
1) from its PPi, a new vector is formed, defined as: 

D = [PP1− rand1, PP2− rand2, ..., PPN− randN]. (4) 

In the vector D, the empire that has the least value among others loses its weakest 
colony, which is reassigned to the most powerful empire. 

The Assimilation, Revolution, and Imperialistic Competition steps are repeated 
until the weakest empire loses all of its colonies, in which case it is discarded and its 
imperialist becomes a colony of the most powerful empire. See Figure 2 for a review 
of the algorithm. In the non-attacking n-queens problem, the stopping criterion is 
satisfied when there are no conflicts (attacks) among the queens. 

3 The Hybrid ICA 

As described earlier, the ICA utilizes random numbers in almost all of its steps: initial 
population creation, assimilation, revolution, and imperialistic competition. This ran-
domness can be quite effective in diversifying the solutions and adequately exploring 
the search space. However, we noticed that this fact weakens the algorithm’s ability to 
intensify its search around a good solution, which leads to a slow convergence to a 
suboptimal solution. 

As a result, we decided to add a local search component to the ICA and reinforce 
its intensification ability. This local search is applied on a solution to improve it as 
much as possible (i.e., until reaching a local optimum) through a neighborhood gener-
ation and selection procedure. 

A common method for generating neighbors of a given solution is Random Swap, 
which exchanges the places of two randomly-selected queens. This action may or may 
not decrease the number of conflicts among queens. So, to make the neighborhood 
generation more goal-directed, we propose a new variant of the swap operator, called 
Effective Swap, which acts more intelligently than the random swap since it selects 
the exchange rows by also considering the number of attacks rather than just choosing 
them randomly. The following details illustrate the function of this new operator. 

The Effective Swap operator starts with counting the number of conflicts on the 
main diagonal of the chessboard. If this number is nonzero, it marks that diagonal for 
further operations. Otherwise, it proceeds with the subdiagonals immediately above 
and below the main diagonal. Conflict counting is repeated for these diagonals too, 
and if no conflicts are found, it proceeds with farther subdiagonals parallel to the main 
diagonal. In case that still no conflicts are identified, the above procedure is repeated 
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for the secondary diagonal and its parallel subdiagonals until a conflicting diagonal is 
found and marked for further operations. 

Next, suppose that the marked diagonal has m conflicts. Then the operator per-
forms m − 1 random swaps, such that in each swap one of the queens is selected from 
the conflicting queens and the other is a randomly-selected queen not causing any 
conflict in the marked diagonal. It is worthy to note that performing an Effective 
Swap does not guarantee an improvement in the fitness function; however, as indi-
cated by our extensive experiments it reduces the number of conflicts far better than 
the random swap operator. 

As an example of Effective Swap, consider a configuration of 8 queens displayed 
in Figure 5(a), where there are m = 2 conflicting queens on the marked main diagonal, 
namely π(1) and π(8), of which one queen is selected randomly, e.g., π(8). Now 
another queen which does not cause conflicts in this diagonal is randomly selected, 
e.g., π(7), and the selected rows are swapped by π(7) ↔ π(8), shown in Figure 5(b). 
 

   
(a)     (b) 

Fig. 5. (a) Before, and (b) after applying the Effective Swap on the chessboard 

After applying an Effective Swap, a neighbor solution is generated, and we check 
whether any improvement has occurred in the fitness function or not. If yes, then this 
neighbor solution is kept; otherwise, a new one is generated. This procedure iterates 
until a stopping criterion is satisfied. The stopping criterion contains a parameter T to 
control the depth of the local search, set by: 

T = k · n (5) 

where k is a constant and n is the size of the problem. After each iteration of the local 
search, the value of T is updated by: 

T = 0.99 · T (6) 

The local search procedure iterates until T reaches a lower bound like Tmin. On the 
other hand, the n-queens problem has multiple optimal solutions (with a fitness func-
tion value of zero, meaning no conflicts), and the number of these solutions increases 
exponentially as n grows. Therefore, if the local search is given more time to trans-
form an initial solution, it can converge to an optimal solution much faster. For this 
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purpose, whenever the newly generated neighbor causes an improvement in the fit-
ness function value, a rewarding mechanism is enforced to update the T by: 

T = 1.01 · T (7) 

Note that the 1.01 coefficient delays the convergence and causes the search to deeply 
exploit seemingly good solutions. As a result, such a dynamic definition of T causes 
an effective search of the space, as the algorithm spends more time on exploring an 
appropriate solution, and less time on non-promising ones. 

We name the ICA with the abovementioned local search procedure as “Hybrid 
Imperialist Competitive Algorithm (HICA)”. 

The HICA has another advantage over the basic ICA: as noticed in equation (4), 
the empire having the largest value in the vector D will possess the weakest colony of 
the weakest empire. On the other hand, we know that the most powerful empire (e.g., 
E*) has the largest PP index calculated in (3). But since the vector D is obtained by 
subtracting random numbers from the PPi indices, there is no guarantee that the E* 
will still be selected for accommodating the weakest colony. 

Although we used the equation (4) for our basic ICA to keep the authenticity of the 
algorithm presented by [5] we discarded the random number subtraction in (4) in the 
HICA and used the following vector D instead: 

D = [PP1, PP2, ..., PPN]. (8) 

4 Experimental Results for the Non-attacking Queens Problem 

We conducted a number of experiments to assess the efficiency and effectiveness of 
the developed algorithms. The parameters of the algorithms were set as follows: Ini-
tial population size = 100, k = 1 (in (5)), and Revolution Rate (RR) = 0.4. The algo-
rithms were coded in Matlab™ and run on an Intel® Core i7 2.00 GHz CPU with 
4.00 GB of RAM. Tables 1 and 2 show the experimental results of solving the non-
attacking n-queens problem at different sizes. Considering the randomness of the 
methods, each instance was run 10 times, and the mean and the standard deviation 
(S.D.) of runtimes and two other performance criteria, FFE and NCCA, are reported. 
The FFE criterion measures the total number of Fitness Function Evaluations during 
the whole search, and NCCA stands for Normalized Convergence Curve Area, which 
is described below. 

Table 1. Average results of 10 runs of the ICA for various sizes of the n-queens problem 

n 
FFE 

NCCA 
Runtime (s) 

Min Max Avg. Avg. S.D. 

8 17 330 159 0.36 0.05 0.06 

10 150 2315 785 2.17 0.14 0.13 

25 1550 10880 6500 5.40 2.15 1.06 

50 12215 116150 4402 10.95 26.48 17.43 

100 105870 542720 280014 22.28 348.51 162.39 

200 1022990 1882564 1558751 50.15 3284.22 303.54 

300 2754111 4258966 3859979 143.51 21650.58 573.81 
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Table 2. Average results of 10 runs of the HICA for various sizes of the n-queens problem 

n 
FFE 

NCCA 
Runtime (s) 

Min Max Avg. Avg. S.D. 
8 0 445 96.3 2.20 0.05 0.05 

10 21 940 408.3 11.33 0.14 0.11 
30 184 5038 1657.6 13.74 0.67 0.62 
50 323 5882 2327.6 11.61 1.20 1.03 
75 525 5708 2265.2 11.21 1.28 0.88 
100 1374 7006 2932.7 8.81 1.98 1.29 
200 6060 9405 8893.6 13.70 9.38 1.10 
300 10805 14624 12302.6 12.79 19.60 2.74 
500 13717 24906 20962.4 16.47 148.74 29.82 
750 23279 42164 33767.5 13.65 616.17 254.26 

1000 31701 74877 43272.4 15.80 984.13 301.12 
2000 79984 101571 89827.1 21.93 7023.87 545.54 

 
The convergence curve plots the best-found fitness function value at each itera-

tion, until the final solution is reached. In the n-queens problem, this curve shows how 
the algorithm reduces the number of conflicts during its execution till it becomes zero. 
Figure 6 shows convergence curves of the ICA for various sizes of the problem: 
n = 50, 100, 200 and 300. The number of conflicts and iterations are displayed along 
the vertical and horizontal axes, respectively. As can be seen, initial numbers of con-
flicts were about half the sizes of the problems, and larger problems took much more 
iterations to converge than smaller instances. 

Inspired by the behavior of the convergence curve, we designed a new perfor-
mance criterion to compare the basic and hybrid ICA methods: the Normalized Con-
vergence Curve Area, which is calculated as per (9), in which Nc

i is the number of 
conflicts during i-th evaluation of the fitness function: 

1

FFE

i

i
cNCCA N

=

=  (9) 

In fact, by calculating the area under a convergence cure we can infer how fast a me-
thod reduces the number of conflicts. A relatively small area implies that the algo-
rithm succeeded in reducing the number of conflicts at its early iterations. The NCCA 
measures the area under the convergence curve with the number of conflicts plotted 
along the vertical axis and the number of FFE along the horizontal axis; but since for 
large problem sizes the area becomes too large, we divided it to a factor of n2 and 
eliminated the impact of problem size, obtaining a normalized value. 

Table 1 shows that the ICA spent about 6 hours of computation averagely for the 
300-queens problem, and so we stopped solving larger instances. On the other hand, 
the HICA performed surprisingly well and could find a solution to the 2000-queens 
problem in less than 2 hours. The number of FFE in the HICA method was also sig-
nificantly less than that of the basic ICA method. For the NCCA criterion behaviors 
are a bit different: for small sizes the ICA converges to a low number of conflicts 
faster than the powerful HICA method, but then for n>100 the HICA regains its supe-
riority (with smaller NCCA index). This fact is due to the impact of the implemented 
local search on the algorithm’s speed. Figure 7 illustrates the superimposed conver-
gences of the two algorithms. 
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Fig. 6. Convergence curves for the ICA run on n = 50, 100, 200, and 300 queens 

 

Fig. 7. A comparison of convergence curves for basic and hybrid ICAs on n = 100 queens 

The curves in Figure 7 are plotted for n = 100 by considering the best run in terms 
of convergence speed out of 10 runs. Note that here the horizontal axis shows the 
number of FFE’s (and not iterations) since the local search component in the HICA 
executes some additional iterations which should not be compared to the main itera-
tions of ICA. 

4.1 Comparisons 

In order to evaluate the efficiency of the presented HICA method in solving the non-
attacking n-queens problem, we compared it with an algorithm that had produced the 
best known results in finding the first solution to the problem. This method is called 
Cooperative PSO (CPSO) and is introduced in [4] for solving permutation problems, 
including the n-queens problem. Compared to the standard PSO method [18], the 
CPSO uses parallel searching to reduce calculation time. 
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For solving the n-queens problem by using the CPSO, an initial random  
population of particles is generated, where each particle has initial information about 
the locations of n queens on an n×n chessboard. Each particle of the population is 
divided into n equal sub-swarms, and then each sub-swarm is changed into one sub-
particle. Sub-particles use the standard PSO to update their velocities and positions 
according to the best local experience of each sub-particle and the best position for 
each particle among all particles. Through a number of experiments, [4] compared the 
CPSO with implementations of standard PSO, SA, TS and GA algorithms (reported in 
[26]) and outperformed all those metaheuristics in terms of the number of fitness 
function evaluations. 

The results of average FFE values obtained by our proposed HICA and the CPSO 
algorithms are reported in Table 3 and plotted in Figure 8. It was observed that the 
HICA always evaluated the fitness function fewer times than the CPSO. 

Table 3. Average number of FFEs for HICA and CPSO 

n HICA CPSO Improvement (%) 

8 96.3 225.8 57.4 
10 408.3 540.5 24.5 
30 1657.6 2020.5 18.0 
50 2327.6 2764.2 15.8 
75 2265.2 3661.6 38.1 

100 2932.7 5063.6 42.1 
200 8893.6 9184.5 3.2 
300 12302.6 14559.6 15.5 
500 20962.4 23799.6 11.9 
750 33767.5 34765.2 2.9 
1000 43272.4 47299.8 8.5 
2000 89827.1 95235.9 5.7 

 
 

 

Fig. 8. Comparison of the number of fitness function evaluations (FFE) versus the problem size 
for the HICA and CPSO methods 
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5 Experimental Result for the Non-dominating Queens 
Problem 

For solving placing non-dominating n-queens problem all steps of the ICA are applied, 
as described in the previous section. For generating initial empires, each solution indi-
cates a country and represent in form of [π(1), π(2), ..., π(n)], in which the remainder of 
π(i) divided by n shows the column number, and the ceiling of quotient of π(i) divided 
by n indicates the row number of the placed queen (refer to section 1 for our solution 
encoding system). The aim is to maximize the number of non-attacked squares by 
moving the queens on the chessboard. 

In the second step, assimilating and absorbing the colonies by each imperialist is 
done by employing the Modified Order Crossover (MOX) operator, which is a unary 
operator, meaning that only one offspring is generated from two parents. The first 
parent is always assumed to be the imperialist solution, whereas the second parent 
rotates among all its colonies. First a substring from the Parent A (shown in dark in 
Figure 9) is selected randomly and an offspring is produced by copying that substring 
from Parent A and all other elements of Parent B into their corresponding positions. If 
an element in the substring copied from Parent A is similar to any element in Parent 
B, the element of Parent B in that position will be passed to the offspring. 
 

 

Fig. 9. An example of parents and the offspring in the Modified Order Crossover (MOX) 

The Revolution operator is applied to colonies with a constant rate. In the operator 
used for placing n non-attacking queens, a random number is selected between 1 to n, 
say k. Another random number is generated between 1 to n2, say r. The k-th element of 
the colony is replaced by the value of r. An example of this operator for 8 non-
dominating queens is illustrated in Figure 10, in which k = 5 and r = 62. 

 

 

Fig. 10. An example of the Revolution operator 

For the new non-dominating queens problem the power struggle and imperialistic 
competition steps of the ICA are the same as in the non-attacking n-queens problem. 

As it was mentioned in section 3, a local search is added to the ICA in order to 
reinforce its intensification ability. For generating a neighbor of a given solution, we 
propose two types of moves, each of which are employed with equal (i.e., 0.5) proba-
bilities. In the first type, two random numbers are generated from 1 to n, representing 
the positions of two queens on the chessboard. The first selected queen moves to the 
same column of the second selected one. In Figure 11(a) the representation of a solu-
tion is [2, 13, 23, 27, 33, 48, 54, 59]. π(2) and π(3) are randomly selected and π(2) is 
moved to the column of π(3), i.e., column 7. The representation of the solution is 
updated as [2, 15, 23, 27, 33, 48, 54, 59] shown in Figure 11(b). 

Colony (state 0): 18 47 12 15 11 14 61 31 
Colony (state 1): 18 47 12 15 62 14 61 31 

Parent A: 23 17 20 54  1 40 61 33 
Parent B: 29 55 18 37 14 11 13 36 
Offspring: 29 17 20 54 14 11 13 36 
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(a)     (b) 

Fig. 11. (a) Before, and (b) after applying the first type of move for neighborhood generation 

The second type of move for generating a neighbor for current solution is similar 
to the first one, except that the selected queen moves to the row of the other queen. In 
Figure 12(a) the current solution is represented as [2, 13, 23, 27, 33, 48, 54, 59], and 
π(2) and π(3) are randomly selected. In Figure 12(b) the selected queen π(2) moves to 
square 21, which makes a neighboring solution [2, 21, 23, 27, 33, 48, 54, 59]. 

These two types of moves together cause proper clustering of queens and thereby 
maximization of non-attacked squares on the chessboard. 

 

   
(a)     (b) 

Fig. 12. (a) Before, and (b) after applying the second type of move for neighborhood generation 

The performance of ICA and HICA for various sizes of the non-dominating n-
queens problem are reported in Table 4. For this problem, the optimal solutions or 
best known solutions are reported for sizes 5 to 45 in the literature, and there is no 
information about other sizes of the problem. Therefore, contrary to the no-attacking 
problem in which the goal was to reach zero conflicts, here the optimal solution is not 
known and the aim is to maximize the number of un-attacked squares. 
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For the stopping criterion, three time limits, i.e., 20, 100 and 300 seconds, are set 
for both algorithms, after which the best found solution is reported. In the Table 4 the 
two proposed ICA and HICA methods are compared for various sizes of the non-
dominating queens problem, and the minimum, maximum and average values of the 
objective function after each problem was run 5 times. Since the two methods do not 
converge to the same value of fitness function, the NCCAs were not calculated. The 
results show that the HICA converges to better objective function values and outper-
forms the basic ICA in a specified time limit. The HICA also showed good perfor-
mance in finding optimal or near-optimal solutions, and could do even better if we 
had set longer runtimes. 

6 Conclusions 

In this paper the Imperialist Competitive Algorithm (ICA), which is a recent evolutio-
nary method, is tailored for finding the first encountered solution to the non-attacking 
and non-dominating n-queens problems. For improving the performance of the algo-
rithm a local search is incorporated into the algorithm, creating a Hybrid ICA (HICA). 
Experimental result showed that the HICA is able to find a better solution for a given 
number of queens faster than the basic ICA and can solve large instances through small-
er numbers of fitness function evaluations. The HICA was also compared to the best 
algorithm in the literature for solving the non-attacking queens problem (i.e., Coopera-
tive PSO), and outperformed it in terms of the number of fitness function evaluations. 
For the non-dominating n-queens problem, optimal solutions are unknown for large 
instances, and so the performance of the basic and Hybrid ICAs was compared for vari-
ous problem sizes within specified time limits. The results show that the HICA outper-
forms the basic ICA in finding better solutions. 

References 

1. Abramson, B., Yung, M.: Divide and conquer under global constraints: A solution to the  
n-queens problem. Journal of Parallel and Distributed Computing 6(3), 649–662 (1989) 

2. Ahrens, W.E.: Mathematische Unterhaltungen And Spiele. Teubner, Leipzig (1901) 
3. Ainlet, S.: Mathematical Puzzles. G. Bell & Sons, U.K. (1977) 
4. Amooshahi, A., Joudaki, M., Imani, M., Mazhari, N.: Presenting a new method based on 

cooperative PSO to solve permutation problems: A case study of n-queen problem. In: 3rd 
Int. Conference on Electronics Computer Technology (ICECT), vol. 4, pp. 218–222 (2011) 

5. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: An algorithm for op-
timization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Com-
putation, pp. 4661–4667 (2007) 

6. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. Discrete 
Mathematics 309, 1–31 (2009) 

7. Bezzel, M.: Proposal of 8-queens problem. Berliner Schachzeitung 3, 363 (1848) 
8. Bracamonte, D.: Argentinian newsletter El Acertijo (Los Acertijeros Boletin), vol. (6) 

(1993), http://revista-el-acertijo.com.ar (retrieved) 
9. Campos, V., Laguna, M., Mart, R.: Context-independent scatter search and tabu search for 

permutation problems. INFORMS J. Computing 17, 111–122 (2005) 



 Basic and Hybrid Imperialist Competitive Algorithms 95 

 

10. Dirakkhunakon, S., Suansook, Y.: Simulated Annealing with iterative improvement. In: 
International Conference on Signal Processing Systems, pp. 302–306 (2009) 

11. Draa, A., Meshoul, S., Talbi, H., Batouche, M.: A Quantum-Inspired Differential Evolu-
tion Algorithm for Solving the n-Queens Problem. The International Arab Journal of In-
formation Technology 7(1), 21–27 (2010) 

12. Draa, A., Talbi, H., Batouche, M.: A Quantum Inspired Genetic Algorithm for Solving the 
N-Queens Problem. In: Proceedings of the 7th International Symposium on Programming 
and Systems, pp. 145–152 (2005) 

13. Dudeney, H.E.: Amusements in mathematics. Nelson and sons (1917) 
14. Erbas, C., Sarkeshik, S., Tanik, M.M.: Different perspectives of the n-queens problem. In: 

Proceedings of the 1992 ACM Annual Conference on Communications, pp. 99–108. ACM 
Press (1992) 

15. Ghersi, I.: Mathematica dilettevole curiosa. Hoepli, Milan (1913) 
16. Homaifar, A., Turner, J., Ali, S.: The n-Queens Problem and Genetic Algorithms. In: Pro-

ceedings IEEE Southeast Conference, vol. 1, pp. 262–267 (1992) 
17. Jagota, A.: Optimization by reduction to maximum clique. In: IEEE International Confe-

rence on Neural Networks, vol. 3, pp. 1526–1531 (1993) 
18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Int’l. 

Conf. on Neural Networks, vol. IV, pp. 1942–1948 (1995) 
19. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-Queen Problem Using 

ACO. In: IEEE 13th International Multi-Topic Conference, pp. 1–5 (2009) 
20. Kilani, Y.: Comparing the performance of the genetic and local search algorithms for solv-

ing the satisfiability problems. Applied Soft Computing 10, 198–207 (2010) 
21. Kosters, W.: n-Queens Bibliography (2012),  

http://www.liacs.nl/~kosters/nqueens/ (retrieved May 4, 2012) 
22. Kurchan, R.: Argentinian newsletter El Acertijo (Los Acertijeros Boletin), vol. (13) 

(1994), http://revista-el-acertijo.com.ar (retrieved) 
23. Kurchan, R.: Argentinian newsletter El Acertijo (Los Acertijeros Boletin), vol. (26) 

(1997), http://revista-el-acertijo.com.ar (retrieved) 
24. Lemaire, B., Vitushinkiy, P.: Placing n non dominating queens on the n×n chessboard. 

Rretrieved from website of the “Fédération Française des Jeux Mathématiques” 
25. Lionnet, F.J.E.: Question 963. Nouvelles Annales de Mathématiques 28, 560 (1869) 
26. Martinjak, I., Golub, M.: Comparison of Heuristic Algorithms for the N-Queen Problem. 

In: Proceedings of the ITI 2007 29th International. Conference on Information Technology 
Interfaces, pp. 25–28 (2007) 

27. Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., Atashpaz-Gargari, E.: Solving 
the integrated product mix-outsourcing problem using the Imperialist Competitive Algo-
rithm. Expert Systems with Applications 37, 7615–7626 (2010) 

28. Pauls, E.: Das Maximalproblem der Damen auf dem Schachbrete, II, Deutsche Schachzei-
tung. Organ fur das Gesammte Schachleben 29(9), 257–267 (1874) 

29. Rivin, I., Zabih, R.: A Dynamic Programming Solution to the n-Queens Problem. Informa-
tion Processing Letters 41, 253–256 (1992) 

30. Rouse, W.W.: Mathematical Recreations and Problems of Past and Present Times, 3rd edn. 
McMillan (1896) 

31. Russell, S.J., Norvig, P.: Artificial Intelligence A Modern Approach. Prentice-Hall Inc., NJ 
(1995) 

32. San Segundo, P.: New decision rules for exact search in n-Queens. Journal of Global Op-
timization 51, 497–514 (2011) 

 



96 N. Mohabbati-Kalejahi, H. Akbaripour, and E. Masehian 

 

33. Sloane, N.J.A.: The online encyclopedia of integer sequences (2012),  
http://oeis.org/A000170 (retrieved) 

34. Sosic, R., Gu, J.: Efficient local search with conflict minimization. IEEE Transactions on 
Knowledge and Data Engineering (6E), 661–668 (1994) 

35. Tambouratzis, T.: A Simulated Annealing Artificial Neural Network Implementation of 
the n-Queens Problem. Int. J. of Intelligent Systems 12, 739–752 (1997) 

36. Yang, X.-S.: Nature-inspired metaheuristic algorithms. Luniver Press (2010) 



© Springer International Publishing Switzerland 2014 
K. Madani et al. (eds.), Computational Intelligence,  

97

Studies in Computational Intelligence 577, DOI: 10.1007/978-3-319-11271-8_7 
 

Cooperative Control of a Multi Robot Flocking System 
for Simultaneous Object Collection and Shepherding 

Ellips Masehian and Mitra Royan 

Industrial Engineering Department, Tarbiat Modares University, Tehran, Iran 
{masehian,m.royan}@modares.ac.ir 

Abstract. In this paper, a new model is developed for a team of homogeneous 
and anonymous (no leader and follower) flocking robots to handle their online 
formation control, decision making, behavior selection, and motion planning 
while they simultaneously collect and shepherd a number of moving objects 
scattered in the workspace toward a predefined destination. Various complex 
flocking actions such as flock deformation, flock split and merge, flock expan-
sion, and flock obstacle avoidance are incorporated in the model. Also, the 
paper proposes a new class of problems for flocking robots, called 
Simultaneous Object Collecting and Shepherding (SOCS) problem. The flock's 
movement is governed using a fuzzy inference engine for determining the 
strategy of envi-ronment exploration (diversified search) or exploitation (move 
around a specific location), which provides an effective way to minimize the 
time spent on col-lecting objects while maximizing the gain obtained by object 
collection, in a way that the flock’s formation and integrity is maintained. 
Numerous simulations showed the effectiveness of the new model. 

Keywords: Robot Flocking Systems, Shepherding, Object Collecting, Fuzzy 
Decision Making, Obstacle Avoidance. 

1 Introduction 

Swarm robotics is an interesting branch of artificial intelligence, which is inspired 
from natural behaviors of bees, ants, fish, birds, etc. Flocking, as a basic collective 
behavior in swarm robotic systems, has been studied for a decade. In general, flocking 
is a natural phenomenon where a group of animals move together as a single entity. 
The motion of flocking robots is a result of integrated actions of all members in the 
group, such that each member acts based on a local perception of its surroundings. 
[17] proposed the following three fundamental rules for simulating flocking and 
herding behaviors: 

Separation: When flock members get very close to each other (closer than a 
‘repulsion range’), they must move away each other via a repulsive force. As a result, 
sufficient free space around each member is guaranteed. 

Alignment: Each member should be moving along the general direction of its neigh-
boring members. 
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Cohesion: members should move toward the center of its local neighbors. As a result, 
they stay close to the group, until they sense repulsive forces. 

The logic behind these rules is that while each individual follows relative simple 
rules, when taken as a whole, they move as an organized group [3] present-ed many 
applications for flocking behaviors, like mobile sensor network, surveillance, control 
and covering problems, or transporting large objects. The whole group tries to adjust 
its velocity and align with other agents in the flock, while maintaining the pre-
determined pattern and avoiding obstacle collisions, and move toward the goal while 
trying to minimize collisions between the members of the flock. 

There are varieties of problems in the literature that require and utilize flocking as 
a behavior of swarm robots. Many problems are demonstrated in different environ-
ments which may be totally unknown or partially known to the group. Some of them 
consider leader–follower models, where the flock leader’s velocity may or may not 
change during the task. The way the robots communicate with each other is important 
for the flock’s successful task execution. Generally, they have a local communication 
and should enter the environment, obtain information about the surroundings, and 
update and share their acquired information. 

In the following we categorize the main approaches of solving flocking problems 
in free space or in presence of multiple obstacles: 

Leader–follower Methods: In Leader-Follower approaches, one robot assumes the 
leader role and the rest of the flock follows it. The leaders use a tracking strategy to 
lead the flock toward the destination. In general, one agent acts as a group leader and 
the others just follow the separation, alignment, and cohesion rules, resulting in leader 
following (e.g., [22]). 

Roadmap–based Methods: Searching and moving toward the goal in this type of 
flocking problems is accomplished based on the global information and the roadmap 
of the environment imposed on the system. [2] proposed three distinct group 
behaviors: homing, exploring and shepherding, that exploit global knowledge of the 
environment with the use of medial axis probabilistic roadmap. 

Control Theory–based Methods: In this approach, each robot has to follow a certain 
control theory law to converge to a stable state. These control laws can be used to 
coordinate the motion of each flock member that is capable of local sensing and 
communication, and can be related to both kinematics and dynamics of robots (e.g., 
[18] and [15]). 

Fault Tolerant Methods: These types of methods assume that in the flock there is a 
possibility for a faulty robot to fail during a task execution such that the crash can be 
either permanent, or temporary and recoverable in future. Also, there is a model in 
leader-follower flocks when the leader crashes and the group choose another leader to 
guide the flock.  

Shepherding is an interesting flocking behavior that is a cooperative task of con-
trolling a group of agents by one or more groups of agents via employing repulsive 
forces. In the literature there are single and multiple shepherd variations for the shep-
herding behavior, of which the multi robot type can be viewed as a kind of task ma-
nipulation that has applications more than just herding a group of animals. 

[3] proposed different cooperative applications for shepherding behaviors like 
collecting oil spilt from oil tankers, keeping animals off of airport runways, and 
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keeping people from dangerous areas such as unsafe waters, construction zones or 
other restricted areas. In spite of this, shepherding has received little attention up to 
now, and there are many open problems to be worked in future. [5] showed in the 
robot sheepdog project how a robotic system that gathers a flock of ducks in a circular 
arena based on the potential field algorithm is used to generate movements for each 
duck and maneuver them safely to a predetermined goal position. [6] proposed a new 
approach for guiding people in open areas of urban settings by using multiple robots 
acting in a cooperative way. 

2 The SOCS Problem 

In all of the shepherding-related researches it is assumed that the collectible objects 
(particles), as well as workspace obstacles, are fully known. However, in some real-
world applications like fishing there is no information about the number and distribu-
tion of collectible objects (e.g. fish). Information about obstacles is also missing when 
operating in unknown environments. Therefore, the flock must identify and collect 
objects, while simultaneously shepherding them toward a goal region. 

In this paper we propose a new class of problems called “Simultaneous Object 
Collecting and Shepherding (SOCS)” for flocking robots. The SOCS problem has 
some real-world applications, such as collecting distributed mines in an unsafe area, 
collecting oil spills or trashes off the sea, casting a fish net and directing the hunted 
fish toward the ship (an instance of 3D space problem). In online mode, however, the 
robots must acquire environmental knowledge through their sensors, both about col-
lectible objects and obstacles, and so the SOCS problem interweaves the shepherding 
task with sensor-based motion planning and obstacle avoidance. In the SOCS problem 
we assume that collecting each object by the flock has a gain or reward, and the flock 
has a limited time to execute its task. The ideal situation would be to collect all 
objects and direct them to the goal point in minimum time. Put differently: 

The SOCS problem is to maximize the gain of collecting objects by a flock while 
minimizing the total time. This problem, however, is NP-hard in both offline and 
online modes, and so finding the optimal solution is not practical for large number of 
objects. Instead, we have proposed a heuristic method to overcome the complexity 
and produce a collective behavior for gathering scattered objects and shepherding 
them toward the goal region in online mode. The main contributions of this paper 
include: 

(i) Defining a new class of problems for flocking robots called the Simultaneous 
Object Collecting and Shepherding (SOCS) problem, 

(ii) Incorporating online obstacle sensing and avoidance methods in the flocking 
behavior, and 

(iii) Developing a fuzzy decision module for determining the strategy of envi-
ronment exploration. The fuzzy inference engine provides an effective way to 
minimize the time spent on collecting objects while maximizing the gain 
obtained by object collection, in a way that the flock’s formation and integrity is 
maintained. 

The proposed model was implemented in a number of simulations and produced 
rational and satisfactory results. 
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3 Outline of the Proposed Model 

Our proposed model for solving the online SOCS problem is composed of two main 
‘Exploration’ and ‘Exploitation’ behaviors, and two auxiliary ‘Fuzzy Decision 
module’ and ‘Motion Planning’ modules. The Exploration behavior is adopted when 
the flock intends to explore the environment for collecting objects. Here the main 
emphasis is on covering the environment as much as possible and moving toward 
regions with dense population of objects, as temporary goals. On the other hand, the 
Exploitation behavior is triggered when the flock has collected sufficient number of 
objects, or the available time is nearly over. In this case, the flock heads toward the 
final goal and collects all objects on its way. 

The Fuzzy Decision Module is utilized for deciding about where should the flock 
move to collect more objects (hence more gain), and when to stop collecting and 
move toward the final goal, such that the task is finished within a time limit. 

The Motion Planning Module implements the Potential Fields method [9] for 
helping the flock to avoid obstacles locally, and move toward either the final goal 
region or a temporary goal near a cluster of collectible objects. The module also 
decides about executing some complex actions like stretching, shrinking, splitting and 
merging. In this way, the flock becomes a deformable and coherent group, which 
during its navigation in the environment can shrink or elongate to pass through 
narrow passages, or split and merge when encountered with obstacles or corridors 
(while retaining its connectivity and not losing any collected object), and shepherd the 
objects toward the goal region. The model’s assumptions are as follows: 

1. The workspace is planar, bordered, and initially unknown to the robots. It contains 
static polygonal obstacles which should be avoided. 

2. The robots are homogeneous, circular, and can move in the workspace without 
kinodynamic constraints. They are equipped with range sensors for identifying 
both obstacles within the range Robs (Figure 1(a)) and particles within the range 
Rpart < Robs.. We also assume that there are no localization and sensing errors. 

3. The robots form a flock by taking on a circular arc shape, with its open segment 
facing forward. The flock must finish its task within a time limit Tmax and collect at 
least Qmin particles. 

4. The particles are small circular objects scattered over the workspace, which may 
be fixed or moving. Collecting a particle has a gain for the flock. 

5. The goal region is known to the robots and once the center of the flock lies inside 
that region the search is terminated. 

Table 1 introduces some of the more important variables and parameters of the 
model. In the beginning, N robots reside in a Depot, and an initial number of them 
(calculated based on the parameters DRmax and DRmin) are selected to form the flock by 
adjusting their positions on the circumference of a circular arc with radius RF. The 
arc’s angular span can be between 180 and 270 degrees, with its open segment facing 
toward the moving direction (Figure 1(b)). 

When the flock collects as much particles as it can accommodate (i.e., C(n)), it 
checks the possibility (regarding time and cost) of an expansion by incorporating one 
or two robots settled in the depot. The flock explores the workspace by being attracted 
to areas with higher number of objects until either there is no object left, or the 
available time is over. The overall architecture of the model is shown in Figure 2. 
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                            (a)                                                                                  (b) 

Fig. 1. (a) Identifying the surrounding obstacles through range-finder sensors. (b) Simultaneous 
Object Collecting and Shepherding: The robots collect objects by trapping them inside their 
arc-shaped flock and direct them toward the goal. 

Table 1. Variables and parameters of the model 

Symbol Description 

XR(t) Position vector of robots at time t 

XP(t) Position vector of particles at time t 

VR(t) Velocity vector of robots at time t

VP(t) Vector of particles velocities at time t 

Q(t) Number of collected particles inside the flock at time t 

D(t) Distance between the flock’s center and the final goal at time t 

C(n) Capacity of the flock with n robots; n = 1, …, N 

Robs Robots’ sensing range for detecting obstacles

Rpart Robots’ sensing range for detecting particles

DRmax Maximum distance between two neighboring robots for maintaining connectivity 

DRmin Minimum distance between two neighboring robots for avoiding collision 

RF Radius of the flock’s circular shape 

Sp Safety radius for particle p 

Gp Gain of collecting particle p 

Tmax Upper bound of the allowable time interval 

Tmin Lower bound of the allowable time interval 

Qmin Minimum required number of collected particles 

4 Flocking Behaviors and Actions 

Our proposed flocking system has two basic behaviors: Exploration (covering the 
environment to find as much particles as possible) and Exploitation (moving toward 
the final goal). These techniques are applied to the entire flock as a unified entity. 
Besides, other actions like traversing through narrow passages, splitting, merging and 
deformation can occur during the Exploration and Exploitation. 

Depot 

Flock 

Particles 

Goal
 Robs  
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Fig. 2. The proposed architecture for solving the SOCS problem 
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4.1 Exploration Behavior 

In the Exploration behavior each robot senses its surroundings within the range Rpart 
and finds a number of particles around it. Then, all robots communicate their obtained 
knowledge of environment, and by integrating the whole knowledge create a map of 
the distribution of nearby particles. The sensed objects are then clustered into a few 
groups, and the group with the most particles (and hence, the highest gain) is marked 
for exploration. The center of this cluster is fixed as a temporary goal and the flock 
starts moving towards it. 

This collaborative effort of exploring the environment is repeated from a tempo-
rary goal to another until either there are no sensed but uncollected particles left, or 
the flock cannot accommodate more objects due to fullness of its capacity. The 
capacity C(n) of a flock with n robots is determined based on the safety radius of 
particles (Sp), and the maximum and minimum allowable distance between the robots 
(DRmax and DRmin, respectively). If no objects are marked for collection, a temporary 
goal is randomly set in an unexplored area and the flock moves there, while caging 
and shepherding all collected particles. In case that the flock is too full to hunt another 
particle, it invokes the Expansion action. 

4.1.1 Mapping the Workspace 

Each robot senses the environment continuously through 360 degrees scans by range-
finder sensors, starting from its initial position. The information obtained from the 
sensors is saved in a matrix that includes the degree of sent ray, coordinates of the 
intersection of the ray and the nearest obstacle at that direction (i.e., the sensed point), 
and the distance of the sensed point to the robot. While scanning at counterclockwise 
radial direction, an abrupt decrease (increase) in the magnitudes of two consecutive 
scanning rays means that the scan system has entered (left) a nearby obstacle. 

The scanning process repeats for every robot in the flock and the obstacles' shapes 
are inferred by integrating and fusing the information collected by all the robots. In 
fact, at each iteration, the shape of an obstacle is approximated by the convex hull of 
the sensed points until all the points on the obstacle's boundary are sensed. The 
collectible objects scattered all over the workspace are also identified by the same 
manner.  

4.1.2 Expansion Action 

As the flock gets larger, for preserving its connectivity and preventing the inner parti-
cles from escaping from it, the robots should remain in a proper distance from their 
neighbors. If this is not possible due to the outward pressure exerted by the inside 
particles, the flock needs to call for extra robots to join the flock. Adding a robot to 
the flock, however, takes time and cost which should be compared and balanced with 
the gain which will possibly be obtained by hunting more particles. Figure 3 shows a 
schematic view of how new robots are joining the flock after the flock’s robots move 
outwards and form an expanded flock along a larger arc, making room for the 
newcomers. 

The criteria for launching the expansion action are determined by the decision 
module that will be explained in section 5. In addition to the time spent for reaching 
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the current position of the flock, the time needed for new robots to travel from the 
depot and join the flock should also be added to the estimated time. In order to pre-
serve the flock’s orientation, the direction of expansion is set to be parallel to the open 
segment of the flock. The robots bordering the open segment retreat along this 
direction and the other robots position themselves on a circle with larger radius 
(calculated based on the required space for adding more particles to the flock) and 
adjusted relative to the new position of the first robot. The Expansion action occurs 
only if the existence of free space is guaranteed via the information obtained by the 
flock. 

 

 

Fig. 3. Expansion of the flock makes room for additional robots, and hence accommodating 
more particles 

4.1.3 Exploitation Behavior 

Unlike the Exploration mode in which the flock does not have any final destination 
and navigates through the workspace to collect more and more objects, in the Exploi-
tation behavior the flock is attracted toward the one and only final goal, which might 
be a cage for ducks or a pier in fishing. Exploitation means moving straight to the 
goal after collecting a sufficient number of objects and approaching the time limit. 

As it will be explained in section 5, the Fuzzy Decision module decides the proper 
time for switching from the Exploration mode to the Exploitation mode. When the 
flock is in the Exploration mode but has no space for hunting more particles (and 
there are no robots left in the Depot for the Expansion action) then the Exploitation 
mode must start. 

4.2 Motion Planning Module 

The Motion Planning module is responsible for guiding the flock from a point toward 
another point such that no collision is occurred between any robot and obstacle, and 
the traversed path is short, smooth, and safe. This module is based on the well-known 
Artificial Potential Fields method, proposed by [9]. In this method, the robot (with a 
hypothetical positive charge) is directed toward the goal (with negative charge) as if it 
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Expanded flock

Two new robots join the flock 

Direction of 
Expansion 



 Cooperative Control of a Multi Robot Flocking System 105 

is a particle moving in a gradient vector field. Obstacles also have positive charges, 
which form repulsive forces to repel the robot away from them. 

Specifically, in our model, the sum of the following four forces draws a robot in 
the flock toward the goal while keeping it off from obstacles: 

• Repulsions from other robots, 
• Repulsion from the closest detected obstacle, 
• Repulsion from the particles inside the flock, 
• Attraction toward the temporary or final goal. 

The combination of repulsive and attractive forces will hopefully direct the robot 
from the start location to the goal location while avoiding obstacles. Preserving the 
shape of the flock is the most important part of flocking. In order to keep the flock’s 
cohesion, the sum of attractive and repulsive forces exerted on each robot is collec-
tively applied on the flock’s center of mass and the next position of the flock’s center 
of mass is determined in this way. Then all the robots locate themselves according to 
their distance relative to the flock’s center. Assuming that fi is the sum of repulsive 
and attractive force vectors on each robot, and F is the normal summation of forces on 
each robot, then the total force vector will be: 

ii

ii

f
F

f
= 



 (1) 

 

In general, pattern transformation is studied from two [14] (1) Identifying the 
robots in the flock depends on the communication ability of the robots in making an 
integrated network. (2) Localization of the robots in the pattern needs a references 
mechanism like unique, leadership, virtual, and neighboring references. In this paper 
we consider a combination of neighboring and unique references according to which 
each robot sometimes determines its position based on either the flock’s center of 
mass or the position of the robots in its neighborhood. 

As mentioned earlier, a circular arc pattern is applied for shepherding the collected 
particles: this works well in workspaces with relatively large free spaces. However, in 
cluttered environments with narrow or maze-like passages, the flock might not navi-
gate easily while keeping its full round shape. Therefore, in order to react against 
encountered obstacles and passageways properly, the flock can launch two effective 
actions: Deformation, and Split and Merge. 

4.2.1 Deformation Action 

Encountering narrow passages is a big challenge for flocks. Although different group 
formations may be used in relatively open areas, there are few shapes suitable for 
passing through narrow regions (Figure 4(a)), which are generally shrunk along one 
axis and elongated along the other axis. Also, during the Expansion action, the flock 
may encounter obstacles as it expands, and so it has to deform. A reconfiguration can 
be achieved by repositioning all or a few robots in the pattern, which can lead to 
deformation of the pattern. However, care should be taken to maintain the maximum 
and minimum distances between any two neighboring robots so that the flock is not 
disintegrated. 
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In each step of the flock’s navigation it determines all narrow passages in front of 
the open segment and selects the one that is in the same direction of the average 
velocity of the flock. But the point is to determine the proper time for starting the 
deformation. For this purpose whenever the flock comes close to obstacles, the 
nearest distances between the two leading robots and the obstacles (d1 and d2 in 
Figure 4(b)) are calculated. If these distances become less than a predetermined value, 
then the flock starts to deform around its axis of symmetry. The amount of contraction 
depends on the width of the opening to the front. If the deformation would make the 
flock elongate so that communication ranges or distances between neighboring robots 
exceed acceptable limits, instead of Deformation, the flock will decide to shift to Split 
and Merge action. After passing through a narrow passage, once the flock reaches a 
relatively free space, it will reconfigure to its primary shape to increase the chance of 
hunting new particles. 

 

     
                                   (a)                                                                                    (b) 

Fig. 4. (a) An example of a narrow passage: The flock’s diameter is larger than the width of the 
passage and so it cannot enter without deformation. (b) Facing narrow passages and deciding 
for deformation. 

4.2.2 Split and Merge Action 

Depending on the workspace and obstacles conditions near and on its way, the flock 
may prefer to split into two sub-flocks in order to detour an obstacles from both sides 
or pass through a very narrow passage, and merge together afterwards while trying 
not to lose any collected particle (Figure 5). 

At first the number of robots that should be allocated to each of the two groups 
(sub-flocks) is calculated, and then all robots move to their new determined positions 
in their respective groups simultaneously and form two smaller flocks while keeping 
the collected particles trapped inside. Maintaining the area inside the flock is im-
portant for confining the collected particles and so the split action should be done in a 
way that at least six robots are in each sub-flock. After the split process each group 
acts like an independent flock and does the same actions such as motion planning, etc. 
It is noted that a flock can undergo only one split action. 

The sub-flocks remain separated until the decision making module determines the 
right time for the merging action, which is calculated based on the remaining time, the 
distance between the centers of mass of the two flocks, and the existence of free space 
around them. Upon meeting these criteria the merging action will launch. Thanks to 
the above pattern transformation capabilities (i.e. deformation and split and merge 
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actions), exploration in different workspaces is made possible, otherwise the flock 
won’t be able to pass through narrow passages and hence may fail to accomplish its 
task successfully. 

 

   
                                        (a)                                                                                (b)                               

   
                                      (c)                                                                           (d)                              

Fig. 5. The flock faces two separate groups of dense particles and decides to split: (a) The flock 
is splitting, (b) the flock moves toward the particles in two small flocks, (c) The flock is 
merging, (d) The flock is reunited 

5 Fuzzy Decision Module 

The overall objective of the proposed model is to solve the SOCS problem in the 
online mode: that is, maximizing the total gain (by collecting as many particles as 
possible in an unknown workspace) while minimizing the total completion time. 

In order to successfully solve this problem, the model must be able to make right 
decisions at the global search level, that is, when to explore, and when to exploit. This 
is done by implementing a Fuzzy Decision module. On the other hand, local strategies 
are planned by the Motion Planning module, by deciding how to avoid an obstacle 
and when to undergo a deformation or a split and merge. 

As it is obvious from the definition of the SOCS problem, it has two independent 
conflicting objectives: minimizing execution time and maximizing object collecting 
gain (as shown in (2)), in which Tf is the time of finishing the whole task and Gp is 
the gain of the particle p: 

 

( )min max
pf

p

Z T G
∀

= +  
 
 
  (2) 

 

In our proposed method, we assume a time interval [Tmin, Tmax]during which the 
flock is allowed to execute and accomplish the collecting and shepherding tasks, and 
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also a required minimum number of particles Qmin to be collected by the flock. As a 
result, the flock must do its best to collect as much particle as possible and reach the 
goal region before spending a time more than the defined upper limit. Naturally, the 
flock should choose areas with highest number of objects (i.e. densest area). 

For deciding when to abandon the Exploration behavior the flock needs to 
estimate the time to reach the goal region from its current position, which can be done 
by calculating the distance D(t) between the flock’s current average position R ( )tX  
and the goal position XGoal via a simple straight line heuristic, as in (2): 

Goal R( ) ( )D t t= −X X  (3) 
 

Given the velocity of the flock VR(t) and the remaining time (Tmax – t), the flock can 
find out if it has enough time to further explore the workspace by visiting another 
temporary goal or it is time to move directly toward the final goal. Actually, the 
critical distance DC(t) is a distance that the robot can traverse within the remaining 
time: 

( )R max( ) ( )CD t t T t= ⋅ −V  (4) 

Similarly, the flock must terminate the Exploration behavior whenever it cannot 
collect more objects, even after utilizing all its N robots in the Depot. That is, when 
(3) holds, in which C(N) is maximum possible capacity. 

Q(t) ≥ C(N), (5) 

Since a robot in a formation must handle additional problems such as avoiding 
collision with other members of the flock and relying on usually-incomplete sensory 
data to detect the obstacles’ locations, time and distance calculations in (2) and (3) are 
not always exact and real. On the other hand, a flock formation should be able to 
successfully operate in a real-time world with lots of noisy data and must deal with 
the uncertainties found in such an environment. Consequently, in order to cope with 
these problems and possible localization and sensing errors, a fuzzy-based approach is 
adopted to make decisions about the flock’s next behavior. This will make the model 
more robust and responsive toward unexpected variations in sensing or motion. 

We define fuzzy membership functions for three variables: (1) time, t; (2) number 
of collected objects at time t, Q(t); (3) direct distance to the final goal, D(t); 
respectively as μt, μD, and μQ, illustrated in Figure 7. As can be seen, right parts of all 
these functions tend to zero; this means that for example when the time exceeds its 
upper limit, it is high time to exploit the search toward the goal region, or when the 
number of collected objects exceeds the maximum possible capacity, Exploration 
must end. 

Introducing fuzziness in decision making reduces the risk of making wrong 
decisions in the presence of incomplete perception or improperly-set parameters and 
thresholds. A number of fuzzy rules can be defined for integrating the above 
membership functions and decision variables. A typical fuzzy rule contains 
commonly used linguistic modifiers (like low, medium, high) and has the following 
structure: 
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RULE Ri 

IF  Elapsed time is Low, AND 
  Collected quantity is Low, AND 
   Distance to the final goal is Large, AND 
  Distance to the nearest temporary goal is Low 
THEN  Behavior = Exploration 

 

For each rule we can also blend the above fuzzy membership functions into a 
single Fuzzy Decision criterion: 

( ) ( ) ( ) ( ) ( ) ( ){ }= min , ,R t i D i Q i t i D i Q iFD t D Q t D Qμ μ μ μ μ μ= ⊗ ⊗  (6) 

Three membership functions named as F (Far), M (Medium), and N (Near) are 
used to define the flock’s distance to goal (D), three membership functions named as 
L (Large), M (Medium), and S (Small) are used to define the quantity of collected 
particles (Q), and finally, four membership functions named as VL (Very Large), L 
(Large), M (Medium), and S (Small) are used to define the elapsed time (T), as 
depicted in Figure 6. The output of the decision making module is defined by two 
membership functions, named as Exploration and Exploitation, shown in Figure 7. 

 

 

Fig. 6. (a) Fuzzy membership functions for (a) Elapsed time, (b) Flock’s distance to goal, and 
(c) Quantity of collected particles 
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After many experiments for various conditions, the structure of our fuzzy logic is 
tuned by five rational rules for the decision making process, as presented in Table 2. 

Table 2. Fuzzy rules for decision making 

Index T Q D Output 

1 L S F Exploration 
2 VL M F Exploitation 
3 S S N Exploration 
4 M L F Exploitation 
5 VL S N Exploitation 

 
Once the inputs are fuzzified it is possible to know the degree to which each part 

of the antecedent has been satisfied for each rule. The input for the defuzzification 
process is a fuzzy set and the output is a single number. Perhaps the most popular 
defuzzification method is the centroid calculation, which returns the center of area 
under the curve. If the result of the centroid-based defuzzification is set to a value 
between 0.1 and 0.2, both the two behaviors can occur in the output function. To 
prevent this we determine an intersection between these two functions (α) as a point 
for switching between Exploration and Exploitation, and the behavior is determined 
by comparing the result value of defuzzification (FD) with a threshold α, as: 

 

{Exploitation if < ,
( ) =   

Exploration if .

α
α≥

FD
Behavior t

FD
 (7) 

6 Simulation 

As mentioned before, the flock must collect as much particles as possible within a 
time period as short as possible. To do this, areas with high densities of particles must 
be identified and visited, and hence all sensed particles are clustered for finding dense 
areas. We used the DBSCAN (Density Based Spatial Clustering of Application with 
Noise) algorithm as a clustering method which works based on density of data and 
considers the distribution of objects in calculations. Density-based algorithms try to 
separate a data set D into subsets of similar densities [19]. The DBSCAN algorithm 
which discovers the clusters and noise in a database is based on the fact that a cluster 
is equivalent to the set of all objects in D which are density-reachable from an 
arbitrary core object in the cluster [1]. 

We used the PSO algorithm for simulating and coordinating the movements of 
particles inside the flock. The particles are dynamic and change their position and 
speed over time. As the robots move, they push the particles forward while preventing 
them from leaving the flock. At each iteration the particles try to adjust their 
velocities with the ‘best’ velocity among themselves so far, with movements and 
positions of their neighbors, and with the average velocity of robots [8] For a particle, 
the best direction is the one that has the lowest deviation from the flock’s average 
direction. 
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In order to assess the efficiency of the proposed model in simultaneously 
collecting and shepherding workspace objects we programmed it in Matlab® and 
implemented on a number of simulations. The performance measures were time, 
number of collected particles, and the total gain of particles. The proposed model was 
tested in five different workspaces with input parameters set as shown in Table 3, in 
which DR-Com represents the maximum distance within which communication between 
any two robots can be maintained. The experimental results were compared based on 
total times spent for executing the defined task, lengths of the paths traversed by the 
flock, total number of particles collected by the flock, and the remained time relative 
to the maximum time limit (Table 4). 

For calculating Tmin, the time for moving straightly to the final goal with a constant 
speed (without considering the presence of obstacles) is estimated, and then Tmax is set 
a few times the Tmin. For enabling the expansion behavior we considered different 
safety radii for particle p (i.e., Sp): the larger Sp is, the higher the probability of 
expansion occurrence will be. For all solved problems Qmin was set to 20. For 
investigating the effect of accessible time in problem 1, the Tmax was set to 5·Tmin 
seconds, in problem 2 and 5, Tmax was set to 10·Tmin, and in problem 3 and 4, Tmax was 
set to 15·Tmin seconds. 

Table 3. Parameter values of the input parameters. All distances are in unit. 

Parameter value Symbol Parameter value Symbol 

2 RF 0.35 VR(t) 

20 Qmin 5 Robs 

4 DR-Com 8 Rpart 

6 N 2 DRmax 

36 Num. of sensors 1 DRmin 

Table 4. Experimental results of the solved problem 

 
Problems 

1 2 3 4 5 
Parameters Tmin 25.32 26.69 31.06 33.47 34.98 

Tmax 126.58 255.33 466.82 502.02 349.85 
Sp 0.1 0.3 0.5 0.3 0.1 
Qmin 20 20 20 20 20 

Outputs Total gain 170 326 309 214 387 
Collected particles, Q 59 99 101 76 131 
Elapsed time, t 156.36 264.66 320.18 379.58 385.32 
Length of path 22.48 61.61 84.18 38.54 101.53 
Remained time −22.78 −9.33 146.63 122.47 −35.47 
No. of temp. goals 9 10 13 5 13 

 
Figure 8(a) shows a typical input to the problem No. 1. There is a depot with 9 

robots at the lower right corner, three polygonal obstacles and 64 particles scattered 
across the workspace. Obstacles and particles are unknown to the robots and the final 
goal is located at top center. Collecting a particle has a gain of 3 points and each 
second of runtime exceeding the upper time limit has a 0.5 point penalty. Figure 8(b) 
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shows the result of solving the problem 1. The flock moved from the Depot with 6 
robots, sensed the obstacles, and detected and collected 59 particles with a gain of 170 
points. The figure also reveals that the flock selected 9 temporary goals before 
exploiting toward the final goal region, and did not use additional robots available in 
the Depot. The total runtime was 157 seconds, about 20% longer than the upper time 
limit, and for the same reason the flock lost (157−127)×0.5 = 15 points, making the 
total gain equal to 170 − 15 = 155 points. 

 

    

Fig. 8. (a) A sample workspace used for testing the model; (b) The traversed path and collected 
objects. Note the partial perception of the obstacles through range-finder sensors. 

Experimental results showed that in most of the times the flock was not able to 
finish its task in the predefined time limit. We observed that when the flock faced a 
narrow passage, more time was spent to pass through it because of swinging 
movements induced by the potential fields technique. The probability of pattern 
transformation also increased and more time was spent on positioning the flock along 
the corridor. 

When there are not many particles scattered in the environment nearby, a high-
density cluster may not be formed, and choosing a random point as a temporary goal 
near the flock may lead to navigating in the environment without gaining more 
particles and thus wasting the time. On the other hand, when the temporary goal is set 
too close to an obstacle border, then the flock’s transformation capabilities might not 
help in reaching the goal, and it will be stuck in local minimum. The dynamic state of 
the particles is another issue: when the flock moves toward an area dense with 
particles (as a temporary goal), smaller particles tend to move far from each other and 
become separated, and so the probability of collecting decreases. Conversely, if the 
flock move exactly at the opposite direction of the particles, they may enter inside the 
flock which will increase the speed of solving the problem.  

7 Conclusions 

In this paper, a new class of problems called Simultaneous Object Collection and 
Shepherding (SOCS) is proposed in which a flock of robots must collect a number of 
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scattered objects and guide them to a goal region. In offline mode the problem is 
analogous to the Traveling Salesman Problem which is NP-hard. We also 
incorporated online obstacle sensing and avoidance methods in the flocking behavior, 
and proposed a fuzzy decision module for determining the strategy of environment 
exploration. The model is enriched with a number of complex collective actions like 
deformation, expansion, split and merge. A potential advantage of the proposed 
model is its ability in adapting its behavior to a previously-unknown environment and 
simultaneously performing collecting and shepherding tasks. 

Future works will focus on extension of the model to dynamic environments 
where the obstacles or even the goal are not static and their movements are 
unpredictable over the time. Also we can consider the situation in which the flock has 
the opportunity for discharging its content in a depot and continue collecting more 
objects. Also, considering physical properties of the environment like steepness, 
ruggedness, etc. or kinematic constraints to the robots that can affect the robots’ paths 
and velocity adjustments creates interesting directions for future research. 
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Abstract. This paper describes a hybrid bi-objective evolutionary algorithm,
based on the Non-dominated Sorting Genetic Algorithm-II (or NSGA-II) for
solving the Capacitated University Examination Timetable Problem. The instance
solved is the timetable of the Electrical, Telecommunications and Computer En-
gineering Department at the Lisbon Polytechnic Institute, which comprises three
bachelor programs and two master programs, having about 80 courses offered and
1200 students enrolled. The examination timetable build in a manual form takes
about one week long, considering a two-person team. The proposed bi-objective
algorithm incorporates the following objectives: (1) minimization of the number
of occurrences of students having to take exams in consecutive days, and (2) the
minimization of the timetable length. The computational results show that the au-
tomatic algorithm achieves better results compared to the manual solution, and in
negligible time. After the optimization of each non-dominated feasible timetable,
a room allocation procedure is used to allocate exams rooms.

Keywords: Capacitated Exam Timetabling Problem, Evolutionary Algorithms,
Multi-objective Optimization, Combinatorial Problems.

1 Introduction

The construction of school and university examination timetables is one of the most
important tasks taking place in educational institutions. Many institutions still elaborate
their timetables in a manual form, involving a great deal of time and human resources
and leading to suboptimal solutions. The task of automatically constructing examina-
tion timetables is known as the Exam Timetabling Problem (ETTP), and is an exten-
sive studied optimization problem. The basic problem consists in distributing a set of
exams by temporal periods, satisfying a set of hard and second order (or soft) con-
straints. Constraints of the first type cannot be violated as this results in an infeasible
timetable. Constraints of the second type represent institution’s view of what makes a
good timetable and should be satisfied as many as possible. Examples of constraints
include: not scheduling exams with common students in the same period (hard con-
straint); having sufficient seating capacity for all exams (hard constraint); leave at least
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a two day interval between exams for all students (soft constraint). Moreover, depending
if seating capacity hard constraint is considered or not, the ETTP is further classified in
Capacitated ETTP and Uncapacitated ETTP, respectively. The actual program curricula
seen at universities are designed to offer a great degree of diversity and flexibility to
the students, letting them choose a considerable number of free or optional courses. In
order to make this possible with available teacher, faculty staff, and university resources
(rooms, equipment, etc.), courses are being offered in multiple related programs. This
growing number of combined courses imposes extra difficulties in solving the ETTP.

The development of systems to automate the construction of university examination
timetables has begun in the 1960 decade. The paper [15] constitute a survey of the recent
(from 1995 to 2008) techniques and algorithmic approaches used to solve this prob-
lem. These techniques are classified in the following groups: Graph based sequential
techniques, Constraint based, Local search based (e.g. Tabu search, Simulated Anneal-
ing), Population based (e.g. Evolutionary algorithms, Ant algorithms), Multi-criteria
techniques, Hyper-heuristics and Decomposition/clustering techniques. More recently,
the ETTP has been approached like a Multi-objective/Multi-criteria Optimization prob-
lem, recognizing the true dimensions of real world problems, that typically have many
facets to consider (proximity costs between student exams, timetable lengths, room as-
signment, invigilator availability, etc.). Multi-criteria techniques were proposed in [1]
and [14]. Other recent works [6], [17], [5] and [13], applied Multi-Objective Evolution-
ary Algorithms (MOEAs) to solve the ETTP. Evolutionary approaches are well suited to
solve Multi-objective Optimization (MOO) problems because a population of solutions
is already being manipulated in each iteration of the evolutionary algorithm. Therefore,
the population-approach of evolutionary algorithms can be effectively used to find the
multiple trade-off solutions of MOO problems. In MOO the solutions are characterized
by optimum sets of alternative non-dominated solutions, known as Pareto sets. Sev-
eral MOEA have been proposed in the literature [7]. It is known that metaheuristics,
like evolutionary algorithms, work better if hybridized with other techniques [16]. In
fact, the most successful applications of MOEA to the ETTP are hybrid approaches,
being usually hybridized with some form of Local Search procedures. Moscato and
Norman [12] introduced the term memetic algorithm to describe evolutionary algo-
rithms in which local search is used. Following this stream several authors developed
hybridizations of MOEA with other metaheuristics [9]. In [2] the authors present design
guidelines of memetic algorithms for scheduling and timetabling problems.

In this work we propose a novel hybrid MOEA and show its application on a real
world ETTP instance. The considered problem instance is the examination timetable of
the Electrical, Telecommunications and Computer Engineering Department (DEETC)
at the Lisbon Polytechnic Institute. The proposed MOEA is based on the Elitist Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [8]. The NSGA-II procedure is one
of the popularly used MOEA which attempt to find multiple Pareto-optimal solutions in
a multi-objective optimization problem. Like the works [6], [17] [5] and [13], we also
consider two objectives: one that maximizes each student free time between exams, and
a second objective that considers the minimization of the timetable length.

The paper is organized as follows: the next section describes the DEETC department
ETTP instance and its formulation as a multi-objective optimization problem. Section 3
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Table 1. Characteristics of the DEETC dataset

Exams Students Enrolment Periods
80 1238 4637 18

Table 2. Number of exams per program in the DEETC department

LEETC LEIC LERCM MEIC MEET
32 30 29 19 25

presents the algorithmic flow of the proposed MOEA. Section 4 presents simulation
results and analysis of the proposed algorithm. Finally, conclusions and future work are
presented in Section 5.

2 Problem Description

The problem instance considered in this work is the DEETC timetable of the win-
ter semester of the 2009/2010 academic year. The DEETC timetable comprises five
programs: three B.Sc. programs (named LEETC, LEIC and LERCM) and two M.Sc.
programs (named MEIC and MEET). B.Sc. and M.Sc. programs have six and four
semesters duration, respectively. The DEETC dataset characteristics are listed in
Table 1.

The number of exams per program is listed in Table 2. About 34 of the 80 courses
lectured in DEETC are shared by different programs, as depicted in Table 3. The high
complexity of the timetable is due mainly to two reasons: (1) high degree of course
sharing in different programs and different semesters (e.g. LSD course is offered in the
1st and 2nd semesters of LEIC and LEETC programs, respectively); (2) the courses of
the even semesters (summer semesters) are also being lectured in the winter semester,
thus increasing the timetable complexity, because there are students attending courses
in the even and odd semesters. To get an idea of the number of students involved in each
semester, we present in Table 4 the number of classes proposed for the winter semester
for each program. Each class of the 1st to the 3rd semester has on average 30 students
and the remainder semesters have 20 students per class on average.

2.1 Capacitated Problem Formulation

This paper considers an instance of the ETTP that was first formulated in [3]. In their
formulation, if a student is scheduled to take two exams in any one day there should be
a free period between the two exams. Violation of this constraint is referred as a clash.
In previous work [10], we have considered the uncapacitated problem, whereas now we
include the capacity constraint. The corresponding Capacitated problem is formulated
as:

Minimize f1 =

|E|−1∑
i=1

|E|∑
j=i+1

|P |−1∑
p=1

aip aj(p+1) cij (1)

f2 =|P | (2)
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Table 3. Courses shared among the five programs offered in the DEETC. The number of shared
courses sums to 34 (out of 80 courses with exam). The first five columns contain the semesters
where the course is offered. Semesters in M.Sc. courses are numbered 7 to 10 (four semester
master program).

MEIC MEET LERCM LEIC LEETC Course Acronym
1 1 1 Linear Algebra ALGA
1 1 Mathematical Analysis I AM1
1 1 1 Programming Pg

1 2 Logic and Digital Systems LSD
2 2 Mathematical Analysis II AM2
2 2 2 Object Oriented Prog. POO
2 2 3 Probability and Statistics PE

2 3 Computer Architecture ACp
3 and 5 Computer Graphics CG
3 and 5 Computation and Logic LC
3 and 5 Functional Programming PF

3 3 4 Imperative Prog. in C/C++ PICC/CPg
7 3 5 Digital Comm. Syst. SCDig

4 4 4 Computer Networks RCp
7 4 5 Virtual Execution Systems AVE
8 4 Multimedia Signal Codific. CSM

4 5 Operating Systems SOt
7 5 Unsupervised Learning AA

8 5 Database Systems BD
8 5 6 Internet Programming PI
8 5 6 Distributed Comput. Syst. SCDist

7 7 5 5 5 Internet Networks RI
7 5 Compilers Cpl

7 5 Control Ctrl
7 5 Radio Communications RCom

7 5 Security Informatics SI
7 5 Telecommunication Systems ST

7 7 5 5 Embedded Systems I SE1
7 7 6 Multim. Comm. Networks RSCM
7 6 Distributed Systems SD
7 6 Software Engineering ES

7 to 9 8 6 3 to 6 6 Project Management EGP
7 to 9 8 6 3 to 6 6 Enterprise Management OGE
7 to 9 8 6 3 to 6 6 Management Systems SG
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Table 4. Number of classes proposed for the winter semester for each program

Sem. LEIC LEETC LERCM MEIC MEET
1st 5 5 3 2 2
2nd 3 3 1 - -
3rd 3 3 2 2 2
4th 2 2 1 - -
5th 3 3 1
6th - - -

Total 16 16 8 4 4

subject to
|E|−1∑
i=1

|E|∑
j=i+1

|P |∑
p=1

aip ajp cij = 0, (3)

|E|∑
i=1

aip si ≤ S, ∀p ∈ P, (4)

|P |∑
p=1

aip = 1, ∀i ∈ {1, . . . |E|}, (5)

where:

– E = {e1, e2, . . . , e|E|} is the set of exams to be scheduled,
– P = {1, 2, . . . , |P |} is the set of periods,
– S is the total seating capacity in a given period,
– aip is one if exam ei is allocated to period p, zero otherwise,
– cij is the number of students registered for exams ei and ej . Matrix c is termed the

Conflict matrix,
– si is the number of students registered for exam ei.

Eqs. (1) and (2) are the two objectives of minimizing the number of clashes and timetable
length, respectively. Constraint (3) is the (hard) constraint that no student is to be sched-
uled to take two exams in the same period. Constraint (4) states the capacity constraint
that the total number of students sitting in the same room and in the same timeslot, for
all exams scheduled at that timeslot, must be less than or equal to the total seating ca-
pacity S. Constraint (5) indicates that every exam can only be scheduled once in any
timetable.

2.2 Room Specification and Room Assignment Algorithm

The list of rooms used in the DEETC department is listed in Table 5. The room desig-
nation has the meaning: <Building>.<Floor number>.<Room number>. The largest
exam, ALGA, has 489 students enrolled, so we set the period seating capacity to S =
600. For room assignment, we use the algorithm of Lotfi & Cerveny, described in [4].
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Table 5. Rooms designation and capacity

Designation Capacity Designation Capacity
A.2.03 50 G.0.14 30

A.2.08-A.2.09 40+40 G.0.15 30
A.2.10-A.2.11 40+40 G.0.16 50
A.2.12-A.2.13 40+40 G.0.24 81
A.2.16-A.2.18 45+45 G.1.03 50

C.2.14 47 G.1.04 45
C.2.21 16 G.1.13 45
C.2.22 47 G.1.15 79
C.2.23 48 G.1.18 40
C.3.07 75 G.2.06 50
C.3.14 36 G.2.07 50
C.3.15 40 G.2.08 50
C.3.16 40 G.2.09 50
G.0.08 30 G.2.10 45
G.0.13 30 G.2.21 48

Sum of rooms seating capacity = 1532

3 Hybrid Multi-objective Genetic Algorithm

As mentioned in the introduction, we solve the DEETC ETTP instance using a hybrid
MOEA based on the NSGA-II algorithm. NSGA-II has the following features: (1) it
uses an elitist principle, (2) it uses an explicit diversity preserving mechanism, and (3)
it emphasizes non-dominated solutions. The basic NSGA-II was further transformed to
include a step where a Local Search procedure is performed. The general steps of the
hybrid algorithm (named HMOEA) are depicted in Figure 1. In the following subsec-
tions we describe each block of the HMOEA in detail.

3.1 Chromosome Encoding

In order to optimize for the second objective (see Eq. (2)), each timetable is represented
by a variable-length chromosome as proposed by [5], and illustrated in Figure 2. A chro-
mosome encodes a complete and feasible timetable, and contain the periods and exams
scheduled in each period. Valid timetables should have a number of periods belong-
ing to a valid interval, initially given by the timetable planner. However, the operation
of crossover and mutation could produce invalid timetables, because of extra periods
added to the timetable as a result of these operations. Thus, a repairing scheme must
be applied in order to repair infeasible timetables. The adopted scheme is explained in
detail in Section 3.4.

3.2 Population Initialisation

It is known that the basic examination timetabling, of minimizing the number of slots
considering the hard constraint of not having students with overlapping exams, is equiv-
alent to the graph colouring problem [6]. As such, several heuristics of graph colouring
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Procedure. HMOEA
P (t): parent population at iteration t

Q(t): offspring population at iteration t

R(t): combined population at iteration t
L: local search operator
OUTPUT
N (t): archive of non dominated timetables
Initialise P 0 and Q0 of size N with random timetables
For each iteration t ← 0, 1, . . . , Imax − 1 do

(Step 1) Form the combined population, R(t) = P (t) ⋃Q(t), of size 2N .
(Step 2) Classify R(t) into different non-domination classes.
(Step 3) If t ≥ 1, use local search procedure L to improve elements of R(t).
(Step 4) Form the new population P (t+1) with solutions of different

non-dominated fronts, sequentially, and use the crowding sort procedure
to choose the solutions of the last front that can be accommodated.

(Step 5) N (t+1) ← NonDominated(P (t+1)). If t = Imax − 1 then Stop.
(Step 6) Create offspring population Q(t+1) from P (t+1) by using the crowded

tournament selection, crossover and mutation operators.
(Step 7) Repair infeasible timetables.

Fig. 1. Hybrid NSGA-II procedure

have been applied to the ETTP. These heuristics influence the order in which exams
are inserted in the timetable. In this work, we use the following two heuristics, in the
initialisation and mutation processes:

– Saturation Degree (SD): Exams with the fewest valid periods, in terms of satisfying
the hard constraints, remaining in the timetable are reinserted first.

– Extended Saturation Degree (ESD): Exams with the fewest valid periods, in terms
of satisfying both hard and soft constraints, remaining in the timetable are rein-
serted first.

The ESD heuristic is used in the population initialisation procedure, while the SD
heuristic is used in the reinsertion process of the mutation operator (detailed in Sec-
tion 3.3). These two procedures are similar to the procedures applied in [5]. The use
of the SD heuristic in the initialisation process has been experimented but with worse
results than the ESD heuristic.

In the initialisation process, a timetable with a random (valid) length is generated
for each chromosome. Then, the unscheduled exams are ordered according to the ESD
heuristic and a candidate exam is selected randomly being then scheduled into a ran-
domly chosen period (chosen from the set of periods with available capacity while re-
specting the feasibility constraint). If no such period exists, a new period is added to the
end of the timetable to accommodate the exam. In the ESD heuristic used, a candidate
exam can be scheduled in a period if it does not violate feasibility and if the number
of clashes is bellow or equal to 70. This process is repeated until all exams have been
scheduled.
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Fig. 2. Variable length chromosome representation. A chromosome encodes a complete and fea-
sible timetable.

3.3 Selection, Crossover and Mutation

The offspring population is created from the parent population by using the crowded
tournament selection operator [8]. This operator compares two solutions and returns as
the winner of the tournament the one which has a better rank, or if the solutions have
the same rank, the one who has a better crowding distance (the one which is more far
apart from their direct neighbours).

The crossover and mutation operations were adapted from the ones introduced in [5].
In the crossover operator, termed Day-exchange crossover, the best days, selected based
on the crossover rate, are exchanged between chromosomes. The best day of a chro-
mosome consist of the day (a period, in our case) which has the lowest number of
clashes per student. This operation is illustrated in Figure 3. To ensure feasibility after
the crossover operation, the duplicated exams are deleted. Notice that, as mentioned
before, the result of inserting a new period in a chromosome could produce a timetable
with a number of periods larger than the valid upper limit. If this is the case, a repair
scheme is applied in order to compact the timetable.

The mutation operator removes a number of exams, selected based on the reinser-
tion rate, and reinserts them into other randomly selected periods while maintaining
feasibility. We use the SD graph colouring heuristic to reorder the exams, prior to rein-
serting them. As in the case of the crossover operator, the mutation operator could also
add extra periods to the timetable, for the exams that could not be rescheduled without
violating the hard constraints.

3.4 Repairing Scheme

The repair scheme adopted is similar to the period control operator of [5], consisting of
the following two operations: (1) Period expansion, used when the timetable has a num-
ber of periods below the lower limit, and (2) Period packing, used when the timetable
has a number of periods above the upper limit. In the period expansion operation, empty
periods are first added to the end of the timetable such that the timetable length is equal
to a random number within the period range. A clash list, comprising all exams involved
in at least one clash, is maintained. Then, all the exams in the clash list are swept in a
random order and rescheduled into a random period without causing any clashes while
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Fig. 3. Illustration of Day-exchange crossover based on [5]. The shaded periods represent the
chromosomes best days. These are exchanged between chromosomes, being inserted into ran-
domly chosen periods. Duplicated exams are then removed.

maintaining feasibility. Exams which could not be moved are left intact. The period
packing operation proceeds as follows: first, the period with the smallest number of
students is selected; then the operation searches in order of available period capacity,
starting from the smallest, for a period which can contain exams from the former while
maintaining feasibility and without causing any clashes. The operation stops when the
timetable length is reduced to a random number in the desired range or when it goes
one cycle through all periods without rescheduling any exam.

3.5 Ranking Computation

The non-dominated sorting procedure used in NSGA-II use the evaluation of the two
objective functions to rank the solutions. We adopt a simple penalization scheme in or-
der to penalize solutions with an invalid number of periods. The penalization is enforced
according to the following pseudo-code:

If timetable length > max length Then

fPen
1 = f1 + α1(timetable length − max length)

fPen
2 = f2 + α2(timetable length − max length)

Else If timetable length < min length Then

fPen
1 = f1 + α1(min length − timetable length)

fPen
2 = f2 + α2(min length − timetable length).
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Table 6. HMOEA parameters

Parameter Value
Population size 40
Number of iterations Imax =125
Crossover probability 1.0
Mutation probability 0.2
Reinsertion rate 0.02
SHC no. iterations tmax = 5
SHC temperature T = 0.0001
Seating capacity 600

We set α1 = 1000 and α2 = 10 to introduce a high penalization on the number of
clashes and number of periods, respectively.

3.6 Local Exploitation

The Local Exploitation step employs a Local Search procedure to improve locally some
elements of the population. First, 2N/4 groups of fours are formed by randomly select-
ing into each group elements of the population R(t). Then, tournaments between ele-
ments of each group are taken. The chromosome which has the lower rank (the one who
belongs to the front with lower number) wins the tournament and is then scheduled for
the improve step. With this procedure, about N/2 of the chromosomes of population
R(t) are selected for improvement. Also, it is guaranteed that at least one element of
the non-dominated front is selected for improvement. The selected chromosomes are
improved locally using a short iteration Stochastic Hill Climber (SHC) procedure, with
objective function f1 = minimization of the number of clashes. We set a low tempera-
ture T in the SHC. In this way, our SHC works like a standard Hill Climber but with
only one neighbour, instead of evaluating a whole neighbourhood of solutions. The ran-
dom neighbour is selected according to the following operation. Firstly, a clash list for
the selected chromosome is built. Then, the neighbour chromosome is the one which
results from applying the best move of a randomly chosen exam in the clash list into
a feasible period. The best move is the one that leads to the highest decrease in the
number of clashes.

4 Computational Results

In our experiments we applied the proposed HMOEA to the DEETC dataset specified
in Section 2. Table 6 gives the algorithmic parameters used in the experiments. The
algorithm was programmed in the Matlab language (version 7.9 (R2009b)), and run on
a Win 7.0, i7-2630QM, 2.0 GHz, 8 GB RAM, computer.

Firstly, we present the results on the performance of HMOEA and then compare it
with the available manual solution. In the experiment made, the initial period range was
set to the interval [14, 22], that is, four periods below and upper the number of periods
set in the manual solution. The performance of the HMOEA in terms of the evolution
of the non-dominated front is illustrated in Figure 4. We can observe that the algorithm
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Table 7. Clashes per program for the manual and automatic solutions with 18 periods

Timetable number of clashes
LEETC LEIC LERCM MEIC MEET Combined

Manual sol. 287 197 114 33 50 549
Automatic sol. 229 183 64 2 18 417

converges rapidly as in iteration 25 it has already a complete first front that is a good
approximation of the final Pareto front. After that iteration, the individual solutions are
further optimized but to a lesser extent. The running time for this experience (the best
result out of five runs) was 411.75 seconds or ≈ 7 minutes.

In Table 7 we compare the number of clashes per program obtained by the manual
and automatic (considering the obtained solution with 18 periods) procedures. As we
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can conclude from this table, the automatic solution improved the number of clashes in
all the individual program timetables, which corresponds to a lower number of clashes
in the optimized merged timetable. Tables 8 and 9 present the timetables, including

Table 8. Manual solution for the LEETC examination timetable. The courses marked in bold face
are shared with other programs, as shown in Table 3. The number of clashes of this timetable is
287.

Sem. Room Course 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A.2.08-A.2.09-A.2.12- ALGA x
-A.2.13-A.2.16-A.2.18

A.2.12-A.2.13- Pg x
-A.2.16-A.2.18

1st A.2.03-A.2.08- AM1 x
-A.2.09-A.2.10

G.0.24-G.0.08-G.0.13 FAE x
G.0.24-G.0.08- ACir x
-G.0.13-G.0.14
C.3.07-C.3.14- POO x
-C.3.15-C.3.16
G.0.24-G.0.08 AM2 x

2nd A.2.12-A.2.13- LSD x
-A.2.16-A.2.18

G.0.24 E1 x
G.0.24 MAT x

G.0.24-G.0.08-G.0.13 PE x
G.2.09-G.2.10-G.2.21 ACp x

3rd G.0.24-G.1.15 EA x
G.1.15 E2 x
G.1.15 SS x

G.2.06-G.2.07-G.2.08 RCp x
A.2.12-A.2.13- PICC/CPg x
-A.2.16-A.2.18

4th G.1.15 PR x
G.2.06-G.2.07 FT x
G.0.08-G.0.13 SEAD1 x
G.1.03-G.1.04 ST x
G.2.06-G.2.07 RCom x
G.0.24-G.1.15 RI x

5th G.2.06-G.2.07 SE1 x
G.0.24-G.1.15 AVE x
G.2.06-G.2.07 SCDig x
A.2.08-A.2.09 SOt x

G.0.24 PI x
G.1.03-G.1.04 SCDist x

6th G.0.24 EGP x
G.0.13 OGE x

A.2.10-A.2.11 SG x
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Table 9. Automatic solution for the LEETC examination timetable. The courses marked in bold
face are shared with other programs, as shown in Table 3. The number of clashes of this timetable
is 229.

Sem. Room Course 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A.2.16-A.2.18-G.0.24 ALGA x
-A.2.08-A.2.09-A.2.10
-A.2.11-A.2.12-A.2.13

-G.1.15
A.2.16-A.2.18-G.0.24 Pg x
-A.2.08-A.2.09-A.2.10
-A.2.11-A.2.12-A.2.13

-G.1.15
1st A.2.16-A.2.18-G.0.24 AM1 x

-A.2.08-A.2.09-G.2.21
A.2.16-A.2.18 FAE x
-G.0.24-C.2.21
A.2.16-A.2.18 ACir x
-G.0.24-C.3.14
A.2.16-A.2.18 POO x
-A.2.08-A.2.09
C.3.07-C.3.15 AM2 x

2nd A.2.16-A.2.18 LSD x
-G.0.24-C.3.07

G.1.15 E1 x
C.3.07 MAT x

G.1.15-G.0.24 PE x
G.0.24-C.2.21 ACp x

3rd C.3.07-G.1.15 EA x
C.3.07 E2 x
C.3.07 SS x

C.3.14-C.3.07-C.3.15 RCp x
G.1.18-G.1.15-G.1.13 PICC/CPg x

4th G.1.15 PR x
G.0.15-G.1.03 FT x
G.0.15-G.0.14 SEAD1 x
G.1.18-G.2.06 ST x
C.3.14-C.3.15 RCom x
C.3.14-C.3.07 RI x

5th C.2.21-C.3.07 SE1 x
G.1.15-G.2.21 AVE x
G.1.18-G.2.10 SCDig x
A.2.10-A.2.11 SOt x

C.3.07 PI x
G.2.06-G.2.07 SCDist x

6th G.0.24 EGP x
G.0.08 OGE x

A.2.08-A.2.09 SG x
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room assignment, for the most difficult program: the LEETC program. We can see
that, qualitatively, the timetable produced by the automatic procedure has a reasonable
layout as the exams within the same semester are well distributed. Concerning room
assignment, the implemented algorithm doesn’t take into account room localisation, so
there are exams scheduled at multiple rooms localised far away from each other, which
can be a problem if there are a small number of invigilators. Another aspect observed
is the number of rooms assigned for the larger exams (1st semester). In the manual
solution, when the human planner allocated the exams rooms, he had in his possess
information of a better approximation (indicated by the teachers) of the real number of
students that were examined, so the allocated room capacity is shorter than those in the
automatic solution, that rely solely on enrolment information.

5 Conclusions

In this paper we solved a real instance of the capacitated exam timetabling problem us-
ing a hybrid multi-objective evolutionary algorithm. The instance considered comprises
five programs with high degree of course sharing between programs, which difficult the
manual construction of the timetable. In the manual elaboration of the timetable actu-
ally five timetables are optimized concurrently, one for each program. The automatic
algorithm solves this instance by optimizing the combined timetable. With the applica-
tion of the proposed hybrid MOEA, the present instance was solved effectively, with
lower number clash conflicts compared to the manual solution and in negligible time.
The current results were obtained without special fine tuning. Moreover, in experiences
made, we obtained lower number of clashes than the actual results, but the optimization
in each timetable was even worse balanced, as some timetables were more optimized
than others. This is explained by the intrinsic difficulty in optimizing each timetable,
e.g. the LEETC is more difficult to optimize than the the LERCM timetable, because it
has a greater number of shared courses and more students registered on those courses.

5.1 Future Work

Several improvements could be made to the algorithm. Firstly, in order to prevent for the
algorithm to optimize in an unbalanced way, we could consider adding has an objective
a measure of program balance, in order to guide the algorithm to prefer solutions where
the number of clashes is minimized and the balance in programs is achieved. Secondly,
we could update the room assignment algorithm for assigning exam rooms to nearby
locations. Finally, in order to evaluate the performance of the HMOEA, we intend to run
the algorithm in the set of ETTP benchmarks available - the Toronto and Nottingham
benchmarks [15], and the newer datasets that were proposed in the 2nd International
Timetabling Competition (ITC2007) [11] - and compare with other approaches.
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Abstract. Point mutation colonies (hereinafter referred to as PM colonies) are 
multi-agent systems. Development of the environment in these systems is 
determined by rewriting rules which allow the agent to influence other agents 
and environmental symbols in its strict neighbourhood. The rules enable the 
agent to erase, substitute or insert neighbouring agents/symbols, to change its 
position with neighbouring agents/symbols or to disappear. In this paper we 
will focus on the impact of forbidding some of the rule-type or their 
combination in the development of the entire family of PM colonies with such 
restriction and we will also look into the impact of restrictions on the generative 
power of PM colonies. 

Keywords: PM Colony, Artificial Life, Multi-agent Systems, Formal  
Languages Theory. 

1 Introduction 

Colonies [2], [4] are presented to be a grammatical tool, systems composed as simple 
as possible. In general are these multi-agent systems introduced as grammars generat-
ing finite languages. In more formally view, an agent is a pair (Si, Fi), where Si is a 
symbol representing an agent and Fi represents a finite set of strings which do not 
contain the symbol Si. The colony works on a given string and each agent performs 
action - replacing an occurrence of its symbol by a string from its F-set. This is the 
way, how a colony generates its language. 

PM colonies were introduced in two papers [7], [8]. This type of colonies is 
motivated by biology, or more precisely by communities of organisms living in a 
common environment. In the field of informatics this kind of co-existence represents 
a multi-agent system, which is acting on the basis of stimulus coming from the 
environment. 

In [8] there was an open question of decidability results flowing into the necessity 
of studying restricted classes of PM colonies. Similar topics were studied in [4 – 6]. In 
this paper we are restricting the set of possible rule-types in PM colonies. Then we 
discuss decidability problem if two agents can reach a conflict in a given PM colony 
from a given starting string. We will also discuss the generative capacity of such PM 
colonies. 
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Content of this paper was presented at International Joint Conference on 
Computational Intelligence in Barcelona, October 2012. This version is updated and 
some details have been added to make the solved issues complete. 

2 Colonies and PM Colonies 

Colonies are grammar models of multi-agent systems motivated by subsumptial archi-
tecture and they are characterised as special forms of cooperating grammars. A colony 
consists of a finite number of simple components (agents) each generating a finite 
language. More about grammar systems [3] and especially about colonies is presented 
in [1], [2]. 

Environment in colonies is represented by a string of symbols, and it is influenced 
via components which make changes in it. The set of all possible states of the envi-
ronment, which can be generated from a given starting string, forms the language of 
the colony. 

In a PM colony environment the locations of agents are fixed. The area, where the 
PM colony works, is represented by a string of agents and environment symbols 
(which can be changed) and boundary markers of the environment. Boundary markers 
label the beginning and the end of a word, it is not allowed to erase them, to overstep 
or to produce them. 

The actions take place only in strict vicinity of the symbol representing the agent. 
Each action can add one environment symbol or one agent symbol (a new agent can 
be also created), can move agent one step to the left or right, can erase neighbouring 
agent or environment symbol, or can substitute an environment symbol to another 
one. 

All agents work in parallel. The activity of an agent depends totally on one symbol 
in front of it and one symbol behind it. To solve a conflict, when agents have a com-
mon neighbour, we arrange the set of agents by a priority relation. An agent can‘t 
change its own name or name of any other agent. Agents with the same name may be 
present on more than one position in the string. Formally: 

 

Definition 1: PM colony is a construct C = (E, #, N, >, R1, ..., Rn), where 
- E is the alphabet of the environment,    
- # is the boundary marker, 
- N is the alphabet of agents names, 
- > is the partial order relation over N (the priority relation for agents), 
- R1, ..., Rn are finite sets of action rules for agents from N. The action rules can be 
of the following forms: 
- Deletion: 
(a, Ai, b) → (ε, Ai, b), where a ∈ E ∪ N, b ∈ E ∪ N ∪ {#}, 
(a, Ai, b) → (a, Ai, ε), where a ∈ E ∪ N ∪ {#}, b ∈ E ∪ N, 
- Insertion: 
(a, Ai, b) → (a, c, Ai, b), where a, b ∈ E ∪ N ∪ {#}, c ∈ E ∪ N, 
(a, Ai, b) → (a, Ai, c, b), where a, b ∈ E ∪ N ∪ {#}, c ∈ E ∪ N, 
- Substitution: 
(a, Ai, b) → ( c, Ai, b), where  b ∈ E ∪ N ∪ {#}, a, c ∈ E, 
(a, Ai, b) → (a, Ai, c), where a ∈ E ∪ N ∪ {#},b,  c ∈ E, 
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- Move: 
(a, Ai, b) → (Ai, a, b), where a ∈ E ∪ N, b ∈ E ∪ N ∪ {#}, 
(a, Ai, b) → (a, b, Ai), where a ∈ E ∪ N ∪ {#}, b ∈ E ∪ N,  

- Death: 
(a, Ai, b) → (a, ε,  b), where a, b ∈ E ∪ N ∪ {#}. 

Let (a, Ai, b) → α  be an action rule of an agent, then symbols a, b represent the con-
text of agent Ai.  

PM colonies are devices, where agents work parallel. Similarly as in the other pa-
rallel working systems, conflicts can occur between agents. 

 

Definition 2: If in a word w ∈ (E ∪ N )* context overlay of two agents Ai and Aj hap-
pens or if agent Aj takes part in context of agent Ai, we call it direct conflict between 
agents. If in w the pairs of agents (A1, A2), (A2, A3)... (An, An+1 ) are in direct conflict 
then the whole set of agents A1, A2, A3,..., An, An+1 are in conflict. 

The conflict of agents A1, A2, A3,..., An, An+1 in PM colony can be solved by the 
agent with the greatest priority, which takes action. So, to solve the conflict, conflict-
ing agents have to be ordered in such a way, that there is an agent with priority higher 
then all other agents in the conflict. Moreover the agent with the greatest priority oc-
curs in the conflict set only once.  

 

Definition 3: A configuration in a PM colony C is a string #w#, where w ∈ (E ∪ N )*.  
Let A be its agent and #w# = #xaAby# be a configuration in C, where a,b ∈ (E ∪ N 
)∪ {#}. This occurrence of agent A is active with respect to configuration #w#, if (1) 
in C an action rule exists, whose left side is in the form (a, A, b), and (2) A is not con-
flicting with any other agent occurrence, or A has the highest priority from all agents 
from those in conflict. 

An agent occurrence is inactive, if it is not active. 
 

Definition 4: A derivation step in a PM colony denoted as  is a binary relation on a 
set of configurations. We write #w#  #z# if and only if each active agent A in the 
string w replaces its context in w by corresponding rule and the resultant string is #z#. 
Derivation * is the reflexive and transitive closure of relation . 

 

Definition 5: Deterministic PM colony is such PM colony where each agent A has for 
any context (a, A, b) at most one action rule. 

3 (Un)Decidability Results in PM Colonies 

In [7], [8] there are several problems focused on decidability mentioned. To explain 
those problems we have to mention some structural properties of PM colonies, which 
determine structures in environmental states introduced in the work above. 
 

Definition 6: Let C = (E, #, N, >, R1, .. , Rn) be a PM colony. A state y ∈ #(E ∪ N)*# is 
reachable in C if there is a state z ≠ y such that z  y with respect to C. A state which 
is not reachable is said to be unreachable. A state y ∈ #(E ∪ N)*# is said to be alive if 
there is a state z ≠ y such that y  z. A state which is not alive is said to be dead. 

By intersecting the classes in the two classifications above, we get four classes  
of states. We denote by Reachable(C), Unreachable(C), Alive(C), Dead(C) the  
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languages of all reachable, unreachable, alive, and dead states, respectively, with 
respect to C. We also denote: 

Garden-of-Eden(C) = Unreachable(C) ∩ Alive(C) 
Life(C) = Reachable(C) ∩ Alive(C) 
Doomsday(C) = Reachable(C) ∩ Dead(C) 
Non-Life(C) = Unreachable(C) ∩ Dead(C) 
 

Proposition 1 [7]: All the languages Reachable(C), Unreachable(C), Alive(C), 
Dead(C), Garden-of-Eden(C), Life(C), Doomsday(C), Non-Life(C) are regular for PM 
colony C. 
 

Proof of this proposition is based on regularity of Alive(C) prooved in [7]. Then 
Dead(C) is the complement of Alive(C) with respect to {#}(E ∪ A)*{#}. Hence also 
this language is regular. The language Reachable(C) consists of all strings which can 
be derived in one step from the strings in Alive(C). Such step can be performed by a 
sequential transducer which simulates the actions corresponding to all active occur-
rences of agents in string of Alice(C). And it also checks whether or not these occur-
rences are active. That is why also Reachable(C) is regular. Unreachable(C) is the 
complement of this language with respect to {#}(E ∪ A)*{#}. Languages Garden-of-
Eden(C), Life(C), Doomsday(C) and Non-life(C) are obtained by intersecting two by 
two the other languages. Consequent of this is that also these languages are regular.   

The proposition above implies that most problems about the mentioned languages 
are decidable. For instance, one can decide whether or not they are empty, finite or 
infinite, equal to any given regular language, included or including any given regular 
language. 

The previous decidability results hold with respect to all states which are alive, 
reachable, dead, etc, with respect to any given PM colony. Let us assume PM colony 
and its starting string ω. We can relate the reachable strings to be reachable from ω 
and use following modifications of the above structures ωReachable(C) = 
{u: ωC

*u} ∩ Reachable(C). 
This leads to a corresponding ωGarden-of-Eden(C), ωLife(C), ωDoomsday(C), 

ωNon-Life(C).   
When we consider the same problems with respect to these ωstructures, then the 

results are quite opposite, most problems are no longer algorithmically solvable. We 
consider several problems with such a status and which are of a clear interest for pre-
dicting the development of a colony: will a given agent become sometimes active, 
does the colony reach a state when a conflict appears, does the colony enter a dead-
lock? Unfortunately, as we have mentioned above, if the starting state is prescribed, 
these problems (and others similar) are undecidable. 

 

Proposition 2 [7]: Given a PM colony C, an agent Ai, and a state w, we cannot decide 
whether or not a state z can be derived from w with respect to C such that the agent Ai 
is active on z. 

This proposition is important impulse for study of restricted classes of PM 
colonies. We expect, that some restrictions on PM colonies (cutting out a rule-type, 
decreasing parallelism etc.) can give us possibility to reach decidable result for the 
problem above. 
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4 Decidabitility Results in PM Colonies  
with Restricted Rule-sets 

Problems mentioned in the paragraph above can be represented as a group of prob-
lems on the same base. (Un)Decidability status of any one of these problems can be 
quiet easily transformed to that one of any other problem from that group. The ques-
tions we are dealing with are: “Will a given agent in a PM colony with given initial 
state become active?” “Will a PM colony reach a state from which it is not possible to 
continue in its development?” “Will a PM colony reach a state in which a conflict 
happens?” In [7] authors indicate, that problem can become solvable when we consid-
er modifications in the PM colony. By the change it can be understood application of 
different kind of restrictions on the PM colony: determinism, restricted rule-set or 
reduced parallelism.  

In this paper we decided to investigate decidability results in PM colonies with re-
stricted rule-set. From the group of decidability problems we selected the one consi-
dering if a PM colony will reach a state in which a conflict happens: “Is in a PM  
colony C with a given initial string w0 the problem if two agents A and B will reach 
conflict decidable?” This problem we want to discuss on PM colonies with specific 
restrictions in its sets of rules. 

In PM colonies there exists five types of rules. As a restricted rule-set we consider 
each set of rules, where there is at least one rule-type missing. In the subsections we 
will study PM colonies with no deletion and move as well as PM colonies with no 
insertion.  

4.1 PM Colonies without Deletion Rules and Rules for Move 

Assume PM colonies, where moving of agents and deletion of the agents and envi-
ronment is forbidden. 

The derived environment in such a system cannot be reduced even if the agent it-
self can die. New agents can appear but the mutual positions of the already existing 
agents do not change. 
 

Theorem 1: In a PM colony C with no deletion rules and with no rules for move and 
with a starting string w0 it is decidable that two agents A, B will reach a conflict. 

Proof: Consider an algorithm simulating the development of given (deterministic) 
PM colony. The inputs of the algorithm are: C = (E, #, N, >, R1, .., Rn), starting string 
w0 and  agents A and B. We have to consider the longest substring of conflicting 
agents in the starting string – we denote it by s. Outputs of the algorithm are messages 
if conflict happens or not, number of derivation steps and reached string (state of the 
colony). 

The agents A and B will enter the conflict if w0 * uAvBw * u´Av´Bw´. In the 
string uAvBw there was at least one of agents A, B inserted during the last derivation 
step. In the next derivation step the agent cannot be rewriten or erased, but it still has 
not to be in conflict with the second agent even during the next derivation step. In the 
string u´Av´Bw´ agents A and B are in conflict for the first time. For these cases there 
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must exist variables k, l such that w0 k uAvBw a uAvBw l u´Av´Bw´ (k, l depends 
on properties of PM colony C and on its starting string w0).  

In PM colony without rules for erasing agent or environmental symbol and 
without rule for moving of agent, we consider an algorithm, that for k+l derivating 
steps simulates the development of the colony. We have to determine the value of 
k and l (respectively k+l).  

Consider deterministic PM colony first. We assume that the conflict between 
agents A a B appears in finite number of derivation steps (the exact number depends 
on properties of C and w0). If the conflict does not appear in number of derivation 
steps counted below, then it does not appear at all (all the possible parts of string al-
lowing changes in the development of the colony – originating from w0  – will be 
exhausted by changes caused by development of the colony and existing agents will 
repeat the same actions in cycles). Awaited output of the algorithm is a message tell-
ing if conflict happens or not.  

This would be attended with information about number of done derivation steps 
and reached string. In case of development not reaching conflict of specified agents 
includes output message the last algorithmically reached string, number of derivation 
steps done and message that conflict would not come. 

When analysing development of PM colony from its initial string we are interested 
into the whole string w0. In the colony, there can be some parts of the string causing 
complicated development (e. g. collision of more agents brings complications with 
determining which agent is active and which agent will be active in the next deriva-
tion step), we have to focus on these parts. In the development plays the role parts 
consisting of environmental symbols only. The most complicated development can be 
observed in parts where more agents collide. There can be more than one such part in 
the starting string. In all of the parts many events can happen, but to determine the 
“worst possible case of development” (in the sense of highest number of derivation 
steps  which has to be done to determine if the conflict between agents A and B arrive) 
we have to consider the longest string of conflicting agents. Considering the rules in 
colony it is pointless to think about situation where two short conflicting strings be-
come one longer (such rule-type is in this type of PM colony forbidden). 

In this type of PM colony are only these rule-types: substitution of environmental 
symbol, insertion of an agent of environment symbol, death of an agent. Only two 
types of rules can produce the conflict 1.) death of an agent and 2.) insertion of an 
agent. 

When considering possibility of conflict due to rule for agent insertion, we have to 
consider the priority relation <. This rule-type can cause conflict during a*a2 deriva-
tion steps, where a is the number of agent names in colony (each agent can produce 
up to a agents on both is sides, but then the actions are repeating. Repeated is also the 
whole life of the colony and nothing new can happen). 

In the case when conflict appears due to the rule for death of an agent we have to 
consider s – the longest substring of conflicting agents in the starting string. In this 
case agents can create new agents or to exchange environmental symbols on both its 
sides. It means (e+a)2 possible combinations of development. If the conflict should 
appear, then it has to happen no later than in s*a*(e+a)2 derivation steps and this is 
the value matching to k+l. If the conflict does not appear in this number of derivation 
steps, then it does not appear in this colony with given starting string at all. 
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Running of this simulation gives sense only when in colony exists a rule generat-
ing new copy of agent A or agent B or in case of existing rule for erasing an agent 
neighboring with any of these agents. 

In case of non-deterministic PM colony it is necessary to bifurcate the computa-
tion every time when it is possible to use more than one rewriting rule for any context. 
It is also necessary to follow all branches of computation until the number of deriva-
tion steps mentioned before. If a conflict is reached in any of the branches, the prob-
lem has a solution for given non-deterministic PM colony and given starting string. 

 

Note: Generative power of this restricted class of PM colonies is lower than the pow-
er of original PM colonies. The absence of a rule for deletion causes that strings can-
not be shortened. Example of a language, which cannot be derived by this type of PM 
colonies is a set {a, aa, aaa}. 

4.2 PM Colonies without Rules for Insertion 

Assume PM colonies, where insertion of agents and environment symbol is forbidden. 
No growth is possible in these colonies. 

 

Theorem 2: In a PM colony with no insertion rule and with an initial string w0 it is 
decidable if two agents A, B will reach a conflict.  

Proof: In this type of PM colony the length of string cannot be prolonged. Because of 
finite language produced by this type of PM colony, the problem if agents A and B 
will enter a conflict is solvable. 

 

In the topic of PM colonies with restricted rule-set, there are more problems, which 
we are interested in. We want to explore if the problem: „is it decidable if two agents 
A, B will reach a conflict?“ is solvable in PM colony with given initial string w0. In 
our „to-do list“ there remain PM colonies with no rules for 

a) deletion, 
b) substitution, 
c) move and 
d) death of an agent. 

4.3 Note on Generative Power in PM Colonies 

With restrictions on a generative system it is always interconnected question of the 
impact on the generative power. The generative power with limitations on possible 
rewriting rules falls.  

E.g. when we consider a restricted PM colony, without rule for insertion, it is im-
possible to generate any infinite language. A PM colony without this restriction needs 
only one agent and one environmental symbol to generate the infinite language a+. 

 

Theorem 3: Generative power of deterministic PM colonies with restricted rule-set is 
lower then generative power of deterministic PM colonies without any restrictions on 
those types of rewriting rules. 
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Proof: For purposes of this proof we mark PM colonies with restricted rule-set as 
PMR and colonies without any restrictions on rewriting rules as PMC. 

It is obvious that PMR ⊆ PMC. 
We have to point out the differences between PMR and PMC, to show that 
PMR ⊂ PMC. 

a) PM Colonies without Insertion Rules. In a deterministic PM colony with a given 
starting string and without rules for insertion of an agent or an environmental symbol 
it is not possible to generate any infinite language, e. g. a+. 

b) PM Colonies without Rules for Death of an Agent. In a deterministic PM colo-
ny with a given starting string and without rules for death of an agent it is not possible 
to generate the language {a3b3, a3b4, a2b4, a2b5, ab5, ab4, ab3, ab2} ∪ aba*. The core of 
this language generated by a PM colony is in necessity of three agents, two slowly 
generating its environmental symbols and one deleting the environment. To get the 
generating agents as close as possible, the deleting agent has to have the highest prior-
ity. When we need to disappear the highest priority agent, we must use the rule for 
death of an agent. To illustrate this development we present a colony generating given 
language.  

C= ({a, b}, #, {A, B, C}, {A < C, A < B, C < B}, { 
(#, A, a) → (# a, A , a); 
(a, A, a) → (A, a, a); 
(b, A, #) → (b, A, a, #);  
(b, A, a) → (b, A, a, a);  
(a, B, b) → (ε, B, b);  
(A, B, b) → (A, B, ε);  
(A, B, C) → (A, ε, C); 
(b, C, #) → (b, C, b, #);  
(b, C, b) → (b, b, C);  
(A, C, b) → (C, A, b); 
(a, C, A) → ( a, ε, A); 
(a, A, b) → (a, b, A);  
(b, A, #) → (b, A, a, #);  
(b, A, a) → (b, A, a, a) }) 
w0 = #AaaaBbbbC#  
w0  #aAaaBbbbCb#  #AaaBbbbbC#  #aAaBbbbbCb#  #aABbbbbbC#   
#aABbbbbCb#   #aABbbbbC#  #aABbbbCb#  #aABbbbC#  #aABbbCb#  
 #aABbbC#   #aABbCb#   #aABCb#   #aACb#   #aCAb#   #aAb#  
 #abA#   #abAa#   #abAa2#   #abAa3#   ... 

c) PM Colonies without Rules for Move of an Agent. In a deterministic PM colony 
wtih a starting string and without rules for move of an agent it is not possible to 
generate the language anbn-2 + anbn-1; n ≥ 2. In PM colonies there is no implement 
how to control number of generated symbols. If we want to control development of 
language like the one above, we need an agent moving from side to side and generat-
ing symbols.  
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d) PM Colonies without Rules for Deletion. In a deterministic PM colony with a 
given starting string and without rules for deletion it is not possible to generate the 
language {a3, a2, a, ε} ∪ b+. In this language the different length of a-strings and b-
strings (which can be infinite), including an empty word is a warranty that these 
strings cannot be created by cooperation of rules for substitution and insertion (which 
are the only considerable option how to generate the language). The deletion rule has 
to be used. 

e) PM Colonies without Rules for Substitution. In a deterministic PM colony 
without rules for substitution and with a given starting string it is not possible to gen-
erate the language {aaaa, abab, bbbb, baba}. 

5 Conclusions 

In this paper we focused on influences of restrictions in the form of reduced rule-set 
on decidability problems in PM colonies. As a part of the restrictions influence we 
explored changes in the generative power of restricted forms of PM colonies. 

These restrictions give a possible algorithmic solution to the problem if two agents 
will enter a conflict. To find out if all suggested restrictions give algorithmic solutions 
it is necessary to deal with the resting – so far not solved restricted forms. 

At this opportunity it is also necessary to inform, that these restrictions cause dec-
lination of generative power. The generative power of original PM colonies is higher 
than generative power of PM colonies influenced by restrictions introduced in this 
paper. 
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Abstract. In this paper, we propose an interactive fuzzy decision making method
for multiobjective fuzzy random linear programming problems (MOFRLP), in
which the criteria of probability maximization and fractile optimization are con-
sidered simultaneously. In the proposed method, it is assumed that the decision
maker has fuzzy goals for not only objective functions of MOFRLP but also per-
missible probability levels in a fractile optimization model for MOFRLP, and
such fuzzy goals are quantified by eliciting the corresponding membership func-
tions. Using the fuzzy decision, such two kinds of membership functions are in-
tegrated. In the integrated membership space, the satisfactory solution is obtained
from among a Pareto optimal solution set through the interaction with the deci-
sion maker.

Keywords: Fuzzy Random Variable, A Probability Maximization Model, A Frac-
tile Criterion Optimization Model, Satisfactory Solution, Interactive Decision
Making.

1 Introduction

In the real world decision making situations, we often have to make a decision under
uncertainty. In order to deal with decision problems involving uncertainty, stochastic
programming approaches [1], [2] [3], [8] and fuzzy programming approaches [11],
[14], [19] have been developed. Recently, mathematical programming problems with
fuzzy random variables [10] have been proposed [9], [12], [17] whose concept includes
both probabilistic uncertainty and fuzzy ones simultaneously. For multiobjective fuzzy
random linear programming problems (MOFRLP), Sakawa et al. [15] formulated and
proposed interactive methods to obtain the satisfactory solution. In their methods, it is
required in advance for the decision maker to specify permissible possibility levels in
a probability maximization model or permissible probability levels in a fractile opti-
mization model. However, it seems to be very difficult for the decision maker to spec-
ify such permissible levels appropriately. From such a point of view, Yano et al. [18]
have proposed a fuzzy approach for MOFRLP, in which the decision maker specifies
the membership functions for the fuzzy goals of both objective functions of MOFRLP
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and permissible probability levels. In the proposed method, it is assumed that the de-
cision maker adopts the fuzzy decision [14] to integrate the membership functions.
However, the fuzzy decision can be viewed as one special operator to integrate the
membership functions. If the decision maker would not adopt the fuzzy decision, the
proposed method cannot be applied in the real-world decision situation. In this paper,
we propose an interactive fuzzy decision making method for MOFRLP to obtain the
satisfactory solution from among a Pareto optimal solution set. In section 2, MOFRLP
is formulated by using a concept of a possibility measure [4]. In section 3, through a
probability maximization model, the Dp-Pareto optimal concept is introduced in order
to deal with MOFRLP, and the minmax problem is formulated to obtain a Dp-Pareto
optimal solution, which can be solved on the basis of the linear programming technique.
In section 4, through a fractile optimization model, the DG-Pareto optimal concept is
introduced and the minmax problem is formulated to obtain a DG-Pareto optimal solu-
tion. In section 5, we propose an interactive algorithm to obtain the satisfactory solution
from among a Pareto optimal solution set by solving the minmax problem on the basis
of the linear programming technique. In section 6, in order to demonstrate the interac-
tive processes under the hypothetical decision maker, a crop planning problem [5], [6],
[7], [16] is formulated and solved by using the proposed interactive algorithm. Finally,
in section 7, we conclude this paper.

2 Multiobjective Fuzzy Random Linear Programming Problems

In this section, we focus on multiobjective programming problems involving fuzzy ran-
dom variable coefficients in objective functions, which is called multiobjective fuzzy
random linear programming problem (MOFRLP).
[MOFRLP]

min C̃x = (c̃1x, · · · , c̃kx)
subject to

x ∈ X
def
= {x ∈ Rn | Ax ≤ b,x ≥ 0}

where x = (x1, x2, · · · , xn)
T is an n dimensional decision variable column vector,

A is an (m × n) coefficient matrix, b = (b1, · · · , bm)T is an m dimensional column
vector. c̃i = (̃ci1, · · · , c̃in), i = 1, · · · , k, are coefficient vectors of objective function
c̃ix, whose elements are fuzzy random variables [10], [13], [15], and the symbols "-"
and "˜" mean randomness and fuzziness respectively.

In order to deal with the objective functions c̃ix, i = 1, · · · , k, Sakawa et al. [15]
proposed an LR-type fuzzy random variable which can be regarded as a special version
of a fuzzy random variable. Under the occurrence of each elementary event ω, c̃ij(ω)
is a realization of an LR-type fuzzy random variable c̃ij , which is an LR fuzzy number
[4] whose membership function is defined as follows.

μc̃ij(ω)(s) =

⎧⎨⎩L
(
d̄ij(ω)−s
ᾱij(ω)

)
(s ≤ d̄ij(ω) ∀ω),

R
(

s−d̄ij(ω)

β̄ij(ω)

)
(s > d̄ij(ω) ∀ω),
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where the function L(t)
def
= max{0, l(t)} is a real-valued continuous function from

[0,∞) to [0, 1], and l(t) is a strictly decreasing continuous function satisfying l(0) = 1.

Also, R(t)
def
= max{0, r(t)} satisfies the same conditions. d̄ij , ᾱij , β̄ij are random

variables expressed by d̄ij = d1ij + t̄id
2
ij , ᾱij = α1

ij + t̄iα
2
ij and β̄ij = β1

ij + t̄iβ
2
ij .

t̄i is a random variable whose distribution function is denoted by Ti(·) which is strictly
increasing and continuous, and d1ij , d

2
ij , α1

ij , α
2
ij , β

1
ij , β

2
ij are constants.

Sakawa et al. [15] transformed MOFRLP into a multiobjective stochastic program-
ming problem (MOSP) by using a concept of a possibility measure [4]. As shown in
[15], the realizations c̃i(ω)x becomes an LR fuzzy number characterized by the fol-
lowing membership functions on the basis of the extension principle [4].

μc̃i(ω)x(y) =

⎧⎪⎪⎨⎪⎪⎩
L

(
¯di(ω)x−y
ᾱi(ω)x

)
y ≤ d̄i(ω)x

R

(
y−¯di(ω)x
¯β

i
(ω)x

)
y > d̄i(ω)x

For the realizations c̃i(ω)x,i = 1, · · · , k, it is assumed that the decision maker has
fuzzy goals G̃i,i = 1, · · · , k [14], whose membership functions μG̃i

(y), i = 1, · · · , k
are continuous and strictly decreasing for minimization problems. By using a concept
of a possibility measure [4], a degree of possibility that the objective function value c̃ix
satisfies the fuzzy goal G̃i is expressed as follows [9].

Πc̃ix
(G̃i)

def
= supy min{μc̃ix

(y), μG̃i
(y)} (1)

Using a possibility measure, MOFRLP can be transformed into the following multiob-
jective stochastic programming problem (MOSP).
[MOSP]

max
x∈X

(Πc̃1x
(G̃1), · · · , Πc̃kx

(G̃k)) (2)

Sakawa et al. [15] transformed MOSP into the usual multiobjective programming prob-
lems through a probability maximization model and a fractile maximization model, and
proposed interactive algorithms to obtain a satisfactory solution. In their methods, the
decision maker must specify permissible probability levels or permissible possibility
levels for the objective functions in advance. However, it seems to be very difficult
to specify appropriate permissible levels because they have a great influence on the
objective function values or distribution function values. In the following sections, by
assuming that the decision maker has fuzzy goals for permissible probability levels and
permissible possibility levels, we propose an interactive fuzzy decision making method
for MOFRLP to obtain a satisfactory solution.

3 A Formulation through a Probability Maximization Model

For the objective function of MOSP, if the decision maker specifies the permissible pos-
sibility level hi ∈ [0, 1], then MOSP can be formulated as the following multiobjective
programming problem through a probability maximization model.
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[MOP1(h)]
max
x∈X

(Pr(ω | Πc̃1(ω)x(G̃1) ≥ h1), · · · ,Pr(ω | Πc̃k(ω)x(G̃k) ≥ hk))

where Pr(·) is a probability measure, h = (h1, · · · , hk) is a vector of permissible
possibility levels. In MOP1(h), the inequality Πc̃i(ω)x(G̃i) ≥ hi can be equivalently

transformed into the following form.
Πc̃i(ω)x(G̃i) ≥ hi ⇔ (d̄i(ω)− L−1(hi)ᾱi(ω))x ≤ μ−1

G̃i
(hi),

where L−1(·) and R−1(·) are pseudo-inverse functions. Therefore, using the distribu-
tion function Ti(·) of the random variable t̄i, the objective functions in MOP1(h) can
be expressed as the following form.

Pr(ω | Πc̃i(ω)x(G̃i) ≥ hi) = Ti

(
μ−1

G̃i
(hi)− (d1

ix− L−1(hi)α
1
ix)

d2
ix− L−1(hi)α2

ix

)
def
= pi(x, hi),

where it is assumed that (d2
i − L−1(0)α2

i )x > 0, i = 1, · · · , k for any x ∈ X . As
a result, using pi(x, hi), i = 1, · · · , k, MOP1(h) can be transformed to the following
simple form [15].
[MOP2(h)]

max
x∈X

(p1(x, h1), · · · , pk(x, hk))

In MOP2(h), the decision maker seems to prefer not only the larger value of a per-
missible possibility level hi but also the larger value of the corresponding distribution
function pi(x, hi). Since these values conflict with each other, the larger value of a per-
missible possibility level hi results in the less value of the corresponding distribution
function pi(x, hi). From such a point of view, we consider the following multiobjective
programming problem which can be regarded as a natural extension of MOP2(h).
[MOP3]

max
x∈X,hi∈[0,1],i=1,···,k

(p1(x, h1), · · · , pk(x, hk), h1, · · · , hk)

It should be noted in MOP3 that permissible possibility levels hi, i = 1, · · · , k are
not the fixed values but the decision variables. Considering the imprecise nature of the
decision maker’s judgment, it is natural to assume that the decision maker has fuzzy
goals for pi(x, hi), i = 1, · · · , k. In this section, we assume that such fuzzy goals can
be quantified by eliciting the corresponding membership functions. Let us denote a
membership function of a distribution function as μpi(pi(x, hi)). Then, MOP3 can be
transformed to the following multiobjective programming problem.
[MOP4]

max
x∈X,hi∈[0,1],i=1,···,k

(μp1(p1(x, h1)), · · · , μpk
(pk(x, hk)), h1, · · · , hk)

In order to elicit the membership functions μpi(pi(x, hi)), i = 1, · · · , k appropri-
ately, we suggest the following procedures. First of all, the decision maker sets the
intervals Hi = [himin, himax] for permissible possibility levels, where himin is a max-
imum value of an unacceptable levels and himax is a minimum value of a sufficiently
satisfactory levels. For the interval Hi, the corresponding interval of pi(x, ĥi) can be



Interactive Fuzzy Decision Making 147

defined as Pi(Hi) = [pimin, pimax] = {pi(x, hi) | x ∈ X,hi ∈ Hi}. pimax can be
obtained by solving the following optimization problem.

pimax
def
= max

x∈X
pi(x, himin) (3)

In order to obtain pimin, we first solve the optimization problemsmaxx∈X pi(x, himax),
i = 1, · · · , k, and denote the corresponding optimal solutions as xi, i = 1, · · · , k. Using
the optimal solution xi, i = 1, · · · , k, pimin can be obtained as the following minimum
value.

pimin
def
= min

�=1,···,k,� �=i
pi(x�, himax) (4)

For the membership functionsμpi(pi(x, hi)), i = 1, · · · , k defined on Pi(Hi), we make
the following assumption.

Assumption 1
μpi(pi(x, hi)), i = 1, · · · , k are strictly increasing and continuous with respect to
pi(x, hi) ∈ Pi(Hi), and μpi(pimin) = 0, μpi(pimax) = 1.

It should be noted here that μpi(pi(x, hi)) is strictly decreasing with respect to hi ∈
Hi. If the decision maker adopts the fuzzy decision [14] to integrate μpi(pi(x, hi)) and
hi, MOP4 can be transformed into the following form.
[MOP5]

max
x∈X,hi=Hi,i=1,···,k

(
μDp1

(x, h1), · · · , μDpk
(x, hk)

)
where

μDpi
(x, hi)

def
= min{hi, μpi(pi(x, hi))} (5)

In order to deal with MOP5, we introduce a Dp-Pareto optimal solution concept.

Definition 1
x∗ ∈ X,h∗

i ∈ Hi, i = 1, · · · , k is said to be a Dp-Pareto optimal solution to MOP5,
if and only if there does not exist another x ∈ X,hi ∈ Hi, i = 1, · · · , k such that
μDpi

(x, hi) ≥ μDpi
(x∗, h∗

i ) i = 1, · · · , k with strict inequality holding for at least one
i.

For generating a candidate of a satisfactory solution which is also Dp-Pareto op-
timal, the decision maker is asked to specify the reference membership values [14] in
membership space. Once the reference membership values μ̂ = (μ̂1, · · · , μ̂k) are speci-
fied, the correspondingDp-Pareto optimal solution is obtained by solving the following
minmax problem.
[MINMAX1(μ̂)]

min
x∈X,hi∈Hi,i=1,···,k,λ∈Λ

λ (6)

subject to

μ̂i − μpi(pi(x, hi)) ≤ λ, i = 1, · · · , k (7)

μ̂i − hi ≤ λ, i = 1, · · · , k (8)

where
Λ = [ max

i=1,···,k
μ̂i − 1, min

i=1,···,k
μ̂i]. (9)
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From Assumption 1, the inequality constraints (7) can be transformed into the following
form.

μ̂i − μpi(pi(x, hi)) ≤ λ

⇔ μ−1

G̃i
(hi) ≥ (d1

ix+ T−1
i (μ−1

pi
(μ̂i − λ))d2

ix)

−L−1(hi)(α
1
ix+ T−1

i (μ−1
pi

(μ̂i − λ))α2
ix) (10)

In (10), because of μ̂i−λ ≤ hi and Assumption 1, it holds that μ−1

G̃i
(hi) ≤ μ−1

G̃i
(μ̂i−λ)

and L−1(hi) ≤ L−1(μ̂i − λ). Since it is guaranteed that (α1
ix + T−1

i (μ−1
pi

(μ̂i − λ))
α2

ix) > 0, the following inequalities can be derived.

(d1
ix+ T−1

i (μ−1
pi

(μ̂i − λ))d2
ix)− L−1(hi)(α

1
ix+ T−1

i (μ−1
pi

(μ̂i − λ))α2
ix)

≥ (d1
ix+ T−1

i (μ−1
pi

(μ̂i − λ))d2
ix)− L−1(μ̂i − λ)(α1

ix+ T−1
i (μ−1

pi
(μ̂i − λ))α2

ix)

= (d1
ix− L−1(μ̂i − λ)α1

ix) + T−1
i (μ−1

pi
(μ̂i − λ)) · (d2

ix− L−1(μ̂i − λ)α2
ix)

(11)

From (10) and (11), it holds that

μ−1

G̃i
(μ̂i − λ) ≥ μ−1

G̃i
(hi)

≥ (d1
ix− L−1(μ̂i − λ)α1

ix) + T−1
i (μ−1

pi
(μ̂i − λ)) · (d2

ix− L−1(μ̂i − λ)α2
ix).

Therefore, MINMAX1(μ̂) can be reduced to the following minmax problem.
[MINMAX2(μ̂)]

min
x∈X,λ∈Λ

λ (12)

subject to

μ−1

G̃i
(μ̂i − λ) ≥ (d1

ix− L−1(μ̂i − λ)α1
ix)

+T−1
i (μ−1

pi
(μ̂i − λ)) · (d2

ix− L−1(μ̂i − λ)α2
ix), i = 1, · · · , k (13)

It should be noted here that the constraints (13) can be reduced to a set of linear in-
equalities for some fixed value λ ∈ Λ. This means that an optimal solution (x∗, λ∗)
of MINMAX2(μ̂) is obtained by combined use of the bisection method with respect to
λ ∈ Λ and the first-phase of the two-phase simplex method of linear programming. The
relationships between the optimal solution (x∗, λ∗) of MINMAX2(μ̂) and Dp-Pareto
optimal solutions can be characterized by the following theorem.

Theorem 1
(1) If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution of MINMAX2(μ̂), then x∗ ∈
X, μ̂i − λ∗ ∈ Hi, i = 1, · · · , k is a Dp-Pareto optimal solution.
(2) If x∗ ∈ X,h∗

i ∈ Hi, i = 1, · · · , k is a Dp-Pareto optimal solution, then x∗ ∈
X, λ∗ = μ̂i − h∗

i = μ̂i − μpi(pi(x
∗, h∗

i )), i = 1, · · · , k is an optimal solution of
MINMAX2(μ̂) for some reference membership values μ̂ = (μ̂1, · · · , μ̂k).
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4 A Formulation through a Fractile Optimization Model

If we adopt a fractile optimization model for the objective functions of MOSP, we can
convert MOSP to the following multiobjective programming problem, where the deci-
sion maker specifies permissible probability levels p̂i, i = 1, · · · , k in his/her subjective
manner [15].
[MOP6(p̂)]

max
x∈X,hi∈[0,1],i=1,···,k

(h1, · · · , hk) (14)

subject to
pi(x, hi) ≥ p̂i, i = 1, · · · , k (15)

where p̂ = (p̂1, · · · , p̂k) is a vector of permissible probability levels. Since a distri-
bution function Ti(·) is continuous and strictly increasing, the constraints (15) can be
transformed to the following form.

μ−1

G̃i
(hi) ≥ (d1

ix− L−1(hi)α
1
ix) + T−1

i (p̂i) · (d2
ix− L−1(hi)α

2
ix) (16)

Let us define the right-hand side of the inequality (16) as follows.

fi(x, hi, p̂i)
def
= (d1

ix− L−1(hi)α
1
ix) + T−1

i (p̂i) · (d2
ix− L−1(hi)α

2
ix) (17)

Then, MOP6(p̂) can be equivalently transformed into the following form.
[MOP7(p̂)]

max
x∈X,hi∈[0,1],i=1,···,k

(h1, · · · , hk) (18)

subject to
μG̃i

(fi(x, hi, p̂i)) ≥ hi, i = 1, · · · , k (19)

In MOP7(p̂), let us pay attention to the inequalities (19). fi(x, hi, p̂i) is continu-
ous and strictly increasing with respect to hi for any x ∈ X . This means that the
left-hand-side of (19) is continuous and strictly decreasing with respect to hi for any
x ∈ X . Since the right-hand-side of (19) is continuous and strictly increasing with
respect to hi, the inequalities (19) must always satisfy the active condition, that is,
μG̃i

(fi(x, hi, p̂i)) = hi, i = 1, · · · , k at the optimal solution. From such a point of
view, MOP7(p̂) is equivalently expressed as the following form.
[MOP8(p̂)]

max
x∈X,hi∈[0,1],i=1,···,k

(μG̃1
(f1(x, h1, p̂1)), · · · , μG̃k

(fk(x, hk, p̂k))) (20)

subject to
μG̃i

(fi(x, hi, p̂i)) = hi, i = 1, · · · , k (21)

In order to deal with MOP8(p̂), the decision maker must specify permissible proba-
bility levels p̂ in advance. However, in general, the decision maker seems to prefer not
only the larger value of a permissible probability level but also the larger value of the
corresponding membership functions μG̃i

(·). From such a point of view, we consider
the following multiobjective programming problem which can be regarded as a natural
extension of MOP8(p̂).
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[MOP9]
max

x∈X,hi∈[0,1],p̂i∈(0,1),i=1,···,k
(μG̃1

(f1(x, h1, p̂1)), · · · , μG̃k
(fk(x, hk, p̂k)), p̂1, · · · , p̂k)

subject to
μG̃i

(fi(x, hi, p̂i)) = hi, i = 1, · · · , k (22)

It should be noted in MOP9 that permissible probability levels are not the fixed values
but the decision variables.

Considering the imprecise nature of the decision maker’s judgment, we assume that
the decision maker has a fuzzy goal for each permissible probability level. Such a fuzzy
goal can be quantified by eliciting the corresponding membership function. Let us de-
note a membership function of a permissible probability level p̂i as μp̂i(p̂i). Then,
MOP9 can be transformed as the following multiobjective programming problem.
[MOP10]

max
x∈X,hi∈[0,1],p̂i∈(0,1),i=1,···,k

(μG̃1
(f1(x, h1, p̂1)),

· · · , μG̃k
(fk(x, hk, p̂k)), μp̂1(p̂1), · · · , μp̂k

(p̂k))

subject to
μG̃i

(fi(x, hi, p̂i)) = hi, i = 1, · · · , k (23)

In order to elicit the membership functions appropriately, we suggest the following
procedures. First of all, the decision maker sets the intervals Pi = [pimin, pimax], i =
1, · · · , k, where pimin is an unacceptable maximum value of p̂i and pimax is a suffi-
ciently satisfactory minimum value of p̂i. Throughout this section, we make the follow-
ing assumption.

Assumption 2
μp̂i(p̂i), i = 1, · · · , k are strictly increasing and continuous with respect to p̂i ∈ Pi, and
μp̂i(pimin) = 0, μp̂i(pimax) = 1.

Corresponding to the interval Pi, the interval of hi, which is defined as Hi(Pi) =
[himin, himax], can be obtained as follows. The maximum value himax can be obtained
by solving the following problem.

min
x∈X,hi∈[0,1]

fi(x, hi, pimin) (24)

subject to hi = μG̃i
(fi(x, hi, pimin)) (25)

This is equivalent to the following problem.

himax
def
= max

x∈X,hi∈[0,1]
hi (26)

subject to
μ−1

G̃i
(hi) = (d1

ix− L−1(hi)α
1
ix) + T−1

i (pimin) · (d2
ix− L−1(hi)α

2
ix)

The optimal solution x∗, h∗
i , i = 1, · · · , k of the above problem can be obtained by

combined use of the bisection method with respect to hi ∈ [0, 1] and the first-phase of
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the two-phase simplex method of linear programming. In order to obtain himin, we first
solve the following k linear programming problems.

min
x∈X,hi∈[0,1]

fi(x, hi, pimax) (27)

subject to hi = μG̃i
(fi(x, hi, pimax)) (28)

Let (x∗
i , h

∗
i ), i = 1, · · · , k be the above optimal solution. Using the optimal solutions

(x∗
i , h

∗
i ), i = 1, · · · , k, himin can be obtained as follows.

himin
def
= min

�=1,···,k,� �=i
μG̃i

(fi(x
∗
� , h

∗
� , pimax)) (29)

It should be noted here that, μG̃i
(fi(x, hi, p̂i)) is strictly decreasing with respect to

p̂i. If the decision maker adopts the fuzzy decision [14] to integrate μG̃i
(fi(x, hi, p̂i))

and μp̂i(p̂i), MOP10 can be transformed into the following form.
[MOP11]

max
x∈X,p̂i∈Pi,hi∈Hi(Pi),i=1,···,k

(
μDG1

(x, h1, p̂1), · · · , μDGk
(x, hk, p̂k)

)
(30)

subject to
μG̃i

(fi(x, hi, p̂i)) = hi, i = 1, · · · , k (31)

where
μDGi

(x, hi, p̂i)
def
= min{μp̂i(p̂i), μG̃i

(fi(x, hi, p̂i))} (32)

In order to deal with MOP11, we introduce a DG-Pareto optimal solution concept.

Definition 2
x∗ ∈ X, p̂∗i ∈ Pi, h

∗
i ∈ Hi(Pi), i = 1, · · · , k is said to be a DG-Pareto optimal so-

lution to MOP11, if and only if there does not exist another x ∈ X, p̂i ∈ Pi, hi ∈
Hi(Pi), i = 1, · · · , k such that μDGi

(x, hi, p̂i) ≥ μDGi
(x∗, h∗

i , p̂
∗
i ),i = 1, · · · , k

with strict inequality holding for at least one i, where μG̃i
(fi(x

∗, h∗
i , p̂

∗
i )) = h∗

i ,
μG̃i

(fi(x, hi, p̂i)) = hi, i = 1, · · · , k.
For generating a candidate of a satisfactory solution which is also DG-Pareto opti-

mal, the decision maker is asked to specify the reference membership values [14]. Once
the reference membership values μ̂ = (μ̂1, · · · , μ̂k) are specified, the corresponding
DG-Pareto optimal solution is obtained by solving the following minmax problem.
[MINMAX3(μ̂)]

min
x∈X,p̂i∈Pi,hi∈Hi(Pi),i=1,···,k,λ∈Λ

λ (33)

subject to

μ̂i − μp̂i(p̂i) ≤ λ, i = 1, · · · , k, (34)

μ̂i − hi ≤ λ, i = 1, · · · , k, (35)

μG̃i
(fi(x, hi, p̂i)) = hi, i = 1, · · · , k. (36)

where
Λ = [ max

i=1,···,k
μ̂i − 1, min

i=1,···,k
μ̂i]. (37)
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In the constraints (35) and (36), it holds that

hi = μG̃i
(fi(x, hi, p̂i)) ≥ μ̂i − λ,

⇔ μ−1

G̃i
(hi) = (d1

ix− L−1(hi)α
1
ix) + T−1

i (p̂i) · (d2
ix− L−1(hi)α

2
ix)

≤ μ−1

G̃i
(μ̂i − λ). (38)

In the right hand side of (38), because of L−1(hi) ≤ L−1(μ̂i − λ) and
α1

ix+ T−1
i (p̂i)α

2
ix > 0, it holds that

(d1
ix− L−1(hi)α

1
ix) + T−1

i (p̂i) · (d2
ix− L−1(hi)α

2
ix)

≥ (d1
ix+ T−1

i (p̂i)d
2
ix)− L−1(μ̂i − λ)

(
α1

ix+ T−1
i (p̂i)α

2
ix

)
. (39)

Using (38) and (39), it holds that

μ−1

G̃i
(μ̂i − λ)

≥ (d1
ix+ T−1

i (p̂i)d
2
ix)− L−1(μ̂i − λ)

(
α1

ix+ T−1
i (p̂i)α

2
ix

)
= (d1

ix− L−1(μ̂i − λ)α1
ix) + T−1

i (p̂i) · (d2
ix− L−1(μ̂i − λ)α2

ix). (40)

Moreover, because of p̂i ≥ μ−1
p̂i

(μ̂i − λ), (40) can be transformed into the following
form.

Ti

(
μ−1

G̃i
(μ̂i − λ)− (d1

ix− L−1(μ̂i − λ)α1
ix)

d2
ix− L−1(μ̂i − λ)α2

ix

)
≥ p̂i ≥ μ−1

p̂i
(μ̂i − λ),

⇔ μ−1

G̃i
(μ̂i − λ) ≥ (d1

ix− L−1(μ̂i − λ)α1
ix)

+T−1
i (μ−1

p̂i
(μ̂i − λ)) · (d2

ix− L−1(μ̂i − λ)α2
ix) (41)

Therefore, MINMAX3(μ̂) can be reduced to the following minmax problem.
[MINMAX4(μ̂)]

min
x∈X,λ∈Λ

λ (42)

subject to

μ−1

G̃i
(μ̂i − λ) ≥ (d1

ix− L−1(μ̂i − λ)α1
ix)

+T−1
i (μ−1

p̂i
(μ̂i − λ)) · (d2

ix− L−1(μ̂i − λ)α2
ix), i = 1, · · · , k (43)

It should be noted here that MINMAX4(μ̂) is equivalent to MINMAX2(μ̂). The re-
lationships between the optimal solution (x∗, λ∗) of MINMAX4(μ̂) and DG-Pareto
optimal solutions can be characterized by the following theorem.

Theorem 2
(1) If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution of MINMAX4(μ̂), then x∗ ∈
X, p̂∗i = μ−1

p̂i
(μ̂i − λ∗) ∈ Pi, h

∗
i = μ̂i − λ∗ ∈ Hi(Pi), i = 1, · · · , k is a DG-Pareto

optimal solution.
(2) If x∗ ∈ X, p̂∗i ∈ Pi, h

∗
i ∈ Hi(Pi), i = 1, · · · , k is a DG-Pareto optimal solution,

then x∗ ∈ X, λ∗ = μ̂i−μp̂i(p̂
∗
i ) = μ̂i−μG̃i

(fi(x
∗, h∗

i , p̂
∗
i )), i = 1, · · · , k is an optimal

solution of MINMAX4(μ̂) for some reference membership values μ̂ = (μ̂1, · · · , μ̂k).
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5 An Interactive Algorithm

In this section, we propose an interactive algorithm to obtain a satisfactory solution from
among a DG-Pareto optimal solution set. From Theorem 2, it is not guaranteed that the
optimal solution (x∗, λ∗) of MINMAX4(μ̂) is DG-Pareto optimal, if it is not unique.
In order to guarantee the DG-Pareto optimality, we first assume that k constraints (43)
of MINMAX4(μ̂) are active at the optimal solution (x∗, λ∗), i.e.,

μ−1

G̃i
(μ̂i − λ∗)− (d1

ix
∗ − L−1(μ̂i − λ∗)α1

ix
∗)

= T−1
i (μ−1

p̂i
(μ̂i − λ∗)) · (d2

ix
∗ − L−1(μ̂i − λ∗)α2

ix
∗), i = 1, · · · , k. (44)

If the j-th constraint of (43) is inactive, i.e.,

μ−1

G̃j
(μ̂j − λ∗)− (d1

jx
∗ − L−1(μ̂j − λ∗)α1

jx
∗)

> T−1
j (μ−1

p̂j
(μ̂j − λ∗)) · (d2

jx
∗ − L−1(μ̂j − λ∗)α2

jx
∗),

⇔ μ−1

G̃j
(μ̂j − λ∗) > fj(x

∗, μ̂j − λ∗, μ−1
p̂j

(μ̂j − λ∗)), (45)

we can convert the inactive constraint (45) into the active one by applying the bisection
method for the reference membership value μ̂j ∈ [λ∗, λ∗ + 1].

For the optimal solution (x∗, λ∗) of MINMAX4(μ̂), where the active conditions (44)
are satisfied, we solve the DG-Pareto optimality test problem defined as follows.
[DG-Pareto optimality test problem]

max
x∈X,εi≥0,i=1,···,k

w =

k∑
i=1

εi (46)

subject to

T−1
i (μ−1

p̂i
(μ̂i − λ∗)) · (d2

ix− L−1(μ̂i − λ∗)α2
ix)

+(d1
ix− L−1(μ̂i − λ∗)α1

ix) + εi

= T−1
i (μ−1

p̂i
(μ̂i − λ∗)) · (d2

ix
∗ − L−1(μ̂i − λ∗)α2

ix
∗)

+(d1
ix

∗ − L−1(μ̂i − λ∗)α1
ix

∗), i = 1, · · · , k (47)

For the optimal solution of the above test problem, the following theorem holds.

Theorem 3
For the optimal solution x̌, ε̌i, i = 1, · · · , k of the test problem (46)-(47), if w = 0
(equivalently, ε̌i = 0, i = 1, · · · , k), x∗ ∈ X,μ−1

p̂i
(μ̂i−λ∗) ∈ Pi, μ̂i−λ∗ ∈ Hi(Pi), i =

1, · · · , k is a DG-Pareto optimal solution.
Now, following the above discussions, we can present the interactive algorithm in

order to derive a satisfactory solution from among a DG-Pareto optimal solution set.
[An interactive algorithm]
Step 1: The decision maker sets the membership functions μG̃i

(y), i = 1, · · · , k for
the fuzzy goals of the objective functions in MOFRLP.
Step 2: The decision maker sets his/her membership function μp̂i(p̂i).
Step 3: Set the initial reference membership values as μ̂i = 1, i = 1, · · · , k.
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Step 4: Solve MINMAX4(μ̂) by combined use of the bisection method λ ∈ Λ and
the first-phase of the two-phase simplex method of linear programming, and obtain the
optimal solution (x∗, λ∗). For the optimal solution (x∗, λ∗), The corresponding DG-
Pareto optimality test problem (46)-(47) is formulated and solved.
Step 5: If the decision maker is satisfied with the current values of the DG-Pareto
optimal solution μDGi

(x∗, h∗
i , p̂

∗
i ), i = 1, · · · , k where p̂∗i = μ−1

p̂i
(μ̂i − λ∗), h∗

i =
μ̂i−λ∗, i = 1, · · · , k, then stop. Otherwise, the decision maker updates his/her reference
membership values μ̂i, i = 1, · · · , k, and return to Step 4.

6 A Crop Planning Problem under Uncertainty

In order to demonstrate our proposed fuzzy decision making method, we consider the
following crop planning problem [5], [6], [7], [16], in which a farmer or an agricultural
manager wants to maximize his/her total profit (unit: 1000 yen) and minimize his/her
working time (unit: 1 hour) by using his/her farmland effectively. In order to decide the
planting ratio for four kinds of crops xj , j = 1, · · · , 4 (unit: 1000 m2 ) in his/her farm-
land, we formulate the following multiobjective fuzzy random programming problem.
[MOFRLP]

max
x≥0

c̃1x = c̃11x1 + c̃12x2 + c̃13x3 + c̃14x4 (Profit)

min
x≥0

c̃2x = c̃21x1 + c̃22x2 + c̃23x3 + c̃24x4 (Working time)

subject to

x ∈ X = {x ∈ R4 | x1 + x2 + x3 + x4 ≤ 150} (Land Constraint)

where x = (x1, x2, x3, x4)
T is a four dimensional decision variable column vector,

each element xj means the cultivation area for crop j. c̃1j is the profit coefficient at
the unit area for crop j, and c̃2j is the working time coefficient for growing crop j
at the unit area. Each of them is defined as an LR-type fuzzy random variable. For a
given elementary event ω, a realized value c̃ij(ω) of each coefficient c̃ij is an LR fuzzy
number which is characterized by the following membership function.

μc̃ij(ω)(s) =

⎧⎨⎩L
(

d1
ij+t̄i(ω)d2

ij−s

α1
ij+t̄i(ω)α2

ij

)
(s ≤ d̄ij(ω)),

R
(

s−d1
ij+t̄i(ω)d2

ij

β1
ij+t̄i(ω)β2

ij

)
(s > d̄ij(ω)),

where L(t) = R(t) = max{0, 1 − t}, and the parameters d1ij , d
2
ij , α1

ij , α
2
ij , β

1
ij , β

2
ij

are given in Table 1. Moreover, t̄i, i = 1, 2 are Gaussian random variables defined as
t̄i ∼ N(0, 1).

In MOFRLP, let us assume that the hypothetical decision maker sets the mem-
bership functions as μG̃1

(f1(x, h1, p̂1)) = f1(x,h1,p̂1)−2500
2500−4000 , μG̃2

(f2(x, h2, p̂2)) =
f2(x,h2,p̂2)−35000

28000−35000 , μp̂1(p̂1) =
p̂1−0.56
0.9−0.56 , μp̂2(p̂2) =

p̂2−0.55
0.85−0.55 , respectively (Step 1, 2).

Set the initial reference membership values as (μ̂1, μ̂2) = (1, 1) (Step 3), and solve
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Table 1. The parameters for LR-type fuzzy random variables c̃ij

j 1 2 3 4 j 1 2 3 4

d11j 25.5 20.5 23.5 27.5 d21j
√
25

√
18

√
15

√
11

d12j 229 139 209 249 d22j
√
60

√
40

√
50

√
80

α1
1j 2 2 2 2 α2

1j 0 0 0 0

α1
2j 10 10 10 10 α2

2j 0 0 0 0

β1
1j 2 2 2 2 β2

1j 0 0 0 0

β1
2j 10 10 10 10 β2

2j 0 0 0 0

Table 2. Interactive processes

@ 1 2 3
μ̂1 1 0.63 0.625
μ̂2 1 0.57 0.555

μDG1
(x∗, μ̂1 − λ∗, μ−1

p̂1
(μ̂1 − λ∗)) 0.607165 0.620023 0.622165

μDG2
(x∗, μ̂2 − λ∗, μ−1

p̂2
(μ̂2 − λ∗)) 0.607165 0.560023 0.552165

μ−1
p̂1

(μ̂1 − λ∗) 0.766436 0.770808 0.771536
μ−1
p̂2

(μ̂2 − λ∗) 0.732149 0.718007 0.715650
f1(x

∗, μ̂1 − λ∗, μ−1
p̂1

(μ̂1 − λ∗)) 3410.75 3430.03 3433.25
f2(x

∗, μ̂2 − λ∗, μ−1
p̂2

(μ̂2 − λ∗)) 30749.85 31079.84 31134.84

MINMAX4(μ̂) to obtain the corresponding DG-Pareto optimal solution as Shown in
Table 2 (Step 4). The hypothetical decision maker is not satisfied with the current
value of the DG-Pareto optimal solution, and, in order to improve μDG1

(·) at the ex-
pense of μDG2

(·), he/she updates his/her reference membership values as (μ̂1, μ̂2) =
(0.63, 0.57) (Step 5). Then, the corresponding DG-Pareto optimal solution is obtained
as shown in Table 2 (Step 4). In this example, the hypothetical decision maker is satis-
fied with the current value of the DG-Pareto optimal solution at the third iteration (Step
5). The interactive processes under the hypothetical decision maker are summarized in
Table 2.

In order to compare our proposed approach with the previous ones, let us obtain
two kinds of Pareto optimal solutions based on a probability maximization model and
a fractile optimization model. We first apply a probability maximization model-based
method to MOFRLP. For the reference membership values μ̂i, i = 1, · · · , k, we can
formulate the following minmax problem to obtain a Pareto optimal solution for MOP4
where permissible possibility levels hi, i = 1, · · · , k are fixed as constant values.
[MINMAX5(μ̂,h)]

min
x∈X,λ∈Λ

λ

subject to
μ̂i − μpi(pi(x, hi)) ≤ λ, i = 1, · · · , k (48)

Let us assume that the decision maker sets his/her permissible possibility levels as
(ĥ1, ĥ2) = (0.7, 0.7) and the reference membership values as (μ̂1, μ̂2) = (1, 1). Then,
the corresponding Pareto optimal solution is obtained as shown in Table 3, where

h∗
i

def
= μ̂i − λ∗, p̂∗i

def
= μ−1

p̂i
(μ̂i − λ∗), f∗

i
def
= fi(x

∗, μ̂i − λ∗, μ−1
p̂i

(μ̂i − λ∗)), i = 1, 2,
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Table 3. The optimal solutions for three kinds of methods

@ proposed method probability max. fractile opt.

p∗1 0.766436 0.645644 0.8
p∗2 0.732149 0.625568 0.8
f1∗ 3410.75 3550 3359.5
f∗
2 30749.85 30100 30989.02

μp1(p
∗
1) 0.607165 0.251894 0.705882

μp2(p
∗
2) 0.607165 0.251894 0.83333

μG̃1
(f∗

1 ) 0.607165 0.7 0.572997
μG̃2

(f∗
2 ) 0.607165 0.7 0.572997

respectively. We also apply a fractile optimization model-based method to MOFRLP.
For the reference membership values μ̂i, i = 1, · · · , k, we can formulate the follow-
ing minmax problem to obtain a Pareto optimal solution for MOP9 where permissible
probability levels p̂i, i = 1, · · · , k are fixed as constant values.
[MINMAX6(μ̂, p̂)]

min
x∈X,hi∈[0,1],i=1,···,k,λ∈Λ

λ

subject to

μ̂i − μG̃i
(fi(x, hi, p̂i)) ≤ λ, i = 1, · · · , k, (49)

μG̃i
(fi(x, hi, p̂i)) = hi, i = 1, · · · , k. (50)

Let us assume that the decision maker sets his/her permissible probability levels as
(p̂1, p̂2) = (0.8, 0.8) and the reference membership values as (μ̂1, μ̂2) = (1, 1). Then,
the corresponding Pareto optimal solution is obtained as shown in Table 3.

In Table 3, a proper balance between permissible possibility levels for a probabil-
ity maximization model and permissible probability levels for a fractile optimization
model is attained at the optimal solution for the proposed method. On the other hand, at
the optimal solution based on a probability maximization model, although permissible
possibility levels are fixed as (ĥ1, ĥ2) = (0.7, 0.7), the membership function values
of permissible probability levels become worse drastically as (μp1(p

∗
1), μp1(p

∗
1)) =

(0.251894, 0.251894). At the optimal solution based on a fractile optimization model,
although permissible probability levels are fixed as (p̂1, p̂2) = (0.8, 0.8), the member-
ship function values of the original objective functions become worse as
(μG̃1

(f∗
1 ), μG̃2

(f∗
2 )) = (0.572997, 0.572997).

7 Conclusions

In this paper, we have proposed an interactive fuzzy decision making method for multi-
objective fuzzy random linear programming problems to obtain a satisfactory solution
from among a Pareto optimal solution set. In the proposed method, the decision maker
is required to specify the membership functions for the fuzzy goals of not only ob-
jective functions but also the permissible probability levels. Pareto optimal concepts
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called Dp-Pareto optimal and DG-Pareto optimal are introduced. The satisfactory so-
lution can be obtained by updating the reference membership values and solving the
corresponding minmax problem based on the linear programming technique. At the
optimal solution of MINMAX2(μ̂) or MINMAX4(μ̂), it is expected that a proper bal-
ance between permissible possibility levels for a probability maximization model and
permissible probability levels for a fractile optimization model is attained. In general, in
order to deal with MOFRLP, the decision maker must specify many parameters in ad-
vance. Fuzzy operators such as the fuzzy decision will lighten his/her burden to specify
such parameters as fixed values.
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Abstract. In the paper, we generalise the well-known hyperresolution principle
to the standard first-order Gödel logic. Our approach is based on the translation
of a formula of Gödel logic to an equivalent satisfiable finite order clausal theory,
consisting of order clauses. We introduce a notion of quantified atom: a formula
a is a quantified atom iff a = Qxp(t0, . . . , tτ ) where Q is a quantifier (∀, ∃);
p(t0, . . . , tτ ) is an atom; x is a variable occurring in p(t0, . . . , tτ ); for all i ≤ τ ,
either ti = x or x does not occur in ti. Then an order clause is a finite set of
order literals of the form ε1 � ε2 where εi is either an atom or a quantified atom,
and � is a connective either � or ≺. � and ≺ are interpreted by the equality and
strict linear order on [0, 1], respectively. For an input theory of Gödel logic, the
proposed translation produces a so-called admissible order clausal theory. On the
basis of the hyperresolution principle, a calculus operating over admissible order
clausal theories, is devised. The calculus is proved to be refutation sound and
complete for the countable case.

Keywords: Gödel Logic, Resolution, Many-valued Logics, Automated Deduc-
tion.

1 Introduction

Concerning the three fundamental first-order fuzzy logics, the set of logically valid
formulae is Π2-complete for Łukasiewicz logic, Π2-hard for Product logic, and Σ1-
complete for Gödel logic, as with classical first-order logic. Among these fuzzy logics,
only Gödel logic is recursively axiomatisable. Hence, it is all important to provide a
proof method suitable for automated deduction, as one has done for classical logic. In
contrast to classical logic, we cannot make shifts of quantifiers arbitrarily and translate
a formula to an equivalent (satisfiable) prenex form. In [2,4], the prenex fragment of
Gödel logic in presence of the projection operator Δ : [0, 1] −→ [0, 1],

Δ a =

{
1 if a = 1,

0 else,

is investigated, denoted as the prenex GΔ
∞. [2] solves the validity problem (VAL). A

variant of Herbrand’s Theorem for the prenex GΔ
∞ is proved, which reduces the VAL

� This work is partially supported by VEGA Grant 1/0979/12 and Slovak Literary Fund.
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problem of a formula in the prenex GΔ
∞ to the VAL problem of an open formula in GΔ

∞.
Further, a meta-level logic of order clauses is defined, which is a fragment of classical
one. An order clause is a finite set of inequalities of the form either a < b or a ≤ b where
<, ≤ are meta-level binary predicate symbols and a, b are atoms of GΔ

∞ considered as
meta-level terms. The semantics of the meta-level logic of order clauses is given by
classical interpretations on [0, 1], varying on assigned (truth) values to atoms of GΔ

∞
(meta-level terms), which are the strict dense linear order with endpoints on [0, 1]; < is
interpreted as the strict dense linear order with endpoints and ≤ as its reflexive closure
on [0, 1]. A formula in the prenexGΔ

∞ is valid if and only if a translation of it to the order
clause form is unsatisfiable with respect to the semantics of the meta-level logic. In the
prenex GΔ∞, the problem of the unsatisfiability of a formula cannot straightforwardly
be reduced to the VAL problem. Although the standard Skolemisation can be used for
the reduction of the VAL problem to the open case, it does not preserve satisfiability. [4]
has shown that any conjunction of formulae can be translated to an equivalent satisfiable
universal form via an alternative version of Skolemisation. The ordered chaining calculi
[5,6] may be used for resolution-style deduction over order clauses.

In the paper, we solve the deduction problem of a formula from a countable theory
in Gödel logic. At first, we introduce a notion of quantified atom: a formula a is a
quantified atom iff a = Qxp(t0, . . . , tτ ) where Q is a quantifier (∀, ∃); p(t0, . . . , tτ )
is an atom; x is a variable occurring in p(t0, . . . , tτ ); for all i ≤ τ , either ti = x or
x does not occur in ti. Our approach is based on the translation of a formula to an
equivalent satisfiable CNF one, which contains literals of the augmented form: either
a or a → b or (a → b) → b or c → a or a → c where a is an atom different
from 0 , 1 ; b is an atom different from 1 ; c is a quantified atom; Lemma 1, Section
3. A CNF formula is further translated to an equivalent satisfiable finite order clausal
theory, which consists of order clauses - finite sets of order literals of the form ε1 �
ε2 where εi is either an atom or a quantified atom, and � is a connective either �
or ≺; Lemma 1, Section 3. � and ≺ are interpreted by the equality and strict linear
order on [0, 1], respectively. They are added to Gödel logic as new binary connectives.
The translation is based on so-called interpolation rules given in Tables 2–7, Section
3. For an input theory, the translation produces a so-called admissible order clausal
theory. Theorem 1, Section 3, states that for an input theory T and formula φ, there
exists an admissible order clausal theory Sφ

T such that T |= φ if and only if Sφ
T is

unsatisfiable. In case of a finite T , |Sφ
T | ∈ O(|T |2 + |φ|2) and the time as well as

space complexity of the translation is in O((|T |2 + |φ|2) · log(|T | + |φ|)). An order
hyperresolution calculus, operating over admissible order clausal theories, uses order
hyperresolution rules introduced in Tables 9–11, Section 4, Subsection 4.2. Most of
the resolution rules of ordered chaining calculi [5,6] (e.g. the factorised chaining rule)
have non-empty residua in their consequences; i.e. they infer new (in)equalities. Many
of them are only transitive consequences, unnecessary for refutational argument. We
avoid this inefficiency using the hyperresolution principle; our rules do not infer new
(in)equalities being transitive consequences, which confines search space considerably.
The calculus is proved to be refutation sound and complete for the countable case,
Theorem 4, Section 4, Subsection 4.2.
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The paper is organised as follows. Section 2 concerns Gödel logic. Section 3 deals
with the translation to order clausal form. Section 4 proposes the order hyperresolution
calculus. Section 5 brings conclusions.

2 Gödel Logic

Throughout the paper, we shall use the common notions and notation of first-order logic.
N | Z designates the set of natural | integer numbers and ≤ the standard order on N | Z.
By L we denote a first-order language. VarL | FuncL | PredL | TermL | GTermL |
AtomL | GAtomL denotes the set of all variables | function symbols | predicate sym-
bols | terms | ground terms | atoms | ground atoms of L. arL : FuncL ∪ PredL −→ N

denotes the mapping assigning an arity to every function and predicate symbol of L.
We assume nullary predicate symbols 0 , 1 ∈ PredL, arL(0 ) = arL(1 ) = 0; 0 de-
notes the false and 1 the true in L. By FormL we designate the set of all formulae
of L built up from AtomL and VarL using the connectives: ¬, negation, ∧, conjunc-
tion, ∨, disjunction, →, implication, and the quantifiers: ∀, the universal quantifier, ∃,
the existential one. In addition, we introduce new binary connectives �, equality, and
≺, strict order. We denote Con = {¬,∧,∨,→,�,≺}. By OrdFormL we designate
the set of all so-called order formulae of L built up from AtomL and VarL using the
connectives in Con and the quantifiers: ∀, ∃.1 Note that OrdFormL ⊇ FormL. In the
paper, we shall assume that L is a countable first-order language; hence, all the above
mentioned sets of symbols and expressions are countable. Let ε, εi, 1 ≤ i ≤ m, υi,
1 ≤ i ≤ n, be either an expression or a set of expressions or a set of sets of expres-
sions of L, in general. By vars(ε1, . . . , εm) ⊆ VarL | freevars(ε1, . . . , εm) ⊆ VarL |
boundvars(ε1, . . . , εm) ⊆ VarL | preds(ε1, . . . , εm) ⊆ PredL | atoms(ε1, . . . , εm) ⊆
AtomL we denote the set of all variables | free variables | bound variables | predicate
symbols | atoms of L occurring in ε1, . . . , εm. ε is closed iff freevars(ε) = ∅. By � we
denote the empty sequence. By |ε1, . . . , εm| = m we denote the length of the sequence
ε1, . . . , εm. We define the concatenation of the sequences ε1, . . . , εm and υ1, . . . , υn
as (ε1, . . . , εm), (υ1, . . . , υn) = ε1, . . . , εm, υ1, . . . , υn. Note that concatenation of se-
quences is associative.

Let X , Y , Z be sets, Z ⊆ X ; f : X −→ Y be a mapping. By ‖X‖ we denote the
set-theoretic cardinality of X . X being a finite subset of Y is denoted as X ⊆F Y . We
designate P(X) = {x |x ⊆ X}; P(X) is the power set of X ; PF (X) = {x |x ⊆F
X}; PF(X) is the set of all finite subsets of X ; f [Z] = {f(z) | z ∈ Z}; f [Z] is the
image of Z under f ; f |Z = {(z, f(z)) | z ∈ Z}; f |Z is the restriction of f onto Z . Let
γ ≤ ω. A sequence δ of X is a bijection δ : γ −→ X . X is countable if and only if
there exists a sequence of X . Let X be a set of non-empty sets. A selector S over X is
a mapping S : X −→ ⋃

X such that for all x ∈ X , S(x) ∈ x. We denote Sel(X) =
{S | S is a selector over X}. R designates the set of real numbers and ≤ the standard
order on R. We denote R+

0 = {c | 0 ≤ c ∈ R}, R+ = {c | 0 < c ∈ R}; [0, 1] = {c | 0 ≤
c ≤ 1, c ∈ R}; [0, 1] is the unit interval. Let c ∈ R+. log c denotes the binary logarithm
of c. Let f, g : N −→ R+

0 . f is of the order of g, in symbols f ∈ O(g), iff there exist
n0 ∈ N and c∗ ∈ R+

0 such that for all n ≥ n0, f(n) ≤ c∗ · g(n). Let t ∈ TermL,

1 We assume a decreasing connective and quantifier precedence: ∀, ∃, ¬, ∧, →, �, ≺, ∨.
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φ ∈ OrdFormL, T ⊆F OrdFormL. The size of t | φ, in symbols |t| | |φ|, is defined
as the number of nodes of its standard tree representation. We define the size of T as
|T | = ∑

φ∈T |φ|. By varseq(φ), vars(varseq(φ)) ⊆ VarL, we denote the sequence of
all variables of L occurring in φ which is built up via the left-right preorder traversal
of φ. For example, varseq(∃w (∀x p(x, x, z) ∨ ∃y q(x, y, z))) = w, x, x, x, z, y, x, y, z
and |w, x, x, x, z, y, x, y, z| = 9. A sequence of variables will often be denoted as x̄, ȳ,
z̄, etc. Let Q ∈ {∀, ∃} and x̄ = x1, . . . , xn be a sequence of variables of L. By Qx̄φ
we denote Qx1 . . .Qxn φ.

Gödel logic is interpreted by the standard G-algebra augmented by binary operators
��� and≺≺≺ for � and ≺, respectively.

G = ([0, 1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,���,≺≺≺, 0, 1)
where∨∨∨ | ∧∧∧ denotes the supremum | infimum operator on [0, 1];

a⇒⇒⇒ b =

{
1 if a ≤ b,

b else;
a =

{
1 if a = 0,

0 else;

a��� b =

{
1 if a =[0,1] b,

0 else;
a≺≺≺ b =

{
1 if a <[0,1] b,

0 else;

=[0,1] | <[0,1] designates the equality | standard strict order on [0, 1]. We recall that G
is a complete linearly ordered lattice algebra; ∨∨∨ | ∧∧∧ is commutative, associative, idem-
potent, monotone; 0 | 1 is its neutral element; the residuum operator ⇒⇒⇒ of ∧∧∧ satisfies
the condition of residuation:

for all a, b, c ∈ G, a∧∧∧ b ≤ c⇐⇒ a ≤ b⇒⇒⇒ c; (1)

Gödel negation satisfies the condition:

for all a ∈ G, a = a⇒⇒⇒ 0; (2)

the following properties, which will be exploited later, hold:2

for all a, b, c ∈ G,

1a∨∨∨ b∧∧∧ c = (a∨∨∨ b)∧∧∧(a∨∨∨ c), (distributivity of ∨∨∨ over∧∧∧) (3)

a∧∧∧(b∨∨∨ c) = a∧∧∧ b∨∨∨ a∧∧∧ c, (distributivity of ∧∧∧ over∨∨∨) (4)

a⇒⇒⇒(b∨∨∨ c) = a⇒⇒⇒ b∨∨∨ a⇒⇒⇒ c, (5)

a⇒⇒⇒ b∧∧∧ c = (a⇒⇒⇒ b)∧∧∧(a⇒⇒⇒ c), (6)

(a∨∨∨ b)⇒⇒⇒ c = (a⇒⇒⇒ c)∧∧∧(b⇒⇒⇒ c), (7)

a∧∧∧ b⇒⇒⇒ c = a⇒⇒⇒ c∨∨∨ b⇒⇒⇒ c, (8)

a⇒⇒⇒(b⇒⇒⇒ c) = a∧∧∧ b⇒⇒⇒ c, (9)

2 We assume a decreasing operator precedence: , ∧∧∧, ⇒⇒⇒, ���, ≺≺≺, ∨∨∨.
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((a⇒⇒⇒ b)⇒⇒⇒ b)⇒⇒⇒ b = a⇒⇒⇒ b, (10)

(a⇒⇒⇒ b)⇒⇒⇒ c = ((a⇒⇒⇒ b)⇒⇒⇒ b)∧∧∧(b⇒⇒⇒ c)∨∨∨ c, (11)

(a⇒⇒⇒ b)⇒⇒⇒ 0 = ((a⇒⇒⇒ 0)⇒⇒⇒ 0)∧∧∧(b⇒⇒⇒ 0). (12)

An interpretation I for L is a triple
(UI , {fI | f ∈ FuncL}, {pI | p ∈ PredL}

)
defined as follows: UI �= ∅ is the universum of I; every f ∈ FuncL is interpreted as
a function fI : Uar(f)

I −→ UI ; every p ∈ PredL is interpreted as a [0, 1]-relation

pI : Uar(p)
I −→ [0, 1]. A variable assignment in I is a mapping VarL −→ UI . We

denote the set of all variable assignments in I as SI . Let t ∈ TermL; x̄ be a sequence
of variables of L; φ ∈ OrdFormL; e ∈ SI . In I with respect to e, we define the value
‖t‖Ie ∈ UI of t by recursion on the structure of t, the value ‖x̄‖Ie ∈ U |x̄|

I of x̄, the truth
value ‖φ‖Ie ∈ [0, 1] of φ by recursion on the structure of φ, as usual. Let φ be closed.
Then, for all e, e′ ∈ SI , ‖φ‖Ie = ‖φ‖Ie′ . Let e ∈ SI �= ∅. We denote ‖φ‖I = ‖φ‖Ie .

Let L | L′ be a first-order language and I | I ′ be an interpretation for L | L′. L′ is an
expansion of L iff FuncL′ ⊇ FuncL and PredL′ ⊇ PredL; on the other side, we say
L is a reduct of L′. I ′ is an expansion of I to L′ iff L′ is an expansion of L; UI′ = UI ;
for all f ∈ FuncL, fI′

= fI ; for all p ∈ PredL, pI
′
= pI ; on the other side, we say I

is a reduct of I ′ to L, in symbols I = I ′|L.
A theory ofL is a set of formulae ofL. An order theory ofL is a set of order formulae

of L. Let φ, φ′ ∈ OrdFormL, T ⊆ OrdFormL, e ∈ SI . φ is true in I with respect to
e, written as I |=e φ, iff ‖φ‖Ie = 1. I is a model of φ, in symbols I |= φ, iff, for all
e ∈ SI , I |=e φ. I is a model of T , in symbols I |= T , iff, for all φ ∈ T , I |= φ. φ is
a logically valid formula iff, for every interpretation I for L, I |= φ. φ is equivalent to
φ′, in symbols φ ≡ φ′, iff, for every interpretation I for L and e ∈ SI , ‖φ‖Ie = ‖φ′‖Ie .

3 Translation to Clausal Form

In the propositional case [7], we have proposed some translation of a formula to an
equivalent CNF containing literals of the form either a or a → b or (a→ b)→ b
where a is a propositional atom and b is either a propositional atom or the propositional
constant 0 . An output equivalent CNF may be of exponential size with respect to input
formula; we had laid no restrictions on the use of the distributivity law (3) during trans-
lation to conjunctive normal form. To avoid this disadvantage, we have devised some
translation to CNF via interpolation using new atoms, which produces an output CNF
of linear size at the cost of being only equisatisfiable to the input formula. A similar ap-
proach exploiting the renaming subformulae technique can be found in [12,14,9,11,13].
A CNF is further translated to a finite set of order clauses. An order clause is a finite
set of order literals of the form ε1 � ε2 where εi is either a propositional atom or the
propositional constant 0 , 1 , and � ∈ {�,≺}.

We now describe some generalisation of the mentioned translation to the first-
order case. At first, we introduce a notion of quantified atom. Let a ∈ FormL. a
is a quantified atom of L iff a = Qxp(t0, . . . , tτ ) where p(t0, . . . , tτ ) ∈ AtomL,
x ∈ vars(p(t0, . . . , tτ )), either ti = x or x �∈ vars(ti). QAtomL ⊆ FormL de-
notes the set of all quantified atoms of L. QAtomQ

L ⊆ QAtomL, Q ∈ {∀, ∃}, denotes
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the set of all quantified atoms of L of the form Qxa. Let ε, εi, 1 ≤ i ≤ m, υi,
1 ≤ i ≤ n, be either an expression or a set of expressions or a set of sets of expres-
sions of L, in general. By qatoms(ε1, . . . , εm) ⊆ QAtomL we denote the set of all
quantified atoms of L occurring in ε1, . . . , εm. We denote qatomsQ(ε1, . . . , εm) =

qatoms(ε1, . . . , εm) ∩ QAtomQ
L , Q ∈ {∀, ∃}. Let Qxp(t0, . . . , tτ ) ∈ QAtomL and

p(t′0, . . . , t′τ ) ∈ AtomL. We denote

p(t0, . . . , tτ )[i] = ti, i ≤ τ,

boundindset(Qxp(t0, . . . , tτ )) = {i | i ≤ τ, ti = x} �= ∅.
Let I = {i | i ≤ τ, x �∈ vars(ti)}; and r1, . . . , rk , ri ≤ τ , k ≤ τ , for all 1 ≤ i < i′ ≤ k,
ri < ri′ , be a sequence such that {ri | 1 ≤ i ≤ k} = I . We denote

freetermseq(Qxp(t0, . . . , tτ )) = tr1 , . . . , trk ,

freetermseq(p(t′0, . . . , t
′
τ )) = t′0, . . . , t

′
τ ,

freetermseq(p(t′0, . . . , t
′
τ )/Qxp(t0, . . . , tτ )) = t′r1 , . . . , t

′
rk .

We further introduce conjunctive normal form (CNF) in Gödel logic. In contrast to
two-valued logic, we have to consider an augmented set of literals appearing in CNF
formulae. Let l, φ ∈ FormL. l is a literal of L iff either l = a or l = a → b or
l = (a→ b)→ b or l = a→ c or l = c→ a, a ∈ AtomL−{0 , 1}, b ∈ AtomL−{1},
c ∈ QAtomL. The set of all literals of L is designated as LitL. φ is a conjunctive |
disjunctive normal form of L, in symbols CNF | DNF, iff either φ = 0 or φ = 1 or
φ =

∧
i≤n

∨
j≤mi

lij | φ =
∨

i≤n

∧
j≤mi

lij , lij ∈ LitL. Let D = l1∨· · ·∨ ln ∈ FormL,
li ∈ LitL. We denote lits(D) = {l1, . . . , ln} ⊆ LitL. D is a factor iff, for all 1 ≤ i <
i′ ≤ n, li �= li′ .

We finally introduce order clauses in Gödel logic. Let l ∈ OrdFormL. l is an order
literal of L iff l = ε1 � ε2, εi ∈ AtomL ∪ QAtomL, � ∈ {�,≺}. The set of all order
literals of L is designated as OrdLitL. An order clause of L is a finite set of order
literals of L; since =[0,1] is commutative, we identify the order literals ε1 � ε2 and
ε2 � ε1 with respect to order clauses. An order clause {l1, . . . , ln} is written in the
form l1 ∨ · · · ∨ ln. The order clause ∅ is called the empty order clause and denoted
as �. An order clause {l} is called a unit order clause and denoted as l; if it does not
cause the ambiguity with the denotation of the single order literal l in given context.
We designate the set of all order clauses of L as OrdClL. Let l, l0, . . . , ln ∈ OrdLitL
and C,C′ ∈ OrdClL. We define the size of C as |C| = ∑

l∈C |l|. By l ∨ C we denote
{l}∪C where l �∈ C. Analogously, by l0∨· · ·∨ ln∨C we denote {l0}∪· · ·∪{ln}∪C
where, for all i, i′ ≤ n, i �= i′, li �∈ C and li �= li′ . By C ∨C′ we denote C ∪C′. C is a
subclause of C′, in symbols C � C′, iff C ⊆ C′. An order clausal theory of L is a set
of order clauses of L. A unit order clausal theory is a set of unit order clauses.

Let φ, φ′ ∈ OrdFormL, T, T ′ ⊆ OrdFormL, S, S′ ⊆ OrdClL; I be an interpreta-
tion for L, e ∈ SI . Note that I |=e l if and only if either l = ε1 � ε2, ‖ε1 � ε2‖Ie = 1,
‖ε1‖Ie =[0,1] ‖ε2‖Ie ; or l = ε1 ≺ ε2, ‖ε1 ≺ ε2‖Ie = 1, ‖ε1‖Ie <[0,1] ‖ε2‖Ie . C is true in
I with respect to e, written as I |=e C, iff there exists l∗ ∈ C such that I |=e l

∗. I is a
model of C, in symbols I |= C, iff, for all e ∈ SI , I |=e C. I is a model of S, in sym-
bols I |= S, iff, for all C ∈ S, I |= C. φ′ | T ′ | C′ | S′ is a logical consequence
of φ | T | C | S, in symbols φ |T |C |S |= φ′ |T ′ |C′ |S′, iff, for every model I of
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φ | T | C | S for L, I |= φ′ |T ′ |C′ |S′. φ | T | C | S is satisfiable iff there exists
a model of φ | T | C | S for L. Note that both � and � ∈ S are unsatisfiable. φ
| T | C | S is equisatisfiable to φ′ | T ′ | C′ | S′ iff φ | T | C | S is satisfiable if
and only if φ′ | T ′ | C′ | S′ is satisfiable. Let S ⊆F OrdClL. We define the size
of S as |S| = ∑

C∈S |C|. Let l ∈ OrdLitL. l is a simplified order literal of L iff
l = ε1 � ε2, ε1 �∈ QAtomL or ε2 �∈ QAtomL. The set of all simplified order literals
of L is designated as SimOrdLitL. We denote SimOrdClL = {C |C ∈ OrdClL, C ⊆
SimOrdLitL}. Let I = N×N; I is an infinite countable set of indices. Let P̃ = {p̃� | � ∈
I} such that P̃ ∩ PredL = ∅; P̃ is an infinite countable set of new predicate symbols.
From a computational point of view, the worst case time and space complexity will be
estimated using the logarithmic cost measurement. LetA be an algorithm. #O denotes
the number of all elementary operations executed byA. The translation to order clausal
form is based on the following lemma.

Lemma 1. Let φ ∈ FormL, T ⊆ FormL; F ⊆ I such that there exists n0 and F ∩
{(i, j) | i ≥ n0} = ∅; nφ ≥ n0.

(i) There exist either Jφ = ∅ or Jφ = {(nφ, j) | j ≤ nJφ
}, Jφ ⊆ {(i, j) | i ≥ n0},

Jφ∩F = ∅; a CNF ψ ∈ FormL∪{p̃� | �∈Jφ}, Sφ ⊆F SimOrdClL∪{p̃� | �∈Jφ} such
that
(a) ‖Jφ‖ ≤ 2 · |φ|;
(b) either Jφ = ∅, Sφ = {�} or Jφ = Sφ = ∅ or Jφ �= ∅, � �∈ Sφ �= ∅;
(c) there exists an interpretation A for L and A |= φ if and only if there exists an

interpretation A′ for L ∪ {p̃� | � ∈ Jφ} and A′ |= ψ, satisfying A = A′|L;
(d) there exists an interpretation A for L and A |= φ if and only if there exists an

interpretation A′ for L ∪ {p̃� | � ∈ Jφ} and A′ |= Sφ, satisfying A = A′|L;
(e) |ψ| ∈ O(|φ|2); the number of all elementary operations of the translation of φ

to ψ is in O(|φ|2); the time and space complexity of the translation of φ to ψ
is in O(|φ|2 · log |φ|);

(f) |Sφ| ∈ O(|φ|2); the number of all elementary operations of the translation of
φ to Sφ is in O(|φ|2); the time and space complexity of the translation of φ to
Sφ is in O(|φ|2 · log |φ|);

(g) if ψ �= 0 and ψ �= 1 , then ψ =
∧

i≤nψ
Di, Di is a factor; Jφ �= ∅; for

all i ≤ nψ, ∅ �= preds(Di) ∩ P̃ ⊆ {p̃� | � ∈ Jφ}; for all i < i′ ≤ nψ,
lits(Di) �= lits(Di′);

(h) if Sφ �= ∅ and Sφ �= {�}, then Jφ �= ∅; for all C ∈ Sφ, ∅ �= preds(C) ∩ P̃ ⊆
{p̃� | � ∈ Jφ};

(i) for all a ∈ qatoms(ψ), there exists �∗ ∈ Jφ such that preds(a) = {p̃�∗};
(j) for all � ∈ Jφ, there exist a sequence x̄∗ of variables of L and p̃�(x̄

∗) ∈
atoms(ψ) such that for all a ∈ atoms(ψ), if preds(a) = {p̃�}, then a =
p̃�(x̄

∗); if there exists a∗ ∈ qatoms(ψ) and preds(a∗) = {p̃�}, then there
exists Q∗x∗ p̃�(x̄∗) ∈ qatoms(ψ), and for all a ∈ qatoms(ψ), if preds(a) =
{p̃�}, then a = Q∗x∗ p̃�(x̄∗);

(k) for all a ∈ qatoms(Sφ), there exists �∗ ∈ Jφ such that preds(a) = {p̃�∗};
(l) for all � ∈ Jφ, there exist a sequence x̄∗ of variables of L and p̃�(x̄

∗) ∈
atoms(Sφ) such that for all a ∈ atoms(Sφ), if preds(a) = {p̃�}, then
a = p̃�(x̄

∗); if there exists a∗ ∈ qatoms(Sφ) and preds(a∗) = {p̃�}, then
there exists Q∗x∗ p̃�(x̄∗) ∈ qatoms(Sφ), and for all a ∈ qatoms(Sφ), if
preds(a) = {p̃�}, then a = Q∗x∗ p̃�(x̄∗).
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(ii) There exist JT ⊆ {(i, j) | i ≥ n0}, JT ∩ F = ∅, ST ⊆ SimOrdClL∪{p̃� | �∈JT }
such that
(a) either JT = ∅, ST = {�} or JT = ST = ∅ or JT �= ∅, � �∈ ST �= ∅;
(b) there exists an interpretation A for L and A |= T if and only if there exists an

interpretation A′ for L ∪ {p̃� | � ∈ JT } and A′ |= ST , satisfying A = A′|L;
(c) if T ⊆F FormL, then JT ⊆F {(i, j) | i ≥ n0}, ‖JT ‖ ≤ 2 · |T |; ST ⊆F

OrdClL∪{p̃� | �∈JT }, |ST | ∈ O(|T |2); the number of all elementary opera-
tions of the translation of T to ST is in O(|T |2); the time and space complex-
ity of the translation of T to ST is in O(|T |2 · log(1 + |T |));

(d) if ST �= ∅ and ST �= {�}, then JT �= ∅; for all C ∈ ST , ∅ �= preds(C)∩ P̃ ⊆
{p̃� | � ∈ JT };

(e) for all a ∈ qatoms(ST ), there exists �∗ ∈ JT such that preds(a) = {p̃�∗};
(f) for all � ∈ JT , there exist a sequence x̄∗ of variables of L and p̃�(x̄

∗) ∈
atoms(ST ) such that for all a ∈ atoms(ST ), if preds(a) = {p̃�}, then
a = p̃�(x̄

∗); if there exists a∗ ∈ qatoms(ST ) and preds(a∗) = {p̃�}, then
there exists Q∗x∗ p̃�(x̄∗) ∈ qatoms(ST ), and for all a ∈ qatoms(ST ), if
preds(a) = {p̃�}, then a = Q∗x∗ p̃�(x̄∗).

Proof. Technical using interpolation.

Let θ ∈ FormL. There exists θ′ ∈ FormL such that

(a) θ′ ≡ θ;
(b) |θ′| ≤ 2 · |θ|; θ′ can be built up via a postorder traversal of θ with #O ∈

O(|θ|), the time and space complexity in O(|θ| · log |θ|);
(c) θ′ does not contain ¬;
(d) either θ′ = 0 , or 0 is a subformula of θ′ if and only if 0 is a subformula of

a subformula of θ′ of the form ϑ→ 0 , ϑ �= 0 ;
(e) either θ′ = 1 or 1 is not a subformula of θ′.

(13)

The proof is by induction on the structure of θ.
In Table 1, for every form of literal, an order clause is assigned so that for every

interpretation A for L, for all e ∈ SA, A |=e l if and only if A |=e C.

Table 1. Translation of l to C, a, b ∈ AtomL − {0 , 1}, c ∈ QAtomL

Case: l C |l| |C|

1 a a � 1 |a| |a| + 2 ≤ 3 · |l|
2 a → 0 a � 0 |a|+ 2 |a| + 2 ≤ 3 · |l|
3 a → b a ≺ b ∨ a � b |a|+ |b| + 1 2 · |a|+ 2 · |b| + 2 ≤ 3 · |l|
4 (a → 0 ) → 0 0 ≺ a |a|+ 4 |a| + 2 ≤ 3 · |l|
5 (a → b) → b b ≺ a ∨ b � 1 |a|+ 2 · |b| + 2 |a|+ 2 · |b| + 3 ≤ 3 · |l|
6 c → a c ≺ a ∨ c � a |a| + |c|+ 1 2 · |a| + 2 · |c|+ 2 ≤ 3 · |l|
7 a → c a ≺ c ∨ a � c |a| + |c|+ 1 2 · |a| + 2 · |c|+ 2 ≤ 3 · |l|
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Let θ ∈ FormL − {0 , 1}; (13c–e) hold for θ; x̄ be a sequence of vari-
ables, vars(θ) ⊆ vars(x̄) ⊆ VarL; G ⊆ I such that there exists n1 and
G ∩ {(i, j) | i ≥ n1} = ∅; nθ ≥ n1; � = (nθ, j�) ∈ {(i, j) | i ≥ n1}, p̃� ∈ P̃,
ar(p̃�) = |x̄|, {�} ∩ G = ∅. There exist J = {(nθ, j) | j� + 1 ≤ j ≤ nJ} ⊆
{(i, j) | i ≥ n1}, J ∩ (G ∪ {�}) = ∅; a CNF ψs ∈ FormL∪{p̃�}∪{p̃� | �∈J},
Ss ⊆F SimOrdClL∪{p̃�}∪{p̃� | �∈J}, s = +,−, such that for both s,

(a) ‖J‖ ≤ |θ| − 1;
(b) there exists an interpretation A for L ∪ {p̃�} and A |= p̃�(x̄) → θ ∈

FormL∪{p̃�} if and only if there exists an interpretation A′ for L ∪ {p̃�} ∪
{p̃� | � ∈ J} and A′ |= ψ+, satisfying A = A′|L∪{p̃�};

(c) there exists an interpretation A for L ∪ {p̃�} and A |= θ → p̃�(x̄) ∈
FormL∪{p̃�} if and only if there exists an interpretation A′ for L ∪ {p̃�} ∪
{p̃� | � ∈ J} and A′ |= ψ−, satisfying A = A′|L∪{p̃�};

(d) for every interpretation A for L ∪ {p̃�} ∪ {p̃� | � ∈ J}, A |= ψs if and only
if A |= Ss;

(e) there exists an interpretation A for L ∪ {p̃�} and A |= p̃�(x̄) → θ ∈
FormL∪{p̃�} if and only if there exists an interpretation A′ for L ∪ {p̃�} ∪
{p̃� | � ∈ J} and A′ |= S+, satisfying A = A′|L∪{p̃�};

(f) there exists an interpretation A for L ∪ {p̃�} and A |= θ → p̃�(x̄) ∈
FormL∪{p̃�} if and only if there exists an interpretation A′ for L ∪ {p̃�} ∪
{p̃� | � ∈ J} and A′ |= S−, satisfying A = A′|L∪{p̃�};

(14)

(g) |ψs| ≤ 13 · |θ| · (1 + |x̄|), ψs can be built up from θ and x̄ via a preorder
traversal of θ with #O ∈ O(|θ| · (1 + |x̄|));

(h) |Ss| ≤ 15 · |θ| · (1 + |x̄|), Ss can be built up from θ and x̄ via a preorder
traversal of θ with #O ∈ O(|θ| · (1 + |x̄|));

(i) ψs =
∧

i≤nψs
Ds

i , Ds
i �= p̃�(x̄) is a factor; for all i ≤ nψs , ∅ �= preds(Ds

i )∩
P̃ ⊆ {p̃�} ∪ {p̃� | � ∈ J}; for all i < i′ ≤ nψs , lits(Ds

i ) �= lits(Ds
i′);

(j) for all C ∈ Ss, ∅ �= preds(C)∩P̃ ⊆ {p̃�}∪{p̃� | � ∈ J}; p̃�(x̄) � 1 , p̃�(x̄) ≺
1 �∈ Ss;

(k) for all a ∈ qatoms(ψs), there exists �∗ ∈ J such that preds(a) = {p̃�∗};
(l) for all � ∈ {�} ∪ J , p̃�(x̄) ∈ atoms(ψs), and for all a ∈ atoms(ψs),

if preds(a) = {p̃�}, then a = p̃�(x̄); for all � ∈ J , if there exists
a∗ ∈ qatoms(ψs) and preds(a∗) = {p̃�}, then there exists Q∗x∗ p̃�(x̄) ∈
qatoms(ψs), and for all a ∈ qatoms(ψs), if preds(a) = {p̃�}, then
a = Q∗x∗ p̃�(x̄);

(m) for all a ∈ qatoms(Ss), there exists �∗ ∈ J such that preds(a) = {p̃�∗};
(n) for all � ∈ {�} ∪ J , p̃�(x̄) ∈ atoms(Ss), and for all a ∈ atoms(Ss),

if preds(a) = {p̃�}, then a = p̃�(x̄); for all � ∈ J , if there exists
a∗ ∈ qatoms(Ss) and preds(a∗) = {p̃�}, then there exists Q∗x∗ p̃�(x̄) ∈
qatoms(Ss), and for all a ∈ qatoms(Ss), if preds(a) = {p̃�}, then
a = Q∗x∗ p̃�(x̄).

The proof is by induction on the structure of θ using the interpolation rules in Tables
2–7. (i) By (13) for φ ∈ FormL, there exists φ′ ∈ FormL such that (13a–e) hold
for φ′. We then distinguish three cases for φ′. Case 1: φ′ = 0 . We put Jφ = ∅ ⊆
{(i, j) | i ≥ n0}, Jφ ∩ F = ∅; ψ = 0 ∈ FormL, Sφ = {�} ⊆F SimOrdClL. Case
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Table 2. Binary interpolation rules for ∧

Case: Laws

θ = θ1 ∧ θ2

Positive interpolation (6) (15)

p̃�(x̄) → θ1 ∧ θ2
(p̃�(x̄) → p̃�1(x̄)) ∧ (p̃�(x̄) → p̃�2(x̄)) ∧ (p̃�1(x̄) → θ1) ∧ (p̃�2(x̄) → θ2)

|Consequent| = 9 + 4 · |x̄|+ |p̃�1(x̄) → θ1|+ |p̃�2(x̄) → θ2| ≤
13 · (1 + |x̄|) + |p̃�1 (x̄) → θ1|+ |p̃�2(x̄) → θ2|

Positive interpolation (16)

p̃�(x̄) → θ1 ∧ θ2{
p̃�(x̄) ≺ p̃�1(x̄) ∨ p̃�(x̄) � p̃�1(x̄), p̃�(x̄) ≺ p̃�2(x̄) ∨ p̃�(x̄) � p̃�2(x̄),
p̃�1(x̄) → θ1, p̃�2(x̄) → θ2

}
|Consequent| = 12 + 8 · |x̄|+ |p̃�1(x̄) → θ1|+ |p̃�2 (x̄) → θ2| ≤

15 · (1 + |x̄|) + |p̃�1 (x̄) → θ1|+ |p̃�2(x̄) → θ2|
Negative interpolation (8) (17)

θ1 ∧ θ2 → p̃�(x̄)

(p̃�1(x̄) → p̃�(x̄) ∨ p̃�2(x̄) → p̃�(x̄)) ∧ (θ1 → p̃�1(x̄)) ∧ (θ2 → p̃�2(x̄))

|Consequent| = 9 + 4 · |x̄|+ |θ1 → p̃�1(x̄)|+ |θ2 → p̃�2(x̄)| ≤
13 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|+ |θ2 → p̃�2(x̄)|

Negative interpolation (18)

θ1 ∧ θ2 → p̃�(x̄){
p̃�1(x̄) ≺ p̃�(x̄) ∨ p̃�1(x̄) � p̃�(x̄), p̃�2(x̄) ≺ p̃�(x̄) ∨ p̃�2(x̄) � p̃�(x̄),
θ1 → p̃�1(x̄), θ2 → p̃�2(x̄)

}
|Consequent| = 12 + 8 · |x̄|+ |θ1 → p̃�1(x̄)|+ |θ2 → p̃�2(x̄)| ≤

15 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|+ |θ2 → p̃�2(x̄)|

2: φ′ = 1 . We put Jφ = ∅ ⊆ {(i, j) | i ≥ n0}, Jφ ∩ F = ∅; ψ = 1 ∈ FormL, Sφ =
∅ ⊆F SimOrdClL. Case 3: φ′ �= 0 and φ′ �= 1 . Let x̄ = varseq(φ′). Let � = (nφ, 0) ∈
{(i, j) | i ≥ n0}, p̃� ∈ P̃, ar (p̃�) = |x̄|. We get by (14) for φ′, x̄, F , n0, nφ, �, p̃� that
there exist J = {(nφ, j) | 1 ≤ j ≤ nJ} ⊆ {(i, j) | i ≥ n0}, J ∩ (F ∪ {�}) = ∅; a CNF
ψ+ ∈ FormL∪{p̃�}∪{p̃� | �∈J}, S+ ⊆F SimOrdClL∪{p̃�}∪{p̃� | �∈J}; and (14a,b,e,g–n)
hold for φ′, x̄, p̃�, J , ψ+, S+. We put nJφ

= nJ , Jφ = {�}∪J = {(nφ, j) | j ≤ nJφ
} ⊆

{(i, j) | i ≥ n0}, Jφ ∩ F = ∅; ψ = p̃�(x̄) ∧ ψ+ ∈ FormL∪{p̃� | �∈Jφ}, Sφ = {p̃�(x̄) �
1} ∪ S+ ⊆F SimOrdClL∪{p̃� | �∈Jφ}. (ii) straightforwardly follows from (i). � 

The described translation produces order clausal theories in some restrictive form,
which will be utilised in devising an order hyperresolution calculus. Let P ⊆ P̃ and
S ⊆ OrdClL∪P . S is admissible iff
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Table 3. Binary interpolation rules for ∨

Case: Laws

θ = θ1 ∨ θ2

Positive interpolation (5) (19)

p̃�(x̄) → (θ1 ∨ θ2)

(p̃�(x̄) → p̃�1
(x̄) ∨ p̃�(x̄) → p̃�2

(x̄)) ∧ (p̃�1
(x̄) → θ1) ∧ (p̃�2

(x̄) → θ2)

|Consequent| = 9 + 4 · |x̄|+ |p̃�1
(x̄) → θ1|+ |p̃�2

(x̄) → θ2| ≤
13 · (1 + |x̄|) + |p̃�1

(x̄) → θ1|+ |p̃�2
(x̄) → θ2|

Positive interpolation (20)

p̃�(x̄) → (θ1 ∨ θ2)

{p̃�(x̄) ≺ p̃�1
(x̄) ∨ p̃�(x̄) � p̃�1

(x̄) ∨ p̃�(x̄) ≺ p̃�2
(x̄) ∨ p̃�(x̄) � p̃�2

(x̄), p̃�1
(x̄) → θ1, p̃�2

(x̄) → θ2}
|Consequent| = 12 + 8 · |x̄|+ |p̃�1

(x̄) → θ1|+ |p̃�2
(x̄) → θ2| ≤

15 · (1 + |x̄|) + |p̃�1
(x̄) → θ1|+ |p̃�2

(x̄) → θ2|
Negative interpolation (7) (21)

(θ1 ∨ θ2) → p̃�(x̄)

(p̃�1
(x̄) → p̃�(x̄)) ∧ (p̃�2

(x̄) → p̃�(x̄)) ∧ (θ1 → p̃�1
(x̄)) ∧ (θ2 → p̃�2

(x̄))

|Consequent| = 9 + 4 · |x̄|+ |θ1 → p̃�1
(x̄)|+ |θ2 → p̃�2

(x̄)| ≤
13 · (1 + |x̄|) + |θ1 → p̃�1

(x̄)|+ |θ2 → p̃�2
(x̄)|

Negative interpolation (22)

(θ1 ∨ θ2) → p̃�(x̄)

{p̃�1
(x̄) ≺ p̃�(x̄) ∨ p̃�1

(x̄) � p̃�(x̄), p̃�2
(x̄) ≺ p̃�(x̄) ∨ p̃�2

(x̄) � p̃�(x̄), θ1 → p̃�1
(x̄), θ2 → p̃�2

(x̄)}
|Consequent| = 12 + 8 · |x̄|+ |θ1 → p̃�1

(x̄)|+ |θ2 → p̃�2
(x̄)| ≤

15 · (1 + |x̄|) + |θ1 → p̃�1
(x̄)|+ |θ2 → p̃�2

(x̄)|

(a) for all a ∈ qatoms(S), preds(a) ⊆ P ;
(b) for all p̃ ∈ P , there exist a sequence x̄ of variables of L and p̃(x̄) ∈ atoms(S)

such that for all a ∈ atoms(S) and preds(a) = {p̃}, a is an instance of p̃(x̄) of
L ∪ P ;3 if there exists a ∈ qatoms(S) and preds(a) = {p̃}, then there exists
Qx p̃(x̄) ∈ qatoms(S), x ∈ vars(p̃(x̄)), such that for all a ∈ qatoms(S) and
preds(a) = {p̃}, a is an instance of Qx p̃(x̄) of L ∪ P .3

(a) and (b) imply that for all Qxa,Q′x′ a′ ∈ qatoms(S), if preds(a) = preds(a′), then
Q = Q′, x = x′, boundindset(Qxa) = boundindset(Q′x′ a′).

Theorem 1. Let T ⊆ FormL, φ ∈ FormL; F ⊆ I such that there exists n0 and
F ∩ {(i, j) | i ≥ n0} = ∅. There exist Jφ

T ⊆ {(i, j) | i ≥ n0}, Jφ
T ∩ F = ∅, and

Sφ
T ⊆ SimOrdClL∪{p̃� | �∈Jφ

T } such that

3 Cf. Subsection 4.1.
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Table 4. Binary interpolation rules for →

Case: Laws

θ = θ1 → θ2, θ2 �= 0

Positive interpolation (9), (8) (23)

p̃�(x̄) → (θ1 → θ2)

(p̃�(x̄) → p̃�2(x̄) ∨ p̃�1(x̄) → p̃�2(x̄)) ∧ (θ1 → p̃�1(x̄)) ∧ (p̃�2(x̄) → θ2)

|Consequent| = 9 + 4 · |x̄|+ |θ1 → p̃�1(x̄)|+ |p̃�2 (x̄) → θ2| ≤
13 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|+ |p̃�2 (x̄) → θ2|

Positive interpolation (24)

p̃�(x̄) → (θ1 → θ2){
p̃�(x̄) ≺ p̃�2(x̄) ∨ p̃�(x̄) � p̃�2(x̄) ∨ p̃�1(x̄) ≺ p̃�2(x̄) ∨ p̃�1(x̄) � p̃�2(x̄),
θ1 → p̃�1(x̄), p̃�2(x̄) → θ2

}
|Consequent| = 12 + 8 · |x̄|+ |θ1 → p̃�1(x̄)|+ |p̃�2(x̄) → θ2| ≤

15 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|+ |p̃�2 (x̄) → θ2|
Negative interpolation (11), (3), (1) (25)

(θ1 → θ2) → p̃�(x̄)

((p̃�1(x̄) → p̃�2(x̄)) → p̃�2(x̄) ∨ p̃�(x̄)) ∧ (p̃�2(x̄) → p̃�(x̄)) ∧
(p̃�1(x̄) → θ1) ∧ (θ2 → p̃�2(x̄))

|Consequent| = 13 + 6 · |x̄|+ |p̃�1(x̄) → θ1|+ |θ2 → p̃�2(x̄)| ≤
13 · (1 + |x̄|) + |p̃�1(x̄) → θ1|+ |θ2 → p̃�2(x̄)|

Negative interpolation (26)

(θ1 → θ2) → p̃�(x̄){
p̃�2(x̄) ≺ p̃�1(x̄) ∨ p̃�2(x̄) � 1 ∨ p̃�(x̄) � 1 , p̃�2(x̄) ≺ p̃�(x̄) ∨ p̃�2(x̄) � p̃�(x̄),
p̃�1(x̄) → θ1, θ2 → p̃�2(x̄)

}
|Consequent| = 15 + 8 · |x̄|+ |p̃�1(x̄) → θ1|+ |θ2 → p̃�2(x̄)| ≤

15 · (1 + |x̄|) + |p̃�1(x̄) → θ1|+ |θ2 → p̃�2(x̄)|

(i) T |= φ if and only if Sφ
T is unsatisfiable;

(ii) if T ⊆F FormL, then Jφ
T ⊆F {(i, j) | i ≥ n0}, ‖Jφ

T ‖ ∈ O(|T | + |φ|); Sφ
T ⊆F

SimOrdClL∪{p̃� | �∈Jφ
T }, |Sφ

T | ∈ O(|T |2 + |φ|2); the number of all elementary

operations of the translation of T and φ to Sφ
T is in O(|T |2 + |φ|2); the time

and space complexity of the translation of T and φ to Sφ
T is in O((|T |2 + |φ|2) ·

log(|T |+ |φ|));
(iii) Sφ

T is admissible.

Proof. (i) We put Jn0 = {(n0, j) | } ⊆ {(i, j) | i ≥ n0} and G = F ∪ Jn0 ⊆ I.
We get by Lemma 1(ii) for T , G, n0 + 1 that there exist JT ⊆ {(i, j) | i ≥ n0 + 1},
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Table 5. Unary interpolation rules for →

Case: Laws

θ = θ1 → 0

Positive interpolation
p̃�(x̄) → (θ1 → 0 )

(p̃�(x̄) → 0 ∨ p̃�1(x̄) → 0 ) ∧ (θ1 → p̃�1(x̄))
(9), (8) (27)

|Consequent| = 8 + 2 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 13 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

Positive interpolation
p̃�(x̄) → (θ1 → 0 )

{p̃�(x̄) � 0 ∨ p̃�1(x̄) � 0 , θ1 → p̃�1(x̄)}
(28)

|Consequent| = 6 + 2 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 15 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

Negative interpolation
(θ1 → 0 ) → p̃�(x̄)

((p̃�1(x̄) → 0 ) → 0 ∨ p̃�(x̄)) ∧ (p̃�1(x̄) → θ1)
(11) (29)

|Consequent| = 8 + 2 · |x̄|+ |p̃�1 (x̄) → θ1| ≤ 13 · (1 + |x̄|) + |p̃�1(x̄) → θ1|

Negative interpolation
(θ1 → 0 ) → p̃�(x̄)

{0 ≺ p̃�1(x̄) ∨ p̃�(x̄) � 1 , p̃�1(x̄) → θ1} (30)

|Consequent| = 6 + 2 · |x̄|+ |p̃�1 (x̄) → θ1| ≤ 15 · (1 + |x̄|) + |p̃�1(x̄) → θ1|

Table 6. Unary interpolation rules for ∀

Case:

∀x θ1

Positive interpolation
p̃�(x̄) → ∀x θ1

(p̃�(x̄) → ∀x p̃�1(x̄)) ∧ (p̃�1(x̄) → θ1)
(31)

|Consequent| = 6 + 2 · |x̄|+ |p̃�1 (x̄) → θ1| ≤ 13 · (1 + |x̄|) + |p̃�1(x̄) → θ1|

Positive interpolation
p̃�(x̄) → ∀x θ1

{p̃�(x̄) ≺ ∀x p̃�1(x̄) ∨ p̃�(x̄) � ∀x p̃�1(x̄), p̃�1(x̄) → θ1} (32)

|Consequent| = 10 + 4 · |x̄|+ |p̃�1(x̄) → θ1| ≤ 15 · (1 + |x̄|) + |p̃�1 (x̄) → θ1|

Negative interpolation
∀x θ1 → p̃�(x̄)

(∀x p̃�1(x̄) → p̃�(x̄)) ∧ (θ1 → p̃�1(x̄))
(33)

|Consequent| = 6 + 2 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 13 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

Negative interpolation
∀x θ1 → p̃�(x̄)

{∀x p̃�1(x̄) ≺ p̃�(x̄) ∨ ∀x p̃�1(x̄) � p̃�(x̄), θ1 → p̃�1(x̄)}
(34)

|Consequent| = 10 + 4 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 15 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|
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Table 7. Unary interpolation rules for ∃

Case:

∃x θ1

Positive interpolation
p̃�(x̄) → ∃x θ1

(p̃�(x̄) → ∃x p̃�1(x̄)) ∧ (p̃�1(x̄) → θ1)
(35)

|Consequent| = 6 + 2 · |x̄|+ |p̃�1 (x̄) → θ1| ≤ 13 · (1 + |x̄|) + |p̃�1(x̄) → θ1|

Positive interpolation
p̃�(x̄) → ∃x θ1

{p̃�(x̄) ≺ ∃x p̃�1(x̄) ∨ p̃�(x̄) � ∃x p̃�1(x̄), p̃�1(x̄) → θ1} (36)

|Consequent| = 10 + 4 · |x̄|+ |p̃�1(x̄) → θ1| ≤ 15 · (1 + |x̄|) + |p̃�1 (x̄) → θ1|

Negative interpolation
∃x θ1 → p̃�(x̄)

(∃x p̃�1(x̄) → p̃�(x̄)) ∧ (θ1 → p̃�1(x̄))
(37)

|Consequent| = 6 + 2 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 13 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

Negative interpolation
∃x θ1 → p̃�(x̄)

{∃x p̃�1(x̄) ≺ p̃�(x̄) ∨ ∃x p̃�1(x̄) � p̃�(x̄), θ1 → p̃�1(x̄)}
(38)

|Consequent| = 10 + 4 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 15 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

JT ∩ G = ∅; ST ⊆ SimOrdClL∪{p̃� | �∈JT }; and 1(ii a–f) hold for T , JT , ST . By
(13) for φ ∈ FormL, there exists φ′ ∈ FormL such that (13a–e) hold for φ′. We then
distinguish three cases for φ′.

Case 1: φ′ = 0 . We put Jφ
T = JT ⊆ {(i, j) | i ≥ n0}, Jφ

T ∩ F = ∅, and Sφ
T = ST ⊆

SimOrdClL∪{p̃� | �∈Jφ
T }.

Case 2: φ′ = 1 . We put Jφ
T = ∅ ⊆ {(i, j) | i ≥ n0}, Jφ

T ∩ F = ∅, and Sφ
T = {�} ⊆

SimOrdClL.
Case 3: φ′ �= 0 and φ′ �= 1 . Let x̄ = varseq(φ′). Let � = (n0, 0) ∈ {(i, j) | i ≥ n0},

p̃� ∈ P̃, ar(p̃�) = |x̄|. We get by (14) for ∀x̄ φ′, x̄, F , n0, n0, �, p̃� that there exist
J = {(n0, j) | 1 ≤ j ≤ nJ} ⊆ {(i, j) | i ≥ n0}, J ∩ (F ∪ {�}) = ∅; S− ⊆F
SimOrdClL∪{p̃�}∪{p̃� | �∈J}; and (14a,f,h,j,m,n) hold for ∀x̄ φ′, x̄, p̃�, J , S−. We put

Jφ
T = JT ∪ {�} ∪ J ⊆ {(i, j) | i ≥ n0}, Jφ

T ∩ F = ∅, and Sφ
T = ST ∪ {p̃�(x̄) ≺

1} ∪ S− ⊆ SimOrdClL∪{p̃� | �∈Jφ
T }.

(ii) and (iii) straightforwardly follow. The theorem is proved. � 

4 Hyperresolution over Order Clauses

4.1 Substitutions

We assume the reader to be familiar with the standard notions and notation of sub-
stitutions. We introduce a few definitions and denotations; some of them are slightly
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different from the standard ones, but found to be more convenient. Let X = {xi | 1 ≤
i ≤ n} ⊆ VarL. A substitution ϑ of L is a mapping ϑ : X −→ TermL. ϑ may be
written in the form x1/ϑ(x1), . . . , xn/ϑ(xn). We denote dom(ϑ) = X ⊆ VarL and
range(ϑ) =

⋃
x∈X vars(ϑ(x)) ⊆F VarL. The set of all substitutions of L is desig-

nated as SubstL. We define idL : VarL −→ VarL, idL(x) = x. Let ϑ ∈ SubstL.
Let Qxa ∈ QAtomL. ϑ is applicable to Qxa iff dom(ϑ) ⊇ freevars(Qxa) and
x �∈ range(ϑ|freevars(Qxa)). Let ϑ be applicable to Qxa. We define the application of ϑ
to Qxa as (Qxa)ϑ = Qxa(ϑ|freevars(Qxa)∪x/x) ∈ QAtomL. Let ε1�ε2 ∈ OrdLitL.
ϑ is applicable to ε1 � ε2 iff, for both i, ϑ is applicable to εi. Let ϑ be applicable to
ε1 � ε2. We define the application of ϑ to ε1 � ε2 as (ε1 � ε2)ϑ = ε1ϑ � ε2ϑ ∈ OrdLitL.
Let E ⊆ A, A = TermL | A = AtomL | A = QAtomL | A = OrdLitL. ϑ is
applicable to E iff, for all ε ∈ E, ϑ is applicable to ε. Let ϑ be applicable to E.
We define the application of ϑ to E as Eϑ = {εϑ | ε ∈ E} ⊆ A. Let ε, ε′ ∈ A |
ε, ε′ ∈ OrdClL. ε′ is an instance of ε of L iff there exists ϑ∗ ∈ SubstL such that
ε′ = εϑ∗. ε′ is a variant of ε of L iff there exists a variable renaming ρ∗ ∈ SubstL such
that ε′ = ερ∗. Let C ∈ OrdClL and S ⊆ OrdClL. C is an instance | a variant of S of
L iff there exists C∗ ∈ S such that C is an instance | a variant of C∗ of L. We denote
InstL(S) = {C |C is an instance of S of L} ⊆ OrdClL.

ϑ is a unifier of L for E iff Eϑ is a singleton set. Let θ ∈ SubstL. θ is a most general
unifier of L for E iff θ is a unifier of L for E, and for every unifier ϑ of L for E, there
exists γ∗ ∈ SubstL such that ϑ|freevars(E) = θ|freevars(E)◦γ∗. By mguL(E) ⊆ SubstL
we denote the set of all most general unifiers ofL forE. Let E = E0, . . . , En, Ei ⊆ Ai,
Ai = TermL | Ai = AtomL | Ai = QAtomL | Ai = OrdLitL. ϑ is applicable to E iff,
for all i ≤ n, ϑ is applicable to Ei. Let ϑ be applicable to E. We define the application
of ϑ to E as Eϑ = E0ϑ, . . . , Enϑ, Eiϑ ⊆ Ai. ϑ is a unifier of L for E iff, for all
i ≤ n, ϑ is a unifier of L for Ei. θ is a most general unifier of L for E iff θ is a unifier
of L for E, and for every unifier ϑ of L for E, there exists γ∗ ∈ SubstL such that
ϑ|freevars(E) = θ|freevars(E) ◦ γ∗. By mguL(E) ⊆ SubstL we denote the set of all

most general unifiers of L for E.

Theorem 2 (Unification Theorem). Let E = E0, . . . , En, Ei ⊆F TermL | Ei ⊆F
AtomL. If there exists a unifier of L for E, then there exists θ∗ ∈ mguL(E) such that
range(θ∗|vars(E)) ⊆ vars(E).

Proof. By induction on ‖vars(E)‖; a modification of the proof of Theorem 2.3 (Unifi-
cation Theorem) in [1], Section 2.4, pp. 5–6. � 

Let Ei = ti1, . . . , t
i
m, tij ∈ TermL, i ≤ n. We define the union of Ei, i ≤ n, as⋃

{Ei | i ≤ n} = {ti1 | i ≤ n}, . . . , {tim | i ≤ n}, {tij | i ≤ n} ⊆ TermL.

Note that if m = 0, then
⋃{Ei | i ≤ n} = �.

Theorem 3 (Extended Unification Theorem). Let E = E0, . . . , En, Ei ⊆F TermL |
Ei ⊆F AtomL |Ei ⊆F QAtomL |Ei ⊆F OrdLitL. If there exists a unifier ofL for E,
then there exists θ∗ ∈ mguL(E) such that range(θ∗|freevars(E))∩ boundvars(E) = ∅.

Proof. A straightforward consequence of Theorem 2. � 
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4.2 Order Hyperresolution Rules

At first, we introduce some basic notions and notation concerning chains of order liter-
als. Let ε1, ε2 ∈ AtomL∪QAtomL. ε1 � ε2 iff either ε1 = ε2 or ε1 = 0 or ε2 = 1 ; or
ε1 = ∀xa, there exists t ∈ TermL and ε2 = a(x/t ∪ idL|vars(a)−{x}); or ε2 = ∃xa,
there exists t ∈ TermL and ε1 = a(x/t∪idL|vars(a)−{x}). Under some circumstances,
� is transitive.

Let P ⊆ P̃ and S ⊆ OrdClL∪P be admissible. For all ε1, ε2, ε3 ∈ AtomL∪P ∪
qatoms(S), if ε1 � ε2 � ε3, then ε1 � ε3. (39)

The proof. A straightforward consequence of the admissibility of S.
Let P ⊆ P̃ and S ⊆ OrdClL∪P be admissible. Let εi ∈ AtomL∪P ∪ qatoms(S),

i = 1, 2. We define the sequence ε1 ��� ε2 of the form either ∅ �= E ⊆F AtomL∪P or
∅ �= E ⊆F qatoms(S) or E1, . . . , En, Ei = {ti1, ti2} ⊆ TermL, in Table 8.

Table 8. ε1 ��� ε2

ε1 ��� ε2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if ε1 = 0 ;

� if ε2 = 1 ;

{ε1, ε2} if either ε1 �= 0 , ε2 �= 1 , ε1, ε2 ∈ AtomL∪P ,
or ε1, ε2 ∈ qatoms(S);

freetermseq(ε1) ∪ freetermseq(ε2/ε1) if ε1 ∈ qatoms(S)∀, ε2 ∈ AtomL∪P ,
preds(ε1) = preds(ε2);

freetermseq(ε1/ε2) ∪ freetermseq(ε2) if ε1 ∈ AtomL∪P , ε2 ∈ qatoms(S)∃,
preds(ε1) = preds(ε2).

A chainΞ ofL is a sequenceΞ = ε0�0υ0, . . . , εn�nυn, εi�iυi ∈ OrdLitL. ε0 is the
beginning element of Ξ and υn the ending element of Ξ . ε0 Ξ υn denotes Ξ together
with its respective beginning and ending element. Let Ξ = ε0 �0 υ0, . . . , εn �n υn
be a chain of L. Ξ is an equality chain of L iff, for all i ≤ n, �i =�, and for all
i < n, υi = εi+1. Ξ is an increasing chain of L iff, for all i < n, υi � εi+1. Let
Ξ = ε0 �0 υ0, . . . , εn �n υn be an increasing chain of L. Ξ is a strictly increasing
chain of L iff there exists i∗ ≤ n such that �i∗ =≺. Ξ is an unstrictly increasing chain
of L iff, for all i ≤ n, �i =�. Let Ξ be a chain of L. Ξ is a contradiction of L iff
εΞ υ is a strictly increasing chain of L and υ � ε. Let S ⊆ OrdClL be unit and
Ξ = ε0 �0 υ0, . . . , εn �n υn be a chain | an equality chain | an increasing chain | a
strictly increasing chain | an unstrictly increasing chain | a contradiction of L. Ξ is a
chain | an equality chain | an increasing chain | a strictly increasing chain | an unstrictly
increasing chain | a contradiction of S iff, for all i ≤ n, εi �i υi ∈ S.

Let W̃ = {w̃α | ar(w̃α) = 0, α < ω} such that W̃ ∩ FuncL = ∅; W̃ is an infinite
countable set of new constant symbols. Let P ⊆ P̃ and S ⊆ OrdClL∪P be admis-
sible. A basic order hyperresolution calculus is defined in Table 9. The basic order
hyperresolution calculus can be generalised to an order hyperresolution one in Table
11. Let L0 = L ∪ P and S0 = {0 ≺ 1} ∪ S ⊆ OrdClL0 . Let D = C0, . . . , Cn,
Cκ ∈ OrdClL∪W̃∪P . D is a deduction of Cn from S by basic order | basic order wit-
nessing

∣∣ order hyperresolution iff, for all κ ≤ n, Cκ ∈ S0, or there exist j∗k < κ,
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Table 9. Basic order hyperresolution calculus, SI
κ = InstLκ(Sκ) ⊆ OrdClLκ

(Basic order hyperresolution rule) (40)

l0 ∨ C0, . . . , ln ∨ Cn ∈ SI
κ

n∨
i=0

Ci ∈ Sκ+1

;

l0, . . . , ln is a contradiction of Lκ.

(Basic order hyperresolution rule of rank r) (41)

m0∨
j=0

l0j ∨ C0, . . . ,

mn∨
j=0

lnj ∨ Cn ∈ SI
κ

n∨
i=0

Ci ∈ Sκ+1

;

for all i ≤ n,mi ≤ r;
for all S ∈ Sel({mi + 1 | i ≤ n}), there exists a contradiction of {liS(i) | i ≤ n};
there does not exist ∅ �= I ⊂ n+ 1 such that for all S ∈ Sel({mi + 1 | i ∈ I}),
there exists a contradiction of {liS(i) | i ∈ I}.

(Basic order ∀-saturation rule) (42)

ε0 �0 υ0 ∨ C0, . . . , εn �n υn ∨ Cn ∈ SI
κ

χ ≺ μ ∨ χ � μ ∨
n∨

i=0

Ci ∈ Sκ+1

;

υn ∈ atoms(SI
κ), μ ∈ qatoms(SI

κ)
∀, μ � υn, υn[min(boundindset(μ))] ∈ VarL,

υn[min(boundindset(μ))] �∈ vars(freetermseq(υn/μ)),
for all i ≤ n, υn[min(boundindset(μ))] �∈ freevars(Ci);
ε0 �0 υ0, . . . , εn �n υn is an increasing chain;
χ ∈ atoms(SI

κ)− {0} ∪ qatoms(SI
κ), χ � ε0, υn[min(boundindset(μ))] �∈ freevars(χ).

(Basic order ∃-saturation rule) (43)

ε0 �0 υ0 ∨ C0, . . . , εn �n υn ∨ Cn ∈ SI
κ

μ ≺ χ ∨ μ � χ ∨
n∨

i=0

Ci ∈ Sκ+1

;

ε0 ∈ atoms(SI
κ), μ ∈ qatoms(SI

κ)
∃, ε0 � μ, ε0[min(boundindset(μ))] ∈ VarL,

ε0[min(boundindset(μ))] �∈ vars(freetermseq(ε0/μ)),
for all i ≤ n, ε0[min(boundindset(μ))] �∈ freevars(Ci);
ε0 �0 υ0, . . . , εn �n υn is an increasing chain;
χ ∈ atoms(SI

κ)− {1} ∪ qatoms(SI
κ), υn � χ, ε0[min(boundindset(μ))] �∈ freevars(χ).
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Table 10. Basic order witnessing rules, SI
κ = InstLκ(Sκ) ⊆ OrdClLκ

(Basic order ∀-witnessing rule) (44)

ε0 �0 υ0, . . . , εn �n υn ∈ SI
κ

aγ ≺ υn ∈ Sκ+1
;

qatoms(SI
κ)

∀ � ∀xa � ε0 �0 υ0, . . . , εn �n υn is a strictly increasing chain such that
for all i < n, �i =�, �n =≺;
freevars(∀xa) ∪⋃n

i=0 freevars(εi �i υi) = ∅;
w̃α∗ ∈ W̃, w̃α∗ �∈ FuncLκ ; γ = x/w̃α∗ ∈ SubstLκ+1 , dom(γ) = vars(a).

(Basic order ∃-witnessing rule) (45)

ε0 �0 υ0, . . . , εn �n υn ∈ SI
κ

ε0 ≺ aγ ∈ Sκ+1
;

ε0 �0 υ0, . . . , εn �n υn � ∃xa ∈ qatoms(SI
κ)

∃ is a strictly increasing chain such that
�0 =≺, for all 1 ≤ i ≤ n, �i =�;⋃n

i=0 freevars(εi �i υi) ∪ freevars(∃xa) = ∅;
w̃α∗ ∈ W̃, w̃α∗ �∈ FuncLκ ; γ = x/w̃α∗ ∈ SubstLκ+1 , dom(γ) = vars(a).

k ≤ m, such that Cκ is an order resolvent of C′
j∗0
, . . . , C′

j∗m
using Rule (40)–(43)4 |

Rule (40)–(45)4
∣∣ Rule (46)–(48) where C′

j∗
k

is an instance
∣∣ a variant of Cj∗

k
of Lκ−1;

Lκ and Sκ are defined by recursion on 1 ≤ κ ≤ n as follows:

Lκ =

{
Lκ−1 ∪ {w̃α∗} in case of Rule (44), (45),

Lκ−1 else;

Sκ = Sκ−1 ∪ {Cκ} ⊆ OrdClLκ .

D is a refutation of S iff Cn = �. We denote

cloBH(S) = {C | there exists a deduction of C from S

by basic order hyperresolution} ⊆ OrdClL∪P ,

cloBWH(S) = {C | there exists a deduction of C from S

by basic order witnessing hyperresolution} ⊆ OrdClL∪W̃∪P ,

cloH(S) = {C | there exists a deduction of C from S

by order hyperresolution} ⊆ OrdClL∪P .

Lemma 2 (Lifting Lemma). Let P ⊆ P̃ and S ⊆ OrdClL∪P be admissible. If C ∈
cloBH(S), then there exists C∗ ∈ cloH(S) such that C is an instance of C∗ of L ∪ P .

Proof. By complete induction on the length of a deduction of C from S by basic order
hyperresolution. � 

4 Rule (41) is not basic, only admissible.
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Table 11. Order hyperresolution calculus, SI
κ = InstLκ(Sκ) ⊆ OrdClLκ , for all i < i′ ≤ n,

freevars(
∨ki

j=0 ε
i
j �ij υi

j ∨
∨mi

j=1 l
i
j) ∩ freevars(

∨ki′
j=0 ε

i′
j �i′j υi′

j ∨∨mi′
j=1 l

i′
j ) = ∅

(Order hyperresolution rule) (46)

k0∨
j=0

ε0j �0j υ0
j ∨

m0∨
j=1

l0j , . . . ,

kn∨
j=0

εnj �nj υn
j ∨

mn∨
j=1

lnj ∈ SI
κ

( n∨
i=0

mi∨
j=1

lij

)
θ ∈ Sκ+1

;

θ ∈ mguLκ

(∨k0
j=0 ε

0
j �0j υ0

j , l
0
1, . . . , l

0
m0

, . . . ,
∨kn

j=0 ε
n
j �nj υn

j , l
n
1 , . . . , l

n
mn

,

υ0
0 ��� ε10, . . . , υ

n−1
0 ��� εn0 , υ

n
0 ��� ε00

)
,

dom(θ) = freevars
({εij �ij υi

j | j ≤ ki, i ≤ n}, {lij | 1 ≤ j ≤ mi, i ≤ n});
there exists i∗ ≤ n such that �i∗0 =≺ .

(Order ∀-saturation rule) (47)

k0∨
j=0

ε0j �0j υ0
j ∨

m0∨
j=1

l0j , . . . ,

kn∨
j=0

εnj �nj υn
j ∨

mn∨
j=1

lnj ∈ SI
κ

χ ≺ μ ∨ χ � μ ∨
( n∨

i=0

mi∨
j=1

lij

)
θ ∈ Sκ+1

;

θ ∈ mguLκ

(∨k0
j=0 ε

0
j �0j υ0

j , l
0
1, . . . , l

0
m0

, . . . ,
∨kn

j=0 ε
n
j �nj υn

j , l
n
1 , . . . , l

n
mn

,

υ0
0 ��� ε10, . . . , υ

n−1
0 ��� εn0

)
,

dom(θ) = freevars
({εij �ij υi

j | j ≤ ki, i ≤ n}, {lij | 1 ≤ j ≤ mi, i ≤ n});
υn
0 θ ∈ atoms(SI

κ), μ ∈ qatoms(SI
κ)

∀, μ � υn
0 θ,

υn
0 θ[min(boundindset (μ))] ∈ VarL, υn

0 θ[min(boundindset (μ))] �∈ vars(freetermseq(υn
0 θ/μ)),

for all i ≤ n, 1 ≤ j ≤ mi, υn
0 θ[min(boundindset (μ))] �∈ freevars(lijθ);

χ ∈ atoms(SI
κ)− {0} ∪ qatoms(SI

κ), χ � ε00θ, υ
n
0 θ[min(boundindset (μ))] �∈ freevars(χ).

(Order ∃-saturation rule) (48)

k0∨
j=0

ε0j �0j υ0
j ∨

m0∨
j=1

l0j , . . . ,

kn∨
j=0

εnj �nj υn
j ∨

mn∨
j=1

lnj ∈ SI
κ

μ ≺ χ ∨ μ � χ ∨
( n∨

i=0

mi∨
j=1

lij

)
θ ∈ Sκ+1

;

θ ∈ mguLκ

(∨k0
j=0 ε

0
j �0j υ0

j , l
0
1, . . . , l

0
m0

, . . . ,
∨kn

j=0 ε
n
j �nj υn

j , l
n
1 , . . . , l

n
mn

,

υ0
0 ��� ε10, . . . , υ

n−1
0 ��� εn0

)
,

dom(θ) = freevars
({εij �ij υi

j | j ≤ ki, i ≤ n}, {lij | 1 ≤ j ≤ mi, i ≤ n});
ε00θ ∈ atoms(SI

κ), μ ∈ qatoms(SI
κ)

∃, ε00θ � μ,
ε00θ[min(boundindset (μ))] ∈ VarL, ε00θ[min(boundindset (μ))] �∈ vars(freetermseq(ε00θ/μ)),
for all i ≤ n, 1 ≤ j ≤ mi, ε00θ[min(boundindset (μ))] �∈ freevars(lijθ);

χ ∈ atoms(SI
κ)− {1} ∪ qatoms(SI

κ), υ
n
0 θ � χ, ε00θ[min(boundindset (μ))] �∈ freevars(χ).
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We are in position to prove the refutational soundness and completeness of the order
hyperresolution calculus.

Theorem 4 (Refutational Soundness and Completeness). Let P ⊆ P̃ and S ⊆
OrdClL∪P be admissible. � ∈ cloH(S) if and only if S is unsatisfiable.

Proof. (=⇒) Let A be a model of S for L ∪ P and C ∈ cloH(S). Then A |= C.
The proof is by complete induction on the length of a deduction of C from S by order
hyperresolution. Let � ∈ cloH(S). Let A be a model of S for L ∪ P . We get A |= �,
which is a contradiction. We conclude that S is unsatisfiable.

(⇐=) Let L contain a constant symbol, S �= ∅, � �∈ cloH(S). We get by Lemma 2
for P , S, � that � �∈ cloBH(S). It is straightforward to prove that there exist L∗ being
an expansion ofL∪P , a reduction ofL∪W̃∪P ; and Sclo ⊆ OrdClL∗ being admissible,
Sclo ⊇ S, � �∈ Sclo , Sclo = InstL∗(Sclo), Sclo = cloBWH(Sclo); the condition of
completeness (49) (formulated below) holds. Then Sclo |= S and 0 ≺ 1 ∈ Sclo . We
put

S = {C |C ∈ Sclo is unit, freevars(C) = ∅} ⊆ OrdClL∗ ,

UA = GTermL∗ �= ∅, B = GAtomL∗ ∪ qatoms(S). Hence, 0 , 1 ∈ B; B is countable;
there exist 2 ≤ γB ≤ ω and a sequence δ : γB −→ B of B such that δ(0) = 0 ,
δ(1) = 1 . Let ε1, ε2 ∈ B. ε1 �� ε2 iff ε1 = ε2 or there exists an equality chain
ε1 Ξ ε2 of S. ε1 ≺≺ ε2 iff there exists a strictly increasing chain υ1 Ξ υ2 of S and
ε1 � υ1Ξ υ2 � ε2. We can formulate the condition of completeness as follows:

for all ε1, ε2 ∈ B, either ε1 ≺≺ ε2 or ε1 �� ε2 or ε2 ≺≺ ε1. (49)

Note that 0 ≺≺ 1 .

0 ��� 1 ; for all ε1 ∈ B, ε1 �≺≺ 0 , 1 �≺≺ ε1, ε1 �≺≺ ε1. (50)

The proof is straightforward.
Let {0 , 1} ⊆ X ⊆ B. A partial valuation V is a mapping V : X −→ [0, 1] such that

V(0 ) = 0, V(1 ) = 1. We denote dom(V) = X , {0 , 1} ⊆ dom(V) ⊆ B. We define a
partial valuation Vα by recursion on 2 ≤ α ≤ γB as follows:

V2 = {(0 , 0), (1 , 1)};
Vα = Vα−1 ∪ {(δ(α− 1), λα−1)} (3 ≤ α ≤ γB is a successor ordinal),

Eα−1 = {Vα−1(a) | a �� δ(α − 1), a ∈ dom(Vα−1)},
Dα−1 = {Vα−1(a) | a ≺≺ δ(α − 1), a ∈ dom(Vα−1)},
Uα−1 = {Vα−1(a) | δ(α − 1) ≺≺ a, a ∈ dom(Vα−1)},

λα−1 =

⎧⎨⎩
∨∨∨

Dα−1 +
∧∧∧

Uα−1

2
if Eα−1 = ∅,∨∨∨

Eα−1 else;

VγB =
⋃

α<γB

Vα (γB is a limit ordinal).
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Table 12. An example: φ = ∀x (q1(x) → q2) → (∃xq1(x) → q2)

φ = ∀x (q1(x) → q2) → (∃x q1(x) → q2)

{p̃0(x) ≺ 1 ,
( ∀x (q1(x) → q2)
︸ ︷︷ ︸

p̃1(x)

→ (∃x q1(x) → q2
︸ ︷︷ ︸

p̃2(x)

)
) → p̃0(x)} (26)

{p̃0(x) ≺ 1 , p̃2(x) ≺ p̃1(x) ∨ p̃2(x) � 1 ∨ p̃0(x) � 1 , p̃2(x) ≺ p̃0(x) ∨ p̃2(x) � p̃0(x),

p̃1(x) → ∀x (q1(x) → q2
︸ ︷︷ ︸

p̃3(x)

), (∃x q1(x)
︸ ︷︷ ︸

p̃4(x)

→ q2︸︷︷︸
p̃5(x)

) → p̃2(x)} (32), (26)

{p̃0(x) ≺ 1 , p̃2(x) ≺ p̃1(x) ∨ p̃2(x) � 1 ∨ p̃0(x) � 1 , p̃2(x) ≺ p̃0(x) ∨ p̃2(x) � p̃0(x),

p̃1(x) ≺ ∀x p̃3(x) ∨ p̃1(x) � ∀x p̃3(x), p̃3(x) → (q1(x)
︸ ︷︷ ︸
p̃6(x)

→ q2︸︷︷︸
p̃7(x)

),

p̃5(x) ≺ p̃4(x) ∨ p̃5(x) � 1 ∨ p̃2(x) � 1 ,

p̃5(x) ≺ p̃2(x) ∨ p̃5(x) � p̃2(x), p̃4(x) → ∃x q1(x)
︸ ︷︷ ︸
p̃8(x)

, q2 ≺ p̃5(x) ∨ q2 � p̃5(x)} (24), (36)

For all 2 ≤ α ≤ γB, Vα is a partial valuation, dom(Vα) = δ[α]; and
for all 2 ≤ α ≤ α′ ≤ γB, Vα ⊆ Vα′ .

(51)

The proof is by induction on 2 ≤ α ≤ γB.

For all 2 ≤ α ≤ γB, for all a, a′ ∈ dom(Vα),
if a �� a′, then Vα(a) = Vα(a

′);
if a ≺≺ a′, then Vα(a) < Vα(a

′);
if Vα(a) = 0, then a �� 0 ;
if Vα(a) = 1, then a �� 1 .

(52)

The proof is by induction on 2 ≤ α ≤ γB.

We put V = VγB , dom(V) (51)
== δ[γB] = B;

fA(u1, . . . , uτ ) = f(u1, . . . , uτ ), f ∈ FuncL∗ , ui ∈ UA;

pA(u1, . . . , uτ ) = V(p(u1, . . . , uτ )), p ∈ PredL∗ , ui ∈ UA;

A =
(UA, {fA | f ∈ FuncL∗}, {pA | p ∈ PredL∗}).

We get A |= Sclo |= S ⊆ OrdClL∪P . We conclude that A|L∪P is a model of S for
L ∪ P and S is satisfiable. The theorem is proved. � 

In Tables 12 and 13, we show that φ = ∀x (q1(x) → q2) → (∃x q1(x) → q2) ∈
FormL is logically valid using the proposed translation to order clausal form and the
basic order hyperresolution calculus.
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Table 13. An example: φ = ∀x (q1(x) → q2) → (∃xq1(x) → q2)

Sφ =

{
p̃0(x) ≺ 1 [1]

p̃2(x) ≺ p̃1(x) ∨ p̃2(x) � 1 ∨ p̃0(x) � 1 [2]

p̃2(x) ≺ p̃0(x) ∨ p̃2(x) � p̃0(x) [3]

p̃1(x) ≺ ∀x p̃3(x) ∨ p̃1(x) � ∀x p̃3(x) [4]

p̃3(x) ≺ p̃7(x) ∨ p̃3(x) � p̃7(x) ∨ p̃6(x) ≺ p̃7(x) ∨

p̃6(x) � p̃7(x) [5]

q1(x) ≺ p̃6(x) ∨ q1(x) � p̃6(x) [6]

p̃7(x) ≺ q2 ∨ p̃7(x) � q2 [7]

p̃5(x) ≺ p̃4(x) ∨ p̃5(x) � 1 ∨ p̃2(x) � 1 [8]

p̃5(x) ≺ p̃2(x) ∨ p̃5(x) � p̃2(x) [9]

p̃4(x) ≺ ∃x p̃8(x) ∨ p̃4(x) � ∃x p̃8(x) [10]

p̃8(x) ≺ q1(x) ∨ p̃8(x) � q1(x) [11]

q2 ≺ p̃5(x) ∨ q2 � p̃5(x)

}
[12]

Rule (40) : [1][2] :

p̃2(x) ≺ p̃1(x) ∨ p̃2(x) � 1 [13]

Rule (40) : [3][13] :

p̃2(x) � p̃0(x) ∨ p̃2(x) ≺ p̃1(x) [14]

Rule (40) : [1][13][14] :

p̃2(x) ≺ p̃1(x) [15]

Rule (40) : [8][15] :

p̃5(x) ≺ p̃4(x) ∨ p̃5(x) � 1 [16]

Rule (40) : [9][16] :

p̃5(x) � p̃2(x) ∨ p̃5(x) ≺ p̃4(x) [17]

Rule (40) : [15][16][17] :

p̃5(x) ≺ p̃4(x) [18]

Rule (41) : [4][5][7][9][12][15] :

p̃6(x) ≺ p̃7(x) ∨ p̃6(x) � p̃7(x) [19]

repeatedly Rule (43) : [6][7][11][19] :
...

...
...

∃x p̃8(x) ≺ q2 ∨ ∃x p̃8(x) � q2 [20]

Rule (41) : [10][12][18][20] :

� [21]
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Table 14. Translation of l to C, a, d ∈ AtomL − {0 , 1}

Case: l C |l| |C|

8 a → Δ d a � 0 ∨ d � 1 |a|+ |d|+ 2 |a|+ |d|+ 4 ≤ 3 · |l|
9 Δ d → a d ≺ 1 ∨ a � 1 |a|+ |d|+ 2 |a|+ |d|+ 4 ≤ 3 · |l|

Table 15. Unary interpolation rules for Δ

Case:

Δ θ1

Positive interpolation
p̃�(x̄) → Δ θ1

(p̃�(x̄) → Δ p̃�1(x̄)) ∧ (p̃�1(x̄) → θ1)
(53)

|Consequent| = 5 + 2 · |x̄|+ |p̃�1(x̄) → θ1| ≤ 13 · (1 + |x̄|) + |p̃�1(x̄) → θ1|

Positive interpolation
p̃�(x̄) → Δ θ1

{p̃�(x̄) � 0 ∨ p̃�1(x̄) � 1 , p̃�1(x̄) → θ1} (54)

|Consequent| = 6 + 2 · |x̄|+ |p̃�1(x̄) → θ1| ≤ 15 · (1 + |x̄|) + |p̃�1(x̄) → θ1|

Negative interpolation
Δ θ1 → p̃�(x̄)

(Δ p̃�1(x̄) → p̃�(x̄)) ∧ (θ1 → p̃�1(x̄))
(55)

|Consequent| = 5 + 2 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 13 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

Negative interpolation
Δ θ1 → p̃�(x̄)

{p̃�1(x̄) ≺ 1 ∨ p̃�(x̄) � 1 , θ1 → p̃�1(x̄)}
(56)

|Consequent| = 6 + 2 · |x̄|+ |θ1 → p̃�1(x̄)| ≤ 15 · (1 + |x̄|) + |θ1 → p̃�1(x̄)|

5 Conclusions

The order hyperresolution calculus is amenable to adding the projection operator Δ5 to
Gödel logic, as a unary connective of L. Henceforward, we suppose that FormL desig-
nates the set of all formulae of L built up from AtomL and VarL using the connectives:
¬, Δ, ∧, ∨, →, and the quantifiers: ∀, ∃; OrdFormL designates the set of all order for-
mulae of L built up from AtomL and VarL using the connectives: ¬, Δ, ∧, ∨, →, �,
≺, and the quantifiers: ∀, ∃. We slightly modify the definition of literal. Let l ∈ FormL.
l is a literal of L iff either l = a or l = a→ b or l = (a → b) → b or l = a → Δ d
or l = Δ d → a or l = a → c or l = c→ a where a, d ∈ AtomL − {0 , 1},
b ∈ AtomL − {1}, c ∈ QAtomL. The definition of order literal remains unchanged.
We add two rows to Table 1, given in Table 14. We add unary interpolation rules for

5 Cf. Introduction.
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Δ, Table 15. This way modified Lemma 1 will still hold. Thanks to having the defini-
tion of order literal unchanged, the rest of the formal treatment remains intact. So, in
the countable case, we have proposed a refutation sound and complete hyperresolution
proof method over admissible order clausal theories together with an efficient transla-
tion of theories in general Gödel logic (with Δ) to such clausal theories. Thus, we have
solved the deduction problem of a formula from a theory in the context of automated
deduction.
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Abstract. In this paper, the fuzzy edge detector from the fuzzy mathematical
morphology based on conjunctive uninorms is deeply analysed in order to im-
prove its performance. Since the edge detector is based on a conjunctive uninorm
and a fuzzy implication, several different pairs of these operators are considered
with the aim of determining which is the most competitive one. The comparison is
performed using an objective edge detection performance measure, the so-called
Pratt’s figure of merit. In addition, a statistical analysis is carried out to study
the relationship between the different configurations and establish a classification
of the uninorms and implications considered in this paper according to the per-
formance of their respective morphological gradient. Both the objective measure
and the statistical analysis conclude that the idempotent uninorm obtained using
the classical negation, and its residual implication is the best configuration in this
framework, although some other configurations can also be considered.

Keywords: Edge Detection, Fuzzy Mathematical Morphology, Uninorms, Fuzzy
Implications, Hysteresis.

1 Introduction

In recent decades, a large number of edge detection algorithms have been developed.
The main reason of the peak of interest in this field is because edge detection is a funda-
mental low-level operation in image processing, that is essential to develop high-level
operations such as segmentation, computer vision and recognition. Consequently, its
performance is crucial for the final results of the image processing technique. Among
the different approaches used to present new edge detectors, we can highlight the clas-
sical algorithms [20] based on the use of a set of convolution masks and the newest ones
which use techniques based on fuzzy sets and their extensions [4].

Among the fuzzy approaches, the fuzzy mathematical morphology that generalizes
the binary morphology [22] using concepts and techniques of the fuzzy set theory (see
[2], [18]) is one of the most studied frameworks in this field. This theory allows a better
treatment and a more flexible representation of the uncertainty and ambiguity present
in every level of an image. Morphological operators are the basic tools of this theory.
A morphological operator P transforms an image A to be analysed in a new image
P (A,B) by means of an structuring element B. The four basic morphological opera-
tions are dilation, erosion, opening and closing. Since gray-level images can be repre-
sented as fuzzy sets, fuzzy tools can be used to define fuzzy morphological operators.
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This approach was introduced by De Baets in [6] and [7] establishing a general frame-
work where fuzzy morphological operators are defined using conjunctions and fuzzy
implications. The first step was based on the use of t-norms in [0, 1] as conjunctions and
their residual implications as fuzzy implications. After analysing which properties must
satisfy the t-norm and the implication to generate a fuzzy mathematical morphology
with all the desirable algebraical properties, it was concluded that the couple formed by
a nilpotent t-norm and its residual implication generates a “good” fuzzy mathematical
morphology. Since nilpotent t-norms are conjugates of the Łukasiewicz t-norm TLK ,
this t-norm and its residual implication, that is the Łukasiewicz implication ILK , are
usually chosen to define the fuzzy morphological operators of this theory. Recently, it
has been introduced a fuzzy mathematical morphology based on discrete t-norms with
good results in applications [10] using the fact that gray-level images are represented
in fact as Z2 → L functions, where L is a finite chain containing the gray-level values
and not as R2 → [0, 1] functions.

However, other classes of conjunctions have been already used. In particular, the use
of conjunctive uninorms and their residual implications have been recently proposed
leading to a new fuzzy morphology that improves the results with respect to the fuzzy
morphology based on t-norms in some applications, specially in edge detection and
noise removal [12].

Focusing on edge detection purposes, the fuzzy morphology must satisfy the exten-
sivity of the dilation and the anti-extensivity of the erosion. This is the key property
for defining an edge detector based on the fuzzy morphological gradient. Taking into
account that the pair (TLK , ILK) is the representative of the configurations which de-
fine fuzzy morphological operators satisfying all the desirable algebraical properties,
this configuration has been widely used to implement the edge detector of the fuzzy
morphology based on t-norms.

However, the mentioned property is satisfied with some minimal properties of the
structuring element, the t-norm and the implication. Thus in [9] many more t-norms
and implications were used to define a morphological gradient useful to detect edges.
There, it was proved that the pair (TLK , ILK) was the worst of the 40 considered con-
figurations, while (TnM , IKD), where

TnM (x, y) =

{
0 if x+ y ≤ 1,
min{x, y} otherwise,

and IKD(x, y) = max{1− x, y}, was the best configuration generating a notable edge
detector.

The aim of this contribution is to perform a similar study for the fuzzy morphology
based on conjunctive uninorms. Until now, only some particular uninorms with their
residual implications have been considered in the fuzzy morphological gradient of this
approach, but similarly to the case of t-norms, many more uninorms and fuzzy impli-
cations can be chosen to generate the gradient. Thus we want to determine the best
combination of uninorm and implication to define an optimal edge detector in this mor-
phology. The results will be objectively compared using Pratt’s figure of merit, FoM
[20]. To compute this measure, the edge image must be binarized and thinned to obtain
edges with one-pixel width. This conditions are consistent with Canny’s restrictions,
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set out in [5]. Therefore, after obtaining the fuzzy edge image using the fuzzy gradient,
this image is thinned using Non-Maxima Suppression (NMS), a well-known thinning
algorithm proposed by Canny, and the recently introduced automatic hysteresis algo-
rithm based on determining a “zone of instability” in the histogram proposed in [17] to
binarize the image.

The article is organized as follows. In Section 2, we recall the definitions of mor-
phological operators and fuzzy operators that define them. In Section 3, we present the
considered uninorms and implications, and the algorithm developed for each configu-
ration. In the next section, the results are presented and analysed. Finally, we share the
conclusions and future work we want to develop.

2 Preliminaries

Fuzzy morphological operators are defined using fuzzy operators such as uninorms and
fuzzy implications. More details on these logical connectives can be found in [8] and
[1], respectively.

Definition 1. A uninorm is a commutative, associative, non-decreasing function U :
[0, 1]2 → [0, 1] with neutral element e ∈ (0, 1), i.e., U(e, x) = U(x, e) = x for all
x ∈ [0, 1].

It is known that U(0, 1) ∈ {0, 1}. A uninorm U such that U(0, 1) = 0 is called
conjunctive and if U(0, 1) = 1, then it is called disjunctive.

There are several classes of conjunctive uninorms. In particular, due to its importance
in this field, we recall the following ones:

– Representable uninorms: Let e ∈ (0, 1) and let h : [0, 1] → [−∞,∞] be a strictly
increasing continuous function with h(0) = −∞, h(e) = 0 and h(1) =∞. Then

Uh(x, y) =

{
h−1(h(x) + h(y)) if (x, y) /∈ {(1, 0), (0, 1)},
0 otherwise,

(1)

is a conjunctive representable uninorm with neutral element e.
– Idempotent uninorms: A uninorm U such that U(x, x) = x for all x ∈ [0, 1] is said

to be an idempotent uninorm.
– Uninorms in Umin: Let e ∈ (0, 1), T be a t-norm and S be a t-conorm. Then

UT,S,e(x, y) =

⎧⎪⎨⎪⎩
e · T (

x
e ,

y
e

)
if x, y ∈ [0, e],

e+ (1− e) · S
(

x−e
1−e ,

y−e
1−e

)
if x, y ∈ [e, 1],

min{x, y} otherwise,

is a uninorm of the class of Umin.

Next, we recall the definition of fuzzy implications.
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Definition 2. A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication if it is
non-increasing in the first variable, non-decreasing in the second one and it satisfies
I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Although there are many classes of fuzzy implications, we will focus on two classes
suitable to define the fuzzy gradient:

– RU -implications: Given a conjunctive uninorm U , its residual implication or RU -
implication is defined by

IU (x, y) = sup{t ∈ [0, 1]|U(x, t) ≤ y}.

– (h, e)-implications: Let e ∈ (0, 1) and let h : [0, 1] → [−∞,∞] be a strictly
increasing continuous function with h(0) = −∞, h(e) = 0 and h(1) =∞. Then

Ih,e(x, y) =

⎧⎨⎩
1 if x = 0,
h−1

(
x
e · h(y)

)
if x > 0 and y ≤ e,

h−1
(
e
x · h(y)

)
if x > 0 and y > e,

is an (h, e)-implication.

Thus, we can define the basic fuzzy morphological operators such as dilation and
erosion. From now on, we will use the following notation: U denotes a conjunctive
uninorm, I a fuzzy implication, A a gray-level image, and B a gray-level structuring
element.

Definition 3. The fuzzy dilation DU (A,B) and the fuzzy erosion EI(A,B) of A by B
are the gray-level images defined by

DU (A,B)(y) = sup
x

U(B(x− y), A(x))

EI(A,B)(y) = inf
x

I(B(x− y), A(x)).

As we have already mentioned, the following proposition ensures the extensivity
of the fuzzy dilation and the anti-extensivity of the fuzzy erosion with some minimal
properties.

Proposition 1. Let U be a conjunctive uninorm with neutral element e ∈ (0, 1), I an
implication that satisfies the neutrality principle for implications derived from uninorms
(NPe), i.e., I(e, y) = y for all y ∈ [0, 1] and B a gray-level structuring element such
that B(0) = e. Then the following inclusions hold:

EI(A,B) ⊆ A ⊆ DU (A,B).

Thus, as in the case of classical morphology, the difference between the fuzzy dila-
tion and the fuzzy erosion of a gray-level image, DU (A,B)\EI(A,B), known as fuzzy
gradient operator, can be used in edge detection.
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Table 1. Considered uninorms

Formula Class

U1(x, y) =

{
min{x, y} if y ≤ 1− x,
max{x, y} if y > 1− x.

Idempotent

U2(x, y) =

{ xy
(1−x)(1−y)+xy

if (x, y) /∈ {(0, 1), (0, 1)},
0 otherwise.

Representable

U3(x, y) =

⎧⎨⎩
max{x+ y − 1

2
, 0} if x, y ≤ 1

2
,

min{x+ y − 1
2
, 1} if x, y ≥ 1

2
,

min{x, y} otherwise.
Umin

U4(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0 if y ≤ 1

2
− x,

1 if y ≥ 3
2
− x,

max{x, y} x, y ≥ 1
2

and y < 3
2
− x,

min{x, y} otherwise.

Umin

U5(x, y) =

{
max{x, y} if x, y ≥ 1

2
,

min{x, y} otherwise.
Umin, idempotent

U6(x, y) =

⎧⎨⎩
2xy if x, y ≤ 1

2
,

2x+ 2y − 2xy − 1 if x, y ≥ 1
2
,

min{x, y} otherwise.
Umin

U7(x, y) =

{
min{x, y} if y ≤ √

1− x2,

max{x, y} if y >
√
1− x2.

Idempotent

3 Configurations and Algorithm

According to Proposition 1, any conjunctive uninorm with neutral element e ∈ (0, 1)
and any fuzzy implication that satisfies (NPe) with the neutral element of the uninorm
are adequate to define the fuzzy gradient. Note that the only necessary relationship
between both operators is that the fuzzy implication must satisfy (NPe) where e ∈ (0, 1)
is the neutral element of the uninorm. However, until now, in this uninorm approach,
only two types of left-continuous conjunctive uninorms and their residual implications
have been used. Specifically, these two classes are the following ones:

– Representable uninorms which are given by Equation (1) and their residual impli-
cations IUh

, given by

IUh
(x, y) =

{
h−1(h(y)− h(x)) if (x, y) /∈ {(0, 0), (1, 1)},
1 otherwise.

– A specific type of idempotent uninorms. Let N be a strong negation. The function
given by

UN (x, y) =

{
min{x, y} if y ≤ N(x),
max{x, y} otherwise,

(2)

is a conjunctive idempotent uninorm. Its residual implication is given by

IUN (x, y) =

{
min{N(x), y} if y < x,
max{N(x), y} if y ≥ x.



188 M. González-Hidalgo et al.

Table 2. Considered implications

Formula Class

I1(x, y) =

{
max{1− x, y} if x ≤ y,
min{1− x, y} if x > y.

RU -implication

I2(x, y) =

{
(1−x)y

x+y−2xy
if (x, y) /∈ {(0, 0), (1, 1)},

1 otherwise.
RU -implication

I3(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
2
+ y − x if (y < x < 1

2
) or (y > x ≥ 1

2
),

1
2

if x ≥ y ≥ 1
2
,

1 if x ≤ y < 1
2
,

y otherwise.

RU -implication

I4(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if y = 1 or x ≤ y < 1

2
,

max{ 1
2
− x, y} if y < x < 1

2
,

3
2
− x if 1

2
≤ x ≤ y and y > 3

2
− x,

1
2

if 1
2
≤ y < x,

y otherwise.

RU -implication

I5(x, y) =

⎧⎪⎪⎨⎪⎪⎩
y if 1

2
≤ x < y,

1
2

if 1
2
≤ y ≤ x,

1 if x ≤ y < 1
2
,

y otherwise.

RU -implication

I6(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1 if x = 0,

y2x

(1−y)2x+y2x if x > 0, y ≤ 1
2
,

y
1
2x

(1−y)
1
2x +y

1
2x

otherwise.

(h, e)-implication

I7(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if x = 0 or x ≤ y < 1
2

or x < 1
2
≤ y

or x = y = 1,
1
2

if x = 1, y ≥ 1
2

or 1
2
< y < x,

y
2x

if y < x < 1
2
,

1
2
+ y−x

2(1−x)
if 1

2
≤ x ≤ y,

y otherwise.

RU -implication

I8(x, y) =

{
max{√1− x2, y} if x ≤ y,

min{√1− x2, y} if x > y.
RU -implication

These two types of conjunctive uninorms with their residual implications guarantee
most of the good algebraic and morphological properties associated with the morpho-
logical operators obtained from them (see [11]). Note that from these conjunctive uni-
norms, their residual implications satisfy (NPe) since any RU -implication generated
from a uninorm satisfies this property (see Proposition 5.4.2 in [1]). However, (NPe) is
not a rare property among the types of implications derived from uninorms, in fact it is
also satisfied by the recently introduced (h, e)-implications as proves Proposition 9 in
[16]. Consequently, we have considered the conjunctive uninorms collected in Table 1
and the implications in Table 2. Seven uninorms have been considered. U1 and U7 are
the idempotent uninorms UNC where NC(x) = 1−x for all x ∈ [0, 1] and UN2

, where
N2(x) =

√
1− x2, respectively. Moreover, U2 is the representable uninorm Uh with

h(x) = ln
(

x
1−x

)
. U1 and U2 have been already used in [11]. The rest of the considered

uninorms belong to the class of Umin. Thus we have considered U3, U4, U5 and U6 as
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the uninorms of the class of Umin given by UTLK ,SLK, 12
, UTnM ,SnM , 12

, UTM ,SM , 12
and

UTP ,SP , 12
respectively, where

TLK(x, y) = max{x+ y − 1, 0}, TM (x, y) = min{x, y},
TnM (x, y) =

{
0 if x+ y ≤ 1,
min{x, y} otherwise,

TP (x, y) = xy,

and SLK , SM , SnM and SP are their NC -dual t-conorms, respectively (see [14] for
more details). The uninorm U5 is also of the class of idempotent uninorms, but it does
not belong to the specific subclass given by Equation (2). All the uninorms have neutral
element e = 1

2 except U7, with neutral element e =
√
2
2 .

On the other hand, we have considered 8 fuzzy implications. With the exception of
I6, they are the residual implications of the considered uninorms in the same order.

Finally, I6 is the (h, e)-implication generated by h(x) = ln
(

x
1−x

)
. All these implica-

tions satisfy (NPe) with e = 1
2 , except I8 that satisfies it with e =

√
2
2 . Thus 43 different

configurations of uninorm-implication can be considered in the fuzzy gradient since U7

and I8 must be applied together.

3.1 NMS and Automatic Hysteresis

To compare the results, we need some objective performance measure on edge detec-
tion. These measures require, in addition to the binary edge image with edges of one
pixel width obtained by the edge detector (DE) we want to evaluate, a reference edge
image or ground truth edge image (GT) which is a binary edge image with edges of one
pixel width containing the real edges of the original image. There are several measures
of performance for edge detection in the literature, see [19]. In this paper we are going
to use the measure proposed by Pratt, Pratt’s figure of merit, to quantify the similarity
between (DE) and (GT). This measure is defined by

FoM =
1

max{card{DE}, card{GT }} ·
∑

x∈DE

1

1 + ad2
,

where card is the number of edge points of the image, a is a scaling constant and d is
the separation distance of an actual edge point x to the ideal edge points. In our case,
we considered a = 1 and the Euclidean distance d. A higher value of FoM indicates a
better capability to detect edges.

However, the fuzzy based edge detectors generate an image where the value of a
pixel represents its membership degree to the set of edges. This idea contradicts the
restrictions of Canny [5], forcing a representation of the edges as binary images of
one pixel width. Therefore the fuzzy edge image must be thinned and binarized. The
fuzzy edge image will contain large values where there is a strong image gradient, but
to identify edges the broad regions present in areas where the slope is large must be
thinned so that only the magnitudes at those points which are local maxima remain.
NMS performs this by suppressing all values along the line of the gradient that are not
peak values (see [5]). NMS has been performed using P. Kovesis’ implementation in
Matlab [15].
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(a) Input original image (b) Fuzzy edge image ob-
tained with the fuzzy gradient

(c) NMS (d) Output binary thin edge
image

Fig. 1. Sequence of the proposed algorithm

Finally, to binarize the image, we have implemented an automatic, non-supervised,
hysteresis based on the determination of the instability zone of the histogram to find
the thresholds (see [17]). Hysteresis allows to choose which pixels are relevant in order
to be selected as edges, using their membership values. Two threshold values T1, T2

with T1 ≤ T2 are used. All the pixels with a membership value greater than T2 are
considered as edges, while those which are lower to T1 are discarded. Those pixels
whose membership value is between the two values are selected if and only if they are
connected with other pixels above T2. The method needs some initial set of candidates
for the threshold values. In this case, {0.01, . . . , 0.25} has been introduced, the same
set used in [17]. In Figure 1, the sequence of the algorithm is displayed.

4 Results and Analysis

The comparison method explained in the previous section needs an image database
containing, in addition of the original images, their corresponding ground truth edge
images in order to compare the outputs obtained by the different configurations. Thus,
we have used the original images and their ground truth edge images of the public image
database of the University of South Florida1 [3]. In this stage of our study, we have used
15 out of the 50 images of the database.

The results, obtained all of them using the following isotropic structuring element
scaled by e, the neutral element of the uninorm,

B = e ·
⎛⎝0.86 0.86 0.86

0.86 1 0.86
0.86 0.86 0.86

⎞⎠
which had been already used in [18], are summarized in Table 3. We have set the pre-
vious structuring element because it provides the best results with most of the config-
urations of the fuzzy gradient. However, we are aware that the results may differ if we
change the structuring element.

In the table, we compute some statistical measures associated to the obtained FoM
values. For example, the mean value is the mean of the obtained FoM values using a
particular configuration in the fuzzy gradient for the 15 considered images. As it can be

1 It can be downloaded from ftp://figment.csee.usf.edu/pub/ROC/edge
comparison dataset.tar.gz

ftp://figment.csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz
ftp://figment.csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz
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Table 3. Statistical measures associated to obtained FoM values

Configuration
Mean Std. Dev.

Images Configuration
Mean Std. Dev.

Images
Unin. Imp. � × Unin. Imp. � ×

U1

I1 0.4588 0.0803 2 0

U2

I1 0.4406 0.0843 0 0
I2 0.4416 0.0766 0 0 I2 0.4060 0.1247 1 0
I3 0.4295 0.0743 0 0 I3 0.3953 0.11 1 0
I4 0.4483 0.0641 3 0 I4 0.4314 0.0874 0 0
I5 0.4482 0.0641 3 1 I5 0.4317 0.0874 1 0
I6 0.4545 0.0643 3 0 I6 0.4351 0.0925 1 0
I7 0.4419 0.0723 1 0 I7 0.4166 0.1014 1 0

U3

I1 0.4145 0.0895 0 0

U4

I1 0.4218 0.0824 0 0
I2 0.3682 0.1094 0 0 I2 0.3807 0.1029 0 0
I3 0.2944 0.1084 1 9 I3 0.3089 0.1219 0 0
I4 0.3584 0.1053 0 0 I4 0.3645 0.0992 0 0
I5 0.3583 0.1052 0 0 I5 0.3646 0.0991 0 0
I6 0.4146 0.0793 0 0 I6 0.4218 0.0698 0 0
I7 0.3116 0.1145 0 1 I7 0.3267 0.1151 0 0

U5

I1 0.4218 0.0824 0 0

U6

I1 0.4160 0.087 0 0
I2 0.3807 0.1029 0 0 I2 0.3737 0.1101 0 0
I3 0.3090 0.1219 0 1 I3 0.2971 0.107 0 3
I4 0.3645 0.0991 0 0 I4 0.3625 0.1045 0 0
I5 0.3646 0.0991 0 0 I5 0.3625 0.1045 0 0
I6 0.4218 0.0698 0 0 I6 0.4168 0.0784 0 0
I7 0.3267 0.1151 0 0 I7 0.3149 0.1132 0 0

U7 I8 0.4417 0.074 0 0

observed, the most significant fact is the dependence of the election of the pair uninorm-
implication into the results. Note that although some of the configurations obtain similar
results, for example (U6, I4) and (U6, I5), the difference between the results obtained
using the best configuration, that is (U1, I1), with respect to the worst one (U3, I3) is
notable, a gap of 0.1644. The worst configuration according to its mean value is also
the worst configuration for 9 of these images. On the other hand, the configuration with
the highest mean value is not the configuration with the highest number of images for
which a particular configuration is the best one of the 43 considered configurations,
that is shared by (U1, I4), (U1, I5) and (U1, I6). Another statistical measure displayed
in Table 3 is the standard deviation. A lower value of the standard deviation indicates
a more robust behaviour of the configuration since its performance does not depend
drastically on the particular image where it is applied. Note that the best configurations
according to this criteria are (U1, I4) and (U1, I5), while (U2, I2) is the configuration
whose performance depends more on the particular image.

In Figure 2, we show some of the edge images obtained using some of these con-
figurations. Note that the visual results agree with the FoM values since the results
obtained by (U3, I3) contain, in general, few edges with respect to the others. Note
that the presence of I1 or I6 in a given configuration improves the results. Another fact
to highlight is the similarity of the results obtained using U4 and U5 with a fixed im-
plication. This is due to the similar expressions in a certain region of both uninorms
since they are generated using TM and SM , and TnM and SnM , respectively, which
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(a) Original image (b) (U1, I1) (c) (U2, I6) (d) (U3, I3)

Fig. 2. Some edge images obtained with different configurations
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are t-norms and t-conorms with quite similar expressions. In addition, the choice of an
isotropic structuring element B with those specific values is another factor explaining
this coincidence. Finally, in Figure 3, the best configuration and the worst one for some
images according to FoM are displayed.

To reinforce the previous analysis, a statistical analysis has been performed to study
the relationships between the configurations considered in this paper. All the algorithms
have been applied using the corresponding implemented functions in R [21]. Firstly, we
have applied a hierarchical agglomerative cluster analysis using the Ward method [13].
In Figure 4, the obtained dendogram is displayed where we have highlighted the config-
urations depending first on the uninorm and then on the fuzzy implication. After that,
the optimal number of clusters according to the so-called F-test of variability reduc-
tion has been obtained, leading to 4 clusters. Applying this number of clusters to the
dendogram, we have obtained the following results:

– Cluster 1: U1 with I1 − I7, U2 with I1, I4 − I6, U3 − U6 with I1 and I6, U7 with
I8.

– Cluster 2: U2 with I2, I3 and I7, U3 − U6 with I2.
– Cluster 3: U3 − U6 with I4 and I5.
– Cluster 4: U3 − U6 with I3 and I7.

The clusters are listed according to the performance of their configurations. A
Wilconox-signed rank test, which does not need the normality hypothesis, shows that
all the 20 configurations belonging to Cluster 1 are statistically similar according to
their performance. However, since the mean of the FoM values obtained by the config-
uration (U1, I1) is the greatest one, this configuration stands out from the others. These
clusters and the dendogram of Figure 4 allow us to set up a certain performance ranking

with the considered logical operators:

U1, U7 # U2 # U3, U4, U5, U6

I1, I6, I8 # I2 # I4, I5 # I3, I7

where A,B # C indicates that those configurations obtained from A or B give better
results than those obtained from C.

From this ranking, some remarks can be stated:

1. Idempotent and representable uninorms generate better edge detectors than uni-
norms of the class Umin.

2. One of the worst implications is I3, that is the residual implication of the uninorm
UTLK ,SLK, 12

. This fact is coherent with the bad behaviour of the Łukasiewicz t-
norm in the morphology based on t-norms in [0, 1].

3. The (h, e)-implication I6 gives competitive results and therefore, the role of this
class of implications in fuzzy morphology should be seriously investigated.

In Figure 5, these remarks can be graphically observed. In both subfigures, the verti-
cal axis correspond to the mean of the FoM values of each configuration, while the
horitzontal ones of Figure 5-(a) correspond to the different considered uninorms and
analogously the different considered implications in Figure 5-(b). A dotted point is as-
sociated to the FoM value mean of a configuration (Ui, Ij).
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(a) Original image (b) Ground truth (c) (U1, I4) (d) (U3, I3)

(e) Original image (f) Ground truth (g) (U1, I6) (h) (U3, I3)

(i) Original image (j) Ground truth (k) (U1, I4) (l) (U3, I3)

(m) Original image (n) Ground truth (o) (U1, I1) (p) (U3, I3)

(q) Original image (r) Ground truth (s) (U2, I4) (t) (U3, I3)

Fig. 3. Best (3rd column) and worst (4th column) edge images obtained with the considered
configurations according to their FoM value
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(b) Dendogram highlighting implications

Fig. 4. Dendogram obtained by the hierarchical agglomerative cluster analysis using the Ward
method

(a) Comparison according to uninorms (b) Comparison according to implications

Fig. 5. Graphical comparison of the performance of the considered uninorms (a) and implications
(b)
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5 Conclusions and Future Work

In this work, a comparison of morphological gradients generated from different con-
figurations of uninorm and fuzzy implication has been performed showing that the
configuration (U1, I1) where U1 is the idempotent uninorm obtained from the classi-
cal negation and I1 is its residual implication is the best configuration according to the
performance measure on edge detection FoM , although some other configurations give
also results which are statistically similar in terms of performance. It has been shown
that analogously to what happens on the morphology based on t-norms, the uninorms
generated in some region by the Łukasiewicz t-norm give bad results, both from the
visual point of view and the FoM values obtained by the edge images. In addition, we
have proved the possible use of the new class of implications, (h, e)-implications, in
image processing applications.

In the future work, we want to increase the number of images for the comparison
including all the images in the used database. The next step would be the comparison
of the uninorm edge detector generated by (U1, I1) with some classical edge detectors
such as Canny, Sobel, Prewitt, etc. In addition, we want to generalize the morphologi-
cal operators using a t-conorm and a t-norm rather than the operations supremum and
infimum respectively in the dilation and erosion. As the maximum is the smallest of
the t-conorms and the minimum is the largest of the t-norms, this generalization could
improve the results since it would extend the morphological gradient allowing a greater
detection of edges.
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Abstract. In order to deal with user preferences and imperfect information in 
databases, a proposed solution is to apply fuzzy logic. It has given birth to fuzzy 
logic based extensions of SQL, such as SQLf. We present a real life application 
of fuzzy querying that fulfils an actual need of academic personal at a high 
studies institution. This application helps professors in tests preparation and 
configuration based on the reutilization of previously proposed questions. These 
questions are stored in a relational database keeping tracks of some interesting 
measures about difficult, answer time, correction time and so on. Queries as 
well as user preferences are specified using a graphic user interface. Thus 
professors must not directly deal with a query language and fuzzy logic 
concepts, but with an intuitive interface. The application is built on the SQLfi 
fuzzy querying engine that is a logic layer on top of existing relational DBMS. 

Keywords: Fuzzy Querying, Educational Tests, User Preferences, SQLf. 

1 Introduction 

Professors throughout their carriers have to measure the performance of their students 
basically through the application of written tests. The design of these tests might 
become sometimes a discouraging process given its repetitive nature. Furthermore, 
some professors, due to their work as researchers and because of the administrative 
burden, do not have enough time to dedicate to the preparation of tests using all the 
creativity and awareness required.  

By virtue thereof, we propose the creation of a software tool for supporting tests’ 
preparation process. In connection therewith, the needs of professors will be 
considered the following criteria for the preparation of a test or question: difficulty 
(for example: low, moderate/low, moderate, high and very high), time to solve it (for 
example: long, moderate and short), correction time (for example: long, moderate and 
short). The aforementioned criteria are not accurate; therefore the definition of fuzzy 
terms is required. These terms are subjective since, for each term, each professor will 
differently conceive the range of values. Also, these terms do show the present 
imprecision at this application, as well as the feasibility of the fuzzy logic use in its 
queries. 
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Additionally, the preparation of tests is commonly based on existent tests to benefit 
from previous experiences. Consequently, a database storing this information is 
required. The use of these data might require the definition of searches based on 
preferences including fuzzy terms.  

Another important factor is the consideration of the grades or results obtained in 
previous tests (for example: outstanding, excellent, good, regular and poor), which 
allows professors to project the expected performance of their students in a test.  

This might be considered through the generation of statistics based on non-accurate 
gradual requirements defined by professors. It is also important for professors to have 
a scenario providing potential different tests based on established criteria, allowing 
for making the decision of choosing which tests better fit to the needs of the students 
being evaluated at a given time.  

We present here a fuzzy querying based application for support professor’s work of 
preparing evaluation tests. This application is made in the frame of an effort of the 
Venezuelan IUT Federico Rivero Palacio of providing professors some computer 
aided support tools for academic work.   

This paper has the following structure: Section 2 deals with some general aspects 
of fuzziness in databases. Section 3 introduces the fuzzy querying language SQLf, an 
extension of SQLf with fuzzy logic, language that we used for the expression of user 
requirements. Section 4 describes main system features of our automated system for 
tests preparation and configuration; such features are the database design, the 
functionality of examination tests construction with fuzzy queries expressing user 
requirements and the preference management. Section 5 briefly presents and explains 
SQLfi, the query engine used for implementing our system application. Section 6 
points out some concluding remarks and future works. 

2 Fuzziness in Databases 

The growing ambitious use of information systems in the amount of data volume and 
data recovery mechanisms has fostered the accelerated development of technology. In 
this regard, query specification mechanisms that resembling natural language 
expression and human thought is sought. Therefore, it would be convenient to provide 
flexible query capabilities allowing users to express requirements involving 
preferences.  

A powerful tool used in the management of databases for the purpose of making 
queries in a more flexible way has been the fuzzy sets [4] [9] [16] [19] [19], which 
vests traditional databases with a more intuitive approach closed to the natural 
language when retrieving information from data sources. This type of sets has been 
applied to several knowledge areas, such as Control Systems, Decision-making 
Systems, and Expert Systems. In [14], it is stated that the theory of fuzzy sets has 
been widely applied to extend several models and management systems database, 
which has resulted in many contributions. In this regard, different research projects 
have been conducted worldwide focused on including fuzziness in databases [1] [9] 
[11] [13] [14] [16] [17]. Nevertheless, there are few known developed applications 
that enjoy the benefits of fuzzy databases [6] [7] [10] [11].  
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We spoke of imprecision in database when the information is incomplete or 
uncertain. Thus, an approximate value or a term describing it is stored instead of an 
exact value. In general, we could be talking about data inaccuracies or imprecision in 
queries, i.e., imprecise terms may be stored as data values or could be used in the 
query criteria. Thus there are mainly two different approaches that address the 
vagueness of the databases. Those focused on the data [9] and those focused on 
queries [16].  

The results produced by an application system, based on conventional DBMS, 
strictly adjust to the compliance with the search criteria. But, they are not considering 
other results that approximate in certain degree to the response; these could be 
presented to user as alternate results. Search criteria in the systems based on classic 
DBMS are accurate, while Fuzzy DBMS allow for defining more flexible criteria that 
better adjust to human thought. Classical databases use all the results obtained, while 
Fuzzy Querying Systems only use those results that meet the minimum level of 
satisfaction defined by users. Classical queries limit their results since are based on 
the use of Boolean Logic, where a proposition only accepts two values: true or false.  

Systems based on fuzzy databases are closer to human through. The use of fuzzy 
logic better adapts to real world and it even is able to understand and deal with 
linguistic terms or expressions in natural language, such as "it is really easy", "he is 
not too long", “he is too short”, etc. 

3 Fuzzy Querying Language 

Different fuzzy query languages have been proposed [1][8][13][15]. On of the most 
remarkable efforts is SQLf [1]. It is an extended SQL with the application of the 
Fuzzy Set Theory aimed at expressing flexible queries on Relational Databases. This 
query language has been updated with different versions of SQL [12]. SQLf allows 
the use of different fuzzy elements in constructions of SQL:2003 where a condition is 
involved.  

For the purpose of defining the preferences of each user, SQLf counts on a series 
of sentences belonging to the DDL (Data Definition Language) for fuzzy components. 
In this (SQLf - DDL) terms such as predicates, modifiers, quantifiers and comparators 
are involved, which have a meaning that is specific to a group of users or individuals.  

Fuzzy predicates are the atomic components of fuzzy logic. These correspond to 
the class of terms known as "linguistic labels". In SQLf, fuzzy predicates are defined 
through the following sentence: 

CREATE FUZZY PREDICATE <name> ON <domain> AS <fuzzyset> 

Where 
<domain> is a range of scale characters defined by the user 

<fuzzyset> is a specification of the fuzzy set membership function 

It may be either a trapezium-shape function or an extension-defined function.  
For a trapezium, we use the syntax (x1, x2, x3, x4), corresponding to values in the 

domain of the fuzzy predicate (the universe of the fuzzy set), such that x1 ≤ x2 ≤ x3 ≤ x4. 
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The keyword INFINITE may be used as the special value -∞ or  +∞. These 
numbers are the inflection points of the trapezium-shape function μname defined by 
formula (1). 
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For the extension-defined, we use the syntax: {d1 / v1 , ... ,  dn / vn } where di is a 
degree and vi is a value in the domain of the fuzzy predicate. Formula (2) gives the 
membership function μname that these degrees and values establish. 

( ) { }nidv iiname 1, ∈∀=μ  (2) 

 

Example: Predicate of Fig. 1 is defined in SQLf by means the sentence:  

CREATE FUZZY PREDICATE excellent ON 0..20 
AS (15,18,20,20) 

0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Fig. 1. Membership function for the fuzzy predicate excellent, defined as (15, 18, 20, 20) 

An example for a predicate defined by extension is the following: 

CREATE FUZZY PREDICATE favorite ON topicName AS { 
1.0/design,  
0.3/querying,  
0.5/implementation,  
0.9/programming 

} 

As ever, SQLf has different querying structures for data manipulation. The main 
query structure in SQLf is the multirelational basic block. The main difference with 
respect to SQL is that the condition of the clause WHERE is a fuzzy condition. SQLf 
also includes the selection of the best answers according to their satisfaction degree 
that is named the calibration. Another difference is that the result of the query is not a 
bag but a fuzzy bag. The syntax of basic block is:  

SELECT [DISTINCT] <attributes>  
FROM <relations> 
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WHERE <fuzzy condition> 
[WITH CALIBRATION k | α | k, α] 
For obtaining, the results with excellent score, the fuzzy predicate excellent defined 
earlier by the user, is used in the following statement: 

SELECT * FROM RESULT WHERE score = excellent; 

A significant difference between fuzzy querying and traditional Boolean querying is 
as follows: In a Boolean query, we establish crisp filtering criteria. Selected rows may 
be after ordered according sorting criteria or attributes. Selection and ordering are 
made on independent crisp criteria. On the other hand, in a fuzzy query, we establish 
flexible selection criteria. Such criteria are based on fuzzy logic involving linguistic 
terms. They express user preferences. Fuzzy criteria are combined giving a global 
satisfaction degree for each retrieved tuple. This degree is a measure of user 
preference fulfillment. Results should be automatically sorted in decreasing ordered 
of satisfaction degrees. It would be helpful in decision-making process. 

In SQLf, it is possible to express the calibration of the solution, i.e. the selection of 
the best answers, in two senses. First, the qualitative sense where we indicate a 
minimum level of tolerance α. Only tuples with satisfaction degree greater or equal 
to α are retrieved. Second, the quantitative senses indicating a maximum number of 
desired answers k. Best k tuples according their satisfaction degree are retrieved. It is 
also possible to combine both senses in the querying statement. This is the effect of 
the clause WITH CALIBRATION. 

4 System Features 

We have developed an Automated System for the Preparation and Configuration of 
Tests named SAECE for its words in Spanish language. Remark that this is an 
application for a Venezuelan educational institute: the IUT Federico Rivero Palacio, 
therefore interfaces and linguistic terms are also given in Spanish that is the official 
language in Venezuela. Through the SAECE, professors might express their requests 
by using terms that are more similar to the commonly used natural language. Thus, 
we avoid inflexible queries that do not include their preferences. Additionally, the 
system facilitates the preparation and configuration of evaluations and/or tests based 
on existent tests, as well as the definition of search preferences and generation of 
statistics based on queries with non-accurate gradual requirements defined by users.  

With this system, professors may create new tests based on existing ones, using 
parameters such as difficulty, duration, level of difficulty, time of response, time of 
correction. For doing that, our system addresses fuzzy queries to a relational database 
containing information about those tests. The design of this database is shown in the 
paragraph 4.1 of current section. Examination tests construction is done by means of a 
graphic user interface with a query-by-example style. This front-end interface as well 
as the resulting SQLf queries is matter of sub-section 4.2. These queries involve 
natural language vague terms that have fuzzy logic based semantics. User may modify 
terms interpretation by means of provided preference handling features that we 
describe in paragraph 4.3. The processing of SQLf queries is done by means of a 
fuzzy query engine that we present later in section 5 of this paper. 
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4.1 Database Design 

SAECE has a database that allows for retrieving tests created that might be configured  
in all their parameters. The idea is to have a test questions bank to be reused in 
different evaluations. The configuration of new evaluations would be made with this 
system aid. A simplified version of the ER diagram for this database is in Fig. 2. 

The PROFESSOR entity contains the user information as login, password, name, 
gender, and address. The QUESTION entity covers information over tests' questions 
or specific topic questions, as type, description, answer time, correction time, 
difficulty, and references. The EVAL TEST entity contains information such as the 
evaluation name, date of elaboration, rating scale, percentage and description. The 
TOPIC SUBJET entity contains the different topics that a test has or the topics that a 
course covers. This entity keeps the topic name, time, references and description.  The 
RESULT entity saves the test results to generate statistics that user wish. This 
information includes date, description and score. The COURSE entity contains 
relevant information of courses such as name and description. There is a relationship 
(evaluates) for indicate the topics including in a test and the different tests that 
evaluate a topic. Also, there is a relationship (about) to indicate the questions that deal 
a topic. There is a relationship to show the questions that compound a test. Also, it is 
possible that a question can to belong different tests. This relationship contains an 
attribute to indicate weighting of questions. There are relationships to indicate the 
evaluation tests that belong to a professor, the results associates to an evaluation test, 
the professors that teaches the courses, the topics associates to the courses and the 
topics subordinate to other topics. 

 

 

Fig. 2. SAECE database Entity-Relationship diagram 

4.2 Examination Tests Construction 

Tests might be partially recovered (certain questions) or totally recovered through 
search criteria based on fuzzy logics. A professor might also add questions to an 



 Automated System for Tests Preparation and Configuration Using Fuzzy Queries 205 

 

existent test. SAECE allows for conducting different statistics such as: outstanding, 
excellent, good, bad and poor grades for the results obtained from a test application. 

Difficulty: This is modeled in a rank of values between 0 and 5, being 5 the highest 
difficulty and 0 the lowest. This search will be made based on the criteria that the user 
has defined for each difficulty. For example the system has like predetermined 
configuration that the low difficulty is from 0 to 0.5, but this can be modified and the 
professor can place the values to him that consider appropriate for that difficulty.  

Time of Correction: Possibly when the professors were created the new evaluations, 
to each question of the evaluation, they assign a time of correction. As well as the 
criterion of the difficulty, the system also has a configuration predetermined for this 
criterion that the professor can modify. 

Time to solve it: For this criterion it is applied just like the Time of Correction.  

Precision of the search: The number of questions that the system throws will depend 
on the precision of the search with which it is desired to collect the data. While upper 
it is the degree of the precision, there are possibilities that less results are obtained. 
The 100% of precision is the highest exigency. One is due to consider that the search 
can be done by the three criteria or by those the user wishes. For example, a search 
can be made of: number of questions: 3; difficulty: medium; time of correction: 
medium; time to solve it: medium; and precision: 20%.  

SAECE brings a single interface for user choice of criteria (Fig. 3). From this 
selection, SAECE builds the SQLf statement for being processed by the fuzzy 
querying engine. In this case, the fuzzy query in SQLf should be the following one:  
 

 

Fig. 3. End user fuzzy querying interface. Here the user can settle down the criteria search for 
the questions that wish to assign to the examination according to criteria difficulty (dificultad), 
correction time (tiempo de corrección), and time to solve it (respuesta). 
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SELECT q.questionId, q.wording, q.type, q.difficulty, 

       q.correctionTime, q.answerTime  

FROM QUESTION q, TOPIC t, COURSE m, ABOUT tq  

WHERE m.login = ’josueramirez’  

AND m.courseId = ’programacion’  

AND t.topicId = 1 AND tq.topicId = t.topicId  

AND tq.questionId = q.questionId  

AND q.difficulty = high  
AND q.correctionTime = medium 
AND q.answerTime = medium  

WITH CALIBRATION 3, 0.2 

This fuzzy query in SAECE should return a result as that shown in Fig. 4.  
 

 

Fig. 4. Here are the results obtained according to the selected criteria. As it is possible to be 
observed the thrown questions, satisfaction degrees are associated to each one of the subjects 
selected according to the selected criteria of searches. 

4.3 Preferences Handling 

SAECE has a set of linguistic terms for the expression of user preferences. These 
terms are used to describe imprecise conditions on questions attributes such as: 
difficulty, time of correction, time to solve it, and score.  The set contains different 



 Automated System for Tests Preparation and Configuration Using Fuzzy Queries 207 

 

terms for different attributes. Moreover, each user may give terms own interpretation 
and change it arbitrary at anytime. 

The specification of these terms semantics is based on fuzzy sets. Nevertheless, 
SAECE provides a graphic user interface for establish preferences. This interface 
generates corresponding DDL statements in SQLf. 

For example, for the score (nota) attribute, SAECE has the linguistic terms 
deficient (deficiente), regular, good (buena), excellent (excelente) and outstanding 
(sobresaliente). These terms are interpreted as fuzzy predicates defined by trapeziums. 
Fig. 5 shows the interface for these terms specification.  This interface is rather 
intuitive to be handled by a final user not familiarized with fuzzy sets and fuzzy 
databases. 

 

 

Fig. 5. Fuzzy predicates configuration interface for deficient (deficiente), regular, good 
(buena), excellent (excelente) and outstanding (sobresaliente) fuzzy predicates on the attribute 
score 

As we have previously said, a trapezium is defined for the values (x1, x2, x3, x4). In 
the interface (Fig. 5), for each predicate we have three numbers. In this case, they are 
0,7 and 12 for deficient; 10,12 and 15 for regular; 15, 16 and 18 for good; 17, 18 and 
19 for excellent; and finally, 19, 20 and 20 for outstanding. The first of these three 
numbers corresponds to x2 in the trapezium definition, the second to x3 and the third to 
x4. In addition, the second of these three numbers corresponds to x1 in the following 
predicate definition. Thus, interface in Fig. 5 specifies the fuzzy partition that can be 
seen in Fig. 6. The system automatically creates linguistic terms of Fig. 5. For so 
doing, it executes the SQLf statements: 
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CREATE FUZZY PREDICATE deficient ON 0..20             AS 
(0,0,7,12); 

CREATE FUZZY PREDICATE regular ON 0..20                AS 
(7,10,12,15); 

CREATE FUZZY PREDICATE good ON 0..20                  AS 
(12,15,16,18); 

CREATE FUZZY PREDICATE excellent ON 0..20                AS 
(16,17,18,19); 

CREATE FUZZY PREDICATE outstanding ON 0..20                AS 
(18,19,20,20); 

It is also possible to change the scale range of test grades. If so, the built-in values are 
automatically adjusted to fit the scale. 

 

0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

deficient regular good ex cellent outstanding  

Fig. 6. Fuzzy predicates configuration interface for deficient (deficiente), regular, good 
(buena), excellent (excelente) and outstanding (sobresaliente) fuzzy predicates on the attribute 
score 

5 Query Engine 

Our automated system for tests preparation and configuration SAECE was built using 
a fuzzy query engine named SQLfi [11]. It has been conceived with a loose-coupling 
architecture [17]; [3]. It means that extended features for fuzzy querying are 
implemented as a logic layer on top of an existing Relational Database Management 
System. Given a fuzzy query in SQLf, we apply a translation and evaluation method 
kwon as the Derivation Principle [2]; [5]. This mechanism has shown to keep low the 
added cost of fuzzy query processing. Current version of SQLfi provides all features 
of SQLf up to the extensions of the standard SQL: 1999 [12]. 

Initially SQLfi ran only on Oracle RDBMS, but at present time we have versions 
for most popular RDBMS: PostgreSQL, SQLServer, Firebird, MySQL and DB2. 
Thus we can build fuzzy querying based applications on existing operating databases 
in any of these RDBMS. Furthermore, applications using SQLfi as fuzzy querying 
engine might migrate form one of these RDBMS to another. For the implementation 
of SAECE, we used Oracle RDBMS. 
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Three-Tier architecture of SQLfi query engine is shown in Fig. 7. The data tier 
consists in any of the supported existing relational database management system. The 
middle logic tier includes classes for the system-database interaction. These classes 
allow making operations on the data stored in the database. They are responsible of 
processing SQLf sentences, applying the Derivation Principle. The interface tier 
includes all classes for the human-system interaction. 

This architecture gives us the possibility to work with a high portable system. In 
this way, the system is easy to change and to maintain. At development level, the 
tools used were: Apache Web Server, Java 1.5 for logic tier and JavaCC to the 
generation of the lexical and syntactical analyzer. The technologies used were:  
the standard J2EE 1.4, Apache Struts framework 1.1 to the web interface and JDBC 
connection for the database. 

 

 

Fig. 7. SQLf three-tier architecture 

 

Fig. 8. SQLfi Structure based in components 
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Logic tier of SQLfi follows the components based structure of Fig. 8. An Interface 
Manager Module provides the user interaction and all classes associated to the 
interface. A Dispatcher Module is a module of control that verifies the type of 
instructions and redirects them towards to the corresponding module for processing. 
A Fuzzy Catalogue Manager contains all the classes required to manager the fuzzy 
catalogue in the system. This module controls all the manipulation operation and 
definition of fuzzy terms. An Analyzer Module makes syntactical analyzer of the 
sentences from the interface to recognize these sentences by the system. It contains all 
the classes required to recognize the system grammar. A Translator Module translates 
the SQLf statements with fuzzy elements into crisp SQL standard statement, applying 
the Derivation Principle. It contains all the classes required for the translation tasks. 
An Evaluator Module generates the evaluation algorithms for the fuzzy queries. It 
computes the membership degree for the rows retrieved. A DB Manager Module 
translates the standard SQL statements into SQL specific dialect of the underlying 
RDBMS. It communicates the RDBMS with the other modules in the system. For 
each specific RDBMS, the classes in this module were adapted to its syntax. 

6 Concluding Remarks 

In this paper we have shown a real life application of fuzzy querying. This is SAECE, 
an automated system for tests preparation and configuration. With this tool, user is 
able to prepare new tests based on previous ones, considering their results, themes and 
difficulty. User defines and uses qualitative and quantitative selection criteria based 
on linguistic terms expressing preferences. SAECE was built using a fuzzy querying 
engine named SQLfi. The application provides graphic user interfaces for query 
specification and preference management.  

If a similar system were built with a classic querying language, it would impose 
more rigid selection criteria, limiting thus the expression of user preferences. As we 
use a fuzzy querying engine, queries might be more flexible and close to natural 
language. Furthermore, system lists the results obtained with their respective 
associated satisfaction degree; so users might know how the result meets the query 
criteria made, allowing among other things enhance their search criteria for future 
queries. Moreover, it would be very useful in decision-making support.  

We have briefly described SQLfi querying engine. It is a fuzzy logic layer 
implementing SQLf on top of an existing relational DBMS conceived with a loose-
coupling architecture. At present time we have SQLfi versions for most popular 
RDBMS: PostgreSQL, SQLServer, Firebird, MySQL and DB2. For the 
implementation of SAECE we used the RDBMS of ORACLE.  

There are some SQLf fuzzy querying features that SQLfi supports but have not 
been used in SAECE. We think that we might improve this system exploring the 
application of such features. On the other hand, an interesting feature of fuzzy 
databases is vague data storage and handling. It would also be useful to explore the 
need and the way for the incorporation of vague information in SAECE database. 
Nevertheless, SQLfi does not currently support this feature, so could be matter of 
more research in future works.  



 Automated System for Tests Preparation and Configuration Using Fuzzy Queries 211 

 

The application of fuzzy querying is relatively new; therefore, it gives an added 
value to this research area showing practical benefits. This system shows the 
feasibility of building real applications using fuzzy queries. As future work, we will 
evaluate the acceptance of teachers in terms of usefulness. This evaluation should 
include how the teacher's ability and experience affects the tests construction. This 
allows validate the benefits expected from the developed system. 

Another future work is to evaluate the system performance compared with other 
similar systems, in the context of a significant database size. Since SQLfi is 
developed as a logical layer on a relational DBMS, it adds overhead time to the 
queries response time. We have performed studies on the time overhead resulting in 
some cases excessive [3]. At present time, we plan to develop a new version of SQLfi 
to decrease the time overhead. 
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Abstract. In this paper we present two methods for proving the standard com-
pleteness for psMTLr logic: the original one given by Jenei and Montagna [1]
and an alternative proof based on Horčik’s method for proving standard com-
pleteness theorems. Further, we introduce two extensions of psMTLr logic that
still enjoy the standard completeness, i.e. psSMTLr and psIMTLr logics.
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Standard Completeness.

1 Introduction

The well-known many-valued logical systems Łukasiewicz logic [2], Gödel logic [3]
and Product logic [4], have something in common: they use a continuous t-norm as
truth function for their strong conjunction, and the residuum of that t-norm as truth
function for their implication. BL logic, introduced by Hájek [3], captures all the above
mentioned logical systems, since it is the logic of all continuous t-norms. Taking into
account that the minimal condition for a t-norm to have a residuum, and therefore to
determine a logic, is left-continuity, Esteva and Godo [5] introduced a weaker logic
than BL, called MTL logic.

After t-norms were generalized to the non-commutative case, under the name of
pseudo-t-norms by Flondor, Iorgulescu and Georgescu [6], the problem of reflecting
this fact at logical level appeared naturally. In this settings, the corresponding many-
valued logics will use pseudo-t-norms as truth functions for their strong conjunction,
instead of t-norms. These logics will have a non-commutative conjunction and we refer
to them as non-commutative many-valued logics.

A natural approach to this problem was to investigate the non-commutative counter-
parts of the above many-valued logics, if any. Hájek [7] introduced the psMTLr logic1

as the non-commutative generalization of MTL logic. Jenei and Montagna [1] proved
that psMTLr logic is the logic of all left-continuous pseudo-t-norms, i.e. psMTLr has
standard completeness. Similar non-commutative generalizations were done for other
many-valued logics, e.g. non-commutativeBL logic [7], non-commutative Łukasiewicz

1 The superscript r comes from the historical fact that a weaker logic was originally named
psMTL [7]. The logical system psMTL does not enjoy standard completeness and not even
chain completeness, therefore is not the true non-commutative generalization of MTL logic.
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logic [8], non-commutative Product logic [9]. However, the standard completeness is
lost for these logics because any continuous pseudo-t-norm is commutative [6].

The aim of this paper is to present two methods for proving the standard complete-
ness for psMTLr logic (the original one given by Jenei and Montagna [1] and an al-
ternative proof introduced by the author in [10]) and to introduce two extensions of
psMTLr logic that still enjoy the standard completeness, i.e. psSMTLr and psIMTLr

logics.
We mention that psSMTLr and psIMTLr logic were also presented in [11] as a

particular case of semiliniar logics, but here we present them explicitly and we show
these logical systems have standard completeness.

2 Preliminaries on the Logical Framework

We are going to recall in this section the logical framework for this paper. The logic
psMTLr was introduced by Hájek [7] and it is considered the non-commutative coun-
terpart of MTL logic [5].

The language of psMTLr logic consists of a denumerable set of propositional vari-
ables, the primitive connectives ∨,∧,&,→,� and the constant 0. The formulas are
defined as usual. Moreover, for any formula ϕ of psMTLr logic, we define the mirror
formula ϕ•, which reverses the arguments of the non-commutative conjunction & and
interchanges the two implications→,�.

The axioms of psMTLr logic are:

I. a formula of the following form is an axiom:
(A1) (ψ → χ)→ ((ϕ→ ψ)→ (ϕ→ χ))
(A2) (ϕ&ψ)→ ϕ
(A3) (ϕ ∧ ψ)→ ϕ
(A4) (ϕ ∧ ψ)→ (ψ ∧ ϕ)
(A5) ((ϕ→ ψ)&ϕ)→ (ϕ ∧ ψ)

(A6a) (ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)
(A6b) ((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))
(A7) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(A8a) (ϕ ∨ ψ)→ (((ϕ � ψ)→ ψ) ∧ ((ψ � ϕ)→ ϕ))
(A8b) (((ϕ � ψ)→ ψ) ∧ ((ψ � ϕ)→ ϕ))→ (ϕ ∨ ψ)
(A9) 0→ ϕ
(A10) (ϕ→ ψ) ∨ (χ � ((ψ → ϕ)&χ))

II. if ϕ is an axiom of the form (A1), (A2), (A5), (A6a), (A6b), (A7), (A8a) or (A8b),
then ϕ• is an axiom.

The deduction rules of psMTLr logic are:

(MP1)
ϕ, ϕ→ ψ

ψ
(MP2)

ϕ, ϕ � ψ

ψ
(IMPL1)

ϕ→ ψ

ϕ � ψ
(IMPL2)

ϕ � ψ

ϕ→ ψ
.

The notions of theorem and theory over psMTLr logic are defined as usual. The reader
is invited to consult [7] for more details on the syntax of psMTLr logic. The algebraic
semantics of psMTLr logic is given by the theory of psMTLr-algebras. We recall first
the following definition:
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Definition 1 ([6]). A psMTL-algebra is a structure of the form

A = (A,∨,∧,$,→,�, 0, 1),

where:

1) (A,∨,∧, 0, 1) is a bounded lattice,
2) (A,$, 1) is a monoid,
3) x$ y ≤ z iff x ≤ y → z iff y ≤ x � z (adjointness property),
4) (x→ y) ∨ (y → x) = (x � y) ∨ (y � x) = 1 (prelinearity condition),

for every x, y, z ∈ A.

In any psMTL-algebra A = (A,∨,∧,$,→,�, 0, 1) we can define two negations
by x− := x→ 0 and x∼ := x � 0.

In other words, a psMTL-algebra is just a residuated lattice [12] satisfying the pre-
linearity condition. Unfortunately, the variety of psMTL-algebras does not have the
subdirect representation property. This fact has a negative impact at logical level, since
we cannot obtain a logic of the comparative notion of truth in the sense of [13]. This
problem can be overcome by adding additional conditions that ensure decomposability:

Definition 2 ([14]). A psMTL-algebra A is called representable (psMTLr-algebra,
for short) if it satisfies the following conditions:

(R1) (y → x) ∨ (z � ((x→ y)$ z)) = 1,
(R2) (y � x) ∨ (z → (z $ (x � y))) = 1,

for every x, y, z ∈ A.

Proposition 1 ([14]). A psMTL-algebra is subdirectly representable (i.e. it is a sub-
algebra of a direct product of chains) iff it is a psMTLr-algebra.

A special class of psMTLr-algebras are those induced by left-continuous pseudo-t-
norms and they are called standard psMTLr-algebras [6].

Definition 3 ([6]). A pseudo-t-norm is a binary relation ⊗ on the real unit interval
[0, 1] that is associative, non-decreasing in both arguments and satisfies x⊗1 = 1⊗x =
x, for all x ∈ [0, 1].

A pseudo-t-norm⊗ is left-continuous if
∨

i∈I(ai⊗b) = (
∨

i∈I ai)⊗b and
∨

i∈I(b⊗
ai) = b ⊗ (

∨
i∈I ai). If ⊗ is a left-continuous pseudo-t-norm, then we define the left

residuum of ⊗ by a → b = sup{c | c ⊗ a ≤ b} and the right residuum of ⊗ by
a � b = sup{c | a ⊗ c ≤ b}. The structure ([0, 1],max,min,⊗,→,�, 0, 1) is a
psMTLr-chain, called a standard psMTLr-algebra.

Any continuous pseudo-t-norm is commutative [6], but there are left-continuous
pseudo-t-norms which are not commutative as shown by the following example:

Example 1 ([6]). Let 0 < a1 < a2 < b2 < 1, where a1, a2, b2 ∈ R, and the operation
T1,2 : [0, 1]× [0, 1]→ [0, 1] be defined by:

T1,2(x, y) =

{
a1, if a1 < x ≤ a2 and a1 < y ≤ b2

min(x, y), otherwise.
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Then T1,2 is a left-continuous pseudo-t-norm which is not commutative.

For any psMTLr-algebra A, the notions of A-evaluation, A-model of a theory and
A-tautology are defined as usual.

Hájek [7] proved that psMTLr logic is complete with respect to psMTLr-algebras
and also with respect to psMTLr-chains:

Theorem 1 ([7]). Let ϕ be a formula over psMTLr. The following statements are
equivalent:

(1) psMTLr proves ϕ,
(2) ϕ is an A-tautology, for each psMTLr-algebra A,
(3) ϕ is an L-tautology, for each psMTLr-chain L.

3 psMTLr Logic and Standard Completeness

In this section we are going to recall two methods known in the literature for proving
that psMTLr logic is the logic of all left-continuous pseudo-t-norms. Namely we are
going to present the original proof given by Jenei and Montagna [1] and an alternative
proof given by the author in [10].

3.1 The Original Proof

In this subsection, we are going to briefly sketch the proof given by Jenei and Montagna
[1] for the standard completeness for psMTLr logic.

The main idea behind the proof of Jenei and Montagna for the standard completeness
of psMTLr logic is to show that if a formula over psMTLr logic has a value less than
1 for some evaluation into a psMTLr-chain S, then S can be embedded into a standard
psMTLr-algebra. The main steps of their proof are recalled below:

1. For any countable psMTLr-chain S = (S, ·S ,→S ,�S ,≤S, 0S , 1S), we define a
countable linearly-ordered monoid (X, �,&,m,M) such that X is densely ordered
and � is left-continuous, as follows:
· X = {(s, q) | s ∈ S − {0S}, q ∈ Q ∩ [0, 1]} ∪ {(0S, 1)};
· & is the lexicographic order and m = (0S , 1), M = (1S , 1);

· (s, q) � (t, r) =
{
min{(s, q), (t, r)}, if s ·S t = minS{s, t}

(s ·S t, 1), otherwise.
2. The map Φ(s) = (s, 1) is an embedding of the structure (S, ·S ,≤S , 0S, 1S) into

the structure (X, �,&,m,M) such that Φ(s→S t) is the left residuum of Φ(s) and
Φ(t) in (X, �,&,m,M), and, similarly, Φ(s �S t) is the right residuum of Φ(s)
and Φ(t) in (X, �,&,m,M).

3. The structure (X, �,&,m,M) is order-isomorphic to a structure of the form (Q ∩
[0, 1], �′,≤, 0, 1) by an isomorphism Ψ . We can further find an embedding into
([0, 1], �̂,≤, 0, 1), where

α�̂β = sup{x �′ y | x, y ∈ Q ∩ [0, 1], x ≤ α, y ≤ β}.
Moreover, �̂ is left-continuous and it has the residua → and �, therefore we have
a standard psMTLr-algebra.
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Thus the following standard completeness can be obtained:

Theorem 2 (Standard Completeness for psMTLr, [1] ). Let ϕ be a formula over
psMTLr. psMTLr proves ϕ iff for each standard psMTLr-algebra L and each L-
evaluation e we have e(ϕ) = 1.

3.2 An Alternative Proof

In this subsection we recall the method presented by the author in [10] for proving
the standard completeness for psMTLr logic. This method is a generalization in the
non-commutative framework of the proof given by Horčik [15] for the standard com-
pleteness theorem for MTL logic. The result that we are going to investigate in the
sequel is actually a finite strong standard completeness, i.e. standard completeness for
a finite theory.

The idea is almost the same as in the proof of Jenei and Montagna, i.e. to embed a
psMTLr-chain into a standard psMTLr-algebras, but the construction is different and
interesting on its own.

Therefore, let T be a finite theory and ϕ be a formula over psMTLr logic such that
T � ϕ. Then there is a psMTLr-chain L = (L, �L,→L,�L,≤, 0, 1) and an L-model
eL of T such that eL(ϕ) < 1. As in the proof of Jenei and Montagna, we will show that
L can be embedded into a standard psMTLr-algebra, but proving a different way for
the embedment. As in [15], we define the following set:

G = {eL(ψ) | ψ is a subformula of χ ∈ T ∪ {ϕ}}.
Let S be the submonoid of L generated by the set G, i.e. S = (S, �,≤, 0, 1), where

� denotes the restriction of �L to S. Notice that S is finitely generated since G is finite.
Moreover, we can immediately prove that the monoid S is countable and inversely
well ordered, i.e. each subset of S has a maximum. Therefore, we can introduce the
following residua on S:

a→ b = max{z ∈ S | z � a ≤ b},
a � b = max{z ∈ S | a � z ≤ b}.

Proposition 2. The enriched monoid S = (S, �,→,�,≤, 0, 1) is a psMTLr-chain
and there exists an S-model eS of T such that eS(ϕ) < 1.

Proof. It is easy to see that S is a psMTLr-chain. The S-model eS of T is defined by
eS(p) = eL(p), for every propositional variable p appearing in any χ ∈ T ∪ {ϕ} and
arbitrarily, otherwise. By induction, we immediately obtain that eS(ϕ) = eL(ϕ) < 1.

The next step is to build a new psMTLr-chain S ′, order-isomorphic to [0, 1], in
which S can be embedded. We define the new universe by:

S′ = {(a, x) | a ∈ S − {0}, x ∈ (0, 1]} ∪ {(0, 1)}.

The order ≤′ on S′ is the lexicographic order. Let I be the set of all idempotents of S,
i.e x � x = x. We define the following monoidal operation on S′:
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(a, x) �′ (b, y) =

⎧⎨⎩
(a � b, 1), if a � b < minS{a, b}
(a, xy), if a = b and a ∈ I

min{(a, x), (b, y)}, otherwise,

where xy stands for the usual product of reals.

Lemma 1. The structure S ′ = (S′, �′,≤′, (0, 1), (1, 1)) is a totally ordered integral
monoid, where (1, 1) is the neutral element and the top element as well, (0, 1) is the
bottom element and �′ is monotone with respect to ≤′ on both arguments.

Proof. Except for the associativity and the monotonicity of �′, the proof follows imme-
diately. Let P (a, b) denote the following property of a, b ∈ S′:

P (a, b) : a = b and a ∈ I.

Clearly, if P (a, b) is valid, then P (b, a) is valid as well.
For proving the associativity of �′, i.e.

(a, x) �′ ((b, y) �′ (c, z)) = ((a, x) �′ (b, y)) �′ (c, z),

let us denote the left-hand side (right-hand side, respectively) of the above equation by
L (R, respectively). Several cases have to be considered:

1. None of P (a, b), P (b, c), P (a, b � c), P (a � b, c) is valid.
2. P (b, c) is valid.
3. P (a, b) is valid.
4. P (a, b � c) is valid and none of P (a, b), P (b, c) is valid.
5. P (a � b, c) is valid and none of P (a, b), P (b, c) is valid.

In all the above mentioned cases, we can easily show that L = R.
For proving the monotonicity of �′, i.e.

(a, x) ≤′ (b, y) implies (a, x) �′ (c, z) ≤′ (b, y) �′ (c, z) and
(c, z) �′ (a, x) ≤ (c, z) �′ (b, y),

we also have to analyze several cases. We consider only the case of the first implication
and the cases to be treated are the following:

1. None of P (a, c), P (b, c) is valid. We have the following subcases:
− a � c = a ∧ c and b � c = b ∧ c.

Then (a, x) �′ (c, z) = min{(a, x), (c, z)} ≤′ min{(b, y), (c, z)} = (b, y) �′

(c, z).
− a � c = a ∧ c and b � c < b ∧ c.

Notice that a � c ≤ b � c implies (a, x) �′ (c, z) = min{(a, x), (c, z)} ≤′

(b � c, 1) = (b, y) �′ (c, z).
− a � c < a ∧ c and b � c = b ∧ c.

We have a � c < a ∧ c ≤ b ∧ c = b � c. Therefore (a, x) �′ (c, z) = (a � c, 1)
and the first component of (b, y) �′ (c, z) is b � c = b ∧ c > a � c. Thus
(a, x) �′ (c, z) ≤′ (b, y) �′ (c, z).
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− a � c < a ∧ c and b � c < b ∧ c.
Notice that a � c ≤ b � c and (a, x) �′ (c, z) = (a � c, 1) ≤′ (b � c, 1) =
(b, y) �′ (c, z).

2. P (a, c) is valid. Then a � b = a, since a ≤ b and a is idempotent. We have
(a, x) �′ (c, z) = (a, xz). Moreover,

(b, y) �′ (c, z) =
{
(a, yz), if a = b
(a, z), if a < b.

If a = b, then x ≤ y and (a, xz) ≤′ (a, yz) since the usual product of reals is
monotone. If a < b, then (a, xz) ≤′ (a, z) since xz ≤ z.

3. P (b, c) is valid. Moreover, suppose that P (a, c) is not valid. Then b = c and
a < b. Thus (b, y) �′ (c, z) = (b, yz) and

(a, x) �′ (c, z) =
{
(a � b, 1), if a � b < a
(a, x), if a � b = a.

Since a � b ≤ b, we get (a, x) �′ (c, z) ≤′ (b, y) �′ (c, z).

Moreover, S ′ can become a psMTLr-chain as shown in the following result:

Lemma 2. The structure S ′ = (S′, �′,→′,�′,≤′, (0, 1), (1, 1)) is a psMTLr-chain,
where

(a, x)→′ (b, y) = max{(c, z) | (c, z) �′ (a, x) ≤′ (b, y)},
(a, x) �′ (b, y) = max{(c, z) | (a, x) �′ (c, z) ≤′ (b, y)}.

Moreover, the mapping ψ : S → S′ defined by ψ(x) = (x, 1) is an embedding of
psMTLr-algebras.

Proof. By Lemma 1, it is enough to show that �′ has a left and a right residuum. There-
fore we must show that each set of the form M1 = {(c, z) | (c, z) �′ (a, x) ≤′ (b, y)}
or M2 = {(c, z) | (a, x) �′ (c, z) ≤′ (b, y)} has a maximum. Let us consider the case
of M1. Since S is inversely well ordered, π1(M1) has a maximum cM1 , where π1 is the
projection on the first component. Thus there is an element of the form (cM1 , z) ∈M1.
If cM1 � a < b, then (cM1 , 1) is the maximum of M1. Thus suppose that cM1 � a = b.
We distinguish several cases:

1. Suppose cM1 � a < cM1 ∧ a. Then, for any z, we have (cM1 , z) �
′ (a, x) =

(cM1 � a, 1). Thus (cM1 , 1) must be the maximum of M1.
2. Suppose that P (cM1 , a) is valid. Then we have (cM1 , z) �

′ (a, x) = (cM1 , zx). If
x ≤ y, then (cM1 , 1) is the maximum of M1. If x > y, then the maximum of M1 is
(cM1 , y/x).

3. Suppose that cM1 � a = cM1 ∧ a. Moreover, let us assume that P (cM1 , a) is not
valid. Then (cM1 , z) �

′ (a, x) = min{(cM1 , z), (a, x)}. The have several cases:
· if a = cM1 , then min{(cM1 , z), (a, x)} = (cM1 , x ∧ z) and the maximum of M1

is either (cM1 , 1) when x ≤ y, or (cM1 , y) otherwise;
· if a < cM1 , then min{(cM1 , z), (a, x)} = (a, x) and (cM1 , 1) is the maximum

of M1;
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· if a > cM1 , then min{(cM1 , z), (a, x)} = (cM1 , z) and (cM1 , y) is the maximum
of M1.

It follows immediately from the definitions of →′ and �′ that the following hold:

(a, x) �′ (b, y) ≤′ (c, z) iff (a, x) ≤′ (b, y)→′ (c, z) iff (b, y) ≤′ (a, x) � (c, z).

It can be easily verified that the mapping ψ is an embedding of psMTLr-algebras.

The remaining step is to show that S′ is order-isomorphic to [0, 1]. As shown in
[16], any totally ordered set X is order-isomorphic to [0, 1] if it satisfies the following
properties: X is complete, X has a maximum and a minimum and X has a countable
subset D which is dense in X , i.e. for each x, y ∈ X such that x < y, there is z ∈ D
such that x < z < y. Thus it is enough to prove that S′ satisfies all the above mentioned
conditions. Clearly, S′ has a maximum and a minimum. Further, the subset

{(a, x) | a ∈ S, x ∈ Q ∩ [0, 1]}
of S′ is countable and dense in S′. Finally, given X ⊆ S′, X �= ∅, let Z = π1(X).
Then Z ⊆ S and Z �= ∅, hence Z has a maximum a0, since S is inversely well ordered.
Now let

α = sup{x ∈ (0, 1] | (a0, x) ∈ X}.
Then (a0, α) = sup(X). In conclusion S′ is complete and we have the following result:

Lemma 3. The set S′ is order-isomorphic to [0, 1], i.e. there is a bijection Φ : S′ →
[0, 1] such that (a, x) ≤′ (b, y) implies Φ(a, x) ≤ Φ(b, y).

Let us define the following operations on [0, 1]: a $ b = Φ(Φ−1(a) �′ Φ−1(b)),
a →� b = Φ(Φ−1(a) →′ Φ−1(b)), a �� b = Φ(Φ−1(a) �′ Φ−1(b)). Then the
structure [0, 1]� = ([0, 1],$,→�,��,≤, 0, 1) is a standard psMTLr-algebra and we
have an [0, 1]�-model of T such that Φ(ψ(eS(ϕ))) < 1. Thus we can immediately
proof the finite strong standard completeness for psMTLr logic:

Theorem 3 (Finite Strong Standard Completeness for psMTLr). Let T be a finite
theory and ϕ be a formula over psMTLr. T proves ϕ iff for each standard psMTLr-
algebra L and each L-model e of T we have e(ϕ) = 1.

4 psSMTLr Logic and Standard Completeness

Esteva, Gispert, Godo and Montagna [17] introduced SMTL logic as an extension of
MTL logic and proved that SMTL is the logic of left-continuous strict t-norms, i.e
those t-norms for which the associated negations are Gödel negations.

In this section we present the non-commutative counterpart of SMTL logic. Namely,
we introduce strict psMTLr logic (psSMTLr, for short) as an extension of psMTLr

logic and we prove that psSMTLr logic captures the logic of left-continuous strict
pseudo-t-norms.

The axioms of psSMTLr logic are those of psMTLr logic plus the non-commutative
version of the pseudo-complementation axiom:
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(psΠ2) ϕ ∧ ¬ϕ→ 0
(psΠ2•) ϕ ∧∼ϕ � 0

As in Esteva, Gispert, Godo and Montagna [17], we can define psWMTLr logic, the
extension of psMTLr logic with the non-commutative counterpart of the weak contrac-
tion axiom:

(WCon) (ϕ→ ¬ϕ)→ ¬ϕ
(WCon•) (ϕ � ∼ϕ) � ∼ϕ

Proposition 3. psSMTLr logic and psWMTLr logic are logically equivalent.

Proof. It is easy to prove that (WCon) is a theorem over psSMTLr logic. For the other
part of the proof, we can see that ¬(ϕ&ϕ) → ¬ϕ is a theorem over psWMTLr logic.
Further, (ϕ ∧ ¬ϕ)&(ϕ ∧ ¬ϕ) → (¬ϕ&ϕ) is a theorem over psMTLr logic. We can
further establish that ¬((ϕ∧¬ϕ)&(ϕ∧¬ϕ))→ ¬(ϕ∧¬ϕ) is provable in psWMTLr

logic, therefore (ϕ ∧ ¬ϕ)→ 0 is a theorem over psWMTLr logic.

The corresponding algebraic structures for psSMTLr logic are the following:

Definition 4. A strict psMTLr-algebra (psSMTLr-algebra, for short) is a psMTLr-
algebra A = (A,∨,∧,$,→,�, 0, 1) satisfying the following condition:

x$ y = 0 iff x = 0 or y = 0.

We can obtain the following characterization theorem for psSMTLr-algebras:

Proposition 4. A psMTLr-algebra A = (A,∨,∧,$,→,�, 0, 1) is a psSMTLr-
algebra if and only if its negations are Gödel negation, i.e.

x− = x∼ =

{
1, if x = 0
0, otherwise.

Proof. Let A be a psSMTLr-algebra. x− is the greatest element of {z | z $ x = 0}.
If x = 0, then clearly z $ x = 0, for every z ∈ A, therefore x− = 1. If x > 0, then
z $ x = 0 only if z = 0. Therefore x− = 0. In conclusion x− is a Gödel negation.
Similarly we can prove that x∼ is a Gödel negation.

Conversely, assume that there are x, y ∈ A such that x $ y = 0 and x �= 0 and
y �= 0. Since x �= 0, we have x∼ = 0 and x∼ is the greatest element of {z | x$ z = 0}.
Therefore x∼ ≥ y, thus y = 0 (contradiction).

It is easy to observe that in any psSMTLr-algebra we have x∧x− = 0 and x∧x∼ =
0. The notions of standard psSMTLr-algebra and strict pseudo-t-norms are defined in
the obvious way. The following is an example of a left-continuous strict pseudo-t-norm.

Example 2. For the pseudo-t-norm from Example 1, the associated negations are Gödel
negation. Therefore ([0, 1],min,max, T1,2,→,�, 0, 1) is a standardpsSMTLr-algebra.

The following chain completeness for psSMTLr logic can be immediately proved
taking into account the chain completeness for psMTLr logic:
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Theorem 4. Let ϕ be a formula over psSMTLr. The following are equivalent:

(1) psSMTLr proves ϕ,
(2) ϕ is an A-tautology, for each psSMTLr-algebraA,
(3) ϕ is an L-tautology, for each psSMTLr-chain L.

Esteva, Gispert, Godo and Montagna [17] showed that the standard completeness
for SMTL logic can be obtained as an extension of the standard completeness result of
Jenei and Montagna [18] for MTL logic. We apply the same idea and we extend Jenei
and Montagna standard completeness for psMTLr logic presented in Subsection 3.1 in
order to show that psSMTLr is the logic of all left-continuous strict pseudo-t-norms.

Therefore, let ϕ be a formula not provable over psSMTLr logic. By Theorem 4, there
is a psSMTLr-chain S and an S-evaluation e such that e(ϕ) < 1. The remaining step
is to extend the proof of Jenei and Montagna in order to obtain a standard psSMTLr-
algebra. Namely, we have to prove that:

Theorem 5. Every countable psSMTLr-chain S can be embedded into a standard
psSMTLr-algebra.

Proof. We must prove that the structure ([0, 1], �̂,→,�,≤, 0, 1) defined in Subsection
3.1 is a standard psSMTLr-algebra if S is a psSMTLr-chain. It is enough to show
that ¬̂ and ∼̂, defined by ¬̂α = α → 0 and ∼̂α = α � 0, are Gödel negations.
It is clear that ¬̂0 = 1 and ∼̂0 = 1. Let α > 0. By definition we have α → 0 =
sup{β ∈ [0, 1] | β�̂α = 0}. Notice that β�̂α = 0 iff (s′, q′) � (s, q) = (0S , 1), for all
(s, q), (s′, q′) ∈ X such that Ψ(s, q) ≤ α and Ψ(s′, q′) ≤ β. Taking into account that
α > 0, we can find (s1, q1) ∈ X such that Ψ(s1, q1) ≤ α and (s1, q1) �= (0S , 1). By
definition of X , we conclude that s1 > 0S . In order to have (s′, q′)� (s1, q1) = (0S , 1),
we have two possibilities:

· If s′ ·S s1 < min(s′, s1), then s′ ·S s1 = 0S . Since s1 > 0S and we have a
psSMTLr-algebra, we obtain that s′ = 0S .
· If s′ ·S s1 = min(s′, s1), then either (s′, q′) = (0S, 1) or (s1, q1) = (0S , 1). Since
s1 > 0S , then s′ = 0S .

Taking into account the form of the elements of X , it follows that if β�̂α = 0, then
β = 0. Hence α → 0 = 0. Thus ¬̂α is a Gödel negation. Similarly, we prove that ∼̂α
is a Gödel negation.

The standard completeness for psSMTLr logic can now be stated:

Theorem 6 (Standard Completeness for psSMTLr). Let ϕ be a formula over
psSMTLr. psSMTLr proves ϕ iff for each standard psSMTLr-algebra L and each
L-evaluation e we have e(ϕ) = 1.

5 psIMTLr Logic and Standard Completeness

The extension of MTL logic obtained by forcing the negation to be involutive was
introduced by Esteva and Gogo [5] under the name of IMTL (Involutive MTL logic).
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Esteva, Gispert, Godo and Montagna [17] proved the standard completeness theorem
for this extension.

As a generalization to the non-commutative case, we introduce in this section
psIMTLr logic, the extension of psMTLr logic which forces the negations to be invo-
lutive and we prove its standard completeness with respect to a special class of pseudo-
t-norms.

The axioms of psIMTLr logic are those of psMTLr and the non-commutative ver-
sion of the double negation axiom:

(psINV) ∼¬ϕ→ ϕ
(psINV•) ¬∼ϕ � ϕ

The corresponding algebraic structures for psIMTLr logic were introduced by
Iorgulescu [19]:

Definition 5 ([19]). A psIMTLr-algebra is a psMTLr-algebra which satisfies fol-
lowing condition:

(pDN) (x−)∼ = (x∼)− = x.

A standard psIMTLr-algebra is defined the obvious way.
As in the case of psSMTLr logic, we can immediately obtain the following com-

pleteness theorem for psIMTLr logic:

Theorem 7. Let ϕ be a formula over psIMTLr. The following are equivalent:

(1) psIMTLr proves ϕ,
(2) ϕ is an A-tautology, for each psIMTLr-algebra A,
(3) ϕ is an L-tautology, for each psIMTLr-chain L.

Esteva, Gispert, Godo and Montagna [17] proved the standard completeness theorem
for IMTL logic by refining the standard completness result of Jenei and Montagna
[18] for MTL logic. We apply the same strategy in the non-commutative case, i.e. we
refine the standard completeness of Jenei and Montagna for psMTLr logic presented
in Subsection 3.1 in order to show that psIMTLr logic is complete with respect to the
class of standard psIMTLr-algebras.

The goal is, again, to prove that every countable psIMTLr-chain can be embedded
into a standard psIMTLr-algebra. Before proving this result, we need some additional
technical results:

Definition 6. LetA = (A,∨,∧,$,→,�, , 0, 1) be a psMTLr-algebra and let s ∈ S.
The element s has a successor if there exists t ∈ S such that s < t and for all u ∈ S, if
u < t, then u ≤ s. For each s ∈ S, let suc(s) denote the successor of s, if it exists, and
suc(s) = s, otherwise .

Proposition 5. If A = (A,∨,∧,$,→,�, , 0, 1) is a psIMTLr-algebra, then the fol-
lowing conditions are satisfied:

1. s = suc(t−) iff t = suc(s∼),
2. suc(suc(s)−) = s−,
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3. suc(suc(s)∼) = s∼,
4. if a < b, then suc(a) < suc(b),
5. s < suc(t−) iff t < suc(s∼).

Proof. Most of the proof follows immediately from the definition. Therefore we focus
only on the following points:

1. Suppose s = suc(t−). From t− < s, we obtain s∼ < (t−)∼ = t. If u < t, then
t− < u−. Necessarily, s ≤ u−, by the definition of successor, hence u = (u−)∼ ≤
s∼. Hence t = suc(s∼). The converse implication follows similarly.

2. From s < suc(s), it follows suc(s)− < s−. Let u ∈ S such that u < s−. Then
s = (s−)∼ < u∼, thus suc(s) ≤ u∼. Hence u = (u∼)− ≤ suc(s)−.

Now we can prove the main step for obtaining the standard completeness:

Theorem 8. For every finite or countable psIMTLr-chain S = (S, ·S ,→S ,�S ,
≤S , 0S, 1S), there is a countable linearly ordered set (Y,&), a binary operation $
on Y and a map Φ from S into Y such that:

(a) Y is densely ordered and has a maximum 1Y and a minimum 0Y ,
(b) (Y,$,&, 1Y ) is a linearly ordered monoid,
(c) $ is left-continuous on both arguments,
(d) Φ is an embedding of the structure (S, ·S ,≤S, 0S , 1S) into (Y,$,&, 0Y , 1Y ) and

also Φ(s →S t) is the left residuum of Φ(s) and Φ(t) and Φ(s �S t) is the right
residuum of Φ(s) and Φ(t), for all s, t ∈ S,

(e) For all y ∈ Y , the left residuum of y and 0Y (noted by y →Y 0Y ) and the right
residuum of y and 0Y (noted by y �Y 0Y ) with respect to $ always exist and the
operations n1(y) = y →Y 0Y and n2(y) = y �Y 0Y satisfy the relation

n1(n2(y)) = y = n2(n1(y)).

Proof. We define the countable linearly ordered set (Y,&) by

Y = {(s, r) | exists s′, s = suc(s′), r ∈ Q ∩ (0, 1)} ∪ {(s, 1) | s ∈ S},
where & is the corresponding lexicographic order.

In Subsection 3.1 were defined (X,&) and the operation � on X :

(s, q) � (t, r) =

{
min{(s, q), (t, r)}, if s ·S t = minS{s, t}

(s ·S t, 1), otherwise.

Notice that (Y,&) is a subset of (X,&) and that Y is closed under �. We define the
following operation $ on Y , based on �:

(s, q)$ (t, r) =

{
(0S , 1), if s = suc(t−) and q + r ≤ 1

(s, q) � (t, r), otherwise.

We can immediately prove that Y is densely ordered and that the maximum of
(Y,&) is 1Y = (1S , 1) and the minimum is 0Y = (0S , 1). Thus condition (a) holds.
It is obvious that $ is non-commutative and (1S, 1) is the neutral element with re-
spect to $. Therefore, in order to prove (b), we must show that $ is weakly increas-
ing and associative. For proving these statements, we use the following remark: if
(s, q)$ (t, r) �= (0S , 1), then (s, q)$ (t, r) = (s, q) � (t, r).
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Weakly increasing: Let (s, q) & (t, r). We have to show that, for all (u, p), (s, q) $
(u, p) & (t, r) $ (u, p) and (u, p) $ (s, q) & (u, p) & (t, r). Let (u, p) ∈ Y . We
prove only that (s, q)$ (u, p) & (t, r)$ (u, p), the other proof being similar. Since � is
monotone, we only need to prove that if (s, q)$ (u, p) �= (0S , 1), then (t, r)$ (u, p) �=
(0S , 1). Suppose (s, q)$ (u, p) �= (0S , 1). We have the following cases:
− s �= suc(u−): If s > suc(u−), since (s, q) & (t, r), we have t > s > suc(u−).

By the monotonicity of � we have (0S , 1) < (s, q) $ (u, p) = (s, q) � (u, p) &
(t, r) � (u, p) = (t, r) $ (u, p). If s < suc(u−), then s ≤ u−, thus s ·S u = 0S . If
s = 0S , then (s, q) � (u, p) = (0S , q) ≤ (t, r) $ (u, p). Similarly, if u = 0S , then
(s, q)�(u, p) = (0S, p) ≤ (t, r)$(u, p). Otherwise, (s, q)$(u, p) = (s, q)�(u, p) =
(s ·S u, 1) = (0S , 1) (contradiction).

− s = suc(u−) and q + p > 1: Since (s, q) & (t, r), we distinguish two subcases:
If s < t, then suc(u−) < t. Therefore (t, r) $ (u, p) = (t, r) � (u, p) and the
conclusion follows by the monotonicity of �.
If s = t and q ≤ r, then 1 < q + p ≤ r + p. Thus (t, r) $ (u, p) = (t, r) � (u, p)
and we use again the monotonicity of �.

Associativity: Let (s, q), (t, r), (u, p) ∈ Y . Remark that if both ((s, q) $ (t, r)) $
(u, p) �= (0S , 1) and (s, q) $ ((t, r) $ (u, p)) �= (0S , 1), then the associativity of $
follows by the associativity of �, since we can replace $ by �. Therefore, it is enough
to prove that:

((s, q)$ (t, r)) $ (u, p) �= (0S , 1) iff (s, q)$ ((t, r) $ (u, p)) �= (0S , 1).

Assume that ((s, q) $ (t, r)) $ (u, p) �= (0S , 1). Then necessarily s ·S t ·S u > 0S .
Suppose t = suc(u−). Since s ·S t < t (otherwise, (s, q) � (t, r) = (t, r) and (t, r) �
(u, p) = (0S , 1), which is a contradiction with ((s, p)$ (t, r)) $ (u, p) �= (0S , 1)), we
obtain s ·S t ≤ u−, thus s ·S t ·S u = 0 (contradiction). Therefore necessarily we have
t �= suc(u−) and (t, r) $ (u, p) = (t, r) � (u, p). We have to consider two cases:
− t ·S u = min{t, u}: Then (s, q)$min((t, r), (u, p)) = min{(s, q)$ (t, r), (s, q)$

(u, p)}. By the monotonicity of$, we have (s, q)$(t, r) ≥ ((s, p)$(t, r))$(u, p)
and (s, q) $ (u, p) ≥ ((s, p) $ (t, r)) $ (u, p), therefore we obtain that (s, q) $
min((t, r), (u, p)) ≥ ((s, p)$ (t, r)) $ (u, p) > (0S , 1).

− t ·S u < min{t, u}: Then (t, r) � (u, p) = (t ·S u, 1). Since q + 1 > 1, we have
(s, q)$ (t ·S u, 1) = (s, q) � (t ·S u, 1) �= (0S , 1).

The other direction can be proved similarly. Therefore, (b) holds.
For left-continuity of $, let {(sn, qn)}n∈N be a non-decreasing sequence of ele-

ments of Y such that supn∈N(sn, qn) = (s, q). We must prove that, for all (t, r) ∈ Y ,
supn∈N{(sn, qn) $ (t, r)} = (s, q) $ (t, r) and supn∈N{(t, r) $ (sn, qn)} = (t, r) $
(s, q). Both cases can be proved exactly as in the proof of Esteva, Gispert, Godo and
Montagna [17, Theorem 3] and therefore condition (c) also holds.

For all s ∈ S, we define the mappingΦ(s) = (s, 1). We can show that Φ is an embed-
ding of (S, ·S ,≤S , 0S, 1S) into (Y,$,&, 0Y , 1Y ) and that, for all s, t ∈ S, Φ(s →S t)
is the left residuum of Φ(s) and Φ(t) and Φ(s �S t) is the right residuum of Φ(s) and
Φ(t) in (Y,$,&, 0Y , 1Y ), using the same arguments as in the proof of Jenei and Mon-
tagna. Hence (d) is proved and the remaining step in the proof is (e). Let (s, q) ∈ Y . It
is easy to observe that
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(s, q)→Y (0S , 1) = max{(t, r) ∈ Y | (t, r) $ (s, q) = (0S , 1)},
(s, q) �Y (0S , 1) = max{(t, r) ∈ Y | (s, q)$ (t, r) = (0S , 1)},

always exist and that

n1(s, q) = (s, q)→Y (0S , 1) =

{
(s−, 1), if q = 1
(suc(s−), 1− q), if 0 < q < 1,

n2(s, 1) = (s, q) �Y (0S , 1) =

{
(s∼, 1), if q = 1
(suc(s∼), 1− q), if 0 < q < 1.

If q = 1, then we have n1(n2(s, q)) = n1(s
∼, 1) = ((s∼)−, 1) = (s, q) and also

n2(n1(s, q)) = (s, q). If 0 < q < 1, then n1(n2(s, q)) = n1(suc(s
∼), 1 − q) =

(suc(suc(s∼)−), 1 − (1 − q)) = ((s∼)−, q) = (s, q) by Proposition 5 (2). Similarly,
we show that n2(n1(s, q)) = (s, q).

Using the above constructions, we can immediately extend the standard complete-
ness for psMTLr logic given by Jenei and Montagna, obtaining the following result:

Theorem 9. Every countable linearly ordered psIMTLr-algebra can be embedded
into a standard psIMTLr-algebra.

Therefore the standard completeness theorem for psIMTLr logic follows:

Theorem 10 (Standard Completeness for psIMTLr). Let ϕ be a formula over
psIMTLr. psIMTLr proves ϕ iff for each standard psIMTLr-algebra L and each
L-evaluation e we have e(ϕ) = 1.

6 Conclusions

In this paper we presented an alternative proof for the standard completeness for
psMTLr logic. Further, we presented two extensions of psMTLr logic and showed that
they enjoy the standard completeness, by extending the proof for the standard complete-
ness for psMTLr logic given by Jenei and Montagna and also presented in Subsection
3.1 of this paper.

A natural further investigation is to try to obtain the standard completeness for the ex-
tensions of psMTLr logic presented in this paper, i.e. psSMTLr and psIMTLr logics,
by extending the alternative proof for the standard completeness for psMTLr presented
in Subsection 3.2.
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Abstract. One factor which greatly affects the performance of the machine learn-
ing techniques is the quality of the dataset with which to work. In this paper we
focus on two problems that can affect these data: 1) the existence of irrelevant,
redundant features and 2) the existence of low quality values for such features re-
sulting of the measurement process. Most studies focus on solving each problem
individually. In this paper we address both problems jointly proposing a feature
selection aproach from low quality data. This approach consists of the following
steps: (1) feature pre-selection using a discretization process (filter method); (2)
Ranking process of the feature pre-selection using a Fuzzy Random Forest en-
semble; (3) Wrapper feature selection using a Fuzzy Random Forest ensemble
based on cross-validation. Through several experiments the approach shows an
excellent performance, not only classification accuracy, but also with respect to
the number of features selected.

Keywords: Feature Selection, Low Quality Data, Fuzzy Random Forest, Fuzzy
Decision Tree.

1 Introduction

Feature selection plays an important role in the world of machine learning and more
specifically in the classification task. On the one hand the computational cost is re-
duced and on the other hand, the model is constructed from the simplified data and this
improves the general abilities of classifiers. The first motivation is clear, since the com-
putation time to build models is lower with a smaller number of features. The second
reason indicates that when the dimension is small, the risk of “overfitting” is reduced.
As a general rule for a classification problem with D dimensions and C classes, a min-
imum of 10 × D × C training examples are required [13]. When it is practically
impossible to obtain the required number of training examples, reducing features helps
to reduce the size of the training examples required and consequently to improve the
yield overall shape of the classification algorithm. Furthermore, if the model is used
from a practical viewpoint, it requires less input data and therefore a smaller number
of measurements is necessary to obtain new examples. Removing insignificant features
of datasets can make the model more transparent and more comprehensible providing a
better explanation of the system model [17].

Therefore, the selection of features addresses the problem of reducing dimensionality
of the datasets by identifying a subset of available features, which are the most essential
for classification.

c© Springer International Publishing Switzerland 2014 229
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There are a variety of methods in the literature to perform feature selection
[9,15,18,24]. The feature selection should be carried out so that the reduced dataset
hold as much information as possible to the original set. In other words the redundant
features that do not add information should be eliminated.

There is not a feature selection method appropriate for all types of problems. Thus,
most of feature selection methods assume that the data are expressed with values with-
out imprecision and uncertainty. However, imprecision and uncertainty in the data, lead-
ing to low quality data, may appear in a variety of problems and these kinds of data
should be taken into account in the feature selection process, because decisions of this
process could be influenced by the presence of imprecision and uncertainty. Fuzzy logic
has been proved as a suitable theory to handle low quality data. Whenever imprecise and
uncertain data are present, fuzzy logic is going to be used in order to select the main
features so the losses in information from real processes could be reduced [23].

Researchers are making a significant effort to incorporate the processing of data with
imprecision and uncertainty in different areas of machine learning: methods of classi-
fication/regression [3,21,10]; discretization methods [5,22]; etc. In this line of work, in
this paper we propose a feature selection method that, working within the framework
of the fuzzy logic theory, is able to deal with low quality data.

This paper is organized as follows. In Section 2 we briefly describe some of the
different methods reported in literature that perform the feature selection process, dis-
tinguishing between methods that only work with crisp data and methods that can work
with crisp data and low quality data. In Section 3 we briefly describe the Fuzzy Random
Forest and Fuzzy Decision Tree techniques. We use these techniques to define the pro-
posed approach. In Section 4 a feature selection method is proposed. Next, in Section
5, we present some preliminary experimental results of proposed method. Finally, in
Section 6 the conclusions are presented.

2 Feature Selection

In many machine learning applications, high-dimensional feature vectors impose a high
computational cost as well as the risk of “overfitting”. Feature selection addresses the
dimensionality reduction problem by determining a subset of available features which
is the most essential for classification.

A feature selection algorithm determines how relevant a given feature subset “s” is
for the task “y” (usually classification or approximation of the data). In theory, more fea-
tures should provide more discriminating power, but in practice, with a limited amount
of training data, excessive features will not only significantly slow down the learning
process, but also cause the classifier to overfit the training data, because irrelevant or
redundant features may confuse the learning algorithm, [8].

In the presence of hundreds or thousands of features, researchers notice that it is
common that a large number of features are not informative because they are either
irrelevant or redundant with respect to the class concept, [24]. In other words, learning
can be achieved more efficiently and effectively with just relevant and non-redundant
features. However, the number of possible feature subsets grows exponentially with the
increase of dimensionality. Finding an optimal subset is usually intractable and many
problems related to feature selection have been shown to be NP-hard.
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Researchers have studied various aspects of feature selection. One of the key aspects
is to measure the goodness of a feature subset in determining an optimal one. Depend-
ing on evaluation criteria, feature selection methods can be divided into the following
categories, [24]:

– Filter methods: these methods use measurements as evaluation criteria to evaluate
the quality of feature subsets. Filters select subsets of features as a pre-processing
step, independently of the chosen predictor.

– Wrapper methods: in this case, the classification accuracy is used to evaluate feature
subsets. Wrapper methods use the learning machine of interest as a black-box to
score subsets of features according to their predictive power.

– Embedded methods: feature selection is performed in the process of training and
are usually specific to the given modeling technique. Proceed more efficiently by
directly optimizing a two-part objective function with a goodness-of-fit term and a
penalty for a large number of features.

– Hybrid methods: these methods are a combination of filter and wrapper methods.
Hybrid methods use the ranking information obtained using filter methods to guide
the search in the optimization algorithms used by wrapper methods. Hybrid meth-
ods are a more recent approach and a promising direction in the feature selection
field.

However, feature selection methods can be also categorized depending on search
strategies used. Thus, the following search strategies are more commonly used, [18]:

– Forward selection: start with an empty set and greedily add features one at a time.
– Backward elimination: start with a feature set containing all features and greedily

remove features one at a time.
– Forward stepwise selection: start with an empty set and greedily add or remove

features one at a time.
– Backward stepwise elimination: start with a feature set containing all features and

greedily add or remove features one at a time.
– Random mutation: start with a feature set containing randomly selected features,

add or remove randomly selected feature one at a time and stop after a given number
of iterations.

Given the aim of this work, next we will conduct a brief survey of feature selec-
tion methods in literature, according to the handling of low quality data allowed by the
method. Thus, we distinguish between feature selection methods from crisp data (lack-
ing imprecise and uncertain values) and feature selection methods from low quality data
where the uncertainty and imprecision in the dataset are explicit. As we will be able to
see the number of methods belonging to the second category is small.

2.1 Feature Selection from Crisp Data

In literature we can find a variety of methods to carry out feature selection from crisp
data. In this section we briefly describe some of them without being exhaustive.
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A search strategy, which is used in various studies, is the ant colony optimization. A
hybrid ant colony optimization based method is proposed in [15]. This method utilizes
a hybrid search technique that combines the wrapper and filter approaches. The algo-
rithm modifies the standard pheromone update and heuristic information measurement
rules based on the above two approaches. Another algorithm is proposed in [24]. The
algorithm uses two cooperative ant colonies that cope with two different objectives:
minimizing the number of features and minimizing the classification error. Individual
ant colonies are used to cope with the contradictory criteria, and are used to exchange
information in the optimization process.

Moreover in literature we can find different feature selection methods which are
applied in specific fields. In [20] a feature selection process is applied in the field of the
prediction of subsequences that code proteins (coding potential prediction). Proteins
are presented as crisp data. For the problem of the analysis of protein coding, Markov
model is one of the most used. Although for more accuracy and better results this model
is usually combined with other measures, such as in [20], where a hybrid algorithm is
proposed. This algorithm is composed in its first part by the Markov model, which
calculates a score for all feature sets, genes in this case, and these scores serve as input
to a support vector machine that selects the most relevant genes for protein analysis.

In [7], a Random Forest ensemble is used to carry out the feature selection process
for classification of microarrays. The method gets a measure of importance for each
feature based on how the permutation of the values of that feature in the dataset affects
to the classification of the OOB dataset of each decision tree of ensemble.

There are feature selection methods which are only developed to be applied in spe-
cific algorithms of classification or regression. In [11] a method is proposed to treat with
support vector machines. In this method features are recursively removed according to
a feature ranking criteria.

Other papers make use of sequential forward search (SFS) for feature selection. This
approach is used in [2] where the mutual information between a feature and class and
between each pair of features is used as a measure of evaluation. Another method based
on SFS is presented in [19]. In this study, each feature is indexed according to its im-
portance using a clustering algorithm. The importance is assessed as the difference
between the Euclidean distance of the examples and the cluster, taking into account and
regardless a feature. The larger the difference is the more important this feature is.

Another well known method to select features is proposed in [16]. This method,
called Relief, is a filtering method that uses a neural network and the information gain
in order to select a set of features. In [6] a neural network is also used to evaluate a
subset of features previously selected with a genetic algorithm.

There are methods that carry out feature selection process and simultaneously they
also develop other functionalities. In [9], a based decision rules method carries out a
feature selection process and a feature discretization process at the same time. This
method tries to minimize the decision error in neighborhood with an unsupervised ap-
proach. In [12], a method to select features and examples is developed. This method is
based on neighborhood too, but from a supervised approach.
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2.2 Feature Selection from Low Quality Data

As we have discussed above, there are a lot of methods to carry out feature selection
process from crisp data. Although most of them use the fuzzy logic theory in the devel-
opment of method, they do not perform the feature selection process from low quality
data. This is because algorithms for preprocessing datasets with imprecise and incom-
plete data are seldom studied, [22]. This problem is compounded by the difficulty of
finding datasets with low quality data to test developed methods. That is why, until
where we have been able to study, there are few papers in literature that work with low
quality data. In this subsection, we will briefly describe these works.

In literature there are some studies that carry out feature selection taking into account
the uncertainty in the data through fuzzy-rough sets. In this line, in [14] a fuzzy-rough
feature selection method is presented. This method employs fuzzy-rough sets to pro-
vide a means by which discrete or real-valued noisy data (or a mixture of both) can be
effectively reduced without the need for user-supplied information. Additionally, this
technique can be applied to data with continuous or nominal decision features, and as
such can be applied to regression as well as classification datasets. The only additional
information required is in the form of fuzzy partitions for each feature which can be
automatically derived from the data.

A widely used measure to perform feature selection process from crisp data is the
mutual information. In [22], this measure is extended with the fuzzy mutual informa-
tion measure between two fuzzified continuous features to handle imprecise data. In
this paper, this measure is used in combination with a genetic optimization to define a
feature selection method from imprecise data. In [23], the Battiti’s filter feature selec-
tion method is extended to handle imprecise data using the fuzzy mutual information
measure.

In [26] another method that works with low quality data is proposed. In this case,
the paper presents a study of theoretical way for feature selection in a fuzzy decision
system. This proposal is based on the generalized theory of fuzzy evidence.

Therefore, since the number of papers in the literature that work directly with low
quality data is scarce, in this paper we propose a new method in order to work with
low quality data. This method allows to handle datasets with: missing values, values
expressed by fuzzy sets, values expressed by intervals and set-valued classes. Further-
more, the proposed method can be classified as a Filter-Wrapper method with sequential
backward elimination on the subset of features obtained by the Filter method.

3 Fuzzy Decision Tree and Fuzzy Random Forest

In this section, we describe an Fuzzy Random Forest (FRF) ensemble and Fuzzy Deci-
sion Tree (FDT), [4], which we use to define the proposed approach.

FRF ensemble was originally presented in [3], and then extended in [4], to handle
imprecise and uncertain data. In this section we describe the basic elements that com-
pose a FRF ensemble and the types of data that are supported by this ensemble in both
learning and classification phases.
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3.1 Fuzzy Random Forest Learning

Let E be a dataset. FRF learning phase uses Algorithm 1 to generate the FRF ensemble
whose trees are FDTs.

Algorithm 1. FRF ensemble Learning.
FRFlearning(in : E, Fuzzy Partition; out : FRF )
begin

1. Take a random sample of |E| examples with replacement from the dataset E.
2. Apply Algorithm 2 to the subset of examples obtained in the previous step to construct a

FDT.
3. Repeat steps 1 and 2 until all FDTs are built to constitute the FRF ensemble.

end

Algorithm 2 shows the FDT learning algorithm, [5].

Algorithm 2. Fuzzy Decision Tree Learning.
FDecisionTree(in : E, Fuzzy Partition; out : FDT )
begin

1. Assign χFuzzy Tree,root(e) = 1 to all examples e ∈ E with single class and replicate
the examples with set-valued class initializing their weights according to the available
knowledge about their classes.

2. Let A be the feature set (all numerical features are partitioned according to the Fuzzy
Partition).

3. Choose a feature to the split at the node N .

3.1. Make a random selection of features from the set A.
3.2. Compute the information gain for each selected feature using the values

χFuzzy Tree,N (e) of each e in node N taking into account the function μsimil(e)

for the cases required.
3.3. Choose the feature such that information gain is maximal.

4. Divide N in children nodes according to possible outputs of the selected feature in the
previous step and remove it from the set A. Let En be the dataset of each child node.

5. Repeat steps 3, 4 with each (En,A) until the stopping criteria is satisfied.

end

Algorithm 2 has been designed so that the FDTs can be constructed without con-
sidering all the features to split the nodes and maximum expansion. Algorithm 2 is an
algorithm to construct FDTs where the numerical features have been discretized by a
fuzzy partition. The domain of each numerical feature is represented by trapezoidal
fuzzy sets, F1, . . . , Ff so each internal node of the FDTs, whose division is based on a
numerical feature, generates a child node for each fuzzy set of the partition. Moreover,
Algorithm 2 uses a function, denoted by χt,N (e), that indicates the degree with which
the example e satisfies the conditions that lead to node N of FDT t. Each example e
is composed of features which can take crisp, missing, interval, fuzzy values belonging
(or not) to the fuzzy partition of the corresponding feature. Furthermore, we allow the
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class feature to be set-valued. These examples (according to the value of their features)
have the following treatment:

– Each example e used in the training of the FDT t has assigned an initial value
χt,root(e). If an example has a single class this value is 1. If an example has a set-
valued class, it is replicated with a weight according to the available knowledge
about the classes.

– According to the membership degree of the example e to different fuzzy sets of
partition of a split based on a numerical feature:
• If the value of e is crisp, the example e may belong to one or two children

nodes, i.e., μfuzzy set partition(e) > 0. In this case χt,childnode(e) =
χt,node(e) · μfuzzy set partition(e).

• If the value of e is a fuzzy value matching with one of the sets of the fuzzy
partition of the feature, e will descend to the child node associated. In this
case, χt,childnode(e) = χt,node(e).

• If the value of e is a fuzzy value different from the sets of the fuzzy partition of
the feature, or the value of e is an interval value, we use a similarity measure,
μsimil(·), that, given the feature “Attr” to be used to split a node, measures
the similarity between the values of the fuzzy partition of the feature and fuzzy
values or intervals of the example in that feature. In this case, χt,childnode(e) =
χt,node · μsimil(e).

• When the example e has a missing value, the example descends to each child
node nodeh, h = 1, . . . , Hi with a modified value proportionately to the
weight of each child node. The modified value for each nodeh is calculate
as χnodeh(e) = χnode(e) · Tχnodeh

Tχnode
where Tχnode is the sum of the weights of

the examples with known value in the feature i at node node and Tχnodeh is
the sum of the weights of the examples with known value in the feature i that
descend to the child node nodeh.

3.2 Fuzzy Random Forest Classification

The fuzzy classifier module operates on FDTs of the FRF ensemble using one of these
two possible strategies: Strategy 1 - Combining the information from the different
leaves reached in each FDT to obtain the decision of each individual FDT and then
applying the same or another combination method to generate the global decision of
the FRF ensemble; and Strategy 2 - Combining the information from all reached leaves
from all FDTs to generate the global decision of the FRF ensemble.

4 The Proposed Approach

The proposed approach is classified as a hybrid method with sequential backward elim-
ination on the subset of features obtained by the Filter method. Figure 1 shows the
framework of the proposed approach which consists of the following steps: (1) Scal-
ing and discretization process of the feature set; and feature pre-selection using the
discretization process; (2) Ranking process of the feature pre-selection using FRF en-
semble; and (3) Wrapper feature selection using a classification technique based on
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Fig. 1. Framework of the proposed approach

cross-validation. Moreover, in this framework (Figure 1), we want to emphasize that
in each step, the approach obtains information useful to the user (pre-selected feature
subset, ranking of the feature subset and optimal feature subset).

The main steps and algorithms are discussed in the following subsections.

4.1 Filter Method for Feature Pre-selection

Data Preprocess. Initially, the data are treated to the proper operation of the proposed
approach. We carry out a scaling and discretization.

The main advantage of scaling is to avoid features in greater numeric ranges domi-
nating those in smaller numeric ranges. Each feature is linearly scaled to the range [0,1]
by v′ = v−mina

maxa−mina
, where v is original value, v′ is scaled value, and, maxa and mina

are upper and lower bounds, respectively, of the feature a.
In [5], a method for the fuzzy discretization of numerical features is presented. The

aim of this method is to find optimized fuzzy partitions to obtain a high classification
accuracy with the classification techniques. The method makes use of two techniques:
a FDT and a Genetic Algorithm. This method consists of two stages: in the first one,
a FDT is used to generate a set of initial divisions in the numerical feature domains;
in the second one, a Genetic Algorithm is used to find a fuzzy partition by refining the
initial set of divisions, determining the cardinality, and defining their fuzzy boundaries.
A modification of this discretization method is used in our approach for the feature pre-
selection. The purpose of the change is to decrease the importance of this step in the
whole selection process and to increase the importance of step 2 as we explain below.

Obtaining a Set of Pre-selected Features. For steps (1), (2) and (3) of the framework
of the proposed approach, we use Fuzzy Random Forest [4] and FDT [4] learning tech-
niques. One of the characteristics of these two techniques is the need to have datasets
with numerical features discretized. They use the optimized partition obtained in the
previous preprocess. Note that in this discretization process some features may be dis-
cretized into a single interval.

Hence, these latter features can be removed without affecting the discriminating
power of the original dataset. Thus, after removing these features, we obtain a pre-
selection of the feature set. With this subset, we transform the initial dataset into another
dataset that contains only the pre-selected features.
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Obtaining a Larger Set of Pre-selected Features. As mentioned, in order to avoid
that the previous discretization process is responsible for removing a large amount of
features (all features partitioned in a single numerical interval), we have modified the
discretization process so as to provide a larger number of partitioned features that allow
the next step (ranking process) to be which determines the importance thereof.

The underlying idea is the following: in the first stage of the discretization process
proposed in [5], when a node is split, the feature with higher information gain is se-
lected. When several features have the same gain, the selection of one of them is ran-
dom. With a certain probability, unselected features are not partitioned and, therefore,
these features might not be part of the pre-selected set. We want to increase the probabil-
ity for these features can be part of the pre-selected set (because they may be interesting
features) and for this, the modification we make in the first stage of the dicretization pro-
cess consists of repeating it a number of times using each time a bagging of the dataset.
By repeating the process, we allow random selection of other features. By using the
bagging, we also introduce randomness into the tree construction.

The features obtained in this first stage along with their cut points are used as input
points to the second state (a genetic algorithm) of the discretization process proposed
in [5]. This genetic algorithm obtains the fuzzy partition of those features. We also
modify this algorithm to eliminate the possibility of removing certain features as part
of the optimization process.

Therefore, the features partitioned with these modifications of the process proposed
in [5], form the feature pre-selected set in step 1 of our proposal. Such partition con-
sists of a greater number of features, but includes the optimal partition provided by the
original version of the discretization process.

4.2 Ranking Process

From pre-selected feature subset and the corresponding dataset, we propose a measure
in order to calculate the importance of these features. This measure uses information
obtained by an FRF ensemble obtained from these data.

From the feature subset and the dataset obtained with the filter method, we apply FRF
technique. With the FRF ensemble obtained, Algorithm 3 describes how information
provided for each FDT of the ensemble is compiled and used to measure the importance
of each feature.

Algorithm 3. Information of the FRF technique.
INFFRF (in: E, Fuzzy Partition, T; out: INF)

Building the Fuzzy Random Forest (Algorithm 1)
For each FDT t=1 to T of the FRF ensemble

Save the feature a chosen to split each node N , number of examples ENa and the depth
of that node PNa, in INFa.
Obtain the classification accuracy Acct of the FDT t with its corresponding OOBt

dataset.
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More specifically, the information we get from each FDT t for each feature a is the
following:

– Number of examples of node N (ENa) where the feature a has been selected as
best candidate to split it.

– Depth level of node N (PNa) where feature a has been selected as best candidate
to split it.

– Classification accuracy Acct of FDT t when classify the dataset OOBt.

Algorithm 4 details how the information INF obtained from the FRF ensemble is
combined. pi is the weight we assign to a feature a depending on the place where it
appears in the FDT t. After the information is combined, the output of the algorithm
is a matrix (IMP ) where is stored for each FDT t and each feature a, the importance
value obtained in the FDT t for the feature a.

Algorithm 4. Combining information INF.

IMPFRF( in: INF, T; out: IMP)

For each FDT t=1 to T
For each feature a=1 to |A|

Repeat for all nodes N where feature a appears
If PNa = i then IMPta = IMPta + pi ·ENa, with i ≥ 0 and Prootnode = 0

For each feature a=1 to |A|
IMPta = IMPta−min(IMPt)

max(IMPt)−min(IMPt)

IMPta = IMPta · OOBt

The vector IMPt is ordered in descending order,
IMPtσt

where σt is the permutation obtained when ordering IMPt

The idea behind the measure of importance of each feature is using the features of
the FDTs obtained and the decision nodes built with them. One feature that appears at
the top of a FDT is more important in that FDT than another feature that appears in
the lower nodes. And, a FDT that has an classification accuracy greater than another to
classify the corresponding OOB (dataset independent of the training dataset) is a better
FDT. The final decision is agreed by the information obtained for all FDTs.

As a result of the Algorithm 4, we obtain for each FDT of FRF ensemble a ranking of
importance of the features. Specifically, we will have T rankings of importance for each
feature a. Applying an operator OWA, we add all into one ranking. This final ranking
indicates the definitive importance of the features.

OWA operators (Ordered Weighted Averaging) were introduced by Yager in 1988,
[25]. OWA operators are known as compensation operators. They are operators of ag-
gregation of numeric information that consider the order of the assessments that will be
added.
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Definition 1. Let Y = {y1, . . . , yn} be, with yi ∈ [0, 1], the set of assessments that we
want to add and W = {w1, . . . , wn} its associated weight vector, such that wi ∈ [0, 1],
with 1 ≤ i ≤ n, and

∑n
i=1 wi = 1. OWA operator, O, is defined as:

O(y1, . . . , yn) =

n∑
j=1

wj · bj
where bj is the j-th largest value in the set Y (B = {b1, . . . , bn} such that bi ≥ bj , if
i < j). �

When applying the OWA operator, we are considering every tree of the ensemble as
an expert giving his opinion about the importance of the problem variables. In our case,
we have T ordered sets. Given a weight vector W , the vector RANK represents the
ranking of the pre-selected features subset and is obtained as follows:

OWAIMPt = W · IMPtσt
, for t = 1, . . . , T

RANKa =

T∑
t=1

OWAIMPtσt(a), for a = 1, . . . , |A|

The vector RANK is ordered in descending order: RANKσ.

4.3 Wrapper for Feature Selection

Once the ranking of the pre-selected feature subset, RANKσ, is obtained, we have to
find an optimal subset of features. One option to search the optimal subset is by deleting
a single feature at a time until the specified criteria is fulfilled. The process starts from
the whole set of the pre-selected features and eliminates features sequentially backward
until the desired feature subset is achieved. We will eliminate the features with lower
value in the ranking obtained.

All feature subsets obtained by this process are evaluated by a machine learning
method. The dataset obtained from each subset of features is used to learn and test. We
use a machine learning method that supports low quality data with a process of cross-
validation. The subset with the highest classification accuracy value will be the optimal
feature subset obtained by the proposed approach.

5 Experimental Results

5.1 The Datasets and the Experimental Setup

The proposed approach is going to evaluate by means of experiments on some datasets
selected from the UCI machine learning repository [1]. The datasets used to test the
proposed approach are summarized in Table 1. We have included in these datasets a
10% of fuzzy values. This percentage does not affect to the class feature.

Table 1 shows the number of examples (|E|), the number of features (|A|) (in brack-
ets, numerical and nominal features) and the number of classes (I) for each dataset.
Column F indicates that each dataset contains fuzzy values. “Abbr” indicates the ab-
breviation of the dataset used in the experiments.

The experimental parameters are the following:
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Table 1. Datasets

Dataset Abbr |E| |A| I F

Australian credit AUS 690 14 (6-8) 2 Y
Ionosphere ION 351 34 (34-0) 2 Y
Iris Plant IRP 150 4 (4-0) 3 Y
Sonar SON 208 60 (60-0) 2 Y
Wis. Br. Cancer (org) WBC 699 9 (9-0) 2 Y

– Parameters of the FRF ensemble (Algorithm 1):
• Size of the ensemble: 500 FDTs
• Random selection of features from the set of available features:

√|A|
– Vector to combine the information of INF (Algorithm 4):

p = (1,
6

7
,
2

3
,
2

4
,
2

5
,

2

PNa + 1
, . . .)

with PNa the depth of node N which contains the feature a. Vector values are
defined inversely proportional to the depth of the considered node, relaxing the
decrease between levels.

– Normalized weights vector for calculating OWAIMP : W = (1, 12 , . . . ,
1
|A|). This

vector defines a standard preference relation when using these operators.
– In wrapper selection:

• A 3×5-fold cross-validation is used to evaluate the performance of the feature
selection.

• A FRF ensemble with 200 trees is used as machine learning method.

5.2 Evaluation of the Classification Performance

This experiment is designed to evaluate the performance of the proposed approach with
low quality data. In order to evaluate the obtained results we use the classification ac-
curacy (number of successful hits relative to the total number of classifications). In par-
ticular, we calculate the average classification accuracy of a 3×5-fold cross-validation
test using an FRF classifier with 500 trees.

In addition, we are going to show the ratio of reduction in the features selection.
This ratio of reduction is calculated as re rate = 1 − #fe

|A| , where #fe is the number
of selected features.

Table 2 indicates the percentage of average classification accuracy (mean and stan-
dard deviation) for training and test data. These accuracy values are obtained for the
initial dataset (Unselect) and for the dataset with the optimal selected feature subset
retrieved by the proposed approach. Moreover, in each case we show the average of
selected features of the dataset, the average percentage of the reduction ratio and the
p-values obtained when comparing the results with both training and test data.

To obtain these p-values, we make an analysis of results using the Wilcoxon signed-
rank non-parametric test. This test is a pairwise test that aims to detect significant differ-
ences between results. Under the null hypothesis, it states that the results are equivalent,
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Table 2. Results

Unselect Opt. Selection

% train %test #fe %train %test #fe red.rate p-valuetrain p-valuetest

AUS 100.00.00 86.713.43 14 94.460.45 85.853.38 4.73.79 66.7 0.00108 0.06345
ION 99.170.14 94.113.84 34 98.720.40 94.402.61 13.36.03 60.8 0.27120 1.00000
IRP 97.610.74 96.673.01 4 96.001.09 96.004.35 2.00.00 50.0 0.00097 0.05349
SON 100.00.00 84.137.18 60 100.00.00 84.626.43 15.75.86 73.9 1.00000 0.20520
WBC 99.490.13 95.901.14 9 98.390.27 95.521.54 5.32.08 40.7 0.00134 0.39140

so a rejection of this hypothesis implies the existence of differences in the classification
accuracy.

Table 2 shows that results obtained with the selected features are similar to those ob-
tained with the datasets with all features. Analyzing the p-values with training datasets,
with α = 0.05, we can conclude that there are significant differences in datasets AUS,
IRP and WBC. The best results are obtained by working with all the features (Unselect).
Analyzing the p-values obtained with the test datasets, with α = 0.05, we can conclude
that there are not significant differences in the results obtained when using all features
or only the selected ones. Overall analysis of these results we can observe that the ac-
curacy difference between the test and training data when working with all features is
greater than when working with the selected features. This indicates a greater “overfit-
ting” of the technique when working with all the features and explains that better results
are obtained by working with all the features in the training datasets. In addition, we
can add that the reduction rate is highly significant with an average value of 58.42%.

6 Remarks and Conclusions

Feature selection is one of the main issues in machine learning and more specifically in
the classification task. An appropriate feature selection has demonstrated great promise
for enhancing the knowledge discovery and models interpretation.

There are a variety of methods in literature to perform feature selection. But, most
feature selection methods assume that data are expressed with values without explicit
imprecision and uncertainty. However, explicit imprecision and uncertainty in the data,
leading to low quality data may appear in a variety of problems. Researchers are mak-
ing a significant effort to incorporate the processing of data with imprecision and un-
certainty in different areas of machine learning: methods of classification/regression,
discretization methods, etc.

We have proposed a feature selection method that, working within the framework of
the fuzzy logic theory, is able to deal with low quality data.

The proposed approach is classified as a hybrid method that combines the filter and
wrapper methods. The framework consists of the following steps: (1) Scaling and dis-
cretization process of the feature set; and feature pre-selection using the discretization
process; (2) Ranking process of the feature pre-selection using a Fuzzy Random Forest
ensemble; and (3) Wrapper feature selection using a classification technique based on
cross-validation. This wrapper method starts from the complete set of the pre-selected
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features and successively eliminates features until the desired feature subset is achieved.
We eliminate the feature with the lowest ranking obtained. Subsets of features obtained
by this process are evaluated using an FRF ensemble.

In each step, the approach obtains information useful to the user: pre-selected feature
subset, ranking of the feature subsets and optimal feature subset.

The experiments were designed to evaluate the performance of the proposed ap-
proach with low quality dataset. The results indicate that the optimal feature subset
selected by the proposed approach has a good classification performance when work-
ing with low quality datasets. Proposed approach retrieves a smaller number of features
that achieve a better performance than the unselect. According to our results, we believe
that it is interesting to follow this line of work.
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Abstract. Neurons as active unities are connected one with the others by syn-
apses in an electronic way. Each neuron as N port electronic medium scatters 
input waves and transmits output waves to other neurons. By voltage waves 
each neuron interacts with the others in a complex way. Scattering processes 
create dependence among neurons. We show that a multi pendulum mechanical 
system can be a simple model to represent complex dependence among neu-
rons. With the multi pendulum synchronization we show that a suitable geome-
try and geodesic dynamic can be found. We know that neuron network is an 
electronic network for which power is a metric (electronic distance ) in the 
space of the currents or in the space of the voltages. The power of electronic 
system is given by the impedance matrix or by admittance matrix that model the 
type of electronic geometry and entanglement. In conclusion multi pendulum , 
quantum entanglement and electronic system are useful models to show in a 
geometric way how neural dynamic can be controlled by conceptual reference 
transformation ( geometry change ) and why synchronic processes are possible 
in the neural network dynamics. 

Keywords: Conceptual Intention, Conceptual Transformation, Neuron Equiva-
lent Electrical Circuit, Scattering Matrix, Transfer Matrix, Impedance Matrix, 
Power as Metric, Conceptual Tensor Metric or Intention, Geodesic, Geometry, 
Coherence in between Conceptual and Physical Domain, Wave Reflection and 
Transmission in Neural Network, Multi Pendulum System. 

1 Introduction 

This work studies a possible mathematical formulation of intentional brain dynamics 
following Freeman’s half century-long dynamic systems approach [1]. In 1980 an 
artificial neural network was built that works but has high precision components, slow 
unstable learning, it is non adaptive and needs an external control. Now we want low 
precision components, fast stable learning, adapt to environment and autonomous. 
How can we get this? We can make dynamical components, add feedback (positive & 
negative) and close the loop with the outside world. The ordinary differential equa-
tions or ODEs to control the neural dynamic are a stiff and nonlinear system. Why not 



248 G. Resconi and R. Kozma 

 

just program this on a computer? We know that stiff and nonlinear dynamical systems 
are inefficient on a digital computer. An example is the IBM Blue Gene project with 
4096 CPUs and 1000 Terabytes RAM, which, to simulate the Mouse cortex uses 8 
106 neurons, 2 1010 synapses 109 Hz, 40 Kilowatts and digital. The brain uses 1010 
neurons, 1014 synapses 10 Hz and 20 watts. analogue system is more efficient than 
digital by many orders of magnitude. Snider (2008) suggests to use analogue electrical 
circuit denoted CrossNet or neuromorphic computing with memristor to solve the prob-
lem of the neural computation. Let’s recall that for Turing the physical devise is not 
computable by a Turing machine, which is the theoretical version of the digital compu-
ter. Carved, [3] suggests that the physics or analogue computer is more efficient to solve 
the neural network problem. In fact, for analogue system we do not have algorithms to 
program the neurons. Rather, the digital program is substituted by the dynamics in the 
analogue computer. We can program the CrossNet electrical system to compute the 
parameters useful to generate the desired trajectories to solve problems. Physical de-
scription of the intentionality is beyond any algorithmic or digital computation. To clari-
fy better the new computation paradigm, we can refer the following principle: “Animals 
and humans use their finite brains to comprehend and adapt to infinitely complex envi-
ronment.” Kozma, [1] we show that this adaptive system has a mode description by 
neurons as multi pendulum system and electrical circuit with scattering and transmit-
tance. The behaviour of electrical circuit is controlled by geometric interpretation of 
currents and voltages. The Freeman conceptual intension is given by conceptual trans-
formation of the reference (change of geometry). Any conceptual reference change is 
implemented in the electronic system by the matrix Z that define the geodesic in the 
current space as line of constant power. With the multi pendulum neural simulator we 
show that is possible to define the geodesic ODE (ordinary differential equation) in the 
simple way. We can be also obtained by the Euler Lagrange equation or by Hamiltonian 
equations the same equations. Lines with constant power are geodesic in the electronic 
system. Now because power depend on the sources and not on the particular impedance 
matrix any geodesic dynamic is the natural behaviour of the particular electronic system 
that model neural network as biological realization of the electrical circuit. Natural 
ODE which solution are given by natural biological behaviour is a geodesic ODE which 
geometry is given by conceptual reference changes. 

2 Geometry and Dynamics in Mechanical Systems 

To understand the meaning of geometry in the neural dynamical process, we study the 
mechanical dynamic transformation when we change the two dimension space refer-
ence from ordinary Cartesian coordinates ( x, y ) into polar coordinates ( r , α ) by 
pendulum system To understand the meaning of geometry in the neural dynamical 
process, we study the mechanical dynamic transformation when we change the two 
dimension space reference from ordinary Cartesian coordinates (x, y) into polar coor-
dinates ( r , α ) by pendulum system. 

2.1 Simple Pendulum and Change of Variables 

Given the simple pendulum in figure 1. 



 Geometric Syncronisation by Multi-pendulum and Electronic Models 249 

 

 

Fig. 1. Simple pendulum 
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In a graphic way we have 

 

Fig. 2. Velocity in polar coordinates 
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and also the reverse connection matrix 
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Now we compute the expression of the same intensity of velocity in the polar refer- 
ence and in the cartesian reference and 
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Kinetic energy T of the pendulum with r = constant  
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moment for a point with mass m. We remember that the inertial momentum M in the 
polar coordinates substitutes the mass m in the cartesian reference. The velocity in 

polar coordinates is 
d

v r
dt

α
=  

In this example we show that the kinetic energy expression, as we know, changes 
with the change of the reference. Because the Lagrangian expression is 
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Now given the general expression of the kinetic energy 
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we show that the Kinetic energy and the metric for the change of reference is the  
scalar product of two variables : one is the velocity and the other is the kinetic mo-
mentum. The velocity can be considered as the flux and the momentum as the force. 
In the pendulum natural dynamics the energy is invariant, so the pendulum movement 
has a geodetic as trajectory. Now for the general form of kinetic energy 
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In this way we can give a more general interpretation of the kinetic momentum as 
dual variable of the velocity in classical mechanics. 

2.2 Double Pendulum 

 

Fig. 3. Double pendulum 

To model a chain or path of pendulums ( neurons ) we use two main transformations: 
one is the set of multidimensional rotations and the other is the set of geometric trans-
lations. For simplicity we use the two dimension image. 
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We remark that the new mass matrix JT M J for the double pendulum is not diagonal 
but has cross elements that correlate variables. So we have the form of the kinetic 
energy 

2 2 2 21 1 2 2

1 1 2 2

1
( ) ( ) ( ) ( )

2
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T m m m m

dt dt dt dt
= + + +  

1 2 2
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dt dt dt dt
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g m L g m L m m L L m

g m L L L m

β

β
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where g1,2 is the entangled bond between the two connected pendulum in the double 
pendulum. When we join two oscillators in one double oscillator the metric in the 
geometric space of the velocity moves from flat geometry where the cross term in the 
metric tensor is equal to zero to space with curvature where the cross term 

2cos( ) 22 1 2 2 2m L L L mβ +  

is different from zero. This means that we have a dependence between the two oscilla-
tors ( synchronisation or entanglement ).The correlate double pendulum system dy-
namics can generate this chaotic situation. 

 

Fig. 8. Double pendulum and chaotic behaviour 

Now for the previous chapter we can compute the mechanical momentum  

,
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p g g v v J v
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where J is the Jacobian and the vγ the velocity in the Cartesian reference. With the 
conjugate variables we can compute the mechanical impedance, the mechanical trans-
fer matrix and the mechanical scattering matrix. In fact for the impedance matrix we 
have 

, ,
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where p1 and p2 are the kinetic momentum , and v1 , v2 are the velocity of the masses 
m1 and m2 in the double pendulum. 

In a graphic way we have 

 

Fig. 9. Mechanical port with momentum and velocity 

To find the relations among the previous matrices we make this computation 
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When we solve the system for the transfer matrix we have the relation between the 
transfer matrix and the impedance matrix. Now we can also find the relation between 
the scattering matrix and the impedance matrix in this way. 
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Fig. 11. A network of two ports where each of them can be a neuron 

2.3 Mechanical Dynamical System by Geodesic 

Now given the Newton equation in the Cartesian reference for the pendulum 
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the trajectory in the Cartesian coordinates is not a straight line. Now when we change 
the reference we ask where the dynamical equation is. Now 
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The same computation is made for the force in the y direction 
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that are the connection between the old reference (x,y) and the new reference ( r , α) 
of the pendulum . We can see that in the new reference the dynamical equation is not 

equal to the Newtonian equation given by 
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When the forces are zero the trajectory of the mass is a geodesic ( inertial movement ) 
and the Newton law is 
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We have the new system of equations 
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For the single pendulum we have 
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Where Γ are the Christoffel synbols.When the vectors of the inertial forces are zero 

0

0

Fr
Fα

=
=

 
  

 we come back to the Newtonian equation. In this case we have the geodes-

ic equation for which 
ds

C
dt

=  

3 Brain as an Electronic System Like Quantum Computer 

Because the brain is a complex electrical circuit with capacity and non linear resistors, 
a network of neurons or an electronic network is a general transformation or MIMO. 

 

Fig. 12. Electronic model of neuron 

The instrument to match intentionality with the electrical circuit is the metric 
geometry of the brain state space or electrical charge space. The metric geometry in 
the state space can be obtained by the instantaneous electrical power p in the current 
space or in voltage space. For the linear form we have the expression of the power.

2( ) , ,, ,

ds j ji iPower Z i i g i ii j i ji j i jdt
= = =   where ,Zα β  are the conductance matrix 

and the impedance matrix, and i are the currents of the electronic circuit. For more 
information see Resconi Licata [5]. For the geodesic representation of the neural en-
tanglement we can compare electronic system, double pendulum and neural network 
to the quantum computer. 

4 Conclusions 

In this paper we present the geometric syncronic multi-pendulum as the mechanical 
analogy to study the geometric structure of the neurodynamic by geodetic and 
impedance connection. 
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Abstract. The paper presents an innovative approach to the problem of the
wheeled mobile robots formation behavioural control with use of artificial intel-
ligence algorithms. The control task is solved by application of adaptive dynamic
programming algorithms in the hierarchical control system, that generates the
collision free trajectories in the unknown 2D environment for all agents in the
formation, and realises generated trajectories using tracking control algorithms.
The hierarchical control system consists of three layers: the trajectory generator,
the wheeled mobile robots formation control system and tracking control systems
for individual agents. The trajectory generator presents the new approach to the
behavioural control, where one neural dynamic programming algorithm gener-
ates the behavioural control signals that make possible to compute the trajectory
for realisation of the complex task, which is a composition of two individual
behaviours: “goal-seeking”and “obstacle avoiding“. Computer simulations have
been conducted to illustrate the path planning process.

Keywords: Adaptive Dynamic Programming, Behavioural Control, Neural
Network, Mobile Robots Formation, Reactive Navigation, Tracking Control.

1 Introduction

The development of the technology allows to design large constructions and built them
faster, often using large-sized prefabricated products and machine elements. It leads
to the problem of large-sized objects transportation, which is difficult to solve and ex-
pensive in realisation. It requires to use suitably large transport facilities or a group of
small cooperating devices. The second conception seems to be more adequate, but is
more difficult to apply. The transporters cooperating in a formation in the large-sized
load transportation task can be also useful after fulfilling the task, but the cooperation of
human operators is not always suitable and can lead to dangerous situations. This prob-
lem can be solved by using autonomous group of mobile robots, moving in a definite
formation with precisely determined position of individual agents in the formation.

The tracking control task of the wheeled mobile robot (WMR) is difficult to solve,
because its dynamics is described by the non-linear equations, and parameters of the
WMR can change during the transportation task. The problem of not known or chang-
ing parameters of the WMR dynamics model in the tracking control task, is often solved

c© Springer International Publishing Switzerland 2014 263
K. Madani et al. (eds.), Computational Intelligence,
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by application of adaptive methods in the tracking control system, like modern Artifi-
cial Intelligence (AI) algorithms, especially Artificial Neural Networks (NNs). The sec-
ond problem is to coordinate the movement of all agents, that form the wheeled mobile
robots formation (WMRF), to successively complete the large-sized transportation task.
This type of problem can be solved by using virtual structure algorithms [3,13]. The
third problem concerns the conception of sensor-based navigation in generating the tra-
jectory of the WMRF in the unknown environment with static obstacles [1,4,11,12,18].
This task is often solved by deriving inspiration from the wold of animals in a form of
behavioural methods of WMRF control [19].

The development of AI methods, like NNs, allowed to apply Bellman’s Dynamic
Programming (DP) idea in the form of Adaptive Dynamic Programming (ADP) algo-
rithms [14,15,16,17], that proved to be very efficient in the control tasks. In the article,
the hierarchical control system with ADP algorithms is presented. It consists of three
main layers: the highest is the navigator, that generates the desired trajectory of the
WMRF, the middle layer is the robots formation control system, that generates desired
trajectories for all agents, and the lowest layer consists of the individual tracking control
systems for all agents.

The results of scientific researches presented in the article are the continuation of au-
thors’ earlier works related to the WMR tracking control problem [5,8,9], the WMRF
control [2,7] and the trajectory generating process in the unknown 2D environment [10],
where were used different AI algorithms. The article is organised as follows: the first
section is an introduction to the WMRs control problem, connected with the tracking
control, the WMRF control and path planning problems. The second section contains
description of the WMR, including kinematics, dynamics and conception of the move-
ment in formation. The third section includes basic information about ADP algorithms,
the next section presents hierarchical control system, where are detailed description of
the navigator, the WMRF control system and the tracking control system. Section five
contains results of the numerical test. The last section summarises the article.

2 Wheeled Mobile Robots Formation

The WMRF consists of m WMRs, in the theoretical studies there are used models of
the two-wheeled mobile robot AmigoBot. The j-th WMR Amigobot, schematically
shown in Fig. 1, consists of two driving wheels (1 and 2), a third, free rolling castor
wheel (3) and a frame (4), j = 1, . . . ,m. It has eight ultrasonic range finders s1, . . . , s8
for obstacles detection. Angles between axes of ultrasonic range finders and the axis
of the frame of Amigobot are equal ω1 = 144◦, ω2 = 90◦, ω3 = 44◦, ω4 = 12◦,
ω5 = −12◦, ω6 = −44◦, ω7 = −90◦, ω8 = −144◦, the range of individual range
finder measurements is equal to di, i = 1,. . . ,8, and the maximal range dmx = 4 [m].
Its movement is analysed in the xy plane [5].

2.1 Kinematics of the Wheeled Mobile Robot

The joint coordinates of the j-th WMR in the formation were assumed in the form

q(j) =
[
x
(j)
A , y

(j)
A , β(j), α

(j)
[1] , α

(j)
[2]

]T
, where x

(j)
A , y(j)A – the coordinates of the point A
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Fig. 1. Scheme of the j-th two-wheeled mobile robot Amigobot

of the j-th WMR’s frame, β(j) – the angle of the self-turn of the j-th WMR’s frame,
α
(j)
[1] , α(j)

[2] – angles of the self-turn of driving wheels 1 and 2. The non-holonomic con-
strains of the j-th WMR takes the form [5]

J (j)
(
q(j)

)
q̇(j) = 0 , (1)

where J (j)
(
q(j)

)
– the j-th WMR’s Jacobian matrix, assumed in the form

J (j)
(
q(j)

)
=

[
1 0 l1 cos

(
β(j)

) −r cos (β(j)
)

0
0 1 −l1 sin

(
β(j)

)
0 −r sin (β(j)

)] , (2)

where l1 – a dimension, that derives from the WMR geometry, r[1] = r[2] = r – a radius
of the driving wheel.

The kinematics of the j-th WMR is described by the equation⎡⎢⎣ ẋ
(j)
A

ẏ
(j)
A

β̇(j)

⎤⎥⎦ =

⎡⎣v∗A cos
(
β(j)

)
0

v∗A sin
(
β(j)

)
0

0 β̇∗

⎤⎦[
u
(j)
v

u
(j)
β

]
, (3)

where v∗A – a maximal defined velocity of the point A, β̇∗ – a maximal defined angular

velocity of the self-turn of the WMR’s frame, u(j)
T =

[
u
(j)
v , u

(j)

β̇

]T
– control signals

of the trajectory generator. The presented WMR AmigoBot can be used to create the
multi-robot formation with localisation of the individual robot in formation determined
by the type of a realised task. Typical examples of formations are: a column, a line, a
triangle or a diamond.

2.2 Dynamics of the Wheeled Mobile Robot

The dynamics of the WMR can be modelled using different mathematical formalisms,
e.g. the Lagrange’s equations, the Appel’s mathematical formalism or the Maggie’s
mathematical formalism. In the presented article the model of the j-th WMR in the
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formation was obtained by applying the Maggie’s mathematical formalism [5,6], and
assumed in the form

M (j)α̈(j) +C(j)
(
α̇(j)

)
α̇(j) + F (j)

(
α̇(j)

)
+ τ

(j)
d = u(j) , (4)

where M (j) – the positive definite inertia matrix of the j-th WMR, C(j)
(
α̇(j)

)
α̇(j)

– the vector of torques derived from the matrix of Coriolis and centrifugal forces,

F (j)
(
α̇(j)

)
– the vector of rolling resistances, α̇(j) =

[
α̇
(j)
[1] , α̇

(j)
[1]

]T
– the angular

velocities vector of driver wheels 1 and 2, τ (j)
d – the vector of bounded disturbances,

u(j) =
[
u
(j)
[1] , u

(j)
[2]

]T
– the vector of tracking control signals.

Using Euler’s derivative approximation and the discrete state vector

z
(j)
{k} =

[
z
(j)T
1{k}, z

(j)T
2{k}

]T
for the j-th WMR, where z(j)

2{k} =
[
z
(j)
2[1]{k}, z

(j)
2[2]{k}

]T
corre-

sponds to the vector of continuous angular velocities α̇(j) =
[
α̇
(j)
[1] , α̇

(j)
[2]

]T
, a discrete

notation of the WMR dynamics is assumed in the form

z
(j)

1{k+1} = z
(j)

1{k} + z
(j)

2{k}h ,

z
(j)
2{k+1} = −M (j)−1

[
C(j)

(
z
(j)
2{k}

)
z
(j)
2{k} + F (j)

(
z
(j)
2{k}

)
+ τ

(j)
d{k} − u

(j)
{k}

]
h+ z

(j)
2{k} ,

(5)
where h – a time discretization parameter, k – an index of iteration steps.

2.3 Kinematics of the Wheeled Mobile Robots Formation

The WMRF, that consists of m WMRs, is schematically shown in Fig. 2.
In the presented scientific researches was used the WMRF where m = 3 agents

form a virtual structure of the equilateral triangle. Every single WMR is equipped
with eight ultrasonic range finders, for obstacles detection. Range finders of the j-th
WMR are denoted by s

(j)
1 , . . . , s

(j)
8 , and measurements by d

(j)
[1]{k}, . . . , d

(j)
[8]{k}. Not all

range finder signals are used by the trajectory generator, they are grouped to obtain

normalised distances to the obstacles in the front of the WMRF
(
d∗F{k}

)
, on the right

side
(
d∗R{k}

)
and on the left side

(
d∗L{k}

)
of the WMRF. The method of normalising

distances to the obstacles is described in the section devoted to the trajectory gener-

ator. A(j)
(
x
(j)
A{k}, y

(j)
A{k}

)
are coordinates of the j-th WMR’s point A. The point M

is a central point of the WMRF, βM{k} is the angle of the WMRF’s virtual structure
self–turn.

3 Adaptive Dynamic Programming

The development of AI algorithms allowed to apply Bellman’s DP idea in a form of
Approximate Dynamic Programming (ADP) algorithms, to problems of the dynamical
systems control in on-line processes. ADP algorithms are realised in a form of two
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Fig. 2. The wheeled mobile robots formation scheme

adaptive structures called: the actor and the critic. They are also known as Adaptive
Critic Designs (ACDs) [14,15,16].

In the original problem of the DP, the value function V and the control signal u are
computed for all possibles discrete states of the controlled system, for every iteration
step, starting from the last step, to the first step. This feature of the DP makes on-
line real time control of the dynamical systems impossible, apart from computational
complexity. In the DP the value function V is applied to quality assessment of the
generated control signal u, what makes possible to chose the optimal control signal
from the range of feasible control signal values. In the ADP, the critics approximates
the value function and can be realised in the form of every adaptable structure, like NN.
Depending on assumed initial conditions (NN’s initial weights), at the beginning of the
control process, the estimation of the control signal generated by the actor’s NN can
be inadequate. But due to the weights adaptation process, the critic’s signal tends to
the optimal value function, and, as the result, the actor’s NN control signal tends to the
sub-optimal control law. This type of NN learning is called the Reinforcement Learning
(RL) [15,16], and can be applied in the real time.

The ADP algorithms family, schematically shown in Fig. 3, consists of:

– Heuristic Dynamic Programming (HDP) - the critic estimates the value function,
the actor generates the sub-optimal control law.

– Dual Heuristic Programming (DHP) - the critic estimates the derivative of the value
function with respect to the state, the actor generates the suboptimal control law.
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Fig. 3. The family of Adaptive Dynamic Programming algorithms

– Global Dual Heuristic Programming (GDHP) - the critic estimates the value func-
tion and its derivative with respect to the state, the actor generates the suboptimal
control law.

The rest of the ADP family are the Action Dependant (AD) versions of the algorithms
discussed above, where the control signal of the actor’s NN is a part of the critic’s NN
input vector, besides the state x of the process. All of the ADP family algorithms require
the mathematical model of the controlled system to derive the weights adaptation law
of the actor, the critic or both, except the ADHDP algorithm.

4 Hierarchical Control System

The hierarchical control system consists of three main layers. The first layer consists of
m tracking control systems for individual agents. The robots formation control system
is the second layer, that generates desired trajectories for all agents. The highest layer is
the navigator, that generates the desired trajectory of the pointM of the virtual structure.
Scheme of the hierarchical control system is shown in Fig. 4.

4.1 Navigation of the Wheeled Mobile Robots Formation

The navigator consists of the discrete ADHDP structure and the proportional (P) con-
troller. The ADHDP structure is adapted on-line using a RL idea, that bases on the
iterative interaction with the environment. The ADP algorithm searches for the optimal
action to take. Performing this action minimises the assumed cost function. The pre-
sented construction of the navigator is an innovative approach to the trajectory generat-
ing process, it uses the P regulator in the navigator to indicate ADP structure adequate
control signal at the beginning of the adaptation process to limit exploration and avoid
the trial and error learning.

The navigator presents a new approach, where one ADP algorithm generates the
control signal for the complex behaviour, which is a composition of two individual
behaviours: the “obstacle avoiding”(OA) and the “goal-seeking”(GS).

The overall discrete navigator’s control signal uT{k} =
[
uTv{k}, uT β̇{k}

]T
is com-

posed of two control signals. The first of them (uTv{k}) controls the desired velocity of
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the point M of the virtual structure. The second (uT β̇{k}) corresponds to the angular

velocity of the WMRF’s self-turn β̇M{k}. The overall control signal of the navigator
uT{k} is a sum of control signals generated by two structures: the actor-critic ADHDP
structure (uTA{k}) and the P regulator (uTP{k}). It is assumed in the form

uT{k} = uTA{k} + uTP{k} , (6)

where

uTP{k} = KT eT{k} =

[
kTv 0 0
0 kTO kTG

]⎡⎣ ev{k}
eO{k}
eG{k}

⎤⎦ , (7)

and KT – the fixed matrix of proportional gains, eT{k} – the vector of trajectory gen-
erating layer errors.

The errors were assumed in the form

ev{k} = f
(
d∗F{k}

)
f
(
lG{k}

)− vA{k}/v∗A,
eO{k} = d∗R{k} − d∗L{k},
eG{k} = ϕG{k} − βM{k} ,

(8)

where f (.) – a sigmoidal bipolar function, d∗F{k} = min
(
d
(j)
[4]{k}, d

(j)
[5]{k}

)
/dmx – the

normalised distance to the obstacle in the front of the WMRF, d(j)[i]{k} – range of the

i - th range finder (s(j)i ) of the j-th WMR in the formation, lG{k} – the distance be-
tween the point M and the point G, vM{k} – the realised velocity of the point M of the
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virtual structure, v∗M – the maximal defined velocity of the point

M , dL{k} = min
(
d
(1)
[3]{k}, d

(2)
[3]{k}

)
, dR{k} = min

(
d
(1)
[6]{k}, d

(3)
[6]{k}

)
,

d∗L{k} = 2
[(
dL{k}/

(
dL{k} + dR{k}

))− 0.5
]

– the normalised distance to the ob-

stacle on the left side of the WMRF, d∗R{k} = 2
[(
dR{k}/

(
dL{k} + dR{k}

))− 0.5
]

–
the normalised distance to the obstacle on the right, βM{k} – the temporal angle of the
self-turn of the virtual structure, eG{k} – the temporal angle between the x axis and the
line pG.

The main objective of the ADP structure in ADHDP configuration is to generate
control signals, that minimises the value functions Vv{k} and Vβ̇{k} assumed in the
form

Vv{k} =
n∑

k=0

γkLCv{k}
(
ev{k}, uTv{k}

)
,

Vβ̇{k} =
n∑

k=0

γkLCβ̇{k}
(
eG{k}, eO{k}, uT β̇{k}

)
,

(9)

where n – the last step of the finite discrete control process, γ – a discount factor (0 <
γ ≤ 1), LCv{k}

(
ev{k}, uTv{k}

)
– the cost function in step k for the first control signal,

also called the local cost, LCβ̇{k}
(
eG{k}, eO{k}, uT β̇{k}

)
– the local cost in step k for

the second control signal of the navigator.
The ADHDP algorithm does not require a mathematical model of the controlled

process to derive the actor’s and critic’s NN weights adaptation law. This future of the
ADHDP algorithm allows to use it in control tasks, where the mathematical model is
unknown, like in the problem of trajectory generating in the unknown environment.

The local costs LCv{k}
(
ev{k}, uTv{k}

)
and LCβ̇{k}

(
eG{k}, eO{k}, uT β̇{k}

)
were

assumed in the form

LCv{k}
(
ev{k}, uTv{k}

)
= 1

2Rve
2
v{k} +

1
2Qvu

2
Tv{k},

LCβ̇{k}
(
eG{k}, eO{k}, uT β̇{k}

)
= 1

2RGe
2
G{k} +

1
2ROe

2
O{k} +

1
2Qβ̇u

2
T β̇{k} ,

(10)

where Rv , RG, RO, Qv, Qβ̇ – fixed, positive defined scaling rates.
The ADHDP structure consists of:

– the critic, realised in the form of two RVFL (Random Vector Functional Link) NNs,
that estimates the sub-optimal value functions (9), and generates signals

V̂v{k} = W T
TCv{k}S

(
xCv{k}

)
,

V̂β̇{k} = W T
TCβ̇{k}S

(
xCβ̇{k}

)
,

(11)

where W TCv{k}, W TCβ̇{k} – vectors of the critic NNs’ output-layer weights,
S (.) – a vector of sigmoidal bipolar neurons activation functions, xCv{k}, xCβ̇{k}
– input vectors to the critic NNs. The input vectors to the critic NNs consists of
adequate scaled errors and control signals. Critics’ weights are adapted by the back
propagation method of the Temporal Difference error [14,15,16].
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Schematic structure of the critic’s V̂v{k} RVFL NN is shown in Fig. 5.a), whereDC

– a matrix of fixed input weights, randomly generated in the initialization process,
N – the number of neurons, P – the number of inputs.

– the actor, realised in the form of two RVFL NNs, generates the control laws uTAv{k}
and uTAβ̇{k}, according to equations

uTAv{k} = W T
TAv{k}S

(
xAv{k}

)
,

uTAβ̇{k} = W T
TAβ̇{k}S

(
xAβ̇{k}

)
,

(12)

where W TAv{k}, W TAβ̇{k} – vectors of actor NNs’ output-layer weights, xAv{k},
xAβ̇{k} – input vectors to the actor NNs.

The schematic structure of the ADHDP algorithm used in the navigator is shown

in Fig. 5.b), where V̂T{k} =
[
V̂v{k}, V̂β̇{k}

]T
. The discrete control system with the

navigator built using ADHDP algorithm in the path planning task of the WMR, was
described in detail in [10].

4.2 Multi-robot Formation Control System

The WMRF control system bases on the idea of the virtual structure with the centre in
point M (xM{k}, yM{k}), and orientation defined by angle βM{k}. Position and orien-
tation of the virtual structure change according to the control signals of the navigator
(uTv{k} and uT β̇{k}), which depend on the environment conditions and localisation of
the goal.

Positions of characteristic points of the virtual structure A
(j)
d , are traced by the

WMRs pointsA(j) in the way, that the j-th WMR’s pointA(j)(x(j)
A{k}, y(j)A{k}) is going to

achieve in the next iteration step the desired position A
(j)
d (x(j)

Ad{k}, y(j)Ad{k}) computed
on the basis of the virtual structure position and orientation. Determined trajectories
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(j)
d{k}

guarantee minimisation of errors δ
(j)
L{k} and ψ

(j)
d{k}, what results in the trajectories, in

which the point A(j) of the j-th WMR traces the point A(j)
d of the virtual structure. The

idea of formation control is shown in Fig. 6.
The WMRF control signals were assumed in the form

u
(j)
Fv{k} = kF1δ

(j)
L{k} cos

(
ψ
(j)
d{k}

)
,

u
(j)

Fβ̇{k} = kF1 sin
(
ψ
(j)
d{k}

)
cos

(
ψ
(j)
d{k}

)
+ kF2ψ

(j)
d{k} ,

(13)

where kF1, kF2 – positive constants. The presented formation control system was dis-
cussed in detail in [2,7].

On the basis of the WMRF control signals u(j)
Fv{k} and u

(j)

Fβ̇{k} were computed an-

gular velocities of j-th WMR proper wheels according to equation[
z
(j)
d2[1]{k}
z
(j)
d2[2]{k}

]
=

1

r

[
v∗M β̇∗l1
v∗M −β̇∗l1

] [
u
(j)
Fv{k}

u
(j)

Fβ̇{k}

]
, (14)

where v∗M – a maximal define velocity of the point M , β̇∗ – a maximal defined angular
velocity of the WMR’s frame self-turn. The trajectory generated for the j-th agent was
realised using the neural tracking control system with DHP structures.

4.3 Tracking Control System

The j-th discrete neural tracking control system realises the trajectory generated for an
individual agent. It generates control signals for the WMR driving systems. Realisa-
tion of the tracking control signals allows the point A(j) of the j-th WMR to keeps its
position in the virtual structure of the WMRF. The neural tracking control system was
described in detail in [8], it uses ADP algorithm in DHP configuration and additional
elements that guarantee stable tracking. The overall tracking control signal consist of

control signal generated by the DHP structure u
(j)
A{k} =

[
u
(j)
A[1]{k}, u

(j)
A[2]{k}

]T
, the PD

control signal u(j)
PD{k}, the supervisory term control signal u(j)∗

S{k}, derived from the
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Fig. 7. Scheme of the neural tracking control system for the j-th wheeled mobile robot

Lyapunov stability theorem, and the control signal u(j)
E{k}, that derives from the dis-

cretisation of the WMR model in the closed system loop. The overall tracking control
signal was assumed in the form

u
(j)
{k} =

1

h
M (j)

{
−u(j)

A{k} + u
(j)∗
S{k} − u

(j)
PD{k} − u

(j)
E{k}

}
. (15)

Scheme of the neural tracking control system for the j-th WMR is shown in Fig. 7,
where e(j){k} – the vector of tracking errors, s(j){k} – the vector of filtered tracking errors.

5 Numerical Experiment Results

Numerical tests of the hierarchical control system were realised by a series of simu-
lations, using the numerical environment designed in the Matlab/Simulink software. In
this section, for the sake of simplicity, all variables are presented in a continuous domain
of the time, and the index k is omitted, h = 0.01 [s]. On the basis of the simulated range
finders measurements the proposed hierarchical control system generated the collision-
free trajectory of the WMRF point M , and the tracking control signals for all agents,
that allowed to realise the individual trajectories. The generated paths for all agents start
in points S(j), marked by triangles in Fig. 8. The goal G is marked by the X mark. The
problem is to generate the collision free trajectories for all agents of the WMRF, that
provide that point M reaches the goal G. In Fig. 8 is shown the environment map with
paths of points A(j) of all WMRs and the goal G(7.0, 9.0).

Taking into account the behavioural conception of the trajectory generating problem,
the map of the environment was projected in the way, that the successive path can not
be generated using only one of the behavioural control signals, for GS or OA task.
The proposed navigator generates control signals, that make planning of the path in
the complex task of obstacle avoiding and goal seeking possible. The localisations of
obstacles were computed on the basis of simulated range finders readings, taking into
account localisation and orientation of the WMRs in the modelled environment.

The overall trajectory generator control signals uTv and uT β̇ , shown in Fig. 9.a)
and b), consists of control signals generated by the actor-critic structure in ADHDP
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configuration (uTAv, uTAβ̇) and control signals of the P controller (uTPv, uTPβ̇). The
values of control signals generated by the P controller are small in a comparison with
the ADHDP structure actor’s control signals uTAv and uTAβ̇ . The distance to the goal
G of the WMRF point M is shown in fig. 9.c). It is consequently reduced during the
numerical test, to the value near zero. The angle ψG is shown in fig. 9.d).

In fig. 10.a) and b) are shown values of the actor’s (W TAv) and the critic’s (W TCv)
NN weights of the ADHDP structure, that generates the navigator’s control signal uTAv,
that influences on the velocity of the virtual structure.

The desired angular velocities of the third WMR (z(3)d2[1] and z
(3)
d2[2]), shown in

Fig. 11.a), were computed on the basis of the overall control signals generated by the
navigator and taking into account position of the point A(3) of the third agent in the
WMRF. The desired trajectory was realised using the tracking control system with
the overall tracking control signals u

(3)
[1] , u(3)

[2] , shown in Fig. 11.b). According to the

assumed tracking control law (15), the overall tracking control signal u(3)
[2] consists of

the control signal generated by the actor’s RVFL NN (u(3)
A[2]), the PD control signal

u
(3)
PD[2] (Fig. 11.c)), the supervisory term control signal u(3)

S[2], and the additional control

signal u(3)
E[2] (Fig. 11.d)).

The desired trajectory was realised with the tracking errors shown in Fig. 12.a) and
b) for proper wheels of the third WMR. In Fig. 12.c) and d) are shown values of the
actor’s (W (3)

A1) and the critic’s (W (3)
C1) RVFL NN weights of the DHP structure, that

generates the tracking control signals for the third agent in the WMRF. Weights of NNs
are bounded and converge to the fixed values.
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Fig. 10. a) Weights of the ADHDP actor RVFL NN W TAv , b) weights of the ADHDP critic NN
RVFL W TCv

6 Summary

The presented discrete hierarchical control system generates the collision-free trajectory
for the WMRF in the unknown 2D environment with the static obstacles and realises
the tracking control problem for all agents. The generated trajectory allows to avoid col-
lisions with stationary obstacles and reach the goal by the selected point of the WMRF.
The sensor-based navigator was builded using ADP algorithm in ADHDP configura-
tion. It is based on the behavioural control conception with use of only two individual
behaviours: “goal seeking”and “obstacle avoiding”, combined to generate collision free
trajectory that allows to reach the goal. The new approach to the behaviour control used
in the proposed navigator allows to unite two individual behavioural control systems
for GS and OA behaviours into one structure. Appropriate position of the agent in the
formation was ensured by the virtual structure control algorithm, with control signals
derived using the Lyapunov stability theory. The trajectories generated for all agents
were realised using the tracking control systems with DHP structures. Stability of the
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tracking control was guaranteed by the supervisory term control signal derived using
the Lyapunov stability theory. The proposed hierarchical control system uses AI meth-
ods, works on-line and does not require the preliminary learning of NNs. Computer
simulations conducted to illustrate the path planning process in different environment
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conditions confirmed the correctness of the assumed conception of the WMRF hierar-
chical control. The selected point of the virtual structure reaches the goal, while the
movement of all agents is collision-free.
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Abstract. In order to further a classifier construction, feature selection algo-
rithms reduce the input dimensionality to a subset of the most informative fea-
tures. Usually, such subset is fixed and chosen on the preprocessing step before
the actual classification. However, when it is difficult to find a small number of
features sufficient for classification of all data samples, as in cases of the het-
erogeneous input data, we suggest an adaptive approach assuming selection of
different features for every testing sample. The adaptive sequential algorithm pro-
posed here selects features that for a given testing sample maximize the expected
reduction of uncertainty about its class, where the uncertainty is updated with the
values of the already selected features observed on this testing sample. The pro-
vided experiments show that especially in cases of limited amount of training data
our adaptive conditional mutual information feature selector outperforms two the
most related information-based static and adaptive algorithms.

Keywords: Adaptivity, Feature Selection, Mutual Information, Multivariate
Density Estimation, Pattern Recognition.

1 Introduction

Machine learning is often confronted with high-dimensional data. A common problem
is the so-called “curse of dimensionality”, meaning that the amount of data required
to find good model parameters grows exponentially with the dimension of the input
space. For this reason, as well as computational issues, feature selection is often used
to reduce the data dimensionality to the features relevant to solve a given problem, such
as classification. Moreover, in a situation when the training set is of a limited size, a
classifier built on a smaller number of features usually has better generalization ability.

Basically, one can distinguish between two types of feature selection algorithms: fil-
ters and wrappers [1]. The former try to reduce the dimensionality of the data while
keeping potential clusters in the data well separated. In this case, the relevance of each
feature is evaluated using different measures of distances between classes, e.g. proba-
bilistic distance measures. However, the involved probabilities are difficult to estimate
and often approximate methods are used. Wrappers also preprocess the data but directly
take into account that the resulting features should be useful for a certain classifier.

c© Springer International Publishing Switzerland 2014 279
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Therefore, features are selected based on the prediction accuracy of the classifier em-
ploying these features. This might lead to better results but is usually computationally
demanding and prone to overfitting.

In each case, one can look for the best feature subset of a certain cardinality using
an optimal search strategy. Since the number of possible subsets is exponentially large,
testing all of them is infeasible. A good example is the branch and bound method [2] that
assumes monotonicity of the selection criterion to avoid an exhaustive search. If such
an assumption is not valid and the number of features is large, suboptimal methods have
to be used. This class of algorithms includes forward and backward sequential feature
selection, e.g. [3,4]. In both cases, the relevance of each feature is evaluated together
with the current feature subset.

Among probabilistic criteria used by filters, selection criteria based on Shannon
entropy are widely used [5]. Such criteria select the features to reduce uncertainty
about the output class. Battiti was one of the first to use mutual information, a concept
closely related to the Shannon entropy, for sequential feature selection [6]. However,
this involves estimation of the conditional mutual information (CMI), i.e. the amount
of information between the feature and the class given the already selected features,
which requires multivariate density estimation. To circumvent this problem, Battiti ap-
proximated CMI by pairwise mutual information. Kernel density estimation (discussed
below in subsection 2.2) is a non-parametric technique widely used for multivariate
density estimation. It was successfully applied to estimate CMI and related quantities
for the exhaustive search procedure [7] and forward feature selection [8,9].

Ideally, it should be possible to describe all observations by the same small subset
of features. However, when the amount of available training data is limited and the
number of features exceeds the number of training samples, it is very likely that no
single feature subset of a moderate size is good enough for classification of all observa-
tions. For example, one may need different features to discriminate between classes, or
even different objects belonging to one class may have different discriminative features.
One can partially overcome this problem by having a collection of all relevant feature
subsets. This, however, will lead to an increase in the classifier complexity, which in
turn will lead to its poor performance, since there is not enough data for training the
classifier in high-dimensional space, e.g. see [10]. Thus, conventional feature selection
schemes, which select a fixed subset of features before they are handed to a classifier,
can be inefficient.

Thereby, in cases when it is difficult to find a small fixed subset of relevant features,
we propose to use different features for every testing sample, i.e. select the relevant
features in an “adaptive” manner. Here, by adaptivity we mean that for a certain testing
sample every selected feature should yield the maximum additional information about
the class given the already selected features with values observed on this testing sample.

The idea of adaptivity was used by Geman and Jedynak in their active testing model
(1996) where they sequentially select tests in order to reduce uncertainty about the
true hypothesis. For their problem domain, they assumed that features are conditionally
independent given the class. Jiang also used an adaptive scheme [11], however, without
conditioning on the already selected features, which are employed only to update a set
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of currently active classes. In contrast to these schemes, we adaptively select features
taking into account high-order dependencies between them.

Here, we propose an adaptive feature selection algorithm based on CMI that se-
quentially adds features one by one to a subset of features relevant for a certain testing
sample. Even though the multivariate probability densities are hard to estimate in gen-
eral and from small data sets especially, the algorithm is still able to select informative
features in high dimensions.

Our model is also inspired by sequential visual processing, i.e. a principle of eye
movements when performing a task. Since a human can foveate only on a small part of
an image at time, the scene is perceived sequentially. Moreover, only a few eye fixations
are usually enough to analyze the whole scene. This might suggest that optimal saccades
for a certain task follow the sequence of the most informative scene-specific locations.
For experimental support see [12,13].

Sec. 2.1 explains the mathematical basis and general idea of our method, whereas
Sec. 2.2 gives implementation details. Then, in Sec. 3, we provide results for two image
classification tasks using artificially constructed bitmap images of digits and real-world
data from the MNIST database of hand-written digits. We show that our method outper-
forms the Parzen window feature selector [8] and the active testing model [14], which
are static and adaptive CMI-based feature selectors. Finally, in Sec. 4 we discuss bene-
fits of our approach and future extensions.

2 Model

For our model, we start with a standard classification setup. Suppose we have a space
of possible inputs F = ×n

i=1Fi, i.e each input is an n-dimensional feature vector
f = (f1, . . . , fn), where the ith feature takes values fi ∈ Fi. Our notion of feature
is rather general, ranging from simple ones, such as the gray-value of a certain pixel,
to sophisticated ones, such as counting faces in an image. Feature combinations are
considered as a random variable F with a joint distribution on F1 × · · · × Fn and the
observation f is drawn from that distribution.

Furthermore, each observation has an associated class label c ∈ C = {c1, . . . , cm}.
The task of the classifier is to assign a class label to each observation f . Thus, formally
it is considered as a map φ : F → C or, more generally, assigning to each f the
conditional probabilities p(c|f) of the classes c. To learn such a classification, we are
given a training set X = {(xi, ci)}Ti=1 of labeled observations, which are assumed to
be drawn independently from the distribution relating feature vectors and class labels.
Then the goal is to find a classification rule φ that correctly predicts the class of future
samples with unknown class label, called testing samples. That is, confronted with a
feature vector ξ we would classify it as c = φ(ξ). Feature selection then means that for
this particular task only a subset of features rather than the full feature vector is used.

2.1 Adaptive Feature Selection

Adaptivity. For classification problems with small training sets, we suggest to select
features adaptively. Thus, we do not predefine a single subset of the relevant features
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but rather select a specific one for every new testing sample. The proposed feature
selection scheme is a sequential feedforward algorithm. Every next feature added to the
subset should be discriminative together with the already selected features, which take
particular values observed on the current testing sample.

Sequential feedforward feature selection algorithms use a greedy search strategy,
which does not assume the full search and evaluating the relevance of every possible
feature subset. Such feedforward algorithms start from the empty set and add features
one by one so that every next feature maximizes some selection criterion S considering
features selected on the previous steps. Thus, conventionally the feature Fαi+1 selected
on the (i+ 1)th step should satisfy the following:

αi+1 = argmax
k

S(Fα1 , . . . , Fαi , Fk), Fk ∈ {F1, . . . , Fn} \ {Fα1 , ..., Fαi}, (1)

where Fα1 , . . . , Fαi is a subset of the features selected before the (i+ 1)th iteration.
Let us consider an adaptive case. Suppose that we have a testing sample ξ. Suppose

also that after i steps we have selected the features Fα1 , . . . , Fαi and observed their
values ξα1 , . . . , ξαi on this testing sample. Then, for this testing sample the next feature
Fαi+1 is selected according to the adaptive criterion:

αi+1 = argmax
k

S(Fα1 = ξα1 , . . . , Fαi = ξαi , Fk). (2)

In contrast to the static criterion (1), the adaptive criterion also takes into account the
values of the already selected features that are observed on the current testing sample.

Probabilistic Selection Criterion. The feature selection scheme proposed here uses
a probabilistic selection criterion and is based on the mutual information between the
features and class variables [15].

The mutual information between two continuous random variables A and B mea-
sures the amount of information between them and is defined as follows:

I(A;B) =

∫
A

∫
B

p(a, b) log
p(a, b)

pA(a)pB(b)
dbda, (3)

where p(a, b) is the joint probability density function (pdf) of A and B, and pA(a) =∫
B

p(a, b)db and pB(b) =
∫
A

p(a, b)da are their marginal densities. In case of discrete

variables, the integration is substituted by summation over the values of the variables.
Our goal is a sequential selection of features that bring the maximum additional

information about classes, i.e. those that are both discriminative and non-redundant
with respect to the already selected features. Thus, we propose the adaptive conditional
mutual information feature selector (ACMIFS), which is based on the expected mutual
information between the classes and a feature candidate k conditioned on the outcome
of the selected features which is observed on the testing sample I(C;Fk|ξi). Then,
according to ACMIFS every next selected feature should satisfy the following:

αi+1 = argmax
k

S(Fα1 = ξ1, . . . , Fαi = ξαi , Fk) =

argmax
k

{∫
Fk

∑
c∈C

p(fk, c|ξi) log p(fk, c|ξi)
p(fk|ξi)p(c|ξi)dfk

}
,

(4)
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where the variable C represents the classes, C = {c1, . . . , cm}, and ξi = {Fα1 =
ξα1 , . . . , Fαi = ξαi} is a shorthand for the set of values which are observed on the
selected features of the sample ξ. The optimization problem in (4) can be also seen
as a greedy iterative maximization of the conditional likelihood of the class given the
particular outcomes of the selected features [16].

Note that the expression (4) is not a conventional CMI since we do not average over
all possible outcomes of the features Fα1 , . . . , Fαi , but rather condition on the specific
values that we observe on the particular testing sample. This implies that we look for
the feature Fαi+1 that is informative for the certain region of the input space, which is
specified by the observed values of the already selected features. Thefore, we adaptively
select a different subset of the relevant features for every sample we want to classify.

Using the definition of the Kullback-Leibler divergence,

D(p||q) =
∫

p(x) log
p(x)

q(x)
dx (5)

for two distributions p and q, (4) can be rewritten as follows:

αi+1 = argmax
k

{∑
c∈C

p(c|ξi)D(p(fk|c, ξi)||p(fk|ξi))
}
. (6)

This is the average distance between the pdf of the feature Fk given a certain class
and its marginal pdf, where both pdfs are updated after observing the current feature
subset on the sample ξ. Thus, the selection criterion favors features with distinctive
posterior distributions for data drawn from the different classes, that is, features that on
the (i+ 1)th step are expected to best discriminate between the classes.

In our algorithm, the first feature is selected independently of the testing sample ξ
and should maximize the mutual information with classes:

α1 = argmax
k

I(C;Fk), Fk ∈ {F1, . . . , Fn}. (7)

The scheme becomes adaptive only after the first feature is selected and the value it
takes on the testing sample is known.

Stopping Rule. Ideally, the algorithm can be stopped when one of the classes has been
unambiguously identified. In practice, this is not possible and other stopping criteria
have to be used, e.g. minimum additional information that the next feature brings or
simply a maximum number of iterations. However, in this paper, we shall not address
the issue of stopping rules.

2.2 Estimation of the Selection Criterion

The selection criterion (4) can be rewritten as

αi+1 = argmax
k

⎧⎨⎩
m∑
j=1

p(cj |ξi)
∫

p(fk|ξi, cj) log p(fk, ξ
i|cj)p(cj)p(ξi)

p(cj , ξi)p(fk, ξi)
dfk

⎫⎬⎭ . (8)
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The pdfs under the logarithm, that do not depend on fk and therefore do not con-
tribute to argmax

k
, can be dropped. Thus, we obtain

αi+1 = argmax
k

⎧⎨⎩
m∑
j=1

p(cj |ξi)Ep(fk|ξi,cj)[log
p(fk, ξ

i|cj)
p(fk, ξi)

]

⎫⎬⎭ . (9)

The expression (9) requires estimation of multivariate pdfs as well as the conditional
expectation over multivariate pdf.

Kernel Density Method. In our case, we solve both problems with the kernel method,
a nonparametric smoothing technique developed by Rosenblatt [17] and Parzen [18].

Density Estimation. For a training set consisting of T independently and identically
distributed (iid) n-dimensional samples X = {x1, ...,xT },xi ∈ Rn, the kernel density
estimate (KDE) of the pdf p̂(y) is

p̂(y) = (T

n∏
j=1

hj)
−1

∑
xi∈X

n∏
j=1

K(
yj − xi,j)

hj
), (10)

where K(·) is a univariate kernel function, hj is a kernel bandwidth parameter and xi,j

is the value of the jth feature of the sample xi. Here, we use a so-called product kernel,
which is a commonly used simplification of the general multivariate kernel. Since qual-
ity of the density estimation does not particularly depend on the choice of the kernel,
for convenience we restrict ourselves to Gaussian kernels K(w) = 1√

2π
exp(−w2

2 ).

Bandwidth Selection. The bandwidth parameters hj control the smoothness of the
estimated density. Setting them too large, all details of the density structure are lost,
whereas setting them too small will lead to a highly variable estimate with many false
peaks around every sample point. Therefore, a choice of the proper bandwidth parame-
ters is important. We only briefly mention the bandwidth selection method that we used,
for details and an overview of other methods see [19].

The normal reference rule [20] is one of the simplest methods based on the asymp-
totic mean integrated squared error between the true and estimated densities and as-
sumes that the data is Gaussian. The method produces good estimates for univariate
densities but tends to oversmooth for multivariate cases. Among more sophisticated
methods that can be easily extended to the multivariate densities are Markov chain
Monte Carlo methods. They estimate a bandwidth matrix through the data likelihood
using cross-validation and are reported to have a good performance, e.g. see [21].

In higher dimensions data become sparser and tend to move away from the modes of
the distribution [22]. Therefore, the bandwidth parameter of kernel functions should be
adjusted to the data dimensionality so that estimates are based on a sufficient number of
data points. In our case, the dimension of estimated densities grows iteratively. More-
over, we estimate joint densities of different feature subsets. Ideally, one has to select a
unique optimal bandwidth vector for every feature combination of different cardinality.
Since it is computationally infeasible, we pick the normal reference rule, which does
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not require any optimization and automatically gives a bandwidth depending on the
dimension of the estimated density. So the bandwidth for feature Fi is defined as

hi = (
4

d+ 2
)

1
d+4σiT

− 1
d+4 , (11)

where d is the dimension of the estimated multivariate density, σi is the standard devi-
ation of the data points and T is the number of training samples.

Conditional Expectation. We estimate the conditional expectation over the multivari-
ate pdf p(fk|ξi, cj) using a kernel-based estimator as well. Let us consider a train-
ing set X = {(x1,y1), ..., (xT ,yT )}, where xi and yi are realizations of nx− and
ny−dimensional continuous random variables x and y, respectively. Suppose, one
needs to estimate the expectation of some function g(x) over the conditional distribu-
tion p(x|y = a), where a is a particular observation of the variable y. Then, using the
nonparametric kernel regression estimator proposed by Nadaraya (1964) and Watson
(1964), the conditional expectation of g(x) is:

Ep(x|y=a)[g(x)] =

(T
ny∏
j=1

hj)
−1

∑
xi∈X

ny∏
j=1

Kj(a, yi)g(x)

(T
ny∏
j=1

hj)−1
∑

xi∈X

ny∏
j=1

Kj(a, yi)

, (12)

where (h1, ..., hny ) is a bandwidth vector of the kernel for the variable y and Kj(a, yi)

denotes K(
aj−yi,j

hj
). Note that the denominator is KDE of p̂(y = a).

Plugging (12) into the selection criterion (9), we have:

αi+1 = argmax
k

⎧⎨⎩
m∑

j=1

p(cj |ξi)
p(ξi|cj)

(Tj

i∏
q=1

hαq )
−1

∑
xr∈Xj

i∏
q=1

Kαq (ξ, xr) log
p(fk = xr,k, ξ

i|cj)
p(fk = xr,k, ξi)

⎫⎬⎭ ,

(13)

where Xj is a subset of the training samples belonging to the class cj and Tj = |Xj |.
Note that the expression in the first fraction simplifies just to p(cj), because

p(cj |ξi)
p(ξi|cj) =

p(cj)
p(ξi) and p(ξi) can be dropped as it does not influence argmax

k
. Finally,

using the kernel method to estimate densities and after some simple algebraic transfor-
mations, the expression (13) is of the form:

αi+1 = argmax
k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

j=1

p(cj)Tj
−1

∑
xr∈Xj

i∏
q=1

Kαq (ξ, xr) log

∑
xs∈Xj

Kk(xr , xs)
i∏

q=1

Kαq (ξ, xs)

∑
xu∈X

Kk(xr , xu)
i∏

q=1

Kαq (ξ, xu)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(14)

Smoothing. The expression under the logarithm measures a ratio between values of
two pdfs in the point xr . When the pdfs are estimated from small training sets, unreli-
abilities can lead to large ratios even though there is no real evidence for that. To cope
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with this, we add a small value to both pdfs and in this way ignore fine differences be-
tween them. This can be interpreted as a form of the improper additive smoothing [23]
since the smoothed pdfs are not renormalized.

To avoid oversmoothing, we suggest that the smoothing should be adjusted to the
current dimension of the pdf as well as to the current probability of the testing sample
p(ξi). By doing this, we adapt the value of the smoothing parameter to the “level of
surprise” associated with observing the values ξα1 , . . . , ξαi given the training set. Thus,
we take it proportional to the maximum response of the product kernel K(ξi, xu) over
all training points xu, i.e. to the kernel response in that training point, which is the
closest to ξ. This can be seen as a rough estimate of p(ξi). Then, the smoothed ratio
under the logarithm in the point xr is:

rsmk,r = log
p(fk = xr,k, ξ

i|cj) + νi+1

p(fk = xr,k, ξi) + νi+1
, νi+1 = α max

xu∈X

{
(

i∏
q=1

hαq )
−1K(ξi, xu)

}
,

(15)
where α is a small adjustable constant controlling a degree of the applied smoothing.
The same value of νi+1 for both pdfs in the ratio comes from the assumption that
smoothing of p(fk = xr,k, ξ

i|cj) does not depend on the class cj . Such simple smooth-
ing works fine for our problem, since we do not need precise values of the criterion in
(14), but rather want to find a feature that maximizes it.

3 Experiments

Here, we provide an experimental comparison of our method with two feature selection
algorithms based on CMI: Parzen window feature selector (PWFS) [8] and active testing
model (ATM) [14]. In our terminology PWFS is a static selection scheme (1). It is based
on the conventional CMI estimated with the kernel method. To be precise, the original
PWFS treats the selected features and the feature candidate as the joint variable, thus
I(C;Fk, Fα1 , . . . , Fαi) is maximized. However, as both (1) and PWFS criterion reduce
to the minimization of H(C|Fk, Fα1 , . . . , Fαi), we treat them as analogous.

ATM is a feature selector based on the adaptive CMI which uses a simplifying as-
sumption that features are conditionally independent given a class. Since the estimation
of the selection criterion, proposed by Geman and Jedynak, was problem-specific, here
we use just the general idea of their method as an approximation of our algorithm:

αi+1 = argmax
k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑
j=1

p(cj)
i∏

q=1
p(fαq = ξαq |cj)

Tj
×

∑
xr∈Xj

log
p(fk = xr,k|cj)

m∑
v=1

p(cv)p(fk = xr,k|cv)
i∏

q=1
p(fαq = ξαq |cv)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(16)
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To make a fair comparison, all criteria are estimated using KDE with the same band-
width vector as chosen by the normal reference rule (11).

3.1 Artificial Data Set

For the first experiment, we artificially constructed a data set for image classification. It
contains pixel-based black-and-white images of digits belonging to 10 different classes.
First, we constructed four distinct examples of every class. From this data set we gener-
ated a new one with 1000 samples by randomly adding 5 pixels of noise to the original
images (Fig. 1). Further, we formed 20 training sets with 30 and 300 samples in each
and one testing set containing 100 samples by randomly selecting an equal number of
samples from each class.

Fig. 1. Examples of original and noisy digits

In our setup, each image is described by a vector of complex features. These, in turn,
are functions of simple features of the image. Our simple features are inspired by the
complex cells in the primary visual cortex discovered by D. Hubel and T. Wiesel in
the 1960s [24]. Both are responsive to primitive stimuli that are independent of their
spatial location. Here, each simple feature corresponds to a 3 × 3 image patch and is
activated proportional to the frequency with which the corresponding patch occurs in
the image. For normalization and smoothing purposes, patch frequencies are squashed
in the interval [−1, 1] via a sigmoidal function.

The complex features correspond to 3 × 3 image patches as well. Their activation
value is computed as a weighted sum of the activations of the simple features. The
weight from the simple feature responding to the same patch is 1. For the others, it drops
in the number of pixels that differ between the corresponding image patches according
to a Gaussian. Thus, the complex features react more robust against pixel noise than
the simple features. Since there are 9 binary pixels in each 3 × 3 patch, an image is
described by a vector of 29 = 512 complex feature values.

As a classifier we used the weighted k-nearest neighbor algorithm (wk-NN). It as-
signs a class to a testing sample based on a distance-weighted vote of the k nearest
training samples. The wk-NN is one of the simplest classifiers, but the fact that it does
not need learning is useful because the adaptive scheme assumes iterative classification
with a growing feature set. Here, we used k = 20 hand-tuned using validation sets.

To investigate the usefulness of ACMIFS we ran experiments on training sets with
T = 30 and 300 samples. All sets have fewer training samples than features which
easily leads to overfitting. The classification errors were evaluated on separate testing
samples and compared with the cases when feature selection was done using PWFS,
ATM and when the classifier was run on the full feature vector, i.e. without feature
selection (Fig. 2). All results are averaged over 20 runs with the different training sets.

The necessary degree of smoothing for ACMIFS, which is adjusted by the parameter
α, was chosen as one minimizing the cross-validation error. Our results showed that
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Fig. 2. Error against the number of features for digits classification, the black markers under the
error curves indicate regions where ACMIFS is significantly better than ATM according to the
Wilcoxon signed-rank test at the p-level= 0.05

smoothing has noticeable effect on the performance for very sparse datasets, like the
one with 30 training samples. There, all training points are likely to be distant from the
sample to be tested, thus, the small values of the pdfs in (15) that should be smoothed
appear often. Though, it is important not to oversmooth. As a result, further we use α =
0.001 and α = 0.0001 for the datasets with 30 and 300 training samples, respectively.

One clearly sees the advantage of using an adaptive scheme for feature selection. Not
only does the error rate drop very quickly with an increasing number of features, it goes
even below the error that the classifier achieves when using all available features. In all
our simulations, this effect never occurred for the static scheme PWFS and was particu-
larly pronounced when using an extremely small number of training samples (T = 30),
i.e. when the classifier is prone to overfitting. Furthermore, our algorithm outperforms
the ATM scheme which assumes conditional independence of the features. Thus, espe-
cially at the beginning, i.e. when selecting the first few features, it is beneficial to take
dependencies between features into account.

Further, we test the ability of the considered schemes to select informative features
in high dimensions for the case T = 300. For this, we start with initial feature subsets
of size 50 and 100, which are preselected by PWFS, and then select further features ac-
cording to the different algorithms. The results (Fig. 3) show that both adaptive schemes
find additional features that are markedly better than the statically selected ones. Also
one can see that at some point ATM, the adaptive scheme assuming conditional inde-
pendence of the features given a class, starts outperforming ACMIFS. This fact sug-
gests that after certain dimension ACMIFS is not able anymore to estimate correctly
high-order dependencies between the features. Interestingly, when ACMIFS selects the
features from the beginning (see Fig. 2), it performs better than ATM almost up to 200
features, meaning that the first good features can compensate for unreliable pdf esti-
mates further in higher dimensions.

Combined Selection Scheme. Noting the behavior of ACMIFS and ATM in higher
dimensions, one could think of a combined scheme that starts with ACMIFS and after
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Fig. 3. Comparison of ability to add informative features to subsets of 50 and 100 features prese-
lected by PWFS

some iterations switches to ATM. Since ATM is computationally cheaper, such switch-
ing would reduce an amount of computational resources needed for feature selection.

Intuitively, ACMIFS stops being useful as its selection criterion degenerates, i.e. its
value is the same for all features candidates, thus the selection is random. This hap-
pens when either ACMIFS cannot estimate properly the current multivariate pdfs or
there are no informative features left. Of course, within the sequential feature selection
framework, there is always a danger that there exists a combination of the remaining
features reducing the remaining uncertainty even if these features alone are not infor-
mative. But since there is no guarantee that this subset exists at all, we suppose that in
case of the degenerated selection criterion we would not lose much by switching to any
other reasonable selection scheme.

Thus, as soon as the selection criterion of ACMIFS is degenerated, the scheme
switches to ATM. We define the selection criterion (4) as degenerated when its stan-
dard deviation is below a certain adjustable threshold δ, δ ' 1. Remember that we
skipped some additive and multiplicative terms that do not contribute to the maximiza-
tion of (4). Then, the standard deviation of the selection criterion from (14) should be
corrected by multiplying by 1

p(ξi) , since there is no influence of the additive terms on
its value.

We suggest that while setting δ one should take into account the overall accuracy
and the relative difference between ACMIFS and ATM observed for a certain dataset.
Figure 4 supports this idea. That is, the combined scheme with approximately the same
accuracy as ACMIFS requires different values of δ for the training sets with 30 and
300 training samples. Since we observed that for T = 30 ACMIFS shows much better
results than ATM (see Fig. 2), it is not surprising that it makes sense to switch to ATM
later, hence, using a smaller δ. Though, for T = 300, the switch can occur already after
about 15 iterations, these first features selected by ACMIFS are still very important,
which can be seen by comparing the pure ATM and the combined scheme with δ = 0.2.

Table 1 provides an overview of the switching behavior of the schemes presented
on the Fig. 4. It is interesting to note the huge difference between the minimal and the
maximal number of the features before the switch. That is, one needs a different number
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Fig. 4. Classification performance of ACMIFS, ATM and the combined scheme with different
values of the thereshold δ. The black markers under the error curves indicate iterations where
ACMIFS significantly outperforms the combined scheme with δ = 0.01 for T = 30 and δ =
0.15 for T = 300 on the subplots A and B, respectively. Significance is measured according to
the Wilcoxon signed-rank test at the p-level= 0.05.

Table 1. Summary for the combined scheme with different δ for T = 30 and T = 300. Nmin,
Nmax and Nav is the minimal, maximal and average number of the features selected by ACMIFS
before switching to ATM, respectively. errsw is the average error of ACMIFS just before
switching.

Nmin Nmax Nav errsw

T = 30 δ = 0.01 3 382 139 4.85
δ = 0.1 3 71 10 47.6

T = 300 δ = 0.15 3 353 37 16.15
δ = 0.2 3 183 16 17.45

of the features in order to reduce the uncertainty about the class to the required level,
which is indirectly specified by δ, depending on how easy a sample is to classify. Also
note the values errsw showing the average error of our ACMIFS before the switch. If
this error rate is acceptable and feature subsets of the variable size are allowable, instead
of switching to ATM, one can stop the selection process.

3.2 MNIST Data Set

We compared performance of PWFS, ATM and our ACMIFS on a real-world data set,
the MNIST database of handwritten digits [25]. The images are 28 × 28 pixel, black
and white, size-normalized and centered. The original training and testing sets consist
of 60, 000 and 10, 000 samples, respectively.

The features were learned by LeNetConvPool [26], a convolutional neural network
based on the LeNet5 architecture, which was originally proposed by LeCun [27]. The
convolutional networks are biologically inspired multilayered neural networks. In or-
der to achieve some degree of location, scale and distortion invariance, they imitate
arrangement and properties of simple and complex cells in primary visual cortex by
implementing local filters of increasing size, shared weights and spatial subsampling.
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LeNetConvPool consists of 6 layers: 4 successive convolutional and down-sampling
layers (C- and S-layers), a hidden fully-connected layer and a logistic regressor as a
classifier. C-layers consist of several feature maps with overlapping 5× 5 linear filters.
So every filter receives an input from the 5 × 5 region of the previous layer, computes
its weighted sum and passes it through a sigmoidal function. The S-layers perform
max-pooling with 2 × 2 non-overlapping filters. That is, an output of such filter is the
maximum activation of units from 2 × 2 region of the corresponding feature map in
the previous C-layer. For both types of the layers, all filters share the same weight
parameters within one feature map. First C- and S-layers have 20 feature maps, the
next ones - 50. The succeeding hidden layer, which is fully-connected to all units of
all feature maps in the previous S-layer, has 500 units with the sigmoidal activation
function. The last classification layer consists of 10 units, according to the number
of classes, and performs a logistic regression. The weight parameters of all layers are
learned using the gradient descent. For all implementation details see [26].

We trained LeNetConvPool on 15 training sets with 5, 000 samples each. After that,
the last classification layer was removed and the resulting networks with 500 output
units were used as feature extractors. These units are initial features for the feature
selectors. Then, from every training set we formed 2 sets of different size, with T = 100
and T = 300 samples, which were used for feature selection and for classification.
We use different amount of training data for feature extraction and for further feature
selection and classification to model a situation, when one has good features but there
is not enough training data to build an efficient classifier. As a classifier, we used an
unweighted k-NN with k = 5 (again, hand-tuned on validation sets), which in contrast
to wk-NN uses a simple majority vote. For computational reasons, the testing set was
reduced to 500 samples, which were randomly selected from the original MNIST testing
set, with an equal number of samples per class.

Overall, all algorithms show a similar behavior as on the artificial data set (see
Fig. 5). The smaller differences can be attributed to the better available features, as
reflected in the much lower error rates, which have been tuned by the LeNetConvPool.
Again, ACMIFS outperforms ATM on the first selected features and both adaptive
schemes provide some robustness against overfitting.

To see whether feature selection is as beneficial when the classifier is well-trained,
we repeated the experiments with a training set of 5, 000 samples. However, as in the
previous experiment, the feature selection was done on the small sets of 100 and 300
samples for computational reasons.

Fig. 6 shows that for this particular example one needs approximately 200 features to
achieve the minimum error. However, there is no advantage of using any sophisticated
feature selection algorithm, and one can see that a size of the training set used for
selecting features does not have much influence as well. Moreover, even the random
selection works about as good as other methods. We do not want to generalize results
of this test by saying that for large data sets one can always select features randomly.
We rather emphasize that for small data sets one can achieve better performance with
features selected adaptively with our ACMIFS.
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Fig. 5. Error against the number of features for MNIST classification. k-NN was run on the same
set as feature selection, the black markers under the error curves indicate regions where ACMIFS
is significantly better than ATM according to the Wilcoxon signed-rank test at the p-level= 0.05.
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Fig. 6. Error against the number of features for MNIST classification. k-NN was run on 5, 000
training samples, feature selection on A: 100 and B: 300 training samples.

4 Discussion

Feature selection is a standard technique to reduce data dimensionality. In
high-dimensional spaces this can be an efficient way to cope with limited amounts of
training data. Usually, features are selected in a preprocessing step. However, we pro-
pose an adaptive scheme for feature selection, where each feature is selected as maxi-
mizing the expected mutual information with the class given the data point, as well as
values of the features already considered.

Despite the fact that estimating the mutual information in high-dimensional spaces is
a difficult problem on its own, we find that adaptive feature selection robustly improves
the classification performance. In the considered examples, a small number of features
is sufficient to achieve a good classification. Since the first few features can be reliably
detected, our method does not overfit and can even compensate for shortcomings of
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the classifier. Our results on both artificial and real-world data show that in case of
limited training data, when a classifier is usually prone to overfitting, ACMIFS can
even improve the error rate compared to using all available features.

Even though the algorithm is less advantageous on large datasets, we believe that this
is not a shortcoming, but merely shows that the need to select features is less pressing if
enough data are available. From the point of view of computational expenses, in order
to make ACMIFS more applicable to large amount of data, one has to think about an
approximate implementation which can cut down the computational complexity. As an
alternative, we propose a combined scheme that starts with ACMIFS and when its se-
lection criterion becomes degenerated it switches to ATM. By adopting the assumption
of conditional independence of features given a class, the scheme after switching does
not require estimating multivariate densities and therefore it is computationally cheaper.
We showed that it can perform about as good as the original ACMIFS when the latter
is run until there are relevant features left.

In the future, we want to develop a neural implementation of our feature selection
scheme. The brain certainly faces a similar problem when it has to decide which features
are really relevant to classify a new observation. A neural model could thus provide in-
sights into how this ability can be achieved. Furthermore, we would like to investigate to
what extent information theory provides guiding principles for information processing
in the brain. In addition, adaptive feature selection could be accomplished via recurrent
processing interleaving bottom-up and top-down processes.
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Abstract. A model for a Magneto-Rheological (MR) damper based on Artificial
Neural Networks (ANN) is proposed. The design of the ANN model is focused
to get the best architecture that manages the trade-off between computing cost
and performance. Experimental data provided from two MR dampers with differ-
ent properties have been used to validate the performance of the proposed ANN
model in comparison with the classical parametric model of Bingham. Based on
the RMSE index, an average error of 7.2 % is obtained by the ANN model, by
taking into account 5 experiments with 10 replicas each one; while the Bingham
model has 13.8 % of error. Both model structures were used in a suspension con-
trol system for a Quarter of Vehicle (QoV) model in order to evaluate the effect of
its accuracy into the design/evaluation of the control system. Simulation results
show that the accurate ANN-based damper model fulfills with the control goals;
while the Bingham model does not fulfill them, by concluding erroneously that
the controller is insufficient and must be redesigned. The accurate MR damper
model validates a realistic QoV model response compliance.

Keywords. Magneto-rheological Damper, Artificial Neural Networks, Semi-
active Suspension Control.

1 Introduction

The main function of an automotive damper is to absorb energy to reduce the vibrations
in the sprung mass (i.e. automotive chassis) and the deflections in the wheel. The major
advantage of the semi-active dampers, respect to the passive ones is the capability to
modify the damping ratio in the shock absorber, while respect to active ones is the ve-
locity of response and bandwidth of control without the necessity of an external power
supply.

The Magneto-Rheological (MR) damper is one of the most important technologies of
semi-active shock absorbers because it has simple structure and continuous adjustable
damping force over a large span with low power requirement. When a magnetic field
is applied over the damper coil, the flow resistance modifies its damping ratio. Because
the relation between the flow resistance, damping force and electric current used to ma-
nipulate the magnetic field is highly nonlinear, Figure 1, its modeling is a non-trivial
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Fig. 1. Nonlinear behavior of an MR damper

task. Different modeling approaches have been exploited by using different learning al-
gorithms, e.g. some models are customized to explain the physical phenomena into the
damper chambers, others are data-based that use statistical and/or inferential method-
ologies, some use supervised learning algorithms, others are considered as classifiers,
etcetera.

For semi-active suspensions, the accuracy of the damper model is essential to design
and/or evaluate a suspension control system. For the parametric model structures, whose
coefficients describe the physical phenomena of the damper chambers [1,2,3,4,5,6,7,8],
the identification algorithm is more complex and in some cases the structure is defined
for a particular shock absorber. However, some of them can result adequate for model-
based control techniques.

On the other hand, the non-parametric models [9,10,11,12,13] are an alternative to
represent the hysteresis loops in the pre and post-yield region, friction phenomenon,
saturation, etc., without considering an a priori knowledge of the nonlinear dynamics
between the variables; the coefficients do not have a physical meaning. The main ad-
vantages of the ANN-based modeling, respect to the polynomial, statistical and fuzzy
models is the simplicity of structure (i.e. is not necessary to distinguish the effects of the
damper: jounce/rebound), extrapolation capability, simple identification algorithm and,
low number of parameters when the ANN design is based on the minimal dimensions
criterion [14].

Based on ANN, the major effort in the MR damper modeling is focused on reproduce
the inverse dynamics of the shock absorber by using recurrent neural networks with
several input signals [15,16,17]. For modeling the forward dynamics, it is normal to
add time delays in the input vector. [18,19,20]. The output feedback, the number of
inputs and the addition of time delays determine the size of the ANN architecture and
consequently its computing time. Because the time response of the MR damper is small
(around 25 ms), it is desirable to have a simple ANN structure as MR damper model in
order to ensure its controllability in an application problem.

A non-parametric model based on ANN is proposed to represent the nonlinear be-
havior of two industrial MR dampers, which have different semi-active properties. An
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intensive analysis in the ANN modeling is carried on to define a non-complex architec-
ture: no time delays in the input vector, low number of inputs without the necessity of
the output feedback. Experimental data of both MR dampers are used to compare the
modeling performance of the ANN versus a conventional parametric model: Bingham
structure [1]. Additionally, the impact of the damper models is analyzed in a suspension
control system of a Quarter of Vehicle (QoV) model, this is an example of an applica-
tion problem where the accurate modeling of the actuation device is one of the most
crucial part of the whole control design problem.

This paper is an extended version of [21], it is organized as follows: next section
presents a brief review of the state-of-the-art of ANN for modeling MR dampers. Sec-
tion 3 shows the experimental system and section 4 presents the modeling results of the
ANN and their comparison with the Bingham structure. Section 5 presents the effective-
ness of an accurate MR damper model in compliance of a suspension control system.
Conclusions are presented in section 6. All variables are defined in Table 1.

Table 1. Definition of Variables

Variable Definition Units
c0 Viscous damping coefficient in the Bingham model Ns/m
f0 Preloaded damping force in the Bingham model N
fc Dynamic yield force in the Bingham model N/A

FMR MR damping force N
F̂MR Estimated MR damping force N
I Electric current A
ki Time delays -
ks Spring stiffness coefficient N/m
kt Wheel stiffness coefficient N/m
ms Sprung mass in the QoV Kg
mus Unsprung mass in the QoV Kg
n Number of samples to compute the RMSE -

zdef Damper piston position m
żdef Damper piston velocity m/s
zr Road profile m
zs Vertical position of ms m
żs Vertical velocity of ms m/s
z̈s Vertical acceleration of ms m/s2

zus Vertical position of mus m
żus Vertical velocity of mus m/s
z̈us Vertical acceleration of mus m/s2

2 ANN Review

Based on the biological synaptic connections in the human brain, the ANN model is
a computational structure designed to learn behavior patterns of a process without
considering its nature, i.e. an ANN model can model nonlinear, complex and multivari-
ate dynamic systems, [22]. The basic element of an ANN in general form is the adap-
tive linear combiner that adjusts iteratively the coefficients of the network (weights) to
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minimize the error between the targets and outputs. In the learning phase, when the
weights are adjusted by the weighted sum of the inputs, the adaptive combiner is an
adaline; while, if the adjusting depends on an activation transfer function, the adaptive
combiner is a perceptron.

Two major groups of ANN have been considered according to the flow of signals
into the architecture. Feedforward networks project the flow of information only in one
way, where a neuron in a layer i is fed by the outputs of all neurons of the previous
layer (i − 1); while, recurrent networks have an output feedback signal used as an
internal memory into the network. The feedforward network is the simplest architecture
to implement and simulate, it results very effective when it is not necessary that the
ANN retains information of past events. Approximately 80 % of the applications of
ANNs for pattern recognition use a feedforward network [22]. The recurrent network
has a memory of the immediately past events that affect the adjustment of the weights
in all layers; thus, the learning algorithm can improve the modeling performance by
using the same data set used in a feedforward network. However, this advantage has a
considerable cost: the processing time is increased.

In MR damper modeling using ANN, the major effort is focused on using recurrent
networks based on Nonlinear-ARX (NARX) structures, i.e. some time delays in the
input vector and in the output feedback [15,16,17,18,19,20]. A high model accuracy is
presented in the aforementioned studies but no one justifies this kind of architecture.
The NARX structure is defined as:

FMR = fNL(zdef (t), zdef (t− 1), . . . , zdef (t− k1),
żdef (t), żdef (t− 1), . . . , żdef (t− k2),
I(t), I(t− 1), . . . , I(t− k3),
FMR(t− 1), . . . , FMR(t− k4))

(1)

where ki represents a specific number of time delays for each signal, zdef and żdef are
the displacement and velocity of the damper rod provided from sensor measurements,
I is the actuation signal and FMR is the damper force (ANN output). There are another
ANN structures proposed to model the phenomena of an MR damper, e.g. the radial
basis function network that requires a search algorithm to predefine the clusters [23],
which could be a complex phase.

Because it is necessary the generation of an accurate ANN model to design/evaluate
a suspension control system, from the practical point of view, the ANN model must
offer a good trade-off among computing cost and performance. This paper presents an
analysis of the ANN design:

1. Firstly, a comparison between a feedforward and recurrent neural network is con-
sidered for determining the accuracy degree in the damper force by adding the
output feedback in the ANN structure.

2. Different input vectors are used to evaluate the ANN performance, specifically the
importance to use two highly correlated variables (displacement and velocity of the
damper rod) instead of only one (żdef ).

3. The input array with different time delays is studied to analyze the time correlation;
the arrays with one, two and three regressors in the input vector are compared with
the modeling performance of an ANN that does not have delays.
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4. Finally, the ANN size is justified to avoid undertraining or overtraining, i.e. the
selection of number of hidden layers and neurons.

To characterize the nonlinearities of the MR phenomena (friction, hysteresis loops,
pre and post-yield, etc.), the considered activation functions are nonlinear, the tangent
hyperbolic function is used in the neurons of the hidden layers and the sigmoidal in the
neurons of the hidden layer, both activation functions are limited to continuous values.

The ANN training is defined as the supervised adaptation process of the synaptic
connections under external stimulations. The backpropagation algorithm is the most
used training method since it allows to solve problems with complex net connections;
its formulation can be reviewed in detail in [14]. The proposed ANN model was trained
with backpropagation and crossed validation was used to validate the results.

3 Experimental System

Two different MR dampers have been used to perform a total of 5 experimental tests.
The MR1 damper, manufactured by Delphi MagneRideTM, has a continuous actuation
and presents considerable nonlinear performances at high frequencies; while, the MR2

damper, manufactured by BWITM, is an actuator of two position states.
An MTS-407TMcontroller has been used to control the position of the damper piston,

Figure 2. An NI-9172TMdata acquisition system commands the controller and records
all measurements: the displacement and velocity of the damper rod and the damping
force. A sampling frequency of 1,650 Hz was used. In this experimental testing, a self-
generating tachometer (VP510-10 of UniMeasureTM) provides the velocity (żdef ) and
position (zdef ) measurements of the damper piston.

Table 2 shows the Design of Experiments (DoE) used to identify the nonlinear be-
havior of both MR dampers under different sequences of position (suspension deflec-
tion) and actuation, according to the methodology of characterization of MR dampers
presented in [24]. The operating range in the displacement sequences was from 0.5 to
15 Hz, which lies within automotive suspension applications, with amplitudes lower
than 25 mm. For the electric current sequences, the operating range was from 0 to 2.5
A. Since the MR2 damper has only two levels of actuation, the SC sequence has two
steps.

4 Modeling Results

To evaluate the ANN-based modeling performance to characterize the dynamical be-
havior of the MR dampers, the Root Mean Square Error (RMSE) index is used:

RMSE =

√√√√∑n
i=1

(
FMR(i)− F̂MR(i)

)2

n
(2)

where, F̂MR(·) and FMR(·) are the estimated and experimental damping force respec-
tively and n is the number of total samples. By dividing the RMSE index by the max-
imum operating range of the damping force, it is possible to obtain the percentage of
modeling error, as:
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Table 2. Design of experiments to identify an MR damper. Displacement sequences: TPNVS,
Triangular wave with Positive and Negative Variable Slopes; SFS, Stepped Frequency Sinusoidal;
RP, Road Profile; AM, Amplitude-Modulated; and FM, Frequency-Modulated. Electric current
sequences: SC, Stepped inCrements; ICPS, Increased Clock Period Signal; and PRBS, Pseudo
Random Binary Signal, [24].

Experiment
Displacement Current sequence

Analyzed dynamics
sequence MR1 MR2

E1 TPNVS SC (10) SC (2)
Dynamic behavior under constant velo-
city at different electric current values

E2 SFS SC (10) SC (2)

Explore the hysteresis loops in the fre-
quency range of interest at different

electric current values

E3

RP
ICPS PRBS

Typical suspension deflection
(rough way) movement by adding the nonlinear

transient effects of the actuation

E4 AM ICPS PRBS

Transient response close to the fre-
quency of resonance of ms by adding
the nonlinear transient effects of the

actuation

E5 FM ICPS PRBS

Explore the hysteresis loops at different
frequencies by adding the nonlinear

transient effects of the actuation
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% Error =
RMSE

Maximum range of force
(3)

where, the experimental range of force for theMR1 damper is 4,000 N and for theMR2

damper is 8,500 N. This normalization allows the comparison among these results.
Below, the design issues for the ANN model are discussed. The main goal is to obtain

the simplest ANN architecture that supports its implementation in a semi-active suspen-
sion control system. Ten replicas of each experiment were used to evaluate statistically
the modeling results; for each replica, 60 % of the data were used in the learning phase
and the remainder in the testing phase.

4.1 ANN Architecture

Two networks with different architectures have been compared: (1) a Multi-Layer Per-
ceptron (MLP) network considered as a feedforward model, and (2) a network fully
recurrent. The input vector of the MLP network is composed by zdef , żdef , I; while
the recurrent network additionally includes the ANN output feedback. Table 3 presents
the percentage of modeling error in the learning phase of both structures by using all
experiments in both MR damper models. When the output feedback is considered, the
modeling error is decreased in both MR dampers, e.g. in the MR1 damper modeling
the error is reduced up to 21 % and in the MR2 up to 50 %. However, the number
of weights to identify in the recurrent-ANN is increased and also its computing time,
e.g. the MLP network takes around 1 second to complete 1 epoch, while the recurrent
network takes around 6 min.

Table 3. Comparison of performance of the feedforward and recurrent neural networks

ANN Structure
Percentage of Error

MR1 damper MR2 damper
E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Feedforward 2.1 3.5 2.0 3.8 3.8 4.6 4.0 5.4 6.7 4.0
Recurrent 1.7 7.0 1.6 3.8 3.0 4.7 2.0 4.7 5.4 3.0

Therefore, in this study, the balance between computing cost - velocity and comput-
ing cost - performance is better in the MLP network than the recurrent network.

4.2 Sensors in the Input Vector

By considering an MLP network, the modeling of performance has been compared
when the input vector is composed by the velocity of the damper rod and the electric
current actuation, versus the input vector that adds the displacement measurement. Ta-
ble 4 indicates that the modeling error is lower for all experiments in both MR dampers
when the input vector considers the redundancy with the correlated variables: displace-
ment and velocity. For the MR1 damper, the average error between the five experi-
ments is decreased 46.8 % when three input signals are considered; while for the MR2

damper, the reduction is around 30 %. However, these reductions are greater when the
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Table 4. Modeling error in the MLP network using different input vectors

Input Signals
Percentage of Error

MR1 damper MR2 damper
E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Two (żdef , I) 5.9 8.4 3.0 4.0 14.9 6.9 6.8 7.2 8.0 6.2
Three(zdef , żdef , I) 2.1 3.5 2.0 3.8 3.8 4.6 4.0 5.4 6.7 4.0

motion of the damper rod is critical, i.e. displacements at high frequencies (> 10 Hz)
such as in experiments E2 and E5.

For its feasibility to compute the ANN into an application problem, only one signal
is enough to represent the nonlinear dynamics of an MR damper, i.e. lower computing
resources are demanded. In this case, the velocity signal is chosen because it involves
more data variance than the displacement signal. From the practical point of view, this
signal can be measured from any velocity transducer or estimated from classical accel-
eration sensors.

4.3 Number of Regressors

By considering the MLP network with two input signals (̇zdef and I), a different number
of time delays in the input vector of the ANN model has been evaluated to analyze the
possible time correlation into the data. Table 5 shows that the addition of time delays
into the input vector does not improve the modeling performance, the computing time is
increased with an insignificant reduction of the error. For instance, the modeling error
in the MR1 damper is reduced up to 5 % when one or more time delays are added,
while for the MR2 damper the reduction is up to 2.8 %.

Table 5. ANN modeling error using different number of regressors in the input vector

Number of
Percentage of Error

regressors
MR1 damper MR2 damper

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

0 5.9 8.4 3.0 4.0 14.9 6.9 6.8 7.2 8.0 6.2
1 6.5 8.2 3.0 4.2 14.6 7.2 7.0 7.2 7.8 6.2
2 6.2 8.1 3.0 4.4 14.9 6.9 7.0 7.2 7.6 6.2
3 5.7 8.4 3.0 3.8 15.0 6.7 6.8 7.2 7.8 6.2

Because the time response of the MR dampers is so fast, and the sampling time is
chosen as ten times faster, it does not exist a time-correlation between the damping
force and the input variables, the instantaneous velocity and electric current are enough
for the force estimation.

4.4 ANN-Size

Finally, the choice of the number of parameters (hidden layers and neurons) of the
non-linear parametric function can be easily made using a cross-validation approach. A
1-hidden-layer structure has been chosen after an intensive analysis with different num-
bers of hidden layers which have the same number of neurons, e.g. the modeling error
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in the MR1 damper is reduced around 8.7 % (in average of the five experiments) when
three hidden layers are used in comparison to the 1-hidden-layer structure; however,
the computing time and complexity of the network are considerably increased. Thus,
the 1-hidden-layer structure is enough to model the nonlinear phenomena of the MR
dampers, which it guarantees the universal-approximation property [25].

Input 
Layer

Hidden Layer Output
Layer

Displacement or
velocity sensor

Electric current

Damping
Force

Fig. 3. Feedforward ANN of the MR damper model

For determining the number of neurons in the hidden layer, the minimal dimen-
sions criterion is used [14]; the best choice is with 10 neurons because an improvement
around 7.5 % is obtained versus an structure with 5 neurons and, the difference of error
respect to the ANN with 15 neurons is smaller than 3.5 %.

According to the above design issues, the chosen ANN architecture to model the MR
damper dynamics is (2,10,1), Figure 3. The ANN input vector includes the signal of the
velocity of the damper rod and the electric current actuation without considering time
delays, while the damping force corresponds to the ANN output.

4.5 Comparative Analysis

In order to analyze the effectiveness of the proposed ANN-based model, a comparative
analysis is established with the Bingham model [1], which is considered as a classical
parametric structure.

The Bingham model consists of a Coulomb friction element placed in parallel with a
viscous damper and assumes that the fluid remains rigid in the pre-yield region; in the
post-yield region, it exhibits a linear relation between the stress and deformation rate
[1]. The MR force, by adding an electric current dependence, is given by:

FMR = f0 + I · fc · sign (żdef) + c0 · żdef . (4)

Table 6 shows the modeling results in the learning phase of the nonparametric and
parametric model structures under the same experimental conditions. Similar results



304 J.C. Tudón-Martı́nez and R. Morales-Menendez

are obtained in the testing phase. On comparing the Bingham model versus the ANN
model, the modeling error of both MR dampers is lower in the ANN structure, for all
experiments. The Bingham model has problems to express correctly: (1) the hysteresis
loops at high frequencies such as occur in the experiments 2 (E2) and 5 (E5), (2) and the
friction phenomenon occurred at low velocities, e.g. in the experiments E3 and E4. The
modeling performance of the nonparametric structure versus the parametric structure,
is improved around 51.9 % in the MR1 damper and 32.7 % in the MR2 damper.

Table 6. Modeling error of the parametric and nonparametric structure

Model Damper
Percentage of Error Statistical Indexes

E1 E2 E3 E4 E5 Mean Std. Deviation

Bingham model
MR1 8.9 16.6 19.1 17.4 17.9 16.0 4.1
MR2 11.5 13.4 12.3 12.3 9.2 11.7 1.6

ANN model
MR1 5.9 8.4 3.0 4.0 14.9 7.2 4.8
MR2 6.9 6.8 7.2 8.0 6.2 7.0 0.7

Additionally, Table 6 shows that the mean and standard deviation of the error is
greater in the model of the MR1 damper since its continuous actuation adds more non-
linearities, which complicate the modeling task; while, the MR2 damper model shows
better modeling performance with lower standard deviation of the error.

In order to test the capability of the model structures to represent the nonlinear and
hysteretic behavior of the MR dampers, experimental data are compared with the esti-
mated force in the characteristic diagram of Force-Velocity (FV); this diagram explains
the effect of jounce and rebound of the damper and it is a tool for the engineers of
automotive design to define the suspension capability in order to improve the vertical
dynamics of the vehicle. Figure 4 compares the FV diagram obtained for each model
based on the same experimental data, by considering the experiment 3 (road profile) in
both MR dampers. The ANN correctly describe the nonlinearities of both MR dampers;
however, the Bingham model is insufficient to model the post-yield region in both MR
dampers, Figure 4a-b. In fact, in the compression effect of the MR2 damper, the para-
metric model can not represent correctly the non-symmetric damping force because this
parametric model, such as others, assumes symmetry between the jounce and rebound
effects.

5 MR Damper Model Used in Automotive Suspensions

In order to show the implications of using an accurate MR damper model into the de-
sign/evaluation of a semi-active suspension controller, without considering the optimum
performance of the controller. Both model structures are embedded into a semi-active
suspension control system of a QoV model; the MR damper model is included to in-
crease the comfort of passengers and reduce the road holding.

The QoV model considers a sprung mass (ms) and an unsprung mass (mus). A
spring with stiffness coefficient ks and a MR damper represent the suspension between
both masses. The stiffness coefficient kt models the wheel tire. The vertical position of
the mass ms (mus) is defined by zs (zus), while zr corresponds to the road profile. It is
assumed that the wheel-road contact is ensured.
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The system dynamics is given by,

msz̈s = −ks(zs − zus)− FMR (5)

musz̈us = ks(zs − zus)− kt(zus − zr) + FMR (6)

where,FMR is the MR damping force obtained by the ANN or Bingham model, which in
this case, is based on the MR2 damper dynamics. The QoV model parameters described
in equations (5)-(6) have been identified on a rear wheel-station of a commercial pick-
up truck: ms = 525.8 Kg, mus = 139.5 Kg, ks = 37,300 N/m and kt = 295,200 N/m.

Several approaches in control of semi-active suspension systems have been proposed
by using different control theory methodologies and they have been applied to a QoV
model or to a full vehicle model; in [26,27,28] are presented some comparisons among
different control approaches.

A controller free of vehicle model is an option to analyze the impact of the proposed
nonparametric model structure into the suspension system versus the Bingham model,
whose modeling error was higher. In this study, the Mix 1-sensor (Mix1) control al-
gorithm was used, whose parameter of design is a cut frequency (α) associated to the
frequency of resonance of the sprung mass to control comfort, more details in [27]. For
the used QoV model, α = 1.4 Hz. Figure 5 shows a conceptual diagram of the semi-
active suspension control system by considering the ANN model; however, both model
structures use the deflection velocity and the electric current signal to generate the MR
force in a forward way. The block of processing of signals includes filters, estimators
and/or observers in order to achieve the control algorithm.
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models. The range of frequencies of interest for each control objective is highlighted.

In order to analyze the passengers comfort and road holding in the frequency domain,
a signal chirp of 2 cm with span of [0.5-20] Hz has been simulated. Figure 6 shows the
QoV performance; the Power Spectral Density (PSD) is used as performance index,
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i.e. the maximum gain of a signal is computed by considering 5 cycles at each fre-
quency, in this case 100 frequencies have been plotted between 0 and 20 Hz.

Figure 6 shows the impact of using an accurate MR damper model in the design
and/or evaluation of a semi-active suspension system. The semi-active suspension that
includes the ANN model (SA-ANN) fulfills with the performance specification for com-
fort, Figure 6a, i.e. at low frequencies [0-2] Hz, the maximum gain of z̈s respect to
the surface is lower than 200 units. The modeling error in the Bingham structure leads
complications to the controller; even though the controller is well designed, by using
the semi-active suspension with the Bingham model (SA-Bingham) is not accepted the
comfort performance. In automotive engineering, the SA-Bingham suspension is not ca-
pable to isolate the vibrations and the human can feel dizziness.

A good road holding is considered when the maximum gain of zus − zr respect to
zr is limited to 2.5 for low disturbances (zr < 3 cm), specially close to the resonance
frequency of mus. Figure 6b indicates that the SA-ANN suspension has a good road
holding performance, i.e. the controller also fulfills with this control objective; while,
by using a bad MR damper model is clear that the control system must be redesigned
erroneously. Finally, Figure 6c monitors the use of the shock absorber in the frequency
domain (specially in the common range at normal driving conditions), and consequently
its time-life; in this case, the erroneous Bingham model describes more activity of the
damper than the real in an automotive application.

In summary, the main implications of using a bad MR damper model can be:

1. If the control performances of comfort and road holding are not fulfilled:
– Unnecessary redesign of the controller.
– Conservatism in the controller.
– Unnecessary change of control strategy.

2. If the control performances are fulfilled:
– Lost of efficiency to isolate vibrations in an automotive application.
– Risk in a driving situation if the controller assumes lower damping force to the

real one.

6 Conclusions

A Magneto-Rheological (MR) damper model based on Artificial Neural Networks
(ANN) is proposed; its efficiency is compared versus a classical parametric model: Bing-
ham structure. The ANN model is the simplest architecture obtained after an intensive
model design: it does not require time delays in the input vector and only one sensor
(displacement or velocity) is demanded to get a reliable model.

Experimental data provided from two commercial MR dampers (DelphiTM damper
named MR1, and BWITM damper named MR2) with different properties have been
used to verify the accuracy of the proposed ANN-based damper model. The average
modeling error of the force is lower than 7.2 % by considering 5 different experiments
and 10 replicas per experiment versus an average error of 13.8 % obtained by the Bing-
ham model. However, the main differences of modeling can be analyzed in the force-
velocity diagram: the Bingham model can not represent the hysteresis loops at high
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frequencies and is insufficient to model the post-yield region at high electric current
values.

The effect of the accuracy of the MR damper models has been analyzed in a semi-
active suspension control system, by considering a quarter of vehicle model. A control
technique free of model has been used to control the vertical dynamics (comfort and
road holding) of the vehicle. Simulation results in the frequency domain show that the
ANN model fulfills with the control goals; however, a damper model with limitations to
represent the MR phenomena (Bingham structure) does not fulfill the control goals and
this could promote wrong decisions to automotive control engineers.

References

1. Stanway, R., Sproston, J.L., Stevens, N.G.: Non-linear Modeling of an Electro-rheological
Vibration Damper. J. of Electrostatics 20, 167–184 (1987)

2. Gamota, D.R., Filisko, F.E.: Dynamic Mechanical Studies of Electrorheological Materials:
Moderate Frequencies. J. of Rheology 35, 399–425 (1991)

3. Spencer, B.F., Dyke, S.J., Sain, M.K., Carlson, J.D.: Phenomenological Model of a MR
Damper. ASCE J. of Eng. Mechanics 123(3), 230–238 (1996)

4. Yang, G., Spencer, B.F., Dyke, S.J.: Large-scale MR Fluid Dampers: Modeling and Dynamic
Performance Considerations. Eng. Structures 24, 309–323 (2002)

5. Kwok, N.M., Ha, Q.P., Nguyen, T.H., Li, J., Samali, B.: A Novel Hysteretic Model for Mag-
netorheological Fluid Dampers and Parameter Identification using Particle Swarm Optimiza-
tion. Sensors and Actuators A: Physical 132, 441–451 (2006)

6. Wang, L.X., Kamath, H.: Modeling Hysteretic Behaviour in MR Fluids and Dampers using
Phase-Transition Theory. Smart Mater. Struct. 15, 1725–1733 (2006)

7. Guo, S., Yang, S., Pan, C.: Dynamical Modeling of Magneto-rheological Damper Behaviors.
Int. Mater., Sys. and Struct. 16, 3–14 (2006)
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Abstract. A new methodology to reduce uncertainty in estimating the orienta-
tion of neuronal pathways in diffusion magnetic resonance imaging is proposed.
The methodology relies on three main features. First, an optimized high angular
resolution diffusion imaging reconstruction technique is adopted. For each voxel,
the orientation distribution function (ODF) on the unit sphere is reconstructed to
extract the principal diffusion directions. Second, directional statistics are used
to estimate the principal ODF profile directions from data distributed on the unit
sphere. For this purpose, a mixture-model approach to clustering directional data
based on von Mises-Fisher distributions is adopted. Third, a modified streamline
algorithm able to accommodate multiple fiber tracts and multiple orientations
per voxel is used, to exploit the directional information gathered from estimated
ODF profiles. The methodology has been tested on synthetic data simulations of
crossing fibers and on a real data set.

Keywords: von Mises-Fisher Distributions, Generalized q-Sampling Imaging
(GQI), High Angular Resolution Diffusion Imaging (HARDI), Fiber
Tractography.

1 Introduction

Diffusion tensor imaging (DTI) is a widely used method in brain research that models
the average diffusion properties of water molecules inside a voxel based on a Gaussian
diffusion assumption. Diffusion anisotropy, derived by DTI, has been used to charac-
terize white matter neuronal pathways in the human brain, and infer global connectivity
in the central nervous system [1]. White matter fiber tractography is commonly im-
plemented using the principal diffusion direction of the DTI model [2]. Popular fiber
tracking approaches, such as the streamline tracking algorithm, uses the DTI model to
extract the orientation dependence of the diffusion probability density function of water
molecules, and reconstruct the orientation distribution function (ODF) of anisotropic
tissues. However, the standard single-tensor DTI model is based on a Gaussian diffu-
sion assumption, thus unable to resolve crossing and splitting of fiber bundles.

High angular resolution diffusion imaging (HARDI) techniques have been proposed
in the literature to overcome the limitations of the DTI method, and enable detection of
multiple ODF maxima per voxel (see [3] for a review). Several studies have shown that
fiber tracking based on HARDI-based techniques is improved and less sensitive to noise
errors compared to tensor based tracking [4], [5]. The application of these methods is
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based on the assumption that the principal directions extracted from the ODF can be
interpreted as principal directions of the underlying fiber architecture. Typically, local
maxima of the reconstructed ODF are located simply by selecting a large number of
randomly sampled points on the sphere and searching within a fixed radius neighbor-
hood [4]. Some more sophisticated heuristics built on this basic approach have been
proposed. For instance, in [6] a Quasi-Newton method is used to refine the position of
each local maximum. However, as shown in [7] and [3], the peaks of the ODF profiles
identified by these methods do not necessarily match the orientations of the distinct fiber
populations. Since uncertainty in tractography arises from uncertainty in estimating the
directions of propagation, HARDI reconstructions can still be ambiguous and difficult
to interpret in the presence of complex fiber tract configurations. To reduce uncertainty
and increase robustness in HARDI reconstructions, one may increase the number of
sampling directions, and use higher strengths of diffusion-sensitive gradients (b-values)
to attain satisfactory angular resolution [8]. Unfortunately, this solution is impractical
in clinical applications. Increasing the number of sampling directions prolongs the scan
time, making HARDI reconstructions susceptible to motion-induced errors [9]. Using
high b-values in clinical scanners results in low signal-to-noise ratio (SNR) and sub-
stantial diffusion-induced signal decay [10]. Poor SNR affects the accuracy of ODF
reconstruction, and increases fiber orientation uncertainty.

In this paper, we present a new methodology to reduce uncertainty in estimating the
orientation of neuronal pathways in HARDI reconstructions. The methodology may
be summarized in the following three aspects. First, an optimized HARDI reconstruc-
tion technique based on the generalized q-sampling imaging (GQI) approach [11] is
adopted. The ODF profile is reconstructed at each voxel, based on the raw HARDI sig-
nal acquired on a grid of q-space, and considering a sampling density of vectors on the
unit sphere. Second, directional statistics are used to estimate the principal ODF pro-
file directions from data distributed on the unit sphere. For this purpose, a clustering
approach based on mixtures of von Mises-Fisher (vMF) distributions is proposed. As
opposed to other approaches where mixture of vMF distributions are used to represent
diffusion [12], our method works directly with the sampled ODF distributions. Third,
a modified streamline algorithm able to accommodate multiple fiber tracts and multi-
ple orientations per voxel is used to exploit the directional information gathered from
estimated ODF profiles. By combining HARDI reconstruction and directional statis-
tics in an integrated framework, the methodology is expected to support more accurate
fiber ODF estimation for white matter fiber tractography than other more traditional
approaches. The methodology has been tested on synthetic data simulations of crossing
fibers and on a real data set. The implementation is integrated in a coherent framework
based on the R language [13] with 3D OpenGL visualization capabilities [14].

2 Generalized Diffusion Magnetic Resonance Tractography

2.1 GQI Reconstruction

The generalized q-sampling imaging method proposed in [11] is a HARDI approach to
estimate the ODF directly from diffusion MR signals. The relation between the acquired
diffusion weighted images W (r,q) and the measured ODF ψm(r, û) is given by
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ψm(r, û) = AqLΔ

∑
q

W (r,q)sinc(2πLΔq · û), (1)

where r is the voxel coordinate, û represents a radial spherical unit direction, q is the
wave vector in q-space, LΔ is the diffusion sampling length, and Aq is a constant area
term. The wave vector is given by q = γδG/2π, where γ is the nuclear gyromagnetic
ratio, and G and δ are the strength and duration of the diffusion-encoding gradient,
respectively.

Equation (1) is simple to interpret. The estimated ODF is synthesized from a series
of sinc basis functions, weighted by W (r,q). The shape of the basis functions is de-
termined by the value of |q|LΔ. A higher value of |q|LΔ represents a sharper contour,
and vice versa. Moreover, (1) specifies an operational sampling scheme in q-space from
which the ODF can be estimated. In particular, the number of basis functions used in
(1) is not restricted by the shell (or grid) resolution used for MRI signal acquisition.
The number of radial sampling directions can be adapted for the purposes of ODF esti-
mation. Typically, sampling densities of N = 81 and N = 321 on the hemisphere are
used in ODF profile mapping, corresponding to a third and seventh-order tessellation of
the icosahedron, respectively. However, this specification is not imposed a priori by the
acquisition resolution on the GQI reconstruction process.

2.2 Fiber Mapping Based on Directional Data Clustering

The second main feature of the proposed methodology is concerned with multiple direc-
tional mapping. Starting with the raw HARDI signal acquired on a grid of q-space, the
ODF profile is estimated at each voxel, considering a sampling density of unit vectors on
a unit S2 grid. When a threshold is applied to the estimated ODF at each voxel, the non-
thresholded unit vectors provide directional statistics information about the estimated
ODF profile. The main ODF orientations at each voxel relevant for fiber tracking may
be estimated by clustering the non-thresholded unit vectors. This directional clustering
procedure has several advantages compared to traditional approaches for orientation
mapping. In fact, current best practices perform multiple maxima extraction based on
procedures which are very sensitive to the local modes that appear in the reconstructed
ODFs. Signal noise and low sampling resolution yield deformed ODF reconstruction
profiles, thus affecting accuracy of the multiple orientation determination. In contrast,
estimating orientations from clustered directional data is much less sensitive to local
modes in the reconstructed ODF profile. Moreover, the procedure is more robust to
noise since it estimates orientations statistically from sampled data.

For directional clustering estimation, we consider a mixture of k von Mises-Fisher
(vMF) distributions [15] that serves as a model for directional ODF profile data, corre-
sponding to multiple fiber orientations. A mixture of k vMF distributions has a density
given by

f(x|Θ) =

k∑
h=1

αhfh(x|θh), (2)
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where fh(x|θh) denotes a vMF distribution with parameter θh = (μh,κh) for 1 ≤
h ≤ k, Θ = {α1, . . . , αk, θ1, . . . , θk}, and the αh are non-negative and sum to 1. A
d-dimensional unit random vector x ∈ Sd−1 is said to have d-variate vMF distribution
if its probability density function is given by

fh(x|μ,κ) = cd(κ)e
κμTx, (3)

where ‖μ‖ = 1, κ ≥ 0, d ≥ 2, and cd(κ) is a normalizing constant [16]. The density
fh(x|μ,κ) is parameterized by the mean direction μ, and the concentration parameter
κ. The κ parameter characterizes how strongly the unit vectors drawn according to
fh(x|μ,κ) are concentrated about the mean direction μ. In this work, we used the
procedure for clustering directional data outlined in [15], and implemented in [17].

The principal ODF profile directions are extracted directly from the estimated clus-
ters. The number of fibers in each voxel is automatically estimated from the recon-
structed ODF profile by the vMF approach using the BIC criterion. To decide on the
number of components to select we apply the Bayesian information criterion (BIC)
[18]. All relevant statistical information about the ODF orientation and multiple fiber
components may then be extracted from this fitting process.

2.3 Tractography

The ultimate goal of fiber orientation mapping procedures is to be able to delineate ac-
curate white matter fiber pathways between cortical and sub-cortical brain structures.
The network of fiber tract connections and its density provide valuable information in
medical applications and diagnoses. Using the voxel directional information estimated
by the vMF approach outlined in Section 2.2, we implemented a streamline tracto-
graphic algorithm to represent and visualize fiber tracts. The algorithm is a modified
version of the fiber tracking algorithm described in [2]. The modifications were im-
plemented in order to deal with multiple directional orientations and multiple fiber
tracts per voxel. Fiber tracts are initiated in every voxel within a specified user de-
fined region-of-interest (ROI) using one of the estimated main voxel ODF directions,
and are extended bi-directionally in steps less than half of the voxel dimension. The
tracts are then propagated a step parallel to the selected direction. For each new voxel
in the path front, one specific direction among the estimated voxel ODF directions is se-
lected. The voxel ODF direction that produces least curvature with the incoming path is
selected for propagation. Multiple tracts per voxel are accommodated by initializing the
tracts with random real values within the seed voxel. The number of initializing tracts
may be specified by the user, enabling him to strike a balance between fiber bundle
density and running time. The usual criteria for line keeping and line termination have
been adopted. In particular, the following criteria have been specified: minimum fiber
length (50 mm), maximum fiber length (600 mm), maximum admissible fiber deviation
angle(60o), and generalized fractional anisotropy threshold (0.4).
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(a)

(b)

Fig. 1. (a) Simulated noise free field of diffusion profiles, reconstructed field of ODF glyphs, and
estimated ODF directions, from left-to-right respectively. (b) Simulation as in (a) with Rician
noise level SNR=30.

3 Experiments

3.1 Simulated Field of Diffusion Profiles

To illustrate the methodology described in Section 2.1, we generated a field of simulated
diffusion profiles as depicted in Fig. 1. The field simulates crossing fibers with an angle
of 60◦, and b=4500. Fig. 1(a) illustrates the simulated noise free field, the reconstructed
field of ODF glyphs using the GQI method, and the estimated ODF directions based
on the vMF mixture approach. A similar profile simulation with added Rician noise,
and a signal-to-noise (SNR) value of 30 is shown in Fig. 1(b). As illustrated, the vMF
approach correctly identifies the underlying fiber orientations in both cases.

3.2 Real Data Experiment

We report on experiments using a DICOM data set provided by the “Advanced Biomed-
ical MRI Lab, National Taiwan University Hospital”. Specifically, we have used the
data set “DSI 203-point 3mm” which is included in the “DSI Studio” package, publicly
available from the NITRC repository (http://www.nitrc.org). This data set is
from a normal 24-year-old male volunteer, and has been provided as a demonstration
data set in connection with the “DSI Studio” software for diffusion MR images analysis
[11]. The data set was obtained with an echo planar imaging diffusion sequence with
twice-refocused echo, dimension 64 × 64 × 40, and slice thickness 2.9 mm. Further
details on the data set specification are available from the NITRC repository.

We have tested our model with the two b-tables that accompanies the data set. One
is a b-table for a S2 grid denoted by “dsi203 bmax4000.txt”. The other is the b-table

http://www.nitrc.org
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Fig. 2. Sagittal, coronal and axial views (from left-to-right) for slices [X, Y, Z] = [22, 29, 24] of
the selected ROI volume overlayed on the original data set with non-brain tissue removed. The
sagittal view has the front brain facing right; coronal and axial views have the right hemisphere
on the left of the image (radiological convention).

for the 3D, Diffusion Spectrum Magnetic Resonance Imaging (DSI) sampling scheme
used in the DICOM data acquisition. This b-table has 203 points uniformly distributed
on a 3D grid limited to the volume of the unit sphere. In both tables, the b-values range
from 0 to 4000.

Fig. 2 shows the views sagittal, coronal and axial for slices [X,Y, Z] = [22, 29, 24]
of a region of interest (ROI) overlayed on the original data set with non-brain tissue re-
moved. The ROI image depicts brain regions where anatomic white matter fiber cross-
ings are known to exist, forming multiple pathway bundles connected to the cerebral
cortex. The ROI was formed by extracting the superior longitudinal fasciculus (SLF)
and corticospinal tract (CT) regions based on the “ICBM-DTI-81 White-Matter” atlas
included in the FSL toolbox [19]. The extracted regions were registered to the DSI data
set using the FSL/FLIRT tool. Using the procedure outlined in Section 2.1, we esti-
mated for each voxel of the DSI data set the main ODF directions. This information
enables us to draw linemaps showing the estimated orientations, and number of fibers
for each voxel.

We show in Fig. 3 linemaps for the field of profiles estimated from the ODFs, for
voxels in axial slices 23 (left), and 24 (right). The selected ROI image is overlayed on
Fig. 3, in order to pinpoint the location of the SLF and CT regions on the linemaps.
The panels also depict the ROI (SLF and CT regions as dark hues) overlayed on the
central regions of slices 23 and 24. Fig. 3(b) depicts zoomed-in central-region images
of the panels shown in Fig. 3(a). A large number of voxels with crossing fibers is clearly
visible in these figures (see right SLF for slice 23, and left SLF for slice 24). The central
area in the panels of Fig. 3 is typical of horizontal fibers associated with the corpus
callosum.

Using the estimated voxel directional information, we tested the streamline trac-
tographic implementation outlined in Section 2.3, to represent and visualize the fiber
tracts. In Fig. 4 we show several panels representing the 3D OpenGL [20] interface used
to visualize the estimated fiber pattern in the context of the brain anatomy. Fig. 4(a) il-
lustrates the pattern of interconnections using the voxels in SLF and CT regions as
seeds, and bundles with 10 randomly initialized tracts per voxel. Fig. 4(b) maps the
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(a)

(b)

Fig. 3. (a) Linemaps for the field of profiles estimated from the ODFs, for voxels in axial slices 23
(left), and 24 (right). The panels also depict the ROI (SLF and CT regions as dark hues) overlayed
on the central regions of slices 23 and 24; (b) zoomed-in images of the linemap panels depicted
in (a).

fiber tracts overlayed on image slices of the selected ROI region. Fig. 4(c) and Fig. 4(d)
map the fiber tracts overlayed on image slices of the brain.
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(a) (b)

(c) (d)

Fig. 4. Panels representing the 3D OpenGL interface used to visualize the estimated fiber pattern
in the context of the brain anatomy: (a) Estimated fiber pattern using multiple directional orien-
tation and multiple fiber tracts per voxel; In (b) fiber tracts are overlayed on image slices of the
selected ROI region; In (c) and (d) fiber tracts are overlayed on image slices of the brain

4 Conclusions

We have presented a generalized diffusion imaging approach incorporating directional
statistics information to support in vivo fiber tractography. Based on experiments, the
proposed approach was found to be more accurate in estimating local fiber orienta-
tions than traditional deterministic techniques based on multiple maxima extraction.
Directional accuracy impacts strongly on the quality of the reconstructed fiber maps,
and subsequent interpretation of fiber tract anatomy for use in clinical imaging. An ex-
tended tractographic procedure able to accommodate multiple pathways and crossing
fibers was outlined to profit from the richer directional information gathered at each
voxel.
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The directional statistics procedure applies the BIC model selection criterion to auto-
matically select the number of mixing components, i.e., the number of fibers per voxel
to be used for tractography purposes. This selection procedure was found to be robust
to noise in discriminating crossing-fiber configurations. The reported experiments used
the GQI method for ODF estimation. However, the proposed technique remains valid
when other HARDI reconstruction methods are used, such as Q-ball imaging or DSI.
The reconstructed ODF profiles do not depend on the type of grid used in the diffusion
data acquisition process. The user may specify different grid types and resolutions for
ODF reconstruction and fiber directional estimation.

We believe that the directional statistics technique proposed in this work offers sig-
nificant increases in sensitivity for anatomical analysis over traditional approaches. We
intend to build on the quantitative and qualitative information provided by the pro-
posed directional statistics approach to support the study of fiber tract architecture in
the brain. In particular, this information may be explored to build robust probabilistic
tractographic algorithms for complex fiber configurations.

The analyses and figures described in this work were performed using software pro-
grammed entirely in R [13]. The R-package gdimap [14] implements the reconstruc-
tion and vMF estimation methodology described in this work, and is freely available
from the CRAN repository (http://CRAN.R-project.org).
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Abstract. The analysis of fMRI allows mapping the brain and identifying brain 
regions activated by a particular task. Prior to the analysis, several steps are car-
ried out to prepare the data. One of these is the spatial smoothing whose aim is 
to eliminate the noise which can cause errors in the analysis. The most common 
method to perform this is by using a Gaussian filter, in which the extent of 
smoothing is assumed to be equal across the image. As a result some regions 
may be under-smoothed, while others may be over-smoothed. Thus, we suggest 
smoothing the images adaptively using a Wiener filter which allows varying the 
extent of smoothing according to the changing characteristics of the image. 
Therefore, we compared the effects of the smoothing with a wiener filter and 
with a Gaussian Kernel. In general, the results obtained with the adaptive filter 
were better than those obtained with the Gaussian filter. 

Keywords: Adaptive Smoothing, fMRI, Wiener Filter, Smoothing, Gaussian 
Filter, Noise. 

1 Introduction 

Functional Magnetic Resonance Imaging (fMRI) is a method to map the brain which 
does not require any invasive analysis. This is a very useful technique to identify 
brain regions of interest activated by different types of stimulation or activity and also 
during resting state. The indicator used to identify the local activity is the Blood Oxy-
genation Level Dependent (BOLD) contrast, which is based on the brain oxygenation 
of the neuronal processes associated with the experimental tasks. Oxygen and other 
nutrients is what neurons need to work. Thus, when brain neurons are activated, there 
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is a change in blood flow and oxygenation that causes a change in the Magnetic Re-
sonance (MR) signal received by the receiver coils. A major level of oxygen in blood 
in a particular area means that there is an increase in neural activity in this zone and a 
lower level means the opposite [1]. 

To obtain the BOLD contrast, the subject under study lies in the magnet under the 
influence of a powerful magnetic field and performs a task or is exposed to an exter-
nal stimulus. At the same time, a large amount of images are acquired using ultra-fast 
sequences through magnetic resonance. For some of these scans the stimulus is 
present and for some others the stimulus is absent. The low resolution brain images of 
the two cases can then be compared in order to see which parts of the brain are acti-
vated by the stimulus. After the experiment has finished, the set of images is pre-
processed and analyzed.  

One problem of fMRI data is that is very noisy and includes contributions from 
many other sources as the heart beat, breathing and head motion artifacts, which can 
cause wrong results [2]. In order to reduce as much as possible the amount of noise and 
to improve signal detection, the fMRI data is spatially smoothed prior to the analysis. 
The most common and standardized method to do this task is by using a Gaussian 
kernel. The principal problem of this method is that some regions may be under-
smoothed favoring the presence of false positives, while others are over-smoothed 
causing a loss of information. This problem is due to the fact that the extent of smooth-
ing is chosen independently of the data and is assumed to be equal across the image. 

Several studies have proposed approaches which are different from the Gaussian 
proposal, but as this the extent of smoothing is chosen independently of the data, fact 
that can carry on the problems discussed above. Some of these methods are the pro-
late spheroidal wave functions [3], wavelets [4], Gaussians of varying width [5 - 6] 
and rotations [7]. To solve these problems and limitations, some authors have propos-
es to use adaptive smoothing methods as the use of the Gaussian Markov random 
field specifies [8] and Propagation-separation procedures [9]. 

In this report we present an alternative procedure to denoise the fMRI images that 
differs from the ones used in the traditional fMRI analysis. This method is based on 
an adaptive Wiener filter which smoothes the images adaptively minimizing the loss 
of information caused by the over-smoothing and the apparition of the false positives 
when the images are under-smoothed. In this paper, we compare the effects of the 
adaptive smoothing based on the Wiener filter and the effects of the non adaptive 
smoothing of the use of the Gaussian kernel, combined in both cases with an Inde-
pendent component analysis.  

2 Materials and Methods 

The study was performed in a 3 T MRI scanner (Magnetom Trio Tim, Siemens Medi-
cal Systems, Germany) at the Diagnostic Imaging Centre at Hospital Clínic of Barce-
lona (CDIC) using the blood-oxygen level-dependent (BOLD) fMRI signal. 

Whereas the pre-processing of MR images and the regression model were per-
formed using SPM8 software (SPM8, Wellcome Department of Cognitive Neurology, 
London), the data analysis was carried out using Group ICA of fMRI Toolbox [10]. 
Both pre-processing and analysis software were run on a Matlab platform (R2009b 
version). 
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2.1 Participants 

Forty right-handed healthy undergraduate students [50% women; age range 18–25, 
mean (+S.D.) 19.6 (+1.7)] were recruited from the University of Barcelona. Subjects 
with chronic disorders, nervous system disorders or history of mental illness were 
excluded, as well as regular drinkers and those on medication. All participants were 
non smokers and low caffeine consumers (< 100 mg/day), had intermediate circadian 
typology and reported an undisturbed sleep period of at least 6 h during the night prior 
to the fMRI scan sessions.  

Caffeine may affect the performance of the task [11 - 12]. For this reason the par-
ticipants abstained from caffeine intake for a minimum of 12 h and fasted for at least 
8 h prior to the first fMRI session.  

The study was approved by the ethics committee of Hospital Clínic de Barcelona. 
Written consent was obtained from all participants, who were financially rewarded for 
taking part. 

2.2 Experimental Design 

The functional magnetic resonance imaging was obtained using gradient echo se-
quence single-shot echo-planar imaging, with the following parameters:  TR (repeti-
tion time):  2000 ms, TE (echo time):  40 ms, FOV (field of view): 24 x 24 cm, matrix 
128 x 128 pixels, flip angle 90, slice thickness: 2 mm, gap between sections: 0.6 mm, 
36 axial slices per scan. A total of 243 volumes were purchased, with 46 slices each. 

During the acquisition of fMRI, in order to obtain the BOLD contrast, the subjects 
performed a sustained attention and working memory task (CPT-IP, Continuous Per-
formance Test-Identical Pairs), which is a modification of the Cornblatt task [13] and 
a control task. CPT-IP task was created with the software Presentation (Neurobeha-
vioral System, USA). All stimuli were presented to the subjects through glasses spe-
cially designed for use in the scanner.  

The CPT-IP task was performed using a block design. It started with a block of 35 
seconds of accommodation to the scanner, which had a blank screen that the subject 
had to stare at. After this first block, 9 blocks of CPT were alternated with 9 blocks of 
control (Figure 1). Preceding each block, subjects received instructions for what to do 
in the next block for a duration time of 5 seconds. Each of the CPT blocks had a total 
of 27 numbers formed by 4 digits (1 to 9, without repeating the same figure), so that 
23 of the figures were different and 4 were repeated. The presentation time of each 
number was 450 ms and the interval between the onsets of each of the 27 consecutive 
digits was 750 ms. Subjects’ task was to detect the repeated figures and respond by 
pressing a button as quickly as possible (Figure 2A). The position of the repeated 
figures was randomized over the blocks CPT. Concerning the control block, it always 
had the same 4 digits (1 2 3 4) and the task of the subjects was only to stare at it 
throughout the presentation (Figure 2B). 

2.3 Data Pre-processing 

Image pre-processing was performed with SPM8 (http://www.fil.ion.ucl.ac.uk/ 
spm/software/spm8/) as described in (http://www.fil.ion.ucl.ac.uk /spm/doc/ spm8_ 
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manual.pdf). The pre-processing steps were (1) realigning the images to the same 
position according to the coordinates of the anterior and posterior commissure, (2) 
correcting the head movements which may have occurred in the scanner, (3) coregi-
stration of the anatomical to the functional images, (4) segmentation and normalizing 
of the anatomical image to the standard stereotactic space (Montreal Neurological 
Institute), (5) application of normalization transformation to the functional images, 
and (6) smoothing the images with a 8 mm full-width half maximum (FWHM) Gaus-
sian filter and  with an adaptive Wiener filter in order to have two groups of the same 
images with different types of smoothing to compare them later. 

 

Fig. 1. Design of the sustained attention task with alternation between blocks 

 

Fig. 2. The following figure illustrates the design of the task blocks. The top (A) exemplifies 
the figures presented in the CPT blocks.  In this example, you should respond to the stimulus 
e3. The bottom (B) exemplifies the figures presented in the control blocks. 



 Smoothing FMRI Data Using an Adaptive Wiener Filter 325 

2.4 Adaptive Wiener Filtering 

The approach that we present in this paper is a spatial filter which operates on the 
principle of least squares. This assumes that the best-fit curve of a given type is the 
curve that has the minimal sum of the deviations squared (least square error) from a 
given set of data. To understand this, we could imagine that we have several images:  
an original image M, a noisy image M’ which is the image M plus some noise, and 
finally a restored image R which is M’ with some noise removed. Obviously, what we 
intend is to have R as close as possible to the original image M. According to the least 
square principle, the way to know if the image R is close as the image M is by adding 
the squares of all differences: 
 

∑(mi,j – ri,j)
2 (1) 

 

where the sum is taken over all pixels of R and M  (which we assume to be of the 
same size). Therefore, if this value is the minimum the resultant image of the denois-
ing process will be as close as possible to the original image. The noisy image M’ can 
be written as: 
 

M’ = M +N (2) 
 

where M is the original correct image and N is the noise which we assume to be zero 
mean normally distributed. Due to the mean may not be zero, we suppose that the 
mean is mf , the variance in the mask is σ2

f and  also that the variance of the noise 
over the entire image σ2

g. Then the output value can be calculated as follows: 
 

p(n1, n2) =  mf  + 
σσ σ  (g -mf ) (3) 

where g is the current value of the pixel in the noisy image. Thus, mf  is calculated by 
simply taking the mean of all grey values under the mask, and σ2

f  by calculating the 
variance of all grey values under the mask. For more details see [14]. Due to the fact 
that we may not necessarily know the value σ2

g  we have used  a slight variant of the 
above equation which is implemented in the function wiener2 (used to filter the im-
ages)  and it’s included in the Matlab image processing toolbox: p n1, n2    mf max 0, σ – nmax σ , n g ‐mf  (4) 

where n is the computed noise variance, and is calculated by taking the mean of all 
values of σ2

f  over the entire image. 

2.5 Implementation of the Regression Model 

After the pre-processing step, we proceeded to perform the regression model to ex-
plain brain activations. To do this, we created a regression line where signal changes 
observed in each voxel could be explained by changes in the proposed task minimiz-
ing the residual error (Figure 3). 



326 M. Bartés-Serrallonga et al. 

 

Fig. 3. Regression model proposed to explain, for each voxel of the functional MRI images, the 
variability in the signal along the recorded 243 volumes. Each one of the 10 columns corres-
ponds to one of the input variables in the regression. The first one corresponds to the attention 
task in which the subject has to respond to repeated stimuli. The second one corresponds to the 
task of looking at numbers and the third one to the task of initial rest. The next 6 columns are 
the values applied to correct the head movements in the pre-processing step. The last one 
represents the error. On the right side of the table the registered volumes are listed from 1 to 
243. For each variable, white color indicates that this helps to explain the variability while 
black color indicates the opposite. 

2.6 Independent Component Analysis 

After pre-processing and regression model creation steps, we applied ICA analysis in 
both types of the smoothed images. What we intend with this analysis is to check that 
the components obtained with the Wiener filter have a time course more similar to the 
task pattern than the time course obtained with the Gaussian kernel (see Figure 4). 

 

Fig. 4. Task pattern followed during the CPT task 

To perform the ICA analysis we used the Group ICA of fMRI Toolbox. This pro-
gram has the option to make the analysis using different algorithms, as Jade, Erica, 
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Infomax, Simbec, Amuse and others. The chosen algorithm to analyze fMRI data was 
Infomax because it has been one of the most commonly used algorithms for fMRI 
data analysis and has proven to be quite reliable [15]. 

3 Results 

3.1 Selection of the Independent Components 

After the ICA analysis we selected some of the components in order to evaluate re-
sults. For that, we did a multiple regression and a statistic correlation with every para-
digm. We excluded the components that had a p-value greater than 0.01, and the ones 
which were associated to noise. Therefore we selected 3 components for the CPT task 
coming from every approach. 

3.2 Obtaining the Areas of Interest 

After the selection of the independent components, we performed a T – test with all 
the subjects and all the components. We also performed a ‘multiple regression’ SPM8 
analysis to establish the relationship between CPT-IP-related activations. 

The fMRI results were interpreted only if they attained both a voxelwise threshold 
p<0.05 (corrected) (cluster extent (k) = 10voxels). The anatomical location of the 
activated brain areas was determined by the Montreal Neurological Institute (MNI) 
coordinates. Anatomical labels were given on the basis of anatomical parcellation 
developed by [16].  

3.3 Results with the Different Smoothing Methods 

In the following images taken from one sample, we can see the results obtained with 
every smoothing method. The first image (Figure 5) is an example of a non smoothed 
image with noise. The next two images (Figures 6 and 7) correspond to the same im-
age smoothed with the two mentioned methods.  
 

 

Fig. 5. fMRI image without smoothing 

 
Fig. 6. fMRI image smoothed with a Gaussian kernel 
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Fig. 7. fMRI image smoothed with an adaptive Wiener filter 

As we have mentioned before, we applied an ICA analysis on all the subjects in 
order to check the components obtained with every method, as is illustrated in the 
next images. 
 

 
Fig. 8. Component from the CPT task obtained with the Gaussian kernel 

 
Fig. 9. Component from the CPT task obtained with the adaptive Wiener filter 

 
Fig. 10. Component from the CPT task obtained with the Gaussian kernel 
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Fig. 11. Component from the CPT task obtained with the adaptive Wiener filter 

 

Fig. 12. Component from the CPT task obtained with the Gaussian kernel 

 

Fig. 13. Component from the CPT task obtained with the adaptive Wiener filter 

Activations found in the CPT task with the Wiener filter were located bilaterally 
in frontal lobe (BAs Left 4, 6, 8, 9, 10, 32,  right 45, right 46, 47), parietal (BAs 7, 39, 
40), temporal (BAs Left 22, 37) and occipital (BAs Left 17, 18, 19) (see figure 14). 
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Fig. 14. Activations found with the Wiener filter. The Green color is the component from the 
figure 9, red corresponds to the figure 11 and blue is the one from figure 13. 

Activations found in the CPT task with the Gaussian kernel were located bilaterally 
in frontal lobe (BAs 4, 6, 8, 9, right 10, right 32, 45, 46, 47), parietal (BAs right 2, 
Left 5, 7, 31, Left 39, 40, Left 41), temporal (BAs  Left 20, 21, 22, Left 37) and occi-
pital (BAs Left 17, 18, 19) (see figure 15). 

 

 

Fig. 15. Activations found with the Wiener filter. The Green color is the component from the 
figure 8, red corresponds to the figure 10 and blue is the one from figure 12. 

4 Discussion 

This paper introduces an approach to smooth fMRI data based on the use of an adap-
tive Wiener filter. The results from the proposed method were compared with those 
obtained through the conventionally used Gaussian smoothing.  

The principal feature of our approach respect to the classic methods is that it allows 
varying the extent of smoothing across the brain. This characteristic will help  
to avoid the problems related with over and under-smoothing that may occur  
if smoothing is performed using a Gaussian kernel of fixed width. In the following 
paragraphs we will comment these problems with the achieved results. 

If we take a look at the figures (Figures 5, 6 and 7), we can observe that in figure 6 
the edges of the images are fuzzy and have less resolution than the images in the  
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figure 7. This fact indicates that the images in the figure 6 are over-smoothed causing 
probably a loss of information. On the other hand, the images of the figure 7 have 
more definition and the edges have been preserved after the smoothing process be-
cause the adaptive Wiener filter smoothes an image adaptively, tailoring itself to the 
local image variance. Where the variance is large, performs little smoothing and 
where the variance is small, performs more smoothing. As a result this filter is more 
selective than the Gaussian kernel and preserves better the edges and other high-
frequency parts of the image. 

If we compare the time courses and the activations maps between the components 
achieved with the Gaussian kernel and the adaptive filter we can see that all of them 
are very similar except the ones presented in the figures 8 and 9.  

If we take a look to the activations found, we can see that the adaptive filter found 
less active regions. These correspond to the zones parietal (BAs 2, 5, 3, 31, 41) and 
temporal (BAs 20, 21) which are basically present in the figures 8 and 10. Between all 
of these areas, the ones which probably could be activated by the task are the BA 5 
which is related with the working memory [17] and BA 20 which is associated with 
the dual working memory task processing [17]. However, if we look previous studies 
[18] which studied the same task using ICA, we can see that the BAs 5 and 20 were 
not found. By this fact and because the figure 8 has more abrupt changes in the time 
course than the figure 9, differing a little bit from the task pattern, we believe that the 
components of the figures 8 and 10 have some false positives which are removed by 
the adaptive Wiener filter in the figures 9 and 11. 

5 Conclusions 

We have compared the effects of two different denoising approaches: the use of 
Gaussian kernel and the use of an adaptive Wiener filter. After the analysis, the adap-
tive Wiener filter demonstrated to be a technique with a great potential. Comparing 
with the fixed Gaussian approach, is able to remove the noise minimizing the 
over/under-smoothing. The results provided evidences to state that the Gaussian ker-
nels alter the spatial shape and extent of the activation regions, when applied for de-
noising fMRI data. Therefore, we believe that the approach proposed in this paper 
could be a good alternative to the classic smoothing methods. 
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