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Abstract. Record linkage seeks to merge databases and to remove du-
plicates when unique identifiers are not available. Most approaches use
blocking techniques to reduce the computational complexity associated
with record linkage. We review traditional blocking techniques, which
typically partition the records according to a set of field attributes,
and consider two variants of a method known as locality sensitive hash-
ing, sometimes referred to as “private blocking.” We compare these ap-
proaches in terms of their recall, reduction ratio, and computational com-
plexity. We evaluate these methods using different synthetic datafiles and
conclude with a discussion of privacy-related issues.

1 Introduction

A commonly encountered problem in practice is merging databases containing
records collected by different sources, often via dissimilar methods. Different
variants of this task are known as record linkage, de-duplication, and entity
resolution. Record linkage is inherently a difficult problem [2, 11, 12]. These
difficulties are partially due to the noise inherent in the data, which is often
hard to accurately model [17, 20]. A more substantial obstacle, however, is the
scalability of the approaches [23]. With d databases of n records each, brute-
force approaches, using all-to-all comparisons, require O(n¢) comparisons. This
is quickly prohibitive for even moderate n or d. To avoid this computational bot-
tleneck, the number of comparisons made must be drastically reduced, without
compromising linkage accuracy. Record linkage is made scalable by “blocking,”
which involves partitioning datafiles into “blocks” of records and treating records
in different blocks as non-co-referent a priori [2, 11]. Record linkage methods are
only applied within blocks, reducing the comparisons to O(Bn¢,. ), with nyax
being the size of the largest of the B blocks.

The most basic method for constructing a blocking partition picks certain
fields (e.g. geography, or gender and year of birth) and places records in the
same block if and only if they agree on all such fields. This amounts to an a
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priori judgment that these fields are error-free. We call this traditional blocking
(§2.1).

Other data-dependent blocking methods [2, 23] are highly application-specific
or are based on placing similar records into the same block, using techniques of
“locality-sensitive hashing” (LSH). LSH uses all of the information contained in
each record and can be adjusted to ensure that blocks are manageably small,
but then does not allow for further record linkage within blocks. For example,
[15] introduced novel data structures for sorting and fast approximate nearest
neighbor look-up within blocks produced by LSH. Their approach gave balance
between speed and recall, but their technique is very specific to nearest neighbor
search with similarity defined by the hash function. Such methods are fast and
have high recall, but suffer from low precision, rather, too many false positives.
This approach is called private if, after the blocking is performed, all candi-
date records pairs are compared and classified into matches/non-matches using
computationally intensive “private” comparison and classification techniques [3].

Some blocking schemes involve clustering techniques to partition the records
into clusters of similar records. [16] used canopies, a simple clustering approach
to group similar records into overlapping subsets for record linkage. Canopies
involves organizing the data into overlapping clusters/canopies using an inex-
pensive distance measure. Then a more expensive distance measure is used to
link records within each canopy, reducing the number of required comparisons
of records. [21] used a sorted nearest neighborhood clustering approach, combin-
ing k-anonymous clustering and the use of publicly available reference values to
privately link records across multiple files.

Such clustering-based blocking schemes motivate our variants of LSH methods
for blocking. The first, transitive locality sensitive hashing (TLSH), is based
upon the community discovery literature such that a soft transitivity (or relaxed
transitivity) can be imposed across blocks. The second, k-means locality sensitive
hashing (KLSH), is based upon the information retrieval literature and clusters
similar records into blocks using a vector-space representation and projections.
(KLSH has been used before in information retrieval but never with record
linkage [18].)

The organization of this paper is as follows. §2 reviews traditional blocking.
We then review other blocking methods in §2.2 stemming from the computer
science literature. §2.3 presents two different methods based upon locality sen-
sitive hashing, TLSH and KLSH. We discuss the computational complexity of
each approach in §3. We evaluate these methods (§4) on simulated data using
recall, reduction ratio, and the empirical computational time as our evaluation
criteria, comparing to the other methods discussed above. Finally we discuss
privacy protection aspects of TLSH and KLSH, given the description of LSH as
a “private” blocking technique.
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2 Blocking Methods

Blocking divides records into mutually exclusive and jointly exhaustive “blocks,”
allowing the linkage to be performed within each block. Thus, only records within
the same block can be linked; linkage algorithms may still aggregate information
across blocks. Traditional blocking requires domain knowledge to pick out highly
reliable, if not error-free, fields for blocking. This methodology has at least two
drawbacks. The first is that the resulting blocks may still be so large that linkage
within them is computationally impractical. The second is that because blocks
only consider selected fields, much time may be wasted comparing records that
happen to agree on those fields but are otherwise radically different.

We first review some simple alternatives to traditional blocking on fields, and
then introduce other blocking approaches that stem from computer science.

2.1 Simple Alternatives to Blocking

Since fields can be unreliable for many applications, blocking may miss large
proportions of matches. Nevertheless, we can make use of domain-specific knowl-
edge on the types of errors expected for field attributes. To make decisions about
matches/non-matches, we must understand the kinds of errors that are unlikely
for a certain field or a combination of them. With this information, we can iden-
tify a pair as a non-match when it has strong disagreements in a combination
of fields. It is crucial that this calculation be scalable since it must be checked
for all pairs of records. Some sequence of these steps reduces the set of pairs to
a size such that more computationally expensive comparisons can be made. In
84.1, we apply these concepts.

2.2 Cluster-Based Blocking

Others have described blocking as a clustering problem, sometimes with a special
emphasis on privacy, e.g., see [7, 13, 14, 21]. The motivation is natural: the
records in a cluster should be similar, making good candidate pairs for linkage.

One clustering approach proposed for blocking is nearest neighbor clustering.
Threshold nearest neighbor clustering (TNN) begins with a single record as the
base of the first cluster, and recursively adds the nearest neighbors of records in
the cluster until the distance' to the nearest neighbor exceeds some threshold.
Then one of the remaining records is picked to be the base for the next cluster,
and so forth. K-nearest neighbor clustering (KNN) uses a similar procedure,
but ensures that each cluster contains at least k records?, to help maintain
“k-anonymity” [13]. A major drawback of nearest neighbor clustering is that it
requires computing a large number of distances between records, O(n?). Blocking
a new record means finding its nearest neighbors, an O(n) operation.

! The distance metric used can vary depending on the nature of the records.
2 Privacy-preserving versions of these approaches use “reference values” rather than
the records themselves to cluster the records [21].
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The cost of calculating distances between records in large, high-dimensional
datasets led [16] to propose the method of canopies. In this approach, a com-
putationally cheap (if inaccurate) distance metric is used to place records into
potentially-overlapping sets (canopies). An initial record is picked randomly to
be the base of the first canopy; all records within a distance ¢; of the base are
grouped under that canopy. Those within distance to < t; of the base are re-
moved from later consideration. A new record is picked to be the base of the
next canopy, and the procedure is repeated until the list of candidate records
is empty. More accurate but expensive distance measures are computed only
between records that fall under at least one shared canopy. That is, only record-
pairs sharing a canopy are candidates to be linked.

Canopies is not strictly a blocking method. They overlap, making the collec-
tion of canopies only a covering of the set of records, rather than a partition. We
can derive blocks from canopies, either set-theoretically or by setting ¢; = t».
The complexity of building the canopies is O(nC,,), with C,, being the number of
canopies, itself a complicated and random function of the data, the thresholds,
and the order in which records are chosen as bases. Further, finding fast, rough
distance measures for complicated high-dimensional records is non-trivial.

2.3 LSH-Based Approaches

We explore two LSH-based blocking methods. These are based, respectively, on
graph partitioning or community discovery, and on combining random projec-
tions with classical clustering. The main reason for exploring these two methods
is that even with comparatively efficient algorithms for partitioning the similarity
graph, doing that is still computationally impractical for hundreds of thousands
of records.

2.3.1 Shingling
LSH-based blocking schemes “shingle” [19] records. That is, each record is treated
as a string and is replaced by a “bag” (or “multi-set”) of length-k contiguous
sub-strings that it contains. These are known as “k-grams”, “shingles”, or “to-
kens”. For example, the string “TORONTO” yields the bag of length-two shin-
gles “TO”, “OR”, “RO”, “ON”, “NT”, “TO”. (N.B., “TO” appears twice.)

As alternative to shingling, we might use a bag-of-words representation, or
even to shingle into consecutive pairs (triples, etc.) of words. In our experiments,
shingling at the level of letters worked better than dividing by words.

2.3.2 Transitive LSH (TLSH)

We create a graph of the similarity between records. For simplicity, assume
that all fields are string-valued. Each record is shingled with a common k, and
the bags of shingles for all n records are reduced to an n-column binary-valued
matrix M, indicating which shingles occur in which records. M is large, since
the number of length-% shingles typically grows exponentially with k. As most
shingles are absent from most records, M is sparse. We reduce its dimension by
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generating a random “minhash” function and applying it to each column. Such
functions map columns of M to integers, ensuring that the probability of two
columns being mapped to the same value equals the Jaccard similarity between
the columns [19]. Generating p different minhash functions, we reduce the large,
sparse matrix M to a dense p X n matrix, M’, of integer-valued “signatures,”
while preserving information. Each row of M’ is a random projection of M.
Finally, we divide the rows of M’ into b non-overlapping “bands,” apply a hash
function to each band and column, and establish an edge between two records
if their columns of M’ are mapped to the same value in any band.?

These edges define a graph: records are nodes, and edges indicate a certain
degree of similarity between them. We form blocks by dividing the graph into its
connected components. However, the largest connected components are typically
very large, making them unsuitable as blocks. Thus, we sub-divide the connected
components into “communities” or “modules” — sub-graphs that are densely
connected internally, but sparsely connected to the rest of the graph. This ensures
that the blocks produced consist of records that are all highly similar, while
having relatively few ties of similarity to records in other blocks [8]. Specifically,
we apply the algorithm of [6]4, sub-dividing communities greedily, until even the
largest community is smaller than a specified threshold.® The end result is a set
of blocks that balance false negative errors in linkage (minimized by having a few
large blocks) and the speed of linkage (minimized by keeping each block small).
We summarize the whole procedure in Algorithm 2.3.2 (see Appendix 5).

TLSH involves many tuning parameters (the length of shingles, the number
of random permutations, the maximum size of communities, etc.) We chose the
shingle such that we have the highest recall possible for each application. We
used a random permutation of 100, since the recall was approximately constant
for all permutations higher than 100. Furthermore, we chose a maximum size of
the communities of 500, after tuning this specifically for desired speed.

2.3.3 K-Means Locality Sensitive Hashing (KLSH)

The second LSH-based blocking method begins, like TLSH, by shingling the
records, treated as strings, but then differs in several ways. First, we do not ig-
nore the number of times each shingle type appears in a record, but rather keep
track of these counts, leading to a bag-of-shingles representation for records. Sec-
ond, we measure similarity between records using the inner product of bag-of-
shingles vectors, with inverse-document-frequency (IDF) weighting. Third, we re-
duce the dimensionality of the bag-of-shingles vectors by random projections, fol-
lowed by clustering the low-dimensional projected vectors with the k-means algo-
rithm. Hence, we can control the mean number of records per cluster to be n/c,
where c¢ is the number of block-clusters. In practice, there is a fairly small disper-
sion around this mean, leading to blocks that, by construction, have the roughly

3 To be mapped to the same value in a particular band, two columns must either be
equal, or a low-probability “collision” occurred for the hash function.

4 We could use other community-discovery algorithms, e.g. [9].

® This maximum size ensures that record linkage is feasible.
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the same distribution for all applications.® The KLSH algorithm is given in Ap-
pendix 5.

3 Computational Complexity

3.1 Computational Complexity of TLSH

The first steps of the algorithm can be done independently across records. Shin-
gling a single record is O(1), so shingling all the records is O(n). Similarly,
applying one minhash function to the shingles of one record is O(1), and there
are p minhash functions, so minhashing takes O(np) time. Hashing again, with
b bands, takes O(nb) time. We assume that p and b are both O(1) as n grows.
We create an edge between every pair of records that get mapped to the same
value by the hash function in some band. Rather than iterating over pairs of
records, it is faster to iterate over values v in the range of the hash function. If
there are |v| records mapped to the value v, creating their edges takes O(|v|?)
time. On average, |[v| = nV =1, where V is the number of points in the range
of the hash function, so creating the edge list takes O(V (n/V)?) = O(n?V 1)
time. [6] shows that creating the communities from the graph is O(n(logn)?).
The total complexity of TLSH is O(n) + O(np) + O(nb) + O(n*V 1) +
O(n(logn)?) = O(n?V~1), and is dominated by actually building the graph.

3.2 Computational Complexity of KLSH

As with TLSH, the shingling phase of KLSH takes O(n) time. The time required
for the random projections, however, is more complicated. Let w(n) be the num-
ber of distinct words found across the n records. The time needed to do one
random projection of one record is then O(w(n)), and the time for the whole
random projection phase is O(npw(n)). For k-means cluster, with a constant
number of iterations I, the time required to form b clusters of n p-dimensional
vectors is O(bnpI). Hence, the complexity is O(npw(n)) + O(bnpI).

Heaps’s law suggests w(n) = O(n?), where 0 < 8 < 1.7 Thus, the complexity
is O(pn'*#) 4+ O(bnpI). For record linkage to run in linear time, it must run
in constant time in each block. Thus, the number of records per block must be
constant, i.e., b = O(n). Hence, the time-complexity for blocking is O(pn'+?) +
O(n?pl) = O(n?pl), a quadratic time algorithm dominated by the clustering.
Letting b = O(1) yields an over-all time complexity of O(pn'*#), dominated by
the projection step. If we assume 8 = 0.5 and let b = O(y/n), then both the
projection and the clustering steps are O(pn'-3). Record linkage in each block is
O(n), so record linkage is O(n!®), rather than O(n?) without blocking.

5 This property is not guaranteed for most LSH methods.
" For English text, 0.4 < 8 < 0.6.
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3.3 Computational Complexity of Traditional Blocking Approaches

Traditional blocking approaches use attributes of the records to partition records
into blocks. As such, calculating the blocks using traditional approaches requires
O(n) computations. For example, approaches that block on birth year only re-
quire a partition of the records based on these fields. That is, each record is
simply mapped to one of the unique birth year values in the dataset, which is
an O(n) calculation for a list of size n. Some traditional approaches, however,
require O(n?) computations. For example, in Table 1, we show some effective
blocking strategies which require O(n?) computations, but each operation is so
cheap that they can be run in reasonable time for moderately sized files.

4 Results

We test the previously mentioned approaches on data from the RecordLinkage
R package.® These simulated datasets contain 500 and 10,000 records (denoted
RLdatab00 and RLdatal0000), with exactly 10% duplicates in each list. These
datasets contain first and last Germanic name and full date of birth (DOB).
Each duplicate contains one error with respect to the original record, and there
is maximum of one duplicate per original record. Each record has a unique
identifier, allowing us to test the performance of the blocking methods.

We explore the performance of the previously presented methods under other
scenarios of measurement error. [1, 4, 5] developed a data generation and corrup-
tion tool that creates synthetic datasets containing various field attributes. This
tool includes dependencies between fields and permits the generation of different
types of errors. We now describe the characteristics of the datafiles used in the
simulation. We consider three files having the following field attributes: first and
last name, gender, postal code, city, telephone number, credit card number, and
age. For each database, we allow either 10, 30, or 50% duplicates per file, and
each duplicate has five errors with respect to the original record, where these
five errors are allocated at random among the fields. Each original record has
maximum of five duplicates. We refer to these files as the “noisy” files.

4.1 Traditional Blocking Approaches

Tables 1 — 2 provide results of traditional blocking when applied to the
RLdatal0000 and “noisy” files. While field-specific information can yield favor-
able blocking solutions, each blocking criteria is application specific. The overall
goal of blocking is to reduce the overall set of candidate pairs, while minimizing
the false negatives induced. Thus, we find the recall and reduction ratio (RR).
This corresponds to the proportion of true matches that the blocking criteria
preserves, and the proportion of record-pairs discarded by the blocking, respec-
tively.

8 http://www.inside-r.org/packages/cran/RecordLinkage/docs/RLdata
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Criteria 1 — 5 (Table 1) and 1 — 6 (Table 2) show that some blocking ap-
proaches are poor, where the recall is never above 90%. Criteria requiring exact
agreement in a single field or on a combination of them are susceptible to field er-
rors. More reliable criteria are constructed using combinations of fields such that
multiple disagreements must be met for a pair to be declared as a non-match.
(See Criteria 7-10 and 12 in Table 1, and 7 — 8 in Table 2.) We obtain high recall
and RR using these, but in general their performance is context-dependent.

Criteria 10 (Table 1) deals with the case when a pair is declared a non-match
whenever it disagrees in four or more fields, which is reliable since false-negative
pairs are only induced when the datafile contains large amounts of error. For
example this criterion does not lead to good results with the noisy files, hence a
stronger criteria is needed, such as 7 (Table 2). Using Criteria 12 (Table 1) and
8 (Table 2), we further reduce the set of candidate pairs whenever a pair has a
strong disagreement in an important field.” These criteria are robust. In order to
induce false negatives, the error in the file must be much higher than expected.

Table 2. Criteria for declar-
ing pairs as non-matches,
where results correspond to
the noisy datafile with 10%
duplicates. Similar results ob-

Table 1. Criteria for declaring pairs
as non-matches, where results corre-
spond to the RLdata10000 datafile

Declare non-match if disagreement in: Recall (%) RR (%)
T. First OR last name 39.20  99.98 tained for 30 and 50% dupli-
2. Day OR month OR year of birth 59.30  99.99 %o p
3. Year of birth 84.20 98.75 cates
4. Day of birth 86.10  96.74 -
5. Month of birth 88.40  91.70
6. Decade of birth 93.20  87.76 e -
7. Firet AND last name 9920 97.36 ; ?ff.ljc'f tion-match if disagree in: nml:l“({;()i m;x({;()j
8. {First AND last name} OR 2. City 3153 7725
{day AND month AND year of birth} 99.20  99.67 3. Postal Code 32.65  94.20
9. Day AND month AND year of birth 100.00  87.61 4. First OR last name 1.30 >99.99
10. More than three fields 100.00  99.26 5. Initial of fixst OR last name 78.10 99.52
11. Initial of first OR last name 100.00  99.25 §. Rlrst AND last name oo o
12. {More than three fields} OR 8. {All fields} OR {Levenshtein dist.
{Levenshtein dist. > 4 in first OR last name} 100.00  99.97 > 4 in first OR last name} 92.84  99.92

4.2 Clustering Approaches

Our implementations of [16]’s canopies approach and [21]’s nearest neighbor ap-
proach perform poorly on the RLdata10000 and “noisy” datasets'?. Figure 1
gives results of these approaches for different threshold parameters (¢ is the
threshold parameter for sorted TNN) for the RLdatal0000 dataset. For all
thresholds, both TNN and canopies fail to achieve a balance of high recall and
a high reduction ratio.

Turning to the “noisy” dataset with 10% duplicates, we find that TNN fails
to achieve a balance of high recall and high reduction ratio, regardless of the

? We use the Levenshtein distance (LD) of first and last names for pairs passing
Criterion 10 of Table 1 or Criteria 7 of Table 2, and declare pairs as non-matches
when LD > 4 in either first or last name.

10 In our implementations, we use the TF-IDF matrix representation of the records
and Euclidean distance to compare pairs of records in TNN and canopies. We tried
several other distance measures, each of which gave similar results.
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Fig. 1. Performance of threshold nearest neighbors (left) and canopies (right) on the
RLdatal0000 datafile
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Fig. 2. Performance of TNN (left) and canopies (right) on the “noisy” datafile (10%
duplicates). The other “noisy” datafiles exhibited similar behavior as the figures above.

threshold ¢ that is used. Similarly, the canopies approach does not yield a balance
of high recall while reducing the number of candidate pairs.

Clearly, both clustering approaches fail to achieve a balance of high recall and
RR for any threshold parameters. The inefficacy of these approaches is likely due
the limited number of field attributes (five fields) and the Euclidean distance
metric used for these datasets. In particular, only three fields in the “noisy”
dataset use textual information, which both of these approaches use to identify
similar records. Limited field information can make it difficult for clustering
approaches to group similar records together, since the resulting term frequency
matrices will be very sparse. Thus, we investigate the behavior with the same
number of duplicates, but vary the error rate and provide richer information at
the field attribute level. Figure 2 illustrates that both methods do not have a good
balance between recall and RR, which we investigated for various thresholds. As
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such, further analysis of these approaches on more information-rich datasets is
required in order to make sound conclusions about their efficacy for blocking.
(We note that the metrics used in TLSH and KLSH, which shingle the records,
were chosen so as to not have such problems.)

4.3 LSH Approaches

Since the performance of KLSH and TLSH depends on tuning parameters, we
tune each application appropriately to these. We empirically measure the scala-
bility of these methods, which are consistent with our derivations in §3.

We analyze the RLdatal0000 database for TLSH and KLSH. As we increase
k under TLSH, we see that the recall peaks at k = 5, and does very poorly
(below 40% recall) when k < 4. For KLSH, the highest and most consistent
recall is when k = 2, since it is always above 80% and it is about the same no
matter the total number of blocks chosen (see Figure 4). In terms of RR, we see
that TLSH performs extremely poorly as the total number of blocks increases,
whereas KLSH performs extremely well in terms of RR comparatively (Figure
5). Figure 3 shows empirically that the running time for both KLSH and TLSH
scales quadratically with the n, matching our asymptotic derivation. We then
analyze the “noisy” database for TLSH and KLSH (see Figures 6 and 7).

4.3.1 Comparisons of Methods

In terms of comparing to the methods presented in Table 1, we find that TLSH
is not comparable in terms of recall or RR. However, KLSH easily beats Criteria
1-2 and competes with Criteria 3—4 on both recall and RR. It does not perform
as well in terms of recall as the rest of the criteria, however, it may in other
applications with more complex information for each record (this is a subject of
future work). When comparing the Table 2 to TLSH and KLSH when run for
the noisy datafile, we find that TLSH and KLSH usually do better when tuned
properly, however not always. Due to the way these files have been constructed,
more investigation need to be done in terms of how naive methods work for real
work type applications versus LSH-based methods.

Comparing to other blocking methods, both KLSH and TLSH outperform
KNN in terms of recall (and RR for the noisy datafiles). We find that for this
dataset, canopies do not perform well in terms of recall or RR unless a specific
threshold ¢; is chosen. However, given this choice of ¢, this approach yields either
high recall and low RR or vice versa, making canopies undesirable according to
our criteria.

For the RLdatal0000 dataset, the simple yet effective traditional blocking
methods and KLSH perform best in terms of balancing both high recall and
high RR. As already stated, we expect the performance of these to be heav-
ily application-dependent. Additionally, note that each method relies on high-
quality labeled record linkage data to measure the recall and RR and the cluster-
ing methods require tuning parameters, which can be quite sensitive. Our studies
show that TLSH is the least sensitive in general and further explorations should
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be done here. Future work should explore the characteristics of the underlying
datasets for which one method would be preferred over another.

4.3.2 Sensitivity Analysis on RLdata500 and RLdatal0000

A sensitivity analysis is given for KLSH and TLSH. For TLSH, the RLdata500
dataset is not very sensitive to b since the recall is always above 80% whereas
the RLdatal10000 dataset is quite sensitive to the band, and we recommend the
use of a band of 21-22 since the recall for these b is =~ 96%, although this may
change for other datasets. We then evaluate TLSH using the “best” choice of
the band for shingled values from k& = 1,...5. The sensitivity analysis for the
“noisy” datafiles was quite similar to that described above, where a band of
22 was deemed the most appropriate for TLSH. For KLSH, we found that we
needed to increase the number of permutations slightly to improve the recall and
recommend p = 150.

For KLLSH, we find that when the number of random permutations p is above
100, the recall does not change considerably. We refer back to Figure 4 (right),
which illustrates the recall versus number of blocks when p = 100. When k£ = 4,
the recall is always above 70%. However, we find that when k = 2, the recall is
always above 80%.

5 Discussion

We have explored two LSH methods for blocking, one of which would naturally fit
into the privacy preserving record linkage (PPRL) framework, since the method
could be made to be private by creating reference values for each individual in
the database. This has been done for many blocking methods in the context of
PPRL [7, 13, 14, 22]. KLSH performs just as well or better than commonly used
blocking methods, such as some simple traditional blocking methods, nearest
neighbor clustering approaches, and canopies [16, 21]. One drawback is that like
LSH-based methods, it must be tuned for each application since it is sensitive
to the tuning parameters. Thus, some reliable training data must be available to
evaluate the recall and RR (and tune KLSH or clustering type methods). In many
situations, a researcher may be better off by using domain-specific knowledge to
reduce the set of comparisons, as shown in §4.1.

LSH-methods have been described elsewhere as “private blocking” due to the
hashing step. However, they do not in fact provide any formal privacy guarantees
in our setting. The new variant that we have introduced, KLSH, does satisfy the
k-anonymity criterion for the de-duplication of a single file. However, the data
remain subject to intruder attacks, as the literature on differential privacy makes
clear, and the vulnerability is greater the smaller the value of k. Our broader
goal, however, is to merge and analyze data from multiple files. Privacy protec-
tion in that context is far more complicated. Even if one could provide privacy
guarantees for each file separately, it would still be possible to identify specific
entities or sensitive information regarding entities in the merged database.
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Fig. 4. RLdatal0000 dataset. Left: Recall versus number of shingles k for KLSH. The
highest recall occurs at k = 5. Right: Recall versus the total number of blocks, where
we vary the number of shingles k. We find that the highest recall is for k = 2.

The approach of PPRL reviewed in [10] sets out to deal with this problem.
Merging data from multiple files with the same or similar values without releasing
their attributes is what PPRL hopes to achieve. Indeed, one of course needs to go
further, since performing statistical analyses on the merged database is the real
objective of PPRL. Whether the new “private blocking” approaches discussed
offer any progress on this problem, it is unclear at best. Adequately addressing
the PPRL goals remains elusive, as do formal privacy guarantees, be they from
differential privacy or other methods.
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Fig.5. RLdatal0000 dataset. Left: For TLSH, we see the RR versus the number of
shingles, where the RR is always very high. We emphasize that TLSH does about as
well on the RR as any of the other methods, and certainly does much better than many
traditional blocking methods and KNN. (The RR is always above 98% for all shingles
with b = 26.) Right: For KLSH, we illustrate the RR versus the total number of blocks
for various k = 1,...,4 illustrating that as the number of blocks increases, the RR
increases dramatically. When the total block size is at least 25, the RR > 95%.
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is acceptable. We note this relies on very good ground truth. The only value of k we
recommend is 4 since it is close to 90% recall. The computational time is the same
as previously. Right: Elapsed time for 10, 30, and 50 percent duplicates on “noisy”
dataset.
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Fig.7. We run KLSH at 10 percent duplicates with p=100 (left) and p=150 (right).
We see as the number of permutations increases (left figure), the recall increases. The
behavior is the same for 30 and 50 percent duplicates. This indicates that KLSH needs
to be tuned for each application based on p. (We note that KLSH was run here using
a bag of words type formulation. Shingling should be explored in future work.)
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Algorithms for KLSH and TLSH

We provide the algorithms for KLSH and TLSH below (see §2.3.2 and 2.3.3):

Algorithm 1. Transitive Locality Sensitive Hashing (TLSH)
Place similar records into blocks and impose transitivity
Data: X;;, tuning parameters b, ¢, k

Shingle each Xj; into length-k strings
Create a binary matrix M indicating which tokens appear in which records
Create an integer-valued matrix M’ of minhash signatures from M
Divide the rows of M’ into b bands
for each band do
Apply a random hash function to the band of M’
Record an edge between two records if the hash maps them to the same
bucket
end
while the largest community has > t records do
Cut the edge graph into finer communities using the algorithm of [6]
end
return the final list of communities

Algorithm 2. K-Means Locality Sensitive Hashing (KLSH). The number of
blocks c¢ is set by ¢ = n/(desired avg. number of records per block).
Place similar records into blocks and using k-means clustering and random
projections

Data: X;;, number of desired blocks ¢, tokenization tuning parameters 7,
number of projections p

for each record X;; do
Set Vij = TOKENIZE(XZ']',T)

end

for each token w do
Set N,, =number of bags containing w
Set IDF,, =logn/Ny

end

for m from 1 to p do
Set u.,,, = a random unit vector
for each bag-of-tokens vector v;; do

Set Tijm = Zw uiwviijDFw
end

end
return KMEANS (r,c)
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