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Abstract. Following the publication of an attack on genome-wide as-
sociation studies (GWAS) data proposed by Homer et al., considerable
attention has been given to developing methods for releasing GWAS data
in a privacy-preserving way. Here, we develop an end-to-end differen-
tially private method for solving regression problems with convex penalty
functions and selecting the penalty parameters by cross-validation. In
particular, we focus on penalized logistic regression with elastic-net
regularization, a method widely used to in GWAS analyses to identify
disease-causing genes. We show how a differentially private procedure for
penalized logistic regression with elastic-net regularization can be applied
to the analysis of GWAS data and evaluate our method’s performance.

Keywords: Differential privacy, genome-wide association studies
(GWAS), logistic regression, elastic-net, ridge regression, lasso, cross-
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1 Introduction

1.1 Genetic Data Privacy Background

The goal of a genome-wide association study (GWAS) is to identify genetic varia-
tions associated with a disease. Typical GWAS databases contain information on
hundreds of thousands of single nucleotide polymorphisms (SNPs) from thou-
sands of individuals. The aim of GWAS is to find associations between SNPs
and a certain phenotype, such as a disease. A particular phenotype is usually
the result of complex relationships between multiple SNPs, making GWAS a
very high-dimensional problem.
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Recently, penalized regression approaches have been applied to GWAS to
overcome the challenges caused by the high-dimensional nature of the data. A
popular approach consists of a two-step procedure. In the first step, all SNPs
are screened and a subset is selected based on a simple y2-test for association
between each single SNP and the phenotype. In the second step, the selected
subset of SNPs is tested for multiple-SNP association using penalized logistic
regression. Elastic-net regularization, which imposes a combination of ¢; and
ridge penalties, has been shown to be a competitive method for GWAS (e.g. [1,
2)).

For many years, researchers believed that releasing statistics of SNPs aggre-
gated from thousands of individuals would not compromise the participants’
privacy. Such a belief came under challenge with the publication of an attack
proposed by Homer et al. [3]. This publication drew widespread attention. As a
consequence, NIH removed all aggregate SNP data from open-access databases
[4, 5] and instituted an elaborate approval process for gaining access to aggre-
gate genetic data. This NIH action in turn spurred interest in the development
of methods for confidentiality protection of GWAS databases.

1.2 Differentially Private Methods for Solving Regression Problems

The approach of differential privacy, introduced by the cryptographic community
(e.g. Dwork et al. [6]), provides privacy guarantees that protect GWAS databases
against arbitrary external information. Building on such notion, Uhler et al. [7],
Johnson and Shmatikov [8], and Yu et al. [9] proposed new methods for selecting
a subset of SNPs in a differentially-private manner. These approaches enable us
to perform the first step in the two-step procedure for identifying the relevant
SNPs in a GWAS without compromising the study participants’ privacy. The
second step of the two-step procedure would involve performing penalized logistic
regression with elastic-net regularization (I3 and Iy penalties) on the selected
subset of SNPs in a differentially private manner. Kifer et al. [10] proposed an
objective function perturbation mechanism that releases the coefficients of a
convex risk minimization problem with convex penalties and satisfies differential
privacy. We can use this method to perform logistic regression with elastic-net
regularization in a differentially private way.

The performance of penalized logistic regression approaches depends heavily
on the choice of regularization parameters. Selection of these regularization pa-
rameters is usually done via cross-validation. Chaudhuri and Vinterbo [11] pro-
posed a differentially-private procedure for choosing the regularization parame-
ters based on a stability argument. However, the method proposed by Chaudhuri
and Vinterbo [11] only works on differentiable penalty functions, such as the o
penalty, and it cannot be applied to elastic-net regularization or lasso.

In Section 2, we extend the stability-based method for selecting the regu-
larization parameters developed by Chaudhuri and Vinterbo [11] so that it is
applicable to any convex penalty function, including the elastic-net penalty. By
combining this new result and the objective function perturbation mechanism
proposed by Kifer et al. [10], we are able to carry out a privacy-preserving penal-
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ized logistic regression analysis. In Section 3, we demonstrate how to implement
the full objective function perturbation mechanism with cross-validation based
on the results by Chaudhuri et al. [12] and Kifer et al. [10]. In particular, we
provide the exact form of the random noise used in the objective function pertur-
bation mechanism. Furthermore, we show that, under a slightly stronger condi-
tion, we can perturb the objective function by an alternative form of noise—the
multivariate Laplace noise—and thereby obtain more accurate results. In Sec-
tion 4, we show how to apply our results to develop an end-to-end differentially
private penalized logistic regression method with elastic-net penalty and cross-
validation for the selection of the penalty parameters. Finally, in Section 5, we

demonstrate how well this end-to-end differentially private method performs on
a GWAS data set.

2 Differentially-Private Penalized Regression

We start by reviewing the concept of differential privacy. Let D denote the set
of all data sets. Let D, D’ € D denote two data sets that differ in one individual
only. We denote this by D ~ D’.

Definition 1 (differential privacy). A randomized mechanism K is e-
differentially private if, for all D ~ D' and for any measurable set S C R,

B(K(D) € S) _
P(K(D)eS) =

K is (e, 0)-differentially private if, for all D ~ D’ and for any measurable set
S CR,

P(K(D) € S) < eP(K(D') € 8) + 4.

Let [ : R® x D — R denote the loss function, r : R® — R a regularization
function, and A : R® x D — R the validation function. Let T' € D™ be a training
data set of size n drawn from D and V' € D™ a validation data set of size m also
drawn from D. Let b € R® denote the noise used to perturb the regularized loss
function. Then we denote by T (A, e;T,1,7,b) the differentially private procedure
to produce parameter estimates from the training data 7" given the regularization
parameter A, the privacy budget ¢ > 0, the loss function [, the regularization
function 7, and the random noise b. We score a vector of regression coefficients
resulting from the random procedure T(A,¢;T,1,r,b) using the validation data
V and the validation score function q(6, V) = — 1 >\, h(6;d).

Definition 2 ((51, 82, d)-stability. Chaudhuri and Vinterbo [11]). A val-
idation score function q is said to be (B1, B2,9)-stable with respect to a training
procedure T, the candidate regularization parameters A, and the privacy budget
€, if there exists E C R® such that P(b € E) > 1 — 6, and when b € E, the
following conditions hold:
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1. Training stability: for all A € A, for all validation data sets V € D™, and
all training dataset T,T' € D™ with T ~ T',

B

"

2. Validation stability: for all A € A, for all training data sets T € D™, and
all validation data sets V,V' € D™ with V ~ V’,

| q(T()\,e;T,l,r, b)’V) - q(T()\,e;T’,l,r, b),V) ‘ <

P2

‘ q(T()\,E;T,Z,T, b),V) 7(](T()\,E;T,Z,T, b)ﬂvl) ‘ < m'

Chaudhuri and Vinterbo [11] gave conditions under which a validation score
function is (81, B2, d)-stable when the regularization function is differentiable
and showed that as long as the validation score function ¢ is (81, 82, 0)-stable
for some (31, B2,d > 0 with respect to the procedure T, candidate regularization
parameters A, and privacy budget €, we can choose the best regularization pa-
rameter in a differentially private manner using Algorithm 1 and Algorithm 2
in Chaudhuri and Vinterbo [11]. In Theorem 3, we specify the conditions un-
der which a validation score function is (f1, 32,0)-stable for a general convex
regularization function.

In the following, we combine the regularization function and the regular-
ization parameters to form a vector of candidate regularization functions r =
(r1,...,7¢). Then, selecting the regularization parameters is equivalent to select-
ing a linear combination of r;’s in 7.

Theorem 3. Let r = (r1,...,1) be a vector of convex regularization functions
with r; : R® — R that are minimized at 0. Let A = {\1,..., \g} be a collection of
reqularization vectors, where \; is a t-dimensional vector of 0’s and 1’s. We de-
note by cmin := sup {VA € A, \I'r is c-strong convex}. Let h(6;d) be a validation
score that is non-negative and k-Lipschitz in 0. We denote maxgep gers h(0;d)
by h*. In addition, let l(8;d) be a convex loss function that is v-Lipschitz in 6.
Finally, let £ € R such that P(||b]|, > &) < 6/k for some 6 € (0,1). Then the
validation score q(0,V) = — 1 3= h(0;d) is (81, B2, 8/k)-stable with respect to
dev

T, € and A, where
T\ eT,lrb) = argmein L(6; X\ €),

with
LA = - S 1(0:d) + ATr(g) + X0 T Cmind g2 yr
) i 2 2 en
deT
2
Bl = i 3 52 = min h*a " v+ 905 .
max{c*, Cmin} maX{C*7 Cmin} €n
Proof. See A.1. O

Note that choosing r(0) = ()‘21 ||9H§,, ’\; H0||§) , with A = {e1,...,ex},

where e; is a k-dimensional vector that is 1 in the ith entry and 0 everywhere
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else, results in Theorem 4 in Chaudhuri and Vinterbo [11]. Thus, Theorem 3
generalizes Theorem 4 in Chaudhuri and Vinterbo [11].

The term ™#{0 02*_0“““} 16]]3 in Theorem 3 ensures that L(6; ), ) is at least
c*-strongly convex. This is an essential condition for ensuring that our objective
function perturbation algorithm (Algortihm 1) is differentially private. The value
of £ in Theorem 3 depends on the distribution of the perturbation noise b. In
Section 3, we analyze two different distributions for the perturbation noise.

3 Distributions for the Perturbation Noise

Chaudhuri et al. [12] and Kifer et al. [10] showed that using perturbation noise
B> with density function

IB,(b) o exp (_ ||l)2|2)

in the procedure T (A, ¢; 7,1, 7, By) produces e-differentially private parameter
estimates. In this section, we describe an efficient method for generating such
perturbation noise. Furthermore, we show that under slightly stronger conditions
the procedure T (A, ¢; T, 1, r, By) is differentially private when we use perturbation
noise B with density function

f31 (b) X exp ( ||b2|1> ;

which is simpler to generate than perturbation noise of the form Bs.

Proposition 4. The random variable X = ”VY,VH Y, where W ~ N(0, I5) and
2

Y ~ x%(2s), has density function fx(x) o exp <— H‘g”z).

Proof. See Appendix A.3. O

This result shows that By ~ HVV[Z*HQYQS, with Wy ~ N (0, I5) and Ya, ~ x%(2s).
On the other hand, B; can be viewed as the joint distribution of s independent
Laplace random variables with mean = 0 and scale = 2. In order to specify
the stability parameter Sy in Theorem 3, we need to find £ € R such that
P(||bll, = &) < 6/k. The following propositions enable us to find ¢ for the
perturbation noise By and Bs.

Proposition 5. P (||Bi||; > 2slog(sk/d)) < 6/k.

Proof. See Lemma 17 in Chaudhuri and Vinterbo [11]. O
2
Proposition 6. P (|Bg||2 > <\/s n \/log(k:/é)) n log(k:/é)) <6/k.

Proof. Note that ||Bal|, = H HVVIZQHQYQS

is completed by invoking Lemma 1 in Laurent and Massart [13]. g

= Yo, where Yo, ~ x?(2s). The proof
2
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Because P(||Bi||; > &) > P(||B1]l, > &), Proposition 5 and Proposition 6
enable us to find £ € R such that P(||bll, > &) < d/k. When the density

function of b is f(b) o exp (Hb2”1) , then by Proposition 5, £ = 2slog(sk/J).
When the density function of b is f(b) o exp <W’2”2) , then by Proposition 6,

2
¢ = (Vs + VVIog(k/3)) "+ log(k/9).

Algorithm 1 below is a reformulation of Algorithm 1 in Kifer et al. [10], i.e.,
the differentially private objective function optimization algorithm, and it incor-
porates the alternative perturbation noise. The objective function is formulated
in such a way that it is compatible with the regularization parameter selection
procedure described in Theorem 3.

Algorithm 1. Generalized Objective Perturbation Mechanism

Input: Dataset D = {di,...,dn}; a convex domain © C R®; privacy parameter ¢;
A-strongly convex regularizer r; convex loss function [(0; d) with rank-1 continuous
Hessian V?21(0;d), an upper bound ¢ on the maximal singular value of V2I(6;d)
and upper bounds r; on [[VI(0;d)||; for j € {1,2} that hold for all d € D and all

0 € O. It is also required that ¢ > 2k; and A > n(ee/c471)‘

Output: A differentially-private parameter vector 6.

1. Sample b € R® according to noise distribution Bj, j € {1, 2}.
2. return 0" = arg ming L(0; D, A, b), where

L(0: D, \,b) = i S0y +r(0) + 270,
deD

Theorem 7. Algorithm 1 is e-differentially private.

Proof. See A.2. 0

3.1 Comparison of the Performance of Algorithm 1 under Different
Noise Distributions

Note that we can always upper bound [|VI(0;d)||, by ||VI(6;d)||, and hence
ko < k1 in Algorithm 1. However, as we show in this section, results from
Algorithm 1 are more accurate when sampling noise from B; compared to Bs.
To compare the performance of Algorithm 1 under noise sampled from B; and

By, we follow the algorithm performance analysis in Chaudhuri et al. [12] and
analyze P(J(6,) — J(0*) > ¢), where

7(6) = iZl(@;d)Jm(@)

deD
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with [ and r as defined in Algorithm 1, #* = argming J(¢), and 6, =
argming [J(0) + £ b70] = argming L(6;b). That is, J(6,) — J(0*) measures
how much the objective function deviates from the optimum due to the added
noise. Given random noise b € R*, J(6) + 2 b0, < J(6*) + #bT60*. Hence,
J(0y) — J(0*) < 270" — 6y) < 2 ||blly 16" — 0b]|,- Let E denote the event
that {|[bl|, <&}, where £ = VAc. When E holds, then ?b70 is ff—Lipschitz.
Hence, with G(0) = J(0) A-strongly convex, ¢1(6) = EbeTG and go = 0, we can
invoke Lemma 8 to obtain [|6* — 6|, < /\“‘fn Therefore, when E holds, then
T6) - 307 < £ ol 6~ ol < e P <

Thus P(J(6y) — J(0*) > ¢) < 1-P(E) = P(||b||, > &) when the random noise b is
sampled from By or Bs. || B1]|; is the sum of s independent exponential random
variables with mean = 2 and thus ||B;|; ~ Gamma(s,2). On the other hand,
| B2y ~ x*(2s). But in fact x*(2s) ~ Gammaf(s,2). Therefore, P(|| By ||, > &) <
P(||B1]l; > &) = P(|| B2l > &). Thus, sampling the noise from B; in Algorithm
1 produces more accurate results.

4 Application to Logistic Regression with Elastic-Net
Regularization

In this section we show how to apply the results from the previous section to
penalized logistic regression. The logistic loss function {(8;z,y) is given by
1(0;2,y) = log (1 —+ exp(—y@Tx)) ,

where y € {—1,1}. The first and second derivatives with respect to ¢ are

1
— x

1+ exp(y6Tx) Y
1 1 -
xx

1+ exp(—y6Tz) 1+ exp(yTx)

Vi(b;z,y) =

V2(0;2,y) =

It can easily be seen that the logistic loss function satisfies the following prop-
erties: (i) 1(0;x,y) is convex; (ii)V2((0;x,y) is continuous; and (iii) V21(6;z,y)
is a rank-1 matrix.

We denote by ||M||; the nuclear norm of the matrix M and we choose & such
that [|z||; < & for all z, where j € {1,2}. Then

V216052, 9)|, < [laa”||, = ll2]5 < ll=]} < &% forje{1,2},
IVI(0; z,y)

Thus we can apply Algorithm 1 to output differentially private coefficients for
logistic regression with elastic-net regularization. Moreover, the logistic loss func-
tion satisfies the conditions in Theorem 3 because [(6;x,y) is Lipschitz: There
exists a parameter 6 such that

10152, y) — 10252, 9)| < [[VI(O;2,9)l |61 = Oafl, < w101 — b2,

B

)

Il < llzl; <



Differentially-Private GWAS Analysis 177

Thus we can apply the stability argument in Theorem 3 to select the best reg-
ularization parameters in a differentially private way. In Section 5 we show how
well this method performs on a GWAS data set.

5 Application to GWAS Data

We now evaluate the performance of the proposed method based on a GWAS data
set. We analyze a binary phenotype such as a disease. Each SNP can take the
values 0, 1, or 2. This represents the number of minor alleles at that site. A large
SNP data set is freely available from the HapMap project!. It consists of SNP
data from 4 populations of 45 to 90 individuals each, but does not contain any
phenotypic information about the individuals. HAP-SAMPLE [14] can be used
to generate SNP genotypes for cases and controls by resampling from HapMap.
This ensures that the simulated data show linkage disequilibrium (i.e., correlations
among SNPs) and minor allele frequencies similar to real data.

For our analysis we use the simulations from Malaspinas and Uhler [15]. The
simulated data sets consist of 400 cases and 400 controls each with about 10,000
SNPs per individual (SNPs were typed with the Affymetrix CHIP on chromo-
some 9 and chromosome 13 of the Phase I/II HapMap data). For each data set
two SNPs with a given minor allele frequency (MAF) were chosen to be causative.
We will analyze the results for minor allele frequency (MAF) = 0.25. The simu-
lations were performed under the multiplicative effects model: Denoting the two
causative SNPs by X and Y and the disease status by D (i.e., X,Y € {0,1,2}
and D € {—1,1}, where 1 describes the diseased state), then the multiplicative
effects model can be defined through the odds of having a disease:

P(D=1]X,Y)

P(D=-1]X,Y)
This model corresponds to a log-linear model with interaction between the two
SNPs. For our simulations we chose € = 0.64, o = = 0.91 and § = 2.73. This
results in a sample disease prevalence of 0.5 and effect size of 1, which are typical
values for association studies. See Malaspinas and Uhler [15] for more details.

In the first step, we screen all SNPs and select a subset of SNPs with the
highest y?-scores based on a simple y2-test for association between each single
SNP and the phenotype. Various approaches for performing the screening in a
differentially private manner were discussed and analyzed in Uhler et al. [7],
Johnson and Shmatikov [8], and Yu et al. [9]; We concentrated on the second
step and did not employ the differentially private screening approaches in this
paper. The second step of the two-step procedure consists of performing penal-
ized logistic regression with elastic-net regularization on the selected subset of
SNPs and choosing the best regularization parameters in a differentially private
manner. In the following, we analyze the statistical utility of the second step
and show how accurately our end-to-end differentially private penalized logistic
regression method is able to detect the causative SNPs and their interaction.

GOCXﬁdeY.

! http://hapmap.ncbi.nlm.nih.gov/
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The elastic-net penalty function has the form é)\(l — a)ly + Aaby, where «
controls the sparsity of the resulting model and A controls the extent to which
the elastic-net penalty affects the loss function. In the simulation, we apply a
threshold criterion to the terms in the model so that we exclude from the model
the ith term if its regression coefficient, ¢;, satisfies |0;|/ max{|0;|} < r, where

K3

max{|0;|} is the largest coefficient in absolute value and r is a thresholding ratio,
7

which we set to 0.01.

In our experiments, we selected M = 5 SNPs with the highest y2-scores,
which include the two causative SNPs, for further analysis. We denote by € the
privacy budget, by « the sparsity parameter in the elastic-net penalty func-
tion, and by “convex min” the condition of strong convexity imposed on the
objective function (see Theorem 3). Note that conver min is a function of M
and €. For elastic-net with « fixed, we need the smallest candidate parameter
Amin > conver min/(1 — a).

In Figure 1, we analyze the sensitivity of our method. For different sparsity
parameters « and different privacy budgets €, which determine convexr min given
a fixed M, we show how often, out of 100 simulations each, our algorithm re-
covered the interaction term (leftmost bar in red), the main effects scaled by a
factor of 1/2 to account for the two main effects (middle bar in green) and all
effects, i.e. the interaction effect and the two main effects (rightmost bar in blue).
As the privacy budget e increases, the amount of noise added to the regression
problem decreases, and hence the frequency of selecting the correct effects in the
regression analysis increases. The plots also show that as the sparsity parameter
« increases, the frequency of selecting the correct terms decreases.

In Figure 2 we analyze the specificity of our method. For different sparsity
parameters « and different strong convexity conditions convexr min, we show how

interactionl main effectsll alll

€=0.5, convex_min=3.38 =1, convex_min=1.58
b 0.8
4 r 0.6
& 1 0.4
c b 0.2
S e=5, convex_min=0.18 £=10, convex_min=0.04
O 0.8
O 056
LL 044
0.2 4
0.0 -

0.1 0.5 0.9 0.1 0.5 0.9
o

Fig. 1. Sensitivity analysis for different sparsity parameters «, privacy budgets €, and
strong convexity conditions convex min when the top 5 SNPs are used for the analysis:
the red (leftmost) bar shows how often, out of 100 simulations each, the algorithm
recovered the interaction term, the green (middle) bar corresponds to the main effects
scaled by a factor of 1/2 and the rightmost (blue) bar corresponds to all effects, i.e. 2
main effects and 1 interaction effect
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often, out of 100 simulations each, our algorithm did not include any additional
effects in the selected model. As « increases, the selected model becomes sparser
and the algorithm is hence less likely to wrongly include additional effects. We
also observe that as conver min decreases, the specificity increases. This can be
explained by how we choose the candidate parameters A\, namely as multiples of
the smallest allowed value for A\, which is convexr min/(1 — «). When A is smalll,
the effect of the penalty terms diminishes, and we are essentially performing a
regular logistic regression, which does not produce sparse models.

In Figure 3, we plotted the results of non-private penalized logistic regression
with elastic-net penalty to contrast Figure 1 and Figure 2. The results of the non-
private penalized logisitc regression is indirectly related to € because the choice of
the smallest regularization parameter X is bounded below by conver min/(1— )
and convexr min is a function of e. We can observe from Figure 3 that when the
regularization parameter X is large (i.e., convex min > 1.58), the regression
analysis screens out all effects. Hence, the sensitivity is 0 and the specificity
is 1. When A is small (i.e., convex min < 0.18), the amount of regularization

specificity ]
....... convex min=3.38 [ convex min=158 ] .
. 0.8
b - 0.6
5 b 0.4
c i 0.2
5 convex_min=0.18 convex_min=0.04
o_ 10 P e N N
O 0.8+ -
~ 0.6 — -
L 04 A -
0.2 I:l L
0.1 0.5 0.9 0.1 0.5 0.9
o

Fig. 2. Specificity analysis for different sparsity parameters o and strong convexity
conditions convexr min: the plot shows how often, out of 100 simulations each, our
algorithm did not include any additional effects in the selected model

(a) Sensitivity (b) Specificity
interactionl main effectsl alll specificity/[]
convex_min=3.38 convex_min=1.58 convex_min=3.38 convex_min=1.58
i b 1.0 f 1 Ll
4 0.8 4 0.8
4 - 0.6 4 0.6
1 Fo4 1 L 0.4
= D S IS i 2 1 o3
= convex_min=0.18 convex_min=0.04 = convex_min=0.18 convex_min=0.04
35 101 r = 1.0 — — —
0.8 + r -] 0.8 L
0.6 1 F 06 ] [
0.4 4 r 04 F
024 F 03] [
0.0 a 0.0 4 J— +
01 05 08 01 05 09 01 05 09 01 05 09
o o

Fig. 3. Results of non-private logistic regression with elastic-net penalty. Figure 3a and
Figure 3b would be compared with Figure 1 and Figure 2, respectively.
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also becomes marginal, and we begin to see that the sensitivity increases but
the specificity decreases. Figure 3 shows that we can identify the correct model
when o = 0.1 and conver min = 0.18. In contrast, when we use the same «
and convex min for differentially private regressions, Figure 1 shows that we can
obtain a good sensitivity result, but Figure 2 shows that the specificity result
for this choice is poor.

6 Conclusions

Various papers have argued that it is possible to use aggregate genomic data
to compromise the privacy of individual-level information collected in GWAS
databases. In this paper, we respond to these attacks by proposing a new method
to release regression coeflicients from association studies that satisfy differen-
tial privacy and hence come with privacy guarantees against arbitrary external
information.

By extending the approaches in Chaudhuri and Vinterbo [11] and Kifer et al.
[10] we developed an end-to-end differentially private procedure for solving re-
gression problems with convex penalty functions including selecting the penalty
parameters by cross-validation. We also provided the exact form of the random
noise used in the objective function perturbation mechanism and showed that
the perturbation noise can be efficiently sampled.

As a special case of a regression problem, we focused on penalized logistic re-
gression with elastic-net regularization, a method widely used to perform GWAS
analyses and identify disease-causing genes. Our simulation results in Section 5
showed that our method is applicable to GWAS data sets and enables us to
perform data analysis that preserves privacy and utility. The risk-utility analy-
sis about the tradeoff between privacy (e) and utility (correctly identifying the
causative SNPs) helps us decide on the appropriate level of privacy guarantee
for the released data. We hope that approaches such as those described in this
paper will allow the release of more information from GWAS going forward and
allay the privacy concerns that others have voiced over the past decade.
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Proofs

A.1 Proof of Theorem 3

Lemma 8. Let G, g1, and g2 be vector-valued continuous functions. Suppose that G is
A-strongly convez, g1 is convex and ~y1-Lipschitz, and g2 is convexr and ~y2-Lipschitz. If
f1 = argming(G+g1)(f) and fo = argming (G+g2)(f), then ||f1 — f2|ly < (v1+72)/A.

Proof (of Lemma 8). G+ g1 and G + g2 are A-strongly convex because G is A-strongly
convex and g; and g are convex. Then for j, k,w € {1,2}, j # k,

(G +guw)(f5) > (G + gu)(fr) + (G + gw) (Fe) (f; — fr) + /Q\Hfj — frll?

where 9(G + gw) denotes the subgradient. We know that 0 € (G + gw)(fw) because
fw minimizes G + g,,. Hence,

(@ +e)(f2) 2 (G+a)(f2)+ s — ol

\%

(@ +9)(f2) > (G+a)(f)+ i~ Fl.
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By summing these two inequalities we obtain
(G +92)(f1) + (G +g)(f2) > (G+g2)(f2) + (G +g)(f1) + Allfr = foll3

and hence [g2(f1) — g2(f2)] + [91(f2) — g2(f1)] > Allfi — foll3. The fact that g is

+ ‘91(f2) - gz(fl)’ < (m +2) 1 = fally

~w-Lipschitz implies that ‘gz(fl) — g2(f2)

and hence

AIfr = f2|[3 < [g2(f1) — g2(f2)] + [91(f2) — g2(f1)]

<g2(f1) — g2(f2)| + |91(f2) — g2(f1)

< (m +2)If1 = felle-

Therefore [|f1 — fall, < (71 +72)/\- =

Proof (of Theorem 8). For notational convenience we assume that ¢min > ¢* so that

LO:T) = 711 S U0 +2Tr(0) + £ b7,
deT

If emin < ¢*, we can extend r to include ry41(6) = max{o‘iﬂ“““} 10]|3 and extend each
X € A such that A\i+1 = 1. First, we show that |g(6*(T),V) — q(0*(T"), V)| < B1/n for
training sets T and T that differ only by one record. Here, 0*(T) = argming L(0;T).
Let d = T\T", d' = T'\T,
1 P, T
GO;T,T") = 1(0;d) + \Tr(0 b'o
(0;17,7") Y UG +\Tr(0)+ [ 610,

deTnT’
Q@I T) = o) ad @ T) = lied),

Then G iS cmin-strongly convex, and g and g2 are convex and -y/n-Lipschitz. By
Lemma 8, [|0*(T) — 0*(T")|l, < >Y  Since h is x-Lipschitz we obtain for any

validation set V, |q(0*(T),V) — q(6*(T"), V)| < chZ:,,'

Second, we show that for all A € A and for all validation sets V and V' that
differ in a single record, |q(6*(T),V) — q(6*(T"),V’)] < fB2/m. Since h is non-
negative, |g(0*(T),V) — q(0*(T"),V")] < hmax/m, where hmax = sup, h(0*(T);d).
By definition, Amax < h*. Moreover, because h is k-Lipschitz, hmax < k(67 (T)||,. So
hmax < min{h*, & |6*(T)||,}. Now let E be the event that ||b||, < &. Provided that E
holds, we have [b760; — b7 02| < [|b]l, |01 — 02|, < €101 — 02|, . Let G(6) = ATr(0),
g1(0;T) = 1> e 1(6;d) + 2670, and g2(0) = 0. Then G is cmin-strongly convex, g1
is (*y + fﬁ)—Lipschitz, and g2 is 0-Lipschitz. Since G + g2 is minimized when 6 = 0,

we obtain by invoking Lemma 8 that [|0*(T)[l, = [|6*(T) 0|, < . (v+ )
Therefore, |q(0*(T),V) — q(0*(T),V')] < } min {h*, Sy + ff)} . O

A.2 Proof of Theorem 7
Lemma 9. If A is of full rank and E has rank at most 2, then

det(A + E) — det(A)

det(A) = M(AT'E) + X(AT'E) + M(AT'E)A (AT E),

where A\j(Z) denotes the j-th eigenvalue of matriz Z.
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Proof (of Lemma 9). See Lemma 10 in Chaudhuri et al. [12].

Proof (of Theorem 7). Similar to the proof by Chaudhuri et al. [12], we show that if
r is infinitely differentiable, then Algorithm 1 is e-differentially private. It then follows
from the successive approximation method by Kifer et al. [10] that Algorithm 1 is still

e-differentially private even if r is convex but not necessarily differentiable.
Let g denote the probability density function of the algorithm’s output 6*. Our goal

. —e 9(6|D)
is to show that e™¢ < 9(61D")

0 = VL(0; D), we have

< €. Suppose that the Hessian of r is continuous. Because

Tp(8) :=b = - | 3. Vi(6;d) + nVr(0)| and VIp(0) = — | S V2U(6;d) + nV3r(6) | .
deD deD

Tp is injective because L(0; D) is strongly convex. Also, T is continuously differ-
entiable. Therefore,

9(6|D) f(Tp(0)) |det(VTD)(0)|

g(0|D") — f(Tp(9)) |det(VTp)(0)|’

where f is the density function of b.

We first consider | 3i(J7P Q). Let A = — 9 VTp,, B = V*1(0; D\D')=V?1(0; D'\D).
Because [ is convex and r is strongly convex, VT'p(0) is positive definite. Hence, A has
full rank. Also, E has rank at most 2 because V?I(6;d) is a rank 1 matrix by assump-

tion. By Lemma 9,

| det (VT (0))|

det(A+ E)
det(A)

| det (VT (0))]

’ <1+ Sl(A_lE) —+ SQ(A_IE) =+ Sl(A_lE)SQ(A_IE),

where s; (M) denotes the ith largest singular value of M. Because r is A-strongly convex,
the smallest eigenvalue of A is at least n\. So s;(A™'E) < siff) - Because [|VI(0;d)]||; <
k for j € {1,2}, applying the triangle inequality to the nuclear norm yields s1(F) +
s2(E) < ||V2U(0; D\D")||, +|V?1(6; D'\D)||, < 2c. Therefore, s1(A™'E) s2(A™'E) <
(nc)\)27 and
2
| det(VTp)(0)] _ |det(A + E)| < (1 L ) .
| det(VTp/)(0)] | det(A)| n

o f(Tp(0)) :
Now we consider P (0)" Since

I7(6) = Tor(@), = (£ ) 916 D\D') = V6 D°\DY

(;) (HW(@;D\D’)Hj+|yvz(9;D/\D)”j> < 2267

. A(Tp(o ITp @)l -lITor @l e
we obtain ;((Tg,((e)))) = exp (— 2, J) /exp ( 5 ) < exp ( . ) , and there-

fore,

IN

H(To(6)) [det(VTD)(6)| e c 6
F(Tor(6)) [det(VTp)(6)] = e"p(so +2log (14 nA)) =<
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A.3 Proof of Proposition 4

Proof (of Proposition 4). The distribution of X is a special case of an s-dimensional
power exponential distribution as defined by Gémez et al. [16], namely X ~ PE,(u, X, )
with 4 = (0,...,0)7, ¥ = Ids and 8 = ; Goémez et al. [16] proved that if T ~
PEs(u, X, 8), then T has the same distribution as u + Y AT Z, where Z is a random
vector with uniform distribution on the unit sphere in R®, Y is an absolutely continuous
non-negative random variable, independent from Z, whose density function is

S o 1
= .y exp (*21/”) T0,00) (1),
r (1 + ;ﬁ) 228

and A € R**® is a square matrix such that ATA = X.

Note that for 8 = ;, the distribution of Y boils down to a x2-distribution with 2s
degrees of freedom. In addition, if W ~ N(0,1ds), then W/|W| is uniformly distributed
on the unit s-sphere. Finally, since Y = Ids we get that A = Id. a
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