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Preface

Privacy in statistical databases is a discipline whose purpose is to provide
solutions to the tension between the social, political, economic, and corporate
demand of accurate information, and the legal and ethical obligation to protect
the privacy of the various parties involved. Those parties are the respondents
(the individuals and enterprises to which the database records refer), the data
owners (those organizations investing in data collection) and the users (the ones
querying the database or the search engine, who would like their queries to
stay confidential). Beyond law and ethics, there are also practical reasons for
data-collecting agencies and corporations to invest in respondent privacy: if in-
dividual respondents feel their privacy is guaranteed, they are likely to provide
more accurate responses. Data owner privacy is primarily motivated by practical
considerations: if an enterprise collects data at its own expense, it may wish to
minimize leakage of those data to other enterprises (even to those with whom
joint data exploitation is planned). Finally, user privacy results in increased user
satisfaction, even if it may curtail the ability of the database owner to profile
users.

There are at least two traditions in statistical database privacy, both of which
started in the 1970s: the first one stems from official statistics, where the disci-
pline is also known as statistical disclosure control (SDC) or statistical disclo-
sure limitation (SDL), and the second one originates from computer science and
database technology. In official statistics, the basic concern is respondent privacy.
In computer science, the initial motivation was also respondent privacy but, from
2000 onwards, growing attention has been devoted to owner privacy (privacy-
preserving data mining) and user privacy (private information retrieval). In the
last few years, the interest and the achievements of computer scientists in the
topic have substantially increased, as reflected in the contents of this volume.

“Privacy in Statistical Databases 2014” (PSD 2014) is held under the spon-
sorship of the UNESCO Chair in Data Privacy, which has provided a stable
umbrella for the PSD biennial conference series since 2008. Previous PSD con-
ferences were PSD 2012, held in 2012 in Palermo; PSD 2010, held in 2010 in
Corfu; PSD 2008, held in 2008 in Istanbul; PSD 2006, the final conference of the
Eurostat-funded CENEX-SDC project, held in 2006 in Rome; and PSD 2004, the
final conference of the European FP5 CASC project, held in 2004 in Barcelona.
Proceedings of PSD 2012, PSD 2010, PSD 2008, PSD 2006 and PSD 2004 were
published by Springer in LNCS 7556, LNCS 6344, LNCS 5262, LNCS 4302 and
LNCS 3050, respectively. The six PSD conferences held so far are a follow-up
of a series of high-quality technical conferences on SDC which started sixteen
years ago with “Statistical Data Protection-SDP 1998”, held in Lisbon in 1998
and with proceedings published by OPOCE, and continued with the AMRADS
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project SDC Workshop, held in Luxemburg in 2001 and with proceedings pub-
lished by Springer in LNCS 2316.

The PSD 2014 Program Committee accepted for publication in this volume
27 papers out of 41 submissions. Furthermore, 9 of the above submissions were
reviewed for short presentation at the conference and inclusion in the companion
CD proceedings. Papers came from 17 different countries in five different conti-
nents. Each submitted paper received at least two reviews. The revised versions
of the 27 accepted papers in this volume are a fine blend of contributions from
official statistics and computer science. Covered topics include tabular data pro-
tection, microdata masking, protection using privacy models (differential privacy,
k-anonymity), synthetic data, record linkage, remote access, privacy-preserving
protocols, and case studies.

We are indebted to many people. First, to the Universitat de les Illes Balears
for providing the conference venue and local support and to the TempletonWorld
Charity Foundation for financial help. Also, to the Organization Committee for
making the conference possible and especially to Jesús Manjón, who helped
prepare these proceedings. In evaluating the papers we were assisted by the
Program Committee and the following external reviewers: Montserrat Batet,
Vassilis Fotopoulos, Raymond Heatherly, Vishesh Karwa, Sergio Mart́ınez, Fang-
Yu Rao, and Bharath Kumar Samanthula.

We also wish to thank all the authors of submitted papers and apologize for
possible omissions.

July 2014 Josep Domingo-Ferrer
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km-Anonymity for Continuous Data Using Dynamic Hierarchies . . . . . . . 156
Olga Gkountouna, Sotiris Angeli, Athanasios Zigomitros,
Manolis Terrovitis, and Yannis Vassiliou

Differentially-Private Logistic Regression for Detecting Multiple-SNP
Association in GWAS Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Fei Yu, Michal Rybar, Caroline Uhler, and Stephen E. Fienberg

Synthetic Data

Disclosure Risk Evaluation for Fully Synthetic Categorical Data . . . . . . . 185
Jingchen Hu, Jerome P. Reiter, and Quanli Wang

v -Dispersed Synthetic Data Based on a Mixture Model
with Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Anna Oganian

Nonparametric Generation of Synthetic Data for Small Geographic
Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Joseph W. Sakshaug and Trivellore E. Raghunathan

Using Partially Synthetic Data to Replace Suppression in the Business
Dynamics Statistics: Early Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Javier Miranda and Lars Vilhuber

Synthetic Longitudinal Business Databases for International
Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Jörg Drechsler and Lars Vilhuber

Record Linkage

A Comparison of Blocking Methods for Record Linkage . . . . . . . . . . . . . . . 253
Rebecca C. Steorts, Samuel L. Ventura, Mauricio Sadinle, and
Stephen E. Fienberg

Probabilistic Record Linkage for Disclosure Risk Assessment . . . . . . . . . . 269
Natalie Shlomo



Table of Contents XI

Hierarchical Linkage Clustering with Distributions of Distances for
Large-Scale Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Samuel L. Ventura and Rebecca Nugent

Remote Access

Comparison of Two Remote Access Systems Recently Developed and
Implemented in Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Christine M. O’Keefe, Phillip Gould, and Tim Churches

Privacy-Preserving Protocols

Towards Secure and Practical Location Privacy through Private
Equality Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Emmanouil Magkos, Panayiotis Kotzanikolaou, Marios Magioladitis,
Spyros Sioutas, and Vassilios S. Verykios

Case Studies

Controlled Shuffling, Statistical Confidentiality and Microdata Utility:
A Successful Experiment with a 10% Household Sample of the 2011
Population Census of Ireland for the IPUMS-International Database . . . . 326

Robert McCaa, Krishnamurty Muralidhar, Rathindra Sarathy,
Michael Comerford, and Albert Esteve-Palos

Balancing Confidentiality and Usability: Protecting Sensitive Data in
the Case of Inward Foreign AffiliaTes Statistics (FATS) . . . . . . . . . . . . . . . 338

Katri Soininvaara, Teemu Oinonen, and Annu Nissinen

Applicability of Confidentiality Methods to Personal and Business
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Christine M. O’Keefe and Natalie Shlomo

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Erratum

Hierarchical Linkage Clustering with Distributions of Distances for
Large-Scale Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Samuel L. Ventura and Rebecca Nugent
E1



 

J. Domingo-Ferrer (Ed.): PSD 2014, LNCS 8744, pp. 1–10, 2014. 
© Springer International Publishing Switzerland 2014 

Enabling Statistical Analysis of Suppressed Tabular Data 

Lawrence H. Cox 

National Institute of Statistical Sciences, Washington, DC, USA 
cox@niss.org 

Abstract. For decades, NSOs have used complementary cell suppression for 
disclosure limitation of tabular data, magnitude data in particular.  Indications 
of its continued use abound, even though  suppression thwarts statistical analy-
sis of both the expert and the novice. We introduce methods for creating alter-
native tables that the NSO can release unsuppressed, while ensuring within  
statistical certainty that their analysis is conformal with analysis of the original. 

Keywords: cell suppression, algebraic circuit, divergence. 

1 Introduction 

Since the 1940s, national statistical offices (NSO) have employed cell suppression for 
statistical disclosure limitation (SDL) of tabular data.  Cell suppression “pokes holes” 
in tables, thwarting statistical analysis for the less sophisticated analyst, but also for 
the expert as cells are blanked not-at-random.  This paper introduces methods usable 
by either analyst or NSO that enable statistical analysis of tabular data. These tech-
niques are focused on identifying alternative tables to the original table that in most 
cases yield analytical outcomes comparable to those on the original. Using these me-
thods, an unsuppressed alternative table may be released and analyzed; or a sample of 
alternatives combined into a surrogate table and analyzed or each analyzed separately 
and analyses combined. 

Table deconstruction is defined here to include: 

• estimating feasible values of suppressed entries 
• identifying feasible alternative tables to the original 
• ruling out otherwise feasible values or tables  
• identifying alternative tables exchangeable with the original for inferential purpos-

es (surrogates) 

Table deconstruction can be a computationally demanding task, so we focus initial 
research on table structures arising regularly in survey statistics, including network 
tables.  Most U.S. Economic Censuses tables are 2- or 3-way tables controlled to 1- or 
2-way totals ([1], [2]). 

Our investigation has and explores strong connections to SDL transparency ([3]) in 
terms of what NSOs should (or should not) reveal about disclosure and suppression 
rules and what constitutes safe release of a set of alternative tables.  We introduce 
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methods for winnowing sets of alternative tables, table deconstruction, and identifica-
tion or construction of alternative tables suitable as surrogates. 

Sec. 2 discusses complementary cell suppression (CCS). Sec. 3 describes moves 
from one alternative table to another based on algebraic circuits among suppressed 
table entries. Sec. 4 presents techniques for winnowing the set of alternative tables 
and discusses interplay of these methods with transparency issues. Sec. 5 presents 
methods for identifying alternative tables expected (statistically) to produce compara-
ble analytical results to the original table. Sec. 6 contrasts behaviors of analyst and 
intruder in the context of alternative tables. Sec. 7 examines our methods in relation to 
other SDL methods.  Sec. 8 contains concluding comments and directions for future 
research.  This paper has been shortened considerably from the original to meet publi-
cation requirements; the original is available from the author. 

2 Complementary Cell Suppression 

Tabular data are data exhibiting an additive structure between tabular cells.  Tabular 
structure is expressed as a system of linear equations Ax = b.  The constant right-hand 
side satisfies b > 0 and entries of the coefficient matrix A are restricted to {-1, 0, +1} 
with at most one -1 in each row. In official statistics, of interest are solutions x > 0, 
and often only fully integer solutions (e.g., contingency tables) ([1], [4]).  Entity data 
(e.g., person data) are often counts presented in contingency tables:  each entity con-
tributes 1 to a cell value if the entity’s characteristics match those defining the cell, 
and 0 otherwise.  Establishment data may be presented in tables as aggregates of a 
nonnegative quantity of interest, e.g., retail sales, over all entities in the cell--
magnitude data ([2]).  

Aggregation defines a constraint system of a linear program (continuous data) or 
mixed integer linear program (integer data) ([5]).  Cox ([1], [2], [5]) provides full 
discussion. 

Release of any statistical information based on data pertaining to individual sub-
jects poses some risk of disclosure of individual subject data ([6], [7], [8]). Comple-
mentary cell suppression is described in [1], [2].  

Sufficient protection may be characterized in terms of alternative tables.  For each 
sensitive cell X, the NSO determines acceptable lower (lx) and upper (ux) protection 
levels based on the disclosure rule.  If there does not exist an alternative table exhibit-
ing a feasible value x for X satisfying x < lx and a second alternative table satisfying x 
> ux, protection is not sufficient.  Alternative notions of sufficient protection, e.g., 
sliding protection ([9]), result in analogous formulations. 

Although there is compelling evidence against use of cell suppression on confiden-
tiality and data usability grounds ([10], [11]), overwhelmingly cell suppression has 
been and continues to be used.  Complementary cell suppression performed using 
modern methods and software ([1], [12], [13]) is consistent internally, meaning that it 
provides sufficient protection.  Consistency relies upon weighted circuits between 
suppressed entries that enable movement from one alternative table to another (viz., 
between nonnegative solutions of Ax = b).  However, CCS is vulnerable to intruder 
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attack based on applying outside intruder knowledge to these circuits, demonstrated 
by Cox ([11]).  The mathematical program for CCS is driven by local and global data 
loss criteria represented by constraints on individual cell values and by a linear cost 
function such as total value suppressed, respectively ([10]).  

3 Mathematical Basis for CCS: Circuits 

Disclosure limitation via CCS is based on circuits between sets of suppressed cells.  A 
circuit corresponds to a solution of Az = 0; when z is integer; this is called a move.  In 
one important case (tables of network type [14]), a circuit admits a bounded (network) 
flow between its constituent suppressed entries.  Consider the table of counts:  

Table 1. Table with suppressions (D) containing 4 sensitive cells 

D11 (1) 18 D13 (6) 25 
13 D22 (5) D23 (2) 20 
D31 (4) D32 (1) 10 15 
18 24 18 60 

 
Original values of suppressed cells (D) are in parentheses.  Assume a (t=5)-threshold 
disclosure rule--the risk region is then {1, 2, 3, 4}.  Table 1 contains 4 disclosure cells 
(bolded) and 2 complementary cells.  This example was contrived so that the suppres-
sion pattern is optimal with respect to both minimum number of suppressions (6) and 
minimum total value of suppressions (19).  Mathematically, this is equivalent to Table 
2.  Its single circuit is given by Table 3. 

Table 2. Reduction of Table 1 

D11 (1) 0 D13 (6)   7 
0 D22 (5) D23 (2)   7 
D31 (4) D32 (1) 0   5 
  5   6   8 19 

Table 3. Circuit for Table 1 suppressions 

 +/- 0 -/+
0 -/+ +/-
-/+ +/- 0 

 
Relative to D11, up to 4 units can be moved in the + direction along this circuit (in-
creasing the value of D11) and up to 1 unit in the – direction, yielding 6 alternative 
integer values for D11 and 6 alternative integer tables, corresponding to D11 = 0, 1, …, 
5.  Among the alternative tables, each sensitive cell achieves a value outside the risk 
region (0, 5)—each receives sufficient protection.  This simple circuit is:  1, 0, 1, 0, 1, 1, 1,1, 0 , viz., a move from  to .  
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A cell suppression pattern may comprise multiple independent or overlapping cir-
cuits.  For higher-dimensional tables, circuits can be more complex than such simple 
+/- paths—referred to as square-free circuits. This involves algebraic statistics and 
circuits that are non-square-free. Many tables arising in official statistics are tables of 
network type, studied in [14].  These are the starting point here, and include: 

• 2-way tables 
• hierarchies of 2-way tables organized along one, but not both, dimensions 
•  “thin” multi-way tables:  tables of size fxgx2x2x….x2 
• contingency tables fit to a log-linear model with 2 configurations of minimal suffi-

cient statistics 

All network tables, three-way tables, k-dimensional tables subject to (k-1)-
dimensional marginal totals, and tables characterized by complete independence 
models ([15]) are within our initial scope. 

4 Alternative Tables 

Table 1 offers 6 alternative tables of nonnegative counts consistent with the suppres-
sion pattern, corresponding to D11 = 0, 1, …, 5.  The true (original) table has D11 = 1.  
What is or is not a sensitive (primary) cell differs between tables as the value of D11 
changes. Consider the 5 other alternative tables, with notation primary (P) and com-
plementary (C).  First, the D11 = 0 table: 

Table 4. Alternative table (D11 = 0) and optimal suppression pattern 

0 18 7 25 0 18 7 25 

13 6 1(P) 20 13 D D 20 

5 0 10 15 5 D D 15 

18 24 18 60 18 24 18 60 

 
The D11 = 0 table contains 1 sensitive cell (P).  The pattern is optimal but fails to sup-
press D11 and differs from Table 1.  Thus, the D11 = 0 table could not have been the 
original table, and may be excluded, reducing from 6 to 5 the number of alternative 
tables.  This illustrates one method for winnowing the set of alternative tables. 

For  D11 = 2: 
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Table 5. Alternative table (D11 = 2) and optimal suppression pattern 

2(P) 18 5 25 D 18 D 25 

13 4(P) 3(P) 20 13 D D 20 

3(P) 2(P) 10 15 D D 10 15 

18 24 18 60 18 24 18 60 
   

This table contains 5 primary and 1 complementary suppressions, and the pattern is 
identical to Table 1.  So, D11 = 2 is not yet ruled out.  However, if the NSO distin-
guishes primaries and complementaries—or if the intruder can do so--then the intrud-
er/analyst would detect the difference, and could rule out the D11 = 2 table.  

Table 6. Optimal pattern (D11 = 1) and optimal pattern (D11 = 2) 

P 18 C 25 P 18 C 25 

13 C P 20 13 P P 20 

P P 10 15 P P 10 15 

18 24 18 60 18 24 18 60 
 
The same holds for D11 = 3, 4, 5 tables.   Thus, if primaries are identified, all tables 

other than the original are ruled out as alternatives, and no disclosure protection is 
achieved. Magnitude cell with entity count 1 or 2 are de facto primaries and identi-
fied.  This illustrates the interplay between protection, winnowing the set of alterna-
tive tables, and transparency issues ([3])—what, if any, auxiliary information should 
the NSO provide regarding its disclosure and/or suppression rules.    

5 Table Deconstruction and Analysis of Suppressed Tables 

To provide a working example for magnitude data, entries of Table 1 are multiplied 
by 100 and the suppression pattern is preserved, resulting in Table 7.  To assess data 
quality, it is reasonable to compare cell-value distributions across alternative tables 
using standard measures of divergence (f-divergences) between distributions.  We 
express divergence in a convenient form below for conditional chi-square. 

Table 7. Table of magnitude data with suppressions (D) 

D11 (100) 1800 D13 (600) 2500 
1300 D22 (500) D23 (200) 2000 
D31 (400) D32 (100) 1000 1500 
1800 2400 1800 6000 
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The conditional chi-square statistic is used to compare distributions of alternative 
{ci} and original suppressed values {ai}: 

     ∑  where df =  degrees of freedom      (1) 

In Table 7, the suppression pattern comprises a single circuit, so df = 1, corresponding 
to a quantity d that can be moved around the circuit while preserving nonnegativity:  

.  For Table 7 (D11 = 100), -100 < d < 400.  Thus, relative to any alterna-
tive table {ai}:  

 ∑ ∑         (2) 

For Table 7, the sum of reciprocals of suppressed entries is 0.03117.  For 0.05, the critical chi-square value is 3.84.  For d2 > 123.2, the chi-square statistic ex-
ceeds the critical value.  Consequently, alternative tables corresponding to |d| > 12 are 
not reliable substitutes for Table 7 (D11 = 100) and are ruled out for inferential pur-
poses. Surrogates for Table 7 are limited to: 88 < D11 < 112.  For integer tables, there 
are 23 suitable choices among 501 alternatives:  D11 = 0, …., 500.  Thus, it is not 
necessary—nor desirable--to construct all alternative tables but rather a sample of 
tables that, for inferential purposes, are expected to be interchangeable with the origi-
nal table.  This analysis is from the perspective of the NSO which knows that D11 = 
100 for (the true) Table 7.  The NSO may or may not choose to provide analysts with 
information on selection of suitable alternative tables (a transparency issue). The NSO 
should avoid information that is symmetric about the true value as CCS is vulnerable 
to symmetric attack (see [11]). 

The NSO knows which alternative is the original, but the analyst does not and re-
quires more information.  Below approaches for the analyst and the NSO are 
sketched, illustrated for conditional chi-square.  

With standard methods, anyone can identify the 501 alternative tables to Table 7. 
Based on domain knowledge, analysts can often derive effective lower and/or upper 
bounds on particular suppressed cell value(s), thereby limiting the effective range of 
D11.  For example, if the analyst can determine that D11 > 70 and D23 < 550, only 81 
choices remain, viz., 70 < D11 < 150.   Knowledge of the disclosure and suppression 
rules also can be brought to bear, particularly for magnitude data.  For example, the 
analyst may infer D11 to within some percentage (5%,10%, 15%, …) of the largest 
(primary) cell contributor because, based on a p-percent rule, a primary cell value is 
replaced by a safe value at a distance of at most p-percent of its original value.  The 
analyst could compute all 501 sum-of-reciprocals and corresponding chi-square statis-
tics, from which clusters of similar alternative tables could be identified and ranges 
for D11 narrowed.  Or, (s)he could examine the behavior of the sum of reciprocals of 
suppressed entries for any alternative table in the current range and possibly develop 
bounds on this quantity to compare potential chi-square values with the critical value, 
leading to a “generic” d and a small range for it, as follows.  

Consider the four alternative tables D11 = 100, 200, 300, 400.  The respective sums 
of reciprocals are: 0.03117, 0.0211, 0.0199 and 0.0253. A conditional chi-square rela-
tive to these tables yields ranges for allowable displacements d of each table of  
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(-12, 12), (-14, 14), (-14, 14) and (-13, 13).  The analyst could adopt the range  -14 < 
d < 14 on a generic d centered on any alternative table and, next, by other means infer 
one or more clusters of (27) tables containing the original.  

6 The Intruder and the Analyst 

Is the net effect of this research to strengthen the hand of the intruder?  No.  The in-
truder’s objective is to reconstruct or narrowly estimate selected original cell values.  
The analyst’s objective is to deconstruct—or have the NSO deconstruct--the table to 
create a surrogate table or sample of surrogates for analysis.  Analysis of circuits of 
suppressed cells is an important tool for both intruder and analyst/NSO.  To limit the 
intruder’s damage, the NSO must first understand the intruder’s capabilities. Focused 
on discovering original “true” values, the intruder for the most part targets individual 
cell values using deterministic or averaging methods based on circuits.  While these 
methods are intended to improve methods for deconstructing circuits, such methods 
are discoverable by an intruder ([11]).  Other available tools include prior knowledge, 
which tends to be domain specific, and ancillary information on the data and disclo-
sure and suppression rules, which the NSO may or may not share (SDL transparency). 

By comparison, the analyst is focused on identifying interchangeable alternative 
tables.  Circuit analysis is the first step in this process, but subsequent challenges—
error, bias, dependencies—rely on statistical reasoning and methods.  Disclosure of 
individual values sometimes may be a by-product of such procedures, but is not their 
objective.  

7 Relationship to Other SDL Methods 

All post-tabular SDL methods are supported by a common mathematical framework 
based on the algebra of tables, and there is much to be gained by other methods  
in studying suppression, and conversely ([7], [8], [16]).  It is instructive here to con-
sider the relationship of our methods to controlled tabular adjustment and multiple 
imputation. 

Controlled tabular adjustment ([17], [18]) is an imputation method for tables de-
signed to replace complementary cell suppression.  Values for sensitive cells are im-
puted along with sufficiently many (usually a small number of) values to restore addi-
tivity to the table, using mathematical programming.  The resulting table is devoid of 
suppressions and available for analysis.  Quality effects of CTA are controlled 
through mathematical (QP-CTA [17]) or statistical (MDI-CTA [18]) constraints 
aimed at preserving distributional parameters or shape, respectively. A principal dif-
ference between CTA and methods here is emphasis on creating inference-based mul-
tiple surrogates or composites, with estimates of uncertainty.  QP-CTA on the other 
hand controls key statistics but is not designed to create an analytical surrogate. Also, 
CTA is designed to change many values each by a small amount whereas our methods  
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are applied to a fixed suppression pattern that, presumptively, is parsimonious. Never-
theless, it would be possible to increase the number of circuits and extend our me-
thods to a CTA-like setting. 

Imputing missing values and providing multiple imputed copies of a data file are at 
the center of synthetic data and multiple imputation methods.  These methods rely 
upon statistical models based on original data to impute all or a subset of variables.  
Synthetic data files have been successfully created for various kinds of microdata 
([19], [20], [21]) and have been proposed for contingency tables.  Uncertainties  
for synthetic microdata are knowable.  Methods presented here enable release of sur-
rogate tables containing imputations which are not model-generated, but instead com-
prise alternative tables created using the algebra of tables.  Analogous to synthetic 
microdata and multiple imputation methods, multiple surrogates can be released or 
combined using methods presented here. 

The key difference between this method and other methods is that, instead of rely-
ing on a statistical or optimization model, changes to the original tables are based on 
the circuit structure of the suppressions.  All unsuppressed values remain fixed, and a 
suitable set of alternative values and tables is identified and analyzed separately or 
through combination.  Winnowing methods are a key ingredient. 

An issue of importance in disclosure limitation of sets of tables is consistency—
ensuring that that two logically identical cells exhibit the same value. Many SDL 
methods fail this criterion; a notable exception is Wooton and Fraser ([22]).  Methods 
here assure that any unsuppressed value is consistent with any unsuppressed counter-
part, and that suppressed values are represented by similar, narrowly clustered set of 
values—interchangeable values. 

Regarding similar work, use of prior information but not formal methods for table 
deconstruction was reported at the 2012 NISS Workshop on Cell Suppression. Isser-
man and Westervelt ([23]) offer an approach for deconstruction of a large set of tables 
(U.S. County Business Patterns) based on exploiting weak suppression within and 
between tables.  Their focus was on recovering or bounding original values, as op-
posed to identifying alternative tables, and relies on linear programming and consi-
derable domain knowledge.  Cox ([11]) is based on circuit analysis and strong sup-
pression.  The concept of alternative tables for SDL that are interchangeable for ana-
lytical purposes is new, and will benefit from work on multiple imputation for SDL 
([21]). 

Finally, there is the issue of computational complexity.  For tables familiar to offi-
cial statistics—tables of network type in particular—computation of alternative tables 
is easy for both the analyst and the NSO.  The NSO knows the true table, but even if 
the analyst does not, they may solve the linear system defined by the suppressions for 
a continuous solution.  From this, a first and ultimately many or all alternative tables 
can be identified based on the fact that the moves are square-free. For non square-free 
tables, however, this can be far from true ([24]) for reasons including the possibility 
of gaps in the sequence of integer solutions to the integer linear system ([25]).  
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8 Concluding Comments 

We have introduced methods to enable statistical analysis of suppressed tabular data. 
These methods can be employed by either the analyst or the NSO.  For best and most 
broadly useful results, NSOs should consider adopting these methods with the aim of 
releasing single or multiple alternative tables suitable as surrogates for the original 
table, or surrogates based on combining (a sample) of surrogates.  We have demon-
strated the interplay of these methods with SDL transparency issues. 

Initial research focused on tabular structures arising regularly in official statistics, 
characterized by moves between alternative tables that are square-free. Further re-
search will consider the utility of square-free (only) scenarios for more general classes 
of tables. A computational algebra for circuits will be developed to account for sup-
pression patterns comprising multiple overlapping circuits, and formulations that 
render other f-divergences in a convenient form will be developed. 

Presentation of this research was supported in part by NSF grant SES-11-31897. 
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Abstract. Minimum distance controlled tabular adjustment (CTA) is a
perturbative technique of statistical disclosure control for tabular data.
Given a table to be protected, CTA looks for the closest safe table by
solving an optimization problem using some particular distance in the
objective function. CTA has shown to exhibit a low disclosure risk. The
purpose of this work is to show that CTA also provides a low informa-
tion loss, focusing on two-way tables. Computational results on a set of
midsize tables validate this statement.
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1 Introduction

Minimum-distance controlled tabular adjustment (CTA in short) was suggested
in [2,12] as a post-tabular perturbation approach for statistical disclosure con-
trol. A description of the state-of-the-art in the statistical disclosure field can be
found in the monograph [20] and the survey [3]. Briefly, given a table with sen-
sitive information, the goal of CTA is to compute the closest safe table through
the solution of an optimization problem using some particular distance in its
objective function. CTA is being considered an emerging technology for tabu-
lar data protection [20]. CTA can be applied to both frequency and magnitude
tables (i.e., tables providing, respectively, either cell counts or aggregated infor-
mation for another variable). This work only considers frequency tables, i.e., cell
values are integer. For two-way tables CTA will always provide integral values,
such that integrality constraints are not needed, and the two information loss
measures used in this paper (one of them requiring integrality of cell values) can
be applied.
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Several recent papers have been devoted to CTA. Some of them focused on the
solution of the optimization problem formulated [5,7,16], whereas others dealt
with quality and confidentiality issues of the computed solution [6,10].

A tabular data protection method can be seen as a map F such that F (T ) =
T ′, i.e., table T is transformed to another table T ′. Two are the main require-
ments for F : (1) the output table T ′ should be “safe”, and (2) the information
loss should be small, i.e., T ′ should be a good replacement for T . The disclosure
risk can be analyzed through the inverse map T = F−1(T ′): if not available or
difficult to compute by any attacker, then we may guarantee that F is safe. It
was empirically observed in [4] that estimates T̂ = F̂−1(T ′), F̂−1 being an esti-
mate of F−1 for CTA, were not close to T for some real tables, concluding that
CTA was a safe method for these tables. However, a similar analysis regarding
the utility of T ′ has not been performed for CTA (though it was for some mi-
crodata methods, as reported in [13]). Other methods (random record swapping
and semi-controlled random rounding) have been compared using a table from
the 2001 UK Census in [24]. The purpose of this work is then to fill this gap by
performing a computational analysis on the data utility of two-way tables pro-
tected with CTA. The same procedure may be extended to multidimensional,
hierarchical or linked tables but, due to its higher complexity, is out of the scope
of this work and part of the further research to be done in this field.

The paper is organized as follows. Section 2 reviews the CTA formulation
used in this work. Section 3 shows the methodology developed for analyzing
the information loss. Finally, Section 4 reports computational results with some
midsize two-way tables.

2 The CTA Formulation

Given (i) a set of cells ai, i = 1, . . . , n, that satisfy some linear relations Aa = b (a
being the vector of ai’s); (ii) a lower and upper bound for each cell i = 1, . . . , n,
respectively lai and uai , which are considered to be known by any attacker; (iii)
positive cell weights wi, i = 1, . . . , n, associated to the cost of perturbing cell
values; (iv) a set S = {i1, i2, . . . , is} ⊆ {1, . . . , n} of indices of sensitive cells; (v)
and a lower and upper protection level for each sensitive cell i ∈ S, respectively
lpli and upli, such that the released values musty satisfy either xi ≥ ai+ upli or
xi ≤ ai − lpli; the goal of CTA is to find the closest safe values xi, i = 1, . . . , n,
according to some distance �, that makes the released table safe. This is achieved
by the solution of the following optimization problem:

min
x

||x− a||�
s. to Ax = b

lai ≤ xi ≤ uai i = 1, . . . , n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1)

Problem (1) can also be formulated in terms of deviations from the current cell
values. Defining zi = xi − ai, i = 1, . . . , n —and similarly lzi = lxi − ai and
uzi = uxi − ai—, (1) can be recast as
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min
z

||z||�
s. to Az = 0

lzi ≤ zi ≤ uzi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ S,

(2)

z ∈ R
n being the vector of deviations. Using the �1 distance, considering the

splitting z = z+ − z−, and after some manipulation, (2) can be written as

min
z+,z−,y

n∑
i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi i �∈ S
0 ≤ z−i ≤ −lzi i �∈ S
upli yi ≤ z+i ≤ uzi yi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S,

(3)

w ∈ R
n being the vector of positive cell weights, z+ ∈ R

n and z− ∈ R
n the

vector of positive and negative deviations in absolute value, and y ∈ R
s being

the vector of binary variables associated to protections directions. When yi = 1
the constraints mean upli ≤ z+i ≤ uzi and z−i = 0, thus the protection direction
is “upper”; when yi = 0 we get z+i = 0 and lpli ≤ z−i ≤ −lzi , thus protection
direction is “lower”. Model (3) is a (in general difficult) mixed integer linear
optimization problem, but it may provide better quality solutions than other
CTA variants without binary variables (e.g., [8,9]). In this work tables have
been protected by solving (3) by the CTA package [17] recently improved within
the Data without Boundaries INFRA-2010-262608 FP7 project.

3 Assessment of Information Loss

In [13] the information loss was measured by comparing several statistics on
the original and protected microdata. We followed a similar approach, but re-
stricting the analysis to a few available statistics for two-way tables to measure
the association between the row and column variables. A simple statistic as the
correlation between the values of the cells of the original and perturbed table
ai and ai + zi, i = 1, . . . , n, is avoided, since it is meaningless: in practice it is
almost 1 and it does not capture the relationship between the row and column
categories. The assessment methodology is outlined in next subsections.

3.1 Generation of Tables

The analysis was restricted to two-way tables, which were randomly generated
by the following algorithm:

– Input: r, number of categories for row variable (rows of the table); c, number
of categories for column variable (columns of the table); N : total number of



14 J. Castro and J.A. González

observations or respondents; ρ: correlation between both variables (a number
in [−1, 1]).

– Output: a contingency table of dimensions r× c; table margins may also be
provided.

– Step 1. We obtain a binormal random sample of N points, say (xi, yi), i =
1 . . .N , with zero mean and covariance matrix(

1 ρ
ρ 1

)
.

– Step 2. The variables are discretized into r and c categories, respectively.
The cutpoints are randomly chosen so that very small frequencies are not
possible; to be precise, at least 10 observations are required in the marginal
cell of each row and column (though internal cells may be below 10).

– Step 3. A two-way table is created by cross-tabulation of both discretized
variables. If required, a margin row and a margin column are created, as well
as a grand-total cell (equal to N).

The software package used to produce the tables, obtain the measures de-
scribed below and analyze the results was R, release 2.15 [23]. In order to get
two samples with the given correlation and normal distribution we used the
function rmvnorm from the R package ’mvtnorm’ [14,15].

3.2 Measures

Contingency tables summarize the information coming from cross-tabulation of
two or more categorical variables, and there are several analytical ways to rep-
resent them through numerical estimators. Although single measures are usu-
ally too simple to catch the dependence structure underlying the variables—
especially in high dimensional tables—we have chosen a few of them to allow
the comparison between the original and protected tables.

Some of the most used measures of association are based on the well-known
Pearson’s coefficient

χ2 =

n∑
i=1

(oi − ei)
2

ei
,

where n is the number of cells in the table, oi means an observed frequency,
and ei an expected frequency, normally under independence of the variables.
The Pearson’s chi-squared test is based on the assumption that it follows a χ2

probability distribution, with known number of degrees of freedom ((r−1)(c−1)
in two-way tables), depending on some conditions and whenever the variables
are independent.

We considered the coefficient known as Cramér’s V [11], computed as

V =

√
χ2

N ·min(r − 1, c− 1)
.
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Cramér’s V ranges from 0 (in case of no association between the variables) to 1
(maximum association), being only 1 when the variables are identical. Cramér’s
V is invariable to changes in the order of the categories of the variables. This
measure was computed using the function assocstats from the R package ’vcd’
[21]. Cramér’s V was one of the measures employed in [24].

The second technique considered in this work to explore the relationships
between the two variables of the table is correspondence analysis (CA). CA
is frequently employed as an exploratory tool, with the aim to identify more
detailed ways of association between the variables, instead of a single measure
of the strength of such a relationship. For our purposes, we used the variant for
two-way contingency tables named Simple Correspondence Analysis (SCA).

SCA reduces the high dimensionality of the original data (given by the number
of categories of our variables) to a low-dimensional space which retains as much
information as possible. Briefly, SCA involves the generalized singular value de-
composition [18] of a matrix M computed as follows. Denoting by T the matrix
containing the r × c entries of the two-way contingency table, by et the column
vector of 1’s of dimension t, and by diag(v) a diagonal matrix containing the
elements of vector v in its diagonal positions, M is computed as

M = R− erc
� where R = diag(Tec)

−1T and c = (e�r Tec)
−1(e�r T ).

Denoting

Wr = diag(e�r Tec)
−1(Tec) and Wc = diag(c)−1

then M is decomposed by the generalized singular value decomposition as

M = UΣV where U�WrU = Ir and V �WcV = Ic,

where It is the t×t identity matrix, U and V contain the row and column singular
vectors, and Σ ∈ R

r×c contains l nonzero singular values (where l ≤ min(r, c)) in
its diagonal entries (see, for instance, [19] for a comprehensive description). The
rows of the two-way table can be projected onto the singular vectors U , obtaining
the factor scores. The variance of the factor scores for a given dimension is equal
to the squared singular value of this dimension. The squared singular values
of M are equal to the eigenvalues of MM� [18]. It is worth to remind that
the concept of inertia is equal to the χ2 statistic divided by N , that the sum
of all the eigenvalues of MM�,

∑l
i=1 λi, is equal to the inertia, and that a few

dimensions (or directions, or eigenvectors) related to the largest eigenvalues may
explain most of the information in the table.

In this work we focus on the larger eigenvalue (λ1) from the SCA, and the

contribution of λ1 among all the eigenvalues, i.e., the ratio λ1/
∑l

i=1 λi between
λ1 and the inertia as a percentage, denoted as π1. The relation between V and
the contribution of λ1 is not straightforward, and much less between V and π1.
The singular values were computed with the function ca, from the R package of
the same name [22].
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3.3 Description of the Experiments

Two experiments have been designed. They are independent since different tables
have been considered for them. Alternatively, the same tables could have been
used in both experiments, but we decided to consider two different sets. The
procedure is similar in both cases:

– Set the parameters of the instances: Percentage of sensitive cells in the ta-
bles, and correlation ρ; other factors have been fixed; 15 instances will be
generated for each combination of percentage of sensitive cells and ρ.

– For each instance:

◦ generate a table with random r, c and N ;

◦ compute the measures from the original table;

◦ write the table in a format allowed by the CTA package;

◦ run the CTA package, and write the protected table;

◦ computed the measures from the protected table;

◦ save the results;

– Read the results file, and compare the outcomes.

The optimality gap is a bound for the maximum relative difference allowed
between the computed and the optimal solutions. The value considered for all
the executions, 2.5%, was chosen after some exploration with different values.
It became apparent that the CTA procedure was robust (i.e., there were no
large deviations between the original and the protected tables) even with large
gaps such as 50%. However, the number of sensitive cells protected upwards
was significantly higher with those larger gaps, while smaller gaps produced
tables with a good balance among the protection directions of their sensitive
cells (i.e., the number of sensitive cells upper and lower protected was similar,
which reduces the disclosure risk against an attacker). On the other hand, very
small gaps may result in large CTA executions for the solution of (3). We set a
limit time of 300 seconds for all the executions, which was enough for most of
the cases. In particular, CTA took more than one minute in 78 tables (3.42%
of the overall 2280 tables protected—720 tables for the first experiment with
Cramér’s V , and 1560 tables for the second experiment with SCA), and 25
(1.1% of tables) reached the maximum limit of five minutes. Median time to
solution was 0.22 seconds.

Sensitive cells were chosen at random, and protection levels were 10% of the
cell value, rounded to the nearest integer. The dimensions of the table were
taken at random between 10 and 40. The table margins were included as cells
for convenience, but we don’t allow them to differ from the original value. The
total number of observations N is dependent of r and c, so larger tables usually
have more observations. The percentage of zero cells in the generated tables is
approximately 5%; the percentage of cells with one respondent is also 5%. By
construction a complete row or column cannot be empty. Zero cells are preserved
in the protected table.
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Table 1. Summary of dimensions and V for generated tables

median min max

cells 600 121 1640
sensitive cells 57 2 309
N 29640 7050 94831
original V 0.0666 0.0181 0.1825

Fig. 1. Boxplots of D for different ρ values

4 Computational Results

4.1 Cramér’s V

We generated 720 tables, with a percentage of sensitive cells between 5% and
19%, and values of ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. A summary of the dimensions
of these tables and their V values is reported in Table 1.

The median of V was 0.0680 in the protected tables, ranging between 0.0197
and 0.1839. Since V is highly correlated with ρ and moderately related to N ,
we studied the difference D = Vprot − Vorig. Relative differences were discarded
because the original quantities can be close to zero, especially for uncorrelated
variables, and V ranges from 0 to 1, thus absolute differences can be easily
interpreted. Figure 1 reports boxplots of D for different ρ values, showing that
D increases when ρ is close to 0. The change is small in magnitude, compared
with its variability, as shown in Table 2.

The tables with larger deviations in the Cramér’s V measure are small tables
(300 cells in average) with a high percentage of sensitive cells (16%). The most
significant factors by a general linear model for D are: the correlation ρ (coeffi-
cient −3 · 10−3), the percentage of sensitive cells (coefficient 8.3 · 10−5), and the
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number of cells (coefficient 8 · 10−7). However, these factors explain only 25.8%
of the total variability observed in D.

4.2 Simple Correspondence Analysis

For this second experiment we generated 1560 tables, using values of ρ ∈
{−0.6,−0.5, . . . , 0, . . . , 0.5, 0.6}. Unlike for the Cramér’s V, we considered neg-
ative correlations for if they might influence the results. For each original and
protected table the measures λ1 and π1 were computed. Table 3 shows a sum-
mary of collected values.

Fig. 2. Boxplots of Y for different ρ values

We studied the singular value
√
λ1 instead of the eigenvalue because it ap-

peared to be proportional to |ρ| and it showed a greater stability in variance.
As before, the effect observed after the protection performed by CTA is studied
through the change Y =

√
λ1,prot−

√
λ1,orig. As for D, Y is defined as an abso-

lute difference since the original eigenvalues λ1,orig are close to zero, especially
with null ρ (relative differences are used below in Table 4). Figure 2 shows box-
plots of Y for the different ρ values. The outlier at ρ = 0 appearing on top of

Table 2. Mean and standard deviation of D with respect to ρ

ρ 0 0.1 0.2 0.3 0.4 0.5

mean 0.0017 0.0015 0.0012 0.0009 0.0004 0.0004
std. dev. 0.0012 0.0012 0.0013 0.0011 0.0012 0.0014
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Table 3. Summary of λ1 and π1 for original and protected tables

median min max

orig. λ1 0.0875 0.0011 0.3586
prot. λ1 0.0881 0.0014 0.3587
orig. π1 76.33% 9.5% 92.6%
prot. π1 75.45% 9.6% 90.9%

Table 4. Bounds for the intervals containing 90% of relative changes in the singular
value, expressed as Y/

√
λ1,orig · 100

|ρ| 0 0.1 0.2 0.3 0.4 0.5 0.6

Lower (%) 0.27 -4.30 -2.47 -1.33 -1.27 -0.86 -0.56
Upper (%) 24.23 7.64 3.86 2.20 1.43 1.27 0.80

the figure was produced by a table of 392 cells, whose eigenvalues λ1 before and
after protection were 0.001074 and 0.006043, respectively; it was the table with
the smallest λ1. Aside from this outlier, it can be seen that in general changes
due to the protection were small.

Table 4 shows the intervals which include 90% of the relative changes, ex-
pressed as Y/

√
λ1,orig · 100, in the singular values, depending on ρ. The sign of

ρ is not important for the analysis, so we considered only its absolute value. It is
shown that relevant changes only appear for ρ = 0 (as large as, e.g. 25%). Indeed,
the 95% confidence interval for the mean of Y when ρ = 0 was (0.0032, 0.0046).
For nonzero correlations there is no evidence of change. Moreover, from Table 4
it is clear that relative changes in

√
λ1 are a decreasing function of |ρ|.

As for the percentage π1 explained by the first dimension, we observed: a) a
symmetrical pattern with respect to ρ = 0, b) small values of π1 for ρ = 0 (about
16%), quickly increasing with |ρ| until approximately |ρ| = 0.4 (about 83%), and
decreasing slowly beyond that point, both before and after the table protection.
Figure 3 shows the ratio Z = π1,prot/π1,orig. The outlier at ρ = 0 appearing on
top of the Figure 2 was not drawn in Figure 3, since it modified π1 from 18.6%
to 53.4% (Z ≈ 3 is out of the range of the vertical axis of Figure 3).

Changes in π1 can be analyzed through Figure 3 and Table 5, which report
the intervals with 90% of observed Z for different ρ. In general, the π1 of the
protected table tends to decrease for small |ρ| values, though the trend in un-
correlated factors points to an increase; for large |ρ| the change in π1 can be
negligible.

Table 5. Lower and upper bounds for the intervals containing 90% of the ratios Z

|ρ| 0 0.1 0.2 0.3 0.4 0.5 0.6

Lower 0.936 0.885 0.945 0.967 0.972 0.970 0.969
Upper 1.180 1.031 1.001 0.998 1.004 1.013 1.018



20 J. Castro and J.A. González

Fig. 3. Boxplots of Z for different ρ values

CTA provided solutions with well balanced sensitive cells with respect to the
direction of the deviation. The percentage of sensitive cells protected upwards
lied between 41.7% and 58.8% in 90% of the tables, which makes the procedure
unpredictable, thus safer.

5 Conclusions

Through the measures considered in this work, we may conclude that a two-way
table protected with CTA experiment a slight information loss. It was observed
that only the tables from independent factors could suffer significant alteration
in Cramér’s V or in indicators related to SCA. For V , we have found that
the chance of change is higher in small tables or tables with a high percentage
of sensitive cells. Anyway, in absolute numbers V barely changed: an average
increase of 0.0017 if uncorrelated factors were present.

With respect to SCA, relative changes in λ1 were significant only when ρ = 0.
However, we have found that the absolute change in

√
λ1 is usually insignificant:

while the average first singular value is 0.052, it increases at most (in 95% of
cases) by 0.0093. Differences tend to increase for π1: for ρ = 0 the variation of
π1 can be large, normally above the original value; for ρ �= 0 the variation of π1

is lesser though usually below the original value. It should be kept in mind that,
even when ρ = 0, the absolute changes in π1 were small: only two tables —1 out
of 1000— modified by more than 10% the original π1 value.

There is not a conclusive explanation of why the greatest information loss
occurred for ρ = 0. One possible reason could be that, since for ρ = 0 cells



Assessing the Data Utility of CTA Methods in Two-Way Tables 21

values are evenly scattered through the table, the number of additional cells
with deviations (aside from the sensitive ones) increases; whereas in two-way
tables from correlated variables it might be easier to compensate deviations due
to protection levels just using sensitive cells. However, a deeper analysis is part
of the additional work to be done.

A more exhaustive study considering also real-world tables is needed, and
part of the further work to be done. Some preliminary results with two stan-
dard two-way tables used in the literature (named “table8” and “dale”) confirm
that changes in measures increase with the size of the table and the percentage
of sensitive cells. For instance, for the 40 × 30 “table8” instance with only 3
sensitive cells, the V statistic was almost the same before and after protection
(0.09270563 vs 0.09280493). On the other hand, for the 358× 45 “dale” instance
with a 30% of sensitive cells the change in V was significant: from 0.0692391 to
0.1093475. However, for “dale”, the information loss was small according to the
other measure: λ1,orig = 0.09809 and λ1,prot = 0.10264.

Alternative measures could have been applied. One of them would be hy-
pothesis testing on the independence of the two variables using Pearson’s χ2

test. However, even for original independent tables, it is likely that the null hy-
pothesis is rejected for CTA-protected tables, since sensitive cells are forced to
be “significantly” perturbed, and this perturbation affects quadratically to the
Pearson’s χ2 statistic. This effect may increase with the percentage of sensi-
tive cells. Some preliminary tests with synthetic independent tables confirmed
this assertion. Anyway, hypothesis testing might not be a suitable measure
in this context: data may not come from random sampling and, furthermore,
there is considerable debate around the hypothesis testing nature and the use of
p-values [1].

In summary, it can be concluded that the data utility of the CTA-protected
tables used in this work is in general acceptable/high and comparable to that of
the original tables. Among the further lines of work we find:

– Extension of the above measures to higher-dimensional, hierarchical and
linked real-world tables.

– Extension to magnitude tables, using other information loss measures (e.g.,
generalized linear models).

– Joint analysis of the data utility and disclosure risk of CTA-protected tables,
likely in the form of risk-utility plots.
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Abstract. Statistical agencies collect input data from individuals and deliver out-
put information to the society based on these data. A fundamental feature of out-
put information is the “protection” of sensitive information, since too many details 
could disseminate privacy information from individuals and therefore violate their 
rights. Another feature of output information is the “utility” to data users, as a  
scientific may use this output for research or a politician for making decisions. 
Clearly more details are in the output, more useful it is, but it is also less pro-
tected. There are several methodologies based on Mathematical Optimization to 
solve the problem of finding “good” protected and useful solutions. While the lite-
rature on algorithms to apply them is extensive, statisticians have major concerns 
to use them in practice because these algorithms may have numeral troubles on 
frequency tables and may produce biased solutions. This article discusses these 
observations and describes how to overcome them using a modern technique 
called Enhanced Controlled Tabular Adjustment. Computational experiments 
show the effectiveness of the approach on benchmark instances. 

Keywords: Mixed Integer Linear Programming, Controlled Tabular Adjust-
ment, Tabular Data Protection, Unbiased Methods. 

1 Introduction  

A statistical agency collects data from respondents, analyzes this data, and releases 
information to users. The released information is called output. In this process it is 
fundamental to maximize the utility of the output to the final users, but also to max-
imize the protection of the information provided by each respondent. Therefore, in 
general, publishing data aims solving a two-criteria optimization problem. Since the 
two criteria are in conflict, this optimization problem is very complex.  

A widely accepted paradigm is that protection has priority over utility. This means 
that a minimum level of protection is a-priori decided and set in the optimization 
problem through constraints. Then an output maximizing the utility is searched 
among all solutions with an acceptable level of protection. This paradigm reduces the 
two-criterion problem to a single-criterion constrained problem, where it makes sense 
to find an optimal solution (the output to publish). The priority of protection versus 
utility justifies why the area is called “Statistical Confidentiality”. 
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Still there is the issue of how to properly define the “utility” and “protection” of an 
output. Several methodologies have proposed in the literature. Two examples –used 
when publishing tabular data– are cell suppression and controlled rounding. All the 
methodologies replace the original table (with the true cell values) by another table 
where some cells contain a “range” of potential values (being the true value inside the 
range). This is a way of creating uncertainty to a data user, and hence protecting the 
information provided by each respondent. In most of the cases this range of values is 
not explicitly given in the output, but it may be anyway computed by the user after the 
output has been published. That is the case when using cell suppression, for example. 
The user will solve two optimization problems to detect the extreme values defining 
the range of a cell in the output. These two mathematical problems for a given cell in 
the output are called “attacker problems” and the range of values is called “protected 
interval”. Before releasing a given output, the statistical agency may be interested in 
checking these ranges by solving all attacker problems in the so-called “auditing 
phase”. When the extreme values of all ranges satisfy the required levels of protection 
then the output is said to be “protected”. The utility is measured in general as a func-
tion of the difference between the extreme values of each range. Clearly the larger this 
difference is, the more protected is the cell, but less useful will be the output to a user. 
Following the above mentioned paradigm, among all protected outputs the statistical 
agency wish to find one with maximum utility. This implies the need to solve a Ma-
thematical Programming model, either exactly or heuristically. We refer the reader to 
(for example) the book of Duncan, Elliot and Salazar (2011) for details. 

This paper is concerned with a recent methodology in Statistical Confidentiality 
called Enhanced Controlled Tabular Adjustment (ECTA). It is based on a pioneer 
methodology introduced by Dandekar and Cox (2002), called CTA, and later devel-
oped by different authors. See Hernández-García and Salazar-González (2014) for a 
detailed description of ECTA and related methods. The current paper addresses the 
following three new issues. 

A first criticism by statisticians when using the methods based on Linear Pro-
gramming is that they generate solutions with a numerical precision that is not releas-
able in practice. For example, it makes sense to publish integer numbers, or fractional 
numbers with up to 2 or 3 decimals, but it is not desired to publish fractional numbers 
with 20 decimals even if computers can deal internally with them. This concern is 
very clear when dealing with frequency tables, i.e. tables where each cell must be an 
integer number (e.g. the number of responders within a group of categories). Then 
solutions based on fractional cell values must be rounded (or truncated) before being 
published. This task is far from trivial when one wants to preserve additivity. Cox and 
Kim (2006) analyzed rounding procedures to protect tables. In this paper we address 
the rounding procedure not to protect confidentiality (which is done by another me-
thod) but to make the output releasable with decimals of fixed length. 

Another criticism concerns the statistical properties of optimization solutions com-
ing from methodologies based on Mathematical Programming. Although solutions 
from basic implementations can be biased, this is not the case of ECTA. A procedure 
to achieve statistical unbiasedness in CTA, while preserving additivity of the output, 
is another contribution of this paper. 



26 M.-S. Hernández-García and J.-J. Salazar-González 

 

A third contribution in this paper regards computational comparison of our ECTA 
implementation when linked to a commercial Mathematical Programming library 
versus when linked to a free-and-open-source solver. This is of great interest to practi-
tioners in statistical agencies dealing with statistical confidentiality.  

This paper is organized as follows. Section 2 summarizes the main concepts in Sta-
tistical Confidentiality that will be used in the rest of this paper. Section 3 summarizes 
CTA and ECTA, two methodologies described in the literature to protect magnitude 
tables. The section discusses how to adapt them to deal with frequency tables and 
analyzes the problem of ensuring unbiased solutions. Finally Section 4 shows compu-
tational results based on using an ECTA code linked to different Mathematical Pro-
gramming solvers, some commercial and others free-and-open-source. This section 
allows understanding the current limits of ECTA on tables with rounded values in 
practice. 

2 Background 

Let us assume that the statistical agency needs to deal with a table given by a vector a 
and a linear system of equations My=b. Each equation defines a marginal cell value, 
and the vector a satisfies all of them. The set of indices associated with cells is de-
noted by I and the set of indices associated with equations by J. A subset of I is as-
sumed to be the sensitive cells that need to be protected, and it is denoted by P. 

Although there are several types of tables, we emphasize here a classification de-
pending on the values in a. A table is called magnitude table when the cell values  
are obtained by adding a feature in a microdata, typically a continuous number like 
(e.g.) money. A table is called frequency table when the cell values count number of 
contributors.    

Let K denote the set of intruders. For each intruder k ∈ K and each cell i ∈ I, values 
lbi

k and ubi
k represent bounds assumed by k on the original value ai of cell i. For ex-

ample, if a cell value ai is published then lbi
k = ubi

k = ai; otherwise lbi
k and ubi

k depend 
on k. Since other information is published, each intruder may reduce the range of 
potential values defined by lbp

k and ubp
k for a sensitive cell p and get a more accurate 

range of potential values defined by k

p
y and 

k

py . To this end the intruder k solves two 

optimization problems: 

k

p
y  := Minimize yp     and    

k

py  := Maximize yp 

subject to  

jIi iij bym = ∈
    for all j∈ J, 

k
ii

k
i ubylb ≤≤    for all i ∈ I.

For brevity in notation, the set of equations will be denoted by My=b and the set of 
inequalities by LBk ≤ y ≤ UBk, without k when one attacker is assumed. 

If the response variable of the table can assume fractional values, these problems 
are linear programs. Otherwise, if the values in the cells must be integer (as in  
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frequency tables) these problems are integer linear programs. Solving all these prob-
lems is known as the auditing phase, and it is the procedure to check the protection of 
a solution before being released. 

Tabular data is protected and can be released when k

p
y and 

k

py  satisfy some  

constraints for each attacker k ∈ K and each sensitive cell p ∈ P. To define these con-
straints, the statistical agency provides three non-negative parameters: a lower protec-

tion level k
pLPL , an upper protection level k

pUPL , and a sliding protection level 

k
pSPL . Then, a publication protects the value in cell p against attacker k if and only if 

k
pp

k

p
LPLay −≤   ,  k

pp

k

p UPLay +≥   , and  k
p

k

p

k

p SPLyy ≥− . 

To simplify the definition of these three protection level requirements in practice, 
there are several rules which are all based on common-sense ideas. For example, for 
magnitude tables the lower and the upper protection levels for a sensitive cell p could 
be defined as 20% and 30% of the nominal value ap, respectively. 

 
Fig. 1. Diagram of parameters  

This definition of protection is known as the interval-disclosure version (see  
Fig. 1). A particular case, of less interest in practice, is the exact-disclosure version, 
where the only constraint is that, when the attacker solves the two linear programs, 
the result should not be a degenerate interval containing only the original value of any 

sensitive cell. The exact disclosure version only requires k

p

k

p yy ≠  for all k and p, and 

it is a particular case of the interval disclosure version where 0UPLLPL k
p

k
p ==  and 

0>k
pSPL . 

Note that, for each sensitive cell and each attacker, there are three protection levels 
that the statistical agency needs to decide before classifying a data as protected or not. 
Typically the protection levels are percentages on the cell values. For instances, the 
lower protection level may be 50% of the cell value, the upper protection level may 
be 120% of the cell value and the sliding protection level may be 0%. 

Another important concept is the loss of information associated with a publication. 
The widely used measure is a linear function on the uncertainty that the methodology 

implies on the output table. The ideal cost is  
k

p

k

p yy −  , but it leads to a function  

that depends on the intruder k and which is difficult to minimize. In most cases this 

k
plb  k

p
y  pa  k

py  
k
pub  

k
pLPL k

pUPL  
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function is replaced by a simple estimation, like the difference between the original 
cell values and the perturbed cell values. 

3 Controlled Tabular Adjustment Methods 

ECTA is a technique recently introduced in Hernández-García and Salazar-González 
(2014) and motivated by another approach called Controlled Tabular Adjustment 
(CTA). This section summarizes both techniques on magnitude tables and address the 
issue of adapting them to frequency tables and to generated unbiased solutions. 

3.1 Standard CTA 

CTA is a technique proposed by Dandekar and Cox (2002) as an alternative to cell 
suppression methodology, and widely analyzed in the last years. The output from 
CTA is a table v obtained by changing some cell values with a perturbation that is 
obtained after solving a Mixed Integer Linear Programming (MILP) model. We now 
summarize some details. 

CTA looks for publishing a vector v instead of the vector a (of true values). The 
two vectors are related by vi= ai + zi

+ - zi
- for all i ∈ I  where zi

+ and zi
- are two set of 

mathematical variables defined by the following MILP: 

 
Minimize  

∈

−+ +
Ii

iii zzc )(  (1) 

subject to: 
  0)( =− −+ zzM   (2) 

 
  iii aUBz −≤≤ +0  i ∈ I (3) 

 
  iii LBaz −≤≤ −0  i ∈ I (4) 

 
  iii xUPLz ≥+  i ∈ P (5) 

 
  )1( iii xLPLz −≥−  i ∈ P (6) 

 
  { }1,0∈ix  i ∈ P. (7) 

The parameters LBi, UBi, LPLi and UPLi do not have a super index p to represent 
the intruder because CTA is aimed to protect against a single intruder. CTA cannot 
guarantee sliding protection levels, which explains why SPLi is not present in the 
model. 

In addition to the continuous variables zi
+ and zi

- for each cell i ∈ I, there is also a 
binary variable xi for each sensitive cell i ∈ P. The variables zi

+ and zi
- represent the 

perturbation in the output respect to the true value, while xi decides if a sensitive value 
must be perturbed over the upper protection level or bellow the lower protection level. 
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The vector c represents weights per unit of perturbation on cells, and is defined by the 
statistical agency to possible encourage perturbing some cells more than others. 

The objective function (1) is a weighted function that minimizes the perturbation. 
It is the L1-distance considered in Section 3. Equations (2) imply that the perturbation 
should define an additive table v. Inequalities (3) and (4) enforce the a-priori bounds 
on the cell values. Inequalities (5) and (6) guarantee that the perturbed value of each 
sensitive cell satisfies one protection level, either the upper or the lower. Constraints 
(7) allow the mathematical model to decide which protection level will be guarantee 
for each sensitive cell. 

Model (1)-(7) can be seen as a linearization of the non-linear model: 

 
Minimize 

∈

−
Ii

iii avc  

subject to:  bMv =   

  UBvLB ≤≤   

  iii LPLav −≤    or  iii ULPav +≥  i ∈ P. 

CTA was original proposed by Dandekar and Cox (2002), and deeply analyzed  
later in Cox, Kelly, and Patil (2005). An excellent research with optimal and near-
optimal approaches to solve the MILP model is given in Glover, Cox, Kelly and Patil 
(2008). Castro and Giessing (2006) provide extensive experience applying CTA to 
real-world tables. Although CTA was originally proposed as a technique much simp-
ler to implement than cell suppression, the optimization problem under CTA is also 
NP-hard and, in practice, the MILP model in CTA is far from trivial to be solved. 

3.2 Enhanced CTA 

The objective function in CTA is to minimize a distance between the output table v 
and the original table a. Therefore one could a-priori think that it maximizes the 
“utility” of the data to a user. However, the user does not know a, hence the user will 
not know whether a particular perturbed value is near or far from its original value. 
For that reason, many users do not like data processed with perturbation techniques 
like CTA. 

Further observations regard the “protection” issue. On one side, CTA requires the 
existence of a table v that must show values outside the required protection range for 
all sensitive cells at the same time. This differs from the meaning of protection given 
in Section 1, where it is not required that the same table x must prove protection for 
all the sensitive cells. Instead, the concept of protection in Section 1 requires that 
there should be a table for each sensitive cell, and these tables must not necessary 
coincide for all sensitive cells. On another side, the requirement of ensuring upper and 
lower protection requirements given in Section 1 has been replaced by upper or lower 
protection level in CTA. 

These two observations on CTA motivated ECTA. While keeping the main scheme 
of CTA, it modifies the way of modeling the “utility” and the “protection” in the out-
put information. It generates a table v and two parameters α and β to measure the 
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utility of v to a data user. Assuming the same assumptions as in CTA (i.e. protection 
against a single attacker and no sliding protecting level requirements), ECTA is an 
iterative approach, next summarized.  

At each iteration, a subset of sensitive cells is randomly selected. Each cell i in this 
subset is randomly fixed to a value ξi in [ ai - LPLi ,  ai + ULPi ]. Then the following 
linear program is solved: 

Minimize   β (8) 

subject to:       bMv =   (9) 

                 UBvLB ≤≤   (10) 

                           iiv ξ=  for all selected i∈P (11) 

iiiii UPLavLPLa +≤≤−  for all non-selected i∈P (12) 

 iii ava )1()1( ββ +≤≤−  for all i∈I\P. (13) 

If this model is feasible, the non-sensitive values have being perturbed in at most β 
times the true value. Let (v*, β*) be an optimal solution. Before releasing this solution 
we need to find a value α* to also inform the data user about the maximum perturba-
tion on the sensitive values. To this end ECTA initializes α* to the maximum percen-
tage ratio of |vi*-ai*|/|ai*| if ai*≠0 and 0.01 otherwise. Still the output (v*, α*, β*)  
may not be a protected table, thus the auditing phase is necessary. As mentioned in 

Section 2, this implies solving two optimization problems to compute k

p
y and 

k

py  for 

each intruder k and each sensitive cell p:  
k

p
y  := Minimize yp     and    

k

py  := Maximize yp                 (14) 

subject to:    bMy =    (15) 

           kk UByLB ≤≤   (16) 

iii vyv *)1(*)1( αα +≤≤−  i ∈ P (17) 

iii vyv *)1(*)1( ββ +≤≤−  i ∈ I\P. (18) 

When a protection level is not achieved, α* is increased. See Hernández-García and 
Salazar-González (2014) for technical details.  

3.3 New Implementations of ECTA 

It is widely accepted that frequency tables requires solving integer programs, while on 
magnitude tables one can relax the requirement of Integer Programming tools and  
use approaches in Continuous Optimization (like Linear Programming). This is not 
strictly right in practice because, depending on the tabular structure (i.e. My=b),  
the vectors v obtained may have lots of decimals, like for example 
5.6785745309870998088876.  While in theory this is a valid number for a cell in a 
magnitude table, in practice statistical agencies do not want to release these numbers 
with such high precision. A simple rounding or truncation of the decimals leads to  
a new vector v which may not fit in the tabular structure, or which may loss the  
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protection. For that reason, a sophisticated rounding approach is required. To this end, 
we scale the original vector a, and assume that the statistical agency wants to publish 
only integer values. CTA and ECTA can be adapted by requiring the variables z in 
model (1)-(7), the variables v in model (8)-(13) and the variables y in model (14)-(18) 
to be all integers.    

Another desired feature of a methodology is to ensure unbiased solutions. Cox 
(1987) addressed this problem when using Controlled Rounding on 2-dimensional 
tables. We approach the problem in a more general way as follows. In several metho-
dologies the loss of information is measured as the distance between the original table 
a and the solution v, like (1) in CTA. This objective tends to adjust each cell value to 
the closest option to the original value, but not with a uniform probability distribution. 
For example, using Controlled Rounding with base 10, a cell value 12 will go to 20 
with a probability smaller than 2/10, and a cell value 18 will go to 20 with a probabili-
ty higher than 8/10. Figures 2 depicts relations between a continuous number x that 
must be rounded down to 0 or up to 10 on the horizontal axe and the probability 
P(┌x┐) of x being rounded up on the vertical axe. Figure 2 (a) shows the desired 
(unbiased) probability distribution and Figure 2 (b) shows the (biased) probability 
distribution when using (1).  

 

 
(a) Unbiased    (b) Biased 

Fig. 2. Probability distributions of rounding up a cell value 

Experimental results using the L1-distance 
∈

−
Ii

ii va ||  as in (1) show the bi-

ased behavior in Fig 2 (b). The biased behavior increases when using the L2-distance 


∈

−
Ii

ii va 2)( , while it reduces when using  
∈

−
Ii

ii va )log( . The last func-

tion has the disadvantage of having a non-linear objective function in the mathemati-
cal formulation of the problem, which increases the effort to solve it. We now  
describe a new objective function for CTA to generate unbiased solutions while keep-
ing the objective function in linear form. For each cell i∈ I, the key idea is to replace 
the value of ai when defining vi= ai + zi

+ - zi
- by a randomly rounded value R(ai) with 

a uniform probability distribution. More precisely, let └ai┘ be the greatest integer not 
larger than ai and ┌ai

┐ the smallest integer not smaller than ai . Define R(ai) equals to 
ai when └ai┘=┌ai

┐  and, otherwise, equals to └ai┘ with probability (┌ai
┐-ai )/( 

┌ai
┐-└ai┘) 

and to ┌ai
┐ with probability (ai-└ai┘ )/( 

┌ai
┐-└ai┘). The perturbed table R(a) may be 
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non-protected and non-additive, but is unbiased (i.e. the probability distribution of 
rounding up the original value follows the distribution depicted in Fig 2 (a)). We have 
conducted a simulation study on random instances adjusting the nominal values to 
multiples of 10, and using R(a) instead of a in the objective function of CTA. Fig 3 
shows the frequencies of values rounded up in our computational experiments. This 
figure empirically confirms that the obtained CTA solutions are unbiased. 

 

Fig. 3. Observed frequencies in experiments when a is replaced by R(a) 

Solutions from ECTA, instead, are unbiased without changing the algorithm. This 
is due to the fact that vi is not forced to be close to ai by the optimization procedure. 
Some values vi are chosen with a uniform probability distibution, while the others are 
free to be chosen within intervals when solving the mathematical program that 
guarantee the additivity of v. It is worse to observe that the main model (8)-(13) in 
ECTA minimize β. As CTA does with (1), minimizing β can be seen as a way of 
maximizing the utility of the v, but minimizing the largest cell adjustment (i.e. worst 
case) instead of the sum of all cell adjustments (i.e. average case).   

4 Computational Results 

This section analyzes the results of the implementation of ECTA to overcome the 
drawbacks pointed in Section 3. More precisely, it solves integer programs to ensure 
the number of digits desired by the statistical agencies, and it uses the new objective 
function to ensure unbiased solutions. The implementation was done in C++ pro-
gramming language, using the framework SCIP 3.1.0 (http://scip.zib.de). 
This is a free-and-open-source software providing routines to solve MILP models. It 
needs to be linked to a Linear Programming solver, and we considered four options:  

• Clp 1.15.6 (https://projects.coin-or.org/Clp),  
• SoPlex 2.0.0  (http://soplex. zib.de),  
• Cplex 12.6 (http://www-01.ibm.com/software/), and  
• Xpress v25.01.05: (http://www.fico.com). 

The first two options are free-and-open-source codes to solve Mathematical  
Programming models. The last two options are commercial solvers. The whole com-
puter code was compiled using the free-and-open-source C/C++ compiler MinGW 
(Minimalist GNU for Windows), which is a minimalist development environment for 
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native Microsoft Windows applications (http://www.mingw.org/). The code 
was written and executed on a computer with an Intel Core(TM) Duo CPU at 3.34 
GHz running under Microsoft Windows 7, and it is publicly available by request to 
the authors. 

To evaluate the behavior of our implementation linked to the four solvers we  
have considered ten real-world instances provided by Ramesh Dandekar and public 
available from CSPlib (webpages.ull.es/users/casc). We have considered 
these tables as frequency tables, which means that the values are integer and any per-
turbation must keep them integer. This implies that models (8)-(13) and (14)-(18) are 
integer programs in our implementation. Table 1 shows the main features (i.e. sizes of 
the sets I, P and J) of these instances, and Table 2 shows the main results of our expe-
riments using the code with each of the four solvers on these ten instances. 

Table 1. Characteristics of 10 benchmark instances from CSPlib 

 CSPlib file name |I| |P| |J| 
1 Hier13.csp 2020 112 3313 
2 hier13x13x13a.csp 2197 108 3549 
3 hier13x13x13b.csp 2197 108 3549 
4 hier13x13x13c.csp 2197 108 3549 
5 hier13x13x13d.csp 2197 108 3549 
6 hier13x7x7d.csp 637 50 525 
7 hier13x13x7d.csp 1183 75 1443 
8 hier16x16x16a.csp 4096 224 5376 
9 hier16x16x16b.csp 4096 224 5376 
10 hier16x16x16d.csp 4096 224 5376 

 
Columns “Tfind” and “Taudit” give the total time solving models (8)-(13) and (14)-

(18), respectively. Column “Infeas” shows the number of models (8)-(13) that finished 
without solution. Column “Prot” gives the number of models (8)-(13) that finished with 
an optimal solution that required the auditing phase, i.e. (14)-(18) was solved. Column 
“Dom” shows the number of models (8)-(13) with the solution discarded because β* 
was larger than a previous solution. Column “Abort” is the number of optimal solutions 
where the auditing started but was aborted because β was increased to guarantee protec-
tion. Finally α and β are the percentage values proposed by the ECTA approach for each 
instance. Note that these values are not unique since the approach has random decisions 
and therefore different executions produce different values. 

The main conclusion from Table 2 is that the ECTA approach, with the require-
ment that the adjustments must be integer numbers, has similar performances both on 
commercial and on free-and-open-source solvers. The total time to solve an instance 
has increased mainly due to the integrality constraints in model (8)-(13).  
However most of the tables can be protected in less than one hour, which seems to be 
reasonable in practice for statistical agencies. Protected tables with small loss of in-
formation (β under 20%) were obtained for most of the instances after solving ten 
models (8)-(13), and among their solutions about two of them required solving mod-
els (14)-(18). 
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Table 2. Results of the code with the 4 solvers on the 10 instances 

SCIP-CLP Tfind Taudit Infeas Prot Dom Abort α β 
1 1066 40 2 4 4 0 22 5 
2 1112 39 0 3 7 0 10 8 
3 1044 52 0 3 7 0 10 8 
4 1018 55 0 6 4 0 10 8 
5 1175 19 0 1 8 1 31 17 
6 68 8 0 3 7 0 14 4 
7 242 29 0 1 9 0 15 4 
8 2524 340 0 3 7 0 10 8 
9 2761 345 0 3 7 0 19 9 
10 2322 236 0 2 8 0 20 16 

SCIP-CPLEX Tfind Taudit Infeas Prot Dom Abort α β 
1 649 15 0 2 8 0 10 4 
2 568 22 0 3 6 1 10 8 
3 559 37 0 3 2 5 22 8 
4 606 14 0 2 8 0 11 16 
5 576 11 0 2 8 0 20 16 
6 30 5 0 3 7 0 15 4 
7 108 10 0 3 7 0 12 4 
8 2824 78 0 2 4 4 22 6 
9 2676 62 0 2 8 0 10 8 
10 2928 72 0 2 4 4 31 10 

SCIP-SOPLEX Tfind Taudit Infeas Prot Dom Abort α β 
1 646 44 2 3 5 0 10 4 
2 1123 49 0 4 6 0 12 8 
3 1268 14 0 1 9 0 11 8 
4 1076 88 0 6 3 1 12 8 
5 1008 31 0 3 7 0 21 16 
6 44 5 0 2 8 0 13 4 
7 187 72 0 4 6 0 10 4 
8 3189 470 0 2 7 1 18 7 
9 3516 530 0 2 6 2 22 8 
10 2910 635 0 2 6 2 33 10 

SCIP-XPRESS Tfind Taudit Infeas Prot Dom Abort α β 
1 1371 19 1 2 7 0 10 4 
2 1392 28 0 2 6 2 11 8 
3 1436 21 0 3 7 0 11 16 
4 1440 18 0 2 6 2 12 8 
5 1385 17 0 2 7 1 22 22 
6 72 6 0 3 7 0 10 4 
7 269 8 0 2 8 0 10 4 
8 4939 232 0 2 1 7 22 7 
9 6094 55 0 1 9 0 20 8 
10 5630 119 0 1 5 4 32 11 
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Abstract. Statistical disclosure control (SDC) is a set of methods that are used 
to reduce the risk of disclosing information on individuals, businesses or other 
organisations. The focus of this paper is on sensitivity rules, which deal with 
how to define whether a cell in tabular data has the risk of disclosing informa-
tion or not.  

The current popular sensitivity rules include the dominance rule and the P% 
rule. There is a weakness with these rules and a new rule - the interval rule is 
presented. The main argument for this new rule is that the rule should only be 
based on the information that the intruder knows, not on the information that 
the statistical institution knows. 

Based on simulated data, the P% rule tends to classify a dataset to be “sensi-
tive” when it contains only one observation with a very large value. In this  
respect, and the dominance rule and the P% rule share a lot in common. Mean-
while the interval rule tends to classify a dataset to be “sensitive” when it con-
tains two observations with large values. 

Keywords: Statistical disclosure control, tabular data, sensitivity rules, P% 
rule, dominance rule, interval rule. 

1 Introduction 

National Statistical institutions (NSIs) are supposed to provide the society with trust-
worthy and detailed statistical information. However, this statistical information may 
sometimes lead to disclosure of sensitive and confidential information, which might 
cause harm on both individuals and organisations or on the group level. This paper 
focuses on macro data, where magnitude tables and frequency tables are two major 
components.   

To protect the confidentiality of survey respondents – not only because of legal and 
ethical obligation, but because public trust is an important contributor to data quality 
and response rates (Doyle et al, 2001). NSIs have created a set of methods to protect 
the confidentiality of information provided by respondents. These methods are called 
statistical disclosure control.  
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In statistical disclosure control of tabular data, sensitivity rules are used to decide 
whether a table cell is sensitive and should therefore not be published. In this paper 
the characteristics of different sensitivity rules are discussed and compared, and a new 
rule – the interval rule is presented.  

2 Sensitivity Rules for Tabular Data 

There are different sensitivity rules available for judging which cells are primarily 
sensitive (unsafe) in a table. Some general assumptions: let   …  be 
the ordered contribution in a cell by N respondents 1, 2…N respectively and let X = ∑  be the sum of all the observations in a cell.  

2.1 Dominance Rule 

The dominance rule is also called the (n, k) rule. The cell is considered sensitive if the 
total of the n largest contributions exceeds k% of the total cell value X: ·                        (1) 

2.2 P% Rule 

The P% rule is based on the following inequality:    ·                         (2) 

The worst case of this inequality is supposing  is the value of the largest contri-
butor — respondent 1 —, and  is the value for the second largest contributor — 
respondent 2 —, where  is estimated by respondent 2. The assumption for the 
“worst case” is therefore: respondent 2, knowing that it is the second largest contribu-
tor and its own value , is trying to estimate . As long as this condition is safe, the 
cell is safe for all other conditions. Therefore for the P% rule, a cell is considered 
sensitive if the cell total minus the value of the 2 largest contributions is smaller than 
a certain percentage of , namely:   ·                         (3) 

The assumption for both dominance rule and P% rule is that there is no prior 
knowledge about the contribution for respondent  . More detailed information is 
found in (Loeve, 2001).  

2.3 Comparison between Dominance Rule and P% Rule 

The dominance rule with n = 2 is sometimes compared with the P% rule, and when n 
= 2 the dominance rule looks very similar to formulation of the P% rule.  
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The (2,k) rule classifies a cell as sensitive if ·    1  ·               (4) 

Comparing (3) and (4), it is seen that in both cases a cell is sensitive if (X − ) −  , i.e. the difference between the estimation of   made by second respondent and  , is less than a certain percentage of either the first respondent value   in (3) or 

the cell value X in (4). Indeed, for p and k such that   100 , every non-

sensitive cell for the rule (2,k) is also a non-sensitive cell for the rule P%; but the 
reverse implication does not hold. It is believed in many articles that in general, the 
P% rule is preferred to the dominance rule, see e.g. Hundepool et al (2012) or Castro 
J. (2010). 

Comparing these two rules by setting   100  is just one specific com-

bination of k and p that could be compared. When this equation doesn’t hold, these 
two rules are not comparable any more. Each rule can be equally restrictive by chang-
ing the value of parameters and it is hence hard to tell which rule is more conserva-
tive. A more detailed comparison based on simulation is presented in chapter 3.  

2.4 Drawback with P% Rule 

Suppose a cell is the sum of three respondents A, B and C.  Assume B has the value 
40 and the total sum is 100.  B could calculate the interval for the largest value (ei-
ther A, C or B itself) to be (40, 60). Hence, B knows that the largest value is in the 
interval (40, 60). 

According to the P% rule with e.g. p = 10, the cell is identified as sensitive if the 
values of A, B and C are (59, 40, 1) but safe if the values are (41, 40, 19). Hence, 
when the largest value is closer to the upper bound (which is 60 in this example) the 
cell is considered as sensitive. On the contrary, when the largest value lies near to the 
lower bound of the interval (which is 40 in this example) the cell is considered as 
safe. This is problematic because the value of the B and the sum has stayed un-
changed and hence, the information that B has is exactly the same in these two situa-
tions. There is no additional knowledge about the other respondents in case of (59, 40, 
1) than (41, 40, 19). It can be argued that it is unreasonable that the former is sensitive 
but the latter is safe. The following figure illustrates this problem.  

It is clearly shown in the figure that when either A or C is closer to the upper bound 
(which is 60 in this example), the cell is sensitive and otherwise the cell is safe. How-
ever, the only information B knows is that the largest value is between 40 and 60. The 
actual position of the largest value within the interval should not affect the decision 
whether the cell is safe or not. Moreover, 59 and 41 have the same distance to the 
limits of the interval. It does not seem rational that when A is 59 the cell is sensitive 
but safe when A is 41.  

The P% rule seems to be based on the assumption that the intruder should estimate 
the value for the largest observation as its maximum possible value,  X    . 
But there is no statistical logic behind this estimation. With the information that B 
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has, a plausible estimate of the value of the largest observation would be 50 (in the 
middle of 40-60). Hence, from this point of view the cell could be considered sensi-
tive if the true value is close to 50, not the upper bound 60. 

 
Fig. 1. whether a cell is sensitive or safe depending on the distribution of A and C. Assuming 
A+B+C = 100 and B = 40. 

2.5 The Interval Rule 

In this section a suggestion of a new rule – the interval rule- is presented. A basic prin-
ciple of this rule is that the decision about whether a cell is safe or sensitive should 
only be based on the information known to the intruder. It is what the intruder can 
know that is relevant. If an intruder j is trying to estimate the value of another respon-
dent i: based on the information that the intruder knows, it is possible to calculate an 
interval I, where i may lie in, i.e.      . If this interval is narrow, 
there is risk for disclosure, since the intruder has good information about respondent i. 
If the interval is wide the intruder has only limited information about the true value for 
i. An analogy could be a confidence interval; a narrow interval implies good precision 
and good knowledge about the true parameter value while a wide confidence interval 
implies uncertainty and lack of precise knowledge. Hence, a cell is classified as sensi-
tive when this interval is narrow, e.g. smaller than s% of the total value X:              ·                              (5) 

In (5) the right hand side of the equation depends on the total value X. It could be 
argued that the total value is not relevant for the decision of when the interval is too 
small or not. With ‘substance knowledge’ of the variable in question, it should be 
possible to set an absolute value that could serve as a limit for deciding when the 
interval is too small (sensitive) or not. For example, if the data concerns a company’s 
spending on Research and Development, the interval could be specified in absolute 
dollars (or other currency). 
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The “worst case” here is again when supposing  is the value for the largest res-
pondent and  is the value for the second largest, and where  is estimated by res-
pondent 2. The assumption for the “worst case” is therefore: respondent 2 knows it is 
the second largest contributor and is trying to estimate the value for the largest contri-
butor . As long as this condition is safe, the cell is safe for all other conditions. 

How to calculate       ? The maximum value is estimated as      , and for   is a little bit more complicated (see Appendix I): 

   = 
 1 ·         1 ·  ,   X                                                                  (6) 

Let us review the example in 2.4 again: suppose a cell is the sum of three respon-
dents A, B and C.  Assume B has the value 40 and the total sum is 100. Now B is in 
the position of   and trying to estimate  .      100 4060 And since 40      40  and the interval      60 40 20. If 25, then 20 100, and the cell is sensitive; 

if 15, then 20 100, and the cell is safe.  

Different from the P% rule, the interval rule classifies a cell to be sensitive only on 
the interval of   that the second largest respondent could calculate and different 
values of parameter s. It does not matter whether the combination of the values for A, 
B and C is (59, 40, 1) or (41, 40, 19), because the information that B knows has not 
changed.  

3 Comparisons between Sensitivity Rules Based on Simulation 

To compare the different sensitivity rules a simulation study is done.  

3.1 Simulation Setup 

The exponential distribution with 1 is used since it is likely to generate outliers 
which is typical for sensitive observations. The sample size per cell is varied from  
3-20.  

E.g. with n = 4, dataset 1: [1.87, 0.22, 0.91, 1.63], dataset 2: [0.40, 1.05, 0.68, 
4.42] etc.  There are in total 1000 such datasets generated for each setup. The ques-
tion is if the total value of the observations in a dataset can be published without risk 
for disclosure. 

 
Sensitivity Rules 
For the sake of simplicity, all the sensitivity rules are denoted with an abbreviation.  

D = Dominance rule 
P = P% rule 
S = interval rule 
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The parameters used for these three rules are given as k, p and s (each ranging from 
1-100). 

For each combination of dataset, rule and parameter value, it is determined if the 
cell is safe or not. For example, dataset 2 [0.40, 1.05, 0.68, 4.42] is not safe for all 
parameter values of k up to 83 and safe for all values of k between [84, 100].  For the 
P% rule this cell is safe for all values of p up to 24 but sensitive if the value of p is set 
to 25 or higher. 

3.2 Pairwise Comparison between Sensitivity Rules 

Pairwise Comparison between P and S 
Each sensitivity rule can be more or less restrictive by adjusting the value for the 
parameters. Hence, by changing the value it is easy to make one rule more restrictive 
than another. To achieve a sensible comparison between the different rules, parameter 
values that make the three rules approximately equally restrictive are found, i.e. the 
values for p, k and s that make roughly the same proportion of datasets classified as 
safe.  

In the simulations a parameter setup has been used so that makes approximately 
20% of the datasets to be classified as sensitive by each rule. The following values are 
obtained k = 89, p = 18, and s = 27. Applying the different rules and these parameter 
values on the 1000 datasets used in the simulation, each dataset is classified as safe or 
sensitive by each rule respectively.  In table 1 the classification of 1000 datasets is 
presented according to P and S.  

Table 1. The distribution of 1000 datasets classified by P and S (s = 27, p = 18) 

 S  
Sensitive 

S  
Safe 

Total 

P sensitive 75 124 199 
P  safe 112 689 801 
Total 187 813 1000 

 
There are only 75 datasets that are classified as sensitive by both rules. 112 data-

sets are classified as sensitive by S but not by P, and 124 datasets are classified as 
sensitive by P but not by S. To analyse the differences between the rules, firstly each 
value in the dataset is transformed into percent, i.e. the ordered observations , ,  
and  are divided by the cell sum X and hence are presented as percentages of the 
sum X. In figure 2 the 124 datasets that are sensitive according to P but safe according 
to the S are presented (each row is a dataset with n = 4). In the second graph the 112 
datasets that are sensitive according to S but safe according to P are presented. 

In the datasets that are classified as sensitive by P but safe by S, the value of  is 
much greater than all the other respondents in the same dataset, meanwhile where the 
datasets are classified as safe by P but sensitive by S, the value of  and  are both 
quite large compared with the other two respondents in the same dataset. 
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Fig. 2. Plot of all datasets where P=sensitive and S=safe (graph 1) and when P=safe and 
S=sensitive (graph 2). Each row is a dataset; , ,  and  are illustrated with different 
symbols within each dataset. 

The first dataset in the upper graph (the top row) is [0.02, 0.09, 0.31, 0.58]. Ac-
cording to the P% rule this is a sensitive cell while the according to the interval rule 
this cell is safe since the interval for  is (0.31 to 0.69) and the width of this interval 
0.38 is larger than the chosen parameter-value for s = 0.27.  

The first dataset in the lower graph (the top row) is [0.07, 0.08, 0.39, 0.46]. Ac-
cording to the P% rule this is a safe cell while according to the interval rule this cell 
is sensitive since the interval for  is (0.39 to 0.61) and the width of this interval 
0.22 is smaller than the chosen parameter value for s = 0.27.  

Pairwise Comparison between D and S  
The same procedure is repeated for comparing D and S as well as P and D. And the 
results are as following: 
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Table 2. The distribution of 1000 datasets classified by D and S (k=89, s= 27) 

 S  Sensitive S  Safe Total 
 D  sensitive 78 118 196 
D  safe 109 695 804 
Total 187 813 1000 

 
The distribution of the sensitive datasets for D and S is quite similar with P and S 

in Table 2: there are only 78 datasets that classified to be sensitive by both rules. 118 
datasets are classified as sensitive by D but not by S, and 109 datasets are classified as 
sensitive by S but not by D.  

Pairwise comparison between P and D  
The same procedure is repeated once again to compare P and D, and the results are as 
following: 

Table 3. The distribution of 1000 datasets classified by P and D (p=18, k= 89) 

  D Sen-
sitive 

D  
Safe 

Total 

P  sensitive 177 22 199 

P  safe 19 782 801 

Total 196 804 1000 

 
There are 177 datasets that classified to be sensitive by both rules. Only 22 datasets 

are classified as sensitive by P but not by D and only 19 datasets are classified as 
sensitive by D but not by P. Unlike the comparison between P and S, these two rules 
are equivalent at most of the times, and in total there are only 41 datasets that are 
classified differently. In figure 3 the datasets that are considered as safe by only one 
of the rules are illustrated. 

Even though there are only a few datasets that are classified differently by P and 
D, the pattern is quite obvious. P tends to classify a dataset to be sensitive when it has 
one observation with extremely large value, and D tends to classify a dataset to be 
sensitive when it has two observations with large values.  

The same pattern is observed when n is increased. As an illustration, some results 
for n = 10 are presented in appendix 2.  
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Fig. 3. Plot of , ,  and  for all datasets where the D and P rule gives different deci-
sions 

4 Discussion 

When comparing different rules, it is not sensible to say that one rule is more con-
servative than another. By changing the value of the parameters, each rule can be 
adjusted so that it becomes more or less conservative. The decision regarding which 
rule to use should be based on other arguments. One approach is to study datasets 
where two rules give different decisions and try to evaluate which decision that seems 
to be the best. But more importantly there can be significant differences between the 
different rules with respect to what information that is used in the decision process 
(calculations).  

The most important distinction between the different rules is that the interval  
rule only depends on the information known to the intruder, while the other rules 
depend on the distribution of the observations, which is not known to the intruder. 
The purpose of sensitivity rules is to ensure that the intruder could not get too much 
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information about another respondent according to the published data. By publishing 
a total value for all objects in a cell, the intruder gets new information and can narrow 
the limit of the possible values for other respondents. Under some assumptions these 
possible values can be described by an interval. It is the width of this interval that that 
describes the information known to the intruder. The position where the true value 
happens within this interval should not affect the decision when considering if a cell 
is safe or not.    
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Appendix I 

Let X =  ∑ ,      and     . In 
order to obtain  , different situations are supposed to be discussed.  

When   achieves its minimum value,   achieves its maximum value, and 
this is when  ,  , …   are all close to , i.e. when 1  , i.e. when  1 ·  ; or when    is very close to   that is when    . 
Hence, 

    = 
 1 ·         1 ·  ,   X                                                                  
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Appendix II: Pairwise Comparison When x~exp (λ=1) and n=10 
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Abstract. Controlled Tabular Adjustment (CTA) has been developed as SDC 
method for tabular data. It aims at finding the closest additive table to a given 
original table ensuring that adjusted values of all confidential cells are safely 
away from their original value. In practice, it is usually not possible to process 
an entire publication as a single CTA application. This paper looks into possi-
bilities of designing a sequential application of CTA yielding a protected micro-
data set while controlling for the quality of estimates that would be derived 
from the protected data.  

1 Introduction 

There is a growing demand for tabular disclosure control methods and tools that are 
likely to be suitable for practical use in 3rd party research situations. Data users 
should be free to request (or even generate on their own) all kinds of tables. Disclo-
sure risk limitation should be carried out ‘on the fly’, i.e. the process of table genera-
tion and protection should become automated and self-auditing regarding privacy 
preservation. “Traditional” protection methods like cell suppression are often not 
suitable: controlling the disclosure by differencing risks in large sets of multiple 
tables designed by user demand can become virtually impossible. 

Post-tabular methods relying on micro-data seed based stochastic noise applied to 
the data on the table level, as proposed f.i. in [8],[16],[14], or [9], have proven to be 
promising1. But implementing them requires a major IT investment into a suitable 
tabulation package2. 

From the IT point of view, pre-tabular SDC methods (as proposed for example in 
[7]) seem to be attractive, because the SDC process can be organized as separate step, 
before actual table production. For the latter purpose, the standard tabulation packages 
will do then. 
                                                           
* Supported by the FP7-INFRASTRUCTURES-2010-1 project “DwB-Data without Bounda-

ries”, number 262608. 
1  …or are even in regular use (c.f. [16]). 
2 The methodology can guarantee certain desirable properties of the protected results, but only, 

if these results are generated by specialized tools incorporating the methodology. Such a tool 
should therefore be as convenient as any standard tabulation package, useable for “anybody”. 
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Controlled Tabular Adjustment (CTA) ([5, 1]) has been developed as SDC method 
for tabular data, i.e. as post-tabular method. Several variants have been discussed in 
the literature [2-4, 6, 10]. CTA aims at finding the closest additive table to a given 
original table ensuring that adjusted values of all confidential cells are safely away 
from their original value and that the adjusted values are within a certain range of the 
real values. The basic methodology will be briefly recalled in section 2 below. 

In the context of noise masking (c.f. [7]), [12] introduce a balanced noise masking 
method as a variant. [13] prove the reduction of cell level noise variance from using 
the balancing mechanism. 

The idea outlined in sec. 3 of the present paper can be regarded as a way to employ 
CTA as such a mechanism for balancing perturbation: Given a set of “control-tables”, 
after a number of sequentially organized CTA steps, the routine should finally yield a 
protected (i.e. perturbed) micro-data set. When reproducing a cell of a control-table 
by summing the respective perturbed micro-data, the perturbation of that cell will tend 
to be identical to the one that would have resulted from applying CTA directly to that 
control table. 

The paper reports from an early, experimental phase of developing such a routine. 
Section 4 presents some preliminary findings obtained for an example used for illu-
stration and experimentation. This example was generated as small extract from the 
huge German Income Tax Statistics database. As conclusion from the lessons learnt in 
the experiment and as an outlook, section 5 identifies major issues to be solved within 
a potential future research project addressing the protection of this database with the 
proposed methodology. The paper ends with a summary section. 

2 CTA Method 

The sequential procedure to be outlined in section 3 below is designed to work with 
the CTA package [4]. In this section we briefly summarize the methodology and some 
important options implemented in the package: 

In the denotation of [4], a CTA instance is represented by (i) a set of cells yi; i = 
1,…,n, that satisfy m linear relations Ay = b (y being the vector of yi's; matrix A and 
vector b imposing the tabular constraints, expressing for example that the cell values of 
some set of cells must be identical to the cell value of another (marginal) cell); (ii) a set 
P = {i1, i2, …, ip}⊆ {1,…,n } of indices of sensitive cells; (iii) a lower and upper pro-
tection level for each sensitive cell i ∈ P, respectively lpli and upli, such that the ad-
justed values satisfy either xi ≥ yi + upli or xi ≤ yi – lpli, and (iv) a lower and upper a 
priori bound for each cell i = 1,…,n, respectively li and ui , which can be used to im-
pose that the adjusted values of non-sensitive cells are still “similar” to the original 
data. 

Given these settings of the CTA instance, the purpose of CTA is to find the set of 
closest feasible adjusted values xi; i = 1,…,n satisfying the conditions stated in (i), 
and (iv), that make the adjusted table safe (i.e. satisfy (iii)). This is expressed as the 
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following optimization problem (in terms of the deviations zi =: xi-yi and  wi being a 
vector of cell weights)3: 
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A challenge comes from the last line of this statement, because of the “or” condi-
tion. The exact formal mathematical expression of this condition requires the intro-
duction of a vector of binary variables into the problem, associated to the direction of 
the deviation of each sensitive cell. An optimal solution requires an optimal allocation 
of these “directions” to the binary variables and makes the CTA problem a computa-
tionally “difficult” mixed integer linear programming problem (MILP). It can be re-
laxed significantly by turning it into a continuous (convex) optimization problem 
which is computationally much easier to solve. To achieve this, the binary variables 
must be removed. One way accomplish this is to fix the deviation senses of the sensi-
tive cells in advance, which is particularly supported by the current version of the 
CTA package, see also [3]. Another alternative would be to pre-perturb the sensitive 
cells by some other method and flag them as non-sensitive for CTA. We will refer to 
the latter in sec. 5. For more information on the package, in particular “tricks” offered 
to handle infeasibility see [4]. 

3 Outline of a Sequential Procedure 

The aim of the masking procedure that shall be drafted in this section should be to 
keep the perturbation of non-sensitive, statistically “relevant” aggregates “low”. For 
those aggregates, the perturbations of the respective unit level data should, more or 
less, balance each other. It will be up to the users of the method to define which tables 
or cells to consider as “relevant”. In the following, we assume the set of “relevant 
cells” to be defined as a set of – perhaps linked – tables in a way that can be trans-
formed into a set of CTA instances as outlined in section 2. Such a set of tables is 
referred to as the “set of control tables”. The procedure will consist of at least two 
stages, outlined below. Appendix A.1 presents a small toy example involving just a 
few data lines with only one control table, for illustration of the denotation used in the 
following description. Grey shaded lines of the toy example refer to stage 1. 

Stage 1: Apply the CTA method to the set of control tables. For now, we assume this 
to be a single CTA instance, to be achieved within a single CTA step. It is not unlike-
ly that in practice larger (sets of) control tables have to be defined. It may turn out 
then that special strategies will be required to break this (so far single) step on stage 1 

                                                           
3  For the exact mathematical statement see [4]. 
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into a sequence of CTA steps to be performed on subsets. This issue will not be ad-
dressed in this paper. 

Stage 2: Stage 2 is basically composed of the following three steps: 

1. Use the spanning variables of the control tables4 for clustering the survey units into 
groups. Select from those n variables a “suitable” one, say, variable i. Define a hie-
rarchical structure (variable i*) at three levels5. The top-level categories (i.e. levels 
0 and 1) of variable i* correspond to the categories of variable i . Each bottom lev-
el (i.e. level 2) category refers to a unit identity (ID) of a unit belonging to the re-
spective level 1 category of variable i* for a given combination k (k=1,..,K) of the 
categories6 of the other n-1 control table variables. See also sec. 4.1 for illustration. 

2. Set up a separate CTA input table for each of the K cross combination categories. 
All cells of such a table where variable i* is at level 2 refer to a single unit. They 
are considered sensitive. For all cells where variable i* is at level 1 (these cells are 
identical to a respective control table cell) replace their true cell value by the ad-
justed value this cell received at stage 1 of the procedure. Declare those cells as 
non-sensitive (because they received protection already at stage 1). In the CTA in-
put format, assign weights and bounds (see sec. 3.1) in such a way as to achieve 
that those cells will not be subject to further adjustment, or to at most a “slight” 
further adjustment. The objective here is to maintain as far as possible the data of 
the CTA solution of stage 1. Note that this CTA input table is not additive, the ta-
ble constraints do not hold.  

3. Process each of those K tables separately with CTA to (a) restore additivity and to 
(b) obtain an “optimally” perturbed version of the level 2 data. 

3.1 Preserving Data Quality 

Basically, there are two options for influencing the behavior of a CTA procedure: cell 
bounds (c.f. (iv) in sec. 3) and cell weights (e.g. the variables wi in the mathematical 
CTA statement (1) in sec. 3). Choice of these “parameters” should be based on some 
idea of how one wants the program to balance perturbations introduced into the data 
in order to protect the sensitive cells. A good solution should perhaps introduce rather 
“small” perturbations into the majority of cells – small enough for the disseminator to 
claim that these perturbed cell values are still “fit for use”. Cases where the perturba-
tion is beyond some threshold might be flagged “less reliable”. An analysis of the 
perturbation might be based on the Hellinger distance, as proposed for example in 
[15]. Considering for a set of cells the ratios of the (interior) cell values to their mar-

                                                           
4  Spanning variables where the same unit can contribute to more than one category (like f.i. a 

variable composed of income categories, when the units are tax cases) to be ignored in this 
step. In the toy instance, spanning variables are MUN and CL. 

5  To keep it simple, we assume here for variable i to be without hierarchical substructure. 
6  In case of a hierarchical variable: consider categories at the bottom of the hierarchy only. In 

the toy instance, variable i is CL, the “other” control table-variables are only one, e.g. MUN, 
with K=3 categories. 
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ginal sum as discrete probability distribution, the Hellinger distance can be used for 
measuring the distance between the original distribution, P, and the distribution after 
adjustment, Q . The distance is computed as the Euclidean norm of the difference of 
the square root vectors P and Q divided by √2. For a formal statement c.f. formula 
A.1 in appendix A.3 (see also denotations introduced in corollary 1 and its proof). 

As starting point for further investigation this paper proposes the following strate-
gy: For all non-sensitive cells define a priori bounds on the deviations proportional to 
a root-function of the cell value, e.g.  

(3.1) q
ii

q
i yczyc ≤≤−  , 0 ≤ q ≤ 1. In principle, for the choice of constants c 

and q we should say: the smaller, the better. But if they are chosen too small, the CTA 
problem turns infeasible. 

Notably for q = 0.5 , e.g. for bounds that are about proportional to the square root of 

the cell values, the Hellinger distance of any feasible CTA solution is below 
Y

c

2
, 

where Y  denote the mean cell value. See Corollary 1 and its proof in appendix A.3. 

If it turns out the bounds are too tight, making the CTA problem infeasible, they must 
be relaxed. 

For the two-stage procedure outlined here, all these considerations apply to stage 1 
where the goal should be an “optimal” distribution of the perturbations. Whereas at 
stage 2, one wants to preserve for the cells with a variable i* category of level 1 to 
preserve the perturbations they received at stage 1, to the extent possible. At stage 2, 
cell bounds of those cells will be centered on their adjusted values (received in the 
CTA step of stage 1, c.f. item 2 of the description of stage 2). They should be consi-
derably tighter as those from stage 1. 

Another means for influencing the quality of a CTA-solution are the cell weights. 

[2] propose weights of the form γ−
iy , 0 ≤ γ ≤ 1. The larger the choice of γ, the lower 

the probability for smaller cells to be subject to adjustment. A special option de-
scribed in [2] is to choose γ in a flexible way, depending on the hierarchical level h of 

a cell, according to the function γ(h)=  , where hmax denote the highest level. In 

a multidimensional table, h is computed for a cell by taking for each spanning varia-
ble the hierarchical level of the respective category (0 for bottom level) and summing 
across the spanning variables. Sec. 4.2 reports test results for several cost functions. 

4 Test Application 

We test this approach at the example of the German Income Tax Statistics. The data 
are from an administrative source, the database consists of about 40 million records. 
For each of those 40 m. tax cases, the database offers about 1500 variables. About 
100 of those - mostly quantitative – variables are used for analyses and publications. 

The most “important” categorical variable of the file is geography. Many income 
tax statistics results are published down to the level of municipalities. There are a few 
other categorical variables, and of course it is always possible to derive more categor-
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ical variables, like for example size classes of a quantitative variable, or binary va-
riables indicating f.i. whether a unit has a certain type of income. The most prominent 
derived variable in the German Income Tax Statistics is an income size class variable 
with 14 categories, used for classification in several tables of the regular publication. 

As for the quantitative variables, there are some with an exact linear interdepen-
dence between them (like f.i. “total income = positive income + negative income”). 
When such a relation is stated in the setup of a CTA problem, it will also hold in the 
CTA solution. 

Income Tax Statistics is far less skewed compared to business (turnover) tax statis-
tics. There are hardly any sensitive cells at the higher levels of geography, and even  
at the municipality level they are relatively rare. So there is some hope that the per-
turbations needed to protect them can be “balanced” without causing much harm to 
the analytical validity of the non-sensitive cells. 

4.1 Illustrative Example 

As starting point for the testing and first illustrative example for the methodology, we 
selected a district with relatively small municipalities, in order to get some sensitive 
cases in the municipality tables. To keep things simple in the beginning, we select for 
the testing only the data of this district (about 50 000 tax cases), and settle on only 
one control table. The control table is defined by three variables: geography (15 mu-
nicipalities), size class (on income, 14 categories) and a hierarchical income-relations 
variable that defines total income as sum of positive and negative income (plus  
some rest-position), and with some sub-positions for the positive income sources 
(like, from agriculture, from employment, from self-employment, etc.). This table has 
2640 cells (including zero-cells), 821 table relations and 303 sensitive cells identified 
by a p%-rule. 

In this application, stage 1 consists of applying CTA to this table. Section 4.2 re-
ports some results. At stage 2, we include the unit level data: Here, we process the 
data of each of the 15 municipalities separately. For municipality 1, for instance, there 
are about 4500 tax cases. We create a hierarchical variable at two levels. On level 1, 
we put the 14 size-class categories (thus, in the denotation of sec. 3, the size-class 
variable takes the role of variable i). For the new variable i*, the level 2 categories are 
generated by concatenating size-class category and unit ID key (for the tax case units 
falling into the respective size class). The longest table relation (or constraint), i.e. the 
constraint with the largest number of coefficients determined by this structure is that 
for size class 2: there are more than 900 tax cases in size class 2, and hence more than 
900 coefficients in each of the respective table constraints. On the other hand, there 
are also rather short constraints, in particular two with only two coefficients each, 
because two of the size classes consist of only a single tax case. This makes those 
relations so called “identity relations”, literally saying “cell j = cell k”. 
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4.2 Details and Test Results for the Illustrative Example 

Testing at Stage 1 
The first exercise is figuring out the “tightest”, feasible a priori bounds (in the form 
of statement (3.1)) for the control table. For the experiment this was done simply 
through “trial and error”, reducing step by step first the parameter q and then c (after 
fixing q), until the problem became reported infeasible by the CTA routine7. Execu-
tion of those test-steps requires just a few seconds for our test table. In a real applica-
tion, when perhaps hundreds of tables have to be processed, it would of course be 
necessary to automate this preparation step, utilizing the error return-code of the soft-
ware. In the experiment the best a priori bound parameters were q=0.6 , c=3. 8 For 
illustration, table A.1 in appendix A.2 shows the maximum feasible deviation ob-
tained by formula (3.1) with these parameters for some typical order of magnitude for 
the cell values of our instance. 

With a priori bounds computed with these parameters, four different options for a 

weighting scheme were tried: we assigned γ−= ii yw : choosing γ from {0.1, 0.5, 0.7} 

and in the 4th variant γ was chosen flexibly ( γ =γ(hi), where γ is determined by the 
hierarchical situation of cell i), (c.f. 3.1). For sensitive cells the weighting scheme was 

rescaled as 
00010

:
γ−

= i
i

y
w  . The idea was that sensitive cells should be much more likely 

as non-sensitive cells to be picked for adjustment. 
Table 2 shows Hellinger distances between original and adjusted distributions, for 

four distributions of the total income, i.e. for the 3-way distribution (MSI) by munici-
pality (M), income size class (S) and income source (I), for two 2-way distributions 
(MI and SI) by M and I and by S and I and for the univariate distribution only by I. It 
shows the distances obtained for the four tested γ parameters, computed separately for 
the subsets of the sensitive and the non-sensitive cells9. 

The distances in the last column of table 2 (“Random”) can be regarded as a kind of 
benchmark. They relate to a very simple form of random perturbation (not adjusted by 
CTA) that introduces about the same order of magnitude of perturbation as CTA (with 
the parameters of our setting): variable j of unit i was perturbed by multiplication with 1  , where 1; 1  denote a (symmetrically distributed) binary random 
variable that determines the sense of the deviation, and p the parameter of the p%-rule. 

Because the number of sensitive cells is much smaller than the number of non-
sensitive cells, for the sensitive cells a comparatively small number of individual dis-

tances (   , c.f. formula A.1 in the appendix) is summed for the Hellinger 

                                                           
7  In this phase it makes sense to make use of an option offered by the CTA package to stop 

after the first feasible solution has been obtained. 
8  Note that in the experiment, these bounds were not applied to the sensitive cells. The  

idea was that sensitive cells should not be kept close to their original values. For sake of simplic-
ity, we gave them rather wide bounds (+/- 200% of the cell value). Of course, in a real situation, 
cells that take positive vales only by definition (like “positive income”), or take negative values 
only (“negative income”) must be forced to change by at most +/- 100%. 

9  The number of sensitive vs. non-sensitive cell is 257 vs. 1250 (MSI); 10 vs. 108 (SI); 1 vs. 
134 (MI); 1 vs. 8 (I). 
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distances presented in table 2. In spite of this, table 2 shows that for the CTA results 
the distance is generally much larger for the subset of sensitive cells, except when S is 
not in the set of spanning variables (because in those distributions there is only one 
sensitive cell in the instance). This is not the case for the random noise variant.  
So obviously, sensitive cells receive more perturbation in the CTA variants. For the 
non-sensitive cells, it is the other way round: here all CTA variants perform better 
compared to random noise. As expected, the weighting scheme with flexible γ clearly 
outperforms the other variants in the case of the univariate (and thus highly aggre-
gated) distribution “I”. It performs well also on the bivariate distributions (“SI”, 
“MI”). In the 3-dimensional case (“MSI”), results are better with γ of 0.5 or 0.7.  

Table 1. Hellinger distances between original and adjusted / perturbed distributions 

Inc. 

by 
Sens. 

γ-parameter 
Random 

0.1 0.5 0.7 γ(hi) 

MSI 
non-s. 9.60E-07 4.34E-07 4.31E-07 2.04E-06 1.73E-05 

sensitive 1.45E-04 1.07E-04 1.11E-04 1.91E-04 1.23E-05 

SI 
non-s. 1.29E-07 1.41E-07 1.10E-07 1.18E-07 2.51E-06 

sensitive 3.51E-06 4.49E-06 5.69E-06 1.01E-06 1.65E-06 

MI 
non-s. 2.80E-07 4.58E-07 4.73E-07 8.87E-08 4.00E-06 

sensitive 1.02E-09 1.09E-09 1.09E-09 1.02E-09 9.88E-10 

I 
non-s. 1.67E-08 1.80E-08 2.20E-08 2.18E-15 1.29E-07 

sensitive 1.06E-09 1.11E-09 1.11E-09 1.02E-09 9.88E-10 

 
The testing on stage 2 of the procedure was carried out with the result from stage 1 

obtained at γ = 0.5. 
 
Testing at stage 2: 
In our instance, stage 2 consists of 15 separate CTA applications (one for each muni-
cipality). Until now, only a selection of three of those has been processed. In all three 
cases, it was possible to preserve on stage 2 the result of stage 1: the adjusted values 
of the cells on level 1 of the variable generated by concatenating size-class and unit 
ID could be preserved successfully. A priori intervals defining only minor tolerances 
turned out to be feasible. The ratios of perturbed and original values are almost al-
ways near 1 ± p where p denote the parameter of the p%-rule used to define the pro-
tection requirement. Only about 70 of the ca. 20600 individual income source data of 
municipality 1, for instance, were perturbed by more than (p + 1) %. 

5 Future Research Issues 

As conclusion from the lessons learnt in the experiment this section raises some main 
issues of future research. 
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Computing time 
So far, we have tested only with data from one of the about 400 districts in Germany. 
Stage 2 of the method has been carried out for only 3 municipalities. Assume we 
spend 3 CPU minutes for running CTA10 on each municipality. Then processing our 
test district takes 15*3 minutes (not considering the CPU time spent in stage 1). As-
suming same CPU times for each of the 400 districts in Germany, we end up with 
about 18000 minutes (=12.5 days) of CPU time. Even though the actual time spent  
on the computations can certainly be reduced by some parallel execution, etc., it is 
obvious that CPU time is a most critical issue. This must be born in mind when consi-
dering the other research issues mentioned below. 

Sensitivity rule at stage 2 
According to the approach presented in sec. 3, all the individual unit data are per-
turbed by the CTA method and all these cells are flagged as sensitive, because they 
relate to a single unit. However, this concept from tabular data protection does  
not make so much sense at stage 2: After all, we deal with large groups of units  
with identical categories of the control table spanning variables (in our instance for 
example, about 900 units for size class 2 of municipality 1). Assuming these are the 
“identifying variables”, the units of a sufficiently large group are not identifiable. One 
might therefore argue to consider them non-confidential. Perturbing them by at least 
p% as we did in the experiment is likely to overprotect the data. Here one should ra-
ther consider concepts of micro-data disclosure risk assessment. 

Revision of the procedure for stage 2 
In our instance we had at most ca. 900 units contributing to a single cell at level 1 of 
the hierarchical relation defined for stage 2 and hence at most ca. 900 cells in a single 
table relation of the tables to be processed at stage 2. While this approach was tested 
successfully for the very moderate sized municipalities of the test instance, it cannot 
work for large cities, because table relations become too long. In such cases, one 
should either use more variables in the definition of the control tables (this will reduce 
the number of units contributing to the same cell). 

Alternatively, considering the remarks above on cell sensitivity at stage 2, the fol-
lowing might be more adequate: if “too many” units contribute to a single cell at level 
1, split them (randomly) into two subgroups. Replace the data of one (say, the first 
one) of the two groups by a version pre-perturbed with some computationally “cheap” 
micro-data protection method, like multiplicative noise or record swapping (or even 
leave them unchanged, when they can actually be regarded as “not identifiable”). 
Then sum the data of the units in this group, subtract the results from the respective 
level 1 cell values and drop the corresponding categories from the variable i* hie-
rarchy (and list of categories), before setting up the CTA problem. This way, the CTA 
method is not applied to the unit level data of the first group anymore. The total 
change of the random perturbation applied to the first group of units must be balanced 

                                                           
10 Test results obtained so far are based on the computationally “difficult” MILP CTA formula-

tion (see sec. 2). 
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(along with the stage 1 adjustment of the respective level 1 cells) through adjustment 
of the data of the second group of units, which should therefore not be too small. This 
way, applying CTA to the data of big cities may not take more time than to apply it to 
small municipalities. 

The idea could even be extended: Do also replace the data of the second group of 
units (still to be processed by CTA) by a pre-perturbed version first, before setting up 
the CTA problem. Afterwards, in the input data for the CTA procedure, flag the  
respective cells ‘non-sensitive’. Then stage 2 does not involve any sensitive cells 
anymore. This makes the CTA problem a continuous LP problem, much “cheaper” in 
terms of CPU time requirement. 

Reduce the perturbation of sensitive cells 
As mentioned in the introduction, the CTA methodology has been developed to pro-
tect tabular data. In that context, large deviations in sensitive cells are usually  
not considered as problem. They may even be regarded as desirable. In our context, 
however, those large deviations may reduce the usability of the data. After all, as 
explained in the introduction, the basic idea is to enable flexible tabulation. Extreme 
perturbation in some units may be “balanced” in the control tables, so the information 
in the control table is “preserved”. Nevertheless, it is possible that such units with 
extreme perturbation contribute to other (for instance user requested) results. Here the 
deviations may happen not to be balanced (by deviations of other units) and cause 
major deviations of - perhaps not even sensitive -results. 

Sec. 4.2 reports that for the illustrative example a feasible solution for the control 
table was obtained with a priori bounds on the deviations according to 

q
ii

q
i yczyc ≤≤− with q=0.6 (and c=3) for non-sensitive cells and with q=1 (and 

c=2) for sensitive cells. This is quite a large gap. In future testing one should seek to 
reduce it. Sec. 4.2 also mentions that for sensitive cells the cell weights were com-
puted according to the same formula as for non-sensitive cells, but afterwards they got 
divided by 105, e.g. put on quite a different scale. Here it might also be better to re-
duce the rescaling. 

Preserve relations between variables 
As mentioned above, income tax statistics involves about 100 quantitative variables 
analyzed in the official publications. In our instance, we have considered only ten of 
them. It will be an important issue of future research to compare different approaches 
for how to involve them in the CTA processing. One way to proceed could be as  
follows: 

Apply the sequential procedure of sec. 3 separately for each variable, or set of va-
riables with additive relationship between them similar to the income-relation of the 
introductive example. Processing variables jointly may even make sense for cases, 
when the relationship between the variables in that set is not “exact” but “statistical”, 
i.e. from within a linear model involving the set of variables. When “modeling” a 
CTA problem for such a case, residuals of the linear model should be used to consti-
tute an extra variable. 
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Control tables may have to be defined differently for each set of variables. They 
should be ‘typical’ for the respective variable(s). 

However, protecting all the variables in a number of separate or joint CTA 
processes can become rather computer intensive. Recalling the CPU estimates from 
above, it might turn out “way too expensive”. Other complications might be that the 
same variable appears in different variable relations. Then one should in principle 
process all those relations in a single “linked” application. But this might consume 
even more CPU time. A way out could be the definition of a suitable sequence to 
process the relations and to allow no further adjustment in variables processed in an 
earlier step of the sequence. 

6 Summary and Final Conclusions 

The paper has outlined an idea for a two stage procedure employing CTA as mechan-
ism for balancing perturbations introduced into a database because of disclosure risk 
concerns. Test results from early experiments derived with a small test data set  
to investigate the performance of certain parameter settings were compared using 
Hellinger distances. 

While those preliminary experiments gave satisfactory results, they can only be re-
garded as a starting point of a major research effort necessary to establish practicabili-
ty and efficiency of the proposed methodology. 

For such a future research effort, the paper has identified a number of issues and 
ideas for revision that should be addressed, like, e.g. CPU time requirement, avoid-
ance of unit-level data overprotection, pre-processing of unit level data with a compu-
tationally cheap SDC method, reduction of the size and computational complexity of 
the CTA problems at stage 2 and, finally, issues of preserving relations between quan-
titative variables of the dataset. 

Acknowledgements. Thanks to Ms. Katrin Schmidt for her help with the integration 
of the CTA package into the SAS-environment. 
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Appendix A.1  Toy Example for Illustration of the 2-Stage
  Procedure of Sec. 3 
 

ID MUN 
CL (= 

var i) 
var i* 

level 

var i* 

Income 

(original) 

Stage 1 Stage 2 

Income 

(adjusted) 

Table 

k

Income 

(adjusted) 

Total Total 410 410   

A Total 0  80  65 1 65 

A 01 1  30  25 1 25 

1 A 01 01_1 2  10 1  8 

2 A 01 01_2 2  20 1 17 

A 02 1  50  40 1 40 

3 A 02 02_3 2  50 1 40 

B Total 0 120 135 2 135 

B 01 1  20  15 2  15 

4 B 01 01_4 2  20 2  15 

B 05 1 100 120 2 120 

5 B 05 05_5 2 100 2 120 

C Total 0 210 210 3 210 

C 03 1 210 210 3 210 

6 C 03 03_6 2  70 3  70 

7 C 03 03_7 2  70 3  70 

8 C 03 03_8 2  70 3  70 

 
 
Appendix A.2 

Table A.1. Maximum feasible deviations for typical cell value order of magnitudes 

Cell value Maximum deviation 

            50,000                  198    

          500,000                  788    

       5,000,000            3,137    

     50,000,000             12,488    

   500,000,000             49,717    

5,000,000,000           197,926    
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Appendix A.3 

Corollary 1: Let yi, i=1,…,n  a vector of original, non-zero cell values with a total 

value of 
=

=
n

i
iyY

1
: . Let c be a positive constant. Let xi, i=1,…,n the vector of the per-

turbed cell values and zi=xi-yi, i=1,…,n the vector of deviations. If the deviations are 
bounded by 2    (i.e. they are about proportional to the square root of the 
original cell values) and the grand total is preserved, then the Hellinger distance of 
any feasible CTA solution is below Y, where Y  denote the mean cell value. 

Proof: Consider the ratios of the cell values to the grand total as discrete probability 
distribution. The Hellinger distance is a measure of the distance of the original distri-
bution P (given by pi:=  (i=1,..,n)) and the distribution after adjustment Q (given by 

qi:=  (i=1,..,n)), defined as , √  ∑    (A.1). 

Obviously 2    1 1 1 1 . 

Hence from zi< 2    it follows 1 1 . Thus we have 1 1 , from which follows 1 1  and then  11 . After multiplying both sides by , we see 

1 1   .                                          (A.2) 

The left hand side of (A.2) can be written as  =

=  =  , because we assume the grand total 

to be preserved, e.g. X=Y and hence  =  = . 

So (A.2) is equivalent to   . After summation across the table cells, 

we get  ∑  . (A.3)- 

H(P,Q) is defined as the square root of the left hand side of (A.2) devided by 2, so 
obviously from (A.3) it follows H(P,Q)   Y which completes the proof. 
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Abstract. Statistical agencies assess the risk of disclosure before re-
leasing data. Unacceptably high disclosure risk will prevent a statistical
agency from disseminating the data. The application of statistical dis-
closure control (SDC) methods aims to provide sufficient protection and
make the data release possible. The disclosure risk of tabular data is
typically quantified at the level of table cells. However, the evaluation
of disclosure risk can require the assessment of the table as a whole,
for example in the case of online flexible table generators. In this pa-
per we use information theory to develop a disclosure risk measure for
population-based frequency tables. The proposed disclosure risk measure
quantifies the risk of attribute disclosure before and after an SDC method
is applied. The new measure is compared to alternative disclosure risk
measures developed at the Office for National Statistics.

Keywords: Information theory, attribute disclosure, conditional entropy.

1 Introduction

Statistical agencies follow strict confidentiality rules since releasing data always
increases the risk of disclosure. They measure the risk of disclosure and apply
statistical disclosure control (SDC) methods if the risk is unacceptably high.
The subject of this paper is disclosure risk measurement in population-based
frequency counts of tabular form.

Dislosure risk measures of tabular data usually express the risk at cell level.
A regularly used disclosure risk measure for frequency counts is the so-called
threshold rule. A cell is of high risk if the count does not exceed a certain value,
for example 2.

The main objective of this paper is to measure the risk of attribute disclosure.
Attribute disclosure happens if confidential information about an individual can
be retrieved from the data. We use information theory to quantify the disclosure
risk of population based frequency tables. The disclosure risk is expressed for
the entire frequency table and for rows and columns of the frequency table.
Single cells in themselves are not considered here. Information theory has been
investigated in [5] to measure the disclosure risk of individual cells of magnitude
tables. However, there has been no attempt to quantify the disclosure risk of an
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entire (either frequency or magnitude) table by information theory. This paper
provides a novel disclosure risk measure, which makes relatively quick disclosure
risk assessment possible. The bases of the measure are entropy and conditional
entropy.

Our aim is to develop a disclosure risk measure around the following
properties.

Property 1A If only one cell is populated in the table, then the disclosure risk
is high.

Property 1B Uniformly distributed frequencies imply low risk.
Property 2 Small cell values (i.e. ones and twos) are more disclosive than

higher values. In general, the greater the cells, the lower the
disclosure risk.

Property 3 Assume that two tables are given and there is only one cell pop-
ulated in each table. The frequencies of the non-zero cells are
equal. In this case we deem the table that has more cells (and
therefore more zeroes) to be of higher disclosure risk.

Property 4 We would like the disclosure risk measure to be bounded by 0
and 1.

The motivation behind the properties is as follows. The risk of attribute dis-
closure is normally high if the population is concentrated in one cell, see [7]. It
explains Property 1A. On the other hand, attribute disclosure is unlikely to oc-
cur if the frequencies are uniformly distributed, which drives Property 1B. The
ground of Property 2 is the fact that revealing new information about a respon-
dent becomes more difficult as the cell frequencies increase. The rationale behind
Property 3 is that a table may be a more detailed version of another table, e.g.
the breakdown of a table-spanning variable might be different in two tables. For
example, if we replace super output area with output area, then the table will
contain more detailed information. An intruder may obtain more information
from more detailed tables. Property 4 is driven by the desire of comparing the
disclosure risk of different tables.

Besides disclosure risk, information loss is also a crucial concept in statis-
tical disclosure control. We use another information theory-related expression,
Hellinger distance to measure the loss of information.

Although SDC methods provide protection to the data, a statistical agency
might not be certain about the adequacy of the protection. Therefore, we assess
the disclosure risk not just before but also after perturbation. The disclosure
risk measures before and after perturbation are described in Section 2. Pertur-
bation methods used for this study are outlined in Section 3. Section 4 discusses
alternative disclosure measures that were used by the Office for National Statis-
tics (ONS). Application of the theoretical results can be found in Section 5. A
discussion closes our investigation in Section 6.
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2 Disclosure Risk Measures and a Utility Measure

2.1 Before SDC Methods Are Applied

The most important information theoretical definition we use is entropy. Infor-
mation theory is covered comprehensively in [2]. If X is a random variable with
distribution P = (p1, p2, . . . , pK), then the entropy of X is defined as

H(X) = −
K∑
i=1

pi · log pi . (1)

Here log is the natural logarithm. If pi = 0 for a certain i, then the respective
term in the sum is considered 0.

Entropy is ideal to capture Properties 1A and 1B listed above since the value of
entropy is 0 if and only if the P distribution can be written as (0, . . . , 0, 1, 0, . . . , 0),
and the value of entropy is maximal (logK) if and only if P is uniform. There-
fore, the expression [1−H(X)/ logK] exactly reflects Properties 1A, 1B and 4.
However, entropy does not capture Properties 2 and 3 properly. The reason for
this is given below.

The table of frequencies we investigate is denoted F = (F1, F2, . . . , FK). The

population size is N =
∑K

i=1 Fi. Consequently, the distribution of the table is

P =

(
F1

N
,
F2

N
, . . . ,

FK

N

)
. (2)

If we apply (1) to this distribution, we obtain

H(X) =
N · logN −

∑K
i=1 Fi · logFi

N
.

Consider, for example, an F = (F1, F2, F3) = (0, 2, 4) frequency table. Then
P =

(
0, 2

6 ,
4
6

)
and H(X) = 6· log 6−2· log 2−4· log 4

6 = 0.6365.
It can be seen from (1) and (2) that H(X) depends only on the Fi/N , i =

1, 2, . . . ,K ratios. Therefore, [1−H(X)/ logK] does not meet the expectations
outlined in Properties 2 and 3. The entropy of F is the same as the entropy of
c · F , where c > 1 is a constant, contradicting Property 2. On the other hand,
(1) shows that zeroes do not contribute to the value of entropy, therefore it does
not reflect Property 3.

In order to compensate for Properties 2 and 3, the proportion of zeroes in the
frequency table and an additional expression, based on N will be included in
the disclosure risk measure. Denote the set of zeroes in the F table by D. The
disclosure risk measure we define is a weighted average of three terms as follows.
The weights are w = (w1, w2, w3), where w1, w2, w3 ≥ 0 and w1 + w2 + w3 = 1.

R1(F,w) = w1 ·
|D|
K

+ w2 ·
(
1− H(X)

logK

)
− w3 ·

1√
N

· log 1

e ·
√
N

. (3)
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Here e is the base of the natural logarithm. Each term is bounded by 0 and
1, and therefore so is the overall disclosure risk measure. The third term is a
monotonically decreasing function of N , which reflects Property 2.

Considering the above example with F = (0, 2, 4), we will obtain that |D|
K =

0.3333, 1− H(X)
logK = 1− 0.6365

log 3 = 0.4206 and − 1√
N

· log 1
e·√N

= − 1√
6
· log 1

e·√6
=

0.7740.
If a frequency table consists of 1s only, that is, F = (1, 1, . . . , 1), then only the

third term of (3) differs from 0. In this case the chance of attribute disclosure is
low, since the number of zeroes is 0. The disclosure risk of F = (1, 1, . . . , 1) is also
lower than that of F = (10, 10, . . . , 10), therefore monotonicity is maintained.

2.2 After SDC Methods Are Applied

The disclosure risk after SDC methods are applied to the table must also be
assessed. The perturbed frequencies are denoted by G = (G1, G2, . . . , GK) and

their sum by M =
∑K

j=1 Gj . We assume that a statistical agency intends to
release the G frequencies and withhold F . Therefore, we assume that F �= G.

The disclosure risk after perturbation should be lower than that before per-
turbation, since an intruder has to encounter more uncertainty in G than in F .
We adjust (3) in order to assess the disclosure risk after perturbation. The first
and second terms of (3) are reduced in the new measure.

Denote the set of zeroes in G by E. The first term of (3) will be changed to

w1 ·
(
|D|
K

) |D∪E|
|D∩E|

.

If D = ∅ or E = ∅, then this term will be considered 0. This expression is not
greater than |D|/K and is still bounded by 0 and 1.

The second term of (3) will be multiplied by a factor, which depends on the
conditional entropy. Assume that X and Y are two random variables with a
common domain (I) and a common range (C = {c1, c2, . . . , cK}).

X : I → C .

Y : I → C .

The definition of the conditional entropy of X and Y is as follows.

H(X |Y ) = −
K∑
j=1

Pr(Y = cj) ·
K∑
i=1

Pr(X = ci|Y = cj) · logPr(X = ci|Y = cj) .

In our case I is the set of individuals and C is the set of table cells (or cate-
gories). (Note that ci is not the frequency of the cell.) X provides the categories
where the individuals fall originally. Since we are dealing with the perturbation
of frequency tables, the individuals and their categories might not be exactly
followed after perturbation. Y should provide a similar categorisation to X after
perturbation. More details about the Y variable can be found below.
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It is well-known that H(X |Y ) ≤ H(X). Roughly speaking, in our case X
represents the original data and Y the perturbed data. H(X |Y ) expresses the
uncertainty the X variable has if Y is known. Therefore we choose the second
term of the disclosure risk measure after perturbation to be

w2 ·
(
1− H(X)

logK

)
· H(X |Y )

H(X)
.

If H(X) = 0, then the second term of the disclosure risk measure is considered 0.
The conditional entropy can be rewritten using the Pr(Y = cj |X = ci) prob-

abilities, as it can be found in [8].

H(X|Y ) = −
K∑

i=1

K∑
j=1

Pr(X = ci)·Pr(Y = cj|X = ci)·log
Pr(X = ci) · Pr(Y = cj |X = ci)∑

K
k=1 Pr(X = ck) · Pr(Y = cj |X = ck)

.

Pr(X = ci) in the above formula provides the probability that an individual
falls in cell ci in the original frequency table. It can be easily estimated by Fi/N .

The Pr(Y = cj|X = ci) conditional probabilities will be expressed by F =
(F1, F2, . . . , FK) and G = (G1, G2, . . . , GK). The formula we use is as follows.

Pr(Y = cj |X = ci) =

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(M · Fi, N · Gi)

M · Fi

if i = j and Fi > 0 ,

(M · Fi − min(M · Fi, N · Gi)) · (N ·Gj − min(M · Fj , N · Gj))

M · Fi · (N · M − ∑K
k=1 min(M · Fk, N ·Gk))

if i �= j and Fi > 0 ,

0 if Fi = 0 .

(4)

The complete justification for the (4) formula can be found in [1], we only outline
the proof here.

The X random variable determines the cells where each individual falls in
the original frequency table. Assume temporarily that N = M . The Y variable
should provide the counterpart of X for the perturbed frequency table. It means
that the individuals are recategorised in the perturbed table. However, the only
requirement for Y is given by the G = (G1, G2, . . . , GK) frequencies, the cell
where a certain individual falls in the perturbed frequency table is not deter-
mined unambiguously. In case of a post-tabular SDC method, such as random
rounding, Y is not (necessarily) uniquely defined. Different Y variables lead to
different values of Pr(Y = cj |X = ci). Instead of choosing one of the possi-
ble variables, we select a set of Y variables and calculate the average of the
Pr(Y = cj |X = ci) conditional probabilities in the set. If we took the average
of the conditional probabilities over the entire set of possible Y variables, then
the H(X |Y ) conditional entropy would not differ from H(X). Consequently, the
second term of the disclosure risk measure would not be lowered. Therefore, we
take the average conditional probability of a narrower set of possible Y vari-
ables. In statistical disclosure control a general aim is to cause the least possible
distortion to the data, therefore we select the Y variables that are as similar to
X as possible. It means that an individual should fall in the same cell by X and
Y , provided that the G = (G1, G2, . . . , GK) frequencies allow that.
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Table 1. Example: the X variable and possible Y variables

Individuals (I)
1 2 3 4 5 6

X variable c2 c2 c3 c3 c3 c3
First possible Y variable c2 c2 c2 c3 c3 c3
Second possible Y variable c2 c2 c3 c2 c3 c3
Third possible Y variable c2 c2 c3 c3 c2 c3
Fourth possible Y variable c2 c2 c3 c3 c3 c2

A Y variable not taken into account c3 c2 c2 c2 c3 c3

Continuing with our example, where F = (0, 2, 4), we can see that there
are six individuals and three categories, that is, C = {c1, c2, c3}. Assume that
G = (0, 3, 3). An X variable and possible Y variables are given in Table 1.

The variable in the last row of Table 1 is not taken into account when cal-
culating the average conditional probability because the category of the first
individual changes. It causes more distortion than necessary.

If N �= M , then we can apply the same reasoning to the M ·F = (M ·F1,M ·
F2, . . . ,M ·FK) and N ·G = (N ·G1, N ·G2, . . . , N ·GK) frequency tables. The
entropy of M · F is the same as that of F . The average conditional probability
is given under (4).

To summarize, the disclosure risk measure after perturbation is

R2(F,G,w) = w1 ·
( |D|

K

) |D∪E|
|D∩E|

+w2 ·
(
1− H(X)

logK

)
·H(X|Y )

H(X)
−w3 · 1√

N
· log 1

e · √N
.

(5)

2.3 A Utility Measure

Besides disclosure risk, information loss is also an important aspect of SDC. We
measure that by a modified Hellinger distance, which is also related to informa-
tion theory. Hellinger distance measures the divergence between two probability
distributions, P = (p1, p2, . . . , pK) and Q = (q1, q2, . . . , qK). The definition of
Hellinger distance is as follows.

HD(P,Q) =
1√
2
·

√√√√ K∑
i=1

(
√
pi −

√
qi)2 .

This expression is bounded by 0 and 1. We substitute P and Q for F and G
respectively.

HD(F,G) =
1√
2
·

√√√√ K∑
i=1

(
√
Fi −

√
Gi)2 .

HD(F,G) is the L2-norm of the difference of
√
F = (

√
F1,

√
F2, . . . ,

√
FK) and√

G = (
√
G1,

√
G2, . . . ,

√
GK) and therefore it is a metric. Hellinger distance
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shows the magnitude of the cells since the difference between the square roots
of two ’large’ numbers are higher than in case of two ’small’ numbers, even if
these pairs have the same absolute difference. The lower bound of HD(F,G) is

0, while the upper bound is
√

N+M
2 .

In our example, where F = (0, 2, 4) and G = (0, 3, 3), the modified Hellinger

distance is HD(F,G) = 1√
2
·
√
(
√
2−

√
3)2 + (

√
4−

√
3)2 = 0.2940.

3 Perturbation Methods

We place ourselves in the statistical agency’s point of view and compare two per-
turbation methods. The perturbation methods we consider are random rounding
to base 3 and record swapping.

Random rounding moves the frequencies to one of the multiples of 3 with
certain probability structure. If a cell value is a multiple of 3, it remains un-
altered. If the remainder is 1 or 2 when dividing the cell value by 3, then we
round it to the closest or second closest multiple of 3 with probability 2/3 or 1/3
respectively. Different cells in the table, including marginal cells, are rounded
independently. Random rounding may not result in additive tables, that is, the
internal cells may not add up to the marginal total. In this paper we deal with
internal cells only.

Record swapping is a pre-tabular method and as such, it is applied to the mi-
crodata. It selects some pairs of records and exchanges the values of a variable
(or more variables) between paired records. Frequency tables may be generated
from the perturbed microdata. However, if the table-spanning variables do not
include at least one perturbed variable, then the frequency table generated from
the perturbed microdata is the same as that generated from the original micro-
data. More details about record swapping can be found in [7]. In Section 5, we
always include a perturbed variable in the table-spanning variables and consider
the resulting G = (G1, G2, . . . , GK) table as the perturbed frequency table. Al-
though record swapping is a pre-tabular method and the Y variable and the
Pr(Y = cj |X = ci) conditional probabilities can be determined exactly, we
use the (4) and (5) formulae to quantify the disclosure risk after perturbation.
The reason for this is ease of computation since (4) and (5), and therefore the
H(X |Y ) conditional entropy can be calculated on the F and G frequencies di-
rectly. There is no need to calculate the exact Pr(Y = cj |X = ci) values, which
can be computationally challenging since there are K ×K such probabilities.

4 Alternative Disclosure Risk Measures

The Office for National Statistics (ONS) applied alternative disclosure risk mea-
sures to the 2001 UK census data in order to determine the best perturbation
methods for tabular outputs of the 2011 UK census. The disclosure risk measures
below were developed specifically for record swapping. The measure to express
the degree of group attribute disclosure risk for rows was
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GAD1(F,G) =

∑
I(rows where all respondents fall into same category in the F and G tables)∑

I(rows where all respondents fall into same category in the F table)
.

Here I(·) is the indicator function. If a row in F has only one populated category,
then it is counted as 1 in the numerator of GAD1(F,G) if the same category is
the only populated cell in that row of G and the same individuals contribute to
the category before and after perturbation.

The within group attribute disclosure for rows was measured by

WGAD1(F,G) =

∑
I

(
rows where all respondents fall into

same 2 categories in F and G (only 1 respondent in one)

)

∑
I

(
rows where all respondents fall into 2

categories in F (only 1 respondent in one)

) .

The same features can be repeated as for GAD1(F,G).
The measures above may also be evaluated columnwise to obtain GAD2(F,G)

and WGAD2(F,G).
GAD1(F,G) and WGAD1(F,G) express the proportion of rows where an in-

truder may correctly reveal a new attribute of an individual or more individuals.
In case of WGAD1(F,G) the data protector assumes that the intruder may be
the person who contributes to a cell with frequency 1.

Denote the set of cells having frequency 1 by D1 and frequency 2 by D2

in the original table, that is, D1 ∪ D2 is the set of small cells in the table.
The counterparts of these sets in the perturbed table are denoted E1 and E2

respectively. A third measure, which was also used by the ONS, is as follows.

DR(F,G) =
|D1 ∩ E1| + |D2 ∩ E2|

|E1 ∪ E2|
.

The numerator is the number of small cells unchanged in the perturbed ta-
ble, while the denominator is the number of small cells in the perturbed table.
Therefore DR(F,G) measures the proportion of small cells where the original
and perturbed frequencies are equal.

The disclosure risk measures above were developed for the pre-tabular method
of record swapping. In order to adapt them to post-tabular random rounding in
our numerical study, we need to change the definitions slightly. In case of random
rounding the individuals cannot be followed through in the microdata, therefore
we cannot garantee that the same individuals contribute to a certain category
before and after perturbation. Therefore, GAD will be changed as follows.

GAD∗
1(F,G) =

∑
I(rows where only one frequency is higher than 0 in the F and G tables)∑

I(rows where only one frequency is higher than 0 in the F table)
.

In the numerator the non-zero frequencies before and after perturbation are in
the same category.
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Similarly,

WGAD∗
1(F,G)=

∑
I

(
rows where exactly two frequencies are higher

than 0 in the F and G tables and at least one of them is 1

)

∑
I

(
rows where exactly two frequencies are higher

than 0 in the F table and at least one of them is 1

) .

The non-zero categories are the same in F and G if the row is counted in the
numerator of WGAD∗

1(F,G).
These measures can also be evaluated columnwise and we obtain GAD∗

2(F,G)
and WGAD∗

2(F,G) respectively.
The idea behind GAD∗

1(F,G) and WGAD∗
1(F,G) is similar to GAD1(F,G)

and WGAD1(F,G). An intruder might correctly reveal a new attribute of an
individual or more individuals if the same (one or two) cells are populated in
the original and perturbed tables.

5 Numerical Results

5.1 Numerical Results for R1(F,w) and R2(F,G,w)

The data we use is an extract from the 2001 UK census tables. The table-
spanning variables for various tables include age, sex, output area, country of
birth, mode of travel, religion. In this paper only two-dimensional tables are
considered.

We investigate the output area × country of birth, output area × mode of
travel, output area× sex and output area × religion tables, where only 10 output
areas are taken into account. The population size is N = 2449. In case of the
output area × mode of travel table the population is restricted to individuals
between 16 and 74 years of age. As can be seen, each table includes output area
as a table-spanning variable. It coincides with the practice followed by the ONS,
since the geographical variable in their frequency tables is normally output area
and is the swapping variable for record swapping.

The entropy-based term is the core of the diclosure risk measure, therefore
we assign high weight to that term in R1(F,w). We use w = (w1, w2, w3) =
(0.1, 0.8, 0.1).

The R2(F,G,w) disclosure risk depends on the G perturbed frequency table,
therefore different perturbed tables provide different values of disclosure risk. In
order to avoid an extreme value, we carry out the perturbation 1,000 times and
take the average disclosure risk. This also reflects the perturbation method since
more possible perturbed tables and their respective chance of being the outcome
of the perturbation are taken into account. Random rounding and record swap-
ping were carried out. Random rounding was applied to the frequency table,
while record swapping to the output area variable of the microdata. 5% percent
of the individuals were selected and paired with other individuals from distinct
output areas, resulting in a total of 10% swapped individuals. The G frequency
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table was generated on the perturbed microdata. The weights of R2(F,G,w) are
unaltered compared to those before perturbation, w = (0.1, 0.8, 0.1).

An individual’s attribute might be revealed using the rows or columns of a
frequency table. Since the main point of this paper is measuring attribute dis-
closure, R1(F,w) and R2(F,G,w) are evaluated for each row, for each column
and for the entire table. The F frequency tables, R1(F,w), R2(F,G,w) and
HD(F,G) for random rounding and record swapping can be found in the Ap-
pendix, see Tables 2, 3, 4 and 5.

The values of R1(F,w) reflect the Properties listed in Section 1 reasonably
well. It can be observed that longer rows have higher disclosure risk. It might be
attributed to the potentially higher number of zeroes in longer rows.

It can be seen that R2(F,G,w) is always substantially lower than R1(F,w).
The R2(F,G,w) disclosure risk measure of rows and columns for record swap-

ping often shows slightly smaller values than for random rounding. This is at-
tributed to the different methods of perturbation. While random rounding com-
pletely removes small cell values and frequencies that are not multiples of 3, and
therefore it might change the distribution significantly, record swapping results
in similar distribution to that of the original table. Record swapping also provides
better information loss in numerous cases, especially in rows/columns where the
majority of the counts is not higher than 10. Note that the disclosure risk of
such rows/columns should not be low. Therefore, for rows and columns record
swapping seems to be preferable to random rounding. However, the values of
R2(F,G,w) for entire frequency tables are lower for random rounding compared
to record swapping. On the other hand, the Hellinger distance is higher for ran-
dom rounding compared to record swapping, reflecting higher information loss.
The statistical agency must balance the disclosure risk against information loss.

5.2 Alternative Disclosure Risk Measures

For the alternative disclosure risk measures discussed in Section 4, random
rounding and record swapping were carried out as described in the previous
section. The frequency tables were perturbed 1,000 times and the average dis-
closure risk measures are shown in Table 6.

The value of GAD∗(F,G) for random rounding is zero with one exception.
The non-zero value is the result of column 5 of the output area × country of
birth table. The value of GAD∗(F,G) for that column is either 0 or 1 for each
iteration.

In case of record swapping, GAD(F,G) and WGAD(F,G) are also zero with
two exceptions. Each individual contributes to the same column before and after
perturbation since only the output area variable is perturbed. (Consequently, each
column has the same total before and after perturbation.) Therefore, columns 5
and 7 in the output area × country of birth table can be accounted for the two
non-zero disclosure risk measures.

As it can be seen, GAD(F,G) and WGAD(F,G) are either 0 or 1 for each
iteration. This fact might overestimate or underestimate the true risk. The dis-
closure risk measures defined under (3) and (5) provide more realistic measures.
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6 Discussion

In this paper we have presented a new disclosure risk measure for population-
based frequency tables. Information theoretical expressions, such as entropy and
conditional entropy, are the focus of our investigation. We have demonstrated
that they are able to quantify the risk of attribute disclosure both before and
after the application of an SDC method.

The proposed disclosure risk measure can be applied to the entire frequency
table and to rows and columns of the table. A statistical agency may set a
threshold in order to decide whether a frequency table is safe to release or the
application of an SDC method is required. We have used the Hellinger distance
to measure the loss of information.

The entropy, the conditional entropy and therefore the whole disclosure risk
measure can be expressed by the F = (F1, F2, . . . , FK) original and G =
(G1, G2, . . . , GK) perturbed frequencies. This feature is particularly advanta-
geous for post-tabular perturbation methods, where the category of a certain
individual is not determined in the perturbed frequency table.

We compared our new disclosure risk measure with alternative disclosure risk
measures. While R1(F,w) and R2(F,G,w) provide a disclosure risk measure
for each row and column of the original and perturbed tables, GAD(F,G) and
WGAD(F,G) use both F and G to evaluate the disclosure risk for entire tables.
By applying GAD(F,G) and WGAD(F,G) the statistical agency automatically
assumes that an SDC method should be applied to the frequency table. How-
ever, it is not always necessary. If R1(F,w) shows low disclosure risk, then the
table might be released without perturbation. As we have seen, GAD(F,G) and
WAGD(F,G) can show high disclosure risk if one row or column is of high risk
and do not distinguish well between disclosure risk of different tables.

Although we have shown that R1(F,w) and R2(F,G,w) are preferable to
GAD(F,G) and WGAD(F,G), further research is needed to reveal further prop-
erties of R1(F,w) and R2(F,G,w).
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Table 4. Frequency table (F ) and disclosure risk and utility measures: output area (10
output areas) × sex. The right lower corner shows the measures for the entire table,
while the other measures are calculated rowwise/columnwise. ’Ran. Rou.’ and ’Rec.
Sw.’ denote random rounding and record swapping respectively.

Ran. Rou. Rec. Sw. Ran. Rou. Rec. Sw.
1 2 R1(F,w) R2(F,G,w) R2(F,G,w) HD(F,G) HD(F,G)

1 161 141 0.0247 0.0222 0.0223 0.0376 0.1165
2 105 94 0.0276 0.0259 0.0260 0.0486 0.1259
3 142 116 0.0294 0.0237 0.0239 0.0612 0.1202
4 158 154 0.0220 0.0219 0.0219 0.0539 0.1213
5 139 90 0.0512 0.0252 0.0269 0.0398 0.1445
6 129 90 0.0434 0.0250 0.0265 0.0000 0.1292
7 107 107 0.0252 0.0252 0.0252 0.0660 0.1274
8 133 147 0.0243 0.0228 0.0229 0.0402 0.1343
9 98 115 0.0289 0.0253 0.0255 0.0666 0.1396

10 136 87 0.0529 0.0254 0.0273 0.0409 0.1432
R1(F,w) 0.0170 0.0209 0.0150 - - - -

Ran. Rou. R2(F,G,w) 0.0127 0.0135 - 0.0100 - - -
Rec. Sw. R2(F,G,w) 0.0128 0.0136 - - 0.0100 - -
Ran. Rou. HD(F,G) 0.1227 0.1032 - - - 0.1611 -
Rec. Sw. HD(F,G) 0.3452 0.3720 - - - - 0.5076
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Table 6. Disclosure risk measures, GAD(F,G), WGAD(F,G) and DR(F,G)

Random rounding Record swapping
Frequency table GAD∗(F,G) WGAD∗(F,G) DR(F,G) GAD(F,G) WGAD(F,G) DR(F,G)

output area Rows 0 0 - 0 0 -
× Columns 0.329 0 - 0.902 0.796 -

country of birth Table - - 0 - - 0.7009

output area Rows 0 0 - 0 0 -
× Columns 0 0 - 0 0 -

mode of travel Table - - 0 - - 0.7444

output area Rows 0 0 - 0 0 -
× Columns 0 0 - 0 0 -
sex Table - - 0 - - 0

output area Rows 0 0 - 0 0 -
× Columns 0 0 - 0 0 -

religion Table - - 0 - - 0.7004
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Abstract. Minimum distance controlled tabular adjustment (CTA) is
an emerging perturbative method of statistical disclosure control for tab-
ular data. The goal of CTA is to find the closest safe table to some original
tabular data with sensitive information. Closeness is usually measured
by �1 or �2 distances. Distance �1 provides solutions with a smaller �0
norm than �2 (i.e., with a lesser number of changes with respect to the
original table). However the optimization problem formulated with �2
requires half the number of variables than that for �1, and it is more
efficiently solved. In this work a pseudo-Huber function (which is a con-
tinuous nonlinear approximation of the Huber function) is considered
to measure the distance between the original and protected tables. This
pseudo-Huber function approximates �1 but can be formulated with the
same number of variables than �2. It results in a nonlinear convex opti-
mization problem which, theoretically, can be solved in polynomial time.
Some preliminary results using the Huber-CTA model are reported.
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1 Introduction

The statistical disclosure control field aims at protecting sensitive information
when releasing statistical microdata or tabular data. A description of the state-
of-the-art in this field can be found in the monograph [17] and—only for tabular
data—in the survey [5].

Minimum-distance controlled tabular adjustment (CTA), introduced in [3,14],
is one of the available post-tabular perturbation approaches for tabular data. The
purpose of CTA is, given a table with sensitive cells, to compute the closest safe
table (i.e., sensitive cells are modified to avoid re-computation, the remaining
cells are minimally adjusted to satisfy the table equations) through the solu-
tion of an optimization problem using some particular distance in its objective
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function. CTA is considered an emerging technology for tabular data [17]. It has
been empirically shown that CTA in general exhibits a low disclosure risk [6]
and, at the same time, a high data utility [10,11].

CTA was originally formulated as a mixed integer linear programming (MILP)
problem [14], while the minimum distance formulation of [3] was continuous
(either a linear programming (LP) or a quadratic programming (QP) problem).
Continuous formulations, which can be obtained by a priori fixing the value of
the binary variables, provide faster optimizations, at the expense of reducing the
quality of the solution. A wrong assignment of binary variables may result in
an infeasible problem. The approach of [12,13] solves this situation by allowing
small changes in three different type of CTA constraints. Together with the
original objective, this results in a four-objective problem, which can be solved
by multiobjective optimization methods [12,13].

In this work we focus on the continuous formulation of CTA. Using �1 as the
distance in the objective function we obtain a LP whose number of variables is
twice the number of cells of the table. For �2 we obtain a QP with a number
of variables equal to the number of cells, which is in general more efficiently
solved than the LP of �1-CTA [3]. (This does not hold if binary variables are
considered: the MIQP �2-CTA is significantly harder than the MILP �1-CTA, as
noted in [9].) On the other hand, �1-CTA solutions have a lesser �0 norm (where
‖x‖�0 is the number of nonzero elements of x), i.e., the number of changes in
cell values with respect to the original table is smaller. The purpose of this
work is to present a new CTA model using a different objective function, whose
optimization problem is of the same dimension than the one formulated by �2-
CTA, but with a solution similar to that obtained with �1-CTA. We will see that
the pseudo-Huber function guarantees both properties.

The paper is organized as follows. Section 2 reviews the CTA formulation with-
out binary variables for �1 and �2. Section 3 presents a CTA variant based on a
pseudo-Huber function, and provides some of its properties. Section 4 discusses
the solution of the convex optimization problem formulated by the Huber-CTA
model by an interior-point polynomial time algorithm. Finally, Section 5 reports
very preliminary computational results with some midsize three-dimensional
tables.

2 The CTA Formulation

Any CTA instance can be formulated from the following parameters: (i) a set
of cells ai, i ∈ N = {1, . . . , n}, that satisfy some linear relations Aa = b (a
being the vector of ai’s); (ii) a lower and upper bound for each cell i ∈ N ,
respectively lai and uai , which are considered to be known by any attacker; (iii)
nonnegative cell weights wi, i ∈ N , used for the distance between the original
and the perturbed released cell values; (iv) a set S = {i1, i2, . . . , is} ⊆ N of
indices of sensitive cells; (v) and a lower and upper protection level for each
sensitive cell i ∈ S, respectively lpli and upli, such that the released values must
be out of the interval(ai − lpli, ai + upli).
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CTA attempts to find the closest values zi, i ∈ N —according to some dis-
tance �(w), weighted by w— that make the released table safe. This involves the
solution of the following optimization problem:

min
z

||z − a||�(w) (1a)

s. to Az = b (1b)

lai ≤ zi ≤ uai i ∈ N (1c)

zi i ∈ S are safe values. (1d)

The formulation of (1d) depends on the particular controlled adjustment variant
considered. For instance, in the standard CTA approach, this constraint is

(zi ≤ ai − lpli) or (zi ≥ ai + upli) i ∈ S, (2)

which, by introducing a vector of binary variables y ∈ R
s can be written as

zi ≥ −M(1− yi) + (ai + upli)yi i ∈ S,
zi ≤ Myi + (ai − lpli)(1− yi) i ∈ S,
yi ∈ {0, 1} i ∈ S,

(3)

0 � M ∈ R being a large positive value. Constraints (3) impose either “upper
protection sense” zi ≥ ai + upli, when yi = 1, or “lower protection sense”
zi ≤ ai − lpli when yi = 0. The CTA problem (1a)–(1c), (3) is a (in general
difficult) MILP, but it provides solutions with a high data utility [11].

Formulating problem (1) in terms of cell deviations x = z − a, x ∈ R
n,

and fixing the binary variables, the resulting continuous CTA problem can be
formulated as the general convex optimization problem

min
x

||x||�(w)

s. to Ax = 0
l ≤ x ≤ u,

(4)

where

li =

{
upli if i ∈ S and yi = 1
lai − ai if (i ∈ N \ S) or (i ∈ S and yi = 0)

ui =

{
−lpli if i ∈ S and yi = 0
uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1),

(5)

for i ∈ N .
Problem (4) can be specialized for several norms, �1 and �2 being the two

most relevant. For �1, defining x = x+ − x−, we obtain the following LP:

min
x+,x−

n∑
i=1

wi(x
+
i + x−

i )

s. to A(x+ − x−) = 0
l+ ≤ x+ ≤ u+

l− ≤ x− ≤ u−,

(6)
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x+ ∈ R
n and x− ∈ R

n being the vectors of positive and negative deviations in
absolute value, and l+, l−, u+, u− ∈ R

n lower and upper bounds for the positive
and negative deviations defined as

l+i =

{
upli if i ∈ S and yi = 1
0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+
i =

{
0 if i ∈ S and yi = 0
uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i =

{
lpli if i ∈ S and yi = 0
0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−
i =

{
0 if i ∈ S and yi = 1
ai − lai if (i ∈ N \ S) or (i ∈ S and yi = 0),

(7)

for i ∈ N . For �2, problem (4) can be directly recast as the following QP without
introducing additional variables:

min
x

n∑
i=1

wix
2
i

s. to Ax = 0
l ≤ x ≤ u.

(8)

Infeasibilities in continuous models (6), (8) due to pre-fixing the binary variables
can be dealt as in [12,13]. Problem (8) requires half the number of variables than
(6). In addition, the splitting of variables x = x+ − x− may create difficulties to
some optimization methods. On the other hand the �1 solutions are known to
change fewer cells than �2 solutions. The next Section introduces a new nonlinear
CTA model with the same number of variables that (8) and similar solutions to
those of (6).

3 Using a Pseudo-Huber Function as Objective Function

The Huber function [16] ϕδ : R → R, defined as

ϕδ(xi) =

{
x2
i

2δ |xi| ≤ δ
|xi| − δ

2 |xi| ≥ δ
(9)

approximates |xi| for small values of δ > 0 (the smaller δ the better the approx-
imation). ϕδ is a continuous and first-order differentiable function; but second
derivatives are not continuous at points |xi| = δ.

To avoid this discontinuity in second derivatives, we may consider the pseudo-
Huber function φδ : R → R:

φδ(xi) =
√
δ2 + x2

i − δ. (10)
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Fig. 1. Pseudo-Huber function for some δ, and |x|

Fig. 2. Graph of φδ, φ
′
δ and φ′′

δ for δ = 0.01

This function has been recently successfully used in other �1-regularization prob-
lems [15]. φδ ∈ C2, with first and second derivatives

φ′
δ(xi) =

xi√
δ2 + x2

i

φ′′
δ (xi) =

δ2

(δ2 + x2
i )

3/2
. (11)

As shown in Figure 1, φδ is a better approximation of |xi| as δ approaches 0.
Figure 2 plots the graph of φδ, φ

′
δ and φ′′

δ for δ = 0.01. As shown in [15], the
first and second derivatives are bounded and Lipschitz continuous.
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a

10(3) 15 11 9 45
8 10 12 15 45
10 12 11 13(5) 46

28 37 34 37 136

(a)

�1
13 15 11 6 45
10 10 12 13 45
5 12 11 18 46

28 37 34 37 136

(b)

φ

13.88 15.17 11.18 4.77 45
8.21 10.30 12.27 14.22 45
4.91 11.53 10.55 18 46

28 37 34 37 136

(c)
�2

13 15.03 11.03 5.94 45
7.66 11.14 13.14 13.06 45
7.34 10.83 9.83 18 46

28 37 34 37 136

(d)

Fig. 3. Results with �1, φ0.001, and �2 (tables (b), (c) and (d)) for the small two-
dimensional small table (a) (rounded to two decimal positions). The optimal value of
||x||1 for �1 and φ0.001 is 20, while for �2 is 20.69.

Therefore we can replace ||x||�1 by f(x) =
∑n

i=1 φδ(xi), and the �1-CTA
problem (6) can be approximately solved by the convex optimization problem

min
x

f(x) =
∑n

i=1 φδ(xi)

s. to Ax = 0
l ≤ x ≤ u.

(12)

This optimization problem has the same space of variables and feasible region
than (8), but with a strictly convex nonlinear function instead of a quadratic
one.

Figure 3 shows the solutions obtained with �1, �2 and φδ=0.001 with a small
two-dimensional table. In this small table both φ and �2 changed most of the
cells, whereas �1 only changed a few of them. However, the optimal objective
functions with �1 and φδ=0.001 were exactly the same (||x||1 = 20), whereas
||x||1 = 20.69 for �2. The φδ function thus provided the same objective function
that �1, but cell deviations were distributed among more cells. This is explained
by the different optimization algorithms used for the solution of �1 and φδ (which
needs a nonlinear optimization method, as discussed in next Section). A more
extensive study with larger and more complex tables is out of the scope of this
work.

4 Solution of the Huber-CTA Model

The Huber-CTA model (12) is a nonlinear convex optimization problem. In
theory, this kind of problems are polynomially solved with interior-point methods
[18,19], with a best bound of O(

√
n log 1/ε), n being the number of variables and

ε the optimality tolerance (discussed below). The complexity of CTA with �1 or
φδ is thus the same if solved by an interior-point algorithm.
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Broadly speaking, interior-point methods attempt to solve a perturbation
of the first-order optimality conditions (named Karush-Kuhn-Tucker or KKT
conditions) of (12):

Ax = b
A�λ+ λl − λu −∇f(x) = 0

(X − L)Λle = μe
(U −X)Λue = μe

u ≥ x ≥ l, (λl, λu) ≥ 0,

(13)

where λ ∈ R
m, λl, λu ∈ R

n are the Lagrange multipliers of respectively the
equality constraints and lower and upper bounds, e ∈ R

n is a vector of 1’s,
and matrices X,Λl, Λu, L, U ∈ R

n×n are diagonal matrices made from vectors
x, λl, λu, l, u. The set of unique solutions of (13) for each μ value is known as
the central path, and when μ → 0 these solutions converge to those of (12). The
nonlinear system (13) is usually solved by a damped version of Newton’s method,
reducing the μ parameter at each iteration, until μ ≤ ε, ε being the required op-
timality tolerance. This procedure is known as the path-following interior-point
algorithm. An excellent discussion about the theoretical and practical properties
of this interior-point algorithm can be found in [20].

Although theoretically the same interior-point path-following algorithm should
be as efficient for �1 than for φδ, in practice the Huber function requires a more
robust solver. Some early tests with general tables using the convex interior-
point algorithm of [2] show that even small instances can be difficult with φδ if
the solver is not appropriately tuned. In this sense, reformulations of the model
as a second order conic optimization problem could be preferable [1].

However, for some interior-point methods specialized to particular structures,
such as block-angular problems, φδ may be more efficiently solved than �1: the
technical explanation is that, since the Hessian of φ is nonzero, unlike for the
LP formulated by �1, the internal linear systems of equations may require less
iterations of the preconditioned conjugate gradient [7]. For instance, this may
happen for three-dimensional tables, whose constraints exhibit a block-angular
structure [8]. Next Section shows a few preliminary computational results with
some three-dimensional tables using such a specialized interior-point solver.

5 Computational Results

Preliminary results have been obtained for a set of eight three-dimensional tables
of r rows, c columns and l levels (where rows, columns and levels refer to each of
the table dimensions). Table 1 shows the problem dimensions for each instance;
n and m denote the number of variables and constraints of problems (12) and
(8) for φ and �2 (which are of the same size), and (6) for �1. Tables were obtained
with the same generator used in [8].

These eight instances have been solved with an efficient implementation of
the specialized interior-point method described in [4] including the quadratic
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Table 1. Dimensions of some 3D CTA optimization problems for pseudo-Huber, �1
and �2

φ, �2 �1

r c l n m n m

25 25 25 16250 1875 31875 1875
25 25 50 31875 3125 63125 3125
25 50 25 32500 3125 63750 3125
25 50 50 63750 5000 126250 5000
50 25 25 32500 3125 63750 3125
50 25 50 63750 5000 126250 5000
50 50 25 65000 5000 127500 5000
50 50 50 127500 7500 252500 7500

Table 2. Results for 3D CTA using pseudo-Huber, �1 and �2

φ �1 �2

r c l obj. CPU obj. CPU obj. CPU

25 25 25 101096 1.68 101572 4.37 4161290 0.09
25 25 50 104706 4.59 105409 10.94 3915100 0.19
25 50 25 104030 4.54 104720 13.87 3969550 0.27
25 50 50 110537 8.71 111679 9.72 3915150 0.55
50 25 25 107138 4.87 107832 23.9 4107990 0.26
50 25 50 109068 7.67 110199 5.54 3832800 0.54
50 50 25 106173 8.17 107309 4.15 3666090 0.9
50 50 50 113858 15.68 116279 67.91 3678810 1.84

regularization strategy of [7]. Table 2 reports for each of the three CTA variants—
using φ, �1 and �2—, the optimal objective function achieved and the CPU time.
All runs were carried out on a Fujitsu Primergy RX300 server with 3.33 GHz
Intel Xeon X5680 CPUs, under a GNU/Linux operating system (Suse 11.4),
without exploitation of parallelism capabilities. It is clearly seen that �2 provides
the fastest executions; this is consistent with the results of [3] obtained with a
generic solver. However, the objective function with �2 naturally differs from that
obtained with �1. On the other hand both φ and �1 provide very similar objective
function values, φ being more efficiently solved in six of the eight instances. In
particular the largest instance required 67.91 seconds with �1 and only 15.68
with φ.

6 Conclusions

We have presented a CTA model which replaces the usual �1 distance in the ob-
jective by the pseudo-Huber function. Although the resulting problem is convex
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and nonlinear, it requires half the number of variables than the �1-CTA LP. It
has been observed that for certain classes of tables (i.e., some three-dimensional
tables) the Huber-CTA model can be more efficiently solved than �1-CTA using
and appropriate interior-point solver.

The preliminary results reported in this work are non-conclusive, but just
a first step in the solution of the Huber-CTA model. Among the future tasks
to be done in this direction we mention: (i) the application of the Huber-CTA
model to other classes of structured tables (real-world linked or hierarchical
tables); (ii) a more detailed analysis of the disclosure risk and data utility of
tables protected by the Huber function, comparing them with tables protected
with �1- and �2-CTA; (iii) an efficient implementation for general tables, not just
three-dimensional ones; (iv) and the tuning or implementation of second-order
interior-point solvers for the highly efficient solution of the Huber-CTA problem.
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Abstract. Using noise multiplied data to protect confidential data has
recently drawn some attention. Understanding the probability property
of the underlying confidential data based on their masked data is of
interest in confidential data analysis. This paper proposes the approach
of sample-moment-based density approximant based on noise multiplied
data and provides a new manner for approximating the density function
of the underlying confidential data without accessing the original data.

The approach of sample-moment-based density approximant is an ex-
tension of the approach of moment-based density approximant, which
is mathematically equivalent to traditional orthogonal polynomials ap-
proaches to the probability density function (Provost, 2005). This paper
shows that, regardless of a negligible probability, a moment-based den-
sity approximant can be well approximated by its sample-moment-based
approximant if the size of the sample used in the evaluation is reasonable
large. Consequently, a density function can be reasonably approximated
by its sample-moment-based density approximant.

This paper focuses on the properties and the performance of the ap-
proach of the sample-moment-based density approximant based on noise
multiplied data. Due to the restriction on the number of pages, some
technical issues on implementing the approach proposed in practice will
be discussed in another paper.

Keywords: Confidential data, Masked data, Multiplicative noise,
Moment-based density approximant.

1 Introduction

Many government institutions and statistical agencies collect survey data from
individuals and businesses. Publishing these data with certain level of protection
is necessary. Many different protection methods, including microaggregation of
sensitive data, local suppression of unique data cells, top and bottom coding
of continuous variables, rank swapping, rounding, adding noise, imputation and
multiplicative noise, have been introduced and used in practice. More informa-
tion on data protection can be found in Duncan and Lambert (1986 and 1989),
Willenborg and De Waal (2001), Oganian (2010), Shlomo (2010), and the refer-
ences therein.
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The aim of government institutions and data agencies publishing the masked
data sets is to provide end-users an opportunity to work out the statistical infor-
mation on the underlying data without breaching confidentiality. As mentioned
in Nayak et al. (2011), data perturbation may destroy unbiasedness and other
properties of estimators. Methods and formulas for analysing an original data
set may not be appropriate for analysing a masked version of it.

Describing and estimating the probability density function of a random vari-
able are the basic tenets in statistical data analysis.

Provost (2005) introduced the moment-based density approximant method
for probability density approximation. He proved and demonstrated that us-
ing the moment-based density approximant to approach the density function is
mathematically equivalent to using those orthogonal polynomials, such as the
Legendre, Laguerre, Jacobi, and Hermite polynomials.

The multiplicative noise method is one type of noise addition used to perturb
and protect confidential data. Kim and Jeong (2008) classified the multiplicative
noise scheme into two schemes, Multiplicative Noise Scheme I and Multiplicative
Noise Scheme II. The multiplicative noise scheme considered in this paper is
Multiplicative Noise Scheme I. It is briefly defined as follows. Let Y be a sensitive
random variable with observations y1, y2, · · · , yN (original data). Let C be a
positive random variable, independent of Y . When we say the original data
y1, y2, · · · , yN are masked by C, it means the masked data have the form y∗i =
yi×ci where {ci} is a sample from C. In literature, sometimes it imposes E(C) =
1. With this restriction, y∗ is an unbiased estimator of y given y. This restriction
does not apply to the method proposed in this paper. Therefore, the unbiased
estimator of y will be y∗/E(C), given y. Without further explanation, the term
“masked data” used in this paper is for “noise multiplied data”.

For noise multiplied data, developing appropriate data analysis methods and
formulas for different inference purposes is necessary (see Kim and Jeong (2008)
for domain estimation, Sinha, et al. (2011) for quantile estimation, and Lin and
Wise (2012) for linear regression parameters estimation). This paper proposes
a method to obtain the density approximant of a sensitive random variable Y
based on its masked data.

Many properties of the multiplicative noise method, including evaluation of
disclosure risk, confidential protection, moment estimation, linear regression pa-
rameter estimation, properties of balanced noise distribution and effects on data
quality and privacy protection in context of tabular magnitude data, have been
deeply discussed and investigated in literature (Evans, 1996; Evans et al., 1998;
Hwang, 1998; Kim and Winkler, 2003; Kim and Jeong, 2008; Oganian, 2010;
Krsinich and Piesse, 2002; Nayak, et al., 2011; Sinha, et al., 2011; Lin and Wise,
2012 and Klein and Sinha, 2013). One of the important properties is the mo-
ments of Y can be evaluated through the moments of its masked variable Y ∗

and the moments of the noise C used to mask Y .
With the well developed numerical result of the density approximant provided

by Provost (2005) and the nice relationship among the moments of Y , masked
variable Y ∗ and noise C, respectively, the density function of Y can be theo-
retically well approximated by the density approximant based on the moments
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given by Y ∗ and C. By noting that, only masked data {y∗i } and, in the best
scenario, noise information are available in practice, the motivation of this pa-
per is to investigate the properties of the moment-based density approximant
of Y if the E[(Y ∗)k] and E(Ck) in the moment-based density approximant are
replaced by their corresponding sample moments estimators. The moment-based
density approximant with moments replaced by sample moments is called the
sample-moment-based density approximant.

This paper derives the formula for the approximant of a density function based
on masked data and demonstrates that the density function of a random variable
can be well approximated by its sample-moment-based density approximant. Due
to the restriction on the number of pages, this paper only shows how the sample-
moment-based density approximant fY,K|{y∗

i ,ci}N
1

is built based on masked data

{y∗i } and noise sample {ci}. Then, carries out relevant simulation studies and
a real data application of the approach of the sample-moment-based density
approximant. The details of the technique treatment to implement the approach
proposed in practice and the issue of risk of disclosure related to the approach
will appear in another paper along with a built R package.

The remainder of this paper is organized as follows. From Section 2 to Sec-
tion 4, we step by step extend the approach of moment-based density approx-
imant with bounded domain to the approach of sample-moment-based density
approaximant based on noise multiplied data for a general situation. The formula
and properties of the sample-moment-based density approaximant are presented.
Simulation studies and a real life data application are given in Sections 5 and 6.

2 Moment-Based Density Approximant:
Density Function with a Finite Domain [a, b]

Provost (2005) provided useful formulas of moment-based density approximant.
The formulas and notation are adopted in this paper.

The probability density function of a continuous random variable X , taking
values on interval [−1, 1], can be expressed as follows:

fX(x) =

∞∑
k=0

λkPk(x), (1)

where

λk =
2k + 1

2

Floor[k/2]∑
i=0

(−1)i2−k (2k − 2i)!

i!(k − i)!(k − 2i)!
μX(k − 2i)

with the (k − 2i)th moment of X

μX(k − 2i) = E(Xk−2i) =

∫ 1

−1

xk−2ifX(x)dx;
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Pk(x) =

Floor[k/2]∑
i=0

(−1)i2−k (2k − 2i)!

i!(k − i)!(k − 2i)!
xk−2i (2)

is a Legendre polynomial of degree k in x and Floor[k/2] denotes the largest
integer less than or equal to k/2.

Denote

fX,K(x) =

K∑
k=0

λkPk(x) (3)

the polynomial approximation of fX(x) with order K.
Let Y be a random variable with density function defined on a finite interval

[a, b]. Its density function and kth moment are denoted by fY (y) and

μY (k) = E(Y k) =

∫ b

a

ykfY (y)dy, k = 0, 1, · · · ,

respectively. Let

X =
2Y − (a+ b)

b− a
.

The domain of the density function of X is bounded by [−1, 1] and the jth
moment of X is

μX(j) =
1

(b− a)j

j∑
k=0

(
j

k

)
2kμY (k)(−1)j−k(a+ b)j−k, j = 0, 1, · · · .

After transformation, by using (3), the approximant of fY with order K is given
by

fY,K(y) =
2

b − a

K∑
k=0

λkPk(
2y − (a+ b)

b− a
). (4)

Let Y be masked by a noise C and yield Y ∗. By noting that, for k = 1, 2, · · ·,

μY (k) =
E[(Y ∗)k]
E(Ck)

=
μY ∗(k)

μC(k)

and λk is a linear functions of E(Y i), i ≤ k, the approximant of fY with order
K can be expressed in terms of the moments of Y ∗ and C as follows

fY,K(y) =
2

b− a

K∑
k=0

λkPk

(
2y − (a+ b)

b− a

)
=

K∑
k=0

ak(y)
μY ∗(k)

μC(k)
, (5)

where ak(y) is a continuous function of y, k = 0, 1, · · · ,K.
Provost (2005) pointed out that “the density approximants so obtained may

be negative on certain subranges of the support of their distributions having low
density. This will likely occur if an insufficient number of moments are being
used. However, by mere inspection of the approximate density plot, we should
be able to determine whether a higher degree polynomial ought to be used.”
It means that it is possible to determine an appropriate order K such that the
plot of fY,K is close to or mimics to the plot of the density function of Y by
inspecting the plot of the density function of Y .
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3 Sample-Moment-Based Density Approximant:
Density Function with a Finite Domain [a, b]

Assume that Y is bounded between the real numbers a and b. Let {yi}N1 be a
sample of size N drawn from Y and {y∗i }N1 be the masked data of {yi}N1 , masked
by the noise C. Let {cj}N1 be an independent sample drawn from C, which is
not the same sample used to yield {y∗i }N1 .

In this section, the relationship between

fY,K|{y∗
i ,ci}N

1
(y) =

K∑
k=0

ak(y)
(Y ∗)k

Ck
(6)

and

fY,K(y) =

K∑
k=0

ak(y)
μY ∗(k)

μC(k)
, (7)

is evaluated, where (Y ∗)k =
∑N

i=1(y
∗
i )

k/N and Ck =
∑N

i=1 c
k
i /N , k = 0, 1, 2, · · · ,

K.
We have the following results:

1. fY,K|{y∗
i ,ci}N

1
uniformly converges to fY,K almost surely.

From the Strong Law of Large Numbers (SLLN), (Y ∗)k a.s.→ E[(Y ∗)k] and
Ck a.s.→ E(Ck), as N → ∞. Since ak(y) is a continuous function of y on [a, b],
for each k = 1, 2, · · ·, ak(y) is uniformly continuous on [a, b]. Thus, given K
fixed,

fY,K|{y∗
i ,ci}N

1
(y) =

K∑
k=0

ak(y)
(Y ∗)k

Ck

a.s.→
K∑

k=0

ak(y)
μY ∗(k)

μC(k)
= fY,K(y),

uniformly for y ∈ [a, b] as N → ∞.
Since fY,K|{y∗

i ,ci}N
1

uniformly converges to fY,K , the curve of the function
fY,K|{y∗

i ,ci}N
1

will be close to the curve of fY,K , so is to the curve of the
density function of fY , subject to appropriate K and sample size N .

2. fY,K|{y∗
i ,ci}N

1
(y) is an approximately unbiased estimator of fY,K(y) for each

y ∈ [a, b].
Mood et al. (1963) showed that an approximate expression for the expecta-
tion of a function g(W1,W2) of random variablesW1 and W2 using a Taylor’s
series expansion around their means (μW1 , μW2) is given by

E[g(W1,W2)] ≈ g(μW1 , μW2) +
1

2

∂2

∂w2
2

g(W1,W2)|μW1 ,μW2
V ar(W2)

+
1

2

∂2

∂w2
1

g(W1,W2)|μW1 ,μW2
V ar(W1)

+
∂2

∂w1∂w2
g(W1,W2)|μW1 ,μW2

cov(W1,W2). (8)
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Applying (8) to E((Y ∗)k/Ck) and noting that (Y ∗)k and Ck are indepen-
dent, we obtain

E

[
(Y ∗)k

Ck

]
≈ E[(Y ∗)k]

E(Ck)
+

E[(Y ∗)k]

(E(Ck))3
V ar(Ck)

= E(Y k) +
1

N
var(Ck)

E(Y k)

[E(Ck)]3
= E(Y k) + o(1).

Therefore, when N is sufficiently large, we will have

E

[
(Y ∗)k

Ck

]
≈ E(Y k), k = 1, 2, · · · ,K,

and fY,K|{y∗
i ,ci}N

1
(y) is an approximately unbiased estimator of fY,K(y) for

each y ∈ [a, b].

4 Sample-Moment-Based Density Approximant:
Non-restriction on the Domain of the Density Function

Let {yi}0<i≤N be a sample drawn from a random variable Y . In this section,
we point out the facts that (i) the probability of Y taking values beyond the
interval (min1≤i≤N{yi}, max1≤i≤N{yi}) can be negligible if the sample size N is
reasonable large; (ii) fY,K|{y∗

i ,ci}N
1
could be a good candidate for fY,K regardless

of Y bounded or not, as long as the sample size N is reasonable large.

Lemma 1. Let Y1, · · · , YN be i.i.d. random variables, defined on some proba-
bility space (Ω,F , P ), and have the probability distribution of Y . For ω ∈ Ω,
define

g
(N)
min(ω) = gmin(Y1(ω), · · · , YN (ω)) = P (Y ≤ min1≤i≤N{Yi(ω)})

and

g(N)
max(ω) = gmax(Y1(ω), · · · , YN (ω)) = P (Y ≤ max1≤i≤N{Yi(ω)}).

Then, for any real number 0 ≤ a ≤ 1,

P (g
(N)
min ≤ a) = 1− (1− a)N and P (g(N)

max ≤ a) = aN .

Lemma 2. For p ∈ (0, 1) and 0 < α < 1, if N ≥ log(1− p)/ log(1− α/2), then

P (g
(N)
min ≤ α/2) > p and P (g(N)

max > 1− α/2) > p.

The proofs of Lemmas 1 and 2 are in the Appendix.
From Lemma 2, given α = 0.05, if we wish to have at least p = 0.975 proba-

bility to ensure g
(N)
min ≤ α/2 and 1 − g

(N)
max < α/2, the sufficient condition for N
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will be N ≥ log(0.025)/ log(0.975) = 145.703; for α = 0.05 and p = 0.9975, the
sufficient condition will be N ≥ 237; for α = 0.005 and p = 0.975, the sufficient
condition will be N ≥ 1474.

No matter Y is bounded or not, once the sample {yi}i≤N was drawn from
Y , {yi}i≤N will be bounded. It is of interest that, for a pre-set real number
0 < α < 1, what size N will ensure that we have a sufficient confidence to claim
that the probability P (min1≤i≤N{yi} ≤ Y ≤ max1≤i≤N{yi}) is at least 1− α.

From Lemma 2, if N ≥ log(1− p)/ log(1− α/2),

P [(g
(N)
min ≤ α/2)

⋂
(g(N)

max > 1− α/2)] ≥ 1− (1− p)− (1− p) = 2p− 1.

For ω ∈ (g
(N)
min ≤ α/2)

⋂
(g

(N)
max > 1− α/2), we have

P (min1≤i≤N{Yi(ω)} ≤ Y ≤ max1≤i≤N{Yi(ω)}) = 1−g
(N)
min(ω)−g(N)

max(ω) ≥ 1−α.

Therefore, we have at least 2p− 1 confidence to claim that, for sample {yi}N1 ,

P (min1≤i≤N{yi} ≤ Y ≤ max1≤i≤N{yi}) ≥ 1− α,

if N ≥ log(1− p)/ log(1− α/2).

Example 1. If we wish to have 0.95 = 2 × 0.975 − 1 confidence to claim
that more than 0.995 = 1 − 0.005 chance the values of Y will drop between
min1≤i≤N{yi} and max1≤i≤N{yi}, the sufficient condition for N is N ≥ 1474 ≥
log(1− 0.975)/log(1− 0.0025).

Now, we are at the position of extending the result in Section 3 to sample-
moment-based density approximant without the restriction on the domain of the
density function.

Assume that Y is a random variable on some probability space (Ω,F , P )
and {yi}1≤i≤N is a sample from Y . Define a random variable Ỹ from Y . Let

Ỹ (ω) = Y (ω) if mini≤i≤N{yi} ≤ Y (ω) ≤ maxi≤i≤N{yi}; = 0 otherwise, where

ω ∈ Ω. Ỹ is called a truncated random variable of Y .
Following Example 1, if N > 1474, with odds of 0.95, the difference between

the cumulative distribution functions of Y and Ỹ can be evaluated as following:
if y ≤ mini≤i≤N{yi},

|FY (y)− FỸ (y)| = FY (y) ≤ 0.0025;

if mini≤i≤N{yi} < y < maxi≤i≤N{yi},

|FY (y)− FỸ (y)| =
∣∣∣∣P ( min

i≤i≤N
{yi} < Y < y) + P (Y ≤ min

i≤i≤N
{yi})

− P (mini≤i≤N{yi} < Y < y)

P (mini≤i≤N{yi} < Y < maxi≤i≤N{yi})

∣∣∣∣
≤ P ( min

i≤i≤N
{yi} < Y < y)

1− P (mini≤i≤N{yi} < Y < maxi≤i≤N{yi})
P (mini≤i≤N{yi} < Y < maxi≤i≤N{yi})

+ 0.0025
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≤ (1− 0.995) + 0.0025 = 0.0075;

if y > maxi≤i≤N{yi},

|FY (y)− FỸ (y)| = |1− P (Y > y)− 1| < 0.0025.

Thus, with odds of 0.95, maxy{|FY (y)− FỸ (y)|} < 0.0075 if N ≥ 1474.
In summary, the larger the N is, the more confidence we can ignore the differ-

ence between FY and FỸ . Therefore, with a sufficiently large N , the probability
density function fY can be well approximated by the probability density function
of fỸ , where Ỹ is bounded subject to {yi}N1 .

By ignoring the difference between FY and FỸ , the sample {yi}N1 can be

considered as a sample from Ỹ . Regardless of whether or not Y is bounded,
its truncated random variable Ỹ is always bounded. Following the discussion in
Section 3, given the masked data {y∗i } of {yi} and an independent sample {ci}
from C, where {yi} were masked by C, the probability density function fỸ of Ỹ
can be well approximated by fỸ ,K|{y∗

i ,ci}N
1

subject to appropriate K and N .

Therefore, the normalized fỸ ,K|{y∗
i ,ci}N

1
can be used to approximate the

density function of Y subject to appropriate K and N , regardless of
Y bounded or not. From now on, without further explanation, fY,K|{y∗

i ,ci}N
1

means fỸ ,K|{y∗
i ,ci}N

1
and “density approximant” means “sample-moment-based

density approximant”.

5 Simulation Studies on Density Approximant Based on
Noise Multiplied Data

In this section, we use simulation examples to demonstrate the performance of
the density approximant based on noise multiplied data.

Example 2. Let Y = I(w=0)Y1+I(w=1)Y2, where Y1 ∼ N(30, 42), Y2 ∼ N(50, 22)
and w is a Bernoulli distributed random variable with P (w = 0) = 0.3. Let
C = I(v=0)C1 + I(v=1)C2 be the multiplicative noise used to mask Y , where
v has Bernoulli distribution with P (v = 0) = 0.6; C1 ∼ N(80, 52) and C2 ∼
N(100, 32).

In this example, three issues are investigated/demonstrated. The first issue is
the determination of K, such that fY,K|{y∗

i ,ci}N
1

best presents fY . For the sake

of convenience, this K is called the (optimal) upper order. The second issue is
about the fact that the upper order K is related to the sample {yi} and the
sample of noise used to yield {y∗i }. The last issue is about the impact of the
variance of noise on the density approximant.

For the first issue, a sample {yi}100001 were simulated from Y . Then, use an
independent sample from C to mask {yi}100001 and yield {y∗i }100001 . In Figure 1,
to save space, we only report the plots of fY,K|{y∗

i ,ci}N
1

for K = 5, 10, 11 and 15.

With the reference of the true density function of Y (in solid line), it shows that
the plot of the density approximant is improved as K increases up to 10 or 11,
then gradually run away from the plot of fY . We also evaluated the correlation
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between fY and fY,K|{y∗
i ,ci}N

1
for each K. The correlations corresponding to

K = 5, 10, 11 and 15 are reported in Table 1. The first row of summary statistics
in the table is given by Y . When K = 10 or 11 was used in fY,K|{y∗

i ,ci}N
1
, the

correlation of between fY,K|{y∗
i ,ci}N

1
and fY is higher than those when other Ks

were used.
The upper order K can be determined by inspecting the plot of fY or the

correlation between fY,K|{y∗
i ,ci}N

1
and fY , given fY is available. Using correlation

to determine K is more convenient and easy to program.
Although for K = 5 and 15, the performance of fY,K|{y∗

i ,ci}N
1

is not as good
as those with K = 10 and 11, interestedly, the summaries statistics given by
those fY,K|{y∗

i ,ci}N
1
in this example are not different too much from the summary

statistics given by Y .
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Fig. 1. Left top is for K = 5. Right top is for K = 10. Left bottom is for K = 11 and
right bottom is for K = 15. The plot of the true density function is in solid line.

Table 1. The summary of statistics and the values of correlation

data source Min. 1st Qu. Median Mean 3rd Qu. Max. cor.
y 16.34 33.63 48.83 43.90 50.74 57.70

(y∗,K = 5) 16.34 35.36 47.99 44.00 51.46 55.67 0.9890
(y∗,K = 10) 17.80 34.39 48.23 43.88 50.84 57.61 0.9979
(y∗,K = 11) 16.51 34.79 48.55 43.94 50.90 56.56 0.9978
(y∗,K = 15) 17.07 32.99 47.42 41.72 50.41 57.70 0.9660

For the second issue, two independent samples {yi}100001 and {y′i}100001 were
simulated from Y . They were independently masked by the noise C. The upper
order Ks determined by the two sets of masked data are 10 and 14 , respectively
(corresponding cor. are 0.9975 and 0.9989, respectively). The plots of the density
approximants determined by {y∗i }100001 and {y′∗i }100001 based on their own upper
order K are given in Figure 3 (in the Appendix B). Both of them well present
fY . This study shows the upper order K is sample related.
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For the third issue, a sample {yi}100001 were simulated from Y . Two multi-
plicative noises, |R1| and |R2|, are considered. R1 = I(v1=0)R1,1 + I(v1=1)R1,2

and R2 = I(v2=0)R2,1 + I(v2=1)R2,2 where v1 and v2 are independent and have
Bernoulli distributions Bernoulli(0.7) and Bernoulli(0.3), respectively; R1,1, R1,2,
R2,1 and R2,2 are independent and have normal distributions N(100, 52),
N(150, 32), N(100, 252) and N(150, 182), respectively. The standard errors given
by the samples from |R1| and |R2| are 23.36032 and 32.54968, respectively. The
summary statistics and the correlations between fY and the density approxi-
mant based on their own upper order K are reported in Table 2. The plots of
density approximants based on their own upper order K are presented in Figure
4 (in the Appendix B).

Table 2. The summary of statistics, the values of correlation and the upper order K

data source Min. 1st Qu. Median Mean 3rd Qu. Max. cor. K
y 16.34 33.63 48.83 43.90 50.74 57.70

y masked by R1 16.67 34.07 48.23 43.84 50.98 57.61 0.9974 8
y masked by R2 16.43 32.61 47.90 43.66 51.14 55.67 0.9950 7

From data protection point of view, the larger the variance of the multiplica-
tive noise is, the better protection on the original data the noise will provide. In
terms of having a better approximation of the density function of the original
data, we might guess or expect that, the larger the variance of the multiplicative
noise is, the poor the performance of the associated density approximant will
have. However, Figure 4 as well as Table 2 show that, although the ratio of the
standard errors of |R2| to |R1| (32.54968/23.36032 = 1.39) is much larger than
1, the difference between the performance of the density approximant given by
the data masked by |R1| and |R2|, respectively, is not significant. It means that,
sometimes, the impact of the variance of noise on the performance of the density
approximant might not be significant. It is good in terms of data protection.

6 Real Data Application

In this section, an example of the density approximant based on real life data is
presented.

Example 3. A real life data set taken from the United States Energy Infor-
mation Authority is considered. This data set can be found in the R package
sdcMicro, and also available from the United States Energy Information Au-
thority website http://www. eia.doe.govcneaf/electricity/page/eia826.html un-
der year 1996. The data set consists 15 variables generally concerning income
and sales data and each of them has 4092 observations.

The smoothing density function given by the data of “othrevenue” is skewed
to the right. The majority observations of “othrevenue” are less than 10000 and
outliers on the right tail are beyond 60000. There are few observations between
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values 10000 and 60000. To approximate the smoothing density function of “oth-
revenue” by the approach of density approximant, the density approximant has
to take care the outliers on the right tail as well as a few observations in the inter-
val [10000, 60000]. Therefore, the density approximant will shift to the right. If
those outliers are removed from the original data set (the number of observations
(> 10000) is 96), the density approximant will be more close to the smooting
density function given by the original data.

To see the performance of the density approximant, we use two types of noises,
a mixture normal noise C ∼ 1/2N(170, 1)+ 1/2N(120, 1) and an identity noise
C ≡ 1, respectively, to mask the observations of “othrevenue” and yield two sets
of masked data for “othrevenue”. The set of masked data given by C ≡ 1 is the
same as the original data set. We evaluate the density approximants given by
the two sets of masked data, respectively. Two scenarios of the sets of original
data “othrevenue” are considered. One is the full set of data of “othrevenue” and
the other is the subset of data with values > 10000 removed. For each scenario,
the plots of density approximant given by the two sets of noise multiplied data
are presented in Figure 2, respectively.

When C ≡ 1, the data used to evaluate the density approximant of “othrev-
enue” are the unmasked data of “othrevenue”. The plot of the density approx-
imant based on the unmasked data is used as a benchmark as it is the density
approximant of the density function of the “othrevenue” without any impacts
from additional noise perturbation.

From Figure 2, we find the plot of the density approximant given by the data
masked by the mixture normal noise is similar to the one given by C ≡ 1. The
plot related to the mixture normal noise catched as much information on the
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Fig. 2. The density approximants given by data masked by mixture normal distribution
and C ≡ 1 are shown in the top panels and bottom panels, respectively. For each
scenario, the left panel is given by the full data and right one is for data values ≤ 10000.
The plots of the smoothing density function of “othrevenue” is in solid line.
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density function of “othrevenue” as the plot related to C ≡ 1 did. Both density
approximants shifted to right a bit and showed a fatter tail comparing to the
smoothing density function of the original data. The density approximant gives
a better approximation to the smoothing density function of the true data after
the 96 outliers were removed from the original data set.

The summary statistics given by the density approximants are listed in Table
3 (in the Appendix B). Both of them, with or without noise perturbation, have
successfully show the skewness and the main characteristic in the distribution
of the data, though the elements of the summaries are not close to those of the
summary statistics given by the data of “othrevenue”.

7 Discussion

This paper extends the well developed moments-based density approximant ap-
proach to the sample-moment-based density approaximant approach based on
noised multiplied data.

The motivation of this paper is to develop a fundamental framework for es-
timating the density function of a sensitive random variable without accessing
the original observations of the variable. This work has direct applications to
confidential data analysis.

The aim of this paper is to prove and demonstrate that, regardless of a neg-
ligible probability, the sample-moment-based density approaximant is able to
well present its associated density function if the size of the sample from the
underlying variable is reasonably large.

The method proposed is developed for univariate density functions. It can be
developed for multivariate density functions if the approach of high dimension
Legendre polynomial is considered.

With the density function of the underlying variable Y as a reference, we
demonstrated that an (optimal) upper order K can be determined such that
the sample-moment-based density approaximant is close to the density function
fY . However, if Y is a sensitive variable and it observations are confidential,
the information of fY will be unavailable in practice. It is of interest how the
upper order K can be determined. We have developed a statistical computation
searching technique for determining upper order K without the reference of the
true density function of the underlying confidential variable. The technique and
applications will be discussed in another paper. The method proposed in this
paper is developed based on and applies to continuous random variables. The
technique can apply to categorical data for approximating mass function and
will be presented in another paper.
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Appendix A: The proof of Lemmas 1 and 2

The proof of Lemma 1
Let Y1, · · · , YN be i.i.d random variables on (Ω,F ,P) and have the same prob-
ability distribution as Y .

For each ω ∈ Ω, define gi(ω) = P (Y ≤ Yi(ω)). Random variables {gi} are
i.i.d. and have uniform distribution U(0, 1).

For each ω ∈ Ω,

gmax(Y1(ω), · · · , YN (ω)) = P (Y < max
1≤i≤N

{Yi(ω)})

= max
1≤i≤N

P (Y ≤ Yi(ω)) = max
1≤i≤N

gi(ω).

Therefore, gmax(Y1, Y 2, · · · , YN ) = g(N) the Nth order statistics of {gi}, and

P (gmax(Y1, · · · , YN ) ≤ a) = P (g(N) ≤ a) = aN .

Following the similar argument, we have

P (gmin(Y1, · · · , YN ) ≤ a) = P (g(1) ≤ a) = 1− (1− a)N ,

where g(1) is the 1st order statistics of {gi}.
The proof of Lemma 2
If we wish to have probability at least p to ensure P (Y ≤ min1≤i≤N{yi}) ≤ α/2

(probability at least p to ensure P (Y > max1≤i≤N{yi}) < α/2)), i.e. P (g
(N)
min ≤

α/2) ≥ p (i.e. P (g
(N)
max > 1−α/2) > p), the sufficient condition is that the sample

size N meets the following inequality∫ α/2

0

N(1− a)N−1da = (1− (1− α/2)N ) ≥ p,

(∫ 1

1−α/2

NaN−1da = (1− (1− α/2)N ≥ p

)
i.e.

N ≥ log(1− p)/ log(1− α/2).
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Appendix B: Figures
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Fig. 3. The left panel is for sample one with K = 10 and the right one is for sample
two with K = 14. The plots of fY and density approximant are in solid line and dashed
lines, respectively.
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Fig. 4. The density approximant based on the data masked by R1 is in the left panel
and the other one is in the right panel. The plots of fY and density approximant are
in solid line and dashed lines, respectively.
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Table 3. Real data study: the summary of statistics, the values of correlation and the
optimal order K

data source Min. 1st Qu. Median Mean 3rd Qu. Max. cor. K
Full Data

y -190.0 55.0 255.5 1647.0 1365.0 67520.0
y masked by mixture normal -190 1267 2460 3789 3520 64730 0.9583 24

y masked by C ≡ 1 -190 1400 2460 3611 3520 67380 0.9810 17
Subset Data

y -190.0 53.0 239 995 1187 9853
y masked by mixture normal -190 360.3 674.8 1458.0 1874.0 9853 0.9941 48

y masked by C ≡ 1 -72.08 380 674.80 1460.0 1834.0 9853 0.9941 22
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Abstract. In this paper we describe a new procedure that is capable of ensuring 
that the marginal distributions of attributes in microdata masked with a masking 
mechanism end up being the same as the marginal distributions of attributes in 
the original data. We illustrate the application of the new procedure using sev-
eral commonly used masking mechanisms.  

Keywords: Data masking, marginal distribution, reverse mapping. 

1 Introduction 

Releasing masked microdata in place of sensitive data for the purposes of aggregate 
analysis has received considerable attention in the literature. Hundepool et al [8] pro-
vide a comprehensive discussion of the different masking mechanisms that can be 
used for generating the masked microdata.  The masking mechanisms can be classi-
fied based on many criteria. For the purposes of this study, we consider in particular 
classification, namely, whether the marginal distribution of the output (the masked 
microdata) is exactly the same as the marginal distribution of the input (the original 
data). Most of the masking mechanisms currently available (such as additive noise, 
multiplicative noise, and microaggregation) modify the marginal distribution of the 
attributes they mask. There are only a few mechanisms (data swapping, data shuf-
fling, and log-linear models) capable of preserving the marginal distributions of the 
masked attributes to be exactly the same as those of the original attributes.   

The modification in the marginal distributions of the masked attributes is, in most 
cases, caused by the masking mechanism modifying the values of attributes in the 
original data. With some masking procedures, the masked attributes have a complete-
ly different marginal distribution compared to the original attributes. Other masking 
procedures are capable of asymptotically (but not exactly) preserving the marginal 
distributions of the original attributes. For the purposes of this study, we do not  
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distinguish between the two, because our objective is that the marginal distribution of 
the masked data be exactly the same as that of the original data.  

The above requirement may seem extremely stringent, but there is a good reason for 
it. In many cases, users are reluctant to use data that has been modified. When discuss-
ing noise addition, a Census Bureau researcher made the observation that “users have 
found this extremely irritating and unacceptable” [14]. Raghunathan et al [12] describe 
the reaction of the users in the following manner: “Could we seriously propose spend-
ing time analyzing completely ‘fake’ data?” Privacy experts often argue that such  
users are misinformed and that the data is not fake; it has been modified to protect the 
sensitive information and preserves many of the statistical properties of the original 
data. With very knowledgeable users, this argument is convincing. However, for a vast 
majority of the users, this argument carries little weight. In their opinion, modifying 
the data is the equivalent of fake data. It is of little consequence whether the users are 
right or wrong. If users perceive the modified data as fake and are reluctant to use it, 
then the very purpose of providing masked microdata becomes pointless.  

Data administrators have the option to not inform users that the data has been mod-
ified. This may not be possible if the data administrator is required to provide users 
with information about the fact that the released data is not the true data. This is par-
ticularly true for government agencies that release data; they may be required, legally, 
to inform users that the data has been masked even if they do not provide the details 
of the masking. Even if not telling users that the data has been masked was allowed, it 
presents several practical problems. With many masking mechanisms, in order to 
reach valid inferences using the masked data, it may be necessary to perform addi-
tional processing to compensate the bias of the results obtained from analyzing the 
masked data as if it were the original data [12]. If the users are not informed about the 
modification, they will not be able to reach proper statistical inferences. In addition, 
there is a real danger that the fact that the data has been modified becomes known, 
hence resulting in users distrusting all data from this source.  

It is interesting to note that users do not react in the same manner to all masking 
mechanisms. Users seem to be less reluctant to use the data when agencies use data 
swapping, even though data swapping is perturbative (that is, it involves the modifica-
tion of the original values of a particular record) [4].  However, while data swapping 
is simple and offers the ability to maintain the marginal distribution, it may not satisfy 
other analytical validity and/or disclosure risk requirements [5, 9, 10]. Hence, there is 
a need to develop new procedures that are capable of maintaining the marginal distri-
bution while providing the data administrator with the flexibility to choose the appro-
priate masking mechanism. The objective of this study is to describe a simple, general 
post-masking procedure that maps the masked values to a permutation of the original 
values, regardless of the underlying masking mechanism adopted. 

2 Data Swapping 

Data swapping involves exchanging values of the original attribute between records 
that lie within the proximity specified by the data administrator [9, 10, 11]. For nu-
merical attributes, the proximity is usually represented by the rank of the value for a 
particular record. Experience seems to suggest that data swapping is more palatable to 
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users than other forms of masking. So how can we explain the difference in the res-
ponses to data swapping and other methods?  

We believe that the primary reason is that even though the attribute values of 
records have been exchanged, the actual values themselves are unmodified.1 In other 
words, data swapping does not involve the modifying the actual values that existed in 
the original data. Hence, the collection of values of each original attribute remains 
unmodified, even it may have been permuted among records, that is, data swapping 
ensures that the marginal distribution of the masked attribute is exactly the same as 
that of the original attribute. It also allows the data administrator to provide a simple 
explanation of the masking mechanism as follows:  

 
In order to protect privacy, the values of some records may have 

been exchanged with other records. 
 
This is a simple explanation that is understood by most users, which is in contrast 

to other procedures. We believe that these are keys to user acceptance of data  
swapping and reluctance (and in some cases, outright rejection) of other masking 
mechanisms.  

Based on the above argument, the solution seems relatively straightforward and 
simple … always use data swapping. It is true that this is likely to result in high user 
acceptance and probably explains the popularity of data swapping as a masking me-
chanism. This is an acceptable solution if user acceptance is the only criterion. This is 
not the case. When releasing microdata, data administrators have to consider multiple 
criteria. In addition to user acceptance, data administrators must also ensure that the 
released masked microdata provides high analytical validity and low disclosure risk.  

The relative importance of these three criteria (analytical validity, disclosure risk, 
and user acceptance) may vary depending on the context. But it is unlikely that ana-
lytical validity and disclosure risk can be completely ignored. After all, if disclosure 
risk is irrelevant, then the data administrator can simply release the original data; and 
if analytical validity is irrelevant, then the data administrator can simply release ran-
domly sorted data (or encrypted data or no data at all). Either of these situations is 
extremely unlikely in practice. In most real life situations, the data administrator 
would have to select a masking mechanism that ensures an adequate level of analyti-
cal validity, disclosure risk prevention, and user acceptance.  

Unfortunately, while data swapping may promote user acceptance, it does not al-
ways provide the desired levels of analytical validity and disclosure risk prevention. 
Prior research indicates that data swapping always results in attenuating the relation-
ship between attributes [5, 9, 10]. This attenuation is directly related to the proximity 
of the swapped data; as the distance between the swapped records increases, the at-
tenuation of the relationship between the attributes also increases. The situation is the 
opposite if we consider disclosure risk. When the swapped records are in close prox-
imity, there is a very high risk of disclosure. In order to provide adequate disclosure 

                                                           
1 Data swapping is one of the earliest masking mechanisms and has been frequently imple-

mented by agencies over the years. One of the reviewers suggested that data swapping is ac-
cepted because users have become accustomed to data swapping. We agree that this is also a 
viable explanation.  
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risk prevention, it may be necessary to increase the proximity of the swapped records, 
which results in poor analytical validity. In evaluating a select group of masking me-
chanisms, Domingo-Ferrer and Torra [5] found that the information loss characteris-
tics of data swapping fell in the lower half of the 100+ alternative mechanisms eva-
luated. And in terms of disclosure risk prevention, there is considerable evidence  
to suggest data swapping performs poorly [10, 11]. Nin et al [11] also point to the 
disturbing possibility that complete disclosure of a masked record is also possible, 
which Domingo-Ferrer and Torra [5] also acknowledge. Thus, while data swapping 
may have a higher level of user acceptance, compared to other masking mechanisms, 
it may also have lower analytical validity and/or higher disclosure risk. 

The above discussion indicates the need for a masking mechanism that provides 
superior analytical validity and/or lower disclosure risk but also provides the intuitive-
ly appealing characteristic of data swapping: an unmodified marginal distribution.  
In this study, we describe a simple, general approach by which the values of each 
attribute of the masked data can be reverse-mapped to a permutation of the original 
attribute values; in this way, the masked data has the same marginal distributions as 
the original data. It is important to note that we are not proposing a new masking me-
thod. We wish to provide the data administrator with the flexibility to choose a data 
masking mechanism that suits the particular context.  

3 Post-masking Reverse Mapping 

The statement of the problem is straightforward. The data administrator chooses a 
masking mechanism and uses it to obtain a masked version of the original sensitive 
data set. Masking can operate on the quasi-identifier attributes to prevent identity 
disclosure (which would happen if quasi-identifiers allowed an intruder to link a 
record with an identified record in an external data source), or it can operate on sensi-
tive attributes to prevent attribute disclosure (records linkage is not prevented, but the 
sensitive attributes are masked) or it can operate on all attributes.  

The data administrator now seeks a transformation of the masked data such that 
each attribute in the transformed masked data (which will be released to the public) 
has exactly the same marginal distribution as the corresponding attribute in the origi-
nal data. The data administrator can attempt statistical transformations [13] but such 
transformations do not guarantee that the transformed data will have exactly the same 
marginal distributions as the original data.  

In this study we propose a simple transformation of the masked attribute values to 
a permutation of the original attribute values using rank-based reverse mapping. The 
advantage of this approach is that it maintains the masking (which is necessary to 
prevent disclosure risk) but also allows preserving the marginal distributions (which 
facilitates user acceptance). Let  , , … ,  be the values taken by attribute X 
in the original data set. Let  , , … ,  represent the masked version of . 
We make no assumptions about the masking mechanism used to generate  except 
that it must be possible to link a single record in  to a single record in . 

The post-masking reverse mapping is performed as follows: 
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   1                      
   , , … ,   

It is easy to see that  has exactly the same values and hence the same marginal 
distribution as , but values have been permuted according to the (rank) order of  
the masked values . The extension of the reverse mapping to the multivariate case 
does not present a problem – simply repeat the process for every masked attribute. 
Since the objective is to maintain the marginal distribution of the individual attributes, 
application of the procedure on an attribute-by-attribute basis has no effect on the 
outcome.  

From a statistical perspective, the reverse mapping procedure can be described as 
the rank based mapping of the cumulative distribution function of the masked values 

 back to the cumulative distribution function of the confidential values . The  
concept of copulas in statistical analysis is based on a similar transformation [15]. 
However, copulas are often used to model the joint distribution of attributes with 
different marginal distributions. The reverse mapping procedure we describe is a un-
ivariate one (where each attribute is reverse-mapped individually) and no effort is 
made to model the joint distribution of the attributes. Hence, the only property that is 
maintained is that the rank of  is the same as that of  and, unlike copulas, no 
claims regarding the joint distribution of the attributes can be made. The reverse map-
ping procedure is also similar to the “Normal to Anything” procedure used to generate 
related random attributes with different marginal distributions [1, 2]. 

The extent to which the data administrator wishes to provide information addition-
al to Z would depend on the context. The data administrator may also provide infor-
mation on the process used to mask the data and extent of the changes. The release of 
this information would depend, however, on the extent to which the release of this 
information would affect disclosure risk. Note, for example, that if the masking me-
thod deterministically generates  from , e.g. , and the administrator 
publishes  and the (parameterized) masking method , then any intruder can 
compute  ; since the permutation that transforms  into  
is the same that transforms  into , the intruder can recover the original  (if there 
are ties in , though, the intruder might not be able to unequivocally determine all 
values , , … , ). 

We now illustrate the application of this procedure using a small data set consisting 
of 25 observations and two attributes: a non-sensitive attribute  and a sensitive 
attribute  that is to be masked. As mentioned above, we make no assumptions about 
the masking mechanism other than that the data protector must be able to link records 
in  and .   

Table 1 shows that the marginal distribution of Z is the same as that of X, because 
Z has the same set of values as X, but re-ordered according to the ranks of Y.. As dis-
cussed earlier, the specific masking mechanism used to generate  is irrelevant for 
the purposes of reverse mapping. Consider the first observation. In this observation, 
the original attribute X takes value 780, the masked attribute Y takes value 817.53, and 
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the reverse mapping yields a value of 819. The large change between the values of X 
and Y is reflected in a large change in the corresponding ranks (from 23 in X to 13 in 
Y). For some observations (ID = 3, 6, 9, 24, 25) the ranks of X and Y are the same. 

Table 1. Example illustrating the implementation of reverse mapping 

ID  
Rank 

of  
 

 
Rank 

of  
Rank 
of  

 

1 72 1 780 1 817.5 2 819 
2 73 2 819 2 786.8 1 780 
3 90 7 889 3 856.1 3 889 
4 89 6 906 4 960.6 7 921 
5 80 3 908 5 881.3 4 906 
6 95 9 912 6 958.1 6 912 
7 110 18 921 7 993.1 12 1003 
8 94 8 934 8 974.8 11 979 
9 100 13 963 9 970.1 9 963 

10 97 11 974 10 939.4 5 908 
11 114 20 979 11 969.5 8 934 
12 96 10 1003 12 1107.9 20 1091 
13 87 5 1015 13 1111.0 21 1096 
14 98 12 1018 14 971.8 10 974 
15 84 4 1032 15 1069.5 17 1065 
16 112 19 1035 16 1068.1 16 1035 
17 133 25 1065 17 1053.4 15 1032 
18 109 17 1070 18 1102.8 19 1073 
19 108 16 1073 19 1111.9 22 1110 
20 121 23 1091 20 1027.4 14 1018 
21 102 14 1096 21 1074.1 18 1070 
22 131 24 1110 22 1190.9 23 1122 
23 104 15 1122 23 1023.6 13 1015 
24 116 21 1144 24 1215.2 24 1144 
25 119 22 1177 25 1253.9 25 1177 

 
One potential issue that could pose a problem is observations that have tied ranks, 

particularly when  is a discrete attribute. Tied ranks could also arise in the masked 
values  as a result of the masking mechanism. For example, applying univariate 
microaggregation or generalization could result in tied masked values. There is a sim-
ple solution to this situation. Any ties in the original data and/or the masked data are 
broken randomly. With large data sets, breaking ties randomly will have little or no 
impact on the procedure, as long as the number of records sharing a certain value is 
small compared to the number of records in the data set.  

In some cases, releasing a permutation of the original attribute values may still be 
disclosive: e.g., in a data set on a town’s population, releasing the highest value of 
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“Income” reveals the income of the wealthiest person in town, whose identity is easy 
to guess regardless of the permutation. Hence, statistical agencies may need further 
measures to prevent disclosure. These include top and bottom coding, rounding, and 
other similar procedures. These procedures can be implemented on the reverse-
mapped attributes exactly as they would for the original attributes.  

Finally, the reverse mapping procedure could also be adopted for categorical  
attributes. Recently, Domingo-Ferrer et al [6] proposed a procedure for numerical 
mapping of nominal attributes that captures and quantifies their underlying structure 
(specifically, the hierarchical structure that is often present in nominal classification 
schemes). This procedure provides the ability to quantify any nominal attribute and, 
once quantified, the reverse mapping procedure can be applied to such data.  

4 Assessing Disclosure Risk and Information Loss 

Apart from the fact that the reverse mapping procedure results in the marginal distri-
butions of the original and masked attributes being identical, it also offers another 
important advantage for data administrators. In Table 1, we have presented the values 
( ) resulting from masking the sensitive values ( ). Assume that the data administra-
tor wishes to compare the results of this masking procedure with an alternative proce-
dure and assume that the alternative procedure results in a different set of values 

. In most cases, the distribution of  is different from the distribution of . 
This makes evaluation of information loss and disclosure risk difficult, since the data 
administrator is comparing two different sets of values. However, assume that the 
values of ,  have also been reverse-mapped to yield , , respectively. The 
distributions of  and  are identical, which allows the data administrator to make 
a more meaningful comparison of the performance of the two methods.  

Consider  the rank order correlation between , . For the purposes of this 
analysis, and without loss of generality, we will assume  to be non-negative and 
hence 0 1. Having  0 implies that  and  are completely unre-
lated. For large data sets, the situation  0 can be reached by randomly sorting 
the values in  to obtain . This setting offers the highest level of protection against 
disclosure risk. Similarly,  1 implies that knowledge of  results in complete 
disclosure of . Thus,  represents a simple measure of disclosure risk – the high-
er the value of , the greater the disclosure risk. It is important to note that the rank 
order correlation is a superior measure compared to product moment correlation since 
rank order correlation measures all monotonic relationships (including linear ones), 
but product moment correlation measures only linear relationships.  

Similar to disclosure risk, we can assess the information loss in the relationship be-
tween attributes by considering the rank order correlation of the attributes in the  
released data set compared to the rank order correlation in the original data set. For 
the illustration provided in Table 1, let  and  represent the rank order correla-
tion between ,  and , , respectively. The difference between the two rank 
order correlations represents a simple measure of the information loss resulting from 
masking the data. When there are multiple non-masked and/or masked attributes in 
the released data set, the data administrator will consider the pair-wise rank order 
correlation (1) between all pairs composed of non-masked and a masked attribute, and 
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(2) between all pairs of masked attributes. Such correlations will be compared with 
the rank order correlations between the corresponding pairs of attributes in the origi-
nal data set. This provides a simple versatile approach for assessing the information 
loss in the relationship among attributes.  

It should be noted that we do not preclude the use of alternative measures of dis-
closure risk and information loss measures. Since the reverse-mapped values are the 
same across all mechanisms, we are comparing “apples versus apples” rather than 
“apples versus pears.” 

5 Comparison of Masking Mechanisms 

In this section, we apply reverse mapping to the output of several masking mechan-
isms to illustrate the procedure as well as to provide a simple comparison of releasing 
the masked data versus releasing data that is reverse-mapped after masking, using the 
data in Table 1. We consider four alternative approaches for masking the data: (1) 
Additive noise (ADD) with noise from a normal distribution with mean zero and va-
riance equal to 25% of the variance of , (2) A partially synthetic data (SYN) proce-
dure suggested by Drechsler et al. [7], generating the masked values  using the 
posterior predictive distribution | , (3) Microaggregation (MIC) with  = 5, 
and (4) Data swapping (SWP) with rank proximity = 5.  

Table 2 provides the original data, reverse-mapped data for all four methods, and 
the masked data Y for the first three masking procedures (since swapping directly 
results in ). The idea of masking mechanisms providing different permutations of 
the original values is illustrated by the  column and the  columns of the four dif-
ferent masking mechanisms. The only difference between the four Z columns is the 
way values are permuted. Evaluation of the masking mechanism can be performed (as 
we illustrate below) by evaluating only the output ( ) and without any consideration 
of the parameters of the masking mechanism.  

Prior to discussing the performance characteristics of the different masking me-
chanisms, we briefly address the results of the reverse-mapped microaggregation 
procedure. In the traditional univariate microaggregation, the values of all records 
within a single aggregated group are set to the mean of their values. For instance, 
records  
{1-5} form one aggregated group. The mean value of  in this group is 860.4 and 
hence the value of all five of these records is set to 860.4 (see last column MIC  in 
Table 2). This presents a problem since there are only five unique values in the entire 
data set instead of the original 25. This aggregation also results in variance attenua-
tion, that is, the variance of  (9246.06) is much smaller than the variance of  
(10223.51).  

When reverse mapping is performed, ties are broken randomly, and the values of  
are reverse-mapped based on the values of . This is the equivalent of randomly per-
muting the values within each of the aggregated groups and releasing the result.  
The reverse mapping eliminates the presence of  records with the same values and 
the subsequent variance attenuation; in fact, it is an alternative to other variance resto-
ration approaches for microaggregation, like [3] (which uses synthetic values rather 
than a permutation of original values). We believe that the reverse mapping procedure 
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is consistent with the original intent of microaggregation – that values within the  
aggregated groups should be indistinguishable. Since the values within any aggre-
gated group are completely random, the reverse mapping procedure achieves this 
objective. This is consistent with the notion of probabilistic -anonymity [16], which 
can be attained when multivariate microaggregation with group size k is applied to the 
set of quasi-identifier attributes and reverse mapping is then used on the microaggre-
gated values of each quasi-identifier attribute.  

Table 2. Results of masking and reverse mapping for all masking mechanisms 

ID   
ADD 

 
SYN MIC SWP ADD SYN MIC 

 
1 72 780 780 819 908 908 688.7 826.6 860.4 
2 73 819 912 912 906 906 928.7 930.3 860.4 
3 90 889 819 934 819 921 863.6 940.5 860.4 
4 89 906 889 1035 889 819 875.4 1015.2 860.4 
5 80 908 906 906 780 780 886.0 882.3 860.4 
6 95 912 934 1018 963 974 953.6 1005.5 940.8 
7 110 921 908 1015 921 889 908.6 986.2 940.8 
8 94 934 979 780 934 963 991.3 789.4 940.8 
9 100 963 1032 1096 974 934 1031.1 1035.2 940.8 

10 97 974 1015 908 912 912 1018.4 886.7 940.8 
11 114 979 1035 1065 979 1018 1031.9 1019.5 1009.4 
12 96 1003 963 963 1003 1035 976.3 944.6 1009.4 
13 87 1015 921 974 1032 1065 940.2 970.9 1009.4 
14 98 1018 1018 889 1018 979 1027.9 879.1 1009.4 
15 84 1032 974 1032 1015 1070 982.2 1007.6 1009.4 
16 112 1035 1110 979 1070 1003 1103.8 978.1 1066.8 
17 133 1065 1065 1144 1035 1015 1046.0 1214.2 1066.8 
18 109 1070 1122 1003 1073 1032 1105.3 985.0 1066.8 
19 108 1073 1144 1070 1091 1110 1119.2 1026.0 1066.8 
20 121 1091 1003 1122 1065 1177 1017.2 1104.3 1066.8 
21 102 1096 1070 1091 1177 1122 1051.9 1033.7 1129.8 
22 131 1110 1073 1177 1122 1073 1074.1 1251.9 1129.8 
23 104 1122 1096 921 1144 1096 1086.0 935.3 1129.8 
24 116 1144 1091 1073 1110 1144 1081.9 1031.5 1129.8 
25 119 1177 1177 1110 1096 1091 1174.4 1071.5 1129.8 

Table 3. Disclosure risk measures for the four masking mechanisms 

ADD  SYN  MIC  SWP  
Rank order correlation 

between  and 
0.860 0.577 0.952 0.892 

 



114 K. Muralidhar, R. Sarathy, and J. Domingo-Ferrer 

 

Table 3 provides a disclosure risk assessment based on the correlation between  
and  for each of the masking methods. Of the four mechanisms, SYN has the lowest 
correlation with the original attribute and hence provides the lowest disclosure risk. 
Microaggregated values have the highest correlation with the original attribute and 
hence, the highest disclosure risk (this is consistent with Domingo-Ferrer and Torra 
pointing out in [5] that univariate microaggregation offers little disclosure protection). 
Additive noise and swapping have lower correlation (and lower disclosure risk) than 
microaggregation. The disclosure risk of the synthetic sample is significantly lower 
than that of the other three methods. It is important to note that we made no effort to 
fine tune the parameters of the masking mechanisms so that they provide comparable 
disclosure risk. The information in Table 3 allows the data administrator to perform 
such an analysis (such as increasing the value of  so that the disclosure risk result-
ing from microaggregation is comparable to the others).  

Table 4. Information loss for the four masking mechanisms 

 ADD  SYN  MIC  SWP  
Rank order correlation  

between  and 
0.742 0.738 0.710 0.682 0.568 

 
Table 4 provides an assessment of information loss, the rank order correlation be-

tween the non-sensitive attribute  and  compared to that between  and each of 
the masked data. Of the four approaches, additive noise is best at preserving the corre-
lation with the non-masked attribute followed by synthetic data, microaggregation, 
and swapping. It is important to note that this is only an illustration and it is possible 
that a different set of pseudorandom numbers could produce different results. The 
performance of swapping is rather poor – it results in the highest information loss and 
also results in high disclosure risk. By contrast, the synthetic data easily yields the 
best performance – extremely low disclosure risk and information loss, which is es-
sentially guaranteed by the underlying model used to generate the masked values. 
Comparing the results of the masked values and the reverse-mapped values indicates 
that the reverse mapping process does not have a meaningful impact on information 
loss. Given that this is a small data set, this result is encouraging.  

Table 5 presents the actual change in ranks between the original and masked data. 
As expected, for both swapping (rank proximity = 5) and microaggregation (  = 5), 
the change in rank is less than or equal to 5. Synthetic data results in the highest 
change in ranks – in one case as high as 16 (record ID = 2). And only the synthetic 
data has (four) records whose change in ranks is higher than 10. But the results for the 
synthetic data should not be surprising; the specific purpose of generating the masked 
value from the posterior predictive distribution is to minimize disclosure risk. The 
large change in the ranks ensures low disclosure risk. Finally, the objective of this 
analysis is not to highlight the merits or any particular masking mechanism, but to 
show that the reverse mapping procedure performs effectively and facilitates an easy 
comparison of the masking mechanisms.  
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Table 5. Change in rank for each of the masking mechanisms 

Change 
In Rank 

ADD SYN MIC SWP 

0 4 1 5 1 

1 3 4 8 2 

2 3 0 5 4 

3 5 5 2 6 

4 2 1 5 10 

5 4 4 0 2 

6 – 10 4 6 0 0 

11 – 15 0 3 0 0 

16 – 20 0 1 0 0 

6 Conclusions and Future Work 

The objective of this study was to investigate a new procedure that ensures that the 
marginal distributions of the masked attributes are the same as those of the corres-
ponding original attributes. We present a post-masking method based on mapping the 
cumulative distribution function of each masked attribute back to the cumulative dis-
tribution function of the corresponding original attribute based on ranks. We refer to 
this post-masking method as reverse mapping and we have illustrated it using simple 
examples.  

Reverse mapping also allows viewing microdata masking mechanisms in a new 
framework, namely, one in which the output from any masking mechanism applied to 
an original attribute is simply regarded as a particular permutation of the values of the 
original attribute. By providing a common ground for all masking mechanisms, we 
improve the data administrator’s ability to perform more meaningful comparisons of 
masking mechanisms. We also hope that this framework will allow researchers to find 
potential links between masking mechanisms that may have been considered disparate 
thus far.  

The results presented in this study are illustrative and preliminary. A comprehen-
sive investigation of the impact of reverse mapping on masking is currently being 
conducted by these authors. Specifically, there are many issues that require further 
investigation, including : (1) Impact of the size of the data set; (2) Impact of the cha-
racteristics of the data set; (3) Incremental disclosure risk (if any) resulting from the 
reverse mapping; (4) More extensive general analysis of disclosure risk and informa-
tion loss; (5) Use of reverse mapping with masking methods (e.g. synthetic methods) 
in which the number of output masked values differs from the number of input origi-
nal values; and (6) Impact of reverse mapping on privacy models, that is,  
what privacy models can be satisfied by reverse-mapped masked data (we have al-
ready indicated that reverse-mapped microaggregated data can satisfy probabilistic  
k-anonymity).  
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Abstract. JPEG-based protections can be obtained by regarding mi-
crodata as an image that is transformed by means of a lossy JPEG
compression-decompression process. Here we propose a general model
that decouples JPEG-based methods into two parts. First part encom-
passes transformations between data and image spaces. Second part
consists in the image transformation itself. Under this general model,
we first explore different maps between data and image spaces. In our
experiments, quantization using histogram equalization, in combination
with JPEG-based methods, outperform other approaches. Secondly, im-
age transformations other than JPEG can be utilized. We illustrate this
point by introducing JPEG 2000 as a valid alternative to JPEG. Finally,
we experimentally analyze the effectiveness of the generalized JPEG-
based method, comparing it with well-known state-of-the-art protection
methods such as rank swapping, microaggregation and noise addition.

1 Introduction

In this paper we propose a general protection method based on the JPEG
lossy compression algorithms. Our proposal decouples JPEG-based methods into
two parts. The first part encompasses transformations between data and image
spaces. The second part consists in the image transformation itself. Under this
general model, we will explore different maps between data and image spaces
and we will also introduce JPEG 2000 as a valid alternative to JPEG image
transformations.

The idea of using the JPEG compression standard [14] for microdata protec-
tion was introduced by Domingo-Ferrer et alter [7, 8, 17]. Basically, it consists
in regarding the original microdata file as an image where rows are records and
columns are attributes. Then a JPEG lossy compression algorithm is utilized to
perturb the data. Once data is recovered from the compression-decompression
process, it is reinterpreted as a masked version of the original microdata file. Dif-
ferent values of the JPEG quality parameter are used to attain different levels of
protection with a variable trade-off between information loss and disclosure risk.
This approach allows us to use current implementations (software and hardware)
of JPEG to mask the data, which has benefits both in easy of implementation
and performance. Besides these works the idea of using quantization has also
been explored for instance to provide k-anonymity [29, 30]
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This paper departs from previous work and introduces a generic JPEG-based
protection method, that can be parameterized with both JPEG and JPEG 2000.
We also provide a comprehensive evaluation of the methods in terms of disclosure
risk and information loss, as compared to traditional SDC methods such as
microaggregation [6], rank swapping [22], or randomization [18].

The rest of the paper is organized as follows. We propose our general model
of JPEG-based methods in Section 2. This model subsumes both types of lossy
transformations, JPEG and JPEG-2000, and provides certain flexibility to choose
between different quantization methods. The evaluation of our method as com-
pared to existing ones is given in Section 3. Finally we present some conclusions
and possible future work in Sect. 4.

2 JPEG-Based Microdata Protection Methods

The interested reader can find descriptions of JPEG and JPEG 2000 in review
papers such as [1, 4, 28, 31, 32, 35], which complement the technical standards
themselves [14, 15].

Our JPEG-based microdata protection method considers the original micro-
data file as an image where each record is a file and each variable or attribute is a
column of the image. Then a JPEG (or JPEG 2000) lossy compression algorithm
is utilized to perturb the data. Once data is recovered from the compression-
decompression process, it is reinterpreted as a masked version of the original
microdata file. The quality parameters of the compression algorithm are used to
attain different levels of protection with a variable trade-off between information
loss and disclosure risk.

Table 1. Example of a JPEG protection with q=85%. Original data.

4173 4621 4527 1428 27 27 3480 4550
2639 6045 4208 1902 1008 808 3136 4100
3315 4765 5645 1903 485 485 4284 5600
1619 3932 2380 1177 700 700 1750 2288
4604 4349 2151 1219 751 1 1606 2100
3433 2463 3217 830 167 50 2448 3200
824 372 8730 186 1030 22 589 7700
4145 629 2500 693 1 1 1912 2500

For illustrative purposes, we provide a small example in Tables 1 and 2. Table 1
shows an original microdata with eight attributes and eight records. Table 2
represents a JPEG masked protection of the original dataset at Table 1. The
steps to obtain a masked protection of the original dataset are as follows. First,
original values are projected onto the image space, as integers in the interval
[0, 255], which represent pixel graylevel values. Second, a JPEG compression-
decompression process, with a quality of 85%, is applied to the image. Finally,
the masked dataset is retrieved after undoing the scaling transformation of the
first step. The following sections describe our approach.
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Table 2. Example of a JPEG protection with q=85%. Masked data.

4108 4759 4245 1746 0 103 3389 4553
2602 5717 4451 1678 1061 993 2842 4348
3424 4930 5854 1712 411 479 4382 5546
1575 4006 2020 1369 685 582 1506 2260
4382 4622 2191 1472 582 0 2123 2054
3595 2294 3150 753 171 0 2362 3047
548 719 8490 274 1267 68 342 8011
4142 650 2568 514 34 34 1951 2362

2.1 General JPEG-Based Perturbative Masking Method

In Alg. 1 we introduce our general schema for JPEG-based protections that we
will refer from now on as QJ . The QJ algorithm depends on three parameters,
denoted as Q, Jq and Q∗, so the name of the algorithm. These three parameters
are detailed below.

Algorithm 1. General JPEG-Based Perturbative Masking Method QJ

Input: X - Original master file
Parameters: Jq , Q, and Q∗

Output: X ′ - Protected masked file
begin

Y ← Q(X);
Yq ← Jq(Y );
X ′ ← Q∗(Yq);
return X ′ ;

The first step of the QJ algorithm consists in a forward processing quantiza-
tion (or normalization) Q that projects the original data onto the image space.
This transformation is particularly necessary when the original values cannot be
directly interpreted as pixel values. As in the previous example of Table 1, the
JPEG compression-decompression process requires integer values in the range
[0, 255]. Notwithstanding, with some particular datasets where data values are
within the range [0, 255] it may be perfectly valid to consider Q as the identity
transformation. The Q transformation establishes a one to one correspondence
between data entries and pixel points, so that if the original data set has N
records and M attributes, then its associated image also has N rows and M
columns.

The second step in the algorithm consists in the lossy compression-
decompression of the input image. This transformation is denoted as Jq, where
the subscript q denotes the parametrization used to tune different degrees of
quality (or distortion) for the compressed image.
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Finally, the decompressed image is returned back to the microdata space by
means of a dequantization transformation Q∗ associated to the forward trans-
formation Q of Stage 1. There may not exist an inverse Q−1 such that the com-
position with Q equals the identity, Q−1Q = I. Nevertheless, it seems natural
to consider Q∗ = Q−1 whenever Q is invertible.

The QJ algorithm decouples the transformation between data and image
spaces Q from the image transformation Jq. These two components alone are
discussed separately in the following two subsections. The discussion describes
and justifies the options we have used in our experiments described later in
Section 3.2.

2.2 Image Transformations Jq

The QJ method can accommodate both JPEG and JPEG 2000 compression
algorithms as the transformation Jq. Both JPEG and JPEG 2000 standards
face a difficult trade-off between compression ratio (low size) and quality (low
distortion). In order to find an acceptable balance, current implementations offer
to end users a quality parameter q in the range [0, 100]. Lower values of q are
associated with higher compression ratios, but also with lower quality images.
Reciprocally, higher values of q are associated with lower reductions in size but
also with images of higher quality.

In practice, a default value around 75 is satisfactory for many end-users,
that consider it provides an acceptable trade-off between compression ratio and
quality. For our purposes, different values of the quality parameter q allow to
achieve different levels of protection. In our experiments, we consider a sequence
of quality values from 5 to 100, in increments of size 5. But, in order to appreciate
better what happens with high-quality compressions, increments are of size 1
for higher quality values. As we will see below, in general, points with quality
level 100 depart near the value obtained from simple quantization, from which
any increase in the quantization loss is perceived by the disclosure risk and
information loss measures (see Section 3.1) as an increase in information loss
and a certain decrease in disclosure risk.

Some parameter values may be specific of one of the transformations Jq. This
is the case of the image bit depth B, that represents the quantity of information
each pixel can support, with up to 2B different values for each pixel. In our
experiments, a bit depth B = 8 is considered for both JPEG and JPEG 2000,
which means that each pixel is able to represent 28 = 256 different values, coded
in the range [0, 255]. A bit depth B = 16 is considered only for JPEG 2000.
With this bit depth, each pixel is able to represent a broader range, with up to
216 = 65536 different values, coded in the range [0, 65535].

2.3 Quantization Q and Dequantization Q∗

Beyond Jq parameters, such as quality q and bit depth B, the selection of a
particular quantization Q has a significant impact on overall protections
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Let us formulate the quantization process more explicitly. A quantization map
Q establishes a projection from the original data space X to the image space
Y . If xij denotes the attribute j of record i in X , let yij = Q(xij) denote
its projection onto the image space. As we have seen before, our image space
is constrained by a fixed bit depth B so 0 ≤ yij < 2B, which is usually a
nominal range with fewer levels than in the original domain. If this is the case,
then distinct values of X can be projected by Q to the same value of Y . In
other words, the inverse of Q represents a map from Y points to parts of X .
Usually some criteria is established to select a value, x′ = Q∗(y) ∈ Q−1(y), to
unmap the projection y = Q(x). For example, a criteria may be to minimize
the expected error D(Q) = E(d(x,Q∗(Q(x)))). When d is the square error, then
D(Q) becomes the mean square error (MSE).

We start considering a global scalar quantizerQ based on an uniform partition
of scalar values into consecutive intervals Iν = [γν , γν+1] such that Q(x) = ν iff
x ∈ Iν for 0 ≤ ν < 2B. If the range of scalar values of X data is [m,M ] ⊆
[0,M ] , consider Q as the composition of a rounding operation with a linear
transformation of equation X ′ = aX such that Q(M) = 2B − 1. The result is
given explicitly by Eq. 1. We denote this quantizer as QE ; more concretely as
QE8 if B = 8 or as QE16 if B = 16.

QE(x) = round

(
x · (2B − 1)

M

)
(1)

The scaling transformation QE8 was used for the illustrative example of Ta-
ble 2 above. In practice one can apply the same quantization block by block. For
example, we have also considered quantizations QAE8 and QAE16 analogously
but column by column.

Different scalar quantizers can be obtained in a similar way by considering
characteristic equations different from X ′ = aX of QE definition above. For
example, we have considered quantizations QQ given by a similar equation X ′ =
aX+b, such that Q(m) = 0 and Q(M) = 2B−1. The result is given explicitly in
Eq. 2. Column-by-column counterparts are also possible, denoted as QAQ8 and
QAQ16.

QQ(x) = round

(
(x−m) · (2B − 1)

M −m

)
(2)

Although this formulation is slightly more sophisticated, in practice QQ may
give similar results if original X data values are close to zero (m ≈ 0). This
is not the unique similarity between QQ and QE . Both quantizers are uniform
quantizers, which means that quantization intervals Iν are equidistant. This
becomes a drawback if original X values are not uniformly distributed. For
example, let suppose that almost all values are within a sub-interval [m,m2] but
there is an extreme value at M , very far from the other values. As long as input
space is uniformly covered by equidistant intervals, it can happen that many
of these intervals become empty. To circumvent this drawback one can consider
non-uniform quantizers.
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A non-uniform scalar quantizer based on histogram equalization [27] is defined
as follows. Compute the cumulative distribution function (cdf) F : [m,M ] �→
[0, 1] of originalX values. This function F is known to be a monotonous function
increasing from 0 to 1. By a simple scaling, consider a normalized version F ′ :
[m,M ] �→ [0, 2B−1] where the [0, 1] co-domain of F is replaced by the [0, 2B−1]
range of pixel levels, by F ′(x) := F (x)·(2B−1). Although F ′ does not, in general,
have an inverse, one can define a pseudo-inverse F ∗ by F ∗(ν) := infx (F

′(x) ≥ ν).
Now F ∗ applied to the reference levels ν ∈ [0, 2B − 1] provides 2B quantization
values x∗

ν := F ∗(ν) ∈ [m,M ]. Given these quantization values x∗, every data
value x is assigned to its nearest x∗

ν so that Q(x) := Q(x∗
ν) = ν. We denote

this quantization transformation as QH ; or more specifically as QH8 if B = 8 or
as QH16 if B = 16. Block counterparts are also possible, denoted as QAH8 and
QAH16.

3 Evaluation and Experiments

To evaluate our proposal we use the Census dataset from the European CASC
project [3], which contains 1080 records and 13 variables, and has been exten-
sively used in other works [7, 11, 12, 19, 24, 36].

We evaluate the effectiveness of the generalized JPEG-based method QJ ,
comparing it with well-known state-of-the-art protection methods such as rank
swapping, microaggregation, and randomization (or additive noise). The meth-
ods are denoted as follows (see references for a detailed description):

– Microaggregation (MICRO) [5, 11, 33, 34].
– Rank Swapping (SWAP) [22]
– Randomization (NOISE ) [2, 18]

During the evaluation these methods are parameterized with common values
to give a broad comparison of the methods with our proposal. We omit the
details of these parameters to avoid digging into the description of the specific
methods which will overextend the paper.

3.1 Information Loss and Disclosure Risk

To evaluate our QJ algorithm we use standard and widely accepted measures
of information loss (IL) and disclosure risk (DR). Information loss is based in
the well known probabilistic information loss measure presented in [20], and
disclosure risk is measured using record linkage as introduced in [9].

Information Loss. The probabilistic information loss measure gives a percent-
age of information loss, where 100% means that all information is lost, and 0%
that there is no information lost.

The main idea is based on considering a given statistic or population param-
eter θ on X (the original dataset), with its corresponding sample statistic on X ′
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Table 3. Population and sample statistics

Population parameters on X Sample statistics on X ′

r-th moment about zero of the j-th attribute:

μ0
r(j) =

∑n
i=1 xr

ij

n
; m0

r(j) =
∑n′

i=1 x′r
ij

n′
r-th central moment of the j-th attribute:

μr(j) =
∑n

i=1(xij−μ0
1(j))

r

n
; mr(j) =

∑n′
i=1(x

′
ij−m0

1(j))
r

n′
(r, s)-th central moment of the j-th and j′-th attributes:

μr,s(j, j
′) = 1

n

∑n
i=1(xij − μ0

1(j))
r(xij′ −

μ0
1(j

′))s
; mr,s(j, j

′) = 1
n′
∑n′

i=1(x
′
ij−m0

1(j))
r(x′

ij′ −
m0

1(j
′))s

Correlation coefficient between attributes j and j′:
ρ(j, j′) = μ11(j,j

′)
(μ02(j,j′)μ20(j,j′))1/2

; r(j, j′) = m11(j,j
′)

(m02(j,j′)m20(j,j′))1/2

(the protected dataset) with value denoted as θ′. Then, the probabilistic infor-
mation loss can be measured as the standardized sample discrepancy, that is:

pil(θ) = 1 · PZ(0 ≤ Z ≤ |θ − θ′|√
V ar(θ′)

) (3)

Considering the original data set X of size n and the protected dataset X ′

of size n′, and the notation from [20] about population parameters and sample
statistics, as shown in Table 3, this measure uses the following statistics, which
are assumed to be normally distributed, and obtained by averaging the various
attributes j:

– Variance of the sample data: V ar(m0
i ) =

μ2

n′

– Variance of the sample variance: V ar(m2) =
μ4−μ2

2

n′

– Variance of the sample covariance: V ar(m11) =
μ22−μ2

11

n′
– Variance of the sample Pearson’s correlation coefficient:

V ar(r) = ρ2

n′

(
μ22

μ2
11

+ 1
4

(
μ40

μ2
20

+ μ04

μ2
02

+ 2μ20

μ20μ02

)
+
(

μ31

μ11μ20
+ μ13

μ11μ02

))
– Variance of the sample q-quantile: Qq = q(1−q)

n′f2
Qq

, where fQq is the value of

the attribute density function for the abscissa Qq.

Then, an information loss measure for each statistic can be obtained with
Eq. (3) giving PIL(m0

1), PIL(m2), PIL(m11), PIL(r), and PIL(Qq), which
are combined to get the general information loss measure as:

IL = 100 · PIL(Q) + PIL(m0
1) + PIL(m2) + PIL(m11 + PIL(r)

5
(4)

Disclosure Risk. Disclosure risk is measured in terms of individual (or record)
re-identification. That is, the risk an individual is re-identified from the pro-
tected dataset. This is a very common and used measure in SDC, which uses
record linkage techniques to model a possible attack scenario. We attempt to
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link records from the protected dataset to the original one. The number of re-
identifiable records gives an estimation of the possibility of re-identification by
an attacker.

To that end disclosure risk is measured with three values:

– Distance-Based Record Linkage (DRL) [10, 26]: computes distances among
records between the original and the masked file. Records in the original file
X are labeled as linked when one of its nearest records in the masked file X ′

turns out to be originated from the original record in X . Considering that we
do not know the number of variables an intruder may get to know, a partial
DRL is computed for the first variable, then for the first two variables, and
so on, up to considering the first seven variables; afterward the seven partial
DRL values are averaged to compute the final DRL.

– Probabilistic-Based Record Linkage (PRL) [13, 16, 21]: is the average per-
cent of correctly paired records using probabilistic linkage. The matching
algorithm uses the linear sum assignment model to choose which pairs of the
original and protected records must be matched. In order to compute this
model, the EM (Expectation - Maximization) algorithm is normally used.

– Interval Disclosure (ID) [9]: computes rank intervals for a record in the
masked dataset as follows. Each variable is ranked separately and a rank
interval is defined around the value it takes on each record. For each record
in the masked data set, a rank interval is centered on the values of that
record. The ranks of values within the interval for a variable around a record
r should differ less than p percent of the total number of records, while the
rank in the center of the interval should correspond to the value of the vari-
able in the record r. Then the ID measure is the proportion of original values
falling into the intervals around their corresponding masked values. A high
value means that an intruder may rightly assume that the original values lie
within the interval around the masked values.

These three measures are aggregated as a final DR measure as:

DR =
1

4
PRL+

1

4
DRL+

1

2
ID (5)

An advantage of this DR measure is that it may be interpreted as a probabilistic
measure, bounded between zero and one (or between 0 and 100 when using the
equivalent percentages).

These measures provide a practical estimation of privacy through the disclo-
sure risk. Given the specific protection methods we use we cannot guarantee
for instance the k-anonymity principle. We do not think this is an important
limitation since most privacy protection methods suffer the same issue such as
noise addition or rank swapping.

3.2 Results

We consider a collection of QJ protections, using both JPEG and JPEG 2000
transformations, 32 levels of quality (as pointed out at Sect. 2.2), 2 bit depths
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Fig. 1. Disclosure Risk (DR) and Information Loss (IL) of QJ protections for the
Census dataset

for JPEG 2000, B = 8 and B = 16, and a set of transformations between data
and image spaces as described in Sections. 2.2 and 2.3.

Fig. 1 summarizes the risk and utility of above mentioned QJ protections
for the Census dataset, together with the other protections obtained by rank
swapping, microaggregation, and randomization. It shows an R-U map, which
uses the IL utility measure from Section 3.1 in combination with the DR from
Section 3.1.

Each point in this map represents a different protection. Points near the
bottom-right side represent masking methods with low information loss but high
risk of disclosure. Points near the top-left corner represent methods with low risk
of disclosure but high information loss. Both situations are undesirable for differ-
ent causes. In between these two extreme situations, there may be some points
with an acceptable trade-off between information loss and disclosure risk. In [9]
the authors suggest to use a score, defined as the mean average of IL and DR,
to easily rank different protections. That is:

Score =
IL+DR

2
(6)

Recall that points incident in a line of slope −1 at the R-U map share the
same score. Best protections have lower score and are closer to the bottom-left
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Table 4. Desaggregated Scores

Method PIL(Q) PIL(r) IL DR Score

1 SWAP4 50 1.1031 93.8815 38.13664 3.234286 20.68546
2 SWAP4 100 1.9585 92.0871 38.86240 2.657714 20.76006
3 SWAP4 10 0.0000 70.6411 25.61658 16.070860 20.84372
4 SWAP4 15 0.0000 87.8172 34.35778 8.722429 21.54010
5 SWAP4 20 0.0000 93.4505 37.20440 6.525571 21.86499
6 SWAP4 5 0.0000 48.9185 16.61896 38.807570 27.71326
7 H8 JPG95 32.0005 29.8624 27.41602 32.638570 30.02729
8 H8 JPG92 34.3931 49.7744 40.93226 23.077860 32.00506
9 NOISE 20 48.3014 50.2242 38.25670 25.820710 32.03871
10 H8 JPG89 36.3009 67.4812 51.35706 12.918290 32.13768
11 H8 JPG94 31.7896 45.0678 36.79010 27.536860 32.16348
12 H16 J2K98 28.0574 40.0830 34.57656 30.105860 32.34121
13 MICRO0 10 30.1033 7.9361 9.99170 55.923000 32.95735
14 NOISE 25 51.3775 65.3011 47.17142 19.180570 33.17600
15 NOISE 15 44.1452 45.0740 31.70588 34.876710 33.29130
16 NOISE 10 40.4505 25.2609 21.15612 46.368140 33.76213
17 MICRO0 15 41.4344 10.5908 14.14696 53.808710 33.97783
18 MICRO0 20 41.8546 13.8271 15.52666 52.624000 34.07533
19 MICRO0 25 46.9738 15.7629 17.64106 51.383430 34.51225

corner of the R-U map. As we said before, a major challenge for perturbative
masking methods is to find better protections. The closer is a point to the origin
at the bottom-left, the best is the protection.

Our experiments have shown that QH quantizations can provide better results
than other quantizations. In these experiments, QH8JPG transformations with
quantization levels 95, 92, 89 and 94 offered an acceptable trade-off between
disclosure risk and information loss, with scores from 30.03 to 32.16. The fifth
score with QJ protections was 32.34 obtained by QH16J2K98.

Table 4 shows different protections sorted by its score. As we said previously,
the score is defined as the mean average of IL and DR measures. These two
measures are aggregated values of some partial measures focusing on particular
aspects of data utility and risk. The tables include, besides of IL, DR and the
score, the measures[17] PIL(Q) and PIL(r) (see Section 3.1).

First six rows correspond to protections obtained by rank swapping [22], then
JPEG-based protections followed by some parametrization of Microaggregation
and Randomization. Thus, QJ is comparable to, or slightly better, than Mi-
croaggregation, one of the most recognized approaches for data protection. At
the same time, the scores also show that the performance of QJ is behind rank
swapping, another recognized approach for data protection. The comparison of
unaggregated data utility show that QJ behaves much better with respect to
the correlation coefficients than rank swapping. This bad performance of rank
swapping with respect to correlations is the reason why other methods are also
of interest (there is no method universally valid for all data users). Besides of
that, specific attacks[23–25] have been developed for data protected using rank
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swapping and Microaggregation. It seems more difficult to extend these attacks
for JPEG-based methods. For all of this, the proposed approach can be con-
sidered a valid alternative to currently well-established methods, such as rank
swapping, randomization or microaggregation.

4 Conclusions and Future Work

In this paper we have described a general JPEG-based perturbative protection
method for masking continuous microdata, exploring variations in the compres-
sion methods and in the quantization maps between microdata and image spaces.
In our experiments, results with a quantization based on histogram equalization
outperform other quantization methods. Obtained protections are also compa-
rable with other well known methods in terms of disclosure risk and information
loss, such as microaggregation or randomization. Other transformations, such as
non-scalar quantizations, are to be explored in the future. Furthermore implica-
tions of concrete distribution of values can also be explored. For example a given
pre-ordering of records could affect both the information loss and disclosure risk.
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Abstract. Differential privacy is a privacy model for anonymization
that offers more robust privacy guarantees than previous models, such as
k-anonymity and its extensions. However, it is often disregarded that the
utility of differentially private outputs is quite limited, either because of
the amount of noise that needs to be added to obtain them or because
utility is only preserved for a restricted type of queries. On the contrary,
k-anonymity-like anonymization offers general purpose data releases that
make no assumption on the uses of the protected data. This paper pro-
poses a mechanism to offer general purpose differentially private data
releases with a specific focus on the preservation of the utility of the pro-
tected data. Our proposal relies on univariate microaggregation to reduce
the amount of noise needed to satisfy differential privacy. The theoretical
benefits of the proposal are illustrated and in a practical setting.

Keywords: Privacy-preserving data publishing, Differential privacy,
Microaggregation, Data utility.

1 Introduction

Data publication often faces privacy threats due to the confidentiality of the
information that is released for secondary use.

To tackle this problem, privacy models proposed in recent years within the
computer science community [13] seek to attain a predefined notion of privacy,
thus offering a priori privacy guarantees. Among such models, k-anonymity and
the more recent ε-differential privacy have received a lot of attention.

k-Anonymity [28] seeks to make each record in the input data set indis-
tinguishable from, at least, k − 1 other records, so that the probability of re-
identification of individuals is, at most, 1/k. Different anonymization methods
have been proposed to achieve that goal, such as removal of outlying records,
generalization of values to a common abstraction [27,30,1,17] or microaggrega-
tion [9,8]. The latter method partitions a data set into groups at least k similar
records and replaces the records in each group by a prototypical record (e.g.
the centroid record, that is, the average record). Microaggregation stands out
as particularly utility-preserving among the methods for k-anonymization. In-
deed, microaggregation does not suffer from the loss of granularity inherent to

J. Domingo-Ferrer (Ed.): PSD 2014, LNCS 8744, pp. 130–142, 2014.
c© Springer International Publishing Switzerland 2014



Improving the Utility of Differential Privacy via Univariate Microaggregation 131

value generalizations and can be adapted to the structure of data [10]. While
k-anonymity has been shown to provide reasonably useful anonymized results,
especially for small k, it is also vulnerable to attacks based on the possible lack
of diversity of the non-anonymized confidential attributes or on additional back-
ground knowledge available to the attacker [22,31,20,7].

Unlike k-anonymity, the more recent ε-differential privacy [14] method does
not make any assumption on the background knowledge available to potential
attackers. ε-Differential privacy guarantees that the anonymized output is in-
sensitive (up to a factor dependent on ε) to modification, deletion or addition
of any single input record in the original data set. In this way, the privacy of
any individual is not compromised by the publication of the anonymized output,
which is a much more robust guarantee than the one offered by k-anonymity.
The enforcement of ε-differential privacy requires adding noise to attribute val-
ues that depends on the sensitivity of such attributes to modification of input
records. This sensitivity does not depend on the specific input values, but on the
attributes domains, which satisfies the privacy guarantee but may severely dis-
tort values, thus compromising the utility of the anonymized outputs. Because
of this, ε-differential privacy was originally proposed for the interactive scenario,
in which the anonymizer returns noise-added answers to interactive queries. In
this scenario, the accuracy/utility of the response to a query depends on the sen-
sitivity of the query, which is usually lower than the sensitivity of the attribute.
However, the interactive setting of ε-differential privacy limits the number and
type of queries that can be performed. Most extensions of ε-differential privacy
to the non-interactive setting (data set anonymization) overcome the limitation
on the number of queries, but not on the type of queries for which some utility
is guaranteed (see Section 2 below). In contrast, k-anonymized data sets offer
more flexible utility.

1.1 Contribution and Plan of This Paper

In this paper, we present a procedure to improve the utility of general-purpose
ε-differentially private data releases by means of a specific kind of data mi-
croaggregation. The rationale is that the microaggregation of input data helps
reducing its sensitivity versus modifications of individual records; hence, it helps
reducing the amount of noise to be added to achieve ε-differential privacy. As
a result, data utility can be improved without renouncing the strong privacy
guarantee of ε-differential privacy. Experiments reported on a reference data set
show a significant improvement of data utility with respect to plain Laplace noise
addition.

The rest of this paper is organized as follows. Section 2 details the back-
ground on ε-differential privacy and Section 3 discusses related works on ε-
differentially private data releases. Section 4 proposes a new method to generate
ε-differentially private data sets that uses a special type of microaggregation to
reduce that amount of required noise. Section 5 reports an empirical evaluation
of the proposed method, based on a reference data set. The final section gathers
the conclusions and details some lines of future research.
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2 Background on Differential Privacy

Differential privacy was originally proposed by [14] as a privacy model in the
interactive setting. The assumption is that an anonymization mechanism sits
between the user submitting queries and the database answering them.

Definition 1. (ε-Differential privacy) A randomized function κ gives ε-
differential privacy if, for all data sets X1, X2 such that one can be obtained
from the other by modifying a single record, and all S ⊂ Range(κ), it holds

P (κ(X1) ∈ S) ≤ exp(ε)× P (κ(X2) ∈ S). (1)

The computational mechanism to attain ε-differential privacy is often called
ε-differentially private sanitizer. A usual sanitization approach is noise addition:
first, the real value f(X) of the response to a certain user query f is computed,
and then a random noise, say Y (X), is added to mask f(X), that is, a randomized
response κ(X) = f(X)+Y (X) is returned. To generate Y (X), a common choice
is to use a Laplace distribution with zero mean and Δ(f)/ε scale parameter,
where:

– ε is the differential privacy parameter;
– Δ(f) is the L1-sensitivity of f , that is, the maximum variation of the query

function between data sets differing in at most one record.

Specifically, the density function of the Laplace noise is

p(x) =
ε

2Δ(f)
e−|x|ε/Δ(f).

Notice that, for fixed ε, the higher the sensitivity Δ(f) of the query function f ,
the more Laplace noise is added.

3 Related Work on Differentially Private Data Releases

Differential privacy was also proposed for the non-interactive setting. Even though
a non-interactive data release can be used to answer an arbitrarily large number
of queries, in most cases, this is obtained at the cost of offering utility guarantees
only for a restricted class of queries [2], typically count queries. We next review
such non-interactive approaches, which are the focus of this paper.

The usual approach to releasing differentially private data sets is based on
histogram queries [33,34], that is, on approximating the data distribution by
partitioning the data domain and counting the number of records in each par-
tition set. To prevent the counts from leaking too much information they are
computed in a differentially private manner. Apart from the counts, partition-
ing can also reveal information. One way to prevent partitioning from leaking
information consists in using a predefined partition that is independent of the
actual data under consideration (e.g. by using a grid [23]). Several strategies have
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been proposed to improve the accuracy of differentially private count (histogram)
queries. In [18] consistency constraints between a set of queries are exploited to
increase accuracy. In [32] a wavelet transform is applied to the data and noise is
added in the frequency domain. In [34,21] the histogram bins are adjusted to the
actual data. In [5], the authors consider differential privacy of attributes whose
domain is ordered and has moderate to large cardinality; the attribute domain
is represented as a tree, which is decomposed in order to increase the accuracy
of answers to count queries (multi-dimensional range queries). In [26], the au-
thors generalize similar records by using coarser categories for the classification
attributes; this results in higher counts for the data partitions, which are much
larger than the noise that needs to be added to reach differential privacy.

Our work differs from all previous ones in that it is not limited to histogram
queries. In [29] we presented an approach that combines k-anonymity and ε-
differential privacy to improve the utility of the output. In that work, we first
defined the notion of insensitive microaggregation, which is a multivariate mi-
croaggregation procedure that partitions data in groups of k records with a
criterion that does not depend on the input data, but just on the domain of
attributes. Insensitive microaggregation ensures that, for every pair of data sets
X and X ′ differing in a single record, the resulting clusters will differ at most in
a single record. Hence, the centroids used to replace records of each cluster will
have low sensitivity to changes of one input record. Specifically, when centroids
are computed as the arithmetic average of the elements of the cluster, the sensi-
tivity is as low as Δ(X)/k, where Δ(X) is the distance between the most distant
records of the joint domains of the input data and k is the size of the clusters.
Finally, since we were finally releasing n/k centroids, each one computed on a
cluster of cardinality k and having sensitivity Δ(X)/k, the sensitivity of the
whole data set to be released is n/k ×Δ(X)/k. Thus, for numerical data sets,
Laplacian noise with scale parameter (n/k×Δ(X)/k)/ε must be added to each
centroid to obtain a ε-differentially private output.

Even though this previous work effectively reduces the amount of Laplace
noise to be added to achieve general-purpose ε-differentially private data releases,
the fact that it requires using a microaggregation parameter k that depends on
the number of records n of the input data set may be problematic for large data
sets. To tackle this limitation, in this paper we present an alternative procedure
that offers utility gains with respect to standard differential privacy mechanisms
regardless of the number of records of the input data set.

4 Differential Privacy via Individual Ranking

In this section we present a method to obtain differentially private data releases
which can reduce noise even more than the above-mentioned prior k-anonymity
approach based on multivariate microaggregation. For simplicity, we assume data
sets with numerical attributes to which an amount of Laplacian noise is added
to satisfy differential privacy.
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In our previous approach [29] the utility gain was limited by the insensitive
multivariate microaggregation used to reach k-anonymity. The sensitivity of the
set of n/k centroids obtained from the multivariate microaggregation was n/k×
Δ(X)/k because, in the worst case,

– Changing a single record in the input data set can cause all n/k clusters to
change by one record;

– The record changed within each cluster can alter the value of the cluster
centroid by up to Δ(X)/k, where Δ(X) is the maximum distance between
elements in the domain of the input data (we are assuming that centroids
are computed as the arithmetic average of record values in the cluster).

The above worst-case scenario overestimates the actual sensitivity of the out-
put and, thus, the noise to be added to the centroids to achieve ε-differential
privacy.

Intuitively, the aggregation of the centroid variations would seem to be upper-
bounded by Δ(X)/k. However, given the multivariate microaggregation used
in [29], this is only true if a total order for the domain of X exists for which the
triangular inequality is satisfied with equality; that is, when d(r1, r2)+d(r2, r3) ≥
d(r1, r3) holds for any records r1, r2 and r3 in X . The goal is to distribute the
variation due to the modification of one record among the clusters, but mak-
ing sure that the sum of variations of centroids is not greater than the original
variation over k. Unfortunately, this is generally not the case for multivariate
data because a natural total order does not always exist. Artificial total orders
defined for multivariate data (as done in [29]), do not fulfill the triangular in-
equality and, as discussed above, the sensitivity of individual centroids should
be multiplied by the number of released centroids to satisfy differential privacy
(that is, n/k ×Δ(X)/k).

On the contrary, in univariate numerical data sets, a natural total order (the
usual numerical order) can be easily defined with respect to the minimum or
maximum value of the domain of values of the attribute so that the triangular
inequality holds. In these conditions, it is shown in [8] that clusters in the optimal
microaggregation partition contain consecutive values. The next lemma shows
that the sensitivity of the set of centroids is indeed Δ(X)/k.

Lemma 1. Let x1, · · · , xn be a totally ordered set of values that has been mi-
croaggregated into �n/k� clusters of k consecutive values each, except perhaps one
cluster that contains up to 2k − 1 consecutive values. Let the centroids of these
clusters be x̄1, · · · , x̄n/k�, respectively. Now if, for any single i, xi is replaced by
x′
i such that |x′

i − xi| ≤ Δ and new clusters and centroids x̄′
1, · · · , x̄′n/k� are

computed, it holds that
n/k�∑
j=1

|x̄′
j − x̄j | ≤ Δ/k

Proof. Assume without loss of generality that x′
i > xi (the proof for x′

i < xi

is symmetric). Assume, for the sake of simplicity, that n is a multiple of k (we
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will later relax this assumption). Hence, exactly n/k clusters are obtained, with
cluster j containing consecutive values from x(j−1)k+1 to xjk. Let ji be the
cluster to which xi belongs. We can distinguish two cases, namely x′

i ≤ xjik+1

and x′
i > xjik+1.

Case 1. When x′
i ≤ xjik+1, x

′
i stays in ji. Thus, the centroids of all clusters

other than ji stay unchanged and the centroid of cluster ji increases by Δ/k,
because x′

i +Δ. So the lemma follows in this case.
Case 2. When x′

i > xjik+1, two or more clusters change as a result of replacing
xi by x′

i: cluster ji loses xi and another cluster j′i (for j′i > ji) acquires x′
i. To

maintain its cardinality k, after losing xi, cluster ji acquires xjik+1. In turn,
cluster ji + 1 loses xjik+1 and acquires x(ji+1)k+1, and so on, until cluster j′i,
which transfers its smallest value x(j′i−1)k+1 to cluster j

′
i−1 and acquires x′

i. From
cluster j′i+1 upwards, nothing changes. Hence the overall impact on centroids is

n/k∑
j=1

|x̄′
j − x̄j | =

j′i∑
j=ji

|x̄′
j − x̄j |

=
xjik+1 − xi

k
+

x(ji+1)k+1 − xjik+1

k
+ · · ·+

x′
i − x(j′i−1)k+1

k

=
x′
i − xi

k
=

Δ

k
. (2)

Hence, the lemma follows also in this case.
Now consider the general situation in which n is not a multiple of k. In this

situation there are �n/k� clusters and one of them contains between k + 1 and
2k − 1 values. If we are in Case 1 above and this larger cluster is cluster ji, the
centroid of ji changes by less than Δ/k, so the lemma also holds; of course if
the larger cluster is one of the other clusters, it is unaffected and the lemma
also holds. If we are in Case 2 above and the larger cluster is one the clusters
that change, one of the fractions in the third term of Expression (2) above has
denominator greater than k and hence the overall sum is less than Δ/k, so the
lemma also holds; if the larger cluster is one of the unaffected ones, the lemma
also holds. �

From the previous lema, it turns out that, for univariate data sets, the amount
of noise needed to fulfill differential privacy after the microaggregation step is
significantly lower than with the method in [29] (i.e. sensitivity Δ(X)/k vs.
n/k × Δ(X)/k). Moreover, this noise is exactly 1/k-th of the noise required
by the standard differential privacy approach, in which the sensitivity is Δ(X)
because any output record may change by Δ(X) following a modification of
any record in the input. To benefit from such a noise reduction in the case of
multivariate data sets, we rely on the following two composition properties of
differential privacy.

Lemma 2 (Sequential composition [25]). Let each sanitizing algorithm Agi
in a set of sanitizers provide εi-differential privacy. Then a sequence of sanitizers
Agi applied to a data set D provides (

∑
i εi)-differential privacy.
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Lemma 3 (Parallel composition [25]). Let each sanitizing algorithm Agi in
a set of sanitizers provide ε-differential privacy. Then a sequence of Agi each
applied to a disjoint data set Di provides ε-differential privacy.

In the context of differentially private data publishing, we can think of a data
release as the collected answers to successive queries for each attribute value
in each record of the data set. Let Ira(X) be the query function that returns
the value of attribute a (from a total of m attributes) in record r (from a total
of n records) in data set X . Then if, for a fixed attribute a, we independently
randomize each query Ira(X) for r = 1, · · · , n to attain ε-differential privacy,
by parallel composition the set of n answers obtained are an ε-differentially
private version of attribute a (records are disjoint from each other, so parallel
composition is applicable). Now, if we publish the differentially private versions
of all m attributes, by sequential composition the data set is mε-differentially
private (attributes are considered not disjoint from each other, since they are
usually correlated; hence, sequential composition applies here).

To reduce sensitivity and hence the amount of noise needed to attain differ-
ential privacy via microaggregation, while exploiting the benefits of the natural
orders available on attribute basis, we can use an univariate microaggregation:
individual ranking [6]. Individual ranking deals with multi-attribute data sets
by microaggregating one attribute at a time. Input records are sorted by the
first attribute, then groups of successive k values of the first attribute are cre-
ated and all values within that group are replaced by the group representative
(e.g. centroid). The same procedure is repeated for the rest of attributes. The
attribute-independent microaggregation of individual ranking fits with our goal:
to independently attain differential privacy on each microaggregated attribute
and then use sequential composition to obtain a differentially private data set.

As discussed in above, each numerical attribute is already equipped with a
natural total order that fulfills the triangular inequality. Thus, Lemma 1 guaran-
tees that the centroids output by individual ranking for each attribute Ai have
total sensitivity Δ(Ai)/k, where Δ(Ai) is the maximum distance between two
values in the domain of Ai. Hence, we propose the following algorithm to ob-
tain a differentially private version XD of a numerical original data set X with
attributes A1, · · · , Am.

Algorithm 1

1. Use individual ranking microaggregation independently on each attribute Ai,
for i = 1 to m. Within each cluster, all attribute values are replaced by the
cluster centroid value, so each microaggregated cluster consists of k repeated
centroid values. Let the resulting microaggregated data set be XM .

2. Add Laplace noise independently to each attribute AM
i of XM , where the

scale parameter for attribute AM
i is

Δ(AM
i )/ε = Δ(Ai)/(k × ε).

The same noise perturbation is applied to all repeated centroid values within
each cluster.
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Now we can state:

Lemma 4. The output of Algorithm 1 is mε-differentially private.

Proof. In Step 1 of Algorithm 1, if attribute Ai (with i = 1, · · · ,m) has sensi-
tivity Δ(Ai) in X , by Lemma 1 its microaggregated version AM

i has sensitivity
Δ(Ai)/k. In Step 2, an ε-differentially private version of AM

i is obtained. By se-
quential composition, the noise-added data set XD is mε-differentially private.
Note that sequential composition needs to be applied, because attributes of an
individual are not disjoint from each other. �
Note. In Step 2 of Algorithm 1, it is critically important to apply exactly the
same noise perturbation to all repeated values within a microaggregated cluster.
If we used different random perturbations for each repeated value, the resulting
noise-added cluster would be equivalent to the answers to k independent queries.
This would multiply times k the sensitivity of the centroid, which would cancel
the sensitivity reduction brought by microaggregation in Step 1.

5 Empirical Evaluation

This section details the empirical evaluation of the proposed method regarding
data utility preservation.

As evaluation data we used the “Adult”data set from the UCI repository [16].
We took two numerical attributes AGE and (working) HOURS-PER-WEEK of
the training corpus, which consists of 30,162 records after removing records with
missing values. Since the two attributes represent non-negative numerical mag-
nitudes, we defined their domains as [0 . . . (1.5 ×max attr. value in dataset)],
as done in [29]. The difference between the bounds of the domain of each at-
tribute Ai determines the sensitivity of that attribute (Δ(Ai)) and, as detailed
above, determines the amount of Laplace noise to be added to microaggregated
outputs. Since the Laplace distribution takes values in the range (−∞,+∞), for
consistency, we bound noise-added outputs to the domain ranges define above.

As done in the literature on statistical disclosure control, we evaluated the
utility of the anonymized output in terms of information loss [19].

To do so, we used the Sum of Squared Errors (SSE), which is a well-known
information loss measure. SSE is defined as the sum of squares of attribute
distances between records in the original data set X and their versions in the
anonymized data set, that is

SSE =
∑
xj∈X

∑
ai
j∈xj

(dist(aij , (a
i
j)

′))2,

where aij is the value of the i-th attribute for the j-th original record, (aij)
′ repre-

sents its anonymized version and dist(·, ·) corresponds to the standard Euclidean
distance. In our experiments, the SSE value was normalized by the number of
attributes considered in each test (m).
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The ε parameter for differential privacy was set to ε = {0.1, 1.0, 10.0}, which
covers the usual range of differential privacy levels observed in the literature
[15,3,4,23]. Since record attributes are not disjoint, the sequential composition
should be applied. Thus, as discussed in Section 4, to obtain ε-differentially pri-
vate records we need (ε/m)-differentially private attribute values. Hence, Laplace
noise addition with scale parameterΔ(Ai)/(k×(ε/m)) needs to be added to each
attribute Ai, where k is the level of prior microaggregation (which we set between
2 and 100) and m the number of attributes to protect (2).

As baseline methods to compare our proposal with, we considered:

– Plain Laplace noise addition for ε-differential privacy. Since attributes are
not disjoint, the sequential composition should be also applied. Thus, to
obtain an ε-differentially private record we need (ε/m)-differentially pri-
vate attribute values. Hence, Laplace noise addition with scale parameter
Δ(Ai)/(ε/m) = mΔ(Ai)/ε needs to be added to each attribute Ai.

– Plain individual ranking, with no subsequent Laplace noise addition. Al-
though this method does not lead to ε-differential privacy by itself, we want
to show the contribution of individual ranking to the information loss caused
by our method.

Figure 1 shows the comparison between the SSE obtained with plain Laplace
noise addition, plain individual ranking and our approach. Due to the broad
ranges of the SSE values, a log10 scale is used for the Y-axes. The plain Laplace
noise addition baselines are displayed as horizontal lines, because they do not
depend on the value of k. Each test involving Laplace noise shows the average
results of 5 runs, for the sake of stability.

Regarding plain individual ranking we observe that it causes an information
loss that grows with k, but which is shown to be negligible in comparison with the
information loss caused by Laplace noise addition for most values of ε (remember
that the scale of Y-axes is logarithmic).

Regarding differentially private methods, we observe that, already for k > 1,
our approach significantly reduces the noise required to attain ε-differential pri-
vacy vs. plain Laplace noise addition. The relative improvement of SSE depends
on the value of ε. For the smallest ε (that is, 0.1) the amount of noise involved is
so high that even with the noise reduction achieved by our method, the output’s
utility would be severely hampered. However, for k = 100 the reduction of in-
formation loss almost equals that of 1.0-differential privacy with plain Laplacian
noise. This is very relevant because the more robust privacy guarantee offered by
the 0.1-differentially private outputs of our method is achieved with an informa-
tion loss equivalent to that of 1.0-differential privacy for the standard mechanism.
For the highest ε (that is, 10.0) there is a substantial decline of SSE for low k and,
for larger k, SSE stays more constant and almost as low as the SSE achieved by
the individual ranking alone. In this case, the noise added by individual ranking
in larger clusters dominates and limits the benefits of the noise reduction at the
ε-differential privacy stage due to the decreased sensitivity with larger k. Finally,
for ε = 1.0, a more linear decrease is achieved as the k values grow, because the
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=

Fig. 1. SSE for the proposed method for different ε values (black non-horizontal lines,
as SSE depends on the microaggregation parameter k) vs. plain Laplace noise addition
(gray horizontal lines, because SSE does not depend on k) and plain individual ranking
microaggregation. Y-axes are in log10 scale.

information loss improvement is less limited by the lower bound of the individual
ranking microaggregation.

6 Conclusions

In this paper, we have presented an anonymization method that combines the
low information loss incurred by individual ranking microaggregation and its
lack of assumptions on data uses and the robust privacy guarantees offered by ε-
differential privacy. As a result, our method is able to effectively reduce the scale
parameter of noise needed to fulfill differential privacy, and thus improve the
utility of anonymized outputs. The method proposed here is easy to implement,
because the individual ranking algorithm only relies on the natural order of
individual attributes.

As future work, we plan to further evaluate our method with other data sets
and compare the results with those of related works on differentially private
data publishing, even if that means restricting the utility to specific tasks (e.g.
counting queries). Finally, we also plan to adapt the proposed procedure to work
with categorical data. Unlike for numerical attributes, categorical attributes take
values from a finite set of, usually, non-ordinal categories. Hence, appropriate
operators to compare, sort, microaggregate and randomize the outputs should
be defined [11,24].
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Abstract. We propose methods to release and analyze synthetic graphs
in order to protect privacy of individual relationships captured by the
social network. Proposed techniques aim at fitting and estimating a wide
class of exponential random graph models (ERGMs) in a differentially
private manner, and thus offer rigorous privacy guarantees. More specif-
ically, we use the randomized response mechanism to release networks
under ε-edge differential privacy. To maintain utility for statistical in-
ference, treating the original graph as missing, we propose a way to
use likelihood based inference and Markov chain Monte Carlo (MCMC)
techniques to fit ERGMs to the produced synthetic networks. We demon-
strate the usefulness of the proposed techniques on a real data example.

Keywords: Exponential random graphs, edge differential privacy, miss-
ing data, synthetic graphs.

1 Introduction

Social networks are a prominent source of data for researchers in economics,
epidemiology, sociology and many other disciplines and have sparked a flurry of
research in statistical methodology for network analysis. In particular, the expo-
nential random graph models (ERGMs) are a very popular modeling framework
for analyzing social network data, e.g., see [16], [32], [15]. While the social ben-
efits of analyzing these data are significant, their release can be devastating to
the privacy of individuals and organizations. For example in a famous study by
[3], researchers analyzed a social network of high school students to study their
romantic relationships, and more broadly to understand the structure of human
sexual networks. However, such network data are typically only protected via
naive anonymization schemes (e.g., by removing the basic identifiers such as
name, social security number, etc.), which have been shown to fail and can lead
to disclosure of individual relationships or characteristics associated with the
released network (for more specific examples, see [28] and [1]).

In this paper, we develop techniques to provide protection to relationship
information while allowing for a valid statistical analysis of the data. We use
edge differential privacy as a model for measuring privacy risks, and develop
inference procedures for analyzing networks using the exponential random graph
models.

J. Domingo-Ferrer (Ed.): PSD 2014, LNCS 8744, pp. 143–155, 2014.
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2 Past Work on Privately Estimating ERGMs

Our work is the first to develop techniques for actually fitting and estimating
a wide class of ERGMs in a differentially private manner. Previous studies on
inferring ERGMs in a private manner have only focused on releasing summary
statistics that correspond to sufficient statistics of ERGMs. For example, Karwa
et al. [23] use the smooth sensitivity framework of [8] to add noise and release
subgraph counts such as number of k-triangles and k-stars. These subgraph
counts are sufficient statistics for a wide class of exponential random graph
models, see for example [21]. Hay et al. [19] propose an algorithm for releasing
the degree partition of a graph using the Laplace mechanism. They use post-
processing techniques to reduces the L2 error between the true and the released
degree distribution.

Most of the previous studies dealing with private release of network data fall
short of demonstrating how to perform valid statistical inference using the noisy
statistics, which is a non-trivial task. They typically advocate using the noisy
statistics as is for inference, sometimes followed by some form of post-processing,
ignoring the noise addition process. It has been well established in statistical lit-
erature that ignoring the noise addition process can lead to inconsistent and
biased estimates, see for example, [5] and [12]. Moreover, even if we are to pro-
ceed naively by ignoring the noise addition process and pretend that the noisy
statistics are the true sufficient statistics, we often cannot perform inference us-
ing existing estimation procedures. This is because many estimation procedures
may fail to converge or may give meaningless results.

Fienberg et al. [10], for example, show that maximum likelihood estimators
(MLEs) for log-linear models of contingency tables do not exist when sufficient
statistics are released using a generalization of mechanism proposed by Barack
et al. [2]. Karwa and Slavkovic [24,25], demonstrate that the MLE may not
exist when one uses Laplace mechanism and naive post-processing techniques
for releasing degree sequences of random graphs, and present new algorithms to
release graphical degree sequences which ensure that the MLE of the β model
exists; degree sequences are sufficient statistics of a class of ERGMs known as β
model. Furthermore, building on the work of [23], Karwa and Slavkovic [24,25]
construct an asymptotically consistent and differentially private estimator of the
β model. The main technique relies on projecting the noisy sufficient statistics
onto the lattice points of the marginal polytope corresponding to the β model.
Marginal polytopes are polytopes of sufficient statistics and existence of MLE
is directly tied to the structure of these polytopes. However, approach of [24,25]
does not scale to more general ERGMs as the corresponding marginal polytopes
are not well understood [9].

In this paper, we take a principled approach, rooted in likelihood theory, to
perform inference from data released by privacy preserving mechanisms. Our key
idea is to release network data using a differentially private mechanism and esti-
mate the parameters of ERGMs by taking into account the privacy mechanism.
Thus, let X = x be the data that requires protection and let P (X ; θ) be a model
one is interested in fitting. Privacy preserving mechanisms can be modeled as
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P (Y |X = x, γ), i.e., the released data y is a sample from P (Y |X = x, γ) whose
parameters γ of the privacy mechanism are publicly known. Most of the current
work advocates on using P (y; θ) for inference, ignoring the privacy mechanism.
In some cases, y is post-processed to minimize some form of distance from x.
As noted earlier, using y directly can lead to invalid inferences. Declaring the
original data x as missing, we develop methods that take the privacy mechanism
into account. Thus we use the likelihood P (Y ; θ, γ) =

∑
x P (Y |X, γ)P (X ; θ) for

inference. This approach offers both the improved accuracy in estimation of θ
and meaningful estimates of standard errors.

The rest of the paper is organized as follows. In Section 3, we introduce the
key definitions of differential privacy and the randomized response mechanism
used to release the networks. In Section 4, we develop the inference procedures
to analyze networks released by the differentially private mechanism. Section 5
presents the experimental results, and is followed by conclusions in Section 6.

3 Differential Privacy for Graphs and Randomized
Response

This section introduces the privacy model and the notation used throughout
the paper. Let X be an undirected simple graph on n nodes with m edges. A
simple undirected graph is a graph with no directed edges, and with no self
loops and multiple edges. All the graphs considered in this paper are simple and
undirected. Let X denote the set of all simple graphs on n nodes. The distance
between two graphs X and X ′, is defined as the number of edges on which the
graphs differ and is denoted by Δ(X,X ′). Each node can have a set of attributes
associated with it. We will assume that these attributes are known and public.
Thus, we are interested in protecting the relationship information in a graph,
which is captured by edge differential privacy.

3.1 Edge Differential Privacy

Edge differential privacy is defined to protect edges in a graph (or relationships
between nodes), as the following definition illustrates.

Definition 1 (Edge Differential Privacy). Let ε > 0. A randomized algo-
rithm A is ε-edge differentially private if for any two graphs X and X ′ such that
Δ(X,X ′) = 1 and for any subset S of possible outputs of A,

P (A(X) ∈ S) ≤ eεP (A(X ′) ∈ S).

Edge differential privacy (EDP) requires that the distribution of outputs ob-
tained from the algorithm A on two neighboring graphs (i.e., they differ by
one edge) should be close to each other. The parameter ε controls the amount
of information leakage. Smaller ε leads to lower information leakage and hence
provide stronger privacy protection.
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One nice property of differential privacy is that any function of the differ-
entially private algorithm is also differentially private as the following lemma
illustrates.

Lemma 1 (Post-processing [7,29]). Let f be an output of a differentially
private algorithm applied to a graph X and g be any function whose domain is
range of f . Then g(f(X)) is also differentially private.

3.2 Randomized Response for Edges

Most differentially private mechanisms perturb the output of a function f ap-
plied to a dataset. A basic algorithm for releasing the output of any function
f under EDP uses the Laplace Mechanism (e.g., see [8]). This mechanism adds
Laplace noise to f(X) proportional to its global sensitivity, which is the max-
imum change in f over neighboring graphs. However, this mechanism is not
suitable for releasing synthetic graphs for estimating a large class of ERGMs.
This is because in order to use the Laplace Mechanism, we need to fix a set of
models apriori and release the corresponding sufficient statistics by estimating
their sensitivity.

An alternative way is to perturb the network directly. We call such algorithms
input perturbation algorithms. Randomized response is the simplest example
of an input perturbation algorithm where random variables are perturbed by
a known probability mechanism. Such designs have been extensively used and
studied in the context of surveys when eliciting answers to sensitive questions,
e.g., see the monograph by [6]. It has also been used for statistical disclosure
control when releasing data in the form of contingency tables, e.g., see [20]. We
will use a randomized response mechanism to release dyads of a graph, that is
subgraphs of size 2, and generate a synthetic graph.

Let X be a random graph with n nodes, presented by its adjacency matrix.
In our setting, the adjacency matrix is a symmetric (0,1)- n × n matrix with
zeros on its diagonal, and it captures if there is an edge or not between the
nodes in the graph. We will apply randomized response to each entry of the
adjacency matrix of X . Algorithm 1 shows how to release a random graph Y
from X that is ε-edge differentially private. Note that for an undirected graph,

we need to release n(n−1)
2 binary entries. Let p11 be the probability of the same

edge appearing in both the graphs x and y, and p00 if there is no edge in both
the graphs.

Proposition 1 (see for e.g., [13]). Algorithm 1 is ε-edge differentially private
with

ε = log max

{
p00

1− p11
,
1− p11
p00

,
1− p00
p11

,
p11

1− p00

}
.

Proposition 1 shows that Algorithm 1 is differentially private. Note that when
any of p00 and p11 are equal to 0.5, we get ε = 0, which provides no information
about the original graph and hence offers the strongest possible privacy possible.
When either of them are 1, we get ε = ∞. When both p00 and p11 are 1, the
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Algorithm 1.

1. Let x = {xij} be the vector representation of the adjacency matrix of X
2. for each dyad xij do
3. if xij = 1, then yij = 1 with prob p11, else yij = 0 with prob 1− p11.
4. If xij = 0, then yij = 1 with prob 1− p00, else yij = 0 with prob p00.
5. Let Y = {yij}.
6. end for
7. return Y

algorithm releases the original graph and offers no privacy. When p11 = 1, the
algorithm releases the edges exactly, and when p00 = 1, the algorithm releases
the non-edges exactly. We get a range of ε from 0 to ∞ for intermediate values
of p00 and p11. We will assume that the parameters of this algorithm are public,
i.e., p00 and p11 are known, otherwise there are identifiability issues, that is the
parameters of the model are not identifiable.

Let 1−p00 = 1−p11 = π, where π is the probability of perturbing a dyad. This
is a special case of the randomized response mechanism, where we flip the state

of each dyad with probability π. In this case, we get ε = logmax
{

π
1−π ,

1−π
π

}
.

Let X be the input graph and Y be the output of the randomized response
mechanism. We can think of Y as the output from a noisy sampling mechanism
applied to X . More precisely, if p00 = p11 = π in Algorithm 1, then the output
has the following conditional distribution:

Pπ(Y |X = x) =
∏
ij

πIyij �=xij (1− π)Iyij=xij ,

where Iyij=xij takes value 1 if there is the same edge in graphs x and y and
zero otherwise. Note that if π = 0.5, we cannot perform any inference on a
model for X as all information in the original data is lost. Moreover, if π > 0.5,
the structure of graph “reverses”, i.e., edges become non-edges and vice-versa.
Hence to provide non-trivial utility, we set π ∈

(
0, 12

)
. In this case, Algorithm

1 is ε-edge differentially private with ε = − log π
1−π . Note that for conservative

values of ε, the algorithm may not provide any utility. For instance, for a target
ε = 1, π � 0.27, meaning with probability 0.27 an edge will be flipped. With
ε = 0.1, π � 0.47, approaching 0.5. As π approaches 0.5, the “utility” in the
perturbed network approaches 0. The question of what is the correct value of ε
remains open, but in our case in order to maintain utility for inference, we do
need larger values of ε.

4 Likelihood Based Inference of ERGMs from
Randomized Response

Exponential random graph models (ERGMs) for a multivariate distribution of
X can be parametrized in the following form according to [4,11]:
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P (X = x; θ) =
exp{θ·g(x)}

c(θ,X )
, x ∈ X . (1)

Here θ ∈ Θ ⊂ R
q are a vector of parameters, g(x) is a vector of sufficient

statistics, and c(θ,X ) is the normalizing constant given by

c(θ,X ) =
∑
x∈X

exp{θ·g(x)}. (2)

In absence of any privacy mechanism, x is a fully observed random sample
from the model given by equation 1. One of the main challenges in finding the
maximum likelihood estimate (MLE) of θ is that the normalizing constant c(θ,X )
given by equation 2 is intractable due to the sum over all possible graphs in X . A
lot of work has been done in estimating the normalizing constant and maximizing
the likelihood for estimating ERGMs. For example, Geyer and Thompson [14]
use a stochastic algorithm to compute the MLE for a large class of models that
includes ERGMs. They approximate the normalizing constant using a Markov
chain Monte Carlo (MCMC) algorithm, and compute the MLE by maximizing
the stochastic approximation of the likelihood. More precisely, let θ0 ∈ Θ be a
fixed constant. The ratio of two normalizing constants can be approximated as
follows:

c(θ)

c(θ0)
=

∑
x′∈X

exp{θ · g(x′)}
c(θ0)

≈ 1

M

M∑
i=1

exp {(θ0 − θ)·g(Xi)},

where X1, X2, . . . , XM
i.i.d.∼ P (X = x, θ0) for some initial guess θ0. Here M is the

number of random graphs sampled. Generally, it is difficult to simulate directly
from P (X = x, θ0) and we need to resort to MCMC methods to generate the
sample. For more details on how to construct Markov chains on the space X and
to sample from ERGMs, see [34,17,27].

The above algorithm used to approximate the likelihood can be extended to
infer θ from a private sample y. Such extensions were also considered in [18] in
the context of so called ignorable sampling mechanisms for network data, i.e.
when y is a sample of the original network x. Roughly, ignorable designs are
those where the sampling mechanism does not depend on the missing data. Our
setting is different because in general, differential privacy mechanisms are not
ignorable and depend on the original data. However, as we will see, the MCMC
approach of [14] can be extended to estimate parameters from data released by
privacy mechanisms since the parameters of the privacy mechanism are public.

The following discussion is general and applies to a generic privacy mecha-
nism Pγ(Y |X) with known γ. Recall that we wish to estimate θ using a private
sample y obtained from Pγ(Y |X = x). A naive approach is to ignore the privacy
mechanism and estimate the parameters using the naive likelihood P (X = y, θ).
The correct approach is to include the privacy mechanism in the model and use



Differentially Private Exponential Random Graphs 149

the full likelihood of Y . We can formulate this likelihood by treating the original
data x as missing, and summing over all possible values of x. Thus, if we let
θ̂mle(y) be the maximum likelihood estimator of θ obtained from y, then

θ̂mle(y) = argmax
θ∈Θ

L(θ; y) (3)

= argmax
θ∈Θ

∑
x∈X

Pγ(Y = y|X = x)P (X = x; θ). (4)

For our purposes, P (X = x; θ) is the ERGM we are interested in fitting.
Pγ(Y = y|X = x) is the privacy mechanism with parameters γ. In case of the
randomized response mechanism of Algorithm 1, γ = π.

With a bit of algebra, we can re-write the likelihood based on y as follows:

L(θ;Y = y, π) =
c(θ|y)
c(θ)

where c(θ|y) =
∑
x∈X

eθ·g(x)Pγ(Y = y|X = x).

Thus, we need to estimate two intractable constants c(θ|y) and c(θ). They
can be approximated by using the MCMC technique of [14] described previ-
ously. We need two Markov chains, one for the estimating c(θ) and the other
for estimating c(θ|y). To estimate the latter constant, the MCMC sample needs
to be weighted by the privacy weights Pγ(Y |X), which are known. Thus, if

X1, . . .XM
i.i.d.∼ P (X = x, θ0)

c(θ|y)
c(θ0)

=
∑
x′∈X

exp{θ · g(x′)}Pγ(y|Xi)

c(θ0)

≈ 1

M

M∑
i=1

exp {(θ0 − θ)·g(Xi)}Pγ(y|Xi),

where M is the number of sampled graphs.
Note the key in being able to estimate c(θ|y) is that the weights Pγ(y|Xi) can

be computed because the parameters of the privacy mechanism are known. A
similar weighting based approach but with the EM-algorithm was proposed by
[35] for estimating logistic regression from variables subject to another privacy
mechanism known as the Post Randomization Method (PRAM). The standard
errors and confidence interval of the parameters can be derived in the usual
manner; for details see [27].

5 Experiments

In this section, we evaluate the proposed differentially private randomized re-
sponse algorithm to release synthetic networks and estimate the parameters of
ERGM using the missing data likelihood. Specifically, we consider a subset of
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a friendship network collected in the Teenage Friends and Lifestyle Study; see
[30] and [26]. The study records a network of friendships and substance use for
a cohort of students in a school in Scotland. In the current study, we used an
excerpt of 50 adolescent girls made available online in the Siena package [33].
The network consists of 50 nodes and 39 edges. There are four covariates as-
sociated with each node: Drug usage (yes or no), Smoking status (yes or no),
Alcohol usage, (regular or irregular) and Sport activity (regular or irregular).

As mentioned earlier, we assume that the covariates associated with each node
are available publicly. Our goal is to protect the relationship information in the
network x. Thus, we release the adjacency matrix of x using the randomized
response mechanism of Algorithm 1 for varying values of π. For each value of
π, we release 10 synthetic networks. For each released network y, we fit an
ERGM, using two different likelihoods: One that takes the privacy mechanism
into account, called the missing data likelihood, and the other that ignores the
privacy mechanism, called the naive likelihood. We fit the following ERGM to
the network:

P (X; θ) ∝ exp{θ1edges+ θ2gwesp+ θ3popularity + θ4drug + θ5sport+ θ6smoke}.
(5)

The first three terms in equation 5 capture the network structure of the graph,
and the last three terms represent the homophily effect of covariates. The term
edges measures the number of edges in the network. The term gwespmeasures the
transitive effects in the network, in a weighted manner, and the term popularity
captures the degree distribution of the network. For more details on these terms,
see [27]. We use the ergm package [22] in R [31] to fit the models.

We evaluate these methods by measuring the Kullback-Leibler (KL) diver-
gence between the distributions implied by estimates obtained from the private
network and the true network. Let θx and θy be two parameter estimates ob-
tained by using the original network x and the private network y, respectively.
Recall that the KL divergence between the two distributions is given by the
following equation:

KL(θx, θy) = Eθx

[
log

P (x, θx)

P (x, θy)

]
=

∑
x∈X

log

(
P (x, θx)

P (x, θy)

)
P (x, θx)

= (θx − θy)g(x) + log
c(θy)

c(θx)
.

The KL divergence can be easily computed using the MCMC techniques de-
scribed in Section 4; see also [18] for more details. Figure 1 shows the plot of
the KL divergence between the private and non-private network on the y-axis
and the perturbation probability π on the x-axis, for different releases of the
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Fig. 1. Comparison of the private ERGM models in the Friendship dataset estimated
using the missing data likelihood and the naive likelihood. The red line (lower value
of KL) represents the KL divergence between the estimates based on the missing data
likelihood and the MLE from the original data. The cyan line (higher value of KL)
represents the KL divergence between the estimates based on the naive likelihood and
the MLE. The x-axis represents the perturbation probability π used in to release the
synthetic network.

synthetic network. The solid line represents the mean KL divergence and the
shaded region represents the 99 percent confidence region. The dotted lines show
the value of KL divergence for each released dataset. Note that ε = − log π

1−π ,
so larger values of π imply stronger privacy.

Figure 1 shows that the KL divergence between the private estimate and
the non-private estimate increases as π increases, thus stronger privacy leads to
reduced utility. However, the KL divergence of the naive likelihood increases at
a much faster rate when compared to the missing data likelihood. This is true
especially for larger values of π. Thus for strong privacy protection, the missing
data likelihood provides estimates that are closer to the non-private estimates
when compared to the naive likelihood.

For a more detailed evaluation of our method, we will look at the relative
mean squared error (MSE) of individual parameter estimates. The error is cal-
culated as the mean squared difference between the estimates obtained by the
private network and the estimates from the true network. Figure 2 shows a plot
of MSE for each parameter in the ERGM model. Note that the first three param-
eters capture the relational structure of the network and the last three param-
eters measure the main effects of the nodal covariates Drug, Smoke and Sport .
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Degree Popularity Edges Gwesp

Drug Smoke Sport

0

1

2

0
5

10
15

0.0
0.5
1.0
1.5

0.00
0.25
0.50
0.75
1.00

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03

Pertubation probability

M
ea

n 
S

qu
ar

ed
 E

rr
or

Likelihood Missing Data Naive

Fig. 2. MSE of parameter estimates of the private ERGM models in the Friendship
dataset estimated using the missing data likelihood and the naive likelihood. The red
line (lower values) represents the MSE of the estimates based on the missing data
likelihood. The cyan line (higher value) represents the MSE of the estimates based on
the naive likelihood and the MLE. The x-axis represents the perturbation probability
π used in to release the synthetic network.

Table 1 shows the estimate of mean percentage relative efficiency of the param-

eters, i.e., it shows the ratio MSE[Missing]
MSE[Naive] in form of percentage. In the table,

values less than 100 favor the proposed missing data estimator.
Figure 2 and Table 1 show that for structural parameters, the MSE of es-

timates based on missing data likelihood are much smaller when compared to
those based on the naive likelihood. This is true specially for larger values of π.
For the parameters related to the homophily effects, the missing data estimates
also have lower MSE when compared to the naive estimates. However, the differ-
ence is not as drastic as for the structural parameters, especially in case of the
node covariate smoke. This is due to the fact that the nodal characteristics are
assumed to be public, hence the parameter estimates are effected only by the
changes in the total number of edges between nodes of the same covariate value.
In fact, for the smoke parameter, in some cases, as seen in Table 1, the naive
estimator seems to do better in terms of MSE. For the structural parameter
gwesp, the improvement in efficiency is quite substantial when using the missing
data likelihood.
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Table 1. Table of Relative efficiency of the estimators, MSE[Missing]
MSE[Naive]

for different values
π of perturbing a dyad

Parameter

π Popularity edges GWESP Drug Smoke Sport

0.005 16.5 38.1 9.8 43.4 59.2 37.7
0.01 26.1 80.4 15.8 74.4 69.4 31.8
0.02 17.6 51.7 7.9 58.8 105.3 24.6
0.03 19.9 49.3 10.2 13.2 124.3 49.4

6 Conclusion

In this paper, we present an ε-edge differentially private algorithm to release and
estimate exponential random graph models. We release synthetic networks using
a randomized response mechanism. By treating the original data as missing, we
incorporate the privacy mechanism into the likelihood for estimating the param-
eters. We show that missing data methodology and MCMC techniques can be
directly extended to maximize the likelihood of data released by a differentially
private mechanism and more generally any privacy preserving mechanisms.

Simulation studies show that our proposed approach leads to estimates with
much lower mean squared errors when compared to those obtained by ignor-
ing the privacy mechanism. Although we advocate the use of missing data and
MCMC techniques by analysts who use data obtained from a differentially pri-
vate mechanism, or more general privacy-preserving mechanisms, they can also
be used by data curators to release synthetic graphs for performing preliminary
analysis of other models. Indeed, using our techniques, the data curator can fit
an ERGM to the data and release synthetic graphs from the ERGM. The utility
of the synthetic graphs may depend on the goodness-of-fit of the ERGM chosen
by the data curator, and this requires further careful investigation.

In this paper, we assumed that the covariate information is available publicly,
which may not always be the case. We are currently working on relaxing this
assumption and releasing synthetic graphs that protect both nodal and struc-
tural information in a graph. Future investigations will also include evaluating
the usefulness of this approach for different sizes and sparsity of networks and
other ERGM specifications.
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10. Fienberg, S.E., Slavković, A.B.: Data Privacy and Confidentiality. International
Encyclopedia of Statistical Science, pp. 342–345. Springer (2010)

11. Frank, O., Strauss, D.: Markov graphs. Journal of the American Statistical Asso-
ciation 81(395), 832–842 (1986)

12. Fuller, W.A.: Measurement error models, vol. 305. John Wiley & Sons (2009)
13. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary

information in data privacy. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 265–273. ACM
(2008)

14. Geyer, C.J., Thompson, E.A.: Constrained monte carlo maximum likelihood for
dependent data (with discussion). Journal of the Royal Statistical Society. Series
B. Methodological 54(3), 657–699 (1992)

15. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical
network models. Foundations and Trends R© in Machine Learning 2(2), 129–233
(2010)

16. Goodreau, S.M., Kitts, J.A., Morris, M.: Birds of a feather, or friend of a friend?
using exponential random graph models to investigate adolescent social networks.
Demography 46(1), 103–125 (2009)

17. Handcock, M.S.: Statistical models for social networks: Inference and degeneracy.
Dynamic Social Network Modeling and Analysis 126, 229–252 (2003)

18. Handcock, M.S., Gile, K.J., et al.: Modeling social networks from sampled data.
The Annals of Applied Statistics 4(1), 5–25 (2010)

19. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree dis-
tribution of private networks. In: Ninth IEEE International Conference on Data
Mining, ICDM 2009, pp. 169–178. IEEE (2009)

20. Hout, A., Heijden, P.G.M.: Randomized response, statistical disclosure control and
misclassificatio: a review. International Statistical Review 70(2), 269–288 (2002)

21. Hunter, D.R., Goodreau, S.M., Handcock, M.S.: Goodness of fit of social network
models. Journal of the American Statistical Association 103(481), 248–258 (2008)



Differentially Private Exponential Random Graphs 155

22. Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M., Morris, M.: ergm:
A package to fit, simulate and diagnose exponential-family models for networks.
Journal of Statistical Software 24(3), nihpa54860 (2008)

23. Karwa, V., Raskhodnikova, S., Smith, A., Yaroslavtsev, G.: Private analysis of
graph structure. Proceedings of the VLDB Endowment 4(11) (2011)

24. Karwa, V., Slavkovic, A.: Differentially private synthetic graphs. arXiv preprint
arXiv:1205.4697 (2012)
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Abstract. Many organizations, enterprises or public services collect and manage
personal data of individuals. These data contain knowledge that is of substantial
value for scientists and market experts, but carelessly disseminating them can
lead to significant privacy breaches, as they might reveal financial, medical or
other personal information. Several anonymization methods have been proposed
to allow the privacy preserving sharing of datasets with personal information.
Anonymization techniques provide a trade-off between the strength of the pri-
vacy guarantee and the quality of the anonymized dataset. In this work we focus
on the anonymization of sets of values from continuous domains, e.g., numerical
data, and we provide a method for protecting the anonymized data from attacks
against identity disclosure. The main novelty of our approach is that instead of
using a fixed, given generalization hierarchy, we let the anonymization algorithm
decide how different values will be generalized. The benefit of our approach is
twofold: a) we are able to generalize datasets without requiring an expert to define
the hierarchy and b) we limit the information loss, since the proposed algorithm
is able to limit the scope of the generalization. We provide a series of experi-
ments that demonstrate the gains in terms of information quality of our algorithm
compared to the state-of-the-art.

Keywords: Privacy-Preserving Data Publishing, Privacy, km-anonymity,
Continuous data.

1 Introduction

Datasets that contain sets of numerical data are frequent in various domains. They might
describe readings from sensors or from human observation, they might represent health
indicators, e.g., measurements of blood pressure, or financial data, e.g., payments.

Consider the example of Table 1, which depicts payments performed by different
users for a service, e.g., recharges of a transport card. If this dataset is published, then
an attacker who has partial knowledge of a record might be able to identify the record
in the published dataset. For example, Alice may know that John has made a payment
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Table 1. Original Payment data

Name Payments
John {11000, 11000, 20000, 40000, 40000}
Mary {11000, 30500, 40000}
Nick {11000, 11000, 40000, 40000}
Sandy {11000}
Mark {20000}

of 11,000 and another one between 18,000 and 22,000. Even if names and unique iden-
tifiers are removed from the published Table 1, Alice will be be able to identify John’s
record in the dataset.

In this work we aim at providing protection against identity disclosure, i.e., to pre-
vent attackers from associating a record in the published dataset with a real person.
We ensure the preservation of user privacy in the published data, by guaranteeing km-
anonymity [1]. km-anonymity ensures that any attacker who knows up to m items of
a target record cannot use that knowledge to identify more than k individuals in the
dataset. This guarantee is a relaxation of the classic k-anonymity [2]. Consider the 22-
anonymous Table 2 which is an anonymization of Table 1. Any attacker with partial
knowledge of up to 2 values of a target, will not be able to identify less than 2 records.
To achieve this level of privacy in our dataset, using the data hierarchy of Figure 1, all
values had to be generalized because values {20,000} and {30,500} were rare. How-
ever, the same privacy can be ensured in Table 3 where values {20,000} and {30,500}
are generalized to the range [20,000-30,500]. As we can observe, less values are gener-
alized and a smaller information loss is achieved.

The basic novelty of our method is that we do not assume a fixed generalization
hierarchy, i.e., an a priori defined hierarchical mapping of the initial domain values
to generalized values, but the anonymization algorithm dynamically explores different
possible ways to anonymized the original domain. It relies on clustering values that
lie closely together and replacing them by the smallest possible range. The benefits
of our approach are twofold: a) the anonymization process does not need a clearly
defined hierarchy, which can be a burden for the data publisher and b) by exploring
a greater solution space, e.g., many different generalization hierarchies, it manages to
significantly limit the information loss due to the anonymization.

Our work differs from existing algorithms for km-anonymity [1, 3, 4] because a) it
focuses on continuous values, and not categorical ones as previous approaches, b) it

Table 2. 22-anonymous table using a data generalization hierarchy

Id Payments
1 (10000-20000], (10000-20000], (30000-40000], (30000-40000], (30000-40000]
2 (10000-20000], (30000-40000], (30000-40000]
3 (10000-20000], (10000-20000], (30000-40000], (30000-40000]
4 (10000-20000]
5 (10000-20000]
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Table 3. 22-anonymous table using a dynamic hierarchy

Id Payments
1 11000, 11000, [20000-30500], 40000, 40000
2 11000, [20000-30500], 40000
3 11000, 11000, 40000, 40000
4 11000
5 [20000-30500]

allows for duplicates in records, i.e., records have bag instead of set semantics and c) it
does not consider a given hierarchy.

Our main contributions include the following:

– We extend the problem of anonymizing set-valued data [1] to collections of itemsets
with continuous values;

– We present the main differences and challenges of applying km-anonymity guar-
antee to our data scenario;

– We propose a utility-preserving km-anonymization algorithm for continuous data
that does not use a fixed generalization hierarchy;

– We evaluate our methods with real-world data and compare our results to the apriori
algorithm of [1], a km-anonymity algorithm using pre-defined data generalization
hierarchies for set-valued data.

The rest of the paper is organized as follows: Section 2 describes the problem and
presents the attack models. In Section 3 we describe our algorithm and the data struc-
tures we use. Section 4 presents the experimental evaluation. Section 5 describes re-
lated work and in Section 6 we express our conclusions and possible future directions
of this work.

2 Problem Definition

Let dataset D be a collection of records t, where each record is a collection of values
v from a continuous domain I . We assume that each record describes a different real
world entity (person).

We assume attackers that only have partial knowledge of a record, i.e., m values that
are associated with a real person, and want to identify the whole record in the published

(0 - 10,000] (10,000 - 20,000] (20,000 - 30,000] (30,000 - 40,000] 

(0 - 20,000] (20,000 - 40,000] 

(0 - 40,000] 

Fig. 1. Data Generalization Hierarchy of the data in Table 1
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data. We do not make the distinction between sensitive attributes and quasi-identifiers.
Every value is a potential quasi-identifier, and all values are equally sensitive as well.
The km-anonymity [1] guarantee is defined as follows:

Definition 1. (km-anonymity guarantee [1]) A dataset D is considered km-anonymous
if any attacker knowing up to m values of a record t ∈ D, is not able to use this
knowledge to identify less than k records in D.

km-anonymity requires that each record in the dataset is indistinguishable from at
least k−1 others with reference to every possible m-sized combination of its values. In
other words, any attacker who knows of m values that are associated with a person will
always find k records in the published dataset that match her background knowledge.
Unlike traditional k-anonymity, we do not require that records are identical. In the con-
text of sparse multidimensional data, this would introduce great information loss, but it
would also be less significant; it would protect from attackers who know a complete or
almost complete record, which is unnecessary, and it would also protect against attack-
ers who have negative knowledge, i.e., those who know that a value does not appear in
a record. Negative knowledge is a weak quasi identifier in the case of sparse data and it
is not covered by km-anonymity to increase the quality of the anonymized dataset.

A dataset D which is not km-anonymous, can be transformed to km-anonymous
dataset D�, by recoding the values so that D� satisfies the km-anonymity guarantee. To
achieve this, we generalize only those values that are necessary to make every m-sized
combination appear in at least k records, as in Table 3. A generalization is a set of rules
in the form v → [a, b], which map a value v of the original data to a range that includes
it. In this work we use global recoding, i.e., when a value a is generalized to a value A,
then all appearances of value a in the dataset are replaced by A.

There may be many possible anonymizations of a dataset that satisfy km-anonymity
for a given attacker’s knowledge limit m, as shown in Tables 3 and 2. The worst-case
scenario would be to anonymize all values to the maximum domain range I . Such a
solution is possible, but it would introduce the highest information loss and the released
data would practically have no utility.

The problem of finding the optimal km-anonymization is to find the set of general-
izations that satisfy km-anonymity and produce the least information loss.

3 Anonymization Algorithm

3.1 Solution Space

The solution space is the set of all possible generalizations. These are all the possible
substitutions of any data value v with a range that contains it. The range can be any
subrange of the domain I . The accepted solutions are those who do not violate km-
anonymity. The problem of optimal multidimensional k-anonymity was proven to be
NP-hard [5]. As we mentioned earlier, our dataset can be represented as a sparse mul-
tidimensional table, while the solution space is much larger than that of k-anonymity.
There are two reasons for this; (i) km-anonymity does not need to form equivalence
classes where all records have identical attribute values and (ii) we do not use a gener-
alization hierarchy, therefore the set of possible generalizations is significantly larger.
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To deal with the complexity of the optimal anonymization problem we have opted for
a heuristic solution. We take advantage of the apriori principle, and perform global-
recoding generalization on the infrequent values at each step of our algorithm, as we
explain below.

3.2 Dynamic Count Tree

According to the a priori principle, given a frequency threshold k, any itemset of size n
cannot have frequency higher than k if any of its subsets is infrequent. Equivalently, if
an itemset of size n has frequency lower than k, then all its supersets of sizes n+1, n+2,
etc. are also infrequent.

To exploit this property, our algorithm uses a tree structure similar to the FP-tree of
[6]. Every node corresponds to a data value; either original or a generalized range of
values. Nodes at the first level of the tree trace the support of the values, i.e. the number
of tuples that contain the value. A path from the root to a node with depth i, corresponds
to an itemset combination of values of size i. Every node ni in an intermediate level i
holds the support of the combination of values that appear in the path from the root
to ni.

Definition 2. (support) The support of a combination of values in a dataset is the num-
ber of records that contain this combination.

Sibling nodes are sorted by their support in descending order, i.e. more frequent
nodes appear first. At the first step, a node for every value that appears in the dataset is
added to the first level of the tree, as shown in Figure 2(a). At the next step, a new level
of nodes is introduced to the count tree. These are the itemsets of size 2. Itemsets are
also sorted by their support. Therefore, if the value v1 of node n1 is more frequent than
v2 of n2, we expect to find the 2-itemset {v1, v2} in the path n1 → n2. At each step
i of our algorithm, a new level of nodes is introduced to the count tree. Combinations
with common prefixes share a common sub-path in the tree. For instance, itemsets {5,
10, 2} and {5, 10, 1} will share the path 5→10 in the tree. Note that since we allow for
duplicate values in a record, nodes with the same value can appear in the same path.

The goal is for every m-sized combination of values to have support at least k. To
achieve this, following the apriori principle, we progressively examine itemsets of sizes
i=1, 2, ..., m. At each step i, we ensure that the supports of every i-itemset is at least k,
before we proceed to step i+1.

3.3 Information Loss

To estimate the loss of utility introduced by the value generalizations we use the Nor-
malized Certainty Penalty (NCP ) metric [7]. Let v be a value in original domain I .
Then:

NCP (v) =

{
0, v is not generalized
|gmax − gmin|/|I |, otherwise

where [gmin, gmax] is the range to which v is generalized.
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Algorithm 1. Incremental Creation of the Dynamic Count Tree UpdateDCTree
Require: D {Original Dataset}, Ti−1 {tree of size i− 1}, G {current generalizations}
Ensure: Ti is the count tree of height i.

1. for every record t ∈ D do
2. for every value v ∈ t do
3. if ∃ generalization range g ∈ G, such that v ∈ g then
4. replace v with g.
5. for every combination cmbi of i values in t do
6. find path pi−1 that contains (i-1)-subset of cmbi (prefix)
7. if the ith value exists as a leaf then
8. increase its support by 1.
9. else

10. add the remaining ith value as a leaf under pi−1

11. return D�

The total information loss of an anonymous dataset D∗ with |D∗| records, is the
average NCP of all its values:

NCP (D∗) =

∑
ti∈D∗{

∑
vi,j∈ti

NCP (vi,j)}∑
ti∈D∗ |ti|

where vi,j is the jth value in the ith record and |ti| is the size of record the ith record.

3.4 Algorithm

We propose a heuristic global-recoding generalization algorithm. As shown in the
pseudo-code of Algorithm 2, our method has m basic steps. At each step i = 1, ...,m,
our algorithm, ACD, checks for privacy violations of itemsets of size i. To check every
possible i-sized combination of values, we use the count tree created by Algorithm 1.

Each path from the root to a leaf corresponds to an itemset whose support is equal
to the support of that leaf. If a leaf has support less than k, then this value combination
is rare and is considered vulnerable. To protect individuals whose records contain this
itemset, one or more values need to be generalized. The goal is to increase the paths’
support. The only way to achieve this is by generalizing a value enough, so that its
generalization range will include other values belonging to sibling nodes, thus merging
the node with one of its siblings and combining their supports. If the siblings’ values

20,000 

40,000 

30,500 

11,000 

root 

[20,000 - 30,500] 

40,000 

11,000 

root 

supp = 4 
IDs = {1,2,3,4} 
supp = 3 
IDs = {1,2,3}

supp = 2 
IDs = {1,5} 
supp = 1 
IDs = {2}

supp = 4 
IDs = {1,2,3,4}

supp = 3 
IDs = {1,2,3}

supp = 3 
IDs = {1,2,5}

 (a)  (b) 

Fig. 2. (a) Count tree T1 for the dataset of Table1. (b) T1 after the necessary generalization
30,500→[20,000-30,500].
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Algorithm 2. km-Anonymization of Continuous Data algorithm ACD
Require: D {Original Dataset}, m {maximum size of attacker’s knowledge},

k {privacy parameter}, d {NCP threshold}
Ensure: D� is a km-anonymous Dataset.

1. sort tuples’ values with reference to their support.
2. G = ∅
3. T0 = null
4. for i = 1, 2, ..., m do
5. Ti = UpdateDCTree(D,Ti−1, G)
6. for every leaf node f in Ti do
7. if support(f) < k then
8. Gf = findGeneralizations(Ti, f, k, d)
9. add generalization rules: G = G ∪Gf .

10. parse Ti in a breadth-first traversal
11. if there exist sibling nodes with values v1, ..., vn ∈ g, where g ∈ Gf then
12. replace values v1, ..., vn with g
13. merge them into a single node n
14. update n’s support
15. return D�

appear in different records, then the support of the merged node will be higher than the
supports of the initial nodes. The merged node’s value will be the minimum range that
includes the initial values.

Since we opt for global-recoding, once a generalization rule v → [vmin, vmax]
is decided by the algorithm for a value v, then every other value v′, such that v′ ∈
[vmin, vmax], will also be generalized to the same range in the dynamic count tree, as
shown in lines 10-14 of Algorithm 2. This causes siblings whose values fall in the same
generalization range to be merged together. This happens for nodes in all levels of the
tree as well, thus reducing the tree’s size. Every generalization that has been decided in
the previous steps 1,...,i-1, is kept in a generalization rules set G (line 9) so that they
will also be considered when building the new level i of the dynamic count tree.

The process we follow to find the generalization rules that will cause the least infor-
mation loss in the data, is described in Algorithm 3. When a leaf node has a support
lower than k, its siblings are the first to be considered for merging. This is because
they share a common prefix (the path from the root to their common parent), which

[20,000-30,500] 

40,000 

11,000 

root 
[20,000 - 30,500] 

40,000 

11,000 
supp = 4 IDs = {1,2,3,4}

supp = 3 IDs = {1,2,3}

supp = 3 IDs = {1,2,5}

supp = 2 IDs = {1,3}

supp = 3 IDs = {1,2,3}

supp = 2 IDs = {1,2}

[20,000 - 30,500] 

40,000 supp = 3 IDs = {1,2,3}

supp = 2 IDs = {1,2} 

Fig. 3. Count tree T2 for the dataset of Table1
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is an itemset of size i-1, and its support is ensured to be ≥ k at the previous step of
ACD. Therefore only two values need to be generalized, the values of the leaves. The
function range(v1, v2) in line 11 returns the range between two values. If v1 < v2
then range(v1, v2) = [v1, v2], else range(v1, v2) = [v2, v1]. If the combined support
of the two paths is ≥ k then it is a candidate solution of this problematic itemset. For
every candidate solution we measure the NCP that it would cause and choose the one
that introduces the least distortion to the data. If the candidate solution with the lowest
information loss gives NCP < d, we apply this generalization to the data. Otherwise,
we parse the problematic path upwards to the root. At the next set of candidate general-
izations we are looking for merges of both the leaves and their parent nodes, and so on,
as shown in line 20 of Algorithm 3.

Note that in the worst-case scenario all values will be generalized to the maximum
possible range, i.e., the data domain. Therefore, ACD will always find a km-anonymous
solution to our problem.

Example 1. Consider the dataset of Table 1, let k=2, m=2. Figure 2 a) shows the count
tree T1, of height 1. Value 11,000 appears in records 1, 2, 3 and 4, so its support is 4,
while 30,500 has support 1 as it appears only in record 2. Given k=2, this value must
be generalized. The best generalization range is [20,000-30,500] as it affects less values
in the dataset and thus gives lower NCP than the other options. This generalization is
applied to both node 30,500 and 20,000 that fall in the chosen range. The two nodes are
merged and their combined support is 3>k, as shown in Figure 2(b). In the next step,
we add itemsets of size 2 to the count tree. T2 is shown in Figure 3 where all leaves
have supports at least k. The output of the algorithm is the km-anonymous Table 3.

4 Experimental Evaluation

We evaluated experimentally the performance of our algorithm on real datasets from
the UCI repository [8]. The implementation was done in C++ and the experiments were
performed on an Intel Core 2 Duo CPU at 2.53GHz with 4GB RAM, running Mac OS.

Algorithms. We compare our algorithm to Apriori algorithm (AA) algorithm from [1].
The AA is the state-of-the-art algorithm for creating km-anonymous datasets using gen-
eralization. It uses a fixed hierarchy and follows the a priori principle: first it creates a
k1-anonymous dataset, then a k2-anonymous, up to km-anonymous. We had to slightly
modify it to accommodate duplicate values in records. We also implemented AA in the
same platform as our main algorithm ACD.

Data. We use the US Census Data 1990 Data Set [9] from UCI data mining repository.
We selected 8 numerical attributes which refer to different types of income. We treated
zeros as nulls and removed them from each record. The active domain ranges from
0-197297. The dataset contains approximately 2.5M records, but after eliminating the
records that have zero values in all the selected attributes, we are left with approximately
1M records. The average record size was 2.27.

Parameters. We study the behavior of our algorithm with respect to the following pa-
rameters: a) k parameter of anonymity, b) the limit on attacker’s knowledge m c) NCP
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Algorithm 3. Finds a Generalization that fixes a rare itemset findGeneralizations
Require: Ti {Count Tree}, f {leaf of a vulnerable itemset path},

k {privacy parameter}, d {NCP threshold}
Ensure: generalized path of f will have a support ≥ k.

1. n = f
2. S = ∅
3. Gf = ∅ {Generalization rules}
4. for every sj sibling of node n do
5. S = S ∪ {sj} {merge candidates}
6. for every node sj ∈ S do
7. if the combined support of sj and n is ≥ k then
8. NCPj = NCP ({vn, vsj → range(vn, vsj )})
9. if n is not a leaf then

10. for every node nc in the path from n to leaf f do
11. NCPj = NCPj +NCP ({vnc, vscj → range(vnc, vscj )}) {node scj is de-

scendant of sj , and it is at the same level as nc.}
12. find sj ∈ S such that NCPj is minimum
13. if NCPj < d then
14. g = range(vn, vsj )
15. Gf = Gf ∪ g
16. for every node nc in the path from n to leaf f do
17. g = range(vnc, vscj ) {scj is descendant of sj , and at the same level as nc.}
18. Gf = Gf ∪ g
19. else
20. let node n be f ’s parent
21. goto 2
22. return Gf

threshold d, and d) the dataset size |D|. In every experiment we vary one of these pa-
rameters keeping others fixed. The default setting of our parameters is k = 10, m = 2,
d = 0.001 and |D| = 100000. To provide a fair comparison with AA we created a very
detailed hierarchy which splits the active domain of 0-197297 to ranges of 100 and then
creates a hierarchy with fanout of 2 that is used by AA.

Evaluation Metrics. We evaluate our method with respect to the execution time of our
algorithm in seconds and the information loss in terms of NCP.

Anonymization Quality. In Figure 4 we depict the performance of the algorithms in
terms of information loss. As k increases, the NCP in both algorithms increases sublin-
early, but ACD causes a loss equal to half to 1/3 of that of AA. As the maximum size of
the attacker’s knowledge m increases, NCP increases superlinearly for both algorithms.
However, for ACD it scales a lot better; the cost of AA rises to triple of that of ACD as m
grows.

The behavior of NCP threshold as d changes is shown in the first graph of Figure 5.
AA is not affected by d, thus we only depict the NCP of AA for the standard parameter
setting (k=10, m=2) for reference. When d is small, ACD offers significantly more util-
ity to the released data. Even when d is close to 1 (i.e., the maximum NCP value) our
algorithm produces similar information loss as AA.
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Fig. 4. Information Loss vs. k and m
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Fig. 5. Information Loss vs. d and |D|

In the next graph of Figure 5, we vary the dataset size |D|. To perform this ex-
periment we created seven random samples of our dataset of sizes 500,000, 100,000,
50,000, 25,000, 10,000, 5,000, 1,000 records. Each was randomly sampled from the
previous one. Information loss of both algorithms decreases with the dataset size, with
ACD outperforming AA in every dataset.

Execution Time. Figures 6 and 7 demonstrate the computational cost of our algorithm.
Execution time is larger for small k values, and decreases monotonically as k increases.
AA is faster than ACD, however the time difference is limited (around 25%) and insen-
sitive to k.

Execution time grows sublinearly with reference to m for both algorithms, as for
lager m, more itemsets of bigger sizes need to be considered and more levels of the
count trees are needed.

In the next graph we depict the impact of d to running time. While ACD is slow for
very small d, it approximates and slightly outperforms AA for d = 0.0001 and larger.

Finally, the scalability of our algorithm is shown in the second graph of Figure 7.
The curve grows linearly with the dataset size |D| for both algorithms.

In summary, ACD manages to greatly reduce the information loss, with the NCP of
datasets anonymized with ACD being half or one third of the those that are anonymized
with AA in most settings. This comes at the cost of increased CPU cost, but the overhead
is limited to around 20%-40% in most cases.
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5 Related Work

The k-anonymity guarantee [2, 10, 11] was first proposed to protect individuals from
identity disclosure, by demanding that each record in a published dataset should be in-
distinguishable from at least k − 1 others, with respect to the quasi-identifiers. Most
k-anonymization algorithms transform the data through generalization and suppression
[12–21]. Other methods have also been proposed, such as permutation [22], pertur-
bation [23, 24], microaggregation [25–27] and bucketization [4, 28, 29]. In general,
k-anonymity is applied in Privacy-Preserving Data Publishing (PPDP) and Privacy-
Preserving Data Mining (PPDM) scenarios. Nevertheless, it can be applied in other
domains such as Privacy-Preserving Collaborative Filtering (PPCF) [30, 31].

A major difference between k-anonymity and our approach is the distinction be-
tween sensitive and non-sensitive values, as well as the assumption that the full set
of QI is known. In our setting the problem is different, since any combination of m
items can be used by an adversary as QIs. Our proposal extends the km-anonymity [1]
and performs generalization without hierarchy on numerical attributes. Mondrian [17]
also generalizes numerical attributes without the use of a hierarchy, however it applies
classic k-anonymity, thus introducing more information loss to the released data.
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k-anonymity was proven to be insufficient in preventing attribute disclosure. The
�-diversity guarantee proposed by Machanavajjhala et al. [32] demands that each EC
have at least � “well-represented” sensitive attribute (SA) values. The �+-diversity [33]
extension sets a different privacy threshold to each SA value in order to reduce infor-
mation loss. Li et al. [34] proposed t-closeness which requires the distance between a
sensitive attribute distribution in an EC and the global distribution of that attribute to
be no greater than a threshold t. However, t-closeness lacks the flexibility of specify-
ing different protection levels for different sensitive values and uses the Earth Mover
Distance metric that is not suitable for measuring relative loss on individual sensitive
attributes. To address these issues Cao and Karras proposed β-likeness [35].

These extensions of k-anonymity have a negative impact on the utility of the re-
leased data, as they introduce significant distortion. Relaxations of k-anonymity have
been proposed [1, 36–40] aiming to provide a better trade-off between privacy and data
utility. The pioneering work of Ghinita et al. [41] for sparse multidimensional data pro-
posed a permutation method which first performs a grouping on transactions and then
associates each group to a set of diversified sensitive values. In these data scenarios, it
is very unlikely that the adversary has background knowledge of all QIs of his target
[42]. Xu et al. [43] assume that the adversary has a limited knowledge of at most p non-
sensitive attributes, while performing suppression on items that cause privacy leaks, but
they still make the limiting distinction between sensitive and non-sensitive attributes.

6 Conclusions

In this work we studied the problem of km-anonymizing continuous data without the
use of pre-defined data generalization hierarchies. We proposedACD, a utility-preserving
global-recoding heuristic algorithm. It greedily selects the best generalization ranges at
each step, ensuring all itemsets of a particular size, at most m, appear at least k times
in the dataset, thus satisfying the km-anonymity guarantee. We evaluated our method
using real world datasets and compared our algorithm to AA [1] which uses generaliza-
tion hierarchies for km-anonymization. Results show ACD preserves significantly more
utility, at a small additional computational cost.

As future work, we plan to extend our solution to more complex attack models which
will include both a partial and an aggregate knowledge [44] on the data values. We also
wish to study km-anonymity under different data models.
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Abstract. Following the publication of an attack on genome-wide as-
sociation studies (GWAS) data proposed by Homer et al., considerable
attention has been given to developing methods for releasing GWAS data
in a privacy-preserving way. Here, we develop an end-to-end differen-
tially private method for solving regression problems with convex penalty
functions and selecting the penalty parameters by cross-validation. In
particular, we focus on penalized logistic regression with elastic-net
regularization, a method widely used to in GWAS analyses to identify
disease-causing genes. We show how a differentially private procedure for
penalized logistic regression with elastic-net regularization can be applied
to the analysis of GWAS data and evaluate our method’s performance.

Keywords: Differential privacy, genome-wide association studies
(GWAS), logistic regression, elastic-net, ridge regression, lasso, cross-
validation, single nucleotide polymorphism (SNP).

1 Introduction

1.1 Genetic Data Privacy Background

The goal of a genome-wide association study (GWAS) is to identify genetic varia-
tions associated with a disease. Typical GWAS databases contain information on
hundreds of thousands of single nucleotide polymorphisms (SNPs) from thou-
sands of individuals. The aim of GWAS is to find associations between SNPs
and a certain phenotype, such as a disease. A particular phenotype is usually
the result of complex relationships between multiple SNPs, making GWAS a
very high-dimensional problem.
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Recently, penalized regression approaches have been applied to GWAS to
overcome the challenges caused by the high-dimensional nature of the data. A
popular approach consists of a two-step procedure. In the first step, all SNPs
are screened and a subset is selected based on a simple χ2-test for association
between each single SNP and the phenotype. In the second step, the selected
subset of SNPs is tested for multiple-SNP association using penalized logistic
regression. Elastic-net regularization, which imposes a combination of �1 and
ridge penalties, has been shown to be a competitive method for GWAS (e.g. [1,
2]).

For many years, researchers believed that releasing statistics of SNPs aggre-
gated from thousands of individuals would not compromise the participants’
privacy. Such a belief came under challenge with the publication of an attack
proposed by Homer et al. [3]. This publication drew widespread attention. As a
consequence, NIH removed all aggregate SNP data from open-access databases
[4, 5] and instituted an elaborate approval process for gaining access to aggre-
gate genetic data. This NIH action in turn spurred interest in the development
of methods for confidentiality protection of GWAS databases.

1.2 Differentially Private Methods for Solving Regression Problems

The approach of differential privacy, introduced by the cryptographic community
(e.g. Dwork et al. [6]), provides privacy guarantees that protect GWAS databases
against arbitrary external information. Building on such notion, Uhler et al. [7],
Johnson and Shmatikov [8], and Yu et al. [9] proposed new methods for selecting
a subset of SNPs in a differentially-private manner. These approaches enable us
to perform the first step in the two-step procedure for identifying the relevant
SNPs in a GWAS without compromising the study participants’ privacy. The
second step of the two-step procedure would involve performing penalized logistic
regression with elastic-net regularization (l1 and l2 penalties) on the selected
subset of SNPs in a differentially private manner. Kifer et al. [10] proposed an
objective function perturbation mechanism that releases the coefficients of a
convex risk minimization problem with convex penalties and satisfies differential
privacy. We can use this method to perform logistic regression with elastic-net
regularization in a differentially private way.

The performance of penalized logistic regression approaches depends heavily
on the choice of regularization parameters. Selection of these regularization pa-
rameters is usually done via cross-validation. Chaudhuri and Vinterbo [11] pro-
posed a differentially-private procedure for choosing the regularization parame-
ters based on a stability argument. However, the method proposed by Chaudhuri
and Vinterbo [11] only works on differentiable penalty functions, such as the �2
penalty, and it cannot be applied to elastic-net regularization or lasso.

In Section 2, we extend the stability-based method for selecting the regu-
larization parameters developed by Chaudhuri and Vinterbo [11] so that it is
applicable to any convex penalty function, including the elastic-net penalty. By
combining this new result and the objective function perturbation mechanism
proposed by Kifer et al. [10], we are able to carry out a privacy-preserving penal-
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ized logistic regression analysis. In Section 3, we demonstrate how to implement
the full objective function perturbation mechanism with cross-validation based
on the results by Chaudhuri et al. [12] and Kifer et al. [10]. In particular, we
provide the exact form of the random noise used in the objective function pertur-
bation mechanism. Furthermore, we show that, under a slightly stronger condi-
tion, we can perturb the objective function by an alternative form of noise—the
multivariate Laplace noise—and thereby obtain more accurate results. In Sec-
tion 4, we show how to apply our results to develop an end-to-end differentially
private penalized logistic regression method with elastic-net penalty and cross-
validation for the selection of the penalty parameters. Finally, in Section 5, we
demonstrate how well this end-to-end differentially private method performs on
a GWAS data set.

2 Differentially-Private Penalized Regression

We start by reviewing the concept of differential privacy. Let D denote the set
of all data sets. Let D,D′ ∈ D denote two data sets that differ in one individual
only. We denote this by D ∼ D′.

Definition 1 (differential privacy). A randomized mechanism K is ε-
differentially private if, for all D ∼ D′ and for any measurable set S ⊂ R,

P(K(D) ∈ S)

P(K(D′) ∈ S)
≤ eε.

K is (ε, δ)-differentially private if, for all D ∼ D′ and for any measurable set
S ⊂ R,

P(K(D) ∈ S) ≤ eεP(K(D′) ∈ S) + δ.

Let l : Rs × D → R denote the loss function, r : Rs → R a regularization
function, and h : Rs ×D → R the validation function. Let T ∈ Dn be a training
data set of size n drawn from D and V ∈ Dm a validation data set of size m also
drawn from D. Let b ∈ R

s denote the noise used to perturb the regularized loss
function. Then we denote by T (λ, ε;T, l, r, b) the differentially private procedure
to produce parameter estimates from the training data T given the regularization
parameter λ, the privacy budget ε > 0, the loss function l, the regularization
function r, and the random noise b. We score a vector of regression coefficients
resulting from the random procedure T (λ, ε;T, l, r, b) using the validation data
V and the validation score function q(θ, V ) = − 1

m

∑
d∈V h(θ; d).

Definition 2 ((β1, β2, δ)-stability. Chaudhuri and Vinterbo [11]). A val-
idation score function q is said to be (β1, β2, δ)-stable with respect to a training
procedure T , the candidate regularization parameters Λ, and the privacy budget
ε, if there exists E ⊂ R

s such that P(b ∈ E) ≥ 1 − δ, and when b ∈ E, the
following conditions hold:
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1. Training stability: for all λ ∈ Λ, for all validation data sets V ∈ Dm, and
all training dataset T, T ′ ∈ Dn with T ∼ T ′,

| q(T (λ, ε;T, l, r, b), V )− q(T (λ, ε;T ′, l, r, b), V ) | ≤ β1

n
.

2. Validation stability: for all λ ∈ Λ, for all training data sets T ∈ Dn, and
all validation data sets V, V ′ ∈ Dm with V ∼ V ′,

| q(T (λ, ε;T, l, r, b), V )− q(T (λ, ε;T, l, r, b), V ′) | ≤ β2

m
.

Chaudhuri and Vinterbo [11] gave conditions under which a validation score
function is (β1, β2, δ)-stable when the regularization function is differentiable
and showed that as long as the validation score function q is (β1, β2, δ)-stable
for some β1, β2, δ > 0 with respect to the procedure T , candidate regularization
parameters Λ, and privacy budget ε, we can choose the best regularization pa-
rameter in a differentially private manner using Algorithm 1 and Algorithm 2
in Chaudhuri and Vinterbo [11]. In Theorem 3, we specify the conditions un-
der which a validation score function is (β1, β2, δ)-stable for a general convex
regularization function.

In the following, we combine the regularization function and the regular-
ization parameters to form a vector of candidate regularization functions r =
(r1, . . . , rt). Then, selecting the regularization parameters is equivalent to select-
ing a linear combination of ri’s in r.

Theorem 3. Let r = (r1, . . . , rt) be a vector of convex regularization functions
with ri : R

s → R that are minimized at 0. Let Λ = {λ1, . . . , λk} be a collection of
regularization vectors, where λi is a t-dimensional vector of 0’s and 1’s. We de-
note by cmin := supc{∀λ ∈ Λ, λT r is c-strong convex}. Let h(θ; d) be a validation
score that is non-negative and κ-Lipschitz in θ. We denote maxd∈D,θ∈Rs h(θ; d)
by h∗. In addition, let l(θ; d) be a convex loss function that is γ-Lipschitz in θ.
Finally, let ξ ∈ R such that P(‖b‖2 > ξ) ≤ δ/k for some δ ∈ (0, 1). Then the
validation score q(θ, V ) = − 1

m

∑
d∈V

h(θ; d) is (β1, β2, δ/k)-stable with respect to

T , ε and Λ, where

T (λ, ε;T, l, r, b) := argmin
θ

L(θ;λ, ε),

with

L(θ;λ, ε) =
1

n

∑
d∈T

l(θ; d) + λT r(θ) +
max{0, c∗ − cmin}

2
‖θ‖22 +

ϕ

εn
bT θ,

β1 =
2γκ

max{c∗, cmin}
, β2 = min

{
h∗,

κ

max{c∗, cmin}

(
γ +

ϕξ

εn

)}
.

Proof. See A.1. ��

Note that choosing r(θ) =
(

λ1

2 ‖θ‖22 , . . . , λk

2 ‖θ‖22
)
, with Λ = {e1, . . . , ek},

where ei is a k-dimensional vector that is 1 in the ith entry and 0 everywhere
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else, results in Theorem 4 in Chaudhuri and Vinterbo [11]. Thus, Theorem 3
generalizes Theorem 4 in Chaudhuri and Vinterbo [11].

The term max{0, c∗−cmin}
2 ‖θ‖22 in Theorem 3 ensures that L(θ;λ, ε) is at least

c∗-strongly convex. This is an essential condition for ensuring that our objective
function perturbation algorithm (Algortihm 1) is differentially private. The value
of ξ in Theorem 3 depends on the distribution of the perturbation noise b. In
Section 3, we analyze two different distributions for the perturbation noise.

3 Distributions for the Perturbation Noise

Chaudhuri et al. [12] and Kifer et al. [10] showed that using perturbation noise
B2 with density function

fB2(b) ∝ exp

(
−‖b‖2

2

)
in the procedure T (λ, ε;T, l, r, B2) produces ε-differentially private parameter
estimates. In this section, we describe an efficient method for generating such
perturbation noise. Furthermore, we show that under slightly stronger conditions
the procedure T (λ, ε;T, l, r, B1) is differentially private when we use perturbation
noise B1 with density function

fB1(b) ∝ exp

(
−‖b‖1

2

)
,

which is simpler to generate than perturbation noise of the form B2.

Proposition 4. The random variable X = W
‖W‖2

Y , where W ∼ N (0, Is) and

Y ∼ χ2(2s), has density function fX(x) ∝ exp
(
− ‖x‖2

2

)
.

Proof. See Appendix A.3. ��

This result shows that B2 ∼ Ws

‖Ws‖2
Y2s, with Ws ∼ N (0, Is) and Y2s ∼ χ2(2s).

On the other hand, B1 can be viewed as the joint distribution of s independent
Laplace random variables with mean = 0 and scale = 2. In order to specify
the stability parameter β2 in Theorem 3, we need to find ξ ∈ R such that
P (‖b‖2 ≥ ξ) ≤ δ/k. The following propositions enable us to find ξ for the
perturbation noise B1 and B2.

Proposition 5. P (‖B1‖1 ≥ 2s log(sk/δ)) ≤ δ/k.

Proof. See Lemma 17 in Chaudhuri and Vinterbo [11]. ��

Proposition 6. P

(
‖B2‖2 ≥

(√
s+

√
log(k/δ)

)2

+ log(k/δ)

)
≤ δ/k.

Proof. Note that ‖B2‖2 =
∥∥∥ Ws

‖Ws‖2
Y2s

∥∥∥
2
= Y2s, where Y2s ∼ χ2(2s). The proof

is completed by invoking Lemma 1 in Laurent and Massart [13]. ��
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Because P (‖B1‖1 ≥ ξ) ≥ P (‖B1‖2 ≥ ξ), Proposition 5 and Proposition 6
enable us to find ξ ∈ R such that P (‖b‖2 ≥ ξ) ≤ δ/k. When the density

function of b is f(b) ∝ exp
( ‖b‖1

2

)
, then by Proposition 5, ξ = 2s log(sk/δ).

When the density function of b is f(b) ∝ exp
(

||b||2
2

)
, then by Proposition 6,

ξ =
(√

s+
√
log(k/δ)

)2

+ log(k/δ).

Algorithm 1 below is a reformulation of Algorithm 1 in Kifer et al. [10], i.e.,
the differentially private objective function optimization algorithm, and it incor-
porates the alternative perturbation noise. The objective function is formulated
in such a way that it is compatible with the regularization parameter selection
procedure described in Theorem 3.

Algorithm 1. Generalized Objective Perturbation Mechanism

Input: Dataset D = {d1, . . . , dn}; a convex domain Θ ⊂ R
s; privacy parameter ε;

λ-strongly convex regularizer r; convex loss function l(θ; d) with rank-1 continuous
Hessian ∇2l(θ; d), an upper bound c on the maximal singular value of ∇2l(θ; d)
and upper bounds κj on ‖∇l(θ; d)‖j for j ∈ {1, 2} that hold for all d ∈ D and all
θ ∈ Θ. It is also required that ϕ ≥ 2κj and λ ≥ c

n(eε/4−1)
.

Output: A differentially-private parameter vector θ∗.

1. Sample b ∈ R
s according to noise distribution Bj , j ∈ {1, 2}.

2. return θ∗ = argminθ L(θ;D, λ, b), where

L(θ;D,λ, b) =
1

n

∑
d∈D

l(θ; d) + r(θ) +
ϕ

εn
bT θ.

Theorem 7. Algorithm 1 is ε-differentially private.

Proof. See A.2. ��

3.1 Comparison of the Performance of Algorithm 1 under Different
Noise Distributions

Note that we can always upper bound ‖∇l(θ; d)‖2 by ‖∇l(θ; d)‖1 and hence
κ2 ≤ κ1 in Algorithm 1. However, as we show in this section, results from
Algorithm 1 are more accurate when sampling noise from B1 compared to B2.
To compare the performance of Algorithm 1 under noise sampled from B1 and
B2, we follow the algorithm performance analysis in Chaudhuri et al. [12] and
analyze P(J(θb)− J(θ∗) > c), where

J(θ) =
1

n

∑
d∈D

l(θ; d) + r(θ)
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with l and r as defined in Algorithm 1, θ∗ = argminθ J(θ), and θb =
argminθ

[
J(θ) + ϕ

εnb
T θ

]
= argminθ L(θ; b). That is, J(θb) − J(θ∗) measures

how much the objective function deviates from the optimum due to the added
noise. Given random noise b ∈ R

s, J(θb) +
ϕ
εnb

T θb ≤ J(θ∗) + ϕ
εnb

T θ∗. Hence,
J(θb) − J(θ∗) ≤ ϕ

εnb
T (θ∗ − θb) ≤ ϕ

εn ‖b‖2 ‖θ∗ − θb‖2. Let E denote the event

that {‖b‖2 ≤ ξ}, where ξ = εn
ϕ

√
λc. When E holds, then ϕ

εnb
T θ is ϕξ

εn -Lipschitz.

Hence, with G(θ) = J(θ) λ-strongly convex, g1(θ) =
ϕ
εnb

T θ and g2 = 0, we can

invoke Lemma 8 to obtain ‖θ∗ − θb‖2 ≤ ϕξ
λεn . Therefore, when E holds, then

J(θb)− J(θ∗) ≤ ϕ

εn
‖b‖2 ‖θ∗ − θb‖2 ≤ ϕ

εn
ξ
ϕξ

λεn
= c.

Thus P(J(θb)−J(θ∗) > c) ≤ 1−P(E) = P(‖b‖2 > ξ) when the random noise b is
sampled from B1 or B2. ‖B1‖1 is the sum of s independent exponential random
variables with mean = 2 and thus ‖B1‖1 ∼ Gamma(s, 2). On the other hand,
‖B2‖2 ∼ χ2(2s). But in fact χ2(2s) ∼ Gamma(s, 2). Therefore, P(‖B1‖2 > ξ) ≤
P(‖B1‖1 > ξ) = P(‖B2‖2 > ξ). Thus, sampling the noise from B1 in Algorithm
1 produces more accurate results.

4 Application to Logistic Regression with Elastic-Net
Regularization

In this section we show how to apply the results from the previous section to
penalized logistic regression. The logistic loss function l(θ;x, y) is given by

l(θ;x, y) = log
(
1 + exp(−y θTx)

)
,

where y ∈ {−1, 1}. The first and second derivatives with respect to θ are

∇l(θ;x, y) = − 1

1 + exp(y θTx)
yx

∇2l(θ;x, y) =
1

1 + exp(−y θTx)

1

1 + exp(y θTx)
xxT .

It can easily be seen that the logistic loss function satisfies the following prop-
erties: (i) l(θ;x, y) is convex; (ii)∇2l(θ;x, y) is continuous; and (iii) ∇2l(θ;x, y)
is a rank-1 matrix.

We denote by ‖M‖1 the nuclear norm of the matrix M and we choose κ such
that ‖x‖j ≤ κ for all x, where j ∈ {1, 2}. Then∥∥∇2l(θ;x, y)

∥∥
1

≤
∥∥xxT

∥∥
1
= ‖x‖22 ≤ ‖x‖2j ≤ κ2, for j ∈ {1, 2},

‖∇l(θ;x, y)‖j ≤ ‖x‖j ≤ κ,

Thus we can apply Algorithm 1 to output differentially private coefficients for
logistic regression with elastic-net regularization. Moreover, the logistic loss func-
tion satisfies the conditions in Theorem 3 because l(θ;x, y) is Lipschitz: There
exists a parameter θ such that

|l(θ1;x, y)− l(θ2;x, y)| ≤ ‖∇l(θ;x, y)‖2 ‖θ1 − θ2‖2 ≤ κ ‖θ1 − θ2‖2 .
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Thus we can apply the stability argument in Theorem 3 to select the best reg-
ularization parameters in a differentially private way. In Section 5 we show how
well this method performs on a GWAS data set.

5 Application to GWAS Data

We now evaluate the performance of the proposedmethod based on a GWAS data
set. We analyze a binary phenotype such as a disease. Each SNP can take the
values 0, 1, or 2. This represents the number of minor alleles at that site. A large
SNP data set is freely available from the HapMap project1. It consists of SNP
data from 4 populations of 45 to 90 individuals each, but does not contain any
phenotypic information about the individuals. HAP-SAMPLE [14] can be used
to generate SNP genotypes for cases and controls by resampling from HapMap.
This ensures that the simulated data show linkage disequilibrium (i.e., correlations
among SNPs) and minor allele frequencies similar to real data.

For our analysis we use the simulations from Malaspinas and Uhler [15]. The
simulated data sets consist of 400 cases and 400 controls each with about 10,000
SNPs per individual (SNPs were typed with the Affymetrix CHIP on chromo-
some 9 and chromosome 13 of the Phase I/II HapMap data). For each data set
two SNPs with a given minor allele frequency (MAF) were chosen to be causative.
We will analyze the results for minor allele frequency (MAF) = 0.25. The simu-
lations were performed under the multiplicative effects model: Denoting the two
causative SNPs by X and Y and the disease status by D (i.e., X,Y ∈ {0, 1, 2}
and D ∈ {−1, 1}, where 1 describes the diseased state), then the multiplicative
effects model can be defined through the odds of having a disease:

P(D = 1 | X,Y )

P(D = −1 | X,Y )
= ε αXβY δXY .

This model corresponds to a log-linear model with interaction between the two
SNPs. For our simulations we chose ε = 0.64, α = β = 0.91 and δ = 2.73. This
results in a sample disease prevalence of 0.5 and effect size of 1, which are typical
values for association studies. See Malaspinas and Uhler [15] for more details.

In the first step, we screen all SNPs and select a subset of SNPs with the
highest χ2-scores based on a simple χ2-test for association between each single
SNP and the phenotype. Various approaches for performing the screening in a
differentially private manner were discussed and analyzed in Uhler et al. [7],
Johnson and Shmatikov [8], and Yu et al. [9]; We concentrated on the second
step and did not employ the differentially private screening approaches in this
paper. The second step of the two-step procedure consists of performing penal-
ized logistic regression with elastic-net regularization on the selected subset of
SNPs and choosing the best regularization parameters in a differentially private
manner. In the following, we analyze the statistical utility of the second step
and show how accurately our end-to-end differentially private penalized logistic
regression method is able to detect the causative SNPs and their interaction.

1 http://hapmap.ncbi.nlm.nih.gov/
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The elastic-net penalty function has the form 1
2λ(1 − α)�2 + λα�1, where α

controls the sparsity of the resulting model and λ controls the extent to which
the elastic-net penalty affects the loss function. In the simulation, we apply a
threshold criterion to the terms in the model so that we exclude from the model
the ith term if its regression coefficient, θi, satisfies |θi|/max

i
{|θi|} < r, where

max
i

{|θi|} is the largest coefficient in absolute value and r is a thresholding ratio,

which we set to 0.01.
In our experiments, we selected M = 5 SNPs with the highest χ2-scores,

which include the two causative SNPs, for further analysis. We denote by ε the
privacy budget, by α the sparsity parameter in the elastic-net penalty func-
tion, and by “convex min” the condition of strong convexity imposed on the
objective function (see Theorem 3). Note that convex min is a function of M
and ε. For elastic-net with α fixed, we need the smallest candidate parameter
λmin ≥ convex min/(1− α).

In Figure 1, we analyze the sensitivity of our method. For different sparsity
parameters α and different privacy budgets ε, which determine convex min given
a fixed M , we show how often, out of 100 simulations each, our algorithm re-
covered the interaction term (leftmost bar in red), the main effects scaled by a
factor of 1/2 to account for the two main effects (middle bar in green) and all
effects, i.e. the interaction effect and the two main effects (rightmost bar in blue).
As the privacy budget ε increases, the amount of noise added to the regression
problem decreases, and hence the frequency of selecting the correct effects in the
regression analysis increases. The plots also show that as the sparsity parameter
α increases, the frequency of selecting the correct terms decreases.

In Figure 2 we analyze the specificity of our method. For different sparsity
parameters α and different strong convexity conditions convex min, we show how
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Fig. 1. Sensitivity analysis for different sparsity parameters α, privacy budgets ε, and
strong convexity conditions convex min when the top 5 SNPs are used for the analysis:
the red (leftmost) bar shows how often, out of 100 simulations each, the algorithm
recovered the interaction term, the green (middle) bar corresponds to the main effects
scaled by a factor of 1/2 and the rightmost (blue) bar corresponds to all effects, i.e. 2
main effects and 1 interaction effect
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often, out of 100 simulations each, our algorithm did not include any additional
effects in the selected model. As α increases, the selected model becomes sparser
and the algorithm is hence less likely to wrongly include additional effects. We
also observe that as convex min decreases, the specificity increases. This can be
explained by how we choose the candidate parameters λ, namely as multiples of
the smallest allowed value for λ, which is convex min/(1−α). When λ is smalll,
the effect of the penalty terms diminishes, and we are essentially performing a
regular logistic regression, which does not produce sparse models.

In Figure 3, we plotted the results of non-private penalized logistic regression
with elastic-net penalty to contrast Figure 1 and Figure 2. The results of the non-
private penalized logisitc regression is indirectly related to ε because the choice of
the smallest regularization parameter λ is bounded below by convex min/(1−α)
and convex min is a function of ε. We can observe from Figure 3 that when the
regularization parameter λ is large (i.e., convex min ≥ 1.58), the regression
analysis screens out all effects. Hence, the sensitivity is 0 and the specificity
is 1. When λ is small (i.e., convex min ≤ 0.18), the amount of regularization
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Fig. 2. Specificity analysis for different sparsity parameters α and strong convexity
conditions convex min: the plot shows how often, out of 100 simulations each, our
algorithm did not include any additional effects in the selected model
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Fig. 3. Results of non-private logistic regression with elastic-net penalty. Figure 3a and
Figure 3b would be compared with Figure 1 and Figure 2, respectively.
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also becomes marginal, and we begin to see that the sensitivity increases but
the specificity decreases. Figure 3 shows that we can identify the correct model
when α = 0.1 and convex min = 0.18. In contrast, when we use the same α
and convex min for differentially private regressions, Figure 1 shows that we can
obtain a good sensitivity result, but Figure 2 shows that the specificity result
for this choice is poor.

6 Conclusions

Various papers have argued that it is possible to use aggregate genomic data
to compromise the privacy of individual-level information collected in GWAS
databases. In this paper, we respond to these attacks by proposing a new method
to release regression coefficients from association studies that satisfy differen-
tial privacy and hence come with privacy guarantees against arbitrary external
information.

By extending the approaches in Chaudhuri and Vinterbo [11] and Kifer et al.
[10] we developed an end-to-end differentially private procedure for solving re-
gression problems with convex penalty functions including selecting the penalty
parameters by cross-validation. We also provided the exact form of the random
noise used in the objective function perturbation mechanism and showed that
the perturbation noise can be efficiently sampled.

As a special case of a regression problem, we focused on penalized logistic re-
gression with elastic-net regularization, a method widely used to perform GWAS
analyses and identify disease-causing genes. Our simulation results in Section 5
showed that our method is applicable to GWAS data sets and enables us to
perform data analysis that preserves privacy and utility. The risk-utility analy-
sis about the tradeoff between privacy (ε) and utility (correctly identifying the
causative SNPs) helps us decide on the appropriate level of privacy guarantee
for the released data. We hope that approaches such as those described in this
paper will allow the release of more information from GWAS going forward and
allay the privacy concerns that others have voiced over the past decade.
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A Proofs

A.1 Proof of Theorem 3

Lemma 8. Let G, g1, and g2 be vector-valued continuous functions. Suppose that G is
λ-strongly convex, g1 is convex and γ1-Lipschitz, and g2 is convex and γ2-Lipschitz. If
f1 = argminf (G+g1)(f) and f2 = argminf (G+g2)(f), then ‖f1 − f2‖2 ≤ (γ1+γ2)/λ.

Proof (of Lemma 8). G+ g1 and G+ g2 are λ-strongly convex because G is λ-strongly
convex and g1 and g2 are convex. Then for j, k, w ∈ {1, 2}, j �= k,

(G+ gw)(fj) ≥ (G+ gw)(fk) + ∂(G+ gw)(fk)
T (fj − fk) +

λ

2
||fj − fk||2

where ∂(G + gw) denotes the subgradient. We know that 0 ∈ ∂(G + gw)(fw) because
fw minimizes G+ gw. Hence,

(G+ g2)(f1) ≥ (G+ g2)(f2) +
λ

2
||f1 − f2||22,

(G+ g1)(f2) ≥ (G+ g1)(f1) +
λ

2
||f1 − f2||22.
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By summing these two inequalities we obtain

(G+ g2)(f1) + (G+ g1)(f2) ≥ (G+ g2)(f2) + (G+ g1)(f1) + λ||f1 − f2||22
and hence [g2(f1) − g2(f2)] + [g1(f2) − g2(f1)] ≥ λ ‖f1 − f2‖22 . The fact that gw is

γw-Lipschitz implies that

∣∣∣∣g2(f1) − g2(f2)

∣∣∣∣ +
∣∣∣∣g1(f2) − g2(f1)

∣∣∣∣ ≤ (γ1 + γ2) ‖f1 − f2‖2
and hence

λ||f1 − f2||22 ≤ [g2(f1)− g2(f2)] + [g1(f2)− g2(f1)]

≤
∣∣∣∣g2(f1)− g2(f2)

∣∣∣∣+
∣∣∣∣g1(f2)− g2(f1)

∣∣∣∣ ≤ (γ1 + γ2)||f1 − f2||2.

Therefore ‖f1 − f2‖2 ≤ (γ1 + γ2)/λ. ��
Proof (of Theorem 3). For notational convenience we assume that cmin ≥ c∗ so that

L(θ;T ) =
1

n

∑
d∈T

l(θ; d) + λT r(θ) +
ϕ

εn
bT θ.

If cmin < c∗, we can extend r to include rt+1(θ) =
max{0,c∗−cmin}

2
‖θ‖22 and extend each

λ ∈ Λ such that λt+1 = 1. First, we show that |q(θ∗(T ), V )− q(θ∗(T ′), V )| ≤ β1/n for
training sets T and T ′ that differ only by one record. Here, θ∗(T ) = argminθ L(θ;T ).
Let d = T\T ′, d′ = T ′\T ,

G(θ; T, T ′) =
1

n

∑
d∈T∩T ′

l(θ; d) + λT r(θ) +
ϕ

εn
bT θ,

g1(θ;T, T
′) =

1

n
l(θ; d) and g2(θ;T, T

′) =
1

n
l(θ; d′).

Then G is cmin-strongly convex, and g1 and g2 are convex and γ/n-Lipschitz. By
Lemma 8, ‖θ∗(T )− θ∗(T ′)‖2 ≤ 2γ

ncmin
. Since h is κ-Lipschitz we obtain for any

validation set V , |q(θ∗(T ), V )− q(θ∗(T ′), V )| ≤ 2γκ
ncmin

.

Second, we show that for all λ ∈ Λ and for all validation sets V and V ′ that
differ in a single record, |q(θ∗(T ), V ) − q(θ∗(T ′), V ′)| ≤ β2/m. Since h is non-
negative, |q(θ∗(T ), V ) − q(θ∗(T ′), V ′)| ≤ hmax/m, where hmax = supd h(θ

∗(T ); d).
By definition, hmax ≤ h∗. Moreover, because h is κ-Lipschitz, hmax ≤ κ ‖θ∗(T )‖2. So
hmax ≤ min{h∗, κ ‖θ∗(T )‖2}. Now let E be the event that ‖b‖2 ≤ ξ. Provided that E
holds, we have |bT θ1 − bT θ2| ≤ ‖b‖2 ‖θ1 − θ2‖2 ≤ ξ ‖θ1 − θ2‖2 . Let G(θ) = λT r(θ),
g1(θ;T ) =

1
n

∑
d∈T l(θ; d) + ϕ

εn
bT θ, and g2(θ) = 0. Then G is cmin-strongly convex, g1

is
(
γ + ϕξ

εn

)
-Lipschitz, and g2 is 0-Lipschitz. Since G + g2 is minimized when θ = 0,

we obtain by invoking Lemma 8 that ‖θ∗(T )‖2 = ‖θ∗(T )− 0‖2 ≤ 1
cmin

(
γ + ϕξ

εn

)
Therefore, |q(θ∗(T ), V )− q(θ∗(T ), V ′)| ≤ 1

m
min

{
h∗, κ

cmin

(
γ + ϕξ

εn

)}
. ��

A.2 Proof of Theorem 7

Lemma 9. If A is of full rank and E has rank at most 2, then

det(A+E)− det(A)

det(A)
= λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E)λ2(A
−1E),

where λj(Z) denotes the j-th eigenvalue of matrix Z.
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Proof (of Lemma 9). See Lemma 10 in Chaudhuri et al. [12].

Proof (of Theorem 7). Similar to the proof by Chaudhuri et al. [12], we show that if
r is infinitely differentiable, then Algorithm 1 is ε-differentially private. It then follows
from the successive approximation method by Kifer et al. [10] that Algorithm 1 is still
ε-differentially private even if r is convex but not necessarily differentiable.

Let g denote the probability density function of the algorithm’s output θ∗. Our goal

is to show that e−ε ≤ g(θ|D)
g(θ|D′) ≤ eε. Suppose that the Hessian of r is continuous. Because

0 = ∇L(θ;D), we have

TD(θ) := b = − ε

ϕ

⎡
⎣∑

d∈D

∇l(θ; d) + n∇r(θ)

⎤
⎦ and ∇TD(θ) = − ε

ϕ

⎡
⎣∑

d∈D

∇2
l(θ; d) + n∇2

r(θ)

⎤
⎦ .

TD is injective because L(θ;D) is strongly convex. Also, TD is continuously differ-
entiable. Therefore,

g(θ|D)

g(θ|D′)
=

f(TD(θ))

f(TD′(θ))

|det(∇TD)(θ)|
|det(∇TD′)(θ)| ,

where f is the density function of b.
We first consider | det(∇TD)(θ)|

| det(∇TD′ )(θ)| . LetA = −ϕ
ε
∇TD′ ,E = ∇2l(θ;D\D′)−∇2l(θ;D′\D).

Because l is convex and r is strongly convex, ∇TD(θ) is positive definite. Hence, A has
full rank. Also, E has rank at most 2 because ∇2l(θ; d) is a rank 1 matrix by assump-
tion. By Lemma 9,

|det(∇TD(θ))|
|det(∇TD′(θ))| =

∣∣∣∣det(A+ E)

det(A)

∣∣∣∣ ≤ 1 + s1(A
−1E) + s2(A

−1E) + s1(A
−1E)s2(A

−1E),

where si(M) denotes the ith largest singular value ofM . Because r is λ-strongly convex,

the smallest eigenvalue of A is at least nλ. So si(A
−1E) ≤ si(E)

nλ
. Because ‖∇l(θ; d)‖j ≤

κ for j ∈ {1, 2}, applying the triangle inequality to the nuclear norm yields s1(E) +
s2(E) ≤ ∥∥∇2l(θ;D\D′)

∥∥
1
+
∥∥∇2l(θ;D′\D)

∥∥
1
≤ 2c. Therefore, s1(A

−1E) s2(A
−1E) ≤(

c
nλ

)2
, and

|det(∇TD)(θ)|
|det(∇TD′)(θ)| =

|det(A+ E)|
| det(A)| ≤

(
1 +

c

nλ

)2
.

Now we consider f(TD(θ))
f(TD′ (θ)) . Since

‖TD(θ)− TD′(θ)‖j =

(
ε

ϕ

)∥∥∇l(θ;D\D′)−∇l(θ;D′\D)
∥∥
j

≤
(

ε

ϕ

)(∥∥∇l(θ;D\D′)
∥∥
j
+
∥∥∇l(θ;D′\D)

∥∥
j

)
≤ 2κε

ϕ
,

we obtain f(TD(θ))
f(TD′ (θ)) = exp

(
− ‖TD(θ)‖j

2

)/
exp

(
−‖TD′ (θ)‖

j

2

)
≤ exp

(
κε
ϕ

)
, and there-

fore,

f(TD(θ))

f(TD′(θ))

|det(∇TD)(θ)|
|det(∇TD′)(θ)| ≤ exp

(
κε

ϕ
+ 2 log

(
1 +

c

nλ

))
≤ eε.
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A.3 Proof of Proposition 4

Proof (of Proposition 4). The distribution of X is a special case of an s-dimensional
power exponential distribution as defined by Gómez et al. [16], namelyX ∼ PEs(μ,Σ, β)
with μ = (0, . . . , 0)T , Σ = Ids and β = 1

2
. Gómez et al. [16] proved that if T ∼

PEs(μ,Σ, β), then T has the same distribution as μ + Y ATZ, where Z is a random
vector with uniform distribution on the unit sphere in R

s, Y is an absolutely continuous
non-negative random variable, independent from Z, whose density function is

g(y) =
s

Γ
(
1 + s

2β

)
2

s
2β

ys−1 exp

(
−1

2
y2β

)
I(0,∞)(y),

and A ∈ R
s×s is a square matrix such that ATA = Σ.

Note that for β = 1
2
, the distribution of Y boils down to a χ2-distribution with 2s

degrees of freedom. In addition, ifW ∼ N (0, Ids), thenW/||W || is uniformly distributed
on the unit s-sphere. Finally, since Σ = Ids we get that A = Id. ��
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Abstract. We present an approach for evaluating disclosure risks for fully syn-
thetic categorical data. The basic idea is to compute probability distributions of
unknown confidential data values given the synthetic data and assumptions about
intruder knowledge. We use a “worst-case” scenario of an intruder knowing all
but one of the records in the confidential data. To create the synthetic data, we
use a Dirichlet process mixture of products of multinomial distributions, which
is a Bayesian version of a latent class model. In addition to generating synthetic
data with high utility, the likelihood function admits simple and convenient ap-
proximations to the disclosure risk probabilities via importance sampling. We
illustrate the disclosure risk computations by synthesizing a subset of data from
the American Community Survey.

Keywords: Bayesian, confidentiality, Dirichlet process, disclosure, microdata.

1 Introduction

Record-level data, also known as microdata, from the social, behavioral, and economic
sciences offer enormous potential benefits to society. When made widely accessible as
public use files, these databases facilitate advances in research and policy-making, en-
able students to develop skills at data analysis, and help ordinary citizens learn about
their communities. However, as most stewards of social science data are acutely aware,
wide-scale dissemination of microdata can result in unintended disclosures of data sub-
jects’ identities and sensitive attributes, thereby violating promises—and in some in-
stances laws—to protect data subjects’ privacy and confidentiality.

When microdata are highly sensitive or readily identifiable—as may be the case,
for example, for business establishments or in large-scale administrative databases—
stewards may not be able to protect confidentiality adequately by suppressing/perturbing
only a small fraction of values (which is frequent practice in small-scale probability
samples). In such contexts, one approach is to generate and release fully synthetic data
(Rubin, 1993; Fienberg, 1994; Reiter, 2002, 2005b, 2009; Raghunathan et al., 2003;
Reiter and Raghunathan, 2007). These comprise entirely simulated records generated
from statistical models designed to preserve important relationships in the confidential
data. A related approach is to release partially synthetic data (Little, 1993; Reiter, 2003,
2004), in which only values deemed sensitive are replaced with simulated values.

The U.S. Census Bureau has adopted synthetic data as a dissemination strategy
for several major data products, including the Survey of Income and Program Partic-
ipation (Abowd et al., 2006) and the Longitudinal Business Database (Kinney et al.,
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2011). In both of these products, all but a handful of variables are replaced with
values simulated from models estimated on the confidential data. Other examples of
synthetic data applications have appeared in the literature as well (e.g., Kennickell,
1997; Abowd and Woodcock, 2001, 2004; Little et al., 2004; Graham and Penny, 2005;
An and Little, 2007; Hawala, 2008; Drechsler et al., 2008a,b; Graham et al., 2009;
Machanavajjhala et al., 2008; Drechsler and Reiter, 2010, 2012; Slavkovic and Lee,
2010; Wang and Reiter, 2012; Burgette and Reiter, 2013; Paiva et al., 2014).

With fully synthetic data, disclosure risks generally are considered to be low—
it is pointless to match fully synthetic records to records in other databases, since
each fully synthetic record does not correspond to any particular individual. How-
ever, researchers have identified scenarios where full synthesis carries non-trivial dis-
closure risks (Abowd and Vilhuber, 2008; Charest, 2010; McClure and Reiter, 2012;
Reiter et al., 2014). Typically, these illustrative scenarios involve stylized data (e.g., a
24 contingency table) with simple synthesizers (e.g., a Dirichlet-multinomial distribu-
tion). To our knowledge, the literature does not include examples of quantified disclo-
sure risks in fully synthetic data in realistic contexts.

In this article, we illustrate disclosure risk evaluations for fully synthetic, categorical
data. In particular, we compute Bayesian posterior probabilities that intruders can learn
confidential values given the released data and assumptions about their prior knowledge
(Duncan and Lambert, 1989; Fienberg et al., 1997; Reiter, 2005a; McClure and Reiter,
2012; Reiter, 2012; Abowd et al., 2013; Reiter et al., 2014). We synthesize a subset
of data from the American Community Survey using a Dirichlet process mixture of
products of multinomial (DPMPM) distributions. The DPMPM model has been shown
in other contexts to be effective at capturing complex dependence structure in contin-
gency tables while requiring little tuning by the data steward (Dunson and Xing, 2009;
Si and Reiter, 2013; Manrique-Vallier and Reiter, 2014).

Our goal here is to illustrate the risk evaluations with realistic data. Thus, although
we present some evaluations of data utility to assure readers that the DPMPM synthe-
sizer is not generating worthless data, we refrain from making conclusions about the
merits of using the DPMPM synthesizer, or fully synthetic data in general as compared
to other disclosure protection methods.

2 The DPMPM Synthesizer

Let the confidential data D comprise n individuals measured on p categorical variables.
For i = 1, . . . , n and k = 1, . . . , p, let xik denote the value of variable k for individual
i, and let xi = (xi1, . . . , xip). Without loss of generality, assume that each xik takes on
values in {1, . . . , dk}, where dk ≥ 2 is the total number of categories for variable k.
Effectively, the survey variables form a contingency table of d = d1×d2×· · ·×dp cells
defined by cross-classifications of the p variables. Let Xik and Xi be random variables
defined respectively on the sample spaces for xik and xi.

We generate synthetic data using a finite number of mixture components in the
DPMPM. Paraphrasing from Si and Reiter (2013), the finite DPMPM assumes that each
individual i belongs to exactly one of F < ∞ latent classes; see Si and Reiter (2013)
for advice on determining F . For i = 1, . . . , n, let ηi ∈ {1, . . . , F} indicate the class of
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individual i, and let πf = Pr(ηi = f). We assume that π = (π1, . . . , πF ) is the same for
all individuals. Within any class, each of the p variables independently follows a class-
specific multinomial distribution, so that individuals in the same latent class have the
same cell probabilities. For any value c ∈ {1, . . . , dk}, let φ(k)

fc = Pr(Xik = c | ηi = f)

be the probability of Xik = c given that individual i is in class f . Let φ = {φ(k)
fc : c =

1, . . . , dk, k = 1, . . . , p, f = 1, . . . , F} be the collection of all φ(k)
fc . The finite mixture

model can be expressed as

Xik | ηi, φ ind∼ Multinomial(φ(k)
ηi1

, . . . , φ
(k)
ηidk

) for all i, k (1)

ηi | π ∼ Multinomial(π1, . . . , πF ) for all i, (2)

where each multinomial distribution has sample size equal to one and the number of
levels is implied by the dimension of the corresponding probability vector.

For prior distributions on π and φ, we use the truncated stick breaking representation
of Sethuraman (1994). We have

πf = Vf

∏
l<f

(1 − Vl) for f = 1, . . . , F (3)

Vf
iid∼ Beta(1, α) for f = 1, . . . , F − 1, VF = 1 (4)

α ∼ Gamma(aα, bα) (5)

φ
(k)
f = (φ

(k)
f1 , . . . , ψ

(k)
fdk

) ∼ Dirichlet(ak1, . . . , akdk
). (6)

We set ak1 = · · · = akdk
= 1 for all k to correspond to uniform distributions. Following

Dunson and Xing (2009) and Si and Reiter (2013), we set (aα = .25, bα = .25), which
represents a small prior sample size and hence vague specification for the Gamma dis-
tribution. In practice, we find these specifications allow the data to dominate the prior
distribution. We estimate the posterior distribution of all parameters using a blocked
Gibbs sampler (Ishwaran and James, 2001; Si and Reiter, 2013).

We note that this model assumes no structural zeros in the data; that is, all cells in the
implied contingency table have non-zero probability. See Manrique-Vallier and Reiter
(2014) for variants of DPMPM models that allow structural zeros.

To generate one fully synthetic dataset of size n∗, we first sample a value of (α, π, φ)
from the posterior distribution. Using the generated π, we sample values of (η1, . . . , ηn∗)
independently from (2). Using the sampled φ, for each sampled ηi, where i = 1, . . . , n∗,
we then sample the ith synthetic record, x∗

i = (x∗
i1, . . . , x

∗
ip), from independent multi-

nomial distributions with probabilities φ
(k)
ηi for each k. When n∗ is the original sam-

ple size n, the synthesis can be conveniently implemented inside the blocked Gibbs
sampler—after each Gibbs updating step, we simply sample and save draws of x∗

i for
all n records. To create m > 1 synthetic datasets, one repeats this process m times, us-
ing approximately independent draws of parameters. Approximately independent draws
can be obtained by using iterations that are far apart in the estimated MCMC chain.

Let Z = (Z(1), . . . , Z(m)) be a set of m synthetic categorical datasets under consid-
eration for release by the data steward. In the remainder of the article, we assume that
n∗ = n, although this is not necessary.
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3 Disclosure Risk Measure for the DPMPM

With fully synthetic data, disclosure risk metrics based on matching released and exter-
nal records are generally not applicable, since there is no unique mapping of the rows in
Z to the rows in D. Instead, we consider questions of the form: can intruders accurately
infer from the synthetic data that some record with particular data values is in the con-
fidential data? When the combination of values is unique in the population (or possibly
just the sample), this question essentially asks if intruders can determine whether or not
a specific individual is in the confidential data—this may count as a disclosure under
some confidentiality protection laws.

3.1 Disclosure Risk Evaluation Strategy

To describe the disclosure risk evaluations, we follow the presentation of Reiter et al.
(2014). Let x denote an arbitrary realization from the sample space of the contingency
table formed by the p categorical variables; x can take on any of d possible values. We
suppose that an intruder seeks to learn if a particular x is in D. Let A represent the
information known by the intruder about records in D. Let S represent any informa-
tion known by the intruder about the process of generating Z , for example meta-data
indicating the values of F and (aα, bα) for the DPMPM synthesizer. Let X be a ran-
dom variable representing the intruder’s uncertain knowledge of whether or not x is in
D, where the sample space of X is all possible values of x in the population. Given
(Z,A, S), we assume the intruder seeks the Bayesian posterior distribution,

p(X = x | Z,A, S) = p(Z | X = x,A, S)p(X = x | A,S)∑
x∈U p(Z | X = x,A, S)p(X = x | A,S) (7)

∝ p(Z | X = x,A, S)p(X = x | A,S), (8)

where U represents the universe of all feasible values of x. Here, p(Z | X = x,A, S)
is the likelihood of generating the particular set of synthetic data given that x is in the
confidential data and whatever else is known by the intruder. The p(X = x | A,S) can
be considered the intruder’s prior distribution on X based on (A,S).

Key to the computation of (7) are the assumptions about A and p(X = x | A,S). In
general, it is not possible for the data steward to know either. We evaluate risks assuming
the intruder has very strong prior knowledge in A. In particular, we assume the intruder
knows the values of x for all individuals in D except for some record i, also done by
Abowd et al. (2013). To represent this version of A, we use D−i = {xj : j �= i}. With
A = D−i, (7) effectively becomes the probability distribution of Xi, i.e., the intruder’s
distribution of x for the unknown record. For clarity, from now on we write (8) as

p(Xi = x | Z,D−i, S) ∝ p(Z | Xi = x,D−i, S)p(Xi = x | D−i, S). (9)

In many cases, setting A = D−i is conservative, since in contexts involving random
sampling from large populations intruders are unlikely to know D−i. Nonetheless, risks
deemed acceptable for A = D−i should be acceptable for a weaker A. We note that
assuming the intruder knows all records but one is related to, but quite distinct from,
the assumptions used in differential privacy (Dwork, 2006).
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Intruders can use p(Xi = x | Z,D−i, S) to take guesses at the true value xi. For
example, the intruder can find the x that offers the largest probability, and use that as
a guess of xi. Similarly, data stewards can use p(Xi = x | Z,D−i, S) in disclosure
risk evaluations. For example, for each xi ∈ D, they can rank each x by its associated
value of p(Xi = x | Z,D−i, S), and evaluate the rank at the truth, x = xi. When the
rank of xi is high (close to 1, which we define to be the rank associated with the highest
probability), the agency may deem that record to be at risk under the strong intruder
knowledge scenario. When the rank of xi is low (far from 1), the agency may deem the
risks for that record to be acceptable.

When d is very large, computing the normalizing constant in (7) is impractical. To
facilitate computation, we propose to dramatically reduce the support in (7). For any
record i, we consider as feasible candidates only those x that differ from xi in one
variable, along with xi itself; we call this space Ri. Thus, for example, the restricted
support of x for a 3×5×2 table includes only eight possible cases, namely the original
xi and the 2 + 4 + 1 cases obtained by changing one of the three variables. One can
conceive of this support as mimicking an intruder who is knowledgable enough to be
searching in neighborhoods near xi.

When the support is Ri, the resulting values of p(Xi = x | Z,D−i, S) for any
x ∈ Ri are larger than when the support is U . Similarly, when the support is U the rank
of any x is no higher than the corresponding rank when the support is Ri. In this way,
restricting support to Ri results in a conservative ranking of the x ∈ Ri. Thus, if a data
steward determines that the rank of xi (or any value of x) is acceptably low when using
Ri, it also will be acceptably low when using U .

3.2 Computational Methods for Risk Assessment with DPMPM

Let Θ = {π, φ} denote parameters from the DPMPM synthesis model. For Z generated
from the DPMPM synthesizer, we can write (9) as

ρxi = c

(∫
p(Z | Xi = x,D−i, S, Θ)p(Θ | Xi = x,D−i, S)dΘ

)
p(Xi = x | D−i, S),

(10)
where c is a normalizing constant. The form of (10) suggests a Monte Carlo approach
to estimate ρi. First, acting like an intruder, the data steward creates the plausible con-
fidential dataset, Dx

i = (Xi = x,D−i). Second, treating Dx
i as if it were the collected

data, the data steward samples m values of Θ, i.e., for l = 1, . . . ,m, sample a Θ(l) that
could have generated Z(l). Third, for each (Z(l), Θ(l)), the data steward computes the
probability of generating the released Z(l). Fourth, the data steward multiplies the m
probabilities; see (12). The value of ρxi is the average of this probability computed over
many plausible draws of Θ.

Conceptually, to draw Θ replicates, the data steward could re-estimate the DPMPM
model for each Dx

i . However, this would be computationally prohibitive if the data
steward intends to examine many x across many records i. Instead, we suggest using
the sampled values of Θ from p(Θ | D) as proposals for an importance sampling
algorithm. As a brief review of importance sampling, suppose we seek to estimate the
expectation of some function g(Θ), where Θ has density f(Θ). Further suppose that
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we have available a sample (Θ(1), . . . , Θ(H)) from a convenient distribution f∗(Θ)
that slightly differs from f(Θ). We can estimate Ef (g(Θ)) using

Ef (g(Θ)) ≈
H∑
j=1

g(Θ(j))
f(Θ(j))/f∗(Θ(j))∑H
j=1 f(Θ

(j))/f∗(Θ(j))
. (11)

We note that (11) only requires that f(Θ) and f∗(Θ) be known up to constants.
We implement importance sampling algorithms to approximate the integral in (10).

By construction, we have

P (Z | Dx
i , S) =

m∏
l=1

P (Z(l) | Dx
i , S), (12)

regardless of the exact values in Dx
i . Thus, for any proposed x, we can use importance

sampling to approximate each P (Z(l) | Dx
i , S) and substitute the m resulting estimates

in the product in (12).
Let x∗(l)

i = (x
∗(l)
i1 , . . . , x

∗(l)
ip ) be the ith record’s values in synthetic dataset Z(l),

where i = 1, . . . , n∗ and l = 1, . . . ,m. For each Z(l) and any proposed x, we define
the g(Θ) in (11) to equal cP (Z(l) | Dx

i , S). We approximate the expectation of each
g(Θ) with respect to f(Θ) = f(Θ | Dx

i , S). In doing so, for any sampled Θ(j) we use

g(Θ(j)) = P (Z(l) | Dx
i , S, Θ

(j)) =
n∏

i=1

⎛⎝ F∑
f=1

π
(j)
f

p∏
k=1

φ
(k)(j)

fx
∗(l)
ik

⎞⎠ . (13)

We set f∗(Θ) = f(Θ | D,S), so that we can use H draws of Θ from its pos-
terior distribution based on D. Let these H draws be (Θ(1), . . . , Θ(H)). We note that
one could use any Dx

i to obtain the H draws, so that intruders can use similar im-
portance sampling computations. As evident in (1) and (2), the only differences in the
kernels of f(Θ) and f∗(Θ) include (i) the components of the likelihood associated with
record i and (ii) the normalizing constant for each density. Let x = (c1, . . . , cp), where
each ck ∈ (1, . . . , dk), be a guess at Xi. After computing the normalized ratio in (11)
and canceling common terms from the numerator and denominator, we are left with
P (Z(l) | Dx

i , S) =
∑H

j=1 pjqj where

pj =
n∏

i=1

(
F∑

f=1

π
(j)
f

p∏
k=1

φ
(k)(j)

fx
(∗l)
ik

) (14)

qj =

∑F
f=1 π

(j)
f

∏p
k=1 φ

(k)(j)
fck

/
∑F

f=1 π
(j)
f

∏p
k=1 φ

(k)(j)
fxik∑H

h=1(
∑F

f=1 π
(h)
f

∏p
k=1 φ

(k)(h)
fck

/
∑F

f=1 π
(h)
f

∏p
k=1 φ

(k)(h)
fxik

)
. (15)

We repeat this computation for each Z(l), plugging the m results into (12).
Finally, to approximate ρxi , we compute (12) for each x ∈ Ri, multiplying each

resulting value by its associated P (Xi = x | D−i, S). In what follows, we presume an
intruder with a uniform prior distribution over the support x ∈ Ri. In this case, the prior
probabilities cancel from the numerator and denominator of (7), so that risk evaluations
are based only on the likelihood function for Z . We discuss evaluation of other prior
distributions in the illustrative application, to which we now turn.
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4 Illustrative Application

We create and evaluate fully synthetic data for a subset of n = 10000 individuals from
the 2012 American Community Survey public use microdata sample for the state of
North Carolina. The p = 14 variables are displayed in Table 1. These 14 variables
make a contingency table with d = 8709120 cells. The 10000 individuals occupy 3523
of these cells. Of the 3523 observed combinations of x, 2394 appear once, 474 appear
twice, and 186 appear three times in the sample. The most frequent combination is
repeated 233 times. We note that this table is constructed not to include structural zeros.

Table 1. Variables used in the illustrative application. Data taken from the 2012 American Com-
munity Survey public use microdata samples. In the table, PR stands for Puerto Rico.

Variable Categories
SEX 1 = male, 2 = female
AGEP age of person: 1 = 18-29, 2 = 30-44, 3 = 45-59, 4 = 60+
RACE1P 1 = White alone, 2 = Black or African American alone,

3 = American Indian alone, 4 = other, 5 = two or more
races, 6 = Asian alone

SCHL 1 = less than high school diploma, 2 = high school
diploma or GED or alternative credential, 3 = some
college, 4 = associate’s degree or higher

MAR 1 = married, 2 = widowed, 3 = divorced, 4 = separated,
5 = never married

LANX 1 = speaks another language, 2 = speaks only English
WAOB born in: 1 = US state, 2 = PR and US island areas,

oceania and at sea, 3 = Latin America, 4 = Asia, 5 =
Europe, 6 = Africa, 7 = Northern America

MIL 1 = active military duty at some point, 2 = military
training for Reserves/National Guard only, 3 = never
served in the military

WKL 1 = worked within the past 12 months, 2 = worked
1-5 years ago, 3 = worked over 5 years ago or never
worked

DIS 1 = has a disability, 2 = no disability
HICOV 1 = has health insurance coverage, 2 = no coverage
MIG 1 = live in the same house (non movers), 2 = move to

outside US and PR, 3 = move to different house in US
or PR

SCH 1 = has not attended school in the last 3 months, 2 =
in public school or college, 3 = in private school or
college or home school

HISP 1 = not Spanish, Hispanic, or Latino, 2 = Spanish, His-
panic, or Latino
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4.1 Some Evidence of Utility of the Synthetic Data

We generated m = 5 synthetic datasets by estimating and sampling from the DPMPM
based on the 10000 cases in D. Before illustrating the disclosure risk evaluations, we
present evidence that the DPMPM synthesizer generates useful data for this D. Here,
we do not intend to offer an exhaustive investigation of data utility; rather, our purpose
is to document that the resulting Z are potentially useful for analysis.

Figure 1 and Figure 2 display the joint distributions of (WKL, SCHL) and (HISP,
RACE1P), respectively, using the sample percentages in D and the averages of the
corresponding percentages in the m = 5 synthetic datasets. The DPMPM synthesizer
preserves these two joint distributions quite closely. We found similar patterns for the
marginal distributions of all variables and for joint distributions involving most other
pairs of variables.
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Fig. 1. Estimated joint probabilities for WKL
and SCHL across the original and m = 5 syn-
thetic datasets
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Fig. 2. Estimated joint probabilities for HISP
and RACE1P across the original and m = 5
synthetic datasets

Table 2. Point estimates and 95% confidence intervals for coefficients in a logistic regression of
disability status on several main effects. Results estimated with the original data and the m = 5
generated synthetic datasets.

Original data Synthetic (m=5)
Estimand Estimate 95% CI q̄5 95% CI
Intercept 2.212 2.108 [1.523,2.692]
SEX -0.250 -0.221 [-0.361,-0.081]
MIL 0.239 0.205 [0.1255,0.2854]
MIG 0.049 0.060 [-0.0821,0.2014]
SCH 1.090 0.961 [0.6699,1.2521]
RACE1P -0.078 -0.065 [-0.1147,-0.0145]
LANX -1.096 -0.970 [-1.401,-0.539]

Table 2 summarizes the results of logistic regressions of DIS on SEX, MIL, MIG,
SCH, RACE1P, and LANX. To estimate the coefficients, we use the maximum like-
lihood estimates (MLE) from D and the averages of the MLEs from the m = 5
synthetic datasets. The 95% confidence interval from the synthetic data derives from
Raghunathan et al. (2003). Once again, the DPMPM offers reasonable results.
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4.2 Disclosure Risk Assessments

Having demonstrated that Z has some analytic validity, we now turn to illustrating the
assessment of disclosure risks. To do so, we drop each record in D one at a time. For
each i, we compute the resulting ρxi for all x in a reduced support Ri. Here, each Ri

is defined as the union of the true xi plus the 34 other combinations of x obtained by
changing xi in one variable. For any two records i and j such that xi = xj in D,
ρxi = ρxj for any possible x. Thus, we need only do computations for each of the 3523
combinations that appeared in the data. To compute each ρxi , we use a uniform prior
distribution over all x ∈ Ri.

Figure 3 displays the distribution of the rank of the true xi for each of the 3523
combinations. Here, a rank equal to 1 means the true xi has the highest probability of
being the unknownXi, whereas a rank of 35 means the true xi has the lowest probability
of being the true Xi. Even armed with D−i, the intruder gives the top rank to the
true xi for only two combinations and gives xi a ranking in the top three for only 31
combinations; these are displayed in Table 3. We note that 2394 combinations were
unique in D, yet evidently the DPMPM synthesizer involves enough smoothing that we
do not recover the true xi in the overwhelming majority of cases.

Figure 4 displays a histogram of the corresponding probabilities associated with the
true xi in each of the 3523 combinations. The largest probability is close to 0.2, and
only 16 probabilities exceed 0.08. The majority of probabilities are in the 0.03 range.
As we assumed a uniform prior distribution over the 35 possibilities in the support, the
ratio of the posterior to prior probability is typically one or less, and only a handful
of combinations have ratios exceeding two. Thus, compared to random guesses over a
reasonably close neighborhood of the true values, Z typically does not provide much
additional information about xi. We note that high probabilities do not automatically
result in top rankings.

Fig. 3. Histogram of ranks of the probabilities
associated with true xi

Fig. 4. Histogram of probabilities associated
with the true xi

If desired, data stewards can evaluate risk probabilities for intruders possessing ad-
ditional information about target records in D. For example, suppose the data steward
defines each xi = (xi(1), xi(2)), where xi(1) is a subset of values known to the intruder
(e.g., demographic variables) and xi(2) is the remaining subset of values unknown to
the intruder (e.g., health variables). To evaluate risks for intruders seeking to estimate
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Table 3. The 31 combinations in D with the true xi ranked in the top three highest posterior
probabilities. “Reps.” is the number of times xi is repeated in D.

Value for true xi

Combination Reps. Rank Probability
(1,2,2,2,1,1,1,3,1,2,1,1,1,1) 1 1 .051
(2,4,3,2,2,2,1,3,2,2,2,1,1,1) 1 1 .088
(1,1,1,4,5,1,3,3,1,2,2,1,1,2) 1 2 .086
(1,1,5,3,5,2,1,1,2,2,2,3,2,1) 1 2 .070
(1,3,4,3,3,2,1,1,3,2,2,3,1,2) 2 2 .190
(2,1,5,3,5,1,1,3,1,2,1,1,2,1) 1 2 .076
(2,1,6,3,5,2,1,3,3,2,1,1,2,1) 1 2 .087
(1,1,1,3,1,2,1,3,3,2,2,1,1,1) 1 3 .060
(1,1,4,1,5,1,1,3,1,2,2,1,1,2) 1 3 .065
(1,2,1,4,3,2,1,1,3,2,2,3,2,1) 2 3 .125
(1,3,2,1,5,2,5,3,2,1,1,1,1,2) 1 3 .075
(1,3,2,3,3,2,5,1,2,2,2,1,3,1) 1 3 .069
(1,4,1,1,3,2,1,1,3,2,1,1,1,1) 2 3 .047
(1,4,4,4,1,1,3,3,1,2,1,1,1,2) 1 3 .066
(2,1,1,1,5,1,3,3,2,2,1,1,1,2) 1 3 .081
(2,1,1,2,1,2,1,3,3,2,1,1,1,1) 5 3 .046
(2,1,1,2,5,1,5,3,3,2,1,2,3,1) 1 3 .101
(2,1,1,4,3,2,1,2,3,2,1,3,1,1) 1 3 .085
(2,1,3,1,5,2,1,3,2,1,2,1,1,1) 1 3 .055
(2,1,3,3,5,2,1,3,2,2,2,1,1,1) 1 3 .050
(2,1,5,1,1,2,1,3,2,2,2,1,1,1) 1 3 .059
(2,1,5,3,5,1,1,3,1,1,1,3,2,1) 1 3 .066
(2,2,1,4,1,1,5,3,1,2,2,1,1,1) 1 3 .052
(2,2,2,4,5,2,4,3,1,2,1,3,2,1) 1 3 .079
(2,3,1,4,1,1,1,1,1,2,1,3,1,1) 1 3 .051
(2,3,1,4,1,1,5,3,1,2,1,1,1,1) 1 3 .053
(2,3,1,4,1,2,1,1,1,2,1,1,1,2) 1 3 .054
(2,4,1,3,1,1,4,3,2,1,1,1,1,1) 1 3 .121
(2,4,1,3,2,1,4,3,3,2,1,1,1,1) 1 3 .104
(2,4,1,4,2,2,1,3,2,1,2,1,1,1) 1 3 .065
(2,4,6,1,2,1,4,3,3,2,1,1,1,1) 1 3 .080

the distribution of xi(2), we define A = (D−i ∪ xi(1)). Using obvious extensions of
notation, we then estimate

p(X2(i) = x(2) | Z,A, S) ∝ p(Z | Xi(2) = x(2), A, S)p(Xi(2) = x(2) | A,S). (16)

For some Xi(2), the implied support may be small enough that one can evaluate the
probability over U rather than Ri, restricting both sets to cases with x(1) = xi(1).
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To illustrate these computations, we suppose that xi(2) includes when an individual
last worked (WKL), their disability status (DIS), their health insurance coverage status
(HICOV), and their mobility status (MIG); and, xi(1) includes all other variables. The
sample space for xi(2) comprises 3∗2∗2∗3 = 36 possible values. We compute the prob-
abilities in (16) for the particular combination xi = (2, 4, 1, 3, 1, 1, 4, 3,2,1,1,1, 1, 1),
where the boldface indicates xi(2). This record is somewhat arbitrarily selected for il-
lustration, although it is unique on the entire xi. The true xi(2) = (2, 1, 1, 1) has prob-
ability 0.3695, which ranks first among the 36 cases. Evidently, an intruder armed with
this much information can guess the true value for this record. For comparison, we re-
peated these computations for a person with xi = (1, 4, 3, 2, 1, 2, 1, 1,3,1,1,1, 1, 1).
Here, the probability is 0.0259, which ranks 16 among the 36 cases.

The data steward also may want to evaluate the marginal distribution ofX2(i), namely

p(Xi(2) = x2 | Z,D−i, S) ∝ p(Z | Xi(2) = x(2), D−i, S)p(Xi(2) = x(2) | D−i, S).
(17)

This allows the data steward to compute, for example, the probability associated with
particular combinations of age, race, gender, and education for the ith record under the
strong intruder knowledge scenario. To compute this efficiently, one approach is to sum
the set of probabilities ρxi where {x : x ∈ Ri, x(2) = xi(2)}. Here, using Ri may be
too restrictive, since by construction many of the x in Ri have x(2) = xi(2). For this
article, we did not investigate other approaches to defining Ri suitable for estimation
of (17); this is a topic for future research.

Finally, data stewards need not use uniform distributions on the support of x for the
intruder’s prior distribution; the computations apply for any prior distribution. Natu-
rally, the choice of prior distribution affects posterior probabilities, although for large
m the posterior probabilities can be practically insensitive to specifications of reason-
able prior distributions (Reiter et al., 2014). We suggest that data stewards assess the
effects of changing the prior distribution by comparing posterior probabilities for se-
lected pairs of candidate x values under different prior distributions, specifically those
for xi and other candidate values of interest, say x = b. When A = D−i, the ratio of
the posterior probabilities for xi and b is

p(Xi = xi | Z,D−i, S)

p(Xi = b | Z,D−i, S)
=

p(Z | Xi = xi, D−i, S)

p(Z | Xi = b,D−i, S)

p(Xi = xi | D−i, S)

p(Xi = b | D−i, S)
. (18)

Normalizing constants need not be computed in (18), since they cancel from the numer-
ator and denominator. Hence, once the data steward has computed the likelihoods of Z
for xi and b, it can easily compute the ratio of the posterior probabilities for these two
values for arbitrary sets of prior probabilities.

The ratios in (18) allow for convenient investigations of the effects of changing
the prior probabilities. For example, suppose that the data steward considers records
to be at too high risk if the posterior probability of the true xi is ranked as the top
case (or some other minimum ranking). Suppose that some xi has the tenth highest
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posterior probability in Ri under the uniform prior distribution on x ∈ Ri. Using the
likelihoods from the uniform probability case, the data steward can determine the ratio
of the prior probabilities that would change the posterior probability of xi to become the
top ranked. For example, our risk evaluations under the uniform prior assumption reveal
that xi = (1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1) has the tenth largest ρxi among x ∈ Ri,
with posterior probability equal to 0.0398. The combination with highest probability in
Ri is b = (1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1), with posterior probability equal to 0.0585.
Thus, for an intruder to rank xi as most likely, the intruder would need to believe a priori
that x = xi is 1.46 (0.0585/0.0398) times more likely than x = b.

5 Concluding Remarks

When certain xi have relatively high posterior probabilities, and hence high ranks, data
stewards have several options. If the number of cases that are too risky is small, the data
steward may decide to release the synthetic data and accept the risks. With this action,
the data steward effectively puts low probability on the existence of intruders who know
D−i for exactly the records at risk. Alternatively, the data steward could alter the synthe-
sizer, for example by removing risky records from the data used to estimate the synthesis
models. It is also prudent for the data steward to examine risks under other assumptions
of intruder behavior. For risky cases, data stewards can augment the support of x used
to compute posterior probabilities, for example by changing two variables at a time. Im-
plicitly, using a bigger sample space mimics an intruder armed with less precise (but still
very substantial) knowledge. The data steward also can use a sensible informative prior
distribution to compute risks. For example, the data steward can base prior probabili-
ties for each x ∈ Ri on a DPMPM model estimated on D−i. If the resulting posterior
probabilities do not differ much from the informative prior probabilities, then arguably
releasing Z does not meaningfully increase the disclosure risks for this intruder.

Looking to future research, we see two key next steps in this approach to disclosure
risk assessment. First, we would like to develop algorithms for exploring the full support
of any Xi. With powerful computing and efficient code—these computations are em-
barassingly parallel—it may be feasible to compute normalizing constants over much
if not all of U . Alternatively, it may be possible to find high probability x via stochas-
tic search algorithms. More complete explorations of U would allow for more accurate
computations of P (Xi(2) | Z,D−i, S), which helps data stewards assess risks that the
intruders learn subsets of key or sensitive variables. Second, we would like to relax
the very strong, and perhaps unrealistic, assumption that the intruder knows every case
but one. Conceptually, the path to do so is straightforward. If the intruder knows some
subset of data DA, the data steward considers all plausible values in the set D − DA,
and identifies sets with high probability of generating Z . Clearly, this approach is com-
putationally very expensive. However, we conjecture that stochastic search algorithms
might allow one to identify sets with high probability, and within those sets values of x
that appear with regularity.
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Abstract. In this paper a new approach is proposed for the generation
of synthetic microdata which reduces attribute disclosure for continuous
variables. First, we define a metric of attribute disclosure which is called
v-dispersion. This metric quantifies the risk based on the volume of the
multidimensional confidence regions for the original data values. Next we
describe a method that satisfies the requirements of v-dispersion. This
method is based on a mixture model with constraints on parameters of
components’ spread. Experiments with real data show that the proposed
approach compares very favorably with other methods of disclosure lim-
itation for continuous microdata in terms of utility and risk.
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constraints.

1 Introduction

National statistical agencies collecting individual information are facing the
problem of releasing this data to the public and at the same time have the
obligation to protect the confidentiality of data providers.

To protect individuals’ data, direct identifiers, such as names, addresses and
social security numbers, should be removed. However, some risk of identifica-
tion still exists, for example, by means of linkage of the released data to ex-
ternal databases. So in addition, released microdata —collections of individual
records— are typically modified, in order to make disclosure more difficult. In
other words, statistical disclosure limitation (SDL) methods are applied to the
data prior to their release. These methods can be divided in two groups: masking
methods, that release a modified version of the original microdata, and synthetic
methods, that release artificial records generated from the distribution represent-
ing the original data.

Examples of masking methods include: data swapping, in which data values
are swapped for selected records; noise addition, in which noise is added to
numerical data values to reduce the likelihood of exact matching on key variables
or to distort the values of sensitive variables; and microaggregation, a technique
similar to data binning. See [22,23] for more details.
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Regarding synthetic methods, the crux is to obtain a good data generation
model. Often synthetic data are generated using sequential modeling strategies,
similar to those used for imputation of missing data [32]. If all the records and
all the variables are synthesized then we have a fully synthetic data. The re-
identification disclosure risk is considered negligible for fully synthetic data be-
cause no synthetic record derives from any specific original record. For partially
synthetic data, when only some of the values are synthesized, re-identification
risk still exists. However, even fully synthetic data are not risk-free because syn-
thetic records may be too similar to the original ones, so attribute disclosure risk
may not be negligible. By attribute disclosure we understand the ability of the
intruder to get narrow bounds on the original values of the sensitive attributes.
So, attribute disclosure may occur when the model used to generate synthetic
data is overfitted. It can also be caused by the particularities of the data, for
instance, when the original data closely follows a particular model, for example,
a regression model, and the same model is used to generate the synthetic data.
If the model is released to the public, the intruder may be able to find confidence
regions for the sensitive variables for the target individuals, and if these regions
have narrow bounds, for example, the volumes of these regions are very small
compared to the volume of the overall data, attribute disclosure occurs.

In this paper we aim to address the problem of attribute disclosure for syn-
thetic continuous data. In particular, we intend to (1) define a criterion which
quantifies such a risk and (2) present a method that satisfies the requirements
of this criterion with an acceptable level of risk.

To assess the performance of proposed SDL methods, we need to quantify
data utility, or the amount of distortion caused by the method. There are dif-
ferent types of utility assessment: analysis-specific utility measures, tailored to
specific analyses, and broad measures reflecting global differences between the
distributions of original and masked data (see some examples in [10,29,25,41].
In this paper we will use a measure of the latter type, specifically a propensity
score measure proposed in [41] and adopted by the US Census Bureau [13].

Regarding attribute disclosure risk assesment several criteria have been pro-
posed in the literature, for example l-diversity and t-closeness. l-diversity requires
diversity of the values of the sensitive attribute within each equivalence class,
where equivalence class is defined as a group of records that share the same
values of quasi-identifiers. So, each equivalence class should have at least l “well-
represented” sensitive values. This criterion is not very suited for continuous
variables as it does not take into account their dispersion, so the values can be
different within a group, but still very close in value.

The t-closeness criterion [26] was proposed in an attempt to address some of
the drawbacks associated with l-diversity. t-closeness requires that the distance
between the distribution of the confidential attribute in the equivalence class
and the distribution of the attribute in the whole data set be no more than a
threshold t. This criterion suffers from several drawbacks as well. One of them is
that it is difficult to assess such a distance for multidimensional data when the
distribution of the original data is unknown (see [12] for thorough discussion).
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Finally we want to note that there is another relevant criterion that origi-
nated in computer science and has received a lot of scientific attention, namely
ε-differential privacy ([14,16,15] ) and some its variants. Differential privacy pro-
vides a very strong level of privacy, no matter the intruder’s side knowledge,
by limiting the influence of any single respondent on the released information.
Methods for differentially private data releases aim at preserving utility for a
certain class of queries: for example, [21] presents a differentially private algo-
rithm producing a synthetic data set that preserves utility for any set of linear
queries (those that apply a function to each record and sum the result, like for
example count queries). In other cases strong privacy guarantees of differential
privacy may come at a great cost in data utility (see for example [6,7,17])

The focus of this paper is on release of continuous synthetic data with very
general utility preservation guarantees. That is why we will not adopt the path of
differential privacy in this paper, but rather will use our own attribute disclosure
criterion, which has some similarity with t-closeness. This criterion, however,
does not have a strict requirement of maintaining the same or close distribution
of sensitive variables within the subgroups, because of the decreased utility ([12])
and infeasibility of its implementation for multidimensional data. The details are
given in section 2.

1.1 Contribution and Plan of This Paper

The contributions of the paper are two-fold: first we introduce a privacy criterion
suitable for continuous variables, which we call v-dispersion. Next, we present
a method of disclosure limitation which satisfies this criterion. The proposed
approach is predicated on the mixture model with constraints on component
covariance matrices. We present empirical comparison of the proposed approach
with other SDL methods based on a propensity score utility measure. We show
that our method outperforms other methods including fully synthetic data, even
though our method is more restrictive than others in the sense that it enforces
the requirements of v-dispersion while others do not.

The idea of our method is described in Section 2. The results of a numerical
experiment are reported in Section 3. Finally, Section 4 provides a concluding
discussion and suggests topics for future work.

2 The v-Dispersion Privacy Criterion and a Method of
Disclosure Limitation That Enforces Its Requirements

Ideally to be able to assess attribute disclosure, the data protector must know
what information is available to the intruder, which is impossible. However, in
the case of releasing synthetic data the risk assessment procedure differs from
that of masked data release, because there is no direct correspondence between
the records in the original and synthetic file and also because the quality and
risk of synthetic records strongly depends on the model used to generate it. The
release of synthetic data is sometimes questioned from the point of view “why
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release synthetic data at all and not just the model?” So, in a sense there is an
equivalence between the synthetic data and the model. It seems reasonable to
estimate attribute disclosure risk based on the risk associated with releasing the
model. This is the focus in this paper. If necessary a follow up analysis can be
done when additional intruder’s knowledge is taken into account.

Intuitively, attribute disclosure risk corresponds to the ability of the intruder
to find low and upper bounds on the values of the original sensitive variable
or in the case of multiple sensitive variables - multidimensional regions, such
that these bounds are “close enough” or when the volumes are “small enough”.
Closeness of the bounds and size of the volumes depend on the situation at hand
and the standards of the data protector.

We define the criterion for attribute disclosure risk associated with synthetic
data release as follows:

Definition 1. Let Xs be synthetic data to be released instead of the original data
Xo. Assume that the model used to generate Xs is released as well and based
on the information about the model, an intruder constructs confidence regions
for the original values of the sensitive attributes of Xo. If the volumes of these
regions are larger or equal to V then the synthetic data is v-dispersed, where v
is a parameter of the method specified by the data protector.

In the next section we will show an example of v-dispersed synthetic data
generation based on a mixture model.

2.1 Synthetic Method to Generate v-Dispersed Continuous Data

As mentioned above, our approach for synthetic data generation is based on using
a mixture model. There are several reasons for this choice. First, a mixture model
is a very flexible and powerful tool which has the ability to accurately represent
the first, second, and higher-order observed moments of the continuous attributes
if the number of components is sufficiently large. For some types of data, e.g,
healthcare data, mixture models can be particularly appealing, because in many
areas of medical research mixture models are used to classify individuals into
disease categories. So, preservation of important distributional characteristics,
such as first and second order moments, within these meaningful classes can be
considered as a desirable feature for the user.

We want to note that in [30] an SDL method based on the mixture model was
presented; however, no attempt was made to assess and limit the risk related
to such a data release. In this paper we intend to address this problem and at
the same time to obtain synthetic data with good utility properties. To achieve
this goal we will incorporate lower bounds on the amount of spread of sensitive
attributes within each component of the mixture so that an intruder will not
be able to get very narrow confidence regions for the values of the sensitive
attributes within each component.
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Let us consider the details of the procedure. When a mixture model is used to
estimate the density f(x) of the entire original data, it can be written as follows

f(x) =

K∑
k=1

πkfk(x|θk) (1)

where πk is the probability that an observation belongs to the k-th component
(πk ≥ 0;

∑K
k=1 πk = 1), fk is the density of the k-th component and θk are the

parameters of fk.
A possible choice for fk is a multivariate normal (MVN) density with θk

being the within-cluster mean vector μk and the covariance matrix Σk. There
are several reasons for this choice:

– Density estimation theory guarantees that any distribution can be effectively
approximated by the mixture of Gaussians [37,38]. In fact with an adequate
number of components Gaussian mixture can reflect skewness and other
complex features of the original data;

– Simplicity of the Gaussian mixture makes the whole procedure of model es-
timation and generation of synthetic data computationally feasible for mul-
tidimensional data. It is easy to generate multivariate normal samples, in
fact, corresponding functions can be found in any statistical package.

– Using the Gaussian distribution may be advantageous from the point of
view of attribute disclosure limitation. The Gaussian model is completely
defined by its mean and covariance matrix, so we can directly manipulate
the volumes of generated synthetic clusters by embedding constraints on
component covariance matrices Σk.

Furthermore, cluster covariance matrices Σk define the shape, orientation and
spread of the data within the cluster. Eigenvalue decomposition of cluster Σk

can be written as
Σk = QΛQ′ (2)

where Q is the orthogonal matrix of eigenvectors, which dictates the orienta-
tion of the cluster, and Λ is the diagonal matrix whose diagonal elements are
eigenvalues of Σk, which define the spread of the cluster. Furthermore, we can
construct a prediction ellipsoid for each cluster as

Pr{(x− μ)′Σ−1
k (x− μ) ≤ χ2

d,α} = 1− α (3)

where χ2
d,α is the critical value of the chi-square distribution with d degrees of

freedom (where d is the dimensionality of the data) at significance level α.
For the synthetic data to satisfy the requirements of v-dispersion we will

impose lower bounds on the volume of the ellipsoid (3):

Vk =
2πd/2

dΓ (d/2)
(χ2

d,α)
d/2|Σk|1/2 ≥ Vo (4)

where Vk is the volume of the prediction ellipsoid for the cluster k, Vo is some
predefined minimal volume and Γ () is the gamma function.
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From equation (4) we see that the volume of the ellipsoid depends on the
determinant of the cluster covariance matrix, which is equal to the product
of its eigenvalues. So, by imposing constraints on the eigenvalues we can limit
attribute disclosure for the cluster.

To estimate cluster covariance matricesΣk, means μk and probabilities pk, we
can use the expectation-maximization (EM) algorithm [28,8]. In EM for mixture
models, the “complete data” are considered to be yi = (xi, zi), where zi =
(zi1, · · · , ziK) is the unobserved portion of the data, with zik = 1 if the record
xi belongs to the cluster k and zik = 0 otherwise. The E step is used to compute
the probabilities zik. M step estimates the means, covariance matrices Σ̂k and
the probabilities of the cluster memberships. The closed-form expressions for
these quantities can be found in the literature (e.g. [28,5]).

To guarantee that the cluster volumes satisfy (4), we will introduce constraints

on the eigenvalues of Σk. In particular, on each M step when estimates Σ̂k are
computed, we will update Σ̂k according to the following rule

Σ̂
new

k = QΛnewQ′ (5)

where Λnew is the diagonal matrix of the updated eigenvalues of Σ̂k and Q are
the eigenvectors of Σ̂k. Eigenvalues λnew

i of Λnew are computed according to
the following rule:

λnew
i = λi + δ, (6)

where δ is

δ =

⎧⎪⎪⎨⎪⎪⎩
0, if Vk ≥ V0,

δ is the root of
∏d

i=1(λi + δ) = A, otherwise,

where A = V 2
0

(dΓ (d/2))2

4πd(χ2
d,α)d

.

(7)

This modification of the covariance matrix shifts its eigenvalues by δ with the
goal to increase cluster volumes (if they are too small) but preserves the orien-
tation of the cluster. A similar approach of shifting eigenvalues of the covariance
matrix is sometimes used in fuzzy clustering (e.g. [2]) with the goal to make the
estimation procedure more robust. In fact, when clusters are allowed to have
different shapes and orientations, the number of parameters that need to be es-
timated is K(d+ d(d+ 1)/2+ 1)− 1, where d is the dimensionality of the data.
With this number of parameters the algorithm can become somewhat less robust
as compared to algorithms that only update cluster centers, like k-means. A shift
in eigenvalues that leaves eigenvectors unchanged is the basis of the well-known
Tikhonov regularization for linear optimization problems (see [2]). Although the
update scheme used by [2] is different from ours, shifting eigenvalues in both
schemes introduces a tendency towards sphericity and algebraically makes the
covariance matrix “less singular” and thus “more regular”, which explains the
name “regularization” for this modification according to [2].

To find δ we need to find the root of
∏d

i=1(λi + δ) = A. Note that, because A

is positive and all λi are positive (covariance matrix Σ̂k is positive definite), the
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function F (δ) =
∏d

i=1(λi + δ) is strictly increasing for all δ > 0. Furthermore,
F (0) > 0 and F (δ) = A > F (0), so there will be only one positive root of
the above equation (uniqueness of the positive root can also be confirmed by
Descartes’s Rule of signs). This root can be found using numerical methods. R
function “uniroot” can be used for that.

Finally, we want to address a question concerning the choice of the number
of mixture components. In this regard, we will adopt the approach proposed in
the literature (e.g.[19,18]) and use a likelihood-based parsimony criterion such as
Bayesian Information Criterion (BIC). The literature on model-based clustering
suggests that the model choice based on BIC has given good results from the
data utility perspective [3,4,18,39]. As for the number of clusters, we consider
from 2 to κ clusters, where κ depends on the number of records in the data set.
In our experiments, we set κ = 10 and computed BIC for each such model. The
mixture model which maximizes BIC is chosen.

Also as suggested in the literature [19], we initialized the EM with the re-
sult of model-based hierarchical agglomerative clustering, which approximately
maximizes the classification likelihood.

After the model parameters are estimated, we generated synthetic data from
the mixture using MVN model for each cluster with the parameters set equal to
the estimated values.

3 Experimental Results with Genuine Data Sets

The procedure described above was implemented and evaluated on two medical
data sets:

– The first data set, called THYROID, was obtained from the UCI Machine
Learning Repository [1]. It contains measurements of the following five con-
tinuous attributes: AGE (patient’s age), TSH (thyroid-stimulating hor-
mone), T 3 (triiodothyronine), T 4U (thyroxine utilization rate), FTI (free
thyroxine index). There are 2,800 records in this data set, with some missing
values. In our experiments, we used only the complete cases.

– The second data set, called DIABETES ([34] and also available from the
R package mclust [20]), contains the following three continuous variables:
glucose intolerance, insulin response to oral glucose and insulin resistance
(quantified by determining the steady-state plasma glucose (SSPG) concen-
tration in response to an infusion of octreotide, glucose, and insulin). There
are 145 individuals in this data set.

We want to note that the fact that these two data sets are public-use files
guarantees public-domain reproducibility of the experiments reported here.

Before applying our method to these data sets we had to specify the minimal
cluster volume. One possibility is to set the minimal cluster volume to be equal
to some fraction of the hypervolume of the entire data set, excluding the outliers.
For example, it can be 10%, 20% or 30% of the total volume. In our experiments
we computed hypervolumes using built-in function hypvol of the R packagemclust
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and used the aforementioned percentages for the minimal cluster volume. Denote
our approach as SCk (Synthetic with Constraints), where k ∈ (10%, 20%, 30%) .

Application of SCk to the data led to the model with six components for the
THYROID data and three components for the DIABETES data (these models
were chosen by BIC). In the case of DIABETES we note that respondents in this
data set can actually be classified as patients with chemical diabetes, patients
with overt diabetes and normal subjects. The chosen model was able to identify
these meaningful subpopulations. In the case of the THYROID data there is no
obvious interpretation for the clusters.

When applying these methods, we also monitored how often the covariance
matrices were updated and how much the volumes of the clusters are changed as
a result of the imposed constraints. The application of SC10 to the THYROID
data didn’t require any adjustment of cluster covariance matrices. However, in
the case of SC20 three out of six clusters were adjusted, maximal increase in the
cluster volume among the adjusted clusters was 1.5 times that of the original
cluster volume. And for the SC30 the same three clusters were adjusted and
maximal increase in cluster volume was 2.3 times that of the original cluster
volume. Similar behavior was observed for the DIABETES data. In the case of
SC10, all the clusters satisfied minimal volume requirements, and in the case of
SC20 and SC30, one of the three clusters was adjusted.

For the sake of comparison we also generated synthetic data from the MVN
mixture but without any constraints on cluster volumes to see how much utility
is lost because of the constraints. We denote this method as SNC (Synthetic No
Constraints). Another synthetic method that we experimented with was the one
based on the multivariate sequential regression approach described in [33,35,27].
A free multiple imputation software IVEware [24] was used for that. We denote
this method as SynthReg.

Other methods used for comparison were plain multivariate microaggregation
MDAV [11], denoted as Micro, and noise addition Noise, which are perturbation
methods. Multivariate microaggregation was done with k = 10 for DIABETES
and k = 20 for THYROID data. The choice of k was made empirically to reach a
reasonably fair comparison with the other methods. We used the implementation
of MDAV microaggregation available in the R package sdcMicro [40] for our
method Micro. Regarding noise addition, we used a version that preserves the
mean vector and the covariance matrix. This method was implemented in the
following way:

Xm = E[Xo] +
(Xo − E[Xo]) +E√

1 + c
, (8)

where Xm is the masked data, Xo is the original data, E[Xo] denotes the
expectation of Xo, E ∼ N(0, cΣo) is the random noise, Σo is the covariance
matrix of the original data, and c is the parameter of the method which regulates
the amount of the noise added to the data. We used c = 0.15, as recommended
in the literature [29,31,41]. We call this method Noise.

To compare these methods we chose a measure of data utility which can
be suitable for a number of analyses: the propensity score-based measure [41].
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This measure is based on discrimination between the original and masked data:
masked data that are difficult to distinguish from the original data have relatively
high utility.

Propensity-based information loss is computed in two steps. First, the original
and masked data sets are merged and an indicator variable T equal to one for
masked records, and to zero for original records, is added. Second, for each record
in the original and masked data, the propensity score —the probability of being
in the masked data set— is computed. It was shown in [41] that, if the propensity
scores of all records are close to 0.5, then the original and masked data have the
same distributions. The utility measure is computed as

Propen =
1

N

N∑
i=1

[p̂i − 0.5]
2
, (9)

where N is the total number of records in the merged data set and p̂i is the
estimated propensity score for record i.

The propensity score utility measure depends on the specification of the model
used to estimate propensity scores (see [41]). The model that we used for the
DIABETES data contains all main effects and interactions from the first to the
third-order, and for the THYROID data the model contains all main effects and
interactions from the first to the fourth-order.

Table 1. Propensity score utility for various methods (lower values mean better utility)

Method
Data set SC10 SC20 SC30 Synth SynthReg Micro Noise

DIABETES 2.92 3.42 3.45 2.92 16.28 6.11 7.31
THYROID 25.88 29.70 63.39 25.88 565.56 276.11 301.11

The results for the different methods are shown in Table 1. These are average
values of data utility for 50 realizations of masked sets obtained from the same
original data by the application of SC10, SC20, SC30,Synth, SynthReg and Noise
(remember, Micro is a deterministic method).

We can see that SC10, SC20 and SC30 compare very well with the other meth-
ods. Their utility is the best compared to the other methods. As the minimal
cluster volume increases the propensity score measure increases as well, as ex-
pected, however, it is still smaller than the other methods. We want to note also
that other methods considered for comparison do not satisfy the requirement of
v-dispersion. The only exception is noise addition, which can be considered as a
v-dispersed because it is possible to specify a confidence ellipsoid region for the
original values Xoi given masked values. The volume of this region depends on
the parameter c of Noise. In fact, when noise E ∼ N(0, cΣo) is added to the origi-
nal observation the corresponding masked observation will be within the ellipsoid
region centered at the original observation. The volume of this region is equal to
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the volume of the original data Xo times
√
(cd), where d is the dimensionality of

the data. So, by varying the parameter c we can get bigger or smaller confidence
regions and thus limit attribute disclosure. In our experiments we set c = 0.15
which corresponds to minimal confidence volume equal to

√
(0.153) = 0.06 of

the total volume for the DIABETES data and
√
(0.155) = 0.0087 of the total

volume for the THYROID data. Note that these volumes are much smaller than
the ones used for the synthetic data SC. So, Noise has higher attribute disclo-
sure and still worse utility than SCk according to the propensity score measure.
In addition, there is a possibility of re-identification disclosure for Noise ([29]),
which is not the case for SCk, because these are synthetic methods.

We also looked how different distributional characteristics of the original data
are preserved. Our experiments showed that the first two moments are very well
preserved. The ratio of masked and original means showed only small variation
about 1. Similar results were observed for the covariance matrix and third mo-
ments, which shows that the mixture model can successfully capture the skewness
of the original data (both data sets have skewed distributions with a number of
outlying observations). A thorough analysis and comparison of the distributional
characteristics is the subject of our future work.

4 Conclusion

In this paper we presented a new method of synthetic data generation that satis-
fies the attribute disclosure risk criterion defined in the paper. Synthesizing data
from the mixture model with constraints on component volumes is a promising
and flexible approach for disclosure limitation of continuous data. Data gener-
ated from such a model has good utility characteristics and at the same time
limits attribute disclosure. In particular we want to note that for both of our data
sets, our method was considerably better than the fully synthetic data based on
sequential regressions according to the propensity score utility measure. This
suggests that global synthesis of data sets with complex structure may not give
good results from the point of few of the utility of the resulting synthetic data.
In contrast, local synthesis, which is the essence of our method, may be the best
option. Using Gaussian distribution to model the components of the mixture
model allows us to manage directly the dispersion of synthetic values within a
component as was illustrated in this paper.

In general, attribute disclosure depends on the amount of information avail-
able to the intruder not only about the disclosure limitation method but also
about other sensitive variables. Of course, the data protector cannot know all
this information at the moment of data release. However, it seems reasonable
to analyze first the risk related to the model. Next step may consist of some
follow up analyses when additional information on sensitive variables is taken
into account. In the future we intend to work on this question. In particular, we
will focus on the following problems:

– Attribute disclosure risk assessment for synthetic data for other scenarios of
data release. For example, assume that, in addition to the knowledge about
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the model the intruder knows the original values of some of the variables
which are not publicly available and wants to obtain narrow bounds on a
particular subset of sensitive variables.

– Extension of the method to the cases when data have continuous and cate-
gorical variables. We plan to experiment with different latent class analysis
models with the goal of developing a criterion and a method that would
treat categorical and continuous variables jointly while limiting attribute
disclosure on both types of variables.
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Abstract. Computing and releasing statistics for small geographic areas is a 
common task for many statistical agencies, but releasing public-use microdata 
for these areas is much less common due to data confidentiality concerns. Ac-
cessing the restricted microdata is usually only possible within a research data 
center (RDC). This arrangement is inconvenient for many researchers who must 
travel large distances and, in some cases, pay a sizeable data usage fee to access 
the nearest RDC. An alternative data dissemination method that has been ex-
plored is to release public-use synthetic data. In general, synthetic data consists 
of imputed values drawn from a predictive model based on the observed data. 
Data confidentiality is preserved because no actual data values are released. The 
imputed values are typically drawn from a standard, parametric distribution, but 
often key variables of interest do not follow strict parametric forms. In this pa-
per, we apply a nonparametric method for generating synthetic data for conti-
nuous variables collected from small geographic areas. The method is evaluated 
using data from the 2005-2007 American Community Survey. The analytic va-
lidity of the synthetic data is assessed by comparing parametric (baseline) and 
nonparametric inferences obtained from the synthetic data with those obtained 
from the observed data.  

Keywords: data confidentiality, hierarchical Bayesian model, multiple imputa-
tion, small area inference. 

1 Introduction 

One of the primary functions of a statistical agency is to collect high quality survey 
data and make these data widely available to data users in the public domain. Scientif-
ic surveys serve as the principal data sources for many academic researchers, analysts, 
and policy-makers who use these data to test theories of human behavior and, in turn, 
inform important policy decisions. The greatest impact of policy decisions and inter-
ventions is arguably felt at the local level where people are most likely to be exposed 
to changes in infrastructure and resource availability. Several studies have shown that 
neighborhood- and community-level factors are associated with numerous health and 
behavioral outcomes [1,2,3,4]. These findings underscore the need for high quality 
survey data which is being demanded by researchers interested in studying how small 
area effects influence the characteristics and well-being of the population. 
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Many statistical agencies release estimates for various levels of geography. For ex-
ample, the U.S. Census Bureau releases summary tables containing estimates of de-
mographic, social, and economic characteristics of people, households, and housing 
units for large areas (e.g., national, region, division), small areas (e.g., tracts, block 
groups), and many intermediate areas (e.g., state, county, census tract). The U.S. Cen-
sus Bureau also administers specialized programs for producing updated estimates of 
income and poverty statistics for school districts, counties, and states [5], and health 
insurance estimates for counties and states [6].  

The production of small area estimates can be useful for many research and evalua-
tion purposes, but oftentimes these estimates are not detailed enough for data users 
who wish to perform their own customizable geographical analyses. Such data is of-
ten needed to test complex hypotheses which require analytic estimates and sophisti-
cated modeling procedures. The U.S. Census Bureau and other statistical agencies try 
to meet this demand by releasing public-use microdata files. However, the usefulness 
of these files can be limiting as geographic identifiers are typically suppressed for 
areas that do not meet a predefined population threshold (e.g., 100,000 persons). Dis-
closure concerns prohibit the release of small area identifiers for areas that do not 
meet this pre-specified threshold. To overcome this limitation, data users may access 
the suppressed identifiers in a Research Data Center (RDC). However, working in an 
RDC is not always ideal for prospective data users for several reasons. First, prospec-
tive users are usually required to submit a research proposal that is subject to approval 
by the agency responsible for granting access to the restricted data. This requirement 
may be too burdensome for users whose analytic objectives are exploratory in nature 
and whose research questions are not yet well-defined. Second, there is a significant 
cost burden associated with using the RDC. Many federal RDCs charge a usage fee 
upward of $20,000 per year, which can be difficult to cover for data users who lack 
external funds. Finally, there is no guarantee that small area outputs generated from 
the RDC will pass disclosure review and be permitted for publication. 

1.1 Multiple Imputation for Statistical Disclosure Control 

To facilitate data access and maintain strict confidentiality requirements for small 
geographic areas, this article builds on prior work exploring the use of multiple impu-
tation to generate public-use synthetic data files for small geographic areas [7].  Syn-
thetic data comprises hypothetical (yet plausible) data values that replace some or all 
of the observed data values. Similar to multiple imputation for nonresponse, the syn-
thetic data values are generated from a predictive model based on the observed data 
[8]. The main distinction lies in how the “missing data” is defined. In a fully-synthetic 
data framework [9], the nonsampled portion of the population is treated as missing 
data to be multiply imputed. After the synthetic populations are created random sam-
ples are drawn from each and released as public-use microdata files. Inferences are 
obtained by using standard combining rules [9]. Statistical agencies have experi-
mented with releasing synthetic data files in practical survey applications [10,11,12], 
but this approach has not been considered for the purpose of disseminating public-use 
microdata for small geographic areas. 
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A necessary prerequisite for creating analytically-valid synthetic data sets for any 
application is that the imputation model underlying the synthetic data generating 
process is appropriately specified and reflects all of the key relationships in the ob-
served data. When the imputer’s model corresponds to the analyst’s model, then the 
models are said to be “congenial” in the context of multiple imputation for survey 
nonresponse [13]. The lack of correspondence (or congeniality) between the two 
models can lead to biased inferences. Incorporating all-possible analytic relationships 
into the model is one way to minimize bias, but this approach is not always practically 
feasible. This is an important point of contention among analysts who may be inter-
ested in analyzing complex relationships, interactions, and higher-order terms but 
these uses of the data are usually unbeknownst to the data imputer prior to synthesis 
[14].  In this case, compromises may need to be chosen that appease the majority of 
data users with the explicit caveat that more complex analyses may require access to 
the observed microdata.  

A second approach to protecting against bias is to relax the distributional assump-
tions associated with parametric imputation models to improve model fit and protect 
against model misspecification. This approach has led to several innovations in the 
use of semiparametric and nonparametric imputation models for the purpose of gene-
rating synthetic data. Raghunathan et al. [9] evaluated a multivariate normal and a 
nonparametric Bayesian bootstrap procedure to generate synthetic data sets based on 
the 1994 Consumer Expenditure Survey. Reiter [15] presented a nonparametric impu-
tation method based on classification and regression tree (CART) models to generate 
synthetic data.  Caiola and Reiter [16] considered imputation models based on random 
forests (RF), which are collections of CARTs based on random subsamples of the 
original data where each tree is grown using random samples of predictors. Drechsler 
and Reiter [17] empirically evaluated several synthetic data generators based on non-
parametric machine-learning algorithms, including CART, random forests, support-
vector machines, and bagging. Woodcock and Benedetto [18] developed an imputa-
tion strategy based on kernel density estimation for variables with very skewed and 
multimodal distributions. These references primarily focus on preserving statistics 
about the entire sample. Applying nonparametric methods for generating synthetic 
data for small domains and small geographic areas is an underdeveloped, but poten-
tially worthwhile, area of research.  

In this article, we apply a nonparametric simulation procedure for generating syn-
thetic data for continuous variables for small geographic areas. The procedure is 
based on a Bayesian hierarchical model that accounts for small areas (e.g., counties) 
nested within larger areas (e.g., states) and is coupled with the parametric procedure 
described in [7]. The parametric procedure is modified by applying a nonparametric 
component that is implemented at the final step of the data generation process. The 
modified procedure is applied and evaluated using public-use microdata from the 
American Community Survey for years 2005-2007. The synthetic data inferences are 
compared against the actual data inferences for both descriptive and analytic statistics 
and both skewed and bimodal variables.  
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2 Review of Fully Synthetic Data 

2.1 Generating Fully Synthetic Data Sets 

Procedures for generating and analyzing fully-synthetic data sets are described in [9] 
and in [19]. The pertinent details are described here. Suppose a sample of size  is 
drawn from a finite population Ω ,  of size , with ; 1,2, … ,  
representing auxiliary information available for all  units in the population, and ; 1,2, … ,  representing the survey variables of interest. It is assumed that 
there is no confidentiality concern over releasing  and synthesis of these auxiliary 
variables is not needed. Let ; 1,2, … ,  be the observed portion of  
corresponding to sampled units and ; 1, 2, … ,  be the unob-
served portion of  corresponding to the nonsampled units. The observed data set is , . It is assumed that there are no item missing data in the observed data 
set. 

Fully synthetic data sets are constructed in two steps. First,  synthetic popula-
tions , ; 1,2, … ,  are generated by taking independent draws 
from the Bayesian posterior predictive distribution of | ,  conditional on 
the observed data . Alternatively, one can generate synthetic values of  for all  
units to ensure that no observed values of  are released. The number of synthetic 
populations  is chosen based on the desired accuracy for synthetic data inferences. 
A modest number of fully synthetic data sets (e.g., 5, 10, or 20) is usually sufficient to 
ensure valid inferences [9]. In the second step, a random sample of size  is drawn 

from each of the 1,2, … ,  synthetic data populations, , ,1,2, … , . The corresponding  synthetic samples ; 1,2, … ,  
comprise the public-use data sets, which are released to data users for analysis. 

2.2 Analyzing Fully Synthetic Data Sets 

From the publicly-released synthetic data sets, data users can make inferences about a 
scalar population quantity , , such as the population mean of  or the pop-
ulation regression coefficients of  on .  Suppose the analyst is interested in obtain-
ing a point estimate  and an associated measure of uncertainty  of  from a set of 
synthetic samples  drawn from the synthetic populations ;1,2, … ,  under simple random sampling. The values of  and  computed on the M 
synthetic data sets are denoted by , , 1,2, … , . 

Consistent with the theory of multiple imputation for item missing data [20,21], 
combining inferences about ,  from a set of synthetic samples  is 
achieved by approximating the posterior distribution of  conditional on . The 
approach suggested in [9] is to treat , ; 1,2, … ,  as sufficient summaries 
of the synthetic data sets  and approximate the posterior density |  using 
a normal distribution with the posterior mean  computed as the average of the esti-
mates, 
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 /  
(1) 

 

 
and the approximate posterior variance is computed as, 

 
 1 (2) 

 
where ∑ /  is the overall mean of the estimated variances across all 

synthetic data sets (“within variance”) and ∑ / 1  is the 
variance of  across all synthetic data sets (“between variance”).  

Under the conditions specified by [9],  is an unbiased estimator of  and 

 is an unbiased estimator of the variance of . The  adjusts for using 

only a finite number of synthetic data sets. It should be noted that the subtraction of 
the within imputation variance in  is due to the additional step of sampling the units 
that comprise the synthetic samples from each multiply-imputed synthetic population. 
Because of this additional sampling step, the between imputation variance already 
reflects the within imputation variability, which is not the case in the usual multiple 
imputation framework. When , , and  are large, inferences for scalar  can be 
based on normal distributions. For moderate , inferences can be based on t-
distributions with degrees of freedom 1 1 , where 1 / , so that a 1 % interval for  is /2  as de-
scribed in [22].  

3 Extension to Small Geographic Areas 

In this section, we describe a fully-parametric synthetic data generation procedure 
presented in [7]. The procedure is based on a hierarchical Bayesian model and in-
volves three steps. In the first step, the joint density of the variables is approximated 
using the sequential regression procedure described in [23].  In the second step, the 
sampling distribution of the unknown regression parameters estimated in Step 1 is 
approximated and the between-area variation is modeled using auxiliary information 
for larger geographic areas. In the final step, the unknown regression parameters are 
simulated from the posterior distribution and used to draw synthetic values from the 
posterior predictive distribution. A modification of the procedure to allow for nonpa-
rametric simulation of continuous synthetic data values is then introduced.  

3.1 Parametric Approach 

Step 1: Approximating the Joint Density via Sequential Regression  
For simplicity, we define “small areas” to be counties nested within states, which 
could also be nested within even larger areas (e.g., regions). Suppose that a sample of 
size  is drawn from a finite population of size . Let  and  denote the respec-
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tive sample and population sizes for county 1,2, … ,  nested within state 1,2, … , . Let , ; 1,2, … , ;  1,2, … ,  represent the 
 matrix of continuous survey variables collected from each survey respondent 

located in county  and state . Let , ; 1,2, … , , 1, … , ;  1,2, . . ,  represent the  matrix of auxiliary or administrative variables known 
for every population member in a particular county and state.  

A desirable property of synthetic data is that the multivariate relationships among 
the observed variables are maintained in the synthetic data, i.e., the joint distribution 
of variables given the auxiliary information , , , , … , , | ,  is preserved. 
Specifying and simulating from the joint conditional distribution can be difficult for 
complex data structures involving large numbers of variables and different distribu-
tional forms. Alternatively, one can approximate the joint density as a product of con-
ditional densities [23]. That is, the joint density , , , , … , , | ,  can be 
factored into the following conditional densities: , | , , , | , , , ,…, , | , , … , , , , . In practice, a sequence of gene-
ralized linear models are fit based on the observed county-level data where the varia-
ble to be synthesized comprises the outcome variable that is regressed on any aux-
iliary variables or previously fitted variables, e.g.,  , , , , , , ,  ,…, , , , , , , … , ,  ,

. The choice of model (e.g., Gaussian, binomial) is dependent on the type of varia-
ble to be synthesized, but only linear models are considered here. It is assumed that 
any complex survey design features are incorporated into the generalized linear mod-
els. After fitting each conditional density, the vector of regression parameter estimates , , the corresponding covariance matrix , , and the residual variance ,  are 
extracted from each of the  regression models and incorporated into the hierarchical 
model described below. The reader should note that 1,2, … ,  is used to index 
the set of parameters associated with the  synthetic variable of interest and the  
regression model from which the direct estimates are obtained.  

Step 2: Sampling Distribution and Between-Area Model  
In the second step, the joint sampling distribution of the design-based county-level 
regression estimates ,  (obtained from each conditional model fitted in Step 1) is 
approximated by a multivariate normal distribution, 

 
 , ~ , , ,  (3) 

 
where ,  is the 1 matrix of unknown regression parameters and ,  is 
the corresponding  estimated covariance matrix obtained from Step 
1. The unknown county-level regression parameters ,  are assumed to follow a 
multivariate normal distribution,  

 
 , ~ , Σ  (4) 
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where , ; 1,2, … ,  is a 1 matrix of state-level covariates,  is a 
 matrix of unknown regression parameters, and Σ  is a  

covariance matrix. The state-level covariates are included in the hierarchical model to 
account for variation between and to “borrow strength” across areas. It is assumed 
that  and Σ  are fixed at their respective maximum likelihood estimates (MLE), a 
common assumption in hierarchical models for small area estimation [24,25,26]. The 
procedure for producing the maximum likelihood estimates using the expectation-
maximization (EM) algorithm [27] is presented in the Appendix. 

Based on standard theory of the normal hierarchical model [28], the unknown re-
gression parameters ,  can be drawn from the following posterior distribution,  

 
 ,  ~ , Σ , ,Σ , , Σ  

 
(5) 

 
where ,  is a simulated vector of values for the unknown regression parameters ,  . 

Step 3: Simulating Synthetic Data Values from the Posterior Predictive Distribution 
Simulating a synthetic variable , ; 1,2, … , ; 1,2, … ,  for ob-
served variable  for synthetic population unit 1,2, … ,  is achieved by draw-
ing in sequential fashion from the posterior predictive distributions , | , , , , | , , , , , …, , | , , , , … , , , , , . The first variable 
to be synthesized ,  is drawn from a normal distribution with location and scale para-
meters ,  and ,  , respectively, where ,  may be drawn from an appropriate 
posterior predictive distribution , | , , , ,  , or fixed at the maximum  
likelihood estimate ,  (obtainable from Step 1). Once the first synthetic variable 
 ,  is generated, a second (normally distributed) synthetic variable ,  is drawn  
from the posterior predictive distribution , | , , , , , which is  
achieved by drawing ,  from , , , , ,  , and so on up to , ~ , , , , , … , , , , ,  . The iterative process continues until 
all synthetic variables , , , , … , ,  are generated. The procedure is repeated M 

times to create multiple populations of synthetic variables , , , , … , , ;1,2, … , .  
The synthetic populations can then be released to analysts, or a simple random 

sample of arbitrary size may be drawn from each population and disseminated. The 
size of the sample should not affect the final inference result as the total variance of 
the estimates is a bifurcation of the within- and between-imputation variance compo-
nents. That is, increasing the sample size will decrease the within-variability, but it 
will increase the between variability. The converse is also true. However, there is a 
practical advantage of drawing a large sample from the synthetic populations as statis-
tical software may encounter fewer computational problems (e.g., nonconvergence of 
multivariate models) if a larger sample is used for the analysis.  
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Analytic inferences from these data can then be obtained using the combining rules 
presented in Section 2.2. 

3.2 Nonparametric Simulation Procedure  

The fully-parametric procedure described above is now modified in such a way that 
does not require the synthetic data values to be drawn from a normal distribution. 
Specifically, the final step in the parametric approach (Step 3, Section 3.1) is replaced 
with a distribution-free simulation procedure while the first two steps remain the 
same. Note that the method still relies on multivariate normality to model the random 
effects and to obtain the posterior distribution of ,  in equation (5). 

Recall from Step 3 (Section 3.1) the fully-parametric iterative simulation procedure 
proceeds as follows. The first continuous and normally distributed observed variable , , ; 1,2, … ,  is simulated from a normal distribution with location 
and scale parameters ,  and , , respectively, i.e., 

 ,  ~ , , ,  , 
 
where  is an  matrix of auxiliary or administrative variables known for 
every population member in a particular county and state. The second observed varia-
ble to be synthesized , , is simulated by drawing from a normal distribution with 
location and scale parameters , , ,  and , , respectively, i.e., 

 ,  ~ , , , , ,   
 
where the location parameter , , ,  conditions on the previously synthe-
sized variable , . The iterative procedure continues until the final variable ,  is 
synthesized,  

 , ~ , , , , , … , , , , ,  . 
 

The general form of the simulation procedure for the  1,2, … ,  synthetic 
variable can therefore be written as, 

 
 , ~ , , , , , … , , , , , . (6) 
 

The procedural steps for synthesizing the  variable using the nonparametric 
procedure are implemented as follows. First, the location parameter from (6) is used 
to obtain predicted values based on the vector of simulated beta coefficients , , any 
previously synthesized variables , , , , … , , , and any auxiliary informa-
tion  that is known for each population member in county  nested within state . 
Specifically, we refer to these synthetically-based predicted values as those obtained 
from the following equation, 
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 , , , , , , , … , , ,  (7) 
 

which is computed for population unit 1,2, … ,  located in the small area (or 
county) of interest.  

Second, we modify (7) to obtain another set of predicted values that are based on 
the set of observed variables  rather than the synthetically-generated ones , 

 
 , , , , , , , … , , ,  (8) 
 

In the third step, the differences between the observed survey values ,  and the 
observed predicted values ,  are obtained to create a 1 vector of deviations, 

 
  ∆ , , , ,  (9) 
 

In the fourth step, we account for the uncertainty associated with the distribution of 
deviated values by resampling the vector ∆ ,  using an approximate Bayesian Boot-
strap (ABB) procedure [29], which is a more computationally direct procedure than 
the original Bayesian Bootstrap [30]. The ABB procedure is implemented by drawing 
the components of an -dimensional vector ∆ , ,  from ∆ ,  with replace-
ment, i.e., ∆ , , ∆ , . The final part of the ABB procedure is to 
draw the components of a -dimensional vector ∆ , ,  from ∆ , ,  with 
replacement, i.e., ∆ , , ∆ , , . 

The final step of the simulation process involves generating the synthetic variables 
using the components from the previous steps. Specifically, the synthetic variable 
is generated using the following equation,  

 
 , , , , , , … , , , ∆ , ,  , , ∆ , ,  

 

(10) 

  
The resulting synthetic data may then be analyzed using the combining rules pre-

sented in Section 2.2. 
A few general remarks can be made about this simulation method. The idea of us-

ing the empirical residuals instead of drawing from a normal distribution has been 
used in many applications of nonresponse in non-small area applications [20,31]. The 
procedure is also implemented in the R package Hmisc [32]. The procedure has sev-
eral advantages in the current application. First, simulating the synthetic values does 
not rely on any standard distribution as it relaxes the assumption of univariate normal-
ity. However, the preceding modeling steps used to construct the hierarchical model 
still rely on multivariate normality, which may not be an adequate assumption if the 
random effects follow a non-normal distribution. Second, there is no need to apply a 
transformation to the variables as the synthetic values are based on deviations from 
the actual values. This is a useful property of the method as choosing a normalizing 
transformation can be a difficult task, particularly when the appropriate transforma-
tion may vary across geographic areas. The effectiveness of the method for synthesiz-
ing non-transformed variables in small areas will be assessed in the next section.  
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4 Application: American Community Survey 

The nonparametric simulation method in 3.2.1 is evaluated using a subset of public-
use microdata from the 2005-2007 U.S. American Community Survey (ACS). The 
ACS is an ongoing national survey that provides yearly estimates regarding income 
and benefits, health insurance, disabilities, family and relationships, among other 
topics. The ACS collects information on persons living in housing units and group 
quarters facilities in 3,142 counties. Data collection is conducted using a mixed-mode 
design. First, questionnaires are mailed to all sampled household addresses obtained 
from the Master Address File. Approximately six weeks after the questionnaire is 
mailed the U.S. Census Bureau attempts to conduct telephone interviews for all ad-
dresses that do not respond by mail. Following the telephone operation, a sample is 
taken from addresses which were not interviewed and these addresses are visited by a 
field interviewer. Full details of the ACS methodology can be found elsewhere [33]. 

The smallest geographic unit that is identified in the public-use ACS microdata is a 
Public-Use Microdata Area (PUMA). PUMAs are non-overlapping census areas that 
contain at least 100,000 persons that cover the entirety of the United States, Puerto 
Rico, Guam, and the U.S. Virgin Island. They typically consist of counties, collec-
tions of counties, or subsets of counties. For this application, the ACS sample is re-
stricted to the Northeast region, which contains 9 states and 405 PUMAs. ACS data 
was collected in each of these PUMAs during the 3-year study period. The evaluation 
is conducted on 5 continuous variables (three household- and two person-level va-
riables) measured on 599,450 households and 1,506,011 persons. The variables, 
shown in Table 1, include the household- and person-level sampling weights, electric-
ity cost/month, household income, and age of all household residents. The first four 
variables are right-skewed and the last variable (age) is bimodal. All of these va-
riables are synthesized in the application. The PUMA variable is the only variable that 
is not synthesized. These variables were suggested by statisticians at the U.S. Census 
Bureau for this project.  

=10 fully synthetic data sets are generated for each “small area” (i.e., PUMA). 
To ensure that each synthetic data set contains ample numbers of households and/or 
persons within PUMAs, the synthetic sample sizes are created to be larger than the 
observed sample sizes, and are approximately equivalent to 20% of the total number 
of households located in each PUMA based on the 2000 decennial census counts. 
This yielded a total synthetic sample size of 3,963,715 households and 10,192,987 
persons in the Northeast region.  

Both parametric and nonparametric synthetic data generation procedures presented 
in Sections 3.1 and 3.2, respectively, are evaluated and compared in this analysis. For 
the parametric method, a log transformation is applied to the household- and person-
level sampling weight variables and a cube root transformation is applied to the elec-
tricity cost and household income variables. The approximate bimodal variable age is 
left untransformed. All transformed variables are back-transformed in the evaluation 
and presented in actual units. For the nonparametric method, no transformations are 
used and the variables are processed in their actual units.  
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that are more closely aligned about the 45-degree line relative to the parametric me-
thod. The results are quite striking in some cases. For example, the standard devia-
tions of the age variable tend to be overestimated in the parametric-based synthetic 
data, but are markedly improved in the nonparametric-based synthetic data; the stan-
dard deviations are still widely dispersed but they are no longer overestimated and are 
centered about the 45-degree line. The parametric approach produces a significant 
amount of variation in the tail-end of the synthetic age distribution. The smoothing 
effect creates additional variation around the mean and causes the standard deviations 
to be larger than the actual standard deviations. In contrast, the tail-end of the nonpa-
rametric synthetic data distribution is more closely aligned with the actual distribu-
tion, and produces less of a smoothing effect. This results in synthetic standard 
deviations that correspond better with the actual standard deviations under the nonpa-
rametric approach. Figures 4 and 5 (see appendix) present side-by-side comparisons 
of standard errors of the PUMA means and simple linear regression estimates. 

5 Conclusions  

In this study, we applied and evaluated a nonparametric simulation procedure for 
generating synthetic data for continuous variables collected from small geographic 
areas. The procedure is based on a hierarchical model which is generally appropriate 
for small area applications. The procedure was applied to data collected from PUMAs 
in a large-scale government survey. The procedure produces reasonable analytic va-
lidity for univariate and multivariate estimates obtained from non-normal distribu-
tions, but is not a universal improvement over parametric methods. Based on this 
study, the analytic validity achieved by the nonparametric method was comparable 
and, in some cases, better than the baseline parametric method. Advantages of apply-
ing this method in practice include its ability to synthesize continuous, nonnormal 
variables without the need to apply transformations, which can be a time-consuming 
and rather subjective process. 

Other demonstrated advantages of the applied method include its versatility in 
terms of handling both skewed and bimodal distributions. Although the nonparametric 
method did not replicate the bimodal shape or upward concavity of the age distribu-
tion in this study, it produced relatively valid PUMA-level estimates, particularly for 
estimates of regression coefficients. In addition, the method produced synthetic data 
with moderately high validity for calculating income percentiles recoded from the 
continuous data.  

Limitations of the nonparametric method applied in this application should also be 
noted. Although simulating the synthetic data values is considered nonparametric, the 
method itself is preceded by parametric modeling steps that characterize the hierar-
chical data structure. For example, the linear regression estimates obtained in Step 1 
assume that the usual regression assumptions (e.g., normality of the error distribution) 
hold. In addition, the hierarchical Bayesian model assumes that the random effects are 
distributed as multivariate normal, which is a common assumption in hierarchical 
models but not verified in this study. Incorporating the procedure within a fully non-
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parametric procedure (e.g., CART) may have yielded better analytic properties in this 
application than the approach considered here.  

In conclusion, the nonparametric synthetic data approach applied in this applica-
tion shows some promise for generating valid synthetic data for small geographic 
areas, but more evaluations using large-scale survey data are needed before it can be 
used in a production-type setting or as a supplement to (or replacement of) research 
data centers.  If synthetic data becomes a more common alternative to accessing re-
stricted data from RDCs, then it is likely that nonparametric data generation methods 
will be preferred in order to address the concerns of data users from data users who 
are skeptical of the parametric assumptions underlying many synthetic data methods.  
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6.2 EM Algorithm for Estimating Bayesian Hyperparameters 

The EM algorithm is used to estimate the unknown population parameters and Σ from the following setup, 
 ,  ~ , , ,  

 ,  ~ , Σ  
where 1,2, … ,  is used to index the set of parameters associated with the  
synthetic variable of interest and the  regression model from which the direct esti-
mates  and  were obtained in Step 1.  

The E step consists of solving the following expectations,  
 , , V , Σ V , Σ  

 , , , , V , Σ , ,  

 
Once these expectations are computed they are then incorporated into the maximi-

zation (M-step) of the unknown hyperparameters  and Σ  using the following equa-
tions, 

 ,  , where ∑ , and 
 Σ , ,  

 
After convergence the maximum likelihood estimates are incorporated into the 

posterior distribution of ,  shown in equation (5). 
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Abstract. The Business Dynamics Statistics is a product of the U.S.
Census Bureau that provides measures of business openings and clos-
ings, and job creation and destruction, by a variety of cross-classifications
(firm and establishment age and size, industrial sector, and geography).
Sensitive data are currently protected through suppression. However, as
additional tabulations are being developed, at ever more detailed geo-
graphic levels, the number of suppressions increases dramatically. This
paper explores the option of providing public-use data that are analyt-
ically valid and without suppressions, by leveraging synthetic data to
replace observations in sensitive cells.
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local labor markets, gross job flows , confidentiality protection.

1 Introduction

The Business Dynamics Statistics (BDS) were first released in 2008, providing
novel statistics on business startups on a comprehensive basis for the U.S. econ-
omy [8]. They have been used in a number of recent publications, addressing
questions of firm dynamics, who creates jobs, etc. [9].

The BDS are sourced from confidential microdata in the Longitudinal Busi-
ness Database (LBD). It provides measures of business openings and closings,
and job creation and destruction, by a variety of cross-classifications (firm and
establishment age and size, industrial sector, and geography). Since the first re-
lease, additional cross-tabulations have been added each year: initially provided
only based on firm charateristics, tabulations based on establishment characteris-
tics were later added, as were additional geography cross-tabulations (Metropoli-
tan Statistical Area, and Metro/Non-Metro). Sensitive data are currently pro-
tected through suppression. However, as additional tabulations are being devel-
oped, at evermore detailed geographic levels, the number of suppressions increases
dramatically.1
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This paper explores the option of providing public-use data that are analyt-
ically valid and without suppressions, by leveraging synthetic data to replace
observations in sensitive cells. The use of synthetic data in the provision of
public-use tabulations has increased in the United States. [16] describe the use
of synthetic data in the case of the OnTheMap data visualization, and the use of
partially synthetic data in tabulations has been explored by others [1,5,18,17,2].
Few have attempted to provide synthetic data for business data - the cases we
are aware of are the Synthetic LBD [15], on which we will rely heavily in this
approach, and a synthetic version of the IAB Establishment Panel [3,10,4]. This
is, to the best of our knowledge, the first attempt to integrate synthetic data
into a public-use data tabulation for businesses.

We leverage the existence of a sophisticated partially synthetic data file the
Synthetic LBD [19], henceforth SynLBD – in combination with the techniques
first expressed in [7] and [6] to replace sensitive cells with tabulations based on
synthetic data. We start by describing the extent of suppressions in the BDS,
then lay out the algorithm to combine synthetic and confidential data for the
purposes of tabulation. Preliminary results are discussed, and an outlook given
on the next steps necessary to achieve a robust public-use tabulation.

2 Item Suppression

BDS processing uses primary and secondary suppressions, derived from a P per-
cent rule, as disclosure avoidance mechanism. All cells of a potential publication
table are analyzed to make sure no identifying information about a particular
business, household, or individual is released to the public. In the case of the
BDS, cells where the top 2 firms account for more than P percent of the total
value of the cell are flagged for suppression. The precise P value is not disclosed
to minimize the possibility of reidentification by potential attackers. Secondary
suppressions are identified so as to minimize the amount of information loss in a
given table row or column. To this end, the search algorithm looks for candidate
cells that contain the least amount of employment, and suppresses their content.
Protecting these secondary cells might require a third round of supressions given
the presence of column totals in the tables. Once the tables are analyzed and
the necessary cells suppressed, each table row that contains a suppressions is
flagged, and the modified table released to the public. Note that individual sup-
pressed cells are not separately flagged, only the row that contains at least one
suppressed cell. A necessary feature of this disclosure mechanism is that a large
number of secondary suppressions are necessitated by the need to protect the cell
that is the primary disclosing cell. The public-use data, of course, doesn’t allow
the identification of which suppressions are primary or secondary suppressions.

Table 1 describes the extent to which suppressions occur in the published
establishment-level BDS, as available at http://www.census.gov/ces/

dataproducts/bds/data estab.html (Table 3 in the appendix also describes
the similar pattern in firm-level statistics). The number of cells in each table is in-
dicated, as are the percent of cells with suppression of some variable (d flag=1),

http://www.census.gov/ces/dataproducts/bds/data_estab.html
http://www.census.gov/ces/dataproducts/bds/data_estab.html
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and the percent of cells where “Job Creation by Entrants” is suppressed. Other
variables, also present on the establishment-level BDS, are never suppressed.

Table 1. Suppressions in establishment-level BDS

Number Suppressions (%)
Type Level of Job creation

cells Any by entrants

Age e 325 0.3 0.3
Age-Initial Size e 2925 18.6 14.2
Age-Initial Size-SIC e 25994 35.9 17.9
Age-SIC e 2925 3 2.9
Age-State e 18360 3.4 3.3
Age-Size e 2925 26.8 16.2
All e 35 0 0
Initial Size e 315 0.3 0
Initial Size-SIC e 2835 19.5 6.5
Initial Size-State e 17847 26.8 11.2
SIC e 315 0 0
State e 1785 0 0
Size e 315 0.3 0
Size-SIC e 2834 28.1 11.3
Size-State e 17848 31.9 14.6

Note: Cells are year x categories, where the number
of categories varies by published table.

Clearly, while the usefulness of the data to users would seem to increase for
more detailed cross-tabulations, that same detail, under current disclosure avoid-
ance rules, leads to increased suppression, and thus less effective data utility.
Suppression is worse for some variables than for others. Establishment and firm
counts are never supressed following County Business Patterns and Disclosure
Review Board rules. By contrast employment, job creation and destruction are
suppressed.

3 Synthetic Data as a Proposed Alternative to Item
Suppression

The Synthetic LBD (SynLBD) is a synthetic dataset on establishments with
proven analytic validity along several critical dimensions [15]. Additional im-
provements are currently being developed [13,14]. A growing number of re-
searchers have used the SynLBD, and their continued use contributes to the
improvement of the SynLBD.

The use of the SynLBD for the purposes outlined in this paper is particularly
appealing, because its analytic validity has been independently established, while
maintaining a high level of data privacy. In fact, for many of the cross-tabulations
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identified in Table 1, no additional disclosure avoidance review would seem nec-
essary. Only tabulations involving state and sub-state geography should require
additional review since this variable was removed from the disclosure request
that approved the release to the public of the SynLBD.2

The available SynLBD is released as a single implicate, and by design, may
distort any single analysis by too large an amount. The use of additional im-
plicates for the purposes of BDS table creation may be desirable and will be
assessed in later work.

In this paper, we evaluate a simple algorithm to alleviate the problem of
large numbers of suppression, while maintaining high, if not equivalent levels of
disclosure protection. We then outline a second algorithm that improves on the
first. An evaluation of the second algorithm is deferred to later work.

The first algorithm, which we will call the “drop-in algorithm”, simply re-
places a cell that has been suppressed with its synthetic-data equivalent, i.e.,
the equivalent table cell from a tabulation based on the SynLBD alone. The
second algorithm, called “forward-longitudinal algorithm”, is slightly more com-
plicated. At any point in time t, if a (expanded) suppression algorithm identifies
a cell that would be suppressed, all establishments that contribute to that cell
in time period t are replaced by synthetic establishments that match on certain
characteristics Z in periods t − p through t, for t and the next n periods. Syn-
thetic and observed values are then tabulated to create the release statistics. If
Z describes only the margin characteristics for the table in question (denoted by
k below), and for p = n = 0, the algorithm reduces to the “drop-in” algorithm.

In this paper, we assess the time-consistency of the first algorithm for a single
implicate. Assessing the impact of using multiple implicates is deferred to future
work. Identifying acceptable values of Z, p, and n is deferred to a later version
of this paper.

3.1 Definitions

The variable of interest is establishment employment ejt, with establishments
indexed by j and years indexed by t. All other variables (job creation and de-
struction from establishment entry, exit, expansion and contraction) are derived
from that. For instance, an establishment is born at time t if employment is
positive for the first time:

birthjt =

{
1 if ejt > 0 and ejt−s = 0 ∀s ≥ 1
0 otherwise

(1)

We will denote aggregations using capital letters, so (national) employment is
denoted as

E·t =
J∑

i=1

eit (2)

2 The Census Disclosure Review Board has not pronounced itself on the disclosure
avoidance methodology proposed here as of July 2014.
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and (national) births are

Birth·t =
J∑

i=1

birthit. (3)

For any establishment j, the synthesized version of variable xjt (from a single
implicate) is denoted x̃jt. Furthermore, an establishment j has certain time-
varying characteristics kt(j), such as industry and geographic location, but also
derived characteristics, such as establishment or firm age and size. In a slight
abuse of notation, j ∈ K ′

t describes the set of firms at time t such that kt(j) = k′.
So generically,

Xk′t =
∑
j∈K′

t

xjt (4)

describes the different aggregations across establishments having characteristics
k′ at time t, for instance aggregations by establishment age or metropolitan
areas. Finally, suppression rules for (aggregate) variable X are captured by IXt ,
such that the releasable variable Xo under the current regime can be described
by

Xo
k′t =

{
Xk′t if IXkt = 1

missing otherwise
(5)

For later reference, we denote the tabulations created as per (5) as BDSo.

3.2 Algorithm 1: Drop-in

We can now express the “drop-in” algorithm, leading to the released variable
X(i), as:

if IXt = 1 then

X
(i)
k′t = Xk′t

else
X

(i)
k′t = X̃k′t

end if

Thus, simply computing a “SynBDS”, based on the SynLBD, in parallel to the
computation of the BDS (based on the confidential LBD), and replacing sup-
pressed cells with their fully synthetic counterparts, yields a dataset without
missing observations. Variations can encompass using the average of multiple
implicates as the replacement value. In general, increasing the number of impli-
cates will improve the analytic validity, but reduce the protection provided by
the synthesis process.

Because no time-consistency is imposed, this method can lead to seam biases
or higher intertemporal variance. We will return to this issue in Section 4. For
later reference, we denote the tabulations created by Algorithm 1 as BDS(i).
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3.3 Algorithm 2: Forward-longitudinal

In part to address the possible time-inconsistencies we propose an alternative
algorithm. In order to minimize future seam issues, we remove establishments
(or firms) that contribute to sensitive cells of tabulations with characteristics
k′t, for t and the next n periods. These establishments are replaced by synthetic
establishments that match on characteristics k′t, and we simply replace the ob-
served values in the database xjs with the synthetic values x̃js (for all variables),
for s = t, . . . , t + n.3 For convenience, denote by J−

k′t the set of establishments
for which observed values xjt do not contribute to any tabulations at time t. In
its simplest form, the algorithm can be expressed as

Compute: Xk′t =
∑

j∈K′
t
xjt

Compute: IXt
if IXt = 0 then

Assign all j ∈ K ′
t to J−

k′t
Assign all j ∈ J−

k′s to J−
k′t for t > s > t− n

end if
Compute:

X
(ii)
k′t =

∑
j∈{K′

t∩J−
k′t}

x̃jt +
∑

j∈K′
t∧j /∈J−

k′t

xjt

For n = ∞, Jt is an absorbing set, which seems undesirable. For n = 1, this
reduces to Algorithm 1.4 For reference, we denote the tabulations created by
Algorithm 2 as BDS(ii).

4 Analysis

We implemented Algorithm 1 for BDS tabulations by establishment age and size
(bds e agesz). As noted in Table 1, about 26% of all cells have some suppression.
For this version of the paper, we analyzed a single variable, “Job Creation by
establishment births” (job creation births). (Additional analyses are pending
release).

4.1 Extent of Protection

Protection of the table relies in large part on the fact that the data replacing the
suppressions is itself synthetic, and released (in the case of the examples in this
paper) or (potentially) releasable (for tabulations with geography) to a broad

3 We thus re-use the index j for both observed and synthetic establishments.
4 Alternatively to the combining rule described in Algorithm 2, we could also specify
a per-establishment weight wjt ∈ [0, 1] that declines to 0 as s approaches t−n. wjt is

adjusted as a function of membership in J−
k′t, and we compute X

(ii)
k′t =

∑
j wjtx̃jt +

(1− wjt)xjt.
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audience [2]. No establishment’s observed data is released in the SynLBD, and
only the industry distribution of establishments is preserved exactly. However,
in order to consider a broader notion of disclosure avoidance, we proceed as fol-
lows. In cell that would have been suppressed under the current regime BDS0,
we compute the difference between the confidential values of the establishments
contributing to this cell, and each of the values of the synthetic establishments
contributing to the cell under BDS(i), and assess the distribution of these dif-
ferences.5

4.2 Analytical Validity

In order to assess the analytical validity of each of the methods, we focus on
simple time-series properties of the Xk′t. In particular, we estimate a AR(2)

process for each of Xk′t, X
s
k′t, and X

(i)
k′t. We then assess the number of missing

time-series estimates (repeated suppressions in Xs
k′t may lead to time-series that

are too short), the number of significant coefficients for the first lag of the AR(2),
estimated from both the confidential data (ρ1) and the comparison data (ρs1 and

ρ
(i)
1 ), and finally two measures of utility: coverage, the percentage of regressions

where the true ρ1 lies within the confidence band around the coefficient estimated

from the comparison ρs1 and ρ
(i)
1 , and the interval overlapmeasure Jk as suggested

by [12]. Table 2 presents these results for job creation births.

Table 2. Analytic validity of published data

Number Percent Interval
Variable feasible Missing significant Coverage overlap

Xk′t X
s
k′t X

(i)
k′t ρ1 ρs1 ρ

(i)
1 ρs1 ρ

(i)
1 Js

1 J
(i)
1

job creation births 89 18 11.2 5.6 6.8 6.3 91.8 93.7 91.6 93.9

(Caveat: different definitions of “job creation births” in the BDS processing
and our post-processing lead to incomplete filling in of missing cells. This will
be fixed in later work.) For the one variable that has significant suppressions,
the number of feasible regressions in the published data increases substantially

(reduction in missing X
(i)
k′t relative to missing Xs

k′t). The number of correctly
estimated coefficients increases (in terms of assessing statistical significance of
the coefficient), and utility increases, in terms of ρ1 as well as J1.

5 Concluding Remarks

In this paper, we have described two alternate mechanisms to substitute for
suppressions in small-cell tabulations of business microdata, with the goal of
improving analytic validity while maintaining a sufficiently high standard of

5 As of June 2014, this distribution had not been released.
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disclosure limitation. Neither mechanism fundamentally changes the existing
suppression methodology, rather, the mechanisms work to fill in the holes created
by the suppression methodology.

Leveraging the availability of a high-quality synthetic datasets (the Synthetic
LBD) with proven disclosure limitation efficiency and analytic validity [15],
the first method is very simple, but may suffer from seam biases and time-
inconsistency. The second method aims to improve on that by “blending in”
synthetic establishments, which may slightly reduce analytic validity in time pe-
riods where the strict application of the suppression algorithms would no longer
impose any constraints, but improving on the time-series properties of the re-
leased data.

Several limitations of the research presented here should be highlighted. The
examples provided in this article rely on an earlier release of the Synthetic LBD
[15]. Recent developments to improve the micro-level analytic validity of the
SynLBD [14] should improve the analytic validity of the mechanisms proposed
here as well. We also compare our proposed mechanisms to the actual published,
but otherwise unmodified BDS. Comparing to post-publication improvements to
a table with suppressions [11] will inevitably lead to an apparent reduction in
the utility of this particular approach. Finally, the approach relies on continuous
availability of synthetic microdata with analytical validity. Other approaches rely
on fewer data points, and thus be favored due to lower implementation costs.

Future work for this paper involves assessing the procedure on a wider variety
of variables, better synchronisation of the computational algorithms underlying
the BDS and the SynBDS, and improved assessment at the microdata level of
the protection afforded by Algorithm 1.
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Appendix

Acronyms

BDS Business Dynamics Statistics
LBD Longitudinal Business Database
SynLBD Synthetic LBD, a synthetic microdata file at the establishment level

Additional tables

Table 3. Suppressions in firm-level BDS

No. of Percent
Type Level cells suppressed

all f 35 0
metrononmetro f 70 0
sic f 315 0
age f 325 0
agemetrononmetro f 650 0
st f 1785 0
agemsa f 118950 0.3
szmsa f 153688 1.4
agest f 18360 1.8
agesic f 2925 2.8
isz f 420 9
iszmetrononmetro f 840 9.8
sz f 420 10.2
szmetrononmetro f 840 11.1
iszst f 23205 16.1
szst f 23205 16.2
iszsic f 3780 18.7
szsic f 3780 19.9
ageisz f 3874 24.2
agesz f 3843 26.6
ageiszmetro f 7647 29.1
ageszmetrononmetro f 7575 30.8
ageiszsic f 31500 41.3

Note: Cells are year x categories, where the
number of categories varies by published ta-
ble.
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Abstract. International comparison studies on economic activity are
often hampered by the fact that access to business microdata is very
limited on an international level. A recently launched project tries to
overcome these limitations by improving access to Business Censuses
from multiple countries based on synthetic data. Starting from the syn-
thetic version of the longitudinally edited version of the U.S. Business
Register (the Longitudinal Business Database, LBD), the idea is to cre-
ate similar data products in other countries by applying the synthesis
methodology developed for the LBD to generate synthetic replicates that
could be distributed without confidentiality concerns. In this paper we
present some first results of this project based on German business data
collected at the Institute for Employment Research.

Keywords: business data, confidentiality, international comparison,
multiple imputation, synthetic.

1 Introduction

Access to microdata has increased greatly in recent years. Many National Sta-
tistical Institutes (NSIs) and other data collecting agencies established research
data centers, for access to confidential data, and disseminated an ever increasing
collection of microdata sets as public use files to facilitate data access. How-
ever, accessing confidential data from different countries for comparison studies,
in particular for data on businesses, remains difficult if not impossible. Given
current statistical disclosure avoidance methods, the current regulatory environ-
ment prevents the sharing of confidential business microdata between countries,
and often even between agencies within the same country. The absence of useful
cross-country data access for business data contrasts with the increasing avail-
ability of such datasets for individuals. The IPUMS project at the University of
Minnesota (http://www.ipums.org/) provides access to public use microdata
samples from population censuses of 74 countries. Recent efforts in Europe within
the Data Without Boundaries (DWB) project (http://www.dwbproject.org/),

J. Domingo-Ferrer (Ed.): PSD 2014, LNCS 8744, pp. 243–252, 2014.
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funded by the European Union aim at harmonizing access to microdata in Eu-
rope and investigate modes of centralized access to research data from Euro-
pean Countries, such as RDC-in-RDC solutions [3]. However, to the best of our
knowledge, no publicly accessible micro data sets are available for cross-national
comparisons on enterprises or establishments.

The difficulty in providing access to business micro data arises in part due to
some of the statistical properties of the data. First, variables such as turnover or
establishment size have very skewed distributions that make the identification
of single units in the data set very easy. Second, there is a lot of complemen-
tary information about businesses already available in the public domain. This
information can be used to identify records in any released data set. Third, the
benefit from identifying a unit in an establishment survey might be higher for a
potential attacker than the benefit of identifying a unit in a household survey.
Fourth, in most business surveys the probability of inclusion is very high for large
businesses, so no additional privacy protection through sampling is available for
these units.

The present project tries to fill this gap by investigating whether synthetic
data procedures that have been applied successfully to U.S. business data can be
transferred to similar data products from other countries. In the United States,
synthetic data procedures were applied to a longitudinally linked version of the
U.S. Business Register, called the Longitudinal Business Database (LBD) [13],
generating multiple synthetic copies (implicates) of what is called the Synthetic
LBD (SynLBD) [12]. One of the implicates was subsequently released to a easily
web-accessible computing environment [2]. We report here on efforts to apply
the same statistical procedures to German data, thus generating a releasable
“German SynLBD.” However, the long-term goal is to make these procedures
robust enough to be applied in a wider variety of country contexts. As a side
product of this project, a confidential but researcher-accessible German dataset
is developed that resembles in structure and scope the original U.S. dataset,
thus already allowing for comparative studies, albeit with more restrictive access
conditions.

The generic setup of the project can be described as a two stage process: In the
first stage, suitable data sources are identified and a data product is constructed
that resembles the LBD as closely as possible in terms of content and variable
definition. In the second stage the synthetic data procedures developed for the
LBD are adapted to run on the new data product. In this paper we present some
first results based on German establishment data.

The remainder of the paper is organized as follows. In Section 2 we briefly de-
scribe the LBD and its publicly accessible synthetic counterpart, the Synthetic
Longitudinal Business Database that is already available through the Virtual
RDC at Cornell. Section 3 summarizes the steps that were taken to generate
a data product that resembles the LBD from the register data of the German
Federal Employment Agency. Those sections borrow heavily from an earlier pa-
per [8,9] that mainly focused on the steps that were necessary to construct a
German version of the LBD, and the interested reader is referred to this paper
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for more details on these steps. Section 4 discusses the required adjustments of
the synthesis procedures to adapt the code for the German data product. The
main message conveyed in this section is that even though the original code de-
veloped for the U.S. data was not developed with the goal to apply it in a wide
variety of contexts, the adjustments necessary were minimal, and likely declining
in the number of countries that utilize the code. Section 5 provides some first
results on the analytical validity of the synthetic data. In Section 6 future steps
that are still necessary before the data can be made available through the virtual
RDC at Cornell are described. The paper concludes with a discussion of possible
extensions to other countries.

2 The Synthetic Longitudinal Business Database

The creation of the Longitudinal Business Database (LBD) [14] is described in
detail in [13], that of the Synthetic LBD in [12]; we briefly summarize the key
characteristics of both here. The LBD is created from the U.S. Census Bureau’s
Business Register by creating longitudinal links between establishments using
name and address matching. The database has information on birth, death,
location, industry, and firm affiliation of employer establishments, as well as
their employment over time, for nearly all sectors of the economy from 1976 up
through the most recent available years (as of this writing, 2011). It is used both
as a key file for research applications as well as tabulation input to the U.S.
Census Bureau’s Business Dynamics Statistics. Other statistics created from the
underlying Business Register include the County Business Patterns (CBP).

The Synthetic LBD is derived from the LBD as a partially synthetic database
with analytic validity (see [7] for a review of the theory and applications of the
synthetic data methodology). The database is generated by synthesizing the life-
span of establishments, as well as the evolution of their employment, conditional
on industry. Geography is not synthesized, but is suppressed from the released
file. The current version 2.0 is based on the Standard Industrial Classification
(SIC) and extends through 2000. Work currently underway using the existing
methodology will extend the data through 2010, using NAICS, and newer im-
putation methodology (Version 3) is under development to improve the analytic
validity and extend the imputation to additional variables [10,11]. In this paper,
when we refer to the “SynLBD algorithms”, we refer to Version 2.

3 Constructing the German Longitudinal Business
Database

Except for the IAB Establishment Panel ([6]) and the IAB Job Vacancy Survey
([5]), no data are collected at the business or establishment level at the Insti-
tute for Employment Research on a regular basis. Instead, establishment level
information is derived by aggregating the information contained in the German
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Social Security Data to the establishment level. The German Social Security
Data (GSSD) is based on the integrated notification procedure for the health,
pension and unemployment insurances, which was introduced in January 1973.
Since then each employer is routinely required to provide information on all em-
ployees. One of the data products derived from the GSSD is the Establishment
History Panel [4, BHP] which provides detailed information on all establishments
covered in the GSSD by aggregating the employee level information via the es-
tablishment ID. The BHP is the main data source for constructing a German
equivalent to the synthetic version of the LBD. The data used for the German
SynLBD (GSynLBD) contains information from the years 1975 until 2008 for
Western Germany. Information for the former Eastern German States is limited
to the years 1992–2008. Unfortunately, although the BHP contains many more
variables than the SynLBD requires, including very detailed information on the
personnel structure of the establishments, not all the variables contained in the
SynLBD are available in the BHP. Since the data are based on employee level
information, the information whether the establishment belongs to a multi unit
business cannot be obtained. Furthermore, until 1999 the BHP only contains
establishments that had at least one employee covered by social security on the
reference date June 30 of each year since establishments were only required to
report employees covered by social security. Since 1999 all employees must be re-
ported. As a consequence the total number of employees increases substantially
between 1998 and 1999 and the same holds for the number of establishments
covered in the BHP since establishments that only hired marginal employees are
also now included in the dataset. To keep the data consistent, we subtracted the
number of employees with marginal employment from the total number of em-
ployees and set the total number of employees to missing for all establishments
that had zero employment after the subtraction of the marginal employment.
We deleted the 967,086 establishments that never had any employees covered by
social security. The final dataset consisted of 6,864,676 establishments1.

Another difference between the LBD and the BHP is that payroll information
contained in the BHP is based on the reference date June 30 each year. The
SynLBD on the other hand contains the yearly payroll of each establishment.
At the current stage of the project we linked yearly payroll information from a
data product that was produced for a different project at the IAB. This product
contains the yearly payroll for all full time employees. We estimated the yearly
payroll for all employees under the simplifying assumption that the average daily
wages of full time and part-time employees are equal. This approach implies that
no payroll information is available for all establishments that only employed part-
time employees in a given year. Exact payroll information for all establishments
in the BHP based on all employees from the underlying administrative data
could be incorporated in the future.

Further data preparation steps included generating time consistent informa-
tion on the geographic location and industry code as well as updating the in-

1 This number differs slightly from the 6,916,183 establishments reported in [8,9] since
some additional data preparation steps were introduced in the meantime.
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Table 1. Variables included in the GLBD

Name Description

ID Unique Random Number for Establishment
County Geographic Information on the County Level
State Geographic Information on the State Level
WZ73 Industry Code According to 1973 classification (only 3 digit available)
WZ93 Industry Code According to 1993 classification (3 digit and 5 digit)
WZ03 Industry Code According to 2003 classification (3 digit and 5 digit)
WZ08 Industry Code According to 2008 classification (3 digit and 5 digit)
Birth Birth of Establishment (left-censored at 1975/1991)
Death Death of Establishment (right-censored at 2008)
Payft Yearly Payroll for All Full-time Employees
Paytot Estimated Yearly Payroll for All Employees
Employmentft Number of Full-time Employees on June 30
Employmenttot Total Number of Employees on June 30

formation on births and deaths of establishments since the information on the
first year and last year an establishment is observed in the BHP is not neces-
sarily equivalent with the birth and the death of the establishment. See [8,9] for
further information on the additional data preparation steps. Table 1 lists the
variables that form the basis for the German Longitudinal Business Database
(GLBD). There are four different industry classification codes (WZ73, WZ93,
WZ03, WZ08), as the classification changed four times during the reference
period 1975–2008. We plan to impute the industry classification whenever it is
missing due to the changes in the reporting system. For this we will use a simple
probabilistic crosswalk based on the methodology used for the LEHD ECF [1].
The methodology relies on double-coding for at least some periods to estimate
transition matrices between the codes, which are used to impute industry codes
whenever they are missing. This will give us one consistent industry classifica-
tion for all years of the GLBD and only this constructed classification will later
be used for the synthesis.

4 Adapting the LBD Synthesis Code to the German Data

One of the key goals of this project was a proof-of-concept generalization of the
computer code underlying the generation of the SynLBD, as used in the original
release documented in [12]. In tight coordination with the original authors of the
code, one of us generalized the code in order to work for (i) arbitrary establish-
ment identifiers (ii) arbitrary industry codes (iii) arbitrary geography. The first
application of the generalized code was not on German data, but rather on the
prototypes of SynLBD for North American Industrial Coding System (NAICS).
Subsequently, this code was reviewed for any disclosure risk, and released as
non-disclosive code to the authors of this project. The code was then transferred
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to the German RDC in Nürnberg, where it was run against a prototype of the
data described in Section 3.

The computing environment in the German RDC (GRDC) differs substan-
tially from the U.S. Census Bureau’s RDC (USRDC). A full description of the
differences would warrant a separate article, but for the purposes of this article,
the key differences were as follows:

SAS: The original code developed in the USRDC was written for SAS� 9.2
for Linux, run using command line submission (sas NameOfProg.sas). In the
GRDC, a SAS� enterprise server running on a Windows machine is in use, with
submission only available through SAS� Enterprise Guide�. This difference
necessitated the largest number of changes.

Job scheduler: In the USRDC, a custom Linux-based job scheduler handled the
processing of the 280 (NAICS) to 480 (SIC) independently synthesized industry
groups. Adaptation of a similar scheduler, or a simple looping mechanism, is not
yet implemented for the GRDC. This is an efficiency constraint, not a functional
constraint, since it is feasible to run each industry individually.

Variable differences: As noted earlier, some variables, such as the indicator about
multi-unit status are not available in the German data. Other variables may
be very relevant for non-U.S. data that were not taken into account in the
original synthesis code. For instance, the code assumes that there is a single
left-censoring point in the data, but the German data have two (a later one for
East German establishments). We are still investigating to what extent creative
data construction allows the re-use of the code without modification, for instance
by treating the same NACE industry coding in East and West Germany as two
different synthesis groups (running the code by region-industry combinations,
rather than by industry values alone). Naturally, if such creative data setup
solutions fail, code changes will be required.

5 First Results Regarding the Analytical Validity of the
GsynLBD

In order to assess the advancement of our project, we have created synthetic
data for a single industry and did not condition on geography in the imputation
models. Only the variables Birth,Death, and Employmenttot have been synthe-
sized so far. Furthermore, pending implementation of the longitudinal industry
edit, we have used only data with valid WZ03 codes. This restriction implies
that firms in our sample are only observed to have death years in [2003, 2008],
or are right-censored at 2008. Thus, the results presented here are not for a
representative sample, but are assumed to be representative of the ability of the
synthesis process to replicate features of the data.
Figure 1 describes the distribution of start and end years in both the synthetic
and the original data. It is apparent that the SynLBD process faithfully repli-
cates the distribution, including any spikes, from the original data.
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Fig. 1. Distribution of start and end dates
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Fig. 2. Survival function

Figure 2 compares the survival functions of the two datasets. Again, the syn-
thetic data closely resembles the original data.
Figure 3 shows employment levels (left panel) and job creation (right panel) in
the synthetic and original data. The first run of the synthesizer over-estimates
employment levels and job creation, but correctly if somewhat noisily replicates
the time-series pattern. Over-estimation of job creation is known shortcoming
of the current synthesizer [12] which is being addressed in more recent develop-
ments [11,10].

Overall, despite the limited implementation of the underlying data standard-
ization and limited tuning of the synthesizer, the synthesizer works well, and
replicates critical features of the underlying data. An overall assessment on
whether the biases currently shown in some of the data elements are due to
the synthesizing process or to reporting errors in the underlying confidential
data are deferred to future research.

6 Next Steps

Before the GsynLBD can be integrated into Cornell University’s Synthetic Data
Server [2] several additional steps are necessary both in terms of constructing the
German LBD as well as in terms of adapting the synthesis code for the peculiari-
ties of the German data. As noted in Section 3 the industry code changed several
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Fig. 3. Employment

times over the reference period of the GLBD and thus consistent industry codes
need to be imputed. Furthermore, we will integrate exact payroll information
aggregated from the register data of the Federal Employment Agency.

Beyond the straightforward extension of the synthesis to all industry codes
we will also ensure that the synthesis models account for data features that are
unique to the German data. As noted earlier, it may make sense to use separate
models for Eastern and Western Germany, due to (i) differences in data avail-
ability (ii) fundamental differences in the behavior of economic variables. The
reunification of the two German states in 1990 is an external shock unique to Ger-
many, and may need to be reflected in the synthesis models. Finally, disclosure
risk evaluations akin to those performed for the SynLBD will be implemented
to ensure that the data could be released without any confidentiality violations.

7 Conclusions

In this paper we illustrated some first steps towards a centralized access to
business Census data from the U.S. and Germany. Much remains to be done but
the evaluations presented in Section 5 indicate that results obtained from the
synthetic data closely resemble results from the original data. It should be noted
that we used a brute force approach for these evaluations simply transferring the
LBD synthesis code to the German data without any major adjustments. The
quality of the results will only improve if the synthesis models will be tailored to
the specific features of the German data. We hope that the current project can
work as a template for integrating similar data products from other countries in
the future. Agencies interested in joining this endeavour are welcome to contact
the authors at any time.
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Abstract. Record linkage seeks to merge databases and to remove du-
plicates when unique identifiers are not available. Most approaches use
blocking techniques to reduce the computational complexity associated
with record linkage. We review traditional blocking techniques, which
typically partition the records according to a set of field attributes,
and consider two variants of a method known as locality sensitive hash-
ing, sometimes referred to as “private blocking.” We compare these ap-
proaches in terms of their recall, reduction ratio, and computational com-
plexity. We evaluate these methods using different synthetic datafiles and
conclude with a discussion of privacy-related issues.

1 Introduction

A commonly encountered problem in practice is merging databases containing
records collected by different sources, often via dissimilar methods. Different
variants of this task are known as record linkage, de-duplication, and entity
resolution. Record linkage is inherently a difficult problem [2, 11, 12]. These
difficulties are partially due to the noise inherent in the data, which is often
hard to accurately model [17, 20]. A more substantial obstacle, however, is the
scalability of the approaches [23]. With d databases of n records each, brute-
force approaches, using all-to-all comparisons, require O(nd) comparisons. This
is quickly prohibitive for even moderate n or d. To avoid this computational bot-
tleneck, the number of comparisons made must be drastically reduced, without
compromising linkage accuracy. Record linkage is made scalable by “blocking,”
which involves partitioning datafiles into “blocks” of records and treating records
in different blocks as non-co-referent a priori [2, 11]. Record linkage methods are
only applied within blocks, reducing the comparisons to O(Bnd

max), with nmax

being the size of the largest of the B blocks.
The most basic method for constructing a blocking partition picks certain

fields (e.g. geography, or gender and year of birth) and places records in the
same block if and only if they agree on all such fields. This amounts to an a
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priori judgment that these fields are error-free. We call this traditional blocking
(§2.1).

Other data-dependent blocking methods [2, 23] are highly application-specific
or are based on placing similar records into the same block, using techniques of
“locality-sensitive hashing” (LSH). LSH uses all of the information contained in
each record and can be adjusted to ensure that blocks are manageably small,
but then does not allow for further record linkage within blocks. For example,
[15] introduced novel data structures for sorting and fast approximate nearest
neighbor look-up within blocks produced by LSH. Their approach gave balance
between speed and recall, but their technique is very specific to nearest neighbor
search with similarity defined by the hash function. Such methods are fast and
have high recall, but suffer from low precision, rather, too many false positives.
This approach is called private if, after the blocking is performed, all candi-
date records pairs are compared and classified into matches/non-matches using
computationally intensive “private” comparison and classification techniques [3].

Some blocking schemes involve clustering techniques to partition the records
into clusters of similar records. [16] used canopies, a simple clustering approach
to group similar records into overlapping subsets for record linkage. Canopies
involves organizing the data into overlapping clusters/canopies using an inex-
pensive distance measure. Then a more expensive distance measure is used to
link records within each canopy, reducing the number of required comparisons
of records. [21] used a sorted nearest neighborhood clustering approach, combin-
ing k-anonymous clustering and the use of publicly available reference values to
privately link records across multiple files.

Such clustering-based blocking schemes motivate our variants of LSH methods
for blocking. The first, transitive locality sensitive hashing (TLSH), is based
upon the community discovery literature such that a soft transitivity (or relaxed
transitivity) can be imposed across blocks. The second, k-means locality sensitive
hashing (KLSH), is based upon the information retrieval literature and clusters
similar records into blocks using a vector-space representation and projections.
(KLSH has been used before in information retrieval but never with record
linkage [18].)

The organization of this paper is as follows. §2 reviews traditional blocking.
We then review other blocking methods in §2.2 stemming from the computer
science literature. §2.3 presents two different methods based upon locality sen-
sitive hashing, TLSH and KLSH. We discuss the computational complexity of
each approach in §3. We evaluate these methods (§4) on simulated data using
recall, reduction ratio, and the empirical computational time as our evaluation
criteria, comparing to the other methods discussed above. Finally we discuss
privacy protection aspects of TLSH and KLSH, given the description of LSH as
a “private” blocking technique.
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2 Blocking Methods

Blocking divides records into mutually exclusive and jointly exhaustive “blocks,”
allowing the linkage to be performed within each block. Thus, only records within
the same block can be linked; linkage algorithms may still aggregate information
across blocks. Traditional blocking requires domain knowledge to pick out highly
reliable, if not error-free, fields for blocking. This methodology has at least two
drawbacks. The first is that the resulting blocks may still be so large that linkage
within them is computationally impractical. The second is that because blocks
only consider selected fields, much time may be wasted comparing records that
happen to agree on those fields but are otherwise radically different.

We first review some simple alternatives to traditional blocking on fields, and
then introduce other blocking approaches that stem from computer science.

2.1 Simple Alternatives to Blocking

Since fields can be unreliable for many applications, blocking may miss large
proportions of matches. Nevertheless, we can make use of domain-specific knowl-
edge on the types of errors expected for field attributes. To make decisions about
matches/non-matches, we must understand the kinds of errors that are unlikely
for a certain field or a combination of them. With this information, we can iden-
tify a pair as a non-match when it has strong disagreements in a combination
of fields. It is crucial that this calculation be scalable since it must be checked
for all pairs of records. Some sequence of these steps reduces the set of pairs to
a size such that more computationally expensive comparisons can be made. In
§4.1, we apply these concepts.

2.2 Cluster-Based Blocking

Others have described blocking as a clustering problem, sometimes with a special
emphasis on privacy, e.g., see [7, 13, 14, 21]. The motivation is natural: the
records in a cluster should be similar, making good candidate pairs for linkage.

One clustering approach proposed for blocking is nearest neighbor clustering.
Threshold nearest neighbor clustering (TNN) begins with a single record as the
base of the first cluster, and recursively adds the nearest neighbors of records in
the cluster until the distance1 to the nearest neighbor exceeds some threshold.
Then one of the remaining records is picked to be the base for the next cluster,
and so forth. K-nearest neighbor clustering (KNN) uses a similar procedure,
but ensures that each cluster contains at least k records2, to help maintain
“k-anonymity” [13]. A major drawback of nearest neighbor clustering is that it
requires computing a large number of distances between records,O(n2). Blocking
a new record means finding its nearest neighbors, an O(n) operation.

1 The distance metric used can vary depending on the nature of the records.
2 Privacy-preserving versions of these approaches use “reference values” rather than
the records themselves to cluster the records [21].
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The cost of calculating distances between records in large, high-dimensional
datasets led [16] to propose the method of canopies. In this approach, a com-
putationally cheap (if inaccurate) distance metric is used to place records into
potentially-overlapping sets (canopies). An initial record is picked randomly to
be the base of the first canopy; all records within a distance t1 of the base are
grouped under that canopy. Those within distance t2 ≤ t1 of the base are re-
moved from later consideration. A new record is picked to be the base of the
next canopy, and the procedure is repeated until the list of candidate records
is empty. More accurate but expensive distance measures are computed only
between records that fall under at least one shared canopy. That is, only record-
pairs sharing a canopy are candidates to be linked.

Canopies is not strictly a blocking method. They overlap, making the collec-
tion of canopies only a covering of the set of records, rather than a partition. We
can derive blocks from canopies, either set-theoretically or by setting t1 = t2.
The complexity of building the canopies is O(nCn), with Cn being the number of
canopies, itself a complicated and random function of the data, the thresholds,
and the order in which records are chosen as bases. Further, finding fast, rough
distance measures for complicated high-dimensional records is non-trivial.

2.3 LSH-Based Approaches

We explore two LSH-based blocking methods. These are based, respectively, on
graph partitioning or community discovery, and on combining random projec-
tions with classical clustering. The main reason for exploring these two methods
is that even with comparatively efficient algorithms for partitioning the similarity
graph, doing that is still computationally impractical for hundreds of thousands
of records.

2.3.1 Shingling
LSH-based blocking schemes “shingle” [19] records. That is, each record is treated
as a string and is replaced by a “bag” (or “multi-set”) of length-k contiguous
sub-strings that it contains. These are known as “k-grams”, “shingles”, or “to-
kens”. For example, the string “TORONTO” yields the bag of length-two shin-
gles “TO”, “OR”, “RO”, “ON”, “NT”, “TO”. (N.B., “TO” appears twice.)

As alternative to shingling, we might use a bag-of-words representation, or
even to shingle into consecutive pairs (triples, etc.) of words. In our experiments,
shingling at the level of letters worked better than dividing by words.

2.3.2 Transitive LSH (TLSH)
We create a graph of the similarity between records. For simplicity, assume
that all fields are string-valued. Each record is shingled with a common k, and
the bags of shingles for all n records are reduced to an n-column binary-valued
matrix M , indicating which shingles occur in which records. M is large, since
the number of length-k shingles typically grows exponentially with k. As most
shingles are absent from most records, M is sparse. We reduce its dimension by
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generating a random “minhash” function and applying it to each column. Such
functions map columns of M to integers, ensuring that the probability of two
columns being mapped to the same value equals the Jaccard similarity between
the columns [19]. Generating p different minhash functions, we reduce the large,
sparse matrix M to a dense p × n matrix, M ′, of integer-valued “signatures,”
while preserving information. Each row of M ′ is a random projection of M .
Finally, we divide the rows of M ′ into b non-overlapping “bands,” apply a hash
function to each band and column, and establish an edge between two records
if their columns of M ′ are mapped to the same value in any band.3

These edges define a graph: records are nodes, and edges indicate a certain
degree of similarity between them. We form blocks by dividing the graph into its
connected components. However, the largest connected components are typically
very large, making them unsuitable as blocks. Thus, we sub-divide the connected
components into “communities” or “modules” — sub-graphs that are densely
connected internally, but sparsely connected to the rest of the graph. This ensures
that the blocks produced consist of records that are all highly similar, while
having relatively few ties of similarity to records in other blocks [8]. Specifically,
we apply the algorithm of [6]4, sub-dividing communities greedily, until even the
largest community is smaller than a specified threshold.5 The end result is a set
of blocks that balance false negative errors in linkage (minimized by having a few
large blocks) and the speed of linkage (minimized by keeping each block small).
We summarize the whole procedure in Algorithm 2.3.2 (see Appendix 5).

TLSH involves many tuning parameters (the length of shingles, the number
of random permutations, the maximum size of communities, etc.) We chose the
shingle such that we have the highest recall possible for each application. We
used a random permutation of 100, since the recall was approximately constant
for all permutations higher than 100. Furthermore, we chose a maximum size of
the communities of 500, after tuning this specifically for desired speed.

2.3.3 K-Means Locality Sensitive Hashing (KLSH)
The second LSH-based blocking method begins, like TLSH, by shingling the

records, treated as strings, but then differs in several ways. First, we do not ig-
nore the number of times each shingle type appears in a record, but rather keep
track of these counts, leading to a bag-of-shingles representation for records. Sec-
ond, we measure similarity between records using the inner product of bag-of-
shingles vectors, with inverse-document-frequency (IDF) weighting. Third, we re-
duce the dimensionality of the bag-of-shingles vectors by random projections, fol-
lowed by clustering the low-dimensional projected vectors with the k-means algo-
rithm. Hence, we can control the mean number of records per cluster to be n/c,
where c is the number of block-clusters. In practice, there is a fairly small disper-
sion around this mean, leading to blocks that, by construction, have the roughly

3 To be mapped to the same value in a particular band, two columns must either be
equal, or a low-probability “collision” occurred for the hash function.

4 We could use other community-discovery algorithms, e.g. [9].
5 This maximum size ensures that record linkage is feasible.
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the same distribution for all applications.6 The KLSH algorithm is given in Ap-
pendix 5.

3 Computational Complexity

3.1 Computational Complexity of TLSH

The first steps of the algorithm can be done independently across records. Shin-
gling a single record is O(1), so shingling all the records is O(n). Similarly,
applying one minhash function to the shingles of one record is O(1), and there
are p minhash functions, so minhashing takes O(np) time. Hashing again, with
b bands, takes O(nb) time. We assume that p and b are both O(1) as n grows.

We create an edge between every pair of records that get mapped to the same
value by the hash function in some band. Rather than iterating over pairs of
records, it is faster to iterate over values v in the range of the hash function. If
there are |v| records mapped to the value v, creating their edges takes O(|v|2)
time. On average, |v| = nV −1, where V is the number of points in the range
of the hash function, so creating the edge list takes O(V (n/V )2) = O(n2V −1)
time. [6] shows that creating the communities from the graph is O(n(log n)2).

The total complexity of TLSH is O(n) + O(np) + O(nb) + O(n2V −1) +
O(n(log n)2) = O(n2V −1), and is dominated by actually building the graph.

3.2 Computational Complexity of KLSH

As with TLSH, the shingling phase of KLSH takes O(n) time. The time required
for the random projections, however, is more complicated. Let w(n) be the num-
ber of distinct words found across the n records. The time needed to do one
random projection of one record is then O(w(n)), and the time for the whole
random projection phase is O(npw(n)). For k-means cluster, with a constant
number of iterations I, the time required to form b clusters of n p-dimensional
vectors is O(bnpI). Hence, the complexity is O(npw(n)) +O(bnpI).

Heaps’s law suggests w(n) = O(nβ), where 0 < β < 1.7 Thus, the complexity
is O(pn1+β) + O(bnpI). For record linkage to run in linear time, it must run
in constant time in each block. Thus, the number of records per block must be
constant, i.e., b = O(n). Hence, the time-complexity for blocking is O(pn1+β) +
O(n2pI) = O(n2pI), a quadratic time algorithm dominated by the clustering.
Letting b = O(1) yields an over-all time complexity of O(pn1+β), dominated by
the projection step. If we assume β = 0.5 and let b = O(

√
n), then both the

projection and the clustering steps are O(pn1.5). Record linkage in each block is
O(n), so record linkage is O(n1.5), rather than O(n2) without blocking.

6 This property is not guaranteed for most LSH methods.
7 For English text, 0.4 < β < 0.6.
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3.3 Computational Complexity of Traditional Blocking Approaches

Traditional blocking approaches use attributes of the records to partition records
into blocks. As such, calculating the blocks using traditional approaches requires
O(n) computations. For example, approaches that block on birth year only re-
quire a partition of the records based on these fields. That is, each record is
simply mapped to one of the unique birth year values in the dataset, which is
an O(n) calculation for a list of size n. Some traditional approaches, however,
require O(n2) computations. For example, in Table 1, we show some effective
blocking strategies which require O(n2) computations, but each operation is so
cheap that they can be run in reasonable time for moderately sized files.

4 Results

We test the previously mentioned approaches on data from the RecordLinkage
R package.8 These simulated datasets contain 500 and 10,000 records (denoted
RLdata500 and RLdata10000), with exactly 10% duplicates in each list. These
datasets contain first and last Germanic name and full date of birth (DOB).
Each duplicate contains one error with respect to the original record, and there
is maximum of one duplicate per original record. Each record has a unique
identifier, allowing us to test the performance of the blocking methods.

We explore the performance of the previously presented methods under other
scenarios of measurement error. [1, 4, 5] developed a data generation and corrup-
tion tool that creates synthetic datasets containing various field attributes. This
tool includes dependencies between fields and permits the generation of different
types of errors. We now describe the characteristics of the datafiles used in the
simulation. We consider three files having the following field attributes: first and
last name, gender, postal code, city, telephone number, credit card number, and
age. For each database, we allow either 10, 30, or 50% duplicates per file, and
each duplicate has five errors with respect to the original record, where these
five errors are allocated at random among the fields. Each original record has
maximum of five duplicates. We refer to these files as the “noisy” files.

4.1 Traditional Blocking Approaches

Tables 1 – 2 provide results of traditional blocking when applied to the
RLdata10000 and “noisy” files. While field-specific information can yield favor-
able blocking solutions, each blocking criteria is application specific. The overall
goal of blocking is to reduce the overall set of candidate pairs, while minimizing
the false negatives induced. Thus, we find the recall and reduction ratio (RR).
This corresponds to the proportion of true matches that the blocking criteria
preserves, and the proportion of record-pairs discarded by the blocking, respec-
tively.

8 http://www.inside-r.org/packages/cran/RecordLinkage/docs/RLdata

http://www.inside-r.org/packages/cran/RecordLinkage/docs/RLdata
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Criteria 1 – 5 (Table 1) and 1 – 6 (Table 2) show that some blocking ap-
proaches are poor, where the recall is never above 90%. Criteria requiring exact
agreement in a single field or on a combination of them are susceptible to field er-
rors. More reliable criteria are constructed using combinations of fields such that
multiple disagreements must be met for a pair to be declared as a non-match.
(See Criteria 7–10 and 12 in Table 1, and 7 – 8 in Table 2.) We obtain high recall
and RR using these, but in general their performance is context-dependent.

Criteria 10 (Table 1) deals with the case when a pair is declared a non-match
whenever it disagrees in four or more fields, which is reliable since false-negative
pairs are only induced when the datafile contains large amounts of error. For
example this criterion does not lead to good results with the noisy files, hence a
stronger criteria is needed, such as 7 (Table 2). Using Criteria 12 (Table 1) and
8 (Table 2), we further reduce the set of candidate pairs whenever a pair has a
strong disagreement in an important field.9 These criteria are robust. In order to
induce false negatives, the error in the file must be much higher than expected.

Table 1. Criteria for declaring pairs
as non-matches, where results corre-
spond to the RLdata10000 datafile

Declare non-match if disagreement in: Recall (%) RR (%)
1. First OR last name 39.20 99.98
2. Day OR month OR year of birth 59.30 99.99
3. Year of birth 84.20 98.75
4. Day of birth 86.10 96.74
5. Month of birth 88.40 91.70
6. Decade of birth 93.20 87.76
7. First AND last name 99.20 97.36
8. {First AND last name} OR

{day AND month AND year of birth} 99.20 99.67
9. Day AND month AND year of birth 100.00 87.61

10. More than three fields 100.00 99.26
11. Initial of first OR last name 100.00 99.25
12. {More than three fields} OR

{Levenshtein dist. ≥ 4 in first OR last name} 100.00 99.97

Table 2. Criteria for declar-
ing pairs as non-matches,
where results correspond to
the noisy datafile with 10%
duplicates. Similar results ob-
tained for 30 and 50% dupli-
cates.

Declare non-match if disagree in: Recall (%) RR (%)
1. Gender 31.96 53.39
2. City 31.53 77.25
3. Postal Code 32.65 94.20
4. First OR last name 1.30 >99.99
5. Initial of first OR last name 78.10 99.52
6. First AND last name 26.97 99.02
7. All fields 93.28 40.63
8. {All fields} OR {Levenshtein dist.

≥ 4 in first OR last name} 92.84 99.92

4.2 Clustering Approaches

Our implementations of [16]’s canopies approach and [21]’s nearest neighbor ap-
proach perform poorly on the RLdata10000 and “noisy” datasets10. Figure 1
gives results of these approaches for different threshold parameters (t is the
threshold parameter for sorted TNN) for the RLdata10000 dataset. For all
thresholds, both TNN and canopies fail to achieve a balance of high recall and
a high reduction ratio.

Turning to the “noisy” dataset with 10% duplicates, we find that TNN fails
to achieve a balance of high recall and high reduction ratio, regardless of the

9 We use the Levenshtein distance (LD) of first and last names for pairs passing
Criterion 10 of Table 1 or Criteria 7 of Table 2, and declare pairs as non-matches
when LD ≥ 4 in either first or last name.

10 In our implementations, we use the TF-IDF matrix representation of the records
and Euclidean distance to compare pairs of records in TNN and canopies. We tried
several other distance measures, each of which gave similar results.
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Fig. 1. Performance of threshold nearest neighbors (left) and canopies (right) on the
RLdata10000 datafile
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Fig. 2. Performance of TNN (left) and canopies (right) on the “noisy” datafile (10%
duplicates). The other “noisy” datafiles exhibited similar behavior as the figures above.

threshold t that is used. Similarly, the canopies approach does not yield a balance
of high recall while reducing the number of candidate pairs.

Clearly, both clustering approaches fail to achieve a balance of high recall and
RR for any threshold parameters. The inefficacy of these approaches is likely due
the limited number of field attributes (five fields) and the Euclidean distance
metric used for these datasets. In particular, only three fields in the “noisy”
dataset use textual information, which both of these approaches use to identify
similar records. Limited field information can make it difficult for clustering
approaches to group similar records together, since the resulting term frequency
matrices will be very sparse. Thus, we investigate the behavior with the same
number of duplicates, but vary the error rate and provide richer information at
the field attribute level. Figure 2 illustrates that both methods do not have a good
balance between recall and RR, which we investigated for various thresholds. As
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such, further analysis of these approaches on more information-rich datasets is
required in order to make sound conclusions about their efficacy for blocking.
(We note that the metrics used in TLSH and KLSH, which shingle the records,
were chosen so as to not have such problems.)

4.3 LSH Approaches

Since the performance of KLSH and TLSH depends on tuning parameters, we
tune each application appropriately to these. We empirically measure the scala-
bility of these methods, which are consistent with our derivations in §3.

We analyze the RLdata10000 database for TLSH and KLSH. As we increase
k under TLSH, we see that the recall peaks at k = 5, and does very poorly
(below 40% recall) when k ≤ 4. For KLSH, the highest and most consistent
recall is when k = 2, since it is always above 80% and it is about the same no
matter the total number of blocks chosen (see Figure 4). In terms of RR, we see
that TLSH performs extremely poorly as the total number of blocks increases,
whereas KLSH performs extremely well in terms of RR comparatively (Figure
5). Figure 3 shows empirically that the running time for both KLSH and TLSH
scales quadratically with the n, matching our asymptotic derivation. We then
analyze the “noisy” database for TLSH and KLSH (see Figures 6 and 7).

4.3.1 Comparisons of Methods
In terms of comparing to the methods presented in Table 1, we find that TLSH
is not comparable in terms of recall or RR. However, KLSH easily beats Criteria
1–2 and competes with Criteria 3–4 on both recall and RR. It does not perform
as well in terms of recall as the rest of the criteria, however, it may in other
applications with more complex information for each record (this is a subject of
future work). When comparing the Table 2 to TLSH and KLSH when run for
the noisy datafile, we find that TLSH and KLSH usually do better when tuned
properly, however not always. Due to the way these files have been constructed,
more investigation need to be done in terms of how naive methods work for real
work type applications versus LSH-based methods.

Comparing to other blocking methods, both KLSH and TLSH outperform
KNN in terms of recall (and RR for the noisy datafiles). We find that for this
dataset, canopies do not perform well in terms of recall or RR unless a specific
threshold t1 is chosen. However, given this choice of t1, this approach yields either
high recall and low RR or vice versa, making canopies undesirable according to
our criteria.

For the RLdata10000 dataset, the simple yet effective traditional blocking
methods and KLSH perform best in terms of balancing both high recall and
high RR. As already stated, we expect the performance of these to be heav-
ily application-dependent. Additionally, note that each method relies on high-
quality labeled record linkage data to measure the recall and RR and the cluster-
ing methods require tuning parameters, which can be quite sensitive. Our studies
show that TLSH is the least sensitive in general and further explorations should
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be done here. Future work should explore the characteristics of the underlying
datasets for which one method would be preferred over another.

4.3.2 Sensitivity Analysis on RLdata500 and RLdata10000

A sensitivity analysis is given for KLSH and TLSH. For TLSH, the RLdata500
dataset is not very sensitive to b since the recall is always above 80% whereas
the RLdata10000 dataset is quite sensitive to the band, and we recommend the
use of a band of 21–22 since the recall for these b is ≈ 96%, although this may
change for other datasets. We then evaluate TLSH using the “best” choice of
the band for shingled values from k = 1, . . . 5. The sensitivity analysis for the
“noisy” datafiles was quite similar to that described above, where a band of
22 was deemed the most appropriate for TLSH. For KLSH, we found that we
needed to increase the number of permutations slightly to improve the recall and
recommend p = 150.

For KLSH, we find that when the number of random permutations p is above
100, the recall does not change considerably. We refer back to Figure 4 (right),
which illustrates the recall versus number of blocks when p = 100. When k = 4,
the recall is always above 70%. However, we find that when k = 2, the recall is
always above 80%.

5 Discussion

We have explored two LSH methods for blocking, one of which would naturally fit
into the privacy preserving record linkage (PPRL) framework, since the method
could be made to be private by creating reference values for each individual in
the database. This has been done for many blocking methods in the context of
PPRL [7, 13, 14, 22]. KLSH performs just as well or better than commonly used
blocking methods, such as some simple traditional blocking methods, nearest
neighbor clustering approaches, and canopies [16, 21]. One drawback is that like
LSH-based methods, it must be tuned for each application since it is sensitive
to the tuning parameters. Thus, some reliable training data must be available to
evaluate the recall and RR (and tune KLSH or clustering type methods). In many
situations, a researcher may be better off by using domain-specific knowledge to
reduce the set of comparisons, as shown in §4.1.

LSH-methods have been described elsewhere as “private blocking” due to the
hashing step. However, they do not in fact provide any formal privacy guarantees
in our setting. The new variant that we have introduced, KLSH, does satisfy the
k-anonymity criterion for the de-duplication of a single file. However, the data
remain subject to intruder attacks, as the literature on differential privacy makes
clear, and the vulnerability is greater the smaller the value of k. Our broader
goal, however, is to merge and analyze data from multiple files. Privacy protec-
tion in that context is far more complicated. Even if one could provide privacy
guarantees for each file separately, it would still be possible to identify specific
entities or sensitive information regarding entities in the merged database.
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quadratically (matching the computationally complexity findings). We shingle using
k = 5 for both methods. We use a band of 26 for TLSH. Right: Recall versus b for both
RLdata500 and RLdata10000 after running TLSH.
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Fig. 4. RLdata10000 dataset. Left: Recall versus number of shingles k for KLSH. The
highest recall occurs at k = 5. Right: Recall versus the total number of blocks, where
we vary the number of shingles k. We find that the highest recall is for k = 2.

The approach of PPRL reviewed in [10] sets out to deal with this problem.
Merging data frommultiple files with the same or similar values without releasing
their attributes is what PPRL hopes to achieve. Indeed, one of course needs to go
further, since performing statistical analyses on the merged database is the real
objective of PPRL. Whether the new “private blocking” approaches discussed
offer any progress on this problem, it is unclear at best. Adequately addressing
the PPRL goals remains elusive, as do formal privacy guarantees, be they from
differential privacy or other methods.
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Fig. 5. RLdata10000 dataset. Left: For TLSH, we see the RR versus the number of
shingles, where the RR is always very high. We emphasize that TLSH does about as
well on the RR as any of the other methods, and certainly does much better than many
traditional blocking methods and KNN. (The RR is always above 98% for all shingles
with b = 26.) Right: For KLSH, we illustrate the RR versus the total number of blocks
for various k = 1, . . . , 4 illustrating that as the number of blocks increases, the RR
increases dramatically. When the total block size is at least 25, the RR ≥ 95%.
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Fig. 7. We run KLSH at 10 percent duplicates with p=100 (left) and p=150 (right).
We see as the number of permutations increases (left figure), the recall increases. The
behavior is the same for 30 and 50 percent duplicates. This indicates that KLSH needs
to be tuned for each application based on p. (We note that KLSH was run here using
a bag of words type formulation. Shingling should be explored in future work.)
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Algorithms for KLSH and TLSH

We provide the algorithms for KLSH and TLSH below (see §2.3.2 and 2.3.3):

Algorithm 1. Transitive Locality Sensitive Hashing (TLSH)

Place similar records into blocks and impose transitivity

Data: Xij , tuning parameters b, t, k

Shingle each Xij into length-k strings
Create a binary matrix M indicating which tokens appear in which records
Create an integer-valued matrix M ′ of minhash signatures from M
Divide the rows of M ′ into b bands
for each band do

Apply a random hash function to the band of M ′

Record an edge between two records if the hash maps them to the same
bucket

end
while the largest community has > t records do

Cut the edge graph into finer communities using the algorithm of [6]
end
return the final list of communities

Algorithm 2. K-Means Locality Sensitive Hashing (KLSH). The number of

blocks c is set by c = n/(desired avg. number of records per block).

Place similar records into blocks and using k-means clustering and random
projections

Data: Xij , number of desired blocks c, tokenization tuning parameters τ ,
number of projections p

for each record Xij do
Set vij = Tokenize(Xij , τ )

end
for each token w do

Set Nw =number of bags containing w
Set IDFw = log n/Nw

end
for m from 1 to p do

Set um = a random unit vector
for each bag-of-tokens vector vij do

Set rijm =
∑

w uiwvijwIDFw

end

end
return KMEANS(r,c)
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Abstract. Disclosure limitation methods for protecting the confidentiality of 
respondents in survey  microdata  often use perturbative techniques which 
introduce measurement error into the categorical identifying variables. In 
addition, the data itself will often have measurement errors commonly arising 
from survey processes. There is a need for valid and practical ways to assess the 
protection against the risk of identification for survey microdata with 
measurement errors. A common disclosure risk scenario is when an intruder 
seeks to match the microdata with an external file. We will examine 
probabilistic record linkage as a means of assessing disclosure risk and relate it 
to disclosure risk measures under the probabilistic framework of  the Poisson 
log-linear models. 

Keywords: Poisson-log linear model, Misclassification error, Sample unique, 
Disclosure risk-data utility map.  

1 Introduction 

Statistical Agencies are obligated to protect the confidentiality of individuals when 
releasing sample microdata arising from social surveys. The risk assessment is 
typically based on a disclosure risk scenario where an ‘intruder’ attempts to link the 
sample microdata to available public data sources through a set of identifying key 
variables that are common to both sources.  The identification of an individual could 
then be used to obtain sensitive information and the disclosure of attributes.  In order 
to limit the risk of identification, the statistical agency will implement disclosure 
limitation methods on the sample microdata, the  extent of which  depend on the mode 
of release, such as on-site data labs, data archives or public-use files. Disclosure 
limitation methods can be non-perturbative where the information content is reduced 
without altering the data. These include deleting variables, sub-sampling or   recoding 
and collapsing categories of variables. Perturbative disclosure limitation methods alter 
the data by introducing forms of misclassification. These include data swapping 
(Dalenius and Reiss, 1982, Gomatam, Karr and Sanil, 2005), noise addition (Kim, 
1986, Fuller, 1993, Brand, 2002) and fully synthetic data where the data released is 
based on a statistical model (Raghunathan, Reiter, and Rubin, 2003). For more 
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information on these methods see also: Willenborg and De Waal, 2001,  Domingo-
Ferrer and  Torra, 2001. 

Before releasing sample microdata, statistical agencies need to quantify the 
disclosure risk of identification. One method for assessing this risk is to simulate an 
‘intruder’ attack by using probabilistic record linkage techniques. One of the first 
examples was carried out in Spruill (1982)  who linked  perturbed sample microdata 
back to the original sample  using distance based matching. In many studies of this 
type, a  conservative assessment of the risk of identification is obtained since it 
assumes that the ‘intruder’ has access to the original dataset and does not take into 
account the  protection afforded by the sampling. More recent examples use the 
probabilistic record linkage framework of Fellegi and Sunter (F&S) (1969)  (see: 
Yancey, Winkler and Creecy, 2002, Hawala, Stinson and Abowd, 2005 and Torra, 
Abowd and Domingo-Ferrer, 2006).  The identifying key variables used for matching 
are typically categorical, such as sex, date of birth, marital status and locality.  In the 
F&S framework, each potential pair is assigned a matching weight as described in 
Section 2. The matching weights are sorted and appropriate cut-offs determined 
according to pre-specified type I and type II error bounds. Pairs with high matching 
weights are considered to be correct matches and pairs with low matching weights are 
considered to be correct non-matches. Pairs with matching weights between the cut-
off thresholds undergo clerical review. The matching weights are proxies for the 
probability of a correct match given an agreement or disagreement. These 
probabilities can be used as individual record-level measures of disclosure risk. Global 
measures of disclosure risk include the proportion of correct matches, the proportion 
of correct matches to false matches, and one minus the estimated false match rate.     

In Skinner, 2008,  the probabilistic record linkage framework of F&S is linked to 
the   probabilistic modelling framework for quantifying identification risk based on 
the notion of population uniqueness (see: Skinner and Holmes, 1998, Elamir and 
Skinner, 2006, Skinner and Shlomo, 2008).  The probabilistic modelling framework 
relies on distributional assumptions to draw inference from the sample and estimate 
population parameters.  The individual disclosure risk measure is the expectation of a 
correct match given a sample unique on the set of key variables. The global measure 
of disclosure risk is obtained by summing over the sample uniques to derive the 
expected number of correct matches. Shlomo and Skinner (2010) expanded the 
original probabilistic modelling framework to include misclassification errors in the 
key variables, either arising naturally through stages of data processing or purposely 
introduced into the data as a perturbative disclosure limitation method. In this paper 
we provide empirical evidence of the relationship between the probabilistic record 
linkage framework of F&S and the probabilistic modelling framework based on the 
notion of population uniqueness taking into account misclassification errors. We also 
show how a risk-utility assessment might be carried out by a statistical agency for 
choosing optimal parameters of record swapping.   

In section 2 we introduce the notation and theory of the two frameworks for 
disclosure risk assessment: the F&S probabilistic record linkage framework and the 
probabilistic modelling framework. We also provide examples that link the two 
frameworks as set out in Skinner (2008). Section 3 presents an empirical study based 
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on an extract from the UK 2001 Census. We first assume the perspective of the 
statistical agency where a perturbative method of disclosure limitation has been 
applied to the data and therefore misclassification probabilities and population 
parameters are known. We apply both the record linkage and probabilistic modelling 
framework for assessing the risk of identification and compare results. We also 
demonstrate how we can estimate population parameters through log-linear modelling 
in the probabilistic modelling framework when population counts are unknown, or use 
the EM algorithm to estimate matching parameters in the F&S record linkage 
framework when the match status is unknown. Section 4 demonstrates a risk-utility 
assessment using the example of random and targeted data swapping at different 
perturbation rates. We conclude in Section 5 with a discussion.  

2 Notation and Theory 

In this section we describe the F&S probabilistic record linkage framework and the 
probabilistic modelling framework based on the notion of population uniqueness and 
taking into account misclassification.  We demonstrate the relationship between the 
two frameworks.   

2.1 Fellegi and Sunter Probabilistic Record Linkage  

Using the notation of Skinner, 2008, let aX
~

 denote the value of the vector of cross-

classified identifying key variables for unit a in the microdata ( 1sa ∈ ) with values 

labelled 1,2….J. Let bX  the corresponding value for unit b in the external database 

( 2sb ∈ ). The different notation of X allows for different values of the two vectors due 

to natural misclassification in the data or an application of a perturbative disclosure 
limitation method to the sample microdata file. We assume that bX of the external 

database is fixed and aX
~

 of the microdata are determined by a JJ × probability 

misclassification matrix θ , where:  

                  kjaa )jX|kX
~

(P θ===                                                    (1)  

jjθ  on the diagonal of the matrix is the probability of not misclassifying (perturbing) 

category j. Some examples of probability misclassification matrices when used for the 
purpose of perturbing microdata are presented in Willenborg and De Waal (2001).  

Based on the F&S theory of record linkage, a comparison vector )X,X
~

( baγ is 

calculated for pairs of units 21 ss)b,a( ×∈   where the function (.,.)γ takes values in a 

finite comparison space Γ . In the simplest case, 1)X,X
~

( baj =γ  if there is an 

agreement on value j of aX
~

 and bX , and 0 otherwise.  For the disclosure risk scenario 

we assume that the intruder uses the comparison vector to identify pairs of units which 
contain the same unit 21 ss)a,a( ×∈ . Typically the intruder will use a combination of 
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exact matching and probabilistic matching by considering only pairs that are blocked 
through an exact match on some subset 21 sss~ ×⊂ . The intruder seeks to partition the 

set of pairs in  s~  into a set of matches:  }ba,sb,sa|s~)b,a{(M 21 =∈∈∈=  and 

non-matches: }ba,sb,sa|s~)b,a{(U 21 ≠∈∈∈= . The approach by F&S is to define 

the likelihood ratio u/m   as the matching weight where   m is the probability of an 

agreement given a match )M)b,a(|)X,X
~

((Pm ba ∈= γ  and u is the probability of 

an agreement given not a match )NM)b,a(|)X,X
~

((Pu ba ∈= γ . The higher values 

of the likelihood ratio are more likely to belong to M and the lower values of the 
likelihood ratio are more likely to belong to U.   In addition, under the assumption of 
independence the m-probability and the u-probability can be split into individual 
components for each separate key variable.  Let )M)b,a((Pp ∈=  the probability 

that the pair is in M. The probability of a correct match 

))X,X
~

(|M)b,a((Pp ba|M γγ ∈=  can be calculated using Bayes Theorem: 

              )]p1(ump/[mpp |M −+=γ .                                            (2)   

If the match status is unknown, the matching parameters u,m  and p can be 
estimated using the EM algorithm which is an iterative maximum likelihood 
estimation procedure for incomplete data (not shown here). Based on the estimation of 
the parameters, the probability of a correct match given an agreement   γ|Mp  can be 

estimated by (2).  

2.2 Probabilistic Modelling for Measuring Identification Risk  

The probabilistic modelling framework for estimating the risk of identification is based 
on theory which uses models for categorical key variables. Let }{f jf= denote a 

multiway frequency table, which is a sample from a population table }{F jF= , where 

J,...,2,1j =  indicates a cell defined by cross-classified categorical key variables and jf  

and jF  denote the frequency in the sample and in the population cell j, respectively. 

Denote by n and N the sample and population size, respectively and the number of cells 
by J. Disclosure risk arises from small cells, and in particular when 1== jj Ff    

(sample and population uniques). We focus on a global disclosure risk measure based on 
sample uniques: jjj FfI /1)1( ==τ .  This measure is the expected number of correct 

matches if each sample unique is matched to a randomly chosen individual from the 
same population cell. We consider the case that f is known, and F is an unknown 
parameter  and the quantity τ  needs to be estimated. An estimate of  τ  is:  

                       === ]1|/1[ˆ)1(ˆ
jjjj fFEfIτ                                           (3) 

where Ê denotes an estimate of the expectation. The formula in (3) is naïve in the 
sense that it  ignores the possibility of misclassification. A common assumption in the 
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frequency table literature is )(~ jj PoissonF λ , independently, where NFjj =  is a 

random parameter. Binomial (or Poisson) sampling from jF  means that 

),(~| jjjj FBinFf π  independently, where jπ  is the sampling fraction in cell j. By 

standard calculations we then have: 

   )(~ jjj Poissonf πλ  and, ))1((~| jjjjj PoissonffF πλ −+ ,                   (4) 

where jj fF |  are conditionally independent.  

 We use the approach as developed in Skinner and Holmes, 1998, Elamir and 
Skinner, 2006 and Skinner and Shlomo, 2008 by introducing log linear models to 
estimate population parameters and estimating the risk of identification. The sample 
counts }{ jf  are used to fit a log-linear model: βμ jj x′=log  where jjj πλμ =  in order 

to obtain estimates for the parameters: jjj πμλ /ˆˆ =  . Using the second part of (4), the 

expected individual disclosure risk measure for cell j is defined by: 

)]1(/[]1[)1|/1(
)1( πλπλ

λ −−== −−

j

j

jjj
efFE .                                     (5) 

Plugging jλ̂ for jλ  in (5) leads to the desired estimates  ]1|/1[ˆ
ˆ =jjj

fFE
λ

 and then to  

τ̂  of (3). 

The original probabilistic modelling approach did not consider the case of 
misclassification naturally arising in surveys or purposely introduced  into the data as 
a disclosure limitation method.  Shlomo and Skinner (2010) define disclosure risk 
measures that take into account misclassification. The individual disclosure risk 
measures and the aggregated global disclosure risk measure on misclassified sample 
uniques in this case is defined as:  

   ]})1/(F/[)]1/({[)1f
~

(I~
k jkjkkjjjjj j  −−== πθθπθθτθ                (6) 

and it follows that  ==≤ j jj F/1)1f(I~ ττθ    with equality holding if there is no 

misclassification. The extent to which the left hand side of this inequality is less than 
the right hand side measures the impact of misclassification on disclosure risk. 

   If the sampling fraction is small we can approximate (6) by:  

)F/()1f
~

(I k jkkjjj j  = θθ . Moreover, if the population size is large, we have 

approximately jk jkk FF
~≈ θ , where jF

~
  is the number of units in the population which 

would have jX j =~
 if they were included in the microdata (with misclassification). 

Hence a simple approximate expression for the global risk of identification, natural for 
many social surveys, is:  

                jjjj j F
~

/)1f
~

(I~ θτθ  =≈                                               (7) 
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The approximations in (7) does not depend upon  jkθ  for kj ≠  and so knowledge of 

these probabilities is not required in the estimation of risk if ‘acceptable’ estimates of 

jjθ (the diagonal probabilities of not-misclassification) and jF
~

 are available. Similar 

to the case with no misclassification, the measure in (7) may be interpreted as the 
expected number of correct matches among sample uniques.  

Since the values of jF  or jF
~

 appearing in (6) and  (7) are typically unknown, we 

need to estimate them. We do suppose that the values of jjθ  are known, especially in 

the case that a statistical agency purposely perturbs the data as a disclosure limitation 
method. Expression (7) provides a simple way to extend the  log-linear modelling 

approach described above.  Since the Jjf j ,...,1,
~

=  represent the available data, all 

that is required is to ignore the misclassification and estimate jF
~

/1  from the 

Jjf j ,...,1,
~

=   by fitting a log-linear model   to the Jjf j ,...,1,
~

= following the same 

criteria as before. This results in an estimate for the individual disclosure risk measure 

)1
~

|
~

/1(ˆ =jj fFE  based on the assumptions of the Poisson distribution for the 

population and sample counts. These estimates should be multiplied by jjθ  values and 

summed if aggregate measures of the form in (7) are needed. 

2.3 The Relationship Between the Two Frameworks 

Skinner (2008) relates the F&S record linkage framework to the probabilistic 

modelling framework by providing the following examples:  

Example 1:  Assume no misclassification has occurred, i.e. aa XX =~
 in both the 

population (P) and the sample (s) and that the true match status is known by the agency.  
Assume that sample (s) was drawn by simple random sampling from the population P. 
We calculate the contingency table in Table 1 for each  jX a =   in the realized sample 

where the rows are a binary agreement/disagreement on the comparison vector: 
),( ba XXγ  for  pairs Psba ×∈),(  and the columns the true match status.    

From Table 1, we can calculate directly jM Fp /1| =γ . We also obtain that the m-

probability defined as the probability of an agreement given a match is n/f j ,  and 

the u-probability defined as the probability of an agreement given not a match is 
)1N(n/)1F(f jj −− . The probability of  a correct match is Np /1= . Using Bayes 

formula: 

        
jjjj

j

M
FNnFfNnfN

nfN
p

1

)1(/)1()/11(//1

//1
| =

−−−+×
×

=γ                          (8) 

Small jF  therefore results in a  high probability of a correct match given an agreement 

in the comparison vector. 
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Table 1. Contingency table of binary agreement status and match status for  jX a =  with no 

misclassification  

 Non-match Match Total 
Disagree )1()1( −−− jj FfNn   jfn −   jj FfNn −  

Agree )1( −jj Ff    jf   jj Ff  

Total )1( −Nn   n Nn 

             

Example 2:  In continuation of Example 1, assume now that the microdata has 

undergone misclassification  (either as a result of errors or purposely perturbed  for 

disclosure limitation). Denote jf
~

 the observed misclassified sample counts with 

jX a =~
 derived by  +=

≠ jk
kjkjjjj fff θθ~

.  We calculate the contingency table on the 

realized misclassified sample in Table 2  for  jX a =~
 where the rows are a binary 

agreement/disagreement on the comparison vector: ),
~

( ba XXγ  for  pairs Psba ×∈),(  

and the columns the true match status.    

Table 2. Contingency table of binary agreement status and match status for  jX a =~
 with   

misclassification 

 Non-match Match Total 
Disagree  jjjjj fFfnNn θ+−−

~
  jjj fn θ−   jj FfNn

~
−  

Agree  jjjjj fFf θ−
~

 jjj fθ    jj Ff
~

 

Total  nNn −   n   Nn  
 

From Table 2, we can calculate directly jjjjjjjjjjjM FfFffp
~

/
~

/
~

/| θπθθγ ≈≈=  where 

jF
~

 is the number of units in the population (P) with jX a =~
 (imagining that the 

misclassification takes place before the sampling).  We also obtain the m-probability 
(the probability of an agreement given a match) of  n/f jjjθ  and the u-probability (the 

probability of an agreement given not a match) of )1N(n/)fFf
~

( jjjjj −−θ . The 

probability of  a correct match is Np /1= . Using Bayes formula:   

        
j

jj

j

jj

jjjjjjjj

jjj

M
FfNnfFfNnfN

nfN
p ~~

)1(/)
~

)(/11(//1

//1
|

θ
π
θ

θθ
θ

γ ≈≈
−−−+×

×
=                   (9) 

Expression (9) is similar to the per-record individual risk measures used to define  
(7).  Skinner (2008) also shows that the derivation of the probability of a correct 
match given an agreement holds for any subset of the population which may be 
selected arbitrarily.  
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3 Empirical Study  

In this section, we provide empirical evidence based on real data of the connection 
between probabilistic record linkage according to F&S and the probabilistic modelling 
framework for calculating the risk of identification. We start from the perspective of 
the statistical agency where it is assumed that the misclassification matrix is known 
either because the data was purposely perturbed by the agency for disclosure 
limitation or a study was carried out to assess error rates in various stages of the data 
processing.  We begin with assuming that population counts are known and hence the 
agency can calculate the necessary parameters to measure identification risk in both 
frameworks for this comparison. We also consider the case where population counts 
are unknown and examine the proximity of estimated individual per-record disclosure 
risk measures to true disclosure risk measures in both frameworks.    

3.1 Preparation of the Data 

We use the method of data swapping on an extract of individuals from the 2001 UK 
Census to compare the F&S framework and the probabilistic modelling framework. 
The population includes N=1,468,255 individuals and we draw a 1% simple random 
sample without replacement (n=14,683). There are six key variables for the risk 
assessment: Local Authority (LAD) (11), sex (2), age group (24), marital status (6), 
ethnicity (17) and economic activity (10) where the numbers of categories of each 
variable are in parenthesis (J=538,560). There are 2,873 sample uniques under the 
cross-classified key variables. We implement a random data swap by drawing a 20% 
sub-sample in each of the LADs. In each of the sub-samples, half of the individuals 
are flagged. For each flagged individual, an unflagged individual is randomly chosen 
within the sub-sample and their LAD variables swapped, on condition that the 
individual chosen was not previously selected for swapping and that the two 
individuals do not have the same LAD, i.e. no individual is selected twice for 
producing a swapping pair. 

 The misclassification matrix  θ  for the data swapping design of LAD can be 
expressed in terms of the 11 by 11 misclassification matrix defined  by: 

(1) On the diagonal: 8.0=jjθ  

(2)  Off the diagonal:  ]/[2.0 = ≠ jl lkjk nnθ  where kn   is the number of records in   

the  sample in LAD k.  

The number of sample uniques on the misclassified sample is 2,997.  

3.2 Identification Risk Based on Probabilistic Frameworks and Modelling 

Since we know the misclassification matrix  θ   and the true population counts jF    in 

this study, we can compare the naïve risk measure in (3) and under misclassification  
in (6)  based on the  probabilistic modelling framework. Table 3 presents global 



 Probabilistic Record Linkage for Disclosure Risk Assessment 277 

disclosure risk measures for our sample, which are obtained by summing individual 
per-record risk measures across sample uniques.  The first row of Table 3 shows the 
true disclosure risk τ  in terms of the expected number of correct matches in the data 
before the misclassification. The second row in Table 3 contains the true disclosure 
risk θτ~   in (6) taking into account the misclassification and the third row  the 

estimated disclosure risk measure under misclassification θτ̂~  defined by summing 

)1f
~

|F
~

/1(Ê jjjj =θ  across sample uniques. As can be seen, the estimation of the 

global disclosure risk measure follows closely the true disclosure risk measure (see 
Skinner and Shlomo, 2008 for a discussion on model selection and goodness of fit 
criteria for estimating the risk of identification using log-linear modelling).   

The individual per-record risk measures for sample uniques as shown in (6) are 

more difficult to estimate accurately by estimates: )1f
~

|F
~

/1(Ê jjjj =θ . Figure 1 

compares the individual per-record estimated risk measures )1f
~

|F
~

/1(Ê jjjj =θ  on 

the X-axis with the individual risk measure from (6) assuming known population 
counts on the Y-axis. The figure is presented on the logarithmic scale.   

 

Table 3. Global risk measures on sample uniques for the 20% random data swap in the 
probabilistic modelling framework 

 Global Risk Measure Expected correct matches out 
of sample uniques 

True risk measure τ in original sample        363.0 
Risk measure  (6) under misclassification  θτ~        298.9  

Estimated risk measure under misclassification θτ̂~     307.7 

 

 

Fig. 1. Individual risk measures for sample uniques shown in (6) and estimated individual risk 

measure: )1f
~

|F
~

/1(Ê jjjj =θ  (logarithmic scale) 
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Figure 1 confirms that on average, the global disclosure risk measure in (6) is 
estimated accurately with the graph being symmetrical about the equality diagonal.  
The individual per-record risk measures however vary and their estimation is less 
accurate. From the perspective of an intruder who might use log-linear modelling to 
identify high risk individuals, it would be difficult to ascertain exactly which of the 
individuals are population uniques.    

We turn now to the F&S probabilistic record linkage framework. For our record 
linkage experiment we block on all   key variables that match exactly and calculate the 
probability of a correct match given an agreement on the perturbed LAD in each 
block. We focus only on sample uniques in order to compare to the probabilistic 
modelling framework. All possible pairs between the population dataset and the 2,997 
perturbed sample uniques after blocking on all key variables except for LAD results in 
1,600,685 possible pairs. Table 4 presents the counts of these pairs under this blocking 
strategy according to the true match status and the agreement/disagreement indicator 
on LAD.  

From Table 4, the m-probability is 0.78, the u-probability is 0.09   and the 
probability of a correct match is 002.0=p . Note that the m-probability is the same as 

the overall non-misclassification rate (the diagonal of the misclassification matrix θ ). 
The u-probability represents the proportion of random agreements on LAD (1 out of 
11).  On average, the probability of a correct match given an agreement on LAD is:  

016.0p |M =γ  or 1.6%. 

Table 4. Frequency counts of pairs blocked on agreeing key variables according to 
agreement/disagreement on LAD and the true match status 

 Non-matches Match Total 
Disagree LAD  1,450,677 659  1,451,336 
Agree LAD  147,011 2,338  149,349 
Total  1,597,688 2,997  1,600,685 

 

To assess the probability of a correct match given an agreement γ|Mp  for each  

individual sample unique, we implement the probabilistic record linkage separately in 
each block defined by cross-classifying non-perturbed key variables.  Summing the 
probabilities of a correct match given an agreement γ|Mp  over the sample uniques, we 

obtain the global disclosure risk measure of 289.5 which is similar to the disclosure 
risk measures in Table 3. 

From the analysis in Table 2, we expect that the probabilities γ|Mp from the record 

linkage should be similar to those obtained as the individual per-record risk measure 
shown in (6) under the probabilistic modelling for those agreeing on LAD. This 
comparison is presented in Figure 2 for both the individual disclosure risk measure 
shown in (6)   assuming known population counts (on the left side) and the estimated 

disclosure risk measures  )1f
~

|F
~

/1(Ê jjjj =θ  (on the right side). The individual 

disclosure risk measures shown in (6) follow closely the probabilities of a correct 
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match given an agreement γ|Mp  from the F&S framework. In addition, the estimated 

disclosure risk measures also follow γ|Mp  but with more variance.   

 

 

Fig. 2. Plot of γ|Mp  against individual disclosure risk measures shown in (6) (left) and the 

estimated disclosure risk measure )1f
~

|F
~

/1(Ê jjjj =θ  (right) for sample uniques agreeing on 

LAD (logarithmic scale) 

Turning to the estimation of γ|Mp in the F&S framework, we demonstrate results 

from the EM algorithm using data from one particular block  as shown in Table 5.  

Table 5. Frequency counts of pairs within a single block of agreeing key variables according to 
agreement/disagreement on LAD and true match status 

 Non-match Match Total 
Disagree LAD  916 1 917  
Agree LAD 100 3 103  
Total 1,016 4  1,020  

 
From Table 5, the true parameters for this particular block are: m-probability is 

0.750, u-probability is 0.098,  the probability of a correct match is 0.0039 and 
029.0103/3p̂ |M ==γ . We initiate the EM algorithm with an m-probability of 0.78, 

u-probability of 0.09 and the probability of a correct match 0.002. Convergence in the 
EM algorithm means that the sum of the squared change of estimates  of the m and u-
probabilities between iterations is less than 0.0000001. The estimation of the EM 
algorithm resulted in: 798.0m̂ = , 099.0û = , and 0022.0p̂ = . From here, we obtain:  

017.0
)099.0)(0022.01()798.0(0022.0

)798.0(0022.0
p̂ |M =

−+
=γ .  As can be seen, it is difficult 

to estimate the parameters exactly using the EM algorithm. Generally, the EM 
algorithm will estimate parameters more accurately when there is a large number of  
pairs and a  relatively large number of correct matches (approximately over  5%). 
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4 Risk-Utility Framework for Assessing Disclosure Limitation 
Methods  

We demonstrate how statistical agencies might assess a disclosure limitation method 
and its parameters. We focus on   random and targeted data swapping with varying 
rates of perturbation: 2%, 5%, 10% and 20%. Given a measure of information loss, we 
plot a disclosure risk-data utility map (Duncan, et al. 2001). For disclosure risk, we 
use the global disclosure risk measure defined in (6). Information loss will be 
measured by the relative absolute average distance per cell defined as follows:   

Let D represent a frequency distribution for a two-way table defined by LAD and 
Ethnicity and let D(r,c) be the frequency in the cell in row r, r=1,..R and column c, 
c=1,...,C. The distance metric is: 

 −−= cr origcr orgpertpertorig crDcrDcrDDDRAAD ,, ),(|),(),(|1),(                 (10) 

with pert and orig referring to the perturbed and original table respectively. The 
RAAD provides a measure of the average absolute perturbation per cell compared to 
the average cell size of the original table. 

Figure 3 contains the disclosure risk-data utility map.  The points on the map 
represent different candidate releases of record swapping. The points are denoted by T 
for targeted or R for random; and 20 for 20%, 10 for 10%, 5 for 5% or 2 for 2%. The 
points are plotted against the risk measure  θτ~  in (6) on the Y-Axis and the 

information loss measure  RAAD in (10)  for  LAD*Ethnicity on the X-Axis.  We see 
that for a given level of data utility, we need approximately half of the level of 
perturbation under the targeted record swapping compared to the random record 
swapping. Depending on the tolerable risk threshold determined by the agency, the 
optimal method of record swapping and the swap rate is the one found on the frontier 
of the disclosure risk-data utility map represented by the connecting line (Gomatam, et 
al., 2005).  This finding could vary in other settings and an agency could use a similar 
disclosure risk-data utility approach, based on its own data, to determine the preferred 
disclosure limitation approach.   

  

 

Fig. 3. Disclosure risk-data utility map for record swapping (T – targeted, R – random and 2, 5, 
10 and 20 swap rates)  for table LAD*Ethnicity 
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5 Discussion   

In this paper, we have provided empirical evidence of the connection between the 
F&S record linkage framework to the probabilistic modelling framework for 
estimating the risk of identification based on the notion of population uniqueness as 
discussed in Skinner (2008). We have seen that statistical agencies are able to estimate 
accurate global disclosure risk measures  that can be used to assess optimal disclosure 
limitation methods through a disclosure risk-data utility framework assuming that the 
probability of not being misclassified or perturbed is known, even if there is no 
population data available.  

 Individual per-record disclosure risk measures are more difficult to estimate 
without knowing true population counts in both frameworks. The estimation is carried 
out through the log linear modelling for the probabilistic modelling framework or the 
EM algorithm for the F&S record linkage framework. The results show that from the 
perspective of the ‘intruder’, it is difficult to identify high risk sample uniques, due to 
the variability of the estimation of the risk measures.  
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Hierarchical Linkage Clustering

with Distributions of Distances
for Large-Scale Record Linkage
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Abstract. Distance-based clustering techniques such as hierarchical
clustering use a single estimate of distance for each pair of observations;
their results then rely on the accuracy of this estimate. However, in
many applications, datasets include measurement error or are too large
for traditional models, meaning a single estimate of distance between
two observations may be subject to error or computationally prohibitive
to calculate. For example, in many of today’s large-scale record linkage
problems, datasets are prohibitively large, making distance estimates
computationally infeasible. By using a distribution of distance estimates
instead (e.g. from an ensemble of classifiers trained on subsets of record-
pairs), these issues may be resolved. We present a large-scale record link-
age framework that incorporates classifier ensembles and “distribution
linkage” clustering to identify clusters of records corresponding to unique
entities. We examine the performance of several different distributional
summary measures in hierarchical clustering. We motivate and illustrate
this approach with an application of record linkage to the United States
Patent and Trademark Office database.

1 Introduction

Hierarchical linkage clustering provides an intuitive solution to identifying clus-
ters of observations given the pairwise distances (or dissimilarities) between all
observations in a dataset [11]. Distance measure examples include Euclidean,
Manhattan, and Mahalonobis as well as covariate-weighted versions. Although
any distance measure between two observations can be used for hierarchical clus-
tering, typically each pair of observations is assigned only one estimate of the
distance between them. As such, any clustering results we obtain heavily rely on
the accuracy of this single estimate which may be prone to error. For example,
humans often round to the nearest 5 pounds or 15 minutes when asked for their
weight or the time of day; instruments used to record location may be subject
to random or measurement error. By allowing for multiple estimates of the dis-
tance between each pair of observations, i.e. a distribution of distances, we may
be able to more accurately identify the true clusters.

In the record linkage literature, the need for adapting clustering methodology
to distributions of distances is especially important. Briefly, record linkage is the
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process of identifying unique entities across multiple data sources or within a
single data source. For example, the United States Patent and Trademark Office
(USPTO) maintains a database of all issued patents and their corresponding
inventors. However, inventors are not assigned unique identification numbers,
making it difficult to track innovation or productivity across patents. Record
linkage is often applied to identify each unique inventor’s patents [19, 9, 15].

Some authors describe record linkage as a clustering problem [18, 19, 16]. For
the USPTO, the observations to be clustered are all records of every inventor
on each patent, and the clusters are the sets of patents belonging to the un-
derlying unique inventors. A supervised learning approach assigns a distance to
two records by modeling and predicting the probability of two records referring
to the same unique individual [18, 19, 16, 10]. The higher the probability of a
match, the smaller the distance between records. These techniques recover the
unique inventors’ clusters of records well when working with problems of compu-
tationally tractable size. However, as large-scale record linkage problems become
more ubiquitous (e.g. the USPTO has over eight million patents and so 32 tril-
lion pairs of records), it quickly becomes computationally infeasible to train a
single model on the entire training dataset [19]. In these cases, a single “best”
estimate of the distance between records is unattainable.

While many “divide-and-conquer” strategies might suggest partitioning the
data and training a model on each subset, most commonly the set of probabil-
ities/distances from the resulting model ensemble would be averaged. However,
this approach inherently assumes that the distribution of estimates is symmetric
and centered around the true distance – very often not the case. We propose a
formal approach for hierarchical clustering when there exist distributions of dis-
tance estimates. Appropriate estimates of the true distance between each pair of
observations are adaptively selected based on features of the corresponding dis-
tribution of distances. While the specific approach presented here was motivated
by a need for computationally tractable large-scale record linkage solutions, the
general framework could be used for any similar clustering problem.

After first describing the USPTO record linkage problem (Section 2), we dis-
cuss a large-scale classification technique that trains classifiers on partitions of
the data (Section 3). Next, we present a hierarchical clustering framework called
“distribution linkage” (Section 4). We detail the distribution linkage algorithm
(Section 4.2.1) and examine the efficacy of several approaches for summarizing a
distribution of distances (Section 4.2.3). We apply these approaches to simulated
datasets (Section 4.2.2) and to a labeled subset of the USPTO (Section 5).

2 Record Linkage in the USPTO

Deduplication (or “Disambiguation”) refers to the process of identifying records
belonging to unique entities in a single database. Like most record linkage meth-
ods, approaches to deduplication typically compare the values of shared fields
to determine whether or not records should be linked. Perhaps the most well-
known large-scale deduplication problems are associated with the United States
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Census Bureau, where deduplicating national surveys such as the Decennial Cen-
sus survey is an ongoing research problem [21]. Deduplication in these large-scale
settings requires emphasis on computationally feasible method development. De-
spite the similarities, standard record linkage methods such as [8], which assumes
a one-to-one matching across two databases, cannot be trivially applied to dedu-
plication problems, where duplicated entities occur within the same list.

2.1 Name Disambiguation

A common application of deduplication methods is the identification of unique
authors in bibliographic data, or “author name disambiguation.” This is an
important problem across many disciplines; for example, many bibliographic
databases do not include unique identifiers that can link authors across their
publications, ensuring appropriate attribution of each author’s work. [17] and
[18] use semi-supervised and supervised learning methods (respectively) for dis-
ambiguating authors in MEDLINE, a database of over 15 million medical jour-
nal articles. [10] compare two supervised learning approaches for disambiguating
publication lists from researchers’ webpages and 300,000 Digital Bibliographic
Library Database citations. Although not applied to a bibliographic database,
[16] presents a supervised learning approach for duplicate detection of over 1,200
geospatial dictionary and digital gazetteer records.

2.2 Disambiguating USPTO Inventors

The USPTO database contains information from over 8 million patents and is in
need of ongoing disambiguation, particularly of its inventors. [6] identify unique
inventors using an unsupervised Bayesian approach and evaluate the results with
a benchmark dataset of manually disambiguated patents for 445 French scholars.
Lee Fleming and his research group first provide a disambiguated version of the
USPTO database publicly available for researchers [14, 15]. However, approaches
similar to [14] use heuristic decision rules and do not build models using training
data; as a result, they can yield systematic false positive and/or false negative
errors when matching records [19]. Additionally, [15] can yield inconsistent dis-
ambiguation error metrics when applied to different datasets [19]. Our approach
takes advantage of a set of labeled USPTO inventor records and employs a su-
pervised learning approach designed to minimize and balance false positive and
false negative errors for estimating the distance between pairs of records.

2.3 Labeled USPTO Records

To build our supervised models, we use a set of USPTO inventor records labeled
with unique identifiers from [1]. An “inventor record” is a record of an inventor
on a particular patent in the USPTO database. Note that a single patent can
have multiple inventors (and thus, multiple inventor records). Similarly, a single
inventor can have multiple patents (and thus, multiple inventor records that
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need to be disambiguated). In Table 1, we see examples of common difficulties
with deduplication: spelling/typographical errors (“Stanford” vs. “Stanfrod”),
name variations (“David A. Miller” vs. “David Andrew Miller”), repetition of
common names (“David Miller”), and abbreviations (“UNC”).

Table 1. Example of Labeled USPTO Inventor Records

ID Last First Middle City St Assignee ID

1 Millar David A. Stanford CA Stanford University 1001
2 Miller David A. Fair Haven NJ UNC 1001
3 Miller David A.B. Stanford CA Stanfrod University 1001
4 Miller David Andrew Stanford CA Lucent Technologies 1001
5 Miller David Andrew Fair Haven NJ Lucent Technologes 1001
6 Miller David B. Los Angeles CA Agilent Technologies 1001
7 Miller David D. Billerca MA Lucent Technologies NA

The final hand-disambiguated dataset has 98,762 labeled inventor records;
14,520 are matched to one of 824 unique CV inventors, and 84,242 fail to map to
any of our CV inventors [19]. We use these labeled inventor records to (1) train
classification models to find predicted probabilities that pairs of records match
(Section 3.2) and (2) evaluate deduplication approaches (Section 5).

3 Classification in Large-Scale Training Data Scenarios

We begin by introducing notation for comparing pairs of records. Next, we re-
view decision trees and related approaches and discuss why they are intuitive
for comparing pairs of records (Section 3.2). Then, we introduce our ensemble
approach to large-scale decision tree classification via subsampling (Section 3)
and discuss aggregating a distribution of predicted probabilities (Section 3.4).
Finally, note that while other classification techniques exist, previous work has
shown decision tree approaches, and random forests in particular, to be the most
effective at modeling matches in sets of record-pairs [19, 18, 10, 16]. As such,
we focus on random forests here, although any classifier could be used in this
ensemble framework.

3.1 Comparing Pairs of Records

In most record linkage and disambiguation algorithms, the operation of interest is
the comparison of two records. Each pairwise comparison quantifies the similarity
of two records using a set of similarity scores. Similar to [8], we define these
similarity scores as follows: Let xi be the ith record in the database, where
i = 1, 2, ..., n. Then, γijm is the similarity of records xi, xj according to field m,
where m = 1, 2, ...,M . We denote the vector of all M similarities for records
xi, xj as γij = 〈γij1, ..., γijM 〉.

Similarity scores for deduplication can take several different forms. Depending
on the type of field being compared (e.g. long string, short string), similarity
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scores can be either continuous or binary. We give an overview of the specific set
of similarity scores we use for this work in Appendix B. Our similarity scores are
motivated by previous work in the USPTO inventor disambiguation [14, 15].

3.2 Classification Trees and Random Forests

Briefly, classification trees build decision trees from a set of covariates by deter-
mining cutpoints in the covariates that best separate the classes of a categorical
response variable [12]. [5] showed that a random forest, or an ensemble of classi-
fication trees trained on bootstrap samples of the training data and covariates,
is a powerful method of aggregating classification trees to improve prediction in
the decision tree framework.

An advantage of this approach is that the decision tree framework is an intu-
itive solution to the problem of determining links between pairs of records, since
the if-else structure of a decision tree mimics the way a human would make
match/non-match decisions. Many heuristic approaches to deduplication and
record linkage use “decision trees” with ad hoc, hand-chosen cutpoints [9, 14].
Classification trees and random forests formalize this approach statistically, us-
ing training data to choose cutpoints by optimizing according to some criterion
rather than some heuristic belief about what constitutes a match.

3.3 Forest of Random Forests

Despite the empirical success of random forests at deduplicating inventors, it is
computationally infeasible to train a single random forest on millions of pairwise
comparisons. Using multiple random forest classifiers may be more computation-
ally feasible but requires careful consideration of the match probability distribu-
tions to have reasonable results without substantially sacrificing accuracy.

Forest of Random Forests (FoRF) is our proposed approach when in the
presence of prohibitively large training datasets. We first partition the train-
ing data into R random subsets1 Let Fr be the random forest trained on subset
r = 1, ..., R, and let F = {Fr}Rr=1 be the FoRF.

3.4 Prediction with FoRF

In a classification tree ft, the probability of each class g for observation x is
equal to the number of training data observations in class g at the terminal
node of x divided by n(x, ft), the total number of training data observations
at that terminal node. The predicted class, ĝft(x), is the class with the highest

1 We use random partitioning in an effort to generate similar match probability and
distance estimates. Alternative sampling methods could be used, e.g. the approach
of [13], but any introduced bias would need to be addressed when characterizing the
distribution for use in clustering. We can also sample separately from the matches
and non-matches to maintain the ratio of matches to non-matches across each subset,
e.g. for situations where there are not many matches in the training data.
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probability. One potential issue is that some branches may contain very few ob-
servations, so the class probabilities may be unreliable. Prediction with random
forests mitigates this issue by training T classification trees and aggregating their
predictions. For random forest Fr with T trees, the probability that x has class g
is equal to the number of trees that predicted class g divided by T . The predicted
class of the random forest, ĝFr(x) is the class with the highest probability.

Prediction with a set of random forests, however, is not quite as straight-
forward. Since we have potentially RT predicted probabilities, there are many
natural aggregation options, such as (1) the class with the highest mean proba-
bility across all RT tress, (2) the class with the majority vote across all RT trees,
or (3) the class with the majority vote across all R random forests. However, we
argue that there is no single best representative measure for each group of predic-
tions. Some distributions of predicted probabilities may be tightly symmetric;
others may be skewed or multimodal. In all cases, the end goal is to use the
distribution of predicted probabilities to help us determine the true “distance”
between records and thereby the true inventor clusters of records.

4 Hierarchical Clustering with Distributions of Distances

Clustering is used commonly in statistics and machine learning to find groups
of similar observations within a dataset. Generally, clustering algorithms seek to
place observations with high similarity (low dissimilarity or “distance”) into the
same group, or “cluster,” while splitting observations with low similarity (high
dissimilarity/distance) into different clusters [11].

As described in Section 1, there are real-world scenarios and datasets where
multiple estimates of distance (or distributions of distances) exist. How can
we extract the appropriate distances from these distributions? Rather than use
the mean, we examine a more adaptive way to summarize the distribution and
provide a framework for hierarchical clustering with distributions of distances.

4.1 Hierarchical Linkage Clustering

Hierarchical linkage clustering relies on a distance matrix D. Given a set of
n observations, D contains the distance between all

(
n
2

)
pairs of observations.

These distances are arranged into the lower triangle of an n×n matrix D, where
D[i,j] = dij = dist(xi, xj), ∀i, j ∈ {1, 2, ..., n} s.t. 1 < j < i < n. The Euclidean

distance, dist(xi, xj) =
√∑p

k=1(xi,k − xj,k)2, is often used to measure the dis-
tance between observations in p-dimensional space. With hierarchical clustering,
however, any appropriate measure of distance or dissimilarity can be used.

Algorithms for hierarchical clustering can be agglomerative, where each obser-
vation starts in its own cluster and subsequently merges with others, or divisive,
where all observations start in the same cluster and are subsequently split into
separate clusters. Single linkage and complete linkage hierarchical clustering are
commonly used types of agglomerative hierarchical clustering.
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With any linkage method, hierarchical clustering gives a set of clusterings
described by a dendrogram. The dendrogram can be “cut” at a given distance
threshold or height τ to extract clusters; any pair of observations with distance
lower than τ are considered to be in the same cluster. As τ increases, the number
of clusters decreases.

4.2 Distribution Linkage

In our record linkage example, there are R models and so R model-based es-
timates of the distance between each pair of records. For consistency, we will
assume that regardless of the application, there are R estimates of distance be-
tween every pair of records. Ultimately, we use features of these sets of distances
to recover the cluster structure in the data.

4.2.1 Algorithm
In the context of our supervised learning approach to record linkage, the dis-
tribution of distances is obtained directly from the distribution of predicted
probabilities of matching from our classifier ensemble (Section 3).

Formally, let p̂ij = 〈p̂ij1, p̂ij2, ..., p̂ijR〉 be the set of R estimated pairwise
probabilities of matching for records xi, xj (Section 3.4); let the corresponding

set of R estimated distances be d̂ij = 〈d̂ij1, d̂ij2, ..., d̂ijR〉 = h(p̂ij). Note that
0 ≤ p̂ijr ≤ 1, and h is a monotonically decreasing function of the probabilities.

Thus, [h(1) ≤ d̂ijr ≤ h(0)]. Then, let f̂ij(d̂ij) refer to this estimated distribution

of distances such that f̂ij is also defined on the set [h(1), h(0)]2.

Now, let δ(f̂ij) be some measure on the distribution of distances, f̂ij , that
returns an approximation, d∗ij , of the “true” distance between records xi, xj .

For example, different quantiles of f̂ij may better approximate the true distance
than the distribution’s mean, depending on features of the distribution (e.g.
skew). As such, δ may return the distance corresponding to, e.g., a quantile of
the distribution, given the distribution’s skew. Given some δ, we propose the
following algorithm for “distribution linkage” hierarchical clustering3:

1. Calculate p̂ij and transform to d̂ij for all pairs xi, xj using h (i.e. d̂ij = h(p̂ij))

2. Calculate f̂ij , the distribution of distances

3. Build D∗, the distance matrix with D∗
[i,j] = d∗ij = δ(f̂ij)

4. Find the hierarchical clustering solution for D∗ corresponding to the choice
of linkage function (single, complete, minimax[2], etc)

5. Cut the resulting hierarchical clustering tree at a level τ to find the clusters

2 For example, let f̂ij(x) =
1

ωR

∑R
r=1K(

x−d̂ijr
ω

) be the kernel density estimator for x,
where K is some kernel (e.g. the Gaussian kernel). We drop the bandwidth ω for
simplicity; choosing a bandwidth is a common problem but not the focus here.

3 We use the term “distribution linkage” to refer to hierarchical linkage clustering
using distributions of distances. “Distribution” refers to the multiple estimates of
distance; any linkage type (e.g. single linkage) can be used in this procedure.
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For record linkage, we use h(x) = 1− x so that high probabilities (near 1) map
to low distances (near 0), and low probabilities (near 0) map to high distances
(near 1). Using single linkage, the hierarchical clustering solution can be found by
calculating the minimal spanning tree – a computationally efficient calculation
using algorithms such as Prim’s or Kruskal’s – and breaking the tree into groups
of observations at a distance threshold τ [11]. We use single linkage because of it
is equivalent to enforcing transitivity of pairwise matches at a distance threshold
τ (or a probability threshold h−1(τ)), a useful property for record linkage.

Now, our task is to find a suitable function δ. That is, what measure δ on the
distribution of distances should be used to represent d∗ij? Figure 1 shows match
probability distributions with differing characteristics for three record-pairs.

For the distribution of match probabilities in Figure 1a, the choice of δ is
likely inconsequential, since the distribution has little variance and one large
mode near one, a likely match. However, for Figures 1bc, the choice of δ could
substantially change the probability (or distance) used for that pair. In Figure 1b,
the distribution is right-skewed, with mode at low match probability. However,
the right-tail mode occurs above 0.5, indicating a possible matching record-pair.
What summary measure δ is most appropriate here? Similarly, in Figure 1c, the
distribution of probabilities has two large modes, with mass on either side of the
commonly-used 0.5 match threshold. Additionally, the distribution mean occurs
in the valley between the two modes. The appropriate decision is not obvious.

4.2.2 Distribution Linkage with Simulated Data
To illustrate, we use an artificial, well-separated two cluster example (Figure
2) and simulate distance distributions with varying features. In doing so, we
hope to draw connections between the distributional features and an appropriate
measure δ. In particular, we first try summarizing the distributions of distances
via quantiles. In our simulations, we find that for distributions with left (right)
skew, lower (higher) quantiles are more effective at producing well-separated
groups of observations.

For record linkage, recall that the match probabilities and corresponding dis-
tances are on [0,1]. As such, we simulate from the Beta distribution given its
appropriate range and to take advantage of its flexibility. For our two cluster
data set, we first scale all the distances to be on [0,1]. Then for each pair of
observations, we might combine the scaled distance with simulated draws from,
say, a Beta(2, 8) to create a right-skewed distribution (Figure 3) such that the
distribution mean is equal to the scaled Euclidean distance between the pair.

We then explore how distribution linkage hierarchical clustering performs
when using δ(f̂ij) = Q0.05(f̂ij) (Figure 3a), δ(f̂ij) = μ(f̂ij) (Figure 3b), and

δ(f̂ij) = Q0.95(f̂ij) (Figure 3c), where Qq(y) returns the qth quantile of a distri-
bution y, and μ(y) returns the mean. We build a distance matrix D∗ for each
of the three δ measures above and, for visualization purposes, project these into
two-dimensional latent space using multi-dimensional scaling (MDS), colored by
the true groups. If the δ measure is appropriate, we should see two well-separated
groups. We also plot the corresponding single linkage dendrograms.



Distribution Linkage 291

The 5th quantile does not separate the groups well for this right-skewed dis-
tribution of distances. The 95th quantile yields the best visual separation of the
groups, though it appears similar to that of the mean. Although this is just
one example, our simulations have shown a general relationship between skew
and “best” quantile. For right-skewed distributions, using higher quantiles for δ
yields distance matrices that better maintain the structure of the original data
than does using lower quantiles. We find an analogous result for left-skewed dis-
tributions of distances. However, can we say which is the “optimal” quantile for
a given distance distribution? We examine this issue next.

4.2.3 Finding the Optimal Quantile
We repeat the previous simulation 10,000 times, randomly varying the α and
β parameters of the Beta noise distribution between 1 and 15 to simulate uni-
modal distributions with different skews. In Figure 4, we show that as right-skew
increases (x-axis), the “optimal quantile” (y-axis) increases above the median.
(Similarly, as the left-skew increases, the optimal quantile decreases below the
median.) Here, we define the optimal quantile as the quantile of the distribution
of distances that minimizes the stress coefficient [12] of D∗ vs. D, where D∗ is
the quantile-distance matrix, and D is the “true” distance matrix of the sim-
ulated data obtained from the scaled Euclidean distances. We use the method
of moments to estimate the α, β, and corresponding skew of the distribution of
distances.

Note that this relationship tails off for extreme values of skew, as you might
expect, since the quantiles are bounded between 0 and 1. Given this observed
relationship, we explore the idea of defining δ to be dependent on the skew of
the distribution of distances, f̂ij . That is, we choose δ(y) = Qq∗(y), where the
optimal stress-minimizing quantile q∗ is obtained by modeling q∗|skew (Figure
4). We model the relationship with a nonparametric regression model using the
simulated data and then subsequently predict/choose the optimal quantile given
the distributional skew for any pair of observations. Our q∗ij then adapts to the

distribution of distances (f̂ij) for records xi, xj .

5 Results

We illustrate the results of distribution linkage and our FoRF classifier using the
labeled USPTO inventor records. We train three models: RF , a random forest
trained on 50,000 labeled training pairs; FoRFsmall, a FoRF with R = 30, where
each of the R random forests is trained on roughly 50,000/30 pairs; and FoRFbig ,
a FoRF with R = 30, where each of the R random forests is trained on 50,000
pairs. We ensure that the number of terminal nodes in each decision tree is the
same (20), so that the underlying decision trees are trained at the same depth
regardless of the size of the training data sample.

For the RF and FoRFsmall, we limit the number of pairwise comparisons to
ensure computational feasibility and a fair comparison. In practice. the FoRFbig

is the more common scenario for distribution linkage, and we naturally would
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expect improved performance with the increased sample size. We examine the
agreement rates between FoRF and RF for several different distributional sum-
mary measures δ. We also compare results for linking USPTO records with a
specific focus on record pairs whose match status is more difficult to predict.

5.1 Agreement Rates between FoRF and Random Forests

Table 2 shows the agreement rates between RF and both FoRFsmall and FoRFbig

where δ = the mean or the optimal quantile. Since FoRF is simply an ensemble
variation of random forests and given the large sample size, we expect that the
two FoRF models will have high agreement rates with the single random forest.

Table 2. Agreement Rates for FoRF and Random Forest

Model δ Agreement Rate (%)

FoRFsmall δ(y) = μ(y) 99.92
FoRFsmall δ(y) = Qq∗(y) 99.86
FoRFbig δ(y) = μ(y) 99.98
FoRFbig δ(y) = Qq∗(y) 99.80

In fact, the RF agreement rates are very high for both FoRF models for either
δ measure. This behavior is expected, for example, since many record-pairs are
easily modeled as matches or non-matches; however, it also gives some evidence
that, when faced with a prohibitively large data set, we can rely on the FoRF-
distribution linkage combination to give results similar to those of a RF (if an
RF were feasible).

We further examine these results in Figure 5 by visualizing example distri-
butions of distances from each FoRF model in comparison to the RF predicted
distance. In doing so, we expect that both FoRF models will yield distributions
of predicted distances centered near the predicted distance from random forests.
We also expect the FoRFsmall model to have more variability, since its under-
lying random forests were built using substantially smaller training datasets.

In Figure 5a, the distance distributions from FoRFsmall and FoRFbig are
fairly symmetric for the example record-pair. The predicted RF distance is near
the center of the distribution of FoRFbig . The optimal quantile for FoRFbig is
also very close to the random forests prediction, indicating that the two methods
yield similar results. For FoRFsmall, the predicted distances are slightly higher
than that of the random forests model, likely because FoRFsmall had less train-
ing data and may be subject to more variability. Note that both FoRF s and the
RF would suggest possibly a match (recall distance = 1 - match probability).

In Figure 5b, the record pair is not a match. Notice that the FoRFsmall

distance distribution is left-skewed. As such, the optimal quantile approach for δ
chooses a lower quantile of the distribution, as expected, but still representative
of the true distance between the records. The distribution of distances from the
FoRFbig model has little variability and is centered near the RF prediction.
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5.2 Distribution Linkage and FoRF for USPTO Record Linkage

Table 3 shows the false positive and false negative error rates for USPTO record
linkage using a FoRF to obtain distributions of predicted pairwise probabilities
of matching and distribution (single) linkage to cluster the records. We compare
both FoRF models to the RF model. We expect that each approach will yield
similar results, with random forests and FoRFbig outperforming FoRFsmall since
these were built using larger training datasets. (Again, note that we are using
a computationally feasible subset; in practice, the FoRFbig would be used to
analyze the entire labeled USPTO data set.)

Table 3. Performance of FoRF and Random Forest for Record Linkage

Model δ FNR (%) FPR (%)

Random Forests NA 0.93 2.30
FoRFsmall δ(y) = μ(y) 1.51 2.23
FoRFsmall δ(y) = Qq∗(y) 1.61 2.49
FoRFbig δ(y) = μ(y) 1.00 2.30
FoRFbig δ(y) = Qq∗(y) 1.81 2.92

RF yields lower false positive and false negative error rates than both FoRF
models in this subset example. However, note that FoRFsmall yields a lower
false positive error rate than RF , though this difference is minimal. As expected,
FoRFbig yields lower overall error rates than FoRFsmall when δ is chosen to be
the mean of the distribution of distances (similar false positive error rate and
an improved false negative error rate). Interestingly, FoRFsmall yields lower
error rates than FoRFbig when δ is chosen to be the optimal quantile of the
distribution of distances according to both error rates.

Finally, note that random forest predictions are subject to error due to the
randomly chosen subsets of training data and features for each of the underlying
decision trees. As discussed in [12], the variance of a random forest is a function
of the sampling variance of any underlying tree and the sampling correlation
between pairs of the underlying trees. Additionally, the bias of a random forest
is the same as that of the underlying trees. These bias and variance properties
will be similar for FoRF, since FoRF is just a combination of R random forests.
The exact theoretical bias and variance properties are the subject of future work

5.3 Distribution Linkage for Difficult-to-Link Pairs

In the previous section, our results did not provide strong evidence for using the
optimal quantile approach versus aggregating using the mean. The results proved
to be similar in performance, but this was not unexpected. The optimal quantile
approach is flexible and adapts to the distributions at hand. Many record pairs
are obvious matches or non-matches with FoRF distributions near one or zero;
in these cases, using either the optimal quantile or the mean will give essentially



294 S.L. Ventura and R. Nugent

the same results. Where the optimal approach might gain an advantage is when
analyzing record pairs that are less obvious or have asymmetric, multimodal
distributions of probabilities (distances).

Here we evaluate using a set of difficult-to-link “coin flip” record-pairs, which
includes 987 pairs with probability of matching 0.45 < p̂ijr < 0.55. Distribu-
tion linkage and FoRFbig with the optimal quantile δ outperforms the other
approaches by a slight margin for this subgroup of difficult-to-link record-pairs,
suggesting a possible targeting strategy of focusing the optimal search where
needed the most.

Table 4. Performance of FoRF and Random Forest on Difficult-to-Link Pairs

Model δ Percent Correct (%)

Random Forests NA 77.28
FoRFsmall δ(y) = μ(y) 76.11
FoRFsmall δ(y) = Qq∗(y) 76.11
FoRFbig δ(y) = μ(y) 79.04
FoRFbig δ(y) = Qq∗(y) 81.26

6 Discussion

Hierarchical linkage clustering relies on the accuracy of a single estimate of dis-
tance to link observations and provide a hierarchy of clustering solutions. In
practice, a single estimate of distance (e.g. Euclidean distance) may not best
represent the true distance between a pair of observations.

We use a large-scale classification framework called “Forest of Random Forests”
(FoRF), which allows computationally intensive classifiers like random forests to
be built in large-scale training data scenarios. We then provide a framework
for applying hierarchical clustering when there exist distributions of distances.
We show that the optimal quantile of the distribution of distances can depend
on the skew of the distribution. We apply our distribution linkage hierarchical
clustering approach for record linkage, using distributions of distances obtained
from two FoRF classifiers, to a large-scale record linkage problem in the United
States Patent and Trademark Office database. We show that this approach yields
false positive and false negative error rates similar to those of common record
linkage approaches using hierarchical clustering and a single distance estimate
from random forests. We also show that this approach yields lower error rates
for “coinflip” record-pairs, which are difficult to disambiguate based on their
pairwise probabilities of matching.

In future work, we will examine different choices for δ and include more fea-
tures of the distribution (e.g. modality, range, etc) in our model that chooses
the optimal quantile, in hopes that we can better predict the optimal quantile
of a distribution of distances. We will also take into account the distribution
of decision tree probabilities/distances within each random forest, since these
distributions contain a substantially larger number of underlying distances.
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Fig. 1. Distribution of Estimated Probabilities
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Fig. 2. Simulated Two-Cluster Data and Dendrogram

B Comparing Two Inventor Records

In disambiguation, we compare pairs of inventor records and determine if each pair
is a match (the same unique inventor) or a non-match (two non-unique inventors).
Several authors have analyzed the best approaches to comparing different types of fields
(names, companies, locations, etc) for record linkage and disambiguation purposes. We
direct interested readers to the works of [3], [4], and [7], among several others.

We describe the similarity of each field with a numerical value indicating how closely
two records match. For the purposes of this paper, we define all of these “similarity
scores” as γijk, which represents the similarity score of records xi and xj according to
field m, where i, j ∈ {1, 2, ..., n}, m ∈ {1, 2, ...,M},M = the number of unique fields
being compared, and n = the number of records in the database. We define similarity
scores for long strings, short strings, and lists.
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Fig. 3. Distribution Linkage with Right-Skewed Distribution of Distances: Figures
3(a–c) show MDS projections of the distance matrices created using three different
δ measures: the 0.05 quantile, the mean, and the 0.95 quantile. Figures 3(d–f) show
the resulting hierarchical clustering dendrograms obtained from applying distribution
linkage with each of these three δ measures.

B.1 Long Text Strings: Inventor, City, and Assignee Names

Long strings, such as assignee and inventor names, are susceptible to typographical
errors and name variations. For example, “David” vs. “Dave” do not match using
simple exact matching. More advanced string comparison methods are necessary.

The Jaro-Winkler string comparison (JW) method takes two strings as input and
compares the characters and positions of matching characters across two strings [20].
The result is a score between 0 and 1 (inclusive) that indicates how similar two strings
are to each other; if two strings are an exact match, their JW score will be 1. The math-
ematical details of the calculation of JW scores are given in [20]. For our dataset, the
long string fields are first name, last name, middle name, assignee name, and inventor
city. Several other string comparison metrics exist, such as Token-based similarities,
Metaphone, N-grams, Levenshtein, and still several others. Other string comparison
metrics were tried, but did not improve our models or results.

B.2 Short Text Strings: State, Country, and Name Suffix

If field m is a short string, we define the similarity score as follows. Given two short
strings Xim and Xjm for inventors i and j and field m, γijm = 1 if Xim = Xjm, and
γijm = 0 if Xim �= Xjm. That is, we check pairs of short strings for exact matches only.

Short string fields include the inventor name suffix, inventor state, and inventor
country. We use exact matching for these fields because they are generally not suscep-
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tible to typos, and we do not want to give non-identical strings with similar characters
a non-zero weight, such as the state abbreviations “MA” and “MN”.

B.3 Lists: Co-inventors, Classes, and Subclasses

Each inventor record has two lists associated with it: (1) the list of co-inventors and (2)
the list of class-subclass pairs for the corresponding patent. There are several different
ways to quantify the similarity of two lists of co-inventors or class-subclass pairs. For
our purposes here, we use the following approach when comparing lists of co-inventors
or class-subclass pairs. Given two lists Xim and Xjm for inventors i and j and field m:

γijm =
|Xim∩Xjm|
|Xim∪Xjm|

That is, list similarity scores find the ratio of shared elements to unique elements across
the two lists. Again, note that other list similarity scores could be substituted here.
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Abstract. National Statistical Agencies and other data custodians are
vital sources of data for research and policy analysis. However, exter-
nal researchers must be provided with access to data in such a way
that privacy and confidentiality are protected. We discuss two recently-
implemented research data access systems. The first was developed by
the Australian Bureau of Statistics for use with certain of its data collec-
tions. The second was developed by the Sax Institute, a non-profit health
research non-government organisation, for use by population health and
health services researchers to analyse complex, linked administrative
health and related data sets provided by a range of data custodians.
Although these organisations both chose remote access systems, it is in-
teresting that there are significant differences between the two systems.
We discuss the drivers for and consequences of the different choices made.
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1 Introduction

The use of population-level data in research has come to underpin the genera-
tion of information for government policy and operations, health services and
population health research, as well as advances in many other areas. National
statistical agencies and other data custodians make data available to both inter-
nal and external researchers under strong confidentiality protections. External
researchers are typically located in universities or government agencies, and un-
dertake data analyses ranging from simple descriptive tabulations to the fitting
of complex statistical models. In this paper we will discuss approaches taken
by two organisations, the Australian Bureau of Statistics (ABS) and the Sax
Institute, for making data available for research while protecting confidentiality.
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ABS is Australia’s national statistical agency and a major provider of pop-
ulation-level data for research. The Census and Statistics Act 1905, states:

1. The Statistician shall compile and analyse the statistical information col-
lected under this Act and shall publish and disseminate the results of any
such compilation and analysis, or abstracts of those results.

2. The results or abstracts referred to in subsection (1) shall not be published
or disseminated in a manner that is likely to enable the identification of a
particular person or organisation.

The Sax Institute is a non-governmental research institute, providing data
access infrastructure to health services and population health researchers. It is
a partner in the Population Health Research Network (PHRN), a consortium
of research service providers co-funded since 2008 by Australian national, state
and territory governments. The PHRN has enabled establishment of record link-
age services for population-based administrative health and health-related data
across Australia. These linkage services, which use internationally accepted pri-
vacy preserving data management and linkage protocols, enable the provision
of linked de-identified data for approved research projects. The services which
comprise the PHRN operate under Australian national and jurisdictional privacy
legislation and regulation, with example provisions including:

– Health information reasonably expected to identify individuals should not
be included in a generally available publication.

– The confidentiality of participants and their data should be protected in the
dissemination of research results.

Most relevant legislative statements about confidentiality focus on preventing
identity disclosure, that is, the identification of an individual or organisation
represented in the data. Only some include the additional objective of prevent-
ing attribute disclosure, that is, the disclosure of attributes of an individual or
organisation, though this is not always made explicit. In personal data, attribute
disclosure is usually only of concern if identity disclosure is a possibility.

1.1 The Changing Research Data Environment in Australia

With regard to the external researcher environment, data custodians are expe-
riencing changing user expectations and differing levels of user sophistication
and analytical requirements [15]. In particular, users are increasingly expecting
access to richer microdata from an expanded range of collections in a flexible
range of access modes or mechanisms. The types of richer microdata include:
more detailed, hierarchical, linked, administrative, longitudinal, and business,
as well as combinations of some or all of these. Users are also becoming more
sophisticated in their adoption of the latest technologies, including online access
and sophisticated data analysis and data-mining tools. In addition, researchers
are increasingly forming large, multidisciplinary teams and using collaboration
platforms and tools for sharing data and results in conducting their research.
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These trends are expected to continue, for example, the recent Australian
National Commission of Audit [1] recommended that ...the Government, recog-
nising the need to safeguard privacy concerns, rapidly improve the use of data
in policy development, service delivery and fraud reduction by: ... extending and
accelerating the publication of anonymised administrative data ...

At the same time, according to a recent survey of the Australian community’s
attitudes to privacy [9], the Australian environment has become one of enhanced
community understanding of privacy, concern for privacy, knowledge of privacy
rights, and willingness to take responsibility and change behaviour because of
concerns about the handling of personal information. For government agencies,
nearly all Australians (96% of respondents) believe that they should be told how
their personal information is stored and protected.

Recently there have been a number of high-profile data breaches in Australia,
and the Australian Office of the Information Commissioner handled 61 data
breach notifications in 2012-13, a 33% increase since 2011-12 [8]. Although there
is little or no evidence of privacy complaints or breaches in research on Australian
data [10], the growth in number of data archives, custodian organisations, and
researchers, together with the changing external researcher environment, may
lead to a growing risk of data breach unless appropriately strong protections are
put in place.

1.2 The Evolution of Data Access Mechanisms in the ABS

The ABS has traditionally made ABS census and survey data available via Con-
fidentialised Unit Record Files (CURFs), as follows. CURFs are produced from
the original unit-level data by the application of a (manual) confidentialisa-
tion process involving removal of name and address information, controlling the
amount of detail and changing a small number of values through the application
of statistical disclosure control techniques. CURFs are produced in increasing
levels of detail, from Basic, through Expanded, to Specialist. Access to a CURF
is granted to an organisation at the discretion of the Australian Statistician
- then a researcher affiliated with the organisation can apply for registration
and access. ABS can also grant access to CURFs to individuals. A precondition
of organisational or individual access is the establishment of a legally binding
Undertaking setting out the Terms and Conditions under which the access is ap-
proved. Basic CURFs are available on CD-ROM for the researcher to analyse on
their own computer. Alternatively, a researcher can attend a Data Laboratory
on-site at an ABS office in the nearest Australian capital city, in order to access
Basic, Expanded or Specialist CURFs. In this case any statistical output derived
from Expanded or Specialist CURFs is manually cleared before the researcher
can remove it from the on-site Laboratory.

Around ten years ago or so the ABS implemented the Remote Access Data
Laboratory (RADL) for access to Basic and Expanded CURFs. The RADL is
a secure online data query service that clients can access via the ABS website.
Users submit queries written in the SAS, Stata or SPSS statistical programming
languages through a web interface, although some commands, functions and pro-
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cedures are disabled to protect confidentiality, and there are restrictions on the
size and nature of allowable outputs. The queries are run against the requested
CURF that is kept within the Australian Bureau of Statistics environment. The
results of the queries are checked for confidentiality by ABS staff and then made
available for download to the users via their web browser.

More recently, the ABS has developed the TableBuilder and DataAnalyser
systems to allow registered users to build their own custom tables and undertake
regression analyses on secured ABS microdata, respectively [15].

TableBuilder is an online tool with a menu-driven interface allowing regis-
tered users to create confidentialised user-specified tables of count or continuous
variables. Requested tables are produced and confidentialised on-the-fly as stand-
alone outputs or as inputs to more sophisticated analyses such as regressions.
Under the confidentialisation process, all cell values, subtotals and totals are
randomly slightly adjusted to prevent any identifiable data being exposed. The
adjustments are done in such a way that consistency of cell values across differ-
ent tables constructed from the same data set is maintained. TableBuilder has
been operating successfully for several years on Australian Census data and is
being expanded to include survey data.

DataAnalyser is an online system that allows users to undertake analyses of
detailed ABS microdata in real time. It allows users to remotely conduct certain
data transformations and manipulations, basic exploratory data analysis, create
summary tables and run regression analyses including linear (robust), logistic,
probit and multinomial. For the first version of DataAnalyser, a low level of
manual confidentialisation is applied to the microdata before loading into the
system. The microdata are kept within the ABS secure environment behind a
series of firewalls, requests are submitted through a menu-driven interface, and
confidentialised outputs can be either viewed on screen or downloaded to the
user’s own computer. The confidentialisation processes are:

– a menu-driven interface is used to restrict the allowed variables, as well as
the range and nature of data manipulations and analyses available

– counts are perturbed
– for regression, a small number of randomly-selected records is removed
– for regression, a model is rejected if it pertains to fewer than a minimum

number of records, it has greater than a maximum number of parameters,
there are fewer than a minimum number of records for each parameter, any
record has a leverage above a given threshold, the sum of the leverages of
two records exceed the threshold, or if the summary table constructed with
the response variable against any of the categorical explanatory variables
contains a zero

– for regression, the score function is perturbed prior to the estimation of the
regression parameters

– scatter plots are replaced with hex plots on data where each hexagon with
fewer than a minimum number of observations is suppressed

DataAnalyser is planned to be released as a beta product at the end of June
2014. Initially, invited users will be able to access the Australian Census Longi-
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tudinal Dataset and Australian Census-Migrants Integrated Dataset. The ABS
plans to add additional survey datasets in the future and may consider requests
for access to the beta trial from interested users.

The confidentialisation routines applied in TableBuilder and DataAnalyser are
applied not at the unit record level, as is the case with CURFs, but at a level of
aggregation relevant to the analysis. The level of confidentialisation required is
therefore lower, leading to substantially reduced total variances [2].

1.3 The Evolution of Data Access Mechanisms in the PHRN

The PHRN is facilitating the creation of a nationwide data linkage infrastructure
in Australia, with nodes servicing States and territories, as well as national link-
age capabilities. It includes amongst its nodes the successful Western Australian
Data Linkage Branch (established in the mid-1990’s) and (NSW and ACT) Cen-
tre for Health Record Linkage, established in 2006. The PHRN linkage nodes
interface with numerous routinely-collected Australian and State or Territory
population-based databases, including Registrations of Births, Deaths and Mar-
riages, Cancer Registries, and Emergency Department and Hospital Admitted
Patient Data Collections. Specially-collected data from research studies such as
from the 45 and Up study [14] can also be incorporated into the PHRN data link-
age infrastructure and operations. All PHRN nodes enable linked, de-identified
data to be provided to researchers, using a privacy-enhancing separation proto-
col involving linkage keys [5]. Under the protocol, the PHRN data linkage units
receive only demographic information (name, address, sex and date-of-birth) and
researchers receive only the health or other content data items. Researchers are
able to assemble all records for each individual using project-specific de-identified
linkage keys provided by the data linkage unit.

Thus, commencing with the Western Australian Data Linkage Branch oper-
ations in the mid-1990’s, approved researchers in Australia have been provided
with de-identified data files for approved population-based studies, after an ap-
propriate user agreement has been signed and compulsory training has been
completed. The provisioning of these data has recently been improved using
on-line encrypted data transfer technologies.

In the last couple of years, one of the PHRN nodes, the Sax Institute, has
developed the Secure Unified Research Environment (SURE) [13] as an alter-
native to providing linked, de-identified data files directly to researchers. SURE
is a remote-access computing environment that allows researchers to access and
analyse linked health-related data files for approved studies in Australia. The
remote environment is accessible over encrypted internet connections, and effec-
tively replaces a user’s local computing environment. For each research study
hosted by SURE, a project workspace is established to host virtual computing
desktops for the researcher or team of researchers conducting the study. The
research datasets are stored on virtual servers also located within the confines of
each project or study workspace - thus, an entire virtual network is provided for
each study, remotely accessed by researchers who use a facsimile of the screen
of their remote virtual computing desktop on their local computer screen to
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manipulate and analyse the data. A range of standard and optional software is
available on each SURE virtual workstation, including statistical packages such
as R, SAS, SPSS and Stata, together with add-ons and libraries for each. Users
can request other, more specialised software to be installed, if required, subject
to cost and licensing conditions.

Although researchers using SURE can directly view microdata, and con-
duct unrestricted data manipulations and statistical analyses within the SURE
remote-access environment, the only way that a file, such as a supplementary
data file or a file of analysis outputs, can enter or leave SURE is via a single
audited portal called the Curated Gateway. It is possible that there are issues
of confidentiality associated with analysis outputs which researchers may wish
to remove from SURE, for example for publication in the academic literature.
Because such outputs cannot be assumed to be free from disclosure risk, out-
bound files uploaded to the Curated Gateway for use outside of SURE need to
be assessed for confidentiality risk and treated with confidentialisation measures
if necessary. This is currently the responsibility of the study’s chief investigator,
though it could also be done by an independent senior investigator or custodian
representative as appropriate. Note that the compulsory training provided to all
SURE users includes training in privacy and confidentiality regulatory regimes,
and in the principles of statistical disclosure control for protecting confidentiality.

Traditionally, it has been the responsibility of the individual researcher and
the Curated Gateway reviewer to ensure that analysis outputs removed from
the SURE environment do not represent a disclosure risk. A recent project of
CSIRO and the Sax Institute has reviewed confidentiality issues associated with
public health and health policy research analysis outputs generated in a secure
analysis laboratory such as SURE [11]. The outcome of the project has been en-
dorsement of the current two-stage confidentiality protection process for SURE,
comprising the existing data preparation and output confidentialisation stages.
In the data preparation stage, data custodians and/or SURE administrators
apply some basic confidentialisation measures to the dataset before making it
available to researchers within each study or project workspace, but this con-
fidentialisation is as lightweight as possible, and typically involves removal of
all direct identifiers such as names, street addresses and medical record num-
bers, as well as removal of data items which substantially increase the risk of
re-identification, such as exact date-of-birth, or high resolution spatial attributes
of place of residence. These measures are designed to reduce, but not entirely
eliminate, the risk of both spontaneous recognition by researchers and disclosure
in analysis outputs. The residual risks are managed in the output confidentialisa-
tion stage, where the Curated Gateway reviewer ensures that published outputs
generated in SURE comply with confidentiality protection requirements. In the
CSIRO-Sax Institute project, a checklist was developed to assist reviewer and
researchers using SURE to assess confidentiality risks in their analysis outputs,
and apply confidentialisation treatments to reduce the risks to acceptable levels.
In the future, this step should be able to be at least partially automated, or
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tools could be provided to enable researchers and reviewers to efficiently carry
out such steps as part of a routine workflow.

2 Comparison of ABS DataAnalyser and PHRN SURE

The ABS and the Sax Institute/PHRN are organisations seeking to facilitate the
use of routinely-collected data by researchers external to the organisations which
collected the data. Both are currently responding to the changing research data
environment with the implementation of new data access mechanisms designed
to augment their traditional data dissemination channels.

Interestingly, both the ABS and the PHRN, through the Sax Institute, have
very recently chosen to develop and implement remote access systems, with
several features in common:

– detailed de-identified datasets are held in a secure environment,

– users require registration and/or approval and sign user agreements,

– users access the datasets via a secure channel on the internet, and

– users submit analysis requests and receive analysis outputs

However, the details of the two systems are quite different. Perhaps the major
difference is the degree of user access to the dataset. In DataAnalyser, the user
has no direct access to the data, in fact, the user cannot even view individual
dataset records. This type of remote access system is sometimes called a remote
analysis system. In contrast, in SURE, the user has unrestricted access to the
data and can view every dataset record. This type of remote access system is
sometimes called a virtual data laboratory or data enclave.

Internationally, examples of remote analysis systems include Table Servers
developed by the National Institute of Statistical Science (NISS) to dissemi-
nate marginal sub-tables of a large contingency table [3,4], and the Microdata
Analysis System under development by the U.S. Census Bureau to allow users
to receive certain statistical analyses of Census Bureau data, including regres-
sion analyses, without ever having access to the data themselves [6]. Examples
of virtual data laboratories include the UK Secure Data Service, providing se-
cure remote access to data operated by the Economic and Social Data Service
[16] and the US NORC Data Enclave, providing a confidential, protected envi-
ronment within which authorised social science researchers can access sensitive
microdata remotely [17].

In this section we compare the ABS and Sax Institute/PHRN systems and
examine the drivers for and consequences of the different choices. In this com-
parison, we have assumed correct implementation and operation of the the infor-
mation security functions necessary for the trust characteristics of each solution,
including appropriate architecture, firewalls, authentication, monitoring and au-
dit. In practice, this assumption must be carefully verified through independent
design reviews and implementation audits.
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2.1 Drivers for ABS DataAnalyser and PHRN SURE

In this section we focus on the drivers in the research data environments of the
ABS and Sax Institute/PHRN, see Figure 1.

ABS PHRN

Mission includes enable broad use of make health and related data
ABS data and data products available for research

Legislative identification should identity should not be
Requirements not be likely reasonable to ascertain

Range of data broad range of census health and social
and survey data types administrative data

Range of users broad range of users with academic population health
diverse requirements and and health services
statistical sophistication research community

Research governance data access for project approved by data
and ethical oversight statistical purposes providers and Human Research

Ethics Committee(s)

Fig. 1. Drivers in the research data environments of ABS and PHRN

The ABS is seeking to deliver on its mission and strategic objective of sup-
porting the informed and increased use of statistics [15]. In response to this
driver, the ABS is seeking new data dissemination technologies that minimise
actual and perceived barriers to accessing ABS holdings. New data dissemination
technologies must therefore deliver infrastructure for real time dissemination of
ABS data, increase the detail and the range of collections available, reduce the
resources required, and improve timeliness. A broad range of users with a range
of levels of sophistication and analytical requirements is contemplated, includ-
ing: government agency and large corporation employees, individual university
researchers, and consultants. The range of data to be made available includes:
census, social and business surveys, economic, demographic and land-use data.
Since the obligations of the Census and Statistics Act 1905 must be upheld
regardless of the type of user, the type of data, or the kind of analysis being
undertaken, the ABS needs to implement a one-size-fits-all approach to provide
confidentiality protection across a multitude of users and purposes.

The Sax Institute and the PHRN are seeking to deliver on their mission of
supporting public health and health services research of national relevance in
Australia [12]. In response to this driver, the PHRN is seeking new data dis-
semination technologies that enable researchers to more efficiently conduct the
sort of studies that have been traditional in public health and health services re-
search, although with richer and greatly expanded data collections. Researchers
using the PHRN are generally from universities and government health agen-
cies, and the PHRN seeks to grow its user base in these communities. The
datasets made available through SURE are predominantly administrative health
and social datasets, though research study data can also be included. The PHRN
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currently enables the provision of linkable, de-identified datasets directly to re-
searchers for use in their own computing environment. The SURE system is
designed to be functionally not more restrictive than the current arrangements.

2.2 Summary of Features of ABS DataAnalyser and PHRN SURE

In Figure 2 we summarise the main features of the technological systems imple-
mented by ABS and PHRN, focussing on confidentiality protection.

ABS DataAnalyser PHRN SURE

Dataset light manual light manual
Preparation confidentialisation confidentialisation

User can browse metadata yes yes

User can request any data set within the scope of data user can only access project
sets provided in datasets with provider and
DataAnalyser ethics committee approval

User direct access to data no access full access
including viewing
de-identified records

Data manipulations restricted unrestricted

Range of queries restricted unrestricted

Queries modified/restricted unmodified, unrestricted

Software available only DataAnalyser broad range of standard
software software and some custom

Range of outputs restricted unrestricted

Output confidentialised reviewed at Curated Gateway

Fig. 2. Features of ABS and PHRN remote access systems

First, and asmentioned in Section 2 above,DataAnalyser prevents the user from
viewing any data records, while SURE gives the researcher full access including
viewing all (de-identified) data records. In order to provide adequate confidential-
ity protection in each case, the different levels of direct access to data are balanced
by different levels of other measures. In DataAnalyser, researchers can browse and
request analysis of any of the data sets which ABS has approved for access via
DataAnalyser, while in SURE, researchers must have their project approved by
the relevant data providers and by a Human Research Ethics Committee, and can
only access the data set and data items approved for that project.

The second major difference is that DataAnalyser applies strong restrictions
on the range of data manipulations, range of queries, and range of outputs avail-
able to the researcher. DataAnalyser applies modifications to some analyses,
for example, it perturbs the score function for a regression, and applies further
automatic confidentialisation routines to outputs before returning them to the
researcher. In contrast, the researcher using SURE is unrestricted in the data
manipulations and analyses they can apply, and there are no restrictions on the
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types of output they can obtain. Outputs are not modified by SURE, however are
subject to review for confidentiality protection at the Curated Gateway. SURE
relies on the researchers and/or the Curated Gateway reviewers to confidentialise
analysis outputs before publication.

2.3 Comparison of ABS DataAnalyser and PHRN SURE

Types of Users and Data. First, the ABS cannot assume a uniform or even
a minimum level of sophistication of its users. Therefore, DataAnalyser is ini-
tially targetted to a core group of users with a medium level of sophistication,
including: policy analysts and social and economic researchers. The menu-driven
system is well suited to these users and makes fully automated confidentiality
protection achievable for realistic cost. Future versions of DataAnalyser may
have extended capability in order to address the needs of more sophisticated
users. The ABS also cannot assume uniformity across its datasets, which are
extremely diverse.

The main drawback of the DataAnalyser is that there is significantly reduced
flexibility offered to users, for example, DataAnalyser offers users only prescribed
data manipulations, methods and outputs. The ABS may never be able to an-
ticipate and provide functionality for the full range of analyses that its very
broad user base may wish to perform. If a researcher requires more flexibility or
a different analysis, they must use a different ABS data dissemination channel.

SURE can assume a reasonable level of sophistication amongst its researchers,
since each project hosted by SURE has been approved by an ethics committee
convinced that the outcomes will be of sufficient merit to outweigh any confiden-
tiality risk, and which has thus considered the qualifications and experience of
the researchers involved in the project. In addition, normally researchers seeking
to use SURE embark in what can be a lengthy negotiation phase to establish
whether their proposed study is feasible using available linked data sets. SURE
has been set up to enable collaborative team-based storage and workspaces for
project teams. SURE is designed for administrative health and social data.

Both ABS and PHRN make use of a user registration process, normally also
involving the user’s employing organisation. SURE makes use of strong three-
factor authentication of users at the web interface.

Scope of Trust. The difference in trust of researchers is also an important
drivers for the choices. The level of trust extended depends on the dataset, the
custodians, the researcher(s) and the research questions being asked.

DataAnalyser contemplates a broad range of external users of varying levels of
sophistication. The appropriate choice has been made to extend a lower level of
trust to the users and instead to rely on the automated confidentiality protections
built into DataAnalyser technology itself for preventing disclosures.

In contrast, SURE extends a higher level of trust to approved researchers and
their computing environments, providing access via a virtual data laboratory
mechanism with much lighter automated confidentiality protections. The SURE
approach of trusting researchers and/or reviewers to assess confidentiality risk
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and confidentialise outputs is underpinned by a tighter and more formal research
governance practice involving: custodian and Human Research Ethics Commit-
tee approvals, targetted training in confidentiality protection, strong user agree-
ments, post-study reporting, and strong sanctions for breaches.

Consistency of Analysis Results. In the case of the ABS, a researcher could
analyse the same data via several different data access channels, for example,
CURFs, TableBuilder and DataAnalyser. In order to avoid inconsistencies in the
application of confidentialisation processes across the range of ABS data dissem-
ination modes, possibly leading to either inconsistent results or unexpected con-
fidentiality risks, the ABS has developed general perturbation algorithms that
can be incorporated into a broad range of analysis methods including summary
tables, summary statistics and statistical regressions.

In contrast, the nature of the projects hosted by SURE means that it is
unlikely that exactly the same data subset is used in more than a handful of
studies, so the problem is not so pressing. In cases where the same dataset
is used for a number of studies, often it is the same group of researchers and
they can ensure consistency as they are applying the confidentialisation methods
themselves. More broadly, SURE users are required to actively seek to publish
or otherwise disseminate their results, increasing the likelihood that researchers
are aware of research outputs published by other groups using the same datasets.

Summary. Marsh et al. [7] noted that a successful disclosure involves first an
attempt at disclosure, then success of that attempt. In probabilistic terms, this is:
Pr(disclosure) = Pr(attempt) · Pr(disclosure | attempt). The ABS environment
requires it to assume that Pr(attempt) is close to 1, and therefore to seek to
minimise Pr(disclosure | attempt). The PHRN works to ensure that Pr(attempt)
is negligible, and therefore does not need to minimise Pr(disclosure | attempt).

3 Discussion and Conclusions

We have described the evolution of data access mechanisms in two important
Australian organisations providing or enabling data access to researchers, namely,
the Australian Bureau of Statistics (ABS) and the Sax Institute node of the Pop-
ulation Health Research Network (PHRN). In the last couple of years, both of
these organisations have implemented a new remote access system, however it
is interesting that they have chosen different types of remote access. We have
analysed the reasons for these differences through a comparison of the context
and environment for each system, and the technological responses to them.

In the current international environment of open government and data shar-
ing, organisations are seeking to make more and more data available for research
and policy analysis. Both the ABS and the Sax Institute/PHRN are respond-
ing to the evolving Australian community environment of increasing concern for
privacy and knowledge of privacy rights, by increasing transparency about their
data holdings and data access arrangements. Both organisations are responding
to growing researcher interest in richer detail across an expanded range of col-
lections by implementing increasingly automated data access technologies. Both
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organisations make use of appropriately targetted researcher registration and
agreements, and have sanctions in place for breaches of the agreements. A stand
out observation is that both organisations have chosen types of remote access.

The ABS, in focussing on a broad range of users with varying levels of so-
phistication, has chosen remote analysis. Under the DataAnalyser approach, the
lower trust level implied by providing access to a wide range of users requires
a less flexible system and restricted outputs. The Sax Institute, in focussing on
a community of more sophisticated users, has chosen a virtual data centre. Un-
der the SURE approach, the higher trust level implied by strongly restricting
access allows a more flexible system. A useful way to compare the systems is to
note that a disclosure requires first a disclosure attempt, then success of that at-
tempt. The ABS focusses on reducing the likelihood of success of any disclosure
attempt, while PHRN focusses on reducing the likelihood of an attempt.

We remark that the U.S. Census Bureau has adopted an automated output
confidentialisation approach for its Microdata Analysis System, similar to the
ABS DataAnalyser, noting that both are examples of remote analysis systems. In
the NORC Enclave, a virtual data centre, any export request from a researcher is
scrutinised by a NORC statistician to ensure that it does not contain disclosive
data. This is similar but more restrictive than the SURE approach.

Our two detailed examples show that there is no single solution for protect-
ing confidentiality while making data available for research, since differences in
context and focus will lead to different requirements and different approaches
making use of different combinations of protections. Both of the systems we
have discussed have advantages and disadvantages in terms of scope of access
and flexibility. In each of our examples there is a combination of individual pro-
tections, none of which is sufficient alone but the aggregation of all of which
provide strong confidentiality protection for data during research.

One challenge associated with remote access is the need to go through the
sometimes lengthly funding application, registration and approval processes be-
fore any analysis of the data can be conducted. In some cases, this can be a real
problem if it is subsequently found that the data are not suitable for address-
ing the proposed research question. Both the ABS and Sax Institute/PHRN are
seeking to address this question by seeking to make available low risk datasets for
initial data exploration and methods development under a lightweight approvals
process. The ABS is investigating the use of model-based synthetic datasets, and
the Sax Institute is investigating the use of massively perturbed datasets, such
as are generated by data swapping with extremely high swapping probabilities.

We conclude with the observation that: ... recent events in the development of
remote analysis servers herald the dawn of a new era in automated confidentiality
protection for analysis and we look forward to invigorated research collaborations
among NST’s and academic institutions to further this research ... [15].
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Abstract. In this paper, we propose a practical, privacy-preserving
equality testing primitive which allows two users to learn if they share
the same encrypted input data. Our protocol assumes no trust on a third
party and/or other peers, and it is specifically suited for low-min entropy
data (i.e., data that can be exhaustively searched by an attacker), such
as encrypted users locations. We demonstrate that our primitive is se-
cure and efficient: Two public-key exponentiations are required, per each
user, for each equality testing. We give implementation results, showing
that our primitive is practical in a multiple users scenario. Finally, we de-
scribe how we could use our primitive as a building block for a proximity
testing buddy-finder service for social networks.

Keywords: Equality testing, Location privacy, Buddy-finder social net-
work, Location-based services, Geo-social applications.

1 Introduction

Privacy is related to a person’s ability to control how personal and/or sensi-
tive information is treated by third parties. Controversially, humans as social
beings crave for interaction with other people, i.e., thus indirectly or directly
divulging such information to others. Today, with the boom of Internet Social
Networks Services (SNS), this phenomenon is even more widespread. Further-
more, old and new SNS providers start to deliver location-based services (LBS)
to their users (e.g., Meetup, BuddyBeacon, Google Latitude, Facebook Places,
Foursquare), thus establishing a mainstream niche market for social LBS ap-
plications. Such mixed reality services exacerbate the privacy problem faced by
traditional location-based services.
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An LBS provider (LBSP) typically receives a user’s current location (among
other context) through the Internet in order to answer various query types: Spo-
radic location-based queries (e.g., “find me the nearest restaurant”), continuous
queries (e.g., “continuously report the hotels within one mile of my car”), push
services (e.g., “alert me on clothes prices when I pass near a store”), or social
queries (e.g., “let me know when my buddies are nearby”).

Because of their growing popularity, the privacy risks incurred by uncontrolled
LBS applications are high [1,2,3,4]. The main concern is that a user’s location
data or traces could be used by an adversary for profiling user behavior, targeting
the user (e.g., spam, stalking) or make intrusive inferences about user’s sensitive
data (e.g., lifestyle, state of health, beliefs). For such threats, the role of the
threat factor could be played by (a coalition of) a corrupted/compromised LBSP,
a network/cellular provider, an external observer, or other system users.

Privacy approaches for location-based services may be categorized depending
on whether a trusted party is employed or not [5,6]. Most approaches
[7,8,9,10,11,12,13,14,15,16] adhere to a proxy-based model, where a third party
(TTP) is fully trusted for user privacy. The problem with such centralized, full-
trust model is that the TTP becomes a single point of failure and a scalability/
performance bottleneck when strong privacy protection is required. Decentral-
ized LBS schemes with privacy preservation [17,18,19,20,21,22,3,23,24,25,26,27]
on the other hand adhere to a semi or fully distributed model architecture where
trust assumptions are weak or completely removed, leading to TTP-free schemes.
Recent literature has paved the way for using cryptographic primitives, such as
Private Information Retrieval [20,3] or privacy homomorphisms [28,21], in order
to support TTP-free schemes and diminish the trust level to third parties in LBS
applications.

A Motivating Example. In this paper we deal with private proximity testing
in social LBS queries (i.e., Buddy-finder SNSs). Imagine Alice, who subscribes to
an SNS that notifies (a subset of) her online friends when they are in proximity
with her. This problem is related to testing for equality Alice’s and a friend’s
encrypted locations, which are periodically uploaded to an LBSP [26]. If Alice is
in proximity to, say, Bob, she may be allowed to decide whether Bob will become
aware of this fact. On the other hand, if Alice and Bob are not in proximity, none
of them will learn anything else other than this fact. Furthermore, neither Alice
nor Bob a priori trust the LBSP or each other with respect to their location.

Our Contribution. In this paper, we argue on the inadequacy of current state-
of-the-art schemes for privacy-preserving equality testing of encrypted low-min
entropy data, against untrusted third parties and/or untrusted peers. Then we
propose an efficient equality testing primitive with privacy preservation: Our
protocol provides unconditional input privacy against external observers; it also
provides privacy against other peers, if the Discrete Logarithm Problem (DLP)
is hard in the finite cyclic group generated by a user’s private input; in addition,
if the two inputs are not equal, neither party will learn anything more than
this fact; furthermore, any other external party, will not be able to distinguish
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whether the equality test was successful or not if the Computational Diffie-
Hellman (CDH) problem is intractable. Our primitive is specifically suited for
low-min entropy data, such as encrypted users locations, and it is also efficient:
Two public-key exponentiations are required, at most, per each user, for each
testing. We give implementation results, showing that our primitive is practical
in a multiple users scenario. Finally, we describe a possible application of our
primitive, as a building block for a proximity testing Buddy-Finder SNS.

2 Related Work

The Asymmetric Equality-Testing Scheme of [26]. We describe, in short,
the private equality testing scheme of [26], proposed for private proximity testing
in LBS applications. Let Zp be a group of prime order p, g a generator of Zp, a
and b Alice’s and Bob’s locations, (x, h = gx) Alice’s ElGamal key pair and Alice
and Bob communicate through an authenticated channel. Alice first encodes her
location as ha, selects r ∈R Zp, and sends to Bob an ElGamal encryption of her
location, with her public key (all operations are modulo p):

A → B : (g1, g2) = (gr, ha+r) (1)

Bob selects s, t ∈R Zp and “hides” his location to Alice’s message:

B → A : (u1, u2) = (gs1g
t, gs2h

(t−sb)) (2)

Finally, Alice decrypts with x by computing m ← u2/u
x
1 = hs(a−b). If m = 1 she

concludes that a = b, otherwise that a �= b. The protocol is asymmetric since
Alice learns whether there is equality while Bob learns nothing. Alice’s privacy
is based on the DDH assumption [26], while Bob’s is unconditional. Concerning
performance, the costs are three exponentiations for Alice and four for Bob. Our
scheme, presented in Section 3, has better performance, with only two exponen-
tiations per user and it is more scalable, since one of these exponentiations could
be used for parallel equality testing sessions with other users.

The authors in [26] noticed a weakness of the above protocol, which in this
paper we will call the deception attack : Bob sends, maliciously, to Alice, in step
(2): (gs, hs), and deceives her into believing that a = b while it is not. We believe
that, depending on the application, this would constitute a privacy violation for
Alice: For example, a deceived Alice could disclose her position to Bob and
ask him to meet her, thus revealing her location (thus, also effectively reversing
the asymmetry of the protocol). In Section 3 we will present our solution for
asymmetric equality testing, where such attacks are not possible.

Other Approaches for Computing with Encrypted Location Data. To-
wards proximity testing in social LBS applications, we could elaborate on re-
cent developments in the area of privacy-preserving manipulations of stored
encrypted data, such as keyword searching, joining / linking encrypted data,
computing a function of private client inputs etc. Such protocols consider com-
puting over data encrypted with the same key (symmetric [29,30,31,32,33] or
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public [34,35,36,37]). We believe that the symmetric key setting is not suitable
for proximity testing, since it implies some trust, either among peers or between
a peer and a proxy. Similarly, even practical Secure Multi-party Computation
(SMC) protocols based on homomorphic encryption (e.g., [38,21]) consider data
encrypted with a single public key of an entity which will perform the encrypted
computation, and which, usually, cannot be fully trusted. Overall, protocols for
TTP-free SMC computations are neither computationally efficient nor practical,
in that they assume that clients interact with each other, which is unacceptable
in most LBS scenarios.

Admittedly, primitives such as the above could not be directly used for equal-
ity/proximity testing in Buddy-finder LBS applications, since capabilities such
as keyword search, linking, equality testing etc could be exploited, either by
a curious Proxy/LBSP or by curious friends, in order to perform off-line mes-
sage recovery attacks against location data, which are selected from a low-min
entropy set. The entropy argument is also decisive for rejecting solutions that
involve deterministic encryption, such as [36].

On Using PKEET for Equality Testing. Recently, the public-key encryp-
tion with equality testing (PKEET) primitive [39,40] was proposed to allow an
untrusted third party to execute a function Test(Ci, Cj) over two ciphertexts
Ci, Cj , probabilistically encrypted with two different public keys pki �= pkj , in
order to check whether they contain the same message. The original scheme had
the following issues: a) it allowed any entity to perform the equality test between,
say ciphertexts of user A and user B (e.g., when such ciphertexts are public infor-
mation); b) Any entity with access to A’s ciphertext Ca = Enc(pka,m) and some
other public key pkc, would also be able to choose one or more plaintexts mj ,
j = 1, 2, ... and execute Cj = Enc(pkj ,mj) and Test(Ca, Cj) for testing equality,
thus violating standard semantic security. As a consequence, in low min-entropy
domains such as the set of users locations in social LBSs, a polynomial adver-
sary can launch an offline message recovery attack and violate the privacy of
any encrypted message. Such attacks are unavoidable when the equality test
functionality, as in PKEET and elsewhere, is outsourced to a third party. In
another extension [40], an extra authorization algorithm Auth(SKi, SKj), must
be run exactly once between any two users Ui, Uj in order to issue a token that
authorizes a designated proxy P to compare their ciphertexts. With that token,
the proxy is able to compare the ciphertexts of A and B (and not, for example,
of A and another user C). The problem of this approach for low-min entropy
messages, is that the Proxy, equipped with the PKEET function and A’s, B’s
public keys, is (again) able to exhaustively select candidate messages, encrypt
them with either A’s or B’s public key and then use the PKEET test function
to perform offline message recovery.

3 An Asymmetric PET Protocol

We will first describe a generic Private Equality Testing (PET) protocol, which
allows two peers, say Alice and Bob, to securely test the equality of their private,



316 E. Magkos et al.

low-entropy input data gA and gB, respectively, without the involvement of any
third party. Our protocol provides unconditional input privacy against external
observers, as well as input privacy against other peers if the DLP problem is hard
in a cyclic, prime order subgroup generated by gA and gB. In addition, if the two
inputs are not equal, then neither party will learn anything more than this fact.
Furthermore, any external observer will not be able to distinguish whether the
equality test was successful or not if the CDH problem is intractable in the same
subgroup. Our protocol also establishes asymmetry: One party (typically the
one who initiates the protocol) learns the answer, while the other party learns
nothing. The scheme is depicted in Fig. 1.

Setup. Let Ln = {�1, �2, ..., �n} be a discrete, finite input set of order n <
264, i.e., containing low-min entropy data (e.g., GPS coordinates). Let Z∗

p be a
multiplicative group1 of prime order p, where the DLP problem is hard (typically
|p| ≥ 1024 bit) and let S be the set of all generators of the subgroup Zq of Z∗

p , of
sufficiently large prime order q (typically |q| ≥ 160), where q|p− 1. In addition,
let Ln = {g1, g2, ..., gn} be a random subset2 of S, of order n. Each value li ∈ Ln,
i = 1, 2, ..., n is assigned, using a 1-1 mapping3 f : L → Ln, to a unique generator
gi = f(�i). The assignment mechanism is (assumingly) transparent to the system
users. So, for simplicity’s sake, instead of saying that a user U chooses an input
�j ∈ Ln, we will directly say that U chooses gj ∈ Ln. Note that both sets Ln

and Ln need to be constructed only once by the system authority and can be
valid through the lifetime of the system.

Furthermore, Let H(.) denote a cryptographic hash function, of length4 � and
EK(.) (respectively,DK(.)) denote a symmetric encryption (respectively, decryp-
tion) function, of the same length �, with key K. Let || denote concatenation of
two messages. Finally, we assume that all communication is authenticated (so
that active attacks are thwarted).

Input. Alice has private input gA ∈ Ln and Bob has private input gB ∈ Ln.

Output. Alice learns whether gA = gB and Bob learns nothing (asymmetry). If
Alice chooses to reveal this to Bob, Bob will also learn whether gA = gB.

Round 1. Alice chooses a random secret value rA ∈ Zq, used only once, such
that gcd(rA, q− 1) = 1. Alice then encodes her private input as: A ← grAA mod p
and sends this to Bob.

1 For simplicity we describe our scheme in the setting of Z∗
p , although it can be gen-

eralized to work in any finite abelian group G, e.g., the group constructed from the
set of points on an elliptic curve over a finite field Fq.

2 A system authority can construct Ln as follows: For each j = 1, 2, ...2n, it repeatedly
chooses rj ∈R Z∗

p , and sets gj ← r
(p−1)/q
j (mod p) until gj �= 1.

3 In practice, f(.) need not be a 1-1 mapping: a collision-resistant function, mapping
a unique location li ∈ Ln to a unique element gi ∈ Ln would be enough. An efficient
implementation of f(.) can be constructed using a cryptographic hash function of
suitable length.

4 We consider one-way cryptographic hash functions with second pre-image resistance,
for example � ≥ 160 bit.
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Fig. 1. A private equality testing protocol

Round 2. Bob selects a random secret value rB ∈ Zq, used only once, such that
gcd(rB, q − 1) = 1. Bob then encodes his private input as: B ← grBB mod p. On
receiving A from Alice, Bob uses his secret value rB, and the hash function H(.),
to extract a secret key kB (of an agreed bit length) as: kB ← H(ArBmod p). Bob
computes hB ← H(A||B), then uses the key kB to encrypt hB as a ”challenge“
cB ← EkB (hB) and sends to Alice: B, cB.

Equality Testing for Alice. On receiving this, Alice uses the encrypted private
input B of Bob, her secret value rA, and the hash function H(.) to generate a
secret key kA (of the same agreed bit length) as: kA ← H(BrAmod p). Then,
Alice will use kA, to decrypt the encrypted challenge cB received from Bob and
compute: h̄B ← DkA(EkB (hB)). If h̄B = H(A||B), Alice decides that the private
values gA and gB are equal. If not, she decides that gA �= gB and nothing else is
revealed to Alice about gB.

Round 3. In case gA = gB, Alice may optionally decide that she also wants to
let Bob know that their inputs are equal5. To do that, Alice computes h′

A ←
H(B||A) and sends to Bob cA ← EkA(h

′
A). If there is no equality, Alice will send

a noise message to Bob, e.g., a random number cA ← r′A ∈U Zq of length �.
This is also useful to preclude any third observers from deducing whether PET
between Alice and Bob was successful or not.

Equality Testing for Bob (Optional). After Bob receives an cA message
from Alice, where cA ∈ {EkA(h

′
A), r

′
A} he will compute h′

B ← H(B||A), and
decrypt cA using key kB. If DkB (cA) = h′

B then Bob decides that gB = gA.

5 As we will see in Section 4, this could be useful in a Buddy-finder SNS service.
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Correctness. In Round 1, Alice sends to Bob A ← grAA mod p, where gcd(rA, q−
1) = 1, and Bob computes a symmetric key kB as: kB ← H(ArBmod p) =
H(grArBmod p). Bob sends to Alice B ← grBB mod p, where gcd(rB, q − 1) = 1,
and Alice computes the key kA as: kA = H(BrAmod p) = H(grBrAmod p).
Clearly, if the private inputs gA and gB are equal then kB = kA, meaning that
Alice and Bob have mutually agreed on a symmetric session key that will decrypt
correctly messages in Rounds 2 and 3, and thus the equality test in the PET
protocol will be successful. Otherwise, if gA �= gB then we distinguish two cases:
a) grArB

A �= grBrA
B , which means that kB �= kA and thus the equality test of the

PET protocol will fail; b) grArB
A ≡ grBrA

B , which means that a common symmetric
key is agreed despite the inequality of the private inputs. The above relation can
equivalently be written as (all operations are modulo p):

grArB
A ≡ grArB

B ⇔ grArB
A (grArB

B )−1 ≡ 1 ⇔ grArB
A (g−1

B )rArB ≡ 1 ⇔ (gAg
−1
B )rArB ≡ 1

or, equivalently, the order, modulo p, of gAg
−1
B will be rArB . By the arithmetic

properties of the order of elements, modulo q, this means that rArB |(q − 1),
or, equivalently, that rA or rB (or both) divide q − 1 which contradicts our
assumption that rA and rB are relatively prime to q − 1.

3.1 Security Analysis

Our protocol provides unconditional security of the private inputs of Alice and
Bob against external observers who may attempt to learn their private inputs
(Theorem 1). The protocol is also secure, under the CDH assumption, against
external adversaries that attempt to decide whether the equality test was suc-
cessful (Theorem 2). Alice and Bob are also secure from each other under the
DLP assumption (Theorem 3): The protocol also provides asymmetry i.e., Alice
can check whether her input equals Bob’s input without disclosing any infor-
mation about her input to Bob. For the same reason, if gA �= gB, no other
information is revealed to Alice. An analogous argument stands for Bob. For
multiple executions of the protocol, Alice (Bob) needs to use a different rA (re-
spectively, rB), or else it will be easy to deduce whether the same input was
used. Furthermore, the deception attack against the scheme of [26] (Section 2)
is not applicable in our scheme. Bob’s difficulty of deceiving Alice is analogous
to guessing Alice’s input. Of course, in our scheme, as in every such scheme that
tests user inputs for equality, nothing can stop a user from lying about its input.
In a typical threat model, as the one presented next, we can safely leave such
attacks out of scope.

Threat Model. We consider both external and internal adversaries. We as-
sume that all the adversaries are polynomially bounded and do not have the
ability to break the computational assumptions of the underlying cryptographic
assumptions. An external adversary may eavesdrop the communication between
the system entities in order to reveal the private input of the users or learn
weather the private input provided by two users is equal or not. We assume that
the messages exchanged by the users are authenticated and integrity protected,
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so that external adversaries will not be able to modify messages or inject fake
messages pretending to originate from a legitimate user.

External adversaries are modeled by a distinguish adversary Adist. The goal
of Adist is twofold: First, to learn information about the private input of any of
the parties that participate in the protocol. Second, to distinguish whether the
private input of two users running the protocol are equal or not, using as input
the exchanged messages of a protocol run. Internal adversaries are essentially
users running the protocol who may attempt to reveal the private information
of the other party, in case of inequality. We assume that users of the protocol
adhere to a honest but curious (also known as semi-honest) behavior (HBC),
in that they abide to the rules of the protocol while trying to learn as much
as possible about the private data of the other users of the protocol. Note that
most privacy-preserving techniques for fully-distributed LBS protocols, such as
the one discussed in Section 4, assume users with HBC behavior [6], as it seems
to be a realistic model in the setting of social LBS services where peers are
friends, i.e., with no incentive to behave maliciously in an obvious way. It is
also important to understand that the HBC model does not prevent collusion
between users of the protocol in a multiple-users setting [41].

Theorem 1 (Private input indistinguishability). An external global pas-
sive adversary cannot learn anything about the private input of any of the parties.

Proof. Here the goal of Adist is to learn information about the private input
of Alice and/or Bob. Adist will take as input all the messages exchanged in a
protocol run, i.e., A,B, cA and cB, as well as the low-entropy set Ln containing
all possible private input elements. Since the private input of the users gA and
gB are hidden with rA and rB respectively, which are elements of high entropy,
both Alice and Bob have unconditional input privacy. Indeed, consider an ex-
ternal adversary who is not polynomially bounded and is able to break the DLP
problem. Since every element of Ln is a generator of order q, then ∀ gi ∈ Ln,
∃ ri ∈ Zq : A = grii (mod p). Thus the private input A (respectively B) may
contain any element of Ln with equal probability. �

Concerning the equality test indistinguishability, the goal Adist is to distinguish
whether the equality test between two users running the protocol of Section 3
was successful or not. We formalize Adist by a security experiment ExpPET -dist

A

where Adist has access to an oracle OPET -dist that takes as input the public
system parameters p, q, Ln and all the messages exchanged in a protocol run,
i.e., A,B, cA and cB and outputs 1 if the equality test was successful or 0
otherwise.

Definition 1. The PET protocol of Section 3 achieves equality testing indistin-
guishability, if every p.p.t. adversary Adist has negligible advantage:

AdvdistA = |Pr[(ExpPET -dist
A (p, q,Ln, A = grAA , B = grBA , cA, cB) = 1) = 1/2]−

Pr[(ExpPET -dist
A (p, q,Ln, A = grAA , B = grBB , cA, cB) = 0) = 1/2]|
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Theorem 2 (Equality test indistinguishability). The PET protocol of Sec-
tion 3 is equality test indistinguishable under the Computational Diffie-Hellman
assumption, provided that E(.) is a secure encryption function.

Proof. Assume that Adist has non-negligible advantage and is able to distinguish
a successful equality test from a non-successful one. A successful PET run im-
plies that gA = gB = g and thus kA = kB = H(grArB ) = k. Since Adist can
distinguish, this implies one of the two cases:

Case 1: Adist was able to compute the key k. In that case the adversary
would be able to decrypt cB and cA and distinguish successful equality tests
from non-successful ones. This however contradicts the CDH assumption.

Case 2: Adist was able to verify the equality testing phase without
learning the key k. In that case the adversary would be able to verify that
cA is the encryption of the known plaintext h′

A and cB is the encryption of the
known plaintext hB, encrypted with a common, unknown key k. This however
contradicts the assumption that EK() is a secure encryption function. �
An internal adversary captures a curious user running the protocol of Section 3
trying to reveal the private input of the other party, in case of inequality. Let
Areveal denote such an adversary, whose goal is to reveal the private information
gB of Bob, using the input of a protocol run, as well as the private information
of Alice6.

Theorem 3 (Private input protection from internal attackers). An in-
ternal adversary Areveal cannot learn anything about the private input of the
other party, if the equality test of Section 3 fails, under the DLP assumption.

Proof. In addition to the external adversary (see Theorem 1), an internal adver-
sary Areveal will also have access to the secret keys of the corrupted user. For
example, if Alice is corrupted, then Areveal will also have access to gA, rA and
kA and the goal of Areveal is to learn the private input of the other party (say
gB), after the equality test has failed. Since Ln is a low entropy set, Alice may
attempt a brute-force search, in order to find for each element gi ∈ Ln, a value
ri ∈ Zq such that B ≡ grii (mod p). Then she can verify which is the correct

pair by using ri to compute the key k̃B = H(Ari) and check if this can correctly
decrypt cB. However, under the DLP assumption, Areveal cannot compute the
discrete log of B to any base gi ∈ Ln and thus the protocol provides private
input protection from internal attackers. �

4 A Privacy-Preserving Buddy-Finder Service Using
PET

We use the Private Equality Testing protocol described in Section 3, in order
to design a location privacy-aware, Buddy-Finder SNS service (BFSN), which

6 In the same way, the adversary may attempt to reveal the private information of
Alice instead of Bob and take as input the private information of Bob.
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Fig. 2. Mapping locations to proximity testing input. Starting from level-0 cells, higher
layer locations can be defined to fine-tune the location privacy level for users

allows users being in the same area (based on a predefined set of location areas)
to be aware of this fact, without disclosing location information of the users.

We consider a social network of multiple users, who are subscribed to the
BFSN service. Every user can create a personal profile including a group of
friends, readable by all friends in the group (i.e., a bulletin board public to the
users within her/his profile). Thus users who are friends can have access to
each others profile. We assume that messages published by a user on his profile
area cannot be erased or tampered with. Each user is also able to calculate
the coordinates of its current position, e.g., through GPS (Global Positioning
System) equipment. We assume that the time is divided into a number of discrete
periods (e.g., minutes or hours) Tt, t ≥ 1, where each period is determined by a
common global clock, and that the clocks of all clients are loosely synchronized
throughout the whole session.

Preparing Locations for PET. We inherit the setup described in Section
3 and repeat all the assumptions made there. Locations can be described in
various ways, including cells, distances of a given range, or circles of a given
position and radius. In our system, the location areas are defined based on cells.
The service provider (LBSP) defines the cell size and divides the physical map
into cells (Fig. 2), which are the minimum (level-0 ) areas that can be used as
locations for the proximity testing. Each cell is assigned a unique number li
from the set Ln. Moreover, the LBSP may also define larger locations as areas
consisting of a number of adjacent cells. In our example, we have defined level-1
areas consisting of the six surrounding cells of each cell. Note that the level-
1 areas may be overlapping or not. These areas are also assigned to a unique
number in Ln. In our example l48 and l49 are unique numbers mapped to two
adjacent and non-overlapping (disjoint) level-1 areas. The supported levels and
the exact mapping of areas to unique numbers is arranged by the LBS provider
and announced to all system users.

Setup. The LBSP decides the size of the cell, the size and number of areas of
higher level and the mapping of all the locations of all possible levels to a unique
number in Ln. The LBSP publishes the system parameters such as: p, q, the set
Ln, the mapping of each element li ∈ Ln to a physical location area, the levels
of areas that are defined by the LBSP, as well as the mapping function f for
assigning each li ∈ Ln to a unique gi ∈ Ln. We assume that regardless of the
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number of levels of areas defined by the service provider, Ln has (polynomially)
low entropy (a typical upper bound for the size of Ln is 240). For simplicity’s
sake, we will assume that the LBSP supports two levels of areas(Fig. 2).

Proximity Testing. Say that Bob belongs to Alice’s friends group. Alice wants
to encrypt her location so that if some of her friends are nearby, they can learn
this fact. However, no one (including her friends) should be able to find out the
location of Alice, if they are not in the same location.

Say that Alice is currently (at time period Tt) located in the cell identified
as l6 (level-0 area). Thus Alice is at the same time located in the level-1 area
identified by l48. Then Alice decides the location privacy level(s) she is willing
to use. Assume that Alice wants to let her friends find out her location, only if
they are at the same level-0 cell (l6).

Alice computes gA,t ← f(l6), runs Round 1 of the PET protocol of section 3
and publishes At ← g

rA,t

A,t mod p, on her profile area, as her encrypted level-0
location. This can be seen as sending a probe message for opening a PET session
with level-0 location proximity, to any of her friends who may be interested. Let
assume a friend of Alice, Bob, who is interested to see if he is in the same level-0
cell with Alice. Bob will accept Alice’s probe and establish a PET session by
executing Round 2 of the PET protocol. Alice and Bob are able to complete the
protocol session in order to find out if they are at the same level-0 cell or not.

Example 1. Say that Bob is currently located in the level-0 cell l7. Then Bob
will compute gB,t ← f(l7), both users will run the PET protocol and they will
find out that they are not in the same level-0 location. Indeed, if gA,t = gB,t

then the location IDs of both users are equal, with overwhelming probability
(recall that f may utilize a collision-resistant function H). If not, then neither
user will learn nothing about the other’s location. More importantly, no other
entity, including the LBSP, will learn nothing about the location of the users.

Example 2. Assume Alice and Bob have also decided to use the proximity test
for the larger (level-1) areas. Alice also computes g′A,t ← f(l48), runs Round 1 of

the PET protocol and also publishes on her profile area A′
t ← g

′ r′A,t

A,t mod p as
her encrypted level-1 location. Then, by running PET, Bob and Alice will find
out they are in the same level-1 area but not in the same level-0 area.

4.1 Efficiency and Performance

By assuming that symmetric key encryption / decryption and hash evaluation
have analogous costs, proximity testing requires, from each user, 2 public key
operations (exponentiations modulo p) and at most 5 symmetric key operations.
Our protocol is also scalable, since half of the total public key exponentiations
per PET session, i.e., the (At, Bt) values of Rounds 1, 2, could also be used for
parallel equality testing sessions with other users of the group, during period Tt.
For example, Alice could also use the (gA,t, At) values for establishing a PET
session at another friend’s profile area, during period Tt.

We measured the CPU time required for Alice, when executing the PET pro-
tocol with 100 friends. The processor we used was a Intel Core i5 CPU 650 @ 3.2
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GHz x 4. The code was implemented in Python using PyCrypto v2.6.1 routines
for selecting a random 1024-bit strong prime, choosing a generator of the cyclic
subgroup of prime order q (for a 160-bit q), performing modular exponentiation,
and encrypting/decrypting with AES. For hashing we used SHA-512 via Python’s
hashlib. We considered the worst case scenario where Alice probes for a PET ses-
sion, and all her friends accept the probe. Execution time was 2.3 seconds ±5%.
Elliptic Curve Cryptography (ECC) [42] could also offer equivalent security with
substantially smaller keys e.g., a 160-bit key is expected to offer comparable secu-
rity with a 1024-bit key. The ECC-implemention is left for future work.

5 Conclusions

In this paper we described an efficient and secure scheme for PET and argued
on its usefulness for establishing location privacy in geo-social applications such
as the popular Buddy-Finder SNS. In future work, we intend to elaborate on
the specifications of the Buddy-Finder service, implement our protocol using
ECC cryptography for smart phones, and use a real social network for managing
communication. Furthermore, we intend to explore the application of our pri-
vate equality testing primitive in other related research areas, such as: Privacy-
preserving record linkage (i.e., determining the equality/similarity of encrypted
data records in distributed databases), proximity-dependent key agreement (i.e.,
peers agree on a key only with neighbors), electronic auctions (privately match-
ing bids in multi-item auctions) etc.

Acknowledgement. The authors would like to thank Constantinos Patsakis
for indicating an attack in an early version of the PET protocol.
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Abstract. IPUMS-International disseminates more than two hundred-fifty inte-
grated, confidentialized census microdata samples to thousands of researchers 
world-wide at no cost.  The number of samples is increasing at the rate of sev-
eral dozen per year, as quickly as the task of integrating metadata and microdata 
is completed.  Protecting the statistical confidentiality and privacy of individu-
als represented in the microdata is a sine qua non of the IPUMS project.  For the 
2010 round of censuses, even greater protections are required, while researchers 
are demanding ever higher precision and utility.  This paper describes a tripar-
tite collaborative experiment using a ten percent household sample of the 2011 
census of Ireland to estimate risk, mask the microdata using controlled shuf-
fling, and assess analytical utility by comparing the masked data against the un-
protected source microdata. Controlled shuffling exploits hierarchically ordered 
coding schemes to protect privacy and enhance utility. With controlled shuf-
fling, the lesson seems to be the more detail means less risk and greater utility. 
Overall, despite substantial perturbation of the masked dataset (30% of adults 
on one or more characteristic), we find that data utility is very high and infor-
mation loss is slight, even for fairly complex analytical problems.   

Keywords: controlled shuffling, population census, microdata sample, data pri-
vacy, data utility, statistical disclosure controls, IPUMS-International, Ireland. 

1 Introduction   

IPUMS-International disseminates integrated, confidentialized census microdata sam-
ples to researchers world-wide at no cost[1].  Currently, 259 samples (561 million 
person records) encompassing 82% of the world’s population (79 countries) are avail-
able to more than 10,000 registered users, representing over one hundred nationalities.  
Each year the database expands with the addition of samples for the 2010 round of 
censuses and for more countries, as the tasks of integrating microdata and metadata 
are completed.   

Protecting the confidentiality and privacy of individuals represented in the  
microdata is a sine qua non for the IPUMS project. Access is restricted by means of a 
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rigorous vetting process.  To be granted access, researchers must demonstrate their 
bona fides, agree to abide by the stringent conditions of the user license, and demon-
strate a specific research need.  The microdata are further protected by the fact that 
researchers do not obtain complete copies of samples, but instead must submit an 
individual (“extract”) request, specifying not only the sample or samples but also the 
precise variables and even sub-populations required.  In other words, each extract is 
unique, and none is complete.  This process of dissemination provides additional safe-
guards against researchers sharing data with unauthorized persons.  

Technical measures, such as sampling of households, suppression of variables and 
codes, and swapping of records, are also used to protect the confidentiality of the 
microdata.  For the 2010 round of censuses, even greater protections are required due 
to the explosion in available microdata, the development of ingenuous techniques of 
data mining and matching, and the threat of unethical behavior facilitated by the in-
ternet.  Honesty, trust and professional responsibility continue to be held in highest 
esteem by all but the tiniest minority of researchers.  Nonetheless, census microdata 
must be protected such that the slightest allegation of violation of confidentiality may 
be immediately and credibly debunked.            

The threat of de-anonymization in the age of “Big Data” is real.  Despite the fact 
that to gain access to the IPUMS-International database the conditions of use license 
endorsed by each user expressly prohibits any attempt to identify individuals in the 
census microdata, before release strong technical measures must be applied to protect 
the microdata against even the remote likelihood of re-identification.  At the same 
time we must assure researchers that the microdata are of the highest precision and 
utility.      

This paper describes a tripartite collaborative experiment to estimate risk (Comer-
ford), protect the data using controlled shuffling (Muralidhar and Sarathy), and assess 
the analytical utility (McCaa and Esteve). Thanks to the cooperation of the Central 
Statistical Office of the Republic of Ireland, a 10% household sample of the 2011 
census was used as a test case.   The sample is richly detailed with 474,535 person 
records, 117,945 families, and 79,785 couples described by 43 variables and more 
than 1,400 unique attributes.  Person records include variables for single year of age 
(0-85+), occupation (number of categories=90), industry (110), country of birth (92), 
nationality (75), relationship to reference person (12), educational level (7), etc.  Be-
fore beginning the experiment, we recoded “County of usual residence” (35) into 
region (8), thereby sacrificing geographical detail to facilitate analysis of social, de-
mographic, cultural and economic attributes.   

2 k-Anonymity   

A standard approach to the assessment of disclosure risk addresses three key aspects 
in the literature: the data environment, the sensitivity of the data and the data charac-
teristics. Examples of this type of approach can be seen in [2], [3]. In our analysis we 
interpreted these three aspects in the following ways. The data environment is an 
attempt to capture information about the world outside of the data under consideration 
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for release. This information is used to demonstrate the a priori knowledge of a 
would-be intruder and can be configured in a number of ways to simulate different 
intruder scenarios. In our experiments we wanted to provide a robust analysis and 
therefore chose a deliberately conservative re-identification key. This was based on 
the growing concerns about the amount of information publicly available online 
through social networking sites, e.g., Facebook and LinkedIn. Searching public pro-
files on LinkedIn using one of our author’s names revealed a number of individuals 
that share a very detailed personal curriculum vitae, without the need for a 'friend 
request' style level of security. 

Extrapolating the information from social media we constructed our conservative 
key with the following variables from the census sample: sex, age, marital status, 
nationality, ethnicity, level of education, occupational group, industry classification, 
region of usual residence, region of birth, country of usual residence and country of 
birth. This assumes a high level of knowledge for an intruder and should be seen as a 
worst case scenario.  

In this context, 'data sensitivity' means the extent to which the data's subjects might 
consider the information held in the dataset to represent a threat to their privacy.  This 
is often considered aside from the legal obligations of the data holders. For example, 
projects like the Scottish Health Informatics Programme (SHIP) use this aspect of risk 
assessment to build trust with the data subjects, holding focus groups with patient 
representatives. For our experiments the data sensitivity contributed to the selection of 
our test parameters as set out below, taking into account also that we are working with 
a sample of the population.  

The data characteristics take the information gathered from the environment and 
the data sensitivity and seek to describe the data in an empirical analysis. For this 
purpose we used k-anonymity, a well-established tool for highlighting re-
identification risk. K-anonymity is satisfied if a record is indistinguishable from k-1 
other records for a given key. Despite certain criticisms and enhancements k-
anonymity still offers a reliable test providing the results are interpreted within the 
test’s definition. For a discussion of k-anonymity see [4]. Given our assessment of the 
data sensitivity in this case, we set the k-anonymity threshold at 3, and the key as 
referenced above.1  

The first pass of the data, using a k-anonymity threshold of three, flagged 78% of 
records as not meeting the k-anonymity criteria. This high level was to be expected 
given such a strong key. This allowed us to look at those records that did meet the 
criteria and unpick their apparent homogeneity. The results showed that at this level 
young people made up the bulk of our records meeting the k-anonymity criteria be-
cause they share a number of values in our key i.e. they tend not to have been mar-
ried, they do not work, and they are still in school.  

For the second pass of the data we experimented by removing variables from the 
key to see what effect this would have on the k-anonymity rate. After each k-
anonymity test we analyzed the remaining risky records to inform the order in which 

                                                           
1  K-anonymity tests were carried out using the NIAH algorithm available from: https:// 

sourceforge.net/projects/niahsdc/ 
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variables could be removed from the key. Once an order was chosen those records 
that flipped from 'not satisfying' to 'satisfying' k-anonymity were flagged with a 
dummy variable indicating which variable had affected the change.  

We concluded that the variables age, education, occupational group and industry 
classification followed by the geographical variables should be considered for our 
later data shuffling experiments. 

3 Controlled Data Shuffling to Prevent Disclosure and Preserve 
Utility    

The purpose of disclosure risk assessment is to identify the extent to which the unmo-
dified release of the data could result in potential re-identification of the records and, 
possibly, the subsequent disclosure of sensitive information regarding individuals. If 
the risk of such disclosure is deemed low, then it may be appropriate to allow users to 
analyze the original data resulting in the highest level of analytical utility. When the 
risk of disclosure is high, then it may be necessary to modify the data prior to disse-
mination so as to prevent re-identification and disclosure of confidential information. 
The process of modifying the data prior to allowing access is often referred to as data 
masking.  

There are a wide variety of data masking solutions that are available. At the broad-
est level, they can be classified as input or output masking. In input masking, the orig-
inal data is masked and all analyses are performed on the masked data. In output 
masking, the analyses are performed on the original data and the results of the analys-
es are masked prior to release. For static data, which includes all the samples inte-
grated into the IPUMS-International database, input masking is generally preferred 
since it provides the assurance that the results of the same analysis on the same data 
performed at any point in time will always yield the same results. Maintaining consis-
tency at this basic level is crucial to maintain users trust in the validity of the data. For 
output masking, unfortunately, it is extremely difficult (if not practically impossible) 
to ensure consistent results. Hence, in the remainder of this paper, we limit our dis-
cussion to input masking.  

There are many input masking techniques that are available. Hundepool et al. pro-
vide an excellent discussion of these techniques [5]. Given that we have used k-
anonymity to identify risky records, it seems reasonable that input masking through 
aggregation, simple aggregation for categorical data [6] and micro-aggregation for 
numerical data [7] would be relevant. Unfortunately, given that close to 80% of the 
records were identified as being at risk, the level of aggregation that is required in 
order to prevent disclosure is so high the types of analyses that can be performed on 
the aggregated data would be severely limited. In order to provide users with greater 
flexibility in analyzing the data, we chose to investigate alternative procedures.  

Input masking through data perturbation is one approach that can be used in these 
situations. There are many data perturbation techniques that are available (see [5]). 
Most of these techniques rely on modifying the original data through random noise, 
and the values in the masked data are different from those in the original data. This 
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would be perfectly acceptable for traditional numerical data. The treatment of nomin-
al data is a more difficult problem for data perturbation approaches, and only a few 
select techniques are capable of perturbing nominal data (see Hundepool et al [5] for a 
comprehensive discussion).  

Recently Domingo-Ferrer et al [8] identified the specific problem of taxonomic da-
ta, that is, data whose values are nominal but also have a hierarchical structure such as 
medical diagnosis coded using the International Classification of Diseases [9]. In the 
Irish data, there are two variables that fall under the category of taxonomic data (In-
dustry classification with 110 hierarchical categories and Occupation group with 90 
hierarchical categories). For example, the 90 3-digit occupation groups are divided 
into 9 1-digit groups.  Group 1, “Managers, Directors and Senior Officials”, contains 
12 3-digit occupations, while Group 9, “Elementary Occupations”, has only 9.  By 
controlling the shuffling to take into account the hierarchical codes, the perturbed data 
are more likely to preserve associations with other variables, such as education, indus-
try, and even age.       

One approach to handling taxonomic data is to convert them to purely nominal da-
ta (by representing every unique code within the taxonomy as a nominal variable). 
The problem with this approach is that it results in a very large number of nominal 
variables making it extremely difficult to carry out the perturbation. More important-
ly, this transformation ignores the inherent taxonomy that is an integral part of the 
variable. Hence, in the presence of taxonomic data, perturbation approaches that 
“generate new values” for the original values are not appropriate. 

Among data perturbation techniques, there are two that differ from all others in the 
fact they do not replace the original values with newly generated values, but reassign 
the original values between records. These two techniques are data swapping [10] and 
data shuffling [11]. In data swapping, the values of a variable are exchanged between 
two records within a specified proximity. The process will then have to be repeated 
for every variable that is to be masked. The problem with this approach is that the 
swapping is performed on a univariate basis and it is difficult to maintain consistent 
levels of swapping across many variables. Swapping also results in attenuation of the 
relationship both between the swapped variables and between the swapped and un-
swapped variables. 

Data shuffling, by contrast, is a multivariate procedure where the values of the in-
dividual records are reassigned to other records in the data set based on the rank order 
correlation of the entire data set. One of the key features of data shuffling is that the 
rank order correlation of the masked data is asymptotically the same as that of the 
original data. This ensures that all monotonic relationships between the variables are 
preserved by the shuffling process. When compared to data swapping, data shuffling 
provides a higher level of utility and lower level of disclosure risk [12].  Data shuf-
fling is capable of handling all types of data. Numerical and ordinal data inherently 
lend themselves to data shuffling. Nominal data are converted to binary data prior to 
shuffling. And for taxonomic data, numerical mapping proposed by Domingo-Ferrer 
et al [8] is used.  

Data shuffling can be briefly described as follows. Let X represent the set of confi-
dential variables and let S represent the set of non-confidential variables. Let Y 
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represent the masked confidential variables. Data shuffling models the joint distribu-
tion of {X, S, Y} as a multivariate normal (Gaussian) copula. Let {X*, S*} represent 
the normalized values of the {X, S}. The perturbed normalized values Y* are created 
using the conditional distribution {X*, S*}. Once the values of Y* have been gener-
ated in this manner, the original values of X are reverse mapped to Y* to result in the 
perturbed values Y. For a complete description of data shuffling please refer to Mura-
lidhar and Sarathy (2006). 

Data shuffling offers the following advantages: 

1. The shuffled values Y have the same marginal distribution as the original values X. 
Hence, the results of all univariate analyses using Y provide exactly the same re-
sults as that using X.  

2. The rank order correlation matrix of {Y, S} is asymptotically the same as the rank 
order correlation matrix of {X, S}. Hence, the results of most multivariate analysis 
using {Y, S} should asymptotically provide the same results as using {X, S}. 

One of the key features of data shuffling is that the process is based on joint rank 
order correlation matrix of all variables {X, S, Y}. This provides the data administra-
tor with the ability to control for disclosure risk by specifying the appropriate rela-
tionship between the original (X) and masked (Y) variables. This specification can 
range anywhere from no protection (no shuffling), to maximum protection (where X 
and Y are conditionally independent given S), and any level in between. Prior illustra-
tions of data shuffling have used the maximum level of protection. We use the term 
controlled data shuffling to indicate that the desired level of disclosure protection has 
been specified by the data administrator. This new approach provides a much higher 
level of flexibility in implementing data shuffling. We now provide the results of 
implementing data shuffling for the Irish data.   

4 Assessing Analytical Utility 

The primary purpose of IPUMS-International is to provide researchers access to  
harmonized census microdata for countries around the globe. Hence, a successful data 
protection mechanism must ensure not only that the masked microdata are sufficiently 
confidentialized but also provide results that are similar to those using the original, 
unharmonized microdata held by the National Statistical Office-owners.  

In this section, we assess analytical utility of the 10% household sample for the 
2011 census of Ireland entrusted to the IPUMS-International project.  One important 
aspect of this evaluation is that the microdata were masked without knowledge of the 
subsequent analyses that would be done on the dataset. Hence, this evaluation pro-
vides a more genuine assessment of the effectiveness of the masking procedure. As is 
the universal rule for official census microdata, we agreed to not report details regard-
ing which variables were perturbed or the degree of perturbation.  To do so would 
increase confidentiality risks for the microdata.          

We consider confidentiality protection, taken as a whole, to be strong. One or more 
characteristics were perturbed for 29.9% of adults aged 20 years or more. For couples 
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(excluding same-sex unions, which are too few in number to successfully shuffle as a 
conditional characteristic), joint attributes were taken into account to maintain hus-
band-wife associations.  For individuals, joint characteristics were controlled so as not 
to attenuate associations between occupation, industry, social class, educational at-
tainment and socio-economic group.  Six cycles of experiments were required to pro-
duce a “Goldilocks” dataset—one that was neither over- nor under-confidentialized 
and with utility at the highest possible levels—and therefore acceptable to all parties.   

Overall, the results show excellent analytical utility.  Consider age, for example. 
We compared mean age for 34,517 effective subgroups from over ten million permu-
tations of six key variables:  sex (2), level of educational attainment (7), industry 
(110), occupation (90), social class (8), and socio-economic group (11).  As expected, 
differences are inversely proportional to the size of the cell counts.  For combinations 
with counts of equal to or less than ten, the mean difference in age ranges between +/- 
0.6 years.  With cell counts of 30 or higher, the range shrinks to +/- 0.4  

4.1 Log-Linear Models of Cells Counts 

We use log-linear models to test whether complex analytical models—original and 
shuffled—produce the same best fitting models.  To illustrate the method consider a 
four-way  cross-classification of Age (20-85+, 66 categories), Sex (2), Marital status 
(4),and Region of usual residence (8).  First we model the original source microdata 
using seven models.  Second, we compute the same models using the shuffled data.  
Finally we compare the differences in goodness of fit between the two datasets.  If the 
goodness of fit statistics for the original and shuffled data differ substantially, the 
masking procedure has distorted the results by introducing bias.  Our model specifica-
tion allows for unrestricted associations between all variables.    

Our baseline or independent model can be written as follows:  
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iijklmF μμμμμ ++++=

                                
(1) 

where ln(Fijkl) is the log of the expected cell frequency of the cases for cell ijkl in the 
contingency table; i, j, k, and l refer to the categories within the variables Age (A), 
Sex (S), Marital status (M), and Region (R).  μ is the overall mean of the natural log 

of the expected frequencies; 
A
iμ is the effect of age i has on the cell frequencies (the 

same for S
jμ , M

kμ , and R
lμ ).  

Table 1 describes each of the models and goodness-of-fit statistics. Model 1 cor-
responds to the baseline or independent model described above. The modeling strate-
gy consists of adding two level interactions between variables and testing for im-
provement in the fit of the model. To assess fit, we use the Likelihood Ratio Chi-
squared statistic (L2) and the Bayesian Information Criterion (BIC), which is based on 
the L2 statistic [13]. BIC introduces a penalty term for the number of parameters in a 
model. Thus, it is possible to improve the fit of a model by adding more parameters, 
but if this adds unnecessary complexity in terms of a reduction in degrees of freedom, 
BIC will indicate a poorer fit. 
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Table 1. Log-linear models of original vs. shuffled data show  small percentage differences  

 Goodness of fit Percentage 
Difference* Original Data Shuffled Data 

Model df L2 BIC L2 BIC L2 BIC
1 A, S, M, R 4147 203400.7 150522.8 203226.1 150348.2 0.1 0.1 

2
AS, AR, 

AM 
3432 13013.3 -30747.7 13052.5 -30708.5 -0.3 0.1 

3
AS, AR, 
AM, SM 

3429 6536.4 -37186.4 6573.5 -37149.3 -0.6 0.1 

4
AS, AR, 

AM, SM, 
SR

3422 6471.8 -37161.7 6508.8 -37124.7 -0.6 0.1 

5
AS, AR, 

AM, SM, 
SR, RM 

3401 5471.0 -37894.8 5505.7 -37860.1 -0.6 0.1 

6
ASM, 
ASR 

2772 4748.0 -30597.4 4812.6 -30532.9 -1.4 0.2 

7
ASM, 

ASR, SRM 
2730 3426.3 -31383.6 3487.8 -31322.1 -1.8 0.2 

Note:  A (66) Age 20-85+, S (2) Sex, M (4) Marital Status, R (8) Region. 
*Percentage difference = ((Original-Shuffled)/Original)*100 
Source:  Author's calculations from 10% household sample of the 2011 population census of 
Ireland  
 
Models 2 to 7 include two and three level interactions between age, sex, marital 

status and region. Comparing goodness of fit statistics of the shuffled data with those 
from the original source data for each model reveals no significant differences in ei-
ther L2 or BIC.  Model 2 includes all two way interactions between age and sex, ma-
rital status and region. Model 2 indicates a substantial improvement over the baseline 
model in goodness of fit both in terms of L2 and BIC. Model 5 offers the most parsi-
monious fit for both datasets according to BIC (BIC5 = -37894.8 and -37860.1, re-
spectively). Model five includes all possible two way interactions between age, sex, 
marital status and region.  Three way interactions yield a tighter fit, but the loss in 
degrees of freedom is proportionally greater than the gains in goodness of fit, so BIC 
tells us that the additional model complexity is unwarranted.   

What is striking from Table 1 is that both the original and shuffled datasets lead to 
the same best fitting model and the differences in goodness of fit between original and 
shuffled are trivial, less than 0.3% for BIC.  All in all, the results clearly suggest that, 
with regard to the variables analyzed, there are no statistically significant differences 
between the shuffled and the original dataset.  We conclude that distortions intro-
duced by shuffling have not significantly diminished analytical utility.  
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4.2 Age Gap between Spouses  

For a second test, consider the gap in ages between spouses, a challenging correlation 
to maintain with masked microdata.  A notorious example of perturbation gone wrong 
is the sample of the 2000 census of the USA, which contains an embarrassing error 
due to masking of ages for persons 65 years and older.  Later, the Census Bureau 
“corrected” the error, but seemingly worsened the discrepancy (left panel, Figure 1).  
 

USA 2000:  perturbation gone wrong Ireland 2011:  controlled shuffling OK 

 
McCaa et al [1], p. 185. Calculations by authors. 

 

Fig. 1. Masking effects on age gap between spouses:  two examples 

In contrast, for the 10% household sample of Ireland (right panel, Figure 1), 
comparing the unperturbed and shuffled microdata reveals surprisingly minor 
discrepancies throughout the age range, despite the fact that in 4% of the cases age 
was masked for both members of the pair and in 20% at least one.  The age gap 
between spouses is a strong test of data utility, a test that the shuffled Irish sample 
readily passes. 

4.3 Own-Child Fertility 

As a final test, we focus on fertility.  Fertility is fundamental for demographic re-
search, and population censuses offer valuable insights on fertility levels, trends, and 
differentials.  Where the census does not ask questions on fertility, estimates can still 
be derived indirectly from household samples, using the “own-child method”.  Child-
ren aged 0-14 are matched to their mothers by means of the relationship to reference 
person variable.  Then, a 15 year fertility series is constructed from the ages of moth-
ers and their co-resident children.  (The data are adjusted both for children who can-
not be matched to mothers and for mortality).  A challenging test for masked data is to 
replicate the age differences between mothers and their children. 
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Fig. 2. 15 year series of Total Fertility Rates from shuffled and original microdata2 

Figure 2 shows that the shuffling strategy yields astonishingly robust results in 
spite of the fact that the data were masked without any knowledge that it would be 
tested in this way.  Differences in total fertility rates between the original data and the 
shuffled are at 3 decimal places.  They are so imperceptible that for illustration pur-
poses 0.01 was added to the shuffled series in Figure 2 to make the point that there are 
indeed two sets of data portrayed.  Drilling down, we find that both datasets reveal 
declining fertility for ages 15-29 and rising fertility for ages 30-49.  While this is not 
news to experts on Irish fertility, what is surprising is that the pattern is unmistakable 
even in the shuffled data.  

5 Conclusion 

Data shuffling is widely recognized as a robust masking procedure for confidentializ-
ing microdata.  Controlled shuffling allows the data administrator greater flexibility to 
protect privacy and enhance utility.  The success of this experiment was possible 
thanks to the close cooperation by the microdata owner/steward, statisticians, data 
administrators, and researchers.  Initially, for the 2011 census sample of Ireland, a 
reduced set of variables, including age in five year bands, was offered to IPUMS, 
severely diminishing the utility of the sample.  Following further discussion, CSO-
Ireland agreed to furnish single year ages and more than a dozen additional variables 
provided the microdata could be confidentialized satisfactorily.   

We were surprised at the difficulty in striking a balance between protection and 
utility for household samples with a rich array of variables.  Six trials were required.  
The first was deemed acceptable by the CSO and the statistical experts, but not by the 
data administrators or researchers.  With each successive round of experimentation 
we learned more about how to control the perturbations to retain utility, specifically 
                                                           
2  Shuffled microdata track the unperturbed source data so closely that to highlight separation 

its line is shifted +0.01. Otherwise differences are imperceptible. 
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associations within person records and between person records within households, yet 
protect the data.  One important lesson is that subject matter specialists must be in-
cluded in the confidentializing process for quality assurance to test the analytical utili-
ty of perturbed data.  Failure to do so may lead to unmeasured bias, particularly in the 
associations between couples, parents and children, and even between variables with-
in a single person record.  Statistical properties of variables are not synonymous with 
analytical properties of individual records nor associations within households.          

Counter-intuitively, the higher the sample density and the more detailed the va-
riables, the finer grained the shuffle, the better the protection and the greater the utili-
ty.  For example, shuffling across 1, 2, or 3 single years of age perturbs the data less 
than shuffling across 5, 10 or 15 years of quinquennial age bands.  Likewise, for oc-
cupation, shuffling at the third digit level within the second digit distorts the data 
much less than shuffling across first digit boundaries.   

Controlled shuffling offers the ability to model hierarchically ordered coding 
schemes common to census microdata.  The promising results of this experiment may 
be of interest not only for masking census microdata but for all types of microdata 
with explicit hierarchical codes, whether based on international standards such as 
ISCO, ISIC, NACE, NUTS, etc. or ex post facto integrated codes such as those devel-
oped by IPUMS.  The robustness of the shuffle is enhanced by taking into account 
associated characteristics—within households and within clusters of variables, such as 
correlations between occupation, industry, educational attainment, social class, etc.   

With the success of this experiment, the CSO entrusted single years of age for the 
2002 and 2006 samples which, before release to researchers, were confidentialized 
using controlled shuffling.  Prior to publication of this paper, all three samples were 
successfully integrated into the IPUMS-International database and released to the 
research community for dissemination on a restricted access basis. The confidentia-
lized sample of these and eight other censuses of Ireland (1971-2011) along with over 
250 other samples for more than 75 countries may be downloaded at:  
https://international.ipums.org/international/sample_designs/sample_designs_ie.shtml   

Researchers must heed the warning that microdata subjected to any masking pro-
cedure, including controlled shuffling, introduces bias.  Moreover, the smaller the 
frequency of a combination of characteristics, the greater the proportion of cases per-
turbed.  As indicated by the percentage differences in Table 1, the more complex the 
statistical analysis, the greater the distortion caused.  Nonetheless of the hundreds of 
models tested (of which only 7 are reported here), the analytical differences are trivi-
al.   Compared with the enormous loss occasioned by aggregating age to five year 
groups and by the suppression of more than a dozen variables due to confidentiality 
concerns by the data producer, controlled shuffling offers an elegant solution to the 
conundrum of protecting statistical confidentiality, yet retaining the highest utility in 
the source microdata.     

To assuage concerns regarding analytical validity and disclosure risk, the corres-
ponding author extends an invitation to researchers to conduct analysis on the micro-
data that can be compared against the original (unmasked) data.     
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Abstract. Statistical institutions are responsible both for protecting
confidential information collected from statistical units, and for dissem-
inating information to the public. Adhering to the legislation on con-
fidentiality, the statistical institutions face two contradictory problems:
one concerning statistical disclosure control, the other concerning the in-
cluded level of detail and the usability of the disseminated information
for the end users. As an empirical example of balancing the two prob-
lems, the paper reports the results of an experiment conducted with case
data on the inward Foreign AffiliaTes Statistics (FATS). The results are
analysed to support the further decision making on protecting statistical
publications against statistical disclosure.

Keywords: Inward Foreign AffiliaTes Statistics, statistical disclosure
control, table confidentiality, publication usability, experiment design.

1 Introduction

The paper discusses the issue of producing confidential but useful tables in the
case of the inward Foreign AffiliaTes Statistics (FATS). In order to ensure that
statistical units cannot be identified from the published tables, tabular data need
to be protected by statistical disclosure control methods to prevent possible
intruders from disclosing confidential information. However, if protecting the
data means that most of the cells in the table cannot be published, there is
hardly any sense to publish such tables in the first place. This is the problem of
information loss due to the used protection method, currently prominent with
the inward FATS.

The paper has three sections. This first section is an introduction, including
the descriptions of the inward FATS and the problem of balancing confidentiality
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and usability of the inward FATS. The second section describes the experiment
design and reports the results of the conducted 18-run experiment. The third
section summarises the results and gives recommendations on how to balance
the problems related to confidentiality and usability.

The inward FATS are collected from Norway and the European Union member
countries to help to determine patterns of internationalisation, as well as to
follow the consequences for expanding international business in the European
Union. The relevant statistical institutions include Eurostat and the national
statistical institutions (NSIs), such as Statistics Finland. The population for the
inward FATS are those subsidiaries and branches in the compiling country that
are controlled by a foreign entity. The collected data includes the residency of
the ultimate controlling institutional unit (uci), industry classification (nace)
and such characteristics as turnover, total purchases, and the number of persons
employed. [2]

The inward FATS comprises two publications, IFATS Series 1 (1G) and IFATS
Series 2 (1G2). Both tables 1G and 1G2 have the same two explanatory variables
(uci and nace) but differ in the terms of included details. For Finland the table
1G includes the aggregated total firms in the compiling country (A1), aggregated
compiling country enterprises (A2), aggregated foreign controlled enterprises in
the compiling country (Z9), area aggregates V1 (EU-27, excluding Finland) and
V2 (extra EU-27), C4 (offshore financial centres), and country level aggregates
for the 27 EU countries (excluding Finland) and 14 extra-EU countries. The
industry classification variable nace includes three industry levels and the sum
of the total business economy (from B to N, excluding K and including S95).
The table 1G2 includes all the other countries in the world in addition to the
ones displayed in the table 1G but only the sum of the total business economy.
More detailed descriptions of the tables are available from the FATS compilation
manual. [2]

As described in the beginning, there are two contradictory issues related to
protecting tables. One concerns the protection of the identities of the statisti-
cal units, while the other relates to maximizing usability. In the inward FATS
production the compiling NSIs have settled on using non-perturbative disclosure
control methods such as cell suppression and modifying the levels of classifica-
tion for explanatory variables in the table. The problem for the inward FATS
tables is that currently information needs to be suppressed in great amounts to
prevent disclosure of sensitive information. Additionally, there may be too much
detail included in the classification of the explanatory variables for the IFATS
Series 1. This results in an ineffective 1G table, where according to Eurostat’s
analysis around 64 % of its 6 240 cells are zero values (i.e. the cell value is less
than 0.5, or there are no firms, so the cell is empty), further 5 % are missing, 20
% need to be suppressed for confidentiality reasons, and thus only 10 % of the
cells display safe non-zero values [3]. The aim of this paper is to find a better
solution, if there is one.

The two contradictory problems in the statistics production arise from the
inconsistent needs for different stakeholders. The key stakeholders are statistical
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units, which in the case of the inward FATS are foreign controlled enterprises.
Confidential information needs to be protected on account of possible intruders,
which can be either internal, such as a foreign controlled unit trying to achieve a
competitive edge, or external, such as an outsider investor trying to make a profit.
Other interested parties include the end users, which comprise the government,
the research community, and the public. Finally, there are the statistics compiling
and disseminating institutions: the NSIs such as Statistics Finland, the EU level
bodies such as Eurostat, and global organisations such as OECD.

Combining the issues discussed above, the research problem in this paper is to
determine how to produce safe but informative inward FATS tables by using cell
suppression for disclosure control, including the changes suggested by Eurostat
for the classification of the explanatory variables [3]. The idea of the experiment
is to analyse the effects of the different levels of classification for the explanatory
variables, the use of different safety rule specifications, and the use of different
secondary suppression algorithms.

The next section reviews an experiment, which analyses the choices for pro-
tection methods available for the statistical institutions compiling inward FATS
statistics.

2 Analysis

The idea of the experiment conducted in this paper is to list and compare the
different possible inward FATS 1G tables using modified levels of classification,
safety rules, and secondary suppression algorithms to protect confidential infor-
mation. The software used to conduct the experiment is τ -Argus 3.5.0., build 26
[4]. The aim is to find an improvement to the current situation, where most of
the cells are either zero values (i.e. the cell value is less than 0.5 or the cell is
empty) or need to be suppressed for protection.

The experiment is carried out for one of the response variables according to the
specifications of the inward FATS table 1G described in the previous section. The
inward FATS includes two series (1G and 1G2), so the protection is completed
by linking the two tables. Linking the tables ensures that none of the information
published in the other table can be used in disclosing confidential information
from the other. In order to keep the experiment as simple as possible, only the
table 1G is considered, so further discussion on the use of linked tables is outside
the scope of this study.

Table 1 describes the experiment design, which is based on Box [1]. The
standard combination (−) shown describes the current situation, whereas the
modifications (+) are suggestions for improvements. The different combinations
of the factors are run through two different secondary suppression algorithms.
Although implicating a 25 or a 32-run experiment, the experiment here includes
only 18 runs for each algorithm. This is because the factors A and B refer to
the same standard specification of the explanatory variable nace, making the
standard combinations of the factors A and B redundant. The factors differ in
their modifications, which are stated as Mod1 and Mod2. Similarly, the factors



Balancing Confidentiality and Usability 341

Table 1. Experiment design

Factors − +

A: nace Std Mod1
B: nace Std Mod2
C: uci Std Mod1
D: uci Std Mod2
E: safety rule Std Mod

C and D refer to the same standard specification for the explanatory variable uci
but have different modifications. This section presents the results for the first
algorithm, while the corresponding tables and figures for the second algorithm
can be found from the appendices for comparison.

The factors from A to D represent changes in the levels of classification for the
explanatory variables. Changing these factors affects the level of detail included
in the nace x uci table, and consequently adjusts the size of the table. The
standard combination refers to the current classifications, which includes three
hierarchical industry levels for nace and country level detail for uci. As discussed
in the previous section, Eurostat has suggested that the current classifications
may be too detailed, so the function of the experiment factors from A to D is
to see what happens to active and confidential cell shares when the levels of
classification are modified.

In the first modification to nace (factor A), the third level is dropped from
examination. The second modification to nace (factor B) drops both the second
and the third levels, which corresponds to the current Eurostat proposal [3]. In
the first modification to uci (factor C) the country level is dropped, so that only
the large area aggregates V1 (EU-27, excluding Finland) and V2 (extra EU-27)
and their total aggregate Z9 (all foreign controlled enterprises in Finland), and
the aggregate A2 (all Finnish controlled enterprises in Finland) are retained. In
the second modification to uci (factor D), continental aggregates are introduced.
Additionally, the second uci modification includes the aggregates A2 and Z9.

The factor E refers to the used safety rule. Changing the safety rule affects the
amount of sensitive cells, and thus changes the level of confidentiality. The rea-
son for modification to the safety rule in the experiment is to test if it is possible
to reduce the share of confidential cells by slacking the used safety rule. Statis-
tics Finland’s internal guidelines on protection of tabulated enterprise data [5]
restrict the safety rule alteration. In practice slacking the safety rule here means
keeping the threshold rule for sensitive cells the same but altering the required
safety margin. A similar reasoning lays behind the use of two different secondary
suppression algorithms offered by the used software. The first algorithm is the
hypercube algorithm and the second one is the modular algorithm [4].

The experiment results in four types of cells: active, safe, confidential, and
empty. The total cells in the table consist of active and empty cells. Active
cells or non-empty cells have firm activity between the particular nace x uci
combination. Active cells are either safe or confidential. Safe refers to the cells
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that are published. Confidential cells consist of primary confidential cells plus
the secondary suppressions determined by the used safety rule and the secondary
suppression algorithm.

Empty cells refer to such cells, where there is no firm activity between the
particular nace x uci combination. It should be noted that Eurostat refers to
these as zero cells, which include both empty cells (marked as zeros in the inward
FATS tables) and additionally such cells, where the cell value is less than 0.5.
Thus in the experiment there are a few cells, which are counted as active, where
values equal zero (i.e. there is firm activity in the cell but the value of the activity
is zero), whereas in the FATS manual these are calculated as zero cells (i.e. there
might or might not be any activity in the cell). The difference stems from the
used software, which produces empty cells rather than zeros, and the Eurostat
practise, described in more detail in the FATS compilation manual [2]. As the
count of cells valued zero is negligible in the experiment, the difference does not
affect the conclusions.

Table 2 summarises the results of the experiment for the first algorithm. The
results for the second algorithm can be found from appendices, Table 5. It can
be seen that the first run, where no modifications to the current situation are
made, shows that 66 % of the active cells are suppressed. While this is the worst
case in terms of confidential cell share, the unmodified table also includes the
most detailed information, its active cell count totalling to 1 636, which includes
554 safe cells. The safe cell count is maximized at 597 with the run number two,
where the only factor changed to the current situation is the safety rule factor E.
In the modified specification, the safety rule has been slacked, and consequently
the confidential cell share reduces to 64 %. From the appendix table 5 it can be
seen that the second algorithm is more efficient, suppressing only 54 % and 53
% of the active cells in the corresponding cases.

The best case in terms of confidential cell share is the table resulting from the
runs numbered 15 and 16, which are otherwise the same but have different mod-
ifications to the safety rule factor E. They result in identical tables, indicating

Table 2. The 18 runs and the results of the table redesign experiment

Run A nace B nace C uci D uci E safety Total Total Total Safe/ Confidential/
number rule active safe Active Active

1 − − − − − 6240 1636 554 0.34 0.66
2 − − − − + 6240 1636 597 0.36 0.64
3 + − − − − 3840 1148 438 0.38 0.62
4 + − − − + 3840 1148 460 0.40 0.60
5 − + − − − 864 370 183 0.49 0.51
6 − + − − + 864 370 191 0.52 0.48
7 − − + − − 650 599 424 0.71 0.29
8 − − + − + 650 599 430 0.72 0.28
9 − − − + − 1040 656 406 0.62 0.38
10 − − − + + 1040 656 414 0.63 0.37
11 + − + − − 400 381 313 0.82 0.18
12 + − + − + 400 381 315 0.83 0.17
13 + − − + − 640 432 298 0.69 0.31
14 + − − + + 640 432 301 0.70 0.30
15 − + + − − 90 89 81 0.91 0.09
16 − + + − + 90 89 81 0.91 0.09
17 − + − + − 144 112 82 0.73 0.27
18 − + − + + 144 112 82 0.73 0.27
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that changing the chosen safety rule does not affect the results in this case. In
these runs, both nace and uci are modified. Following the Eurostat suggestion,
only the first level of nace is retained. Additionally, only the large area aggre-
gates are retained from the variable uci. The result is a table with only 89 active
cells, which is the smallest amount of safe cells from the alternatives presented
here. However, the share of the confidential cells is minimized, as only 9 % of
the cells need to be suppressed. Comparing with the appendix table 5, it can be
seen that in this case the second algorithm results in the same table.

Fig. 1. Cube display of the experiment results

Figure 1, based on Box [1], is a graphical representation of the results for
confidential cell share shown in the Table 2. In appendices Figure 2 presents a
similar figure for the second algorithm. Each cube represents interactions be-
tween different combinations of the classification factors from A to D, and the
safety rule factor E. Panel a) is a display of the factors A (nace with two levels),
C (uci with large aggregates) and E (safety rule). Panel b) is a similar display
for the factors B (nace with one level), C and E, panel c) is a display for the
factors A, D (uci with continental aggregates) and E, and panel d) displays the
factors B, D and E. The current situation, i.e. the run number one in the Table
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2, is located in the left hand corner of each cube in the Figure 1. Changing nace
means moving to the right and modifying uci means moving up. As a result, the
upper right hand corners represent situations, where both variables are modified.
Additionally, changing the safety rule means moving to the back panels of the
cubes.

It can be seen from the Figure 1 that changing the safety rule affects the
share of the suppressed cells in a minimal way or not at all. The most dramatic
reductions in the confidential cell share come from modifying both nace and uci
at the same time. While changing nace from three levels to two does not affect
the confidential cell share in a significant manner, as seen from the panels a)
and c), modifying nace further to contain only one level reduces the confidential
cell share by 15 percentage points, as shown by the panels b) and d). Modifying
uci changes the confidential cell share even more drastically, and using any
combination of the two explanatory variable modifications results in both smaller
tables and lower confidential cell shares as seen by looking at the upper right
hand corners of each cube. Comparing with the appendix figure 2, it can be seen
that the most results are five to ten percentage points lower with the second
algorithm, meaning that the second algorithm is more efficient and results overall
in fewer suppressions.

Table 3 displays nine table alternatives derived from the experiment results.
As the chosen safety rule modification did not affect the results in a significant
manner, the tables are shown only for the standard safety rule. It can be seen
that the original situation results in a large 130 x 48 table, which only has 26 %
of its cells filled with active cells. Only 9 % of the total cells are safe. The most
drastic modification to the classifications leads to a table with dimensions 18 x
5, which only has 90 cells in total. However, a total of 99 % of these cells are
active, in fact, only one of the cells is left empty. This highly aggregated table
means that almost all, 90 % of the total cells in this table can be published. In
appendices Table 6 displays a similar table for the second algorithm.

Table 3. Summary of the experiment with the standard safety rule

Table Run nace uci Total Active Safe Active Safe Table size Size
number (Cf. Table 2) levels Total Total compared

to original

1 5 1 countries 864 370 183 0.43 0.21 18 x 48 0.14
2 3 2 countries 3840 1148 438 0.30 0.11 80 x 48 0.62
3 1 3 countries 6240 1636 554 0.26 0.09 130 x 48 1.00
4 15 1 large areas 90 89 81 0.99 0.90 18 x 5 0.01
5 11 2 large areas 400 381 313 0.95 0.78 80 x 5 0.06
6 7 3 large areas 650 599 424 0.92 0.65 130 x 5 0.10
7 17 1 continents 144 112 82 0.78 0.57 18 x 8 0.02
8 13 2 continents 640 432 298 0.68 0.47 80 x 8 0.10
9 9 3 continents 1040 656 406 0.63 0.39 130 x 8 0.17

Removing the third nace level results in the table two, which has 80 x 48 cells.
It is sized 62 % of the original table. However, only a slightly larger percentage for
safe cells out of the total cells is gained, as it increases to 11 % from the original
9 %. Keeping only the first nace level, as suggested by Eurostat, the result is
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the table one, which has 18 x 48 cells. While the size of the table compared to
the original shrinks to just 14 % of the size of the original table, the total safe
cell share increases only to 21 % from the original 9 %. Additionally, keeping an
eye on the absolute counts of the safe cells, it can be seen that the number of
safe cells reduces to about a third from the original, from 554 to 183. Compared
to the table five, where two of the nace levels are retained and uci is modified
so that only the large aggregates remain, 313 safe cells are available, and the
total safe cell share rises to 78 %. However, the size of the table compared to the
original shrinks even further, to 6 %. The appendix table 6 shows the summary
of the results for the second suppression algorithm.

Table 4 describes the results of an analysis, which aims to help choosing the
most useful alternative from the choices considered in the experiment.

Table 4. Analysis of the alternative tables

Table Confidential Safe cell Size Weight 1 Weight 2 Weight 3 Total Rank
number cell share count

1 0.51 183 864 0 0 15 15 x
2 0.62 438 3840 0 25 25 50 x
3 0.66 554 6240 0 30 30 60 x
4 0.09 81 90 30 0 0 30 x
5 0.18 313 400 25 10 0 35 x
6 0.29 424 650 15 20 10 45 1
7 0.27 82 144 20 0 0 20 x
8 0.31 298 640 10 5 5 20 3
9 0.38 406 1040 5 15 20 40 2

Each table has been given weights based on three criteria. The first criterion
states the share of confidential cells. It reflects the need to minimize the infor-
mation loss due to protection, which implies that the smaller the confidential
cell share, the better the usability. The lowest share gains 30 points and the
highest three are given zero points. The second criterion is the safe cell count.
It stands for the need to maximize usability, and reflects the absolute amount
of information gained from the table. The largest number gets 30 points and
the smallest three are given zero points. The third criterion is the size of the
table measured by the total cell count. It reflects the need for included detail,
implying that more detail is preferred to less detail. The largest table gets 30
points and the three smallest tables are given zero points. The total points are
calculated as the sum of the three weight columns. Finally, if a table got zero
points with any criteria, it is given a rank x, otherwise it is ranked based on the
weighted points.

According to the analysis, the usability is maximised with the tables six, eight
and nine. Tables six and nine retain the original three nace levels, whereas the
table eight drops the third nace level. Table six includes aggregating the uci
so that only large area aggregates remain. Tables eight and nine aggregate uci
so that the countries are grouped under continental aggregates. The Eurostat
suggestion [3], table one, gets an x-rank, as it is given zero points in the first
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and second criteria (confidential cell share and safe cell count). Moreover, it does
not rank highly in the final criterion either, and results in the lowest total point
score in the analysis.

Table 4 shows that the table six is ranked the highest given the three criteria
after the x-ranked alternatives are dropped from the analysis. Thus the most
useful table found in this paper as an alternative format for the inward FATS
1G table has a total of 650 cells. 92 % of the total cells are active, and 424
of the cells are safe. Although the size is just 10 % of the original and the
reduction in size means also a reduction in the absolute count of safe cells, this
is a great improvement from the current situation looking at the confidential cell
share, which increases from 9 % to 65 %. However, usability remains a concern,
as the alternative table implies large area aggregates, which replace the more
detailed country level information. Nonetheless, as long as the need for the level
of protection stays the same, this is the most usable version of the 1G table
alternatives presented in this experiment given the three utilised criteria.

3 Conclusions

The objective of statistical institutions is both to protect the confidentiality
of statistical units and to disseminate data for public use. These contradictory
goals manifest as problems with balancing confidentiality and usability. The re-
search problem in this paper set in the first section has been to determine how
to produce safe but informative inward FATS tables by using cell suppression
for disclosure control, including the changes suggested by Eurostat for the re-
classification of the explanatory variables [3].

The second section presented an experiment, where the effects of the different
levels of classification for the explanatory variables, the use of different safety
rule specifications, and the use of different suppression algorithms were analysed
in depth. It was shown that the current 1G table is not very useful to the end
users as only 9 % of the total cells are active and safe (cf. table three in the
Tables 3 and 4). However, aggregating the classifications too much would result
in highly aggregated table, of which most could be published, but none would
likely describe any useful information (cf. table four in the Tables 3 and 4). The
analysis shown in the Table 4 illustrated that the most usable alternative ranks
the highest with three criteria: confidential cell share, the absolute amount of
safe cells, and the size of the table.

Eurostat has suggested aggregating the activity breakdown variable nace to
contain its first level only (cf. table one in the Tables 3 and 4, [3]). The findings
from this paper indicate that the size of such table reduces to 14 % of the
original, and the absolute amount of safe cells reduces drastically, while the
confidential cell share remains relatively high at 51 %. Thus, the findings of this
experiment do not support the Eurostat proposal for the table 1G. According to
the analysis in this paper, the most usable table has a total of 650 cells (cf. table
six in the Tables 3 and 4). With this table, there are three levels for nace and
large area aggregates for uci. 92 % of the total cells are active, and 65 % are safe.
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While the results were generally similar for the other suppression algorithm, it
was noted that especially for the large tables the second algorithm was more
efficient, resulting in five to ten percentage points lower secondary suppression
rates. For the most usable table, the total safe cell share increases to 69 %.

The size of the most usable table suggested in this paper is only 10 % of
the original 1G table, which indicates that a lot of detail is lost in aggregating
uci from the country level to the area aggregates. Thus, a concern remains that
such aggregation might not be useful to those end users, who have been using
the currently available detailed nace information on the country level on the EU
member countries and the fourteen most important partner countries. On the
other hand, it should be noted that the researchers would still have access to
the 1G2 table, where all of the world’s countries are presented with the sum of
the total business economy. As the alternative 1G table presents the aggregated
geographical totals (EU and the rest of the world) for the detailed business
activity breakdown, the two inward FATS tables would intuitively complement
each other to as much detail as possible given the current demand for protection.

Although this paper has shown that using aggregation of the explanatory
variables can result in great reductions in the confidential cell share in the case
of the inward FATS, there remains other concerns related to the usability of the
tables. Alternative ways to publish the inward FATS data could be considered in
order to be able to publish more detailed information. One option could be to use
the perturbative statistical disclosure control methods. However, as perturbative
methods are not currently used in Statistics Finland or in the inward FATS
production, more research should be conducted to examine the suitability of
such methods in the case of the inward FATS and similar statistics.

This paper has discussed the task of balancing confidentiality and usability
in the case of the inward FATS data. If the required level of confidentiality is
given by the current legislation, there is not much room to manoeuvre the level
of usability either. The demand for detail depends on the uses of the statistics.
There may also exist conflicting needs, where different types of end users need
different types of information. Therefore the appropriate level of detail is difficult
to adjust from the point of view of the NSIs, as acknowledging the needs for
specific users is most of the time outside the scope of their capabilities.

Choosing the most efficient variable uci for aggregation, the current situation
of the inward FATS series 1G can be improved at least to some extent. While
it is definitely more useful to have non-suppressed cells rather than suppressed
ones, aggregation in itself is a method of reducing information. Consequently,
the question remains whether the amount of information increases to any usable
degree, even if the confidential cell share reduces. The paper shows that the
task of balancing confidentiality and usability by aggregation and secondary
suppression algorithms is nearly impossible.
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Appendices

Table 5. Experiment with the second algorithm

Run A nace B nace C uci D uci E safety Total Total Total Safe/ Confidential/
number rule active safe Active Active

1 − − − − − 6240 1636 749 0.46 0.54
2 − − − − + 6240 1636 775 0.47 0.53
3 + − − − − 3840 1148 560 0.49 0.51
4 + − − − + 3840 1148 589 0.51 0.49
5 − + − − − 864 370 212 0.57 0.43
6 − + − − + 864 370 222 0.60 0.40
7 − − + − − 650 599 448 0.75 0.25
8 − − + − + 650 599 451 0.75 0.25
9 − − − + − 1040 656 438 0.67 0.33
10 − − − + + 1040 656 442 0.67 0.33
11 + − + − − 400 381 321 0.84 0.16
12 + − + − + 400 381 322 0.85 0.15
13 + − − + − 640 432 308 0.71 0.29
14 + − − + + 640 432 314 0.73 0.27
15 − + + − − 90 89 81 0.91 0.09
16 − + + − + 90 89 81 0.91 0.09
17 − + − + − 144 112 85 0.76 0.24
18 − + − + + 144 112 85 0.76 0.24

http://neon.vb.cbs.nl/casc/Software/TauManualV3.5.pdf
http://neon.vb.cbs.nl/casc/Software/TauManualV3.5.pdf
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Fig. 2. Cube display for the second algorithm

Table 6. The table choices with the second algorithm

Table Run nace uci Total Active Safe Active Safe Table size Size
number (Cf. Table 5) levels Total Total compared

to original

1 5 1 countries 864 370 212 0.43 0.25 18 x 48 0.14
2 3 2 countries 3840 1148 560 0.30 0.15 80 x 48 0.62
3 1 3 countries 6240 1636 749 0.26 0.12 130 x 48 1.00
4 15 1 large areas 90 89 81 0.99 0.90 18 x 5 0.01
5 11 2 large areas 400 381 321 0.95 0.80 80 x 5 0.06
6 7 3 large areas 650 599 448 0.92 0.69 130 x 5 0.10
7 17 1 continents 144 112 85 0.78 0.59 18 x 8 0.02
8 13 2 continents 640 432 308 0.68 0.48 80 x 8 0.10
9 9 3 continents 1040 656 438 0.63 0.42 130 x 8 0.17
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Abstract. National Statistical Agencies and other data custodians have
a responsibility to protect the confidentiality of commercially sensitive
business data as well as personally private social and survey data. How-
ever, traditional confidentiality methods have generally been developed
for the context of social or survey data about individual persons. Sev-
eral recent studies have highlighted that such traditional confidentiality
measures may not be directly applicable to business data, due to the dif-
ferent characteristics of business data and personal data. In this paper
we provide a discussion of these recent studies and their conclusions. We
find that while the confidentiality objective is the same for business data
and social and survey data, the disclosure scenarios and disclosure risks
are different. There is evidence that business data and social and survey
data may require different confidentiality protection methods to achieve
an effective balance between disclosure risk and data utility.

Keywords: Confidentiality, Privacy, Disclosure Control, Business Data.

1 Introduction

National Statistical Agencies and other data custodians hold a wealth of data
vital to informed decision making, research and debate within governments and
the community. At the same time, data relevant to issues of public interest, such
as health, education or criminal justice, can reveal highly sensitive information
about individual persons. People expect that their privacy will be protected,
where privacy is understood as the interest a person has in controlling the dis-
semination of information about themself. Thus data custodians usually give an
assurance of confidentiality, which is understood as the expectation on a data
custodian not to disseminate information about individual persons. The balance
between allowing statistical analysis of sensitive data and assuring confidential-
ity is often characterised as a trade-off between disclosure risk and data utility
[12], where disclosure risk attempts to capture the probability of a disclosure
of sensitive information, while data utility attempts to capture some measure
of the usefulness of the released data. Confidentiality methods are technical ap-
proaches designed to address the balance between disclosure risk and data utility,
in addition to governance and information security measures.
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Traditionally, the study of confidentiality methods has assumed a context of
data about people. As recently as 2011 confidentiality has been defined as a
status accorded to information about a person [13, Section 1.1].

National Statistical Agencies and other data custodians also collect business
data for reporting and policy analysis of business growth and performance at the
microeconomic level. Such data usually contain commercially sensitive informa-
tion about individual businesses, for example: production, employment, customs,
sales, financial and tax data. In addition to the privacy issues which can arise
when business data contain personal information about employees, businesses
will normally seek to protect their competitive advantage by controlling the dis-
semination of information about their business operations. Thus, data custodian
agencies also operate under an imperative not to disseminate information about
individual businesses, although for the different reason of commercial sensitivity
rather than personal privacy. Confidentiality assurances given by data custodi-
ans to businesses can often also cover publicly available data. This situation is
recognised in an alternative recent definition of disclosure: A disclosure occurs
when a person or organisation recognises or learns something that they did not
know already about another person or organisation, via released data [19].

In practice, the confidentiality protection objective for business data is the
same as for personal data, that is, not to reveal confidential information. On
the other hand, a 2006 survey of OECD countries [2] found that: Only a limited
number of countries permit some form of access to business microdata; illustrat-
ing the practical difficulties inherent in preserving confidentiality of individual
businesses. The survey analysts found this to be particularly true in smaller
economies where large businesses are more prominent. They concluded that: The
increased difficulty and the risks associated with disclosure of business microdata
have so far stopped some countries from moving forward in this domain.

It is the purpose of this paper to seek to shed light on the increased difficulty
and the risks associated with providing access to business microdata, in com-
parison with social and survey data, through a discussion of recent collaborative
studies involving the authors. In the paper we focus on microdata, that is, data
where each record is contributed by a single data subject (person or business),
so that the record typically comprises values of a number of variables for the cor-
responding data subject. A data subject may contribute more than one record,
for example, if the data are time-stamped hospital event data.

1.1 Characteristics of Personal and Business Data

The table in Figure 1 is intended to highlight the different general characteristics
of personal and business data. Personal data are those in which each record
corresponds to an individual person, and the data represent information gathered
in a population census or survey on a given population sample. Business data
are those in which each record corresponds to an individual business, and the
data generally represent information gathered in a business survey.



352 C.M O’Keefe and N. Shlomo

 Personal data Business data 
Number of records many few 
Each record relates to person business 
Geographic association point point, line or region 
Pattern of sample 
inclusion probabilities 
for population units 

each person has a 
low probability of 
inclusion  

large businesses always included 
medium size businesses frequently 
included 
each small business has a low probability 
of inclusion 

Number of variables many  few 
Types of variables mostly categorical mostly continuous 
Variable distributions  highly skewed, strong correlations 
Outliers rare large businesses are outliers on most 

variables 

Fig. 1. Characteristics of Personal and Business Data

The combination of the small size of business datasets, the certain inclusion of
large businesses in surveys, and the fact that their data record values are outliers
on most variables, heightens the confidentiality issues for large businesses.

1.2 Types of Disclosure

The literature distinguishes different types of disclosures commonly considered
for statistical microdata, see [19, Section 3.3] and its references. These are ap-
plicable both for individual persons and individual businesses.

An identity disclosure occurs when an individual is identifiable from the data
release, because a particular microdata record can be associated with that in-
dividual. An example of identity disclosure occurs in personal data when a de-
identified record representing a medical procedure is associated with a patient’s
name, such as could occur if the record of the procedure is compared with records
in a database of surgery bookings containing patient names.

An attribute disclosure occurs when sensitive information is attributed to a
particular individual. In the above example of the medical procedure dataset,
the record may include comorbidity details, or the surgery booking may include
contact details of next of kin or details of the patient’s prior procedures.

The main ways that an identity disclosure can occur are:

– Release of identifying information - avoided by de-identification.
– Spontaneous recognition - where an individual is sufficiently unusual in a

data collection, so that the individual can be recognised from normally non-
identifying attributes. This may occur if the attributes have extreme values
such as extreme old age or an unusual combination of attributes.

– Matching to another data base - where combinations of key variables in the
data occur in other databases sufficiently rarely. If a match is found to an
external dataset containing identifying information, then identification oc-
curs. Otherwise, a match may be found to an external dataset with sufficient



Confidentiality for Personal and Business Data 353

additional characteristics that spontaneous recognition occurs. Dates and lo-
cations are unique and therefore are particularly vulnerable to matching.

Attribute disclosure usually follows identity disclosure. An individual is first
identified in a dataset, using some variable values, and then disclosure of values
of other variables included in the same dataset or the matched dataset follows.

1.3 Confidentiality Protection - Overview

A high level discussion of the problem of balancing allowing statistical analysis
of private or sensitive data and maintaining confidentiality typically covers two
broad approaches often used in combination [14,22]. The first approach is re-
stricting access, where access to data is granted under strong controls including
researcher training and registration, supervised secure data laboratories or secure
remote access environments with analysis output checking, as well as legal and
operational protections and agreements [3,4,25,37,38,39]. The second approach
is restricting or altering data, where less than the full data set is released or
the data are altered in some way before release to analysts, in order to provide
enhanced confidentiality protection. Recognising that achieving an identification
requires first an attempt at an identification, then success of the attempt [23],
we see that these two broad approaches correspond to minimising the likelihood
of an attempt and the likelihood that an attempt will be successful, respectively.

When datasets are prepared for statistical analysis, identifying attributes such
as name and address are almost always removed, as well as other sensitive at-
tributes. Often, this is followed by the application of statistical disclosure control
methods such as aggregation of geographic classifications, rounding, swapping
or deleting values, and adding random noise [1,7,8,9,10,13,26,41].

Motivated by the drawbacks associated with statistical disclosure control,
Rubin [33] suggested the alternative of generating and releasing synthetic data
[22,32]. In this approach, the data custodian fits a model to the original data
then repeatedly draws from the model to generate multiple synthetic datasets
which are released for analysis.

Under the alternative remote analysis approach [18,30,35], a remote analysis
system accepts a query from an analyst, runs it on data held in a secure environ-
ment, then returns confidentialised results to the analyst. The recently-developed
differential privacy standard seeks to formalise the notion of confidentiality in
the context of the output of algorithms executed on confidential databases, which
includes statistical analysis enabled via remote analysis [15,16].

From the above discussion it should be clear that there are a number of
different approaches to achieving a balance between allowing statistical analysis
of confidential or private data and maintaining standards of confidentiality. Each
approach has its own strengths and weaknesses, which means that there is no
common approach that is suitable for every situation. It is important in any
given situation to select the method which is most suitable for the given dataset,
custodian, researcher, research project and regulatory environment.
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1.4 Confidentiality Protection - Business Data

In practice, business datasets are not released by agencies unless they are highly
perturbed by, for example, removal of all large businesses and application of other
statistical disclosure control techniques or by replacement of the entire dataset
with a synthetic dataset [29,31]. The risk of identity disclosure is reduced by
ensuring that there are no small counts in the cross-classifications of identifying
key variables, and the risk of attribute disclosure is often reduced by the addition
of random noise to the continuous data variables.

The Australian Bureau of Statistics (ABS) releases business microdata as
Confidentialised Unit Record Files (CURFs) on CD-ROM, as well as through its
Remote Access Data Laboratory and its On-site Data Laboratory [3]. In these
contexts: It is primarily the impact that the confidentiality policy has on the
release of information from ... large businesses that is of concern [36].

The United Kingdom Office For National Statistics (ONS) Business Data
Linking (BDL) Project provides access to business data only via its secure on-
site Microdata Lab, where academic researchers can carry out statistical analyses
[25]. These data are confidential, therefore access is tightly restricted.

The US Census Bureau Center for Economic Studies (CES) allows research
using microdata files under strictly controlled confidentiality rules, at Census
Research Data Centers (RDC) [38]. The CES research program also develops
public-use business data products by combining and enhancing existing data.

2 Personal and Business Data - Examples and Disclosure
Scenarios

A disclosure scenario includes: motivation, target variables, opportunity, means
and attack types [13]. In this section, we discuss motivation and target variables
in the different contexts of personal and business data.

We assume a common context for opportunity, means and attack types, as
follows. First, we suppose an analyst (sometimes called a snooper, intruder or
attacker) has opportunity provided by having access to a microdata file by one
of the approaches described in Section 1.4. The means available to them are
statistical and computational skills, computational power, as well as knowledge
including dataset metadata and other additional information. The main attack
type that we consider is matching all or part of the released dataset to an external
dataset on a selection of key variables.

2.1 Example of Personal Data and Disclosure Scenarios

As an example of personal data, consider the public use microdata sample from
the 2002 Uganda Population and Housing Census provided by IPUMS Inter-
national [24] and used in [11]. The microdata file is a 10% systematic sample
of the population living in Uganda, comprising 2,497,449 questionnaire records
involving more than 100 variables at the household and personal level for each
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respondent. The variables include: number of persons in the household, ranging
1 to 30; age, ranging from 10 to 95; marital status, with five categories; literacy,
with two categories; and employment status, with three categories.

A possible motivation for a disclosure attempt would be to discredit or oth-
erwise embarrass a national statistical agency by showing that their assurances
of protection of data confidentiality are unfounded. An analyst would use values
of demographic variables for matching with records in other databases, in order
to achieve identity disclosure and consequent attribute disclosure. In this case it
can be enough that a record is re-identified by associating it with a person - it
may not be necessary to reveal further sensitive values for the re-identification
to have serious consequences for trust in the national statistical agency.

Personal data usually arise from surveys, and the typically low sampling frac-
tions lead to uncertainty about identity of any individual. It is therefore most
important to protect against identity disclosure, because once an identification
is made, attribute disclosure will almost always follow.

In order to quantify disclosure risk for personal data, it is usually assumed
that the analyst would have no knowledge of any attributes in any records.
Measures of disclosure risk for personal data focus on estimating the probability
of re-identification either probabilistically or by matching to an external dataset
such as a telephone directory or electoral register, see for example [34].

2.2 Example of Business Data and Disclosure Scenarios

As a business data set, we discuss the Sugar Farms data from a 1982 survey of
the sugar cane industry in Queensland, Australia [6]. The data set corresponds
to a sample of 338 Queensland sugar farms, where the sample was stratified
by cane growing region and size of quota and within each stratum a simple
random sample was selected. The data set has one nominal categorical variable:
Cane Growing Region (region) and five continuous variables: Sugar Cane Area
(area), Sugar Cane Harvest (harvest), Receipts (receipts), Costs (costs) and
Profit (profit). The variable profit is calculated as the difference between receipts
and costs and is not considered further in this paper. There are no missing values.

Figure 2 shows summary histograms for the variables area and receipts, which
are also similar to those for harvest and costs. All four variables area, receipts,
harvest and costs are highly correlated as suggested by Figure 3.

In the Sugar Farms data, the variable region is not sensitive. The variable
area is considered an identifying variable because of the risk of data matching
to public registers of farm size and thereby re-identifying farms in the data. The
variables harvest, receipts, costs and profit are commercially sensitive because
they reveal information about the farm’s production, efficiency and profitability.

In addition to the possible motivation of discrediting or otherwise embarrass-
ing a national statistical agency by showing that their assurances of protection
of data confidentiality are unfounded, a more likely motivation for a disclosure
attempt would be to learn commercially sensitive information in order to gain
competitive advantage. The types of disclosures relevant to business data dif-
fer from those relevant to microdata arising from social and household surveys.
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Fig. 2. Histograms and densities for area and receipts in the Sugar Farms data

 Region2 Region3 Region4 area log(harvest) log(costs) 
Region2 1 -0.21 -0.21 -0.53 0.16 0.14 
Region3  1 -0.35 0.17 0.07 0.02 
Region4   1 -0.21 -0.16 -0.22 
area    1 0.82 0.82 
log(harvest)     1 0.91 
log(costs)      1 

Fig. 3. Correlations between variables in the Sugar Farms data

First, the identities of the market leading businesses in any industry sector are
usually widely known and vulnerable to spontaneous recognition. For these large
businesses, therefore, the major concern is attribute disclosure. Also, there are
often public registers of business characteristics, such as farm sizes or other en-
terprise data, which make identity disclosure very easy for many businesses. For
these reasons, business data mainly need protection against attribute disclosure.

To quantify disclosure risk for business data, the dataset is treated as a census
of a population of known businesses, so that business identities are not afforded
any protection by sampling as occurs with personal data. Measures of disclosure
risk focus on attribute disclosure and typically quantify the distance between
real and estimated attributes, using appropriate distance measures [28].

3 Personal and Business Data Confidentiality Case
Studies

In this section we summarise three recent studies involving the authors to provide
a discussion of the applicability of traditional confidentiality methods to the
challenge of protecting confidentiality of business data.
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3.1 Remote Analysis

Business datasets made available for research commonly have the large busi-
nesses removed (in addition to other confidentiality protection measures). Full
business datasets are not made available for research. The alternative remote
analysis paradigm would seem attractive in this application, since large busi-
nesses can be included in analyses, and only the results need to be confiden-
tialised. In this case, the analysis results then represent all businesses.

The potential for remote analysis to address the balance between microdata
access and confidentiality protection, in the context of business data, has been
investigated for exploratory data analysis and linear regression [28]. The remote
analysis approach was compared with a traditional statistical disclosure control
(SDC) approach on the Sugar Farms business data. The main difference between
the approaches was that the five large farms were removed from the dataset
under the SDC approach, but left in the dataset under remote analysis. However,
remote analysis required some smoothing and trimming of results, including
removal of outliers from analysis output and output plots. Note that the outliers
removed from the analysis output and plots did not necessarily correspond to
the large farms.

The main relevant features of the SDC approach, and their main consequences,
were found to be:

– The deletion of large farms from the dataset meant that it models only the
small and medium farms, resulting in similar medians but reduced means
and variances.

– The addition of noise to variable values led to significant information loss.
– The categorisation of area into groups to reduce identity disclosure risk led

to significant information loss.

• In exploratory data analysis, there was a significant deterioration in the
information made available to the analyst.

• In regression analysis of the sugar farms data, there were incorrect con-
clusions regarding significance of variables.

The main relevant feature of the remote analysis approach, and its main
consequence, is:

– The smoothing and trimming of displayed results in order not to reveal out-
liers and individual values meant that the results presented to the analyst
would not exactly correspond to the analysis as it was carried out. The re-
moval of outlying points from residual plots could be indicated, so that the
analyst will know that the model has outlying residual values, but will have
no information about their magnitude or impact.

The worked example in [28] supports the conclusion that the advantages of re-
mote analysis may outweigh the disadvantages in some cases, including for some
analyses of unconfidentialised business data, provided the analyst is aware of
the output confidentialisation methods and their potential impact. For example,
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the remote analysis system may provide analysts with a good way of develop-
ing their research strategies and obtaining preliminary indicative results prior to
gaining full access to licensed detailed data in an on-site data laboratory. It may
also be useful in the context of providing access to research data to support the
objective of enabling reproducibility of research.

Remote analysis systems often have restrictions and disadvantages, including
inability to import external microdata sets, and potentially restrictions on al-
lowable data transformations, data subsetting and new variable definitions all
of which can increase disclosure risk if uncontrolled. There are potentially many
useful analyses which would not be possible through a remote analysis system,
and the user would need to seek an alternative data access mode.

3.2 Synthetic Data

Drechsler and Reiter [11] conducted a simulation study to compare four data
synthesisers based on machine learning algorithms, using the above subset of
the 2002 Uganda census public use file. The four synthesisers were based on
classification and regression trees, bagging, random forests, and support vector
machines. Their evaluation suggested that the synthesisers based on regression
trees can give rise to synthetic datasets that provide reliable estimates and low
disclosure risks, and can be implemented easily.

In the context of this current study, it is of interest to ask whether Drech-
sler and Reiter’s conclusion also holds for business data, as well as the subsets of
census data used in the original evaluation. Lee, Kim and O’Keefe [21] gave a de-
tailed example on the Sugar Farms business data enabling a comparison of the
outputs of exploratory data analysis and linear regression under a regression-
tree-based synthetic data approach, as well as an evaluation with respect to
analysis of the original data. The example showed that univariate exploratory
data analysis of the synthetic data provided good information about the dis-
tribution of the individual variables. However, this was not always the case for
bivariate exploratory data analysis which tended to show more outliers and/or
tended to underestimate the correlations between the variable pairs. Perhaps
more seriously, the regression analysis of the synthetic dataset did not give the
same inferences (in terms of variable significance levels) as regression analysis of
the original data. It also had higher residual standard errors and greater spread
was observed in the regression residuals.

The authors suggested that the inaccurate results of the statistical analysis
of the synthetic dataset were due to the failure of the synthetic data to ade-
quately capture the strong correlation structure structure amongst the variables
in the dataset. This situation is made worse by the presence in business data
of records corresponding to large enterprises, which are outliers on each of the
main variables and would make large contributions to correlation measures.
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3.3 Confidentialising Maps

The use of spatial methods and maps is essential in epidemiology and public
health surveillance, where the health information of each individual person in
the dataset is associated with the home address of the person. The need to pro-
tect the confidentiality of individuals’ health information is well-recognised, and
several approaches for protecting confidentiality of spatial health datasets have
been proposed and evaluated in the epidemiology and health research literature
[20,40]. These approaches address confidentiality issues regarding a restricted
class of spatial datasets, namely those with a large number of records, and where
each record is associated with a single geographic location, or point. The main
methods for confidentialising spatial point data and maps are: reducing map
resolution, suppression, aggregation, transformation and random perturbation.

Geographic Information Systems and related technologies have also long been
part of the daily operation of government authorities, whose operations rely
on geographical information. However, such applications often involve a more
general type of spatial dataset, in which the geographic characteristic associated
with each record could be either a point, a line or an area. In addition, there
are often fewer records. For example, consider pollutant and emissions datasets,
which are growing in importance as society seeks to understand the environment
and our impact on it [5,17]. Typically, the records correspond to businesses and
industries, which are generally fewer in number than individuals in any given
area. Also, each record can be associated with either a spatial point (such as a
factory), a spatial line (such as a road) or a spatial area (such as a farm).

The confidentialisation of more general maps of spatial (business) datasets
containing a mixture of point, line and area records has been recently consid-
ered [27]. We say a record is diffuse if it corresponds to a geographic line or
area, and call a dataset mixed if it contains both point and diffuse records. Any
of the approaches of reducing map resolution, suppression, aggregation, trans-
formation or random perturbation could be applied to the point records in a
mixed dataset, and in principle most of them can be generalised to line and
area records, however each approach has problems, as follows. The approaches
of reducing map resolution and suppression are applicable, however the result-
ing significant information loss is likely to make them undesirable in practice.
Aggregation could be applied to line and area records, but the chosen level of
geography would need to be sufficiently high that it effectively aggregates the
associated lines and areas as well as the points. Transformation and random
perturbation may not sufficiently mask lines and regions with distinctive shapes
unless they quite radically transform or perturb, which is likely to be undesirable
in practical applications.

An additional concern in business data contexts including emissions and pol-
lutant release reporting, is that accurate information must be reported in a
transparent process, so that suppression, transformation and random perturba-
tion are not suitable solutions.

The following is suggested as a framework for confidentialising spatial datasets:

1. partition of the map region into disjoint cells,
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2. distribution of the data records into grid cells, where diffuse records are dis-
tributed over grid cells in proportions suggested by a suitable proxy dataset,

3. confidentialisation of the data in the grid cells, and
4. representation of the data as a heat map in which data in the cells (in ranges)

are represented as colours.

The map partition could be, for example, a square or hexagonal grid, or a geo-
graphic or political area partition, with data records distributed either directly or
apportioned according to a readily accessible proxy database. The use of a heat
map effectively “bins” the data values into ranges and reduces the amount of
confidentialisation needed in the third step of the framework, however small cells
and outliers may still present a confidentiality risk. In some cases aggregation
can be used, with care to avoid increasing the total “mass” or “heat” of the map
region [27]. An alternative is identification of sensitive cells then redistribution
of sensitive cell values to adjacent cells until no sensitive cells remain.

This method is designed to be useful for business data sets. It combines and
adapts traditional non-perturbative disclosure control techniques, which would
not introduce bias but could cause some information loss.

4 Discussion and Conclusions

National Statistical Agencies and other data custodians have a responsibility to
protect the confidentiality of commercially sensitive business data as well as per-
sonally private social and survey data. Traditionally the study of confidentiality
methods has assumed the context of social or survey data about individual per-
sons. However, business data are quite different in nature from social and survey
data. In this paper we have sought to shed light on the question of whether
the confidentiality issues are the same, and whether the confidentiality methods
developed for personal data are also applicable for business data.

For both business data and personal data, the confidentiality objective of not
disclosing confidential information is the same. However, the common disclosure
risk channels are different. For personal data typically arising from social sur-
veys, identity disclosure through matching to external databases is the major
concern because attribute disclosure almost always follows identity disclosure.
For business data, business identities are vulnerable to spontaneous recognition
and hence the major concern is attribute disclosure.

Turning to the question of whether the confidentiality methods developed for
personal data are also applicable for business data, we have discussed three case
studies on business data to highlight potential issues.

The first case study explored the potential of remote analysis servers to over-
come the problem of large businesses in business data sets. Under remote analy-
sis, outliers can still be included in statistical analyses (in contrast to traditional
statistical disclosure control methods), yielding valid inferences, however statisti-
cal analysis outputs are confidentialised before delivery to the analyst. The study
supports the conclusion that the advantages of remote analysis may outweigh
the disadvantages in the case of the statistical analysis of business data.
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The second case study involved using a regression-tree based synthetic busi-
ness dataset as a confidentialised version of a business data set. The example
highlighted the challenge of capturing the high correlations characteristic of busi-
ness data, and showed the consequences of not meeting this challenge, in terms
of incorrect inferences in regression analyses.

The third case study, on confidentialising maps of point and diffuse spa-
tial business data, highlighted the need for non-perturbative confidentialisation
methods to ensure that accurate information is presented in a transparent way.
Most of the methods developed for epidemiological and public health spatial
data and maps are not applicable, with only aggregation being acceptable. A
four stage framework is proposed, involving a range of confidentialisation mea-
sures introduced at several stages.

These case studies have highlighted several points worth noting. First, since
synthetic data need to avoid outliers, variable relationships are distorted unless
preserved through the confidentiality model. On the other hand, users are gen-
erally unrestricted in their use of the data. Synthetic data are typically not used
for producing final results for publication, but are useful during preparation for
access to confidential data. There are a range of different remote analysis systems
with varying degrees of confidentiality protection, depending on the scenario in-
cluding the particular type of data involved. For highly sensitive data such as
business data, the aim of preventing the identification of a single observation
leads to limitations on data transformations, individual analyses (eg requiring
robust regression) and results releases. On the other hand, such systems are often
designed to avoid the need for expert checking of outputs which can be released
for publication. The issue of confidentiality for geography can be addressed with
either of the synthetic data or remote analysis approaches. The data represented
in maps can be synthetic, aggregated, or confidentialised via remote analysis.

In conclusion, it would seem that while the confidentiality objective is the
same for commercially sensitive business data and personally private social and
survey data, the disclosure risks are different. Further, there is evidence that per-
sonal and business data types require different confidentiality protection methods
to achieve an effective balance between disclosure risk and data utility. It would
be interesting to further investigate this phenomenon and try to understand
which confidentiality methods are best applied to data with which characteris-
tics. The issue of personal data contained within business data also needs further
exploration. This issue arises, for example, for employees represented in business
data, students represented in school data, and patients represented in hospital
data. There is a real need to more closely tailor confidentiality methods according
to the characteristics of the data, or possibly to develop new methods.
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